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Introduction

In the late 1950s and early 1960s, the work of De Giorgi [DG] and Nash [N], and then Moser

[Mos], initiated the study of regularity of solutions to divergence form elliptic equations

with merely bounded measurable coefficients. Weak solutions in a domain Ω, a priori only

in a Sobolev space W 1,2
loc (Ω), were shown to be Hölder continuous of some order depending

just on ellipticity, and maximum principles and Harnack inequalities were established. The

Dirichlet problem for such operators, with continuous data on the boundary, was established

in [LSW]. This in turn paved the way for a more systematic and detailed study of the

properties of the harmonic measures dωL associated to L = div(A∇) on a domain Ω. The

classical properties of existence of non-tangential limits of solutions (Fatou type theorems)

and comparison principles appeared in [CFMS], but owed a great deal to the earlier work of

[HW2] on harmonic functions in Lipschitz domains.

The investigation into the solvability of Lp boundary value problems, in the sense of

non-tangential convergence and Lp estimates on the non-tangential maximal function of

solutions, really began with the study of harmonic functions in Lipschitz domains [D1], [D2].

In [D1], B. Dahlberg proved that, on any Lipschitz domain Ω, the harmonic measure, dωL,

and the surface measure dσ were mutually absolutely continuous, that dωL ∈ A∞(dσ) (the

Muckenhoupt weight class A∞). He proved that there exists a constant C such that for any

radius r and every surface ball ∆r ⊂ ∂Ω,

(∫

∆r

k2dσ

) 1
2

6 C

∫

∆r

kdσ, (1)

where dωL = kdσ. The estimate (1) will imply the L2 solvability of Dirichlet problem
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ii INTRODUCTION

in the domain Ω. Until recently, most results proving solvability for those boundary value

problems were carried out for operators L = div(A∇) assuming the matrix A to be both

real and symmetric. On the other hand there are a variety of reason to studying the non

symmetric situation. These include the connections with non-divergence form equations,

and the broader issue of obtaining estimates on elliptic measure in the absence of special

L2 identities which relate tangential and normal derivatives. In [KKPT] the study of non-

symmetric divergence form operators with bounded measurable coefficients was initiated.

In light of this we began to study the solvability of the Dirichlet problem for this class of

operators when the boundary data varies in an Orlicz functional space LΦ, extending the Lp

situation.

We prove, in more than two dimensions, that the known condition (see [K], [KKPT])

ωL ∈ Bq(dσ)

for the Lp solvability, is a necessary and sufficient condition also for the LΦ-solvability of the

Dirichlet problem, whenever LΦ is in a suitable class of Orlicz space containing the Lebesgue

space Lp.

Moreover, in dimension n = 2 we find a number of quantitative sharp results for the

Lp Dirichlet problem. More precisely, assume that the elliptic operator L = div(A(x)∇) is

Lp- resolutive, p > 1, on the unit disc D ⊂ R2. Then, there exists ε > 0 such that L is

Lr-resolutive in the optimal range p− ε < r 6 ∞ (see after Theorem 1.4.1). We determine

the precise value of ε in terms of p and of a natural “norm” of the harmonic measure ωL.

In planar case we study also the following problem: given two operators in our class, say L0

and L1, when the solvability of L0 guarantee solvability for the second operator L1? We will

treat this subject for special couples of operators which are pull-back of the Laplacian via

quasiconformal mappings and we will obtain simultaneous solvability results for this couple

of operators.

Now, a few words about the organization of the thesis. It consists about seven chapters.
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First chapter is devoted to introduce the formulation of the Lp Dirichlet problem, as

well as definitions and known results. Then, in Chapters 2 and 3 we recall definitions and

properties of Orlicz functional spaces and introduce the Hardy-Littlewood maximal operator

together with some of its most interesting properties. Apart from the usual estimates for

this operator we also obtain some new weighted inequalities, so that the results obtained in

the course of the Chapter 3 seems to be of independent interest.

In Chapter 4 we consider a Young’s function Φ : R+ → R+ satisfying the ∆2 condition

together with its complementary function and we give a necessary and sufficient condition

for the LΦ-solvability of the Dirichlet problem, where LΦ is the Orlicz Space generated by

the function Φ (see Section 4.1 for definitions). In last three chapters we confine ourself to

the two dimensional case to obtain a number of sharp quantitative results. In Chapter 6 we

consider sequences of operators and study the weak convergence of their harmonic measures.

Finally in Chapter 7 we show a relation between the solvability in Orlicz context of Dirichlet

and Neumann problem for a special class of operators.
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Chapter 1

Definitions and backgrounds

In this chapter we introduce the formulation of the Dirichlet problem with boundary data

in the Lebesgue space Lp(dσ) and we report some of the known results.

1.1 The classical Dirichlet problem

Let Ω ⊂ Rn be a bounded open set. For K > 1 we consider the class E(K) of measurable

matrix field A(x) = (ai,j(x))n
i,j=1 ∈ L∞(Ω,Rn×Rn) verifying the uniform ellipticity condition:

|ξ|2
K

6 〈A(x)ξ, ξ〉 6 K |ξ|2 (1.1)

a.e x ∈ Ω and for all ξ ∈ Rn \ {0}. The matrix A will not be assumed to be symmetric.

The space W 1,2
loc (Ω) denotes {f ∈ L2

loc(Ω) : ϕf ∈ W 1,2(Ω), ∀ϕ ∈ C∞
0 (Ω)} where W 1,2(Ω)

is the usual Sobolev space {f ∈ L2(Ω) :
∫
Ω
|f |2 +

∫
Ω
|∇f |2 < ∞}.

Consider the linear second order elliptic operator in divergence form

L = div (A∇) =
∂

∂xi

ai,j(x)
∂

∂xj

(the repeated indices summation convention is used).

1



2 CHAPTER 1. DEFINITIONS AND BACKGROUNDS

Definition 1.1.1. A function u ∈ W 1,2
loc (Ω) is a solution to Lu = 0 in Ω if

∫

Ω

ai,j(x)
∂u

∂xi

∂ϕ

∂xj

= 0, ∀ϕ ∈ C∞
0 (Ω). (1.2)

Thanks to the pioneering work of [DG], [Mos] [N] and [LSW] we have local regularity,

Harnack’s principle, maximum principle, pointwise bounds for such solutions. It was ob-

served firstly by Morrey [Mo] that the symmetry of the matrix A is not needed to get these

results (see also [KKPT]). We report here some of these fundamental estimates. Here and

below, we denote by

∫

E

fdσ the mean value of f ∈ L1(∂Ω) over the σ-measurable subset

E ⊂ ∂Ω. That is,

∫

E

fdσ = fE =
1

σ(E)

∫

E

fdσ, where σ(E) =
∫

E
dσ.

Lemma 1.1.1. (Caccioppoli) If u > 0 is an L-subsolution in Ω ( i.e. the integral in (1.2)

is non-positive) and if r > 0 is such that B2r(X) ⊂ Ω. Then,

∫

Br(X)

|∇u(z)|2dz 6 CK,n

r2

∫

B2r(X)

u2(z)dz.

The interior regularity estimates are as follows. Here, oscBru = supBr
u− infBr u denotes

the oscillation of u over the ball Br.

Lemma 1.1.2. If u is a nonnegative subsolution in Ω and B2r(X) ⊂ Ω then

sup
Br(X)

u 6 CK,p,n

(∫

B2r(X)

up

) 1
p

, ∀p > 0

Lemma 1.1.3. (Interior Hölder Continuity) If u is a solution to L in Ω, then

oscBr(X)u 6 CK,n

( r

R

)α
(∫

BR(X)

u2

) 1
2

for some 0 < α < 1, α = α(K, n) and 0 < r < R < dist(X, ∂Ω).

It is worth to point out here that the Hölder continuity rate of the solution only depends

on the ellipticity of the operator.
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Lemma 1.1.4. (Harnack’s inequality) Let u > 0 be a solution to the equation Lu = 0 in

Ω, and assume that r > 0 is such that B2r(X) ⊂ Ω. Then,

sup
Br(X)

u 6 CK,n inf
Br(X)

u (1.3)

Moreover, it holds

Lemma 1.1.5. If u is a solution to Lu = 0 in Ω and r > 0 is such that B2r(X) ⊂ Ω, then

there exists a p > 2, p = p(K,n), such that

(∫

Br(X)

|∇u|pdz

) 1
p

6 C

(∫

B2r(X)

|∇u|2dz

) 1
2

. (1.4)

Lemma 1.1.6. (Maximum principle) If u is a solution to Lu = 0 in Ω, which is contin-

uous in a neighborhood of ∂Ω, then

sup
Ω

u 6 sup
∂Ω

u.

Now, let f ∈ W 1,2
0 (Ω)∗ (here W 1,2

0 (Ω) is the closure of C∞
0 (Ω) in W 1,2(Ω)). By the Lax-

Milgram lemma, there exists a unique w ∈ W 1,2
0 (Ω) such that Lw = f in Ω, in the sense

that ∫

Ω

ai,j
∂w

∂xi

∂ϕ

∂xj

= 〈ϕ, f〉, ∀ϕ ∈ C∞
0 (Ω).

Consider g ∈ Lip0(Rn) such that G|∂Ω
= g, i.e. supp G is compact and

|G(x)−G(y)| 6 C|x− y|, ∀x, y ∈ Rn.

and let f = LG = ∂
∂xi

ai,j(x) ∂
∂xj

G ∈ W 1,2
0 (Ω)∗. Hence, there exists w ∈ W 1,2

0 (Ω) which solve

Lw = LG in the sense described above. Let u = G − w. Then, u ∈ W 1,2(Ω) and Lu = 0.

Since w ∈ W 1,2
0 (Ω), then u|∂Ω

“ = ”g. Such u is called the generalized solution of the classical

Dirichlet problem with data g.

It is worth to point out that u is well defined since if G1, G2 ∈ Lip0(Rn), G1|∂Ω
= G2|∂Ω

=
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g, then G1 −G2 ∈ W 1,2
0 (Ω), and so u1 − u2 ∈ W 1,2

0 (Ω), L(u1 − u2) = 0 and hence u1 ≡ u2.

Suppose that for all g ∈ Lip(∂Ω), the generalized solution u ∈ C(Ω̄), and consider now

f ∈ C(∂Ω). We find a sequence gj ∈ Lip(∂Ω), such that gj → f uniformly on ∂Ω. Denoting

by uj the corresponding solutions to the problems with data gj, by Lemma 1.1.6 we have

max
Ω
|uj − uk| 6 max

Ω
|gj − gk|.

Thus {uj} converges uniformly in Ω to u ∈ C(Ω̄). Noting that for such solution a Caccioppoli

inequality holds, for any j ∈ N

∫

Br(X)

|∇uj|2dX 6 C(K, n)r−2

∫

B2r(X)

u2
j

where r > 0 is such that B2r ⊂ Ω, we have u ∈ W 1,2
loc (Ω), Lu = 0 in Ω and u|∂Ω

= f . Another

application of the maximum principle shows that u is independent of the choice of {gj} and

hence is unique.

Definition 1.1.2. A domain Ω is said to be regular for the operator L if for every boundary

data g ∈ Lip(∂Ω) the generalized solution of the classical Dirichlet problem u ∈ C(Ω̄).

Theorem 1.1.7. Ω is regular for L if and only if Ω is regular for the Laplacian
∑n

j=1
∂2

∂x2
j
.

The notion of generalized solution, and of regular domain, come from the work of Littman,

Stampacchia and Weinberger [LSW], which also proves the following Wiener test to charac-

terize regular domains for our class of operators. It involves the notion of capacity that we

now recall. If E ⊂ B = {|x| < 1} is a closed set, then,

cap(E) = inf

∫

B

|∇ϕ|2

where the infimum is taken over all ϕ ∈ C∞
0 (B), with ϕ > 1 on E.
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Theorem 1.1.8. Let Ω ⊂⊂ B = {|x| < 1}. Then Ω is regular if and only if

∫

0

cap(cΩ ∪Br(x))
dr

rn−1
= +∞

for all x ∈ ∂Ω.

In particular any bounded Lipschitz domain Ω is regular.

We shall now recall a key notion of the theory, namely the ‘harmonic measure’ associated

with L. To this effect let Ω be a regular domain in Rn. Moreover, let f ∈ C(∂Ω), X ∈ Ω

and let us consider the linear functional

f −→ u(X) (1.5)

on C(∂Ω) where u ∈ W 1,2
loc (Ω) ∩ C(Ω̄) is the generalized solution of the classical Dirichlet

problem (1.32). By the maximum principle, (1.5) is a bounded, positive continuous linear

functional and u ≡ 1 if f ≡ 1. Therefore, by the Riesz representation theorem, there exists

a family of regular Borel probability measures

{
ωX
L

}
X∈Ω

such that u represents as

u(X) =

∫

∂Ω

f(Q)dωX
L (Q) (1.6)

This family of measures is called L-harmonic measure. When no confusion arises, we

will omit the reference to L. Moreover, when Ω = B, the unit ball in Rn, we will simply

denote by ωL = ωO
L the harmonic measure of L in B evaluated at the origin O of the unit

ball B. By abuse of notation we will sometimes refer to ω as the harmonic measure of L on Ω.

Next Lemma shows that the measures of the family ωX , as X varies over Ω, are mutually

absolutely continuous:
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Lemma 1.1.9. Let E ⊂ ∂Ω be a Borel set. Then ωX0(E) = 0 if and only if ωX(E) = 0 for

any X ∈ Ω.

Proof. By regularity of ωX0 and ωX it is enough to establish the claim for the compact subset

of ∂Ω. So, let K ⊂ ∂Ω be a compact set and suppose that ωX0(K) = 0. Now, let ε > 0 be

given. We can find an open set U ⊃ K such that ωX0(U) < ε. Let g ∈ C(∂Ω), 0 6 g 6 1,

g ≡ 1 on K and let u(X) be the generalized solution of the classical Dirichlet problem with

data g. Clearly ωX(K) 6 u(X). In fact by the non-negativity of g,

u(X) =

∫

Ω

gdωX >
∫

K

gdωX = ωX(K) (1.7)

Fix such an X and let Γ ⊂ Ω be a compact set containing X0 and X. Hence we can recover

Γ by a finite number m of balls Bj = B(Xj, rj) ⊂ Ω (J = 0, ..., m), such that Xm = X,

B(Xj, 2rj) ⊂ Ω and Bj−1 ∩ Bj 6= ∅, j = 1, ..., m. So, let Yj ∈ Bj−1 ∩ Bj, j = 1, ...,m. We

have, applying Lemma 1.1.4, C = C(K,n),

u(X) = u(Xm) 6 Cu(Ym) 6 C2u(Ym−1) 6 ... 6 Cmu(Y1) 6 Cm+1u(X0).

Thus,

u(X) 6 C(K,n, X, X0)u(X0) (1.8)

Therefore, by (1.7) and (1.8), it holds

ωX(K) 6 u(X) 6 Cu(X0) = C

∫

∂Ω

gdωX0 = CωX0(U) < Cε

and then ωX(K) = 0.

