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I THE INTRODUCTION 

 

1.1 BACKGROUND, MOTIVATIONS AND AIMS 

 

Transition metal oxides (TMO) form altogether a very wide class of materials, which 

has attracted since decades the attention of scientists for showing highly diversified 

and unusual electronic properties. The building blocks of TMO are typically 

octahedral structures (BO6) where a transition metal atom (B) is embedded in a 

cage composed of six oxygen atoms (Figure 1.1.1). The electronic properties of such 

oxides are typically dominated by the narrow d-bands of the TMs, where the physics 

is dominated by strong electronic correlations, often hybridized with O p-bands.  

The crystal field of the six neighboring O-atoms (BO6) cause five initially degenerate 

d orbitals to split into an energetically lower, 3-fold degenerate t2g (dxy, dxz, and dyz) 

set and in a higher 2-fold degenerate eg (dx
2
−y

2 and d3z
2
−r

2). The splitting energy is 

in the order of a few eV which is comparable to the energy of a chemical bond.  

 

Figure 1.1.1: TiO6 octahedral as structural block in SrTiO3 and anatase unit cell. 
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According to the specific properties of the single materials, the “ideal” octahedra are 

often found to be distorted, rotated, elongated, or even to show unoccupied oxygen 

planes (as in layered materials), thus further affecting the single orbitals and the 

resulting bands, and eventually the overall electronic properties. 

Depending on the specific transition metal which is employed, a wide variety of 

physical phenomena take place, including a) high Tc superconductivity in cuprates, 

b) a wealth of different magnetic behaviors in manganites, nickelates, ferrites and 

other compounds, c) high-k-dielectric, ferroelectric and piezoelectric properties in 

titanates, and so on.  

 

 

Strontium titanate (SrTiO3) belongs to the class of particularly important TMO 

materials with the general formula ABO3. These materials have the perovskite 

structure named by the mineral “perovskite” CaTiO3 in which this atomic 

arrangement was discovered. In perovskites structure the A-site is, usually, occupied 

by an alkaline earth or rare-earth metal, while the B-site normally contains a 

transition metal surrounded by six oxygen atoms forming an octahedron.  

Strontium titanate (STO) is an excellent model of TMO and its bulk, thin film, and 

small particle structure, as well as its electronic properties has been extensively 

investigated. Moreover, the surface of strontium titanate, which at first glance might 

seem to be simple, still challenges science experimentally, methodically and 

theoretically. Strontium titanate is a widely used substrate material for electronic 

oxide thin film devices and it has been used as a lattice matched substrate for the 

growth of high temperature superconductors 1, 2. STO was also successfully used as 

a support for metal thin film and nanocrystal growth for Au, Pd, Pt, Co, Ag 3, 7, as 

well as a support for the formation of TiOx islands 8, Sr 9, SrO rich islands 10 and 

perovskite nanodots 11. SrTiO3 is one of the few stable materials that can decompose 

water into hydrogen and oxygen with the assistance of light (photoelectrolysis) 12. 

STO could be a good candidate for a crystalline gate dielectric in silicon based 

devices 13, 14. Also, it exhibits several unexpected and intriguing properties, such as 

quantum paraelectricity, record-high permittivity (up to 104 at 10K)15 and 

ferroelectricity (induced by compressive biaxial strain 16 or by isotopic substitution 

17). Mentioned properties make this oxide a promising candidate in technological 
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applications. Moreover, STO surface and the region below the surface, strongly 

influence the macroscopic properties of SrTiO3, such as the electrical conductivity or 

dielectric phenomena at elevated temperatures. 

Truncation of STO bulk lattice along [001] can result in two possible, no charged, 

terminations: stoichiometric composition SrO or stoichiometric composition TiO2. The 

type of termination will strongly affect the stacking of hetero-epitaxial perovskite 

thin films. Heteroepitaxial growth on SrTiO3 has highlighted the importance of the 

nature of a film surface. Generally, the presence of a TiO2- or the SrO-terminated 

surface can give completely different properties of interfaces, ultrathin films as well 

as their final termination. The detailed descriptions of physical properties of STO are 

presented in Chapter 1.2.   

 

Technological applications of SrTiO3 require the optimization of the processes that 

can reproducibly produce a given surface. However, polishing and etching of STO as 

a substrate (usually named “as received”), lead to several kinds of defects on the 

surface and cannot be successfully used as a proper substrate in above mentioned 

manner. This fact is demonstrated in Chapter 3.1.1. Obtaining of TiO2-terminated 

STO (001) with ultra-flat and molecularly layered steps by chemical etching in an 

NH4F–HF buffer solution in combination with thermal treatment 18,19 is already 

established as common way for the surface preparation. On contrary, surface 

sensitive techniques  such as Ion Scattering 18 or Photoelectron Spectroscopy 20 

have shown that even atomically flat TiO2-terminated surfaces, that have been 

annealed at above 800 °C, can have significant levels of segregated SrO.  Having in 

mind these facts and established way for obtaining the TiO2 termination, which is 

usually done ex situ, I have performed small modification in the thermal treatment. 

This work and its consequences on the growth are presented in Chapter 3.1.2.  

 

The A-site termination of STO is by far less investigated, in spite of the potential 

interest for catalytic processes 21 and for the realization of specific functional 

heterostructures and interfaces. Additionally, obtaining of SrO-terminated STO (001) 

surface is not developed as much as the B-site termination. This could be the 

consequence of the instability of A termination. The Chapter 3.2 describes the way 

to achieve A termination. Presented results in this chapter suggest that a high 
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quality SrO termination can be achieved by resorting of STO heteroepitaxial growth 

on the A-site terminated (110) NdGaO3 substrates.  

 

A good illustrative example of the importance of the termination type of STO (001) 

surface is interface between STO and LaAlO3. Although both of these materials are 

insulators the electron gas is present in the interface but only in the case of TiO2-

terminated STO, whereas for SrO-termination, this effect is not observed 22. Some of 

results of experiments on this interface are presented at the end of Chapter 4.3. 

 

One of the methods to modify the material properties is to reduce the stoichiometric 

SrTiO3 and introduce oxygen deficiencies (δ in SrTiO3-δ). The simple way to obtain 

oxygen deficiencies is to anneal the stoichiometric crystal at high temperature 

(800ºC – 1200ºC) in vacuum 23. It is well known, that depending on the annealing 

conditions different surface reconstructions occur. However, the atomic surface 

structure is still matter of debate. For example, most studies agree that these 

reconstructions are formed by oxygen vacancies 24, 25 , while some studies 26 

proposed a model in which an ordered Sr adatom occurs on the surface. (1x2) 

reconstruction, which often appears during the specific UHV thermal treatment was 

subject of my studies. The obtained results are presented in Chapter 3.3. 

 

While there is an increasing number of studies of SrTiO3 (001), there are only few 

reports about the detailed topographic and electronic structure of the SrTiO3 (110) 

surface. These types of substrates are of special importance for the fabrication of 

superconducting/normal-conducting/superconducting Josephson junctions 27, (110) 

or (103)/(013)-oriented RBa2Cu3O7-x thin films 28 for Grain Boundary Josephson 

Junctions 29 etc.  The ideal bulk truncated SrTiO3 (110) surface consists either of a 

positively charged SrTiO or of a negatively charged O2 terminating layer. The 

preparation of the STO (110) surface is not developed as well as for STO (001). To 

provide new information of a termination, morphology and chemical composition of 

the surface immediately before of a deposition in the Chapter 3.4 new results of 

STO (110) surface after light annealing are presented.  
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Titanium dioxide, another representative of TMO materials, occurs in several 

forms such as rutile, anatase and brookite. Anatase is a TiO2 polymorph which is 

less stable than rutile (it is a low-temperature phase), but more efficient for several 

applications such as catalysis 30 and dye-sensitized solar cells 31. Anatase is .actively 

investigated for its utility in photocatalytic water splitting 32-33 as well as oxidative 

destruction of organic pollutants 34-35. The excellent dielectric features (high 

dielectric constant) of TiO2 have been exploited for dielectric layers in thin film 

capacitors and memory devices 36. Moreover, anatase titanium dioxide doped with 

cobalt, (Ti1-xCoxO2), in thin film form, has ferromagnetic properties even above 400 

K 37.  This anatase became popular material because of its possible technological 

applications by exploring both the semiconductor physics and the ferromagnetism. 

This material may be useful as a room-temperature spin injector for semiconductor 

heterostructures (spintronics devices) 38. Anatase is commercially available in 

powder form but, in principal, if anatase is in a form of a thin solid film is more 

suitable for photocatalyses as well as for the heterostructures based on multilayers. 

Therefore, the improvement of the production technique of the anatase TiO2 thin 

film is of great importance.  Physical properties of anatase (in general), electronic 

stricture and (001) surface are extensively described in Chapter 1.2.  

 

According to the phase diagram of TiO2, the rutile phase is thermodynamically 

preferred at high temperature and is expected that no pure anatase phase can exist 

at temperatures higher than 650 °C.  Hawing in mind this fact and that almost all 

growth techniques require high temperature in the process, obtaining of pure 

anatase phase seems very ambitious. However, at present many procedures for 

preparing titanium dioxide films, such as coating, chemical vapour deposition, 

sputtering, anode oxidation of titanium and pulsed laser deposition (PLD) are 

developed. PLD is a suitable method for preparing titanium dioxide films in basic 

research, since the films properties are easily controlled by adjusting deposition 

parameters. One of the aims of this study was also to obtain stabile and poor 

epitaxial anatase films on the various substrates with pulsed laser deposition (PLD) 

by considering the lattice mismatch. The best candidate for the substrate seems to 

be LaAlO3. The crystal structure of LaAlO3 is rhombohedral, which can be 

considering as a perovskite. In this case the lattice mismatch with anatase is rather 
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small (0.2%). The considerable lattice mismatch between SrTiO3, as mostly used 

substrates in thin film technology, and anatase (-3.1%), however, makes difficult 

obtaining the high-quality epitaxial films. Additional substrate was used, SrLaAlO4, 

where the mismatch is less than 1% and causes the compressive strain while the 

film grown on STO expansively strained. The high-quality anatase thin films with flat 

surfaces are advantageous not only for practical application to optical and 

electronics devices but also for basic studies on electric, optical, and photocatalytic 

properties of TiO2 since the fundamental properties of anatase are less known than 

those of rutile. The anatase structure can be pictured as stoichiometric TiO2 planes 

stacked in the [001] direction. Thus the bulk-terminated anatase (001) surface is 

autocompensated, or non-polar, and therefore was not expected to reconstruct. 

Many studies, however, revealed a two-domain (1x4) reconstruction 39-41.  

The study dedicated to optimization of antase thin film growth, surface properties, 

the (1x4) reconstruction and chemical composition of as grown and UHV annealed 

samples are presented in Chapter 4.1. 

 

In the case of heteroepitaxial growth, there always exists an unavoidable 

compressive or tensile strain in the films, due to the lattice mismatch between film 

and substrate and/or the thermal expansion misfit between the film and the 

substrate compounds. The strain effect induces a deformation of the unit cell of the 

film, thus inter-diffusion between a substrate and a film during growth could be 

expected. Since the STO (001) is commonly used substrate and the mismatch with 

anatase is large, this heterostructures seems to be an excellent model to study Sr 

inter-diffusion.  Results of the Sr inter-diffusion and the anatase/STO (001) interface 

are presented in Chapter 4.2 and Chapter 4.3. 

 

One part of my activities was setup a new facility for oxides deposition and analysis 

- MODA (Modular facility for Oxides Deposition and Analysis) at Coherentia Institute, 

INFM-CNR, Naples. The facility allows modification of the surface properties by a 

highly controlled growth process, or by proper thermal annealing and their analysis 

by a number of complementary surface sensitive techniques. The MODA facility is 

described in details in Chapter 2.  
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1.2 PROPERTIES OF STO 

 

1.2.1 Crustal Structure of SrTiO3 

At room temperature SrTiO3 has an ideal cubic perovskite structure in which 

Strontium-Sr is an alkaline earth metal and Titanium-Ti is a transition metal. The 

crystal structure may be described as a network of the basic structural unit of Ti+4-

O6
-2 octahedron with Sr+2 ions as icosahedral interstices (Figure 1.2.1). 

The lattice, actually, has a simple cubic symmetry and crystallographic space group 

is Pm3m.  

 

 

Fig 1.2.1: Schematic diagrams of STO crystal structure: a) with presentation of the 

Ti+4-O6
-2 octahedron basic as structural unit, b) with positioned the atoms in the 

lattice. 

 

Observing oxygen atoms, it can be seen that all of them are coordinated by two Ti4+ 

ions and four Sr2- ions. The Ti-O bond length is smaller than the Sr-O bond length. 

Each oxygen atom is surrounded by the other eight oxygen ions and their bond 

length is equivalent to Sr-O bond. The bond lengths are approximately: 1.95Å for 

the Ti-O bonds and for the 2.76Å Sr-O (O-O) bonds 1 . Consequently, the unit cell 

dimensions are 3.905Å.  

STO is chemically a very stabile material up to the melting point of 2353 K, 

but during cooling down its cubic structure transforms to tetragonal at 105 K.  
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1.2.2 Defects in STO 

Even though it is generally accepted that STO is a highly stable material, often it is 

defective in stoichiometrical point of view. Depending on fabrication, preparation, or 

thermal treatment this material can have: a) excess of or deficiency of strontium, b) 

oxygen deficiency and c) Ti excess.  

 

a) Oxygen vacancies 

SrTiO3 as a pure crystal is an electronic insulator at room temperature. However, 

integration of above mentioned point defects into the lattice can produce free 

charge carriers or charged ionic type material leading to conducting effect. The 

charge carriers are predominantly electrons introduced by donors. Impurity doping 

or heating in a reducing atmosphere alter STO into semiconducting phase at room 

temperature.  Potent annealing treatment can introduce an approximately equivalent 

density of oxygen vacancies which is comparable with donor mechanism 2. The 

creation of oxygen vacancies with annealing is a quite simple procedure. The 

stoichiometric crystal has to be at high temperature (800ºC – 1200ºC) in vacuum 3 

or in the titanium or hydrogen rich environment  for some hours 4. 

The other way to create oxygen vacancies is incorporation of acceptor-type 

impurities or intrinsic acceptor defects. Acceptor-type impurities, such as Al or Fe, 

are present  in oxides at levels typically no less than 10–100 ppma (parts per million 

atomic) 5. Otherwise, reduced STO can be fabricated by deposition as a film at low 

oxygen pressure which consequently creates intrinsically oxygen depleted SrTiO3-x. 

Some authors demonstrated that it is possible to make oxygen deficient layers of 

SrTiO3-x by Ar-ion etching 6-9. 

The structural arrangement of oxygen vacancies in STO is schematically depicted in 

Figure 1.2.2.  

The left part of the figure represents stoichiometric SrTiO3 in an octahedral scheme. 

The thermal treatment leads to lattice change, i.e. two Ti+4 are reduced to two Ti+3 

by removal of one oxygen, as shown in the right figure. This causes the replacement 

of two octahedra, shown in the scheme, by two square-pyramids. 
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Fig. 1.2.2: Positions of Oxygen vacancies using the octahedron presentation. 

 

 

The oxygen vacancy density, measured on a sample reduced in the oxygen partial 

pressure in the order of  10-13 Torr, is in the range of 2.0–7.6 × 1019 cm-3 10. This 

value  corresponds to the one oxygen vacancy per 500 unit cells, or chemically 

presented as SrTiO2.998
11.  

 

b) Strontium and Titanium excees 

The existence of strontium vacancies is intrinsic defect and can be formed during 

high temperature processes of fabrication or annealing. With the vacancies, the 

crystal has the dominant ionic disorder and the formation of vacancies can be 

described with three reactions known as Schottky or “Schottky-like” defect reactions 
12. 

 

                SrTiO3 → (SrTiO3 +V Sr
−2 + VO

+2) + SrO ____ Ef=1.53 eV          (1.2.1) 

Ef represents the formation energy.  

 

The product of the above reaction is SrO, and this could be connected with the 

formation of Ruddlesden-Popper (R-P) phases 13 which do not change conductivity 

behavior. 

A second reaction, actually, leading to the creation of the TiO2 in SrTiO3 and their 

segregation: 

 

            SrTiO3 → ( SrTiO3+ VTi
−4 + 2VO

+2 )+ TiO2_____Ef= 2.48 eV           (1.2.2) 
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This reduction of the surface results in the formation of TiO2-rich phases, known as 

Magneli phases, with R-P phases forming in the sub-surface region14. 

One of the reaction products, VTi
−4 vacancy, is highly charged and it is energetically 

unstable in the ionic structure. Some researchers 15 suggested that the excess of 

TiO2 can be compensated with the formation of neutral coupled vacancy pairs - 

VSr
−2- VO

+2. Also, these processes do not change the conductivity behavior 16. 

 

                              TiO2 → TiTi + 2OO
 + VSr

−2 + VO
+2                             (1.2.3) 

 

The stability of the strontium vacancies together with the formation of Magneli 

phases have been proven both into bulk 17 and thin film STO samples 18. 

 

 

1.2.3 STO Electronic Structure  

One of the most complete theoretical studies of STO electronic band structure was 

done by E. Heifets et al. 19, 20. Their calculations lightened the electrical and optical 

properties of SrTiO3 and their work encouraged theoretical and experimental 

scientists to further study the material. E. Heifets et al. compared results of ab initio 

Hartree–Fock method with electron correlation corrections and density functional 

theory (DFT) with different exchange-correlation functional. Short overview of their 

results which can be used as basic model for electronic structure of STO will be 

presented. 

But before presenting the electronic structure, Fig 1.2.3 shows sketch of high 

symmetry point’s positions in a cubic lattice. These points are mainly used in all 

theoretical and experimental approaches to describe electronic band structure of 

crystals.  
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Fig 1.2.3: The Brillouin zone for a simple cubic lattice (the symmetry points and 

directions are labeled in terms of the Bouckaert-Smoluchowski-Wigner symbols 21). 

 

 

Fig. 1.2.4 presents the theoretically calculated band structures of the bulk (a), TiO2 

(b) and SrO (c)-terminated surfaces.  

 

 

 

Fig. 1.2.4: The band structure of SrTiO3: a) bulk, b) TiO2 terminated surface c) and 

SrO terminated surface, d) total and projected DOS for the bulk SrTiO3. 
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Calculation of the surface Brillouin Zone corresponds to the square 2D lattice. Full 

DOS calculations for the bulk SrTiO3 and contributions of all kind of the atoms are 

presented in Fig 1.2.4d. From Figure 1.2.4 it is possible to see that the upper 

valence band of bulk SrTiO3 is quite flat, with the local maximums at M and R points 

of the Brillouin zone. The bottom of the conduction band drops at the G point and 

the X point, where the energies are very similar. The dispersion curve between 

these G and X points is very flat. Such flat bands could make possible hole and 

exciton self-trapping 22. The optical bulk gap obtained with their theoretical 

approach is 4.16 eV. This result is in disagreement with the experimental value of 

3.2 to 3.3 eV. However, their value of the gap is in better agreement in respect to 

the other theoretical calculations based on different models, for example ‘‘pure’’ HF 

calculations or LDA calculations 23.  

The upper valence band is formed by O2p atomic orbitals with a small 

contribution from Ti atomic orbitals. The top of the upper valence band for the TiO2- 

terminated surface is located at the M point of the Brillouin zone (Fig.1.2.4b). 

Analysis of the atomic orbital contributions to the DOS shows that this band consists 

mainly of the atomic orbitals near or in the surface. Due to this fact the band can be 

considered as a band of surface states. Bottom of conduction band consists 

essentially of Ti orbitals. Contribution from strontium atomic orbitals is insignificant 

in this energy range. Actually, the Sr orbitals give an important contribution to the 

DOS only at energies much higher in the conduction band.  

 

 

 

Fig. 1.2.5: UPS spectrum from STO (001) annealed for 1h at: a) 710°C in O2 

atmosphere (5×10−6 Torr) and b) annealed in UHV at 710°C 24. 
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Experimental Ultraviolet Photoemission Spectroscopy (UPS) data on STO crystal 24 

are shown on the Fig. 1.2.5. Fig. 1.2.5 shows the UPS spectrum from the non-

bonding O2p (~5 eV) and bonding O2p and Ti mixed orbital, 3d+4p(4s) (~7 eV). 

The autors demonstrated that the annealing in O2 atmosphere gives an atomically 

clean and stoichiometric surface. On the contrary, when the sample was annealed in 

UHV at temperatures from 570 up to 1020°C for 1 hour, additional surface state 

near the Fermi edge was observed. This small peak about 1.2 eV below the Fermi 

edge was explained as the creation of oxygen vacancies in the top TiO2-terminated 

STO. The new band inside the gap was described  theoretically using a tight-binding 

model including the effects of lattice relaxation 25. 

 

1.2.3.1 Optical properties of STO 

Optical properties and activity of STO depend strongly on a sample preparation and 

degree of the reduction. Pure stoichiometric SrTiO3 is a transparent in visibly range 

of light. Moreover, regarding to the optical studies, it has a transparency window in 

the energy range of 0.25– 3.1 eV 26, 27. 

Furthermore, under the introduction of n-type dopants, including, in a generalized 

sense, oxygen vacancies VO
2-, STO turns from a transparent insulator into an 

black/dark-blue material 28-30. A totally new field of interest and application has 

emerged from recent papers 9, 31 reporting a previously unnoticed fascinating optical 

feature of n-doped STO: a room temperature broadband blue light emission 

occurring under exposure to UV light of 3.8 eV. In those works, the authors doped 

crystalline STO with electrons, by substitution of Nb4+ for Ti3+, La3+ for Sr2+, or 

creation of VO
2- impurities irradiating crystal by Ar+ ions. These procedures 

transform stoichiometric STO samples into blue light emitters at room temperature 
31.  

A. Rubano, M. Radović et al. in order to understand real potential of STO as light 

emitter focus their attention on two questions 32. First issue was to understand 

relation of presence of impurities or vacancies as donors on reported blue emitting 

properties of n-doped STO. Rationale for this question was that Kan at al. 9, 31 

provided conclusive evidence that it is indeed the “oxygen vacancies shining blue” 
33, according to other reports blue light emission is also found in intrinsic STO 34. 

Second question was how suitable the discovered luminescence is for high 
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frequency applications, and what is the intrinsic limit to the bandwidth of the 

potential future devices. In order to investigate these issues, authors performed 

time resolved photoluminescence (PL) measurements on “intrinsic” “I”, Nb-doped 

“Nb” and oxygen deficient “O” STO samples prepared at MODA lab. With regard to 

the first mentioned issue, time resolution complements spectral resolution thus 

allowing the comparison of the mechanisms which are present in different samples. 

While the spectral analysis allows comparing the energy of the electronic states 

involved in the luminescence, the analysis of the temporal profiles allows evaluating 

the radiative and non radiative mechanisms causing the decay of the excited 

plasma. With regard to the second issue, the intrinsic bandwidth limit can be trivially 

estimated to be of the order of the inverse of the decay half-life.  

However, we found strong overall similarities in the emission spectrum, the 

yield and the decay dynamics of the photoluminescent response of pure, oxygen 

deficient, and Nb-doped STO. This results point to a very minor role of donors and 

doping-induced electrons both on the states involved in the transition, and at least 

on the most relevant decay mechanism, i.e., the BD. The results seem to be in 

disagreement with the results which quote that in intrinsic STO there is not blue 

light emission. Obtained results set the upper bandwidth limit of STO-based emitting 

devices above 1 GHz, opening some interesting prospects on the fabrication of 

integrated optoelectronic devices based on titanates, where the growth of epitaxial 

heterostructures allows integrating emitting elements with tunable filters, optical 

switches, and ultrawide bandwidth modulators.  

 

 

1.2.4 Surface structure and properties of STO  

Appreciation of the SrTiO3 surface crystallography and the morphology is critical for 

the understanding and the interpretation of an observed a electrical, an optical and 

achemical properties. After many published data and a lot of debates, it turned out 

that the resulting chemical composition and morphology of surface significantly 

depends on the history of the sample including chemical treatment, annealing 

temperature, oxygen partial pressure, annealing time, cooling rate etc.  14, 35-42.  

 



Properties of STO 

 
M i l a n  R a d o v i ć - P h D  t h e s i s  

 

Page 17 

 

Fig. 1.2.6: The crystal planes of STO a) The crystal lattice, b) (110) plane with 

double termination and c) (001) plane with double termination. 

 

 

This subchapter provides introductions of two surface planes of STO, (001) and 

(110) which are schematically depicted in Fig. 1.2.6. Both planes were subjects of 

this study.  

