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INTRODUCTION

This thesis is devoted to the study of boundary value problems for second order elliptic

and parabolic equations having measure data. In order to explain the motivations

of this study, let us begin by considering a class of Dirichlet problems for nonlinear

elliptic equations of the type − div(a(x, u,∇u)) = µ in Ω

u = 0 on ∂Ω,
(0.0.1)

where Ω is a bounded open set of RN , N ≥ 2, a : Ω×R×RN −→ RN is a Carathéodory

function such that

a(x, s, ξ)ξ ≥ α |ξ|p , α > 0, (0.0.2)

|a(x, s, ξ)| ≤
[
|ξ|p−1 + |s|p−1 + a0 (x)

]
, a0(x) ∈ Lp′(Ω), (0.0.3)

(a(x, s, ξ)− a(x, s, η), ξ − η) > 0, ξ 6= η (0.0.4)

a.e. x ∈ Ω,∀s ∈ R,∀ξ, η ∈ RN .

When the datum µ belongs to the dual space of W 1,p
0 (Ω), the notion of weak solu-

tion is well-defined and the assumptions (0.0.2) − (0.0.4) ensure both existence and

uniqueness results, as established by the classical theory due to Leray and Lions

([80]; we refer to Chapter I for some basic results).

If the datum µ is a measure, the notion of weak solution is obviously not appropriate.

Moreover, if we consider the notion of solution in the sense of distribution the classical

counterexample due to Serrin ([104], see also [97], [2] shows that a “local” uniqueness

result for Dirichlet problem does not hold.

These drawbacks force to find extra conditions on the distributional solutions in order

to ensure both existence and uniqueness.

In the linear case, that is p = 2 and a(x,∇u) = A(x)∇u, where A is an uniformly

3



elliptic matrix with L∞(Ω) coefficients, this problem has been studied by Stampac-

chia, who introduced and studied in [106] a notion defined by duality. This allowed

him to prove both existence and uniqueness results. Such a solution satisfies the

equation in distributional sense and moreover belongs to the Sobolev space W 1,q
0 (Ω)

with q < N
N−1

. Stampacchia’s framework can not be extended to nonlinear cases, ex-

cept when p = 2 and the operator a is strongly monotone and Lipschitz continuous

with respect to ∇u ([88]). The first existence results in nonlinear case are due to

Boccardo and Gallouët. In [30] and [31] they proved the existence of a distributional

solution to (0.0.1) which belongs to W 1,q
0 (Ω), for q < N(p−1)

N−1
under the assumption

p > 2 − 1
N
. Such a solution is found by a natural approximation method: the idea

consists in fixing the solution as the limit of a sequence of solutions to (0.0.1) which,

owing to the regularity of the right hand-side, are weak solutions. Such a solution is

known as “Solution Obtained as Limit of Approximations” ([43], see also [47]). The

assumption on p is motivated by the fact that, if p ≤ 2− 1
N
, then N(p−1)

N−1
≤ 1.

Other equivalent notion of solutions have been introduced such as “entropy solution”

in [48], [33], ”renormalized solution” in [88], [87],[48]. These framework which con-

cerns to measure in L1(Ω) or in L1 +W−1,p′ allow to prove existence, uniqueness and

continuity with the respect to the datum of the solutions with respect to µ. Finally

the notion of renormalized solution has been extended to the case of a general mea-

sure in [48], where existence and partial uniqueness result have been proved (see also

[69]).

We present all these solutions in Chapter III. We point out that, in spite of the

different notion of solutions used in literature, all the existence results are obtained

by constructing the solution u as the almost everywhere limit of the solutions un

to problem (0.0.1) corresponding to smooth function fn which converge to µ in the

weak∗-topology. This procedure can be semplified if a continuous dependence from

the data result is available. Such a result holds changing (0.0.4) into the following
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”strong monotonicity” conditions

(a (x, ξ)− a (x, η)) · (ξ − η) ≥ γ

22−p
|ξ − η|2

(|ξ|+ |η|)2−p , ξ 6= η, (0.0.5)

if 1 < p < 2, or

(a (x, ξ)− a (x, η)) · (ξ − η) ≥ γ

(p− 1)2p−2
|ξ − η|p , ξ 6= η, (0.0.6)

if p ≥ 2.

Under such assumptions in [5] an existence result for “Solution Obtained as Limit of

Approximations” to problem (0.0.1) is proved.

Now let us explain the bound on p, 1 < p < N. If p is greater then N, then, by Sobolev

embedding and duality arguments, the space of measures with bounded variation on

Ω is a subset of W−1,p′(Ω) therefore existence and uniqueness of a weak solution in

W 1,p
0 (Ω) is a consequence of theory of monotone operators. Furthermore, the case

p = N has been studied in [58], [65], [68].

These approaches have been extended in various directions: for example to nonlinear

elliptic equations with lower order terms, nonlinear degenerate elliptic equations and

nonlinear parabolic equations.

Let us consider the case of Dirichlet problem for nonlinear uniformly elliptic equations

with lower order terms of the type − div(a(x, u,∇u))− div (Φ(x, u)) +H(x,∇u) = µ in Ω

u = 0 on ∂Ω,
(0.0.7)

where a(x, s, ξ) is a Carathéodory function such that (0.0.2)− (0.0.4) hold,

H: Ω× R −→ RN and Φ : Ω× R× RN −→ R are two Carathéodory functions such

that

|H(x, ξ)| ≤ b(x) |ξ|p−1 , b(x) ∈ LN(Ω), (0.0.8)

|Φ (x, s)| ≤ c(x) |s|p−1 , c (x) ∈ L
N
p−1 (Ω) . (0.0.9)
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and finally µ is a Radon measure with bounded variation on Ω.

Existence and uniqueness for such type of problems have been widely studied in lit-

erature. In the linear case, Stampacchia proved in [106] the existence and uniqueness

of a solution by duality, if 0 is not in the spectrum of the operator, condition which

is verified for example, if ‖c‖
L

N
p−1 (Ω)

or ‖b‖LN (Ω) is small enough. Existence results for

problem (0.0.7) have been proved for example in [49] and [51] by using the classical

symmetrization methods, in [20], [72], [73], [11] and [12] for renormalized solutions,

in [28] for entropy solutions and in [5], [6] for SOLA

In Chapter III we present an existence result for SOLA’s to (0.0.7) with H = 0.

Precisely we consider the problem − div (a (x,∇u))− div (Φ (x, u)) = µ in Ω

u = 0 on ∂Ω,
(0.0.10)

where a : (x, z) ∈ Ω× RN → a (x, z) ∈ RN is a Carathéodory function satisfying:

a (x, ξ) · ξ ≥ λ |ξ|p , ξ ∈ RN , λ > 0, (0.0.11)

|a (x, ξ)| ≤ Λ |ξ|p−1 , ξ ∈ RN , Λ > 0, (0.0.12)

with 1 < p < N, and

(a (x, ξ)− a (x, η)) · (ξ − η) > 0, ξ 6= η, (0.0.13)

for almost every x ∈ RN and for every ξ, η ∈ RN . Furthermore Φ (x, s) satisfies

assumption (0.0.9).

We present an existence result for SOLA contained in [56] and obtained by adapting

the techniques used in [5] and [6]. The first step of such approach consists in proving

some apriori estimates for the gradients of the weak solutions un to the approximated

problems having regular data in terms of L1−norm of the data. Such a proof is based

on the choice of a suitable test function, built on the level sets of un, and a comparison

result beetwen the sferically symmetric rearrangement of un and the solution to a
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suitable elliptic problem with symmetric data. The following step consists in showing

that it is possible to pass to the limit in the approximated problems. Such a procedure

is simplified by substituting the classical monotonicity assumption on a (0.0.2) with

the strong monotonicity conditions (0.0.5) , (0.0.6) . Such existence result is already

proved in [51]; however the approach used in [56] is different and simpler.

As far as uniqueness is concerned the presence of lower order terms does not allow us

to use heavily the strong monotonicity conditions to get a continuity with respect to

the data. However this can be obtained if we strenght the structural conditions of a,

we assume that Φ is locally Lipschitz continuous and we impose further restrictions

on the index p. In Chapter III we present two uniqueness results, proved in [56], when

µ is not any more a measure but merely an L1 function.

Other uniqueness results can be found in [37], [38] and [39]. These results are always

in the context of ”finite energy solutions”; this means that µ is taken in Lm (Ω) with

m ≥ 2N
N+2

. Finally the uniqueness of entropy solution has been obtained in [96] when

Φ is locally Lipschitz continuous and has at most an exponential growth at infinity,

while uniqueness results for renormalized solutions have been proved in [12] and in

[18].

Chapter IV is devoted to the study of nonlinear elliptic problems which satisfy a more

general ellipticity condition. More precisely we consider the following problem − div(a(x, u,∇u)) +H(x,∇u) = µ in Ω

u = 0 on ∂Ω,
(0.0.14)

where a : Ω× R× RN −→ RN is a Carathéodory function satisfying (0.0.4) and

a(x, s, ξ)ξ ≥ ν(x) |ξ|p , (0.0.15)

|a(x, s, ξ)| ≤ ν(x)
[
|ξ|p−1 + |s|p−1 + a0 (x)

]
, a0(x) ∈ Lp′(ν), (0.0.16)

7



a.e. for x ∈ Ω, for every s ∈ R, for every ξ ∈ RN . Moreover ν(x) is a nonnegative

function satisfying

ν(x) ∈ Lr(Ω), r ≥ 1, (0.0.17)

v(x)−1 ∈ Lt(Ω), t ≥ N/p, 1 + 1/t < p < N(1 + 1/t). (0.0.18)

Furthermore H : Ω× RN → R is a Carathéodory function such that

|H(x, ξ)| ≤ b(x) |∇u|p−1 , (0.0.19)

b(x) ∈ Lτ (Ω), τ >
p′p̃t

t− (t+ 1)(p′ + p̃)
. (0.0.20)

where p̃ is defined by

p̃ =
p#

r′
,

and

(p#)−1 = p−1(1 + 1/t)−N−1.

In the linear case, if µ is a Radon measure with bounded variation on Ω, the existence

of a solution by duality method has been proved in [89]. In the nonlinear case,

existence results for degenerate elliptic equations have been proved in [101] and in

[16]. In the first paper the existence of ”generalized solution” has been proved, while

in the second one classical symmetrizated methods are used for operator with lower

order terms.

In Chapter IV we prove an existence result contained in [54] for renormalized

solutions to (0.0.14) . This result is obtained by adapting the technique developed in

[35] and used also in [18] for uniformly elliptic equations. The idea is to consider first a

sequence of approximated problems having regular data. When the norm of b is small

the operator is coercive, hence, by using Tk(u) as test function in (0.0.14), we easily

obtain an a priori estimate for the solutions to the approximated problem. When the

norm of b is not small, we reduce in some sense the problem to a finite sequence of

problems with norm of b small. We obtain again the apriori estimate which allows us
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to pass to the limit in the approximated problem. Finally, in Chapter V we study the

existence of solutions to Cauchy-Dirichlet problems for nonlinear parabolic equations
∂u
∂t
− div(a(x, t, u,∇u)) = µ in QT

u(x, t) = 0 on ∂Ω× (0, T )

u(x, 0) = u0(x) in Ω,

(0.0.21)

where Ω is a bounded open set of RN , N ≥ 2, QT is the cylinder Ω × (0, T ) and T

is a real positive number. Furthermore a(x, t, ξ) : Ω × (0, T ) × R × RN −→ RN is a

Carathéodory function such that

a(x, t, s, ξ)ξ ≥ α |ξ|p , α > 0, (0.0.22)

|a(x, t, s, ξ)| ≤
[
h(x, t) + |s|p−1 + |ξ|p−1] , h(x, t) ∈ Lp′(QT ), (0.0.23)

(a(x, t, s, ξ)− a(x, t, s, %), ξ − %) > 0, ξ 6= % (0.0.24)

for almost every x ∈ Ω, t ∈ (0, T ) and for every s ∈ R, ξ, % ∈ RN and µ is a Radon

measure with bounded variation on QT . As in the elliptic case when µ ∈ Lp′(QT ) and

u0 ∈ L2(Ω) the problem admits a unique solution that lies in the space C(0, T ;L2(Ω))

(see [81]). When the data are functions in L1(QT ) or, more in general, measures

we have to define a new notion of solution. The notion of SOLA, renormalized

solution, entropy solution have been extended to the parabolic case. In [23] and [99]

the existence of renormalized solutions and entropy solutions for nonlinear parabolic

equations without lower order terms have been proved respectively; while in [95] a

parabolic problem with a lower order term of the type b(x, t) |∇u|p−1 is considered.

In Chapter V we also present an existence result, proved in [55], for renormalized

solution to nonlinear parabolic problem of the type:
∂u
∂t
− div(a(x, t, u,∇u))− div (K(x, t, u)) = µ in QT

u(x, t) = 0 on ∂Ω× (0, T )

u(x, 0) = u0(x) in Ω,

(0.0.25)
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where a(x, t, s, ξ) : Ω × (0, T ) × R × RN −→ RN is a Carathéodory function such

(0.0.22)− (0.0.23) hold true.

Furthermore K : Ω× (0, T )× R −→ RN is a Carathéodory function such

|K(x, t, η)| ≤ c(x, t) |η|γ , (0.0.26)

where

c(x, t) ∈ (Lτ (QT ))N , τ >
N + p

p− 1
, (0.0.27)

γ =
N + 2

N + p
(p− 1), (0.0.28)

µ ∈ L1(QT ), (0.0.29)

u0 ∈ L1(Ω). (0.0.30)

Such existence result is obtained by adapting the techniques used in [35] (see also [18])

in order to prove the apriori estimate, while we use the limit procedure introduced in

[24] for passing to limit in the approximated problems.
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CHAPTER I

ELLIPTIC EQUATIONS WITH DATA IN

W−1,P ′(Ω)

In this chapter we give a review of some classical existence results for weak solutions

to Dirichlet problems concerning nonlinear elliptic operators ([81]). First of all, we

refer to some classical results involving the so-called monotone and pseudo-monotone

operators and then we show how these results can be applied to Dirichlet problems

for nonlinear elliptic operators with lower order terms.

1.1 Existence results for monotone and pseudo-

monotone operators

In this section we start with a few definitions and properties about monotone and

pseudomonotone operators ([81]). From now on we will denote by V a reflexive and

separable Banach space and by V ′ its dual space.

Definition 1.1.1 An operator A : V −→ V ′ is said to be monotone if it satisfies the

following condition

(A(u)− A(v), u− v)) ≥ 0, ∀ u, v ∈ V.

Definition 1.1.2 We say that A : V −→ V ′ is hemicontinous operator if for every

u, v, w ∈ V the function

λ ∈ R −→ (A(u+ λv), w) ∈ R,

is continuous.
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Obviously if A is a continuous operator then A is also hemicontinuous, but the

contrary is not true in general. Neverthless, as showed by the following Lemma, hemi-

continuity plus monotonicity and boundedness of an operator yields the continuity.

Lemma 1.1.3 If A is bounded, hemicontinuous and monotone, then A is continuous

from V to V ′ endowed with strongly and weakly topology respectively.

A bounded, hemicontinuous and monotone operator is not enough to get an exis-

tence theorem. This result may be proved by assuming that the operator is coercive.

Definition 1.1.4 An operator A : V −→ V ′ is coercive if

lim
‖v‖−→∞

(A(v), v)

‖v‖
= +∞.

Now we are able to prove a general existence result for monotone operators.

Theorem 1.1.5 Let be A : V −→ V ′a bounded, hemicontinuous, monotone and

coercive operator. Then A is surjective that is, for every f ∈ V ′ there exists u ∈ V

such that

A(u) = f. (1.1.1)

Proof. The idea is to built a solution of the equation (1.1.1) by constructing solutions

of certain finite dimensional approximations to (1.1.1) and then passing to the limit.

Let be w1, w2, ..., wm a basis of V ; for each m ∈ N, there exists um ∈ {w1, w2, ..., wm}

such that

(A(um), wm) = (f, wj), 1 ≤ j ≤ m. (1.1.2)

In fact, we observe that

(A(um), um)− (f, um) ≥ (A(um), um)− c ‖um‖ .

This implies, thanks to the coercivity condition, that, for ‖um‖ sufficiently large,

(A(um), um)− c ‖um‖ ≥ 0. On the other hand, by Lemma 1.1.3 , the function v −→
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(A(v), v) is continuous on {w1, w2, ..., wm} . Now we recall a well-known result: if

P : Rm −→ Rm is a continuous functions such that P (x) · x ≥ 0 when |x| = r, for

some r > 0 then there exists a point x ∈ Br(0) such that P (x) = 0. This result, applied

to the function P (η) = (P1(η), ..., Pm(η)) where Pj(η) = (A(
m∑
i=1

ηiwi), wj) − (f, wj),

1 ≤ j ≤ m, implies that there exists um ∈ {w1, w2, ..., wm} that solves (1.1.2) . By

(1.1.2) , we get

(A(um), wj) = (f, wj) ≤ ‖f‖V ′ ‖um‖ .

By coercivity, being A bounded, it follows that

‖um‖V ≤ C, ‖A(um)‖V ′ ≤ C,

which implies that, up to a subsequence,

um ⇀ u weakly in V,

A(um) ⇀ ξ weakly in V ′.
(1.1.3)

Passing to the limit, we get for any 1 ≤ j ≤ m

(ξ, wj) = (f, wj), (1.1.4)

that implies ξ = f. Moreover, by (1.1.2) , we obtain

(A(um), um) = (f, um) −→ (f, u),

and by (1.1.4) we get

(A(um), um) −→ (ξ, u). (1.1.5)

Hence the result is proved if we show that

ξ = A(u).

By monotonicity condition we have

(A(um)− A(v), um − v) ≥ 0, ∀v ∈ V.
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Passing to the limit, by(1.1.3) and (1.1.5) , we obtain

(ξ − A(v), u− v) ≥ 0, ∀v ∈ V. (1.1.6)

Let w ∈ V and t > 0. Applying (1.1.6) , with v = u+ tw, we get

(ξ − A(u+ tw), w) ≥ 0.

By hemicontinuity of the operator A, it follows that, for any w ∈ V, (ξ−A(u), w) ≥ 0,

which implies

(ξ − A(u), w) = 0, ∀w ∈ V.

Hence ξ = A(u) which completes the proof.

A very simple example of monotone operator to which it is possible to apply

Theorem 1.1.5 is the so called p-Laplace operator A(u) = ∆pu, where ∆pu =

div(|∇u|p−2∇u). More generally assume that Ω ⊂ Rn is an open bounded set,

1 < p < +∞ and V = W 1,p
0 (Ω) and suppose also that F : RN −→ RN is a con-

tinuous monotone mapping which satisfies the following growth condition

|F (ξ)| ≤ C(1 + |ξ|p−1), ∀ ξ ∈ RN .

Then it is easy to verify that the operator

A : u ∈ W 1,p
0 (Ω) −→ − div(F (∇u)) ∈ W−1,p′(Ω)

is bounded, hemicontinuous and monotone. So, by Lemma 1.1.3., A is continuous

from W 1,p
0 (Ω) strongly to W−1,p′(Ω). Furthermore if we assume that F satisfies the

condition

F (ξ) · ξ ≥ α |ξ|p , ∀ ξ ∈ RN , α > 0,

then A is also a coercive operator. We deduce, thanks to Theorem 1.1.5, that for

every f ∈ W−1,p′(Ω) there exists u ∈ W 1,p
0 (Ω) such that

− div (F (∇u)) = f.
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We refer to Section 1.2 for more details and examples.

We observe that the monotonicity assumption made in Theorem 1.1.5 is general

not easy to test; such a condition can be replaced by a weaker one:

Definition 1.1.6 An operator A : V −→ V ′ is pseudo-monotone if

(i) A is bounded,

(ii) if uj ⇀ u weakly in V and lim inf
j−→∞

(A(uj), uj − v) ≥ (A(u), u− v) ∀v ∈ V.

The following Proposition establishes the relation between monotone and pseudo-

monotone operators.

Proposition 1.1.7 If A is a bounded, hemicontinuous and monotone operators then

it is pseudo-monotone .

By Theorem 1.1.5 and Proposition 1.1.9 it follows that

Theorem 1.1.8 If A : V −→ V ′ is a pseudo-monotone and coercive operator then,

for every f ∈ V ′ there exists at least a function u ∈ V such that

A(u) = f.

A very important example of pseudo-monotone operators to which Theorem 1.1.10

can be applied is the so called “operator of Calculus of Variation”, whose definition

is given below ([81])

Definition 1.1.9 An operator A : V −→ V ′ is said to be an operator of the Calculus

of Variation type if it is bounded and it can be represented as

A(v) = A(v, v),

where the operator (u, v) ∈ V × V −→ A(u, v) ∈ V ′ satisfies the following conditions ∀u ∈ V, v ∈ V −→ A(u, v) ∈ V ′ is bounded and hemicontinuous,

(A(u)− A(v), u− v)) ≥ 0,
(1.1.7)
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∀v ∈ V, u ∈ V −→ A(u, v) ∈ V ′ is bounded and hemicontinuous, (1.1.8) uj ⇀ u weakly in V and if (A(uj, uj)− A(uj, u), uj − u)) −→ 0

then ∀v ∈ V, A(uj, v) ⇀ A(u, v) weakly in V ′,
(1.1.9)

 uj ⇀ u weakly in V and if A(uj, v) ⇀ ψ weakly in V ′

then (A(uj, v), uj) −→ (ψ, u).
(1.1.10)

Proposition 1.1.10 If A is an operator of Calculus of Variation then A is pseudo-

monotone.

By Proposition 1.1.12, P roposition 1.1.9 and Remark 1.1.7 it follows a general

existence result.

Proposition 1.1.11 Let be an operator A : V −→ V ′ of Calculus of Variations type.

Then, for any f ∈ V ′, the equation A(u) = f admits at least a solution.

1.2 Applications to nonlinear elliptic equations

In this section we prove an existence result for a general class of pseudo-monotone

operators: furthermore, we show how it is possible to get, thanks to the result proved

in the previous section, the existence of a solution for operators involving lower order

terms.

From now on we assume that Ω is a bounded open set of Rn and we consider a class

of nonlinear problems of the type − div(a(x, u,∇u)) +H(x, u,∇u) = f in Ω

u = 0 on ∂Ω,
(1.2.1)

where a : Ω×R×RN −→ RN , H : Ω×R×RN −→ R are two Carathéodory functions

such that

|a(x, s, ξ)| ≤ C
[
b(x) + |s|p−1 + |ξ|p−1] , b(x) ∈ Lp′(Ω), C > 0, (1.2.2)
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a(x, s, ξ) · ξ ≥ |ξ|p , (1.2.3)

(a(x, s, ξ)− a(x, s, η)) · (ξ − η) > 0, ξ 6= η, (1.2.4)

|H(x, s, ξ)| ≤ C
[
b(x) + |s|p−1 + |ξ|p−1] , C > 0, (1.2.5)

a.e. x ∈ Ω, ∀s ∈ R, ∀ξ, η ∈ RN and

f ∈ W−1,p′(Ω).

Definition 1.2.1 Let p > 1, then if f ∈ W−1,p′(Ω), a function u ∈ W 1,p
0 (Ω) is a

weak solution of problem (1.2.1) if∫
Ω

a(x, u,∇u)·∇ϕdx+

∫
Ω

H(x, u,∇u)ϕdx =< f, ϕ >W−1,p′ (Ω),W 1,p
0 (Ω), ∀ϕ ∈ W 1,p

0 (Ω).

(1.2.6)

If we denote by B : (u, v) ∈ W 1,p
0 (Ω)×W 1,p

0 (Ω) −→ B(u, v) ∈ R the form defined

by

B(u, v) =

∫
Ω

a(x, u,∇u) · ∇vdx+

∫
Ω

H(x, u,∇u)vdx,

then

B(u, v)

‖v‖W 1,p
0 (Ω)

−→ +∞ when ‖v‖W 1,p
0 (Ω) −→ +∞. (1.2.7)

The form v −→ B(u, v) is linear and continuous on W 1,p
0 (Ω). So we can write

B(u, v) = (A(u), v),

where A(u) = − div(a(x, u,∇u)) +H(x, u,∇u).

In order to prove the existence result given by Theorem 1.2.3 below, we recall a lemma

which will be useful in the following ([81]). We omit the details for briefness.

Lemma 1.2.2 Let us assume a satisfies the conditions (1.2.2)− (1.2.4) . Let

uj, u ∈ W 1,p
0 (Ω) such that uj ⇀ u weakly in W 1,p

0 (Ω).
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Put

Fj = (a(x, u,∇uj)− a(x, u,∇u)) · (∇uj −∇u),

and suppose that ∫
Ω

Fj(x)dx −→ 0.

Then, up to a subsequence,

∇uj −→ ∇u a.e. in Ω,

and

H(x, uj,∇uj) ⇀ H(x, u,∇u) weakly in Lp
′
(Ω).

Theorem 1.2.3 Let be Ã : u ∈ W 1,p
0 (Ω) −→ − div(a(x, u,∇u)) ∈ W−1,p′(Ω) and

assume that conditions (1.2.2) − (1.2.7) hold. Then, if f ∈ W−1,p′(Ω) then there

exists u ∈ W 1,p
0 (Ω) such that Ã(u) = f in W−1,p′(Ω), that is (1.2.6) holds true.

Proof. We will prove that the operator

A(u) = − div(a(x, u,∇u)) +H(x, u,∇u)

is an operator of Calculus of Variations type. Then the result follows from Theorem

1.1.12. Let us introduce the operator A(u, v). Let be

A1(u, v, w) =

∫
Ω

a(x, u,∇v) · ∇wdx,

A2(u,w) =

∫
Ω

H(x, u,∇u)wdx.

The form w −→ B1(u, v, w) +B2(u,w) is continuous on W 1,p
0 (Ω). Hence

A1(u, v, w) + A2(u,w) = Ã(u, v, w) = (A(u, v), w), A(u, v) ∈ W−1,p′(Ω).

So we have

A(u, u) = A(u).
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Proof of (1.1.7) , (1.1.8). By (1.2.4) , we have

(A(u, u)− A(u, v), u− v) = (A1(u, u, u− v)− A1(u, v, u− v)) ≥ 0.

Moreover the function v −→ A(u, v) is bounded and hemicontinuous from V to V ′.

Indeed for u, v1, v2 ∈ W 1,p
0 (Ω) we have, for λ −→ 0,

a(x, u,∇(v1 + λv2)) ⇀ a(x, u,∇v1) weakly in Lp
′
(Ω),

H(x, u,∇(v1 + λv2)) ⇀ H(x, u,∇v1) weakly in Lp
′
(Ω),

hence for any w ∈ W 1,p
0 (Ω) we have

Ã(x, v1 + λv2, w) −→ A(x, v1, w) if λ −→ 0,

and this proves (1.1.7) . In a similar way we can prove (1.1.8) .

Proof of (1.1.9) . Using the notation of Lemma, we get

(A(uj, uj)− A(uj, u), uj − u) =

∫
Ω

F (x)dx;

then if uj ⇀ u weakly in W 1,p
0 (Ω) and (A(uj, uj)−A(uj, u), uj −u) −→ 0, by Lemma

1.2.1 , we get H(x, uj,∇uj) ⇀ H(x, u,∇u) weakly in Lp
′
(Ω); moreover, being

H(x, uj,∇uj) ⇀ H(x, u,∇u) weakly in Lp
′
(Ω),

we have

Ã(uj, v, w) −→ Ã(u, v, w) for any w ∈ W 1,p
0 (Ω);

hence A(uj, v) −→ A(u, v) weakly in W−1,p′(Ω).

Proof of (1.1.10) . Let uj ⇀ u weakly in W 1,p
0 (Ω) and A(uj, v) ⇀ ψ weakly in

W−1,p′(Ω). So uj −→ u strongly in Lp(Ω), hence by Carathéodory theorem

A1(uj, v, uj) −→ A1(u, v, u).

Moreover, being

|A2(uj, uj − u)| ≥ c ‖uj − u‖Lp ,
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it follows that

A2(uj, uj − u) −→ 0. (1.2.8)

But

A2(uj, u) = (A(uj, v), u)− A1(uj, v, u) −→ (ψ, u)− A1(u, v, u),

so by (1.2.8) we get

A2(uj, uj) −→ (ψ, u)− A1(u, v, u)

and finally

(A(uj, v), uj) = A1(uj, v, uj) + A2(uj, uj) −→ (ψ, u).

