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ABSTRACT 

 

The increasing use of the underground spaces and the last seismic events in the 

urban areas have driven many researchers of different countries to deepen the 

knowledge on the dynamic behaviour of the structure embedded in the subsoil. 

This thesis attempts to give some contributes on the application of the performance 

based approach for the seismic design of the embedded retaining walls. 

After an overview on the earth pressure theories proposed by different authors, the 

static and seismic design methods commonly adopted in the current practice and 

based on pseudostatic approaches are recalled.  

Several limitations on these procedures can be recognized: the difficulties on the 

definition of the seismic coefficient; the calculation of the expected earthquake-

induced displacements around the construction. Moreover, in the framework of the 

Performance-Based Design, these methods do not able to describe the response of 

the retaining systems to a given earthquake. The seismic displacements of the 

flexible walls are evaluated by means of Newmark sliding block procedures, that 

were developed for rigid structures, and the yield sequence of the different structural 

components can not be predicted. Then, the application of the hierarchical resistance 

criteria in the dimensioning of the various parts can not be applied. 

In this thesis, different level of analysis are highlighted in relation to the importance of 

the structure and to the design phase. 

An innovative procedure that can be included in the framework of the "pushover 

analyses" is also proposed for the seismic design of the embedded retaining walls. 

Finally, the results obtained by the application of the different methods for the ideal 

case study of cantilever diaphragms embedded in dry loose and dense sand are 

presented. The material properties used in the analyses are referred to the Fraction 

E (BS 100/170) of the Leighton Buzzard sand, for which a series of triaxial and 

torsional tests on reconstituted samples was conducted. 
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1 INTRODUCTION. 

In the last decades, for the shortage of shallow spaces and for the difficulties connected to the tyre 

transportation, it is attended to an increasing utilization of the urban subsoils for the realization of 

transport infrastructures and many others civil engineering constructions. Underground lines have 

been realized and are in construction in many important Italian cities, such as Milano, Roma, Napoli, 

Torino. The train crossings of the High Velocity Train lines (TAV) are also under construction in the 

cities of Bologna, Firenze, etc.. All of the Italian cities are interested to the realization of subway 

parking and underpasses. The major part of these constructions have required or will require deep 

excavations and tunnels that are often placed close to existing buildings. In many cases, the 

structures pass near to the historical centres of the cities, where poor safety conditions for the existing 

constructions can be recognized. 

The availability of commercial codes, advanced constitutive models to describe the soil behaviour 

when subjected to stress paths similar to those induced by the excavations, and the spread of suitable 

laboratory ed in situ techniques have allowed more reliable the evaluation of the safety conditions and 

the prediction of the behaviour of these types of structures during both the construction and the 

serviceability phases. Furthermore, the monitoring of full scale constructions has permitted to evaluate 

the reliability degree of simplified design methods, such as those based on the limit equilibrium, and to 

develop empirical methods to predict the effects of excavations on the adjacent structures. Finally, the 

introduction of the limit states design methods by using the partial factor of safety (EN1997-1), allows 

evaluating the safety of the constructions for which can not be defined a single global factor of safety. 

These progresses concern particularly the earth retaining structures in absence of seismic loadings. 

The evaluation of the safety conditions of these structures in seismic areas has not reached the same 

improvements. In these cases, the complex dynamic soil-structure interaction render the simplified 

methods very difficult and unrealistic. The examinations can be performed by means of the 

pseudostatic approaches based on the limit equilibrium only for simple cases, such as cantilever or 

single-anchor retaining walls, and adopting conventional seismic coefficients that suffer to some 

limitations for the fact that they were defined for structures over the ground. The recent European 

codes (EN 1998-5) have tackled in a marginal manner the check of safety conditions of embedded 

structures suggesting for the flexible retaining walls the use of seismic coefficients equal to the ratio 

between the expected maximum acceleration in the site of interest and the gravity acceleration. 

In this context, it becomes clear the necessity to improve the knowledge on the seismic behaviour of 

the embedded retaining walls, especially to develop innovative seismic design methods able to give 

good predictions in the practical applications. 

On these basis, a research line (Linea 6 "Metodi Innovativi per il progetto delle opere geotecniche e la 

valutazione della stabilità dei pendii") of the Consortium of the University Network of Seismic 

Engineering Laboratories (ReLUIS, www.reluis.it) was devoted to develop and validate innovative 

design methods for the earth retaining structures and tunnels placed in seismic areas.  

The main activities of the ReLUIS research line are based on: 

• physical modelling, by performing centrifuge tests on simplified scheme models;  
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• reference numerical modelling, by carrying out a series of indications on how to conduct 

reliable dynamic analyses by using commercial codes; 

• dynamic analyses on calibrated numerical models to highlight the main aspects of the seismic 

soil-structure interaction; 

• simplified analyses, that should be validated on the basis of the results of the physical 

modelling and of the advanced dynamic analyses. 

The centrifuge physical modelling will be executed at the Schofield Centre of University of Cambridge 

on prototypes of cantilever and propped diaphragms embedded in uniform sandy layers. The dynamic 

Cambridge Centrifuge was equipped with a seismic actuator (SAM – Stored Angular Momentum) 

constituted by two rotating eccentric masses that move with a constant angular velocity (Madabhushi 

et al., 1998). The SAM actuator stores energy in a pair of spinning flywheels driving a reciprocating 

rod. This energy can be released to a model by means of a fast-acting hydraulic clutch. This actuator 

imparts an approximately sinusoidal input motion to the model, with control over amplitude (± 2.5mm), 

frequency (< 500Hz) and duration being available. 

The layouts of the models with the geometries and the equipments of the programmed centrifuge tests 

are plotted in Figure 1-1. 

a)  

b)  

Figure 1-1. Geometry and equipments of the dynamic centrifuge tests in ReLUIS experimental 

program: a) cantilever diaphragms; b) propped diaphragms. 
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The models will be prepared air-pluviating dry sand into the box till to reach the level of the wall base. 

After the positioning of sensors and diaphragms, the sand will be also deposited to create the desired 

geometry. 

The tests on the cantilever walls will be conducted to an acceleration of 80g. At the prototype scale, 

the centrifuge models will simulate a 4 meters high excavation retained by a vertical wall of 8m 

embedded in dry sandy layers with a thick of 16m. The prototypes of the propped diaphragms are 

constituted by a retained height of 5.60m with a depth of embedment of 2.40m into the sand. The 

thickness of the soil layer is the same of cantilever prototypes. The tests will be performed to an 

acceleration of 40g. 

The material adopted for the centrifuge tests at the Schofield Centre is the Fraction E of the Leighton 

Buzzard Sand for which an advanced characterization of the mechanical behaviour can not be found 

in the literature. 

At the same time, to increase the knowledge about the dynamic behaviour of the soil-retaining wall 

system in case of earthquake, the Structural and Geotechnical Dynamic Laboratory StreGa of 

University of Molise is hired on the Structural Health Monitoring (SHM) of a cantilever sheet pile walls 

placed near to the "Casa dello Studente" building in Campobasso seat (Italy).  

The retaining system is constituted by two piles rows connected by means of a concrete beam. The 

piles have a diameter of 800mm and are arranged to have the centres at the vertexes of equilateral 

triangles. Two of these piles have been instrumented with embedded piezoelectric accelerometers. 

Figure 1-2 and Figure 1-3 show plan views of the retaining wall and of the monitored piles. 

Three sensor modules have been placed in each pile. The positions have been chosen in order to be 

as far as possible from the computed locations of the center of rotation in both the building and 

operational phases. Additional two sensors have been placed on top of each pile, into a box over the 

top beams which connects all piles. A sketch of the piles instrumentation and some structural details 

are shown in Figure 1-4.  

The dimensions of sensor modules are not negligible and cause some changes in the piles geometry. 

To avoid singularities in the overall behaviour of the structure, specific computations and additional 

reinforcements have been provided in order to guarantee for the instrumented piles similar stiffness 

and strength characteristics of the adjacent ones. 

In this context of the research interests devoted to the study of the dynamic behaviour of embedded 

retaining walls by the scientific community, the present thesis finds its main role.  

The activities developed during this work have both an experimental and a numerical character.  

The first part was dedicated to the validation of the commercial FE code PLAXIS v.8.2 (Brinkgreve, 

2002) for the development of dynamic soil-structure interaction analyses The program was chosen 

because it is largely adopted both from practitioners and academics. However, the obtained results 

have a general character and can be extended to other FE codes. 

At the same time, some laboratory apparatuses of the Laboratory of Soil Dynamics (DYNALAB) of the 

Hydraulic, Geotechnical and Environmental Engineering Department (D.I.G.A. – Dipartimento di 

Ingegneria Idraulica, Geotecnica ed Ambientale) at University of Napoli Federico II were calibrated to 

investigate the mechanical behaviour of the Fraction E of Leighton Buzzard Sand that will be used in 

the centrifuge tests.  



Chapter 1 – Introduction 

 

Ciro Visone – Performance-Based approach in seismic design of embedded retaining walls 1-4

 
Figure 1-2. Plan view of the monitored piles of "Casa dello Studente" (CB – Italy). 

 

 
Figure 1-3. Plan view of  “Casa dello Studente” building foundations and monitored sheet pile wall. 
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 b) 

 a) 

 
c) 

 d) 
 

Figure 1-4. Sketch of piles instrumentation: a) vertical position of the sensors; b) and c) details of piles 

head and sensor housing; d) layout of intermediate enclosures. 
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An experimental campaign was then developed on the LB sand by means of triaxial compressions and 

extensions, resonant column and torsional shear tests. The results are presented in the Annex A of 

this thesis. 

The calibration of the Dynamic Module of PLAXIS code was carried out by simulating numerically the 

one-dimensional shear waves vertical propagation into ideal visco-elastic layers. The main aspects of 

the research are described in the Annex B. The performed parametric study have been allowed 

recognizing the various sources of damping existing in dynamic time-domain analyses and correctly 

defining the numerical parameters to assume in the numerical calculations. In particular, the use of the 

Rayleigh damping formulation to model the soil viscous damping was extended to account for the 

numerical damping introduced in the analyses by the time integration scheme. Interesting indications 

and suggestions were also given on how to reduce the spurious effects of the reflected waves on the 

lateral boundaries of the discrete models and to rightly simulate the free field conditions. 

Before to deal the seismic behaviour of the embedded retaining walls, an extensive bibliographic study 

on the earth pressure theories, both in static and seismic conditions, on the typologies of retaining 

walls and on the static design methods of them was done. A brief review of the literature on these 

topics can be found in the Chapters 2, 3 and 4. 

The Chapter 5 was entirely devoted to the application of the Performance-Based Design (PBD) 

philosophy to the embedded retaining walls. Three types of analysis, depending on the accuracy 

degree required by the structure to design, were presented. Simplified analyses can be simply 

conducted by adopting the limit equilibrium methods and modelling the seismic actions on the walls as 

pseudostatic forces. For cantilever RC diaphragms embedded in cohesionless materials, two charts 

for the preliminary design of the needed depth of embedment and for the prediction of the maximum 

bending moment were shown. The earthquake-induced displacements can be roughly estimated by 

means of empirical formulas proposed in the literature or, having defined an appropriate seismic input 

motion, recurring to Newmark type analyses. A more advanced design method can be performed by 

using a FE model of the problem in which the seismic performances of the retaining system, in terms 

of displacements or forces in structural elements, are described by capacity curves. The methodology 

can be included in the framework of the "pushover analyses" and was proposed for the first time in 

Visone & Santucci de Magistris (2007). Dynamic analyses represent the most accurate instrument to 

predict the seismic behaviour of the geotechnical systems but they require an adequate subsoil 

characterization and advanced knowledge in numerical modelling and earthquake engineering. 

Finally, the performance based design presented here was applied to the seismic design of cantilever 

RC diaphragm walls embedded in dry loose and dense sandy layers. The geometry of the free walls 

centrifuge models and the LB sand properties were assumed. The analyses, performed following the 

different level of accuracy provided by the PBD, have the main scope to supply preliminary predictions 

on the seismic response of the centrifuge models. The results of the study were presented in the 

Chapter 6. 

At the end, the reached objectives and the future developments of the research were summarized in 

the last Chapter 7. 
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2 GENERALITIES OF RETAINING WALLS. 

Retaining walls can be defined as structures which retain ground, comprising soil, rock or backfill and 

water. The material is retained at a slope steeper than it would eventually adopt if no structure was 

present. Retaining structures include all types of walls and support systems in which structural elements 

have forces imposed by the retained material. 

They are used throughout seismically active areas and frequently represent key elements of ports and 

harbors, transportation systems, lifelines, and other constructed facilities. Earthquakes have caused 

permanent deformation of retaining structures in many historical earthquakes. In some cases, these 

deformations were negligibly small; in others they caused significant damage. In some cases, retaining 

structures have collapsed during earthquakes, with disastrous physical and economic consequences. 

In this chapter, the generalities of the retaining structures, with a particular attention to the embedded 

walls, are recalled. 

 

2.1 TYPES OF RETAINING WALLS. 

The problem of retaining soil is one of the oldest in geotechnical engineering; some of the earliest and 

most fundamental principles of soil mechanics were developed to allow rational design of retaining 

walls. Many different approaches to soil retention have been developed and used successfully. In 

recent years, the development of metallic, polymer and geotextile reinforcement leds to the 

development of many innovative types of mechanically stabilized earth retention systems. 

Gravity wall Cantilever wall Cantilever wall Reinforced soil wall

Basement wall Bridge abutment wall Anchored bulkhead Tieback wall
 

Figure 2-1. Common types of earth retaining structures. 
 

Retaining walls are often classified in terms of their relative mass, flexibility and anchorage conditions 

(see Figure 2-1). Gravity walls are the oldest and simplest type of retaining wall. Gravity walls are thick 

and stiff enough so that they do not bend; their movement develops essentially as rigid-body 

translation and/or rotation. Certain types of composite wall system, such as crib walls and 

mechanically stabilized walls, are thick enough so that they bend very little and consequently are often 

designed as gravity walls (including appropriate consideration of internal stability). Cantilever walls, 

which bend as well as translate and rotate, rely on their flexural strength to resist to the lateral earth 
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pressures. The actual distribution of lateral earth pressure on a cantilever wall is influenced by the 

relative stiffness and deformation of both the wall and the soil. Braced walls are constrained against 

certain types of movement by the presence of external bracing elements. In the cases of basement 

walls and bridge abutment walls, lateral movements of the tops of the walls may be restrained by the 

structures they support. Tieback walls and anchored bulkheads are restrained against lateral 

movement by anchors embedded in the soil behind the walls. The provision of lateral support at 

different locations along a braced wall may keep bending moments so low that relatively flexible 

structural sections can be used. 

 

2.2 TYPES OF RETAINING WALL FAILURES. 

To design retaining walls, it is necessary to define failure and to know how walls can fail. Under static 

conditions, retaining walls are subjected to the body forces related to the mass of the wall, to the soil 

pressures and to the external forces such as those transmitted by braces. A properly designed 

retaining wall will achieve equilibrium of these forces without introducing shear stresses that approach 

the shear strength of the soil or the failure of the wall material. During an earthquake, however, inertial 

forces and changes in soil strength may violate equilibrium and cause permanent deformation of the 

wall. Failure, whether by sliding, tilting and bending, or some other mechanism, occurs when these 

permanent deformations become excessive. The question of what level of deformation is excessive 

depends on many factors and is best addressed on a site specific basis. 

Gravity walls usually fail by rigid body mechanisms such as sliding and/or overturning or by gross 

instability. Sliding occurs when horizontal force equilibrium is not maintained (i.e., when the lateral 

pressures on the back of the wall produce a thrust that exceeds the available sliding resistance on the 

base of the wall). Overturning failures occur when moment equilibrium is not satisfied; bearing failures 

at the base of the wall are often involved. Gravity walls may also be damaged by gross instability of 

the soils behind and beneath them. Such failures may be treated as slope stability failures that 

encompass the wall. Composite wall systems, such as crib walls, bin walls and mechanically stabilized 

walls, can fail in the same ways or by a number of internal mechanisms that might involve shearing, 

pullout or tensile failure of various wall elements. 

Cantilever walls are subject to the same failure mechanisms. Soil pressures and bending moments in 

cantilever walls depend on the geometry, stiffness and strength of the wall-soil system. If the bending 

moments required for equilibrium exceed the flexural strength of the wall, flexural failure may occur. 

The structural ductility of the wall itself may influence the level of deformation produced by flexural 

failure. 

Braced walls usually fail by gross instability, tilting, flexural failure and/or failure of bracing elements. 

Tilting of braced walls typically involves rotation about the point at which the brace acts on the wall, 

often the top of the wall as in the cases of basement and bridge abutment walls. Anchored walls with 

inadequate penetration may tilting by kicking out at their toes. As in the case of cantilever walls, 

anchored walls may fail in flexure, although the point of failure (maximum bending moment) is likely to 

be different. Failure of bracing elements can include anchor pullout, tie-rod failure or bridge buckling. 
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Backfill settlements can also impose additional axial and transverse loading on bracing elements such 

as tierods and tiebacks. 

 

2.3 ULTIMATE LIMIT STATES FOR RETAINING WALLS. 

A limit state is a set of performance criteria (e.g. vibration levels, deflection, strength), or stability 

criteria (buckling, twisting, collapse) that must be met when the structure is subject to loads. 

In accordance with the most recent construction codes, the design of a structure must satisfy the 

following requirements: 

• safety towards the ultimate limit states: capability to avoid collapse, loss of equilibrium and 

heavy instability, total or partial, which might endanger the safety of the people or involve loss 

of goods or to cause heavy environmental and social damages or make the structure out of 

order; 

• safety towards the serviceability limit states: capability to guarantee the expected performances 

for serviceability conditions; 

• robustness towards the exceptional actions: capability to avoid damages out of proportion 

respect to the causes as fires, explosions, impacts. 

For all types of retaining structures, the following limit states should be considered: 

• loss of overall stability; 

• failure of a structural element such as a wall, anchorage, wale or strut or failure of the 

connection between such elements; 

• combined failure in ground and in structural element; 

• failure by hydraulic heave and piping; 

• movement of the retaining structure which may cause collapse or affect the appearance or 

efficient use of the structure or nearby structures or services which rely on it; 

• unacceptable leakage through or beneath the wall; 

• unacceptable transport of soil particles through or beneath the wall 

• unacceptable change in groundwater regime. 

In addition, the following limit states should be considered for gravity walls and for composite retaining 

structures: 

• bearing resistance failure of the soil below the base; 

• failure by sliding at the base; 

• failure by toppling; 

and for embedded walls: 

• failure by rotation or translation of the wall or parts thereof; 

• failure by lack of vertical equilibrium. 

When they are relevant, combinations of the above mentioned limit states should be taken into 

account. 

Examples of limit modes for the most commonly used retaining structures are plotted in the next 

figures (EN1997-1). 
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Figure 2-2. Examples of limit modes for overall stability of retaining structures. 

 
 

 
 

Figure 2-3. Examples of limit modes for foundation failures of gravity walls. 
 
 

 
 

Figure 2-4. Examples of limit modes for vertical failure of embedded walls. 
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Figure 2-5. Examples of limit modes for rotational failures of embedded walls. 

 
 
 
 

 
 

Figure 2-6. Examples of limit modes for structural failure of retaining structures. 

 



Chapter 3 – Earth pressure theory 

 

Ciro Visone – Performance-Based approach in seismic design of embedded retaining walls 2-6

 
 

Figure 2-7. Examples of limit modes for failure by pullout of anchors. 

 

2.4 EMBEDDED WALLS: TYPES AND USES. 

The preliminary design of a retaining structure is complicated to the various available typologies and to 

the design constraints. The problem derive from the necessity to sustain a backfill or loads transmitted 

from adjacent constructions. The structure geometry, the limitations imposed from the nature of the 

soil and the ground water table conditions, the available construction methodologies and the local 

experiences play a fundamental role for the choice of the more appropriate type of retaining system. 

Here, only the embedded retaining walls are considered. The main technologies employed for the 

realization of them are recalled.  

The first classification of the embedded walls is done on the basis of their constraints scheme. Thus, 

the walls can be distinguished as: 

• cantilever walls, used to sustain backfills lower than 5-6 m; 

• embedded walls with a single constraint, for backfills till to 10 m; 

• embedded walls with various constraint levels, to retain heights higher than 10 m. 

The embedded walls can be realized with wood, steel and reinforced concrete piles driven into the 

ground (sheet piles walls, without removing the soil) or with the cast of RC piles or diaphragm into 

previously formed holes (bulkheads, with the removal  of the soil). The execution modes influence the 

mechanical behaviour of the soil interacting with the wall. 

 

2.4.1 Sheet pile walls. 

The sheet piles walls are flexible earth retaining structures mainly used in the marine engineering and 

for provisional constructions. They can be employed in unfavourable soils conditions (for example, in 

soft clays) because they do not require foundations. The poor mechanical soil properties permit to 

drive the piles directly from the ground surface. The constructive technique is suitable for the presence 

of water, where other types of retaining systems can not be utilized. As mentioned before, the piles 

can be constituted by: 

• wood, typically used for provisional structures with low heights of excavation. For definitive 

retaining systems, protection treatments of the wood are needed 
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• steel, the most adopted material in the excavations of marine engineering for its advantages in 

the variety of transversal sections and the consequent large range of flexural strength, the 

economy, the stability during the driving, the possibility to combine various profiles to increase 

the flexural stiffness, the retrieval and the reuse of the piles for provisional constructions, the 

lightness, the possibility to lengthen the elements by welding or bolting. Some typical 

transversal sections are plotted in Figure 2-8; 

• reinforced concrete, used for permanent structures with a large variety of transversal sections. 

The most common type is a plate with male-female joints. Sometimes concrete injections are 

utilized to waterproof the wall. In order to reduce the cracking in the tensile zones and the 

corrosion of steel reinforcements, the prestressed reinforced concrete is considered. Usually 

the high weight of every element and the large volume of displaced soil during the installation 

make these type of element less competitive than the steel piles. 

 

a) 
Lateral view Frontal view

Transversal section

 

b) 
Bethlehem Z-profiles Frodingham Z-profiles Larsson U-profiles

 
 

Figure 2-8. Elements for sheet piles walls: a) reinforced concrete; b) steel. 

 

2.4.1.1 Cantilever sheet piles walls. 

The stability of this type of structures is due to an adequate depth of embedment into the soil under 

the excavation surface. To contrast the backfill thrust, the wall behaves as a cantilever beam fixed into 

the soil. The erosion in front of the wall may represent a problem, since the stability depends mainly to 

the passive resistance of the soil that develops in this zone. The cantilever sheet walls are economic 

for low retained heights due to the maximum bending moment, and then the required flexural strength, 
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increases with the cube of the excavation height. The lateral displacements due to the structural 

deflection are significant. Free sheet walls are more suitable for provisional constructions. 

 

2.4.1.2 Anchored sheet piles walls. 

The anchored sheet walls entrust their stability to the embedded portion and the anchors placed near 

to the top of the wall. Marine engineering is the more widespread field of application of the anchored 

sheet walls but, in the last years, they have found other employments (bridge abutment, basement 

walls, etc.). This type of structure may be used for heights of excavation till to 20m, in relation to the 

soil conditions. The anchors acts reducing the lateral displacements, the bending moments and the 

embedded depth requires for the equilibrium respect to the correspondent cantilever sheet walls. To 

contain the lateral movements of higher heights of excavation, more than one anchors levels can be 

adopted.  

There are two methods to install the wall and the backfill. In the first, the excavation precedes the 

driving of the piles and the backfill is completely replaced. In the second, the elements is driven into 

the ground before than the excavation is done and, then, the backfill is constituted from in-situ soil and 

reported soil. The two methods give different earth pressure conditions on the wall. 

Generally, it is assumed that the backfill is realized before than the wall and the displacements of the 

anchors are sufficient to mobilize active earth pressure behind the wall over the excavation level. 

British Standards (BS6349) suggest that, when the backfill is formed after the wall installation, the 

design should be conducted assuming intermediate values of earth pressures comprised to the active 

and at rest pressures. 

 

2.4.1.3 Types of anchors for sheet piles walls.  

Most of the problems encountered in the practical experiences of excavation sustained by anchored 

sheet piles walls are due to design or construction errors of the anchors. The main types of anchors 

are reported in Figure 2-9. 

A single anchor is constituted by a steel bar connected to a contrast element, anchor foundation, that 

can be realized with a concrete block or a beam. Rather than the block, the foundation may be carried 

out with piles or with reinforced concrete plates. The anchors foundation should be placed at a 

sufficient distance from the wall, in order to avoid the superposition of passive zone of the foundation 

and the active zone behind the wall. 

The anchor with the stand piles is recommended to Tschebotarioff (1973) for sheet walls in soft soils 

that may not be removed with dredging. The anchors with stand piles can be employed when the 

capacity of other anchors can not guarantee adequate safety conditions. The anchor with tensile 

micropiles (raking anchor) is often constituted by a steel pile with H-shape section inclined to 45° and 

linked to horizontal steel beams. 

The injected bulb anchor consists of a element subject to tension that connects the walls to a fixed 

part obtained with concrete injections in stiff soils or rocks. This type of anchor requires favourable soil 

conditions near to the wall that can not verify in alluvial deposits. 
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Figure 2-9. Examples of anchored sheet walls: a) quay wall with a single level of anchors; b) sheet 

walls with multiple anchors levels; c) injected bulb anchor; d) raking anchor; e) anchor with stand piles. 

 

2.4.2 Bulkheads. 

The diaphragm and drilled piles bulkheads are mainly used as retaining structures and structural 

elements for deeper basement walls of buildings, road subways, underground railway stations, 

shallow tunnels, underground parking, subterranean industrial plants, quay walls, wharfs and port 

structures. 

The main aspects that have contributed to the diffusion of this type of structures are: 

• the commercial availability of bentonite-mud; 

• the experiences collected in urban areas, that suggest their use in complex soil conditions too; 

• the solution of some practical problems as the improvement of the excavation techniques and 

the development of yard plants for the making of the concrete. 

The adoption of the diaphragm and drilled piles bulkheads is very convenient when the wall has 

provisional  and definitive character. 
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The cost of the structure is affected from the depth of embedment required to the stability and 

hydraulic conditions above the dredge level, the presence of rock blocks and other constructions, the 

necessity of anchors, props and struts, and from some yard factors as the availability of the services, 

the time and the space constraints. 

The constructive sequence of a continuous concrete diaphragm using modern techniques and 

equipments is plotted in Figure 2-10. 

Excavation guide

Mud level in 
the excavation

Mud-bentonite

Bucket

Joint-form 
pipes

Concrete

Steel 
reinforcements

Conveyer pipe

Excavation Insertion of the 
joint-form pipes

Insertion of the steel 
reinforcements and 

concrete jet

Extraction of the 
joint-form pipes (after 

the first concrete 
hardening)

 
a)  Constructive sequence of the primary series panels 

 

(a)

Panel in 
excavation

Joint-form 
pipes

Construction of the panel of the primary series

Concrete
Extraction of the 
joint-form pipes

(b)

Jet of the primary panels

(c)

Preparation for the jet of the secondary panels

(d)

Jet of the secondary panels

(e)

  
b) Constructive sequence of the primary, secondary and closure panels. 

 
Figure 2-10. Realization of a reinforced concrete diaphragm (Leiper, 1984). 

 

At the end of the excavation and before the concrete jet, the extremity of each panel is defined from a 

steel joint-form pipe or from the previously realized panel. The excavation is carried out by using a 

bucket and sustained by bentonite-mud. After the positioning of the joint-form pipe and the steel 
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reinforcements into the trench, the concrete jet is performed by using a conveyer pipe from the bottom 

of the hole. The joint-form pipes allows having a good level of joint between the panels. 

The diaphragms can be realized with prefabricated reinforced concrete panels. Their main 

disadvantage is the high weight of each panel. 

The reinforced concrete sheet piles may be adopted in every type of subsoil condition. The piles can 

be placed side by side, tangent and secant, in relation to the distance between the piles (larger, equal 

or lower than the pile diameter, respectively), according to the required support and the waterproofing 

of the excavation. The top of the piles is often connected by a reinforced concrete beam to distribute 

the loads.  

 

2.4.3 Walls with many anchor levels and props. 

Relatively flexible retaining walls might be designed by adopting anchor levels or multiple props at 

small distances. This kind of construction is adopted: 

• for provisional excavations; 

• to retain relatively resistant soil (fractured rock) for very deep excavation; 

• to guarantee a partial sustaining to the jet grouted excavations  

• to minimize the losses of soil in critical areas near to deeper excavations. 

The anchors can be used for every type of the face covering. In some cases, they are placed to a 

small relative distance to form retaining structure in reinforced soils.  
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3 EARTH PRESSURE THEORY. 

The seismic behaviour of retaining walls depends on the total lateral earth pressures that develop 

during earthquake shaking. These total pressures include both the static gravitational pressures that 

exist before an earthquake occurs, and transient dynamic pressures induced by the earthquake. Since 

the response of a wall is influenced by both, a review of static and dynamic earth pressures is 

presented. 

In the literature different notation was used for the definition of the problem geometry and the strength 

parameters of the backfill. In order to avoid confusion on the symbols, in this chapter are signed: 

γ – unit weight of the soil 

φ - friction angle of the soil 

c – cohesion of the soil 

Ψ – dilation angle of the soil 

ε – inclination angle of the backfill respect to horizontal 

β - inclination angle of the wall internal face respect to vertical 

δ – soil-wall friction angle 

ΨW – dilative component of the soil-wall friction angle 

α – angle of the planar failure surface respect to horizontal 

θ – inclination angle of the seismic coefficient k with the vertical. 

Figure 1-1 illustrates the assumed symbology. The subscript E indicates the seismic conditions, both 

for active and passive earth pressure states. In the following, the static loading system is denoted 

without the subscript. 

ε

α

β
θ

φW

k gh

E

k gv

Rδ

SE

 
Figure 3-1. Utilized symbols for the geometry of the problem. 
 

3.1 STATIC PRESSURES ON RETAINING WALLS. 

Static earth pressures on retaining structures are strongly influenced by wall and soil movements. 

Active earth pressures develop as a retaining wall moves away from the soil behind it, including 

extensional lateral strain in the soil. When the wall movement is sufficient to mobilize the strength of 

the soil behind the wall, minimum active earth pressures act on the wall. Because very little wall 

movement is required to develop minimum active earth pressures (for the usual case of cohesionless 
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backfill materials), free-standing retaining walls are usually designed on the basis of minimum active 

earth pressures. Where lateral wall movements are restrained, such as in the cases of tieback walls, 

anchored bulkheads, basement walls, and bridge abutments, static earth pressures may be greater 

than minimum active. Passive earth pressures develop as a retaining wall moves toward the soil, 

thereby producing compressive lateral strain in the soil. When the strength of the soil is fully mobilized, 

maximum passive earth pressures act on the wall. The stability of many free-standing retaining walls 

depends on the balance between active pressures acting predominantly on one side of the wall and 

passive pressures acting on the other. 

Even under static conditions, prediction of actual retaining walls forces and deformations is a 

complicated soil-structure interaction problem. Deformations are rarely considered explicitly in design 

– the typical approach is to estimate the forces acting on a wall and then to design the wall to resist 

those forces with a factor of safety high enough to produce acceptably small deformations. A number 

of simplified approaches are available to evaluate static loads on retaining walls. The most commonly 

used are described in the following sections. 

 

3.1.1 Rankine theory. 

Rankine (1857) developed the simplest procedure for computing minimum active and maximum 

passive earth pressures. By making assumptions about the stress conditions and strength envelope of 

the soil behind a retaining wall (the backfill soil), Rankine was able to render the lateral earth pressure 

problem determinate and directly compute the static pressures acting on retaining walls. 

For minimum active conditions, Rankine expressed the pressure at a point on the back of a retaining 

wall as: 

AVAA KcKp 2' −σ⋅=  ( 3-1 ) 

where KA is the coefficient of minimum active earth pressure, σ’V is the vertical effective stress at the 

point of interest, and c is the cohesive strength of the soil. When the principal stress planes are 

vertical and horizontal (as in the case of a smooth vertical wall retaining a horizontal backfill), the 

coefficient of minimum active earth pressure is given by: 








 φ
−=

φ+
φ−

=
2

45
1
1 2tan

sin
sin

AK  ( 3-2 ) 

For the case of a cohesionless backfill inclined at an angle ε with the horizontal, infinite slope solutions 

can be used (Terzaghi, 1943; Taylor, 1948) to compute KA as: 

φ−ε+ε

φ−ε−ε
ε=

22

22

coscoscos

coscoscos
cosAK  ( 3-3 ) 

for ε≤φ. The pressure distribution on the back of the wall, as indicated by equation ( 3-1 ), depends on 

the relative magnitudes of the frictional and cohesive components of the backfill soil strength. Although 

the presence of the cohesion indicates that tensile stresses will develop between the upper portion of 

the wall and the backfill, tensile stresses do not actually develop in the field. The creep, stress 

relaxation, and low permeability characteristics of cohesive soils render them undesirable as backfill 
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material for retaining structures, and their use for this purpose is generally avoided whenever possible. 

For dry homogeneous cohesionless backfill, Rankine theory predicts a triangular active pressure 

distribution oriented parallel to the backfill surface. The active earth pressure resultant, or active thrust 

SA, acts at a point located H/3 above the base of a wall of height H, with magnitude: 

2

2
1 HKS AA γ=  ( 3-4 ) 

Under maximum passive conditions, Rankine theory predicts wall pressures given by: 

PVPP KcKp 2' +σ⋅=  ( 3-5 ) 

where KP is the coefficient of maximum passive earth pressure. For smooth, vertical walls retaining 

horizontal backfills: 







 φ

+=
φ−
φ+

=
2

45
1
1 2tan

sin
sin

PK  ( 3-6 ) 

and: 

φ−ε−ε

φ−ε+ε
ε=

22

22

coscoscos

coscoscos
cosPK  ( 3-7 ) 

for backfills inclined at ε to the horizontal. For a dry homogeneous backfill, Rankine theory predicts a 

triangular passive pressure distribution oriented parallel to the backfill surface. 

The passive earth pressure resultant, or passive thrust SP, acts at a point located H/3 above the base 

of a wall of height H, with magnitude: 

2

2
1 HKS PP γ=  ( 3-8 ) 

In Figure 3-2 are plotted the graphical representations of the equations ( 3-2 ) and ( 3-6 ). 
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Figure 3-2. Rankine active and passive earth pressure coefficients for a horizontal backfill. 
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The presence of water in the backfill behind a retaining wall influences the effective stresses and 

hence the lateral earth pressure that acts on the wall. For wall design the hydrostatic pressure due to 

the water must be added to the lateral earth pressure. Because the total lateral thrust on a wall 

retaining a saturated backfill is considerably greater than that on a wall retaining dry backfill, the 

provision of backfill drainage is an important part of retaining wall design. 

 

3.1.2 Coulomb theory. 

Coulomb (1776) was the first to study the problem of lateral earth pressures on retaining structures. By 

assuming that the force acting on the back of a retaining wall resulted from the weight of a wedge of 

soil above a planar failure surface, Coulomb used force equilibrium to determine the magnitude of the 

soil thrust acting on the wall for both minimum active and maximum passive conditions. Since the 

problem is indeterminate, a number of potential failure surfaces must be analyzed to identify the 

critical failure surface (i.e., the surface that produces the greatest active thrust or the smallest passive 

thrust). 

Under minimum active earth pressure conditions, the active thrust on a wall with the geometry shown 

in Figure 1-1 is obtained from the force equilibrium. For the critical failure surface, the active thrust on 

a wall retaining a cohesionless soil can be expressed as: 

2

2
1 HKS AA γ=  ( 3-9 ) 

where 

( )

( ) ( ) ( )
( ) ( )

2
2

2

1












β−εβ+δ
ε−φφ+δ

+β+δβ

β−φ
=

coscos
sinsincoscos

cos
AK  

( 3-10 ) 

δ is the angle of interface friction between the wall and the soil, while ε and β are shown in Figure 1-1. 

The critical failure surface is inclined at an angle: 

( )







 +ε−φ
+φ=α

2

1

C
C

A
tan

arctan  ( 3-11 ) 

to the horizontal where 

( ) ( ) ( )[ ] ( ) ( )[ ]
( ) ( ) ( )[ ]{ }β−φ+ε−φβ+δ+=

β−φβ+δ+β−φ+ε−φε−φ=

cottantan
cottancottantan

1
1

2

1

C
C   

Coulomb theory does not explicitly predict the distribution of active pressure, but it can be shown to be 

triangular for linear backfill surfaces with no surface loads. In such cases, SA acts at a point located 

H/3 above the base of a wall of height H. 