In order to understand the relative stability of the surface planes, the charge 

redistribution at the surface and how this give rise to the rearrangement of atoms 

have to be established. However, the mechanism of charge redistribution depends 

on the surface type. P. W. Tasker  established a classification of surface types using 

basic electrostatic principles 43.  His classification is shown schematically in Fig. 

1.2.7.  

In the type I surface the charge in each plane is spread in the way that these planes 

are charged neutrally. 

If planes are arranged with repeating units and are charged, but without dipole 

moment, the surface is called type II. 
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Fig. 1.2.7: The surface types according to Tasker classification. 

 

Finally, type III surface is characterized by that each layer parallel to the surface has 

a charge σ and the dipole moment. To which type a surface belongs depends mostly 

on: the surface orientation n, the characteristics of the polarization in the bulk unit 

cell, and on the crystal termination.  

The surface orientation determines the coordination numbers and organization of 

ions on the surface.  

Bulk electric polarization (P) of insulating crystals is defined by the centers of 

charge of the Wannier functions of the occupied bands. If the surface orientation is 

n, the bound charge density on the surface (σb), is described with equation σb = P · 

n.  The polarization as vector has modulo as q/A, where A is the surface cell area. If 

condition that modulo q/A is equal to zero (σb = 0) is satisfied, the surface is non-

polar 44.  

The polarization, P, can be estimated from the information of the ground-state 

electronic distribution in the bulk unit cell by high-resolution x-ray diffraction 

experiments, or theoretically, by first-principles methods based on the density 

functional theory (DFT). 

Actually, in most cases, simple models for the electronic structure can easily indicate 

when a surface is a polar or not. In this way it is necessary just to use the sign of 

the ions charge in the plane. For example, SrTiO3 (110) contain SrTiO and O2 layers 

as repeated units which are charged. If formal charges are assigned to the ions as:  

Sr2+, Ti4+, and O2− the SrTiO has charge +4e and O2 has -4 per unit cells in the 

plane.  
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Generally speaking polar surfaces have low stability. Next few sentences explain the 

origin of this instability. Claudine Noguera gives very simple presentation of a the 

crystalline compound cut along a polar direction 45. Fig.1.2.8a. presents 

schematically inequivalent layers with equal but opposite charge densities (±σ), with 

interlayer spacing R1 and R2. The unit cell has a dipole moment density equal to  

µ=σR1. With increasing number of the layers, the electrostatic potential increases 

monotonically across the system by an amount δV = 4πσR1 per double layer as 

shown in Fig. 1.2.8b. A potential, δV, is actually large, and could be of the order of 

several tens of eV in a pure ionic material like MgO 46 or a partially ionic material like 

LaAlO3. The total dipole moment M=NσR1 of N bilayers is proportional to the 

thickness, and the electrostatic energy amounts to E=2πNR1σ
2.  

 

 

Fig. 1.2.8: a) Structured material with inequivalent charged layers, b) Energy and 

potential dependences of the number of layers. 

 

 

With increase of a thickness (N →∞), the electrostatic contribution to the surface 

energy per unit area diverges and surface cannot exist and will collapse.  

However, several scenarios that would cancel the polarity and stabilize the surface 

are likely. One possibility is that one or several surface layers change chemical 

compositions respect to the bulk. This effect can be followed by reconstruction 

depending on order of the vacancies or adatoms which could be created. 
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Second scenario is connected with the environment where adsorbed atoms or ions 

may provide the charge compensation. 

Third situation for charge compensation can be due to the electron redistribution 

which can cancel out the macroscopic component of the dipole moment in response 

to the polar electrostatic field and this scenario can happen only on stoichiometric 

surfaces and this effect is presented in Fig. 1.2.9. 

If the value (σ’=σR2/(R1+R2)) of  the charge density is transferred  on the external 

layers of the crystal this results that a total dipole moment is not any more 

proportional to the thickness of crystal (M=σR1R2/(R1+R2)). Increasing of the 

electrostatic potential is also suppressed and, moreover, saturates.  

 

Fig. 1.2.9: Structured material with inequivalent charged layers, b) Energy and 

potential dependencies of the number of layers with charge redistribution. 

 

                         

Which process for stabilization of the surface will take place depends strongly on 

energetic considerations. However, the resulting surface energy, considering the 

process of depolarization, has to be as lowest as possible. If crystal is in conditions 

of thermodynamic equilibrium, additional condition has to be satisfied-the lowest 

thermodynamical potential because the surface is in contact with the environment. 

If thermodynamic equilibrium cannot be reached, the final surface configuration is 

that of the lowest kinetically available energy 47. 
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1.2.4.1 (001) Surface 

As mentioned previously, cutting down the bulk lattice along [001] direction results 

two possible terminations of the surface:  

• SrO; the oxygen coordination of Sr ions decreases from the bulk value of 12 

to a surface value of 8. 

• TiO2: where oxygen coordination of Ti decreases from the bulk value of 6 to a 

surface value of 5. 

The double termination of the surface is schematically presented in Fig. 1.2.10. 

In order to understand the relative stability of these two possible 

terminations, prerequisite is a determination of the charge redistribution on the 

surface and consequent shifts in atomic positions. 

By the surface classification described above, both terminated (001) surfaces of 

SrTiO3 are considered as type I. On the other hand, SrTiO3 is not fully ionic because 

its gap width (3.2 eV) is not large enough. Due to this and the fact that the Ti–O 

bond has a small covalent contribution, STO acts as semiconductor. These causes 

existence of QSr + QO and QTi + 2QO charges; thus SrTiO3 (100) should be 

considered as a polar surface. All this can cause some of the following surface 

modifications: charge redistribution, the ramping, the relaxation, the reconstruction 

or even segregation. 

 

 

 

Fig. 1.2.10: Double terminated (001) STO surface. 
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Considering the way of the SrO and TiO2 surfaces formation, due to the breaking of 

the bonds between the planes, and the fact that difference in covalency between 

surface and subsurface layers and layers in the bulk does not exist 48 large 

modification in the electronic structure is not expected. 

Anyway, some reduction of the surface ionic charges with respect to the bulk was 

demonstrated by X-ray photoemission studies 49, 50. Since the SrO and TiO2 

terminations have less coordinated atoms then bulk, one might expect a contraction 

of the outer layers of both surface terminations. The attractive forces in the lattice is 

due to the electrostatic interactions and estimating is possible using the formal 

charges Z by an equation 1.2.4 51.  

 

                                                (1.2.4) 

 

i, j - vary independently over all ions in the crystal, r - the distance between two 

ions, Nc - number of unit cells in the crystal.   

 

This energy, known as the Madelung potential, describes the cohesion of the solid a 

short-range regime. Moreover, it gives possibility for determination of the 

equilibrium inter-atomic separation, rij
eq.   

The relaxation was predicted by theoretical calculations 52 and it was 

confirmed experimentally with LEED study by Bickel et al.53. Another structural 

modification, rumpling, was observed in the measurements by Bickel et al. Rumpling 

is, actually, a consequence of the differences in polarizability of the anions and the 

cations. The anions and cations are, in fact, in the field generated by the surface 

dipole moment but cations sustain stronger force than the anions do. This provokes 

surface rumpling. The other reason for the rumpling could be in surface relaxation 

inhomogeneity where the cations are more relaxed respect to the anions.  

Reconstruction of the STO (001), as a way of the surface stabilization is one 

of the mostly studied phenomena on the surface. One of the subjects of this thesis 

is the understanding of the surface reconstruction nature with the accent on (1x2) 

type of reconstruction. Actually, many types of the surface reconstruction were 

observed on (001) and they are presented in the Table 1.1.1 14, 36-40, 42, 54-57. 
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Table 1.1.1 Observed surface reconstructions of STO (001) 

Observed 
reconstruction 

     Sample preparation of 
               STO(100)  

Techniques  

(1x1) 1.UHV annealing, T= 8270C, t=60min 
2. Annealing, P=10-5mbar O2  

AES, LEED,SPM, 
UPS, RHEED  

(2x1) 1. Annealing, P=10-5mbar O2  
2. UHV annealing, T= 9500C, t=120min 
3. UHV annealing,T= 600-8000C, t=30min 

LEED, AES, STM  

(2x2) Annealing, P=10-5mbar O2  LEED, AES, 
MEIS,UPS, 

C(4x2) 1.UHV annealing in P=10-5mbar H2, 
T=9500C, t=120min  

LEED, STM, AES  

C(6x2) O2 annealing T=11000C, t=180min, then 
UHV annealing T=9500C, t=120min  

LEED, AES, STM  

(6x2) O2 annealing T=11000C, t=180min, then 
UHV annealing T=9500C, t=120min  

LEED, STM  

(√5x √5)R26.60 1.UHV annealing, T= 9000C, t=15h, then 
flashing at T=12000C, t=2min 
2. UHV annealing, T=18300C,t=120min  

AES,LEED, 
STM,XPS,RHEED  

 

 

Note from the table that the similar preparation conditions can cause different types 

of reconstruction. On the contrary, different recipes raise the same reconstruction. 

Some researchers often claim that the observed structure actually represents an 

equilibrium structure. Generally speaking, combined data obtained by high 

resolution surface sensitive tools (STM-AFM, XPS-UPS, LEED-RHEED, TEM), provide 

basics for the three theories for the (001) surface reconstructions.  

One explanation is that the reconstruction is related to an arrangement of oxygen 

vacancies 38. 

Second explanation is that reconstruction may be due to Sr diffusion from the bulk 

and the segregation on the surface 54, 57 and the last explanation is that the surface 

reconstruction occurs from the formation of new oxides 14, 35, 36.  

 

a) The surface reconstruction due to the ordering of oxygen vacancies 

When it comes to the SrTiO3 (100) surface reconstruction, the proposed model 

includes that the oxygen vacancies on the surface are coupled with Ti3+ ions leading 

to the titanium-oxygen vacancy complex (Ti3+–VO) 38. The ordering of the Ti3+–VO 
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complexes causes some types of surface reconstruction. J. Goniakowski and C. 

Noguera 48 used the electrostatic principles to qualitatively describe of this effect. 

For the TiO2 terminated surface, creation of a single oxygen vacancy 

redistributes q charge in a way that a quadrupole is formed in the plane with -q on 

the two linearly coordinated Ti ions and +2q on the vacancy site. Numerical 

simulations suggested that aligned quadrupoles on the TiO2-terminated surface have 

a higher attractive interaction while the interaction is repulsive when two 

quadrupoles are normal to each other In the case when Ti-Vo-Ti quadrupoles are 

present in high density they will preferentially order in the parallel row-like structure. 

With this ordering, the structure maximizes the attractive energy while minimizing 

the repulsive energy. It should be noted, however, that this simple explanation 

ignores relaxation effects. Some varieties of row-like superstructures are observed 

with LEED, RHEED and AFM-STM 39 and they are included in Table 1.1.1. Some 

examples of reconstruction varieties are presented in Figure 1.2.11. 

 

 

 

Fig.1.2.11: Ι) LEED pattern of SrTiO3(001) surfaces prepared by different procedures 

(a) double domain (2×1) reconstruction, (b) double domain c(4×2)reconstruction, 

(c) double domain c(6×2) reconstruction, (d) a single domain c(6×2) (preparation  

conditions as in (c)),reconstruction is stabilized on a vicinal (001) SrTiO3 surface,  

II) High resolution STM image of c(6×2)  39. 

 

 



Properties of STO 

 
M i l a n  R a d o v i ć - P h D  t h e s i s  

 

Page 25 

The creation of the oxygen vacancies on the TiO2-terminated surface raised an 

interesting question: if the Oxygen vacancies creation on the SrO-terminated surface 

is possible? Following the electrostatic argument used by J. Goniakowski and C. 

Noguera, it is clear that Oxygen vacancies creation on the SrO-terminated surface 

does not occur. The charge redistribution for a single oxygen vacancy shifts electron 

density towards the titanium in the subsurface plane, thus creating the dipole 

oriented normally to the surface. Finally, the oxygen defect formation energy on the 

SrO surface is higher than on the TiO2 surface. This is further supported by the 

absence of the surface states on the SrO-terminated samples annealed under UHV 

conditions 56. 

 

b) The surface reconstruction due to Sr adatoms  

A new structural model for (001) SrTiO3 reconstruction - (√5x√5)-R26.60 was 

proposed by Kubo at al. 54. The model is based on the existence of Sr adatom and 

their ordering at the oxygen fourfold site of a TiO2-terminated layer. Kubo at al. 

used STM and the first-principles total-energy calculation to study atomic and 

electronic structures of the SrTiO3 (100) surface. Moreover, they proposed this 

model for the other types of surface reconstruction. The c(4x2) phase and the series 

of the structural phase transitions, c(2x2), c(4x4), p(2x2), p(4x4) and (√13x√13)-

R33.70  were observed 57 . Kubo at al. claimed that their model for the SrTiO3 (100) 

surface reconstructions, based on ordered Sr ad-atoms can explain the obtained 

experimental results very well. 

 

c) The surface reconstruction due to the formation of non perovskite 

phases   

Some studies on STO were devoted to understand if the stabilization of the (001) 

surface could be due to formation of new surface oxides. One possibility is that the 

heating in a reducing atmosphere lead to surface alteration, in a way  that various 

orders of the sub-oxide Srn+1TinO3n+1 known as Ruddlesden-Popper (R-P) phases are 

formed (n = 1 or 2 depend on the level of  reduction) 35, 36. While the second 

possibility is that the reduction of the surface results in the formation of TiO-rich 

phases, known as Magneli phases, with R-P phases forming in the sub-surface 

region 14. One of the studies was based on the results obtained by Transmission 
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Electron Microscopy (TEM) showing that the crystal contains non-perovskite phases 

including Ruddlesden–Popper phases. These measurements showed the in the 

regions where TiO2 layers have been removed, SrO on SrO layers appears 58, 59.  

Moreover, Castell at al. showed that on the STO (001) many varieties of 

nanostructures, as nanolines and nanodots, can be form 40, 59, 60. These structures 

were created by the combination of Ar+ ion sputtering and annealing in UHV. M.R. 

Castell speculated that these structures are due to either SrO or TiOx enrichment of 

the surface region giving rise to nanocrystalline growth of non-perovskite phases on 

the surface. Nanostructured surfaces obtain by Martin R. Castell are show in Figure 

1.2.12. 

 

 

 

Fig. 1.2.12: Sequence of STM images showing the SrTiO3 (0 0 1) surface 

morphology evolution following Ar ion sputtering and annealing in UHV. (a) terrace 

evolution at 750 0C, (b) step edge straightening at 860 0C, (c) nanoline appearance 

at 950 0C, (d) nanoline self-assembly at 975 0C, (e) nanolines breaking up into  

ordered nanodot arrays with additional annealing at 900 0C, 

 (f) disappearance of all nanostructures at 1235 0C. 59 
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Auger Electron Spectroscopy (AES) measurements of this surface shown that the 

Ti/Sr peak ratio, compared with the ratio of stoichiometric SrTiO3, increased. This 

result supported the conclusion that nanostructured surfaces are TiO2-based 61. M.R. 

Castell suggested that these TiO2-based surface phases on SrTiO3 may also be 

useful for the development of the photocatalytic technologies. 

 

1.2.4.2 (110) surface 

The STO (110), as already mentioned, is the polar surface and the most ‘‘open’’, it 

has the lowest surface density. The surface was experimentally studied using 

several different techniques. Low-energy electron diffraction-LEED shows different 

kinds of surface reconstruction after thermal treatments. Atomic force microscopy 

also confirmed surface adaptation of the STO 62-64. Similarly to the (001) surface, 

the atomic and electronic structure of the (110) surface strongly depend on the 

preparation procedures, especially on the annealing temperature and O2 partial 

pressure.   

 

 

Fig. 1.2.13: Schematic view of the two (110) STO surface termination. 
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Also some theoretical studies were carried out to understand the nature of the (110) 

surface reconstructions 46, 65. In agreement with the fully ionic model, the layer 

charge densities amount for 2D unit cell is ±4 electrons. Moreover, the repeat unit 

has a dipole moment leading to the system electrostatic instability. For complete 

stabilization, the macroscopic component of the total dipole moment has to be 

compensated. There are two ways to overcome the instability: the spontaneous 

electron redistribution with the surface perturbation, or the modification of the 

atomic concentrations at the surface 46. 

Here the second way for depolarization is explained in more details.  

For the SrTiO-terminated (110) surface orientation, the charge compensation 

can be achieved by the transfer of Sr atom from the SrTiO face to the opposite face. 

For O2- termination, the removal an oxygen atom from the O2 termination and 

adding one oxygen atom above the SrTiO layer on the other side can solve 

instability. Both processes may produce (1x1) structured surfaces. Of course, the 

other configurations of the surface could also exist, but they are more complex and 

result in 2D unit cells larger than (1x1). E. Heifets at al.  used ab initio calculations 

for (1x1) surface 66 and  obtained results indicate a significant increase of the 

covalent behavior of the Ti-O bonds near the surface respect to the bulk. This 

should have an impact on the electronic structure of the surface defects and should 

affect the adsorption and a surface diffusion of atoms and small molecules relevant 

for catalysis. They claimed that the O-terminated (1x1) surface has the lowest 

surface energy among all the (110) terminations studied. They also noted that the 

formation of O vacancies is much more efficient than a strong electronic-density 

redistribution for the depolarization.  A. Kotomin et al. studied the (2x1) surface 

reconstruction, where O atoms are removed in pairs in a ‘‘zig–zag’’ way 67. They 

found that this reconstruction has the surface energy only slightly lower than the 

(1x1) reconstruction. 

Based on the idea that the transition-metal (110) surfaces have to be 

stabilized as faceted surface due to the stress of the missing-rows 68  additional 

model for the STO (110) surface reconstruction appeared. Brunen and Zegenhagen 

studied undoped SrTiO3 (110) single-crystal surfaces treated with annealing at 1000 

°C in ultrahigh vacuum 64. They observed the sample with Scanning Tunneling 

Microscopy (STM) and the results showed that the surfaces contained TiO2 (100) 
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and TiO2 (010) microfaceted planes. The planes are consequences of the Sr and O 

desorption from the SrTiO- terminated surface. A. Gunhold et al. performed similar 

experiment on STO (110) and their results confirmed the coexistence of two 

periodicities 69. Actually, the removal of Sr and O atoms from the surface leads to 

the periodicity of (1x1) while the removal of the additional Sr, Ti and O atoms 

provokes to the reconstruction with (1x2) periodicity. For the (1x1) periodicity the 

spacing between the rows has to be 0.55 nm, whereas for the (1x2) periodicity is 

1.1 nm. These were in good agreement with their AFM measurement and it is 

presented in Figure 1.2.14.  

 

 

 

Fig1.2.14: The AFM image 10x10 nm2 of the SrTiO3 (110) surface heated  

at 900 °C for 1 h in synthetic  air (20% O2, 80% N2). 69 

 

Since the other types of the reconstruction, such as (4x6), and at the same time, 

morphological changes on (110) surface often appear during the thermal treatment, 

analysis of this kind of the reconstruction was one of the subjects of the studies 

performed during the course of this PhD thesis. The obtained results are presented 

in subchapter 3.4. 
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1.3 PROPERTIES OF TiO2 

TiO2 has wide palette of applications and great effort has been put to understand 

TiO2 properties and the obtained knowledge becomes basic stone in understanding 

metal oxide surfaces. Moreover, the surface plays major role in catalysis, photo-

catalysis, solar cells, etc. and in all these TiO2 anatase as one of polymorphous 

represents one of the most important materials. In the following chapter is 

description of TiO2 crystals, electronic and surface structure with strong accents on 

anatase. 

1.3.1 Crystal structures of TiO2 

Titanium dioxide TiO2, commercially named titania, in typically found in three 

allotropic modifications with different crystal structures 1. 

1. rutile, with a tetragonal crystal structure; 

2. anatase - also with a tetragonal crystal structure; 

3. brookite with a rhombohedrical structure.  

It is worth mentioning that other TiO2 structures exist as well but they are either 

unstable or their synthesis is more than difficult 2. 

Rutile, anatase and brookite, all contain 6 coordinate titanium (Ti- octahedra) as 

basic structural block. The crystal structures of rutile, anatase and brookite are 

presented in Fig 1.3.1. All of them are presented in two ways, on the left positions 

of Ti- octahedra in crystal lattice are shown, while on the right lattice representation 

with titanium and oxygen atoms positions are depicted. For rutile and anatase, Ti- 

octahedras are  slightly distordered, the two bonds beatwen Ti and O atoms are 

longer at the aspices of octahedron. These facts lead to deviation from 90 degrees 

angle bond in anatase phase.      

All of these phases of TiO2  have wide band gaps which potentially enable the 

introduction of both, deep donor and deep acceptor levels. Thus TiO2 can be doped 

heavily with  both n- and p- type carriers 3. All these material are transparent in the 

visible region and with a high refractive index, which allows several optical 

applications. TiO2 also has a high dielectric constant and can a be good candidate as 

the gate material in Field-Effect Transistor (FET) logic devices 4. 
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Doped with Co or Fe, TiO2  is believed to be diluted magnetic semiconductors (DMS) 

oxide, and could possibly play a key role in semiconductor based spintronics 

technology 5.  

 

 

Fig.1.3.1:  Schematic diagrams of the polymorphs of TiO2: a) rutile, b) anatase and  

                                           c) brookite.  

 

 

 

The physical properties of TiO2 polymorphs are given in the Table 1.3.1. With 

regards to anatase, which is the allotropic form studied in thin film form in the 

present work, it is worth mentioning that it has the lowest density among the three 

main allotropic forms. 
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 Table 1.3.1: Physical properties of three phases of TiO2 .  

 

Moreover, anatase is meta-stabile phase and it can be transformed easily in rutile at 

relatively low temperature (below 7000 C) while brookite is instead unstable 6.  

Anatase surface science is relatively recent due to the difficulty in producing 

large enough monocrystals. Additionally, commercially available titania is a mixture 

of rutile and anatase phases, so to obtain clean anatase measurements is very 

difficult. As shown bellow, large anatase surfaces can now be produced by resorting 

to epitaxial thin film growth. 

 

1.3.2 Anatase electronic structure   

Both polymorphisms with a tetragonal crystal structure,  anatase and rutile, are wide 

band-gap insulators with band gaps of 3.1 eV for rutile  and 3.2 eV for anatase 7. 

Although rutile can absorb UV light almost down to the upper edge of visible light, 

anatase exhibits higher photo activity (for catalysis) due to the difference in the 

position of the conduction band. 

The analysis of the electronic structure of anatase is fundamental for understanding 

of its catalytic and optical properties and the following text brings the description of 

that.  

The valence band of anatase is created, mainly, of O2p states, with some Ti3d and 

Ti4sp character acquired through hybridization with the empty Ti 3d/4sp conduction-

band states. Formation of the valence band is shown on Fig 1.3.a. 

TiO2 

 

Rutile Brookite  Anatase 

Lattice constants (Å) a=b=4.59;  

c=2.953 

a=9.18;b=5.45 

c=5.15 

a=b=3.782 

 c=9.502 

Space group P42/mnm Pbca I41/amd 

Molecule/cell 2 8 4 

Ti-O bond length(Å) 1.95(4), 1.98(2) 1.87 ~ 2.04 1.94(4), 1.97(2) 

O-Ti-O bond angle 81.2°,  90.0° 77.0° ~ 105° 77.7°,  92.6° 

Volume/molecule(Å3) 31.22 32.17 34.06 

Density(g/cm3) 4.13 3.99 3.79 
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R. Asahi et al. used First-principles calculations of the full-potential linearized 

augmented plane-wave method to investigate the detailed electronic and optical 

properties of TiO2 in the anatase structure 8. Calculated band structure of the 

anatase is presented in Fig 1.3.b. A minimum direct band gap was found at Γ point. 

The energy difference in the valence-band maxima at Γ and Z was, however, only 2 

meV but the band gap obtained, 2.0 eV, is much smaller than experimentally 

obtained 3.2 eV 9. This difference could be due to the well known shortcoming of 

Local Density Approximation -LDA 10.  

Anatase looses oxygen easily from the surface and bulk during annealing at 

temperatures of around 500–700 °C in HV or UHV conditions. As consequence of the 

annealing, anatase becomes an n-type semiconductor (TiO2−x) containing oxygen 

vacancies. The presence of O vacancies at the surface and the connected defect 

electrons, which remain localized as Ti3+ ions, results in the appearance of a defect 

peak or band-gap state at around  1 eV binding energy, between the valence band 

and the Fermi energy 1, 11-14.  