Remark 1.2.4 The result just proved here take places into a wide literature about

existence problems for elliptic equations with f ∈ W−1,p′(Ω). If we consider the

problem with the lower order term b(x) |ξ|λwith 0 ≤ λ ≤ p− 1, b ∈ Lr(Ω), r > N and

− div(c(x) |s|γ), with 0 ≤ γ ≤ p − 1, c(x) ∈ Lσ(Ω), σ > N
p−1

the operator can fail to

be coercive if the norm of ‖b‖Lr and ‖c‖Lσ are not small enough. The linear case has

been studied by Stampacchia in [106]; he proved an existence result assuming that the

norm of ‖b‖Lr and ‖c‖Lσ with and are sufficiently small or in particular the measure

|Ω| is small enough. The nonlinear case has been studied in [50] in the case c = 0

and in [27] in the case b = 0. In [52] the effect of the two lower order terms are taking

into account: the authors proved existence result without smallness hypotheses on the

norm of ‖b‖Lr and ‖c‖Lσ except naturally in the case λ = γ = p − 1. In this case ,

the existence result still hold only if the norm of ‖b‖Lr or ‖c‖Lσ is sufficiently small.
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CHAPTER II

NOTION OF SOLUTIONS

In this chapter we introduce some well-know notion of solutions for nonlinear elliptic

problem whose data are L1 function or Radon measure with bounded total variation.

Let us consider the following Dirichlet problem: − div(a(x, u,∇u)) = f in Ω

u = 0 on ∂Ω,
(2.0.9)

where Ω is a bounded open subset of RN , N ≥ 2, 1 < p < N. Furthermore a :

Ω× R× RN −→ RN is a Carathéodory function such that

a(x, s, ξ)ξ ≥ α |ξ|p , α > 0, (2.0.10)

|a(x, s, ξ)| ≤
[
|ξ|p−1 + |s|p−1 + a0 (x)

]
, a0(x) ∈ Lp′(Ω), (2.0.11)

(a(x, s, ξ)− a(x, s, η), ξ − η) > 0, ξ 6= η, (2.0.12)

a.e.x ∈ Ω,∀s ∈ R,∀ξ, η ∈ RN and

f is a bounded Radon measure with bounded total variation.

If p > N then, by Sobolev embedding theorems and duality arguments, the space

of measures with bounded variation on Ω is a subset of W−1,p′(Ω) so that a natural

notion of solution for problem (2.0.9) is that of weak solution. As pointed out in the

previous chapter a function u ∈ W 1,p
0 (Ω) is called a weak solution to (2.0.9) if∫

Ω

a(x, u,∇u) · ∇ϕ =< f, ϕ >W−1,p′ (Ω),W 1,p
0 (Ω), ∀ϕ ∈ W 1,p

0 (Ω).

The existence and uniqueness of weak solutions to (2.0.9) are consequence of the the-

ory of monotone operators ([80], [81]; see also Chapter I) . However this framework
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can not be extended to the case p ≤ N, since, as showed by the following simple

example, we can not expect that the solution belongs to W 1,p
0 (Ω).

Example 2.0.5 For N ≥ 2 and Ω = B1(0) =
{
x ∈ RN : |x| < 1

}
, let σN−1 is (N −

1)−dimensional measure of ∂B1(0), and let be γ = N−p
p−1

. Let us consider the function

u defined by

u(x) =


1
γ
(|x|−γ − 1) if 1 < p < N

− log(|x|) if p = N,

belongs to L1
loc(Ω) if and only if γ < N that is p > 2N

N+1
.

Therefore the notion of weak solution does not fit the case when f is not an

element of the dual space W−1,p′(Ω). Moreover the classical counterexample due to

Serrin shows that the solution in the sense of distribution is not unique.

Example 2.0.6 Let be Ω =
{
x ∈ RN : |x| < 1

}
and λ > 1. Let us consider the prob-

lem  − div(A(x)∇u) = 0 in Ω

u = x1 on ∂Ω,
(2.0.13)

where

ai,j = (λ− 1)
xixj

|x|2
+ δi,j,

It is easy to see that problem (2.0.13) admits two distributional solutions (see [104], [2])

ū(x) = x1 |x|−
n
2

+α , u
¯

(x) = x1 |x|−
n
2
−α ,

but u
¯

(x) seems to have the features of a pathological one to be rejected.

The previous argument imply that in order to get both existence and unique-

ness results it is necessary to introduce new notions of solution. In this chapter we

report the notions of entropy solution ([13]) , SOLA ([43]) , renormalized solution

([87] and [88]) and ”generalized solution” ([100]).
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2.1 Solution defined by duality method

In this section we deal with the notion of solution introduced by Stampacchia in [106]

for linear operators. In that paper he defined a notion of solution by duality method

and he proved an existence and uniqueness theorem. In particular he proved that

the solution satisfies the equation (2.0.9) in the distributional sense and belongs to

W 1,q
0 (Ω) for every q < N

N−1
.

In order to explain the method introduced by Stampacchia, let us consider a

bounded open set Ω of RN , with N ≥ 2 and the linear elliptic problem − div(A(x)∇u) = f in Ω

u = 0 on ∂Ω,
(2.1.1)

where A(x) = (ai,j) is a matrix of coefficients belonging to L∞(Ω), satisfying the

ellipticity condition

ai,j(x)ξiξj ≥ α |ξ|2 , ∀ξ ∈ R2, α > 0,

and f is a Radon measure with bounded variation on Ω.

If we define for every u ∈ H1
0 (Ω) the adjoint operator

L∗(u) = − div(A∗(x)∇u),

where A∗ denotes the transpose matrix of A, we consider the corresponding problem L∗u = f in Ω

u = 0 on ∂Ω,
(2.1.2)

with f ∈ W−1,p′(Ω) with p′ > N. This problem admits a solution belonging to C(Ω̄)

so, since p′ > N,the operator

G∗p : f ∈ W−1,p′(Ω) −→ u ∈ C(Ω̄)

is well defined. This function G∗p is linear and continuous so we can define the Green

operator

G∗ : ∪
p′>N

W−1,p′(Ω) −→ C0(Ω),
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with G∗
∣∣∣W−1,p′ (Ω) = G∗p.

Now we can give the definition of solution by duality to problem (2.1.1).

Definition 2.1.1 A function u ∈ L1(Ω) is a solution by duality to problem (2.1.1) if∫
Ω

ugdx =

∫
Ω

G∗(g)df,

for every g ∈ L∞(Ω).

The following existence and uniqueness result hold true:

Theorem 2.1.2 Let be f a measure with bounded variation on Ω. Then there exists

a unique solution by duality to problem (2.1.1) . Morerover u ∈ W 1,q
0 (Ω) with q < N

N−1
.

Stampacchia also proved in [106] that such a solution is Hölder continuous when

p > N but this continuity can be lost if p ≤ N. In this case, the solution is continuous

only if f ∈ L(n, 1) ([64], [1]). The continuity of the solution allows also to prove that

the unique solution to problem (2.0.9) belongs to L( N
N−1

,∞) and improves the result

contained in [1] and in [106]. In [106] it is proven that u ∈ H1,q
0 (Ω) with q < N

N−1
,

while in [1] the author proved that u ∈ L( N
N−2

,∞).

2.2 Solution Obtained as Limit of Approxima-

tions

Stampacchia’s framework, based on a duality argument, cannot be extended to the

case of a general nonlinear operator except when p = 2 (see [88]) when Stampacchia’s

ideas continue to work if the operator is strongly monotone and Lipschitz continuous

with respect to ∇u. The first existence result in the nonlinear case is due to Boccardo

and Gallouët. In [31] they proved the existence of a solution in the sense of distribution

to problem (2.0.9) and they showed that such a solution belongs to the Sobolev

space W 1,q
0 (Ω) for every 1 < q < N(p−1)

N−1
. This solution is found by an approximating
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method which consists in finding a solution as limit of a sequence of solutions that are

weak solution to (2.0.9) because of the regularity f the right hand-side.In particular

they proved some apriori estimates which are the critical point in the passage under

integral sign performed to define a solution known as Solution Obtained as Limit of

approximation (SOLA) [43].

Definition 2.2.1 A function u : Ω −→ R is a SOLA to (2.0.9) if there exist two

subsequences

fn ∈ L∞(Ω) fn −→ f strongly in L1(Ω),

un ∈ W 1,p
0 (Ω) and − div(a(x,∇un)) = fn in D ′(Ω),

un −→ u a.e. in Ω.

The main result proved in [43] is the following existence result:

Theorem 2.2.2 Let f ∈ L1(Ω), then there exists a SOLA u of (2.0.9) which belongs

to W 1,q
0 (Ω) for every 1 < q < N(p−1)

N−1
.

We point out that the procedure of passing to the limit under integral sign can

be simplified by a result of continuity from the data. In order to obtain this result,

hypothese (2.0.12) has to be replaced by more streghten conditions

(a(x, ξ)− a(x, η)) · (ξ − η) ≥ α1 |ξ − η|p if 2 ≤ p ≤ N, (2.2.1)

(a(x, ξ)− a(x, η)) · (ξ − η) ≥ α1
|ξ − η|2

(1 + |ξ|+ |η|)2−p if 2− 1

N
< p < 2, (2.2.2)

where α, α1 and β are positive constants.

Proposition 2.2.3 Let assumption (2.2.1) or (2.2.2) hold and let be

|a(x, ξ)| ≤ A |ξ|p−1 A > 0. (2.2.3)

If f, g are two regular functions and u and v are the solutions of

− div(a(x,∇u)) = f, − div(a(x,∇v)) = g,
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then, for every q < N(p−1)
N−1

‖u− v‖W 1,q
0 (Ω) ≤ ψ

(
‖f − g‖L1(Ω)

)
,

if p ≥ 2, where ψ is a positive function such that

lim
s−→0+

ψ(s) = 0,

and

‖u− v‖W 1,q
0 (Ω) ≤ Λ

(
‖f‖L1(Ω) , ‖g‖L1(Ω) , ‖f − g‖L1(Ω)

)
,

if 1 < p < 2, where Λ is a function that tends to zero when ‖f − g‖L1(Ω) tends to zero

and all the other norms remain bounded.

The previous result has been improved by Alvino and Mercaldo in [43]. In this

paper the authors suggested a different and quick approach based on symmetrizzation

methods (see [86] and [108]) which allows to prove apriori estimates for SOLAs to

(2.0.9) and, under the stronger monotonicity assumption (2.2.1) , (2.2.2) , also a result

of continuity from the data.

Proposition 2.2.4 Let assumptions (2.2.3) , (2.2.1) or (2.2.2) hold and let be u and

v two weak solutions to (2.0.9) with regular functions f and g. Then, for every q <

N(p−1)
N−1 ∫

Ω

|∇(u− v)|q dx ≤ C ‖f − g‖
q
p−1

L1(Ω) ,

if p ≥ 2, ∫
Ω

|∇(u− v)|q dx ≤ C

(
‖f‖

1
p−1

L1(Ω) + ‖f‖
1
p−1

L1(Ω)

)
‖f − g‖

q
p−1

L1(Ω) ,

if 1 < p < 2, where C depends on N, p, |Ω| , and q.
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2.3 Entropy solution and renormalized solution

In this section we recall the equivalent notion of entropy solution ([48], [33]) and

renormalized solution ([88], [87] and [48]) . In order to define this notions let us in-

troduce the truncature operator. For a given constant k > 0 we define the function

Tk : R −→ R as

Tk(s) =

 s if |s| ≤ k

ksign(s) if |s| > k.
.

Now we want to give a sense to the derivative of a function u ∈ W 1,1
loc (Ω) generalizing

the usual concept of weak derivative in W 1,1
loc (Ω).

Definition 2.3.1 Let be 1 < p < ∞ and let be u a measurable function defined on

Ω which is almost everywhere finite and satisfies Tk(u) ∈ W 1,1
loc (Ω) for every k > 0.

Then there exists ([13]) a measurable function v : Ω→ RN such that

∇Tk(u) = vχ{|u|≤k} a.e. in Ω, for every k > 0. (2.3.1)

We defined the gradient ∇u as this function v, and we denote ∇u = v.

Remark 2.3.2 We remark that the gradient defined in (2.3.1) is not the gradient

used in the definition of Sobolev space, since it is possible that u does not belong to

L1
loc(Ω) or v does not belong to (L1

loc(Ω))
N
. However, if v belongs to (L1

loc(Ω))
N

, then

u belongs to W 1,1
loc (Ω) and v is the distributional gradient of u. On the other hand, if

u belongs to L1
loc(Ω), the function v is not in general the distributional gradient of u.

In fact, if Ω is the unit ball of RN and u(x) = x1

|x|N then u ∈ Lq(Ω), for every q < N
N−1

and

∂Tk(u)

∂x1

=

{
1

|x|N
−N x2

1

|x|N+2

}
χ{|u|≤k},

so

v1 =
1

|x|N
−N x2

1

|x|N+2
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does not belong to L1
loc(Ω), which implies that v is not in (L1

loc(Ω))
N
. On the contrary,

we have in the distributional sense

∂u

∂x1

= pv

{
1

|x|N
−N x2

1

|x|N+2

}
+

1

N
σN−1δ0,

where pv denotes the principal value, σN−1 the (N-1)- dimensional measure of the

surface of the unit ball of RN and δ0 is the Dirac mass at the origin.

Now we are able to introduce the definition of entropy solution.

Definition 2.3.3 Let be f ∈ L1(Ω). A measurable function u : Ω→ R satisfying the

condition Tk(u) ∈ W 1,p
0 (Ω) for every k > 0 is an entropy solution to problem (2.0.9)

if it results ∫
Ω

a(x,∇u)∇Tk(u− ϕ)dx ≤
∫

Ω

Tk(u− ϕ)fdx, (2.3.2)

for every k > 0 and ϕ ∈ W 1,p
0 (Ω) ∩ L∞(Ω).

We underline that we did not assume that the entropy solution belongs to some

Sobolev space but only that u is a measurable function.

Now it is possible to prove the following existence and uniqueness result (see [13] and

[33]).

Theorem 2.3.4 Let be f ∈ L1(Ω) and let us assume conditions (2.0.10) − (2.0.12).

Then there exists a unique entropy solution to problem (2.0.9) .

An equivalent notion of solution to problem (2.0.9) is the so called renormalized

solution; such a notion has been introduced in [87] and [88] for nonlinear elliptic

equations when the datum f ∈ L1(Ω).

Definition 2.3.5 Let p > 1 and f ∈ L1(Ω). A function u is a renormalized solution

to (2.0.9) if it satisfies the following conditions:

u is a measurable function, almost everywhere finite in Ω,
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Tk(u) belongs to W 1,p
0 (Ω), for every k,

1

n
lim

n−→+∞

∫
{n≤|u|≤2n}

a(x,∇u) · ∇udx = 0,∫
Ω

h(u)a(x,∇u)∇vdx+

∫
Ω

h′(u)a(x,∇u)∇u vdx =

∫
Ω

fh(u)vdx,

for every h ∈ W 1,∞(R) with compact support in R and v ∈ W 1,p
0 (Ω) ∩ L∞(Ω).

Thanks to this notion we are able to get an existence and uniqueness result:

Theorem 2.3.6 Let be f ∈ L1(Ω) and let us assume conditions (2.0.10) − (2.0.12)

hold. Then there exists a unique renormalized solution to problem (2.0.9) .

This theorem has been improved in [48]; in this work the authors extended the

definition of renormalized solution to the general case where f is a Radon measure

with bounded variation on Ω.

Such definition needs the notion of p-capacity which we brifly recall here. The p-

capacity capp(K,Ω) of a compact set K ⊂ Ω with respect to Ω is

capp(K,Ω) = inf

{∫
Ω

|∇ϕ|p : ϕ ∈ C∞c (Ω), ϕ ≥ χK

}
,

where χK is the characteristic function of k. If U ⊆ Ω is an open set, we denote by

capp(U,Ω) = sup {capp(K,Ω) : K compact, K ⊆ Ω} .

Finally, the p-capacity of any subset B ⊆ Ω is defined by

capp(B,Ω) = sup {capp(U,Ω) : B open, B ⊆ Ω} .

We denote by Mb(Ω) the space of all Radon measure with bounded variation on Ω

and by C0
b (Ω) the space of all bounded and continuous functions on Ω so

∫
Ω
ϕdµ is

well defined for ϕ ∈ C0
b (Ω). Finally we denote by µ+, µ− and |µ| the positive, negative

part and total variation of measure µ in Mb(Ω). We denote by M0(Ω) as the set of all

measures µ in Mb(Ω) which are absolutely continuous with respect to the p-capacity,
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i.e. which satisfy µ(B) = 0 for every Borel set B ⊆ Ω such that capp(B,Ω) = 0.

We denote by Ms(Ω) as the set of all the measures µ in Mb(Ω) which are singular

with respect to the p-capacity, i.e. which are concentrated in a set E ⊂ Ω such that

capp(E,Ω) = 0. The following proposition shows an important decomposition result

(see [66] for the proof).

Proposition 2.3.7 For every Radon measure with bounded variation on Ω there ex-

ists an unique pair of measures (µ0, µs) with µ0 ∈ M0(Ω) and µs ∈ Ms(Ω) such that

µ = µ0 + µs.

The measures µ0 and µs are called the absolutely continuous part and the sin-

gular part of µ with respect to the p-capacity. For what concerns µ0 the following

decomposition result holds ([33]):

Proposition 2.3.8 Let µ0 be a a Radon measure with bounded variation on Ω. Then

µ0 belongs to M0(Ω) if it belongs to L1(Ω) +W−1,p′(Ω). Thus if µ0 belongs to M0(Ω),

there exists f in L1(Ω) and g ∈
(
Lp
′
(Ω)
)N

such that

µ0 = f − div(g)

in the sense of distributions; moreover∫
Ω

vdµ0 =

∫
Ω

fvdx+

∫
Ω

g · ∇vdx, ∀v ∈ W 1,p
0 (Ω) ∩ L∞(Ω).

Now we are able to introduce the notion of renormalized solution to problem

(2.0.9) when f is a Radon measure with bounded variation on Ω.

Definition 2.3.9 Let be µ a Radon measure with bounded variation on Ω and assume

that a satisfies (2.0.10)− (2.0.12) . A function u is a renormalized solution to problem

(2.0.9) if it satisfies the following conditions:

u is a measurable function, almost everywhere finite,
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Tk(u) belongs to W 1,p
0 (Ω), for every k,

for every ϕ ∈ C0
b (Ω) we have

lim
n

1

n

∫
{n≤u<2n}

a(x,∇u) · ∇uϕdx =

∫
Ω

ϕdµ+
s , (2.3.3)

and

lim
n

1

n

∫
{−2n≤u<−n}

a(x,∇u) · ∇uϕdx =

∫
Ω

ϕdµ−s , (2.3.4)

for every h ∈ W 1,∞(R) with compact support in R we have∫
Ω

h(u)a(x,∇u)∇ϕdx+

∫
Ω

h′(u)a(x,∇u)∇uϕdx =

∫
Ω

ϕh(u)dµ0, (2.3.5)

for every ϕ ∈ W 1,p(Ω) ∩ L∞(Ω) such that h(u)ϕ belongs to W 1,p
0 (Ω).

Remark 2.3.10 We observe that conditions (2.3.3) and (2.3.4) are equivalent to say

that the sequences 1
n
a(x,∇u) · ∇uχ{n≤u<2n} and 1

n
a(x,∇u) · ∇uχ{−2n≤u<−n} converge

to µ+
s and µ−s respectively in the narrow topology. In other words, the measures µ+

s

and µ−s can be obtained through the energy of the solution.

The main result contained in [48] is the following existence result:

Theorem 2.3.11 Let be µ a Radon measure with bounded variation on Ω and assume

that a satisfies (2.0.10)−(2.0.12) . Then there exists a renormalized solution to (2.0.9) .

We observe that the Radon measure with bounded variation on Ω is not the

general datum for problem (2.0.9) . Indeed, there exists elements in W−1,p′(Ω) which

are not measures, such that the data

µ− div(F ), (2.3.6)

F ∈
(
Lp
′
(Ω)
)N

can be considered. However, the new term − div(F ), does not give an

additional difficulty because of its ”regularity” and the Theorem 2.3.11 still hold with
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the same proof whenever Definition 2.3.9 is modified as follows. The condition(2.3.3)

(similar consideration apply to (2.3.4)) have to be replaced by

E(t, s) =
1

t− s

∫
{s≤u≤t}

a(x,∇u) · ∇uϕdx,

and it is possible to prove that a subsequence E(tn, sn), for some conveniently chosen

tn e sn, converges to ∫
Ω

ϕdµ+
s .

Solution 2.3.12 Remark 2.3.13 The result contained in this chapter can be ex-

tended to nonlinear elliptic Neumann problems in [3], [15], [62], [41], [63], [98].
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CHAPTER III

UNIFORMLY ELLIPTIC EQUATIONS WITH

LOWER ORDER TERMS

In this chapter we consider a class of nonlinear elliptic problems of the type

 − div (a (x,∇u))− div (Φ (x, u)) = f in Ω

u = 0 on ∂Ω,
(3.0.7)

where Ω is a bounded open subset of RN , N ≥ 2, 1 < p < N, a : (x, z) ∈ Ω× RN →

a (x, z) = (ai (x, z)) ∈ RN is a Carathéodory function satisfying:

a (x, ξ) · ξ ≥ λ |ξ|p , ξ ∈ RN , λ > 0, (3.0.8)

|a (x, ξ)| ≤ Λ |ξ|p−1 , ξ ∈ RN , Λ > 0, (3.0.9)

with 1 < p < N, and

(a (x, ξ)− a (x, η)) · (ξ − η) > 0, ξ 6= η, (3.0.10)

for almost every x ∈ RN and for every ξ, η ∈ RN .

Furthermore

|Φ (x, s)| ≤ c(x) |s|p−1 (3.0.11)

where c (x) ∈ L
N
p−1 (Ω) , c(x) ≥ 0 a. e. in Ω.

Finally

f is a L1 (Ω) function or a Radon measure with bounded total variation.
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In this Chapter we prove the existence of a SOLA to problem (3.0.7) if f is a

Radon measure with bounded variation on Ω and some uniqueness results when f

is a L1− function. Such results are contained in [56]. Stampacchia in [106] stud-

ied problem (3.0.7) in the linear case under the assumption of smallness of ‖c‖
L

N
p−1

.

Furthermore many authors have proved existence results for problem (3.0.7) in the

nonlinear case (see [28] and [12]; see also [52], [72] and [73]). In [56] we prove the same

result with a different and quick approach. The same approach has been followed in

[5] for the nonlinear problem (3.0.7) with Φ = 0 and in [6] when the lower order term

is of the type b(x) |∇u|p−1 . It is based on the choice of a timely test function and

a comparison result between the solution to problem (3.0.7) with regular data and

the solution of a suitable spherically symmetric problem (see [17]). This comparison

result has been obtained by classical symmetrizzation methods introduced by Talenti

and Maz’ja (see [108] and [86]).

For what concerns the uniqueness results, the first attempt for regular data is due

to Trudinger ([109]) . Then, the case f ∈ H−1 (Ω) has been studied in [10] when Φ = 0

and in [33] when Φ is a Lipschitz continuous function. Other uniqueness results can

be found in [37], [38] and [39],. These results are always in the context of finite energy

solutions; with respect to the datum f , this means that f is taken in Lm (Ω) with

m ≥ 2N
N+2

.

On the other hand, assuming that f ∈ L1(Ω), the uniqueness of entropy solution

has been obtained in [94] when Φ is locally Lipschitz continuous and has at most an

exponential growth at infinity.

Other uniqueness results have been also proved for renormalized solutions in [12] and

in [19], (see also [70], [74]).

In this chapter we prove uniqueness results of SOLA’s when f ∈ L1(Ω) and Φ is

locally Lipschitz continuous with respect to the second variable.
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The uniqueness can be proved if we get an estimate of the gradient of the difference

of two solutions in term of the L1− norm of the difference of data. Unfortunately,

the assumptions of existence are not enought to have this result even if Φ = 0 and f

is regular. To overcome this difficulty we have to modify the classical monotonicity

hypotheses on the structure of the operator.

3.1 Definitions and preliminary results

In this section we recall the definition of rearrangementes and some properties which

will be used throughout.

Let us consider a measurable function u : Ω→ R, where Ω is a measurable subset

of RN . We denote by µ the distribution function of u

µ(t) = |{x ∈ Ω : |u(x)| ≥ t}| , t ≥ 0,

and by u∗ the decreasing rearrangement of u

u∗ (s) = sup {t ≥ 0 : µ(t) > s} , s ∈ (0, |Ω|) .

The increasing rearrangement u∗ of u is defined as

u∗ (s) = u∗ (|Ω| − s) , s ∈ (0, |Ω|) .

If ωN denotes the measure of unit ball of RN and Ω# the ball of RN centered in the

origin such that |Ω| =
∣∣Ω#

∣∣ , the sferically decreasing and the sferically increasing

rearrangements of u are

u# (x) = u∗
(
ωN |x|N

)
, u# (x) = u#

(
ωN |x|N

)
, x ∈ Ω#.

If 1 < q < +∞ and 1 ≤ r ≤ +∞, the Lorentz space Lq,r (Ω) is the class of function

u such that

‖u‖∗q,r =

(∫ +∞

0

[
u∗ (s) s

1
q

]r ds
s

) 1
r

< +∞, (3.1.1)
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‖u‖∗q,∞ = sup
s>0

u∗ (s) s
1
q < +∞. (3.1.2)

We remark that Lq,q (Ω) = Lq (Ω) , and Lq,∞ (Ω) is the Marcinkiewicz space Lq−weak;

moreover, if Ω is bounded, the following embeddings hold (see [76], [91])

Lq,r1 (Ω) ⊂ Lq,r2 (Ω) , r1 < r2,

Lq1,r (Ω) ⊂ Lq (Ω) , q < q1.

Here we just recall some inequalities which will be useful later down (for an ex-

haustive treatment of rearrangements see [40] and [77]). Here we just recall the

Hardy-Littlewood inequality∫
Ω#

u# (x) v# (x) dx ≤
∫

Ω

|u (x) v (x)| dx ≤
∫

Ω#

u# (x) v# (x) dx, (3.1.3)

with u, v measurable functions (see [75]), and a Sobolev-type inequality (see [8])∫
Ω#

|x|Nα−p
[
u# (x)

]p
dx ≤ ω−αN

(
p

N − p+Nα

)p ∫
Ω

[µ (|u (x)|)]α |∇u|p dx, (3.1.4)

where u ∈ W 1,p
0 (Ω) , p < N, α > 0 and µ is the distribution function of u. Finally we

recall a comparison result between the solution of the nonlinear elliptic problem (3.0.7)

with regular datum and the solution of a suitable problem with radially symmetric

datum. The result, contained in [17], is

u∗ (s) ≤ 2p−1

∫ |Ω|
s

1

(Nω
1
N
N )p′tp

′(1− 1
N )

(∫ t

0

f ∗ (τ) dτ

) 1
p−1

exp

(∫ t

s

C (r)
1
p−1

Nω
1
N
N r

1− 1
N

dr

)
dt,

(3.1.5)

for a.e. s ∈ (0, |Ω|] . Here C (r) is defined as∫
|u|>t

c (x)p
′
dx =

∫ µ(t)

0

C (s)p
′
ds;

the following lemma shows that C (r) can be obtained as weak limit of functions

having the same rearrangement of c(r)
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Lemma 3.1.1 If f ∈ Lp (Ω) , p ≥ 1, there exists a sequence {fk} of functions such

that f ∗k = f ∗ and

fk ⇀ F in Lp (0, |Ω|) , if p > 1,

and

lim
k→+∞

∫ |Ω|
0

fk (s) g (s) ds =

∫ |Ω|
0

F (s) g (s) ds, g ∈ BV ([0, |Ω|]) , if p = 1.

As conseguence of the previous result any Lebesgue or Lorentz norm of C (r) can

be estimated from above with the same norm of c(r); this implies that C (r) and c(r)

have the same sommability and so (3.1.5) becomes

u∗ (s) ≤ K ‖f‖
1
p−1

L1 s−
N−p
N(p−1) , (3.1.6)

where K is a constant depending on |Ω| , N, p, ‖c‖Lp′ .

We explicitelly remark that analogous inequalities have been proved in the linear case

in [108], [86].

3.2 A priori estimates

In this section we prove a priori estimates for weak solutions to problem (3.0.7) in

terms of the L1− norm of the datum. From now on, we assume that

p > 2− 1

N
. (3.2.1)

We underline that this condition is set only to avoid technicalities: the result, in fact,

can be proved also in the case 1 < p ≤ 2− 1
N
.