As we will see, for the purpose of solving boundary value problems, it is necessary to

study the relationship between the harmonic measure dωL and the surface measure dσ for a

given domain Ω. To this aim we need to introduce the Green’s function and determine its
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relationship to harmonic measure. In [GW], Grüter and Widman made a systematic study

of the Green’s function, without assuming the symmetry of the matrix.

Theorem 1.1.10. [GW] There exists a unique function G : Ω × Ω → R ∪ {+∞}, G > 0,

such that, for each Y ∈ Ω and r > 0,

i) G(·, Y ) ∈ W 1,2(Ω \Br(Y )) ∩W 1,1
0 (Ω)

ii) ∀ϕ ∈ C∞
0 (Ω) ∫

ai,j(X)
∂

∂Xi

G(X, Y )
∂

∂Xj

ϕ(X)dX = ϕ(Y )

(i.e. ’LG(·, Y ) = −δY ’).

iii) G(Y, X) = G∗(X, Y ), where G∗ satisfies i) and ii) for A∗, the adjoint of A.

iv) G(X,Y ) 6 CK |X − Y |2−n, ∀X, Y ∈ Ω,

v) G(X, Y ) > CK |X − Y |2−n, ∀X, Y ∈ Ω, |X − Y | 6 1
2

dist(Y, ∂Ω)

vi) G(·, Y ) ∈ W 1,p
0 (Ω) for all 1 6 p 6 n

n−1
, uniformly in Y .

vii) G(X, Y ) 6 CKdist(Y, ∂Ω)α|X − Y |2−n−α, where α = α(K, n).

viii) |G(X,Y )−G(Z, Y )| 6 CK(|X − Z|α)(|X − Y |2−n−α + |Z − Y |2−n−α)

Note that in dimension n = 2 the singularity in the bounds on the Green’s function

would be logarithmic.
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In a smooth domain like the unit ball B, if the coefficients matrix A ∈ C∞(Rn), Green’s

theorem shows that G ∈ C∞(B̄ × B̄ \ {(X,X) : X ∈ B̄}). Green’s formula then shows that

dωX0(Q) = A∗(Q)∇QG∗(Q,X0) · −→N (Q)dσ

where
−→
N (Q) is the outward unit normal at Q ∈ ∂B. Moreover, by the Hopf maximum

principle we have that

〈
A∗(Q)∇QG∗(Q,X0),

−→
N (Q)

〉
> δ > 0

and hence log
〈
A∗(Q)∇QG∗(Q,X0),

−→
N (Q)

〉
∈ C∞(∂B). Also since the generalized solution

of the classical Dirichlet problem with data g ∈ C(∂B) is given by

u(X) =

∫

∂B

A∗(Q)∇QG∗(Q,X0) · −→N (Q)g(Q)dσ(Q)

it is obvious that the above expression still makes sense with g ∈ Lp, 1 6 p 6 ∞. Moreover,

introducing the non-tangential approach regions

Γβ(Q) = {X ∈ B : |X −Q| 6 (1 + β) dist(X, ∂B)} (1.9)

(β > 0) and, for any Q ∈ ∂B, the non tangential maximal function,

Nu(Q) = sup
X∈Γβ(Q)

|u(X)| (1.10)

one has (see [K] and reference therein contained),

Nu(Q) 6 CβM(g)(Q) (1.11)

where Mg(Q) = sup∆3Q
1

σ(∆)

∫
∆
|g(P )|dσ(P ) is the Hardy-Littlewood maximal operator on



1.2. PROPERTIES OF HARMONIC MEASURE 9

∂B. Because of the known estimate for M (see for example [Gc-RdF]), one has

‖Nu‖Lp(∂B,dσ) 6 Cβ,p‖g‖Lp(∂B,dσ), 1 < p 6 ∞ (1.12)

σ{Nu > t} 6 Cβ

t

∫

∂B

|g|dσ

This, combined with the fact that, for g ∈ C(∂B), u ∈ C(B̄) allows one to conclude that,

for g ∈ Lp(∂B, dσ), 1 6 p 6 ∞, u converges non-tangentially to g a.e. with respect to the

measure dσ, i.e.

lim
X→Y, X∈Γβ

u(X) = u(Y )

for σ-almost every Y ∈ ∂B.

In general, to establish the relationship between the Green’s function and harmonic

measure is more delicate. This was carried out in [CFMS] (owing a great deal to the estimates

in [HW2]) for symmetric elliptic operators L. However, a careful inspection of the proofs of

the results therein contained shows that all the estimates remain valid (with G replaced by

G∗ where appropriate) even in the non-symmetric case. This was observed by [KKPT]. We

summarize these below.

1.2 Properties of harmonic measure

For the convenience of the reader we list here some of the most useful properties of the

harmonic measure ωL for an operator L in our class. In any case we refer to [K] for more

details.

Here and below we will restrict our attention to the case when Ω is the unit ball B ⊂ Rn.

Since our class of operators is invariant under bi-Lipschitzian transformations of Rn, the

following results extend immediately to Ω bounded Lipschitz domain. ∗

∗In particular our argument depend only on certain geometric properties of B characterizing a special
class of domains, the so called Non-tangentially accessible domains, N.T.A. (see for example [JK] for more
details) useful in the study of regularity of free boundaries
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i) Let Q ∈ ∂B and let Ar(Q) = (1 − r)Q. Then, there exists a positive constant M such

that

ωX(∆r(Q)) > M.

for any X ∈ Br/2(Ar(Q)).

ii) For any point X ∈ B \Br/2(Ar(Q)) it holds

rn−2G(X,Ar(Q)) 6 MωX(∆2r(Q))

iii) For any point X ∈ B \B2r(Q) it holds

ωX(∆r(Q)) 6 Mrn−2G(X, Ar(Q)).

Hence, by ii), iii) and the Harnack’s inequality, we have

iv) For X ∈ B \B2r(Q),

ωX(∆r(Q)) ' rn−2G(X,Ar(Q)). (1.13)

In particular, for any X ∈ B \B4r(Q),

ωX(∆2r(Q)) 6 MωX(∆r(Q)). (1.14)

Condition (1.14) is called doubling condition of the harmonic measure. In Chapter 5 we

will also investigate about this property (see Section 5.3).

Here and below, for any Q ∈ ∂B we assume Tr(Q) = Br(Q) ∩B.

v) (Comparison Principle) If u, v are nonnegative solutions in T2r(Q), continuous in

T2r(Q) and vanishing on ∆2r(Q), then there exists a constant M > 0 such that for any
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X ∈ Tr(Q) it holds

M−1u(Ar(Q))

v(Ar(Q))
6 u(X)

v(X)
6 M

u(Ar(Q))

v(Ar(Q))

vi) Let Q,Q0 ∈ ∂B, ∆ = ∆r(Q) and let ∆′ = ∆s(Q0) ⊂ ∆. Then,

ωAr(Q)(∆′) ' ωX(∆′)
ωX(∆)

(1.15)

for any X ∈ B \ T2r(Q).

Definition 1.2.1. The Radon-Nykodym derivative of ωX with respect to ω, i.e. the function

K(X, Q) =
dωX

dω
(Q).

is defined to be the Kernel function of L.

Note that by the mutual absolute continuity of ωX and ω (see Theorem 1.1.9) K is well

defined. Moreover, by the doubling property of ω (1.14) and the Lebesgue differentiation

theorem for doubling measures, for a.e. Q ∈ ∂B with respect to ω,

K(X, Q) = lim
∆′↓Q

ωX(∆′)
ω(∆′)

. (1.16)

A priori K is defined for ω-a.e. Q ∈ ∂B. However it is shown that the limit in (1.16) exists

for σ-a.e. Q and that K is Hölder continuous with respect to Q. In particular it satisfies the

following two estimates

i) Let us fix a point Q0 on the boundary of B and assume A = Ar(Q0), ∆j = ∆2jr(Q0) and

Rj = ∆j \∆j−1, j > 0. Then,

ess sup
Q∈Rj

K(A,Q) 6 M
2−jα

ω(∆j)
. (1.17)
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where α = α(K, n) > 0. In particular, on ∆j+1 \∆j we have

K(X,Q) 6 C
2−jα

ω(∆j+1)
. (1.18)

ii) For any X ∈ B,

|K(X, Q1)−K(X, Q2)| 6 CX |Q1 −Q2|α

where α is a positive constant depending on L.

For f ∈ L1(dω) define u(X) =
∫

∂B
fdωX =

∫
∂B

f(Q)K(X,Q)dω(Q), so that Lu = 0 in

B. More generally, if ν is finite, signed, Borel measure on B since K(X, ·) is continuous, we

can define u(X) =
∫

∂B
K(X, Q)dν(Q), which is again a solution to Lu = 0. For f ∈ L1(dω),

we let

Mωf = sup
∆3Q

1

ω(∆)

∫

∆

|f |dω

and for ν a finite Borel measure, with total variation |ν|,

Mω(ν) = sup
∆3Q

1

ω(∆)
|ν|(∆)

denote the Hardy-Littlewood maximal operator associated to ω on ∂B (see Chapter 3 for

more details). Since ω verifies the doubling condition we have

Theorem 1.2.1. The following estimates are true:

i) ω{Q ∈ ∂B : Mω(ν)(Q) > t} 6 M
t
|ν|(∂B).

ii) ‖Mωf‖Lp(dω) 6 Mp‖f‖Lp(dω), 1 < p 6 ∞.

Lemma 1.2.2. Let ν be a finite Borel measure on ∂B and let

u(X) =

∫

∂B

K(X,Q)dν.
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Then

i) For any point P ∈ ∂B,

Nu(P ) 6 CαMω(ν)(P ).

ii) If in additional ν > 0 then

Mω(ν)(P ) 6 CαNu(P )

Proof. Let us start by proving i). To this aim, let P ∈ ∂B, X ∈ Γβ(P ) and let r = |X−P | '
dist(X, ∂B). Moreover, assume ∆j = ∆2jr(P ). Then,

u(X) =
∞∑

j=0

∫

∆j+1\∆j

K(X,Q)dν(Q) +

∫

∆r(P )

K(X, Q)dν(Q)

Now, by (1.18) we have

∞∑
j=0

∫

∆j+1\∆j

K(X, Q)dν(Q) 6 CαMω(ν)(P ).

On the other hand, by (1.16) and (1.15), for any Q ∈ ∆r(P ),

K(X, Q) ' 1

ω(∆r(P ))
.

Then ∫

∆r(P )

K(X, Q)dν(Q) 6 CαMω(ν)(P ),

so that i) follows.

To prove ii), let ν > 0. Then

u(X) >
∫

∆r(P )

K(X, Q)dν(Q) ' 1

ω(∆r(P ))

∫

∆r(P )

dν,

so that observing that r > 0 is arbitrary, the thesis is completely proved.
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1.3 A brief review of the real variable theory of weights

To explain some of the known results on the Lp- solvability we need to recall some facts about

the real variable theory of weights, which are the key ingredients in a number of important

papers [D1], [D2], [CFMS], [FKP], [K].

Definition 1.3.1. A function w : ∂B → R will be called a weight if it is positive and if w

∈ L1(∂B, dσ), σ being the surface measure on ∂B.

Let µ be any non negative, Borel measure on ∂B satisfying the doubling condition

µ(∆2r(Q)) 6 Cµ(∆r(Q)) (1.19)

where Q is a point on ∂B, ∆r(Q)= Br(Q) ∩ ∂B, Br(Q) the ball of Rn with center Q and

radius r (for example µ = ω, the harmonic measure associated to any elliptic operator L, or

µ = σ).

Let us now introduce some definitions about the A∞- class of measures on ∂B.

Definition 1.3.2. Let ν be another non-negative measure on ∂B. Then ν belongs to A∞(dµ),

if there exist constants 0 < β 6 1 6 H < ∞ so that

ν(E)

ν(∆)
6 H

(
µ(E)

µ(∆)

)β

, (1.20)

for any spherical ball ∆ ⊂ ∂B and any measurable set E ⊂ ∆.

Condition (1.20) implies that ν is absolutely continuous with respect to µ. For this reason

the Radon Nikodym derivative k = dν/dµ is viewed as a weight, which we will call an A∞-

weight. We then sometimes will write k ∈ A∞.

Moreover (1.20) is a ’scale invariant’ version of absolute continuity, which unlike ordinary

absolute continuity, defines an equivalence relationship (see [Gc-RdF], [K], [Go], [R] for more

details).
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Definition 1.3.3. Let µ and ν be as before. We say that the measure µ supported on

∂B belongs to the Gehring class Bq(dν) (and we will write µ ∈ Bq(dν)), q > 1, if dµ is

absolutely continuous with resect to dν, i.e. dµ = kdν, and the Radon-Nikodym derivative

k = dν
dµ
∈ Lq(dν) and verifies the “reverse Hölder inequality”

(
1

ν(∆r(Q))

∫

∆r(Q)

kqdν

) 1
q

6 C

(
1

ν(∆r(Q))

∫

∆r(Q)

kdν

)

for all surface ball ∆r(Q).

It is well known that A∞ is the union of Gehring classes Bq:

A∞ = ∪q>1Bq (1.21)

Definition 1.3.4. For any A∞ measure ν on ∂B we define

B̃1(ν) = inf

{
H

β
: 0 < β 6 1 6 H and condition (1.20) holds

}
. (1.22)

If we switch the role of the measures σ and ν on ∂B in (1.20) are preserved the properties

of the weights supported (see [CF]).

Theorem 1.3.1. The measure ν supported on ∂B belongs to A∞ with respect to σ if and

only if there exist constants 0 < α 6 1 6 M such that

σ(F )

σ(∆)
6 M

(
ν(F )

ν(∆)

)α

, (1.23)

for any spherical ball ∆ ⊂ ∂B and for any measurable set F ⊂ ∆.

It is therefore natural to associate to weight ν a constant defined as

Ã∞(ν) = inf

{
M

α
: 0 < α 6 1 6 M and condition (1.23) holds

}
. (1.24)
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We emphasize explicitly that a measure ν belongs to A∞ if and only if Ã∞(ν) < ∞ or,

equivalently, B̃1(ν) < ∞. That is why we will call (1.22) and (1.24) A∞- constants of ν.

Remark 1.3.1. If n = 2 and ω is defined by dω
dσ

= σα with α ∈ (−1, 0], then ω ∈ A∞ and

B̃1(ω) = 1
α+1

.

The main properties of this class of measures are summarized in what follows.

Theorem 1.3.2. The following properties hold:

(i) ν ∈ A∞(dµ) if and only if, given ε > 0, there exists δ = δ(ε) > 0 such that if E ⊂ ∆r(Q),

∆r(Q) any surface ball, then

µ(E)

µ(∆r(Q))
< δ ⇒ ν(E)

ν(∆r(Q))
< ε.