For maximum passive conditions in cohesionless backfills, Coulomb theory predicts a passive thrust: 

2

2
1 HKS PP γ=  ( 3-12 ) 

where: 
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( )

( ) ( ) ( )
( ) ( )

2
2

2

1

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




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



β−εβ−δ
ε−φφ+δ

+β−δβ

β+φ
=

coscos
sinsincoscos

cos
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( 3-13 ) 

The critical failure surface for maximum passive earth pressure conditions is inclined to the horizontal 

at : 

( )







 +ε+φ
+φ−=α

4

3

C
C

P
tan

arctan  ( 3-14 ) 

where: 

( ) ( ) ( )[ ] ( ) ( )[ ]
( ) ( ) ( )[ ]{ }β+φ+ε+φβ−δ+=

β+φβ−δ+β+φ+ε+φε+φ=

cottantan
cottancottantan

1
1

4

3

C
C   

It should be noted that the Coulomb theory gives the entire earth pressure coefficient. If the normal 

component to the wall is the objective of the analysis, the calculated values of the coefficients should 

be multiplied for cosδ. 

In Figure 3-3. Coulomb active and passive earth pressure coefficients for a horizontal backfill 
sustained by a vertical wall.Figure 3-3 are plotted the values of the earth pressures coefficients 

calculated with the Coulomb theory for a vertical wall (β=0) that retains a horizontal backfill (ε=0) for 

different soil-wall friction angles δ. For δ=0, the results are the same given by the Rankine theory. 
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Figure 3-3. Coulomb active and passive earth pressure coefficients for a horizontal backfill sustained 

by a vertical wall. 

The variations of the planar failure surface with δ in active and passive conditions are shown in Figure 

3-4. 

In contrast to the Rankine approach, Coulomb theory can be used to predict soil thrust on walls with 

irregular backfill slopes, concentrated loads on the backfill surface, and seepage forces. By 
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considering the soil above a potential failure plane as a free body and including forces due to 

concentrated loads, boundary water pressures, and so on, the magnitude of the resultant thrust (SA or 

SP) can easily computed. 
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Figure 3-4. Critical planar failure surface for a horizontal backfill sustained by a vertical wall. 

3.1.3 Logarithmic spiral method. 

Although the major principal stress axis may be nearly perpendicular to the backfill surface at some 

distance behind a rough wall (δ>0), the presence of shear stresses on the wall-soil interface can shift 

its position near the back of the wall. If the inclination of the principal stress axes varies within the 

backfill, the inclination of the failure surface must also vary. In other words, the failure surface must be 

curved. A logarithmic spiral function has been used to describe such curved failure surfaces for active 

and passive earth pressure conditions. 

For active earth pressure conditions, the critical failure surface consists of a curved portion near the 

back of the wall and a linear portion that extends up to the ground surface (Figure 3-5a). The active 

earth pressure distribution is triangular for walls retaining planar, cohesionless backfills. Thus the 

active soil thrust can be expressed in the same form as equation ( 3-4 ), where the log spiral 

coefficients of minimum active earth pressure for various wall and backfill inclinations are given in 

Table 3-1 (Caquot & Kerisel, 1948). The active earth pressure coefficients given by the log spiral 

approach are generally considered to be slightly more accurate than those given by Rankine or 

Coulomb theory, but the difference is so small that the more convenient Coulomb approach is usually 

used. 

The effect of wall friction on the shape of the critical failure surface is more noticeable for passive 

earth pressure conditions. The passive failure surface also has curved and linear portions, but the 

curved portion is much more pronounced than for active conditions (Figure 3-5b). For planar 

cohesionless backfills, the passive earth pressure distribution is triangular, so the passive thrust can 

be expressed in the form of equation ( 3-8 ), where the log spiral coefficients of maximum passive 

earth pressure for various wall and backfill inclinations are given in Table 3-2Table 3-1 (Caquot & 
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Kerisel, 1948). The passive earth pressure coefficients given by the log spiral method are considerably 

more accurate than those given by Rankine or Coulomb theory; the Rankine and Coulomb coefficients 

tend to underpredict and overpredict the maximum passive earth pressure, respectively. Rankine 

theory greatly underpredicts actual passive earth pressures and is rarely used for that purpose. 

Coulomb theory overpredicts passive pressures (an unconservative error) by about 11% for δ=φ/2 and 

100% for δ=φ. For that reason, Coulomb theory is rarely used to evaluate passive earth pressures 

when δ>φ/2. 

Figure 3-6 shows the earth pressure coefficients evaluated with the logarithmic spiral method for a 

horizontal backfill sustained by a vertical wall. 

a)

ε

β

δ

SA

Curved

Linearπ/2 − φ

pA

          b)

ε

β

δ

SP

Curved

Linear
π/2 + φ

pP

 

Figure 3-5. Logarithmic spiral representation of the critical failure surface for: a) minimum active 

pressure conditions; b) maximum passive pressure conditions. 
 

φ 20° 25° 30° 35° 40° 45° 
ε β δ 0° 20° 0° 25° 0° 30° 0° 35° 0° 40° 0° 45° 

-10° 0.37 0.31 0.30 0.26 0.24 0.21 0.19 0.17 0.14 0.14 0.11 0.11 
0° 0.42 0.37 0.35 0.31 0.29 0.26 0.24 0.23 0.19 0.19 0.16 0.17 -

15° 10° 0.45 0.41 0.39 0.36 0.34 0.31 0.29 0.27 0.24 0.25 0.21 0.23 
-10° 0.42 0.37 0.34 0.30 0.27 0.24 0.21 0.19 0.16 0.15 0.12 0.12 
0° 0.49 0.44 0.41 0.37 0.33 0.30 0.27 0.26 0.22 0.22 0.17 0.19 0° 
10° 0.55 0.50 0.47 0.43 0.40 0.38 0.34 0.33 0.28 0.30 0.24 0.26 
-10° 0.55 0.50 0.41 0.37 0.32 0.29 0.23 0.22 0.17 0.17 0.13 0.14 
0° 0.65 0.61 0.51 0.48 0.41 0.37 0.32 0.32 0.25 0.25 0.20 0.21 15° 
10° 

KA 

0.75 0.72 0.60 0.58 0.49 0.46 0.41 0.42 0.34 0.35 0.28 0.31 
 

Table 3-1. Values of the active earth pressure coefficient for log-spiral failure surface (after Caquot & 

Kerisel, 1948). 

φ 20° 25° 30° 35° 40° 45° 
ε β δ 0° 20° 0° 25° 0° 30° 0° 35° 0° 40° 0° 45° 

-10° 1.32 1.95 1.66 2.90 2.05 4.39 2.52 6.97 3.09 11.8 3.95 22.7 
0° 1.09 1.62 1.33 2.31 1.56 3.35 1.82 5.04 2.09 7.99 2.48 14.3 -

15° 10° 0.87 1.29 1.03 1.79 1.17 2.50 1.30 3.58 1.33 5.09 1.54 8.86 
-10° 2.33 3.45 2.96 5.17 3.82 8.17 5.00 13.8 6.68 25.5 9.20 52.9 
0° 2.04 3.01 2.46 4.29 3.00 6.42 3.69 10.2 4.59 17.5 5.83 33.5 0° 
10° 1.74 2.57 1.89 3.50 2.33 4.98 2.70 7.47 3.14 12.0 3.69 21.2 
-10° 3.36 4.95 4.56 7.95 6.30 13.5 8.98 24.8 12.2 50.4 20.0 115 
0° 2.99 4.42 3.86 6.72 5.04 10.8 6.72 18.6 10.4 39.6 12.8 73.6 15° 
10° 

KA 

2.63 3.88 3.23 5.62 3.97 8.51 4.98 13.8 6.37 24.3 8.20 46.9 
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Table 3-2. Values of the passive earth pressure coefficient for log-spiral failure surface (after Caquot & 

Kerisel, 1948). 
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Figure 3-6. Active and passive earth pressure coefficients for a horizontal backfill sustained by a 

vertical wall (after Caquot & Kerisel, 1948). 

 

3.1.4 Slip line method. 

Sokolovskii (1965) introduced a theory termed the “Slip-Line Field Theory”. In this analysis, it is 

assumed that failure occurs at constant volumes of soil along slip lines that meet the Mohr-Coulomb 

failure criterion. This method has the advantage of providing a statistically admissible stress state that 

satisfy the following equations of the plane equilibrium involving the normal, σ, and shear, τ, stresses 

and using a system of rectangular coordinates x, y with x-axis oriented in the vertical direction:  

0=
∂

σ∂
+

∂

τ∂

γ=
∂

τ∂
+

∂
σ∂

yx

yx

yxy

yxx

 ( 3-15 ) 

 

The Mohr-Coulomb criteria states that at yield the following formula must apply everywhere in the soil 

mass: 

( ) ( ) φσ+σ=τ+σ−σ 2222 4 sinyxxyyx  ( 3-16 ) 

The solution of these equations is called Kotter’s equation and gives the orientation of the slip lines 

together with the stresses on the failure surface. 

Sokolovoskii accomplished the solution for the active and the passive lateral earth pressure through 

the use of the finite difference method for a horizontal backfill. The results are resumed in the Table 

3-3 and Table 3-4, while, in Figure 3-7 are plotted the values related to a vertical wall. 
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It is useful to remember that the KA and KP values are the entire earth pressure coefficients. To have 

the normal components to the wall, the values should be multiplied for cosδ. 

 

 

φ 10° 20° 30° 40° β δ 0° 5° 10° 0° 10° 20° 0° 15° 30° 0° 20° 40° 
-30° 0.72 0.68 0.68 0.60 0.57 0.57 0.50 0.47 0.50 0.42 0.40 0.46 
-20° 0.73 0.70 0.70 0.58 0.54 0.54 0.46 0.43 0.45 0.35 0.34 0.38 
-10° 0.72 0.70 0.68 0.54 0.50 0.50 0.40 0.37 0.38 0.29 0.27 0.29 
0° 0.70 0.67 0.65 0.49 0.45 0.44 0.33 0.30 0.31 0.22 0.20 0.22 
10° 0.65 0.61 0.59 0.42 0.38 0.37 0.26 0.24 0.24 0.16 0.14 0.15 
20° 0.58 0.54 0.52 0.35 0.31 0.30 0.20 0.18 0.17 0.11 0.09 0.10 
30° 

KA 

0.49 0.45 0.44 0.27 0.24 0.23 0.13 0.12 0.11 0.06 0.05 0.05 
 

Table 3-3. Values of the active earth pressure coefficient calculated by Sokolovskii (1965) with the slip 

line method. 

φ 10° 20° 30° 40° β δ 0° 5° 10° 0° 10° 20° 0° 15° 30° 0° 20° 40° 
-30° 1.04 1.11 1.16 1.26 1.49 1.73 1.49 2.08 2.80 1.86 3.17 5.42 
-20° 1.18 1.29 1.35 1.51 1.83 2.13 1.90 2.79 3.80 2.50 4.70 8.23 
-10° 1.31 1.43 1.52 1.77 2.19 2.57 2.39 3.62 5.03 3.37 6.77 12.3 
0° 1.42 1.56 1.66 2.04 2.55 3.04 3.00 4.62 6.55 4.60 9.69 18.2 

10° 1.49 1.65 1.76 2.30 2.93 3.53 3.65 5.82 8.42 6.16 13.9 26.6 
20° 1.53 1.70 1.83 2.53 3.31 4.03 4.42 7.38 10.7 8.34 19.5 39.0 
30° 

KP 

1.52 1.71 1.85 2.76 3.67 4.51 5.28 9.07 13.5 11.3 28.4 56.7 
 

Table 3-4. Values of the passive earth pressure coefficient calculated by Sokolovskii (1965) with the 

slip line method. 
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Figure 3-7. Active and passive earth pressure coefficients for a horizontal backfill sustained by a 

vertical wall using slip line method (Sokolovskii, 1965). 
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3.1.5 Limit analysis methods. 

Limit analysis is considered to be an efficient method for computing the collapse load in a direct 

manner. This approach is, therefore, of intense practical interest to practicing engineers. There have 

been an enormous number of applications in metal structures. Applications of limit analysis to 

reinforced concrete structures are more recent and are given in a book by Chen (1982). Applications 

to typical stability problems in soil mechanics have been the most highly developed aspect of limit 

analysis. Earth pressure evaluation is one of most widespread employment available in the scientific 

literature. Here, the solutions obtained with the application of the upper and lower bound theorems of 

limit analysis are reported. 

3.1.5.1 Upper Bound solution. 

Chen & Liu (1990) have assumed translational horizontal wall movements and the log-sandwich 

failure mechanism reported by Chen (1975) to calculate active and passive lateral earth pressures by 

the upper-bound limit analysis method taking into account the soil-wall interface friction. 

Failure mechanisms as generalized from James and Bransby (1970) are adopted for both the passive 

and the active cases. They are shown in Figure 3-8. The failure surfaces are assumed to follow the 

stress characteristics which are also the velocity characteristics for a perfectly plastic material. The 

mechanism consists of three zones. The first zone, Zone I, is the Rankine zone. The stress condition 

in this zone is not influenced by the characteristics of the soil-wall interface. The second zone, Zone II, 

is the mixed zone, which is subjected to the influence of the interface characteristics. According to 

Hettiaratchi and Reece (1975), this zone should be of triangular shape if the angle of wall friction, δ, is 

uniformly distributed along the interface as generally assumed. The third zone, Zone III, which is a 

transition zone, is formed by a logarithmic spiral of angle φ and the two adjacent boundaries. This kind 

of combination was reported by Chen and Rosenfarb (1973) to give the best upper bound in the 

several mechanisms investigated. 

Since the upper bound method of limit analysis is based on energy equilibrium rather than on force-

equilibrium as employed in the limit equilibrium method, the particular benefit of adopting logarithmic 

spiral surface with a frictional angle of φ is no longer relevant to the upper bound technique. 

Furthermore, James and Bransby (1970) found that the actual observed failure surfaces follow closely 

the velocity characteristics and in the Rankine zone θ1 = π/2 + ψ for the passive pressure case, where 

the angle of dilation ψ is much smaller than φ. This mechanism has been adopted by Habibagahi and 

Ghahramani (1977) who solved the earth pressure problems by the limit equilibrium technique based 

on a so-called zero extension line theory. Much experimental evidence, such as that discussed by 

Scott (1963), also shows that the actual failure takes place on planes with smaller angles than those 

predicted by the Mohr-Coulomb criterion which gives the stress characteristics with θ1 = π/2 ± φ. 

A possible explanation for the difference in the stress characteristics and the velocity characteristics 

for most soils is that the introduction of the friction in real soils causes the velocity characteristics, 

which are originally consistent with the stress characteristics for a perfectly plastic material. 

Consequently,  θ1 = π/2 + ξ with an equivalent friction angle ξ being smaller than φ and no less than ψ. 

Hence it is justified to adopt a logarithmic spiral with a ξ, with ψ ≤ ξ ≤ φ, if the solution can be 

improved. 
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Figure 3-8. Log-sandwich failure mechanisms for lateral earth pressure limit analysis (modified after 

Chen & Rosenfarb, 1973) 

However, it should be noted that when ξ ≤ φ the solution is only an equilibrium solution and not 

necessarily an upper bound. For the upper bound theorem of limit analysis to be applicable, the 

material must be perfectly plastic so that ξ = φ in the Rankine zone. It can be shown that the active 

pressure coefficient KA-values are not altered and KP-values are somewhat lowered by the use of ξ-

spiral rather than φ-spiral, especially when the values of the angle of repose of the wall, β, the backfill 

slope angle, ε, and the friction angle, φ, are high. This tends to indicate that the conventionally adopted 

φ-spiral failure surface is not necessarily the best mechanism that gives the close-to-exact solution for 

a given problem. One possible explanation for the fact that the use of ξ-spiral results in essentially no 

improvement for KA-values but some improvement for KP-values is that the prefailure volume flow, 

which is believed to have certain effects on the stress characteristics, is negligible in the active case 

but of considerable amount in the passive case. To account for this fact, ξ-spiral may be adopted for 

analysis in the passive case.  

The chosen mechanisms of failure as shown in Figure 3-8 have the flexibility of being able to be 

reduced to a simple Coulomb planar failure mechanism when χ = 0, or a logarithmic Rankine 

mechanism when ς = 0 or a logarithmic spiral mechanism when ς = 0 and χ = β + ε. For the special 

case of φ = 0, the failure mechanism becomes a circular arc, which seems to agree with actual 

observation of sliding in undrained cohesive soil masses. 

Applying the upper-bound technique for the ξ-spiral failure mechanism, Chen & Liu (1990) obtained 

the following relationships for the coefficients of the active KA and the passive KP earth pressure: 
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 ( 3-18 ) 

where a = 2 tanξ + tan(2φ – ξ) and ψw is the dilating components of the soil-wall friction angle δ. 

For a problem with assigned geometrical configuration, β and ε, and material strength parameters, φ, δ 

and ψw, the practical application of these formulas can be done by varying the two angles ς, χ and 

determining the maximum value of KA and the minimum value of KP. 

The results reported by Chen & Liu (1990) for different values of β, φ and δ are given in Table 3-5 and 

Table 3-6. As for the Coulomb theory, the normal components of the earth pressures can be 

determined by multiplying the values for cosδ. In Figure 3-9 are depicted the trends of KA and KP for a 

vertical wall that retains a horizontal backfill. 

φ 20° 30° 40° 50° β δ 0° 10° 20° 0° 15° 30° 0° 20° 40° 0° 25° 50° 
-30° 0.77 0.74 0.76 0.62 0.61 0.67 0.49 0.50 0.62 0.38 0.42 0.65 
-15° 0.60 0.56 0.56 0.45 0.42 0.44 0.33 0.32 0.36 0.23 0.23 0.31 
0° 0.49 0.45 0.43 0.33 0.30 0.30 0.22 0.20 0.21 0.13 0.13 0.15 
15° 0.41 0.37 0.34 0.24 0.21 0.21 0.13 0.12 0.12 0.06 0.06 0.06 
30° 

KA 

0.34 0.29 0.27 0.17 0.14 0.13 0.07 0.05 0.05 0.01 0.01 0.01 

Table 3-5. Values of the active earth pressure coefficient given by the upper-bound method for log-

sandwich failure mechanisms (Chen & Liu, 1990). 

φ 20° 30° 40° 50° β δ 0° 10° 20° 0° 15° 30° 0° 20° 40° 0° 25° 50° 
-30° 1.74 2.00 2.29 2.15 2.82 3.77 2.71 4.23 7.45 3.48 7.39 20.18 
-15° 1.78 2.16 2.56 2.38 3.42 4.57 3.26 6.08 11.67 4.63 13.12 41.27 
0° 2.04 2.58 3.17 3.00 4.71 7.10 4.60 10.09 20.91 7.55 28.68 98.06 
15° 2.61 3.45 4.39 4.35 7.42 11.79 7.80 19.67 43.09 15.98 75.20 267.69
30° 

KP 

3.79 5.27 6.96 7.38 13.67 22.70 16.15 45.47 103.16 43.72 234.22 848.58

Table 3-6. Values of the passive earth pressure coefficient given by the upper-bound method for log-

sandwich failure mechanisms (Chen & Liu, 1990). 
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Figure 3-9. Active and passive earth pressure coefficients for a horizontal backfill sustained by a 

vertical wall (Chen & Liu, 1990). 

3.1.5.2 Lower Bound solution. 

The lower-bound method of limit analysis is different from the upper-bound method in that the 

equilibrium and yield condition instead of the work equation and failure mechanism are considered. 

Lancellotta (2002) has used this approach to obtain an analytical solution for the passive earth 

pressure acting on a rough retaining wall. Considering a fan of stress discontinuities that divides two 

regions, one placed near to the wall in which the stress state is affected from the soil-wall friction and 

the other one with the half space stress conditions, and determining the shift between the two extreme 

Mohr circles of the stress states in the two regions, the author has deduced the following closed form 

for the passive earth pressure coefficient KP: 

φθ













 δ−φ+δ

φ−
δ

= tansinsincos
sin

cos 222

1
eKP  ( 3-19 ) 

where: 

δ+







φ
δ

=θ −

sin
sinsin 12  ( 3-20 ) 

For completeness, in the paper is reported the expression of active earth pressure coefficient, too: 

φθ−













 δ−φ−δ

φ+
δ

= tansinsincos
sin

cos 222

1
eK A  ( 3-21 ) 

where: 

δ−







φ
δ

=θ −

sin
sinsin 12  ( 3-22 ) 

Equations ( 3-19 ) and ( 3-21 ) can be expressed as a single equation: 
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with: 

δ±







φ
δ

=θ −

sin
sinsin2 1  ( 3-24 ) 

Unlike the previous theories, the values given by the equation ( 3-23 ) represent the normal 

components to the vertical wall of the earth pressure coefficients. The total earth pressure coefficients 

can be obtained dividing for cosδ the results of the relationships. 

Figure 3-10 shows the values of KA and KP for a horizontal backfill retained by a vertical wall evaluated 

with the equations ( 3-19 ) and ( 3-21 ). 

The main advantages of this solution are the closed form of the equations, respect to the tabled values 

given by the upper-bound method, and the conservative estimation of the exact solution of the soil 

passive resistance in plane conditions. This fact has a great relevance in engineering practice. 
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Figure 3-10. Active and passive earth pressure coefficients for a horizontal backfill sustained by a 

vertical wall (Lancellotta, 2002). 

 

3.1.6 Comparisons between the different static methods. 

As can be noted from the graphical representations of the results obtained from the application of the 

different theories, the active earth pressures coefficients is not strongly affected by the soil wall friction 

angle δ, while, small variations of δ produce large differences on KP values calculated with the various 

methods. 

From Figure 3-11 to Figure 3-14 the comparisons between the normal components to the wall of the 

active and passive earth pressure coefficients evaluated with the different methods for a horizontal 
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backfill (ε=0) retained by smooth (δ=0) and rough (δ=φ) vertical walls are plotted. Note that the earth 

pressure coefficients was estimated till to a soil friction angle φ=40°, for the slip line method, and 

φ=45°, for the logarithmic spiral method. 

In active and passive conditions, for a smooth wall, the computed KAn and KPn values are practically 

the same.  

For a rough wall, in the active conditions, the differences becomes relatively much larger. Rankine and 

Coulomb methods give the upper and lower threshold trends, while the other methods carry out very 

similar solutions. 

The passive earth pressure coefficients are more sensible to the soil wall friction. If the slip line 

method can be interpreted as the most accurate determination close to the exact solution, the upper 

bound limit analysis provides KP values very similar to those expected while the lower bound approach 

gives conservative and easy-to-calculate passive coefficients. 
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Figure 3-11. Comparisons between the normal components of the active earth pressure coefficient 

given by the various methods for a horizontal backfill sustained by a smooth vertical wall (δ=0). 



Chapter 3 – Earth pressure theory 

 

Ciro Visone – Performance-Based approach in seismic design of embedded retaining walls 3-16

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50

Friction angle, φ (°)

N
or

m
al

 a
ct

iv
e 

ea
rth

 p
re

ss
ur

e 
co

ef
fic

ie
nt

, 
K

A
n 

Rankine
Coulomb
Logarithmic Spiral
Slip Line
Upper Bound
Lower Bound

δ = φ

 
Figure 3-12. Comparisons between the normal components of the active earth pressure coefficient 

given by the various methods for a horizontal backfill sustained by a rough vertical wall (δ=φ). 
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Figure 3-13. Comparisons between the normal components of the passive earth pressure coefficient 

given by the various methods for a horizontal backfill sustained by a smooth vertical wall (δ=0). 
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Figure 3-14. Comparisons between the normal components of the passive earth pressure coefficient 

given by the various methods for a horizontal backfill sustained by a rough vertical wall (δ=φ). 
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3.2 SEISMIC PRESSURES ON RETAINING WALLS. 

A common approach to the seismic design of retaining walls involves estimating the loads imposed on 

the wall during earthquake shaking and then ensuring that the wall can resist those loads. Because 

the actual loading on retaining walls during the earthquakes is extremely complicated, seismic 

pressures on retaining walls are usually estimated using simplified methods. 

Retaining walls that can move sufficiently to develop minimum active and/or maximum passive earth 

pressures are referred to as yielding walls. The dynamic pressures acting on yielding walls are usually 

estimated by pseudostatic procedures in which the effects of an earthquake are represented by 

constant horizontal and/or vertical accelerations.  

Some retaining structures, such as massive gravity walls founded on rock or basement walls braced at 

both top and bottom, do not move sufficiently to mobilize shear strength of the backfill soil. As a result, 

the limiting conditions of minimum active or maximum passive earth pressures can not be developed. 

This type of walls are denoted as nonyielding walls. 

An earthquake has two possible effects on a soil-wall system. One is to increase the driving force. The 

other is to decrease the shearing resistance of the soil. The reduction in the shearing resistance of a 

soil during an earthquake appears only when the magnitude of the earthquake exceeds a certain limit 

and the ground conditions are favourable for such a reduction. The evaluation of such a reduction 

requires considerable knowledge in earthquake engineering and soil dynamics. 

Research conducted by Okamoto (1956) indicated that when the average ground acceleration is 

larger than 0.3g, there is a considerable reduction in strength for most soils. However, he claimed that 

in many cases, the ground acceleration is less than 0.3g and the mechanical properties of mostly of 

the soils do not change significantly in these cases. Here, only the increase in driving forces is to be 

considered. The shear strength of the soil is assumed unaffected by the influence of the seismic 

loading. 

In the quasi-static analysis of seismic lateral earth pressures, a constant seismic coefficient, k, is 

assumed for the entire soil mass involved. A seismic force, which is equal to k times the weight of a 

soil mass, is assumed to act at the center of gravity of the sliding soil mass. The seismic force is 

assumed to act in a direction at an angle θ from the vertical as shown in Figure 1-1. 

In the following, the main theories developed for the study of the earth pressure on yielding walls in 

seismic conditions with a pseudostatic approach and on nonyielding walls are presented. 

 

3.2.1 Mononobe-Okabe theory. 

Okabe (1926) and Mononobe & Matsuo (1929) developed the basis of a pseudostatic analysis of 

seismic earth pressures on retaining structures that has become popularly known as the Mononobe-

Okabe (M-O) method. The M-O method is a direct extension of the static Coulomb theory to 

pseudostatic conditions. In a M-O analysis, pseudostatic accelerations are applied to a Coulomb 

active (or passive) wedge. The pseudostatic soil thrust is then obtained from the force equilibrium of 

the wedge. 

In addition to those under static conditions, the forces acting on an active wedge in a dry cohesionless 

backfill wedge are constituted by horizontal and vertical pseudostatic forces whose magnitudes are 
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related to the mass of the wedge by the pseudostatic accelerations ah = khg and av = kvg. The total 

active thrust can be expressed in a form similar to that developed for static conditions, that is: 

( )vAEAE kHKS −γ= 1
2
1 2  ( 3-25 ) 

where the dynamic active earth pressure coefficient, KAE, is given by: 

( )

( ) ( ) ( )
( ) ( )

2
2

2

1
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


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
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+θ+β+δβθ

θ−β−φ
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coscos
sinsincoscoscos

cos
AEK  

( 3-26 ) 

where φ−ε ≥θ, and θ = tan-1[kh/(1-kv)]. The critical failure surface, which is flatter than the critical failure 

surface for static conditions, is inclined (Zarrabi-Kashani, 1979) at an angle: 

( )







 +ε−θ−φ−
+θ−φ=α −

E

E
AE C

C

2

11 tan
tan  ( 3-27 ) 

where: 

( ) ( ) ( )[ ] ( ) ( )[ ]β−θ−φβ+θ+δ+β−θ−φ+ε−θ−φε−θ−φ= cottancottantan 11EC  

( ) ( ) ( )[ ]{ }β−θ−φ+ε−θ−φβ+θ+δ+= cottantan12EC  
 

Altough the M-O analysis implies that the total active thrust should act at a point H/3 above the base of 

a wall of height H, experimental results suggest that it actually acts at a higher points under dynamic 

loading conditions. The total active thrust, SAE, can be divided into a static component, SA, and a 

dynamic component, ∆SAE: 

AEAAE SSS ∆+=  ( 3-28 ) 

The static component is known to act at H/3 above the base of the wall. Seed & Whitman (1970) 

recommended that the dynamic component be taken to act at approximately 0.6 H. On this basis, the 

total active thrust will act at a height h: 

( )
AE

AEA

S
HSHS

h
603 .∆+⋅

=  ( 3-29 ) 

above the base of the wall. The value of h depends on the relative magnitudes of SA and SAE – it often 

ends up near to the midheight of the wall. M-O analyses show that kv, when taken as one-half to two-

thirds the value of kh, affects SAE by less than 10%. Seed and Whitman (1970) concluded that vertical 

accelerations can be ignored when the M-O method is used to estimate SAE for typical wall designs. 

The total passive thrust on a wall retaining a dry cohesionless backfill is given by: 

( )vPEPE kHKS −γ= 1
2
1 2  ( 3-30 ) 

where the dynamic passive earth pressure coefficient, KPE, is given by: 

( )

( ) ( ) ( )
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β−εθ+β−δ
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coscos
sinsincoscoscos

cos
PEK  

( 3-31 ) 

The critical failure surface for M-O passive conditions is inclined from horizontal by an angle: 
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( )
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4

31 tan
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where: 

( ) ( ) ( )[ ] ( ) ( )[ ]β+θ−φβ+θ−δ+β+θ−φ+ε+θ−φε+θ−φ= cottancottantan 13EC  

( ) ( ) ( )[ ]{ }β+θ−φ+ε+θ−φβ−θ+δ+= cottantan14EC  
 

The total passive thrust can also be divided (Towhata and Islam, 1987) into static and dynamic 

components: 

PEPPE SSS ∆+=  ( 3-33 ) 

where SPE and SP are computed from equations ( 3-30 ) and ( 3-12 ), respectively. Note that the 

dynamic component acts in the opposite direction of the static component, thus reducing the available 

passive resistance. 

From Figure 3-15 to Figure 3-18 the graphical representations of the seismic earth pressure 

coefficients and the critical failure surfaces in active and passive conditions evaluated with the M-O 

method for vertical walls retaining a horizontal backfill are plotted. The figures denote a slight influence 

of the soil-wall friction on the seismic active conditions while, as in the Coulomb method, strong 

differences exist in the passive case. 

Although conceptually quite simple, the M-O analysis provides a useful means of estimating 

earthquake-induced loads on retaining walls. A positive horizontal acceleration coefficient causes the 

total active thrust to exceed the static active thrust and the total passive thrust to be less than the 

static passive thrust.  Since the stability of a particular wall is generally reduced by an increase in 

active thrust and/or a decrease in passive thrust, the M-O method produces seismic loads that are 

more critical than the static loads that act prior an earthquake. The effects of distributed load and 

discrete surface loads and irregular backfill surfaces are easily considered by modifying the free-body 

diagram of the active or passive wedge. In such cases, equations ( 3-26 ) and ( 3-31 ) no longer apply. 

The total thrusts must be obtained from the analysis of a number of potential failure planes. 

As a pseudostatic extension of the Coulomb analysis, however, the M-O analysis is subject to all of 

the limitations of pseudostatic analyses as well as the limitations of Coulomb theory. The 

determination of the appropriate pseudostatic coefficient is difficult and the analysis is not appropriate 

for soils that experience significant loss of strength during earthquakes (e.g. liquefiable soils). Just as 

Coulomb theory does under static conditions, the M-O analysis will overpredict the actual total passive 

thrust, particularly for δ > φ/2. For these reasons the M-O method should be used and interpreted 

carefully. 

Note that, in Figure 3-17c, the seismic passive earth pressure coefficient is larger than 20 when the 

yellow horizontal plateau appears. 
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Figure 3-15. Seismic active earth pressure coefficients for a horizontal backfill sustained by vertical 

walls (Mononobe-Okabe method): a) δ=0; b) δ=φ/2; c) δ=φ. 
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Figure 3-16. Critical failure surfaces in seismic active conditions for a horizontal backfill sustained by 

vertical walls (Mononobe-Okabe method): a) δ=0; b) δ=φ/2; c) δ=φ. 
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Figure 3-17. Seismic passive earth pressure coefficients for a horizontal backfill sustained by vertical 

walls (Mononobe-Okabe method): a) δ=0; b) δ=φ/2; c) δ=φ. 
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Figure 3-18. Critical failure surfaces in seismic passive conditions for a horizontal backfill sustained by 

vertical walls (Mononobe-Okabe method): a) δ=0; b) δ=φ/2; c) δ=φ. 
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3.2.2 Limit analysis methods. 

3.2.2.1 Upper bound solution. 

By equating the incremental external work to the incremental internal energy dissipation associated to 

a translational wall movement and a φ-spiral log-sandwich mechanism of failure proposed by Chen 

and Rosenfarb (1973), Chang (1981) has deduced seismic active and passive earth pressure 

formulations in which the soil thrust can be expressed in terms of equivalent coefficients of seismic 

earth pressure, KAE and KPE, as: 

2

2
1 HKS EE γ=  ( 3-34 ) 

The seismic active earth pressure coefficient KAE is: 

AcAqAAE N
H
cN

H
qNK

γ
+

γ
+= γ

22  ( 3-35 ) 

where γ is the unit weight of the backfill material, H the vertical height of the wall, q is the uniform 

surcharge acting on the surface of the backfill, c is the soil cohesion. NAγ, NAq and NAc are three 

coefficients for which closed form expressions can be found in Chen & Liu (1990). The most critical 

KAE-value can be obtained by maximization with respect to ς and χ shown in Figure 3-8. 

At the same manner, the seismic passive earth pressure coefficient KPE is given by the following 

relationship: 

PcPqPPE N
H
cN

H
qNK

γ
+

γ
+= γ

22  ( 3-36 ) 

Expressions of the three coefficients NAγ, NAq and NAc can be found in Chen & Liu (1990). The most 

critical KPE-value can be obtained by minimization with respect to ς and χ shown in Figure 3-8. 

For practical purposes, the author has calculated some values of the seismic earth pressure 

coefficients reported in tables (Chang, 1981, as quoted by Chen & Liu, 1990).  

In the next Table 3-7 and Table 3-8 some of them are summarized. 

Figure 3-19 and Figure 3-20 show the graphical representations of the seismic earth pressure 

coefficients in active and passive conditions given by the upper bound method for vertical walls 

retaining a horizontal backfill. As M-O method, the soil-wall friction has a slight influence on the 

seismic active conditions. For high values of the friction angle φ, the differences might become larger 

in the passive conditions. 

The dependence of the seismic coefficient kh on KAE and KPE is more clear considering the variations 

of earth pressure coefficients respect to the corresponding static values. For the active case, the 

increase of KAE is more obvious for denser soils with higher φ-values than for the looser soils with 

lower φ-values. The decrease of KPE is more obvious for looser soils than for denser soils in the 

passive case. 
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φ 20° 30° 40° 50° β δ 0° 10° 20° 0° 15° 30° 0° 20° 40° 0° 25° 50° 
-30° 0.77 0.74 0.76 0.62 0.61 0.67 0.49 0.50 0.62 0.38 0.42 0.65 
-15° 0.60 0.56 0.56 0.45 0.42 0.44 0.33 0.32 0.36 0.23 0.23 0.31 
0° 0.49 0.45 0.43 0.33 0.30 0.30 0.22 0.20 0.21 0.13 0.13 0.15 

15° 0.41 0.37 0.34 0.24 0.21 0.21 0.13 0.12 0.12 0.06 0.06 0.06 
30° 

kh = 0 

0.34 0.29 0.27 0.17 0.14 0.13 0.07 0.05 0.05 0.01 0.01 0.01 
-30° 0.84 0.84 0.89 0.69 0.70 0.81 0.56 0.59 0.79 0.44 0.50 0.53 
-15° 0.68 0.65 0.66 0.51 0.50 0.53 0.39 0.33 0.45 0.28 0.29 0.41 
0° 0.57 0.53 0.52 0.40 0.37 0.37 0.27 0.25 0.26 0.17 0.17 0.21 

15° 0.49 0.45 0.43 0.31 0.27 0.27 0.18 0.16 0.17 0.09 0.09 0.10 
30° 

kh = 0.1 

0.44 0.38 0.36 0.23 0.20 0.18 0.10 0.09 0.09 0.04 0.03 0.03 
-30° 0.96 1.00 1.12 0.78 0.83 1.02 0.63 0.71 1.07 0.51 0.62 1.58 
-15° 0.78 0.78 0.82 0.59 0.60 0.66 0.45 0.47 0.58 0.34 0.37 0.55 
0° 0.67 0.65 0.65 0.47 0.45 0.47 0.33 0.32 0.36 0.22 0.22 0.28 

15° 0.61 0.56 0.55 0.38 0.35 0.35 0.23 0.21 0.23 0.13 0.13 0.15 
30° 

kh = 0.2 

0.56 0.51 0.48 0.31 0.27 0.26 0.15 0.13 0.14 0.06 0.06 0.06 
-30° 1.16 1.30 1.54 0.90 1.01 1.38 0.73 0.87 1.53 0.60 0.77 2.31 
-15° 0.95 1.00 1.10 0.70 0.73 0.86 0.53 0.57 0.77 0.40 0.46 0.78 
0° 0.83 0.84 0.88 0.57 0.56 0.61 0.40 0.40 0.47 0.28 0.29 0.39 

15° 0.77 0.75 0.75 0.48 0.45 0.46 0.30 0.28 0.31 0.13 0.17 0.21 
30° 

kh = 0.3 

0.75 0.70 0.68 0.40 0.36 0.36 0.21 0.19 0.20 0.10 0.09 0.10 
 

Table 3-7. Values of the seismic active earth pressure coefficient given by the upper-bound method 

for log-sandwich failure mechanisms (Chang, 1981 as quoted by Chen & Liu, 1990). 