Theorem 3.2.1 Under assumptions (3.0.8) - (3.0.11), if u is a weak solution to

problem (3.0.7) with f ∈ C∞ (Ω) , then we have:(∫
Ω

|∇u|q dx
) 1

q

≤ K ‖f‖
1
p−1

L1 , (3.2.2)

where q < N(p−1)
N−1

and K is a positive constant depending on N, p, q, λ, |Ω| , ‖c‖
L

N
p−1

.
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Proof. Under hypotheses (3.0.8) - (3.0.11) there exists a unique weak solution u ∈

W 1,p
0 (Ω) (see [81]).

So, let be µ the distribution function of u; we define:

ϕ (x) = sign [u(x)]

∫ |u(x)|

0

[µ (t)]α , α > 0. (3.2.3)

We observe that ϕ is a valid test function because ϕ ∈ W 1,p
0 (Ω) . Using the definition

of weak solution to problem (3.0.7) we have:∫
Ω

[a (x,∇u) · ∇u] [µ (|u(x)|)]α dx+

∫
Ω

Φ(x, u) · ∇u [µ (|u(x)|)]α dx =

∫
Ω

fϕdx.

(3.2.4)

From (3.0.8):∫
Ω

[a (x,∇u) · ∇u] [µ (|u(x)|)]α dx ≥ λ

∫
Ω

|∇u|p [µ (|u(x)|)]α dx. (3.2.5)

On the other hand, by (3.0.11) and by Hölder inequality we have:∫
Ω

Φ(x, u) · ∇u [µ (|u(x)|)]α dx ≤ ‖c‖
L

N
p−1

(∫
Ω

|∇u|p [µ (|u(x)|)]α dx
) 1

p

×

×
(∫

Ω

|u|
Np
N−p [µ (|u(x)|)]

Nα
N−p dx

) 1
p′
N−p
N

. (3.2.6)

By coarea formula and by (3.1.6), (3.2.6) becomes:∫
Ω

Φ(x, u) · ∇u [µ (|u(x)|)]α dx ≤ K ‖f‖L1

(∫
Ω

|∇u|p [µ (|u(x)|)]α dx
) 1

p

×

×

(∫ |Ω|
0

s−p
′+ Nα

N−pds

) 1
p′
N−p
N

, (3.2.7)

where K = K
(
|Ω| , N, p, ‖c‖

L
N
p−1

)
; for the rest of the paper K is a constant which

can vary from line to line.

Assuming that

α >
N − p
N(p− 1)

, (3.2.8)

the last integral in (3.2.7) is finite, so we obtain:∫
Ω

Φ(x, u) · ∇u [µ (|u(x)|)]α dx ≤ K ‖f‖L1

(∫
Ω

|∇u|p [µ (|u(x)|)]α dx
) 1

p

. (3.2.9)
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From (3.2.4), (3.2.5), (3.2.9) we get:

λ

∫
Ω

|∇u|p [µ (|u(x)|)]α dx ≤ K ‖f‖L1

(∫
Ω

|∇u|p [µ (|u(x)|)]α dx
) 1

p

+

∫
Ω

|f | |ϕ| dx.

(3.2.10)

Now we evaluate the L∞− norm of ϕ; since α satisfies condition (3.2.8) we have:

sup
Ω
|ϕ (x)| =

∫ +∞

0

[µ (t)]α dt = α

∫ |Ω|
0

sα−1u∗ (s) ds.

By Hölder inequality, (3.2.8) and by Sobolev-type inequality (3.1.4) we obtain:

sup
Ω
|ϕ (x)| ≤

(∫ |Ω|
0

sα−
(N−1)p′

N ds

) 1
p′
(∫ |Ω|

0

sα−
p
N [u∗ (s)]p ds

) 1
p

≤

≤ K

(∫
Ω

|∇u|p [µ (|u(x)|)]α dx
) 1

p

. (3.2.11)

Coming back to (3.2.10), by (3.2.11) we have:

λ

∫
Ω

|∇u|p [µ (|u(x)|)]α dx ≤ K ‖f‖L1

(∫
Ω

|∇u|p [µ (|u(x)|)]α dx
) 1

p

. (3.2.12)

So ∫
Ω

|∇u|p [µ (|u(x)|)]α dx ≤ K ‖f‖p
′

L1 , (3.2.13)

where K = K
(
|Ω| , N, p, ‖c‖

L
N
p−1

, λ
)
.

From (3.2.13) we can deduce a priori estimates for the gradient of weak solutions to

problem (3.0.7).

For any fixed q < N(p−1)
N−1

,we choose α such that q < p
1+α

. By Hardy-Littlewood

inequality (3.1.3) we get

‖|∇u|‖pLq ≤ K ‖∇u‖p p
1+α

,p ,

with α > N−p
N(p−1)

. So by (3.2.13)

‖|∇u|‖pLq ≤ K

∫
Ω

|∇u|p [µ (|u(x)|)]α dx ≤ K ‖f‖p
′

L1 .
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3.3 Existence result

In this section we prove the existence of a SOLA to problem (3.0.7). As pointed out

before, the SOLA is obtained as limit of approximations and the starting point of this

procedure is the estimate (3.2.2). The convergence of the gradients of approximated

solutions is obtained in a easily way since we prove a result which gives an estimate

of the difference of the gradients in terms of the difference of two solutions. To this

aim we substitute assumptions (3.0.8) and (3.0.10) by conditions

(a (x, ξ)− a (x, η)) · (ξ − η) ≥ β
|ξ − η|2

(|ξ|+ |η|)2−p , ξ 6= η, (3.3.1)

if 1 < p < 2, or

(a (x, ξ)− a (x, η)) · (ξ − η) ≥ β |ξ − η|p , ξ 6= η, (3.3.2)

if p ≥ 2. In order to avoid some technicalities, we suppose that c(x) ∈ L∞ (Ω) , but

the same result is still valid if c(x) ∈ L
N
p−1 (Ω) under the hypotheses given in Remark

3.2.

Now we prove the following result

Proposition 3.3.1 Let us assume (3.0.9), (3.0.11) with c(x) ∈ L∞ (Ω) , (3.3.1),

(3.3.2). Let be u, v weak solutions to problem (3.0.7) with data f , g ∈ C∞ (Ω)

respectively, q such that q < N(p−1)
N−1

and m ≤ q∗ = Nq
N−q .

If p ≥ 2, and

|Φ (x, u)− Φ (x, v)| ≤ K (|u|+ |v|)p−2 |u− v| , (3.3.3)

then we have

‖|∇ (u− v)|‖Lq ≤ K ‖u− v‖
1
p−1

Lm

[
‖f‖

p−2

(p−1)2

L1 + ‖g‖
p−2

(p−1)2

L1 + ‖f‖
1
p

L1 + ‖g‖
1
p

L1

]
. (3.3.4)

If 1 < p < 2 and

|Φ (x, u)− Φ (x, v)| ≤ K |u− v|p−1 , (3.3.5)
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then we have:

‖|∇ (u− v)|‖Lq ≤ K ‖u− v‖
σ
2
Lm (‖f‖L1 + ‖g‖L1)

2−σ
2(p−1) +‖u− v‖

1
2
Lm (‖f‖L1 + ‖g‖L1)

p
2(p−1) ,

(3.3.6)

with σ a suitable constant such that 0 < σ < min
{
p− 1, m

q′

}
. The constant K depends

on N, β, p, q, |Ω| , ‖c‖L∞ .

Proof.

Let be u and v the weak solutions to problem (3.0.7) with data f , g ∈ C∞ (Ω)

respectively. Denoted by µ the distribution function of |u− v|, let us consider the

test function

ϕ (x) = sign(u− v)

∫ |u−v|(x)

0

[µ (t)]α dt,

with α > 0. Taking ϕ in (3.0.7) with data f and g, and subtracting get∫
Ω

[(a (x,∇u)− a (x,∇v)) · ∇ (u− v)] [µ (|u− v| (x))]α dx =

=

∫
Ω

[Φ (x, u)− Φ (x, v)] · ∇ (u− v) [µ (|u− v| (x))]α dx+

∫
Ω

(f − g)ϕdx. (3.3.7)

Case p ≥ 2.

From (3.3.2) the left-hand side of (3.3.7) satisfies∫
Ω

[(a (x,∇u)− a (x,∇v)) · ∇ (u− v)] [µ (|u− v| (x))]α dx ≥

≥ β

∫
Ω

|∇ (u− v)|p [µ (|u− v| (x))]α dx. (3.3.8)

Now we evaluate the right-hand side. From (3.3.3) and Young inequality we deduce∫
Ω

[Φ (x, u)− Φ (x, v)] · ∇ (u− v) [µ (|u− v| (x))]α dx ≤

≤ K

∫
Ω

|∇ (u− v)|p [µ (|u− v| (x))]α dx+

+K ‖c‖L∞
∫

Ω

[|u|+ |v|](p−2)p′ |u− v|p
′
[µ (|u− v| (x))]α dx. (3.3.9)
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Now we get an estimate of the last integral in (3.3.9). From (3.1.3), Hölder inequality

and (3.1.6) we have∫
Ω

[|u|+ |v|](p−2)p′ |u− v|p
′
[µ (|u− v| (x))]α dx ≤

≤ K ‖u− v‖p
′

Np
Nα−p+N ,p

[
‖f‖

p(p−2)

(p−1)2

L1 + ‖g‖
p(p−2)

(p−1)2

L1

](∫ |Ω|
0

sα+ p
N(p−2)

− p(N−p)
N(p−1)ds

) p−2
p−1

.

(3.3.10)

Since α > N−p
N(p−1)

, the last integral in (3.3.10) is finite. By (3.3.10), inequality (3.3.9)

becomes ∫
Ω

[Φ (x, u)− Φ (x, v)] · ∇ (u− v) [µ (|u− v| (x))]α dx ≤

≤ K

∫
Ω

|∇ (u− v)|p [µ (|u− v| (x))]α dx+

+K ‖u− v‖p
′

Np
Nα−p+N ,p

[
‖f‖

p(p−2)

(p−1)2

L1 + ‖g‖
p(p−2)

(p−1)2

L1

]
, (3.3.11)

Let us consider the last term in (3.3.7)∫
Ω

|f − g| |ϕ| dx ≤ ‖f − g‖L1 ‖ϕ‖L∞. (3.3.12)

Since α satisfies (3.2.8), then

sup
Ω
|ϕ (x)| =

∫ +∞

0

[µ (t)]α dt = α

∫ |Ω|
0

sα−1 (u− v)∗ (s) ds = α ‖u− v‖ 1
α
,1 . (3.3.13)

Fixed m < q∗, we choose α in such a way that

Np

Nα− p+N
< m < q∗. (3.3.14)

Hence it results that 1
α
< m. So using (3.3.8), (3.3.11) - (3.3.13) and condition (3.3.14),

by (3.3.7) we obtain ∫
Ω

|∇ (u− v)|p [µ (|u− v| (x))]α dx ≤

≤ K ‖u− v‖
p
p−1

Lm

[
‖f‖

p(p−2)

(p−1)2

L1 + ‖g‖
p(p−2)

(p−1)2

L1 + ‖f − g‖L1

]
. (3.3.15)
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From Hardy-Littlewood inequality, and choosing once again α so that q < p
1+α

,we get∫
Ω

|∇ (u− v)|p [µ (|u− v| (x))]α dx ≥ K ‖|∇ (u− v)|‖p p
1+α

,p ≥ K ‖|∇ (u− v)|‖pLq .

Therefore, by (3.3.15) and by last inequality we obtain (3.3.4).

Case 1 < p < 2.

Let us consider the function

G(x) =
|∇ (u− v)|

2
p

(|∇u|+ |∇v|)
2−p
p

.

Coming back to (3.3.7), now we consider the hypotheses (3.3.1) on a and the assump-

tion (3.3.5) on Φ,we get:∫
Ω

G(x)p [µ (|u− v| (x))]α dx ≤ K

∫
Ω

|c(x)| |∇ (u− v)| |u− v|p−1 [µ (|u− v| (x))]α dx+

+

∫
Ω

|f − g| |ϕ| dx. (3.3.16)

Fixed 0 < σ < p− 1, we set

I =

∫
Ω

|c(x)| |∇ (u− v)| |u− v|p−1−σ |u− v|σ [µ (|u− v| (x))]α dx.

Let be m < q∗, we choose α such that 1
α
< m < q∗. Now let σ be 0 < σ <

min
{
p− 1, m

q′

}
. Denoted by θ the positive number such that 1

θ
= 1 − σ

m
− 1

q
, we

can apply Hölder inequality and have

I ≤ ‖c‖L∞ ‖u− v‖
σ
Lm ‖|∇u|+ |∇v|‖Lq

(∫
Ω

|u− v|(p−1−σ)θ [µ (|u− v| (x))]αθ dx

) 1
θ

.

From the Hardy-Littlewood inequality, the comparison result (3.1.6) applied to u∗

and v∗, and by a priori estimate (3.2.2) on the gradient of u and v, we finally have:

I ≤ K ‖u− v‖σLm (‖f‖L1 + ‖g‖L1)
p−σ
p−1 . (3.3.17)

By (3.3.16) and (3.3.17) , we get∫
Ω

G(x)p [µ(|u− v|)(x))]α dx ≤ K ‖u− v‖σLm (‖f‖L1 + ‖g‖L1)
p−σ
p−1 +

∫
Ω

|(f − g)| |ϕ| dx.
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The term
∫
Ω

|(f − g)| |ϕ| dx is evolved as in the case p ≥ 2. So we obtain:

∫
Ω

G(x)p [µ(|u− v|)(x))]α dx ≤ K ‖u− v‖σLm (‖f‖L1 + ‖g‖L1)
p−σ
p−1 +

+K ‖u− v‖Lm ‖f − g‖L1 . (3.3.18)

Now we estimate from below the left-hand side of (3.3.18) by proceeding as in the

proof of Theorem 3.2.1. Indeed, by Hardy-Littlewood inequality:∫
Ω

G(x)p [µ(|u− v|)(x))]α dx ≥ ‖G‖p p
1+α

,p .

If we choose once again α in way that q < p
1+α

, we have:

‖G‖pLq ≤ K ‖u− v‖σLm (‖f‖L1 + ‖g‖L1)
p−σ
p−1 +

+K ‖u− v‖Lm ‖f − g‖L1 . (3.3.19)

Since ∫
Ω

|∇(u− v)|q dx ≤ K ‖G‖qp/2Lq

(
‖f‖

1
p−1

L1 + ‖g‖
1
p−1

L1

)q(1− p
2

)

,

then

‖∇(u− v)‖Lq ≤ K ‖G‖p/2Lq

(
‖f‖

1
p−1

L1 + ‖g‖
1
p−1

L1

)1− p
2

. (3.3.20)

From (3.3.19) and (3.3.20) we have:

‖|∇ (u− v)|‖Lq ≤ K ‖u− v‖
σ
2
Lm (‖f‖L1 + ‖g‖L1)

2−σ
2(p−1) +‖u− v‖

1
2
Lm (‖f‖L1 + ‖g‖L1)

p
2(p−1) ,

where K = K(N, p, q, β, |Ω| , ‖c‖L∞).

Remark 3.3.2 The result of the Proposition 3.3.1 is still valid when c(x) belongs to

L
N
p−1 : the only difference from our case is that σ has to be choosen as

0 < σ < min

{
m

q′
,

α− 1
p∗

1
m
− N−p

N(p−1)

}
.

Now we are ready to prove the following result:
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Theorem 3.3.3 Let p > 2− 1
N

and let us assume conditions (3.0.8) , (3.0.11), (3.3.1),

(3.3.2). If f ∈ L1(Ω), or, more in general, if f is a Radon measure with bounded total

variation, there exists at least a SOLA for problem (3.0.7) . Moreover such solution

belongs to W 1,q
0 (Ω) for every q which satisfies

1 < q <
N(p− 1)

N − 1
.

Proof . Let be {fn}n∈N a sequence of functions in C∞(Ω) which weakly−∗ converges

to f in the sense of measures. By well-known results there exists a solution un ∈

W 1,p
0 (Ω) to problem (3.0.7) with datum fn (see [52], [81]) ; so we have:∫
Ω

(a(x,∇un) · ∇ϕ)dx =

∫
Ω

Φ(x, un) · ∇ϕdx+

∫
Ω

fnϕdx, ∀ϕ ∈ C∞0 (Ω). (3.3.21)

The a priori estimate (3.2.2) ensurse that the sequence {un} is bounded in W 1,q
0 (Ω), ∀

q < N(p−1)
N−1

and so it is compact in Lm for every m < q∗. By Proposition 3.3.1, we can

deduce that there exists a subsequence, denoted again with {un}, which converges in

W 1,q
0 (Ω) to a function v.

Now we pass to the limit in (3.3.21) . Let us consider each term in (3.3.21) . Obviously

we have

lim
n→+∞

∫
Ω

fnϕdx =

∫
Ω

ϕdf ∀ϕ ∈ C∞0 (Ω). (3.3.22)

For what concerns the terms on the left side, using growth conditons (3.0.9) on a and

(3.0.11) on Φ and the properties of Nemytskii operators (see [78]) we arrive at

a(x,∇un)
(L1)N→ a(x,∇u), (3.3.23)

and

Φ(x, un)
(L1)N→ Φ(x, u). (3.3.24)

(see also [6] for a detailed discussion). Therefore, thanks to (3.3.22) , (3.3.23) ,

(3.3.24) , we can pass to limit in (3.3.21) ; this ensures that u is a SOLA.
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3.4 Uniqueness results

The previous result is not enough to get the continuity with respect to data. To this

aim, we first need an estimate of rearrangements of the difference of two solutions in

term of L1 norm of the difference of data. To get this result, we have to strength

hypotheses on the structure of the operator; in particular choose as model of the lower

order term Φ(x, u) = c(x) |u|γ; it satisfies conditions (3.4.2) or (3.4.6) .

The range of variability of γ, specified in the following propositions, includes the

classical case γ = p− 1 under more restrictive assumptions on the value of p.

Lemma 3.4.1 Let p ≥ 2, let us assume condition (3.0.9) and

(a (x, ξ)− a (x, η)) · (ξ − η) ≥ δ(1 + |ξ|+ |η|)p−2 |ξ − η|2 , δ > 0, ξ, η ∈ RN ,

(3.4.1)

|Φs(x, s)| ≤ c(x) |s|γ−1 , (3.4.2)

with

c(x) > 0, c(x) ∈ Lr(Ω), r > N (3.4.3)

and

1 ≤ γ <
N − 1

N − p
− N(p− 1)

r(N − p)
. (3.4.4)

If u and v are solutions to problem (3.0.7) with data f and g in L1 (Ω), then

(u− v)∗ (s) ≤ K ‖f − g‖L1 s
−N−2

N , (3.4.5)

where K is a constant which depends on N, δ, |Ω| , p, ‖f‖L1, ‖g‖L1, r.

Lemma 3.4.2 Let 2− 1
N
< p < 2. Let us assume conditions (3.0.9) , (3.3.1) and

|Φs(x, s)| ≤ c(x) (1 + |s|)γ−1 , (3.4.6)

with

c(x) > 0, c(x) ∈ Lr(Ω), r >
2N(p− 1)

1 +Np− 2N
(3.4.7)
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and

γ <
(N − 1)(p− 1)

N − p
− N(p− 1)

r(N − p)
. (3.4.8)

If u and v are solutions to problem (3.0.7) with data f and g in L1 (Ω), then

(u− v)∗ (s) ≤ K ‖f − g‖L1 s
−N−2

N
−(2−p)ζ , (3.4.9)

for some ζ > N−1
N(p−1)

. The constant K depends on N, β, |Ω| , p, ‖f‖L1, ‖g‖L1, r, q.

Proof of Lemma 3.4.1.

Set w = u− v and h = f − g. For every fixed t, k, positive constants, we consider the

function

Ψ =


k signw if |w| > t+ k

(w − t) signw if t < |w| ≤ t+ k

0 otherwise.

Using Ψ as test function in equation (3.0.7) with f and g as data, subtracting and

dividing by k, we have

1

k

∫
t<|w|≤t+k

[a(x,∇u)− a(x,∇v)] · ∇wdx =
1

k

∫
t<|w|≤t+k

[Φ (x, u)− Φ (x, v)] · ∇wdx+

+

∫
|w|>t+k

h signw dx+
1

k

∫
t<|w|≤t+k

h [(w − t) signw] dx. (3.4.10)

We set

ν(x) = (1 + |∇u|+ |∇v|)p−2. (3.4.11)

By using assumptions (3.4.1) , (3.4.2) and the definition of ν(x), (3.4.10) becomes

δ

k

∫
t<|w|≤t+k

ν(x) |∇w|2 dx ≤ (t+ k)

k

∫
t<|w|≤t+k

c(x)(|u|+ |v|)γ−1 |∇w| dx+

+

∫
|w|>t+k

h signw dx+
1

k

∫
t<|w|≤t+k

h [(w − t) signw] dx.
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Now, since ν(x) ≥ 1, applying Hölder inequality and letting k go to zero in the

previous inequality, we obtain

− d

dt

∫
|w|>t

ν(x) |∇w|2 dx ≤ t

δ

(
− d

dt

∫
|w|>t

ν(x) |∇w|2 dx
) 1

2

×[(
− d

dt

∫
|w|>t

c(x)2(|u|+ |v|)2(γ−1)dx

) 1
2

]
+

+
1

δ

∫
|w|>t
|h| dx. (3.4.12)

If µ denotes the distribution function of w, proceeding as in [7], it is possible to define

a function T such that

T (µ(t)) |µ′(t)| = − d

dt

(∫
|w|>t

c(x)2(|u|+ |v|)2(γ−1)dx

)
. (3.4.13)

The function defined in (3.4.13) is a weak limit of functions having the same rear-

rangement of c(x)2(|u|+ |v|)2(γ−1).

By Hardy-Littlewood inequality and by the definitions of T, we obtain

− d

dt

∫
|w|>t

ν(x) |∇w|2 dx ≤ t

δ
|µ′(t)|

1
2 [T (µ(t))]

1
2 ×

×
(
− d

dt

∫
|w|>t

ν(x) |∇w|2 dx
) 1

2

+
1

δ

∫ µ(t)

0

h∗(s)ds. (3.4.14)

On the other hand, denoted by kN = ω
1/N
N N, by isoperimetric and Schwarz inequali-

ties, since ν(x) ≥ 1, it follows (see [107])

kNµ(t)1− 1
N ≤ − d

dt

∫
|w|>t
|∇w| dx ≤

(
− d

dt

∫
|w|>t

ν(x) |∇w|2 dx
) 1

2

|µ′(t)|
1
2 , (3.4.15)

that is

1 ≤ k−1
N µ(t)

1
N
−1

(
− d

dt

∫
|w|>t

ν(x) |∇w|2 dx
) 1

2

|µ′(t)|
1
2 . (3.4.16)

By (3.4.14) , (3.4.16) we obtain

− d

dt

∫
|w|>t

ν(x) |∇w|2 dx ≤ t

δ

(
− d

dt

∫
|w|>t

ν(x) |∇w|2 dx
) 1

2

|µ′(t)|
1
2 [T (µ(t))]

1
2 +

+
1

δ
k−1
N µ(t)

1
N
−1

(
− d

dt

∫
|w|>t

ν(x) |∇w|2 dx
) 1

2

|µ′(t)|
1
2

∫ µ(t)

0

h∗(s)ds. (3.4.17)
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Using the (3.4.15) , (3.4.17) becomes

1 ≤ k−1
N

t

δ
µ(t)

1
N
−1 |µ′(t)| [T (µ(t))]

1
2 +

1

δ
k−2
N µ(t)2( 1

N
−1) |µ′(t)|

∫ µ(t)

0

h∗(s)ds.

Integrating the previous inequality between 0 and t, and using the definition of w∗(s),

we have

w∗(s) ≤ K

∫ |Ω|
s

w∗(t)t
1
N
−1T (t)

1
2dt+K

∫ |Ω|
s

t2( 1
N
−1)

(∫ t

0

h∗(τ)dτ

)
dt.

Now we apply the Gronwall’s Lemma. we get

w∗(s) ≤ K

∫ |Ω|
s

{
t2( 1

N
−1)

(∫ t

0

h∗(τ)dτ

)(
exp

∫ t

s

τ
1
N
−1T (τ)

1
2dτ

)}
dt. (3.4.18)

Now we have to impose the right conditions on γ which ensure that the following

integral ∫ |Ω|
0

τ
1
N
−1T (τ)

1
2dr < +∞

This happens if the function T belongs to some space Lϑ with ϑ > N
2
. But we

have already observed that T has the same sommability of c(x)2 (|u|+ |v|)2(γ−1), so

1
ϑ

= 2(γ−1)
q∗

+ 2
r
. Hence we have to impose that

ϑ >
N

2
and q∗ <

N(p− 1)

N − p
.

This conditions are verified if we choose γ as in (3.4.4) . Then, the (3.4.18) becomes

(u− v)∗ (s) ≤ K

∫ |Ω|
s

t2( 1
N
−1)

(∫ t

0

h∗(τ)dτ

)
dt ≤ K ‖f − g‖L1 s

−N−2
N ,

where K depends on N, δ, |Ω| , p, ‖f‖L1, ‖g‖L1, r.

Proof of Lemma 3.4.2.

The proof of Lemma 3.4.2 is similar to that of Lemma 3.4.1. Let us consider (3.4.10)

and (3.4.11) . By (3.3.1) , (3.4.6) , we get

β

k

∫
t<|w|≤t+k

|∇w|2 (|∇u|+ |∇v|)p−2dx ≤ (t+ k)

k

∫
t<|w|≤t+k

c(x)(1+ |u|+ |v|)γ−1 |∇w| dx+
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+

∫
|w|>t+k

h signw dx+
1

k

∫
t<|w|≤t+k

h [(w − t) signw] dx.

Since p < 2, we have (|∇u|+ |∇v|) 2−p
2 ≤ (1 + |∇u|+ |∇v|) 2−p

2 , and so

β

k

∫
t<|w|≤t+k

|∇w|2 (|∇u|+ |∇v|)p−2dx ≤

≤ (t+ k)

k

∫
t<|w|≤t+k

c(x)
(1 + |u|+ |v|)γ−1 |∇w|

(|∇u|+ |∇v|) 2−p
2

(1 + |∇u|+ |∇v|)
2−p

2 dx+

+

∫
|w|>t+k

h signw dx+
1

k

∫
t<|w|≤t+k

h [(w − t) signw] dx. (3.4.19)

By Hölder inequality in (3.4.19) and letting k go to 0, we have

− d

dt

∫
|w|>t
|∇w|2 (|∇u|+|∇v|)p−2dx ≤ Kt

(
− d

dt

∫
|w|>t

c(x)2 (1 + |u|+ |v|)2(γ−1)

ν
dx

) 1
2

×

×
(
− d

dt

∫
|w|>t
|∇w|2 (|∇u|+ |∇v|)p−2dx

) 1
2

+K

∫
|w|>t
|h| dx. (3.4.20)

Arguing as in the previous proof, we introduce two functions
−
T and

−
ν such that

−
T (µ(t)) |µ′(t)| = − d

dt

∫
|w|>t

c(x)2 (1 + |u|+ |v|)2(γ−1)

ν
dt, (3.4.21)

−
ν(µ(t)) |µ′(t)| = − d

dt

∫
|w|>t

1

ν
dt. (3.4.22)

From (3.4.15) , we obtain

kNµ(t)1− 1
N ≤

− d

dt

∫
|w|>t

|∇w|2 (|∇u|+ |∇v|)p−2dx


1
2

−
ν(µ(t))

1
2 |µ′(t)|

1
2 . (3.4.23)

Therefore, by (3.4.23) the (3.4.20) becomes

− d

dt

∫
|w|>t
|∇w|2 (|∇u|+ |∇v|)p−2dx ≤ Kt

−
T (µ(t))

1
2 |µ′(t)|

1
2 ×

×
(
− d

dt

∫
|w|>t
|∇w|2 (|∇u|+ |∇v|)p−2dx

) 1
2

+
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+Kµ(t)
1
N
−1−ν(µ(t))

1
2 |µ′(t)|

1
2 ×

×
(
− d

dt

∫
|w|>t
|∇w|2 (|∇u|+ |∇v|)p−2dx

) 1
2
∫ µ(t)

0

h∗(τ)dτ (3.4.24)

Proceeding as in the case p ≥ 2, we obtain

w∗(s) ≤ K

∫ |Ω|
s

w∗(t)t
1
N
−1
−
T (t)

1
2
−
ν(t)

1
2dt+K

∫ |Ω|
s

t2( 1
N
−1)−ν(t)

(∫ t

0

h∗(τ)dτ

)
dt,

then, by Gronwall’s Lemma and integration by parts

w∗(s) ≤ K

∫ |Ω|
s

{
t2( 1

N
−1)−ν(t)

(∫ t

0

h∗(τ)dτ

)(
exp

∫ t

s

τ
1
N
−1
−
T (τ)

1
2
−
ν(τ)

1
2dτ

)}
dt.