The low-binding energy states may be accessed during a catalytic redox 

cycle, in the case of unreduced surfaces, the atomic character of the states close to 

the valence-band maximum (VBM) may be of importance in determining the 

catalytic activity of the surface. For reduced surfaces, the presence of defect states 

at around 1 eV from the Fermi energy is likely to have a substantial influence on the 

reactivity of the surface, through changes in both the electronic structure of the 

surface and in the geometric structure caused by the presence of oxygen defects.  

The resonant behavior of anatase TiO2 (101) and (001) surfaces has been 

investigated using synchrotron photoemission spectroscopy by A. G. Thomas et al 11. 

The results obtained are shown in Fig 1.3.2.c.  

The data for the (101) surface are in agreement with the bulk band-structure 

calculations. At the same time, they noticed deviations of the data from the bulk 

band structure in the case of the (001) surface. Explanation for this could be that in 

the case of (001) surface the reconstruction plays important role. Since the sample 

was annealed in order to get the conducting sample, a small peak is observed at 

around 1 eV binding energy for both surfaces. 
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Fig. 1.3.2: Electronic structure of anatase: a) Molecular-orbital bonding structure for 

anatase TiO2; b) Calculated band structure of the anatase TiO2 structure; c) Energy 

distribution curves from the clean TiO2 anatase (001) surface at increasing photon 

energies. The points marked as A, B, C, and D refer to the binding energies. A=58.2 

eV, B=5.4 eV, C=4.0 eV, D=1.1 eV 8, 11
. 

 

 

These results are concordant with well known effect of the creation of surface 

defects O vacancies which is connected with Ti3+ generation on the surface. Mostly, 

the Ti3+ peak in XPS spectra is hard to detect even though the samples were 

strongly treated (ion spattering and UHV annealing). Creation of oxygen vacancies 

on anatase surface sufficient for XPS detection is more difficult than, for example, in 

the case of STO. This may be consequence of strong surface reconstruction in the 

case of anatase.  
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1.3.3 Thin films of TiO2  anatase grown on different substrates  

In order to avoid impurities which are often found in mineral samples (Iron, 

Calcium…) and mixed phases (anatase and rutile) the great effort is put in figuring 

out out successfully growth methods for anatase growth. Developed growth 

methods resulted in high-purity anatase single crystals and films of dimensions 

sufficiently large for applicative and fundamental studies. In industry, more specific 

in catalysis, photo-catalysis, and dye-sensitized solar cells, there is significant 

interest in the synthesis of phase-pure anatase thin films because this polymorphism 

is proven to be more advantageous over the rutile phase. 

In this section, a brief overview about a deposition of anatase thin films will be 

presented.  

As already mentioned, according to the phase diagram of TiO2, the rutile 

phase is thermodynamically preferred at high temperature and is expected that no 

pure anatase phase can exist at temperatures higher than 650 °C 15. As a 

consequence of this fact, and if we keep in mind that almost all growth techniques 

require high temperature in the process, obtaining of pure anatase phase seems 

very ambitious.  As an illustration of this, most commercial TiO2 powder catalysts are 

mixture of 80-90% anatase and rest of rutile 16.  

The deposition of TiO2 thin films by pulsed laser deposition (PLD) has been 

reported previously 17-19. The structural properties, crystallinity, and the surface 

morphology of the TiO2 films deposited on Si, MgO, and sapphire substrates under 

various deposition conditions such as oxygen partial pressure PO2 and substrate 

temperature were investigated.  

Generally speaking, the structure of the obtained films is strongly dependent on the 

substrate and in their cases the quality of the films was not satisfied. 

However, Chen et al. used the metallorganic chemical vapor deposition 

technique (MCVD) to prepare mono-phasic anatase and rutile films on SrTiO3 (STO) 

and sapphire substrates, respectively 20. They showed that the pure anatase phase 

can be grown on STO (100) even when the substrate temperature (Ts) is higher 

than 900 °C. This indicates that substrate structure can play a significant role in 

controlling the heteroepitaxial growth of TiO2 films.  

STO as a substrate for anatase growth might not seem as an optimal choice 

considering relatively big mismatch (about 3%) between their lattices. TiO2 anatase 
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heteroepitaxial growth is, however, possible without big a structural tension on 

interface. It should be pointed out again, that in both cases the building blocks are 

identical, Ti octahedra. Heteroepitaxial growth of TiO2 anatase film could be 

explained as continuous formation of oxygen atom network with additional 

extension from STO substrate into the film. Within this oxygen sublattice, the 

relatively small Ti cations arrange in their correct sites. Formation of the interfaces 

in this way is common model for hetero epitaxial growth of metal oxides and could 

be implemented in the case of anatase growth on STO 21. 

In any case, to have a successful heteroepitaxial growth, the mismatch 

between the substrate and film lattices has to be as small as possible. In the 

instance of TiO2 anatase LaAlO3 (001) can be seen as optimal substrate candidate. 

Although the crystal structure of LaAlO3 is rhombohedral, it can be accepted as a 

pseudocubic cell (as perovskite) with displaced O ions. If so, the unit cell parameter 

is 0.379 nm. In such case the mismatch is very small, about 0.2% and the starting 

condition for the epitaxial growth is satisfied. 

Another advantage which results from this solution of growth is that it is 

possible to evaluate optical properties of these anatase thin films because of wider a 

gap of LAO then STO. In the case of STO substrate there are difficulties in optical 

properties measurements because of the overlapping band gap energies (3.2 eV for 

both anatase and SrTiO3). Indeed, M. Murakami et al. demonstrated possibility to 

fabricate epitaxial anatase thin films on lattice-matched LaAlO3 (001) substrates in 

the layer-by-layer growth by laser molecular-beam epitaxy. X-ray diffraction and 

transmission electron microscope performed on the films show evidence of high 

crystallinity and atomically defined interfaces 22. 

Current studies on epitaxially-stabilized anatase are focused on pulsed-laser 

deposition or molecular beam epitaxy. These techniques enable simple fabrication 

with full control of deposition parameters and reproducibility of the films quality. 

The research performed during this PhD studies and reported in the Chapter 

IV aimed at stabilizing the growth of the anatase phase in epitaxial thin films, by 

resorting to three different substrates, SrTiO3, SrLaAlO4 and LaAlO3. It is widely 

noticed that during sample deposition or preparation for the measurement of 

anatase growth on STO by the techniques which are charge sensitive, on the 



Properties of TiO2 

 

 
M i l a n  R a d o v i ć  - P h D  T h e s i s  

 

Page 39 

surface appear Strontium 23, 24. This was also goal of this thesis and study regarding 

the presence of Sr into anatase thin film is presented in the subchapter 4.3. 

 

1.3.4 Surface structure, reconstruction and properties of anatase (001) 

Surface of materials has, usually, different physical and chemical properties then 

bulk. For metal oxide system such SrTiO3 or TiO2, because of their mixed ionic 

covalent bonding, the surface structure has higher influence on surface properties 

then for example metals or semiconductors. As a consequence of above mentioned 

property and the fact that TiO2 has wide palette of application great effort has been 

put to understand TiO2 properties and the obtained knowledge becomes basic stone 

in understanding metal oxide surface. The surface plays major role in catalysis, 

photocatalysis, solar cells, etc. and in all this TiO2 anatase represents one of the 

most important materials.  

Describing surface with condensed bulk models is almost impossible because 

these models totally neglect the impressive change in the atoms coordination and 

crystal potential due to the rapid bulk to vacuum change in the direction normal to 

the surface. For the complex materials which include several different kinds of atoms 

in crystal structure bulk-vacuum discontinuity can be even more dramatical. These 

discontinuities can provoke surfaces change in two ways, relaxation and 

reconstruction. Relaxation phenomenon is presented on Figure 1.3a and represents 

a change in the distances between the first few layers of crystal with respect to the 

bulk values. For the most surfaces the distance d1 is smaller than the corresponding 

bulk value. A more rigorous change of structure is the phenomenon of surface 

reconstruction. This change of the surface is presented on Figure 1.3b. A 

reconstruction means that the periodicity parallel to the surface is changed in 

respect to that of the bulk. This phenomenon can be very drastic, it can elicit strong 

morphological change, it can even create planes with different orientation then cut 

surface plane, for example microfacets. Surfaces of some materials are completely 

unstable if exposed to environment and cannot exist as unreconstructed and 

unrelaxed. 

If the material is composed by two or more different kinds of atoms, also the 

chemical composition at the surface can be different than in the bulk. This effect is 

called segregation and is presented in Fig 1.3.4.  
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Fig 1.3.3:  Schematic presentation of surface: a) relaxation; b) reconstruction. 

 

 

 

Fig 1.3.4: Schematic presentation of surface segregation. 

 

 

All of the above mentioned effects appear in complex structures; such crystal of 

transition metal oxides including TiO2 and this thesis describe obtained data during 

the analysis of anatase reconstruction and segregation processes.   

  Crystal planes, in general, are not equal with respect of energy minimization. 

For TiO2 mono crystal Michele Lazzeri et al. calculated formation energies for all of 

crystallographic planes which are stable 25. Figure 1.3.5 represented Wulffs 

equilibrium shape of anatase according to theoretical calculation of surface energies 

from Table 1.3.2.  
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Table 1.3.2: Calculated surface formation energy (J/m2) for relaxed TiO2 

surfaces 25. 

Rutile Anatase 

(110) (101) (100) (103)f (001) (103)s (110) 

0.31 0.44 0.53 0.84 0.90 0.93 1.09 

 

 

 

 

Fig 1.3.5 a)The equilibrium shape of a TiO2 crystal in the anatase phase, according 

to the Wulff construction and the calculated surface energies 1,25, b) shape of 

mineral anatase crystal. 

 

 

From the data presented in Table 1.3.2 is clear that (001) anatase surface is not 

favorable to form. The (001) surface of anatase exhibits fivefold coordinated Ti 

atoms, as well as twofold and threefold coordinated oxygen atoms. The corrugation 

increases leading by relaxation, according calculation, from 0.82 Å to 0.92 Å  26. 
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Fig. 1.3.6: Scheme of unreconstructed (001) anatase surface. 

 

The unreconstructed (001) anatase surface is schematically presented in Fig. 1.3.6. 

The surface, as (1x1) motive, of natural anatase is not very stabile and reconstructs 

when heated for a long enough time at elevated temperature 23,27. Only on 

fabricated sample which was slightly contaminated by carbon 28 (1x1) reconstruction 

surface was observed. Moreover, (001) surface of mineral anatase treated with few 

cycles of ion sputtering and annealing is always stabilized as (1x4) motives 

reconstructed like two-domain surface. Detailed structural analysis on this surface so 

far have been performed on thin film, mainly grown on STO (001) substrate 23, 29, 30. 

Herman and et al. were the first ones to point out that the (1x1) surface of TiO2 thin 

film grown on STO (001) after spattering and annealing under UHV condition 

transforms in to two domains (1x4) reconstructed surface 23.  

The initial explanation of this reconstruction was based on ideas of arrangement 

Oxygen’s vacancies. Vacancies can be arranged into rows and finally can create 

“missing oxygen rows”. This model was proposed by Hengerer et al. and the 

proposed schematic view of (1x4) reconstructed anatase surface is presented in Fig 



Properties of TiO2 

 

 
M i l a n  R a d o v i ć  - P h D  T h e s i s  

 

Page 43 

1.3.7 27. This model, actually, can hardly explain the stability of the reconstruction 

during annealing in the oxygen environment.  Anatase films are, in fact grown in an 

activated oxygen environment with relatively high oxygen partial pressure 

(approximately in the mbar range). Under these conditions, the (1x4) reconstruction 

was observed only during the anatase growth by RHEED by several groups including 

ours 29, 31-33. When it became clear that the surface is already (1x4) reconstructed 

during the growth the interpretation of it as missing oxygen rows was dismissed. 

 

 

Fig 1.3.7: The missing row model (MRM). Ions are represented by dark circles (Ti)    

and light circles (O) 23. 

 

In addition, XPS spectra of the (1x4) surface showed none or very week evidence of 

Ti3+ at the surface. Furthermore, post-growth annealing of the TiO2 (001)-(1x4) 

under reduction and oxidation conditions showed no substantial differences in STM, 

LEED, and XPS results. These experimental evidences suggest that the (1x4) 

reconstruction is fully oxidized and remains stable under these annealing conditions.  

 Second model, micro-faceting model, was proposed soon after the first 

model and it was based on angle resolved mass spectroscopy of recoiled atoms (AR-

MRSI). According to this model, (103) planes of anatase  with higher stability then 

(001) are exposed to environment 23. From Table 1.3.2, where the data of surface 

formation energy are shown, is seen that (103)f surface (0.84 J/m2) is more stable 

then (001) surface (0.90 J/m2). Of course the total energy is higher because the 

surface increases by a factor SQRT(2). The microfaceting model is schematically 
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presented in Figure 1.3.8. This model clearly shows that the reconstruction involves 

half of anatase unit cell, which means that a corrugation of the rows has to be about 

4 Å and should be easily detected by microscopy techniques. However, the 

microfacetes model for (1x4) reconstruction surface is not in agreement with the 

high-resolution STM measurements.  

 

 

 

Fig. 1.3.8: a) Model of the microfacet: b) side view along [010] direction (large balls 

are oxygen atoms and small are Ti. 

 

The STM images of (1x4) anatase reconstructed surface are shown in Figure 1.3.9 
34.  There are domains with rows structures in [100] or [010] directions. The space 

between the rows corresponds to 4 times the lateral dimension of the unit cell. 

Steps between the domains on the surface are about 2.4Å high, which corresponds 

to the distance between two layers of anatase phase. The model is not nevertheless 

in quantitative agreement with the above mentioned measurements, where the 

corrugation varied from 0.8 to 1.7 Å  29.  Similar value and ratio in the corrugation 

variation in STM measurements were also obtained by the other authors 34.  

However, the opinion that overpowered is that reconstructed (1x4) surface, in any 

case, is a structural property of anatase and that it  is not due to the formation of 

any non-anatase phases such as Ti2O3 or rutile on the surface. 
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Fig 1.3.9: STM and NC-AFM images of the reconstructed 1x4 anatase (001) films. a) 

the film after re-annealing in oxygen atmosphere, b) the zoom of a terrace c) high 

resolution STM shows two parallel rows, d) the profiles of liner scan 34. 

 

  

Nevertheless, the third model has pointed out the above mentioned fact and it 

conciliate with all collected data about the reconstruction. This model was already 

mentioned by G. S. Herman and et al. but in a simple form as add row model 

(ARM)23. 

Consequently, some authors published articles using this model as base with aim to 

better explain morphological or electronic nature of the reconstruction. One of the 

first models, based on ARM model, that reconciled with experimental data, was 

proposed by Yong Liang and et al. 29
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This model is based on the (1x1) surface structure, involving ‘‘added’’ and ‘‘missing’’ 

rows. All atoms in this model derive from their bulk positions. Each surface unit cell 

consists of one added Ti-O row, two added oxygen rows, and one missing oxygen 

row. The resulting surface is stoichiometric and auto-compensated in charge; thus 

not only is it energetically favorable, but it also contains no Ti3+ states, consistent 

with XPS results.  This model is presented in Figure 1.3.10. 

 

 

 

Fig 1.3.10: A ball and stick model of (1x4) reconstrution of (001) anatase (large 

balls are Oxygen atoms and small are titanium 29. 

 

In the subchapter 4.3, representing one of the main goals of this thesis, the 

experimental work designed to explain formation of (1x4) reconstruction during 

anatase growth is presented, and it is based on the Yong Liang et al. model. 

 Finally, also (1x4) reconstruction model proposed by Lazzeri and Selloni 25 

should be mentioned. The scheme of this model is presented in Figure 1.3.11. Their 

model is based on the DFT total energy calculations. Moreover, they claim that the 

model is not energetically favored, but it is in agreement with STM data including 

the observation of less frequent (1x3) and (1x6) periodicities. According to them, 

the primary mechanism of this reconstruction is the relief of the surface stress. 
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This mechanism is familiar in the context of metal and semiconductor surface 

reconstructions 35. 

 

Fig 1.3.11: (1x4) reconstruction model  of (001) anatase: a) (1x1) relaxed (001) 

surface of TiO2 anatase; b) Relaxed structure of the ADM (1x4) reconstruction; c) 

Projection of the atomic positions of the ADM model 25.  

 
 
 
In their model, the (1x4) periodicity of reconstruction, compare with the other (1xn) 

reconstructions, is the most favorable, but the predicted surface energy differences 

between this and the other are very small.  
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2. THIN FILM GROWTH AND ANALYTIC TECHNIQUES AT MODA SYSTEM 
 

The experimental results presented in this thesis are obtained using a particularly 

complex experimental set-up named MODA, which is the acronym for Modular 

facility for Oxides Deposition and Analysis. The photo and the scheme of the MODA 

system are shown in Figure 2.1. 

 

Fig. 2.1: a) the photo of the MODA facility, b) the scheme of the system - top view. 
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The facility is a system for pulsed laser deposition (PLD) of thin films oxides and in 

situ analysis of their properties. Several surface science techniques have been set 

up, such as Reflection high-energy electrons diffraction - RHEED, fast Intensified 

Charge Couple Device - ICCD camera, Spot Profile Analysis - Low energy electrons 

diffraction – SPA-LEED, X-ray Photoemission Spectroscopy - XPS, Scanning Tunnel 

Microscopy - STM and Atomic Force Microscopy - AFM. The ablation plasma is 

produced by focusing the output beam of a KrF excimer laser on stoichiometric 

targets.  

Details of the instrumentations and of the experimental techniques are described in 

the following sections. 

 

 

2.1 THE GROWTH CHAMBER 

 

Thin film growth takes place in a vacuum chamber devoted to the pulsed laser 

deposition process (PLD chamber). The base pressure in the chamber is in the range 

of 10−9 mbar. A multitarget carousel situated in such chamber can allow the 

deposition of thin film multilayer or superlattices by using different targets, simply 

by changing the position of the target holder by means of a step motor. The 

analysis of the expanding plume produced during the pulsed laser ablation is 

performed by a fast ICCD camera, while the film deposition process is monitored in 

situ by a high pressure RHEED (Reflection High Energy Electron Diffraction). The 

peculiarity of the MODA systems consists in the UHV connections (load-locks) 

between all the chambers of the system that allows a transfer of the sample and the 

carousel using transfers rods. This allows the analysis of the film surface properties 

avoiding any contamination. The scheme of the chamber is presented in Figure 2.2.  

The multi-target holder and the substrate holder can be inserted in the 

deposition chamber via a load-lock system without breaking the vacuum. The body 

of the heater is resistively heated using platinum wire and the deposition 

temperature, read by a thermocouple (calibrated by pyrometer), and is controlled by 

means of an electronic feedback system. Depositions is performed in a fully software 

controlled mode. The software controls the motion of the heater, the pressure, the 

laser, the temperature, the loading and motion of the carousel and a selection of the 
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targets.  The degrees of freedom of the substrate holder (the heater), equipped with 

five independent software controlled stepper motors (XYZ-rotation stage, tilt angle 

and the azimuth angle), allow varying at any time, even during the experiments, the 

positioning of the substrate in the plume. The pulsed laser deposition of complex 

oxides is performed using oxygen (99.999%) as a deposition gas. The deposition 

atmosphere was maintained by increasing a vacuum resistance between the turbo 

pump and the chamber (controlling the opening of the valve) and introducing 

flowing oxygen gas by means of a mass flow meter into the chamber to attain 

overall dynamic pressures of 1x10-5mbarr–1mbar O2.  

Each target, mounted on a holder, rotates during ablation in aim to prevent 

the degradation of the target surface. 

 

 

 

Fig 2.2: The scheme of the growth chamber. 
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For the ablation MODA system uses KrF eximer laser. The KrF eximer laser has 

following parameters: λ=248 nm, τ≈25 ns full width half maximum and 450 

incidence angle. A mask is used to select the homogeneous part of the laser beam. 

The mask is projected at an inclination of 450 on the target by means of a focusing 

lens (the focal length is 50 mm). The energy density on the target is controlled by 

adjustment of, both, mask size and demagnification. Substrates can attached with 

silver paste or clamped in the centre of a large metal substrate holder, which was 

heated from the back side resistively and controlled at temperatures up to 1000 0C. 

The films can be deposited at various substrate temperatures by adjusting the 

current applied to the resistive heating filament, or at various oxygen pressures. 

 

2.1.1 Overview of the PLD technique  

The first experiment with PLD was performed by Smith and Turner in 1965  using a 

ruby laser 1. The development of the technique was quite slow and followed the 

improvements in laser technology. The reason is that it is important to have short 

laser pulses with high power density to achieve congruent ablation of the target 

material. In a dielectric target the laser pulse creates an electromagnetic field inside 

the material and cause electrical breakdown. If the target is metallic, the energy in 

the laser pulse will be absorbed by the free electrons and transferred to the lattice 

and the material will be vaporized, if the energy is above threshold. In both cases 

particles which are produced by ablation form plasma. The plume consists of a 

mixture of atoms, molecules, electrons, ions, clusters and micron-sized particulates. 

Successful process of ablation occurs when layers of the material are vaporized 

without heating the layers below. If the layer below is heated into a liquid the 

process, termed splashing, occurs. Consequently, droplets will be formed inside of 

the plume which significantly lowers the quality of the film. Increasing the power 

density from zero, the ablation does not occur until the power reaches some 

threshold. The other problem - the ablation of the elements in the target with a 

lower temperature required for vaporization, before the other elements - can 

appear. Solution to this problem is to have short pulses with a high power density or 

to use a laser with shorter wavelength. The reason is that most materials used for 

deposition have absorption coefficients that increase with decreasing wavelength 

causes that shorter wavelengths reduce the absorption depth and thus splashing.  
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The laser-target interaction is a highly complex process and there is at present no 

model based on fist principles that can describe the whole process. 

The main deposition parameters are: 1) laser power density, 2) repetition rate (time 

between laser pulses), 3) substrate temperature, 4 background gas pressure and 5) 

distance between target and substrate.  

1. The laser power density for standard ablation is, typically, between 106 and 

108 W/cm2. With increasing power the ablated atoms will have higher kinetic energy. 

This can be an advantage because the atoms can heat the substrate or hit a cluster 

of already deposited atoms, transfer energy to these atoms, making them rearrange 

in a more ordered way 2. On the other hand, highly energetic atoms may also cause 

defects in the substrate and deposited film. 

2. The repetition rate can affect the quality of the epitaxial film. The argument is 

that one should allow time for the last deposited material to settle in a good way on 

the substrate before ablating the next layer 3.  

3. The substrate temperature is very important parameter. Heating the 

substrate will give additional energy to deposited atoms. This can rise to a more 

homogeneous, relaxed and defect-free film. However, higher temperatures do not 

automatically produce better films. The substrate temperature cannot be too high 

because in an oxygen background, materials that are heated too much can burn or 

start to decompose. Also, high substrate temperature can lead to interdiffusion 

between a substrate and a film.  

4. The pressure of the background gas influences the quality of the film. The 

velocity of the impinging atoms also depends on the background gas pressure 4, 

which causes resputtering effect on the film or smooth a surface. For deposition of 

oxide material, it is necessary to have a background of oxygen to obtain the right 

stoichiometry of the film. Oxide films made in vacuum are, usually, oxygen deficient. 

In contrary, a high gas pressure increases the amount of large particulates in the 

plume, since larger gas pressure causes higher scattering frequency inside of the 

plume and the ablated material looses energy and becomes thermalized. This 

increases probability for the species to collide with each other and form larger 

particulates, which usually, decrees a film quality.  

5. The target-substrate distance has similar effect on the film as the background 

gas pressure. It is even better to say that the effects of target-substrate distance 
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are closely related to the background gas pressure. If the distance is large, the time 

to reach the film is longer and there is more time to form large particulates. A large 

pressure will decrease the size of the plume 4 which requires to consider also the 

angular spread of the plume. At different distances from the target the shape and 

angular spread of the plume is different.  

 

2.1.1.1 Growth modes 

In the following paragraphs a description of the possible ways of a growth, 

determined by the thermodynamic approach of the balance between the free 

energies of film - γf and substrate - γs and the interface between film and substrate 

γi, is given. When the total free energy of the film surface and the interface is less 

than the free energy of the substrate surface (γf +γi<γs), significant wetting is 

expected. This leads to layer-by-layer growth as described by Frank and Van der 

Merwe 5. 

 

 

 

Fig. 2.3: The  growth modes  : a) Frank-Van der Merwe or 2D- layer-by-layer 

growth, b) step-flow growth, c) Stranski-Krastanov growth, 

 (d) 3D or Volmer-Weber growth. 