(ii) ν ∈ A∞(dµ) if and only if there exist C > 0, η > 0, ϑ > 0, such that ∀E ⊂ ∆r(Q), we

have

µ(E)

µ(∆r(Q))
6 C

(
ν(E)

ν(∆r(Q))

)ϑ

and

ν(E)

ν(∆r(Q))
6 C

(
µ(E)

µ(∆r(Q))

)η

.

(iii) If ν ∈ Bq(dµ), q > 1, then there exists ε > 0 such that ν ∈ Bq+ε(dµ).

(iv) ν ∈ Bq(dµ) if and only if

Mνf = sup
Q∈∆

∫

∆

|f |dν,

verifies

‖Mνf‖Lp(dµ) 6 C‖f‖Lp(dµ),
1

p
+

1

q
= 1

Definition 1.3.5. For 1 < q < ∞, let ν ∈ Bq(dµ), and let k be as above. We define Bq-
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constant of the measure ν with respect to µ, the quantities

Bq,µ(ν) = sup
∆




(
1

µ(∆)

∫
∆

kqdµ
) 1

q

1
µ(∆)

∫
∆

kdµ




p

,
1

q
+

1

p
= 1, (1.25)

where the supremum is taken over all the surface ball ∆ ⊂ ∂B.

We report here the following sharp result on higher integrability for Bq weights (see [S],

Theorem 2.1), which represents the quantitative form of the “self improvement” property of

Gehring classes which is optimal in one dimension.

Theorem 1.3.3. [S] Let q > 1 and assume that ω : [a, b] ⊂ R → [0, +∞[ satisfies the

condition

Bq(ω) = Bq,dx(ω) = B < ∞. (1.26)

Let q1 > q be the unique solution to the equation:

ϕ(y) = 1−Bq−1 y − q

y

(
y

y − 1

)q

= 0. (1.27)

Then, for q 6 θ < q1,

[Bθ(ω)]
1
θ′ 6 B

1
q′

[
q

θϕ(θ)

] 1
q

(1.28)

(1
θ

+ 1
θ′ = 1, 1

q
+ 1

q′ = 1). The result is sharp, because there exists ω satisfying (1.26) not

belonging to Lq1

loc([a, b])

The class of Bq weights arises in connection with the Muckenhoupt weights, namely the

space Ap.

Definition 1.3.6. Let 1 < p < ∞. We say that the measure ω belongs to the Muckenhoupt

class Ap if ω is absolutely continuous with respect to σ and the Radon-Nikodym derivative

k = dω
dσ

satisfies the condition

Ap(ω) = sup
∆

(∫

∆

kdσ

)(∫

∆

k
1

1−p dσ

)p−1

< ∞ (1.29)
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where the supremum is taken over all surface ball ∆ ⊂ ∂B.

The constant Ap(ω) > 1 is named Ap- constant of ω. It is well known that A∞ = ∪p>1Ap,

ν ∈ Bq(dµ) if and only if µ ∈ Ap(dµ), 1
p

+ 1
q

= 1. see [Gc-RdF].

From the definition one can easily see that if p > r then Ap ⊂ Ar and A∞ = ∪rAr. It

can also be proved that if ω ∈ Ap then dω is a doubling measure (see [St1] Chapter 5, 1.5).

However, the converse is not true, as the function w(x) = |x|α is doubling if −n < α but

it is in Ap only if in addition α < n(p − 1). An even better example is given by the totally

singular doubling measure dµ = Π∞
k=1[1 + a cos(3k2πx)]dx where −1 < α < 1 (see [St1],

Chapter 1 or [Zy], Chapter 5 for more details).

The following theorem provides a link between the classes Ap and Bq.

Following the proof of Theorem 1 in [C], one can see that it holds:

Proposition 1.3.4. Let w be a weight on ∂B such that the measure dµ = wdσ is doubling.

Let dν = zdµ, z > 0 on ∂B and z ∈ L1(dµ). If there exist 0 < γ 6 1 and C > 0 such that

µ(E)

µ(∆)
6 C

(
ν(E)

ν(∆)

)γ

, ∀∆, ∀E ⊂ ∆ (1.30)

then there exist δ > 0, K > 0, such that

(
1

µ(∆)

∫

∆

z1+δdµ

) 1
1+δ

6 K
1

µ(∆)

∫

∆

zdµ, ∀∆. (1.31)

Moreover the constants K and δ in (1.31) are dependent only upon the constants C and γ

in (1.30) and upon the constant in the doubling condition of µ.

For more details we refer the reader to the papers B. Muckenhoupt [M], R. R. Coifman

and C. Fefferman [CF], A. P. Calderón [C] where the theory of A∞ weights is extensively

studied.
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1.4 The Lp-Dirichlet problem.

In the previous sections we described a series of results on the Dirichlet problem for general

second order elliptic, divergence form operators with bounded measurable coefficients. Also,

we pointed out (in the comments after Theorem 1.1.10, in particular inequalities (1.11) and

(1.12)) how, in the case when the coefficients are smooth, further results are possible. We will

now isolate several particularly interesting questions, which are well understood for smooth

coefficients, and formulate them for general operators L, in more general context. Deciding

to what extent these facts remain valid in this situation has been the subject of intense

investigation in the last twentyfive years.

Hence, let us consider the classical Dirichlet boundary value problem:




Lu = 0 in B

u|∂B = f
(1.32)

where

L = div(A(x)∇ ) (1.33)

is an elliptic operator with coefficient matrix A ∈ E(K).

Definition 1.4.1. For 1 < p < ∞, Problem (1.32) is called Lp- solvable and the operator

(1.33) is said Lp- resolutive, if there exists a constant Cp > 0 for which the following holds:

For any f ∈ C(∂B) the unique solution u ∈ W 1,2
loc (B)∩C(B̄) to (1.32) satisfies the uniform

estimate

‖Nu‖Lp(∂B,dσ) 6 Cp ‖f‖Lp(∂B,dσ) . (1.34)

Note that one can similarly define the Dirichlet problem in Lp(dµ) where µ is a general

measure on ∂B.

Now, by Lemma 1.2.2 and Theorem 1.3.2, iv) we are in position to recall the following

key result:
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Theorem 1.4.1. [K] Let 1 < p < ∞, q = p
p−1

. The following are equivalent:

i) The Dirichlet problem (1.32) is Lp-solvable;

ii) The L-harmonic measure ω is absolutely continuous with respect to σ, and the Radon-

Nykodym derivative k = dω
dσ
∈ Lq(dσ) with

(
1

σ(∆)

∫

∆

kq

) 1
q

6 C

(
1

σ(∆)

∫

∆

k

)
, (1.35)

for any surface ball ∆ ⊂ ∂B.

The maximum principle and interpolation show that if L is Lp-resolutive, then it is also

Lr-resolutive in the range p 6 r 6 ∞. Moreover (see Lemma 1.3.2, iii)) shows that if L is

Lp-resolutive, then there exists ε > 0 such that L is also Lp−ε-resolutive.

Remark 1.4.1. Suppose that we have two operators L0 and L1 whose respective coefficient

matrices A0 and A1 coincide on a neighborhood of ∂B. Then if L0 is Lp-resolutive then also

L1 is Lp-resolutive (see for example [FKP]). Thus we see that the Lp-solvability is a property

that depends only on the behavior of the coefficients of L near the boundary ∂B.

Theorem 1.4.2. Let A ∈ E(K) and suppose L = div(A∇) be Lp- resolutive. Then, for any

f ∈ Lp(∂B, dσ) there exists a unique u ∈ W 1,2
loc (B) ∩ C(B̄) such that

i) Lu = 0 in B,

ii) Nu ∈ Lp(∂B, dσ)

iii) u converges non-tangentially to f for σ-almost any P ∈ ∂B.

Proof. Let us start by the proof of the existence. Let L be Lp resolutive and let f ∈
Lp(∂B, dσ). Moreover, let {fj}j∈N be a sequence of functions such that:

fj ∈ C(∂B), ∀j ∈ N
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‖fj − f‖Lp(∂B,dσ) → 0, as j →∞

and let uj ∈ W 1,2
loc (B) ∩ C(B̄) be the corresponding solution (i.e. such that Luj = 0 in B

and uj|∂B
= fj, for any j ∈ N). By the linearity of L, we have L(uk − uj) = 0 in B, and

uk − uj = fk − fj on ∂B. Hence,

‖N(uk − uj)‖Lp(∂B,dσ) 6 C‖fk − fj‖Lp(∂B,dσ) → 0 as j, k →∞

Unless to consider a subsequence, we can suppose

‖N(uk − uj)‖Lp(∂B,dσ) 6 1

2j
∀j ∈ N, ∀k > j.

and so we have

[∫

∂B

(∑

j∈N
sup

X∈Γβ(Q)

|uj+1(X)− uj(X)|
)p

dσ(Q)

] 1
p

6
∑

j∈N
‖N(uj+1 − uj)‖Lp(∂B,dσ) 6 1 (1.36)

Hence, for σ- almost every Q ∈ ∂B the first series in (1.36) is finite, i.e. there exists E0 ⊆ ∂B

such that σ(E0) = 0 and

∑

j∈N
sup

X∈Γβ(Q)

|uj+1(X)− uj(X)| < ∞, ∀Q ∈ ∂B \ E0

i.e. the series
∑

j∈N
(uj+1(X)− uj(X)) (1.37)

is totally convergent in Γβ(Q),∀Q ∈ ∂B\E0. Let now 0 < r < 1, Br be the ball with radius r

and concentric with the unit ball B. Observing that B̄r is compact and that Γβ(Q) are open

set recovering B̄r, we have that there exists a finite number of points Q1, Q2, Q3, ... ∈ ∂B
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such that

B̄r ⊆ Γβ(Q1) ∪ Γβ(Q2) ∪ Γβ(Q3) ∪ ...

By σ(E0) = 0, we have that ∂B \ E0 is a subset dense of ∂B, we can suppose that

Q1, Q2, Q3, ... ∈ ∂B \ E0. Hence the series (1.37) is totally, and so uniformly, convergent

in B̄r, ∀0 < r < 1. So

∑

j∈N
(uj+1(X)− uj(X)) is locally uniformly convergent in B. (1.38)

Suppose now

u(X) = u1(X) +
∞∑

j=1

(uj+1(X)− uj(X)) = lim
j

uj(X).

By Luj = 0 and by (1.38) we obtain Lu = 0 in B. To prove iii), let us assume

Nrv(Q) = sup
X∈B̄r∩Γβ(Q)

|v(X)|,

for any Q ∈ ∂B. Obviously Nrv(Q) 6 Nv(Q), limr→1− Nrv(Q) = Nv(Q), and Nr increases

with r. Let us also observe that

lim
k
|uk(X)− uj(X)| = |u(X)− uj(X)|

uniformly in B̄r (0 < r < 1). Moreover, for any X ∈ B̄r ∩Γβ(Q) we have |uk(X)− uj(X)| 6
Nr(uk − uj)(Q). Then,

|u(X)− uj(X)| = lim
k
|uk(X)− uj(X)| 6 lim inf

k
Nr(uk − uj)(Q)

for any X ∈ B̄r ∩ Γβ(Q), and so

Nr(u− uj)(Q) 6 lim inf
k

Nr(uk − uj)(Q) 6 lim inf
k

N(uk − uj)(Q).
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Hence, using the Fatou’s lemma

‖Nr(u− uj)‖p 6 lim inf
k

‖N(uk − uj)‖p 6 C lim
k
‖fk − fj‖p = C‖f − fj‖p.

On the other hand

lim
r→1−

Nr(u− uj) = N(u− uj)

increasing with respect to r, and then, by Beppo Levi’s theorem

‖N(u− uj)‖p = lim
r→1−

‖Nr(u− uj)‖p 6 C‖f − fj‖p → 0, as j →∞

So, unless to consider a subsequence again, there exists E0 ⊂ ∂B, σ(E0) = 0 such that

lim
j

N(u− uj)(Q) = 0 and lim
j

fj(Q) = f(Q)

for any Q ∈ ∂B \ E0. Now, observing that

|u(X)− f(Q)| 6 |u(X)− uj(X)|+ |uj(X)− fj(Q)|+ |fj(Q)− f(Q)|

for any X ∈ B,Q ∈ ∂B, we obtain the thesis. In fact, 1)∀Q ∈ ∂B \E0, ∀ε > 0,∃ν ∈ N such

that j > ν implies

|u(X)− f(Q)| 6 2ε + |uj(X)− fj(Q)|, for any X ∈ Γβ(Q).

Moreover, by the assumption, for any j ∈ N,

lim
X→Q

uj(X) = uj(Q) = fj(Q),

and then

lim
X→Q,X∈Γβ(Q)

u(X) = f(Q),
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for any Q ∈ ∂B \ E0, i.e. the non tangential convergence of u to f σ−a.e.

To show uniqueness, let L be Lp- solvable, Nu ∈ Lp(∂B) and that u converges non-

tangentially to 0 σ-a.e. Let us show that u(0) = 0. To this aim, let G(Y ) denote the Green’s

function for L with pole at the origin, and let δ(X) = dist(X, ∂B). Moreover let φj ∈ C∞
0 (B)

be a sequence of functions such that:

1) φj ≡ 1 on {δ(X) > 1
j
};

2) suppφj ⊂ {δ(X) > 1
2j
};

3) |∇φj| 6 Cj;

4) 0 6 φj 6 1

and let Rj = {X : 1
2j

6 δ(X) 6 1
j
}. Using Theorem 1.1.10, ii), we see that

u(0) = u(0)φk(0) =

∫

B

ai,j(Y )
∂G(Y )

∂Yi

∂

∂Yj

(uφk)(Y )dY =

=

∫

B

ai,j(Y )
∂G

∂Yi

(Y )
∂u

∂Yj

φk(Y )(Y )dY +

+

∫

B

ai,j(Y )
∂G

∂Yi

(Y )
∂φk

∂Yj

(Y )(u)(Y )dY.

We first estimate last integral in last equality. In order to do so, we use Lemma 1.1.1 applied

to G on balls of size 1
k
, Lemma 1.1.2 applied to |u| and (1.13), to conclude that

∣∣∣∣
∫

B

ai,j(Y )
∂G

∂Yi

(Y )
∂φk

∂Yj

(Y )(u)(Y )dY

∣∣∣∣ 6 C

∫

∂B

m(Q) ·Nu 1
k
(Q)dσ(Q),

where m(Q) = sup∆3Q
ω(∆)
σ(∆)

, and

Nu 1
k
(Q) = sup

X∈Γα(Q),X∈B 1
k

(Q)

|u(X)|.

Note that, since L is Lp- resolutive, then by Theorem 1.4.1, ii) we have m(Q) ∈ Lq(∂B, dσ),
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1
p

+ 1
q

= 1. Also, our assumption on u implies that ‖Nu 1
k
‖Lp → 0 as k →∞, and hence

∫

B

ai,j(Y )
∂G

∂Yi

(Y )
∂φk

∂Yj

(Y )(u)(Y )dY → 0.