φ 20° 30° 40° 50° β δ 0° 10° 20° 0° 15° 30° 0° 20° 40° 0° 25° 50° 
-30° 1.74 2.00 2.29 2.15 2.82 3.77 2.71 4.23 7.45 3.48 7.39 20.18 
-15° 1.78 2.16 2.56 2.38 3.42 4.57 3.26 6.08 11.67 4.63 13.12 41.27 
0° 2.04 2.58 3.17 3.00 4.71 7.10 4.60 10.09 20.91 7.55 28.68 98.06 

15° 2.61 3.45 4.39 4.35 7.42 11.79 7.80 19.67 43.09 15.98 75.20 267.69 
30° 

kh = 0 

3.79 5.27 6.96 7.38 13.67 22.70 16.15 45.47 103.16 43.72 234.22 848.58 
-30° 1.66 1.86 2.10 2.09 2.67 3.52 2.66 4.10 7.04 3.45 7.12 19.25 
-15° 1.68 1.98 2.33 2.28 3.20 4.52 3.16 5.76 10.97 4.52 12.56 39.42 
0° 1.89 2.35 2.86 2.82 4.37 6.55 4.38 9.49 19.66 7.27 27.37 93.61 

15° 2.38 3.11 3.92 4.04 6.82 10.81 7.36 18.40 40.44 15.27 71.53 255.47 
30° 

kh = 0.1 

3.39 4.68 6.16 6.77 12.51 20.74 15.11 42.60 96.72 41.63 223.34 809.77 
-30° 1.56 1.70 1.87 2.01 2.49 3.24 2.59 3.90 6.61 3.40 6.85 18.32 
-15° 1.56 1.78 2.06 2.16 2.96 4.13 3.04 5.41 10.25 4.41 12.01 37.52 
0° 1.71 2.08 2.50 2.63 4.00 5.95 4.15 8.86 18.33 7.00 25.95 89.09 

15° 2.11 2.71 3.39 3.71 6.20 9.78 6.90 17.12 37.57 14.51 67.81 243.13 
30° 

kh = 0.2 

2.95 4.01 5.24 6.15 11.24 18.66 14.02 39.57 89.78 39.41 211.94 770.53 
-30° 1.39 1.46 1.56 1.91 2.30 2.94 2.51 3.68 6.16 3.35 6.56 17.53 
-15° 1.37 1.51 1.71 2.02 2.69 3.71 2.91 5.06 9.50 4.29 11.42 35.54 
0° 1.48 1.73 2.04 2.42 3.59 5.30 3.91 8.20 16.97 6.69 24.51 84.32 

15° 1.77 2.21 2.71 3.34 5.50 8.64 6.42 15.73 34.61 13.75 64.09 230.04 
30° 

kh = 0.3 

2.40 3.19 4.10 5.45 9.89 16.41 12.94 36.27 82.68 37.13 200.35 729.04 
 

Table 3-8. Values of the seismic passive earth pressure coefficient given by the upper-bound method 

for log-sandwich failure mechanisms (Chang, 1981 as quoted by Chen & Liu, 1990). 
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Figure 3-19. Seismic active earth pressure coefficients for a horizontal backfill sustained by vertical 

walls (Chang, 1981, as quoted by Chen & Liu, 1990): a) δ=0; b) δ=φ/2; c) δ=φ. 



Chapter 3 – Earth pressure theory 

 

Ciro Visone – Performance-Based approach in seismic design of embedded retaining walls 3-28

a)  
20

25
30 35 40 45

0
0.1

0.2
0.3 0

2

4

6

8

10

12

14

16

18

20

S
ei

sm
ic

 p
as

si
ve

 e
ar

th
 p

re
ss

ur
e 

co
ef

fic
ie

nt
, K

P
E

Friction angle, φ(°)

Seismic 
horizontal 

coefficient, k h

18-20
16-18
14-16
12-14
10-12
8-10
6-8
4-6
2-4
0-2

δ = 0

 

b) 
20

25
30 35 40 45

0
0.1

0.2
0.3 0

2

4

6

8

10

12

14

16

18

20

S
ei

sm
ic

 p
as

si
ve

 e
ar

th
 p

re
ss

ur
e 

co
ef

fic
ie

nt
, K

P
E

Friction angle, φ(°)

Seismic 
horizontal 

coefficient, k h

18-20
16-18
14-16
12-14
10-12
8-10
6-8
4-6
2-4
0-2

δ = φ/2

 

c)  
20

25
30 35 40 45

0
0.1

0.2
0.3 0

2

4

6

8

10

12

14

16

18

20

S
ei

sm
ic

 p
as

si
ve

 e
ar

th
 p

re
ss

ur
e 

co
ef

fic
ie

nt
, K

P
E

Friction angle, φ(°)

Seismic 
horizontal 

coefficient, k h

18-20
16-18
14-16
12-14
10-12
8-10
6-8
4-6
2-4
0-2

δ = φ

 

Figure 3-20. Seismic passive earth pressure coefficients for a horizontal backfill sustained by vertical 

walls (Chang, 1981, as quoted by Chen & Liu, 1990): a) δ=0; b) δ=φ/2; c) δ=φ. 
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3.2.2.2 Lower bound solution. 

Consider a soil surface, sloping at an angle ε with respect to the horizontal, subjected to the vertical 

body force γ, due to gravity, and to the horizontal body force khγ, which represents the seismic 

coefficient (positive assumed if the inertia force is towards the backfill). In order to compute the 

passive resistance on a vertical wall of roughness δ, imagine transforming the problem geometry 

trough a rigid rotation θ, given by  

hk1tan−=θ  ( 3-37 ) 

θ represents the obliquity of the body force per unit volume in the presence of seismic action. Please 

note that the presence of a vertical component of the inertia forces could be taken into account by 

assuming  

v

h

k
k
±

=θ −

1
tan 1  ( 3-38 ) 

where kv is the coefficient of vertical acceleration. 

The problem of deriving the passive resistance acting on a rough vertical wall in seismic conditions 

can be dealt with the wall tilted from the vertical by the angle θ and interacting with a backfill of slope 

ε*= ε – θ. The resulting vertical body force is represented by the vector 21* hk+γ=γ , which can be 

thought of as a properly scaled gravity body force (in the presence of vertical acceleration it would be 

( ) 221* hv kk +±γ=γ . 

As in static conditions, two regions can be considered, one placed near to the wall in which the stress 

state is affected from the soil-wall friction and one with the half space stress conditions, divided by a 

fan of stress discontinuities. By determining the shift between the two extreme Mohr circles of the 

stress states in the two regions for this problem geometry, Lancellotta (2007) has deduced a closed 

form for the seismic passive earth pressure coefficient KPE. 

( ) ( )
φθ



















 δ−φ+δ⋅

θ−ε−φ−θ−ε

δ
= tan222

22
sinsincos

sinsincos

cos eKPE  ( 3-39 ) 

where 

( ) ( ) θ+θ−ε+δ+







φ

θ−ε
+








φ
δ

=θ −− 2
sin

sinsin
sin
sinsin2 11  ( 3-40 ) 

It is useful to remember that the values given by the equation ( 3-39 ) represent the normal 

components to the vertical wall of the seismic passive coefficients. The total earth pressure 

coefficients can be obtained dividing for cosδ the results of the relationship. 

Figure 3-21 shows the graphical representations of the seismic passive earth pressure coefficients 

evaluated with the lower bound method for vertical walls retaining a horizontal backfill. 
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Figure 3-21. Seismic passive earth pressure coefficients for a horizontal backfill sustained by vertical 

walls (Lancellotta, 2007): a) δ=0; b) δ=φ/2; c) δ=φ. 
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3.2.3 Comparisons between the different seismic methods. 

In Figure 3-22 and Figure 3-23 the values calculated with the different methods previously recalled of 

the normal components of the seismic active and passive earth pressure coefficients exerted on 

vertical walls by horizontal backfills are compared. 

For the active case, the KAEn values obtained by limit equilibrium and the limit analysis methods are 

practically identical. This is due to the fact that, when the wall is approximately vertical and the slope 

angle of the backfill is larger than zero, the most critical failure is practically planar. 

For the passive case, the most critical sliding surface is much different from a planar surface as is 

assumed in the M-O analysis. The KPEn values are seriously overestimated by the M-O method. They 

are, in most cases, higher than those obtained by the limit analysis. This is especially the case when 

the wall is rough and the angle of wall repose is large. The condition φ = δ = 40° carries out very high 

KPEn values larger than 20, unreported in Figure 3-23c. For smooth walls, the potential sliding surface 

is practically planar and the different methods give almost identical results. 
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Figure 3-22. Comparisons between the normal components of the active earth pressure coefficients 

given by the various methods for horizontal backfills sustained by vertical walls: a) δ=0; b) δ=φ/2; c) 

δ=φ. 
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Figure 3-23. Comparisons between the normal components of the passive earth pressure coefficients 

given by the various methods for horizontal backfills sustained by vertical walls: a) δ=0; b) δ=φ/2; c) 

δ=φ. 
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3.3 EFFECTS OF WATER ON WALL PRESSURES. 

The procedures for estimation of seismic loads on retaining walls described in the preceding sections 

have been limited to cases of dry backfills. Most retaining walls are designed with drains to prevent 

water from building up within the backfill. This is not possible for instance for retaining walls in 

waterfront areas, where most earthquake-induced wall failures have been observed. 

The presence of water plays a strong role in determining the loads on waterfront retaining walls both 

during and after earthquakes. Water outboard of a retaining wall can exert dynamic pressures on the 

face of the wall. Water within a backfill can also affect the dynamic pressures that act on the back of 

the wall. Proper consideration of the effects of water is essential for the seismic design of retaining 

structures, particularly in waterfront areas. Since few waterfront retaining structures are completely 

impermeable, the water level in the backfill is usually at approximately the same level as the free water 

outboard of the wall. Backfill water levels generally lag behind changes in outboard water level – the 

difference in water level depends on the permeability of the wall and the backfill and on the rate at 

which the outboard water level changes.  

The total water pressures that act on retaining walls in the absence of seepage within the backfill can 

be divided in two components: hydrostatic pressure, which increases linearly with the depth and acts 

on the wall before, during and after the earthquake shaking, and hydrodynamic pressure, which 

results from the dynamic response of the water itself. 

 

3.3.1 Water outboard of wall. 

Hydrodynamic water pressure results from the dynamic response of a body of water. For retaining 

walls, hydrodynamic pressures are usually estimated from Westergaard’s solution (Westergaard, 

1931) for the case of a vertical, rigid dam retaining a semi-infinite reservoir of water that is excited by 

harmonic, horizontal motion of its rigid base. Westergaard showed that the hydrodynamic pressure 

amplitude increased with the square root of water depth when the motion is applied at a frequency 

lower than the fundamental frequency of the reservoir, f0 = VP/4H, where VP is the P-wave velocity of 

water (about 1400 m/sec) and H is the depth of water in the reservoir (the natural frequency of a 10m-

deep reservoir, for example, would be over 35 Hz, well above the frequencies of interest for 

earthquakes). Westergaard computed the amplitude of the hydrodynamic pressure as: 

Hz
g
ap ww

h
w γ=

8
7  ( 3-41 ) 

The resultant hydrodynamic thrust is given by: 

2

12
7 H

g
aP w

h
w γ=  ( 3-42 ) 

The total water pressure on the face of the wall is the sum of the hydrostatic and hydrodynamic water 

pressures. Similarly, the total lateral thrust due to the water is equal to the sum of hydrostatic and 

hydrodynamic thrusts. 

Another important consideration in the design of a waterfront retaining wall is the potential for rapid 

drawdown of the water outboard of the wall. Earthquakes occurring near large bodies of water often 
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induce long-period motion of the water, such as tsunamis or seiches, that cause the water surface to 

move up and down. While the upward movements of water outboard of a retaining wall will generally 

tend to stabilize the wall (assuming that it does not rise above the level of the top of the wall), 

downward movements can create a destabilizing rapid drawdown condtions. When liquefiable soils 

exist under relatively high levels of initial shear stress, failures can be triggered by very small changes 

in water level. Such failures, can originate in the soils adjacent to or beneath the retaining structure 

rather than in the backfill. 

 

3.3.2 Water in backfill. 

The presence of water in the backfill behind a retaining wall can influence the seismic loads that act on 

the wall in three ways: 

1. by altering the inertial forces within the backfill 

2. by developing hydrodynamic pressures within the backfill 

3. by allowing excess pore water pressure generation due to cyclic straining of the backfill soils. 

The inertial forces in saturated soils depend on the relative movement between the backfill soil 

particles and the pore water that surrounds them. If, as is usually the case, the permeability of the soil 

is small enough (typically k ≤ 10-5 m/sec or so) that the pore water moves with the soil during the 

earthquake shaking (no relative movement of soil and water, or restrained pore water conditions), the 

inertial forces will be proportional to the total unit weight of the soil. If the permeability of the backfill 

soil is very high, however, the pore water may remain essentially stationary while the soil skeleton 

moves back and forth (the soil particles move through the pore water in free pore water conditions). In 

such cases, inertial forces will be proportional to the buoyant (or submerged) unit weight of the soil. 

Hydrodynamic water pressures can also develop under free pore water conditions and must be added 

to the computed soil and hydrostatic pressures to obtain the total loading on the wall. 

For restrained pore water conditions, the M-O method can be modified to account for the presence of 

pore water within the backfill (Matsuzawa et al., 1985). Representing the excess of pore water 

pressure in the backfill by the pore pressure ratio, ru = ∆u/p’0, the active soil thrust acting on a yielding 

wall can be computed from equation ( 3-25 ) using: 

( )ub r−γ=γ 1  ( 3-43 ) 

( )( )






−−γ

γ
=θ −

vub

hsat

kr
k
11

tan 1  ( 3-44 ) 

An equivalent hydrostatic thrust based on a fluid of unit weight γeq = γw + ru γb must be added to the soil 

thrust. Note that as ru approaches 1 (as it could in liquefiable backfill), the wall thrust approaches that 

imposed by a fluid of equivalent unit weight γeq = γsat. Subsequent unidirectional movement of a soil 

that develops high excess pore water pressures may, depending on its residual (or steady state) 

strength, cause dilation with accompanying pore water pressure reduction and strength gain. 

Soil thrusts from partially submerged backfills may be computed using an average unit weight based 

on the relative volumes of soil within the active wedge that are above and below the phreatic surface 

(Figure 3-24): 
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( ) dsat γλ−+γλ=γ 22 1  ( 3-45 ) 

Again, the hydrostatic thrust (and hydrodynamic thrust, if present) must be added to the soil thrust. 

 

 

H

Hλ

γ = γd

γ = γsat

 
Figure 3-24. Geometry and notation for partially submerged backfill. 
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4 STATIC DESIGN OF EMBEDDED RETAINING WALLS. 

Embedded walls are relatively thin walls of steel, reinforced concrete or timber, eventually supported 

by anchorages, struts and/or passive earth pressure (EN1997-1). The bending capacity of such walls 

plays a significant role in the support of the retained material while the role of the weight of the wall is 

usually considered to be insignificant. Examples of such walls include: cantilever steel sheet pile walls, 

anchored or strutted steel or concrete sheet pile walls, diaphragm walls, etc., as described in Chapter 2. 

Limit equilibrium is one of most widespread design method for the analysis of embedded retaining 

structures. In this procedure, the wall is assumed rigid, the soil has a rigid-perfectly plastic behaviour 

and the pressures deriving form the interaction depend on the expected movements of the wall. The 

kinematical mechanism is affected from the constraints applied on the wall. In this section, the various 

type of embedded retaining walls in relation to the kinematical restraints are separately treated 

 

4.1 FREE CANTILEVER WALLS. 

A cantilever sheet pile retaining wall consists of a vertical structural element embedded in the ground 

below the retained material. The upper part of the wall provides a retaining force due to the wall 

stiffness and the embedment of the lower part. The embedded cantilever wall obtains its ability to 

resist the pressure of the retained soil by developing resisting earth pressures on the embedded 

portion of the wall. Embedded cantilever sheet pile retaining walls are frequently used for temporary 

and permanent support of excavations up to about 4-5 m high. 

The distribution of earth pressure on the embedded part of the wall is dependent on the complex 

interaction between the wall movement and the ground. Many methods for analysis and design of 

embedded cantilever walls have been proposed and these have been reviewed by Bica & Clayton 

(1989). Each method makes various assumptions concerning the distribution of earth pressure on the 

wall and the deflection or wall movement. Most of the methods follows the limit equilibrium approach 

based on the classical limiting earth pressure distributions. Model studies on embedded walls have 

been performed by Rowe (1951), Bransby & Milligan (1975) and Lyndon & Pearson (1984). Bica & 

Clayton (1992) have produced some empirical charts for the design of cantilever walls. 

King (1995) suggested an analytical limit equilibrium approach for dry cohesionless soil, involving 

different assumptions from the previous methods. One of the assumptions involves the location of the 

point, near the bottom of the wall, of zero net pressure by means of an empirically determined 

parameter. Based on the results of centrifuge tests, the author makes a recommendation for an 

appropriate value of this empirical parameter that, referring to the notation introduced in Figure 4-3, is 

assumed z' = 0.35 d. 

The basis of the limit equilibrium methods is the prediction of the maximum height of excavation for 

which static equilibrium is maintained. This is known as the limiting equilibrium situation. It is therefore 

important to be able to accurately evaluate the earth pressure acting on each side of the wall in the 

limiting equilibrium condition.  

The actual distribution and magnitude of earth pressure on an embedded retaining wall is dependent 

on the complex interaction of the wall and the soil. The general shape of the earth pressure 
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distribution is shown in Figure 4-1. The common limit equilibrium design and analysis methods are all 

based on this general shape. Each method makes different simplifications and assumptions that 

modify the general shape of the pressure distribution to enable a solution to be found.  

 

a)

h
d

 

b)

h
d

 

Figure 4-1. Soil pressure distributions on an embedded cantilever wall: a) pressure distributions; b) 

net pressure distribution. 
 

The stability of the cantilever wall is guaranteed from the passive resistance of the soil in which the 

wall is embedded. In the limit equilibrium methods the wall movement that conducts to limit conditions 

is constituted by a rigid rotation around a point O placed near to the bottom of the wall. The theoretical 

earth pressures distributions on the wall are plotted in Figure 4-2. 
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Figure 4-2. Theoretical earth pressures distributions assumed in limit equilibrium methods. 
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To eliminate stresses discontinuities in correspondence of the rotation point and to obtain a simplified 

shape of the pressures distributions, different simplifications and assumptions were proposed in 

literature. The main of which are reported in Figure 4-3. 

In the first, the net pressure distribution is simplified by a rectilinear shape. It is assumed that the 

passive resistance below the dredge level is fully mobilized. The rotation point coincides with the zero 

net pressure point. At the bottom of the wall the soil strengths, active and passive, are mobilized and 

the net pressure assumes the values reported in Figure 4-3a. 
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Figure 4-3. Simplified earth pressures distributions: a) Full Method; b) Blum Method. 
 

The limit depth d can be evaluated imposing translation and moment equilibrium. In this manner, a 

system of two equations of second and third degree is obtained and the two unknowns, the depth of 

the point of the inversion of pressures z’ and the limit depth of embedment d, may be calculated using: 
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The second method, commonly used in U.K. and described in Padfield & Mair (1984), assumes that 

the net pressure distribution below the point of rotation can substituted with the net force R applied at 

a distance z’ = 0.2·d’ from the bottom of the wall. Writing the moment equilibrium around the point C, 

one has an equation of the third degree with the single unknown d: 

1
2.1

3 −
=

AP KK
hd  ( 4-3 ) 

The main problem for the design of embedded walls is then the right choice of the earth pressure 

coefficients KA and KP when the soil-wall friction δ would be considered. It is well-recognized that the 

Coulomb theory provides unrealistic values of the passive earth pressure coefficient when δ > φ'/2. 

Different suggestions can be found in the literature (Padfield & Mair, 1984; Terzaghi, 1954; Teng, 

1962). Since knowledge on this field is limited, in the current practice is commonly adopted δA = 2/3 φ' 

for the active case and δP = 0, for the passive case. These values are the same that the European 

codes impose (EN1997-1; EN1998-5). In this manner, passive resistance of soil on the dredge side of 

reinforced concrete walls, realized with piles or diaphragm, is largely underestimated. Padfield & Mair 

(1984) state that reasonable values of the soil-wall friction for the calculation of the earth pressure 

coefficients are δA = 2/3 φ' and δP = 1/2 φ'. 

Bica & Clayton (1992) have collected a series of experimental data of collapse of embedded walls and 

have proposed an expression for the preliminary design in simple soil conditions: 








 °−φ
−

⋅= 18
30'

3
2 eFS

h
d  ( 4-4 ) 

In Figure 4-4, the relationship ( 4-4 ) for the case of limit conditions is compared with a series of 

numerical and experimental results of failure taken from the literature. It can be seen the good 

agreement between the relationship and the numerical and experimental data given by the different 

authors. 
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Figure 4-4. Experimental and numerical limit depth ratios of embedment at collapse for free 

embedded walls. 
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Adopting the Coulomb and Lancellotta theories for the evaluation of the active and passive earth 

pressure coefficients KA and KP, respectively, and assuming the soil-wall friction values suggested by 

Padfiled & Mair (1984), the full and Blum methods give limit depth ratios of embedment in relation to 

the soil friction angle φ' plotted in Figure 4-5. In the same Figure the d/h ratios at failure evaluated with 

the two limit equilibrium methods and adopting the soil-wall friction angles currently utilized in the de-

sign are reported. 
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Figure 4-5. Limit depth ratios of embedment at collapse for free embedded walls computed with limit 

equilibrium methods. 
It can be noted the large overestimation of the needed depth of embedment d when the soil-wall 

friction is not considered for the calculation of the passive resistances. The Blum method gives more 

conservative values than the full method for which, if it is applied by adopting Padfield & Mair (1984) 

indications, the results are close to those experimentally and numerically estimated. 

Five methods are used in design to incorporate a factor of safety FS against collapse. These involve 

increasing embedment depth, reducing the strength parameters, reducing the passive pressure 

coefficient, reducing the net passive pressure or reducing net available passive pressure (Padfield & 

Mair, 1984). However, no universal procedure has emerged. Major details can be found in Clayton et 

al. (1993) 

The recent European and Italian codes propose the use of the partial factors of safety that increase 

the magnitude of the actions and reduce the strength of the structure. In particular, for retaining walls, 

they impose the decreasing of the soil strength parameters, cohesion c' and tangent of the friction 

angle tanφ', for effective stress analyses, and undrained shear strength cu, for total stress analyses. 

This assumption, for embedded retaining walls, produce a dual effect on the construction safety: an 

increase of the actions (active earth thrust) and a decrease of the strengths (passive earth thrust). 

The maximum bending moment Mmax acting on the wall depends to the soil and wall properties and to 

the depth of embedment d, for a given retaining height h. 

Bica & Clayton (1992), on the basis of a collection of experimental results, have proposed the 

approximated relationship for the computation of Mmax represented in Figure 4-6 with some numerical 

and experimental data published in the literature: 
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Figure 4-6. Experimental and numerical normalized maximum bending moment for free embedded 

walls. 
Near to each point is reported the depth ratio d/h. The values given by Equation ( 4-5 ) are often 

conservative when compared with those corresponding to limit conditions for the wall. It can be seen 

the increase of bending moment with depth of embedment for a fixed value of friction angle. This fact 

contrasts the design recommendations that Mmax should be evaluated for a safety factor equal to 1. 

This factor should be greater than 1 when Mmax is computed. 

Figure 4-7 shows the comparisons between the normalized maximum bending moment Mmax/γh3 

computed with Equation ( 4-5 ) and those obtained by the limit equilibrium method with the following 

expression: 

( )[ ]33
max 6

xKxhKM PA −+
γ

=  ( 4-6 ) 

where x is the depth from the dredge level in which the shear force is zero: 

1
1

−
=

AP KKh
x  ( 4-7 ) 

The values obtained by assuming the soil-wall frictions suggested by Padfield & Mair (1984) are lightly 

underestimated respect to those predicted with the empirical relationship ( 4-5 ), while, adopting δA = 

2/3 φ' and δP = 0, limit equilibrium provides realistic maximum bending moment at collapse. It should 

be remembered that, if a safety factor is adopted on the design of the depth of embedment, the actual 

depth ratio d/h should be utilized for the estimation of Mmax. 

The Equations previously recalled are valid for dry homogeneous soils with constant values of KA and 

KP.  Limit equilibrium of embedded retaining walls in layered saturated soils is commonly studied by 

using a hybrid approach in which active and passive horizontal effective stresses are computed 
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multiplying vertical effective stresses by active and passive earth pressure coefficients given by the 

theories. 
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Figure 4-7. Normalized maximum bending moment for free embedded walls at collapse computed 

with limit equilibrium method. 
 

4.2 ANCHORED SHEET-PILE WALLS. 

The possible failure modes for anchored sheet-pile walls are: 

• rotation about the point at which the anchor tendon joins the sheet piling; 

• failure of the wall by bending, between a relatively rigid anchor and a deeply-embedded sheet 

pile toe; 

• failure of the anchor tendon, or of the anchor itself; 

• overall rotational failure, involving not only the mass of soil which the sheeting is embedded, 

but also the soil around the anchor. 

In practice, the point on the sheet pile wall at which the anchor is attached will normally move forward 

sufficiently to ensure the development of the active pressures over much of the back of the wall. Rowe 

(1952) has estimated that, for typical anchored sheet pile walls, the elastic yield of the anchor coble is 

of the order of H/1600, while the yield of the anchor block will be about H/800, where H is the height of 

the wall. All but the softest materials would be expected to achieve active conditions at these 

displacements. 

A large number of methods have been proposed for the design of anchored sheet-pile walls, or 

"anchored bulkheads" as they are sometimes known. Many of them have fallen into disuse, either 

because their fundamental principles have been questioned or because their complexity has made 

them unpopular. Examples of methods commonly in use, in the follow are summarized. 
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4.2.1 Free earth support method. 

According to Tschebotarioff (1973) this is the oldest and most conservative design procedure. This 

approach often gives an economical design with smaller depths of embedment but larger bending 

moments, than the fixed earth support method (see the next paragraph). Figure 4-8 shows a typical 

layout and the limit earth pressure distribution for an anchored sheet-pile wall. 

h
d

H AK  γ

PK  γ

PK  γ d K  γ (h+d)A

T

 
Figure 4-8. General layout and limit earth pressure distributions for anchored sheet pile wall. 
In the free earth support method the sheets are assumed to be rigid, rotating about point T where 

support is provided by an underlying anchor. The depth of pile embedment is calculated on the basis 

of achieving moment equilibrium at the anchor level. The anchor force is then calculated on the basis 

of horizontal force equilibrium, and the point of maximum bending moment is determined from zero 

shear force on the shear force diagram. Following the work of Rowe (1952), the design bending 

moment used to select the sheet-pile section is obtained by reducing the maximum bending moment 

by a factor which depends on the relative flexibility of the sheet piling with respect to the soil. 

As for the cantilever sheet pile walls, a number of different definitions of factor of safety are in use with 

the free earth support method. Clayton et al. (1993) have given a detailed summary of the 

suggestions. 

The design process is as follows: 

• determine the soil parameters for the likely height of the sheets. 

• estimate tidal range, and the likely lag between the ground water level in the retained soil and 

in front of the wall; 

• calculate the effective horizontal earth pressure using active earth pressure coefficients on the 

back of the wall; 

• calculate the effective horizontal earth pressure using the passive earth pressure coefficients 

on the front of the wall – these pressures should be divided by a factor of safety of 2, if the 

method of the passive pressure reduction is used for the analysis; 

• calculate the out-of-balance pressure distribution on the wall due to unequal water pressure 

on either side; 

• take moments about the level at which the anchor tie is attached to the sheets, and determine 

the necessary depth of penetration of the sheet piling to give moment equilibrium; 

• resolve horizontally to determine the force applied to the tie; 
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• calculate the shear force diagram for the sheets, in order to find the position of maximum 

bending moment – starting from the top of the wall; 

• calculate the maximum bending moment at the point of zero shear force; 

• in sands or gravels, calculate the relative flexibility of the sheets and the soil, and reduce the 

bending moment according to the Rowe formulation as presented in the following; 

• increase the depth of penetration by 20% to allow for the effects of unintentional excess 

dredging, unanticipated local scour, and the presence of pockets of exceptionally weak 

material (Terzaghi, 1954); 

• increase the tie force by 10% to allow for horizontal arching; 

• design anchors and select tie section. 

Since at the outset, the depth of penetration of the sheeting is unknown, the calculations for moment 

equilibrium about the anchor tie level can be only completed if a depth is assumed or the pressure 

distributions are expressed in terms of the unknown depth, d. 

In practice it is normally easier to adopt the second approach. The condition of moment equilibrium 

then leads to a cubic equation. The simplest way to determine the correct value of d is by trial and 

error substitution, starting with a likely value. 

The magnitude and the distribution of the bending moment in a sheet pile wall is affected to the its 

flexibility with respect to the deformability of the retained soil. Rowe (1952, 1957) carried out model 

tests and provided charts to allow the maximum bending moment calculated from the free earth 

support method to be reduced in line with his experimental findings. In theory, Rowe's reduction 

factors can be used for any type of soil, but Skempton (1953), mindful of the fact that they result from 

model tests, suggested that the amount of the reduction should be as follows: 

• Sands: use 1/2 moment reduction from Rowe; 

• Silts: use 1/4 moment reduction from Rowe; 

• Clays: use no moment reduction. 

Rowe identified the stiffness of the sheet piling as: 

EI
H 4

=ρ  ( 4-8 ) 

where H is the full length of sheet piling (i.e. retained height plus depth of embedment), E is the Young 

modulus and I the moment of inertia of the sheet piling. 

Figure 4-9 shows the Rowe's moment reduction curves for sand. To use these curves, select the 

relevant soil condition and the wall height, plot a curve of bending moment vs. log (ρ) by multiplying 

the maximum free earth support bending moment for the particular wall by the values of M/Mmax for 

different ρ in Figure 4-9. Next select various possible sheet pile sections and calculate log (ρ) and Mmax 

= f I / y for each, where f is the permitted maximum stress of the pile material, and y is the distance 

from the neutral axis to the edge of the section. 

Plot the position of each of these sections on the curve. Sections giving points above the operating 

curve are wasteful, while those below the curve will be overstressed. Ideal sections will fall directly on 

the curve. 
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Figure 4-9. Moment reduction factors proposed by Rowe (1952). 
 

4.2.2 Fixed earth support method. 

This method is derived from the work of Blum (1931). The sheet piling is considered flexible, but driven 

to sufficient depth that it may be considered fixed at its toe. Blum's general method deals with rigidly 

and flexibly anchored walls, and with cantilever walls, as it is previously shown. In these methods the 

stresses on the wall immediately above the toe are replaced by a single force some distance up the 

wall and the sheet piling is considered to be held vertical at this point. The depth of penetration of the 

sheeting is found by repetitive calculation until the displacement at the anchor level is correct relative 

to the point of fixity (at the toe). For routine design the anchor is assumed to be unyielding, and this 

relative displacement must therefore be zero. Unless carried out by computer, this technique is 

tedious; therefore a number of simplifications are in common use. 

The general method used for fixed earth support design is the "elastic line method". In this method the 

position of the point C, below of which the sheet pile wall is fixed, is assumed, and the deformation of 

the sheet pile is assumed to become tangential to the vertical at this point .Successive integration with 

respect to the depth of the net total pressure diagram leads to the shear force diagram, the bending 

moment diagram, the slope diagram and the deflection diagram. The position of point C is adjusted 

until the deflection of the anchor (point T) relative to point C is zero. 
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Figure 4-10. Design of anchored sheet pile by the fixed earth support method.  
From this necessary depth of sheeting may be obtained, since Blum demonstrated that the total 

required depth of penetration is: 

( )xud 20.1to05.1+=  ( 4-9 ) 

Typically, for convenience, the total required depth of penetration is taken as: 

( )xud += 20.1  ( 4-10 ) 

As in Tschebotarioff (1973), for the simplified equivalent beam method to be described below, but the 

actual required depth can be found from: 

( )AAPPL

C

KKh
Fxud

δ−δγ
++=

coscos'2
 ( 4-11 ) 

where u and x are defined in Figure 4-10, γ' is the average buoyant density (γ – γW) between the top of 

the sheet-pile wall and the point C, FC is the replacement force at C, KPcosδP and KAcosδA represent 

the components of earth pressure normal to the wall, hL is the height of the wall (including embedment 

of the point C), plus an allowance of q/KA γ for any surcharge q imposed at the top of the wall. 

Although in the past the elastic line method has been solved by hand calculation, or graphically, it is 

now considered too time-consuming for routine use. It is, however, a relatively simple task to program 

a desktop computer to provide these solutions. 

"Blum's equivalent beam method" (Blum, 1931) uses the same simplifying assumptions with regard to 

the stresses at the toe of the pile as were used for the elastic line method above – the stresses at the 

pile toe are replaced by a single force some distance above the toe. By carrying out example 

calculations on uniform soil profiles, Blum was able to establish the relationship between the depth to 

the point of sheet pile contraflexure (y) (where the bending moment is zero – point B in Figure 4-10) 

and the free height of the wall (h, from the dredge level to the top of the wall), as follows 

 

Effective angle of friction of soil, φ' Ratio (depth to point of contraflexure)/(free height of wall) (y/h) 
20° 0.23 
25° 0.15 
30° 0.08 
35° 0.03 
40° -0.007 

Table 4-1. Relationship between the depth to the point of the sheet pile contraflexure (y) and the free 

height of the wall (h) (Blum, 1931, as quoted in Clayton et al. 1993). 
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It is reported by Tschebotarioff (1973) that these values were based on the use of Rankine value for 

KA (δA = 0) and KP = 2/KA. Blum is supposed to have used this value for the passive earth pressure 

coefficient, not because he allowed for the influence of wall friction, but because tests by Franzius 

(1924) using a hinged wall in a relatively narrow box) had given similar results. 

Once the point of contraflexure is known, an imaginary hinge can be inserted at that point on the sheet 

pile wall, and analysis becomes trivial. 

The procedure is: 

• by horizontal resolution of forces on span AB, and by taking moments about B, determine the 

magnitude of the anchor force T, and the force at the hinge FB; 

• Take moments about C, to determine the correct length BC for which the moments about C 

are zero. Stresses below C are ignored. 

For a uniform soil, with γ' = γ – γW: 

( ) ( ) ( ) ( ) ( )[ ]hKyKKydKKydydF AAPAPB −−γ
−

+γ−
−

=− '
2

''
6

''
23

 

For moment equilibrium: 

( ) ( ) '
6'

γ−
=−

AP

B

KK
Fyd  

• Determine the final depth of embedment (which will also give a factor of safety against failure 

by forward movement of the piling), approximately: 

'2.1 dd =  

• Determine the point of maximum bending moment from the position of zero shear force, by 

drawing the shear force diagram for span AB; 

• Determine the maximum bending moment. 

The main problem with this method is the determination of a correct point of contraflexure when soil 

conditions are non-uniform. For uniform ground conditions B lies approximately level with the point of 

zero net pressure, N.  
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5 SEISMIC DESIGN OF EMBEDDED RETAINING WALLS. 

The design of retaining walls for seismic conditions is similar, in many aspects, to designing for static 

conditions. In both cases, potential modes of failure are identified and the wall designed to avoid 

initiating them. Although the response of retaining walls under seismic loading conditions is much 

more complex, conventional design procedures make use of simplifying assumptions that render the 

problem tractable. Several design approaches for embedded retaining walls depending by the analysis 

type for the desired level of the seismic performance evaluation are described in the following 

sections. The methods are those obtained by extending the static procedure to the seismic conditions 

and developed during this work. 