 

 

In the opposite case, wetting is energetically unfavourable and the deposit will take 

place minimizing the film substrate interface due to islands growth (3D). In this 

growth mode (named as Volmer-Weber mechanism 6) the energy is higher, due to 
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the creation of interface, than the surface energy of the substrate and film 

(γf+γi>γs). At the intermediate case, a transition from the Frank and Van der Merwe 

to the Volmer-Weber growth mode can be observed. Here, a crucial role is played by 

the mismatch between the film and the substrate, inducing a strain on the growing 

film. A layer-by-layer growth takes place in the first stage. Then, the thicker 

becomes the film, the higher is the elastic energy due to the strain. Such large strain 

energy can be lowered by forming islands in which strain is relaxed. This mechanism 

results in a continuous film of one or two monolayers onto which successively 

discrete islands are formed. This way of growth is the so-called Stranski-Krastanov 7. 

The previous approach does not take into account the effect on the growth kinetic 

of the deposition parameters, such as the value of supersaturation in the gas phase, 

the substrate vicinality and the crystallographic misfit between the film and 

substrate unit cells. For the effect of such parameters, different growth modes have 

been observed for the same film-substrate system, thus clearly indicating that 

growth techniques and parameters are crucial to determine the final film 

morphology. 

The biggest difference should be between homoepitaxy and heteroepitaxy 

growth. In the first case the film and substrate compounds are deposited the same 

and the substrate crystalline structure extends into the film during the growth. In 

case of heteroepitaxy, materials of the film and the substrate are different, with 

different lattice parameters. Such lattice mismatch gives rise to a strain, tensile or 

compressive, that can be calculated as the ratio between the lattice parameters of 

the substrate and the film: 

                                    δ=(asub-afilm)/afilm                                             (2.1) 

 

where afilm and asub are the unstrained crystal bulk lattice parameters in plane of film 

and substrate, respectively. In order to satisfy Poisson ratio a deformation, the plane 

lattice parameters produce an out of plane deformation of the cell. When δ>0, it 

means that tensile strain on the deposited film is in plane while strain is compressed 

out of plane. For δ<0, the strain is compressive, causing the lattice to be 

compressed in plane, but expanded out of plane. During the growth an elastic 

energy increases with increasing of the film thickness. When the thickness reaches a 

value, called critical thickness (hC), the accumulated elastic energy becomes 
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comparable with the interfacial energy and the strained film tends to relax by 

creating misfit dislocations near the film-substrate interface. The misfit, usually, 

induces Volmer-Weber growth, except for large interface energies between 

substrate and deposited film, which cause the Stranski-Krastanov growth from the 

beginning. 

The substrate vicinality provides terrace surface separated by steps. The 

steps heights and the terraces length depend on the angle and the direction of the 

miscut. On a vicinal substrate, including the growth modes described above, a 

fourth way of growth can occur, called the step-flow mode. This growth can occur 

on vicinal surface with high steps density and in some deposition conditions. During 

this growth the steps take action as a sink where the adatoms diffuse towards the 

substrate steps preventing the nucleation on the terraces, resulting that steps will 

propagate during the growth. If the terraces keep the same width and the step 

ledges remain almost straight, this growing mode will go on indefinitely causing no 

significant change in the starting substrate surface morphology. If not, step 

bunching can occur. In this case, a high density of steps moves with large velocities 

over the growth surface. By fluctuation, higher steps catch up with lower ones and 

then move together as double or triple steps. Consequently, the distribution in the 

terrace length (lt) becomes broadened 8. All of mode growths discussed above are 

depicted in Figure 2.3. 

 

2.1.1.2 Growth kinetics 

In next sentences kinetic of growth processes is briefly described. 

The following effects can happen to an ablated atom. It can be deposited on the 

substrate or on clusters of atoms which are already deposited. There is a possibility 

that the atom can re-evaporate from there. If the atom is on the substrate surface, 

it can diffuse until becomes attached to a cluster or form a new cluster with other 

disusing atoms. In contrary, if the atom is attached to a cluster, it can dissociate 

from it. All these processes are shown in Figure 2.4. Once adsorbed on the surface, 

adatom may change adsorption site, in which case it can diffuse on the surface for 

several (even some hundreds) atomic lengths, before being detached and 

incorporated in the crystal structure. The molecule-surface interaction is described 
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by a potential that is a periodic function of the two coordinates parallel to the 

surface and a decreasing function of a third coordinate normal to it. 

However, the average distance, lD, that atom has moved on a flat surface before 

being trapped, can be given as:   

                                                                                                 (2.2) 

Ds is the surface diffusion coefficient of the adatoms, and τ is the time before the 

reevaporation. 

 

 

 

Fig. 2.4: Possible processes during deposition. 

 

 

Typical values of the Ds  for metal oxides are  between 10−4 and 10−8 cm2/s 9. The 

surface diffusion coefficient DS is generally expressed as: 

 

                                                                                        (2.3) 

where EA is the activation energy for diffusion, a is the characteristic jump distance 

and ν is the sticking coefficient. 

The sticking coefficient expresses the probability that a molecule can be 

captured, once impacting on the substrate surface and it is given by the ratio of the 

number of captured molecules to the total number of molecule hitting the surface. 

From the equation 2.3 the importance of the deposition temperature in the PLD 

technique becomes evident, since it controls the diffusivity of the adatoms. 

Nevertheless, the adatom's mobility on the surface is determined not only by the 
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deposition temperature. An important contribution in the nucleation process comes 

from the redistribution of the kinetic energy of the incoming flux of impinging atoms. 

The diffusion process is a crucial phenomenon that determines how the deposited 

materials rearrange itself on the surface and by a careful control of these 

parameters it is possible to obtain 2D growth modes not only during homoepitaxyal 

growth but, also, in heteroepitaxy.  

Growth on vicinal substrates has some particularities and to understand this, 

two diffusion process determined by kinetic parameters have to be considered 9: 

1. the diffusion of atoms on terrace, the intralayer mass transport; 

2. the diffusion of atoms to a lower step, the interlayer mass transport. 

In the case of fast intralayer mass transport, the mobility of the adatoms is high 

enough to enable atoms to reach the edges of the substrate steps, i.e. the diffusion 

length (lD) is larger than the average terrace width (lt), the nucleation on the 

terraces is prevented and the step-flow growth takes place (lD>lt). Otherwise, if the 

terraces distribution (lt) of the surface broadens, lD<lt, the nucleation on the terraces 

will occur. After that, the probability for atoms to attach to an existing nucleus 

reaches the probability to form a new nucleus. In this case the interlayer mass 

transport plays a big role to determine the growth mode. To obtain a layer-by-layer 

growth mode in this situation, an interlayer mass transport should be present 

allowing that atoms deposited on top of a growing island can reach the island edge 

and then diffuse to a lower layer. In the ideal case, the nucleations start after 

completion of a layer, but if there is no interlayer mass transport, the nucleation will 

occur on top of 2D islands before these have coalesced. This process is called 

second layer nucleation and probability for it is related to the mean island radius at 

the time of stable clusters nucleation on top of the islands, RC. The value of RC is 

related to the parameter ES, which presents the energy barrier for an atom to 

descend across the step edge to a lower terrace. The larger is the value of ES, 

smaller will be the value of RC, since the additional energy barrier lead to 

accumulation of the adatoms on top of the islands, with subsequently increase of 

second layer nucleation rate. In the real system the growth mode is in between 

these growth modes described here. In some cases, even a transition from a layer-

by-layer to a step flow growth on vicinal substrate can happen when the diffusion 

length of adatoms becomes comparable to the terrace width, i.e. when lD ≈ lt. This 
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can happen because either the substrate temperature, determining the surface 

diffusion length lD or the vicinal angle, which determines the terrace width lt, is 

changed. 

 

2.1.2 Reflection high-energy electrons diffraction –RHEED 

RHEED is a powerful tool for in situ analysis of thin film deposition and it has been 

installed at the MODA growth chamber. In the following chapter an introduction to 

the technique is presented.  

The first RHEED experiment was conducted by Nishikawa and Kikuchi in 

1928. After them, several RHEED experiments were carried out for polished metal 

surfaces and on thin metallic films evaporated on metal substrates (Kirchner, 1932). 

In these experiments, many kinds of RHEED patterns were observed. The origin of 

these patterns, especially the streaks and transmission patterns, were explained in 

details by using kinematic diffraction theory (Kirchner and Raether, 1932).  

 

 

 

 

Fig. 2.5: RHEED diffraction on the cubic lattice. 

 

 

RHEED is based on the reflection of electrons with high kinetic energy (typically in 

the range of 5-100 keV) and low impact angle Θ (typically less than 5°) from the 
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solid surface. Below is the brief illustration of the operation principle of RHEED for a 

sample with a cubic lattice.  

If incoming electrons, with a momentum of k0, have a very small incident angle with 

respect to the sample surface, they will only be scattered from atoms of the top 

sample layer. In the Figure 2.5 the surface of the sample is shown in reciprocal 

space. This reciprocal lattice builds a surface with a quadratic array of atoms. 

Assuming elastic scattering, no energy transfer is allowed from the electrons to the 

sample, the scattered wave vector kij lies on the surface of the sphere of constant 

energy, the so-called Ewald sphere. In reciprocal space, the two-dimensional array 

of the surface atoms turns into vertical lines, the reciprocal rods. Wherever these 

rods cross the Ewald sphere, the condition for constructive interference of the 

elastically scattered electron beams from the surface is satisfied, while these 

crossing points in k-space determine the directions of constructive interference for 

the electrons in real space. 

The RHEDD pattern is very particular because it contains elongated points which are 

placed on cycle and generally, the pattern depends on the morphology and 

roughness of the sample surface.   

 

 

 

Fig. 2.5: Explanation of the origin of RHEED streaks: a) arrangement of the two-

dimensional array of lattice points, b) Reciprocal lattice for the arrangement in (a), 

c) RHEED construction for (b) 10. 
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The patterns could be explained in a very elegant way, according to which RHEED 

streaks arise from small domains on the surface, as shown in Figure 2.5.  The finite 

sizes of the lattice, L1 and L2 (Figure 2.5), are perpendicular and parallel to the 

incident direction, respectively, where the incident direction is indicated by the 

arrow. Reciprocal lattice of the domain is presented in Figure 2.5b. These scattered 

electron beams hit a fluorescent RHEED screen in certain RHEED spots, laying on 

so-called Laue circles which are numbered starting from zero (2.5c). The lengths of 

the streaks depend on the glancing angle of incidence-Θ.  

 

2.1.2.1 High pressure RHEED 

As the RHEED intensity depends on the film roughness, the growth process leads to 

characteristic intensity oscillations of the RHEED spots during the growth process 

with a single oscillation usually corresponding to the completion of a single 

monolayer.  

 

 

 

Fig. 2.6: The scheme of the High Pressure RHEED set up mounted in MODA-lab. 

 

 

However, with the typical pressure values used in oxides films deposition, it is not 

possible to use the ”standard” RHEED system, due to its incompatibility with 

environmental pressure higher than 10−4 mbar. In fact, the heated tungsten wire, 
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used as electron source in the RHEED gun, requires an environmental pressure 

below 10−4 mbar to avoid breakage or a short lifetime. Furthermore, the electrons' 

elastic and inelastic scattering with gas molecules, on high deposition pressure, 

gives rise to the attenuation of the e-beam intensity and, consequently, to very 

diffuse RHEED pattern. In order to overcome this problem, several groups tried to 

find alternative experimental conditions in RHEED-assisted pulsed laser deposition of 

oxides, for example working in low pressure condition of extremely oxidizing gases 
11-13. The limitation in using RHEED technique in high pressure oxides deposition was 

overcame introducing a two stage differentially pumped e-gun 14. That fulfilled both 

mentioned requirements: a low pressure in e-gun and minimum attenuation of e-

beam intensity. Using this two-stage pumping system, the pressure in the deposition 

chamber can be increased up 0.5 mbar, maintaining the required vacuum in the 

electron source.  

The High Pressure used on MODA system is shown in Figure 2.6. The 

electron source is mounted on a flange connected to a stainless steel extension tube 

with an inner diameter of 8 µm. An aperture with a size of diameter of 250 µm, 

separates the tube from the deposition chamber. The additional XYZ stage of the 

electron source is used to roughly direct the electron beam. There is an additional 

electrical deflection unit which allows that the electron beam can pass through the 

apertures inside the differential pumping unit and to enter in the deposition 

chamber. The fluorescent phosphor screen diameter 40 mm is mounted on a flange 

located less than 50 mm near the substrate. The screen is shielded from the plasma 

in order to minimize a coating. A minimum beam size of 100 µm can be obtained 

even at large working distances. The heater can be rotated in order to adjust the 

angle of incidence of the electron beam on the substrate. The azimuth angle can be 

changed by additional rotation of the heater. The diffraction pattern is monitored by 

a charge coupled device (CCD) camera. 

 

2.1.2.2 Growth monitoring by RHEED 

The wide used application of RHEED is growth rate monitoring and it is the 

consequence of finding that the intensity of any diffraction feature oscillates with a 

period corresponding to the growth of a single mono layer-ML 15-17. Usually, the 

monitoring is via recording of the specular spot but in principle all of them can be 
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used. The oscillations of the spots are a manifestation of two-dimensional (2D) 

layer-by-layer, the Frank–van-der-Merwe, growth mode. The oscillating intensity can 

be explained by the changing surface morphology, alternating between completed 

layers and a rougher intermediate state. This principle is presented in Figure 2.7.  

However, a more detailed understanding of the diffraction process generating 

the oscillations is complicated by strong multiple scattering effects. Meanwhile, an 

important remaining problem is the explanation of the RHEED oscillation phase 

dispersion measured at the specularly reflected position as a function of electron 

beam incidence angle 18.  

 

 

 

Fig. 2.7: The Intensity oscillations of the RHEED specular beam during growth. The 

maximums correspond to the complete layer while the minimums to the half 

coverage of the surface. 

 

 

Furthermore, the phase of the oscillations depends on the overpressure during the 

rate-limiting deposition and F. Briones and et al. demonstrated that different surface 

reconstructions with cause different slopes for RHEED oscillation curves 19.  

In the case of 3D growth mode, the step density on the surface increases in time 

and cause that the specular RHEED intensity decreases and moreover, the additional 
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spots in to the RHEED pattern appear. It is because the diffraction occurs due to 

island transparence for electrons. In case of 3D growth the recovery of the RHEED 

intensity, when deposition is stopped, takes no place while in 2D growth the process 

is obvious. In the case of a step-flow growth, characterized by the absence of 

periodic change in step density on the surface, no RHEED oscillations are expected. 

Nevertheless, the lack of RHEED oscillations is not always a clear signature of pure 

step flow growth. Even when a stable RHEED intensity is observed, the second layer 

nucleation may occur causes a constant step density and, therefore, a constant 

RHEED intensity.  

 

 

2.2 THE ANALYTIC CHAMBER 

 

All of the analytic techniques are placed in a separated chamber where it is possible 

to transfer a sample with system of manipulators without braking vacuum 

conditions. The chamber is equipped with three levels of pumping system, turbo 

molecular ion and titanium sublimation pumps enabling that vacuum is in the range 

of 10-11 mbar. This extremely high vacuum allows quit long duration of sample 

measurements without contamination from the environment. For monitoring of the 

residual gasses the gas spectrometer is installed. In the analytic chamber is a main 

manipulator with five degrees of freedom where a heater is placed, which can give 

temperature of the back side of a sample up to 1000 0C. Also, the chamber can be 

under oxygen atmosphere, controlled manually with the leek valve and monitored by 

gas spectrometer.  

In the next sections all techniques used in sample analysis are described shortly.  

 

2.2.1 X-ray Photoemission Spectroscopy-XPS  

A chemical analysis is crucial for almost every research in surface science. Even 

many techniques exist which can provide that, XPS is one of mostly used because it 

is non-destructive technique. XPS, besides the major answer about which elements 

are present on the surface, allows the identification of the different chemical 

compounds that is possible to find on the surfaces. For example, the XPS 
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spectroscopy is easily able to distinguish if the element is in ionic or covalent state, 

or, for many metallic elements, if they are oxidized or reduced.  

Generally speaking, XPS is based on the photoelectric effect. The process is 

shown schematically in Figure 2.8. Photon interacts with an electron, in a way that 

its energy (hν) is transferred and the electron is photo-emitted with a kinetic energy 

(EK) provided that it is greater than its binding energy (EB). 

The energy in the process is conserved and can be described with following 

equation: 

                                                                                  (2.4) 

 

The photon energy must be high enough for the electrons to overcome the work 

function (φ) of the solid. As the results of the measurements the XPS technique 

produces a spectrum of emission intensities versus electron binding or kinetic 

energy. The analysis of the spectrum is quite complicated and is explained bellow 

which information can be taken from the spectra. 

 

Fig. 2.8: The basic principal of XPS technique. 
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Fig. 2.9: The scheme of XPS instrument. 

 

 

The source is standard Omicron X-ray dual anode unmonochromatic sources that 

operate with two emitted lines: Al Kα (1486.6 eV) or Mg Kα (1253.6 eV). The 

analyzer, consisting of two hemispherical electrodes, allows a selection of energy of 

the photoelectrons. The potential difference between these two electrodes defines 

the path energy of the electrons. Only the electrons having a kinetic energy included 

in an interval of energy centered on this path energy will arrive at the detector 

placed at the end of the analyzer. The multiplying detector contains 5 channeltrons 

and produces a spectrum of emission intensity versus electron binding or kinetic 

energy. 

 

2.2.2 Low Energy Electrons Diffraction-LEED 

Low Energy Electron Diffraction (LEED) is one of the first and one of the most 

successful surface science techniques for structure determination. This technique 

has been the dominant method to study the structure and morphology of two 

dimensional plane surfaces. The technique was invented in 1927 by Davison and 
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Germer 20 and in last decades the technique was significantly developed. The 

analytic part of MODA system includes one special type of LEED instruments called 

Spot Profile Analysis LEED (SPA-LEED). With special electronic parts inside of the 

instrument, recording and analyses of the diffraction spot is possible.  

For a technique, which uses the electron diffraction, to be in a class of surface 

sensitive techniques the electrons must satisfy two conditions:  

1. the wavelength of the electrons must be of the order of the lattice spacing 

(λe»a); 

2. the electrons must be sensitive only to the surface, i.e. they must not 

penetrate deep into the sample.  

LEED is typically done in the range 20-1000 eV, where the de Broglie wavelength 

(λ=h/p) in the range of few Å. Since crystal lattices have typical spacing on the 

order of a few Angstroms, diffraction should be observable using low-energy 

electrons. Consequently, LEED electrons penetrate only in few atomic layers of the 

sample, enabling the technique to be quite sensitive to the surface structure of the 

studied material 21, 22.  

The simplest theoretical explanation of LEED is in terms of kinematic theory. 

This theory assumes that electrons are scattered only once from the sample and 

that each scattering event is elastic so that no energy is lost. Dynamical LEED theory 

includes multiple scattering, inelastic scattering, and other effects and presents 

more complete theory. However, the kinematic theory is able to describe basic LEED 

patterns, such as spot positions, and can even account for the appearance of extra 

spots in the pattern due to superstructures or reconstructions 23.  

 

                                                                           (2.5) 

 

Here is given the short introduction of LEED kinematic theory. 

The total electron wave function  must obey Schroedinger's equation 

 

                                                              (2.6) 

 

The total wave function consists of three parts:  of the incident electron,   
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of the electron inside the crystal, and  of the diffracted electron. The incident 

electron is not in any potential so its wave function is as for free electron, so the 

function can be expressed as: 

                                                                    (2.7) 

 

Inside the crystal, the electron is in to the crystal potential. Since the crystal lattice 

is periodic in two dimensions on the surface, the potential is also periodic. 

V (r) = V (r + t), where t is a lattice translation vector of the crystal. According to 

Bloch's theorem, the wave function inside the crystal can be expressed as a function 

with the same periodicity as the potential, .  

 

                                                                           (2.8) 

 

Thus inside the crystal the wave function can be described as:  

 

                                                                        (2.9) 

   

is the component of the incident wave vector parallel to the surface. Since the 

Bloch function is periodic, it can be expanded in a Fourier series as: 

 

                                                                           (2.10) 

 

Because of space periodicity:  , the exponential part must satisfy 

the following condition:    .                  

This will give following consequences: 

                                              (2.11) 

where m and n are integers. 

Vector g in this form is, actually, the reciprocal lattice vector:  

 

                                                                               (2.12) 
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These equations show that the momentum transfer parallel to the surface must be 

equal to a reciprocal lattice vector. The resulting diffraction pattern is constrained by 

the reciprocal lattice of the material.  

 

The SPA-LEED system installed in MODA lab is a commercial Omicron instrument, 

based on  the one  which Henzler et al. developed in 1986 24. Figure 2.11 shows the 

principal elements of the SPA-LEED system. The system has a glass phosphorus 

screen, which is observed from the back side. The screen gives a quickly available 

overview of the diffraction pattern. Due to the large distance between the crystal 

and the screen the spatial resolution is higher than with a normal optics, so more 

details can be recognized. On the other hand, the visible area of the reflex pattern is 

smaller. Behind holes in the screen the electron gun and the channeltron are 

mounted. In the main mode the intensity at a given position of the pattern is 

detected by the channeltron.  

 

 

 

Fig 2.11: Schematic draw of set-up of the SPA-LEED system 

 

 

The electron gun uses a commercial directly heated tungsten filament. The electron 

gun supplies an emission current up to 10-6 A and for the screen display even 
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though a fraction of it would be enough. When working with the channeltron a 

current of 10-10 to 5x10-8 A is sufficient. For that low current the electron source 

diameter is less than 0.1 mm for electron energy less than 100 eV. For such small 

diameter special efforts are needed with adjustment and design of a cathode, 

Wehnelt cylinder and an anode region. 

The main concept of the system is to handle the reflex scanning with electrostatic 

deflection. No mechanical movement of the sample or he detector is needed during 

scanning which simplifies the instrument very much. Without voltages applied, the 

direct beam is reflected into the channeltron aperture for a crystal with its surface 

inclined by ±4 degrees relative to the axis of the system.  

 

 

 

Fig. 2.12: Scattering geometry for the SPA-LEED instrument. The angle between the 

wave vectors ki and ko remains constant at ±4 degrees. The condition is equivalent  

to a sample rotation with fixed positions of the detector and the source 25. 

 

 

On Figure 2.12 is presented in which way is possible to obtain crossing of reciprocal 

rods with Ewald sphere in SPA-LEED instrument. The mechanical alignment of 

sample determines the angle between the incoming beam ki and the outgoing beam 
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ko.  For electrostatic scanning the opposite deflection plates are supplied with equal 

voltages of opposite polarity. The ratio of the voltages between the screen plates 

and the crystal plates is chosen to be close to 1, so that the position of the primary 

beam does not shift on the crystal. The angle between ki and ko remains constant 

during scanning. Therefore, the absolute value of the scattering vector ∆K= |k0-ki| 

stays constant, only its orientation with respect to the surface varies during 

scanning.  

At fixed primary electron energy the count rate of every scan position is 

recorded. The computer generates one dimensional line scans or two dimensional 

area scans. In the case of area scans the intensity can be presented as contour 

levels or a surface plot with different magnifications. Depending on the deflection 

voltages, the area scan gives overview of the whole Brillouin zone or detailed 

information of one or a few spots only. Mainly for area scans the aspect of 

measurement time becomes important. The total measurement time depends on the 

total number of channels and for each channel on the desired accuracy. With a 

maximum of channels an area of 400x400 points may be recorded. Linear scans of 

at least 2000 channels are used for accurate measurements throughout the Brillouin 

zone to enable reliable quantitative evaluation. Due to channeltron detection, the 

intensity can be measured over a range of six orders of magnitude. With this type of 

instrument the transfer width was increased up to 200 nm, i.e. periodic structures 

with a separation up to this length can be resolved. Important information which 

can be directly extracted from the spot profile is the average terrace length of a 

atomically rough surface. In this case, the important quantity is the Full Width at 

Half Maximum (FWHM) measured at an "out-of-phase" scattering condition 26.   

On Figure 2.13 is depicted the physical explanation of LEED sensitivity due to 

the morphology. On the figure, electrons scatter from two levels separated by a 

single atomic step and interfere with a phase difference of 2πS. The phase depends 

on the wavelength, i.e on the electrons' energy as S=2dcosΘλelectron. For half integer 

values of S the electrons interfere destructively and the sharp LEED spot disappears. 

For integer values of S the interference is constructive and the electrons are 

insensitive to surface roughness. M. Horn-von Hoegen showed also that using SPA-

LEED is possible to observe very precisely variations of surface morphology 26.  