(3.4.25)

Now, we want to impose the right conditions on γ which ensure that∫ |Ω|
0

τ
1
N
−1
−
T (τ)

1
2
−
ν(τ)

1
2dτ < +∞.

−
T has the same sommability of c(x)2 (1+|u|+|v|)2(γ−1)

ν(x)
and

−
ν has the same sommability

of 1
ν(x)

; recalling the expression of ν and the estimate (3.2.2) , we deduce that

(
−
T
−
ν

) 1
2

belongs to Lϑ(Ω) with 1
ϑ

= γ−1
q∗

+ 2−p
q

+ 1
r
. So the integral is finite for every γ such

that

ϑ > N, q∗ <
N(p− 1)

N − p
and q <

N(p− 1)

N − 1
,

which holds true if condition (3.4.8) is satisfied. Coming back to (3.4.25) , we arrive

at

w∗(s) ≤ K ‖h‖L1

∫ |Ω|
s

t2( 1
N
−1)−ν(t)dt.

Using the sommability of
−
ν(t) and the Hölder inequality, we have

w∗(s) ≤ K ‖h‖L1

∥∥∥−ν∥∥∥
L

q
2−p

[∫ |Ω|
s

t2( 1
N
−1) q

q−2+pdt

] q−2+p
q

,

and then

(u− v)∗ (s) ≤ K ‖f − g‖L1 s
−N−2

N
−(2−p)ς ,

for some ς > N−1
N(p−1)

; here K depends on N, β, |Ω| , p, ‖f‖L1, ‖g‖L1, r, q.

Thanks to Lemma 3.4.1 and 3.4.2, now we are able to prove the following unique-

ness results:
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Theorem 3.4.3 Let p ≥ 2, let us assume hypotheses of Lemma 3.4.1. Then the

problem (3.0.7) has a unique SOLA.

Theorem 3.4.4 Let 2− 1
N
< p < 2, let us assume hypotheses of Lemma 3.4.2. Then

the problem (3.0.7) has a unique SOLA.

Proof of Theorem 3.1.2. From (3.4.5) and (3.3.4) we get:

‖∇(u− v)‖Lq ≤ K

(∫ |Ω|
0

(u− v)∗ mds

) 1
m(p−1)

≤

≤ K ‖f − g‖
1
p−1

L1 ×

(∫ |Ω|
0

s−
N−2
N

mds

) 1
m(p−1)

.

The last inequality holds for every m such that Np
Nα−p+N < m < q∗. If we choose

α >
N − 2

N
,

then (∫ |Ω|
0

s−
N−2
N

mds

) 1
m(p−1)

is finite, and so we get

‖∇(u− v)‖Lq ≤ K ‖f − g‖
1
p−1

L1 ,

which ensures the uniqueness of the SOLA.

Proof of Theorem 3.1.3. From (3.4.9) and (3.3.6) we obtain that:

‖∇(u− v)‖Lq ≤ K ‖u− v‖
1
2

Lq∗
+K ‖u− v‖

σ
2

Lq∗
≤

≤ K ‖f − g‖
1
2

L1

(∫ |Ω|
0

s−
N−2
N

q∗− (2−p)q∗
q ds

) 1
2q∗

+K ‖f − g‖
σ
2

L1

(∫ |Ω|
0

s−
N−2
N

q∗− (2−p)q∗
q ds

) σ
2q∗

.

If γ satisfies condition (3.4.8) the last integral is sommable, so we get:

‖∇(u− v)‖Lq ≤ K ‖f − g‖
1
2

L1 +K ‖f − g‖
σ
2

L1 .
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CHAPTER IV

NON-UNIFORMLY ELLIPTIC EQUATIONS

In this chapter we prove a class of Dirichlet problem for degenerate elliptic equations

of the type  − div(a(x, u,∇u)) +H(x,∇u) = µ in Ω

u = 0 on ∂Ω,
(4.0.26)

where Ω is a bounded open subset of RN , N ≥ 2, 1 < p < N, a : Ω×R×RN −→ RN

is a Carathéodory function such that

a(x, s, ξ)ξ ≥ ν(x) |ξ|p , (4.0.27)

|a(x, s, ξ)| ≤ ν(x)
[
|ξ|p−1 + |s|p−1 + a0 (x)

]
, a0(x) ∈ Lp′(ν), (4.0.28)

for almost every x ∈ Ω, for every s∈ R, for every ξ ∈ RN , where ν(x) is a nonnegative

function verifying

ν(x) ∈ Lr(Ω), r ≥ 1, (4.0.29)

v(x)−1 ∈ Lt(Ω), t ≥ N/p, 1 + 1/t < p < N(1 + 1/t). (4.0.30)

Morover we assume that a is monotone, that is

(a(x, s, ξ)− a(x, s, η), ξ − η) > 0, (4.0.31)

for a.e x ∈ Ω, for every s∈ R, for every ξ, η ∈ RN , ξ 6= η.

Furthermore H : Ω× RN → R is a Carathéodory function such that

|H(x, ξ)| ≤ b(x) |ξ|p−1 + b0(x), (4.0.32)

with

b0(x) ∈ L1(Ω), (4.0.33)
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b(x) ∈ Lτ (Ω), τ >
p′p̃t

t− (t+ 1)(p′ + p̃)
, (4.0.34)

where p̃ is defined by

p̃ =
p#

r′
, (4.0.35)

and let p# denote the number (p#)−1 = p−1(1 + 1/t)−N−1.

The existence of a distributional solution for non-uniformly elliptic problem has also

been proved by Rakotoson in [101] when H = 0 and by Betta, Del Vecchio and

Posteraro in [16] by using classical symmetrization methods. Regularity results for

such a solution are proved in [42].

Here we prove an existence result for renormalized solutions contained in [55]. The

main features in studying this problem are the non-uniformly ellipticity condition and

the fact that the operator is not coercive. The proof of our result consists of several

steps. Firstly we introduce the ”approximated problems”, then we prove an apriori

estimate for the gradients of its solutions. This estimate can be easily done when b is

small enough since in this case the operator is coercive. When the norm of b is not

small ,we use Bottaro-Marina technique ([35]) which consists in decomposing b in a

finite sum of terms having norm small enough. Finally we pass to the limit in the

approximated problems by using a stability result which is an extention of a result

proved in [48] (see also [72]). The same approach has been used in [20] where a is an

uniformly elliptic operator (see also [72], [73] for uniformly elliptic operator with two

lower order terms).

4.1 Definitions and first properties

In this section we recall some properties of the measure ([48]), a few properties of

weighetd Sobolev spaces ([89]) and, finally, the definition of renormalized solution to

degenerate nonlinear elliptic equations with measure data ([48]).
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4.1.1 Weighted Sobolev spaces

Let be Ω a bounded domain in RN , N ≥ 2, and let ν(x) be a nonnegative function

on Ω such that ν(x) ∈ Lr(Ω), r ≥ 1, v(x)−1 ∈ Lt(Ω), t ≥ N . We denote by Lp(ν),

p > 1, the space of measurable functions u such that

‖u‖Lp(ν) =

(∫
Ω

|u|p ν(x)dx

)1/p

<∞, (4.1.1)

and by W 1,p(ν) the completation of the space C1(Ω) with respect to the norm

‖u‖W 1,p(ν) = ‖u‖Lp(ν) + ‖|∇u|‖Lp(ν) . (4.1.2)

Moreover we denote by W 1,p
0 (ν) the closure of C1

0

(
Ω
)

in W 1,p (ν) and by W−1,p′(1/ν)

the dual space of W 1,p
0 (ν). The elements of the dual space W−1,p′(1/ν) are described

by the following Proposition ([89]).

Proposition 4.1.1 If T is a continuous linear functional on W 1,p
0 (ν) then there exist

(N+1) functions f0, f1,..., fN on Ω such that

f0 ∈ Lp
′
(ν−1), fj ∈ Lp

′
(ν−1), 1 ≤ j ≤ N (4.1.3)

and

T (u) =

∫
Ω

(f0uν
2/p−1 + fjuxjν

2/p−1)dx, for u ∈ W 1,p
0 (ν). (4.1.4)

Conversely, any set of functions f0, f1,..., fN satisfying (4.1.3) defines a continuous

linear functional by means of (4.1.4) on W 1,p
0 (ν).

Now we recall some Sobolev-type inequalities which will be used in the following

([89]).

Proposition 4.1.2 Let ν be a nonnegative function on Ω such that

ν ∈ Lr(Ω), r ≥ 1, ν−1 ∈ Lt (Ω) , t ≥ N, (4.1.5)
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Let p be a real number such that

t ≥ N/p, 1 + 1/t < p < N(1 + 1/t). (4.1.6)

Then there exists a continuous linear imbedding of W 1,p
0 (ν) in Lp

#
(Ω) and there exists

a constant C0 > 0 depending on N, p, ν, t, such that

‖u‖
Lp

#
(Ω)
≤ C0 ‖|∇u|‖Lp(ν) , ∀u ∈ W 1,p

0 (ν) . (4.1.7)

Proposition 4.1.3 Let ν be a nonnegative function on Ω such that (4.1.5) holds true

and let p a real number such that (4.1.6) holds true. Let p̃ denote the number

p̃ =
p#

r′
.

Then there exists a continuous linear imbedding of W 1,p
0 (ν) in Lp̃(ν) and a constant

C ′0 > 0 depending on N, p, ν, t, such that

‖u‖Lp̃(ν) ≤ C ‖|∇u|‖Lp(ν) , ∀u ∈ W
1,p
0 (ν) . (4.1.8)

Finally we recall a Poincarè-type inequality for weighted Sobolev spaces:

Proposition 4.1.4 Let ν be a nonnegative function on Ω such that (4.1.5) holds true

and let p a real number such that (4.1.6) holds true. Then W 1,p
0 (ν) is continuously

imbedded in Lp(ν).

4.1.2 Decomposition of measures

Now we recall the definition of (p, ν)-capacity ([86]), which extends the notion of p-

capacity given in Chapter II.
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The (p, ν)-capacity capp,ν (K,Ω) of a compact set K ⊂ Ω with respect to Ω is defined

by

capp,ν(K,Ω) = inf


∫
Ω

ν(x) |∇ϕ|p : ϕ ∈ C∞0 (Ω) , ϕ ≥ χK

 ,

where χK denotes the characteristic function of K . If U ⊆ Ω is a open set, we denote

capp,ν (U,Ω) = sup {capp,ν(K,Ω) : K compact,K ⊆ U} ,

while the (p, ν)-capacity of any subset B ⊆ Ω is defined as

capp,ν(B,Ω) = inf {capp,ν(U,Ω) : U open,B ⊆ U} .

We denote by M0,ν (Ω) the set of all measures µ in Mb (Ω) which are absolutely

continuous with respect to the (p, ν)-capacity, that is µ (B) = 0 for every Borel set

B ⊆ Ω such that capp,ν (B,Ω) = 0. We define Ms,ν (Ω) the set of all measures µ

in Mb (Ω) which are singular with respect to the (p, ν)-capacity that is which are

concentrated in a set E ⊂ Ω such that capp,ν(E,Ω) = 0.

The following proposition is analogous to Proposition 2.3.7 and it is a consequence of

the decomposition result proved in [66].

Proposition 4.1.5 For every measure in Mb (Ω) there exists an unique pair of mea-

sures (µ0, µs) with µ0 ∈M0,ν (Ω) and µs ∈Ms,ν (Ω), such that µ = µ0 + µs.

The measures µ0 and µs are the absolutely continuous part and the singular part

of µ with respect to the (p, ν)-capacity. Moreover, by adapting the proof of the result

proved in [33], we obtain the following properties which states that

Proposition 4.1.6 Let µ0 be a measure in Mb (Ω). Then µ0 belongs to M0,ν (Ω) if

and only if it belongs to L1(Ω) + W−1,p′(1/ν). Then there exists f ∈ L1(Ω) and

g ∈ (Lp
′
(1/νp−1) )N such that

µ0 = f − div(g), (4.1.9)
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in the sense of distributions.

By Proposition 4.1.5 and 4.1.6 we get

Proposition 4.1.7 Every measure µ in Mb(Ω) can be decomposed as follows

µ = µ0 + µs = f − div(g) + µ+
s − µ−s , (4.1.10)

where µ0 is a measure in M0,ν(Ω) . It can be written as f − div(g), with f ∈ L1(Ω)

and g ∈ (Lp
′
(1/νp−1))N , µ+

s , µ
−
s are two nonnegative measures in Ms,ν(Ω), which are

concentrated in two disjoint subset E+, E− of zero (p, ν)-capacity.

4.1.3 A technical result

In this section we prove a generalization of a result proved in [13] (see also [20]) which

allows us to obtain an a priori estimates for the gradients of the solutions. Here we

denote by

measνE =

∫
E

ν(x)dx,

for any measurable set E ⊆ RN .

We will use the weigthed Lorentz spaces Lr,∞(ν), 0 < r ≤ ∞ which is the set of

measurable functions such that

‖u‖Lr,∞(ν) = sup
t>0

t measν {x ∈ Ω : |u| > t}1/r < +∞.

The main result of this section is the following:

Lemma 4.1.8 Assume that Ω is an open subset of RN with finite Lebesgue measure

and let ν be a function such that (4.1.5) and (4.1.6) hold true. Let u be a measurable

function such that Tk (u) ∈ W 1,p
0 (ν) with k > 0 and such that∫

Ω

ν(x) |∇Tk(u)|p ≤Mk + L, (4.1.11)
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where M and L are given constants. Then |u|p−1 ∈ Lp̃/p,∞(ν), |∇u|p−1 ∈ L
p′p̃
p′+p̃ ,∞(ν)

and ∥∥|u|p−1
∥∥
Lp̃/p,∞(ν)

≤ C(N, p)
[
M + |Ω|1/p̃ L1/p′

]
, (4.1.12)∥∥|∇u|p−1

∥∥
Lp
′p̃/(p′+p̃),∞(ν)

≤ C(N, p)
[
M + |Ω|1/p̃ L1/p′

]
, (4.1.13)

where C(N, p) is a constant depending only on N and p .

Remark 4.1.9 Under the assumption of Lemma 4.1.8, the functions |u|p−1 and

|∇u|p−1 belong to the weighted Lorentz spaces Lp̃/p,∞(ν) and L
p′p̃
p′+p̃ ,∞(ν) respectively.

By classical results ([89]) such spaces are imbedded in the weigthed spaces Lγ (ν) ,

γ < p̃
p

and Lq (ν) , q < p′p̃
p′+p̃

. Actually we will just use estimates of |u|p−1 and |∇u|p−1

in Lγ (ν), and Lq (ν) respectively.

Moreover we observe that, if ν is a constant then p̃
p

= N
N−p and p′p̃

p′+p̃
= N

N−1
.

Proof.

We begin by proving (4.1.12) . For any h0 > 0, we have

∥∥|u|p−1
∥∥
Lp̃/p,∞(ν)

= sup
h>0

h measν
{
x ∈ Ω : |u|p−1 > h

}p/p̃ ≤ (4.1.14)

≤ sup
0<h≤h0

h measν
{
x ∈ Ω : |u|p−1 > h

}p/p̃
+ sup

h≥h0

h measν
{
x ∈ Ω : |u|p−1 > h

}p/p̃
≤ h0 |Ω|p/p̃ + sup

h≥h0

h measν
{
x ∈ Ω : |u|p−1 > h

}p/p̃
.

Now we observe that

hp̃ measν {xεΩ : |u| > h} ≤
∫

Ω

T p̃h (u)ν(x)dx ≤

≤ C(N, p)

(∫
Ω

|∇Th(u)|p v(x)dx

)p̃/p
≤ C(N, p)(Mh+ L)p̃/p,

60



that is for every h > 0

hp̃/p−1 measν
{
x ∈ Ω : |u|p−1 > h

}
≤ C(N, p)(Mh1/p−1 + L)p̃/p.

Then we obtain

measν
{
x ∈ Ω : |u|p−1 > h

}
≤ C(N, p)(Mh−1 + Lh−p

′
)p̃/p,

that is

h measν
{
x ∈ Ω : |u|p−1 > h

}p/p̃ ≤ C(N, p)(M + Lh−p
′
). (4.1.15)

By (4.1.15) , inequality (4.1.14) becomes∥∥|u|p−1
∥∥
Lp̃/p,∞(ν)

≤ h0 |Ω|p/p̃ + C(N, p)(M + Lh1−p′).

Taking h0 = L(p−1)/p

|Ω|(p−1)/p̃ , we have (4.1.12) .

Now we estimate the |∇u|p−1

For every µ > 0 and every k > 0, we have

µp measν {x ∈ Ω : |∇u| > µ and |u| ≤ k} ≤
∫
|u|≤k
|∇u|p v(x)dx (4.1.16)

=

∫
Ω

|∇Tk(u)|p v(x)dx ≤ (Mk + L),

measν
{
x ∈ Ω : |∇u|p−1 > µ and |u| > k

}
≤ (Mk + L)p̃/p

kp̃/p
. (4.1.17)

By (4.1.16) , (4.1.17) we have

measν
{
x ∈ Ω : |∇u|p−1 > µ

}
≤ (Mk + L)

µp′
+ C(N, p)

(Mk + L)p̃/p

kp̃
. (4.1.18)

Now if we write k = a+ b with a > 0 and b > 0, (4.1.18) becomes

measν
{
x ∈ Ω : |∇u|p−1 > µ

}
≤ Ma

µp′
+
Mb

µp′
+
M

µp′
+ (4.1.19)

+ C(N, p)2p̃/pM p̃/p(a+ b)
p̃
p
−p̃+

+ C(N, p)2p̃/pLp̃/p(a+ b)−p̃,
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for every µ > 0 a > 0, b > 0. If we observe that p̃
p
− p̃ = p̃

(
1
p
− 1
)

= − p̃
p′
< 0 we

deduce

(a+ b)
p̃
p
−p̃ ≤ a

− p̃
p′ , (a+ b)−p̃ ≤ b−p̃.

By (4.1.18) , (4.1.19) , we obtain

measν
{
x ∈ Ω : |∇u|p−1 > µ

}
≤ Ma

µp′
+
Mb

µp′
+
M

µp′
+

+ C(N, p)2p̃/pM p̃/pa
− p̃
p′ + C(N, p)2p̃/pLp̃/pb−p̃

≤ C(N, p)

[
Ma

µp′
+ a−p̃/p

′
M p̃/p +

Mb

µp′
+ b−p̃Lp̃/p

]
+ C(N, p)

L

µp′
.

If we take a = M
p̃−p

p+p̃(p−1)µ
p2

(p−1)[p+p̃(p−1)] and b =
(
µp
′
Lp̃/p

M

) 1
1+p̃

, we obtain

measν
{
x ∈ Ω : |∇u|p−1 > µ

}
≤ C(N, p)

[(
M

µ

)(p̃p)/(p+p̃(p−1))
]

+

+ C(N, p)

[(
ML1/p

µp′

)p̃/(p̃+1)

+
L

µp′

]
.

Since p̃p
p+p̃(p−1)

= p′+p̃
p′p̃

, we have

measν
{
x ∈ Ω : |∇u|p−1 > µ

} p′+p̃
p′p̃ ≤ C(N, p)

[
M

µ
+M

p′+p̃
p′(p̃+1)L

p′+p̃
p′p(p̃+1)µ−

p′+p̃
(p̃+1)

]
+ C(N, p)

[
L
p′+p̃
p′p̃ µ−

p′+p̃
p̃

]
,

or equivantely

µ measν
{
xεΩ : |∇u|p−1 > µ

} p′+p̃
p′p̃ ≤ C(N, p)

[
M +M

p′+p̃
p′(p̃+1)

(
L
p′+p̃
p′p̃ /µ

p′
p̃

) p̃
p(p̃+1)

]
+

C(N, p)

(
L/µ

p′2
p′+p̃

) p′+p̃
p′p̃

.
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By Young inequality we have

µ measν
{
x ∈ Ω : |∇u|p−1 > µ

} p′+p̃
p′p̃ ≤ C(N, p)

[
M +

(
p′ + p̃

p′(p̃+ 1)

)
M

]
(4.1.20)

+ C(N, p)

( p̃

p(p̃+ 1)

)(
L

µp′2/(p′+p̃)

) p′+p̃
p′p̃


+ C(N, p)

( L

µp′2/(p′+p̃)

) p′+p̃
p′p̃


≤ C(N, p)

M +
L
p′+p̃
p′p̃

µp′/p̃

 .

By (4.1.20) we deduce that

sup
µ>0

µ measν
{
x ∈ Ω : |∇u|p−1 > µ

} p′+p̃
p′p̃ ≤

sup
0<µ≤µ0

µ measν
{
x ∈ Ω : |∇u|p−1 > µ

} p′+p̃
p′p̃ +

+ sup
µ≥µ0

µ measν
{
x ∈ Ω : |∇u|p−1 > µ

} p′+p̃
p′p̃

≤ µ0 |Ω|
p′+p̃
p′p̃ + sup

µ≥µ0

c

M +
L
p′+p̃
p′p̃

µp′/p̃

 ≤
c

µ0 |Ω|
p′+p̃
p′p̃ +

M +
L
p′+p̃
p′p̃

µp′/p̃

 .

By choosing µ0 =
(
L
|Ω|

)1/p′

we have (4.1.13).

4.1.4 Definition of renormalized solution

Now we recall the definition of renormalized solution to problem (4.0.26) , which is

an extension of the Definition 2.3.9 given in Chapter II..
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Definition 4.1.10 We say that u is a renormalized solution of (4.0.26) if it satisfies

the following conditions

 u is measurable on Ω, almost everywhere finite,

Tk (u) ∈ W 1,p
0 (ν) , k > 0

|u|p−1 ∈ Lγ (ν) , γ <
p̃

p
; (4.1.21)

|∇u|p−1 ∈ Lq (ν) , q <
p′p̃

p′ + p̃
; (4.1.22)

lim
n→∞

1

n

∫
n≤u<2n

a(x, u,∇u)∇uϕ =

∫
Ω

ϕdµ+
s ; (4.1.23)

lim
n→∞

1

n

∫
−2n≤u<n

a(x, u,∇u)∇uϕ =

∫
Ω

ϕdµ−s ; (4.1.24)

for every ϕ ∈ C0
b (Ω) and∫

Ω

a (x, u,∇u)∇uh′ (u) v +

∫
Ω

a (x, u,∇u)∇vh (u) +

∫
Ω

H(x,∇u)h (u) v (4.1.25)

=

∫
Ω

fh (u) v +

∫
Ω

g∇uh′ (u) v +

∫
Ω

g∇vh (u) ;

for every v ∈ W 1,p (ν)∩L∞ (Ω) and for every h ∈ W 1,∞ (R) with compact support in

R, which are such that h(u)v ∈ W 1,p
0 (ν) .

4.2 Existence result

In this section we prove the existence of a renormalized solution to problem (4.0.26) .

The proof of our result consists of several steps. Firstly we introduce the ”approxi-

mated problems” and we prove an apriori estimate for the gradients of its solutions.

Finally we pass to the limit in the approximated problems by using a stability result.

Theorem 4.2.1 Assume that (4.0.27) − (4.0.35) hold. Then there exists at least a

renormalized solution to problem (4.0.26) .
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4.2.1 Approximated problems

According to (4.1.10) the bounded Radon measure µ can be decomposed in

µ = f − div(g) + µ+
s − µ−s ,

where f ∈ L1 (Ω), g ∈ (Lp
′
(1/νp−1))N , µ+

s , µ
−
s two nonnegative measures in Ms,ν (Ω)

which are concentrated in two disjont subsets E+ and E− of zero (p, ν)-capacity. The

measure µ can be approximated by a sequence µε that is

µε = fε − div(g) + λ+
ε − λ−ε ,

where  fε is a sequence of functions in L1 (Ω)

that converges to f in L1 (Ω) weakly,
(4.2.1)


λ+
ε is a sequence of nonnegative functions in Lα (Ω)

with α = Npt
pt(N+1)−N(t+1)

that converges to µ+
s

in the narrow topology of measures,

(4.2.2)


λ−ε is a sequence of nonnegative functions in Lα (Ω)

with α = Npt
pt(N+1)−N(t+1)

that converges to µ−s

in the narrow topology of measures.

(4.2.3)

We observe that µε ∈ W−1,p′ (1/ν) by Propositions 4.1.7.

Let us denote by

Hε(x, ξ) = T1/ε(H(x, ξ)). (4.2.4)

By (4.0.32) we have

|Hε(x, ξ)| ≤ |H(x, ξ)| ≤ b(x) |∇u|p−1 + b0(x),

|Hε(x, ξ)| ≤
1

ε
. (4.2.5)
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Let us consider the following approximated problem: − div(a(x, uε,∇uε)) +Hε(x,∇uε) = µε in Ω

uε = 0 on ∂Ω.
(4.2.6)

A function uε is a weak solution to such a problem if it satisfies the following condi-

tions: 

uε ∈ W 1,p
0 (ν) ,∫

Ω

a (x, uε,∇uε)∇v +

∫
Ω

Hε(x,∇uε)v =

∫
Ω

fεv +

∫
Ω

g∇v+∫
Ω

λ+
ε v +

∫
Ω

λ−ε v, ∀v ∈ W 1,p
0 (ν) .

(4.2.7)

The existence of a weak solution uε to problem (4.2.6) is obtained by adapting the

proof of classical results proved by Leray and Lions ([80]). Moreover it is easy to verify

that a weak solution to problem (4.2.6) is also a renormalized solution to problem

(4.2.6) .

4.2.2 A priori estimates

Now we prove a priori estimates in the weighted spaces Lγ(ν), γ < p̃
p

for the sequence

|uε|p−1 and a priori estimate in the space Lq (ν) , q < p′p̃
p′+p̃

for the sequence of the

gradients |∇uε|p−1. The proof is divided in several steps. We begin by considering

the case where ‖b‖Lr(Ω) is small enough for the sake of semplicity. Then, in the general

case, we adapt the technique of Bottaro and Marina ([35]).

Theorem 4.2.2 Under the hypotheses of Theorem 3.1 every solution uε to the prob-

lem (4.2.7) satisfies ∥∥|uε|p−1
∥∥
Lγ(ν)

≤ c, (4.2.8)∥∥|∇uε|p−1
∥∥
Lq(ν)

≤ c, (4.2.9)
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where γ < p̃
p

and q < p′p̃
p′+p̃

, c is a positive constant which depends only on p, |Ω| ,

N, ‖b(x)‖
Lτ (Ω)

, supε ‖fε‖L1(Ω) , supε (λ+
ε (Ω) + λ−ε (Ω)) , and on the rearrangement of

b(x).

Proof. The case where ‖b(x)‖
Lτ (Ω)

is small

Using Tk (uε), k > 0, as a test function in (4.2.7),we obtain∫
Ω

a (x, uε,∇uε)∇Tk (uε) +

∫
Ω

Hε(x,∇uε)Tk (uε) (4.2.10)

=

∫
Ω

fεTk (uε) +

∫
Ω

g∇Tk (uε) +

∫
Ω

λ+
ε Tk (uε)−

∫
Ω

λ−ε Tk (uε) .

Now we estimate the single integrals in equality (4.2.10) . From the ellipticity condition

(4.0.27) we obtain∫
Ω

a (x, uε,∇uε)∇Tk (uε) ≥
∫

|uε|≤k

a (x, uε,∇uε)∇uε (4.2.11)

≥
∫

|uε|≤k

ν (x) |∇uε|p =

∫
Ω

ν (x) |∇Tk (uε)|p .