 

5.1 EARTHQUAKE PROVISIONS DESCRIBED IN EUROPEAN AND 

ITALIAN BUILDING CODES. 

Eurocode 8 part 5 (EN 1998-5) states that earth retaining structures must design to fulfil their function 

during and after an earthquake, without suffering significant structural damages. Permanent 

displacements, in the form of combined sliding and tilting, the latter due to irreversible deformations of 

the foundation soil, may be acceptable if it is shown that they are compatible with functional and/or 

aesthetic requirements. Any established method based on the procedures of structural and soil 

dynamics, and supported by experience and observations, is in principle acceptable for assessing the 

safety of an earth retaining structure. The following aspects should be considered in the analyses: 

• the generally non-linear behaviour of the soil in the course of its dynamic interaction with the 

retaining structure; 

• the inertial effects associated with the masses of the soil, of the structure, and of all other 

gravity loads which might participate in the interaction process; 

• the hydrodynamic effects generated by the presence of water in the soil behind the wall and/or 

by the water on the outer face of the wall; 

• the compatibility between the deformations of the soil, the wall, and the tiebacks, when 

present. 

It should be underlined that no indications on representative parameters for specifying damage criteria 

and no limitations on values of the displacements are given. 

The basic components that should be included in a pseudo-static analysis consist of the retaining 

structure and its foundation, of a soil wedge behind the structure supposed to be in a state of active 

limit equilibrium (if the structure is flexible enough), of any surcharge loading acting on the soil wedge, 

and, possibly, of a soil mass at the foot of the wall, supposed to be in a state of passive equilibrium.  

In the EC8 Part 5, a simplified pseudostatic approach to analyze the safety conditions of retaining 

walls is described. The seismic increments of earth pressures may be computed with the M-O method. 

Its application for rigid structures is more prompt than for embedded walls for which the stability is 

mainly due to the soil passive resistance into the embedded portion. As for the Coulomb theory in 

static conditions, the M-O theory gives very high values for passive earth pressure coefficient when 
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the soil-wall friction is considered. For this reason, the evaluation of passive pressure should be 

conducted assuming zero soil-wall friction. 

In the pseudostatic analyses, the seismic actions can be represented by a set of horizontal and 

vertical static forces equal to the product of the gravity forces and a seismic coefficient. For non-gravity 

walls, the effects of vertical acceleration can be neglected. In the absence of specific studies, the 

horizontal seismic coefficient kh can be taken as: 

g
a

r
Sk g

h =  ( 5-1 ) 

where S is the soil factor that depends to the seismic zone and considers the local amplification due to 

stratification of subsoil and topographic effects, ag is the reference peak ground acceleration on type A 

ground, g is the gravity acceleration and the factor r is a function of the displacement that the wall can 

accept. For non gravity walls, the prescribed value is r = 1 (EC8 Part 5, Table 7.1). 

Furthermore, for walls not higher than 10m, the seismic coefficient can be assumed constant along the 

height. 

The point of application of the force due to the dynamic earth pressures should be taken at mid-height 

of the wall, in the absence of a more detailed study taking into account of the relative stiffness, the 

type of movements and the relative mass of the retaining structure. 

As previously underlined, this approach suffers of some limitations. Deformability of structure, soil 

stiffness and damping, natural frequencies of system are neglected. The displacements of the wall 

and the backfill cannot provide.  

Callisto (2006) highlighted some of the limits in the pseudostatic approach as indicated in EC8-5 and 

specified some preliminary corrections to the code statements.  

The new Italian Building Code (NTC, 2008) introduced some innovations on the seismic design of 

embedded walls to eliminate the discrepancies existing on the application of the pseudostatic 

analyses for embedded walls.  

The pseudostatic analysis of an embedded retaining wall should be carried out assuming that the soil 

interacting with the wall is subjected to a value of the horizontal acceleration which is:  

• constant in space and time (this is implicit in a pseudostatic analysis);  

• equal to the peak acceleration expected at the soil surface.  

Deformability of the soil can produce amplification of acceleration, that is incorporated into the soil 

factor S, but that can be better evaluated through a site response analysis.  

For many structures, including embedded retaining walls, there may be reasons to question the 

assumption that the structure should be designed assuming a constant peak acceleration. The validity 

of the two assumptions (spatial and temporal invariance) will be examined separately for clarity.  

Figure 5-1a shows a M-O active wedge which interacts with a vertically propagating harmonic shear 

wave of frequency f and velocity VS, characterized by a wavelength λ = VS/f larger than the height of 

the wedge H. In this case, the variation of the acceleration along the height of the wedge is small, 

inertial forces (per unit mass) are about constant and the motion of each horizontal element is 

approximately in phase.  



Chapter 5 – Seismic design of embedded retaining walls  

Ciro Visone – Performance-Based approach in seismic design of embedded retaining walls 5-3

a)

SH

a(z,t)

b) 
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a(z,t)

λ

 

Figure 5-1. Mononobe-Okabe wedge interacting with harmonic wave characterized by: a) large 

wavelength; b) small wavelength. 
 

In Figure 5-1b a case is depicted in which, either because VS is smaller (the soil is more deformable) 

or f is larger, λ is small if compared to H. In this case, at a given time t, different horizontal wedge 

elements are subjected to different inertial forces, and their motion is out of phase. Therefore, at each 

t the assumption of spatial invariance of the acceleration is no longer valid, and, at each t, the 

resultant inertial force on the wedge must lead to a smaller resultant force SAE than that predicted with 

the M-O analysis. Steedman & Zeng (1990) have proposed a method for evaluating the effect of 

spatial variability of the inertial forces on the values of SAE, maintaining the hypothesis that the wedge 

is subjected to a harmonic wave. 

Figure 5-2 shows some results obtained using this method. Expressing the resultant force by the 

Equation (2-25) for kv = 0, the calculation results can be expressed in terms of equivalent values of the 

coefficient of active pressure KAE, plotted as a function of the ratio H/λ, for different values of the 

amplitude of the shear wave ag. The equivalent values of KAE can be quite smaller than the 

corresponding M-O ones (obtained for H/λ = 0). Values of KAE decrease for increasing wall height, 

decreasing soil stiffness (quantified by VS), and increasing frequency of the incident wave.  
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Figure 5-2. Influence of the ratio between the height of the wall H and the wavelength λ of a harmonic 

wave on the seismic active earth pressure coefficient (Steedman & Zeng, 1990). 
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This approach may be used in practical applications by performing a site response analysis, selecting 

a value of VS derived by the average secant shear modulus mobilized along the wall height, and 

choosing f as the dominant frequency of the seismic motion at a characteristic elevation along the 

retaining wall. 

The assumption of a peak acceleration constant in time for the pseudo-static analysis of an embedded 

retaining structure is questionable for different ground profiles. 

It should be clear that coefficient r in equation (5-1) depends on the displacements that the structure 

can accept with no loss of strength. That is, it may be acceptable that over a small temporal period 

during an earthquake the acceleration could be higher than a critical value producing limit conditions, 

provided that this will lead to acceptable displacements and that these displacements do not produce 

any strength degradation. This is equivalent to state that the behaviour of the structure should be 

ductile, i.e. that strength should not drop as the displacements increase. 

To account for these aspects, in the latest Italian Building Code NTC two coefficients were introduced. 

In the absence of specific studies, the seismic horizontal coefficient kh can be estimated with the 

relationship: 

g
Sa

k g
h ⋅β⋅α=  ( 5-2 ) 

where α ≤ 1 and β ≤ 1 are factors for the deformability of the soil that interacts with the wall and for the 

capability of the structure to accept displacements without losses of strength, respectively. Their 

values are reported in the next Figure 4-7 and Figure 5-6. 

The points of application of the forces due to the dynamic earth pressures can be assumed to be the 

same of the static earth thrusts, if the wall can accept displacements. Instead, they should be taken to 

lie at mid-height of the wall, in the absence of more detailed studies, accounting for the relative 

stiffness, the type of movements and the relative mass of the retaining structure. 
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Figure 5-3. Diagram for the evaluation of the deformability factor α (NTC, 2008). 
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Figure 5-4. Diagram for the evaluation of displacements factor β (NTC, 2008). 

 

5.2 PERFORMANCE-BASED DESIGN METHODOLOGY AND 

DAMAGE CRITERIA. 

An evolving design philosophy for many type of constructions in seismically active regions reflect the 

observations that: 

• deformations in ground and foundation soils and the corresponding structural deformation and 

stress states are key design parameters; 

• conventional limit equilibrium-based methods are not well suited to evaluating these 

parameters; 

• some residual deformation may be acceptable. 

Performance-based design is a methodology, which was born from the lessons learned from 

earthquakes in the 1990s (SEAOC, 1995; Iai and Ichii, 1998; Steedman, 1998). The goal is to 

overcome the limitations present in conventional seismic design. Conventional building code seismic 

design is based on providing capacity to resist a design seismic force, but it does not provide 

information on the performance of a structure when the limit of the force-balance is exceeded. If we 

demand that limit equilibrium not be exceeded in conventional design for the relatively high intensity 

ground motions associated with a very rare seismic event, the construction/retrofitting cost will most 

likely be too high. If force-balance design is based on a more frequent seismic event, then it is difficult 

to estimate the seismic performance of the structure when subjected to ground motions that are 

greater than those used in design. 

In performance-based design, the acceptable level of damage, i.e. the damage criteria, should be 

specified in engineering terms such as displacements, limit stress state and ductility/strain limit based 

on the function and seismic response of the structure. 

Seismic performance of a sheet pile wall may be specified basing on serviceability and in terms of 

structural damage regarding stress states as well as displacements. Parameters for specifying 

damage criteria are as follows (referring to Figure 4-7 - PIANC, 2001). 

Displacements: 



Chapter 5 – Seismic design of embedded retaining walls  

Ciro Visone – Performance-Based approach in seismic design of embedded retaining walls 5-6

• sheet pile wall: horizontal displacements, settlements, differential displacements, tilting; 

• apron: settlements, differential settlements; 

• anchor: differential settlements, ground surface cracking at anchor, pull-out displacements of 

battered pile anchors. 

Stresses: 

• sheet pile wall (above and below the dredge level); 

• tie-rod (including joints); 

• anchor. 

Damage criteria should be established by choosing and specifying appropriate parameters from those 

mentioned above. 

a)

Settelement of Apron
Differential Settlement of Apron
Tilting

Differential Settlement at Anchor
Ground Surface Cracking at Anchor
Pull-out Displacement of Battered Pile Anchor

Horizontal Displacement
Settlement
Differential Displacement

 

b)

Stress in Tie-rod
(including joints)

Stress in Anchor PileStress in Sheet Pile 
(above and below mudline)

 
 

Figure 5-5. Parameters for specifying damage criteria: a) respect to displacements; b) respect to 

stresses (PIANC, 2001). 
 

The preferred sequence to reach ultimate states with increasing level of seismic load should be 

appropriately specified for a sheet pile wall. If a damaged anchor is more difficult to restore than a 

sheet pile, the appropriate sequence may be given as follows (refer to Figure 5-6 – PIANC, 2001). 

1. Displacement of anchor 
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2. Yield at sheet pile wall (above the dredge level) 

3. Yield at sheet pile wall (below the dredge level) 

4. Yield at anchor 

5. Yield at tie-rod 

If a damaged sheet pile wall is more difficult to restore than an anchor, the yield at anchor should 

precede the yield at sheet pile wall. 
1) Displacement of Anchor

4) Yield at Anchor5) Yield at Tie-rod
2) Yield at Sheet Pile Wall
(above mudline)

3) Yield at Sheet Pile Wall
(below mudline)

 
Figure 5-6. Preferred sequence for yield of sheet pile wall (PIANC, 2001). 
 

It could be noted that the yield of soil for passive state is not considered in the sequence and maybe 

might be included in the list. However, different and unclear opinions on this point exist in scientific 

community. 

On the basis of these concepts, the damage criteria for a sheet pile wall can be established by 

referring to Table 3-1. The most restrictive conditions among displacements and stresses should 

define the damage criteria. Structural damage to the embedded portion of a sheet pile is generally 

difficult to restore, and thud necessitates higher seismic resistance. Brittle fracture of a sheet pile wall, 

rupture of a tie-rod, and the collapse of anchor should be avoided. 

Other damage and serviceability criteria can be found in some seismic codes (e.g., Port and Harbour 

Research Institute, 1997; Ministry of Transport, Japan, 1999; ASCE-TCLEE, Werner, 1998). 
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Level of damage Serviceable Repairable Near Collapse Collapse Damage 
criteria Component 

Damage Parameters  

Normalized residual horizontal 
displacement (ux/h) Less than 1.5% N/A N/A N/A 

Sheet pile 
wall Residual tilting towards the 

excavation side Less than 3° N/A N/A N/A 

Apron Differential settlement on 
apron 

Less than 
0.03÷0.1m 

N/A N/A N/A 

 
Differential settlement 

between apron and non-apron 
areas 

Less than 
0.3÷0.7m 

N/A N/A N/A 

Residual 
displacements 

 Residual tilting towards the 
excavation side Less than 2÷3° N/A N/A N/A 

Sheet pile 
wall Above the dredge level Elastic 

Plastic (less 
than the ductility 
factor/strain limit 

above the 
dredge level) 

Plastic (less 
than the ductility 
factor/strain limit 

above the 
dredge level) 

Plastic (beyond the 
ductility factor/strain 

limit above the 
dredge level) 

 Below the dredge level Elastic Elastic 

Plastic (less 
than the ductility 
factor/strain limit 

below the 
dredge level) 

Plastic (beyond the 
ductility factor/strain 

limit below the 
dredge level) 

Tie-rod  Elastic Elastic 

Plastic (less 
than the ductility 
factor/strain limit 

for tie-rod) 

Plastic (beyond the 
ductility factor/strain 

limit for tie-rod) 

Peak response 
stresses/strains

Anchor  Elastic Elastic 

Plastic (less 
than the ductility 
factor/strain limit 

for anchor) 

Plastic (beyond the 
ductility factor/strain 

limit for anchor) 

Table 5-1. Damage criteria for sheet pile wall (adapted from PIANC, 2001). 
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5.3 SEISMIC ANALYSIS OF EMBEDDED RETAINING WALLS. 

Seismic analysis of many type of constructions is accomplished in three steps that include assessment 

of the regional seismicity, the geotechnical hazards and soil structure interaction analysis. The first 

step is to define the earthquake motions at the bedrock. This is typically accomplished by seismic 

hazard analysis based on geologic, tectonic and historical seismicity data available for the region of 

interest. The second step involves the following two interrelated aspects of dynamic soil response: 1) 

an evaluation of local site effects for obtaining the earthquake motions at or near the ground surface; 

2) an assessment of the liquefaction resistance of the near surface sandy soils and the associated 

potential for ground failures. Once the ground motion and geotechnical parameters have been 

established, then seismic analysis of the construction can proceed. 

As in all engineering disciplines, reasonable judgement is required in specifying appropriate methods 

of analysis and design, as well as in the interpretation of the results of the analysis procedures. This is 

particularly important in seismic design, given the multidisciplinary input that is required for these 

evaluations, and the influence of this input on the final design recommendations.  

 

5.3.1 Type of analysis. 

The objective of analysis in performance-based design is to evaluate the seismic response of the 

embedded retaining walls with respect to allowable limits (e.g. displacements, stress, ductility/strain). 

Higher capability in analysis is generally required for a higher performance grade facility. The selected 

analysis methods should reflect the analytical capability required in the seismic performance 

evaluation. 

A variety of analysis methods are available for evaluating the local site effects, liquefaction potential 

and the seismic response of retaining walls. These analysis methods are broadly categorized based 

on a level of sophistication and capability as follows (PIANC, 2001): 

1. Simplified analysis: appropriate for evaluating approximate threshold limit for displacements 

and/or elastic response limit and an order-of-magnitude estimate for permanent displacements 

due to seismic loading. 

2. Simplified dynamic analysis: possible to evaluate extent of displacement/stress/ductility/strain 

based on assumed failure modes. 

3. Dynamic analysis: possible to evaluate both of failure modes and the extent of 

displacement/stress/ductility/strain. 

In principle, the structures characterized by a higher performance grade should be studied using more 

sophisticated methods. Less sophisticated methods may be allowed for preliminary design, screening 

purposes or response analysis for low levels of excitation. 

Table 5-2 shows the input parameters and the outputs of the various type of seismic analysis of 

embedded walls. It should be noted that the reliability of the results depends not only on the type of 

analysis, but also on the reliability of the input parameters. It is ideal to use input data based on 

through geotechnical investigations for more sophisticated analysis. 
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Type of 
Analysis 

Simplified 
Analysis Simplified Dynamic Analysis Dynamic Analysis 

Method 
Pseudo-

static/empirical 
methods 

Newmark type 
method 

Simplified chart 
based on 

parametric 
studies 

FEM/FDM 

Design 
Parameters 

kh: equivalent 
seismic 
coefficient 
kcrit: threshold 
seismic 
coefficient 

Empirical equations: 
amax: peak acceleration 
Vmax: peak velocity 
Time history analysis: 
time histories of 
earthquake motions 
acrit: threshold 
acceleration 

ag: peak 
acceleration at 
the bedrock 
Cross section of 
wall 
Index properties 
of soil including 
SPT N-values 
 

Input 
Parameters 

Results of site response analysis, including amax and liquefaction 
potential assessment 
Cross section of wall 
Geotechnical parameters, including cohesion c, friction angle φ 
and soil-wall friction angle; ground water level 

Time histories of earthquake 
mations at the bottom of 
analysis domain 
Cross section of wall 
For equivalent linear 
geotechnical analysis:  
G/G0(γ) and D(γ) curves 
For nonlinear geotechnical 
analysis:  
undrained cyclic properties 
and G, K: shear and bulk 
modulus, in addition to the 
geotechnical parameters for 
pseudo-static and simplified 
analyses 

Analysis 
Output 

Threshold limit 
Order-of-
magnitude 
displacement 

Wall displacement 
Stress/ductility 

Response/failure modes 
Peak and residual 
displacements, stress/ductility 

Table 5-2. Inputs and outputs of analyses (adapted from PIANC, 2001). 

 

5.3.2 Simplified analysis. 

Simplified analysis of retaining structures is based on the conventional force-balance approach, 

sometimes combined with statistical analysis of case history data. The methods in this category are 

often those adopted in conventional seismic design codes and standards. In simplified analysis, 

retaining walls can be idealized as rigid blocks of soil and structural masses. The rigid block analysis is 

typically applied for gravity and sheet pile walls. 

Effects of earthquake motions in simplified analysis are represented by a peak ground acceleration 

amax or an equivalent seismic coefficient kh for use in conventional pseudo-static design procedures. 

These parameters are obtained from the simplified analysis of local site effects. A capacity to resist the 

seismic force is evaluated based on structural and geotechnical conditions, often in terms of a 

threshold acceleration acrit or a threshold seismic coefficient kcrit, beyond which the rigid blocks of soil 

and structural masses begin to move. When soil liquefaction is an issue, the geometric extent of 

liquefaction must also be considered in the analysis. 

Results of the simplified analysis are appropriate for evaluating the approximate threshold level of 

damage, which ensures at least the repairable state of structural performance for the earthquake 

related to serviceability criteria. Whether or not the approximate threshold level ensures the 

serviceable state of structural performance depends on the details in evaluating the design 

parameters for the pseudo-static method. Order-of-magnitude displacement is also obtained by the 

pseudo-static method combined with statistical analysis of case history data. This, however is a crude 

approximation and should be used only for the preliminary design stage or low levels of excitation. 
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There is a significant difference between the conventional design concept and the performance-based 

design approach. In the former, especially when referring to the simplified analysis, an equivalent 

seismic coefficient is used as an input parameter representing adequately the ensemble of ground 

motions, and a factor of safety is applied to determine the dimensions of the structure. In the latter, the 

design is based on the seismic performance of the structure evaluated appropriately through response 

analysis for a variety of input earthquake motions. The ensemble of the seismic responses, rather than 

the ensemble of the input motions, is used as a basis for accomplishing the design in the 

performance-based method. For each response analysis, input parameters most appropriate are 

those well defined in terms of applied mechanics, such as a peak ground acceleration for the 

simplified analysis and/or an equivalent parameter clearly defined in terms of peak ground 

acceleration. Consequently, no factor of safety should be applied to input data used in seismic 

analysis for evaluating the threshold level of the structure. 

The simplified analyses for the evaluation of the seismic performance of free and anchored embedded 

walls are separately presented in the following. The methodologies were derived from the current 

procedure adopted for the static analyses and extended to the seismic conditions. 

 

5.3.2.1 Free embedded retaining walls. 

As demonstrated in the previous chapter for the static conditions, the Blum method allows to 

conservative depths of embedment respect to the empirical relationship proposed by Bica & Clayton 

(1992) if applied adopting the Padfield & Mair (1984) suggestions on the soil-wall friction angles values 

for active and passive conditions. It seems to be reasonable the extension of this simplified procedure 

for evaluating the safety conditions of a cantilever retaining wall. 

In the pseudostatic analyses of a free embedded wall, the seismic actions can be represented by a set 

of horizontal static forces equal to the product of the gravity forces and an equivalent seismic 

coefficient kh. In the absence of specific studies, the horizontal seismic coefficient kh can be evaluated 

according to ( 5-1 ). Different opinions exist in the literature on the point of application of the force due 

to dynamic earth pressures. The Italian Building Code (NTC, 2008) states that the points of application 

of the seismic thrust increments can be assumed to be the same of the static earth thrusts, if the wall 

can accept displacements. When the wall movements are constrained, instead, the seismic 

increments of the earth thrusts should be taken to lie at mid-height of the wall, in the absence of more 

detailed studies in which the relative stiffness, the type of movements, the relative mass of the 

retaining structure and the joint systems acting on the wall are taken into account.  

For the cantilever walls, the free displacements condition can be assumed and, then, the seismic 

increments of the earth pressures reported in Figure 5-7 can be adopted for the simplified analysis. 

The values of seismic earth pressure coefficients KAE and KPE can be evaluated adopting the 

formulations presented in the previous Chapter 3. For soil-wall friction angles δ larger than φ'/2, the 

soil passive resistance should be determined considering the nonplanarity of the sliding surfaces (i.e. 

limit analysis solutions). The active pressure coefficient KAE is currently calculated with the M-O 

method by assuming realistic values of δA that accounts for the actual behaviour of the soil-wall 

interface subjected to cyclic loadings. In the practical applications, for static analysis of cast-in-place 

reinforced concrete wall (sheet pile or diaphragm), it is assumed δ = φ'. To account for the degradation 
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of the contact due to cyclic loading, reasonable values of the soil-wall friction angle suggested in the 

literature (Padfield & Mair, 1984) are δ = 2/3φ'. The passive pressure coefficient KPE, instead, is 

currently evaluated by adopting the M-O method for a zero value of the soil-wall friction angle δP = 0 or 

by using the Chang (1981) tables. More recently, Lancellotta (2007) has given an analytical 

expression for the evaluation of the KPE coefficient that represents a conservative value of the soil 

passive resistance. 

h
d

AEK    γ

PEK    γ

d'

R

0.
2 

d'

 
Figure 5-7. Seismic earth pressures acting on a free embedded wall according to Italian Building code 

(NTC, 2008) for a pseudo-static analysis adopting the Blum method. 
 

In this work, the seismic coefficients KAE and KPE were calculated by means of the M-O and 

Lancellotta methods, respectively, and adopting δA = 2/3φ' and δP = φ'/2. 

On the basis of the previous considerations, the moment equilibrium about the point C near to the 

bottom of the wall in seismic conditions gives the following relationships between the earth pressure 

coefficients and the limit depth ratio of embedment: 

1
2.1

3 −
=

AEPE KKh
d  ( 5-3 ) 

Similarly to the static conditions, the maximum bending moment can be computed with the expression 

( )[ ]33
max 6

xKxhKM PEAE −+
γ

=  ( 5-4 ) 

where x is the depth of the zero shear force from the dredge level: 

1
1

−
=

AEPE KKh
x  ( 5-5 ) 

The values of the ratio between the depth of embedment and the height of excavation d/h and the 

normalized bending moment Mmax/γh3 evaluated by means of the equations ( 5-3 ) and ( 5-4 ) are 

reported in the next Figure 5-8 and Figure 5-9. 
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Figure 5-8. Limit depth ratio of embedment computed by the Blum method in seismic conditions of a 

free embedded wall. 
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Figure 5-9. Normalized maximum bending moment computed by the Blum method in seismic 

conditions of a free embedded wall. 
 

As observed in the previous Chapter 4, for the assumed values of the soil-wall friction angles, the 

maximum bending moment calculated by the Blum method are slightly lower than those given by the 

empirical relationship (4-5). But, it useful to remember that the (4-5) derives from an interpolation of 

experimental and numerical data that can not be referred to the limit equilibrium conditions. 

The previous charts can be used for the preliminary design of free embedded RC walls. Remembering 

that the factors of safety are not introduced in the analysis, the soil friction angle φ' should be 

interpreted as the design value φ'd. Adopting the partial factors of safety, φ'd may be estimated as 












γ
φ

=φ
φ'

'tanarctan'd  ( 5-6 ) 

where the partial coefficient γφ' is taken equal to 1.25 (EC8-5; NTC, 2008). 

In the view of the performance-based design, the threshold seismic coefficient kcrit can be evaluated by 

entering into the charts of with the couple (φ'; d/h) in Figure 5-8 and ((φ'; My/γh3) that characterize the 
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problem of interest (My is the yielding moment of the wall with respect to the examined limit state) and 

estimating the reference curves with constant value of kh. 

The factors of safety FS against the earthquake for rotational and structural failure modes are defined 

by (PIANC, 2001): 

h

crit

k
kFS =  ( 5-7 ) 

The displacements of the wall can be then estimated by using empirical relationships and charts.  

Richards & Elms (1979) proposed a method for the seismic design of gravity walls based on allowable 

permanent wall displacements. Using the results of sliding block analyses in the same manner as 

Newmark (1965) and Franklin and Chang (1977), the authors proposed the following expression for 

permanent block displacement: 

4

3
max

2
max087.0

crit
x a

av
u =                  

3.0max ≥a
acrit  ( 5-8 ) 

where vmax is the peak ground velocity, amax is the peak ground acceleration and acrit = khcrit·g is the 

yield acceleration for the wall-backfill system. 

Whitman & Liao (1985) identified several modelling errors that result from the simplifying assumptions 

of the Richards & Elms procedure. The most important of these are neglect of the backfill dynamic 

response, the kinematic factors, the tilting mechanisms and the vertical accelerations. Finite element 

analyses of the effects of the dynamic response of the backfill on wall displacements (Nadim, 1982), 

for example, show that amplification occurs when input motions coincide with the natural period of the 

backfill and produce considerably greater permanent displacement than the rigid-block model used by 

Richards & Elms. Analyses in which the backfill wedge and wall were treated as separate blocks 

(Zarrabi-Kashani, 1979) show that the kinematic requirements of horizontal and vertical displacement 

of the backfill wedge cause systematically smaller displacements than the single-block model of 

Richards and Elms. Studies of combined tilting and sliding (Nadim, 1980; Siddharthan et al., 1992) 

indicate that tilting mechanisms generally increase wall displacements over those produced by sliding-

only models such as that of Richards & Elms. Consideration of vertical accelerations produces slightly 

larger displacements than when they are neglected, at least for motions with high peak horizontal 

acceleration (amax greater than about 0.5g) and acrit/amax ≥ 0.4 (Whitman & Liao, 1985). Whitman & 

Liao quantified and combined the effects of each of these sources of modelling error to describe the 

total modelling error by a lognormally distributed random variable with mean value, M , and standard 

deviation, σln M. 

Using the results of sliding block analyses of 14 ground motions by Wong (1982), Whitman & Liao 

found that the permanent displacements were lognormally distributed with mean value  








 −
=

maxmax

2
max 4.9

exp
37

a
a

a
v

u crit
x  ( 5-9 ) 

Uncertainty due to statistical variability of ground motions was characterized by a lognormally 

distributed random variable, Q, with a mean value of Q  and standard deviation, σln Q. 
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The effects of uncertainty in soil properties, specifically the friction angles, on permanent displacement 

were also investigated. Using standard deviations of σφ = 2 to 3° for soil friction angles and σδ = 5° for 

wall-soil interface friction angles, the computed yield acceleration was defined as a random variable 

with mean value crita  and standard deviation 
critaσ . The mean value crita  is the yield acceleration 

computed using the mean values of φ and δ. 

Combining all the sources of uncertainty, the permanent displacement can be characterized as a 

lognormally distributed random variable with mean value 

MQ
a

a
a
v

u crit
x 





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
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maxmax

2
max 4.9exp

37  ( 5-10 ) 

and variance 
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






=σ  ( 5-11 ) 

Suggested values of the means and standard deviations of the ground motion, soil resistance and 

model error factors are shown in Table 5-3. 

 

Factor Mean Standard Deviation 

Model error 5.3=M  84.0ln =σ M  

Soil resistance ( )δφ= ;critcrit aa 065.0to04.0=σ
crita  

Ground motion 1=Q  05.1to58.0ln =σ Q  

Table 5-3. Mean and standard deviation values for gravity walls displacement analysis (after Whitman 

& Liao, 1985). 

 

5.3.2.2 Anchored sheet pile walls. 

The design of anchored bulkheads in waterfront areas is strongly influenced by liquefaction hazards.  

If widespread liquefaction occurs, experience indicates that bulkhead failures are very likely. 

Consequently, steps should be taken prior to construction to ensure that such liquefaction will not 

occur. Permanent seaward movements of anchored bulkheads in the absence of widespread 

liquefaction, however, has also been observed. Conventional design procedures seek to minimize this 

type of damage using pseudostatically determined design pressures. 

A widespread design procedure uses the free earth support method and Rowe's moment reduction 

method, with earthquake effects represented by pseudostatic inertial forces. A brief summary of the 

procedure is presented below; a detailed description with a worked example may be found in Ebeling 

& Morrison (1993). 

• Design the anchored bulkhead for static loading conditions. 

• Select pseudostatic accelerations ah and av. 

• Compute the active soil thrust on the back of the wall using the M-O method. The active 

wedge is assumed to originate at the bottom of the wall. 
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• Compute the passive soil thrust acting on the front of the wall using a method that accounts 

for the nonplanarity of the sliding surfaces. The passive wedge is also assumed to originate at 

the bottom of the wall. 

• Compute the minimum required depth of wall penetration by summing moments about the 

wall-tie rod connection. All water pressures (hydrostatic, hydrodynamic and excess pore 

water, if present) must be included. 

• Compute the required anchor resistance by summing the horizontal forces acting on the wall. 

All water pressures (hydrostatic, hydrodynamic and excess pore water, if present) must be 

included. The computed anchor resistance is termed the free earth support anchor resistance. 

• Compute the distribution of bending moments over the height of the wall. All water pressures 

(hydrostatic, hydrodynamic and excess pore water, if present) must be included. The 

maximum bending moment is termed the free earth support moment. 

• Compute the design bending moment as the product of the free earth support moment and 

Rowe's moment reduction factor (Rowe, 1952). 

• Set the design tie-rod force at a level 30% greater than the free earth support anchor 

resistance. 

• Determine the required size of the anchor block to satisfy horizontal force equilibrium 

considering the active and passive pressures, as well as all water pressures, on both sides of 

the block. The effects of any water pressures on the bottom and top surfaces of the anchor 

block should also be considered. 

• Locate the anchor block at a sufficient distance behind the wall that the active wedge behind 

the wall dose not intersect the passive wedge in front of the anchor block. Since the active and 

passive failure surfaces are flatter for seismic loading than for static loading, seismic design 

may require a considerably longer tie-rod than static design. 

• Check the effects of redistribution of any earthquake-induced excess pore water pressures 

after earthquake shaking has ended. 

Case histories of anchored bulkhead performance (neglecting cases in which widespread liquefaction 

was observed) suggest that anchored bulkhead damage levels can be predicted approximately wth 

the aid of two dimensionless indices: the effective anchor index (EAI) and the embedment participation 

index (EPI) (Gazetas et al., 1990). 

Referring to Figure 5-10a, the effective anchor index describes the relative magnitude of the available 

anchor capacity as 

h
gEAI =  ( 5-12 ) 

where g is the horizontal distance between the active wedge and the tie-rod anchor connection and h 

is the height of the wall. The critical active failure plane is taken to originate at the effective point of 

rotation of the wall, which can be located using soil-structure interaction analysis or estimated as 

gh
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Figure 5-10. a) Geometry and notation for evaluation of anchored bulkhead design; b) Correlation 

between damage levels and dimensionless anchored bulkhead indices. After Gazetas et al. (1990). 

Empirical design method for waterfront anchored sheet pile walls, Design and Performance of Earth 

Retaining Structures (ASCE) 
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The inclination of the critical active failure plane can be approximated (Dennehy, 1985) as  

( ) 75.1'135
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+°≈α  ( 5-14 ) 

for 0.10 ≤ k'e ≤ 0.50 and 25° ≤ φ' ≤ 35°. Beyond these ranges equation ( 5-14 ) can be used to estimate 

the inclination of the active wedge. The embedment participation index is defined as 
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where FAE and FPE are the potential active and passive thrusts, respectively. For uniform backfill and 

foundation soils, 

( )rr
K
K

EPI
AE

PE += 12  ( 5-16 ) 

where r = f/(f+h). Values of EAI and EPI have been computed for 75 bulkheads for which degrees of 

damage in earth quake have been categorized as indicated in Table 5-4 (Gazetas et al., 1990) 
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Comparison of degrees of damage with EAI and EPI showed significant trends in the characteristics of 

anchored bulkheads that performed well and those that performed poorly. As illustrated in Figure 

5-10b, anchored bulkheads with high EAI and EPI values (zone I) generally suffered little or no 

damage. Anchored bulkheads with low EAI and EPI values (zone III) usually suffered severe damage. 

Moderate damage was generally associated with intermediate combinations of EAI and EPI (zone II).  

 

Degree of damage Description of damage 
Permanent horizontal 

displacement at top of sheet 
pile (cm) 

0 No damage < 2 

1 
Negligible damage to the wall 
itself; noticeable damage to 

related structures 
2-10 

2 Noticeable damage to the wall 10-30 

3 
General shape of anchored 

sheet pile preserved, but 
significantly damaged 

30-60 

4 Complete destruction > 60 

Table 5-4. Qualitative and quantitative descriptions of reported degrees of damage to anchored 

bulkhead during earthquakes (Gazetas et al., 1990). 

The chart of Figure 5-10b is a very useful tool for checking the design of anchored bulkheads in 

waterfront areas. 

The displacements of the retaining system can be then estimated by using empirical relationships and 

charts depending on the liquefaction potential of the site.  

For anchored sheet pile walls in non-liquefiable sites, a set of empirical equations were derived 

through regression analysis to define horizontal displacement ux, settlement uy and normalized 

horizontal displacement ux/h (Uwabe, 1983).  

( ) ( )FScmux 19.346.1 +−=  ( 5-17 ) 

( ) ( )FScmuy 17.143.5 +−=  ( 5-18 ) 

( ) ( )FShux 18.55.1% +−=  ( 5-19 ) 

When site contain saturated loose to medium sandy soils, it is necessary to consider the 

consequences of liquefaction. The simplified geometries of the loose saturated sand relative to the 

cross section of the wall characterized by liquefiable soil behind the wall only, liquefiable backfill and 

liquefiable soil both in backfill and foundation were used for classifying the case histories for anchored 

sheet pile walls. Table 5-5 shows some case history data with supplemental information shown in 

Figure 5-11 (Iai et al., 1998). A summary of the normalized horizontal displacements of anchored 

sheet pile walls at liquefaction sites are shown in Table 5-6. The intensity of the earthquake motion is  

equivalent to the design seismic coefficient. 