Some of the examples are presented in Figure 2.14. 
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                                 Fig.  2.13:  Phase contrast at a step edge. 

 

 

 

Fig. 2.14:  Examples how to use SPA LEED for surface morphology observation.                    
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2.2.3 SPM microscopy  

In the 1980's Binnig and Rohrer, from IBM research center, developed a new 

technique for studying surface structure named Scanning Tunneling Microscopy-

STM. Their invention was motivation to the development of a whole family of linked 

techniques which are classified in the general category of Scanning Probe 

Microscopy (SPM) techniques. Of these later techniques, the most important is 

Atomic Force Microscopy (AFM).  

There is a huge literature about SPM-technology and application and few textbooks 

provide a good introduction 27,28. Therefore, here is given only the short introduction 

about two SPM techniques used during course of this study. 

 

STM 

The principle of the STM is remarkably simple, it uses a sharpened, conducting tip 

with a bias voltage applied between the tip and the sample (Figure 2.15). When the 

tip is brought within about 10Å of the sample, electrons from the sample begin to 

"tunnel" through the 10Å gap into the tip or vice versa, depending upon the sign of 

the bias voltage. 

 

 

 

Fig.2.15: The scheme of STM instruments. 
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The resulting tunneling current varies with tip-to-sample spacing, and it is the signal 

used to create an STM image. The tunneling current depends very critically on the 

precise distance between the last atom of the tip and the nearest atom or atoms of 

the underlying specimen. When this distance is increased a little bit, the tunneling 

current decreases strongly. For tunneling to take place, both the sample and the tip 

must be conductors or semiconductors. Unlike AFM, which is shortly explained in the 

next section, STM cannot image insulating materials. 

 

AFM 

The second scanning probe microscope, which was developed soon after the STM, is 

the Atomic Force Microscope - AFM. The scheme of AFM is shown in Figure 2.14. 

The key difference between the AFM and the STM is that in the AFM, the tip gently 

touches the surface. The AFM does not record the tunneling current but the small 

force between the tip and the surface is registered.   

 

 

 

Fig. 2.14: The scheme of AFM measurement. 

 

 

To enable this, the AFM tip is attached to a tiny leaf spring, the cantilever, which has  
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a low spring constant. The bending of this cantilever is detected, often with the use 

of a laser beam, which is reflected from the cantilever. Actually, the AFM measures 

contours of constant attractive or repulsive force. The detection is very sensitive so 

the detected forces can be be as small as a few pN. In principle, forces below 1 nN 

are satisfactorily low to avoid damage to either the surface or the tip. Since the AFM 

does not depend on the presence of a tunneling current, the technique is suitable 

for using on non-conductive materials. In the SPM chamber instilled on MODA 

facility is a commercial Omicron UHV system which includes STM and AFM 

instruments.  
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RESULTS OF STO 

 

CHAPTER 3.1: THE SURFACES TERMINATIONS OF STO (001) SINGLE 

CRYSTAL, AND HOMOEPITAXIAL FILMS 

 

Thin films and heterostructures based on perovskite oxides, in last years, became an 

extensive topic area for research and technological development. These materials 

may create strongly correlated systems such as High Temperature Superconductors-

HTC, Colossal Magnetoresistance-CMR ferromagnetics or some ferroelectrics. If 

these materials are fabricated with deposition techniques, in order to have the full 

control on their structure on atomic scale the basic condition is layer by layer 

epitaxial growth.  

On the other hand, the substrate plays the crucial role in achieving the high quality 

films. A surface morphology of substrates affects strongly the growth mode and the 

structures of the film. Moreover, the surface terminated layer is very important 

starting condition for a growth. Having in mind perovskite oxide materials, the 

surface of ABO3 single crystals truncated in 001 direction is either AO or BO2 

terminated or can be considered as the mixture of both terminations. Consequently, 

the type of termination will affect the overall stacking of the hetero epitaxial 

perovskite thin film, thus the final termination of the film 1.  

Considering the fact that STO is most frequently used perovskite as the substrate, in 

this subchapter is shown our modification of the recipe for obtaining TiO2 terminated 

STO, none terminated STO and TiO2 terminated STO influence to the homoepitaxial 

thin film growth and finally our way to get SrO terminated surface of STO.  

 SrTiO3 is composed of SrO and TiO2-alternative layers with the distance of 

aSTO/2 (aSTO =0:3905 nm) in the [001] direction, hence the surface can be 

terminated by either SrO- or TiO2- domains. The morphology of the commercially 

available substrates depends on polishing method 2. Usually, the substrates are 

polished mechanically with silica particles in alkaline solution 3. Polished STO 

surfaces are reasonably flat and have intrinsically mixed termination of TiO2 and 

SrO, with SrO percentages ranging from 5 to 25% 4-5 .  
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In my research done on STO (001), the substrates ware purchased from Surface 

Net, GmbH, Germany. The surface measured by AFM of as received substrate is 

shown on Figure 3.1. 

Fig. 3.1: AFM image of as received STO (001) substrate: a) 2D image (2 µm x 

2 µm), b) the linear scan. 

 

On the Figure 3.1, 4 Å high terraces on the surface are clearly notable, with 

additional 1.5 to 2 Å high islands on them. These heights indicate the double 

termination of the surface. This surface cannot be suitable for distinct properties 

materials growth in a controlled way.  
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The, as received, STO sample was also analyzed with RHEED instrument and the 

obtained results suggests that the surface is reconstructed. The superstructures are 

ordered as C (2x2) and this occurrence could be connected with presence of Sr 

atoms. 

 

Fig. 3.2: RHEED pattern of a received STO (001) surface taken in [010]-(a) and 
[110]-(b) directions of the incident beam. 

 

 

It is in agreement with previously published observations 6. Moreover, from the 

chemical point of view, as received substrates could also contain impurities like 

carbon, water molecules, strontium hydroxide or strontium carbonate which may 

form in contact with environment.  However, annealing at the high temperatures 

removes impurities from the surface and improves the surface crystalinity. The 

deposition conditions of 800 0C, 0.1-0.5 mbar of Oxygen or vacuum and pre-

annealing of 1-2 h used in this experiment was enough to clean the surface but it 

still contained intrinsically double termination.   
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3.1.1 Homoepitaxial STO film on as  received STO (001) 

To determine the growth mechanism on this surface I performed homoepitaxial 

growth of STO. The PLD growth was performed by resorting to a 248 nm KrF-

excimer laser, with typical fluence ~2.5 J cm-2 at the target. STO deposition was 

carried at 800 °C, 0.1 mbar of flowing O2 and at a laser repetition rate in the range 

1-2 Hz. In the Figure 3.3 is a depicted the RHEED oscillation during this 

homoepitaxial growth. Oscillations are very clearly visible with the same period of 

about 16 seconds.  Also, the final RHEED 2D pattern indicates smooth surface 

without additional strikes which can be a sign of some kind of reconstructions. 

Fig. 3.3:  The RHEED oscillations during growth and final RHEED pattern of the film. 

 

 

After cooling down the film was transferred in situ in to the analytic chamber where 

was measured by AFM. Figure 3.4 shows AFM image of the film surface. Analysis of 

the 1D scan image show that there are still terraces, but their height is more 2Å 

than 4 Å. This indicates that the surface surely has two terminations, TiO2 and SrO. 

This was the proof that without the clear procedure of the termination the surface of 

the films cannot be with only one type of termination. 
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In other words, the film surface is replica of the interfaces (the surface substrate). 

 

 

Fig. 3.4: AFM image of the STO film grown on as received STO (001) substrate: a) 
2D (2 µm x 2 µm) image, b) the linear diagonal scan. 
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3.1.2 Homoepitaxial STO film on TiO2 terminated STO (001)  

The chemical etching joined with thermal annealing is one of the methods which 

give rise to the very well defined and terminated surface. The initial attempt was 

done by Kawasaki et al.3 and the method was improved by Twente group 7. The 

different solubility between SrO and TiO2 in acids is the base to get TiO2 terminated 

surface. The chemical etching in our experiments is done in four steps:  

1. Cleaning the substrates in acetone using ultrasonic bath for 10 min followed by 

N2 draying, 

2. Additional substrate cleaning in ethanol using the ultrasonic bath for 10 min 

followed by N2 draying, 

3. Soaking of the substrates in clean deionised water for 30 minutes using the 

ultrasonic bath also followed by N2 draying. During this step SrO on the surface 

reacts with water and  forms Sr(OH)2 SrCO3, SrO2, etc 1,7,8.  

4. Soaking of the substrates in BHF for 30 seconds (20 seconds using the ultrasonic 

bath and 10 seconds by manual shaking). During this step hydroxide complex 

dissolves. Contrary, TiO2 is very stabile in the acid. Finally, substrate is washed with 

clean water and N2 dried.  

In the Figure 3.5, the AFM image of STO (001) surface after chemical treatment is 

presented. Height of the terraces is 4 Å, the terraces are flat and in comparison with 

STO as received substrate surface (Fig. 3.1) there are no signs of double 

termination. The chemically treated STO surface may contain holes as the 

consequence of etching treatments and are called “etch pits”. To recover surface, 

improve crystalinity, close etch pits and to straighten terrace edges, thermal 

annealing is next step. The annealing is usually performed in Oxygen at normal 

pressure and at high temperature, up to 1000 0C. The annealing time depends on 

terrace step size, where for larger terraces the time is considerably longer. In any 

case the annealing time is in order of few hours.  
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Fig. 3.5: AFM image of etched STO (001): a) 2D image, b) linear scan. 

 

 

Regarding the high temperature annealing of STO, I would like to point out very 

important physical effect which is caused by the thermal treatment, Sr surface 

segregation. T. Ohnishi and at al. claimed that the Sr surface segregation may 

appear at relatively low temperatures during annealing 8. They proposed to do re-

etching of the surface in order to remove Sr phases and to stabilize TiO2 

termination. K. Szot and co worker proved, by AFM study, that the extensive thermal 

treatment causes the formation of a regular SrO-rich surface 9. Taking into account 

that, before the deposition, the substrate remains in the growth chamber quite long 

time (could be more the one hour) at high deposition temperature (about 800 0C) 

we were concerned that the additional annealing in the PLD chamber can cause Sr 

segregation. To avoid this we modified the recipe for obtaining TiO2 terminated 

surface in sense that the in situ annealing of the substrate in the PLD chamber is 

performed right before the deposition. The parameters used for this step are: 950 
0C and O2 partial pressure of 0.5 mbar.  

In the Figure 3.6 is shown AFM image of STO (001) surface prepared as described 

above. From the figure is possible to conclude that the terrace edges are now 

straight and flat with 4Å height, indicating full TiO2 termination. Additionally, the 

RHEED patterns are free of any signs of a reconstruction. 
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Fig. 3.6: The chemical etching with MODA thermal treatment. The AFM (1 µm x 
1 µm) image of the etched and annealed STO (001): a) 2D image, b) linear scan 

and c) the RHEED patterns of the substrate under different conditions. 

 

Fig. 3.7: The STO film on TiO2 terminated STO: a) RHEED Intensity oscillations of 
00 diffraction spot during the growth, b) STM image of the film. 
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On the TiO2 terminated substrate homoepitaxial STO film was grown. The deposition 

parameters were the same as described above.  The deposition was monitored by 

RHEED and the clear oscillations (Fig. 3.7a), sign of 2D growth, were visible. The 

film was measured by STM and the obtained image is depicted in Figure 3.7b. On 

the clearly visible terraces there are nucleated 2D islands as the consequence of the 

mixed growths, 2D and step flow. The height of the islands and terrace steps are 

the same, about 4 Å indicating one termination film surface. To confirm that the film 

has TiO2 termination as the substrate itself has, qualitative analysis of XPS data 

were performed. The XPS measurement for this and for the other analysis presented 

in next subchapters was done in the following way: 

• The measurements were performed in two geometrical configurations of the 

sample and the spectrometer. First configuration is when the XPS spectrometer 

collects emitted electrons perpendicular to the sample and the second where 

collected electrons are emitted from 35 degrees angle in respect to the surface. 

With the second configuration the measurement is more surface sensitive since 

escape depth (td=desin350) is smaller than in the perpendicular configuration. The 

comparison of data from both configurations can give us indication of the presences 

of different elements in the bulk and the surface. The configuration of the XPS 

measurements is depicted in Figure 3.8. 

• The chemical character of sample surfaces was qualified by XPS analyses. The 

spectra of the 3d5/2 3d3/2 Sr peaks (Figure 3. 9) are normalized to the intensity of 

the corresponding 2p3/2-2p1/2 Ti peak (obtained from the same spectrum and after 

removal of the background).  

 

In Figure 3.9, the data from three deferent samples are presented. The left 

spectrum is Sr 3d doublet obtained, as previously described, from STO where 

surface in not controlled. Actually, the sample was annealed couple of times in 

oxygen and UHV environments in order to cause Sr segregation. The data indicates 

that there is no deference in Sr presences between the bulk and the surface 

(perpendicular and shallow geometry), since the peak intensities in both 

measurements configurations are similar. 
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The central spectra are from TiO2 terminated surface what was confirmed by AFM 

measurements (see Fig. 3.6). 

 

 

Fig. 3.8: two XPS configurations for the measurements. 

Fig. 3.9:  XPS data of: left-STO annealed several time at high T, centar-TiO2 

terminated STO, and right-STO film on TiO2 terminated STO substrate 
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This spectrum clearly shows that the surface contains less Sr atoms respect to the 

bulk. It is to be expected if the surface is terminated by TiO2 layer.  The spectrum 

shown on the right is from STO homoepitaxial film on TiO2 terminated STO. The 

presence of the strontium is slightly deferent in the shallow configuration respect to 

the TiO2 terminated STO, while in the perpendicular geometry the intensities of the 

peak are identical.  

General conclusion from the performed experiments of the TiO2 termination 

control, according to the STM and the XPS measurements are: 

1. The TiO2 termination of STO commercial substrates with our modification was 

very successful. Therefore, the starting condition for the growth of the controlled 

surface was satisfied. 

2. The parameters for homoepitaxial growth of STO film on TiO2 terminated STO 

substrate are optimized in a way that provide conditions for 2D growth. Moreover, 

the termination of the film is also TiO2 as well as the substrate is. 
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3.2 GROWTH AND CHARACTERIZATION OF STABLE SrO-TERMINATED 

SrTiO3 SURFACES 

A simple technique for the growth of SrO-terminated SrTiO3 surfaces is reported. 

High quality SrTiO3 epitaxial films were grown by reflection high energy electron 

diffraction assisted pulsed laser deposition on suitably prepared NdGaO3 (110) 

substrates. The surface properties, analysed within a growth/characterization multi-

chamber UHV system, by photoemission spectroscopy  performed on the core-level 

spectra of Sr and Ti, low energy electron diffraction and scanning tunnelling and 

atomic force microscopy, are fully consistent with a single Sr oxide termination. The 

availability of such high quality Sr-terminated SrTiO3 surfaces is of major importance 

for the controlled growth of oxide epilayers and interfaces.  

The technology of epitaxial oxide film growth has been continuously progressing 

during the last decades, resulting in the capability to control structures, 

morphologies, surfaces and interfaces at the highest level. It was soon realized that 

a prerequisite for achieving samples with a high degree of perfection is the 

availability of atomically smooth substrates. As a matter of fact, the demonstration 

of suitable procedures for obtaining SrTiO3 (STO) crystals with flat, single 

terminated, (001) terraces, contributed to the success of this material as a substrate 

for the growth of countless types of functional oxides. The STO lattice consists of an 

alternating stack of SrO (A-site) and TiO2 (B-site) atomic layers along the [001] 

direction. In their pioneering work, Kawasaki et al.1 showed that a simple chemical 

etching can remove SrO at the STO surface, so that a single TiO2 terminating 

surface layer is obtained. Further improvements were achieved by the same authors 

and by others 2-5, demonstrating the feasibility of the TiO2 termination with high 

crystallinity and straight step edges. A spectacular effect of the importance of 

surface termination is provided by the formation of a high mobility 2D electron gas 

at the LaAlO3/STO interface, which only takes place on B-site terminated STO 6. 

While control of the B-site termination of STO may be regarded nowadays as a 

standard protocol in many laboratories, the control over the A-site termination is by 

far more difficult. Such termination has been obtained by the deposition of a SrO 

monolayer onto a previously prepared B-site STO 7-9 The control of film thickness is 

achieved by monitoring Reflection High Energy Electron Diffraction (RHEED) during 
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the growth, and by calibrating the rate, with due care to achieve a complete layer 10 

while avoiding SrO precipitate formation. Only under very specific growth conditions 

(i.e., the so called “interval deposition” technique) the surfaces of these samples are 

smooth 8 as demonstrated by AFM analyses, and well suited for successive layers 

growth 11. A SrO terminated surface was also prepared in a different way by G. 

Rijnders, et al. 12, who observed that the expected RuO2 termination of SrRuO3 

deposited onto B-site STO was in fact unstable, due to the volatility of the 

ruthenium oxide 13. 

The A-site termination of STO is by far less investigated, in spite of the potential 

interest for catalytic processes 14 and for the realization of specific functional 

heterostructures and interfaces. The main idea is that the terminating layer 

determines the stacking sequence in the heteroepitaxial growth of perovskites 15, 

according to the law that A- and B-sites are generally alternated. In principle, the 

properties of the deposited film may be sensitively affected by the interface 

properties, through e.g. charge transfer 16. In a recent work 17, some of the authors 

studied the crystallographic and morphological properties of  both A- and B-site 

terminated STO single crystals, resorting to Atomic Force and Scanning Tunnelling 

Microcopies (AFM and STM) and to Grazing Incidence X-Ray Diffraction (GIXRD). 

The results demonstrated the stability of the B-site termination against thermal 

treatments, also confirming the observation 4 that SrO precipitates are formed 

during annealing. On the other hand, the nominally A-site terminated samples after 

long exposure to air appeared as not fully covered by SrO and more disordered, 

probably due to a greater sensitivity of such surface to the interaction with the 

atmosphere 18.  

In this subchapter, our further investigations on this issue, showing that a high 

quality SrO termination can be achieved by resorting to STO heteroepitaxial growth 

on (110) NdGaO3 (NGO) substrates are reported. This procedure has one 

fundamental advantage: the A-site termination of NGO is prepared through a 

thermodynamic equilibrium process, that is, a thermal treatment 19, which in our 

case was performed in a constant flow of pure oxygen, at 1200 °C for 20 hours 

(Figure 3.10). The crystal structure of NGO belongs to the space group Pbnm, with a 

= 0.54333 nm, b = 0.55036 nm, and c = 0.77157 nm 20.  It is deduced that a STO 

cell on (110) NGO has to match an effective in-plane rectangular lattice of 
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0.3867x0.3858 nm2. The misfit with respect to the relaxed STO lattice parameter 

(aSTO= 0.3905 nm) is therefore as small as 1.2 %.  

 

 

 

Fig 3.10: The AFM data of A site terminated NGO (110). 

 

 

 

The RHEED images reported in Figure 3.11, collected after introduction of 0.1 mbar 

O2 in the chamber, demonstrates the high crystal quality of this surface. The PLD 

growth was performed using the recipe as for the homoepitaxial STO growth on STO 

001 substrate. The sharp 2D like diffraction patterns, collected at the end of 

depositions, confirm the excellent crystallinity, both in the case of thin, and for 

relatively thick films. The RHEED specular spot oscillations are regular (Fig.3.10).  
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Fig.3.11: High pressure RHEEDs measurements of: the (110) NdGaO3 surface before 

film deposition at 800 °C (left), the RHEED oscillations of the specular reflection 

during the film growth (centre) and of the STO film after cooling down (right). The 

RHEED images are taken with different angle of e- incident beam. 

 

The behaviour is indicative of a growth that proceeds by nucleation and lateral 

expansion of grains. In a steady state regime, the delay between RHEED maxima 

indicates the time needed to complete a unit cell (u.c.) stack and hence the growth 

rate, that we varied in the range 0.02 – 0.06 u.c. per laser pulse. After interrupting 

the deposition, the RHEED signal increases, suggesting an ordering of the surface. 

The homoepitaxial growth of STO on such surface proceeds with improved 

regularity. As an example, the pattern in fig. 1d shows oscillations that persist over 

more than 40 cycles. After a brief annealing in vacuum at 800°C, the SPA-LEED 

patterns of the STO films deposited on (110) NGO show sharp and clean signature 

of a c(2x2) reconstruction (Fig. 3.12d). This differs from the p(2x1) reconstruction, 

that is often observed in the case of STO single crystals with TiO2 termination, and 

that has been ascribed to the ordering of oxygen vacancies 21.  

In situ non-contact atomic force microscopy (NC-AFM) performed on as-

grown samples (Fig. 3.12a) shows flat surfaces covered with islands, confirming that 

STO grows by 2D nucleation. 
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Fig. 3.12: a) Morphology of a 18 nm STO film obtained by in situ NC-AFM (it shows 

~15% islands coverage), b)The histogram shows 0.39 nm high steps only, c) the 

scheme of the film surface, d) SPA LEED image shows c 2x2 reconstructed surface. 

 

 

Strikingly, the annealing in UHV (800 °C in 10-10 mbar for 75 min) of air-exposed 

samples (Fig. 3.13a) preserves the terrace smoothness and the step height of 0.39 

nm (i.e., 1 u.c.). Even very thin STO films (6 u.c.) are very stable against annealing 

in different environmental conditions, including high oxygen pressures (up to 1 

mbar) and high temperatures (800°C) (Fig. 3.13b). 

Each STM map was quantitatively analyzed. As a typical result, the heights 

histogram is presented in Figure 3.12b, revealing the occurrence of peaks separated 

by 0.39 nm. Both such data and the maps morphology confirm that the samples 

have one termination, excluding half-cell steps at edges or at pits. 

It is worth mentioning that areas with double termination are instead easily detected 

by our setup in STO crystals that undergo suitable thermal treatments. 
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Fig. 3.13: Morphology of STO films: a) STM after air exposure followed by thermal 

treatment at 800°C in UHV. c) NC-AFM on a 6 u.c. STO after overnight annealing at 

800°C in 0.1 mbar O2. 

 

 

The chemical nature of sample surfaces was qualified by XPS analyses, that we 

performed on an as-grown STO film deposited on NGO and on a TiO2-terminated 

crystal (prepared as in ref. 3) as a reference. The spectra of the 3d5/2 3d3/2 Sr 

emission (Fig. 3.14) are normalized to the intensity of the corresponding 2p3/2-

2p1/2 Ti peak. The spectres are collected from electrons emitted at normal and at 

shallow angle (35° to the surface), the latter being most sensitive to the surface 

chemical composition because of the short mean free path of the photoelectrons; 

the spectra at normal emission are compared in Figure 3.13-left. The spectrum of 

normal-emitted photoelectrons is more intense in the case of the TiO2-terminated 

crystal. The opposite happens for the STO film, as expected for different 

crystallographic terminations. We also mention that the spectra of our STO 

homoepitaxial films grown on TiO2-terminated crystals (see Fig. 3.9) closely 

resemble those of the substrate 22. The quantitative evaluation 23 of the XPS data 

fully supports our claim that a complete SrO layer terminates STO films on NGO. 
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Fig.3.14: Spectra of the 3d5/2-3d3/2 Sr emission normalized to the intensity of the 

2p3/2-2p1/2 Ti peak. Left: STO film on NGO, normal vs. shallow emission angle; 

centre: TiO2-terminated STO crystal, normal vs. shallow emission angle. Right: the 

comparison between the two (normal emission angle). 

 

 

It is worth mentioning that NGO is typically a much more perfect crystal than STO 

is, as also confirmed by our preliminary structural characterization by synchrotron 

light. It has been shown that STO films grown on substrates with a comparable 

degree of perfection, such as perovskitic scandates 24, even exceed the quality of 

commercial STO single crystals. 

The x ray diffraction measurements (Figure 3.15) confirm the expectation of high 

structural quality. The STO epilayer is under in-plane compressive stress to match 

NGO, and the vertical spacing is elongated up to 0.393 nm. 

The reported preparation method for a SrO terminated STO buffer on (110) 

NGO is a self-controlled process. Although described experiment was performed in a 

highly advanced system, that was needed to perform the reported in-situ analysis, 

the growth technique od A-site terminated STO can be easily replicated in other 

simpler systems. The key point is that, in contrast to the usual deposition of a SrO 

monolayer that requires a special deposition technique (see, e.g., ref. 8) and the 

RHEED control to interrupt the process at 1 layer completion, the process that we 

propose can be interrupted at any time, always resulting in a SrO termination. This 

does not mean, however, that the physics of the reported growth process is trivial.  
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Fig.3.15: X ray Θ-2Θ measurements for the STO film on (110) NGO. 