In a similar way, applying Lemma 1.1.1 also to u on balls of size 1
k
, and integrating by parts

∫

B

ai,j(Y )
∂G

∂Yi

(Y )
∂u

∂Yj

φk(Y )(Y )dY = −
∫

ai,j(Y )G(Y )
∂u

∂Yj

∂φk

∂Yi

(Y )dY.

So the statement is completely proved.
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Chapter 2

Young functions and Orlicz spaces

The Orlicz functional spaces represent one of the most immediate generalization of the

Lebesgue spaces Lp, (1 6 p 6 ∞). They are a class of Banach spaces of measurable

functions which play a primary role in many areas of mathematical analysis. We will collect

here some definitions and results related to it, many of which are contained in [KR], [RR].

2.1 Orlicz spaces

A Young’s function is a convex function of the type Φ : [0, +∞) → [0, +∞) such that

Φ(t) =

∫ t

0

ϕ(s)ds,

where ϕ : [0,∞[→ R is nondecreasing, right-continuous and such that

ϕ(s) > 0 ∀s > 0, ϕ(0) = 0, lim
s→∞

ϕ(s) = +∞.

For example, the functions Φ1(t) = tp

p
(p > 1) and Φ2(t) = et2 − 1 are Young functions. The

Young’s function Ψ(t), complementary to Φ(t), is defined as

Ψ(t) = sup
s>0
{st− Φ(s)} =

∫ t

0

ϕ−1(s)ds,

27
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where

ϕ−1(s) = sup {u : ϕ(u) 6 s} (2.1)

is the inverse generalized of ϕ. Note that whenever ϕ is continuous and strictly increasing

than (2.1) coincide with the classical inverse function of ϕ.

Example 2.1.1. As we already pointed out, the function Φ1(t) = tp

p
, p > 1, is a Young

function. We shall compute the complementary function to it. Clearly, ϕ1(t) = tp−1 and

ϕ−1
1 (t) = sq−1, 1

p
+ 1

q
= 1, and Ψ1(t) =

∫ t

0
ϕ−1

1 (s)ds = tq

q
.

As a second example, we shall compute the Young function complementary to the Young

function Φ2(t) = et − t− 1, t > 0. For this function we have that ϕ2(t) = et − 1, from which

it follows that ϕ−1
2 (s) = log(s + 1), s > 0 and

Ψ2(t) =

∫ t

0

ϕ−1
2 (s)ds = (1 + t) log(1 + t)− t.

We note that it is impossible in many cases to find an explicit formula for the complementary

Young function. For example, if Φ(t) = et2 − 1, then ϕ(t) = 2tet2 and we cannot express

ϕ−1(s) in the explicit form.

Sometimes we will consider Orlicz functions, i.e. continuously increasing functions Φ :

[0,∞) → [0,∞) verifying

Φ(0) = 0, lim
t→∞

Φ(t) = ∞.

From now on, Ω will denote a bounded domain in Rn. If µ is a measure supported on

Ω, the Orlicz Space LΦ(dµ) = LΦ(Ω, dµ) consists of all measurable functions on Ω for which

there exists K > 0 such that ∫

Ω

Φ

( |f |
K

)
dµ < ∞.

LΦ(Ω) is a complete linear metric space with respect to the following distance function:

distΦ(f, g) = inf

{
K > 0

∫

Ω

Φ

( |f − g|
K

)
dµ 6 K

}
.
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If Φ is a Young function, LΦ becomes a Banach space when equipped by the Luxemburg

norm

‖f‖LΦ = inf

{
k > 0;

∫

Ω

Φ

( |f |
k

)
dµ 6 Φ(1)

}
(2.2)

It is easy to see that if we let Φ(t) = tp

p
, 1 6 p < ∞ then the norm defined in (2.2) is

equivalent to the classical Lp-norm

‖f‖p =

(∫

Ω

|f |pdµ

) 1
p

so that in this case the space LΦ(Ω) coincide with the usual Lebesgue space Lp(Ω). Another

important example is the exponential class defined with the Orlicz function Φ(t) = et − 1.

A pair of Young complementary function (Φ, Ψ) are also called Hölder conjugate couple. In

fact the following Hölder′s inequality holds,

∣∣∣∣
∫

Ω

〈f, g〉
∣∣∣∣ 6 C(Φ,Ψ) ‖f‖Φ ‖g‖Ψ

for any f ∈ LΦ(Ω) and any g ∈ LΨ(Ω).

To define the dual space of LΦ, we will need the following doubling property

Definition 2.1.1. We say that a Young’s function Φ(t) satisfies the ∆2-condition (we will

write Φ ∈ ∆2) if there exists a constant l > 0 such that

Φ(2t) 6 lΦ(t), ∀t > 0. (2.3)

When Φ ∈ ∆2, the smallest constant l such that (2.3) is true, i.e.

l = sup
t>0

Φ(2t)

Φ(t)

is greater or equal than 2. In the sequel we will call it the doubling constant of Φ.

Let us explicitly observe that the ∆2-condition (2.3) is equivalent to the more general
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property:

∀A > 0, ∃B > 0 : Φ(At) 6 BΦ(t), ∀t > 0. (2.4)

and

∀B > 0, ∃A > 0 : Φ(At) 6 BΦ(t), ∀t > 0. (2.5)

Theorem 2.1.1. Let Φ, Ψ be complementary Young functions with Φ ∈ ∆2. Then every

bounded linear functional defined on LΦ(Ω) is uniquely represented by a function g ∈ LΨ(Ω)

as

f → 〈f, g〉

Without a doubling condition the dual of LΦ(Ω) does not have a nice description.

If we consider the complementary functions

Φ(t) = t log
1
α (e + t) Ψ(t) = etα − 1

with α > 0, we find that the dual to L log
1
α L(Ω) is the exponential class Expα(Ω) = LΨ(Ω),

but not conversely.

Theorem 2.1.2. Let Φ be an Orlicz function (not necessarily a Young function) satisfying

the ∆2 condition. Then the space C∞
0 (Ω) is dense in the metric space LΦ(Ω).

In particular, if also the complementary Ψ(t) obey the ∆2 condition, the Banach spaces

LΦ and LΨ are mutually dual. We shall require that Ψ satisfies ∆2 too. In this case we have

that Φ(t) and Ψ(t) are essentially equal to tϕ(t) and tϕ−1(t) respectively, for all t > 0, and

then ϕ and ϕ−1 also satisfy the ∆2 condition. Moreover, for the inverse functions of Φ and

Ψ, we have:

t 6 Φ−1(t)Ψ−1(t) 6 2t, ∀t > 0. (2.6)

Sometimes, when the complementary Young functions Φ and Ψ verify the ∆2 condition,

we will write for short Φ ∈ ∇2.
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If Φ ∈ ∆2, it is an easy computation to show that the following inequality holds true

Φ(t) 6 tϕ(t) 6 lΦ(t), ∀t > 0. (2.7)

Inequality (2.7) implies ([GIS], pag. 692) that

Φ(λt) 6 λlΦ(t), ∀t > 0, ∀λ > 1. (2.8)

Let us observe that respectively from (2.7), (2.8) and (2.7) again, we have:

λtϕ(λt) 6 lΦ(λt) 6 lλlΦ(t) 6 lλltϕ(t) ∀t > 0, ∀λ > 1,

from which,

ϕ(λt) 6 lλl−1ϕ(t), ∀t > 0, ∀λ > 1. (2.9)

We note that, if Φ(t) is a Young function and Ψ(t) is its complementary function, the

Young’s inequality holds:

st 6 Φ(s) + Ψ(t), ∀s, t > 0 (2.10)

and, from Lagrange theorem and the monotonicity of ϕ, the following inequality

|Φ(|A|)− Φ(|B|)| 6 ϕ(|A|+ |B|)|A−B| (2.11)

holds for all A, B ∈ Rn. Moreover, by the convexity of Φ and by the ∆2 condition, it holds

Φ(a + b) 6 l

2
(Φ(a) + Φ(b)), ∀a, b > 0. (2.12)

Here below we just recall some properties of a Young function Φ :

i) If Φ ∈ ∆2, the inverse function Φ−1 of Φ verifies

Φ−1(a + b) 6 Φ−1(a) + Φ−1(b), ∀a, b > 0. (2.13)
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Moreover Φ−1 verifies (2.3) with Φ replaced by Φ−1 and l = 2.

ii) Let Ψ be the complementary function of Φ. We have,

Ψ

(
Φ(t)

t

)
6 Φ(t), ∀t > 0. (2.14)

iii) If Φ ∈ ∆2 the following inequality holds true

Φ−1(λt) 6 λΦ−1(t), ∀t > 0, ∀λ > 1. (2.15)

iv) For any open cube Q0 in Rn and F measurable, we have (see e.g. [Zi]):

∫

Q0

Φ(|F |)dx =

∫ ∞

0

ϕ(t) |{x ∈ Q0 : |F (x)| > t}| dt. (2.16)

v) If the function ϕ is convex, clearly the inverse function ϕ−1 of ϕ is concave and so the

complementary function Ψ of Φ verifies (2.3).

The following proposition relates a Young function satisfies ∆2-condition with power-like

functions.

Proposition 2.1.3. [KR] Let Φ, Ψ be complementary Young functions, then

Φ, Ψ ∈ ∆2 ⇐⇒ ∃ p, q, 1 < p 6 q < ∞ : pΦ(t) 6 tϕ(t) 6 qΦ(t) ∀t > 0. (2.17)

Definition 2.1.2. We say that the Young function Φ verifies the ∆′ condition (and we will

write Φ(t) ∈ ∆′) if it is submultiplicative, i.e. if there exist a positive constant C such that

Φ(st) 6 CΦ(s)Φ(t) ∀ s, t > 0. (2.18)

It is quite simply to prove that if a Young function Φ ∈ ∆′ then it also satisfies the ∆2

condition.
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Example 2.1.2. If Φ1(t) = tp

p
(p > 1), then obviously Φ ∈ ∆′. A second example of Young

function which satisfy the ∆′ condition is given by Φ2(t) = tp(| log t| + 1), p > 1, t > 0. In

fact an easy computation shows that Φ2(st) 6 Φ2(s)Φ2(t) for any s, t > 0.

If we consider the function Φ3(t) = t2

log(e+t)
, then it is an easy to show that Φ3 ∈ ∆2 but

Φ3 /∈ ∆′.

Let w be a weight and let Φ, Ψ be complementary Young functions verifying ∆2-condition.

We say that w ∈ AΦ − class if there exists A > 1 such that

∀ε > 0,

(∫

I

εwdx

)
ϕ

(∫

I

ϕ−1

(
1

εw

)
dx

)
6 A (2.19)

for all bounded intervals I in R, where Φ′ = ϕ. Whenever (2.19) holds, we will write for

short w ∈ AΦ.

The AΦ-class of weights was introduced by Kerman and Torchinsky in [KT] and it extend

the definition of Muckenhoupt Ap weight to the framework of the Orlicz spaces. We recall

indeed (see [M]) that a weight w belongs to Ap-class, 1 < p < ∞, if there exists A > 1 such

that ∫

I

wdx

(∫

I

w− 1
p−1 dx

)p−1

6 A, (2.20)

for all bounded intervals I in R.

We are going to characterize those weights for which a weighted inequality of strong type

for the Hilbert transform holds. Recall that the Hilbert transform in R is given by

Hf(y) = lim
ε→0+

1

π

∫

|x−y|>ε

f(x)

y − x
dx, y ∈ R. (2.21)

Theorem 2.1.4. [KK] Let w be a weight on Rn and let Φ be a Young function verifying

the ∆2 condition together with its complementary function. Then the inequality

∫

R
Ψ(Hf)w(y)dy 6 C

∫

R
Ψ(|f |)w(y)dy
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holds for all f ∈ LΦ if and only if w ∈ AΦ.

For more details see [KK].

2.2 Zygmund spaces

The Zygmund spaces, denoted by Lp logα L(Ω), correspond to the Orlicz function Φ(t) =

tp logα(a + t) with 1 6 p < ∞, α ∈ R and suitable large constant a.

The defining function Φ(t) = tp logα(e + t), 1 6 p < ∞ is a Young function when α > 1− p

and there we have the following estimate

‖f‖Lp log−1 L 6 ‖f‖p 6 ‖f‖Lp log L

and

‖f‖Lp log L 6
[∫

|f |plog
(

e +
|f |
‖f‖p

)] 1
p

6 2 ‖f‖Lp log L.

The non-linear functional

[[f ]]p,α =

[∫

Rn

|f |p logα

(
e +

|f |
‖f‖p

)] 1
p

, p > 1 and α > 0,

is equivalent to the Luxemburg norm, given at (2.2), and the following estimates are true

‖f‖Lp log−1 L 6 ‖f‖Lp 6 ‖f‖Lp logα L 6 [[f ]]p,α 6 2‖f‖Lp logα L (2.22)

Whenever a, b > 1 and α, β ∈ R are coupled by the relationships

1

c
=

1

a
+

1

b
,

γ

c
=

α

a
+

β

b

the following Hölder-type inequalities holds

‖fg‖Lc logγ L 6 C‖f‖La logα L · ‖g‖Lb logβ L,
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where C is a positive constant depending on α, β, a and b. Hölder’s inequality for Zygmund

spaces takes the form

‖ϕ1...ϕk‖Lp logα L 6 c ‖ϕ1‖Lp1 logα1 L ... ‖ϕk‖Lpk logαk L

where p1, p2, ..., pk > 1 ; α1, α2, ..., αk ∈ R and 1
p

= 1
p1

+ 1
p2

+ ... + 1
pk

, α
p

= α1

p1
+ α2

p2
+ ... + αk

pk
.

The constant here does not depend on the functions ϕi ∈ Lpi logαi L.

If we take as Hölder conjugate couple Φ(t) = t log(e + t) and Ψ(t) = et − 1 defining the

Zygmund and exponential classes, respectively, we have the following estimate

∣∣∣∣
∫

Ω

〈f, g〉
∣∣∣∣ 6 4 ‖f‖L log L ‖g‖Exp.

In view of the same homogeneities on each side we can assume Luxemburg norm equal 1.

From the definition of these norms we find

∫

Ω

|f | log(e + |f |) = log(e + 1)

and ∫

Ω

(e|g| − 1) = e− 1

Then we have the elementary inequality

|f ||g| 6 |f | log(1 + |f |) + e|g| − 1 (2.23)

to conclude that
∫
Ω
|f ||g| 6 4 as desired.

Thus Exp(Ω) is the dual space to the Zygmund space L log L(Ω). L log L and Exp have

traditionally be regarded as more general Orlicz spaces.
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2.3 Indices of Orlicz spaces

The aim of this section is to introduce the so called indices of a Young function and to

establish connections between those indices and the growth conditions on Young functions.