From the Table 5-6, it is possible to obtain a rough estimate of displacements based on the wall 

height.  
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Port 
Seismic 

coefficient 
kh 

Water 
depth 

(m) 

Earthquake/ 
Magnitude/ 

Year 

PGA 
(g) 

Acceleration 
Level 

Soil 
Conditions

Horizontal 
Displacements, 

ux (m) 

Normalized 
Horizontal 

Displacements, 
ux/h  

Akita Port 
Ohama No.2 0.10 -10.0 

Nihonkai-Chubu 
M = 7.7 

1983 
0.209

Design 
seismic 

coefficient 

Loose sand 
behind the 
wall only 

1.72 14% 

Akita Port 
Ohama No.3 0.10 -10.0 

Nihonkai-Chubu 
M = 7.7 

1983 
0.209

Design 
seismic 

coefficient 

Loose sand 
behind the 
wall only 

0.82 7% 

Ishinomaki 
Port Shiomi 

wharf 
0.10 -4.5 

Miyagiken-Oki 
M = 7.4 

1978 
0.287

Design 
seismic 

coefficient 

Loose sand 
at backfill 1.16 16% 

Hakodate 
Port Benten 

wharf 
0.15 -8.0 

Hokkaido-Nansei-
Oki 

M = 7.8 
1993 

0.113
Design 
seismic 

coefficient 

Loose sand 
at both 

backfill and 
foundation 

5.21 46% 

Table 5-5. Case histories of seismic performance of retaining walls at liquefied sites (PIANC, 2001). 
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Figure 5-11. Normalized horizontal displacements correlated with thickness of loose soil deposit 

below the wall (after Iai et al., 1998). 
 

Normalized Horizontal 
Displacements, ux/h (%)  

0-5 5-15 15-25 25-50 

Non-liquefaction G       g    

Loose sand behind the wall only  G       g   

Loose sand at backfill including  anchor   G       g  

Loose sand at both backfill and foundation    G       g 

Table 5-6. Normalized horizontal displacements of anchored sheet pile walls at liquefied sites during 

design level earthquake motion (PIANC, 2001). 

 

5.3.3 Simplified dynamic analysis. 

Simplified dynamic analysis is similar to simplified analysis, idealizing a structure by a sliding rigid 

block (Newmark analysis). In simplified dynamic analysis, displacement of the sliding block is 

computed by integrating the acceleration time history that exceeds the threshold limit for sliding over 

the duration until the block ceases sliding. 

Effects of earthquake are generally represented by a set of time histories of seismic motion at the 

base of the structure. The time histories of earthquake motion are obtained from the simplified 

dynamic analysis of local site effects. In the sliding block analysis, structural and geotechnical 

conditions are represented by a threshold acceleration for sliding. A set of empirical equations 

obtained from a statistical summary of sliding block analysis is available (Richards & Elms, 1979; 

Whitman & Liao, 1984; Towhata & Islam, 1987; Steedman, 1998). In these equations, peak ground 

acceleration and velocity are used to represent the effect of earthquake shaking. 

It should be noted that the procedure commonly used for the gravity walls poses two difficulties when 

applied to the flexible embedded wall cases. First, the active earth pressure may not be accurate 

because of the flexible nature of the sheet pile wall. Second, the inertia force on and bottom friction at 

the wall, i.e. two of major parameters for gravity wall analysis, are not the major parameters in the 

sheet pile-backfill soil system. These problems are solved by idealizing the movement of the sheet 
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pile-backfill system, assuming united rigid block motion of the wall and backfill (Towhata & Islam, 

1987). The driving force is the inertia force acting on the soil wedge and the resistance force includes 

the passive earth pressures in front of the wall and the shear resistance along the failure surface of 

the soil wedge. 

By expressing the dynamic earth pressure coefficients KAE and KPE and the ultimate anchor resistance 

TE as functions of KA, KP and TS before the earthquake (Seed and Whitman, 1970) 

hAAEAAE kKKKK
4
3

+=∆+=  ( 5-20 ) 

hPPEPPE kKKKK
8
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−=∆+=  ( 5-21 ) 
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the threshold horizontal seismic coefficient is obtained as (Towhata and Islam, 1987) 
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and 

m = 0 for no anchor capacity, 1 for full anchor capacity (dependant on the amount of excess pore 

pressure generation around the anchor) 

PP = static passive earth thrust 

∆U = excess pore water pressure due to cyclic shearing; subscripts A and P denote pressures within 

the active and passive soil wedges 

n = 1 when the anchor block is above the water table, and γ/γ' when the anchor is completely 

submerged. 

The ground water table behind the wall is the same as that of the excavation side.  

Using the threshold seismic coefficient kcrit defined for the sheet pile-backfill system, displacement of 

the wall is computed based on Newmark's sliding block approach. 
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5.3.4 Pushover analysis. 

A more sophisticated method for the evaluation of kcrit for an embedded retaining wall is based on 

nonlinear FEM/FDM pseudostatic analysis. The procedure can be included in the framework of the 

"pushover analyses". The first application was proposed by Visone & Santucci de Magistris (2007). 

Pushover analysis is a static nonlinear procedure in which the magnitude of the structural loading is 

incrementally increased in accordance with a certain predefined pattern. With the increase of the 

loading magnitude, weak links and failure modes of the structure can be found. The sequence of 

yields in the structure and the transition from elastic to the ultimate state response may also be 

identified. Static pushover analysis is a consolidated methodology in the structural engineering for 

evaluation of the real strength of the structures and it promises to be a useful and effective tool in the 

view of the performance-based design philosophy. 

In geotechnical engineering, only few applications of pushover analyses can be found in the literature 

(e.g. Pile-supported wharves – PIANC, 2001). This is maybe due to the difficulties to recognize the 

vibration modes of the geotechnical system. 

The methodology requires the numerical modelling of the problem by means of FE or FD simulations. 

For this scope, the soil can be modelled adopting subgrade reaction method (FE1D analysis) or as an 

elasto-plastic continuum. 

The static conditions of the soil-wall system should be studied to take into account the nonlinearities of 

the soil and wall behaviours. Then, starting from the deformed configuration, the seismic loadings are 

applied to the structure through pressure distributions on the wall towards the excavation. 

The aspects that should be considered in this type of analysis are: 

• geometrical nonlinearities: when the system reach the collapse the small deformations 

hypothesis is violated, hence, the calculation need continuous updating of the configuration; 

• material nonlinearities: the stress-strain behaviour of the soil, the structural element, the soil-

structure interface and of the other elements (anchors, props, etc.) should be represented with 

suitable constitutive models that implement plasticity; 

• load advancement to the ultimate level: the external load should be applied incrementally in 

order to obtain a load-displacement relationship that permits to detect the displacements of 

the system when it is subjected to design actions (seismic demand). 

The main results of the analysis are load-displacements curves that represent the capacity of the 

system to resist seismic actions (seismic capacity). 

In the present research, two different linear pressures distributions are considered. 

1. Triangular (TRD), with a maximum pmax at the base of the wall, suitable for low frequencies 

motions, as shown for instance by Steedman & Zeng (1990). This distribution agrees with 

the provisions given by the Italian Building code (NTC, 2008). 

2. Rectangular (RTD), following the indications found in EC8-5. 

Thus, dynamic thrust increments are equal to: 

HpSE max2
1

=                TRD ( 5-28 ) 

HpSE max=                    RTD ( 5-29 ) 
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acting at H/3, H/2 and 0.6 H from the base of the wall having a total height H = h +d. 

These values can be normalized with respect to the weight W of the active soil wedge and the weight 

Ww of the wall, in order to obtain the seismic horizontal coefficient kcrit  

w

Ecrit
crit WW

S
g

a
k

+
==  ( 5-30 ) 

beyond which the rigid block of soil-wall system begin to move. 

For a uniform subsoil, assuming a critical planar surface inclined of an angle αcrit respect to the 

horizontal plane, W can be evaluated by the following expression 

( )critHW α−°γ= 90tan
2
1 2  ( 5-31 ) 

while, for a rectangular diaphragm with a thickness s,  Ww is 

HsW RCw ⋅⋅γ=  ( 5-32 ) 

having indicated with γRC the unit weight of the wall. 

Hence, the expressions of kcrit are 

( ) sH
p

k
RCcrit

crit γ+α−°γ
=

290tan
max                TRD ( 5-33 ) 

( ) sH
p

k
RCcrit

crit γ+α−°γ
=

290tan
2 max                    RTD ( 5-34 ) 

For a given geometry of a retaining wall, the value of kcrit can be obtained by a pseudostatic numerical 

analysis in which, starting from the static deformed configuration after the excavation, an incremental 

load is applied on the structure until the failure is reached. As illustrated in the Chapter 3, the αcrit value 

depends on the seismic coefficient kh. A simple trial and error procedure is sufficient to determine step 

by step kh and αcrit.  

Another possible strategy to evaluate the threshold seismic acceleration acrit with FE or FD methods is 

that to apply on the mesh nodes of the 2D numerical model an incremental horizontal acceleration ah. 

The critical value acrit of the soil-wall system can be defined as the value that corresponds to the 

condition for which the pseudostatic equilibrium is not satisfied. This type of analysis requires some 

precautions when the numerical model is defined. 

In the next Chapter, examples of application of the procedure to free embedded walls by using a 2D 

finite element code will be presented. 

 

5.3.5 Dynamic analysis. 

Dynamic analysis is based on soil-structure interaction, generally using FE or FD methods. In this 

category of analysis, effects of earthquake are represented by a set of time histories of seismic motion 

at the base of the analysis domain chosen for the soil-structure system. A structure is idealized either 

as linear or as nonlinear, depending on the level of earthquake motion relative to the elastic limit of the 

structure. Soil is idealized either by equivalent linear or by an effective stress model, depending on the 

expected strain level in the soil deposit during the design earthquake. 
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Fairly comprehensive results are obtained from soil-structure interaction analysis, including failure 

modes of the soil-structure system and the extent of the displacement/stress/strain states. Since this 

category of analysis is often sensitive to a number of factors, it is especially desirable to confirm the 

applicability by using a suitable case history or a suitable model test result. 

Before to conduct any dynamic analysis of geotechnical systems, the seismic response of the 

numerical models should be tested by comparing its results with the physical model data or with 

theoretical solution of the dynamic problems in order to confirm the rightness of the calculation 

parameters and the modelling techniques. 

An extensive parametric study on the seismic response of FE models by using PLAXIS code 

(Brinkgreve, 2002) has been conducted. The results obtained by the research are described in the 

Annex B. Here, some of the main aspects of the numerical modelling with the finite element method 

for dynamic soil-structure interaction are summarized. 

 

5.3.5.1 Numerical integration methods. 

The most general approach for the solution of the dynamic response of mechanical systems id the 

direct numerical integration of the dynamic equilibrium equations. This involves, after the solution is 

defined at time zero, the attempt to satisfy dynamic equilibrium at discrete points in time. Most 

methods use equal time intervals at dt, 2dt, 3dt, Ndt. Many different numerical techniques have been 

proposed in the literature. However, all approaches can fundamentally be classified as either explicit 

or implicit integration methods. 

Explicit methods do not involve the solution of a set of linear equations at each time step. Basically, 

these methods use the differential equation at time "t" to predict a solution at time "t+dt". For most real 

systems, which contain stiff elements, a very small time step is required in ordr to obtain a stable 

solution. Therefore, all explicit methods are conditionally stable with respect to the size of the time 

step. 

Implicit methods attempt to satisfy the differential equation at time "t" after the solution at time "t-dt" is 

found. These methods require the solution of a set of linear equations at each time step. However, 

larger time steps may be used. Implicit methods can be conditionally or unconditionally stable. 

There exist a large number of accurate, higher-order, multi-step methods that have been developed 

for the numerical solution of differential equations. These multistep methods assume that the solution 

is a smooth function in which the higher derivatives are continuous. The exact solution of many 

nonlinear systems requires that accelerations, the second derivative of the displacements, are not 

smooth functions. This discontinuity of the acceleration is caused by the nonlinear hysteresis of most 

materials, interfaces, etc. Therefore, only single-step, implicit, unconditional stable methods represents 

an useful tool for the step-by-step seismic analysis of constructions. 

Newmark (1959) presented a family of single-step integration methods for the solution of dynamic 

problems for both blast and seismic loading. During the past 40 years Newmark's method has been 

applied to the dynamic analysis of many practical engineering structures. In addition, it has been 

modified and improved by many other researchers. In order to illustrate the use of this family of 

numerical integration methods consider the solution of the linear dynamic equilibrium equations written 

in the following form: 
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tttt FKuuCuM =++ &&&  ( 5-35 ) 

The direct use of Taylor’s series provides a rigorous approach to obtain the following two additional 

equations: 

…++++=
−…

−−−
dtt

dttdttdttt dtdtdt uuuuu
62

32
&&&  ( 5-36 ) 

…+++=
−…

−−
dtt

dttdttt dtdt uuuu
2

2
&&&&  ( 5-37 ) 

Newmark truncated these equations and expressed them in the following form: 

dtt

N
dttdttdttt dtdtdt

−…
−−− α+++= uuuuu 3

2

2
&&&  ( 5-38 ) 

dtt

N
dttdttt dtdt

−…
−− β++= uuuu 2&&&&  ( 5-39 ) 

αN and βN are two coefficients that control the accuracy of the numerical integration. If the acceleration 

is assumed to be linear within the time step, the following equation can be written: 








 −
=

−…

dt

dttt uuu
&&&&

 ( 5-40 ) 

The substitution of equation (5-40) into equations (5-38) and (5-39) produces Newmark’s equations in 

standard form: 

t
N

dtt
N

dttdttt dtdtdt uuuuu &&&&& 22

2
1

α+






 α−++= −−−  ( 5-41 ) 

( ) t
N

dtt
N

dttt dtdt uuuu &&&&&& 21 β+β−+= −−  ( 5-42 ) 

Newmark used equations (5-41), (5-42) and (5-35) iteratively, for each time step, for each 

displacement DOF of the system. The term üt was obtained from equation (5-35) by dividing the 

equation by the mass associated with the DOF. 

Wilson (1962) formulated Newmark’s method in matrix notation, added stiffness and mass proportional 

damping and eliminated the need for iteration by introducing the direct solution of equations at each 

time step. This requires that equations (5-41) and (5-42) be rewritten in the following form: 

( ) dttdttdtttt ccc −−− ++−= uuuuu &&&&& 320  ( 5-43 ) 

( ) dttdttdtttt ccc −−− ++−= uuuuu &&&& 541  ( 5-44 ) 

where the constants c0 to c5 are defined as: 

20
1
dt

c
Nα

= ; 
dt

c
N

N

α
β

=1 ; 
dt

c
Nα

=
1

2 ; 
2
1

3 −α= Nc ; 
N

Nc
β
α

+= 14 ; 







β−






 −αβ+= NNNdtc

2
115  

The substitution of equations (5-43) and (5-44) into equation (5-35) allows the dynamic equilibrium of 

the system at time “t” to be written in terms of the unknown node displacements ut. 

( ) ( ) ( )dttdttdttdttdttdtttt cccccccc −−−−−− −−+−−+=++ uuuCuuuMFuKCM &&&&&& 54113210  ( 5-45 ) 
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The Newmark direct integration algorithm can be summarized as follows: 

I. INITIAL CALCULATION 

1. Form static stiffness matrix K, mass matrix M and damping matrix C 

2. Specify integration parameters αN and βN 

3. Calculate integration constants c0 to c5 

4. Form effective stiffness matrix CMKK 10 cc ++=  

5. Triangularize effective stiffness matrix TLDLK =  

6. Specify initial conditions u0, 0u& 0u&&  

II. FOR EACH TIME STEP 

1. Calculate effective load vector 

( ) ( )dttdttdttdttdttdtttt
cccccc −−−−−− −−+−−+= uuuCuuuMFF &&&&&& 541132  

2. Solve for node displacement vector at time t 
ttT FuLDL =            forward and back-substitution only 

3. Calculate node velocities and accelerations at time t 

( ) dttdttdtttt ccc −−− ++−= uuuuu &&&&
541  

( ) dttdttdtttt ccc −−− ++−= uuuuu &&&&&
320  

4. Go to Step II.1 with t = t+dt 

 

Note that the constants c0 need to be calculated only once. Also, for linear systems, the effective 

dynamic stiffness matrix K  is formed and triangularized only once. 

For zero damping Newmark’s method is conditionally stable if 

2
1

≥βN ,   
2
1

≤αN ,    

N
N

dt
α−

β
ω

≤

2

1

max

 ( 5-46 ) 

where ωmax is the maximum circular frequency of interest. 

Newmark’s method is unconditionally stable if 

2
12 ≥β≥α NN  ( 5-47 ) 

However, if βN is greater than 1/2 , errors are introduced. These errors are associated with “numerical 

damping” and “period elongation”. 

If αN = 1/4 and βN = 1/2 the Newmark’s method becomes the so-called constant average acceleration 

method. It is identical to the trapezoidal rule that has been used to numerically evaluate the second 

order differential equations for approximately 100 years. It can easily be shown that this method 

conserves energy for free vibration problem, Mü + Ku = 0, for all possible time steps. Therefore, the 

sum of the kinematic and strain energy is constant. 

dttTdttdttTdtttTttTt KMKME −−−− +=+= uuuuuuuu &&&&2  ( 5-48 ) 
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Wilson (1973) made unconditionally stable the general Newmark’s method by  the introduction of a θ 

factor. The introduction of θ is motivated by the observation that an unstable solution tends to oscillate 

about the true solution. Therefore, if the numerical solution is evaluated within the time increment, the 

spurious oscillations are minimized. This can be accomplished by a simple modification to the 

Newmark method by using a time step defined by 

dtdt θ='  ( 5-49 ) 

and a load defined by 

( )dtttdttt RRRR −− −θ+='  ( 5-50 ) 

where θ ≥ 1.0. After the acceleration üt, vector is evaluated by Newmark’s method at the integration 

time step θdt, values of node accelerations, velocities and displacements are calculated from the 

following fundamental equations: 

( )dtttdttt −− −
θ

+= uuuu &&&&&&&& '1  ( 5-51 ) 

( ) t
N

dtt
N

dttt dtdt uuuu &&&&&& β+β−+= −− 1  ( 5-52 ) 

( ) t
N

dtt
N

dttdttt dtdtdt uuuuu &&&&& 2
2

21
2

α+α−++= −−−  ( 5-53 ) 

The use of the θ factor tends to numerically damp out the high modes of the system. If θ equals to 1.0 

Newmark’s method is not modified. However, for problems where the higher mode response is 

important, the errors that are introduced can be large. In addition, the dynamic equilibrium equations 

are not exactly satisfied at time t. Therefore, the author no longer recommends the use of the θ factor. 

At the time of the introduction of the method, it solved all problems associated with stability of the 

Newmark family methods. However, during the past twenty years new and more accurate numerical 

methods have been developed. An example is the α-method (or HHT method) proposed by Hilber et 

al. (LUSAS, 2000).  that uses the Newmark method to solve the following modified equations of 

motion: 

( ) ( ) ( ) dttdt-tttttt −α−α−α+α−=α−+α−+ KuuCFFKuuCuM &&&& 111  ( 5-54 ) 

With α equals to zero the method reduces to the constant acceleration method. It produces numerical 

energy dissipation in the higher modes that increases with α. If the numerical parameters α, αN and βN 

are selected such that 

3
10 ≤α≤ ;     ( )

4
1 2α+

=αN ;     α+=β
2
1

N  ( 5-55 ) 

an unconditionally stable, second-order accurate scheme results. 

It is apparent that a large number of different direct numerical integration methods are possible by 

specifying different integration parameters. A few of the most commonly used methods are 

summarized in Table 5-7. 

For SDOF systems the central difference method is most accurate and the linear acceleration method 

is more accurate than the average acceleration method.  
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Method αN βN Accuracy 

Central Difference 
(Explicit) 0 1/2 

Excellent for small dt 
Unstable for large dt 

Linear Acceleration 1/6 1/2 
Very good for small dt 
Unstable for large dt 

Average Acceleration 1/4 1/2 
Good for small dt 

No energy dissipation 

Modified Average 
Acceleration 1/4 1/2 

Good for small dt 
Energy dissipation for large dt 

Fox-Goodwin 1/12 1/2 
Fourth-order accurate 
Conditionally stable 

 

Table 5-7. Summary of Newmark's family integration methods. 

For MDOF systems the average acceleration method does not introduce numerical dissipation. If the 

Newmark integration parameters αN and βN are selected according to the equation (5-55), the energy 

dissipation introduced into the dynamic analysis of subsoil layers for α > 0 can be considered as a 

stiffness proportional damping, as shown in the Annex B. 

The basic Newmark constant acceleration method can be extended to nonlinear dynamic analysis. 

This requires that iteration must be performed at each time step in order to satisfy equilibrium. Also, 

the incremental stiffness matrix must be formed and triangularized at each iteration or at selective 

points in time. Many different numerical tricks, including element by element methods, have been 

developed in order to minimize the computational requirements. Also, the triangularization of the 

effective incremental stiffness matrix may be avoided by the introduction of iterative solution methods. 

 

5.3.5.2 Critical time steps. 

To avoid unreliable numerical responses, before to conduct any type of dynamic analysis, a careful 

evaluation of the critical time step dtcrit for the system should be performed. 

The stability condition for an elastic solid discretized into elements of size dx is 

c
dxdt <  ( 5-56 ) 

where c is the maximum speed at which information can propagate. 

For a single mass-spring element, the stability condition is 

k
mdt 2<  ( 5-57 ) 

where m is the mass and k is the stiffness. 

In a general system, consisting of solid material and arbitrary networks of interconnected masses and 

springs, the critical time step is related to the smallest natural period of the system, Tmin: 
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π
< minT

dt  ( 5-58 ) 

For a finite element mesh, the critical time step depends on the maximum frequency and on the 

refinement degree of the discretization. In general, the following expression can be used for a single 

element (Pal, 1998 as quoted by Brinkgreve, 2002): 








 ν−
+−+α

=

2

2

2

4 2
4
211

24
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S

S
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S
BV

Bdt

P

crit  
( 5-59 ) 

The factor α depends on the element type. For a 6-node-element ( )66/1 c=α , with c6 = 5.1282 and 

for a 15 node-element ( )1519/1 c=α , with c15 ≈ 4.9479 (Zienkiewicz and Taylor, 1991). VP and ν are 

the compression waves velocity and the Poisson ratio of the element. B and S are the average length 

and the surface of the element. In a finite element model the critical time step is equal to the minimum 

value of dtcrit according to ( 5-59 ) all over the elements. This time step is chosen to ensure that a wave 

during a single step does not move a distance larger than the minimum dimension of an element.  

 

5.3.5.3 Numerical modelling of soil damping. 

In nonlinear time-domain response models, there are generally two sources of damping. One source 

is hysteretic damping (frequency independent) associated with the area bounded by hysteretic stress-

strain loops. When Masing (1926) and extended Masing rules (Pyke, 1979; Wang et al., 1980; Vucetic 

1990) are used to represent the unload-reload behaviour of soil, zero damping is encountered at small 

strains, where the backbone curve is linear. The zero damping condition is incompatible with  soil 

behaviour measured in the laboratory at small strains (e.g. Hardin & Drnevich, 1972; Tatsuoka et al. 

1978) and can result in overestimation of propagated ground motion. One solution to this problem is to 

add velocity-proportional viscous damping in the form of dashpots embedded within the material 

elements. It should be noted that the nature of soil damping at small strains is neither perfectly 

hysteretic nor perfectly viscous (Vucetic & Dobry 1986; Lanzo & Vucetic 1999). The incorporation of 

hysteretic or viscous damping schemes into nonlinear codes is merely a convenient approximation for 

simulation purposes, and is required to ensure numerical stability of lumped mass solutions. 

A very common type of damping used in the nonlinear time domain analysis is to assume that the 

damping matrix C is proportional to the mass M and stiffness K matrices by means of two coefficients, 

αR and βR. 

KMC RR β+α=  ( 5-60 ) 

This type of damping is normally referred to as Rayleigh damping. In mode superposition analysis the 

damping matrix must have the following properties in order for the modal equations to be uncoupled: 

n
T
nnn φφ=ζω C2  ( 5-61 ) 

Due to the orthogonality properties of the mass and stiffness matrices, this equation can be rewritten 

as 
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22 nRRnn ωβ+α=ζω         or    







ωβ+

ω
α

=ζ nR
n

R
n 2

1  ( 5-62 ) 

It is apparent that modal damping can be specified exactly at only two frequencies in order to solve for 

αR and βR in the above equation. The use of stiffness proportional damping has the effect of increasing 

the damping in the higher modes of the system for which there is no physical justification and can 

result in significant errors for impact type of problems. Therefore, the use of Rayleigh type of damping 

is not the best way to simulate damping in the soil but it is often introduced in numerical codes as it is 

straightforward to implement. 

Different procedures were proposed for the evaluation of the Rayleigh damping coefficients (Park & 

Hashash, 2004; Lanzo et al., 2004). On the base of the parametric study described in detail in the 

Annex B, it may be concluded that, for geotechnical earthquake engineering problems, the full 

Rayleigh damping formulation is more accurate than the simplified forms to model the soil viscous 

damping. In this procedure, the choice of αR and βR is based on the solution of the following linear 

system   








 ωω
ω+ω

ζ
=








β
α

1
2 mn

mnR

R  ( 5-63 ) 

where ζ, the modal damping ratio, can be identified as the soil damping ratio at low strain level, D0, ωn 

and ωm are two significant circular natural frequencies of the system that can be fixed as two of the 

first three natural frequencies, in most of cases. 

 

5.3.5.4 Boundary conditions for dynamic soil-structure interaction analyses. 

The modelling of geomechanics problems involves media which, at the scale of the analysis, are 

better represented as unbounded. Deep underground excavations are normally assumed to be 

surrounded by an infinite medium, while surface and near-surface structures are assumed to lie on a 

half-space. Numerical methods relying on the discretization of a finite region of space require that 

appropriate conditions be enforced at the artificial numerical boundaries. In static analyses, fixed or 

elastic boundaries (e.g., represented by boundary-element techniques) can be realistically placed at 

some distance from the region of interest. In dynamic problems, however, such boundary conditions 

cause the reflection of outward propagating waves back into the model and do not allow the necessary 

energy radiation. The use of a larger model can minimize the problem, since material damping will 

absorb most of the energy in the waves reflected from distant boundaries. However, this solution leads 

to a large computational burden. The alternative is to use quiet (or absorbing) boundaries. Several 

formulations have been proposed. One of most widespread is the use of viscous boundaries 

developed by Lysmer and Kuhlemeyer (1969). It is based on the use of independent dashpots in the 

normal and shear directions at the model boundaries. The method is almost completely effective at 

absorbing body waves approaching the boundary at angles of incidence greater than 30°. For lower 

angles of incidence, or for surface waves, there is still energy absorption, but it is not perfect. 

However, the scheme has the advantage that it operates in the time domain. Its effectiveness has 

been demonstrated in both finite-element and finite-difference models (Kunar et al., 1977). A variation 

of the technique proposed by White et al. (1977) is also widely used. More efficient energy absorption 
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(particularly in the case of Rayleigh waves) requires the use of frequency-dependent elements, which 

can only be used in frequency-domain analyses (e.g., Lysmer and Waas 1972). These are usually 

termed “consistent boundaries,” and involve the calculation of dynamic stiffness matrices coupling all 

the boundary degrees-of-freedom. Boundary element methods may be used to derive these matrices 

(e.g., Wolf 1985). A comparative study of the performance of different types of elementary, viscous 

and consistent boundaries was documented by Roesset and Ettouney (1977). 

The quiet-boundary scheme proposed by Lysmer and Kuhlemeyer (1969) involves dashpots attached 

independently to the boundary in the normal and shear directions. The dashpots provide viscous 

normal and shear tractions given by: 

xPn uVc &ρ−=σ 1  ( 5-64 ) 

ySuVc &ρ−=τ 2  ( 5-65 ) 

where ρ is the mass density of the material, VP and VS are the compression and shear wave velocities, 

xu&  and yu& are the normal and shear components of the velocity at the boundary, c1 and c2 are 

relaxation coefficients. 

Only few suggestions exist in literature for the choice of these parameters (e.g., Lysmer and 

Kuhlemeyer, 1969). Such constraints are introduced in the model simply by adding frequency-

independent terms to the damping matrix of the system. 

Dynamic analysis starts from some in-situ condition. If a velocity boundary is used to provide the static 

stress state, this boundary condition can be replaced by a quiet boundary; the boundary reaction 

forces will be automatically calculated and maintained throughout the dynamic loading phase. Note 

that the boundaries must not be freed before applying the quiet boundary condition, otherwise the 

reaction forces will be lost. 

Quiet boundaries are best-suited when the dynamic source is within a mesh while should not be used 

alongside boundaries of a calculation domain when the dynamic source is applied as a boundary 

condition at the top or base, because the wave energy will “leak out” of the sides. In this situation, 

other types of boundary conditions should be adopted such as perfectly matched layers (Berenger, 

1994), infinite elements (Kramer, 1996; Ross, 2004), free-field boundaries (Cundall et al., 1980). 

The numerical study described in the Annex B by using the FE code PLAXIS on homogeneous linear 

visco-elastic layers crossed by vertical shear waves has shown that the simple assumption of the 

lateral adsorbent boundaries is not able to reproduce the expected seismic response of the subsoil. 

The more accurate solutions were found by adopting the finite element models sketched in Figure 

5-12. These models are characterized by a central domain with a refined mesh, in which the interest of 

the study is concentrated, and two lateral domains with a coarse mesh, that have the only aim to 

minimize the effects of spurious waves reflected on the boundaries. The boundary conditions are the 

following: 

1. LOWER BOUNDARY: fixed nodes with a prescribed acceleration (for rigid bedrock) or shear 

stress (for elastic bedrock) time history, that is decreased linearly from the central part to the 

vertical boundaries until zero 

2. LATERAL BOUNDARIES: fixed nodes 

3. UPPER BOUNDARY: free surface conditions. 
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Figure 5-12. Sketch of numerical models able to minimize the reflected waves on lateral boundaries.  
 

Mesh dimension ratios B/2H between the half-width, B/2, and the height, H, of the model of order of 15 

allow numerically simulating the free field conditions. 

 

 



Chapter 6 – Case study: cantilever diaphragms embedded in dry loose and dense sand layers 

 

Ciro Visone – Performance-Based approach in seismic design of embedded retaining walls 6-1

6 CASE STUDY: CANTILEVER DIAPHRAGMS EMBEDDED 
IN DRY LOOSE AND DENSE SAND LAYERS. 

In this chapter, the seismic responses of cantilever diaphragms embedded in dry loose and dense LB 

sand layers and subjected to the accelerometer registrations of the Tolmezzo and Sturno Stations 

during the Friuli 1976 and Irpinia 1980 earthquakes, respectively, are studied by using the various 

types of analyses described in the previous chapter. The geometrical schemes of two centrifuge 

models are considered. The results of different methods are presented and compared. The nonlinear 

static and dynamic analyses were performed by using the FE code PLAXIS v.8.2 (Brinkgreve, 2002). 

In order to verify the free-field motions estimated by the complete dynamic analyses and to compute 

the site amplification for the simplified dynamic analyses, the codes EERA  (Bardet et al., 2000) and 

NERA (Bardet and Tobita, 2001) were used. 

 

6.1 DESCRIPTION OF THE EXAMINED PROBLEMS. 

6.1.1 Geometries. 

The geometry of the examined problems is plotted in Figure 5-1. They are constituted by cantilever 

walls with a total length of H = 8 meters and thickness of s = 0.6m and s = 1.0m embedded for 4 

meters into dry loose (relative density, Dr = 20%) and dense (Dr = 80%) layers of Leighton Buzzard 

sand. The height of excavation is equal to h = 4 meters. The sandy layers have a thickness of 16m 

and are based on a very stiff bedrock that was assumed as rigid in the analyses. For simplicity, 

potential loadings on the backfill are not considered and the conditions of unbounded media is 

supposed at the sides of the wall. 

The water level is assumed at or below the bedrock, in order to leave out effects of dynamic pore 

pressures in the calculation. 
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Figure 6-1. Geometry of the examined problem. 
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6.1.2 Soil properties. 

The physical and mechanical properties of the sand layers are referred to those experimentally 

determined by means of the laboratory tests on loose and dense samples described in the Annex A. 

Table 3-1 shows the parameters adopted in the analyses. 

 

Parameters Symbol LOOSE SAND DENSE SAND 

Relative density Dr 20% 80% 

Void ratio e 0.934 0.693 

Unit weight (kN/m3) γ 13.44 15.35 

Cohesion (kPa) c' 5x10-4 5x10-4 

Friction angle φ' 33° 40° 

Dilatancy angle ψ 0° 10° 
 

Table 6-1. Physical and mechanical parameters of LB sand layers. 

The adopted stiffness and damping profiles derive from the experimental measurements of the initial 

shear modulus G0 and damping ratio D0 during the isotropic compressions of the torsional shear tests. 

In particular, adopting the relationships (A-11) and (A-14) particularized for the assumed relative 

densities of the sand layers and fixing the earth pressure coefficient at rest k0 = 0.5, both for loose and 

dense sand, the estimated shear wave velocity and damping ratio profiles are those reported in Figure 

6-2. 
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Figure 6-2. Shear wave velocity (a) and damping ratio (b) profiles for loose (Dr = 20%) and dense    

(Dr = 80%) LB sand layers. 
 

To take into account the nonlinear behaviour of the sand, on the base of the results of the cyclic 

torsional shear tests, the decay curves shown in Figure 6-3 are assumed in the analyses. 
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Figure 6-3. Assumed decay curves of the LB sandy layers, both for loose and dense state. 
 

The adopted curves are close to those measured during the tests with lower mean effective stress 

(RCTS100 and RCTS200) that simulate better the actual stress state of the soil interacting with the 

walls. 

 

6.1.3 Diaphragms properties. 

The diaphragms are schematized as rigid in simplified analyses and as linear elastic plates in the 

complete analyses, where the soil-structure interaction can be modelled.  

In PLAXIS, for the elastic behaviour an axial stiffness, EA, and a flexural rigidity, EI, should be 

specified as material properties. For plane strain models the values of EA and EI relate to a stiffness 

per unit width in the out-of-plane direction. Hence, the axial stiffness, EA, is given in force per unit 

width and the flexural rigidity, EI, is given in force length squared per unit width. From the ratio of EI 

and EA an equivalent thickness for an equivalent plate (seq) is automatically calculated from the 

equation: 

EA
EIseq 12=  ( 6-1 ) 

For the modelling of plates, PLAXIS uses the Mindlin beam theory as described in Bathe (1982). This 

means that, in addition to bending, shear deformation is taken into account. The shear stiffness of the 

plate is determined from: 

SHEAR STIFFNESS = ( )
( )
( )υ+

⋅
=

υ+ 112
15

112
5 msEEA eq  ( 6-2 ) 

This implies that the shear stiffness is determined from the assumption that the plate has a rectangular 

cross-section. In the case of modelling a solid wall, this will give the correct shear deformation. 

However, in the case of steel profile elements, like sheet-pile walls, the computed shear deformation 

may be too large. You can check this by judging the value of seq. For steel profile elements, seq should 
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be at least of the order of a factor 10 times smaller than the length of the plate to ensure negligible 

shear deformations. 

In addition to the above stiffness parameters, a Poisson's ratio, ν, is required. For thin structures with a 

certain profile or structures that are relatively flexible in the out-of-plane direction (like sheet-pile walls), 

it is advisable to set Poisson's ratio to zero. For real massive structures (like concrete walls) it is more 

realistic to enter a true Poisson's ratio of the order of 0.15. Since PLAXIS considers plates (extending 

in the out-of-plane direction) rather than beams (one-dimensional structures), the value of Poisson's 

ratio will influence the flexural rigidity of the plate as follows: 

Input value of flexural rigidity     EI ( 6-3 ) 

Observed value of flexural rigidity     21 υ−
EI  ( 6-4 ) 

The stiffening effect of Poisson's ratio is caused by the stresses in the out-of-plane direction (σzz) and 

the fact that strains are prevented in this direction. 

Furthermore, in a material set for plates a specific weight w can be specified, which is entered as a 

force per unit area. For relatively massive structures this force is, in principle, obtained by multiplying 

the unit weight of the plate material by the thickness of the plate. Note that in a finite element model, 

plates are superimposed on a continuum and therefore 'overlap' the soil. To calculate accurately the 

total weight of soil and structures in the model, the unit weight of the soil should be subtracted from 

the unit weight of the plate material. For sheet-pile walls the weight (force per unit area) is generally 

provided by the manufacturer. This value can be adopted directly since sheet-pile walls usually occupy 

relatively little volume. 

 

6.1.4 Seismic input motions. 

To highlight the influence of the input motion on nonlinear seismic responses of the examined 

problems, two earthquake signals were considered.  

The first is the WE component of the accelerometer registration at Tolmezzo Station for the main 

shock of the earthquake of Friuli (Italy) on May 6th, 1976, denoted as TMZ-270. The data were 

sampled at 200 Hz for a total number of 7279 registration points. The horizontal peak acceleration, 

equal to 0.315 g, was reached at the time t=3.935 s. Most of the energy is included into a frequency 

range between 0.8 and 5 Hz, with a predominant frequency of 1.5 Hz. The Arias intensity is 1.20 m/s 

and the significant duration (Trifunac and Brady, 1975) is 4.92 s. The time-history of acceleration and 

the Fourier spectrum of amplitude are reported in  Figure 6-4.  