 

In conclusion, we grew high quality STO epitaxial films on A-site terminated (110) 

NGO substrates by PLD assisted by high pressure RHEED. The reported data 

strongly support our initial guess, that a single, A-site (i.e. SrO), termination is 

obtained. This statement is based on the following observations: 

1. In situ AFM and STM measurements demonstrate steps with integer unit cell height 

and smooth terraces surface. 

2.  The chemical composition of the surface layer determined by XPS confirms that the 

terminating layer is SrO. Therefore, the STO films grow on NGO keeping the 

stacking sequence …A-B-A-B… through the interface. 

3.  Finally, the LEED indicates that the SrO surface has a high crystallinity and, after 

UHV annealing, a peculiar c (2x2) reconstruction, thus indicating that a well ordered 

surface lattice is realized, and that such a structure is stable, as ab-initio calculations 

anticipate 25.  

This termination is also perfectly suitable for successive growth process, as 

demonstrated by our data of STO homoepitaxy that is characterized by a coherent 

growth with large RHEED oscillations over tens of unit layers. On the contrary, the 

occasionally reported instability of the SrO termination could be related to the 

presence of incomplete or of multiple-layer SrO coverage, or to the formation of 

non-crystalline, or polycrystalline, or disordered SrO islands.   
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3.3 THE TiO2 TERMINATED (001) STO SURFACES UNDER THERMAL 

TREATMENTS 

 

Thermally and chemically treated STO surfaces have been extensively investigated 

due to the induction of surface terminations and many different varieties of their 

reconstructions and relaxations 1. Based on the literature, it can be concluded that 

STO surface is very sensitive to the preparation and processing conditions. As 

mentioned in the Introduction, several concepts have been used to explain the 

experimental observations of STO surface reconstructions and relaxations. 

Explanations, mostly present in a literature, are referring to lateral displacements 

including rumpling of the surface atoms 2-4, oxygen deficiency 5-7, Sr ad-atom model8  

and formation of non-perovskite phases containing nanostructures based on either 

of SrO or TiO 9-10.  

Here, in this chapter, I present my study on one type of reconstruction which is 

widely observed, p(1x2) 6, 7. This type of reconstruction is already theoretically 

described 11 and according to the published studies, it is due to the creation of 

oxygen vacancies and their ordering on the surface. Since STO develops conducting 

properties when oxygen deficient and its surface can even have more enhanced 

conducting behavior, it is really important to understand the processes of creation 

and annihilation of oxygen vacancies on the surface. Moreover, there is still a debate 

regarding the reason for the presence of a quasi two-dimensional electron gas at 

the interface of STO with LaAlO3, which are both insulators. The electron gas is only 

present in the case of TiO2-terminated STO, while in the case of SrO-termination, no 

such effect is observed 12. This fact suggests that the appearance of the quasi two-

dimensional electron is tightly connected to the preparation and a treatment of the 

surface.  

 
 
3.3.1 High temperature UHV (1x2) reconstructed surface of  
TiO2-terminated  STO   

SrTiO3 single crystals with epi-polished (001) surfaces were supplied by SurfaceNet 

GmbH, Germany. The TiO2 terminated STO (001), processed as described in this 

thesis, was mounted on the OMICRON sample holder, introduced in the analytic 

chamber of MODA system and placed on the manipulator above the heater. Before 
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any in situ thermal treatment the sample was measured by XPS to ensure that the 

sample is an intrinsic insulator.  After that, the sample was annealed at 800 0C for 

1h. The temperature was gradually increased, at 20 0C per minute. The temperature 

was also monitored by the thermocouple and the pyrometer. The pressure in the 

chamber, during annealing, was lower than 1x10-9 mbar. After the annealing the 

sample was cooled down at same rate and then measured by XPS again. The XPS 

data before and after the annealing are presented in Figure 3.16.   

 
 

Fig. 3.16: The XPS data of TiO2 terminated STO: a) before thermal treatment,  
b) after 1h at 800 0C in UHV condition. 

 
 

 

Our observation of the insulator gap of 3.2 eV is in good agreement with the 

previously reported values 13, 14. In addition, the fit of oxygen 2p peaks, bonding and 

non bonding, on two Gaussians is very satisfactory (Figure 3.16a).  
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After the annealing, as a consequence, the valence region of the sample is 

drastically altered. The new band appeared in the gap (Figure 3.15b) and the 

sample turned from a transparent into the black-colored material. The newly 

appeared band crosses the Fermi level and causes the STO sample to become the 

conductor.  

Due to this fact, it was possible to apply the LEED technique in order to study the 

sample surface. In MODA system the LEED instrument is Spot Profile Analysis 

modification of the conventional instruments (see the chapter about Instruments) 

and it is placed in same chamber where the XPS instrument is.  

Using the same manipulator the sample was moved on the front of SPA-LEED. The 

results are showed in Figure 3.17a.  

 

Fig. 3.17: SPA LEED images of STO taken: a) after 1h of UHV annealing at 800 0C, 

b) after 4.5h of UHV re-annealing at 320 0C. 
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The results obtained by the SPA–LEED suggested that the (001) surface is (1x2) 

reconstructed in two domains because of the plane equivalency in 010 and 100 

directions. This result is in agreement with some research groups 6, 7 which use 

similar conditions of the annealing, but the data obtained by some other groups are 

sometimes contradictory. However, only a few of the studies have attempted to 

support their results with a practical model for the (2x1) surface structure. 

Four structure models are candidates to explain this (2x1) reconstruction. The first 

one is based on the idea that alternate rows of oxygen removed from the TiO2 

terminated (1x1) surface cause creation of (2x1) ordered surfaces. As a 

consequence, the surface has reduced stoichiometry of Ti2O3 
7. This model is 

schematically presented in Figure 3.18.  

 

 

Fig. 3.18: The scheme of the formation of (1x2) reconstructed domains. 
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Second one suggests that (2x1) structure reduces surface coverage of Ti but 

maintains the TiO2 stoichiometry 7.  The third model was proposed by Erdman et al 
15. In this model the surface has a double TiO2 terminated layer and they named it 

the (2x1) DL-TiO2 surface. Finally, Kubo and Nozoye have proposed that the 

observed reconstruction can be explained as arising from the patterns of Sr ad-

atoms on a TiO2 terminated (1x1) surface 16.  

Based on the described models, one could conclude that causes of the 

reconstruction can be different. According to this, my goal was to determine the 

reasons for (1x2) reconstruction in our experimental conditions. 

In order to do that the experimental plan was as following: 

1. Checking of the stability of (1x2) reconstruction by thermal re-annealing at a 

low temperature in UHV and in situ monitoring of the sample by LEED. Why the low 

temperature annealing? If the (1x2) reconstruction is due to Sr ad-atoms, it means 

that the Sr coverage is 50% while some authors which proposed the low 

temperature segregation of Sr reported that the maximum of Sr coverage is less 

than 20% at 400 0C 17. Because of that, if the temperature of re-annealing is below 

400 0C it will be difficult to interpret that the possible disappearance of 

reconstruction is due to additional segregation of Sr. 

2. Prepare the second sample by the annealing at the same conditions (UHV, 

800 0C, 1h) but using vicinal STO, cut of 4 degrees in [010] direction and TiO2 

terminated (obtained from Surface Net GmbH, Germany) and checking of the 

stability of (1x2) reconstruction on this sample.  

         The reason of choosing vicinal STO is to see the influence of step edges on 

(1x2) reconstruction. If the reconstruction is due to oxygen vacancies, according to 

Zhu at al., the excess oxygen vacancies in the monolayer are reduced by vacancy 

diffusion into the bulk trough step edges 18. This means that we could see it by 

LEED following stability of the reconstruction in both directions, parallel and 

perpendicular to the step edges.  

The obtained results are as following: 

1. The non vicinal (1x2) reconstructed SrTiO3 substrate was re-annealed in three 

steps: 90 min at 120 0C, 90 min at 250 0C and 90 min at 320 0C. The sample was 

monitored by SPA-LEED after each sequence using both modes of measurement, 2D 

and 1D scans. The surface showed the reconstruction stability until final 
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temperature when it vanished. The results are presented in Figure 3.17b. From the 

SPA-LEED scans it was possible to see that there are not any additional spots. 

Judging from the profiles of the main spots, the surface is still very well ordered 

since they are very sharp.  

2. The vicinal substrate used in the experiment was TiO2 terminated, then annealed 

in same conditions as the previous sample: 800 0C, 90 min, UHV. After thermal 

treatment the sample was slowly cooled down and measured by SPA-LEED at room 

temperature. The results are depicted in Figure 3.18.  

 

Fig. 3.19: 2D and 3D SPA-LEED images of 40 vicinal (001) substrate after 1h of UHV 

annealing at 800 0C.    

 

 

The sample was with vicinal cut of exactly 4 degrees in [010] direction. According to 

this fact, the terrace width has to be about 55.8 Å which is in very good agreement 

with the LEED measurement. From these data, the steps are oriented to [010] 
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direction, following the direction of the cut (because of the splitting of the spots is in 

[010] direction). The distances between split spots are about 7% of the STO 

reciprocal lattice unit which in the real space correspond to the distance of 55.5 Å. It 

is known that the splitting is due to the terrace surface structure and it corresponds 

to the terrace width (see the introduction about SPA-LEED).  

Furthermore, the sample is (1x2) reconstructed in both [100] and [010] directions 

as previously analyzed non vicinal sample. In the Figure 3.19 are presented 2D and 

3D SPA-LEED images and from them is clear that the reconstruction peaks are not 

split indicating that reconstruction domains on the terrace are mixed.   

The evolution of the (1x2) reconstruction, followed by SPA-LEED during re-

annealing at low temperatures, is depicted in Figure 3.20. 

 

Fig. 3.20: The evolution of the (1x2) reconstruction pattern of the vicinal (001) STO 

followed by SPA-LEED. 
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The re-annealing was done in five steps: 120, 210, 250 and 320 0C. The sample was 

exposed to each temperature between 1 and 1.5 hours. The existence of 

reconstruction spots are checked in both directions using the linear scan mode. 

From the measurements it was possible to conclude that the reconstruction is less 

stable in direction perpendicular to the steps ([010] direction) since the spots 

vanished between 250 and 280 0C. After further annealing at 320 0C the remained 

(1x2) reconstruction spots, in 100 direction, disappeared. The value of the 

temperature at which the reconstruction spots disappear is in surprising coincidence 

with the temperature for the non vicinal STO substrate.  

The fact, which is experimentally observed, is that the activation energy for the 

reduction is 1.0 eV 18. The energy, which corresponds to 300 0C, is about 0.4 eV. 

Bearing in the mind these data, the possibility that the filing of the oxygen vacancies 

on the surface is due to the reduction of the bulk and the vacancies inter-diffusion 

has to be considered. 

This inter-diffusion of oxygen atoms from the bulk to the surface causes that 

number of the vacancies density decreased from 25% ((1x2) reconstruction). 

Considering the experimentally supported idea that the filing of the vacancies starts 

from the steps 18, the (1x2) reconstructed domains which are due to missing of 

oxygen rows parallel to the steps despaired earlier.  

 

3.3.2 Low temperature annealing of TiO2 terminated (001) STO 

In order to confirm this interpretation for the disappearance of the reconstruction, 

next experiment was performed. Following the idea that oxygen atoms can leave the 

bulk at low temperature in our conditions, the conclusion that naturally emerges is 

that if the bulk can be reduced at low temperature in several hours, 

reducing of the surface should happen too.  

For this experiment we used non vicinal STO (001), TiO2 terminated (obtained from 

Surface Net GmbH, Germany). The sample was measured by XPS before and after 

low temperature annealing (200 0C, 14 hours, UHV Pbase<1x10-9mbar).  

The XPS data are depicted in Figure 3.21. The presented data showed us that the 

sample was insulator initially, but it turned to conductor after the annealing. This 

behavior is in full agreement with the hypothesis that the oxygen atoms’ leaving the 

surface causes the reduction of the surface. Also, I would like to point out that the 
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sample was still optically transparent, which suggests that the density of oxygen 

vacancies in the bulk is much lower than in case of the strong UHV annealing. 

 

 

Fig. 3.21: The XPS measurements of TiO2 terminated STO (001) before (left) and 

after the low thermal treatment. 

 

 

Generally, the XPS data are very similar with the data obtained on the sample 

annealed at high temperature. It suggests that the creation of new bands, which 

takes places in the gap, has the same cause in both varieties of the annealing, that 

is, the creation of complexes Ti3+-Vo. The reactions which can describe the 

processes of the vacancies creation on the surface and their refilling are 

schematically presented in Figure 3.22.  

 

Fig. 3.22: The reactions of the surface reduction and re-oxidation. 

 

The refilling is, actually, due to the creation of the vacancies in deeper levels inside 

of the bulk and inter-diffusion of the oxygen atoms from the bulk toward to the 

surface.  
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The sample was also measured with STM, which is very charge sensitive technique, 

without any problem with a stabilization of the tunneling current. The obtained 

images are showed in Figure 3.23. 

 

Fig. 3.23: The STM images of low temperature annealed (001) STO. 

 

 

 

3.3.3 The model of (1x2) reconstruction 

The processes of the oxygen vacancies vanish is modeled and depicted in Figure 

3.24. The high temperature annealing causes creation of complexes Ti3+-Vo. When 

the density of these complexes reaches 25% (N(Ti3+)/ N(Ti3+)+ N(Ti4+)), due to 

repulsive forces between them, they  will preferentially order in the parallel row-like 

structure and surface will be 1x2 reconstructed. In this way, the structure maximizes 

the attractive energy while minimizing the repulsive energy 19. The parallel surface 

structures may have two orientations, [100] and [010] because of planar crystal 

symmetry.   
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Fig. 3.24: The scheme of the canceling of the (1x2) reconstruction due to the 

decreasing of oxygen vacancies. 

 

 

When the surface is already (1x2) reconstructed, the stoichiometry (Ti2O3) is 

changed very much compared to native state (Ti2O4) and thus, it could be 

considered as the different material above STO. Along these lines, we can divide the 

sample in three regions: the reconstructed surface, the subsurface and the bulk. The 

subsurface has a lot of characteristics of unreconstructed STO surface before 

annealing, since its stoichiometry is closer to the ideal. This modeled sample is 

schematically depicted in Figure 3.25-left. From our surprising result that the TiO2 

terminated STO surface, can lose oxygen, causing conducting surface at low 

temperature, we can assume that the subsurface can behave in the same way. The 

main difference is that between vacuum and the subsurface is one layer which is 
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strongly deficient in oxygen. It can look like a trap for oxygen atoms, those present 

in the environment (however, not present in this case, since the work is done UHV), 

as well as those that are leaving the crystal. This process is schematically shown in 

Figure 3.24-right. 

 

 

Fig. 3.25: The model of the vacancies refilling from the subsurface. 

 

 
 
Based on the observations described above, I would like to conclude: 

1. The (1x2) reconstruction of TiO2 terminated STO 001 surface in our 

preparation conditions (800 0C, 1-2 hours, UHV) is very often present. 

2. The low temperature annealing (200-300 0C, 14 hours, UHV) of TiO2 

terminated STO 001 causes unexpected effect that the surface turn from insulator to 

conductor. It can be explained as that the surface can lose oxygen even at low 

temperature under UHV conditions.  

3. The (1x2) reconstruction can disappear after re-annealing of the sample 

under the same UHV conditions at low temperature (320 0C) for several hours.  

Concerning the effect that at low temperature the lattices can lose oxygen I 

proposed model that suggests that the refilling of the reconstructed surface is 

through the exchange of oxygen between the surface and the subsurface. It can be 
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suggested that initial (1x2) reconstruction in our conditions was due to the creation 

and ordering of oxygen vacancies. 
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3.4 THE STUDY OF (6X4) RECONSTRUCTION OF (110) SrTiO3  SURFACES 

 

The SrTiO3 surface in the [110] direction consists of a sequence of alternating 

charged SrTiO and O2 planes. Equivalent (110) layers are separated by the distance 

of a√2/2=0.276 nm where a (0.3905 nm) is the length of the cube of the SrTiO3 unit 

cell. Therefore, the SrTiO and the O2 layer are separated by a/2√2= 0.138 nm in the 

[110] direction (Figure 3.26). 

Fig. 3.26: STO unit cell and (110) planes 

 

It is also well known that such a surface is unstable owing to an dipole moment 

produced by the charged planes perpendicular to the surface. The polar SrTiO3 

(110) surfaces have not been extensively experimentally investigated as (001) 

surface. Nevertheless, some important SrTiO3 (110) surface behaviours were 

reported. If the SrTiO3 (110) is annealed in ultrahigh vacuum at 800°C 1 or at 960 

°C for 2 h 2 the surface exhibits the (1x1) LEED pattern. (1x2) reconstruction was 

observed after the surface was heated at 1000 °C for 1 h in ultrahigh vacuum 3. In 

contrast, a (nxm) periodicity is observed when the SrTiO3 (110) surface is annealed 

at temperatures higher than 900 °C  or when annealing is combined with ion 

sputtering 2,4. These reconstructions are observed regularly and are dependent on 

heating temperature and duration. Brunen and Zegenhagen studied undoped SrTiO3 

(110) single-crystal surfaces heated up to 1000 °C 2. By using Scanning Tunnelling 

Microscopy (STM) techniques, they concluded that the surface reconstructs forming 

(100) and (010) TiO2 microfacetted planes. A. Gunhold et al. performed similar 
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experiment on STO (110) and their results confirmed the coexistence of two 

periodicities, (1x1) and (1x2) 3. Also, the same authors claimed that under oxidizing 

conditions SrO islands may form on the top of (110) surfaces.  

However, a smooth homogeneous surface of SrTiO3 (110) is important for the 

growth of high-quality film in general. Specially this substrate is commonly used for 

(110) or (103)/(013)-oriented RBa2Cu3O7-x thin films 5. These types of films are of 

special importance for the fabrication of Josephson junctions and Grain Boundary 

Josephson Junctions  6, 7.  La0.7Sr0.3MnO3 grown on STO (110) is strained inducing an 

in-plane anisotropy with easy axis along the (001) direction which can be used in 

planar spin valves 8.  

Since a preparation of a STO (110) surface is not developed as well as for 

STO (001) I analyzed the initial properties of STO (110) surface and the status of 

the surface after the thermal treatment similar to the condition of deposition.   

The experiment  

Commercially available 10x10 mm2 SrTiO3 monocrystals cut in the (110) directions 

were purchased from Crystal, Germany. One, as received, sample was annealed in 

0.1mbar oxygen atmosphere at 800 0C for less than 1 hour to simulate pre-grown 

treatment. The RHEED measurements indicated that the sample surface is 

reconstructed as (6xn) superstructures. The results are shown in Figure 3.26. 

 

Fig. 3.27: The RHEED pattern of STO (110) after annealing in 0.1 mbar of O2 about 

1h. The RHEED paten showed (6xm) surface reconstruction. 
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The second sample was specially prepared in the analytic chamber. In order to 

remove surface contaminants, the crystals used in the experiments were annealed in 

the Analytic chamber using the irradiative heater, at 800 0C in UHV condition (the 

pressure during the annealing was below 1x10-9 mbar). The temperature was 

controlled by a thermocouple and a pyrometer. The final temperature was reached 

gradually with the rate of about 30 0C per minute. After UHV annealing the samples 

were cooled down in the same manner.  

 

 

Fig. 3.28: SPA-LEED data of STO (110) surface after the UHV thermal treatment (1h, 

800 0C): a) 2D pattern, b) the liner scan in [1-10] direction and c) the liner scan in 

[001] direction (the scale of a liner scan is calibrated on STO (001) 2D reciprocal 

lattice). 
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The STO (110) samples, after this thermal procedure, turn from a transparent 

insulator into a black colored conductor. The samples were measured with Spot 

Profile Analysis-Low Energy Electrons Diffraction (SPA-LEED) and Scanning Tunnel 

Microscopy (STM) instruments. The SPA-LEED results showed that (110) surface of 

the p(6x4) reconstructed. The obtained results are presented in Figure 3.28. 

The SPA-LEED linear scan was calibrated on STO (001) 2D reciprocal lattice. The 

distances between main spots in one direction showed a*2/√2 of STO (001) 

reciprocal lattice while in the other the distance is about a*. These results 

correspond to expected values.  

The STO (110) sample after SPA-LEED measurements was transferred in to 

SPM chamber (part of the Analytic chamber of MODA facility) where was performed 

STM morphology measurement. The STM measurements of the sample are depicted 

in Figure 3.29.The clearly defined terraces with the height about 2.7 Å indicate that 

the surface has one termination, either O2 or SrTiO termination.  

 

Fig 3.29: The STM image and the liner scan of STO (110) surface after the thermal 

treatment. 
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Fig. 3.30: The STM image, its Fourier transform and the liner scan taken 

perpendicularly to the rows. 

 

 

The higher magnification of STM measurements (Figure 3.30) proved that the 

surface is reconstructed since the “row like” structures are visible. Fourier transform 

of the image (Figure 3.20) showed two pairs of peeks (marked by red cycles) which 

are perpendicularly oriented. The modulus of the reciprocal vectors a* and b* 

correspond to the modulus of vectors a and b which represent 6x4 superstructures 

(6x0.55nm=3.3nm and 4x0.4nm=1.6nm). The STM profile shows that the 

corrugation of the surface is very low, on the range of 1 Å. It may indicate that the 

reconstruction involves just one monolayer. 

In order to check stability of the surface and also of the reconstruction the 

sample was further annealed in three steps in UHV: 1 hour at 250 0C, 1 hour at 420 
0C and finally 1 hour at 550 0C. After each heating sequence the sample was 

measured by LEED and STM at room temperature.  The SPA-LEED profiles are 

depicted in Figure 3.31. In both directions, [010] and [001] of the SPA-LEED scans, 

(4x6) reconstruction was stable. 
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Fig. 3.31: The SPA-LEED liner scans of STO (110) surfaces versus annealing 

temperature. 

 

 

If the annealing is performed in oxygen-rich environment (Figure 3.26) it is 

reasonable to infer that the annealing could give rise to O2 surface termination. On 

contrary, during annealing in the oxygen-poor condition (UHV) it is expectable that 

O2 termination disappears during the early stages of annealing. In other words, the 

“starting” surface, in this case, can be accepted as the stoichiometric SrTiO. The 

surface has periodicity in [1-10] direction which is 6 time larger than 

unreconstructed surface (The RHEED measurements showed this). On the other 

hand, the annealing at the same temperature but in the UHV condition provokes the 

same type of the surface reconstruction in [1-10] direction. The STM measurements 

confirmed this reconstruction and showed that it is caused by “row like” structure 

formed on the surface. The corrugation of these structures is very low, between 1Å 

and 1.5Å. This could mean that the reconstruction is connected to the mixed 

termination (O2 and SrTiO) of the surface. Additionally, Brunen and Zegenhagen 

noticed that during the annealing and sputtering processes a change in the 

concentration of oxygen is not detectable, while concentration of strontium on the 

surface increases with the annealing temperature 2. This is in disagreement with 

their micro-faceted model 2 of the annealed SrTiO3 (110) surface because it 

suggests that the strontium is completely removed from the surface.  
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Taking into account the facts described previously one simple explanation could be 

also considered. If the starting termination is O2 the observed reconstruction could 

be due to the missing oxygen rows (Figure 3.32). If so, according to the obtained 

experimental results (LEED and STM), the O2 coverage in this surface could be 

between 1/12 and 11/12 of complete layer. The second layer starts to be “open” 

which may be the reason why the Auger measurements in Brunen and Zegenhagen 

experiments 2  showed more strontium after the annealing.  

  

 

Fig. 3.32: the (6xn) reconstruction due to missing oxygen rows. 

 

 

 

In the cases when the annealing and the reannealing were performed this 

reconstruction seems to be thermodynamically very stable. Maybe the oxygen 

coverage change but the reconstruction periodicity remains the same.  

 

 

Surfaces prepared in this way were used for the deposition of complex materials 

such as Pr0.7Ca0.3MnO3. The successful deposition is proofed by RHEED monitoring 

(Figure 3.33). The first part of the growth was 2D (layer by layer) which changed in 

to step flow growth. 
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Fig. 3.30: The RHEED Intensity versus deposition time of Pr0.7Ca0.3MnO3 film grown 

on STO (110). 