Definition 2.3.1. Let

h(s) = sup
t>0

Φ−1(t)

Φ−1(st)
. (2.24)

The upper and lower Boyd indices ρ and θ of LΦ are

ρ = inf
0<s<1

− logh(s)

logs
= lim

s→0+
− log h(s)

log s
(2.25)

and

θ = inf
1<s<∞

− log h(s)

log s
= lim

s→∞
− log h(s)

log s
(2.26)

respectively.

The right wing equalities in (2.25) and (2.26) follow from known properties of subadditive

functions (since log h enjoys this property).

It is easy to see that in the case of Lebesgue spaces LΦ = Lp one has ρ = θ = p−1. We

list here some properties of these indices we will make use of below (see [KT] and reference

therein contained):

Proposition 2.3.1. Let Φ and Ψ be Young complementary functions, both verifying the ∆2

condition. The following properties hold:

i) 0 < θ 6 ρ < 1;

ii) given a fixed 0 < r < ρ−1, there exists an s0, with 0 < s0 < 1, such that

Φ(st) 6
(

s

s0

)r

Φ(t), (2.27)

for all t > 0, 0 < s < 1;
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iii) For any s such that 0 < s < 1 we have h(s) > s−ρ; so, for any fixed 0 < s < 1 there is

a t > 0 such that

Φ−1(t)

Φ−1(st)
>

s−ρ

2
. (2.28)

Furthermore, under the above hypotheses, the following holds true:

Proposition 2.3.2. Let Φ and Ψ be as in Proposition 2.3.1 and let Φδ, δ > 0 be such that

ϕ−1
δ (t) =

(
ϕ−1(t)

)1+δ
.

Then, the upper index ρ′ of LΦδ is greater than the upper index ρ of LΦ.

For the proof of last proposition we remaind the reader to [KT], Lemma 2. Moreover,

following the proof of the cited Lemma, it is possible to compute exactly the upper index of

LΦδ , that is ρ′ = 1+δρ−θΨ

1+δρ
, where θΨ is the lower Boyd index of LΨ.

For a complete analysis of these properties we refer to [Bo], [MO] and to the results

obtained in [KT].

The definition of the Boyd indices is very simple, nevertheless, a particular computation

might be extremely difficult. Now we want to give an effective method of establishing their

values. In fact it is possible to estimate the Boyd indices of a Young function Φ in terms of

the growth condition

pΦ(t) 6 tϕ(t) 6 qΦ(t),

t > 0, giving birth to the Simonenko indices (see [Si]).

Definition 2.3.2. Let Φ be a Young function, and let us consider the best p and q such that

pΦ(t) 6 tϕ(t) 6 qΦ(t) ∀t > 0.

holds. We will assume

p(Φ) = inf
t>0

tϕ(t)

Φ(t)
and q(Φ) = sup

t>0

tϕ(t)

Φ(t)
. (2.29)
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The numbers p(Φ) and q(Φ) are called lower Simonenko and upper Simonenko index of Φ

respectively.

In the same way we can define the Simonenko indices of the complementary function Ψ,

p(Ψ) and q(Ψ).

The following property, useful in the sequel, is contained in [RR]

Proposition 2.3.3. Let Φ, Ψ ∈ ∆2. Then, for any s such that 0 < s 6 1 and for any t > 0,

Φ−1(st)

Φ−1(t)
6 sq(Φ)−1

. (2.30)

It is known ([KR], Theorem 5.1) that

Φ, Ψ ∈ ∆2 ⇐⇒ 1 < p(Φ) 6 q(Φ) < ∞. (2.31)

Setting

hΦ(λ) = sup
t>0

Φ(λt)

Φ(t)
, λ > 0 (2.32)

the numbers

α(Φ) = lim
λ→0+

log hΦ(λ)

log λ
= sup

0<λ<1

log hΦ(λ)

log λ
(2.33)

and

α(Φ) = lim
λ→∞

log hΦ(λ)

log λ
= inf

1<λ<∞
log hΦ(λ)

log λ
(2.34)

are called the fundamental lower index of Φ and the fundamental upper index of Φ, respec-

tively. The numbers α(Φ) and α(Φ) are reciprocals of the Boyd indices ρ and θ respectively

(see Boyd [Bo]). Moreover, Φ ∈ ∆2 if and only if α < ∞ (see [KK]). Always 1 6 α 6 α and

it is α > 1 if and only if the complementary function Ψ satisfies the ∆2 condition. The cou-

ples α(Ψ) and α(Φ), and α(Ψ) and α(Φ) behave similarly as conjugate exponents of power

functions (see e.g. [Bo]), namely α(Ψ) = α(Φ)/(α(Φ)− 1) and α(Ψ) = α(Φ)/(α(Φ)− 1).

As observed above the definition of the Boyd (and then of the fundamental) indices does

not often represent an efficient tool for computation. The following theorem give an answer
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in this direction

Theorem 2.3.4. [FiK] Let Φ be a Young function. If there exist

r0 = lim
t→0

tϕ(t)

Φ(t)
and r∞ = lim

t→∞
tϕ(t)

Φ(t)
,

then,

α(Φ) = min{r0, r∞} and α(Φ) = max{r0, r∞}

Example 2.3.1. Let us consider the Young function

Φ1(t) = tp logα(e + t),

1 < p < ∞ and α > 0. Applying Theorem 2.3.4 one can easily compute α(Φ) = α(Φ) = p

whenever α > 1 and α(Φ) = p, α(Φ) = p + α, if α = 1.

Let

Φ2(t) =





t2 if 0 6 t < 1,

2t− 1 if 1 6 t < 2,

t2/2 + 1 if 2 6 t

Then, Φ2 is a Young function and an easy computation gives p(Φ2) = 4
3

and q(Φ2) = 2. On

the other hand by Theorem 2.3.4, α(Φ2) = 2. This shows that, in general, α(Φ2) 6= p(Φ2).

As another example, let r > 1, s > 0 and let

Φ3(t) =





0 if t = 0

tr exp (
√

1 + s log+ t) if t > 0

(see Talenti [T]). Then, simply by applying Theorem 2.3.4 we obtain α(Φ3) = α(Φ3) = r.

Moreover, as to the Simonenko indices we have p(Φ3) = r and q(Φ3) = r + s
2
.

Now, let Φ, Ψ ∈ ∆2. By (2.29) we have, for any t > 0,

p(Φ)

t
6 ϕ(t)

Φ(t)
6 q(Φ)

t
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Let us fix δ > 0. By integrating over the interval [δ, t], last inequality implies

log

(
t

δ

)p

6 log
Φ(t)

Φ(δ)
6 log

(
t

δ

)q

.

Hence,

Φ(δ)

δp
tp 6 Φ(t) 6 Φ(δ)

δq
tq

so that

p
Φ(δ)

δp
tp−1 6 ϕ(t) 6 q

Φ(δ)

δq
tq−1, ∀t > δ. (2.35)

So we have

∀ δ > 0, ∃ c1, c2 > 0 : c1t
p−1 6 ϕ(t) 6 c2t

q−1. ∀t > δ. (2.36)

We have the following connections between growth condition on Φ and fundamental

indices.

Lemma 2.3.5. [FiK] Let Φ be a Young function satisfying the growth condition pΦ(t) 6

tϕ(t) 6 qΦ(t), ∀t > 0. Then we have

p 6 p(Φ) 6 α(Φ) 6 α(Φ) 6 q(Φ) 6 q. (2.37)

Theorem 2.3.6. [KT] Let Φ and Ψ be a couple of Young function both satisfying the ∆2

condition and w a weight on Rn. The following conditions are equivalent

(i) w verifies the AΦ condition (2.19)

(ii) w ∈ Ap where p = α(Φ).



Chapter 3

Maximal operator and weighted

inequality

The weighted norm inequalities have become one of the most dynamically developing parts

of harmonic analysis since the early 70’s and the pioneering result by B. Muckenhoupt [M].

Solutions of many important problems have been closely linked with weight problems. The

mentioned paper by B. Muckenhoupt triggerred a flood of results on weighted inequalities and

related topics; in this paper it was shown among others that the one weight norm inequality

for the (unweighted) maximal operator is true iff the weight satisfies the Ap condition (see

Definition 1.3.6). The Ap weights provide an extraordinary beautiful answer to a number of

challenging problems which had arisen already in the 30’s in connection with fundamental

results due to G. H. Hardy and J.E. Littlewood. Theorems on boundedness of weighted

maximal operator and of the Hilbert transform followed very soon (see R. A. Hunt, B.

Muckenhoupt and R. L. Wheeden [HMW], R. R. Coifman and C. Fefferman [CF]).

This chapter is intended to study weighted norm inequalities for the Hardy-Littlewood

maximal operator together with some of its most immediate and interesting properties.

Apart from the usual estimates for this operator we also obtain some new weighted inequal-

ities. In particular we will obtain a weighted integral inequality in the Orlicz context and we

will give a new characterization of the Gehring class of weight in connection with a special

41
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class of Orlicz functional spaces (see Theorem 3.2.1). Moreover, in Section 3.3 we will also

study the boundedness of the Hardy Littlewood maximal operator in the variable exponent

spaces W 1,p(·), extending a result due to J. Kinnunen and P. Lindqvist, known in the classical

setting. Hence the results obtained in the course of the chapter seems to be of independent

interest.

In next chapters will be clear the importance of those weight problems. It stems not only

from the theory of functions itself, but it is also clear from the numerous applications to our

boundary value problems and imbedding theorems (see for example Theorem 4.1.1).

3.1 Maximal Operator on Lebesgue space

Let B ⊂ Rn be the unit ball and let f be a locally integrable function on ∂B. For Q ∈ ∂B

we define

Mf(Q) = sup
∆3Q

∫

∆

|f(Y )|dY

where the supremum is taken over all surface ball ∆ containing Q.

Mf will be called the Hardy-Littlewood maximal function of f and the operator M

sending f to Mf , the Hardy-Littlewood maximal operator.

Theorem 3.1.1. The Hardy-Littlewood maximal operator is of ”strong type” (p, p), i.e.,

there exists a positive constant C such that for any function f ∈ Lp(∂B, dσ), it holds

‖Mf‖Lp 6 C‖f‖Lp .

Moreover M is of ”weak type” (1, 1), i.e. for any t > 0, there exists a constant C > 0 such

that

|{Q ∈ ∂B : Mf(Q) > t}| 6 C

t

∫

∂B

fdσ

We will consider also a more general version of the Hardy Littlewood operator. Let ν be
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a positive measure. For any f ∈ L1(dν) consider the operator defined by

Mν(f)(Q) = sup
∆3Q

1

ν(∆)

∫

∆

|f | dν.

It holds the following

Theorem 3.1.2. A doubling measure ν belongs to the Gehring class Bq(dµ) iff the weighted

Hardy-Littlewood maximal operator Mν verifies

‖Mνf‖Lp(dµ) 6 C ‖f‖Lp(dµ) ,
1

q
+

1

p
= 1. (3.1)

Combining Lemma 2.2 of [MS] and Theorem 2.5 of [Bu] with slight modification, we

have:

Proposition 3.1.3. Let 1 < q < ∞, and let ν ∈ Bq(dµ). Then:

‖Mνf‖Lp(dµ) 6 C(n, p)
1
p [Bq,µ(ν)]

q
p ‖f‖Lp(dµ) ,

1

q
+

1

p
= 1, (3.2)

and so, for all λ > 0,

µ ({Mνf > λ}) 6 C(n, p)
[Bq,µ(ν)]q

λp

∫

Ω

|f |pdµ. (3.3)

Finally, we want just recall the following version of the Marcinkiewicz theorem (cfr.

[StW]). Here and below, if v is a weight on ∂B and A is a σ-measurable set, we will write

v(A) =
∫

A
vdσ.

Theorem 3.1.4. Let T be a sublinear operator, and let v be a weight on ∂B. Suppose that

T is simultaneously of restricted weak-types (p1, p1) and (p2, p2), 1 < p1 < p2 < ∞, with

respect to the measure dv = vdσ, i.e.

∫

{TχE>λ}
dv 6 C

λpi
v(E), i = 1, 2 (3.4)
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E measurable subset of ∂B, C independent on E and on the positive constant λ. Then T is

also of ‘strong type’ (r, r), for all p1 < r < p2, that is

‖Tf‖Lr(dv) 6 K ‖f‖Lr(dv) (3.5)

K independent on f .

If T = Mw, then the restricted weak type can be characterized as follows:

Proposition 3.1.5. Let w, v be weights on ∂B, and let the measure dv be doubling. The

weighted Hardy-Littlewood maximal operator Mw is of restricted weak-type (p, p) with respect

to dv, i.e. ∫

{MwχE>λ}
dv 6 C

λp
v(E), 1 6 p < ∞ (3.6)

with C independent on E and on the positive constant λ, iff there exists K > 0 such that for

all ∆, and for all measurable E ⊂ ∆,

w(E)

w(∆)
6 K

(
v(E)

v(∆)

) 1
p

(3.7)

Proof. .

(3.6) =⇒ (3.7)

Observing that, by the definition of the operator Mw, if E ⊂ ∆

MwχE(P ) > χ∆(P )

w(∆)

∫

∆

χE(Q)wdσ(Q) =
w(E)

w(∆)
χ∆(P ),

results from (3.6)

v(∆) 6
∫

{MwχE>
w(E)
w(∆)}

dv 6 Cv(E)

(
w(∆)

w(E)

)p

that is (3.7).

(3.7) =⇒ (3.6)

We have

MvχE(P ) = sup
∆3P

1

v(∆)

∫

∆

χE(Q)v(Q)dσ(Q) = sup
∆3P

v(E ∩∆)

v(∆)
.
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and analogously for Mw. Then, by (3.7)

(MwχE)p 6 KpMvχE,

so that {MwχE > λ} ⊆ {
MvχE > λp

Kp

}
. Now, the measure dv doubling implies that the

operator Mv is of weak-type (1, 1) with respect to dv; in particular,

∫

{MvχE>λ}
dv(Q) 6 C1

λ
v(E)

and then (3.6) follows with C = C1K
p.

3.2 Maximal operator on Orlicz spaces

The following result gives necessary and sufficient conditions to ensure the boundedness of

the weighted maximal operator on Orlicz functional spaces.

Theorem 3.2.1. [Z2] Let w, v be weights on ∂B, such that the measures dv = vdσ and

dw = wdσ are doubling, and let Φ(t) =
∫ t

0
ϕ(s)ds be a Young’s function which, together

with its complementary function Ψ(t), satisfies the ∆2 condition. Then, the following are

equivalent:

i) There exists a constant C > 0, independent on f, such that:

∫

∂B

Φ(Mwf)vdσ 6 C

∫

∂B

Φ(|f |)vdσ;

ii) w ∈ BΦ(dv), that is:

(
1

w(∆)

∫

∆

εvdσ

)
ϕ

(
1

w(∆)

∫

∆

ϕ−1
( w

εv

)
wdσ

)
6 K (3.8)

for all surface balls ∆ and for all ε > 0;
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iii) w ∈ Bq0(dv), where 1
p0

+ 1
q0

= 1, p−1
0 upper index of LΦ.