The second is the WE component of the accelerometer registration at Sturno Station for the main 

shock of the earthquake of Irpinia (Italy) on November 23rd, 1980, denoted as STU-270. The sampling 

frequency is 400 Hz for a total number of 15737 registration points. The horizontal peak acceleration, 

equal to 0.321g, was reached at the time t = 5.2375 s. The predominant frequency is 0.44 Hz. The 

Arias intensity and the significant duration are 1.39 m/s and 15.2 s, respectively. The acceleration 

time-history and the Fourier spectrum of amplitude are plotted in Figure 6-5. 

Even if the two considered seismic motions have similar maximum acceleration, they are 

characterized by different frequency contents.  
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Figure 6-4. TMZ-270 Seismic input signal: a) acceleration time-history; b) Fourier spectrum. 
 

a) 

 

0 10 20 30 40
Time (sec)

-0.4

-0.2

0

0.2

0.4

A
cc

el
er

at
io

n 
(g

)

 b) 

 

0 5 10 15 20 25
Frequency (Hz)

0

0.05

0.1

0.15

0.2

0.25

Fo
ur

ie
r A

m
pl

itu
de

 (g
-s

ec
)

 

Figure 6-5. STU-270 Seismic input signal: a) acceleration time-history; b) Fourier spectrum. 
 

6.1.5 Analyses program. 

In order to simplify the notation for the description of the results of the different types of analyses, in 

the following, the analysis codes reported in Table 6-2 will be used. In the adopted acronyms, the first 

letter indicates the sandy layer (loose or dense), the three numbers remember the thickness of the 

wall and the last three letters stay for the considered earthquake motion. 

 

ANALYSIS CODE SAND WALL EARTHQUAKE MOTION 

L060TMZ LOOSE s = 0.60m TMZ-270 

L100TMZ LOOSE s = 1.00m TMZ-270 

L060STU LOOSE s = 0.60m STU-270 

L100STU LOOSE s = 1.00m STU-270 

D060TMZ DENSE s = 0.60m TMZ-270 

D100TMZ DENSE s = 1.00m TMZ-270 

D060STU DENSE s = 0.60m STU-270 

D100STU DENSE s = 1.00m STU-270 
 

Table 6-2. Analyses program. 
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6.2 SIMPLIFIED ANALYSES. 

The first step for the prediction of the seismic behaviour of an embedded retaining walls is the 

calculation of the critical seismic coefficient kcrit, for example, by using a pseudostatic approach of the 

limit equilibrium method. In this type of analysis, a widespread practice is the neglecting of the wall 

weight in the forces limit equilibrium. Then, kcrit depends only on the soil strength and, for the two wall, 

s = 0.6m and s = 1.0m, assumes an unique value. 

With a simple trial and error procedure in which: 

• a tentative value of the seismic coefficient kh was fixed 

• the seismic earth pressure coefficients KAE and KPE were evaluated by means of the M-O and 

Lancellotta methods, as described in the previous chapter 

• the limit depth ratio d/h was estimated by adopting the equation (5-3), till to have the assigned 

value of d/h = 1 

for the examined problems, the following critical seismic coefficient kcrit  were calculated: 

 

ANALYSIS CODE SAND WALL kcrit ∆Mmax/γh3 

L060TMZ LOOSE s = 0.60m 0.228 0.074 

L100TMZ LOOSE s = 1.00m 0.228 0.074 

L060STU LOOSE s = 0.60m 0.228 0.074 

L100STU LOOSE s = 1.00m 0.228 0.074 

D060TMZ DENSE s = 0.60m 0.447 0.146 

D100TMZ DENSE s = 1.00m 0.447 0.146 

D060STU DENSE s = 0.60m 0.447 0.146 

D100STU DENSE s = 1.00m 0.447 0.146 
 

Table 6-3. Seismic capacities of the retaining walls predicted by the pseudostatic limit equilibrium 

method. 

In Table 6-3 the normalized seismic increments of maximum bending moment ∆Mmax/γh3 were also 

reported. The values were estimated as the difference the static and the seismic prediction of the 

bending moments. 

To assess the earthquake-induced displacements, the seismic horizontal coefficient kh related to each 

seismic motion should be estimated. For this aim, the indications of the New Italian Building code 

(NTC-2008) are considered. Both of loose and dense sand layers can be classified as soil type C (180  

m/s < VS16 < 360 m/s) at which a soil factor S = 1.5 corresponds (maximum value for the category). 

The α-value can be assumed equal to α = 1 (for H < 10m and ground type C, see Figure 5-3) while the 

β-value, assuming the acceptable limit displacement ux = 0.005 H = 0.005 ⋅ 8.00m = 4 cm, may be 

fixed as β = 0.55 (see Figure 5-4). The expression ( 5-2 ) allows computing the seismic coefficients kh 

for TMZ-270 and STU-270 earthquake motions given in Table 6-4. In the same Table, the seismic 

performances of the walls predicted by the simplified analyses are also summarized. The seismic 

factors of safety, FS, were estimated by means of equation ( 5-7 ) while the relationship ( 5-17 ) 
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proposed by Uwabe (1983) for anchored sheet pile walls in nonliquefiable sites was used to evaluate 

the horizontal displacements ux, normalized with respect to the height of excavation h. 

 

ANALYSIS CODE kcrit ∆Mmax/γh3 kh FS = kcrit / kh ux/h 

L060TMZ 0.228 0.074 0.260 0.877 9.55% 

L060STU 0.228 0.074 0.264 0.864 9.70% 

L100TMZ 0.228 0.074 0.260 0.877 9.55% 

L100STU 0.228 0.074 0.264 0.864 9.70% 

D060TMZ 0.447 0.146 0.260 1.719 4.68% 

D060STU 0.447 0.146 0.264 1.693 4.75% 

D100TMZ 0.447 0.146 0.260 1.719 4.68% 

D100STU 0.447 0.146 0.264 1.693 4.75% 
 

Table 6-4. Seismic performances of the retaining walls predicted by the simplified analyses. 

 

6.3 SIMPLIFIED DYNAMIC ANALYSES. 

A simplified dynamic analysis of a retaining wall is composed by a pseudostatic analysis, by means of 

which the critical acceleration is estimated, and a pseudodynamic analysis, that allows computing the 

earthquake-induced displacements of the system when subjected to a given input motion. 

 

6.3.1 Pseudostatic analyses. 

As previously mentioned, in the current design of the embedded walls, the inertia forces related to the 

masses of the structure are not considered in the forces balance. In the simplified dynamic analysis, 

the earthquake-induced displacements should be predicted with more accuracy than with the 

simplified methods. Then, the calculation of the critical acceleration of the system can not leave out of 

consideration these forces in the limit equilibrium conditions. 

Considering them, the two walls present different seismic performances. In Table 6-5 the seismic 

capacities of the examined retaining systems are carried out. 

It can be seen the worst behaviour of the more stiff wall (s = 1.0m) than the deformable one (s = 

0.6m), both in terms of the critical seismic coefficient and the maximum bending moment. 

In order to show the influence of the wall inertia forces on the seismic performances of the structures, 

the normalized displacements predicted by the empirical relationship ( 5-19 ) were recalculated and 

reported in Table 6-6. 
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ANALYSIS CODE SAND WALL kcrit ∆Mmax/γh3 

L060TMZ LOOSE s = 0.60m 0.167 0.093 

L100TMZ LOOSE s = 1.00m 0.140 0.100 

L060STU LOOSE s = 0.60m 0.167 0.093 

L100STU LOOSE s = 1.00m 0.140 0.100 

D060TMZ DENSE s = 0.60m 0.370 0.159 

D100TMZ DENSE s = 1.00m 0.328 0.178 

D060STU DENSE s = 0.60m 0.370 0.159 

D100STU DENSE s = 1.00m 0.328 0.178 
 

Table 6-5. Seismic capacities of the retaining walls predicted by the pseudostatic limit equilibrium 

method considering the inertia forces due to the wall masses. 

 

ANALYSIS CODE kcrit ∆Mmax/γh3 kh FS = kcrit / kh ux/h 

L060TMZ 0.167 0.093 0.260 0.642 13.19% 

L100TMZ 0.140 0.100 0.260 0.538 15.82% 

L060STU 0.167 0.093 0.264 0.633 13.38% 

L100STU 0.140 0.100 0.264 0.530 16.06% 

D060TMZ 0.370 0.159 0.260 1.423 5.73% 

D100TMZ 0.328 0.178 0.260 1.262 6.51% 

D060STU 0.370 0.159 0.264 1.402 5.82% 

D100STU 0.328 0.178 0.264 1.242 6.62% 
 

Table 6-6. Seismic performances of the retaining walls predicted by the simplified analyses 

accounting for the wall weight. 

 

6.3.2 Free field motions. 

Before to conduct any type of dynamic analysis, a good practice is to perform local site response 

analyses in order to highlight the amplification of the seismic motion due to the stratigraphic 

conditions. In this study, various type of ground response analyses were carried out by assuming 

different soil constitutive models and integration techniques. The results are presented and compared 

in this subsection. 

The computer codes used in the analyses are the following: 

• EERA (Bardet et al., 2000), that stands for Equivalent-linear Earthquake site Response 

Analysis. It is a modern implementation of the well-known concepts of the equivalent linear 

site response analysis that was first implemented in the SHAKE code (Schnabel et al., 1972). 

The input and output are fully integrated with the spreadsheet program MS-Excel. This code 

permits to perform frequency domain analyses for linear and equivalent linear stratified 

subsoils. The bedrock can be modelled as rigid, if the option “inside” is selected in the Profile 
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spreadsheet of the program, or as elastic, by assigning its properties to the last layer and 

selecting the option “outcrop” in the Profile spreadsheet. In order to transform the signal from 

the outcropping rock to the bedrock, placed at the bottom of the soil layer, EERA applies a 

suitable transfer function to the input signal. 

• NERA (Bardet and Tobita, 2001), that stands for Nonlinear Earthquake site Response 

Analysis. It allows solving the 1-D vertical shear wave propagation in a nonlinear hysteretic 

medium in the time domain. The constitutive model implemented in NERA is that proposed by 

Iwan (1967) and Mroz (1967), IM model, which simulates nonlinear stress-strain curves using 

a series of n mechanical elements, having different stiffness ki and sliding resistance Ri. The 

IM model assumes that the hysteretic stress-strain loop follows the Masing rules. For this 

reason, the damping ratio curves directly derive from the G/Gmax(γ) curves and, then, they can 

not be defined independently as in the case of the equivalent linear model. Therefore, the 

damping ratio curves that derive from the IM model are shown and compared with the 

assumed curves in the previously presented Figure 3. The central difference method is used 

to perform the 1-D time domain analyses by adopting a finite difference formulation. 

• PLAXIS (Brinkgreve, 2002) that is a commercial finite element code. It allows performing 

stress-strain analyses for various types of geotechnical systems. An earthquake analysis can 

be performed by imposing an acceleration time-history at the base of the FE model and 

solving the equations of motion in the time domain by adopting a Newmark type implicit time 

integration scheme. Different material models can be chosen to describe the soil behaviour. In 

this study, only the linear elastic and the Mohr-Coulomb models were considered. 

 

6.3.2.1 Linear analyses. 

As described in the Annex B, to rightly define the Rayleigh damping parameters for the time domain 

analyses, the natural frequencies of the layers should be estimated. For this reason, linear analyses 

were performed by means of the code EERA. Figure 6-6 shows the discretized subsoil profiles 

adopted in the frequency domain analyses, in the following abbreviated as FDA, while the calculated 

natural frequencies are summarized in Table 6-7. 

Choosing f1 and f2 as target frequencies in the relationship ( B-11 ), for the assumed profiles, the 

corresponding Rayleigh parameters profiles are those plotted in Figure 6-7. 

To ensure the rightness of αR and βR values and the effectiveness of the lateral boundary conditions 

presented in the Annex B, the amplification functions of the two sandy layers calculated by the linear 

time domain analyses, marked as TDA, and the FDA are compared in Figure 6-8. The numerical 

results of the time domain analyses were obtained by the code PLAXIS assuming a constant 

acceleration scheme for the time integration (α = 0; αN = 0.25; βN = 0.5) and a mesh dimension ratio 

B/2H = 15. The average element size in the central part of the calculation domain was fixed according 

to Kuhlemeyer and Lysmer (1973). Obviously, because the soil was modelled as linear elastic, the 

amplification functions do not depend to the input motion. 
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Figure 6-6. Shear wave velocity (a) and damping ratio (b) profiles for loose (Dr = 20%) and dense    

(Dr = 80%) LB sand layers adopted in the linear frequency domain analyses. 
 

 Frequencies (Hz) Circular frequencies 

SAND f1 f2  f3  ω1 ω 2 ω 3 

LOOSE 3.84 10.59 17.52 24.13 66.54 110.08 

DENSE 4.89 14.02 23.29 30.72 88.09 146.34 
 

Table 6-7. Natural frequencies of the LB sandy layers obtained by means of linear frequency domain 

analyses. 
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Figure 6-7. Rayleigh α (a) and β (b) damping parameters profiles for loose (Dr = 20%) and dense (Dr = 

80%) LB sand layers adopted in the time domain analyses. 
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Figure 6-8. Comparisons between the linear time (TDA) and frequency (FDA) domain analyses in 

terms of amplification functions of the loose (a) and the dense (b) sand layers. 
 

It can be seen the perfect agreement between the natural frequencies estimated by the TDA and the 

FDA. The differences between the two types of analyses exist only on the amplification peaks greater 

than the second. This is a consequence of the choice of the target frequencies for the definition of the 

Rayleigh damping parameters. However, the discrepancies can be considered acceptable, as 

demonstrated by the maximum acceleration profiles shown in Figure 6-9 and Figure 6-10. It seems 

that, for the loose stratum, the soil amplification is larger for the TMZ-270 seismic motion while, for the 

dense layer, STU-270 earthquake induces larger maximum accelerations near to the surface. 
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Figure 6-9. Maximum acceleration profiles computed by the linear analyses for loose sand layer: a) 

TMZ-270 input motion; b) STU-270 input motion. 
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Figure 6-10. Maximum acceleration profiles computed by the linear analyses for dense sand layer: a) 

TMZ-270 input motion; b) STU-270 input motion. 
 

6.3.2.2 Equivalent linear and nonlinear analyses. 

The experimental results of the laboratory tests performed on the LB sand and described in the Annex 

A have shown the influence of the shear strain level on the shear modulus and the damping ratio of 

the Leighton Buzzard sand 100/170. To take into account the nonlinear behaviour of the sand, here, 

three different approaches were considered:  

• Equivalent Linear (Seed and Idriss, 1968): it was first implemented in the code SHAKE 

(Schnabel et al., 1972) and then in the EERA. First, in the equivalent linear method, the shear 

modulus G is taken as the secant value Gsec, in relation to the shear strain amplitude γ, and 
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the damping ratio D is the value that produces the same energy loss in a single cycle as the 

hysteresis stress-strain loop of the irreversible soil behaviour. Then, the equivalent parameters 

G and D are modified considering the proper strain levels that develops at each soil layer, 

using an iterative procedure. 

• IM model (Iwan, 1967; Mroz, 1967): it simulates nonlinear stress-strain curves using a series 

of n mechanical elements, having different stiffness ki and sliding resistance Ri. The IM model 

assumes that the hysteretic stress-strain loop follows the Masing rule. For this reason, the 

damping ratio curves directly derive from the G/Gmax(γ) curves and then, they can not be 

defined independently as in the case of the linear equivalent model. Therefore, the damping 

ratio curve that derive from the IM model is shown in Figure 6-11. 

• MC model (as quoted in Brinkgreve, 2002): Mohr-Coulomb model is a linear elastic-perfectly 

plastic constitutive law. The yield condition is an extension of Coulomb's friction law to general 

states of stress (Smith and Griffith, 1982). In fact, this condition ensures that Coulomb's 

friction law is obeyed in any plane within a material element. Three of the five model 

parameters define the yield function (friction angle, φ, and cohesion, c) and the plastic 

potential (dilatancy angle, ψ). The other two (Young modulus, E, and Poisson ratio, ν) 

individuate the elastic behaviour of the medium. The decay of G at a fixed depth z can be 

described by means of a trilinear curve: two horizontal lines characterized by G = G0 and G = 

0 connected by a vertical line in correspondence of a shear strain level γf depending on the 

model parameters and the stress state acting at z. The damping ratio D is zero when the 

plasticity is not involved in the deformation process, while depends also on the induced 

distortional strain level γmax, when γfmax > γf . 
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Figure 6-11. Decay curves of loose and dense sand adopted in the site response analyses. 
 

Figure 6-12 and Figure 6-13 plots the comparisons between the free field motions computed by the 

different analyses in terms of response spectra and maximum acceleration profiles, both for TMZ-270 

and STU-270 and for loose and dense sand layers. 
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Figure 6-12. Comparisons between the calculated free field motions for loose sand layer: a) response 

spectrum at surface for TMZ-270; b) response spectra at surface for STU-270; c) maximum 

acceleration profiles for TMZ-270; d) maximum acceleration profiles for STU-270. 
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Figure 6-13. Comparisons between the calculated free field motions for dense sand layer: a) 

response spectrum at surface for TMZ-270; b) response spectra at surface for STU-270; c) maximum 

acceleration profiles for TMZ-270; d) maximum acceleration profiles for STU-270. 
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While the surface motions of dense sand estimated by the equivalent linear and nonlinear analyses 

are quite similar, for loose sand the three types of analyses provide different results. 

 

6.3.3 Pseudodynamic analyses: Newmark sliding block analyses. 

A possible way to compute the seismic displacements of the retaining walls is the use of the critical 

acceleration acrit deriving from the limit equilibrium condition and of the surface motion computed by 

local site response analyses as input for Newmark sliding block analyses. Different authors have 

highlighted the difficulties and the limitations connected to this type of analysis when applied to the 

flexible earth retaining structures (see for instance Callisto, 2006). 

However, in the next Table 6-8 the results obtained by the sliding block analyses using as input 

motions those computed by the three abovementioned nonlinear approaches are summarized. 

 

COMPUTER CODE EERA NERA PLAXIS FREE-FIELD 
MOTION NONLINEAR APPROACH Equiv. Lin. IM model MC model 

ANALYSIS CODE kcrit ∆Mmax/γh3 ux/h ux/h ux/h 

L060TMZ 0.228 0.074 10.23% 6.70% 1.95% 

L100TMZ 0.228 0.074 10.23% 6.70% 1.95% 

L060STU 0.228 0.074 6.30% 4.35% 4.73% 

L100STU 0.228 0.074 6.30% 4.35% 4.73% 

D060TMZ 0.447 0.146 1.53% 0.68% 0.08% 

D100TMZ 0.447 0.146 1.53% 0.68% 0.08% 

D060STU 0.447 0.146 1.55% 0.83% 0.10% 

D100STU 0.447 0.146 1.55% 0.83% 0.10% 
 

Table 6-8. Seismic performances of the retaining walls predicted by the simplified dynamic analyses. 

COMPUTER CODE EERA NERA PLAXIS FREE-FIELD 
MOTION NONLINEAR APPROACH Equiv. Lin. IM model MC model 

ANALYSIS CODE kcrit ∆Mmax/γh3 ux/h ux/h ux/h 

L060TMZ 0.167 0.093 14.58% 10.78% 6.50% 

L100TMZ 0.140 0.100 17.23% 13.23% 9.90% 

L060STU 0.167 0.093 9.75% 8.38% 19.18% 

L100STU 0.140 0.100 12.33% 11.40% 31.00% 

D060TMZ 0.370 0.159 2.55% 1.43% 0.13% 

D100TMZ 0.328 0.178 3.30% 2.08% 0.45% 

D060STU 0.370 0.159 2.93% 1.73% 0.53% 

D100STU 0.328 0.178 4.13% 2.55% 1.43% 
 

Table 6-9. Seismic performances of the retaining walls predicted by the simplified dynamic analyses 

accounting for the wall weight. 
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Table 6-9 shows the same results considering the inertia forces associated to the wall masses in the 

force balance at limit equilibrium conditions. 

It can be noted the large discrepancies between the seismic displacements calculated by the different 

adopted nonlinear approaches for free-field motion estimation that corresponds to each scheme. The 

effects of the TMZ earthquake in terms of wall displacements predicted by the Newmark analyses are 

more disastrous than for STU input motion if the surface motion computed by the equivalent linear 

method and the IM model are used. On the contrary, if the seismic response of the MC material layer 

is adopted, strong damages are registered for STU signal. 

 

6.4 PUSHOVER ANALYSES. 

As described in the previous Chapter 5, two types of pseudostatic analyses can be performed to 

evaluate the seismic threshold coefficients of the embedded diaphragms.  

The first procedure is constituted by a pseudostatic stress-strain analysis in which, starting from the 

deformed configuration after the excavation, the horizontal acceleration ah applied to each node of the 

discrete model is increased until reaching the collapse of the excavation (HAIP, Horizontal 

Acceleration Increasing Procedure). The results can be easily summarized in diagrams in which the 

evolution of maximum horizontal and vertical displacements and of the maximum bending moment 

acting on the wall are related to the increasing seismic level.  

In the second procedure, the seismic loadings are modelled by means of pseudostatic forces acting 

on the diaphragm. In this research, the two shapes of loading (TRD, triangular distribution, and RTD, 

rectangular distribution) described in the previous Chapter were considered and applied on the wall 

after the excavation. The seismic pressures are increased until to the equilibrium condition can not be 

reached in the analysis. As for the HAI procedure, the horizontal seismic coefficient kh can be related 

to the normalized seismic increments of displacements and normalized maximum bending moment. 

The kh values are evaluated by means of the equations ( 5-33 ) and ( 5-34 ) with an iterative trial and 

error procedure for each step of calculation. 

 

6.4.1 Finite element modelling. 

A sketch of the finite element models used in the pushover analyses is plotted in Figure 6-14. They 

are constituted by rectangular domains 80m wide and 16m high with fixed nodes along the 

boundaries. The subsoils are subdivided into 14 layers having the same thicknesses used in the site 

response analyses. Each layer of loose and dense sand was modelled with a MC model characterized 

by the mechanical parameters reported in the Table 6-10 and Table 6-11. 

Soil-wall friction was simulated by adopting an interface element with a Rint parameter equal to: 

φ
δ

=
tan
tan

intR  ( 6-5 ) 

The initial stress generation was executed by the k0-procedure in which the value of k0 was fixed to 

0.5, both for loose and dense sand layers. 

The walls were schematized as linear elastic plates having the properties summarized in Table 6-12. 
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DEPTH (m) E (MPa) ν αR βR φ c (kPa) ψ Rint 

0.00 – 0.50 99.01 0.25 0.567 3.529 x10-4 33° 5x10-4 0° 0.622 

0.50 – 1.00 106.12 0.25 0.549 3.419 x10-4 33° 5x10-4 0° 0.622 

1.00 – 1.50 111.00 0.25 0.531 3.309 x10-4 33° 5x10-4 0° 0.622 

1.50 – 2.00 117.25 0.25 0.517 3.221 x10-4 33° 5x10-4 0° 0.622 

2.00 – 3.00 123.67 0.25 0.503 3.132 x10-4 33° 5x10-4 0° 0.622 

3.00 – 4.00 134.31 0.25 0.478 2.978 x10-4 33° 5x10-4 0° 0.622 

4.00 – 5.00 143.97 0.25 0.460 2.868 x10-4 33° 5x10-4 0° 0.622 

5.00 – 6.00 153.97 0.25 0.443 2.757 x10-4 33° 5x10-4 0° 0.622 

6.00 – 7.00 165.81 0.25 0.425 2.647 x10-4 33° 5x10-4 0° 0.622 

7.00 – 8.00 176.53 0.25 0.407 2.537 x10-4 33° 5x10-4 0° 0.622 

8.00 – 10.00 189.20 0.25 0.390 2.427 x10-4 33° 5x10-4 0° 0.622 

10.00 – 12.00 214.12 0.25 0.372 2.316 x10-4 33° 5x10-4 0° 0.622 

12.00 – 14.00 231.59 0.25 0.354 2.206 x10-4 33° 5x10-4 0° 0.622 

14.00 – 16.00 253.46 0.25 0.336 2.096 x10-4 33° 5x10-4 0° 0.622 
 

Table 6-10. MC model parameters of loose sand layers. 

 

DEPTH (m) E (MPa) ν αR βR φ c (kPa) ψ Rint 

0.00 – 0.50 260.45 0.25 0.729 2.693 x10-4 40° 5x10-4 10° 0.599 

0.50 – 1.00 268.58 0.25 0.706 2.609 x10-4 40° 5x10-4 10° 0.599 

1.00 – 1.50 274.77 0.25 0.683 2.525 x10-4 40° 5x10-4 10° 0.599 

1.50 – 2.00 281.03 0.25 0.665 2.458 x10-4 40° 5x10-4 10° 0.599 

2.00 – 3.00 289.48 0.25 0.647 2.390 x10-4 40° 5x10-4 10° 0.599 

3.00 – 4.00 302.39 0.25 0.615 2.272 x10-4 40° 5x10-4 10° 0.599 

4.00 – 5.00 311.15 0.25 0.592 2.188 x10-4 40° 5x10-4 10° 0.599 

5.00 – 6.00 324.54 0.25 0.569 2.104 x10-4 40° 5x10-4 10° 0.599 

6.00 – 7.00 333.61 0.25 0.547 2.020 x10-4 40° 5x10-4 10° 0.599 

7.00 – 8.00 345.14 0.25 0.524 1.936 x10-4 40° 5x10-4 10° 0.599 

8.00 – 10.00 363.98 0.25 0.501 1.852 x10-4 40° 5x10-4 10° 0.599 

10.00 – 12.00 388.24 0.25 0.478 1.767 x10-4 40° 5x10-4 10° 0.599 

12.00 – 14.00 405.69 0.25 0.456 1.683 x10-4 40° 5x10-4 10° 0.599 

14.00 – 16.00 431.27 0.25 0.433 1.599 x10-4 40° 5x10-4 10° 0.599 
 

Table 6-11. MC model parameters of dense sand layers. 
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Figure 6-14. Sketch of the FE models used in the pushover analyses. 
 

ANALYSIS CODE Thickness, 
s(m) EA (kNm2/m) EI (kNm2/m) w 

(kN/m3/m) ν 

L060TMZ 0.60 18 x 106 5.4 x 105 6.94 0.00 

L100TMZ 1.00 30 x 106 25 x 105 11.56 0.00 

L060STU 0.60 18 x 106 5.4 x 105 6.94 0.00 

L100STU 1.00 30 x 106 25 x 105 11.56 0.00 

D060TMZ 0.60 18 x 106 5.4 x 105 5.79 0.00 

D100TMZ 1.00 30 x 106 25 x 105 9.65 0.00 

D060STU 0.60 18 x 106 5.4 x 105 5.79 0.00 

D100STU 1.00 30 x 106 25 x 105 9.65 0.00 
 

Table 6-12. Elastic properties of plates. 

The excavation process was executed by removing the material clusters in front of the wall. The 

simulation was organized into 5 calculation phases: in the first, the plate and the interface elements 

were activated; from phase 2 to phase 5, the soil layers of 1.00m thick were removed. After of them, 

the pseudostatic analyses were carried out. The numerical calculations were performed with the 

updating of the mesh during the deformation processes because it needs everytime the analysis 

should reach the failure conditions. 

 

6.4.2 Configurations at the end of excavation. 

Because the deformed configuration after the excavation represents the initial stress-strain scheme on 

which the seismic loadings act, it is interesting to analyze the static conditions of the walls after the 

excavations. 

Figure 6-15 and Figure 6-16 plot the normal interface stresses and the bending moments acting on the 

walls embedded in the dry loose and dense sand layers. The numerical results are compared with 

those predicted by the limit equilibrium method (LE). The active and passive earth pressures were 

calculated by the Coulomb and Lancellotta theories accounting for the assigned soil-wall friction angle, 

as described in the Chapter 3. It can be seen the good agreement between the theoretical and the 

numerical normal stresses. While the positions along the walls is well predicted, the values of the 

maximum bending moments is underestimated by the LE method. This is due to the greater normal 
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stresses on active sides related to the different mobilization degrees of the shear strength along the 

interface elements, as shown by the relative shear strength distributions on the walls (red diagrams at 

the left of the interface stresses distributions). 

In static conditions, the stress-strain behaviour of the two walls can be retained the same, both in 

terms of maximum bending moment and earth pressure distributions. 
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Figure 6-15. Interface stresses (a) and bending moment (b) on walls in loose sand at the end of 

excavation. 
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Figure 6-16. Interface stresses (a) and bending moment (b) on walls in dense sand at the end of 

excavation. 
 

Some discrepancies exist on the horizontal displacements of the walls, as reported in Figure 6-17. The 

total kinematical mechanism was divided into a flexural mechanism, that coincides with the elastic line 

of the plates obtained by the double integration of the bending moment distribution, and a rigid 
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mechanism, given by the difference between the total and flexural mechanisms. As expected, the 

displacements of the stiff diaphragm are lower than those of the deformable one, both in loose and 

dense sand. However, it can be recognized that the wall movements are more affected from the soil 

stiffness and strength than the plate properties. 
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Figure 6-17. Horizontal displacements of the walls at the end of excavation: a) loose sand, s = 0.60m; 

b) loose sand, s = 1.00m; c) dense sand, s = 0.60m; d) dense sand, s = 1.00m 
 

In order to show the soil movements near the excavation, in Figure 6-18 was plotted the shading of 

the horizontal displacements estimated at the end of excavation phases for the deformable wall (s = 

0.60m) embedded in the loose sand layer. 

It can be recognized the formation of the active wedge behind the wall for an heigth lower than that 

corresponds to the limit condition. The soil volume involved in the movements extends for 3 times the 

heigth of excavation, h,  on active side, and 2.5 times h on passive side. 
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Figure 6-18. Shading of horizontal displacements at the end of excavation (loose sand, s = 0.60m). 
 

6.4.3 Pseudostatic loadings. 

As described above, there are two pseudostatic procedures to apply the seismic loadings on the walls 

by means of 2D finite element modelling. In the first, HAIP, the horizontal accelerations of the mesh 

nodes were increased till to reach the condition at which the numerical calculation can not advance. 

This condition is assumed as the limit condition for the system. The second procedure consists to 

apply a distributed loading, with a triangular (TRD) or a rectangular (RTD) distribution, as reported in 

Figure 6-19, on the entire length of the wall. The collapse loading corresponds to the value at which 

the analysis can not achieve the static equilibrium. The loading systems can be converted to 

horizontal accelerations by means of equations ( 5-33 ) and ( 5-34 ). 
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pmax
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Figure 6-19. Sketch of the FE models used in the pushover analyses: a) triangular loading 

distribution, TRD; b) rectangular loading distribution, RTD. 
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From Figure 6-20 to Figure 6-22, the seismic capacities of the diaphragms in loose and dense sand 

layers obtained by the three types of pushover analyses are shown, in terms of horizontal and vertical 

displacements and maximum bending moments. The plotted values are referred to the normalized 

seismic increments of the quantities with respect to the static conditions. The limit equilibrium 

capacities are also represented with dashed black lines. 

Referring to the Figure 6-20, it is very interesting to note the perfect agreement between the capacity 

curves given by the HAIP and the TRD procedures for every analyzed systems. The critical seismic 

coefficients kcrit predicted by the pushover analyses are not so different from the limit equilibrium 

solutions, especially for the dense sand that is better modelled by the rigid-perfectly plastic hypothesis 

of the LE method. These values should be interpreted as threshold accelerations. Every time that the 

acceleration near to the ground surface exceeds the limit, the walls accumulate permanent 

displacements. 

The rectangular distribution seems to predict more conservative seismic capacities of the retaining 

system. Then, in the view of the design of a new structure, to take into account the cyclic nature of the 

earthquake loadings, this one may be preferred to the TRD and HAIP. 

Some discrepancies can be observed on the vertical displacements calculated by the different 

procedures. These are principally due to the low capacities of the adopted linearly elastic perfectly 

plastic model to account for the volumetric-distortional coupling of the soil behaviour when the shear 

strains increase. Then, these capacities curves should be intended with the only illustrative aim. 

Another interesting aspect is the evolution of the seismic demand, in terms of the maximum bending 

moment, with the horizontal displacement of the wall. Initially, for low levels of seismic loading, the 

maximum bending moment linearly increase with the movements of the wall. When the seismic 

coefficient achieve the critical value, the diaphragms can move into the soil as rigid body and the 

bending moments can not amplify. This means that the structural design of the RC diaphragms can be 

performed by referring to the limit equilibrium conditions. If the formation of a plastic hinge on the wall 

at a certain depth from the dredge level can be retained more suitable than the generalized collapse of 

the soil-wall system, a hierarchical strength criterion may be applied on the dimensioning of the wall 

section in order to attain the flexural failure of the wall instead that the soil collapse. 

In Figure 6-24 the comparisons between the seismic capacities in terms of horizontal displacements 

predicted by the HAIP, TRD and RTD procedures are shown. The more stiff and heavy walls have a 

worst seismic response for the larger inertia forces related to their masses that affect the limit 

equilibrium conditions, especially for the diaphragms in loose sand. 
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Figure 6-20. Seismic capacities of the diaphragms in terms of normalized horizontal displacements: a) 

loose sand, s = 0.60m; b) loose sand, s = 1.00m; c) dense sand, s = 0.60m; d) dense sand, s = 1.00m 
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Figure 6-21. Seismic capacities of the diaphragms in terms of normalized vertical displacements: a) 

loose sand, s = 0.60m; b) loose sand, s = 1.00m; c) dense sand, s = 0.60m; d) dense sand, s = 1.00m 
 



Chapter 6 – Case study: cantilever diaphragms embedded in dry loose and dense sand layers 

 

Ciro Visone – Performance-Based approach in seismic design of embedded retaining walls 6-26

a) 

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 0.05 0.1 0.15 0.2 0.25

Normalized seismic maximum bending moment, ∆M maxE /γh 3

S
ei

sm
ic

 h
or

iz
on

ta
l c

oe
ffi

ci
en

t, 
k h

TRD
RTD
LE
HAIP

Loose sand
s = 0.60m

 

b) 

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 0.05 0.1 0.15 0.2 0.25 0.3

Normalized seismic maximum bending moment, ∆M maxE /γh 3

S
ei

sm
ic

 h
or

iz
on

ta
l c

oe
ffi

ci
en

t, 
k h

TRD
RTD
HAIP
LE

Loose sand
s = 1.00m

 

 c) 

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 0.1 0.2 0.3 0.4 0.5

Normalized seismic maximum bending moment, ∆M maxE /γh 3

S
ei

sm
ic

 h
or

iz
on

ta
l c

oe
ffi

ci
en

t, 
k h

TRD
RTD
LE
HAIP

Dense sand
s = 0.60m

 

d) 

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 0.1 0.2 0.3 0.4 0.5

Normalized seismic maximum bending moment, ∆M maxE /γh 3

Se
is

m
ic

 h
or

iz
on

ta
l c

oe
ffi

ci
en

t, 
k h

TRD
RTD
LE
HAIP

Dense sand
s = 1.00m

 

Figure 6-22. Seismic capacities of the diaphragms in terms of normalized maximum bending moment: 

a) loose sand, s = 0.60m; b) loose sand, s = 1.00m; c) dense sand, s = 0.60m; d) dense sand, s = 

1.00m 
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Figure 6-23. Development of the maximum bending moments with the horizontal displacements: a) 

loose sand, s = 0.60m; b) loose sand, s = 1.00m; c) dense sand, s = 0.60m; d) dense sand, s = 1.00m 
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Figure 6-24. Comparisons between the seismic behaviours of the two walls predicted by the pushover 

analyses: a) HAIP; b) TRD; c) RTD. 
 

6.5 DYNAMIC ANALYSES. 

The dynamic analyses represent the more sophisticated instrument to predict the seismic response of 

any type of geotechnical system. This type of analysis is based on soil-structure interaction, generally 

using FE or FD methods. The effects of earthquake are represented by a set of time histories of 

seismic motion at the base of the analysis domain chosen for the soil-structure system.  

The computational domain of interest adopted in the analyses is the same of the pushover analyses. 

To minimize the spurious effects of the reflected stress waves on the lateral boundaries, two 

rectangular domains were placed at the sides of the domain. A sketch of the FE models used for the 
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dynamic analyses is plotted in Figure 6-25. Only at the base of the central region the complete 

acceleration time histories were applied. Under the lateral domains the accelerograms were tapered to 

zero near to the lateral boundaries. 

 

200.00m 200.00m

B = 30H = 480.00m

H

80.00m

 
Figure 6-25. Sketch of the FE models used in the dynamic analyses. 
 