By (4.0.32) and by Hölder inequality we have∣∣∣∣∣∣
∫
Ω

Hε(x,∇u)Tk (uε)

∣∣∣∣∣∣ ≤
∫

Ω

b(x) |∇uε|p−1 Tk (uε) +

∫
Ω

b0(x)Tk (uε) ≤ (4.2.12)

≤ k

∫
Ω

b(x) |∇uε|p−1 + k

∫
Ω

b0(x)

≤ k ‖b(x)‖Lτ (Ω)

∥∥ν−1(x)
∥∥1/q

Lt(Ω)

∥∥|∇uε|p−1
∥∥
Lq(ν)

+ k ‖b0‖L1(Ω) ,

Moreover it results: ∫
Ω

fεTk (uε) ≤ k ‖fε‖L1(Ω) , (4.2.13)∣∣∣∣∫
Ω

λ+
nTk (uε)

∣∣∣∣ ≤ k

∫
Ω

λ+
n , (4.2.14)
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∣∣∣∣∫
Ω

λ−nTk (uε)

∣∣∣∣ ≤ k

∫
Ω

λ−n . (4.2.15)

Now we estimate the last integral in (4.2.10) . From Young inequality we obtain∣∣∣∣∫
Ω

g∇Tk (uε)

∣∣∣∣ ≤ 1

p

∫
Ω

ν(x) |∇Tk (uε)|p +
1

p′

∫
Ω

gp
′
ν−1/(p−1). (4.2.16)

By definition of the convergence of measures in the narrow topology, we have

sup
ε
‖fε‖L1(Ω) + sup

ε

(
λ+
ε (Ω) + λ−ε (Ω)

)
< +∞. (4.2.17)

By (4.2.10)− (4.2.17) we obtain∫
Ω

ν(x) |∇Tk(uε)|p ≤ k p′
[
‖b(x)‖Lτ (Ω) ‖ν−1(x)‖1/q

Lt(Ω)

] ∥∥|∇uε|p−1
∥∥
Lq(Ω)

(4.2.18)

+ k p′ ‖b0(x)‖L1(Ω) + p′ sup
ε
‖fε‖L1(Ω) +

+ k p′ sup
ε

(
λ+
ε (Ω) + λ−ε (Ω)

)
+ ‖g‖p

′

Lp′ (1/νp−1)
.

Now we define

M = p′
[
‖b(x)‖Lτ (Ω)

∥∥ν−1(x)
∥∥1/q

Lt(Ω)

∥∥|∇uε|p−1
∥∥
Lq(Ω)

]
(4.2.19)

+ p
′
[
‖b0(x)‖L1(Ω) + sup

ε
‖fε‖L1(Ω) + sup

ε

(
λ+
ε (Ω) + λ−ε (Ω)

)]
,

M∗ = p′
[
‖b0(x)‖L1(Ω) + sup

ε
‖fε‖L1(Ω) + sup

ε

(
λ+
ε (Ω) + λ−ε (Ω)

)]
, (4.2.20)

L = ‖g‖p
′

Lp′ (1/νp−1)
. (4.2.21)

Therefore (4.2.18) becomes∫
Ω

ν (x) |∇Tk (uε)|p ≤Mk + L. (4.2.22)

By Lemma 4.1.8 we obtain

‖|∇uε|‖p−1
Lq(ν) ≤ c (N, p)

[
M + |Ω|

1
p̃ L

1
p′
]
. (4.2.23)
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We have

∥∥|∇uε|p−1
∥∥
Lq(ν)

≤ c (N, p) ‖b(x)‖
Lτ (Ω)

∥∥ν−1(x)
∥∥ 1
q

Lt(Ω)

∥∥|∇uε|p−1
∥∥
Lq(ν)

+

+ c (N, p)
[
M∗ + |Ω|

1
p̃ L

1
p′
]
.

If the norm of the coefficient b is small enough, i.e.

c(N, p) ‖b(x)‖
Lτ (Ω)

∥∥ν−1(x)
∥∥ 1
q

Lt(Ω) < 1,

we obtain ∥∥|∇uε|p−1
∥∥
Lq(ν)

≤
c (N, p)

[
M∗ + |Ω|

1
p̃ L

1
p′
]

1− c(N, p) ‖b(x)‖
Lτ (Ω)
‖ν−1(x)‖

1
q

Lt(Ω)

,

which is the a priori estimate (4.2.9) .

General case

Now we want to decompose the term b(x) in a finite sum of terms. We will decompose

the term |∇uε|p−1 in a sum of term of type

|∇uε|p−1 χ{mi+1<|uε|<mi}.

The values of the costant mi depend on m but not their number. I will vary between

0 and I ≤ I ∗ which is independent of N .

Now we define a new set ZN so that the measure of the set {x ∈ Ω : mi+1 < |uε| < mi}

will be continuous respect to the parameter m for mi given. Since Ω is a bounded

open set, |Ω| is finite and the set of constant c such that

|{x ∈ Ω : |uε(x)| = c}| > 0

is at most countable.

Let be Zc
N the union of all those sets and ZN = Ω\Zc

N the union of all the sets such

that |{x ∈ Ω : |uε(x)| = c}| = 0. Since

∇uε = 0 a.e. on {x ∈ Ω : |uε(x)| = c} ,
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we obtain that

∇uε = 0 a.e. on Zc
n.

With this choice of mi we know that for mi fixed and 0 < m < mi the function

m −→ |Zn ∩ {m < |uε| < mi}|

is continuous.

First step:

Define for m > 0 the function that is

Sm (s) =

 0 |s| ≤ m

(|s| −m) sign (s) |s| > m.
(4.2.24)

Using Tk (Sm (uε)), with m to be specified, as a test function in (4.2.7) , we obtain∫
Ω

a (x, uε,∇uε)∇Tk (Sm (uε)) +

∫
Ω

Hε(x,∇uε)Tk (Sm (uε)) =

=

∫
Ω

fεTk (Sm (uε)) +

∫
Ω

g∇Tk (Sm (uε)) +

∫
Ω

λ+
nTk (Sm (uε)) (4.2.25)

−
∫

Ω

λ−nTk (Sm (uε)) .

Now we estimate the singular integrals in (4.2.25) .

By elliptic conditions (4.0.27) , we have∫
Ω

a (x, uε,∇uε)∇Tk (Sm (uε)) ≥
∫
Ω

ν (x) |∇Tk (Sm (uε))|p ; (4.2.26)

Moreover ∫
Ω

fεTk (Sm (uε)) ≤ k ‖fε‖L1(Ω) , (4.2.27)∣∣∣∣∫
Ω

λ+
nTk (Sm (uε))

∣∣∣∣ ≤ k

∫
Ω

λ+
n , (4.2.28)∣∣∣∣∫

Ω

λ−nTk (Sm (uε))

∣∣∣∣ ≤ k

∫
Ω

λ−n , (4.2.29)

70



By Young inequality we obtain∣∣∣∣∫
Ω

g∇Tk (Sm (uε))

∣∣∣∣ ≤ 1

p

∫
Ω

ν(x) |∇Tk (Sm (uε))|p +
1

p′

∫
Ω

gp
′
ν−1/(p−1). (4.2.30)

Using the definition of Sm (uε) and that ∇uε = ∇Sm (uε) a.e. in Zε = Ω − Zc
ε we

have by (4.0.32)∣∣∣∣∣∣
∫
Ω

Hε(x,∇uε)Tk (Sm (uε))

∣∣∣∣∣∣ ≤
∫

Ω

∣∣b(x) |∇uε|p−1 Tk (Sm (uε))
∣∣+

∫
Ω

|b0(x)Tk (Sm (uε))|

(4.2.31)

≤ ‖b(x)‖Lτ (Zε∩{|uε|>m})

∥∥ν−1(x)
∥∥ 1
q

Lt(Zε∩{|uε|>m})×

×
∥∥|∇ (Sm (uε))|p−1

∥∥
Lq(ν)

+ k ‖b0‖L1(Ω) .

By (4.2.26)− (4.2.31) we have for k > 0∫
Ω

ν (x) |∇Tk (Sm (uε))|p ≤M1k + L, (4.2.32)

where

M1 = p′ ‖b(x)‖Lτ (Zε∩{|uε|>m})

∥∥ν−1(x)
∥∥ 1
q

Lt(Zε∩{|uε|>m})× (4.2.33)

×
∥∥|∇ (Sm (uε))|p−1

∥∥
Lq(ν)

+M∗,

and where M∗and L are defined by (4.2.20)− (4.2.21).

By Lemma 4.1.8 we have

∥∥|∇ (Sm (uε))|p−1
∥∥
Lq(ν)

≤ c (N, p) ‖b(x)‖
Lτ (|Zε∩{|uε|>m}|)

∥∥ν−1(x)
∥∥ 1
q

Lt(Ω)×

×
∥∥|∇ (Sm (uε))|p−1

∥∥
Lq(ν)

+ c (N, p)
[
M∗ + |Ω|

1
p̃ L

1
p′
]
.

Now we observe that

‖b(x)‖
L1(Zε∩{|uε|>m})

=

∫
|Zε∩{|uε|>m}|

b (x) ≤
∫ |Zε∩{|uε|>m}|

0

b∗(t). (4.2.34)

If

c(N, p) ‖b(x)‖
Lτ (|Zε∩{|uε|>m}|)

∥∥ν−1(x)
∥∥ 1
q

Lt(Ω) ≤
1

2
, (4.2.35)
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then we choose m = m1 = 0. If (4.2.35) is not true, we choose m = m1 > 0 such

that

c(N, p)

(∫ |Zε∩{|uε|>m1}|

0

b∗(t)τdt

) 1
τ (∫

Ω

ν−t
) 1

tq

=
1

2
.

The function m −→ |Zε ∩ {|uε| > m}| is continuous, decreasing and goes to 0 when

m goes to ∞ . Now if we define δ by

c(N, p)

(∫ δ

0

b∗(t)τdt

) 1
τ
(∫

Ω

ν−t
) 1

tq

=
1

2
, (4.2.36)

we have |Zε ∩ {|uε| > m1}| = δ . With this choise of m, we obtain

∥∥|∇ (Sm (uε))|p−1
∥∥
Lq(ν)

≤ 2 c (N, p)
[
M∗ + |Ω|

1
p̃ L

1
p′
]
. (4.2.37)

Second step:

Define for 0 ≤ m < m1 the function

Sm,m1 (uε) =



m1 −m uε > m1

uε −m m ≤ uε ≤ m1

0 −m ≤ uε ≤ m

uε +m −m1 ≤ uε ≤ −m

m−m1 uε < −m1

(4.2.38)

Using the test function Tk (Sm,m1 (uε)) with m to be specified later we have∫
Ω

a (x, uε,∇uε)∇Tk (Sm,m1 (uε)) +

∫
Ω

Hε(x,∇uε)Tk (Sm,m1 (uε)) = (4.2.39)

∫
Ω

fεTk (Sm,m1 (uε)) +

∫
Ω

g∇Tk (Sm,m1 (uε)) +

∫
Ω

λ+
nTk (Sm,m1 (uε))

−
∫

Ω

λ−nTk (Sm,m1 (uε)) .

Now as in the previous step we have∫
Ω

a (x, uε,∇uε)∇Tk (Sm,m1 (uε)) ≥
∫
Ω

ν (x) |∇Tk (Sm,m1 (uε))|p .
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∫
Ω

fεTk (Sm,m1 (uε)) ≤ k ‖fε‖L1(Ω) , (4.2.40)∣∣∣∣∫
Ω

λ+
nTk (Sm,m1 (uε))

∣∣∣∣ ≤ k

∫
Ω

λ+
n , (4.2.41)∣∣∣∣∫

Ω

λ−nTk (Sm,m1 (uε))

∣∣∣∣ ≤ k

∫
Ω

λ−n . (4.2.42)

By Young inequality we have∫
Ω

g∇Tk (Sm,m1 (uε)) ≤
1

p

∫
Ω

ν(x) |∇TkSm,m1 (uε)|p +
1

p′

∫
Ω

gp
′
ν−1/(p−1). (4.2.43)

Since Sm,m1 (uε) = 0 when |uε| ≤ m, we obtain∣∣∣∣∣∣
∫
Ω

Hε(x,∇uε)Tk (Sm,m1 (uε))

∣∣∣∣∣∣ ≤ k

∫
m<|uε|<m1

b (x) |∇uε|p−1 + (4.2.44)

+ k

∫
|uε|≥m1

b (x) |∇uε|p−1 + k

∫
Ω

b0(x)

≤ k ‖b (x)‖Lτ (Zε∩{m<|uε|<m1})

∥∥ν−1
∥∥ 1
q

Lt(Ω)

∥∥|∇ (Sm,m1 (uε))|p−1
∥∥
Lq(v)

+ k ‖b (x)‖Lτ (Ω)

∥∥ν−1
∥∥ 1
q

Lt(Ω)

∥∥|∇ (Sm1 (uε))|p−1
∥∥
Lq(v)

+ k ‖b0(x)‖L1(Ω) .

Combining (4.2.39) , (4.2.44) we have for k > 0∫
Ω

ν (x) |∇Tk (Sm,m1 (uε))|p ≤M2k + L, (4.2.45)

where

M2 = p′ ‖b(x)‖Lτ (Zε∩{m1<|uε|<m})

∥∥ν−1(x)
∥∥ 1
q

Lt(Ω)

∥∥|∇ (Sm,m1 (uε))|p−1
∥∥
Lq(ν)

+ (4.2.46)

+ ‖b (x)‖Lτ (Ω)

∥∥ν−1
∥∥ 1
q

Lt(Ω)

∥∥|∇ (Sm1 (uε))|p−1
∥∥
Lq(v)

+M∗,

where M∗ and L are defined in (4.2.20) , (4.2.21).

By (4.2.9) we have∥∥|∇ (Sm,m1 (uε))|p−1
∥∥
Lq(ν)

≤ c (N, p) ‖b(x)‖
Lτ (|Zε∩{m<|uε|<m1}|)

∥∥ν−1(x)
∥∥ 1
q

Lt(Ω)

∥∥|∇ (Sm,m1 (uε))|p−1
∥∥
Lq(ν)

+ c(N, p)

[
‖b (x)‖Lτ (Ω)

∥∥ν−1
∥∥ 1
q

Lt(Ω)

∥∥|∇ (Sm1 (uε))|p−1
∥∥
Lq(v)

]
+ c(N, p)

[
M∗ + |Ω|

1
p̃ L

1
p′
]
.
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If

c (N, p) ‖b(x)‖
Lτ (|Zε∩{m<|uε|<m1}|)

∥∥ν−1(x)
∥∥ 1
q

Lt(Ω) ≤
1

2
, (4.2.47)

then we choose m = m2 = 0. If (4.2.47) does not hold, we choose m = m2 > 0 so

that

c (N, p) ‖b(x)‖
Lτ (|Zε∩{m<|uε|<m1}|)

∥∥ν−1(x)
∥∥ 1
q

Lt(Ω) =
1

2
.

The function m −→ |Zε ∩ {|uε| > m}| is continuous, decreasing and goes to 0 when

m goes to ∞ . Now if we define δ by

c(N, p)

(∫ δ

0

b∗(t)τdt

) 1
τ
(∫

Ω

ν−t
) 1

tq

=
1

2
, (4.2.48)

we have |Zε ∩ {m < |uε| < m1}| = δ . With this choice of m we obtain

∥∥|∇ (Sm,m1 (uε))|p−1
∥∥
Lq(ν)

≤ 2 c(N, p)

[
‖b (x)‖Lτ (Ω)

∥∥ν−1
∥∥ 1
q

Lt(Ω)

]
× (4.2.49)

×
∥∥|∇ (Sm1 (uε))|p−1

∥∥
Lq(v)

+

+ 2c(N, p)
[
M∗ + |Ω|

1
p̃ L

1
p′
]
.

Third step:

Now we define for 0 ≤ m < m2 the function Sm,m2 : R −→ R

Sm,m2 (uε) =



m2 −m uε > m2

uε −m m ≤ uε ≤ m2

0 −m ≤ uε ≤ m

uε +m −m2 ≤ uε ≤ −m

m−m2 uε < −m2.

(4.2.50)

As in the previous step we use Tk (Sm,m2 (uε)) with m to be specified later as test

function in the (4.2.7) ∫
Ω

ν (x) |∇Tk (Sm,m1 (uε))|p ≤M3k + L,
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where

M3 = p′ ‖b(x)‖Lτ (Zε∩{m1<|uε|<m})

∥∥ν−1(x)
∥∥ 1
q

Lt(Ω)

∥∥|∇ (Sm,m2 (uε))|p−1
∥∥
Lq(ν)

+

+ ‖b (x)‖Lτ (Ω)

∥∥ν−1
∥∥ 1
q

Lt(Ω)

∥∥∥∣∣∇ (Sm2,1 (uε)
)∣∣p−1

∥∥∥
Lq(v)

+ ‖b (x)‖Lτ (Ω)

∥∥ν−1
∥∥ 1
q

Lt(Ω)

∥∥|∇ (Sm1 (uε))|p−1
∥∥
Lq(v)

+M∗,

where M∗ and L are defined in (4.2.20) , (4.2.21).

As before we use Lemma 4.1.8, we choose m = m3 = 0 in the case

c (N, p) ‖b(x)‖
Lτ (|Zε∩{m<|uε|<m2}|)

∥∥ν−1(x)
∥∥ 1
q

Lt(Ω) ≤
1

2
(4.2.51)

and if (4.2.51) does not hold, we choose m = m3 > 0 so that

c (N, p) ‖b(x)‖
Lτ (|Zε∩{m<|uε|<m2}|)

∥∥ν−1(x)
∥∥ 1
q

Lt(Ω) =
1

2
. (4.2.52)

Now as in the previous step we observe that m3 depends on n and

|Zε ∩ {m < |uε| < m2}|= δ.

With this choice of m we obtain

∥∥|∇ (Sm,m1 (uε))|p−1
∥∥
Lq(ν)

≤ 2 c(N, p)

[
‖b (x)‖Lτ (Ω)

∥∥ν−1
∥∥ 1
q

Lt(Ω)

]
(4.2.53)∥∥|∇ (Sm2,m1 (uε))|p−1

∥∥
Lq(v)

+

+ 2 c(N, p)

[
‖b (x)‖Lτ (Ω)

∥∥ν−1
∥∥ 1
q

Lt(Ω)

]
∥∥|∇ (Sm1 (uε))|p−1

∥∥
Lq(v)

+

+ 2 c(N, p)
[
M∗ + |Ω|

1
p̃ L

1
p′
]
.

Final step

We repeat the procedure until i = I . If

c (N, p) ‖b(x)‖
Lτ (|Zε∩{m<|uε|<mI−1}|)

∥∥ν−1(x)
∥∥ 1
q

Lt(Ω) ≤
1

2
,
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then we choose mI = 0. Now we want to estimate I. We observe

|Ω| ≥ |ZN | ≥ |ZN ∩ {|uε| > m1}|+ |ZN ∩ {m2 < |uε| < m1}|+

+ |ZN ∩ {m3 < |uε| < m2}|+ ....+ + |ZN ∩ {mI−1 < |uε| < mI−2}| .

By (4.2.36) , (4.2.48) , we know that

|ZN ∩ {|uε| > m1}| = |ZN ∩ {m2 < |uε| < m1}| =

= |ZN ∩ {m3 < |uε| < m2}| = ... = |ZN ∩ {mI−1 < |uε| < mI−2}| = δ,

with δ that does not depend on N . We realize that

|Ω| ≥ (I − 1)δ,

I ≤ I∗, (4.2.54)

where I∗ = 1+

[
|Ω|
δ

]
. From (4.2.54) we deduce that I depends only on b(x) through

the definition of δ but it does not depend on N .

Now we define m0 = +∞ , Sm1,m0 = Sm1
Xi =

∥∥∥∣∣∇ (Smi,mi−1
(uε)

)∣∣p−1
∥∥∥
Lq(ν)

1 ≤ i ≤ I

a = 2C(N, p) ‖b (x)‖Lτ (Ω) ‖ν−1‖
1
q

Lt(Ω)

b = 2 C(N, p)
[
M∗ + |Ω|

1
p̃ L

1
p′
]
.

By (4.2.37) , (4.2.49) , (4.2.53) , we deduce

X1 ≤ b X2 ≤ aX1 + b X3 ≤ aX2 + aX1 + b

XI ≤ aXI−1 + ...+ aX1 + b for I ≤ I∗
.

By induction we have

Xi ≤ (a+ 1)i−1 b, for 1 ≤ i ≤ I,
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|∇uε|p−1 =
I∑
i=1

|∇uε|p−1 χ{mi<|uε|<mi−1} =
I∑
i=1

∣∣∇Smi,mi−1
(uε)

∣∣p−1
. (4.2.55)

By (4.2.55) we have

∥∥|∇uε|p−1
∥∥
Lq(ν)

≤
I∑
i=1

∥∥∥∣∣∇Smi,mi−1
(uε)

∣∣p−1
∥∥∥
Lq(ν)

≤
I∑
i=1

Xi ≤ (4.2.56)

≤
I∑
i=1

(a+ 1)i−1 b = b

[
(a+ 1)I − 1

a

]
≤ b

a

(
(a+ 1)I

∗
− 1
)
.

In the same way we obtain the estimate for |uε|p−1 .

4.2.3 A stability result

In this section we prove a stability result which unsures that the solution uε converges

almost everywhere to renormalized solution u.The result is obtained by adapting the

technique developed in [48] and used also in [72]. A new proof of this stability result,

which does not need the strong convergence of the truncations of the solutions in the

energy space, has been proved in [84]

In order to prove the stability result, we consider the nonlinear problem − div(a(x, u,∇u) = µε in Ω

u = 0 on ∂Ω,
(4.2.57)

where ε is a sequence of positive numbers that converges to zero, a : Ω×R×RN −→

RN is a Carathéodory function such that (4.0.27) , (4.0.28) are satisfied and µε is a

Radon measure with bounded total variation in Ω.

Since µε and µ are measures in Mb (Ω) , they can be decomposed as in the Proposition

4.1.7, as follows

µε = fε − div(gε) + λ+
ε − λ−ε , (4.2.58)

µ = f − div(g) + µ+
s − µ−s , (4.2.59)
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where sequences fε, λ
+
ε , λ

−
ε satisfy (4.2.1)− (4.2.3) and gε is a sequence such that gε is a sequence of functions in

(
Lp
′
(1/νp−1)

)N
gε → g

(
Lp
′
(1/νp−1)

)N
strongly.

(4.2.60)

The following stability result holds true:

Theorem 4.2.3 Assume that (4.0.27) , (4.0.28) , (4.2.1)− (4.2.3) , (4.2.60) hold. Let

uε be a renormalized solution of (4.2.57) . Then uε converges almost everywhere to

renormalized solution u to the problem − div(a(x, u,∇u) = µ in Ω

u = 0 on ∂Ω.
(4.2.61)

According to Proposition 4.1.7 λ+
ε and λ−ε can be decomposed in the following

way

λ+
ε = λ+

ε,0 + λ+
ε,s,

λ−ε = λ−ε,0 + λ−ε,s,

with λ+
ε,0 , λ−ε,0 ∈ M0,v(Ω), λ+

ε,0 , λ−ε,0 ≥ 0 and λ+
ε,s , λ−ε,s ∈ Ms,v(Ω), λ+

ε,s , λ−ε,s ≥ 0. On

the other hand µε can be decomposed as follows

µε = µε,0 + µε,s = µε,0 + µ+
ε,s + µ−ε,s,

where µε,0 ∈ M0,v(Ω) and µ+
ε,s, µ

−
ε,s are two nonnegative measure in Ms,v(Ω) which

are concentrated on two disjoint subset E+
ε and E−ε of (p, ν)-capacity. As in [48] we

have

0 ≤ µ+
ε,s ≤ λ+

ε,0 0 ≤ µ−ε,s ≤ λ−ε,0. (4.2.62)

Sketch of the proof.

First step
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By using the same tecnique used in the previous, we obtain a priori estimate for ∇uε

thanks to which we have that uε → u a.e. Now we want to prove that u is a solution

of (4.2.61) in the sense of distribution.

We know that uε is a renormalized solution of the problem (4.2.57) and so it is also

a solution in the sense of distribution that is∫
Ω

a(x, uε,∇uε)∇ϕ =

∫
Ω

ϕdµε,∀ϕ ∈ C∞0 (Ω) . (4.2.63)

Otherwise by a result contained in [97] we have

a(x, uε,∇uε) −→ a(x, u,∇u) in L1 (Ω) strongly (4.2.64)

and by passing to the limit in (4.2.63) , we obtain that u is a distributional solution

of (4.2.61).

Second step

In this step we adapt the proof given in [72]. We prove that

lim sup
n−→∞

lim
ε→0

sup
1

n

∫
{n<uε<2n}

a(x, uε,∇uε)∇uεϕ ≤
∫

Ω

ϕdµ+
s , (4.2.65)

lim sup
n−→∞

lim
ε→0

sup
1

n

∫
{−2n<uε<n}

a(x, uε,∇uε)∇uεϕ ≤
∫

Ω

ϕdµ−s , (4.2.66)

∀ϕ ∈ C1
(
Ω
)

with ϕ ≥ 0.

Now we define for n ≥ 1 sn : R −→ R and hη : R −→ R by

sn(r) =
T2n(r)− Tn(r)

n
, (4.2.67)

hη(r) = 1− |sη(r)| . (4.2.68)
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If we take hη(uε)sn(u+
ε )ϕ as test function and with η −→∞ we have∫

Ω

a(x, uε,∇uε)sn(u+
ε )∇ϕ+

1

n

∫
{n<uε<2n}

a(x, uε,∇uε)∇uεϕ

=

∫
Ω

fεsn(u+
ε )ϕ+

∫
Ω

gεsn(u+
ε )∇ϕ+

1

n

∫
{n<uε<2n}

gε∇uεϕ+∫
Ω

sn(u+
ε )ϕdλ+

ε,0 −
∫

Ω

sn(u+
ε )ϕdλ−ε,0 +

∫
Ω

ϕdµ+
ε,s,

∀ϕ ∈ C1(Ω) non negative.

Since sn(u+
ε ) is bounded and sn(u+

ε ) −→ sn(u+) a.e , by Lebesgue convergence theo-

rem we have

lim
n−→∞

lim
ε−→0

∫
Ω

a(x, uε,∇uε)sn(u+
ε )∇ϕ = lim

n−→∞

∫
Ω

a(x, u,∇u)sn(u+)∇ϕ = 0 (4.2.69)

and by (4.2.62)

lim
n−→∞

lim
ε−→0

∫
Ω

fεsn(u+
ε )ϕ = lim

n−→∞

∫
Ω

fsn(u+)ϕ = 0. (4.2.70)

By Hölder inequality we have

1

n

∫
{n<uε<2n}

gε∇uεϕ ≤ ‖ϕ‖L∞(Ω) ‖gε‖Lp′ (1/vp−1) ×
1

n

(∫
{n<uε<2n}

ν |∇uε|p
)1/p

.

Since gε → g
(
Lp
′
(1/νp−1)

)N
strongly,.we have

lim
n−→∞

lim sup
ε−→0

1

n

∫
{n<uε<2n}

gε∇uεϕ = 0, (4.2.71)

and finally by (4.2.62)∫
Ω

sn(u+
ε )ϕdλ+

ε,0 +

∫
Ω

ϕdµ+
ε,s ≤

∫
Ω

ϕdλ+
ε . (4.2.72)

By (4.2.69)− (4.2.72) we obtain ∀ϕ ∈ C1(Ω)

1

n

∫
{n<uε<2n}

a(x, uε,∇uε)∇uεϕ ≤ ω(ε, n) +

∫
Ω

ϕdλ+
ε , (4.2.73)
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where ω is a function such that lim
n−→∞

lim sup
ε−→0

ω(ε, n) = 0. Since λ+
ε converges to µ+

s

in the narrow topology we have (4.2.65) .

Third step

Now we want to prove that u is a renormalized solution. As in [48] we consider for

δ > 0 two cut-off functions ψ+
δ and ψ−δ ∈ C∞0 (Ω) such that

0 ≤ ψ+
δ ≤ 1 0 ≤ ψ−δ ≤ 1 sup p

(
ψ+
δ

)
∩ sup p

(
ψ−δ
)

= ∅, (4.2.74)

lim
δ−→0

∫
Ω

∣∣∇ψ+
δ

∣∣p = lim
δ−→0

∫
Ω

∣∣∇ψ+
δ

∣∣p = 0,

lim
δ−→0

∫
Ω

ψ+
δ dµ

+
s = lim

δ−→0

∫
Ω

ψ−δ dµ
−
s = 0,

lim
δ−→0

∫
Ω

(1− ψ+
δ )dµ+

s = lim
δ−→0

∫
Ω

(1− ψ−δ )dµ−s = 0,

lim
δ−→0

lim
ε−→0

∫
Ω

ψ−δ dλ
+
ε = lim

δ−→0
lim
ε−→0

∫
Ω

ψ+
δ dλ

−
ε = 0, (4.2.75)

lim
δ−→0

lim
ε−→0

∫
Ω

(1− ψ+
δ )dλ+

ε = lim
δ−→0

lim
ε−→0

∫
Ω

(1− ψ+
δ )dλ+

ε = 0. (4.2.76)

Using hn(uε)h(u)v(1 − ψ+
δ − ψ

−
δ ) as test function where hn is defined in (4.2.68) we

have ∫
Ω

h
′

n(uε)h(u)v(1− ψ+
δ − ψ

−
δ ) [a(x, uε,∇uε)]∇uε+ (4.2.77)∫

Ω

hn(uε)h
′
(u)v(1− ψ+

δ − ψ
−
δ ) [a(x, uε,∇uε)]∇u+∫

Ω

hn(uε)h(u)(1− ψ+
δ − ψ

−
δ ) [a(x, uε,∇uε)]∇v+∫

Ω

hn(uε)h(u)v [a(x, uε,∇uε)]∇(1− ψ+
δ − ψ

−
δ )∫

Ω

fεhn(uε)h(u)v(1− ψ+
δ − ψ

−
δ ) +

∫
Ω

gε∇
[
hn(uε)h(u)v(1− ψ+

δ − ψ
−
δ )
]

+∫
Ω

hn(uε)h(u)v(1− ψ+
δ − ψ

−
δ )dλ+

ε,0 +

∫
Ω

hn(uε)h(u)v(1− ψ+
δ − ψ

−
δ )dλ−ε,0.
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Now we pass to the limit in (4.2.77) for ε −→ 0, n −→∞ and δ −→ 0.