Proof. i) ⇒ ii)

Let us consider:

‖χ∆‖LΦ(εdv) = inf

{
k > 0 :

∫

∂B

Φ
(χ∆

k

)
εvdσ 6 1

}
=

1

Φ−1
(

1
εv(∆)

) (3.9)

and

Tε :=
∥∥∥wχ∆

εv

∥∥∥
LΨ(εdv)

= inf

{
k > 0 :

∫

∂B

Ψ
(wχ∆

kεv

)
εvdσ 6 1

}
(3.10)

We can immediately observe that Tε > 0, unless σ(∆) = 0, which we exclude. Indeed, Tε = 0

implies that the function wχ∆

εv
is zero dv-a.e., but w, v > 0 implies σ (∆) = 0. On the other

hand, the converse of the Hölder’s inequality implies the existence of a nonnegative function

f , supported by ∆, with norm ‖f‖LΦ(εdv) = 1 and such that
∫
∆

fwdσ =
∫

∂B
f wχ∆

εv
εdv = Tε

and then Mwf(P ) > Tε

w(∆)
, ∀P ∈ ∆; this implies, by i), Tε < ∞.

Now we claim that there exists a constant K1 such that for all ∆ and for all ε > 0

‖χ∆‖LΦ(εdv) Tε 6 K1w(∆). (3.11)

Indeed, with the same f as before, we have

Tε

w(∆)
χ∆(Q) 6 Mwf(Q) ∀Q ∈ ∂B. (3.12)

Being Φ(t) an increasing function, yielding i) and integrating we have:

∫

∆

Φ

(
Tε

w(∆)

)
εvdσ 6

∫

∂B

Φ (Mwf) εvdσ 6 C

∫

∂B

Φ (|f |) εvdσ 6 C (3.13)

that is

Tε

w(∆)
6 Φ−1

(
C

εv(∆)

)
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Let us choose

K1 = h(C−1) = sup
t>0

Φ−1(t)

Φ−1(C−1t)
.

Taking t = C
εv(∆)

, (3.11) follows.

Now, since tϕ−1(t) 6 q(Ψ)Ψ(t) ∀t > 0, we have:

∫

∂B

wχ∆

Tε

ϕ−1

(
wχ∆

vεTε

)
dσ 6 q(Ψ)

∫

∂B

Ψ

(
wχ∆

vεTε

)
εvdσ 6 q(Ψ)

and then, by (3.11) we have

‖χ∆‖LΦ(εdv)

K1w(∆)

∫

∆

ϕ−1

(
w

εv

‖χ∆‖LΦ(εdv)

K1w(∆)

)
wdσ 6 q(Ψ) (3.14)

Now, let us consider the function of ε:

θ(ε) =
‖χ∆‖LΦ(εdv)

K1εw(∆)

Let us remark that, from (2.6), it follows that θ(ε) is essentially equal to the function

θ1(ε) =
v(∆)

K1w(∆)
Ψ−1

(
1

εv(∆)

)

and hence, limε→o+ θ(ε) = +∞, and limε→+∞ θ(ε) = 0. Moreover θ(ε) is continuous, and so

there exists ε > 0 such that θ(ε) = 1, essentially equal to
[
v(∆)Ψ

(
K1w(∆)

v(∆)

)]−1

.

Now, applying these results to (3.14) we obtain

∫

∆

ϕ−1
(w

v

)
wdσ 6 K2q(Ψ)v(∆)Ψ

(
K1w(∆)

v(∆)

)
6 K2

q(Ψ)

p(Ψ)
K1w(∆)ϕ−1

(
K1w(∆)

v(∆)

)
.

(3.15)

Then,

ϕ

(
1

w(∆)

∫

∆

ϕ−1
(w

v

)
wdσ

)
6 ϕ(At) (3.16)

by assuming A = K2
q(Ψ)
p(Ψ)

K1 and t = ϕ−1
(

K1w(∆)
v(∆)

)
. Now, from the generalized ∆2 condition
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for Φ, let B > 0 such that Φ(At) 6 BΦ(t), t > 0. Then we have

ϕ(At) 6 q(Φ)

At
Φ(At) 6 q(Φ)B

At
Φ(t) 6 q(Φ)B

p(Φ)At
tϕ(t) =

q(Φ)

p(Φ)

p(Ψ)

q(Ψ)

B

K1K2

w(∆)

v(∆)

from which the assertion ii) follows for ε = 1 with K = q(Φ)
p(Φ)

p(Ψ)
q(Ψ)

B
K1K2

. The same proof

applies to εv; for the constant K depends only on C, and so the assertion is proved in the

general case.

Now to prove that ii) implies iii) we need some preliminary results:

Lemma 3.2.2. Let Φ, p0, w, and v be as in Theorem 3.2.1. Then, w ∈ BΦ(dv) implies that

the weighted Hardy-Littlewood maximal operator Mw is bounded from Lr(dv) to itself, for all

r > p0.

Proof. By the interpolation criterion (Theorem 3.1.4) it is enough to prove that Mw is of

restricted weak-type (p0, p0) that is (3.7) with p = p0. We have, by duality between LΦ and

LΨ:

w(E)

w(∆)
=

1

w(∆)

∫

∂B

χE

(χEw

εv

)
εdv 6 1

w(∆)
‖χE‖LΦ(εdv)

∥∥∥wχE

εv

∥∥∥
LΨ(εdv)

.

We claim that
∥∥∥wχE

εv

∥∥∥
LΨ(εdv)

6 C1w(∆)Φ−1

(
1

εv(∆)

)
(3.17)

Indeed, let us observe that (3.8) is equivalent to

∫

∆

ϕ−1
( w

εv

)
wdσ 6 w(∆)ϕ−1

(
Kw(∆)

εv(∆)

)
(3.18)

Observing that tϕ−1(t) > Ψ(t), we have:

∥∥∥wχE

εv

∥∥∥
LΨ(εdv)

6 inf

{
k > 0|

∫

∆

Ψ
( w

kεv

)
εvdσ 6 1

}

6 inf

{
k > 0|

∫

∆

w

k
ϕ−1

( w

kεv

)
dσ 6 1

}
,
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and from (3.18)

∥∥∥wχE

εv

∥∥∥
LΨ(εdv)

6 inf

{
k > 0|1

k
w(∆)ϕ−1

(
Kw(∆)

kεv(∆)

)
6 1

}

6 inf

{
k > 0| K

εv(∆)
6 Φ

(
k

w(∆)

)}

= w(∆)Φ−1

(
K

εv(∆)

)
6 C1w(∆)Φ−1

(
1

εv(∆)

)

(where C1 = h(K−1)), i.e. the (3.17). So we obtain

w(E)

w(∆)
6 C1

Φ−1
(

1
εv(∆)

)

Φ−1
(

1
εv(E)

) . (3.19)

Then the statement follows from Proposition 2.3.1, (iii), taking s = v(E)
v(∆)

< 1 and ε =

1
tv(E)

.

Lemma 3.2.3. Let Φ, p0, w and v be as in Theorem 3.2.1, and let Φδ, δ > 0 be such that

ϕ−1
δ (t) =

(
ϕ−1(t)

)1+δ

Then, w ∈ BΦ(dv) implies w ∈ BΦδ
(dv), for small δ.

Proof. Suppose w ∈ BΦ(dv). We want to prove that w ∈ BΦδ
(dv) for some δ > 0, i.e.

(
1

w(∆)

∫

∆

εvdσ

)
ϕδ

(
1

w(∆)

∫

∆

ϕ−1
δ

( w

εv

)
wdσ

)
6 K (3.20)

for all surface balls ∆ and for all ε > 0. For this purpose, it is sufficient to prove, for

zε = ϕ−1
(

w
εv

)
,

(
1

w(∆)

∫

∆

z1+δ
ε dw

) 1
1+δ

6 C
1

w(∆)

∫

∆

zεdw ∀ε > 0, ∀∆. (3.21)
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Indeed, if (3.21) holds true, by ϕδ(t) = ϕ(t
1

1+δ ), we have

(
1

w(∆)

∫

∆

ϕ−1
δ

( w

εv

)
dw

) 1
1+δ

6 C
1

w(∆)

∫

∆

ϕ−1
( w

εv

)
dw

and than,

ϕδ

(
1

w(∆)

∫

∆

ϕ−1
δ

( w

εv

)
dw

)
6 ϕ

(
C

1

w(∆)

∫

∆

ϕ−1
( w

εv

)
dw

)

6 C ′ϕ
(

1

w(∆)

∫

∆

ϕ−1
( w

εv

)
dw

)
6 K

w(∆)

εv(∆)

i.e. (3.20). So let us prove (3.21). To begin, we prove (3.21) for ε = 1. Denote z = z1 =

ϕ−1(w
v
) and set

ϕ̃(t) =
1

ϕ−1(t−1)

(
ϕ̃−1(t) =

1

ϕ(t−1)

)
.

Now, for ε = 1 the inequality

(
1

w(∆)

∫

∆

vdσ

)
ϕ

(
1

w(∆)

∫

∆

ϕ−1
(w

v

)
wdσ

)
6 K (3.22)

becomes, also by the ∆2-condition for ϕ−1

1

w(∆)

∫

∆

zwdσ 6 K ′ϕ−1

((
1

w(∆)

∫

∆

1

ϕ(z)
wdσ

)−1
)

(3.23)

that is

(
1

w(∆)

∫

∆

zwdσ

)
ϕ̃

(
1

w(∆)

∫

∆

ϕ̃−1

(
1

z

)
wdσ

)
6 K ′, ∀∆. (3.24)

Now, we claim that (3.24) implies that for all ∆ there exists λ = λ∆ such that

∥∥∥χ∆

λz

∥∥∥
LΨ̃(λzdw)

6 Cw(∆)Φ̃−1(
1

λ(zw)(∆)
) (3.25)

(where λzdw stays for the measure λzwdσ). To prove (3.25) let us observe that ϕ̃ and ϕ̃−1
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satisfy both the ∆2-condition, and then Φ̃ and Ψ̃ obey ∆2 too. Then, from (3.24)

(
1

w(∆)

∫

∆

ϕ̃−1

(
1

z

)
wdσ

)
6 ϕ̃−1

(
K ′ w(∆)

(zw)(∆)

)
6 C ′ϕ̃−1

(
w(∆)

(zw)(∆)

)
, (3.26)

for all ∆. Now, let λ = λ∆ such that

1

λ
= (zw)(∆)Ψ̃

(
w(∆)

(zw)(∆)

)
. (3.27)

We have

1

λ
∼ w(∆)ϕ̃−1

(
w(∆)

(zw)(∆)

)

that is

ϕ̃−1

(
1

λw(∆)

)
∼ w(∆)

(zw)(∆)

and then

Φ̃

(
1

λw(∆)

)
λ ∼ 1

(zw)(∆)
.

So,

1

λw(∆)
∼ Φ̃−1

(
1

λ(zw)(∆)

)
. (3.28)

We have, by (3.26),

∫

∆

Ψ̃
(

w(∆)
(zw)(∆)

)

w(∆)
(zw)(∆)

ϕ̃−1
(

w(∆)
(zw)(∆)

) ϕ̃−1

(
1

z

)
λwdσ 6 C ′

then, ∫

∆

1

q(Ψ̃)

(
1

z
ϕ̃−1

(
1

z

))
λzwdσ 6 C ′.

Hence, ∫

∆

1

C ′
p(Ψ̃)

q(Ψ̃)

(
1

z

)
λzwdσ 6 1.
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Then, by (2.8), there exists C > 0 such that

∫

∆

Ψ̃

(
C

z

)
λzwdσ 6 1

and so, by (3.28), (3.25) follows.

Now, ∀E ⊂ ∆ measurable set, by the equality

‖χE‖LΦ̃(λzdw) =
1

Φ̃−1
(

1
(λzw)(E)

) , (3.29)

and by (3.25), we have

w(E)

w(∆)
6 C

Φ̃−1
(

1
λ(zw)(∆)

)

Φ̃−1
(

1
λ(zw)(E)

)

and then, by (2.30) with s = (zw)(E)
(zw)(∆)

, we obtain

w(E)

w(∆)
6 C

(
(zw)(E)

(zw)(∆)

)q(Φ̃)−1

, ∀∆, ∀E ⊂ ∆. (3.30)

Now, observing that w ∈ BΦ(dv) implies that zε ∈ L1(dw) for all ε > 0, by Proposition 1.3.4

applied to dµ = wdσ and dν = zwdσ, we have that there exist δ > 0 and K > 0 such that

(
1

w(∆)

∫

∆

z1+δdw

) 1
1+δ

6 K

(
1

w(∆)

∫

∆

zdw

)
(3.31)

for any ∆, that is (3.21) with ε = 1. Now, let us observe that the constant K ′ in (3.24) is

independent on ε; then, the constants in (3.30) are independent on ε too. So, by the last

assertion in Theorem 1.3.4, the constants δ and K in (3.31) are independent on ε, and then

the proof holds true also in the general case.

Now, we can conclude that ii) =⇒ iii). Indeed, we have that w ∈ BΦ(dv) implies

w ∈ BΦδ
(dv) (Lemma 3.2.3); then the maximal operator Mw is bounded from Lr(dv) to

itself, for all r > 1
ρ′ , ρ′ upper index of LΦδ (Lemma 3.2.2). In particular, (Proposition 2.3.2),

Mw is bounded from Lp0(dv) to itself, that is w ∈ Bq0(dv).
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Finally, iii) =⇒ i):

Let w ∈ Bq0(dv), 1
p0

+ 1
q0

= 1. Hence, by Theorem 1.3.2, (iv), there exists an ε > 0 such

that w ∈ Bq0+ε(dv). Assume m = q0 + ε; from Proposition 3.1.3, we have, f measurable,

∫

∂B

Φ(Mwf)vdσ =

∫

∂B

(∫ Mwf

0

ϕ(s)ds

)
dv

6 q(Φ)

∫

∂B

(∫ Mwf

0

Φ(s)

s
ds

)
dv

= q(Φ)

∫ +∞

0

(∫

{P∈∂B:Mwf(P )>s}
dv

)
Φ(s)

s
ds

6 2m′
c(n,m)q(Φ)B

∫ +∞

0

(
1

s

)m′ (∫

{|f |> s
2}
|f |m′

dv

)
Φ(s)ds

s
,

where B = Bm,v(w)m. Then, by Fubini’s theorem

∫

∂B

Φ(Mwf)vdσ 6 c(n,m)q(Φ)BC ′
∫

∂B

(∫ 1

0

Φ(|f |s)
sm′

ds

s

)
vdσ

where C ′ is the doubling constant of Φ(t). Let now m′
0 = m′+p0

2
. So m′

0 < p0, and then,

as already mentioned, there is an s0, 0 < s0 < 1 such that Φ(st) 6
(

s
s0

)m′
0

Φ(t), t > 0,

0 < s < 1. Then,

∫

∂B

Φ(Mwf)vdσ 6 c(n,m)q(Φ)BC ′

s
m′

0
0

∫

∂B

Φ(|f |)
(∫ 1

0

sm′
0−(m′+1)ds

)
vdσ

=
c(n,m)q(Φ)BC ′

(m′
0 −m′)sm′

0
0

∫

∂B

Φ(|f |)vdσ

This completes the proof of Theorem 3.2.1.
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3.3 Maximal operator on variable exponent spaces

Let Ω be an open subset of Rn (often we will assume Ω be connected). For a measurable

function p : Ω → [1, +∞], Lp(·)(Ω) is defined to be the set of all measurable functions

f : Ω → R such that for some λ > 0,

% (p(.), Ω, f/λ) =

∫

Ω\Ωp(·),∞
|f(x)/λ|p(x) dx + ‖f/λ‖∞,Ωp(·),∞

< ∞,

where Ωp(·),∞ = {x ∈ Ω : p(x) = ∞}.