 

 

Conclusion: 

Short-time heating of SrTiO3 (110) at the temperature of 800 °C results in (4x6) 

reconstructed surface as observed by LEED. STM measurements confirmed that 

surface is covered by the rows with the same periodicity. The reannealing of the 

sample showed that (6x4) reconstruction is very stabile. The above described results 

show that the used annealing treatment of the SrTiO3 (110) gives suitable flat 

surface.  
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IV RESULTS OF TiO2-ANATASE THIN FILMS   

 

 

Titanium dioxide as anatase, is the material of large importance in a number of 

technological applications including photocatalysis, gas sensors, solar cells, and 

memory devices 1-5. Almost all of anatase applicable behaviours are strongly 

connected to its surface, thus understanding surface properties including: 

morphology, termination, stoichiometry, impurity levels (if present), electrical 

properties, etc. became very important. The problem of anatase availability for some 

commercial application, such as gas sensors, memory devices, etc., was overcame 

by TiO2 films grown on suitable substrates 6-8. 

This chapter presents my study of the anatase TiO2 (001) thin films grown on 

SrTiO3 (001), SrLaAlO4 (001) and LaAlO3 (001) and occurrence of (1x4) surfaces 

reconstruction during the growth and its stability during annealing in UHV 

environment. The film surfaces were analyzed by: Low Energy Electron Diffraction 

(LEED), Scanning Tunnelling Microscopy (STM), X-ay Photoelectron Spectroscopy 

XPS, Transmission Electron microscopy (TEM) and X-ray Diffraction techniques.  

The studies were performed in three different steps: 

 

Step 1: Optimization of anatase thin films growth on different substrates and 

characterization their structure,  

 

Step 2: Testing of the structural stabilities and chemical composition of anatase 

films under annealing in UHV conditions.  

 

Step 3: Study of the first growth steps of TiO2 on TiO2 terminated STO (001).  
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4.1 THE STABILIZATION OF TiO2 ANATASE THIN FILMS GROWN ON 

DIFFERENT SUBSTRATES: STO(100), SLAO (100) AND LAO (100) AND 

THEIR CHARACTERISATION 

 

The experiments were performed in two separated UHV chambers, the growth 

chamber and the analytic chamber, respectively. UHV transfer of the samples from 

the growth to the analytic chamber was trough UHV distribution chamber. The 

characterization chamber is supplied with XPS (X-ray Photoelectron Spectroscopy), 

SPA-LEED (Spot Profile Analysis-Low Energy Electron Diffraction) and SPM (Scanning 

Probe Microscopy) setups. The base pressure of the characterization chamber was in 

low 10-11 mbar.  

As already mentioned, the phenomenon of anatase surface (1x4) 

reconstruction was already reported on as grown films without any special treatment 

of the surface 9, 10. Moreover, this reconstruction occurs during growth 9. On the 

contrary, on the anatase monocrystals (1x4) reconstruction appears after specific 

preparation of the surface 11. The surface preparation, usually, includes a numbers 

of combined cycles of ion sputtering (by Ar+ or Ne+ ion guns) and annealing 

process. The sputtering strongly modifies surface and causes disordering of the 

atoms, hence is necessary to perform the annealing in order to recover and 

recrystallize the surface. Principally, the annealing may be recognized as “quasi” 

growth which means that disordered layers will follow matrix of the bulk. 

Consequently, it may seem as homoepitaxial growth. If so, (1x4) reconstructed 

surface could be natural consequence of the anatase growth. The film surface has to 

be reconstructed in this way always when stabile growth allows reasonably flat 

surface. In the literature is reported that anatase surface is (1x4) reconstructed 

during thin film growth on LAO (001) and even STO (001) substrates 9, 12, 13.  

In order to try to understand the appearance of (1x4) reconstruction during the 

anatase growth the following steps were planned: 

1. The optimization of the growth parameters which can give high quality single 

anatase thin film on three different substrates (STO, SLAO, LAO).  

2. The UHV annealing of the samples. This annealing allows getting a 

conducting surface thus making the application of XPS, LEED and STM, for 

surface studies.  
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3. The further UHV annealing. This step facilitates evaluation of the surface 

stability.   

The TiO2 anatase thin films have been grown on polished single crystal substrates of 

(001) oriented SrTiO3, SrLaAlO4, LaAlO3, (5x5 mm2) purchased from SurfaceNet 

GmbH (Germany). Substrates were fixed or clamped, on the standard Omicron 

holder plates, by the conducting silver paste or steel strips respectively.  The 

deposition temperature of the substrate was 800 0C and was continuously monitored 

by thermocouple. The laser operated at a rate of 1 or 2 Hz, with energy densities at 

the target of 2.5 J/cm2. The target-to-substrate distance was maintained at ≈40 mm 

in all depositions.  

 

Fig. 4.1: The RHEED images of anatase thin films during growth on different 

substrates. The RHEED patterns show that the film surface is smooth. 
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The RHEED instrument was used to follow the growth along the [010] direction in 

respect to the plane substrate axis. The patterns of the substrates and the films 

during the growth are presented in Figure 4.1.  

Apart from the primary (1x1) diffraction pattern, (1x4) diffraction features (marked 

by red arrows) consisting of three additional streaks are also seen, confirming that 

1x4 reconstruction already appears during the growth. The RHEED patterns are 2D 

suggesting that the film surfaces were very flat. Similar results of the RHEED pattern 

were published previously 9, 12, 14.  

The crystal quality of the anatase films grown on all of the mentioned 

substrates was confirmed by XRD measurements. As an example, the XRD data of 

anatase films grown on STO, SLAO and LAO (001) oriented substrates are depicted 

in Figure 4.2.  

 

Fig. 4.2: XRD data of anatase thin films grown on different substrates. 

 

 

The XRD spectrum, shown on the upper graph in Figure 4.2, of the film grown on 

STO (001), shows no sign of the other TiO2 phases such as rutile, suggesting that 

the film is pure anatase.  Additionally, the reflectivity data, depicted in Figure 4.2, 

ascertain the smoothness of the film.  
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The TEM data of anatase film grown on STO (001) are presented in Figure 4.3. The 

red line marks the interface between the substrate and the film. The crystalinity of 

the film is very high since the planes of the film are clearly visible. 

Since the RHEED oscillation were absent during the growth, the estimation of 

the growth rate was done by the analysis of the reflectivity XRD data and TEM cross 

section images. The estimated growth rate was approximately, 0.12 Å/shot.  

After deposition, the samples were cooled down in the same pressure of the 

deposition (0.1mbar). The anatase thin film grown on STO (001) was further 

carefully analyzed since my goal was also to understand compatibilities between the 

substrate and the film.   

 

Figure 4.3: The TEM cross sections of the anatase thin film grown on STO (001):  

a) lower magnification, b) bigger magnification. 

 

 

After the deposition the samples were transferred into the analytic chamber where 

the films were annealed in UHV condition (P<1x10-9mbar) at 800 0C for 1h. After 
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sample cooling at room temperature SPA-LEED, XPS and SPM measurements were 

performed.  

XPS analysis was performed to qualify the chemical and electrical nature of the 

sample surface. The XPS was performed using Mg Kα at 1253.6 eV in two 

configurations of the set up, in the perpendicular and the shallow angles (35 

degrees) of photoelectron emission. 

 

Figure 4.4: XPS data of anatase thin film grown on STO (001): a) as grown film, b) 

after the annealing in UHV at 800 0C for 1h. 

 

After normalization of the spectra on the integrated values of Ti 2p peaks, the 

region of the valence band of as grown sample showed a band gap respect to Fermi 

level of about 2 eV. The XPS measurements of the valence band of anatase thin film 

annealed at 800 0C for 1hour in UHV condition showed appearance of a small peak 

in the gap on 1.4 eV (Figure 4.4). Contrary to the results of XPS spectrum near the 

Fermi level of TiO2 terminated STO surface, the new band is very week. It seems 

that the creation of Oxygen vacancies is more difficult in case of the reconstructed 

anatase surface. 

The sample, at the room temperature, was studied with the LEED instrument 

using electron’s beam energy of 105 eV. The observed results confirmed that the 

surface is 1x4 reconstructed in two directions, [010] and [100] respects to the 

orientation of the substrate. The 2D LEED pattern and the profiles of the spots taken 

in two directions, [100] and [010], are presented in the Figure 4.5. 
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Fig. 4.5: LEED pattern of TiO2 grown on STO (100): 2D SPA LEED image of (1x4) 

reconstructed surface (a), profiles of the LEED spots taken in [100](b), and [010] 

direction(c). 

 

 

The careful analysis of the distances between the main and the reconstructed spots 

showed that the film is fully relaxed in the plane since the average distance between 

main spots is 103 % of STO (001) 2D reciprocal lattice. This corresponds to 3.78 Å 

which is in good agreement with the bulk values of anatase lattice.   

The sample, after LEED measurements, was in situ transferred on the STM 

instrument and the morphology measurements of the film are presented in Figure 

4.6. Analysis of the STM images showed that the surface is composed from square 

shaped blocks rotated by 90 degrees one to the other. The higher magnification of 

the STM measurements indicated that these blocks are, actually, domains with the 

row like structures orientated in [100] and [010] directions. The formation of two 

domains may be explained by the bulk crystal structure of anatase. The top layers in 

the anatase unit cell are essentially twofold symmetric for the (001) surface plane. 
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Fig. 4.6: STM morphology measurements of anatase thin film grown on STO (001) 

with corresponding Fourier transforms of the images and the linear scan. 

 

 

The step, 2.4 Å high, results from the vertical translation of the surface and 90 

degrees rotation. In studied case, exactly this kind of the growth seems to be 

responsible for the observed morphology. Additionally, the linear scan shows that 

the surface corrugation could be 2.4 Å or, approximately, two times higher. Fourier 

transformation of the STM images results exactly in the (1x4) LEED pattern. A 

distance between the spots is equivalent, in real space, to 15.1 Å which is four times 

3.78 Å. The STM zoom of the square terrace near the edge is presented in the same 

figure (4.6). Fourier transformation of this STM image has the maximums in one 

direction which is perpendicular to the step. Distances between spots, in the real 

space, correspond also to 15 Å. 

The stability of the (1x4) reconstruction was checked with the additional UHV 

annealing step performed at 800 0C for 2h. After the additional thermal treatment 
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the film was measured again by SPA LEED instrument. These results are showed in 

Figure 4.7. The (1x4) reconstruction was still present but less ordered than in 

previous case. This can be explained by the fact that the further annealing caused 

some intra-diffusion of surface materials which are responsible for the 

reconstruction.      

 

Fig 4.7: SPA-LEED 2D pattern with the spot  profiles taken in 100 and 010 direction 

of TiO2 grown on STO after second UHV annealing (800 0C , 2h). 

 

 

Summary of the obtained results: 

1. (1x4) reconstruction appeared during the growth and is stabile under the 

growth conditions. 
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2. The appearance of the reconstruction during the growth does not crucially 

depend on substrate types used.  

3. The UHV annealing cause creation of weak new bands in the insulator 

gap.  

4. The STM measurement confirmed that the surface is (1x4) reconstructed in 

two domains. The reconstructed surface, morphologically, looks as rows 

structured surface.    

5. (1x4) reconstruction is stable after further UHV annealing. 

 

The explanations of (1x4) reconstruction appearance during the growth 

One of the first successful experimental measurements of the anatase surface has 

been performed by Durinck et al. 15
. They reported results obtained by low-energy 

electron diffraction -LEED technique which showed that (001) orientated surface 

from the mineral anatase is (1x1) reconstructed. On contrary, Herman et al. 

reported that the thin-film anatase TiO2 (001) surface is reconstructed as (1x4) type 
10. The explanation, based on angle-resolved mass spectroscopy of recoiled ions, 

attributed the (1x4) reconstruction to the formation of micro facets toward [103] 

and [-103] surface planes. Hengerer et al. 11 also, reported the (1x4) reconstruction 

on anatase (001) surfaces while their suggestion was that this reconstruction might 

be due to ordered oxygen vacancies. Herman et al. proposed that the reconstruction 

could be based on added rows 10.  According to this model, rows are placed on the 

surface with the periodicity of 4 times the lattice constant while the surface consists 

of twofold coordinated oxygen and fivefold coordinated titanium atoms. 

Based on STM, RHEED, LEED, and XPS results Liang at al. developed this model 

further. Their model is based on the (1x1) surface structure, involving ‘‘added’’ and 

‘‘missing’’ rows 9. (For detailed description of mentioned models see the Introduction 

about TiO2).  

In order to explain appearance of (1x4) reconstructed surface during the 

growth on the high temperature in relatively reach oxygen environment, I proposed 

the model that is based on ad-row models with the variation that takes into account 

stabilities of the reconstruction during the growth. This model is schematically 

presented in Figure 4.8.  
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Fig. 4.8: The dynamic ad-row model of (1x4) reconstructed anatase (001) surfaces. 

 

 

Considering the fact that ab initio calculations predict that an “ad-molecule” model is 

energetically favoured in comparison to the unreconstructed (1x1) surface 16 similar 

way of thinking could be implemented to explain (1x4) reconstruction formation. 

Following oxygen rumpling of completed layer the oxygen atoms, which are deposed 

(in the Figure 4.8 represented as hot O2), form the network where Ti cations, which 

are smaller than oxygen ions, arrange in their correct sites. Formation of the 

interface in this way is common model for hetero epitaxial growth of metal oxides 17 

and this model is used to describe the formation of new layers. The coverage of 

deposed atoms is 25% in the one row type of (1x4) reconstruction. With additional 

deposition of the material, the oxygen network extends laterally creating the two 

rows structure while (1x4) periodicity remains. After that, newly arrived material 

can be arranged in two ways: it can be laterally attached on existing rows or placed 
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on the two rows structures. In the case of the first scenario the oxygen network will 

be complete while the second causes formation of micro facets toward [103] and [-

103] surface planes.  Because of the high stability of the microfacetted surface the 

second scenario is more favourable. After that, the new material will complete lower 

layer causing the surface change in the one row structure. By applying this model 

appearance and steadiness of (1x4) reconstruction (confirmed by RHEED 

measurements) during anatase growth could be explained. This model predicts that 

in any moment of the deposition entire anatase surface is covered either with one 

row, two rows structures or their combination. Additionally, it has been already 

reported that surfaces are covered by rows with (1x4) periodicity 9 which is in 

accordance with our STM data.   

Having in a mind that, in the case of STO (001), the UHV annealing condition 

causes the creation of oxygen vacancies on the surfaces and the appearance of the 

strong new bands into the insulator gap, the above proposed model of the 

reconstruction may explain weakness of these bands in case of anatase thin film. 

The oxidative states of Ti atoms according to the model are: for the one row 

structure- Ti+6, for the two rows structure- Ti+5, for the three rows structure- 

between +4 and +5. It means that the additional free electrons caused by creation 

of the oxygen vacancies, will fill atomic Ti4sp orbital, acquired through the 

hybridization, which are involved in the bond formations of row structures. The 

same density of oxygen vacancies on the reduced (1x1) and (1x4) reconstructed 

surfaces causes the same number of the “free” electrons. For (1x1) reduced surface 

these electrons will fill the empty 3d Ti levels. In the case of (1x4) reconstructed 

reduced surface there are additional Ti4sp orbital which have to be filled first while 

remained “free” electrons will fill 3d Ti levels. This interpretation and presented XPS 

measurement of a region near Fermi level are in agreement with some reported 

photoemission spectroscopy data which showed that the (1x4) reconstructed 

anatase (001) surface has weaker new band between the Fermi level and the 

valence bands 18 then in case of rutile (110) or anatase (101) surfaces. 
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4.2 Sr DIFFUSION AND SEGREGATION DURING UHV ANNEALING IN 

ANATASE THIN FILMS GROWN ON STO (001) AND SLAO (001) 

SUBSTRATES 

 

Almost all research groups, which have studied TiO2 films grown on STO, noticed 

that during the sample deposition or the sample preparation Sr diffusion occurs 8,10. 

The diffusion of atoms from the substrate into the film during growth or the 

annealing is an expectable phenomenon since the growth takes place at high 

temperature (700-800 0C). In order to understand strontium diffusion and the strain 

effect on diffusion I studied anatase thin films grown on two different substrates, 

STO and SLAO, since both substrates contain Sr atoms. The rational of using the 

two different substrates, which contain Sr, aimed at understanding of the stress 

influence caused by the lattice mismatch between the film and the substrates. In the 

case of SrTiO3 (001) substrate the mismatch is about -3% and the strain is 

expansive, while for the film grown on SLAO (001) the mismatch is less than 1% 

and causes the compressive strain. The data about the lattice mismatches between 

anatase and used substrates are presented in Table 4.1. 

Table 4.1: The lattice mismatch between anatase and the substrates 

 

The experiment was designed in the following way: 

1. The two TiO2 anatase 10 nm thick films, grown on STO (001) and SLAO (001), 

were measured by XPS as grown sample; 

2. The same samples ware annealed at 590 0C for 2 hours, 4 hours and 

additional 6h. After each annealing sequence the samples were measured by SPA 

LEED and XPS at room temperature. As the reference sample was used the film 

was grown on LAO (001). This is naturally choice since the LAO (001) has good 

lattice match with anatase, then it cannot be oxygen donor during UHV 

annealing and finally this substrate does not contain Sr. 

The substrate  SrTiO3 (001)   LaAlO3 (001) SrLaAlO4 (001) 

The lattice parameter (nm) 0.3905 0.379 0.375 

The mismatch:  

(a
anatase

-a
substrate

)/a
substrate

 
∼-3% ∼-0.3%  ∼+1% 
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3. After these first sequences of the annealing the films were reannealed again 

at the higher temperature, 750 0C. After cooling down the samples were again 

measured by XPS and SPA LEED. 

In order to follow Sr contents in the film I measured, by XPS, the evolution of the 

3d5/2-3d3/2 Sr peaks and 2p1/2-2p3/2 Ti peaks emissions versus temperature and 

time. The spectrum of the Sr emission was normalized to the intensity of the 

corresponding Ti peaks. The spectra were collected from the emitted electrons at 

the perpendicular (normal) and the shallow angle (35° to the surface).  

The 590 0C annealing temperature was selected for two reasons. One was to 

follow the suggestion of Yong Liang and co-workers 9. They used the deposition 

temperature of 550 0C to avoid Sr contamination from the substrate.  Also, my 

experimental work done on another anatase samples (grown on STO) showed that 

the Sr segregation effect starts at the temperatures higher than 600 0C.  

The 2D and 3D SPA-LEED patterns of anatase thin films grown on three 

different substrates are depicted in Figure 4.9.  

 

4.9. SPA-LEED 2D and 3D images of diffraction patterns of anatase thin film grown 

on different substrates. 
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All patterns were obtained after the same annealing conditions: the pressure less 

then 1x10-9 mbar and 6 hours annealing at 590 0C. The data showed that the 

surfaces are (1x4) reconstructed. 

The XPS data of two anatase thin films, grown on STO (001) and SLAO (001) 

substrates, treated in the way as described above, are shown in Figure 4.10. 

From the XPS spectra analysis it was possible to conclude that Sr atoms are present 

in both films before any annealing. This could be due to the diffusion of Sr from the 

substrate to the film since the deposition temperature during the growth of the 

substrates was at 800 0C. Also, there are the same amounts of Sr in both 

configurations of the measurements, perpendicular and shallow.  This fact indicates 

that Sr atoms are homogeneously distributed in the films. Throughout the annealing 

at 590 0C the Sr amount in the film grown on SLAO did not change significantly, 

while in the case of STO substrate the Sr presence started to change. The observed 

change was not radical. Nevertheless, after 6 hours of annealing the amount of Sr, 

measured in shallow configuration, is higher in comparison with the perpendicular 

configuration of the XPS measurement. 

 

4.10: XPS monitoring of of normalized Sr 3d doublet in to anatase TiO2 (001) films 

grown on STO (001) and SLAO (001) during UHV annealing. 
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Conversely, the notable increasing of Sr presence occurred in the both samples after 

the UHV annealing for 1 hour at 800 0C. In this case, besides the diffusion process, 

new effect occurs, the segregation, since Sr presence in both films is higher in the 

shallow configuration of the measurements.     

By observing the graph depicted in Figure 4.10, the Sr diffusion is clearly 

visible. The amount of Sr in the film grown on STO, when measured in 

perpendicular condition increased about 250%, while in the shallow configuration it 

was increased about 300%. In the case of the film grown on SLAO the increase was 

lower but still significant. Interesting fact is that for both samples Sr amounts 

measured in the shallow configuration after the final annealing are very similar 

(marked with red cycle).  

 

 

Figure 4.11: XPS data of 2p1/2-3/2 Ti emission of anatase thin films before and 

after the thermal treatment grown on STO and SLAO. 
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The increase of Sr amount in the films during the annealing up to 800 0C, could be 

explained in the following way. If Sr atoms are present in the films after the growth, 

it means that they move in to the films even the oxygen reach environment. During 

the UHV annealing this effect is more significant because the time of the annealing 

(1h) is longer in comparison with time of the deposition which was in these cases 

about 10 minutes.   

The segregation may be explained as the influence of oxygen vacancies creation. 

Since the annealing generates oxygen vacancies, their densities must be higher near 

to or in the surfaces. The indication that the high temperature annealing creates 

oxygen vacancies could be in the appearance of the small shoulders on the 2p1/2-

3/2 Ti peaks. These shoulders, which may be due to existence of Ti3+ states, are 

depicted in Figure 4.11. Regarding the facts that the shoulder of Ti peak and the 

segregation effect (see Fig. 4.10) are more visible in the case where the substrate is 

STO, they could be consider as cause and effect. Having in mind that Sr atoms tend 

to diffuse trough the defects it is reasonable to assume that the atoms will 

accumulate where the density of vacancies is higher, which means near to or in the 

surface.  

 

Conclusions: 

1. The optimization of parameters for high quality anatase thin film growth was 

successful. The growth condition allows that the film quality does not depend 

significantly on the type of substrates.    

2. The film surface is (1x4) reconstructed during the growth and does not 

depend on the substrates’ type and the strain effects. 

3. (1x4) reconstruction can be explained as the consequence of the natural way 

of anatase growth as ad rows model.  

4. Sr diffusion from the substrates is very significant effect if growth or 

annealing temperature is around 800 0C. Sr inter-diffusion seems to be 

intrinsic property of anatase since it does not depend on the substrate type or 

the strains.  

5. The Sr segregation is the effect which occurs during the UHV annealing at 

800 0C. It could be connected with creation of oxygen vacancies. 
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4.3 IN SITU INVESTIGATION OF THE EARLY STAGES OF TIO2  EPITAXY ON 

SrTIO3 

 

The growth of ultrathin TiO2 epilayers of nominally TiO2-terminated SrTiO3 

substrates and homoepitaxial SrTiO3 films is analysed in-situ by reflection high 

energy electron diffraction, low energy electron diffraction, x-ray photoemission 

spectroscopy and scanning probe microscopy, complemented by ex-situ analyses. It 

is shown that, in highly controlled deposition conditions and on very clean surfaces, 

a quite unusual growth mode, which is inconsistent with the formation of the 

expected anatase layer, takes place. On the base of a thorough characterization, we 

show that in suitable conditions the TiO2 deposition can activate a Sr migration from 

the substrate to the film, resulting in the growth of a “SrTiO3-like”, cubic film. We 

argue that Sr migration is not only thermally induced, but it is activated by strain 

minimization. Above a critical thickness, the anatase phase nucleates. 

Introduction 

The interface of an epitaxial (001) anatase film with a SrTiO3 (STO) substrate is 

recognized, from the simple observation of the crystal structures, to be an intriguing 

problem. A (001) oriented STO crystal is a stack of alternating SrO and TiO2 planes. 

Unlike the underlying TiO2 planes in STO, the TiO2 planes stacked along the (001) 

direction of anatase are strongly buckled and each of them is in-plane shifted. A 

‘‘uper’’ layer can be reproduced from an lower layer by a single-height vertical 

translation of 2.4 Å, accompanied by a 90° rotation along the 001 axis, and followed 

by a 1.9 Å horizontal translation. Once growth starts, and a (001)TiO2/(001)STO 

interface is created, epitaxy  poses strong constraints to the anatase layer, due to 

the relatively large (~ 3%) lattice mismatch. In order to match the in-plane lattice 

parameters of STO, anatase will have either (a) to stretch the  O-Ti-O equatorial 

bond angle  from the equilibrium value of about 156°, or (b) to lengthen the Ti-O 

equatorial bond length d from an equilibrium value of about 0,1934 nm. Actually, 

both mechanisms can be assumed to be at play. The straightening of the angle can 

be expected to have a reduced energy cost, since the O-Ti-O bending mode is the 

softer phonon mode of anatase (144 cm-1) 1, but even a full straightening cannot 

allow, alone, to match the 0.3905 nm STO lattice parameter. As a matter of fact, the 
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TiO2 planes within the STO structure are in tensile strain themselves, due to the 

intercalated SrO planes, a circumstance that makes of STO an incipient ferroelectric. 