The subsoil profiles in the lateral zones are the same of the central one, while the mesh is coarser to 

reduce the calculation time. 

Material and model parameters, plate and interface elements are the same of the pushover analyses 

reported in the previous Table 6-10, Table 6-11 and Table 6-12. The soil behaviour was modelled as 

linear elastic, adopting the initial stiffness and damping parameters, and perfectly plastic, 

characterized by the strength parameters determined by the laboratory tests and recalled in Table 3-1, 

with a MC model. 

The dynamic analyses of the system were performed by conducting 14 calculation phases for TMZ-

270 seismic motion (6 static and 8 dynamic analyses) and 22 for STU-270 input signal (6 static and 16 

dynamic analyses). In the first phase, the plate and the interface elements were activated. From phase 

2 to phase 5 the excavation was executed de-activating the clusters behind the wall. Stage 7 was 

devoted to activate dynamic prescribed accelerations at the base of the model. In the other phases the 

earthquake was simulated. The input signals were divided into 8 and 16 parts, each one composed by 

1000 registration points to avoid loss of information due to some limitations of the employed computer 

program. 

Having used the same meshes in the central regions near to the walls, the configurations at the end of 

excavations are those discussed in the previous subsection. Then, only the numerical results of the 

dynamic phases are presented in the following. 

 

6.5.1 Maximum acceleration profiles. 

Figure 6-26 shows the maximum acceleration profiles computed by the dynamic analyses along the 

vertical of the walls (central line of the meshes), together with the free field motions presented in the 

previous subsection for the MC model. The presence of the excavation induces an amplification of the 

accelerations near to the surface, especially for stiffer walls. From 0 to 8 meters, the shape modes of 

the cantilever beam can be recognized. 

 

6.5.2 Displacement time histories. 

In Figure 6-27, the time histories of the seismic horizontal displacements of the top of walls relative to 

the bedrock and normalized with respect to the height of excavation are plotted. As it can be seen, for 

the cases of the loose sand, the stiffer and more weight walls have accumulated larger displacements.  
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Figure 6-26. Comparisons between the maximum acceleration profiles of the free field motions and 

the dynamic interactions with the walls: a) Loose sand, TMZ-270; b) Loose sand STU-270; c) Dense 

sand, TMZ-270; d) Dense sand, STU-270. 
 

This is due to the higher inertia forces associated to the greater wall masses that act on the soil 

passive resistance. The effect is slighter for the diaphragms in dense sand for which the differences 

between the wall material and soil unit weight. 

The calculated time histories of the seismic horizontal displacements at the top of walls encourage the 

use of a Newmark sliding block approach. Figure 6-28 and Figure 6-29 show the good agreement 

between the results of the dynamic interactions and the Newmark analyses conducted by assuming 

critical accelerations that give the same ux/h of the complete analyses and using the accelerograms 

computed in the complete analyses at the top of diaphragms as input motions. 
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Figure 6-27. Time histories  of the normalized horizontal displacements at the top of the walls: a) 

Loose sand, TMZ—270; b) Loose sand, STU-270; c) Dense sand, TMZ-270; Dense sand, STU-270. 
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Figure 6-28. Comparisons between the normalized horizontal displacements at the top of the walls in 

loose sand predicted by Newmark and dynamic interaction analyses: a) L060TMZ; b) L060STU; c) 

L100TMZ; L100STU. 
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Figure 6-29. Comparisons between the normalized horizontal displacements at the top of the walls in 

dense sand predicted by Newmark and dynamic interaction analyses: a) D060TMZ; b) D060STU; c) 

D100TMZ; D100STU. 
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Some differences can be noted for the STU-270 input motion, specially for dense sand. The reason is 

that the critical acceleration from which the wall starts to move varies during the earthquakes. In 

particular, the lower values of the displacements given by the Newmark simplified analyses testimony 

the increase of kcrit  with the accumulated displacements of the wall. 

 

6.5.3 Configurations at the end of the earthquakes. 

At the end of the earthquakes, the walls are subjected to the normal interface stresses reported in 

Figure 6-30, together with those predicted by the M-O and Lancellotta (2007) methods, for active and 

passive limit equilibrium, respectively, and for a seismic horizontal coefficient kh = 0.262. 
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Figure 6-30. Normal and net interface stresses acting on the walls in loose (a, b) and dense (c, d) at 

the end of earthquakes. 
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An interesting result is the light influence of the input motion and the diaphragm thickness on soil 

pressure distributions, both for active and passive sides. From the net interface stresses along the 

wall, it can be seen the positions of the zero net pressure points near to the bottom of the walls. 

Independently from the soil properties, the input motions and the diaphragm stiffness, every analyses 

give a zero net pressure point placed at a distance z’ = 0.125 d from the bottom.  

The theoretical pressure distributions are quite different from those numerically determined. Figure 

6-31 shows the earth pressure coefficients in front and behind the walls obtained by dividing the 

normal interface stresses, σn, for the lithostatic vertical stresses γ z. The different mobilization degrees 

of the shear strength along the walls allow non-uniform earth pressure coefficients. At the active side 

near to the surface level, the coefficients are greater than the theoretical but immediately decrease till 

to the static value, above of which slightly increase.  
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Figure 6-31. Numerical active and passive earth pressure coefficients for walls in loose (a, b) and 

dense (c, d) sand at the end of earthquakes. 



Chapter 6 – Case study: cantilever diaphragms embedded in dry loose and dense sand layers 

 

Ciro Visone – Performance-Based approach in seismic design of embedded retaining walls 6-36

The passive coefficients, instead, increase from the dredge level and reach a maximum at a depth of 

0.375 d from the bottom of the diaphragms. Above this point, their values reduces. 

In Figure 6-32, the shear forces and the bending moments acting on the walls at the end of the 

earthquakes are plotted. As the soil pressure distributions have shown, the input motions and the 

diaphragm thickness do not affect the results that depends only on the soil shear strength. An 

interesting aspect is the greater maximum bending moment of the walls embedded in the dense sand 

than those placed in the loose layers. 

The bending moment predicted by the limit equilibrium methods for a horizontal seismic coefficient kh 

= 0.262 and a soil-wall friction angle δ = 2/3 φ are lower than the numerical, particularly in the cases of 

dense sand for the high values of φ. 
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Figure 6-32. Shear forces and bending moments acting on walls in loose (a, b) and dense (c, d) sand 

at the end of earthquakes. 
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Instead, Figure 6-33 plots the horizontal displacements of the diaphragms at the end of the 

earthquakes. The small displacements related to the light curvatures of the deformed configurations 

respect to the total values highlight the rigid nature of the kinematical mechanism of the walls during 

the shaking that is essentially constituted by a rotation around a point placed at a depth of about 0.97d 

from the dredge level. 
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Figure 6-33. Horizontal displacements of the walls in loose (a) and dense (b) sand at the end of 

earthquakes. 
 

Finally, in Table 6-13 the seismic performances of the walls predicted by the complete dynamic 

analyses are summarized in terms of seismic increments of the normalized maximum bending 

moment and normalized horizontal displacements. In the same table, the seismic coefficient kh of the 

equivalent rigid blocks obtained by the Newmark back-analyses are also reported. 

 

ANALYSIS CODE kh ux/h ∆Mmax/γh3 

L060TMZ 0.203 6.50% 0.242 

L100TMZ 0.188 6.93% 0.256 

L060STU 0.266 10.75% 0.244 

L100STU 0.257 11.15% 0.264 

D060TMZ 0.359 2.53% 0.311 

D100TMZ 0.368 2.43% 0.316 

D060STU 0.359 3.68% 0.315 

D100STU 0.362 3.63% 0.351 
 

Table 6-13. Seismic performances of the walls predicted by the dynamic interaction analyses. 
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6.5.4 Configurations at the instants of maximum bending moment. 

From Figure 6-34 to Figure 6-39, the configurations of the walls at the instants of the maximum 

bending moment are shown. The seismic earth coefficients behind the diaphragms are greater than 

the theoretical active values upon the excavation level while their values are lower than the static 

below. The passive resistance is fully mobilized above a depth of about 0.625d and the earth 

coefficients reach similar values both for loose and dense sand that differ from the theoretical 

predictions. 

The depth of the zero net pressure points have the same values of the final positions and does not 

depend on the seismic motion and the wall thickness. The maximum bending moment is not affected 

from the input motion while slightly increases with the wall thickness, as reported in Figure 6-36. 
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Figure 6-34. Normal and net interface stresses acting on the walls in loose (a, b) and dense (c, d) at 

the instants of maximum bending moment. 
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Figure 6-35. Numerical active and passive earth pressure coefficients for walls in loose (a, b) and 

dense (c, d) sand at the instants of maximum bending moment. 
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Figure 6-36. Shear forces and bending moments acting on walls in loose (a, b) and dense (c, d) sand 

at the instants of maximum bending moment. 
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Figure 6-37. Horizontal displacements of the walls in loose (a) and dense (b) sand at the instants of 

maximum bending moment. 
 

Figure 6-38 and Figure 6-39 show the time instants in which the maximum bending moments are 

achieved during the analyses in relation to the horizontal displacements of the top of the walls. It 

seems that when the diaphragms reach the maximum velocity, the earth pressures induce the greater 

bending moment. 
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Figure 6-38. Instants of maximum bending moment in relation to the earthquake-induced 

displacements of walls in loose sand: a) L060TMZ; b) L060STU; c) L100TMZ; L100STU. 
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Figure 6-39. Instants of maximum bending moment in relation to the earthquake-induced 

displacements of walls in dense sand: a) D060TMZ; b) D060STU; c) D100TMZ; D100STU. 
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6.6 COMPARISONS BETWEEN THE RESULTS OF DIFFERENT 

ANALYSES. 

Table 6-14 summarizes the results of the various type of analyses performed on the examined 

schemes. 

Assuming the dynamic analyses as reference solution, the first difficulty encountered in the simplified 

methods is the definition of the seismic horizontal coefficient associated to each earthquake. In fact, 

the same signal, applied to the base of the two soil columns of loose and dense sand, belonging to the 

same soil category, produces different seismic amplification, both for dynamic interaction and free field 

conditions. Furthermore, the effects on walls in terms of displacements and stresses are quite 

different. 

The common simplified analyses of the pseudostatic limit equilibrium and the use of empirical formulas 

do not give very dissimilar displacements but underpredict the maximum bending moments.  

Accurate displacements are furnished for diaphragms in dense sand from the simplified dynamic 

analyses. For loose sand, instead, the predicted values are too much large.  

The pushover analyses allow completely describing the seismic performances of each wall. The 

difficulty consists only on the definition of the expected kh for the seismic demand of the site and 

subsoil conditions of the structure. This type of analysis is also able to account for the effects of wall 

properties on the seismic response. 

Remembering the hierarchical resistance concepts exposed in the Chapter 5, the limit equilibrium 

approach for the evaluation of the critical acceleration of the retaining system in the simplified 

analyses is a good method to control the collapse of the retaining system if the formation of a plastic 

hinge in the wall below the excavation level can be preferred to the failure of the structure for 

exceeding of the soil passive strength. 
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kh ux/h ∆Mmax/γh3 ANALYSIS 
CODE SA SDA PA DA SA SDA PA DA SA SDA PA DA 

L060TMZ 0.260 0.260 0.260 0.203 9.55% 14.58% - 6.50% 0.074 0.093 - 0.242 

L060STU 0.264 0.264 0.264 0.266 9.70% 17.23% - 10.75% 0.074 0.100 - 0.244 

L100TMZ 0.260 0.260 0.260 0.188 9.55% 9.75% - 6.93% 0.074 0.093 - 0.256 

L100STU 0.264 0.264 0.264 0.257 9.70% 12.33% - 11.15% 0.074 0.100 - 0.264 

D060TMZ 0.260 0.260 0.260 0.359 4.68% 2.55% 0.40% 2.53% 0.146 0.159 0.228 0.311 

D060STU 0.264 0.264 0.264 0.359 4.75% 3.30% 0.40% 3.68% 0.146 0.178 0.228 0.315 

D100TMZ 0.260 0.260 0.260 0.368 4.68% 2.93% 0.34% 2.43% 0.146 0.159 0.258 0.316 

D100STU 0.264 0.264 0.264 0.362 4.75% 4.13% 0.34% 3.63% 0.146 0.178 0.258 0.351 
 

SA = Simplified analyses 

SDA = Simplified dynamic analyses 

PA = Pushover analyses (referred to RTD seismic earth pressure distributions) 

DA = Dynamic analyses 

 

Table 6-14. Comparisons between the seismic performances of the walls predicted by the different analyses. 
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7 CONCLUSIONS AND FUTURE DEVELOPMENTS. 

The increasing use of the underground spaces and the last seismic events in the urban areas have 

driven many researchers of different countries to deepen the knowledge on the dynamic behaviour of 

the structure embedded in the subsoil. 

Different contributes were given by the recent Italian and European building codes on these topics. 

The present PhD thesis has found its main role in the application of the performance based approach 

in the seismic design of this type of structures. 

The most widespread procedure based on the extension of the limit equilibrium method to the 

pseudostatic conditions was analyzed and discussed. The effectiveness of the Mononobe (1929) and 

Okabe (1926) and Lancellotta (2007) theories for the estimation of the seismic active and passive 

earth pressure coefficients was shown. Some charts for the preliminary design of the depth of 

embedment and the maximum bending moment for walls in dry homogeneous granular materials were 

developed by using the Blum method. To predict the earthquake-induced displacements of the walls, 

the empirical relationships proposed by Uwabe (1983) for anchored bulkheads embedded in non-

liquefiable sites were considered also for cantilever walls. However, their capabilities should be tested 

on a greater number of data deriving from advanced numerical analyses, model and full scale tests. 

Another design method, consisting in a pseudostatic procedure to define the critical acceleration of the 

retaining system and Newmark sliding block analyses for the calculation of the seismic displacements, 

was highlighted. The approach can be identified such as simplified dynamic analysis but its application 

presents some difficulties and uncertainties for flexible walls, as recognized in the literature (Callisto, 

2006). 

An innovative design method to completely predict the seismic performances of a retaining system 

was proposed in this thesis. The procedure can be included in the framework of the "pushover 

analyses" and can be accomplished by conducting FE or FD pseudostatic analyses. It consists to 

apply the seismic loading as an increasing pressure distribution that can be expressed as a seismic 

horizontal coefficient by means of the normalization with respect to the weight of the active soil wedge 

and the wall. The performances of the system can be described by capacity curves in terms of 

maximum horizontal displacements, maximum settlements of the backfill, maximum bending moment, 

etc. The method requires more validations by means of accurate analyses with appropriate soil 

constitutive models, seismic in-situ monitoring of full-scale structures and dynamic centrifuge 

modelling. However, the good agreement between the predictions of the analyses presented in the 

Chapter 6 encourages deepening the application of the pushover analyses to the embedded walls that 

is not a consolidated procedures for the seismic design of geotechnical systems.  

The most accurate tool for the estimation of the dynamic behaviour of the constructions interacting 

with the soil is constituted by the numerical simulations. Their use requires advanced knowledge in 

numerical calculations, a proper soil constitutive model, an adequate soil characterization by means of 

in situ and laboratory tests, a proper definition of the seismic input when dynamic analyses should be 

carried out. In the Annex B, the problem of the calibration of the FE model for dynamic analyses in 

geotechnical earthquake engineering by means of a commercial code was illustrated. The various 

sources of damping were recognized and the procedure to rightly estimate the damping coefficients, 
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both numerical and material, was presented. In order to minimize the spurious effects of the reflected 

stress waves on the lateral boundaries of the discrete models, an useful configuration of the boundary 

conditions was accomplished by testing the seismic response of the models crossed by vertical shear 

waves. 

An example of application of the different procedures for the evaluation of the seismic performances of 

free cantilever walls embedded in dry loose and dense sand was shown in the Chapter 6. The 

predictions confirm the difficulties related to the application of the simplified methods, especially in the 

definition of the equivalent seismic coefficient for a given earthquake. 

The material properties for the soils was chosen on the basis of the results of laboratory tests 

conducted on samples of Leighton Buzzard sand 100/170 (Fraction E) presented in the Annex A. The 

experimental data have allowed defining the mechanical behaviour of the sand under different stress 

paths and loading conditions. The future developments of this research line is the use of advanced 

constitutive models to simulate the behaviour of the sand in the controlled laboratory tests to catch its 

main mechanical aspects. The material was chosen in the contest of the research program ReLUIS 

presented in the Chapter 1 for the centrifuge model tests of retaining walls. 
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ANNEX A MECHANICAL BEHAVIOUR OF LEIGHTON 
BUZZARD SAND 100/170 BY MEANS OF LABORATORY 
TESTS. 

The interpretation of the centrifuge data registered during the seismic excitations on embedded wall 

models requires an advanced characterization of the sand behaviour. In this section, the results of a 

series of triaxial and torsional shear tests on dry and saturated sand specimens prepared by means of 

different techniques are described. The experimental study was conducted at the Laboratory of Soil 

Dynamics (DYNALAB) of the Hydraulic, Geotechnical and Environmental Engineering Department 

(D.I.G.A. – Dipartimento di Ingegneria Idraulica, Geotecnica ed Ambientale) at University of Napoli 

Federico II. 

 

A.1 PHYSICAL PROPERTIES OF SAND. 

The Leighton Buzzard sand (denoted as LBS in the following) used in the centrifuge modelling is a 

commercial sand, and according to the British Standard, the 100/170 sand passes through the No. 

100 British Standard sieve (0.15mm) and is retained on the No. 170 sieve (0.09mm), being in the 

category of fine sands. Thus, the nominal grain size of the sand can be taken as 0.12mm, which is 

simply the average of the maximum and minimum grain sizes. However, these values are merely 

estimate and particle size distribution tests are often done in order to establish the distribution of sizes 

under more controlled conditions. 

The particle size distribution for this sand has been determined using the dry sieve method and is 

shown in Figure A-1. The grain size of D50 is 0.14mm, where D50 is the grain size diameter at which 

50% of the soil weight is finer. The uniformity of a soil is often expressed by a uniformity coefficient Uc, 

which is defined as the ratio of D60 and D10. For LBS, these values are 0.15mm and 0.095mm, 

respectively, giving Uc = D60 / D10 = 1.58, thus classifying the sand as a uniform sand. 

LBS is a quartz based sand and should therefore have a specific gravity Gs similar to that of a silica 

sand, which is known to be 2.65. Mak (1984) also conducted specific gravity tests according to the 

British Standard and obtained the same results, thereby confirming the value of Gs = 2.65 for the 

specific gravity of LBS. 

The minimum void ratio emin was obtained by filling a 4-inches diameter compaction cylinder (Proctor's 

type) with dry sand and vibrating it in 3 layers on a vibrating table, at an amplitude of 0.95mm, a 

frequency of 50Hz and for a duration of 15 minutes. The density and the voids ratio of the specimen 

were then determined from the overall mass and volume resulting in an emin value of 0.613 Tan (1990). 

The maximum void ratio emax was obtained using the quick tilt test in which 1 kg of sand was placed in 

a 2 litres measuring cylinder with a rubber stopper, shaken several times, turned upside down and 

then very quickly over again. The volume was then read and the density and void ratio calculated 

giving emax = 1.014 (Tan, 1990). 
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Figure A-1. Particle size distribution for Leighton Buzzard sand 100/170 (modified from Tan, 1990). 
 

Permeability tests have been carried out (Jeyatharan, 1991) using the constant head permeameter 

and the average permeability of specimens at void ratios of approximately 0.72 to de-aired water was 

found to be 0.98x10-4 m/s. 

Figure A-2 shows the gravimetric properties of the sand for different densities. 
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Figure A-2. Unit weight of LBS for different densities: a) dry conditions; b) saturated conditions. 
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The relationships between the void ratio e, the relative density Dr, the specific weight of the grains γs = 

Gs·g (g is gravity acceleration = 9.80665 m/s2), the dry γ and the saturated γsat  unit weight used in the 

diagrams are the following: 
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A.2 EXPERIMENTAL PROGRAM. 

In order to adequately characterize the sand behaviour both in terms of stiffness and strength for 

various relative densities and different loading paths, a series of triaxial and torsional shear tests were 

programmed. Table A-1 shows a summary of the experimental program.  

Four undrained triaxial compressions and extensions were conducted on relatively loose air-pluviated 

specimens by using the TX apparatus to clearly highlight the undrained behaviour of the material (i.e. 

volumetric instability, phase transformation, ultimate state conditions). 

Moreover, to evaluate the strength characteristics at peak conditions, drained triaxial tests were 

performed on medium to dense sand specimens in the B&W cell. The samples are prepared by the 

freezing procedure described in the next section. 

Finally, resonant column and cyclic torsional shear tests were carried out on dry air-pluviated 

specimens, which were prepared with different relative densities. The stiffness and the damping 

parameters for low and medium strain levels are measured. The last test (RCTS400b) was realized 

with the aim to show the loading rate effects on initial values of the shear modulus, G0, and damping 

ratio, D0. 
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TEST 
CODE APPARATUS PREPARATION 

METHOD 
Initial Relative 

Density Dr 
Pore Fluid COMPRESSION SHEAR 

UTC200 TX AP 29.0% Water 30 to 200 kPa UTC 
UTC400 TX AP 31.4% Water 30 to 400 kPa UTC 
UTE200 TX AP 28.1% Water 30 to 200 kPa UTE 
UTE400 TX AP 29.5% Water 30 to 400 kPa UTE 
DTC100 B&W FR 80.7% Water 30 to 100 kPa DTC 
DTC200 B&W FR 70.2% Water 30 to 200 kPa DTC 
DTE100 B&W FR 53.9% Water 30 to 100 kPa DTE 
DTE200 B&W FR 52.7% Water 30 to 200 kPa DTE 

DTCp'100 B&W FR 76.0% Water 30 to 100 kPa DTCp' 
DTCp'200 B&W FR 77.1% Water 30 to 200 kPa DTCp' 
DTEp'100 B&W FR 79.2% Water 30 to 100 kPa DTEp' 
DTEp'200 B&W FR 63.3% Water 30 to 200 kPa DTEp' 
RCTS100 THOR AP 47.1% Air 30 to 100 kPa RCTS 
RCTS200 THOR AP 52.4% Air 30 to 200 kPa RCTS 
RCTS400 THOR AP 71.3% Air 30 to 400 kPa RCTS 
RCTS400b THOR AP 57.8% Air 30 to 400 kPa RCTS 

 

Table A-1. Experimental program. 

 

 

 

 

 

APPARATUSES. 

TX = Triaxial apparatus developed at University of Tokyo 

(Tatsuoka et al., 1994; Santucci de Magistris et al., 1999). 

B&W = Bishop & Wesley-type stress path triaxial cell 

(Bishop & Wesley, 1975; Santucci de Magistris, 1992; 

Aversa & Vinale, 1995) 

THOR = Torsional High Output Rig – Resonant Column 

(RC) and Torsional Shear (TS) Apparatus (D'Onofrio, 1996) 

PREPARATION 

METHODS. 

AP = Air Pluviation 

FR = Freezing 

SHEAR PHASES. 

UTC = Undrained Triaxial Compression 

UTE = Undrained Triaxial Extension 

DTC = Drained Triaxial Compression 

DTE = Drained Triaxial Extension 

DTCp' = Drained Triaxial Compression with constant effective mean 

stress 

DTEp' = Drained Triaxial Extension with constant effective mean stress 

RCTS = alternated series of Resonant Column and cyclic Torsional 

Shear tests with increasing loading magnitude 

COMPRESSION. 

All compression 

tests are isotropic. 
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A.3 SAMPLES PREPARATION AND TESTING PROCEDURES. 

Different kinds of procedure are used for the preparation of samples of sand for laboratory testing. The 

basic requirements for all the methods are firstly to obtain homogeneous samples with uniform 

distribution of void ratio, and secondly to be able to prepare samples of the lowest possible density, to 

cover a wide range of density in samples reconstituted by an identical method. Different methods of 

sample reconstitution have been known to create different fabrics, thereby yielding different responses 

to load application. 

In this experimental campaign, two procedures were used: Air-Pluviation (AP) method (Mulilis et al., 

1977; Tatsuoka et al., 1986), for loose to medium dense specimens, and Freezing (FR) method, to 

prepare dense samples.  

In the first method, the dry sand is discharged vertically in air from a nozzle with standard dimensions 

(a nozzle with 15x2mm rectangular cross-section was used in this experimentation) into the forming 

mould by rotating the apparatus with a constant rate. The AP method is known to produce dilative 

samples (Ishihara, 1993). However, their behaviour depends on the height of fall during the 

preparation and on the followed stress-path (Yoshimine et al., 1998).  

Figure A-3 shows the densities obtained by fall tests on LB sand for two specimen dimensions. 
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Figure A-3. Experimental densities of dry LB sand specimens for different heights of fall: a) samples 

36x72mm for RCTS tests; b) samples 50x100mm for UT tests. 
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It can be seen that the dimensions of the mould do not affect the reached density of the specimen, 

while it increase with the height of fall.  

The second is the Freezing (FR) method, which is largely used for the in-situ sampling in granular 

material subsoils. In the laboratory application of this procedure, the dry sand was putted in a mould 

filled with distilled water. The mould was simply made with an overhead transparent folded to make a 

cylinder having an inner diameter equal to 38mm and an height of around 100mm. The lower base of 

the mould was closed with a cap and then the soil was gently poured with a teaspoon. Then the mould 

with the saturated soil was frozen at -30°C. Before starting the mechanical test, the two bases were 

trimmed to have a 76mm high specimen that was placed in the triaxial cell, after removing the folded 

overhead. Finally, the unfreezing of specimen was waited, a backpressure of 250 kPa was applied 

and, then, the isotropic compression was initialized.  

During the unfreezing process, the void ratio e of the specimen changes slightly its value, as shown by 

the axial and volumetric strain measures. The volume changes ∆Vw of the pore water due to the 

temperature variations can be estimated by means of the relationship 

V
e

eV
w

ice
w +








−

ρ
ρ

=∆
1

1  ( A-4 ) 

where ρice and ρw are the mass density of the ice and water, and V is the total volume of the specimen. 

The assumed values for ρice and ρw are 0.917 and 1.000 g/cm3, respectively. The volume changes 

∆Vm measured by the double bellofram volume gauge are not equal to ∆Vw. The difference between 

the two value is the volume change ∆Vun (= ∆Vm – ∆Vw) of the specimen due to a rearrangement of 

the sand particles during the unfreezing process. Assuming that this volumetric deformation is 

isotropic, the measured axial strain εa is the third part of ∆Vun . Then, the void ratio values of the 

specimens tested into the B&W cell at the start of the isotropic compression are corrected by 

considering this volumetric deformation. 

The testing procedure adopted in the undrained triaxial tests with air-pluviated specimens can be 

summarized as follows: 

• Prepare two filter paper disks with the specimen diameter, to avoid the entering of the fine 

components of the sand into the pore hydraulic system, and place one on the pedestal and 

securing it with adhesive tape 

• Putting the membrane on the pedestal and securing it by lattice lace 

• Assembling the split mould on the pedestal and stretch the membrane against the mould by 

vacuum 

• Fall the sand from the nozzle into the forming mould and level carefully the top of the 

specimen 

• Put the second disk of filter paper on the top of the specimen 

• Connect carefully the cap and the specimen by reading the load cell signal to guarantee the 

good link 

• Sealing the top cap with the membrane and the lattice lace 

• Apply a pore vacuum of 20 kPa to supply an initial effective stress sufficient to support the 

assembly 
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• Remove the mould 

• Measure the sample dimensions 

• Assemble and fill the cell with water 

• Adjust the axial strain transducers (Gap sensor and LVDT) 

• Apply a cell pressure of 20 kPa reducing in the same time the pore vacuum to have a constant 

effective mean stress acting on the specimen 

• Start with the flushing procedure to saturate the specimen. 

The saturation procedure used in these experiments is constituted by a combination of vacuuming, 

flushing with distilled water, time lag and back pressurization (250 kPa) in a procedure called “Dry 

Setting Method” (Ampadu and Tatsuoka, 1989). 

For dry specimens tested with the THOR apparatus, the preparation technique is the same of that 

previously exposed for undrained tests till to the saturation process.  

 

A.4 STIFFNESS OF SAND. 

During the RCTS and UT tests, the stiffness properties of sand were investigated. In this section the 

results are shown. 

It should be underlined that the configuration of the THOR apparatus for tests on dry sand does not 

permit the measurement of the volume changes of specimen. To provide these information, the 

volumetric strains during the isotropic compressions were assumed isotropic. The radial strain εr was 

taken equal to the axial strain εa measured by means of LVDT. During the torsional shear phases, the 

radial strain was fixed to be zero and, then, the volumetric strains are equal to the axial strains. 

Another aspect should be highlighted on the elaboration of the experimental measurements deriving 

from cyclic torsional shear tests. The measured stress-strain loops at low strain levels (γ < 10-3%) 

were reconstructed by interpolating the stress τ(t) and strain γ(t) time histories by means of sinusoidal 

laws and taking the data calculated from the elaboration. This allows avoiding the data scattering due 

to the electrical noises of the acquired signals. The stiffness parameters at intermediate strain levels 

(10-3% < γ < 10-2%) were defined as the mean values registered during the loading cycles and, finally, 

at high strain levels (γ > 10-2%), the data were referred to the first cycle. 

 

A.4.1 Evolution of elastic properties with mean effective stress. 

During the isotropic compressions of the RCTS specimens, resonant column tests at low strains were 

performed to describe the evolution of the elastic stiffness, both in terms of initial shear modulus G0 

and the shear wave velocity VS, and damping properties of sand with the mean effective stress p'. The 

measured values are plotted in Figure A-4. The damping ratios were evaluated by the resonance 

factor method. It can be seen the larger dispersion of the shear modulus data than the shear wave 

velocity. This is due to the effect of the different relative densities of the specimens on G0 and VS. 

Remembering the following relationship for an elastic medium: 
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ρ
= 0G

VS  ( A-5 ) 

where ρ is the mass density of the material, it can be explained the fact that different relative densities 

have lower effects on VS-values than on G0-values.  
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Figure A-4. Evolution of elastic properties of LB sand during isotropic compressions: a) initial shear 

modulus; b) shear wave velocity; c) initial damping ratio. 
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Analytical relationships proposed in the literature to describe the evolution of the initial shear modulus 

G0 with mean effective stress p' taking into account the current state of density through the void ratio 

e, have the following form: 

( )eF
p
pSG

n

a








=

'
0  ( A-6 ) 

where pa is the atmospheric pressure, F(e) is a void ratio function, S and n are two coefficients that 

depends on the material. Several expressions were also proposed for F(e). For clean sands (Iwasaki 

et al., 1977) 

( ) ( )
e
eeF

+
−

=
1
17.2 2

 ( A-7 ) 

Figure A-5 shows the evolution of the normalized initial shear modulus G0/F(e) with the mean effective 

stress.  
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Figure A-5. Evolution of the normalized initial shear modulus with mean effective stress. 
 

To establish a direct relation between the shear wave velocity and the relative density of the sand, the 

VS-values at p' = 100 kPa measured during the tests were correlated to the initial relative density of 

specimens. In Figure A-6 the experimental points and a simple linear interpolation to estimate the 

reference value VSref at p' = 100 kPa for a given initial relative density are reported. 

The proposed VSref (Dr0) law is 

( ) 07.984.229 rSref DsmV ⋅+=  ( A-8 ) 

The shear wave velocity laboratory measurements during isotropic compressions are well-described 

by the following type of relationship: 

( )[ ] 5.0''1 refSrefS ppaVV −+=  ( A-9 ) 

in which VSref is the VS value at p' = p'ref = 100 kPa and a is an empirical coefficient that takes into 

account the effect of the initial relative density on the evolution of the stiffness with mean effective 

stress. The experimental values of a obtained by the tests are plotted in Figure A-7 for the various 

values of the initial relative density. The small number of points and the scattering of data do not allow 

to provide quantitative information.  
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Figure A-6. Effects of initial relative density on shear wave velocity. 
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Figure A-7. Effects of initial relative density on the evolution of VS with p'. 
 

Qualitatively, the data confirm the smaller effect on the VS increment of the higher values of initial 

relative density.  

In order to quantify this effect, the following linear relationship can be adopted: 

0004.00062.0 rDa −=  ( A-10 ) 

Then, for a given LB sand layer with a constant relative density, the shear wave velocity evolution with 

p' can be easily estimated by means of the equations ( A-8 ) to ( A-10 ). 

It should be noted that the data previously presented are referred to an isotropic stress state. To 

traduce these VS(p') laws in shear wave velocity profiles VS(z), the anisotropy effects on the soil 

stiffness should be neglected. Accepting this assumption, the following analytical relationships can be 

used to define the soil stiffness profiles of homogeneous LB sandy layer for different initial relative 

density. 
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where k0 is the earth pressure coefficient at rest, γ is the unit weight of sand, VSref and a can be 

estimated by means of equations ( A-8 ) and ( A-10 ), and 

021
3'

k
p

z ref
ref +γ

=  ( A-12 ) 

The dependence of k0 on relative density of sands is not so clear as for the cohesive materials. 

Jamiolkowski et al. (1985) report the k0-values of different sand specimens measured in calibration 

camera at the end of the consolidation phase. The results are enough scattered but show a slight 

reduction of k0 when Dr increases. However, for relative densities comprises between the range 

20÷80%, k0 can be assumed equal to 0.5. 

The empirical relationships proposed in the literature to describe the evolution of the initial damping 

ratio D0 with the mean effective stress p' have the following form: 

n
ref pDD −⋅= '00  ( A-13 ) 

where D0ref and n are two coefficients that should be determined with advanced laboratory tests (e.g., 

resonant column tests). This analytical forms conduct to high values of initial damping ratio for low 

values of p'. In the view to define initial damping ratio profiles D0(z), the laboratory data obtained on 

the LB sand, were interpolated with the following expressions: 
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D0ref represents the half-value of the initial damping ratio near to the surface, n expresses the 

heterogeneity of the layer and p'ref = 100 kPa is the reference pressure. This type of relationship allows 

predicting more reasonable D0-values for the shallow depths of LB sandy deposits. 

The experimental data interpolation and the coefficients D0ref and n are shown Figure A-8 

0.00%

0.50%

1.00%

1.50%

2.00%

2.50%

3.00%

3.50%

4.00%

4.50%

5.00%

0 50 100 150 200 250 300 350 400 450

Mean effective stress, p' (kPa)

In
iti

al
 d

am
pi

ng
 ra

tio
, D

0

RCTS100
RCTS200
RCTS400
RCTS400b
Interpolation

D0 = D0ref (1 + exp(-n p'/p'ref))
D0ref = 0.008

n = 1.2

 
Figure A-8. Analytical interpolation of the evolution of initial damping ratio with mean effective stress. 
 

The initial damping ratio profiles of sandy layer characterized by a uniform relative density can be then 

described by means of  ( A-14 ) assuming D0ref = 0.008 and n = 1.2. 
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A.4.2 Effects of loading rate on elastic shear modulus and damping 
ratio. 

The test RCTS400b was devoted to investigate the effect of the frequency of the applied loads on the 

elastic properties of LB sand. Twelve cyclic torsional shear tests with six different frequencies and two 

fixed amplitudes were performed on the sand specimen. The results are reported in Figure A-9. 
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Figure A-9. Effects of loading frequency on elastic properties of LB sand: a) initial shear modulus; b) 

initial damping ratio. 
 

The data were assembled according to the average distortional strain levels induced by the constant 

loading amplitudes. As expected, the shear modulus slightly increases with the frequency while less 

clear is the influence of the loading rate on the damping ratio. 
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A.4.3 Decay curves of shear modulus and damping ratio. 

After the isotropic compressions, the tests RCTS100, RCTS200 and RCTS400 were conducted by 

alternating series of RC and TS tests with loading magnitudes increased until to reach the maximum 

distortional strain allowed from the THOR apparatus The TS tests were performed assuming a loading 

frequency of 0.5Hz. The loading amplitudes of RC and TS tests were calibrated to induce comparable 

distortional strain levels. 

The results of the tests are plotted in Figure A-10 
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Figure A-10. Decay curves of shear modulus and damping ratio with distortional strain level: a) RC 

Tests; b) TS Tests. 
 

For distortional strain level larger than 0.1%, the RC tests were not considered suitable to define the 

soil properties. Up to these levels, only the cyclic torsional shear tests were carried out. 

It can be noted the effects of the mean effective stress on the decay curves that are moved on the left 

of the diagram. As expected, the linear (γlin ≈ 3x10-3%) and the volumetric (γvol ≈ 1x10-1%)  thresholds 

of the sand increase when p' assumes higher values. 
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A.5 STRENGTH OF SAND. 