Since (1− ψ+
δ − ψ

−
δ )a(x, uε,∇uε)∇uε is positive, letting δ −→ 0 we have

lim
δ−→0

lim sup
n−→∞

lim sup
ε−→0

1

n

∫
{n<|uε|<2n}

|h(u)v| (1−ψ+
δ −ψ

−
δ )a(x, uε,∇uε)∇uε = 0. (4.2.78)

By [97] we know that T2n(uε) −→ T2n(u) a.e so we have

a(x, T2n(uε),∇T2n(uε)) −→ a(x, T2n(u),∇T2n(u)).

Since |hn(uε)| ≤ 1 and hn(uε) −→ hn(u) a.e, replacing a(x, u,∇u) by a(x, TM(u),∇TM(u))

and letting n −→∞ , δ −→ 0 we have

lim
δ−→0

lim
n−→∞

lim
ε−→0

∫
Ω

hn(uε)h
′
(u)v(1− ψ+

δ − ψ
−
δ ) [a(x, uε,∇uε)]∇u (4.2.79)

=

∫
Ω

h
′
(u)v (a(x, u,∇u))∇u.

In the same way

lim
δ−→0

lim
n−→∞

lim
ε−→0

∫
Ω

hn(uε)h(u)(1− ψ+
δ − ψ

−
δ ) (a(x, uε,∇uε))∇v (4.2.80)

=

∫
Ω

h(u) (a(x, u,∇u))∇v,

lim
δ−→0

lim
n−→∞

lim
ε−→0

∫
Ω

hn(uε)h(u)v [a(x, uε,∇uε)]∇(1− ψ+
δ − ψ

−
δ ) = 0. (4.2.81)

Using the point-wise convergence of uε and the definition of hn and the definition of

ψ+
δ , ψ

−
δ we obtain

lim
δ−→0

lim
n−→∞

lim
ε−→0

∫
Ω

fεhn(uε)h(u)v(1− ψ+
δ − ψ

−
δ ) =

∫
Ω

fh(u)v. (4.2.82)

To conclude that u is a renormalized solution we have to prove

lim
n→∞

1

n

∫
n<u<2n

a(x, u,∇u)∇uϕ =

∫
Ω

ϕdµ+
s , (4.2.83)
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lim
n→∞

1

n

∫
−2n<u<−n

a(x, u,∇u)∇uϕ =

∫
Ω

ϕdµ−s , (4.2.84)

∀ϕ ∈ C0
b (Ω).

By the pointwise convergence of uε and by Fatou Lemma it follows

lim sup
n→∞

1

n

∫
n<u<2n

a(x, u,∇u)∇uϕ ≤
∫

Ω

ϕdµ+
s , (4.2.85)

lim
n→∞

1

n

∫
−2n<u<−n

a(x, u,∇u)∇uϕ ≤
∫

Ω

ϕdµ−s , (4.2.86)

∀ϕ ∈ C1(Ω) with ϕ ≥ 0.

Since u is a solution in the sense of distribution, taking hn(u)ψ as test function where

hn is defined in (4.2.68) and ψ ∈ C∞0 (Ω), letting η →∞, δ → 0 we obtain

lim inf
n→∞

1

n

∫
n<u<2n

a(x, u,∇u)∇uϕ ≥
∫

Ω

ϕdµ+
s , (4.2.87)

∀ϕ ∈ C1(Ω) with ϕ ≥ 0.

If we take ϕ(1− ψ+
δ )ψ−δ as test function we have (4.2.84)

Fourth step

Now we want to prove that Tk(uε) converges to Tk(u) strongly in H1
0 (Ω) for any k > 0.

By (4.0.27) , the point-wise convergence of uε,∇uε we have∫
Ω

a(x, Tk(u),∇Tk(u))∇Tk(u) ≤ lim inf
ε−→0

∫
Ω

a(x, Tk(uε),∇Tk(uε))∇Tk(uε).

If we take hn(uε)Tk(uε) as test function and letting n→∞, ε→ 0 we have

lim sup
ε→0

∫
Ω

a(x, Tk(uε),∇Tk(uε))∇Tk(uε) ≤
∫

Ω

a(x, u,∇u)∇Tk(u), (4.2.88)
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so we conclude that

lim
ε→0

∫
Ω

a(x, Tk(uε),∇Tk(uε))∇Tk(uε) ≤
∫

Ω

a(x, Tk(u),∇Tk(u))∇Tk(u). (4.2.89)

By (4.2.89) we have

lim
ε→0

∫
Ω

a(x, Tk(uε),∇Tk(uε))∇Tk(uε) =

∫
Ω

a(x, Tk(u),∇Tk(u))∇Tk(u). (4.2.90)

Because of (4.0.27) and the point-wise convergence of ∇Tk(uε) [101] ∇Tk(uε) →

∇Tk(u) in (Lp(Ω))N strongly.

4.2.4 Passage to the limit

The weak solution uε to approximated problem (4.2.6) satisfies − div(a(x, uε,∇uε)) = Φε − div(g) in Ω

uε ∈ W 1,p
0 (ν) on ∂Ω,

(4.2.91)

where Φε = fε −Hε(x,∇uε) + λ+
ε − λ−ε .

Using Tk (uε) as test function in (4.2.91) we have for some M̃ and L̃∫
Ω

v (x) |∇Tk (uε)|p ≤ M̃k + L̃, (4.2.92)

for every k > 0 and every ε > 0.

We know that there exists a function u such that uε converges to u a.e., ∇u exists

a.e., Tk (u) ∈ W 1,p
0 (ν) and ∇uε converges to ∇u almost everywhere [101] By Fatou

Lemma and by (4.2.92) we deduce that∫
Ω

v (x) |∇Tk (u)|p ≤ M̃k + L̃. (4.2.93)
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From (4.2.93) and by Lemma 4.1.8 we deduce that |∇u|p−1 ∈ Lq (ν) and |u|p−1 ∈

Lγ (ν) . By a result proved in [101] we know that a(x, uε,∇uε) −→ a(x, u,∇u) in

L1 (Ω) strongly.

Therefore b(x) |∇uε|p−1 −→ b(x) |∇u|p−1 almost everywhere in Ω and for every mea-

surable set E ⊂ Ω ∫
E

|b(x)|
∣∣∇up−1

ε

∣∣ ≤ c ‖b(x)‖Lτ (E)

∥∥v−1
∥∥ 1
q

Lt(E) .

By Vitali-Lebesgue theorem we have b(x) |∇uε|p−1 −→ b(x) |∇u|p−1 in L1 (Ω) strongly.

Thanks to these results the weak solution uε of − div(a(x, uε,∇uε)) = fε −Hε(x,∇uε)− div(g) + λ+
ε − λ−ε

uε ∈ W 1,p
0 (ν)

(4.2.94)

is also a renormalized solution to (4.2.94) and the stability results (Theorem 4.2.3)

asserts that u is also a renormalized solution to the problem − div(a(x, u,∇u)) +H(x,∇u) = f − div(g) + µ+
s − µ−s in Ω

u = 0 on ∂Ω,

which proves the theorem.
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CHAPTER V

PARABOLIC EQUATIONS

This chapter is devoted to the study of nonlinear parabolic problems when tha data

are L1−function or more in general a Radon measure with bounded variation. In the

first section we recall the definition of functional spaces which are essential to study

of parabolic problems and the different notion of solutions. In Section II we prove

the existence of a renormalized solution for a class of nonlinear parabolic equations

having lower order terms.

5.0.5 Spaces of functions and notion of solutions

In this section we recall some feature about spaces of functions with values in a Banach

space. Let be V a real Banach space, for 1 ≤ p < ∞, let us denote by Lp((a, b);V )

the space of measurable functions u : [a, b]→ V such that

‖u‖Lp((a,b);V ) =

(∫ b

a

‖u‖pV dt

) 1
p

<∞,

and L∞((a, b);V ) the space of measurable functions such that:

‖u‖L∞((a,b);V ) = ess sup
[a,b]

‖u‖V <∞.

Let us recall that, for 1 ≤ p ≤ ∞, Lp((a, b);V ) is a Banach space. Moreover if

for 1 ≤ p < ∞ and V ′, the dual space of V , is separable, then the dual space of

Lp((a, b);V ) can be identified with Lp
′
(a, b;V ′).

For our purpose V will mainly be either the Lebesgue space Lp(Ω) or the Sobolev

space W 1,p
0 (Ω), with 1 ≤ p < ∞. We denote by Lp((a, b);W 1,p

0 (Ω)) the space of all

functions u : Ω × [a, b] → R which belong to Lp(Ω × (a, b)) and such that ∇u =
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(ux1 , ..., uxN ) belongs to (Lp(Ω× (a, b))N (often, for simplicity, we will indicate this

space only by Lp(Ω× (a, b)). Moreover,(∫ b

a

|∇u|p dxdt
) 1

p

defines an equivalent norm by Poincaré’s inequality.

Given a function in Lp((a, b);V ) it is possible to define a time derivative of u

in the space of vector valued distributions D′((a, b);V ) which is the space of linear

continuous functions from C∞0 (a, b) into V. In fact, the definition is the following:

〈ut, ψ〉 = −
∫ b

a

uψt dt , ∀ ψ ∈ C∞0 (a, b),

where the equality is meant in V . In the following, we will also use sometimes the

notation ∂u
∂t

instead of ut. We recall the following classical embedding result (see [46]

for the proof)

Theorem 5.0.4 Let H be an Hilbert space such that:

V ↪→
dense

H ↪→ V ′ .

Let u ∈ Lp((a, b);V ) be such that ut, defined as above in the distributional sense,

belongs to Lp
′
((a, b);V ′). Then u belongs to C([a, b];H).

This result also allows us to deduce, for functions u and v enjoying these properties,

the integration by parts formula:∫ b

a

〈v, ut〉 dt+

∫ b

a

〈u, vt〉 dt = (u(b), v(b))− (u(a), v(a)) , (5.0.95)

where 〈·, ·〉 is the duality between V and V ′ and (·, ·) the scalar product in H. Notice

that (5.0.95) makes sense thanks to Theorem 5.0.4. Its proof relies on the fact that

C∞0 ((a, b);V ) is dense in the space of functions u ∈ Lp((a, b);V ) such that ut ∈

Lp
′
((a, b);V ′) endowed with the norm ‖u‖ = ‖u‖Lp((a,b);V ) + ‖ut‖Lp′ ((a,b);V ′), together
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with the fact that (5.0.95) is true for u, v ∈ C∞0 ((a, b);V ) by the theory of integration

and derivation in Banach spaces.

Now we recall some further results that will be very useful in what follows. The

first one contains a generalization of the integration by parts formula (5.0.95) where

the time derivative of a function is less regular, and its proof can be found in [61].

Lemma 5.0.5 Let f : R→ R be a continuous piecewise C1 function such that f(0) =

0 and f ′ is zero away from a compact set of R. Let us denote F (s) =
∫ s

0
f(r)dr. If

u ∈ Lp((0, T );W 1,p
0 (Ω)) is such that ut ∈ Lp

′
((0, T );W−1,p′(Ω)) + L1(QT ) and if

ψ ∈ C∞(Q), then we have∫ T

0

〈ut, f(u)ψ〉 dt =

∫
Ω

F (u(T ))ψ(T ) dx−
∫
Ω

F (u(0))ψ(0) dx−
∫∫
QT

ψt F (u) dxdt.

Now we state an embedding theorem, well-known Gagliardo-Nirenberg embedding

theorem, that will play a central role in our work ([90]).

Theorem 5.0.6 (Gagliardo-Nirenberg) Let v be a function in W 1,q
0 (Ω) ∩ Lρ(Ω)

with q ≥ 1, ρ ≥ 1. Then there exists a positive constant C, depending on N , q and

ρ, such that

‖v‖Lγ(Ω) ≤ C‖∇v‖θ(L(Ω))N‖v‖
1−θ
Lρ(Ω) ,

for every θ and γ satisfying

0 ≤ θ ≤ 1, 1 ≤ γ ≤ +∞, 1

γ
= θ

(
1

q
− 1

N

)
+

1− θ
ρ

.

An immediate consequence of the previous result is the following embedding result:

Corollary 5.0.7 Let v ∈ Lq((0, T );Lq(Ω)) ∩ L∞((0, T );Lρ(Ω)), with q ≥ 1, ρ ≥ 1.

Then v ∈ Lσ(Ω) with σ = qN+ρ
N

and∫∫
QT

|v|σ dxdt ≤ C‖v‖
ρq
N

L∞(0,T ;Lρ(Ω))

∫∫
QT

|∇v|q dxdt .
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Now we give some basic result about nonlinear parabolic problems and we intro-

duce the relative notion of solutions.

Let be Ω a bounded open set of RN , N ≥ 2, QT is the cylinder Ω× (0, T ), where T

is a real positive number. Let us consider the nonlinear parabolic problem
∂u
∂t
− div(a(x, t, u,∇u)) = f in QT

u(x, t) = 0 on ∂Ω× (0, T )

u(x, 0) = u0(x) in Ω,

(5.0.96)

where a(x, t, s, ξ) : Ω× (0, T )×R×RN −→ RN is a Carathéodory function such that

a(x, t, s, ξ)ξ ≥ α |ξ|p , α > 0, (5.0.97)

|a(x, t, s, ξ)| ≤ ν
[
h(x, t) + |s|p−1 + |ξ|p−1] , ν > 0, h(x, t) ∈ Lp′(QT ), (5.0.98)

(a(x, t, s, ξ)− a(x, t, s, %), ξ − %) > 0, ξ 6= % (5.0.99)

for almost every x ∈ Ω, t ∈ (0, T ) and for every s ∈ R, ξ, % ∈ RN .

If f ∈ Lp
′
(QT ) and u0 ∈ L2(Ω) then problem (5.0.96) admits a unique solution

u ∈ C(0, T ;L2(Ω)) ∩ Lp(0, T ;W 1,p
0 (Ω) in the weak sense, that is

−
∫

Ω

u0ϕ(0)dx−
∫ T

0

< ϕt, u > dt+

∫∫
QT

a(x, t, u,∇u)·∇ϕdxdt =

∫ T

0

< f, ϕ >W−1,p′ (Ω),W 1,p
0 (Ω) dt,

for all ϕ ∈ Lp(0, T ;W 1,p
0 (Ω) and ϕt ∈ Lp

′
(0, T ;W−1,p′(Ω) such that ϕ(T ) = 0 ([81]) .

When the datum is not in the dual space it is not possible to use a variational

framework ([81]). For this reason in [45] (see also [30]) the following notion of solution

have been introduced :

Definition 5.0.8 Let be f a bounded Borel measure. A function u is a solution to

(5.0.96) in the sense of distribution if

u ∈ L1(0, T ;W 1,1
0 (Ω)),

a(x, t, u,∇u) ∈ L1(QT ),
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and u satisfies the equation (5.0.96) in the following weak sense:

−
∫∫
QT

u
∂ϕ

∂t
dxdt+

∫∫
QT

a(x, t, u,∇u) · ∇ϕdxdt =

∫∫
QT

ϕdf,

for every ϕ ∈ C∞(Q̄T ) such that ϕ = 0 in a neighborhood of ∂Ω× (0, T )∪ (Ω×{T}).

The authors proved the existence of at least a solution of (5.0.96) in Lq(0, T ;W 1,q
0 (Ω)),

with q < N(p−1)+p
N+1

and p real number such that p > 2N+1
N+1

. Existence results have been

also given in [30] where the sommability of the solution with respect to the space and

time is more precise. In particular the solution belongs to the space Lr(0, T ;W 1,q
0 (Ω)),

where r and q are two real number such that 1 ≤ q < min
{
N(p−1)
N−1

, p
}
, 1 ≤ r ≤ p

and N(p−2)+p
r

+ N
q
> N + 1. Other existence result for this kind of problem have also

been proved in [95] where a lower order term is considered. Unfortunately, as in the

elliptic case, the sommability is not enough to get uniqueness result. These difficulties

are overcame in the linear case [106] by duality method. To be more explicit let us

consider the following linear parabolic problem
∂u
∂t
− div(M(x, t)∇u)) = f in QT

u(x, t) = 0 on ∂Ω× (0, T )

u(x, 0) = 0 in Ω,

(5.0.100)

where f ∈ L1(QT ) and M is a matrix with bounded, measurable coefficients satisfying

the condition (5.0.97) with p = 2. Let be


∂w
∂t
− div(M∗(x, t)∇w)) = g in QT

w(x, t) = 0 on ∂Ω× (0, T )

w(x, 0) = 0 in Ω,

the adjoint problem where M∗ is the adjoint matrix and g ∈ L∞(QT ). A function u

is said to be a ”solution by duality” if∫∫
QT

ugdxdt =

∫∫
QT

fwdxdt.
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When f ∈ L1(QT ) e u0 ∈ L1(Ω) problem (5.0.100) admits a unique solution by

duality. In the nonlinear case, with f ∈ L1(QT ), the problem is not well defined

and uniqueness is not always guaranteed so the equivalent notion of entropy and

renormalized solutions have been introduced [99] and [23], [61].

Definition 5.0.9 Let be f ∈ L1(QT ) and u0 ∈ L1(Ω). A function u ∈ C ([0, T ] ;L1(Ω))

is said to be an entropy solution if

Tk(u) ∈ Lp((0, T );W 1,p
0 (Ω)), k > 0

and ∫
Ω

Θk(u− φ)(T )dx−
∫

Ω

Θk(u0 − φ)(T )dx+

∫ T

0

< φt, Tk(u− ϕ) > dt+

∫ T

0

∫
Ω

a(x, t, u,∇u)∇Tk(u− φ)dxdt ≤
∫ T

0

∫
Ω

fTk(u− φ)dxdt,

for all k > 0 and φ ∈ Lp((0, T );W 1,p
0 (Ω)) ∩ L∞(QT ) ∩ C ([0, T ] ;L1(Ω)) such that

φt ∈ Lp
′
((0, T );W−1,p′(Ω)) + L1(Ω), where Θk(s) =

∫ s
0
Tk(σ)dσ.

Definition 5.0.10 A real function u defined in QT is a renormalized solution of

(5.0.96) if it satisfies the following conditions:

u: QT −→ R̄ is a measurable function on QT and u ∈ L∞((0, T );L1(Ω)),

Tk(u) ∈ Lp((0, T );W 1,p
0 (Ω)), for any k > 0,

1

n
lim

n→+∞

∫
{n≤|u|≤2n}

|∇u|p = 0,

and if for every function S ∈ W 2,∞(R) which is piecewise C1 and such that S ′ has a

compact support

∂S(u)

∂t
− div(a(x, t, u,∇u)S ′(u)) + S ′′(u)a(x, t, u,∇u)∇u+ = fS ′(u) in D ′(Ω),

and

S(u)(t = 0) = S(u0) in Ω.
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5.1 Existence results for operators with lower or-

der terms

In this section we prove existence results for nonlinear parabolic problems with lower

order terms. In particular we consider a nonlinear parabolic problem which can be

formally written as
∂u
∂t
− div(a(x, t, u,∇u)) + div (K(x, t, u)) = f in QT

u(x, t) = 0 on ∂Ω× (0, T )

u(x, 0) = u0(x) in Ω,

(5.1.1)

where a(x, t, s, ξ) : Ω × (0, T ) × R × RN −→ RN , K(x, t, s) : Ω × (0, T ) × R −→ RN

are Carathéodory functions satisfying (5.0.97) , (5.0.99),

|a(x, t, s, ξ)| ≤ ν
[
h(x, t) + |ξ|p−1] , ν > 0, h(x, t) ∈ Lp′(QT ), (5.1.2)

|K(x, t, η)| ≤ c(x, t) |η|γ , (5.1.3)

c(x, t) ∈ (Lτ (QT ))N , τ >
N + p

p− 1
, (5.1.4)

γ =
N + 2

N + p
(p− 1), (5.1.5)

for almost every x ∈ Ω, t ∈ (0, T ), for every s ∈ R and for every ξ ∈ RN .

Moreover

f ∈ L1(QT ), (5.1.6)

u0 ∈ L1(Ω). (5.1.7)

Under these assumptions, the above problem does not admit, in general, a weak

solution since the field a(x, t, u,∇u) and K(x, t, u) do not belong to
(
Lp
′
(Ω)
)N

. To

overcome this difficulty we refer to the notion of renormalized solution (see [30], [25],

[48]). The existence of a renormalized solution to problem (5.1.1) with c(x, t) = 0

has been proved in [22], [23] where a(x, t, s, ξ) is indipendent of s and in [25] where

a lower order term div (Φ(u)) , with Φ continuous function in RN is considered. Here
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we prove the existence of a renormalized solution for problem (5.1.1) ; this result

is contained in [55]. The proof consists of several steps. First of all we introduce

the approximated problem, then we prove an apriori estimate for the gradient of its

solution following an idea contained in [77]. The estimate can be easily obtained if

we consider a subcylinder Ω × (0, t), t ∈ (0, T ). For this reason we decompose the

entire cylinder QT into a finite number of subcylinder. Finally we pass to the limit

using the same procedure followed in [25].

Definition 5.1.1 A real function u defined in QT is a renormalized solution of (5.1.1)

if it satisfies the following conditions:

u ∈ L∞((0, T );L1(Ω)), (5.1.8)

Tk(u) ∈ Lp((0, T );W 1,p
0 (Ω)), for any k > 0, (5.1.9)

lim
n→+∞

∫
{n≤|u|≤n+1}

a(x, t, u,∇u)∇u = 0, (5.1.10)

and if for every function S ∈ W 2,∞(R) which is piecewise C1 and such that S ′ has a

compact support

∂S(u)

∂t
− div(a(x, t, u,∇u)S ′(u)) + S ′′(u)a(x, t, u,∇u)∇u+

+ div(K(x, t, u)S ′(u))− S ′′(u)K(x, t, u)∇u+H(x, t,∇u)S ′(u) = fS ′(u) in D ′(Ω)

(5.1.11)

and

S(u)(t = 0) = S(u0) in Ω. (5.1.12)

We observe that this equation can be formally obtained through pointwise multi-

plication of (5.1.1) by S ′(u) and all terms in (5.1.11) have a meaning since Tk(u) ∈

Lp((0, T );W 1,p
0 (Ω)), for any k > 0 and S ′ has a compact support. In particular, there

exists M > 0 such that suppS ′ ⊂ [−M,M ] and∫∫
QT

K(x, t, u)S ′(u)∇u =

∫∫
QT

K(x, t, TM(u))S ′(u)∇TM(u),
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and such integral is well defined thanks to the assumptions (5.1.3)− (5.1.14) and the

fact that Tk(u) ∈ Lp((0, T );W 1,p
0 (Ω)) and S ∈ W 2,∞(R).

In this section we also study the following nonlinear parabolic problem


∂u
∂t
− div a(x, t, u,∇u) +H(x, t, u) = f in QT

u(x, t) = 0 on ∂Ω× (0, T )

u(x, 0) = u0(x) in Ω,

(5.1.13)

a(x, t, s, ξ) : Ω × (0, T ) × R × RN −→ RN is a Carathéodory function satisfying

(5.0.97) , (5.0.99) and (5.1.2) , H(x, t, ξ) : Ω× (0, T )×RN −→ RN is a Carathéodory

function such that

|H(x, t, η)| ≤ b(x, t) |∇u|δ , (5.1.14)

b(x, t) ∈ Lr(QT ), with r >
p(N + 1)−N
(p− 1)(N + 1)

, (5.1.15)

δ ≤ p(N + 1)−N
N + 2

. (5.1.16)

Finally f and u0 are two functions satisfying (5.1.6) , (5.1.7) .

In [77], under the assumption p ≥ 2− 1
N+1

, Porzio proved the existence of a solution

in the sense of distribution to problem (5.1.13) which belongs to Lm((0, T );W 1,m
0 (Ω))

for m < p(N+1)−N
N+1

. Let us explicitly remark that the assumption on p assures that

p(N+1)−N
N+1

> 1. To overcome this assumption on p we refer again to the notion of

renormalized solution.

Definition 5.1.2 A real function u defined in QT is a renormalized solution of

(5.1.13) if it satisfyies the following conditions (5.1.8)− (5.1.10)and if for every func-

tion S ∈ W 2,∞(R) which is piecewise C1 and such that S ′ has a compact support

∂S(u)

∂t
− div(a(x, t, u,∇u)S ′(u)) + S ′′(u)a(x, t, u,∇u)∇u+

+H(x, t,∇u)S ′(u) = fS ′(u) in D ′(Ω) (5.1.17)

and

S(u)(t = 0) = S(u0) in Ω. (5.1.18)
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In this section we prove the existence of a renormalized solution respectively to

problem (5.1.1) and (5.1.13) ; such result is contained in [55]. We think that the

existence of a renormalized solution could be shown also for a nonlinear parabolic

problem involving both lower order term -divK(x, t, u) and H(x, t, u). This question

is analized in [71].

In order to prove the existence results, we prove a technical lemma (we follow the same

method used in [13]), that yields two estimates for |uε|p−1 and |∇uε|p−1 in the Lorentz

spaces L
p(N+1)−N
N(p−1)

,∞(QT ) and L
p(N+1)−N
(N+1)(p−1)

,∞(QT ) respectively. Moreover by imbedding

theorems, these apriori bounds imply two estimates in the Lebesgue spaces Lm(QT )

and Ls(QT ) with m < p(N+1)−N
N(p−1)

and s < p(N+1)−N
(N+1)(p−1)

.

Lemma 5.1.3 Assume that Ω is an open set of RN of finite measure and 1 <

p < +∞. Let be u a measurable function satisfying Tk(u) ∈ Lp((0, T );W 1,p
0 (Ω))∩

L∞((0, T );L2(Ω))for every positive k and such that

sup
t∈(0,T )

∫
Ω

|Tk(u)|2 +

∫∫
QT

|∇Tk(u)|p ≤Mk, ∀k > 0, (5.1.19)

where M is a positive constant. Then∥∥|u|p−1
∥∥
L
p(N+1)−N
N(p−1)

,∞
(QT )
≤ CM( p

N
+1) N

N+p′ |QT |
1
p′

N
N+p′ , (5.1.20)

∥∥|∇u|p−1
∥∥
L
p(N+1)−N
(N+1)(p−1)

,∞
(QT )
≤ CM

(N+2)(p−1)
p(N+1)−N , (5.1.21)

where C is a constant which depends only on N and p.

Proof. By Gagliardo - Niremberg and by (5.1.19) we have

k
p(N+2)
N meas {(x, t) ∈ QT : |u| > k} ≤ C sup

t∈(0,T )

(∫
Ω

|Tk(u)|2
) p

N

(5.1.22)

×
∫∫
QT

|∇Tk(u)|p ≤ C (Mk)
p
N

+1 , (5.1.23)

that is

meas
{

(x, t) ∈ QT : |u|(p−1) > k
}
≤ CM

p
N

+1k−
N+p′
N

(p−1). (5.1.24)

95



By (5.1.24) we deduce that |u|(p−1) ∈ L
p(N+1)−N
N(p−1)

,∞(QT ). Furthermore, by (5.1.24) we

get

∥∥|u|p−1
∥∥
L
p(N+1)−N
N(p−1)

,∞
(QT )

= sup k
k>0

[
meas

{
(x, t) ∈ QT : |u|(p−1) > k

}] N
N+p′ ≤

≤ sup
0<k<k0

k meas
{

(x, t) ∈ QT : |u|(p−1) > k
} N
N+p′

+

+sup
k>k0

k meas
{

(x, t) ∈ QT : |u|(p−1) > k
} N
N+p′

≤

≤ k0 |QT |
N

N+p′ + C

[
M

p
N

+1k
−N+p′

N
(p−1)

0

] N
N+p′

.

Taking k0 = M
( p
N

+1) N
N+p′

|QT |
N
p

1
N+p′

we have (5.1.20) .