The stability of such a strongly deformed structure, composed of “straightened” and 

stretched TiO2 planes is obviously questionable. Several possible relaxation 

mechanisms can be imagined, including dislocation formation, induction of oxygen 

non-stoichiometry, cation inter-diffusion, or others.  

TiO2 ultrathin film were grown on (001) STO, SLAO and LAO substrates and 

analyzed in situ, resorting to several surface science techniques, within our modular 

system for oxide deposition and analyses (MODA). Film growth was performed with 

a KrF excimer, with a typical fluence of 2.5 J cm-2 on the target and a typical growth 

temperature of 800°C. Some samples were grown at other temperatures in the 

interval 600°C - 800°C yielding substantially similar results to the ones discussed 

below.  

 Films grown on LAO and SLAO show very similar properties, exhibiting a high 

degree of crystallographic perfection and relatively smooth surfaces. As a very 

typical signature which is easily recognised in surface electron diffraction (both 

RHEED and LEED), and in agreement with previous reports, the films show a 

strongly visible (4x1) reconstruction. Data regarding the films grown on LAO and 

SLAO are reported in Subchapter 4.1.  

Data regarding the growth on (100) STO showed a strikingly different behavior, and 

a marked variability from case to case, seemingly as a function of the crystal quality 

and atomic termination of the substrate surface. In this subchapter, I reported data 

obtained either on high quality surfaces (as checked by RHEED, LEED and AFM) of 

nominally TiO2 terminated substrates or of homoepitaxial STO thin films. STO 

substrates were etched according to and annealed in situ within the PLD chamber at 

950°C for 2h right before deposition. This procedure reduces the risk of any possible 

surface contamination during and after the annealing. 

The first striking feature that was regularly observed was a steady RHEED pattern 

that remained unchanged during the very first nm of TiO2 deposition. At contrast to 

the case of TiO2 growth on LAO, where a sudden changing of the pattern could be 

observed, the typical initial RHEED pattern of the STO surface was marginally 

affected, only manifesting a decrease in the intensity which took place on a 

relatively slow scale. 
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Fig. 4.3.1: The evolution of the RHEED patterns during TiO2 growth on TiO2 

terminated (up) and as received (down) STO (001). 

 

The RHEED pattern two TiO2 films grown on highly TiO2 terminated SrTiO3 and non 

prepared substrates are shown in Figure 4.3.1. From this data is possible to 

conclude that the appearance of the typical RHEED pattern of TiO2 grown on the 

terminated surface is in delay in comparison with the film grown on as received 

substrate.      

A quantitative representation of the qualitative difference that we observe in RHEED 

patterns, for growth on 001 oriented LAO, SLAO, as received STO and TiO2 

terminated STO respectively, is given by the plots the intensity of the specular spot 

versus time. In all cases, the RHEED intensity decreases after the start of the 

deposition with a behavior that can be empirically fitted by the exponential decay 

law:   

                            
τ
t

o KeItI
−

+=)(                                       (4.3.1) 
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Here the value t corresponds to the time in seconds, but also to the number of laser 

shots, since all reported experiments where performed at a 1Hz repetition rate, with 

a typical deposition rate of 0.012 nm/shot. 

While for samples grown on LAO and SLAO the typical τ value is of the order 7-8 

seconds, as recivied STO has slightly higher the value, 13seconds. On contrary in 

the case of the deposition on highly TiO2 terminated STO or on STO films, τ values 

is much higher, up to 40 seconds or more.  

 

Fig. 4.3.2: The decay of RHEED intensities during first part of TiO2 growth on 

different substrates and exponential fits. 

 

This “intermediate phase”, where the reciprocal lattice of the TiO2 films surface 

remained substantially isomorphic to the reciprocal lattice of a prefect STO surface 

as apparent from RHEED patterns, typically lasted 200-250 shots, corresponding to 

2.4-3 nm. It ended with the abrupt appearance of 3D like pattern, as witnessed by 
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the sudden development of a scattered intensity in a formerly empty region of the 

reciprocal space, shown in Figure 4.3.1. 

The nature of such “intermediate phase” and observed variability as a function of 

the STO surface preparation are the main subjects of this subchapter. 

The nature of the intermediate phase was investigated by resorting to the joint 

application of a number of different techniques, including LEED, STM, AFM, XPS and 

TEM.  

 

Fig.4.3.3: The LEED patterns of TiO2 films grown on TiO2 terminated STO (001) with 

different thickness. 
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LEED patterns and AFM/STM images were collected by transferring the samples in-

situ into the analytical chambers of the system. The films were annealed in vacuum 

(750-800 °C for 1-2 h) in order to make them conducting enough for LEED and STM 

analyses. LEED patterns fully confirm the trends reported for the RHEED. The film 

surfaces showed the same square pattern with a (1x1) or a weak (2x1) surface 

reconstruction, as usually found on the STO substrates, also depending on the 

details of the thermal treatment. Until a thickness of about 2-3 nm, the films were 

strained on the STO substrate, as proved by the distance of the reciprocal lattice 

spots after calibration on the STO (001) surface. With increasing the TiO2 thickness, 

the LEED patterns shows a lattice relaxation to the smaller TiO2 lattice parameter, 

and the appearance of new features until a typical 4x1 pattern, similar to the ones 

obtained on LAO and SLAO, but with much broader spots, appears. The SPA-LEED 

data of three different samples are depicted in Figure 4.3.3. The thickness of the 

first film is 2-3nm, the second with 5-6 nm and the thickness of the third is 10 nm.  

 AFM and STM images also confirmed the peculiar nature of the so called 

“intermediate phase“of the TiO2 films. Rather than presenting the typical aspect of 

(001) anatase surface, with a multilevel terrace structure and a row structure on 

terraces corresponding to the (4x1) reconstruction, the films show remarkably flat 

terraces that reproduce the underlying STO surfaces. Even more interestingly, the 

terrace steps are 0.4 nm high, just as STO and unlike anatase, which is 

characterized by a unit cell with a c-axis of 0.95 nm and an interplane distance of 

0.24 nm. The peculiar aspect of the anatase surface is instead recovered in thick 

films. 

 X-ray diffraction scans performed (ex situ) on these samples do not show 

measurable peaks at the characteristic XRD peeks of (001) anatase, providing 

indirect evidence that the film resulting after short ablation of the TiO2 target are 

not anatase. 

 The same effect (or even stronger) was noted during TiO2 deposition, using 

the same deposition parameters, on homoepitaxial STO (001) film. In this case, the 

special preparation of the substrate is not necessary to be done.  One sample was 

monitored after each sequences of the growth (STO film then 10 shots of TiO2, 

additionally 20 shots, additionally 30 shots, additionally 120 shots and finally 
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additionally 120 shots of TiO2,  by LEED and XPS (Figure 4.3.4).  After each 

deposition, the film was UHV annealed at 800 0C for 1hour. 

 

 

Fig 4.3.4: XPS and LEED data evolution of the sample thickness (number of laser 

shots on TiO2 target). 

 

The XPS data showed that Sr content, measured at the perpendicular geometry, 

decreased in first sequences of deposition (in total 60 shots of TiO2) then the 

amount was constant (180 shots of TiO2) and after that is again of Sr amount 

decreased. In same time the LEED patterns, beside of reconstructions, showed no 

change until the final deposition. Moreover, the distances between main spots 

showed that the reciprocal lattices corresponded to STO 2D reciprocal lattice.   

 In order to investigate the chemical nature of the intermediate layer, the XPS 

measurements of films grown on TiO2 terminated and none terminated substrates 

were done. In Figure 4.3.6 the X ray photoemission spectra of the Sr 3d doublet for 

a) a SrTiO3 film; b) a 3 nm thick TiO2 film deposited on SrTiO3 are compared. 
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Fig. 4.3.5: The STM morphology images of TiO2 ”intermediate phase”. 

 

4.3.6: XPS of the Sr 3d doublet in perpendicular emission and in shallow angle 

emission configurations.  
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The vertical scale in each measurement is normalized to the intensity of the 

corresponding Ti 3d doublet recorded at the same conditions. The measurements 

were performed both at perpendicular emission (P) and at smaller angle of emission, 

which was 35° (in following text referred as S) of photoelectrons. Escape depth of Sr 

3d electrons with about 1100 eV kinetic energies in solids are generally reported as 

about 3 nm at most, which is expected to be independent of kinds of materials. 

Therefore, the S configuration probes a depth of the order of ≈1.5 nm, that is, at 

list, double less than the film thickness for measurements b and c, while the P 

configuration senses the body of the film and may bear the contribution from the 

substrate. The striking evidence in Figure 4.3.6 b indicates a high Sr content (with a 

stoichiometric ratio [Sr]/[Ti]≈ 0.7) within the over-layer that was supposed to be 

pure TiO2. For comparison, we remark that the Sr 3d doublet (Figure 4.3.6 c) is 

almost double less for TiO2 film grown on as received STO (001) with same number 

of the shots (the thickness about 2.5nm).  

 The one growth on TiO2 terminated STO was dedicated to ketch the moment 

where the “intermediate phase“ will turn into “normal” anatase growth. 

 

 

Fig. 4.3.7: a) The RHEED Intensity dependence on the deposition time, 

 b) AFM images of ultra thin film after 190 shots. 
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The deposition was done in two steps: first 120 shots of TiO2 caused exponential 

decay of the RHEED intensity with τ about 40 s, while second deposition step caused 

also the exponential decay but just during additional 40 shots. After that the further 

30 shots provoked drastically changed in the RHEED pattern (Figure 4.3.6 a). The 

new spots appeared (the one is marked with blue cycle) and the intensity of all 

spots started to increase. The deposition was stopped after these 70 shots of TiO2 

while all deposition contents 190 shots. After the cooling down in oxygen 

atmosphere the sample was in situ transferred in the Analytic chamber where was 

measured by AFM. The AFM images are presented in Figure 4.3.6 b. The image with 

the scan 1µmx1µm shows the clear evidence of the early stage of the nucleation. 

The second image was taken on three time smaller scale (333nmx333nm) then the 

first image. Between the islands the surface is still terraced. This confirmed the 

hypotheses that the film is created from two kind of the growth: the first, 2D growth 

caused the formation of the “intermediate phase“ while the second, which appeared 

after the critical thickness  of the first phase, was 3D growth.  

 

The model of the ”intermediate phase” growth 

It is widely acknowledged that under reducing conditions the STO undergoes several 

complex chemical reactions involving defect formation and diffusion. In brief, two 

main processes take place. The first one is the creation of oxygen vacancies, 

according to the defect reaction 2:  

                      
( ) ×•• →++ O

ox
O2 OV'e2gO

2

1
                (4.3.2) 

 

Involving oxygen vacancies ( ••
OV ), electrons (e’), and regular oxygen sites ( ×

OO ). The 

kinetics of transition is limited in this case by oxygen vacancy migration 3. At lower 

temperatures, the surface reaction (4.3.2) becomes the rate-limiting step 4.  

At the same time, a slower reaction involves the Sr cations. It was at first proposed 

that this is achieved by the establishment of rocksalt intergrowth 5 layers (the 

Ruddlesden-Popper phases ( )n3SrTiOSrO⋅  ), following the defect reaction of regular 

metal ions ( ×
SrSr ) and regular oxygen ions: 

                    SrOVVSrO O
''

Sr
ox

SrO ++→+ ••××
             (4.3.3) 
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However, no experimental evidence of intergrowth in SrTiO3 has ever been found. 

On the contrary, an overwhelming evidence indicate an alternative defect 

mechanism, where strontium vacancies and the SrO-rich second phase can be 

exclusively created at the surface of single crystals 6-8. Then, the equilibration 

kinetics is limited by cation diffusion. The point defect reaction of the cation 

sublattice may then be written as follows: 

 

                     
( ) SrOVSr'e2gO

2
1 ''

Sr
ox

Sr2 +→++ ×
            (4.3.4) 

Once the Sr migration at the STO surface is acknowledged, it is possible to propose 

a model that accounts for the whole body of our results. At the deposition 

conditions, Sr vacancies are formed close to the STO surface and Sr adatoms 

appear. We believe that the growing front of the TiO2 film incorporates them in a 

very efficient way during the growth process, according to the following scenario.  

When Sr enters the lattice of TiO2 layer, the film stoichiometry is transformed into 

Sr1-xTiO3-x. Since no defect free crystal structure is available in the STO phase 

diagram for x<1, this Sr deficient compound will crystallize in the form of a defective 

perovskite structure. Such phase is strain stabilized in thin film form, since, unlike 

anatase, it matches the STO substrate. The TiO2 adatoms impinging on the terraces 

and condensing at the edges during the step-flow growth, feel a driving force to 

crystallize in such a form that allows lattice matching, not only to the substrate in 

plane parameter, but also to the step height. Such a matching is accomplished by 

resorting to the incorporation of available Sr atoms and the formation of the 

defective perovsite. This in turn allows for the formation of a fresh shifted step 

edge, where segregated Sr atoms and Ti adatoms can react. Although the STO 

substrate can be considered as an infinite Sr reservoir, the limited mobility will cause 

the Sr contect to decrease with thickness. The process with stop abruptly with the 

nucleation of unstrained anatase islands which will cover the surface giving rise to 

the TiO2 film. The sketch of the final situation of the growth is presented in Figure 

4.3.7. In the figure is presented that the growth causes Sr diffusion from STO 

substrate giving the situation that the interface doesn’t exist. Before that the arriving 

material riches amount which corresponds to “critical thickness”, Sr distribution in 
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top layers follows exponential low. This low can be expressed in very simple way 

following the chemical formula of the “intermediate phase“- Sr1-xTiO3-x: 

 

                                           x=1 exp(-d/dc)                                (4.3.5) 

 

where d is distance from the layer which has correct stoichiometry, SrTiO3, while dc  

is critical thickness where Sr1-xTiO3-x structure is still perovskite (Figure 4.3.8). 

 

 

Fig.4.3.8: The scheme of the ”intermediate phase” of TiO2 film grown on STO (001). 

 

 

The RHEED Intensity following kinematic theory of diffraction can be described as:    

 

                                                      (4.3.6) 

 

where  is the dynamical form factor while  represents the lattice factor. 

The dynamical form factor can be expressed as function of electrons number which 
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are involved in elastic scattering processes or in simplified form as function of all 

electron, Z: 

                                                                    (4.3.7) 

 

Considering the facts that the growth is, in the presented model described above, 

step flow growth, and that the crystal structure (perovskite) remain constant, the 

RHEED intensity of the diffracted spots will depend only on the form factor. It can 

be expressed as: 

 

                                                             (4.3.8) 

 

In a dynamical situation of the growth, the intensity of the diffraction points will 

decrease since the new layer will have fewer electrons (more Sr vacancies). The 

number of the vacancies is directly proportional with deposition time thus the 

decrees of intensity can be described with the equation.   

 

                                                       (4.3.9) 

 

The solution of the equation 4.3.9 has same form of the equation 4.3.1 which fits 

experimental RHEED data.  

 

                                             τ
t

o KeItI
−

+=)(                               (4.3.10) 

 

 This observed and described effect can be used as way to improve TiO2 

termination of STO (001) in situ since there is clear evidence that Sr excess (which 

can appear during pre-annealing or already exist on STO surface) can be 

incorporated during first stage of TiO2 deposition. 
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Conclusion: 

1. The strain effect between STO (001) and anatase causes strong inter-diffusion 

of Sr. 

2. The consequence of the strain and the Sr inter-diffusion is growth of 

”intermediate phase” with perovskite crystal structure and Sr1-xTiO3-x chemical 

formula. 
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Appendix: Properties of STO/LAO interface 

 

The importance of technological method developed sufficiently to produce highly 

terminated and controlled surfaces of the STO, as substrate, is illustrated in the next 

paragraph. 

Ohtomo and Hwang 1 reported the existence of a conducting electron layer at 

the heterointerface between two nominal insulators, SrTiO3 and LaAlO3. This 

significant result motivates many research groups to contribute to the understanding 

of this effect and to try to implement it. Ohtomo and Hwang demonstrated that the 

terminations at the interface of nonpolar STO with polar LAO play a crucial role in 

the formation of a quasi-two-dimensional electron gas (Q2-DEG). The SrO-AlO2 

interface is insulating, while the TiO2-LaO interface produces a Q2-DEG.  

Although it is generally agreed that this phenomenon is induced by delicate 

changes at the interface, interpretations of the mechanisms are still under debate. 

According to Noguera hypothesis 2 (see Chapter 1.2.4) in order to prevent the 

potential divergence in LAO films, electrons are transferred from the LAO layer into 

the TiO2 bonds of the STO layer through the interface. Consequently, the 

‘‘electrondoped’’ STO layer in the surrounding area of the heterointerface begins to 

conduct.  

However, to produce the conducting interface two necessary conditions must 

be fulfilled: perfect TiO2 termination of STO (001) and the perfect layer by layer LAO 

growth. We used two ways to achieve highly TiO2 termination: one, the chemical 

etching joined with in situ annealing (described in Chapter 3.1.1) and second, 

deposition of 1-2 layers of TiO2 on STO (001) (Chapter 4.3). LAO, 10 unit cells thick, 

thin film grown on chemically etched and in situ annealed (0.5 mbar of oxygen) STO 

(001) was monitored by RHEED during growth and these data are depicted in Figure 

a1. The oscillations of (00) diffraction spot during the growth  indicated 2D (layer by 

layer) growth while the final 2D RHEED pattern of the film proved that the surface is 

flat.  One LAO film was grown on STO (001) prepared by 15 shots of TiO2 deposition 

(this amount of TiO2 should correspond to formation of 1-2 TiO2 layers).  
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Fig. a1: The RHEED data during growth of 10 unit cells of LAO on TiO2 

terminated STO (001). 

 

Fig. a2: The TEM cross section of the LAO/STO interface together with the 

intensity profiles of Lanthanum and Strontium in the region near the interface. 

 

 

Transmission electron microscopy (TEM) cross-sections of the sample are presented 

in Figure a2. The interface is without any defects indicating that these 15 shots of 

TiO2 are sufficient to the creation of the fully TiO2 terminated STO.  
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Formation of a quasi-two-dimensional electron gas (q2-DEG) at the interface 

between SrTiO3 (001) and LaAlO3 was confirmed by the measurements of the 

electronic properties of the structure. This data are presented in Figure a3.   

Fig. a3: Sheet resistivity, Sheet-carrier density and carrier mobility for 4 unit cells 

thick LAO film grown on TiO2 terminated STO (001) 

 

The charge that is necessary to prevent the polarization catastrophe is equal to half 

an electron per unit cell 3 or 3,2x 1014 cm-2 and the measured Sheet-carrier density 

is very near to the theoretical value.  
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V GENERAL CONCLUSION 

 

Subject of this thesis are studies of two materials from Transition metal oxides 

(TMO) family: 

1. Strontium titanate - SrTiO3 (STO), 

2. Anatase polymorphous of  titanium dioxide - TiO2 

All examples and results which exist in the literature (some of them are presented in 

this thesis) about STO and anatase, pointing out to the necessity of investigating in 

detail the crystal, chemical and electronic properties of STO surfaces, triggered my 

interest in facing the problem of controlling and understanding the surface 

properties by resorting to a novel approach. 

1.  My study has been confined to the (001) and (110) surfaces of undoped 

SrTiO3. The study highlights the importance of an appropriate pre-treatment of 

SrTiO3 substrates in order to obtain smooth and well-defined surfaces. The 

presented results indicate the importance of the details of the preparation process, 

the history of the crystals in terms of the chemical and thermal treatments.

 Since STO (001) has the two possible terminations, both of them were 

subject of presented studies. For homo-epitaxy, the termination mainly determines 

the kinetics of the deposited material. In the case of heteroepitaxy (YBCO, PCMO, 

LSMO etc.), the stacking sequence is determined by the terminating layer; thus, the 

process for obtaining of the termination and the reproducibility are as crucial as 

starting condition for a deposition. 

i. The TiO2 termination of STO (001) commercial substrates with presented 

modification is very successful. The smoothest and most reproducible surface 

morphology is obtained after the optimal treatment, consisting of the chemical 

etching with the HF buffered solution followed by in situ annealing at high 

temperature (900 -1000 0C) in oxygen environment similar to an usually deposition 

pressure (0.5 mbar). TiO2-terminated surface, with superior properties with respect 

to stability and morphology is obtained. Furthermore, it is suggested that the 

composition of the surface can be controlled, yielding single termination, provided 
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that the deposition rate of the constituents is known. Therefore, the starting 

condition for the growth of the controlled surface was satisfied. 

ii. The parameters for homoepitaxial growth of STO film on TiO2 

terminated STO (001) substrate are optimized in a way that provide conditions for 

2D growth. Moreover, the termination of the film is also TiO2 as well as the 

substrate is. In general, I conclude that the thin film growth on these substrates 

results in highly ordered surface.  

iii. The growth of high quality STO epitaxial films on A-site terminated (110) 

NGO substrates using PLD assisted by high pressure RHEED was proofed. The 

reported data strongly support the initial assumption, that a single, A-site (i.e. 

SrO), termination is obtained.  

iv. The low temperature annealing (200-300 0C, 14 hours, UHV) of TiO2 

terminated STO (001) causes unexpected effect of the surface turning from insulator 

to conductor. It can be explained as that the surface can lose oxygen even at low 

temperature under UHV conditions.  

This study confirmed that prolonged UHV annealing for 1 hour at 800 0C of an HF 

etched SrTiO3 (001) (TiO2 terminated STO) sample gives rise to the formation of a 

new band between the Fermi level and the valence bands – VB (the conduction 

band) and appearing of a (1x2) reconstruction. The (1x2) surface reconstruction can 

disappear after several hours of re-annealing at low temperature (320 0C) under 

UHV conditions. Concerning the effect that at low temperature the lattices can 

lose oxygen, I proposed model that suggests that the refilling of the reconstructed 

surface occurs through the exchange of oxygen between the surface and the 

subsurface. It can be suggested that initial (1x2) reconstruction, in our conditions, 

was due to the creation and ordering of oxygen vacancies. On a Ti–O-terminated 

surface, the competition between bulk oxygen diffusion and the escape of oxygen 

from the surface causes that the (1x2) TiO2 reconstruction is unstable under the 

used conditions of re-annealing (very low pO2). 

v. Short-time heating (∼∼∼∼1h) of SrTiO3 (110) at the temperature of 800 °C 

results in (6x4) reconstructed surface as observed by LEED. STM 

measurements confirmed that surface is covered by the rows with the same 

periodicity. The reannealing of the sample showed that (6x4) reconstruction is very 
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stable. The described results show that the used annealing treatment of the SrTiO3 

(110) gives suitable flat surface.  

 

2. Anatase as TiO2 phase, although is more efficient for several applications, 

including catalysis, has technological difficulties in implementations because of its 

instabilities, compared to the other polymorphous. 

i. The optimization of parameters for a high quality anatase thin film 

growth was successful. The growth conditions allow that the film quality does not 

depend significantly on the type of substrates. The quality of epitaxial films was 

characterized using RHEED monitoring during growth, LEED, STM, XRD and TEM 

measurements. The presented result clearly indicate that the anatase thin films 

fabricated on STO (001), LAO (001) and SLAO (001) by laser MBE have crystal 

quality equivalent to bulk single crystals.    

The surfaces of anatase films are (1x4) reconstructed during the growth and do not 

depend on the substrates’ type and the strain effects. (1x4) reconstruction can be 

explained as the consequence of the natural way of anatase growth as ad rows 

model.  

ii. Sr diffusion from the substrates to anatase films is very significant effect if 

growth or annealing temperature is around 800 0C. Sr inter-diffusion does not 

depend on the substrate type or the strains since similar effect is observed in both 

case of used substrates, STO (001) and SLAO (001).  

iii. The strain effect between STO (001) and anatase causes strong inter-

diffusion of Sr. The consequence of the strain and the Sr inter-diffusion is growth of 

”intermediate phase” with perovskite crystal structure and Sr1-xTiO3-x chemical 

formula. It is proposed that these structures have fully TiO2-terminated surface 

which is thermodynamically stable. According to obtained RHEED, STM, SPA-LEED, 

and TEM results, additional deposition of few layers of TiO2 could be used as way to 

obtain fully the TiO2-terminated STO surface. As a demonstration of proposed 

approach, a few unit cell thick LaAlO3 film was grown on specially prepared STO 

surface on which, between one and two layers, TiO2 were beforehand deposited. 

The TEM measurements show clearly the interface indicating that the growth was 

entirely heteroepitaxial.  
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