The strength of the sand was also investigated by means of several triaxial tests with two 

apparatuses. The tests, both in drained and undrained conditions, were performed following various 

stress-paths and starting from different mean effective stress. In this section, the experimental results 

are presented. 

 

A.5.1 Undrained triaxial tests (UTC and UTE). 

Four triaxial tests, two in compression and two in extension, were carried out on relatively loose air-

pluviated specimens. Before to conduct the undrained shear phases, the samples were isotropically 

compressed till to 200 and 400 kPa. During these phases, the volumetric strains can not be measured. 

The current states of the specimens are defined by assuming an isotropic deformation (εr = εa). 

The tests results are plotted in Figure A-11. By conducting this type of test on loose specimens, it has 

been possible to clearly recognize the phase transformation of the sand, in which the behaviour from 

contractive becomes dilative (maximum excess pore pressures condition). Greater difficulties have 

been encountered for the definition of the critical state conditions (stabilization of the excess of pore 

pressures). In fact, for reached distortional strain εq = εa ( ≈ 15÷20%), the steady state conditions are 

not observed in the tests. Up to these levels of strains the specimens are not cylindrical and 

uncertainties arise on stress and strain evaluations. 

An interesting aspects shown by the data is the more contractive behaviour registered during the 

triaxial extensions respect to the compressions. In correspondence of the maximum ratio q/p' before 

the phase transformation, it can be read the volumetric instability condition (Castro, 1969). These 

results agree with those obtained by Yoshimine et al. (1998) that attribute these effects to the direction 

of the principal stress relative to the layered structure of soil and to the magnitude of the intermediate 

principal stress. 

 

A.5.2 Drained triaxial tests (DTC and UTE, DTCp’ and DTEp’). 

To investigate the peak strength of the sand, eight drained triaxial tests were performed by using the 

B&W apparatus. The dense samples were prepared with the freezing technique, as previously 

described. After the isotropic compressions, the drained shear phases, both in compression and in 

extension, were conducted by increasing and decreasing the axial stress, respectively. 

Figure A-12 reports the results of all drained tests. As observed in undrained conditions, for similar 

values of the relative density, the sand behaviour is more dilative in triaxial compressions than in 

extensions.  

In these tests, the phase transformation can be identified to the condition at which the dilatancy is 

zero. The variations of volumetric strains change the sign becoming negative.  
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Figure A-11. Mechanical behaviour of LB sand measured during UT tests: a) stress-strain response; 

b) stress-paths; c) development of excess of pore pressure. 
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Figure A-12. Mechanical behaviour of LB sand measured during DT tests: a) stress-strain response; 

b) stress-paths; c) development of volumetric strains. 
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A.5.3 Phase transformation, peak strength and critical state conditions. 

The results of the various triaxial tests can be then utilized to identify the strength of the LB sand. 

Isolating the data of undrained tests corresponding to the maximum excess of pore pressure and 

those of drained tests at which the derivative of volumetric strains respect to the axial strains 

(dilatancy) from positive becomes negative, the phase transformation line (PTL) can be defined into 

the     <q, p', e> space. The experimental points and the interpolation laws are plotted in Figure A-13. 
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Figure A-13. Phase transformation of LB sand from UT and DT tests: a) <q, p'> plane; b) <e, p'> 

plane. 
 

In the <q, p'> plane the data were well-interpolated by a linear regression. The slopes MPT of the PTL, 

both in compression and in extension, can be converted in a friction angle value φPT by means of the 

following relationships: 









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Marcsen
6
3    for Triaxial compression ( A-15 ) 



Annex A – Mechanical behaviour of Leighton Buzzard sand 100/170 by means of laboratory tests 

Ciro Visone – Performance-Based approach in seismic design of embedded retaining walls                                                   A- 18


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


−
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PT
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PT M

Marcsen
6
3    for Triaxial extension ( A-16 ) 

The values of φPT and MPT for triaxial compression and extension conditions obtained by the linear 

regression are given in Figure A-13a.  

The data shown in the <e, p'> plane, referred only to the drained tests, are very scattered. This is due 

to the difficulties to rightly estimate the void ratio evolution during the tests for the low capacities of the 

measurement systems adopted for the volume changes evaluation. However, a logarithmic regression 

of data was reported in Figure A-13b. The interpolation was done by fixing the constant value as the 

maximum void ratio   (emax = 1.014) of LB sand. The slope of the PTL is λPT = 0.0469. 

The drained triaxial tests performed on the dense samples of the LB sand have allowed defining the 

strength at peak for relative densities varying in the range of 60÷80%. 

Figure A-14 shows the experimental data and the interpolations.  
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Figure A-14. Peak strength of LB sand measured in DT tests on dense samples (Dr = 60÷80%): a) 

<q, p'> plane; b) <e, p'> plane. 
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As it can be seen in Table A-1, the triaxial extensions were carried out on less dense specimens than 

the compressions. This fact contributes to the lower value of the friction angle φPC measured in 

extension with respect to the corresponding of compression conditions. 

The steady state, defined as the state of deformation of soil without effective stress increment or 

decrement and with no migration of pore water, was not individuated in the tests. For this reason, a 

conventional definition of the critical state parameters of the LB sand was given. In particular, the 

ultimate strength conditions were assumed to be the last states of all tests. In Figure A-15 are 

summarized the experimental points and the CSL line in the <q, p'> and <e, p'> planes. 
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Figure A-15. Critical state of LB sand measured in UT and DT tests: a) <q, p'> plane; b) <e, p'> plane. 
 

The lower value of the friction angle φCS measured in triaxial extension respect to the corresponding of 

compression conditions can be explained by remarking the lower values of the maximum axial strains 

reached in the extension tests assumed for the conventional definition of the CS conditions. It is useful 

to remember that the initial relative density of the specimen does not affect the ultimate strength of 

sand. Then, the smaller of φCS should not be attributed to the lower densities of the samples used in 

triaxial extensions. 
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Having identified the critical state (φCS) and the peak strength (φPC) corresponding to relative densities 

of about 75% and assuming a linear dependence of the peak friction angle from Dr, the following 

relationships can be used to determine the strength parameters of the LB sand in relation to the 

relative density.  

rCSPC D⋅+φ=φ 10  ( A-17 ) 

8.0
CSPC

PC
φ−φ

=ψ  ( A-18 ) 

The ( A-18 ) represents the inverse form of the empirical relationship between the maximum friction 

angle (φMAX) exhibited by the soil, the critical friction angle (φCS) and the dilatancy angle ψ proposed by 

Bolton (1986). 

A conservative value of the critical friction angle is φCS = 32° that agrees with the estimation of Tan 

(1990). 

In Table A-2 the strength parameters of the LB sand estimated by the triaxial tests for different states 

are summarized. 
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PLANE 

<q, p'> <e, p'> 

Failure 
envelope 

Failure 
parameters 

Failure 
envelope 

Failure 
parameters 

MOHR-COULOMB  
Failure parameters STATE TRIAXIAL 

STRESS-PATH 

 M  e0 λ c φ 

COMPRESSION 1.1966 0 29°.9 PHASE 
TRANSFORMATION EXTENSION -0.872 

1.014 0.0544 
0 30°.7 

COMPRESSION 1.6084 0 39°.4 PEAK CONDITIONS 
(At a relative density 

of about 80%) EXTENSION -1.0188 
0.9976 0.0489 

0 37°.8 

COMPRESSION 1.3496 0 33°.4 
CRITICAL STATE 

EXTENSION 

'Mpq =  

-0.8876 

'ln0 pee λ−=
 

0.9774 0.0324 
0 31°.4 

 

Table A-2. Summary of strength parameters of LB sand. 
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ANNEX B CALIBRATION OF FE MODELS FOR 
DYNAMIC ANALYSES IN GEOTECHNICAL EARTHQUAKE 
ENGINEERING. 

Dynamic interaction problems involve the determination of the response of a structure placed in a 

seismic environment created by an earthquake or some other source such as vibrating machine 

foundation. Such an environment is defined in terms of free field motion prior to placement of the 

structure. The spatial and the temporal variation of the free field motion used as input must be such 

that they satisfy the equations of motions for the free field. They may be obtained from a site response 

analysis. Thus, a free field solution must be available before a true interaction problem can be solved 

(Lysmer, 1978).  

Numerical methods is often adopted to predict the behaviour of the geotechnical systems (e.g. 

retaining walls, pile foundations, embankments, dams) under seismic loadings, both for scientific and 

practical applications.  

Dynamic finite element analyses can be considered one of the most complete available tools in 

geotechnical earthquake engineering for their capabilities to provide indications on the soil stress 

distribution and deformation/displacements and on the forces acting on the structural elements that 

interact with the ground (PIANC, 2001).  However, they require at least a proper soil constitutive 

model, an adequate soil characterization by means of in situ and laboratory tests and a proper 

definition of the seismic input. The response of a finite element model is also conditioned by the 

setting of several parameters influencing the sources of energy dissipation in time-domain analyses.  

The amount of damping shown by a discrete numerical system is determined by the choice of the 

constitutive model (material damping), the integration scheme of the equations (numerical damping), 

and the boundary conditions. Material damping models the effects of viscous and hysteretic energy 

dissipations in the soils; numerical damping appears as a consequence of the numerical algorithm of 

solution of the dynamic equilibrium in the time domain; boundary conditions affect the way in which the 

numerical model transmits the specific energy of the stress waves outside the domain.  

Lists of widespread computer codes used to perform 1-D seismic site response analyses are reported 

by several authors (EPRI, 1991; Kramer, 1996; Lanzo, 2005). 

The influence of the sources of damping on the seismic response of a soil layer has been investigated 

in this chapter. 

A series of dynamic analyses of the vertical propagation of S-waves in a homogeneous elastic layer 

was carried out. This scheme was chosen because a well-known theoretical solution of the problem is 

available in literature and some comparisons can be easily done.  

The FE code Plaxis 2D v.8.2 (Brinkgreve, 2002), that allows time domain dynamic analyses, was used 

in this research as it is largely adopted both from practitioners and academics. 

The reference solution in the frequency domain was calculated by means of the well-known EERA 

code (Bardet et al., 2000). 

A simple calibration procedure of the damping parameters and some suggestions on how to reduce 

the spurious lateral boundaries effects on the wave propagation are presented. 
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B.1 REFERENCE SOLUTION: 1-D VERTICAL PROPAGATION OF S-

WAVES IN A HOMOGENEOUS VISCO-ELASTIC LAYER. 

Vertical one-dimensional propagation of shear waves in a visco-elastic homogeneous layer that lies on 

rigid bedrock can be described, in the frequency domain, by its amplification function. The latter is 

defined as the modulus of the transfer function, which is the ratio of the Fourier spectrum of amplitude 

at the free surface motion to the corresponding spectrum of the bedrock motion. For a given linear 

visco-elastic stratum and a given seismic motion acting at the rigid bedrock, the motion at the free 

surface can be easily obtained from the amplification function. First, the Fourier spectrum of the input 

signal is computed. Then, this function is multiplied by the amplification function and finally the motion 

is given by the inverse Fourier transform of the previous product.    

If the properties of the visco-elastic medium (density, ρ or total unit weight of soil, γ; shear wave 

velocity, VS; damping ratio, D) and its geometry (layer thickness, H) are known, the amplification 

function is univocally defined. 

For a soil layer on rigid bedrock, the amplification function (Roesset, 1970) is:  
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( B-1 ) 

where F is the frequency factor, defined as F = ω H/VS = 2πf H/VS. 

Figure B-1 shows its graphical representation in the amplification ratio-frequency plane, assuming that 

the soil layer has the following parameters: 

 

H =16 m;    γ = 14.1 kN/m3;  ρ = 1440 kg/m3; VS = 361.5 m/s; D = 2 %. 
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Figure B-1. Amplification function of a linear visco-elastic layer over rigid bedrock. 
 

The two vertical dashed grey lines remark the first and the second natural frequencies of the system. 

In the previously listed hypotheses, the n-th natural frequency fn and maximum amplification ratio 

Amax,n of the layer can be deduced by means of the following approximated relationships, respectively: 



Annex B – Calibration of FE models for dynamic analyses in geotechnical earthquake engineering 

Ciro Visone – Performance-Based approach in seismic design of embedded retaining walls B-3

( )12
42

−≅
π

ω
= n

H
Vf Sn

n  ( B-2 ) 

( ) n

S
n HD

V
Dn

A
ω

=
π−

≅
12

2
max,  ( B-3 ) 

 

B.2 NUMERICAL MODELING OF THE REFERENCE PROBLEM. 

The finite element modelling of the one-dimensional vertical propagation of shear waves into a visco-

elastic layer based on a rigid bedrock can be performed by following the next steps: 

1. define the FE model (damping parameters; numerical parameters; boundary conditions) 

2. define input motion (in terms of accelerations, velocities, displacements, forces time-

histories and Fourier spectra) 

3. conduct the dynamic analysis for the specified seismic motion 

4. check the goodness of the model response both in the frequency and in the time domains 

(e.g., in terms of maximum acceleration profiles, amplification function, etc.) 

 

B.2.1 Finite element models. 

The discretization of a continuum through the use of finite elements or finite differences requires the 

existence of a finite domain with well defined boundaries, where conditions are specified for forces 

and displacements. If these boundaries do not exist naturally but are created artificially, it is necessary 

to determine appropriate boundary conditions that will simulate the physical behaviour of the actual 

problem. 

For a horizontally stratified soil deposit with shear waves propagating vertically, the existence of an 

underlying half-space could be reproduced in a discrete model by placing at the bottom different static 

and kinematic conditions depending on the bedrock properties. If the last is rigid, its motion is not 

affected by the presence of the overlying soil. It acts as a fixed end boundary. Any downward-

travelling waves in the soil is completely reflected back toward the ground surface by the rigid layer, 

thereby trapping all of the elastic wave energy within the soil layer. In a time domain analysis, the rigid 

bedrock is simply modelled imposing an acceleration (or velocity or displacement) time-history at the 

base of the numerical model. When the rock is elastic, however, downward-travelling stress waves 

that reach the soil-rock boundary are reflected only partially; part of their energy is transmitted through 

the boundary to continue travelling downward through the rock. If the rock extends to great depth, the 

elastic energy of these waves is effectively removed from the soil layer. This is a form of radiation 

damping and it causes the free surface motion amplitudes to be smaller than those for the case of 

rigid bedrock. In a time domain analysis, the presence of an elastic bedrock can be modelled by 

imposing a force time history rather than a base motion at the bottom of the soil layer. The continuity 

of the stresses along the rock-soil boundary requires that the shear stress in the rock side is equal to 

the shear stress in the soil side. For this reason, the motion of an elastic bedrock is usually specified 

by adopting a shear stress time history τ(t). It can be simply obtained by the motion expected at the 

outcropping rock in terms of velocity time-history ( )tu& by means of the relationship (Tsai, 1969): 
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( ) ( )tuVt SRR &ρ=τ  ( B-4 ) 

where ρR and VSR are the mass density and the shear wave velocity of the elastic bedrock. 

Another way to specify the motion of an elastic bedrock at the bottom of a FE model is to run a 

frequency domain analysis by applying the seismic signal at the outcropping rock and then computing 

the time-history of acceleration at the interface between the soil layer and the rock (called “inside” in 

the EERA code). Such time history accounts for the shear stress transmission between the bedrock 

and the layer and can be directly applied to the lower boundary of the FE mesh. 

For the simple cases of SH, SV or P waves travelling into the subsoil at a specified angle, when the 

geometry is one-dimensional and only one train of plane waves is considered, appropriate conditions 

for the lateral boundaries can also be obtained easily. For example, 

• For SH waves with normal incidence the lateral boundary nodes should be left free 

• For SV waves with normal incidence, the nodes on the lateral boundary should have free 

displacements in the horizontal direction and completely restrained displacements in the 

vertical direction 

• For P waves with normal incidence, the nodes on the lateral boundary should have free 

displacements in the vertical direction and completely restrained displacements in the 

horizontal direction 

• For SH, SV, or P waves with a specified nonzero angle of incidence, the nodes on the lateral 

boundary should have lumped dashpots or consistent damping matrices with properties that 

are functions of the angle. 

In the case of interest, simple vertical fixities allowing horizontal displacements of nodes placed on the 

lateral boundaries are the best solution to reproduce the vertical propagation of S-waves polarized in 

the horizontal plane of layered subsoils. In order to equilibrate the horizontal lithostatic stresses acting 

on lateral boundaries, it is suitable to introduce load distributions at the left-hand and right-hand 

vertical boundaries, as sketched in Figure B-2. In such conditions, the width of the FE model does not 

affect its response. The influence of the various sources of dissipation in time domain analyses can be 

examined by adopting a simple soil column (for example B = 1m) reducing the required calculation 

time. 

ax(t)
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Figure B-2. FE model for 1-D dynamic analysis of visco-elastic layers. 
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The FE model of Figure B-2 is only reasonable for non-plastic material and if local site response is the 

aim of the study. When a more complex constitutive law, such as elastic-plastic models, or geometry 

configuration should be analyzed, the soil column is not suitable for the calculation. In these cases, a 

FE configuration for the dynamic analyses could be that sketched in Figure B-3. The region of interest 

is constituted only by the central domain. The two lateral domains, characterized by a coarse mesh, to 

reduce the computational costs, and a tapered input motion, have the aim to minimize the spurious 

effects of reflection on the boundaries. In spite of higher calculation time respect to other silent 

boundary conditions (Ross, 2004), such a solution allows minimizing the boundaries effects. Its 

effectiveness is shown in the next sections. 

ax = 1.00 ax = 0.00ax = 0.00
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Figure B-3. FE model for 2-D dynamic analysis. 
 

 

B.2.2 Seismic input motions. 

In numerical computation, the earthquake loading is often imposed as an acceleration time-history at 

the base of the model.  

The amplification function of a visco-elastic layer is independent from the input motion. However, to 

confirm the effectiveness of the calibration procedure proposed in this chapter, two earthquake signals 

were considered. 

The first is the WE component of the accelerometer registration at Tolmezzo Station for the main 

shock of the earthquake of Friuli (Italy) on May 6th, 1976, denoted as TMZ-270. The data were 

sampled at 200 Hz for a total number of 7279 registration points. The horizontal peak acceleration, 

equal to 0.315 g, was reached at the time t=3.935 s. Most of the energy is included into a frequency 

range between 0.8 and 5 Hz, with a predominant frequency of 1.5 Hz. The Arias intensity is 1.20 m/s 

and the significant duration (Trifunac and Brady, 1975) is 4.92 s. The time-history of accelerations and 

the Fourier spectrum of amplitude are reported in Figure B-4.  

The second is the WE component of the accelerometer registration at Sturno Station for the main 

shock of the earthquake of Irpinia (Italy) on November 23rd, 1980, denoted as STU-270. The sampling 

frequency is 400 Hz for a total number of 15737 registration points. The horizontal peak acceleration, 

equal to 0.321g, was reached at the time t = 5.2375 s. The predominant frequency is 0.44 Hz. The 

Arias intensity and the significant duration are 1.39 m/s and 15.2 s, respectively. The acceleration 

time-history and the Fourier spectrum of amplitude are plotted in Figure B-5. 
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Figure B-4. Seismic input TMZ-270: a) acceleration time-history; b) Fourier spectrum. 
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Figure B-5. Seismic input STU-270: a) acceleration time-history; b) Fourier spectrum. 
 

B.3 ANALYSIS OF THE SOURCES OF ENERGY DISSIPATION IN 

TIME DOMAIN ANALYSES. 

In time domain seismic analyses different sources of energy dissipation exist: material damping, which 

includes viscous and hysteretic soil damping, numerical damping, arising from the adopted time 

integration scheme, and energy dissipation at the lateral boundaries. In this section, the various 

causes of the motion attenuation are analyzed. 

 

B.3.1 Material damping. 

The dissipation of elastic energy due to the intrinsic characteristics of the material can be modelled by 

viscous damping, according to the Rayleigh formulation. Figure B-6 shows the different amplification 

functions for three values of the Rayleigh damping coefficients αR and βR, respectively. Both sets of 

curves were obtained by fixing the numerical damping to zero, as described in the next § B.3.2, and 

assuming βR = 0, for the first set (Figure B-6a), and αR  = 0, for the second set (Figure B-6b). 

The observed effects on the seismic response of the layer can be explained with the theory of a 

viscous damped single-degree-of-freedom (SDOF) system subjected to forced vibrations (Kramer, 

1996). First, it seems helpful to remind of the distinction between the damping ratio D and the critical 

damping ratio ξ: the former is defined as the ratio between the energy dissipated in one cycle of 

oscillation of a hysteresis loop and the strain energy stored in the system, the latter is equal to the 
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ratio between the damping coefficient and the critical damping coefficient in the equation which 

expresses the dynamic equilibrium.  

a) 
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Figure B-6. Influence of Rayleigh damping coefficients on the amplification function of the soil column: 

a) influence of αR; b) influence of βR. 
 

For a SDOF system , the relationship between the two quantities, is: 

n

D
ω
ω

ξ=  ( B-5 ) 

in which ω is the circular frequency of the harmonic loading and ωn is the natural circular frequency of 

the SDOF system. 

In the Rayleigh formulation, the modal damping ξn = ξ(ωn) depends on the circular natural frequency 

ωn of the system, according to the following law: 
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Therefore, according to the Rayleigh formulation, the modal damping ratio Dn is affected from the 

natural frequency of the examined SDOF system. 

A soil layer resting on rigid bedrock is theoretically characterized by an infinite number of natural 

frequencies. The amplification factor corresponding to the n-th natural circular frequency ωn of the 

system can be expressed as follows, by introducing the equation ( B-7 ) into the ( B-3 ): 












ωβ+α
=

ω
= 2max,

12

nRR

S

nn

S
n H

V
HD

V
A  ( B-8 ) 

The maximum amplification ratio calculated according to equation ( B-8 ) is consistent with the 

amplification functions computed from the results of the analyses and represented in Figure B-6. 

For βR = 0 (as in Figure B-6a), Amax does not change with the modal number n while it decreases 

hyperbolically with αR . On the contrary, by setting αR = 0 (as in Figure B-6b), the maximum 

amplification ratio decreases with the square of the natural frequency, for any given βR.  

If no numerical dissipation is introduced in the time integration scheme, the damping of the system can 

be modelled by using the Rayleigh parameters only. For a soil layer with a constant value of the 

damping ratio D*, the linear system of equations that provides αR and βR is: 

*2 2 DniniRR ω=ωβ+α  ( B-9 ) 

in which ωni are two circular natural frequencies of the layer. 

Assuming ωni as the first and the second natural frequencies (ωn1 = 35.5 rad/s; ωn2 = 106.5 rad/s), the 

numerical calculation gives the results plotted in Figure B-7, in which the comparisons with the 

frequency domain analysis solutions were done for TMZ-270 and STU-270 input motions. The 

reference maximum acceleration profile was computed with the EERA code. The two types of 

analyses agree both in terms of amplification functions and maximum acceleration profile. The 

numerical parameters (α and dt) was fixed to have zero numerical dissipation and to respect the 

accuracy condition ( 5–60) for a stable solution. 

 

B.3.2  Numerical damping. 

The Newmark scheme, which is used in many FE codes for time integration, can be varied adopting 

different values of the parameter α, according to the HHT method (LUSAS, 2000). If no damping is 

introduced in a dynamic analysis, either material or numerical, the model reaches the resonant 

conditions at the natural frequencies of the system with a corresponding theoretically infinite 

amplification ratio. Figure B-8 shows the response at a control point on the free-surface obtained for 

an undamped analysis (α = 0; αN = 0.25; βN = 0.5; αR = βR = 0) both in terms of the acceleration time-

history and the Fourier spectrum. The estimated natural frequencies of the layer are very close to the 

expected theoretical values. The analysis was performed by applying at the base of the model the 

TMZ-270 acceleration time history. 

The standard setting of the Plaxis code is the damped Newmark scheme with αN = 0.3025 and               

βN = 0.6, that corresponds to α = 0.1, according to equations ( 5-56). This assumption introduces a 

numerical energy dissipation which should be considered when calibrating the model damping against 

the true soil damping. 
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Figure B-7. Comparisons between numerical and reference solutions: a) amplification functions; b) 

maximum acceleration profiles for TMZ-270 input motion; c) maximum acceleration profiles for STU-

270 input motion. 
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Figure B-8. Seismic response of the soil column for an undamped analysis (TMZ-270 input motion): a) 

acceleration time history; b) Fourier spectrum. 
 

Figure B-9 shows the results of numerical analyses for three different values of α. The Rayleigh 

coefficients were set equal to the values given by the system of equations ( B-9 ), for the first and the 

second natural frequencies of the layer. When α increases, the values of the amplification ratio around 

the second natural frequency of the layer decrease. This means that the computed motion is 

excessively under-amplified at the natural frequencies when using the damped Newmark integration 

scheme and evaluating the Rayleigh parameters according to the ( B-9 ). 
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Figure B-9. Influence of the numerical damping coefficient on the amplification function of the model. 
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The amplification functions plotted in Figure B-9 were calculated for a time-step dt equal to 0.5 ms. 

This value was established in order to respect the stability rule (5-60) on the critical time step dtcrit in a 

dynamic calculation for a single mesh element (Pal, 1998 as quoted by Brinkgreve, 2002). 

In a finite element model the critical time step is equal to the minimum value of dtcrit according to (5-60) 

all over the elements. The setting of higher time-steps dt to reduce the computational time needs an 

accurate check to control the accuracy of the results.  

The comparison of the system response to the same signal with three different time steps dt is 

represented in Figure B-10. The curves were obtained by assuming the previous Rayleigh damping 

coefficients and using constant average acceleration scheme (α = 0). It can be noted the 

underestimation of the second natural frequency when the time-step was increased . This loss of 

accuracy cannot be eliminated by adopting others integration methods (i.e., α > 0). 
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Figure B-10. Influence of the time step dt on the amplification function of the model. 
 

From Figure B-9 and Figure B-10, it results that the choice of the parameters α and dt affects the 

value of the maximum amplification ratios Amax,n  and introduces a numerical source of damping. 

In order to quantify the effects of such numerical damping on the seismic response of the soil column, 

the damping ratios Dn of the first and the second vibration mode of the layer were calculated from 

Amax,n by using the inverse form of equation ( B-3 ). The calculated values for the TMZ-270 seismic 

motion are reported in Table B-1. When α ≠ 0, the damping ratio D increases with both α and dt, 

whereas for α = 0 (constant average acceleration scheme) any changes in dt do not influence the 

value of D.  

The increase of D due to numerical damping is larger at the higher vibration modes of the system. 

Therefore, the increases of the damping ratios, ∆Dn, have been normalized with respect to the 

corresponding circular natural frequencies, ωn, and plotted as function of both α and dt in Figure B-11. 

The solid and the hollow points, referred to the 1st and the 2nd mode of vibration respectively, are 

aligned on straight lines with the following equation: 

α=
ω
∆ dt

2
1

n

nD  ( B-10 ) 
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1st Vibration Mode 2nd Vibration Mode 

dt (ms) dt (ms) 
α 

0.25 0.5 1 
α 

0.25 0.5 1 

0.0 2.00% 2.00% 2.00% 0.0 2.00% 2.00% 2.00% 

0.1 2.05% 2.10% 2.19% 0.1 2.16% 2.29% 2.56% 

0.2 2.10% 2.19% 2.36% 0.2 2.29% 2.56% 3.09% 

0.3 2.14% 2.27% 2.54% 0.3 2.42% 2.82% 3.63% 
 

Table B-1. Effects of numerical dissipation (α and dt) on the modal damping ratio Dn of the soil 

column. 

0 0.1 0.2 0.3
Newmark Integration Parameter, α

0

0.004

0.008

0.012

0.016

N
or

m
al

iz
ed

 In
cr

ea
se

 o
f D

am
pi

ng
 R

at
io

, ∆
D

n/ω
n (

%
)

2n
d 

M
od

e

1s
t M

od
e dt = 0.25ms

dt = 0.5ms
dt = 1ms

α=
ω
∆

dt
2
1

n

nD

 
Figure B-11. Normalized increase of modal damping ratio induced by the Newmark damped 

integration schemes. 
 

For the time step dt = 1ms, larger than the limit value given by the accuracy condition (5-60), a small 

scattering of data can be noticed. 

The relationship ( B-10 ) was validated on other homogeneous layers with various values of thickness, 

damping ratio and shear wave velocity. 

On the basis of these outcomes, it can be concluded that, if the modified Newmark integration scheme 

is used, the entire modal damping ratio, both numerical and material, in a time domain analysis of a 

homogenous layer crossed by vertical propagating S-waves is equal to: 

( ) 







ωγ+β+

ω
α

=ξ= nR
n

R
nnD dt

2
1  ( B-11 ) 

In other words, the adoption of a damped Newmark integration scheme (α > 0) according to the HHT 

method is equivalent to the use of a stiffness proportional damping. 

The amplification function and the maximum acceleration profile of the reference layer computed for 

the TMZ-270 earthquake by assuming dt = 0.5ms and α = 0.2 are plotted in Figure B-12. The Rayleigh 

coefficients were chosen assuming the first and the second natural frequencies of the layer and 

reducing βR of the quantity α·dt. Comparing the Figure B-7 and Figure B-12, it appears that the 
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dynamic analyses performed by using the two sets of parameters, which respect the equation ( B-11 ), 

give the same results. 

a) 
0 5 10 15 20 25

Frequency (Hz)

0

10

20

30

40

A
m

pl
ifi

ca
tio

n 
R

at
io

Frequency Domain Analysis
Time Domain Analysis

Rayleigh Damping
αR = 1.065
βR = 0.0001818

Numerical Damping
α = 0.2
dt = 0.0005 s

 

b) 
0 0.4 0.8 1.2 1.6 2

Maximum Acceleration (g)

16

12

8

4

0

D
ep

th
 (m

)

Frequency Domain Analysis
Time Domain Analysis

Rayleigh Damping
αR = 1.065
βR = 0.0001818

Numerical Damping
α = 0.2
dt = 0.0005 s

 
Figure B-12. Comparisons between the reference and the numerical solutions obtained by adopting a 

damped Newmark integration scheme for the TMZ-270 input motion: a) amplification functions; b) 

maximum acceleration profiles. 
 

B.3.3 Boundary conditions. 

The solution obtained by assuming free horizontal displacements on lateral boundaries is only 

reasonable for non-plastic material and when local site response is the aim of the study. In many other 

cases, horizontal fixities on the sides of the model should be applied. As underlined in the previous 

Chapter 5, viscous dampers are often used to simulate infinite media (Lysmer & Kuhlemeyer, 1969), 

but there is a lack of well-established criteria in the literature for the choice of the parameters c1 and 

c2; following common suggestions, the values of c1 and c2 have been set in the analyses to 1.0 and 

0.25, respectively. However, if the lateral boundaries are sufficiently far from the central zone, their 

effects due to the reflection of waves on the boundaries should decrease. In Figure B-13 the results of 

analyses performed with two values of the ratio between the half-width, B/2, and the height, H of the 

mesh, in terms of amplification functions and maximum acceleration profile, are plotted together with 

the frequency domain solution of 1D ground motion. The two computed amplification curves differ from 

the theoretical solution for the presence of the lateral boundaries. In general, the viscous dampers 
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affect the values of maximum amplification ratio, which change with the width of the FE model. By 

varying the mesh dimension ratio B/2H, the peaks of amplification can exceed the desired values, as it 

is obtained for B/2H=15. Instead, the maximum accelerations at different depths for the smaller model 

(B/2H=5) are larger than for the wider. This is likely due to the spurious waves reflected on the lateral 

boundaries. In fact, the computed time histories of acceleration show singular peaks at single time 

instants, whereas the energy contents of the signals are very close to the theoretical reference 

solution. Furthermore, by using silent boundaries the surface points have not the same amplification.  

Figure B-14 shows the amplification functions computed in two different points, one located in the 

middle of the model, point I, and the other 40 m away from the first, point J. By increasing the width of 

the mesh, the motion differences at surface can be reduced but the abovementioned effects of the 

lateral boundaries on the amplification function cannot be completely eliminated. Furthermore, it 

appears that there is not a threshold for the ratio B/2H making the response of the central domain 

independent of the boundaries position. 
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Figure B-13. Influence of the lateral adsorbent boundaries position on dynamic response of the FE 

model: a) amplification functions; b) maximum acceleration profile. 



Annex B – Calibration of FE models for dynamic analyses in geotechnical earthquake engineering 

Ciro Visone – Performance-Based approach in seismic design of embedded retaining walls B-15

a) 

 

0 5 10 15 20 25
Frequency (Hz)

0

10

20

30

40

A
m

pl
ifi

ca
tio

n 
R

at
io

Point I
Point J

B/2 B/2

40m

I J

B

H

 

b) 

 

0 5 10 15 20 25
Frequency (Hz)

0

10

20

30

40

A
m

pl
ifi

ca
tio

n 
R

at
io

Point I
Point J

B/2 B/2

40m

I J

B

H

 
Figure B-14. Amplification functions at different surface points by using adsorbent boundaries: a) 

B/2H = 5; b) B/2H = 15. 
 

Further numerical analyses have been performed by using the Plaxis code on the FE models 

presented in the previously Figure B-3 in which the peak acceleration of the input signal at the base is 

decreased linearly from the central part to the vertical boundaries until zero. As in the previous cases, 

horizontal fixities have been used on the lateral boundaries, with or without the viscous dashpots. The 

adopted damping parameters, material and numerical, are equal to those established in the previous 

section for the examined layer (αR = 1.065; βR = 2.818x10-4; α = 0; dt = 0.0005s). 

These models have shown that in such a way the boundary influence decreases and the computation 

time can be minimized with an increment of the element sizes in the lateral regions, where a rough 

approximation of the solution can be accepted. In Figure B-15 the obtained results for two values of 

B/2H are plotted and compared with the solution of the analysis performed in the frequency domain, 

both in terms of amplification functions and maximum acceleration profiles. For B/2H = 15, the results 

given by the time and the frequency domain analyses are very similar. 

Considering that, for a point source, the body and surface wave amplitudes decrease at a rate of 1/r 

and  , where r is the distance from the source, more suitable lateral attenuation laws of the prescribed 

accelerations at the base of the model can be used.  
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Figure B-15. Influence of the lateral adsorbent boundaries position on dynamic response of the FE 

model sketched in Figure B-3: a) amplification functions; b) maximum acceleration profiles (TMZ-270). 
 

However, even the linear attenuation law adopted in the analyses together with the use of coarser 

mesh at the sides enables good radiation damping from the central part of the mesh, minimizing the 

boundaries effects, as it can be deduced from Figure B-16. In this figure, the amplification functions at 

the two surface points I and J for B/2H=15 are shown, as obtained with and without using lateral 

adsorbent boundaries. 

Even though other techniques might be adopted to model the energy exchanges at the boundaries of 

the computation domain (e.g., Ross, 2004), the proposed procedure seems to be a simple and 

pragmatic solution of the problem, requiring only a slightly higher calculation cost.    
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Figure B-16. Amplification functions at different surface points for B/2H = 15 using the FE model of 

Figure B-3: a) with lateral adsorbent boundaries; b) without lateral adsorbent boundaries. 
 

B.4 OUTLINE OF 1-D CALIBRATION PROCEDURE FOR FE 

MODELS. 

On the basis of the previously described results of the dynamic finite element analyses performed in 

this research, the following steps for the calibration of the seismic response of FE models can be 

recognized. 

To model the material damping by using the Rayleigh formulation: 

1. consider a FE soil column (Figure B-2) of a layered deposit (at this stage, the width of the 

model does not affect the results), constrained by total fixities at the bottom and vertical 

fixities at the sides; 

2. if a constant average acceleration scheme (α = 0) is used for the time integration, choose 

the Rayleigh damping coefficients assuming as target the match of the damping ratio D at 

two natural frequencies of the subsoil; for a damped Newmark integration scheme (α  > 0), 

instead, the βR Rayleigh parameter should be reduced of the quantity α ·dt 

3. compare the numerical results in terms of both amplification functions and maximum 

acceleration profiles with those obtained by theoretical solutions or frequency domain 
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analyses, in order to check the accuracy of the mesh discretization and the time step dt. 

To reduce the effect of the lateral boundaries (needed for boundary value problems):  

4. add two rectangular domains with a coarse mesh at the sides of the region of interest; the 

acceleration time-history at the base of the FE model under the region of interest has full 

amplitude whereas it is linearly tapered down to zero under the lateral domains. The zero 

value is set in correspondence of the lateral boundaries; 

5. increase the width of the model (the lateral regions only should be changed at this stage) 

and choose the more suitable mesh dimension ratio B/2H to attain a good agreement with 

the 1D reference solution both in the frequency domain (amplification function) and in the 

time domain (maximum acceleration profile). 

 

 