Now we prove the estimate involving the gradient of u. For every λ > 0 and for every

k > 0 we have

meas {(x, t) ∈ QT : |∇u| > λ} ≤ meas {(x, t) ∈ QT : |∇u| > λ and |u| ≤ k}+

meas {(x, t) ∈ QT : |∇u| > λ and |u| > k} .

By (5.1.19) we know that

λpmeas {(x, t) ∈ QT : |∇u| > λ and |u| ≤ k} ≤
∫∫
|uε|≤k

λp ≤
∫∫
QT

|∇Tk(u)|p ≤Mk,

that is

meas
{

(x, t) ∈ QT : |∇u|(p−1) > λ and |u| ≤ k
}
≤ Mk

λp′
. (5.1.25)

Thanks to (5.1.23) we obtain

meas
{

(x, t) ∈ QT : |∇u|(p−1) > λ and |u| > k
}
≤ CM

p
N

+1k−
p(N+1)−N

N . (5.1.26)

From (5.1.25) , (5.1.26) we deduce that

meas
{

(x, t) ∈ QT : |∇u|(p−1) > λ
}
≤ Mk

λp′
+ CM

p
N

+1k−
p(N+1)−N

N . (5.1.27)
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If we take k = M
1

N+1λ
N

(N+1)(p−1) (5.1.27) becomes

meas
{

(x, t) ∈ QT : |∇u|(p−1) > λ
}
≤ C

M
N+2
N+1

λ
p(N+1)−N
(N+1)(p−1)

. (5.1.28)

By (5.1.28) we have

∥∥|∇u|p−1
∥∥
L
p(N+1)−N
(N+1)(p−1)

,∞
(QT )

= supλ
λ>0

[
meas

{
(x, t) ∈ QT : |∇u|(p−1) > λ

}] (N+1)(p−1)
p(N+1)−N

(5.1.29)

≤ sup
0<λ<λ0

λ meas
{

(x, t) ∈ QT : |∇u|(p−1) > λ
} (N+1)(p−1)

p(N+1)−N
+

+sup
λ>λ0

λ meas
{

(x, t) ∈ QT : |∇u|(p−1) > λ
} (N+1)(p−1)

p(N+1)−N ≤

≤ λ0 |QT |
(N+1)(p−1)
p(N+1)−N + CM

(N+2)(p−1)
p(N+1)−N .

If we choose λ0 = M
(N+2)(p−1)
p(N+1)−N |QT |−

(N+1)(p−1)
p(N+1)−N we have (5.1.21) .

5.1.1 Existence result for problem (5.1.1)

The main result of this section is the following existence result which proof is contained

in [55].

Theorem 5.1.4 Under the assumptions (5.0.97) , (5.0.99) , (5.1.2) , (5.1.3)− (5.1.7)

there exists at least renormalized solution to problem (5.1.1) .

Proof

The proof consists of several steps. In the first step we consider the approximated

problem. In the second step we obtain apriori estimates for the solutions and its gra-

dient. In Step 3 we followed the idea contained in [25] and we show that the limit of

the solution of the approximated problem belongs to L∞((0, T );L1(Ω)). In Step 4 we

define a time regularization of Tk(u). In Step 5 we prove a lemma that is essential in

order to develop in Step 6 the monotonicity method. In Step 7 we show that the limit

of the solution of the approximated problem satisfyies conditions (5.1.10) , (5.1.11) ,
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(5.1.12) .

Step 1. For ε > 0 let us consider the following approximated problem
∂uε
∂t
− div(aε(x, t, uε,∇uε)) + div (Kε(x, t, uε)) = fε in QT

uε(x, t) = 0 on ∂Ω× (0, T )

uε(x, 0) = (u0)ε (x) in Ω,

(5.1.30)

where

aε(x, t, s, ξ) = a(x, t, T 1
ε
(s), ξ) a.e. in QT , s ∈ R, ξ ∈ RN , (5.1.31)

fε is a sequence of function in Lp
′
(QT )

such that fε → f a.e. and strongly in L1(QT ),
(5.1.32)

(u0)ε is a sequences of function in L2(Ω) such

that (u0)ε → u0 a.e. and strongly in L1(Ω),
(5.1.33)

and

|Kε(x, t, η)| ≤ |K(x, t, η)| ≤ c(x, t) |η|γ

and |Kε(x, t, η)| ≤ c(x, t)
(

1
ε

)γ
.

(5.1.34)

By well-known result (e. g. [81]) there exists at least a weak solution to (5.1.30) which

belongs to L∞(0, T ;L2(Ω)) ∩ Lp(0, T ;W 1,p
0 (Ω)).

Step 2 If we take Tk(uε) as test function in (5.1.30) and we integrate between

(0, t) where t ∈ (0, t1) is arbitrary fixed and t1 ∈ (0, T ) will be choosen later, using

condition (5.1.34) we have∫∫
Qt

(uε)tTk(uε) +

∫∫
Qt

aε(x, t, uε,∇uε)∇Tk(uε) ≤

∫∫
Qt

c(x, t) |uε|γ |∇Tk(uε)|+
∫∫
Qt

fεTk(uε). (5.1.35)
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On the other hand, if we denote by

ψk(s) =

∫ s

0

Tk(σ)dσ =


r2

2
if |r| ≤ k

k |r| − k2

2
if |r| ≥ k

, (5.1.36)

we have ∫∫
Qt

(uε)tTk(uε) =

∫
Ω

ψk(uε(t))−
∫

Ω

ψk ((u0)ε) . (5.1.37)

Moreover it results

1

2
|Tk(s)|2 ≤ ψk(s) ≤ k |s| , ∀k > 0. (5.1.38)

Using (5.1.38) , by(5.1.37) we get∫∫
Qt

(uε)tTk(uε) ≥
1

2

∫
Ω

|Tk(uε)|2 − k
∫

Ω

|(u0)ε| . (5.1.39)

By (5.1.35), (5.1.39) , (5.0.97) we obtain

1

2

∫
Ω

|Tk(uε)|2 + α

∫∫
Qt

|∇Tk(uε)|p ≤
∫∫
Qt

c(x, t) |uε|γ |∇Tk(uε)|+

+k

∫
Ω

|(u0)ε|+ k

∫∫
Qt

fε. (5.1.40)

If we take the supremum for t ∈ (0, t1) and we define

M = ‖u0‖L1(Ω) + sup
ε
‖fε‖L1(QT ) , (5.1.41)

inequality (5.1.40) becomes

1

2
sup

t∈(0,t1)

∫
Ω

|Tk(uε)|2 +α

∫∫
Qt1

|∇Tk(uε)|p ≤Mk+

∫∫
Qt1

c(x, t) |uε|γ |∇Tk(uε)| . (5.1.42)

By Gagliardo-Niremberg and Young inequalities we have∫∫
Qt1

c(x, t) |uε|γ |∇Tk(uε)| ≤ C
γ

N + 2
‖c(x, t)‖Lτ (Qt1 ) sup

t∈(0,t1)

∫
Ω

|Tk(uε)|2 +

+C
N + 2− γ
N + 2

‖c(x, t)‖Lτ (Qt1 )

∫∫
Qt1

|∇Tk(uε)|p


( 1
p

+ Nγ
(N+2)p)

N+2
N+2−γ

. (5.1.43)
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Since γ = (N+2)
N+p

(p− 1), using (5.1.42) and (5.1.43) we obtain

1

2
sup

t∈(0,t1)

∫
Ω

|Tk(uε)|2+α

∫∫
Qt1

|∇Tk(uε)|p ≤Mk+C
γ

N + 2
‖c(x, t)‖Lτ (Qt1 ) sup

t∈(0,t1)

∫
Ω

|Tk(uε)|2

+C
N + 2− γ
N + 2

‖c(x, t)‖Lτ (Qt1 )

∫∫
Qt1

|∇Tk(uε)|p ,

that is equivalent to[
1

2
− C γ

N + 2
‖c(x, t)‖Lτ (Qt1 )

]
sup

t∈(0,t1)

∫
Ω

|Tk(uε)|2 +

+

[
α− N + 2− γ

N + 2
‖c(x, t)‖Lτ (Qt1 )

] ∫∫
Qt1

|∇Tk(uε)|p ≤Mk.

If we choose t1 such that

1

2
− C γ

N + 2
‖c(x, t)‖Lτ (Qt1 ) (5.1.44)

and

α− N + 2− γ
N + 2

‖c(x, t)‖Lτ (Qt1 ) (5.1.45)

are positive. Let us denote by C the minimum between (5.1.44) and (5.1.45) , we

have

sup
t∈(0,t1)

∫
Ω

|Tk(uε)|2 +

∫∫
Qt1

|∇Tk(uε)|p ≤ CMk. (5.1.46)

The last inequality allows us to deduce apriori bounds for the solutions uε and its

gradient ∇uε. In fact, by Lemma 5.1.3 we obtain apriori estimates for uε and ∇uε

on the cylinder Qt1 in term of M. Here we use the same technique used in [77]. If we

consider a partition of the entire interval [0, T ] into a finite number of intervals [0, t1] ,

[t1, t2] , ..., [tn−1,T ] such that for each interval [ti−1, ti] the condition (5.1.45) holds we

deduce that

|uε|p−1 ∈ Lm(QT ) with m <
p(N + 1)−N
N(p− 1)

, (5.1.47)

and

|∇uε|p−1 ∈ Ls(QT ) with s <
p(N + 1)−N
(N + 1)(p− 1)

. (5.1.48)
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Step 3. Now we proceed as in [25]; we report the proof for sake of completeness.

By (5.1.46) it follows that

Tk(uε) is bounded in Lp((0, T );W 1,p
0 (Ω)), (5.1.49)

and

Tk(uε ) is bounded in L∞((0, T );L1(Ω)), (5.1.50)

indipendently of ε for any k ≥ 0 so there exists a subsequence still denoted by uε

Tk(uε) ⇀ Tk(u) in Lp((0, T );W p
0 (Ω)). (5.1.51)

Moreover, proceeding as in [23], [26] is possible to prove that for any S ∈ W 2,∞(R)

with S ′ compact the term

∂S(uε)

∂t
is bounded in L1(QT ) + Lp

′
((0, T );W−1,p′(Ω)), (5.1.52)

indipendently of ε. In fact, by pointwise moltiplication of S ′(uε) in the equation

(5.1.30) we have

∂S(uε)

∂t
− div(aε(x, t, uε,∇uε)S ′(uε)) + S ′′(uε)aε(x, t, uε,∇uε)∇uε+

+ div(Kε(x, t, uε)S
′(uε))− S ′′(uε)Kε(x, t, uε)∇uε = fεS

′(uε) in D ′(Ω). (5.1.53)

Now each term in (5.1.53) is taking into account. Because of (5.1.2) , (5.1.31) , and

(5.1.50) the term − div(a(x, t, uε,∇uε)S ′(uε))+S ′′(uε)a(x, t, uε,∇uε)∇uε+fεS ′(uε) is

bounded in L1(QT )+Lp
′
((0, T );W−1,p′(Ω)) indipendently of ε. If we recall that S ′(uε)

has a compact support contained in [−k, k] , by (5.1.34) it follows that for 0 < ε < 1
k∣∣∣∣∣∣

∫∫
QT

Kε(x, t, uε)
p′S ′(uε)

p′

∣∣∣∣∣∣ ≤
∫∫
QT

c(x, t)p
′
∣∣∣T 1

ε
(uε)

∣∣∣p′γ |S ′(uε)|p′ =

∫∫
|uε|≤k

c(x, t)p
′ |Tk(uε)|p

′γ |S ′(uε)|p
′
,
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Furthermore, by Hölder and Gagliardo- Niremberg inequality, it results∫∫
|uε|≤k

c(x, t)p
′ |Tk(uε)|p

′γ |S ′(uε)|p
′
≤

‖c(x, t)‖p
′

Lτ (QT )

( sup
t∈(0,T )

∫
Ω

|Tk(uε)|2
) p

N

+

∫∫
QT

|∇Tk(uε)|p
 ≤ ck

where ck is a constant indipendently of ε which will vary from line to line.

In the same way, by (5.1.34) we have∣∣∣∣∣∣
∫∫
QT

(S ′′(uε)Kε(x, t, uε)∇uε)p
′

∣∣∣∣∣∣ ≤
∫∫
QT

S ′′(uε)
p′ |c(x, t)|p

′
∣∣∣T 1

ε
(uε)

∣∣∣γp′ |∇uε|p′ .
(5.1.54)

Furthermore, for 0 < ε < 1
k
, by Hölder and Gagliardo-Niremberg inequality we deduce

that∫∫
QT

S ′′(uε)
p′ |c(x, t)|p

′
∣∣∣T 1

ε
(uε)

∣∣∣γp′ |∇uε|p′ =

∫∫
QT

S ′′(uε)
p′ |c(x, t)|p

′
|Tk(uε)|γp

′
|∇Tk(uε)|p

′
≤ ck.

Now we want to prove an estimate which will be useful to prove (5.1.10) . For any

integer n ≥ 1 let us consider the function

θn(r) = Tn+1(r)− Tn(r) =


0 if |r| ≤ n

(|r| − n) sign(r) if n ≤ |r| ≤ n+ 1

signr if |r| ≥ n+ 1.

(5.1.55)

We observe that ‖Tn+1(r)− Tn(r)‖L∞(R) ≤ 1 for any n ≥ 1 and for any r, Tn+1(r)−

Tn(r) −→ 0 when n −→ +∞. Using θn(uε) as test function in (5.1.30) , by (5.1.34)

and Young inequality we get∫
Ω

θ̃n(uε)(T ) +

∫∫
Qt

aε(x, t, u,∇uε)∇θn(uε) ≤

∫∫
Qt

c(x, t)
∣∣∣T 1

ε
(uε)

∣∣∣γ |∇θn(uε)|+
∫

Ω

θ̃n(u0)ε +

∫∫
Qt

fεθn(uε), (5.1.56)
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for almost t ∈ (0, T ), where

θ̃n(r) =

r∫
0

θn(s)ds.

Since θn ≥ 0 and for ε < 1
n+1

aε(x, t, uε,∇uε)∇θn(uε) = a(x, t, uε,∇uε)∇θn(uε) a.e. in Qt,

inequality (5.1.56) implies that∫∫
Qt

a(x, t, uε,∇uε)∇θn(uε) ≤
∫∫

Qt

c(x, t)
∣∣∣T 1

ε
(uε)

∣∣∣γ |∇θn(uε)|+

+

∫
Ω

θ̃n(u0)ε +

∫∫
Qt

fεθn(uε), (5.1.57)

a.e. t ∈ (0, T ), for ε < 1
n+1

. On the other hand, the boundedness of Tk(uε) (5.1.49) ,

(5.1.52) and the apriori estimate of uε, in the the Lorentz spaces imply that there

exists a subsequence, still denoted by uε, such that

uε → u a.e. in QT , (5.1.58)

where u is a measurable function defined on QT (we follow the same procedure used

in [23], [26]). Furthermore, by definition of θn, we get

θn(uε) ⇀ θn(u) weakly in Lp((0, T );W p
0 (Ω)). (5.1.59)

Since aε(x, t, Tk(uε),∇Tk(uε) is bounded in
(
Lp
′
(QT )

)N
indipendently of ε for 0 <

ε < 1
k
, it follows that

aε(x, t, Tk(uε),∇Tk(uε)) ⇀ σk weakly in
(
Lp
′
(QT )

)N
, (5.1.60)

when ε goes to zero for any k > 0 and n ≥ 1 and σk belongs to
(
Lp
′
(QT )

)N
for any

k > 0.

Let us prove that u belongs to L∞(0, T ;L1(Ω)). If we take Tk(uε) as test function in

(5.1.30) , by (5.1.34) we have∫
Ω

ψk(uε)(t) +

∫∫
Qt

aε(x, t, u,∇uε)∇Tk(uε) ≤
∫∫

Qt

|c(x, t)|
∣∣∣T 1

ε
(uε)

∣∣∣γ |∇Tk(uε)|
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+

∫
Ω

ψk(u0)ε +

∫∫
Qt

fεTk(uε) (5.1.61)

for almost t ∈ (0, T ) and 0 < ε < 1
k
. By Hölder and Gagliardo-Niremberg inequality

we have

∫∫
Qt

|c(x, t)|
∣∣∣T 1

ε
(uε)

∣∣∣γ |∇Tk(uε)| ≤ ‖c(x, t)‖Lτ (Qt)

 sup
t∈(0,T )

∫
Ω

|Tk(uε)|2


p−1
N+p

(5.1.62)

×‖|∇Tk(uε)|‖
p(N+1)
N+p

Lp(Qt)
≤ ck. (5.1.63)

Howevere, by (5.1.38) it follows that∫
Ω

ψk(u0)ε +

∫∫
Qt

fεTk(uε) ≤
∫

Ω

|(u0)ε|+ k

∫∫
Qt

fε. (5.1.64)

Using (5.1.62) , (5.1.64) in (5.1.61) , we have∫
Ω

ψk(uε)(t) ≤ ck +

∫
Ω

|(u0)ε|+ k

∫∫
Qt

fε.

Finally, by (5.1.32) , (5.1.33) it is possible to pass to the lim inf in the previous

inequality as ε goes to 0 and to obtain∫
Ω

ψk(u)(t) ≤ k
[
‖f‖L1(QT ) + ‖u0‖L1(QT )

]
+ ck.

Thanks to the definition of ψk, the last inequality becomes

k

∫
Ω

|u(x, t)| ≤ 3

2
k2 |Ω|+ k

[
‖f‖L1(QT ) + ‖u0‖L1(QT )

]
+ ck,

for almost any t ∈ (0, T ), which shows that u ∈ L∞(0, T ;L1(Ω)).

Now, coming back to (5.1.57), for 0 < ε < 1
n+1

we have∫∫
QT

a(x, t, uε,∇uε)∇θn(uε) ≤
∫∫

n≤|uε|≤n+1

c(x, t) |Tn+1(uε)|γ |∇uε|+

+

∫
Ω

θ̃n(u0)ε +

∫∫
QT

fεθn(uε).
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Using the weakly convergence of Tk(uε) and the pointwise convergence of uε it follows

that

lim
ε→0

∫∫
QT

a(x, t, uε,∇uε)∇θn(uε) ≤ lim
ε→0

∫∫
n≤|uε|≤n+1

c(x, t) |Tn+1(uε)|γ |∇θn(uε)|+

+

∫
Ω

θ̃n(u0) +

∫∫
QT

fθn(u). (5.1.65)

On the other hand, since ∇θn(uε) = χ{n≤|uε|≤n+1}∇uε a.e. in QT , by Young inequality

∫∫
n≤|uε|≤n+1

c(x, t)
∣∣∣T 1

ε
(uε)

∣∣∣γ∇uε ≤ α−
p′
p

p′

∫∫
n≤|uε|≤n+1

c(x, t)p
′ |Tn+1(uε)|p

′γ +

α

p

∫∫
QT

|∇θn(uε)|p . (5.1.66)

Using (5.1.66) in (5.1.65), the weak convergence of θn(uε) and (??) imply that

α

p′

∫∫
QT

|∇θn(u)|p ≤
∫∫
QT

fθn(u) +

∫
Ω

θ̃n(u0) +
α−

p′
p

p′

∫∫
n≤|uε|≤n+1

c(x, t) |uε|γ∇θn(uε).

(5.1.67)

The last inequality, together with the assumptions (5.1.6) , (5.1.7) , show that θn(u)

is bounded in Lp((0, T );W p
0 (Ω)) indipendently of n. Thanks to the pointwise conver-

gence of θn(u) to 0 when n → +∞, θn(u) goes to zero weakly in Lp((0, T );W p
0 (Ω))

as n→ +∞. As a consequence

lim
n→+∞

∫∫
QT

fθn(u) = 0

and

lim
n→+∞

∫∫
n≤|uε|≤n+1

c(x, t)p
′ |u|p

′γ = 0,

when n→ +∞. Moreover θ̃n(u0)→ 0 a.e in Ω when n→ +∞ and
∣∣∣θ̃n(u0)

∣∣∣ ≤ |u0| a.e.

in Ω. Since u0 ∈ L1(Ω), by Lebesgue’s convergence Theorem we obtain for n→ +∞∫
Ω

θ̃n(u0)→ 0.

105



Therefore,

lim
n→+∞

∫∫
QT

|∇θn(u)|p = 0

Finally, passing to the limit as n→ +∞ in (5.1.65) and (5.1.67) we get

lim
n→+∞

lim
ε→0

∫∫
n≤|uε|≤n+1

a(x, t, uε,∇uε)∇uε = 0, (5.1.68)

and

θn(u)→ 0 strongly in Lp((0, T );W 1,p
0 (Ω)) (5.1.69)

as n→ +∞.

Step 4 In this step we introduce a time reguralitazion of the Tk(u) for k > 0

in order to performe the monotonicity method. This kind of regularization has been

introduced at the first time by R. Landes in [43] and can be defined as follows. Let

be vµ0 a sequence of functions defined on Ω such that

vµ0 ∈ L∞(Ω) ∩W 1,p
0 (Ω) for all µ > 0, (5.1.70)

‖vµ0‖L∞(Ω) ≤ k ∀µ > 0, (5.1.71)

vµ0 → Tk(u0) a.e. in Ω and
1

µ
‖∇vµ0‖

p
Lp(Ω) → 0, as µ tends to +∞. (5.1.72)

Existence of such subsequence (vµ0 ) is easy to establish [40]. For fixed k ≥ 0 and

µ > 0, the monotone problem
∂(Tk(u))µ

∂t
+ µ((Tk(u))µ − Tk(u)) = 0 in D ′(QT )

(Tk(u))µ(t = 0) = vµ0 in Ω.
(5.1.73)

admits a unique solution (Tk(u))µ ∈ L∞(QT ) ∩ Lp((0, T );W 1,p
0 (Ω)). We observe that

∂(Tk(u))µ
∂t

∈ Lp((0, T );W 1,p
0 (Ω)). (5.1.74)
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The behavior of (Tk(u))µ as µ→∞ has been proved in [43], [40], [33]. Here we just

recall that from (5.1.70)− (5.1.73), it follows that

(Tk(u))µ → Tk(u) a.e. in QT, in L∞(QT ) weakly-* and

strongly in Lp((0, T );W 1,p
0 (Ω)) as µ→ +∞,

(5.1.75)

‖(Tk(u))µ‖L∞(QT ) ≤ max
(
‖Tk(u)‖L∞(QT ) , ‖v

µ
0‖L∞(Ω)

)
≤ k, (5.1.76)

for any µ > 0 and any k ≥ 0. This definition of (Tk(u))µ allows us to prove the

following lemma whose proof can be found in [25]

Lemma 5.1.5 Let k ≥ 0 be fixed. Let S be an increasing C∞(R)− function such

that S(r) = r for |r| ≤ k and sup pS ′ is compact. Then

lim
µ→+∞

lim
ε→0

T∫
0

t∫
0

<
∂(S(uε)

∂t
, (Tk(uε)− (Tk(u))µ) > ≥ 0,

where < ., . > denotes the duality pairing between L1(Ω) + W−1,p′(Ω) and L∞(Ω) ∩

W 1,p
0 (Ω).

Step 5. In this step we prove a lemma which is the critical point in the development

of the monotonicity method .

Lemma 5.1.6 The subsequence of uε satisfies for any k ≥ 0

lim
ε→0

T∫
0

t∫
0

∫
Ω

a(x, t, uε,∇Tk(uε))∇Tk(uε) ≤
T∫

0

t∫
0

∫
Ω

σk∇Tk(u),

where σk is defined in (5.1.60).

Proof

Let be Sn a sequence of increasing C∞(R)−function such that

Sn(r) = r for |r| ≤ n, (5.1.77)

suppS ′n ⊂ [−(n+ 1), (n+ 1)] , (5.1.78)
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‖S ′′n‖L∞(R) ≤ 1, (5.1.79)

for any n ≥ 1. By pointwise multiplication of S
′
n(uε) in we have

∂Sn(uε)

∂t
− div(aε(x, t, uε,∇uε)S ′n(uε)) + S ′′n(uε)aε(x, t, uε,∇uε)∇uε+

+ div(Kε(x, t, uε)S
′
n(uε))− S ′′n(uε)Kε(x, t, uε)∇uε = fεS

′
n(uε) in D ′(Ω).

We observe that ∂Sn(uε)
∂t
∈ L1(QT ) + Lp

′
(0, T );W−1,p′(Ω)).

For k ≥ 0, let us consider

W ε
µ = Tk(uε)− (Tk(uε))µ, (5.1.80)

where (Tk(u))µ has been defined in (5.1.73) . If we integrate over (0, t) and (0, T ) we

have
T∫

0

t∫
0

<
∂(S(uε)

∂t
,W ε

µ > +

T∫
0

t∫
0

∫
Ω

aε(x, t, uε,∇uε)S ′n(uε)∇W ε
µ+

+

T∫
0

t∫
0

∫
Ω

S ′′n(uε)aε(x, t, uε,∇uε)∇uεW ε
µ −

T∫
0

t∫
0

∫
Ω

Kε(x, t, uε)S
′
n(uε)∇W ε

µ

−
T∫

0

t∫
0

∫
Ω

S ′′n(uε)Kε(x, t, uε)∇uεW ε
µ =

T∫
0

t∫
0

∫
Ω

fεS
′
n(uε)W

ε
µ. (5.1.81)

Now we pass to the limit in (5.1.81) as ε tends to 0, µ tends to +∞ and then n tends

to +∞ for k real number fixed. In particular we want to prove that for any fixed

k ≥ 0

lim
µ→+∞

lim
ε→0

T∫
0

t∫
0

<
∂(S(uε)

∂t
,W ε

µ > ≥ 0 for any n ≥ k, (5.1.82)

lim
µ→+∞

lim
ε→0

T∫
0

t∫
0

∫
Ω

Kε(x, t, uε)S
′
n(uε)∇W ε

µ = 0 for any n ≥ 1, (5.1.83)

lim
µ→+∞

lim
ε→0

T∫
0

t∫
0

∫
Ω

S ′′n(uε)Kε(x, t, uε)∇uεW ε
µ = 0 for any n ≥ 1, (5.1.84)
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lim
n→+∞

lim
µ→+∞

lim
ε→0

∣∣∣∣∣∣
T∫

0

t∫
0

∫
Ω

S ′′n(uε)aε(x, t, uε,∇uε)∇uεW ε
µ

∣∣∣∣∣∣ = 0, (5.1.85)

lim
µ→+∞

lim
ε→0

T∫
0

t∫
0

∫
Ω

fεS
′
n(uε)W

ε
µ = 0 for any n ≥ 1. (5.1.86)

The proof of (5.1.82) can be easily obtained by appling Lemma 5.1.5 to the function

Sn for any fixed n ≥ k. Let us recall the main properties of W ε
µ. In view of (5.1.58) ,

(5.1.80) , (5.1.51) , for any fixed µ > 0

W ε
µ ⇀ Tk(uε)− (Tk(uε))µ weakly in Lp((0, T );W 1,p

0 (Ω)),

as ε goes to 0. Then by (5.1.75) , (5.1.76) we have

∥∥W ε
µ

∥∥
L∞(QT )

≤ 2k, for any ε > 0 and for any µ > 0. (5.1.87)

From (5.1.80) , (5.1.87) we deduce that for fixed µ > 0

W ε
µ ⇀ Tk(u)− (Tk(u))µ a.e. in QT and in L∞(QT ) weakly-*, (5.1.88)

when ε→ 0.

Let us prove (5.1.83) . For any fixed n ≥ 1 and 0 < ε < 1
n+1

it results

S ′n(uε)Kε(x, t, uε)∇W ε
µ = S ′n(uε)Kε(x, t, Tn+1(uε))∇W ε

µ a.e. in QT ,

since suppS ′ ⊂ [−(n+ 1), n+ 1] . On the other hand,

S ′n(uε)Kε(x, t, Tn+1(uε)) −→ S ′n(u)K(x, t, Tn+1(u)) a.e. in QT ,

and

|S ′n(uε)Kε(x, t, Tn+1(uε))| ≤ c(x, t)(n+ 1)γ for n ≥ 1.

By (5.1.77) and the strongly convergence of (Tk(uε))µ in Lp((0, T );W 1,p
0 (Ω)) we obtain

(5.1.83)

Proof (5.1.84) . For any fixed n ≥ 1 and 0 < ε < 1
n+1

S ′′n(uε)Kε(x, t, uε)∇uεW ε
µ = S ′′n(uε)Kε(x, t, Tn+1(uε))∇Tn+1(uε)W

ε
µ a.e. in QT ,
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as in the previous step it is possible to pass to the limit for ε −→ 0 since, by (5.1.87) ,

(5.1.58) , (5.1.88)

S ′′n(uε)Kε(x, t, Tn+1(uε))W
ε
µ −→ S ′′n(u)K(x, t, Tn+1(u))Wµ a.e. in QT ,

and

|S ′′n(u)K(x, t, Tn+1(u))Wµ| ≤ 2k |c(x, t)| (n+ 1)γ.