The set Lp(·)(Ω) becomes a Banach function space when equipped with the norm

‖f‖p(·) := inf
{

λ > 0 : % (p(.), Ω, f/λ) 6 1
}

.

These spaces are referred to as variable Lebesgue spaces or, more simply, as variable Lp

spaces.

They have been studied for long time, but only quite recently their important applications

have been found for example in the fluid dynamics, elasticity, and in particular in the study

of properties of electrorheological fluids (see for instance [Zh], [Ru]).

For more information on their basic properties, see Kováčik and Rákosńık [KoR] or Har-

julehto and Hästö [HaHä]; for applications see [CUFN], [Di], [AM] and the references they

contain.

In this section we will investigate about the boundedness properties of the Maximal

operator between those spaces. To this aim, let us define Φ(Ω) to be the set of all measurable

functions p : Ω → [1,∞] and

p− = ess infx∈Ω p(x), p+ = ess supx∈Ω p(x).
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In [PRu], M. Pick and M. Ružička proved that for the maximal operator

Mf(x) = sup
B3x

1

|B|
∫

B∩Ω

|f(y)|dy

(where the supremum is taken over all balls B which contain x and for which |B ∩ Ω| > 0)

to be bounded on the space Lp(·)(Ω), where Ω is a bounded domain of Rn, the uniform local

continuity condition

|p(x)− p(y)| 6 C

− ln |x− y| (3.32)

is ”close” to be a necessary condition, in the sense that there are also counter-examples

where it is shown that (3.32) is not necessary (see for instance [Le]).

In [Di] it is proved that the condition is sufficient.

The following result was shown by D. Cruz-Uribe, A. Fiorenza and C. J. Neugebauer in

[CUFN] (see also A. Nekvinda [Ne] and C. Capone, D. Cruz-Uribe and A. Fiorenza [CCF]).

Theorem 3.3.1. Given an open set Ω ⊂ Rn, let p ∈ Φ(Ω), 1 < p− 6 p+ < ∞, satisfying

the following conditions

|p(x)− p(y)| 6 C

− log |x− y| , x, y ∈ Ω, |x− y| < 1

2
(3.33)

and

|p(x)− p(y)| 6 C

log(e + |x|) , x, y ∈ Ω, |y| > |x|. (3.34)

Then the Hardy-Littlewood maximal operator M is bounded on Lp(·)(Ω).

Conditions (3.33) and (3.34) are the so called log-Hölder continuity conditions one locally

and one at infinity. Let us observe in fact that (3.34) is the natural analogue of (3.33) at

infinity. It implies that there is some number p∞ such that p(x) → p∞ as |x| → ∞, and this

limit holds uniformly in all directions.

In the same spirit of the definition of variable Lp spaces, we can consider the variable

Sobolev space W 1,p(·)(Ω) consisting of all functions f : Ω → R such that Df ∈ Lp(·)(Ω)
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endowed with the norm

‖f‖1,p(·) = ‖f‖p(·) + ‖Df‖p(·)

where Df is the weak gradient of f . It is easy to see that if p(x) = p is constant, then W 1,p(·)

equals W 1,p.

Now, for a locally integrable function f : Ω → [−∞, +∞] let us consider the local

Hardy-Littlewood maximal function MΩf : Ω → [0,∞] as

MΩf(x) = sup
1

|B(x, r)|
∫

B(x,r)

|f(y)|dy

where the supremum is taken over all the balls centered at x with radius 0 < r < dist(x, ∂Ω).

In other words, all open balls centered at x and contained in Ω are admissible. In the case

Ω = Rn we simply write M . Obviously the uncentred maximal operator M is larger than

the local one MΩ. Due to J. Kinnunen and P. Lindqvist [KiLi] is the following known result

about the boundedness of MΩ in the Sobolev space W 1,p.

Theorem 3.3.2. Let 1 < p 6 ∞. If u ∈ W 1,p, then MΩu ∈ W 1,p(Ω) and

|DMΩu(x)| 6 cMΩ|Du|(x), (3.35)

for almost every x ∈ Ω.

For related results see also [Ki], [HajOn], [KiSa].

The last part of this chapter will be devoted to extend this result to the context of

variable Sobolev spaces. More precisely we shall prove the following:

Theorem 3.3.3. [Z3] Let Ω ⊂ Rn be an open set, and let p ∈ Φ(Ω) be such that 1 < p− 6

p+ < ∞ and (3.33) holds true. Moreover let the maximal operator MΩ be bounded on Lp(·).

Then u ∈ W 1,p(·)(Ω) implies MΩu ∈ W 1,p(·)(Ω) and (3.35) holds true.

Let us notice that the main tool in order to prove Theorem 3.3.3 is a recent result

contained in [CUF] about the convergence of approximate identities in variable Lp spaces.
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This in particular gives criteria for smooth functions to be dense in the variable Sobolev

spaces.

In order to prove Theorem 3.3.3 we need some preliminary results, which may be of

independent interest.

Firstly, let us recall a recent result contained in [CUF].

We begin by recalling the definition of approximate identities. Let ϕ be an integrable

function defined on Rn such that
∫
Rn ϕdx = 1. For each t > 0, define the function ϕt(x) =

1
tn

ϕ(x
t
). Note that by a change of variables, ‖ϕt‖1 = ‖ϕ‖1. Define the radial majorant of

ϕ to be the function ϕ̃ = sup|y|>|x| |ϕ(y)|. If ϕ̃ is integrable, we will say that the sequence

{ϕt} is a potential-type approximate identity. This is the case for example of the bounded

functions ϕ of compact support.

Theorem 3.3.4. Given a set Ω and p(·) ∈ Φ(Ω), let ϕ be such that {ϕt} is a potential-type

approximate identity.

Then for all f ∈ Lp(·)(Ω), {ϕt ∗ f} converges to f pointwise almost everywhere.

We want also to recall the following result on the density of smooth functions in the

variable Sobolev spaces [CUF]:

Theorem 3.3.5. Given an open set Ω, let p(·) ∈ Φ(Ω) be such that p+ < ∞ and (3.33)

holds. Then for k > 1, the set

C∞ ∩W k,p(·)(Ω)

is dense in W k,p(·).

Lemma 3.3.6. Let 0 < |Ω| < ∞. If p(·), q(·) ∈ Φ(Ω) are such that p(x) 6 q(x), a. e.

x ∈ Ω, then

‖f‖p(·),Ω 6 (1 + |Ω|)‖f‖q(·),Ω. (3.36)

See [KoR] for more details.
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Lemma 3.3.7. Let Ω ⊂ Rn be an open set and let p(·) ∈ Φ(Ω) be such that p+ < +∞.

If fj ⇀ f and gj ⇀ g weakly in Lp(·)(Ω) and fj(x) 6 gj(x), j=1,2,... a.e. in Ω, then

f(x) 6 g(x) a.e. in Ω.

Proof. Let p′(·) ∈ Φ(Ω) the conjugate exponent function of p(·), i.e. such that 1
p(x)

+ 1
p′(x)

= 1

a.e. x ∈ Ω. By the hypothesis p+ < +∞ we have that the dual space of Lp(·) is Lp′(·) and

that C∞
0 is dense in Lp′(.) (see [KoR] Corollary 2.7 and Theorem 2.11). So we have:

fj ⇀ f weakly in Lp(·) ⇒
∫

Ω

fj(x)h(x)dx →
∫

Ω

f(x)h(x)dx, ∀h ∈ C∞
0 (Ω).

Analogously

gj ⇀ g weakly in Lp(·) ⇒
∫

Ω

gj(x)h(x)dx →
∫

Ω

g(x)h(x)dx, ∀h ∈ C∞
0 (Ω).

Moreover, if in particular h(x) > 0, we have

∫

Ω

fj(x)h(x)dx 6
∫

Ω

gj(x)h(x)dx,

and so by passing to the limit,

∫

Ω

f(x)h(x)dx 6
∫

Ω

g(x)h(x)dx. (3.37)

Now, let ϕ(x) ∈ C∞
0 (Rn), ϕ(x) > 0 so that (ϕt) is a potential type approximate identity.

Let δ > 0, and let us fix y ∈ Ωδ = {y ∈ Ω : dist(y, ∂Ω) > δ}. One can easily observe that if

supp ϕ ⊆ B(0, R), then supp ϕt(y−·) ⊆ B(y, tR), and so t ∈ (0, δ
R
) implies supp ϕt(y−·) ⊂⊂

Ω. Next, by choosing in (3.37) h(x) = ϕt(y − x) we have,

∫

Ω

f(x)h(x)dx =

∫

Rn

f(x)ϕt(y − x)dx = f ∗ ϕt(y). (3.38)

Analogously, ∫

Ω

g(x)h(x)dx =

∫

Rn

g(x)ϕt(y − x)dx = g ∗ ϕt(y). (3.39)
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Then, by passing to the limit t → 0, by (3.37), (3.38), (3.39), and Theorem 3.3.4, we obtain

f(y) 6 g(y) a.e. y ∈ Ωδ.

By the arbitrary choice of δ > 0, the statement follows .

Lemma 3.3.8. If f, g ∈ W 1,p(·)(Ω), then f+ = max{f, 0}, f− = min{f, 0}, |f |, max{f, g},
∈ W 1,p(·)(Ω).

Proof. Let us just observe that we can write h(x) = max{f, g}(x)= ((f −g)+ +g)(x). Then,

by Lemma 7.6 in [GT] the statement easily follows.

Note that, in particular,

Dh =





Df if f > g

Dg if f 6 g

and

D|f | =





Df if f > 0

0 if f = 0

−Df if f < 0

so that |D|f || = |Df |.

Proposition 3.3.9. Let 0 < t < 1 , x ∈ Ω and

ut(x) =

∫

B(x,tδ(x))

u(y)dy, (3.40)

where δ(x) = dist(x, ∂Ω). Moreover, let p ∈ Φ(Ω) be as in the statement of Theorem 3.3.3.

Then if u ∈ W 1,p(·)(Ω), we get ut ∈ W 1,p(·)(Ω) and

|Dut(x)| 6 2MΩ|Du|(x), 0 < t < 1 (3.41)

for almost every x ∈ Ω.
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Proof. The proof falls naturally into two parts. The first step concerns the case u ∈
C∞ ∩ W 1,p(·)(Ω) since our assumptions imply that C∞ ∩ W 1,p(·)(Ω) is dense in W 1,p(·)(Ω).

The idea of the proof of this step goes back at least as far as [KiLi], but for the convenience

of the reader we repeat the relevant material.

Let 0 < t < 1 be fixed. Thanks to Rademacher’s theorem the function δ is differentiable

a.e. in Ω. Moreover, |Dδ(x)| = 1 for a.e. x ∈ Ω. The Leibnitz rule gives

Diut(x) = Di

(
1

ω(tδ(x))n

) ∫

B(x,tδ(x))

u(y)dy

+

(
1

ω(tδ(x))n

) ( ∫

B(x,tδ(x))

Diu(y)dy + t

∫

∂B(x,tδ(x))

u(y)dHn−1(y)Diδ(x)
)
,

i = 1, ..., n, for a.e. x ∈ Ω. Thus

Dut(x) = n

(
Dδ(x)

δ(x)

) (∫

∂B(x,tδ(x))

u(y)dHn−1(y)−
∫

B(x,tδ(x))

u(y)dy
)

(3.42)

+

∫

B(x,tδ(x))

Du(y)dy,

for a.e. x ∈ Ω.

Now, our aim is to estimate the difference between the two integrals in Identity (3.42).

To this end, let us suppose that B(x,R) ⊂ Ω. By the Green’s formula we get

∫

∂B(x,R)

u(y)dHn−1(y)−
∫

B(x,R)

u(y)dy =
1

n

∫

B(x,R)

Du(y)(y − x)dy.

Moreover ∣∣∣
∫

B(x,R)

Du(y)(y − x)dy
∣∣∣ 6 R

∫

B(x,R)

|Du(y)|dy 6 RMΩ|Du|(x).

So we obtain

∣∣∣
∫

∂B(x,R)

u(y)dHn−1(y)−
∫

B(x,R)

u(y)dy
∣∣∣ 6 R

n
MΩ|Du|(x). (3.43)
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Now we multiply (in the sense of the scalar product) bought sides of the vector Identity

(3.42) with an arbitrary unit vector e = (e1, ..., en). By Schwarz inequality and taking into

account Identity (3.43) with R = tδ(x) we have

|eDut(x)|

6 n
|eDδ(x)|

δ(x)

tδ(x)

n
MΩ|Du|(x) +

∣∣∣
∫

B(x,R)

eDu(y)dy
∣∣∣

6 (t + 1)MΩ|Du|(x)

for almost every x ∈ Ω.

Since 0 < t < 1 and e is arbitrary, (3.41) is proved for smooth functions.

The second step concerns the case u ∈ W 1,p(·)(Ω). By density arguments, there is a

sequence ϕj of functions in in C∞ ∩W 1,p(·)(Ω) such that ϕj → u in W 1,p(·)(Ω). Fix 0 < t <

1.We can see that

ut(x) =

∫

B(x,tδ(x))

lim
j

ϕj(y)dy.

Since ϕj → u in Lp(·)(Ω) and p(x) > p− > 1 a.e. then, by Lemma 3.3.6, ϕj → u in

L1(B(x, tδ(x))). Thus

ut(x) = lim
j

(ϕj)t(x),

pointwise in Ω. Now

|(ϕj)t(x)| 6
∫

B(x,tδ(x))

|ϕj(y)|dy 6 MΩϕj(x)

j = 1, 2... for all x ∈ Ω. Since the estimate (3.41) is true for C∞ functions we have

|D(ϕj)t(x)| 6 2MΩ|Dϕj|(x) (3.44)

j = 1, 2... for a.e. x ∈ Ω.
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These inequalities and Theorem 3.3.1 imply that

‖(ϕj)t‖1,p(·),Ω

= ‖(ϕj)t‖p(·),Ω + ‖D(ϕj)t‖p(·),Ω

6 ‖MΩ(ϕj)‖p(·),Ω + 2‖MΩ|Dϕj|‖p(·),Ω

6 c(n, p(·), Ω)
(‖ϕj‖p(·),Ω + ‖Dϕj‖p(·),Ω

)

= c(n, p(·), Ω)‖ϕj‖1,p(·),Ω < ∞.