Finally by (5.1.77) we obtain (5.1.84) .

Let us prove (5.1.85) . Due to (5.1.77) , (5.1.78) suppS ′ ⊂ [−(n+ 1),−n] ∪ [n, n+ 1]

for any n ≥ 1, as a consequence∣∣∣∣∣∣
T∫

0

t∫
0

∫
Ω

S ′′n(uε)aε(x, t, uε,∇uε)∇uεW ε
µ

∣∣∣∣∣∣ ≤
T ‖S ′′n(uε)‖L∞(R)

∥∥W ε
µ

∥∥
L∞(QT )

∫
{n≤|uε|≤n+1}

a(x, t, uε,∇uε)∇uε,

for any n ≥ 1, any ε ≤ 1
n+1

and any µ > 0. The above inequality together with

(5.1.79) and (5.1.87) make it possible to obtain

lim
µ→+∞

lim
ε→0

∣∣∣∣∣∣
T∫

0

t∫
0

∫
Ω

S ′′n(uε)aε(x, t, uε,∇uε)∇uεW ε
µ

∣∣∣∣∣∣ ≤ C lim
ε→0

∣∣∣∣∣∣∣
∫

{n≤|uε|≤n+1}

a(x, t, uε,∇uε)∇uε

∣∣∣∣∣∣∣ ,
for any n ≥ 1, where C is indipendently of ε.

By (5.1.68) it is possible to pass to the limit as n tends to +∞ and to establish

(5.1.85) .

Proof of (5.1.86). By (5.1.32) , the pointwise convergence of uε and W ε
µ and its

boundness it is possible to pass to the limit for ε −→ 0 for any µ > 0 and any n ≥ 1

lim
ε→0

∫ T

0

∫ t

0

∫
Ω

fεS
′

n(uε)W
ε
µ =

∫ T

0

∫ t

0

∫
Ω

fS
′

n(u)(Tk(u)− Tk(u))µ).

Now for fixed n ≥ 1, using (5.1.76) it possible to pass to the limit as µ tends to +∞

in the above equality.
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Now we turn back to the proof of Lemma 5.2.4. Due to (5.1.82)− (5.1.86) we can to

pass to the limit-sup when ε tends to zero, then to the limit-sup when µ tends to +∞

and to the limit as n tends to +∞ in (5.1.81) . Using the definiton of W ε
µ we deduce

that for any k ≥ 0

lim
n→+∞

lim
µ→+∞

lim
µ→+∞

∫ T

0

∫ t

0

∫
Ω

S
′

n(uε)aε(uε,∇uε)(∇Tk(uε)−∇(Tk(u))µ) ≤ 0.

Since S
′
n(uε)aε(x, t, uε,∇uε)∇Tk(uε) = a(x, t, uε,∇uε)∇(Tk(uε) for k ≤ 1

ε
and k ≤ n,

using the properties of S ′n the above inequality implies that for k ≤ n

lim
ε→0

∫ T

0

∫ t

0

∫
Ω

aε(x, t, uε,∇uε)∇Tk(uε) ≤

lim
n→+∞

lim
µ→+∞

lim
ε→0

∫ T

0

∫ t

0

∫
Ω

(S
′

n(uε)aε(x, t, uε,∇uε)(∇Tk(uε))µ (5.1.89)

On the other hand, for ε ≤ 1
n+1

S
′

n(uε)aε(x, t, uε,∇uε) = S
′

n(uε)a(x, t, Tn+1(uε),∇Tn+1(uε)) a.e. in QT .

Furthermore by (5.1.60) it follows that for fixed n ≥ 1

S
′

n(uε)aε(x, t, uε,∇uε)→ S
′

n(uε)σn+1 weakly in Lp
′

(QT )

when ε tends to 0. Finally, using the strong convergence of (Tk(u))µ to Tk(u) in

Lp(0, T ; W 1,p
0 (Ω)) as µ tends to +∞, we get

lim
µ→+∞

lim
ε→0

∫ T

0

∫ t

0

∫
Ω

(S
′

n(uε)aε(x, t, uε,∇uε)(∇Tk(uε))µ =

∫ T

0

∫ t

0

∫
Ω

S
′

n(uε)σn+1∇Tk(u)

(5.1.90)

as soon as k ≤ n since (5.1.77) implies that S
′
n(r) = 1 for|r| ≤ n. Now for k ≤ n we

have

a(x, t, Tn+1(uε),∇Tn+1(uε))χ{|uε|≤k} = a(x, t, Tk(uε),∇Tk(uε))χ{|uε|≤k} a.e. in QT ,
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which implies that , by (5.1.58) , (5.1.60) , passing to the limit when ε tends to 0,

σn+1χ{|u|≤k} = σkχ{|u|≤k} a.e. in QT − {|u| = k} for k ≤ n. (5.1.91)

Finally, by (5.1.91) and (5.1.60) we have for k ≤ n,

σn+1∇Tk(u) = σk∇Tk(u) a.e. in QT .

Recalling (5.1.89) , (5.1.90) the proof of lemma is complete.

Step 6. In this step we prove that u satisfies the equation (5.1.11) . First of all

we prove that the weak limit σk of a(x, t, Tk(uε),∇Tk(uε)) can be identified with

a(x, t, Tk(u),∇Tk(u)). In order to prove this result we recall the following lemma:

Lemma 5.1.7 The subsequence satisfies the following condition for any k ≥ 0

lim
ε→0

∫ T

0

∫ t

0

∫
Ω

[a(x, t, Tk(uε),∇Tk(uε))− a(x, t, Tk(uε),∇Tk(u))]×[∇Tk(uε)−∇Tk(u)] = 0.

(5.1.92)

Proof

Let k ≥ 0 be fixed. By (5.0.97) we have

lim
ε→0

∫ T

0

∫ t

0

∫
Ω

[a(x, t, Tk(uε),∇Tk(uε))− a(x, t, Tk(uε),∇Tk(u))]×[∇Tk(uε)−∇Tk(u)] ≥ 0.

(5.1.93)

Furthermore, by (5.1.2) (5.1.58) we have

a(x, t, Tk(uε),∇Tk(u)) −→ a(x, t, Tk(u),∇Tk(u)) a.e. in QT ,

and

|a(x, t, Tk(uε),∇Tk(uε))| ≤ ν
[
h(x, t) + |∇Tk(uε)|p−1] a.e. in QT ,

uniformly with respect to ε. As a consequence

a(x, t, Tk(uε),∇Tk(u)) −→ a(x, t, Tk(u),∇Tk(u)) strongly in (Lp
′
(QT ))N . (5.1.94)

Finally, by Lemma 5.2.4, (5.1.58) , (5.1.60) and (5.1.94) make it possible to pass to

the limit-sup as ε tends to 0 in (5.1.93) and we have (5.1.92) .
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Lemma 5.1.8 For fixed k ≥ 0, we have

σk = a(x, t, Tk(u),∇Tk(u)) a.e. in QT , (5.1.95)

and as ε tends to 0

a(x, t, Tk(uε),∇Tk(uε))∇Tk(uε) ⇀ a(x, t, Tk(u),∇Tk(u))∇Tk(u) (5.1.96)

weakly in L1((0, T )× Ω).

Proof. We observe that for any k > 0, any 0 < ε < 1
k

and any ξ ∈ RN

aε(x, t, Tk(uε), ξ) = a(x, t, Tk(uε), ξ) = a 1
k
(x, t, Tk(uε), ξ) a.e. in QT .

By (5.1.51) , (5.1.92)

lim
ε→0

∫ T

0

∫ t

0

∫
Ω

a 1
k
(x, t, Tk(uε),∇Tk(uε))∇Tk(uε) =

∫ T

0

∫ t

0

∫
Ω

σk∇Tk(u). (5.1.97)

Since, for fixed k > 0, the function a 1
k
(x, t, s, ξ) is continuous and bounded with

respect to s, the usual Minty’s argument applies in view of (5.1.51) , (5.1.60) , and

(5.1.97) . It follows that (5.1.95) holds true (the case k = 0 being trivial). In order to

prove (5.1.96) , by (5.0.97) and (5.1.92) give that for any k ≥ 0 and any T ′ < T

[a(x, t, Tk(uε),∇Tk(uε))− a(x, t, Tk(uε),∇Tk(u))]× [∇Tk(uε)−∇Tk(u)] −→ 0

strongly in L1((0, T ) × Ω) as ε tends to 0. Moreover by (5.1.51) , (5.1.60) , (5.1.94) ,

and (5.1.95) we have

a(x, t, Tk(uε),∇Tk(uε))∇Tk(u) ⇀ a(x, t, Tk(u),∇Tk(u))∇Tk(u) weakly in L1(QT ),

and

a(x, t, Tk(uε),∇Tk(u))∇Tk(u) −→ a(x, t, Tk(u),∇Tk(u))∇Tk(u) strongly in L1(QT ),

as ε tends to 0.

Using the above convergence result in (5.1.97) shows that for any k ≥ 0 and any

T ′ < T

a(x, t, Tk(uε),∇Tk(uε))∇Tk(uε) ⇀ a(x, t, Tk(u),∇Tk(u))∇Tk(u) (5.1.98)
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weakly in L1((0, T ′)× Ω) as ε tends to 0.

In order to extend the functions a(x, t, s, ξ), f on a time interval (0, T̄ ) with T̄ > T in

such a way that (5.0.97) , (5.0.99) , 5.1.2− (5.1.7) hold true with T̄ in place of T, we

can show that the convergence result (5.1.98) is still valid in L1(QT )− weak, namely

that (5.1.98) holds true.

Now we prove that u satisfies (5.1.10) . To this end we remark that for any fixed n ≥ 0

we have∫∫
{n≤|uε|≤n+1}

a(x, t, uε,∇uε)∇uε =

∫∫
QT

a(x, t, uε,∇uε)(∇Tn+1(uε)−∇Tn(uε)) =

=

∫∫
QT

a(x, t, Tn+1(uε),∇Tn+1(uε))(∇Tn+1(uε)−∇Tn(uε))+

−
∫∫
QT

a(x, t, Tn+1(uε),∇Tn+1(uε))∇Tn(uε).

According to (5.1.96) , one is at liberty to pass to the limit as ε tends to 0 for fixed

n ≥ 0 and to obtain

lim
ε→0

∫∫
{n≤|uε|≤n+1}

a(x, t, uε,∇uε)∇uε =

∫∫
QT

a(x, t, Tn+1(u),∇Tn+1(u))∇Tn+1(u)

−
∫∫
QT

a(x, t, Tn(u),∇Tn(u))∇Tn(u) =

∫∫
{n≤|u|≤n+1}

a(x, t, u,∇u)∇u. (5.1.99)

Taking the limit as n tends to +∞ in (5.1.99) and using the estimate (5.1.68) show

that u satisfies (5.1.10) . Our aim is to prove that u satisfies (5.1.11) and (5.1.12) .Now

we want to prove that u satisfies the equation (5.1.11) . Let be S a function in

W 2,∞(R) such that suppS ′ ⊂ [−k, k] where k is a real positive number. In the

following we show how it is possible to pass to the limit in (5.1.53). Since uε −→ u

a.e. in QT and in L∞(QT ) weak-*, using the boundness of S(uε) it follows that

∂S(uε)
∂t
−→ ∂S(u)

∂t
in D ′(Ω). We observe that the term aε(x, t, uε,∇uε) can be iden-

tified with aε(x, t, Tk(uε),∇Tk(uε)) for ε ≤ 1
k
, so using the pointwise convergence of
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uε −→ u in QT , the weakly convergence of Tk(uε ) ⇀ Tk(u) in Lp((0, T );W p
0 (Ω)) we

get

aε(x, t, uε,∇uε)S ′(uε) ⇀ a(x, t, Tk(uε),∇Tk(u))S ′(u) in Lp
′
(QT ),

and

S ′′(uε)aε(x, t, uε,∇uε)∇uε ⇀ S ′′(u)a(x, t, Tk(u),∇Tk(u))∇Tk(u) in L1(QT ).

Furthermore, since

Kε(x, t, uε)S
′(uε) = Kε(x, t, Tk(uε))S

′(uε) a.e. in QT ,

by (5.1.34)

|Kε(x, t, Tk(uε))S
′(uε)| ≤ |c(x, t)| kγ,

it follows that

Kε(x, t, Tk(uε))S
′(uε) → K(x, t, Tk(u))S ′(u) strongly in Lp

′
(QT ).

In a similar way, it results

S ′′(uε)Kε(x, t, uε)∇uε = S ′′(Tk(uε))Kε(x, t, Tk(uε))∇Tk(uε) a.e. in QT ,

and

S ′′(uε)Kε(x, t, uε)→ S ′′(u)K(x, t, u) a.e. in QT ,

so, using the weakly convergence of Tk(uε) in Lp((0, T );W p
0 (Ω)) it is possible to prove

that

S ′′(uε)K(x, t, uε)∇uε → S ′′(u)K(x, t, u)∇u in L1(QT ).

Finally by (5.1.32) we deduce that

fεS
′(uε) −→ fS ′(u) in L1(QT ).

It remains to prove that S(u)(t = 0) = S(u0) in Ω. By (5.1.53) the term ∂S(uε)
∂t

is bounded in L1(QT ) + Lp
′
((0, T );W−1,p′(Ω)) so by Aubin’s type lemma it follows
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that S(uε) belongs to C0 ([0, T ] ;W−1,s(Ω)) where s < inf(p′, N
N−1

) and S(uε)(t =

0) = S(u0)ε converges to S(u)(t = 0) strongly in W−1,s(Ω). Using (5.1.33) and the

boundeness of S we have

S(u0)ε −→ S(u0) strongly in Ld(Ω), d <∞,

and then S(u0) = S(u)(t = 0).

5.1.2 Existence result for problem (5.1.13)

In this section we prove the existence of a renormalized solution to problem (5.1.13).

The result contained in [55] is the following:

Theorem 5.1.9 Under the hypotheses (5.0.97) , (5.0.99), (5.1.2) , (5.1.6) , (5.1.7) ,

(5.1.14)− (5.1.16) there exists a renormalized solution of (5.1.13) .

Proof

Here we follow the same technique used in the previous section. We divide the proof

into several steps.

Proof. Step 1 Let us consider the approximated problem
∂uε
∂t
− div(aε(x, t, uε,∇uε)) +Hε(x, t,∇uε) = fε in QT

uε(x, t) = 0 on ∂Ω× (0, T )

uε(x, 0) = (u0)ε (x) in QT ,

(5.1.100)

where

Hε(x, t, η) = T 1
ε
(x, t, η), (5.1.101)

|Hε(x, t, η)| ≤ b(x, t) |η|δ , and |Hε(x, t, η)| ≤ ε, (5.1.102)

and aε(x, t,∇uε), fε and (u0)ε have been defined in (5.1.31) , (5.1.32) , (5.1.33) .

Under the assumptions (5.1.32) , (5.1.33) , (5.1.102) , (5.1.101) the problem (5.1.100)

admits a unique solution uε ∈ L∞(0, T ;L2(Ω)) ∩ Lp(0, T ;W 1,p
0 (Ω)).
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Step 2 In this step we obtain the apriori estimates for the solution uε and its

gradient ∇uε. To this end, let us consider Tk(uε) as test function in (5.1.100) and we

integrate between (0, t), where t ∈ (0, t1) and t1 ∈ (0, T ) will be choosen later, by

(5.1.102) we have ∫∫
Qt

(uε)tTk(uε) +

∫∫
Qt

a(x, t, uε,∇uε)∇Tk(uε)

≤
∫∫
Qt

b(x, t) |∇Tk(uε)|δ Tk(uε) +

∫∫
Qt

fεTk(uε). (5.1.103)

Using (5.0.97), (5.1.39) and Hölder inequality we have

1

2

∫
Ω

|Tk(uε)|2 + α

∫∫
Qt

|∇Tk(uε)|p ≤ k

∫
Ω

|(u0)ε|
2 +

+k ‖b‖Lr(Qt)
∥∥|∇Tk(uε)|p−1

∥∥ δ
p−1

Ls(Qt)
+ k ‖fε‖L1(Qt)

. (5.1.104)

Taking the supremum for t ∈ (0, t1) inequality (5.1.104) becomes

1

2
sup

t∈(0,t1)

∫
Ω

|Tk(uε)|2 + α

∫∫
Qt1

|∇Tk(uε)|p ≤M1k, (5.1.105)

where

M1 = ‖b‖Lr(Qt1 )

∥∥|∇Tk(uε)|p−1
∥∥ δ
p−1

Ls(Qt1 )
+ sup

ε
‖fε‖L1(QT ) + ‖u0‖L1(Ω) ,

for s < p(N+1)−N
(N+1)(p−1)

. By Lemma 5.1.3 we get

∥∥|∇uε|p−1
∥∥
Ls(QT )

≤ C

[
sup
ε
‖fε‖L1(QT ) + ‖u0‖L1(Ω)

] (N+2)(p−1)
p(N+1)−N

+C
(
‖b‖Lr(Qt1 )

) (N+2)(p−1)
p(N+1)−N

(∫∫
Qt1

|∇Tk(uε)|(p−1)s + 1

) δ
s

(N+2)
p(N+1)−N

,

for some constant C. Since δ ≤ p(N+1)−N
N+2

it results

∥∥|∇uε|p−1
∥∥
Ls(QT )

≤ C

[
sup
ε
‖fε‖L1(QT ) + ‖u0‖L1(Ω)

] (N+2)(p−1)
p(N+1)−N

+
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+C
(
‖b‖Lr(Qt1 )

) (N+2)(p−1)
p(N+1)−N

(∫∫
Qt1

|∇Tk(uε)|(p−1)s + 1

) 1
s

. (5.1.106)

If we choose t1 such that

1− C ‖b‖
(N+2)(p−1)
p(N+1)−N
Lr(Qt1 ) > 0, (5.1.107)

inequality (5.1.106) becomes

∥∥|∇uε|p−1
∥∥
Ls(Qt1 )

≤ C, s <
p(N + 1)−N
(N + 1)(p− 1)

,

for some constant C. Our aim is to obtain two apriori estimates for uε and its gradient

on the entire cylinder. The technique that here we follow is the same method used

in the previous section: we consider a partition of the entire interval [0, T ] into a

finite number of intervals [0, t1] ,..., [tn−1, T ] and for each of them we assume that a

condition like (5.1.107) holds. In this way we obtain the apriori bounds (5.1.47) . The

estimate for the solution uε is a natural consequence of the last inequality. In fact,

by Lemma 5.1.2, we know that

∥∥|u|p−1
∥∥
Lm(Qt1 )

≤ CM
( p
N

+1) N
N+p′

1 |QT |
1
p′

N
N+p′ ,

where M1 is now indipendetly on ε.

Step 3 Now we proceed as in Step 3 of the first section (see also [25]) . By (5.1.105)

Tk(uε) is bounded indipendently of ε for any positive k, so (5.1.51) hold.

Moreover, if we multiplicate by S ′(uε) in the equation (5.1.100) , for any S ∈ W 2,∞(R)

such that S ′ is compact we have

∂S(uε)

∂t
− div(aε(x, t, uε,∇uε)S ′(uε)) + S ′′(uε)aε(x, t, uε,∇uε)∇uε+

+S ′(uε)Hε(x, t,∇uε) = fεS
′(uε) in D ′(Ω). (5.1.108)
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As in the first section we observe that ∂S(uε)
∂t

is bounded in L1(QT )+Lp
′
((0, T );W−1,p′(Ω))

indipendently of ε. In fact, the term S ′(uε)Hε(x, t,∇uε) is bounded in Lp
′
(QT ) in-

dipendently of ε since by∫∫
QT

|S ′(uε)Hε(x, t,∇Tk(uε))|p
′
≤ ‖b(x, t)‖Lr(QT ) ‖|∇Tk(uε)|‖

δp′

Lp(QT ) ≤ ck.

Let us prove that u ∈ L∞((0, T );L1(Ω)). If we take Tk(uε) as test function in (5.1.100) ,

by (5.1.102) ,we have

∫
Ω

ψk(uε)(t) +

∫∫
Qt

aε(x, t, u,∇uε)∇Tk(uε) ≤
∫∫

Qt

b(x, t) |∇uε|δ Tk(uε)

+

∫
Ω

ψk(u0)ε +

∫∫
Qt

fεTk(uε), (5.1.109)

for almost t ∈ (0, T ) and 0 < ε < 1
k
, where ψk(s) is defined by (5.1.36) . If we take

the lim inf in the previous inequality, by (5.1.47) we have∫
Ω

ψk(uε)(t) ≤ ck +

∫
Ω

|(u0)ε|+ k

∫∫
Qt

fε,

which implies (5.1.8) .

The next step is to prove that θn(u)→ 0 strongly in Lp((0, T );W 1,p
0 (Ω)). To this end

let us Let us consider θn(uε) where θn(uε) is defined by (5.1.55) . Arguing as in the

first section, there exists a subsequence, still denoted by uε, such that (5.1.58) hold.

Furthermore, (5.1.59) , (5.1.60) are valid too. If we take θn(uε) as test function in

(5.1.100) , for ε < 1
n+1

, by (5.1.102) we have∫
Ω

θ̃n(uε)(T ) +

∫∫
Qt

aε(x, t, u,∇uε)∇θn(uε) ≤

+

∫∫
Qt

b(x, t) |∇uε|δ θn(uε) +

∫
Ω

θ̃n(u0)ε +

∫∫
Qt

fεθn(uε). (5.1.110)
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We observe that, by Hölder and Young inequality∫∫
QT

b(x, t) |∇uε|δ θn(uε) =

∫∫
|uε|≤n+1

b(x, t) |∇θn(uε)|δ θn(uε)+ (5.1.111)

+

∫∫
|uε|>n+1

b(x, t) |∇uε|δ θn(uε) ≤
α

p

∫∫
QT

|∇θn(uε)|p +

α−
p′
p

p′

(∫∫
QT

(b(x, t)θn(uε))
( p
δ

)′
) 1

(
p
δ

)′

+

+
∥∥|∇uε|p−1

∥∥
Ls(QT )

(∫∫
|uε|>n+1

b(x, t)r
)1/r

.

By (5.1.110) and (5.1.111) we have

(α− α

p
)

∫∫
QT

|∇θn(uε)|p ≤
α−

p′
p

p′

(∫∫
QT

(b(x, t)θn(uε))
( p
δ

)′
) 1

(
p
δ

)′

+

ck

(∫∫
|uε|>n+1

b(x, t)r
)1/r

+

∫
Ω

θ̃n(u0)ε +

∫∫
QT

fεθn(uε).

Finally, letting ε→ 0 and n→ +∞ we have

lim
n→+∞

∫∫
QT

|∇θn(u)|p = 0.

As in the first section, this result imply that (5.1.68) and (5.1.69) hold.

Step 4 In this step we prove a lemma which is useful to develop the monotonicity

method.

Lemma 5.1.10 The subsequence of uε satisfies for any k ≥ 0

lim
ε→0

T∫
0

t∫
0

∫
Ω

a(x, t, uε,∇Tk(uε))∇Tk(uε) ≤
T∫

0

t∫
0

∫
Ω

σk∇Tk(u),

where σk is defined in (5.1.60).
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Proof. Let be Sn a sequence of increasing C∞(R)−function such that (5.1.77) −

(5.1.79) hold for any n ≥ 1. By pointwise multiplication of S
′
n(uε) in we have

∂Sn(uε)

∂t
− div(a(x, t, uε,∇uε)S ′n(uε)) + S ′′n(uε)a(x, t, uε,∇uε)∇uε+

+Hε(x, t,∇uε)S ′n(uε)) = fεS
′
n(uε) in D ′(Ω).

For k ≥ 0, let us consider W ε
µ = Tk(uε)− (Tk(uε))µ, as test function, where (Tk(u))µ

has been defined in (5.1.73) and we integrate over (0, t) and (0, T )

T∫
0

t∫
0

<
∂(S(uε)

∂t
,W ε

µ > +

T∫
0

t∫
0

∫
Ω

aε(x, t, uε,∇uε)S ′n(uε)∇W ε
µ+

+

T∫
0

t∫
0

∫
Ω

S ′′n(uε)aε(x, t, uε,∇uε)∇uεW ε
µ −

T∫
0

t∫
0

∫
Ω

Hε(x, t,∇uε)S ′n(uε)W
ε
µ =

=

T∫
0

t∫
0

∫
Ω

fεS
′
n(uε)W

ε
µ. (5.1.112)

Thanks to (5.1.82) , (5.1.85) , (5.1.86) proved in the previous section we only have to

prove that

lim
µ→+∞

lim
ε→0

T∫
0

t∫
0

∫
Ω

Hε(x, t,∇uε)S ′n(uε)W
ε
µ = 0 for any n ≥ 1. (5.1.113)

This result can be easily obtained if we observe that for n ≥ 1

Hε(x, t,∇uε)S ′n(uε)W
ε
µ = Hε(x, t,∇Tn+1(uε))S

′
n(uε)W

ε
µ a.e. in QT ,

since suppS ′ ⊂ [−(n+ 1), (n+ 1)] . Furthermore, by (5.1.88) and (5.1.58) we have

S ′n(uε)W
ε
µ → S ′n(u)Wµ a.e. in QT , (5.1.114)

which implies, thanks to the boundness character of S ′n(uε)W
ε
µ, that

S ′n(uε)W
ε
µ → S ′n(u)Wµ strongly in Lp′(QT ). (5.1.115)
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On the other hand, by (5.1.51)

Hε(x, t,∇Tn+1(uε)) ⇀ H(x, t,∇Tn+1(u)) in Lp((0, T );W 1,p
0 (Ω)). (5.1.116)

Finally, by (5.1.115) , (5.1.116) we obtain (5.1.113) .

Step 5 It remains to prove that u satisfies the equation (5.1.11) . To this end let’s

go back to (5.1.108) . The scheme that we use to pass to the limit in the previous

equation is the same used in (5.1.53) except for the lower order term. Using the

boundness of S, the condition (5.1.101) , the pointwise convergence of uε we have

S ′(uε)→ S ′(u) strongly in Lp(QT ). (5.1.117)

On the other hand, for ε ≤ 1
k
,

Hε(x, t,∇uε) = Hε(x, t,∇Tk(uε)) a.e. in QT ,

and

Hε(x, t,∇Tk(uε)) ⇀ H(x, t,∇Tk(u)) in Lp((0, T );W 1,p
0 (Ω)). (5.1.118)

By (5.1.118) , (5.1.117) we obtain

Hε(x, t,∇uε)S ′(uε) −→ H(x, t,∇u)S ′(u) in L1(QT ).
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“Federico II”.

128



[57] R. J. Di Perna and P.-L. Lions. On Cauchy problem for Boltzmann equations:

global existence and weak stability. Ann. of Math. 130 (1989), 321-66.

[58] G. Dolzmann, N. Hungerbühler, S. Müller, Uniqueness and maximal regularity

for nonlinear elliptic systems of n-Laplace type with measure valued right-hand

side, J. Reine Angew. Math. 520 (2000) 1-35

[59] J. Drounion, Solving convection-diffusion equations with mixed, Neumann and

Fourier boundary conditions and measure data, by a duality method, Adv.

Differential Equations 5 (2000), 1341-1396

[60] J. Drounion, A. Porretta, A. Prignet, Parabolic capacity and soft measures for

nonlinear equations, Potential Anal. 19 (2003), 99-161.

[61] J. Drounion, A. Prignet, Equivalence between entropy and renormalized so-

lutions for parabolic equations with smooth measure data, NoDEA Nonlinear

Differential Equations Appl. 14 (2007), 181-205.

[62] A. Ferone, Symmetrization for degenerate Neumann problems, Rend. Accad.

Sci. Fis. Mat. Napoli, 60 (1993), 27-46.

[63] V. Ferone, Symmetrization in a Neumann problem, Le Matematiche 41 (1986),

67-78.

[64] V. Ferone, Estimates and Regularity for Solutions of Elliptic Equations in a

Limit Case, Boll. Un. Mat. Ital. 8 (1994), 257-270.

[65] A. Fiorenza, C. Sbordone, Existence and uniqueness results for solutions of

nonlinear equations with right-hand side in L1(Ω), Stud. Math. 127 (1998) 223-

231.

129



[66] M. Fukushima, K. Sato, and S Taniguchi, On the closable part of pre-Dirichlet

forms and finite support of the underlying measures, Osaka J. Math. 28 (1991),

517-535.

[67] N. Grenon, ”Résultas d’existence et comportement asymptotique pour des
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