Thus (ϕj)t is a bounded sequence in W 1,p(·)(Ω) that converges pointwise to ut. Moreover

in our assumption is 1 < p− and p+ < +∞, so we have that W 1,p(·) is reflexive (see [KoR],

Theorem 3.1). Then by the weak compacteness of W 1,p(·)(Ω) there exists a subsequence

of (ϕj)t (we will omit the explicit passage to it) which converges weakly in W 1,p(·)(Ω). In

particular we have ut ∈ W 1,p(·)(Ω) and

D(ϕj)t ⇀ Dut weakly in Lp(·)(Ω). (3.45)

Moreover, by the sublinearity of the maximal function we obtain

|MΩ|Dϕj|(x)−MΩ|Du|(x)| 6 |MΩ(|Dϕj| − |Du|)(x)|

for every x ∈ Ω. Using again Theorem 3.3.1 we get

‖MΩ|Dϕj|(x)−MΩ|Du|(x)‖p(·),Ω

6 ‖MΩ(|Dϕj| − |Du|)(x)‖p(·),Ω

6 c(n, p(·), Ω)‖‖Dϕj| − |Du|‖p(·),Ω.

Thus

MΩ|Dϕj| → MΩ|Du| strongly in Lp(·)(Ω). (3.46)
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By (3.45), (3.46) and (3.44), to complete the proof we have to apply Lemma 3.3.7 using

strong convergence instead of weak convergence for one of the sequences.

The rest of this section is devoted to the proof of Theorem 3.3.3 (see [Z3]).

Proof. ( of Theorem 3.3.3) Let u ∈ W 1,p(·)(Ω). Let us observe that, by Lemma 3.3.8, |u| ∈
W 1,p(·)(Ω).

The idea is to observe that the maximal function MΩ can be expressed as the supremum

of a suitable increasing sequencen ([KiLi]). Let tj, j = 1, 2, .... be a sequence of rational

numbers such that 0 < tj < 1 and let us denote uj = |u|tj . From Lemma 3.3.8 and

Proposition 3.3.9 uj ∈ W 1,p(·)(Ω) and

|Duj(x)| 6 2MΩ|D|u||(x) = 2MΩ|Du|(x)

j = 1, 2... for a.e. x ∈ Ω.

Thus let us define vk : Ω → [−∞, +∞] as

vk(x) = max
16j6k

uj(x),

k = 1, 2, ... for a.e. x ∈ Ω.

Let us observe that for a locally integrable function f the function

∫

B(x,rδ(x))

|f(y)|dy

is continuous with respect to r, 0 < r < 1. Indeed the integral is a function absolutely

continuous with respect to the integration set and then, for all fixed x ∈ Ω,
∫

B(x,rδ(x))
|f(y)|dy

is continuous with respect to the radius r. So the same holds true for the mean value∫

B(x,rδ(x))

|f(y)|dy. Then the supremum taken on the set (0,1) is the same as the one taken

on a subset dense. In particular we have (3.40)

MΩ(x) = sup
k

vk(x).
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Moreover, by Lemma 3.3.8, vk ∈ W 1,p(·)(Ω). So vk is an increasing sequence converging

pointwise to MΩu and

|Dvk(x)| = |D max
16j6k

uj(x)| 6 max
16j6k

|Duj(x)| 6 2MΩ|Du|(x)

k = 1, 2... for a.e. x ∈ Ω.

Since vk(x) 6 MΩu(x) k = 1, 2... for a.e. x ∈ Ω we obtain

‖vk‖1,p(·),Ω

= ‖vk‖p(·),Ω + ‖Dvk‖p(·),Ω

6 ‖MΩ(u)‖p(·),Ω + 2‖MΩ|Du|‖p(·),Ω

6 c(n, p(·), Ω)
(‖u‖p(·),Ω + ‖Du‖p(·),Ω

)

= c(n, p(·), Ω)‖u‖1,p(·),Ω.

Since the weak compactness it follows MΩ(u) ∈ W 1,p(·)(Ω) with vk → MΩ(u) and Dvk →
DMΩ(u) weakly in Lp(·)(Ω). Therefore from Lemma 3.3.7

|DMΩ(u)(x)| 6 2MΩ|Du|(x).

Remark 3.3.1. Let us observe that in case Ω = Rn, the proof can be obtained more easily

by considering a slight modification of the ones contained in [Ki].

3.4 Some remarks

Let us say a few words about the inequality (1.34) for the nontangential maximal operator

N , as defined by (1.10). The heart of the matter is the weighted norm inequality for the
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Hardy-Littlewood (unweighted) maximal function of f ∈ L1
loc(R)

Mf(x) = sup
I3x

∫

I

|f(y)|dy (3.47)

Here we have confined ourselves to the one dimensional case, not only for the sake of simplic-

ity but also because it suffices to express out ideas in reasonable generality. A well known

result of B. Muckenhoupt asserts that for a measure ω in R we have

∫

R
Mf(x)pw(x)dx 6 cp

∫

R
|f(y)|pw(x)dx (3.48)

if and only if Ap(w) < ∞. S. Buckley [Bu] noted that

cp = c(p, n)Ap(w)
p

p−1 (3.49)

This constant exhibits the best possible dependence on Ap(ω).

Here we deal with somewhat dual situation where we have the weighted maximal function

of g ∈ L1
loc(R) defined by

Mvg(t) = sup
J3t

1∫
J
v(τ)dτ

∫

J

|g(τ)|v(τ)dτ (3.50)

where v ∈ A∞ on R. As already mentioned (see Lemma 1.2.2) the following estimate

Nu(σ) 6 c Mωg(σ), a.e. σ ∈ ∂D (3.51)

with ω being the harmonic measure associated with an operator L and its coefficients matrix

A ∈ E(K), while u is the solution to




Lu = 0 in D

u|∂D = g ∈ C(∂D)
(3.52)
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This problem involves a weighted maximal operator which satisfies the norm inequality

∫

R
Mvg(t)qdt 6 c

∫

R
|g(t)|qdt, (3.53)

We wish to give a short proof of such an inequality in case q = 2. Let us begin with the

following

Lemma 3.4.1. Let f, g,∈ L1
loc(R) be coupled by the relation g(t) = f(h−1(t)), for almost

every t ∈ R, where h : R→ R is an increasing homeomorphism. Then

M(h−1)′g(t) = Mf(h−1(t)) (3.54)

for a.e. t ∈ R.

Proof. We first prove the inequality 6 in (3.54). Fix t ∈ R to show that for any interval

(a, b) containing t we have

1∫ b

a
(h−1)′(τ)dτ

∫ b

a

f(h−1(τ))(h−1)′(τ)dτ 6 Mf(h−1(t)). (3.55)

Inequality (3.55) follows by the change of variables: h−1(τ) = σ:

1∫ b

a
(h−1)′(τ)dτ

∫ b

a

f(h−1(τ))(h−1)′(τ)dτ =
1

h−1(b)− h−1(a)

∫ h−1(b)

h−1(a)

f(σ)dσ, (3.56)

where its should be noted that h−1(a) < h−1(t) < h−1(b).

The opposite inequality is proved similarly. Indeed, fix t and consider any interval (c, d) 3
h−1(t). In order to prove that

1

d− c

∫ d

c

f(σ)dσ 6 sup
(a,b)3t

∫ b

a
f(h−1(τ))(h−1)′(τ)dτ∫ b

a
(h−1)′(τ)dτ

(3.57)
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we perform the change of variables h(σ) = τ ,

1

d− c

∫ d

c

f(σ)dσ =
1

d− c

∫ h(d)

h(c)

f(h−1(τ))(h−1)′(τ)dτ. (3.58)

Introducing the end points a = h(c), b = h(d), we see that t ∈ (a, b) and

1

d− c

∫ d

c

f(σ)dσ 6 1∫ b

a
(h−1)′(τ)dτ

∫ b

a

f(h−1(τ))(h−1)′(τ)dτ. (3.59)

This completes the proof of the Lemma.

Corollary 3.4.2. Let h : R → R be an increasing homeomorphism. Define two weights on

R:

w(t) = h′(t) v(s) = (h−1)′(s).

Assume that there exists a constant c0 > 1 such that

∫

R
Mvg(t)2dt 6 c0

∫

R
g(t)2dt (3.60)

for any g ∈ L2(R, dx). Then, the inequality

∫

R
Mf(x)2w(x)dx 6 c0

∫

R
f(x)2w(x)dx, (3.61)

holds for any f ∈ L2(R, w(x)dx). Conversely, (3.61) yields (3.60).

Proof. Assume (3.61) holds, for any f ∈ L2(R, wdx). For g ∈ L2(R, dx), we set f(x) =

g(h(x)) and compute

∫
f(x)2w(x)dx =

∫
f(x)2h′(x)dx =

∫
f(h−1(t))2dt =

∫
g(t)2dt. (3.62)

Similarly, in view of (3.54)
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∫
Mf(x)2w(x)dx =

∫
Mf(x)2h′(x)dx =

∫
Mf(h−1(t))2dt =

∫
Mvg(t)2dt. (3.63)

Now, from (3.61), (3.62) and (3.63) we deduce that

∫

R
Mvg(t)2dt 6 c0

∫

R
g(t)2dt. (3.64)

Similarly the reader may verify that (3.60) for g ∈ L2(R, dx) implies (3.61) for f ∈ L2(R, w(x)dx).



Chapter 4

On the Dirichlet problem with Orlicz

boundary data

Let us consider a Young’s function Φ : R+ → R+ satisfying the ∆2 condition together with

its complementary function Ψ, and let us consider the Dirichlet problem for a second order

elliptic operator in divergence form L = div(A∇u):




Lu = 0 in B

u|∂B
= f,

where A ∈ E(K) and B is the unit ball of Rn. In this chapter we give a necessary and

sufficient condition for the LΦ-solvability of the problem, where LΦ is the Orlicz Space

generated by the function Φ.

4.1 The LΦ-solvability

Let Φ : R+ → R+ be a Young’s function that satisfies the ∆2 -condition together with its

complementary function Ψ. The Dirichlet problem (1.32) is said to be LΦ-solvable if for

any f ∈ C0(∂B) there exists a unique solution u ∈ W 1,2
loc (B)∩C0(B̄) to (1.32) which satisfies

69
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the uniform estimate ∫

∂B

Φ(Nu)dσ 6 C

∫

∂B

Φ(|f |)dσ (4.1)

Let us observe that for LΦ = Lp the integral inequality (4.1) corresponds to the norm

inequalities (1.34). We will show that condition (ii) of Theorem 1.4.1 is a necessary and

sufficient condition also for the LΦ-solvability of the problem (1.32), where Φ is a given

Young’s function such that the upper index of LΦ is p−1
0 (see Definition 2.3.1).

As a corollary of Theorem 3.2.1 we have the following extension of Theorem 1.4.1.

Namely:

Theorem 4.1.1. [Z2] Let B be the unit ball of Rn and let Φ(t) =
∫ t

0
ϕ(τ)dτ be a Young’s

function that satisfies the ∆2 -condition together with its complementary function Ψ(s) =
∫ s

0
ϕ−1(τ)dτ , and let p−1

0 be the upper index of the Orlicz Space LΦ(∂B, dσ). Then the

following are equivalent:

i) The Dirichlet problem (1.32) is LΦ-solvable.

ii) The L-harmonic measure ω is absolutely continuous with respect to σ, and k = dω
dσ
∈

BΦ(dσ), that is:

(
1

k(∆)

∫

∆

εdσ

)
ϕ

(
1

k(∆)

∫

∆

ϕ−1

(
k

ε

)
kdσ

)
6 K (4.2)

for all surface balls ∆ and for all ε > 0.

iii) The L-harmonic measure ω belongs to Bq0(dσ), 1
p0

+ 1
q0

= 1, i.e. ω is absolutely contin-

uous with respect to σ, and k = dω
dσ
∈ Lq0(dσ), with

(
1

σ(∆)

∫

∆

kq0

) 1
q0

6 C

(
1

σ(∆)

∫

∆

k

)
, ∀∆.

Remark 4.1.1. It is worth to point out that in case Φ(t) = tp, 1 < p < 1, condition ii)

is exactly the reverse Hölder condition iii). Hence, last theorem extends Theorem 1.4.1 in



4.1. THE LΦ-SOLVABILITY 71

the sense that we obtain that condition ωL ∈ Bq0 characterize solvability of the Dirichlet

problem also when the boundary data is in a suitable class of Orlicz space, containing Lq0 ,

and this class is identified by the upper Boyd index ρ = 1
p0

.

Proof. The equivalence (ii) ⇔ (iii) follows directly by Theorem 3.2.1 applied to the weight

functions v(x) = 1 and w(x) = k(x). Moreover (iii) ⇒ (i). In fact, using Theorem 3.2.1

again, we have that there exists a constant C > 0, such that for any f ∈ C(∂B):

∫

∂B

Φ(Mkf)dσ 6 C

∫

∂B

Φ(|f |)dσ. (4.3)

Hence, by the pointwise estimates

Nu(P ) 6 CβMωf(P ), ∀P ∈ ∂B,

contained in Lemma 1.2.2 the LΦ- solvability directly follows.

To prove (i) ⇒ (iii) we firstly need to show that LΦ-solvability of the Problem (1.32)

implies that the harmonic measure ω is absolutely continuous with respect to the surface

measure σ. To this aim, let us observe that ω and σ are Borel positive regular probability

measures on ∂B.

Now, let K be a compact set on ∂B. By the regularity of σ it holds

∀ε > 0, ∃ an open set A ⊂ ∂B such that K ⊂ A and σ(A \K) < ε.

Moreover, by the Uryson Lemma

∃f ∈ C0(∂B) such that: 0 6 f 6 1 on ∂B, f = 1 on K, f = 0 on ∂B \ A.

For such function f we have (for any point on ∂B)
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Mωf > 1

ω(∂B)

∫

∂B

fdω =

∫

A

fdω >
∫

K

fdω = ω(K),

so that

∫

∂B

Φ(Mωf)dσ > Φ(ω(K))σ(∂B). (4.4)

Moreover, ∫

∂B

Φ(|f |)dσ =

∫

A

Φ(f)dσ 6 Φ(1)σ(A) < Φ(1)(σ(K) + ε). (4.5)

Hence, by (4.4), (4.5) and by i), we have

Φ(ω(K)) 6 cΦ(1)

σ(∂B)
(σ(K) + ε))

and so, by the arbitrarity of ε, it holds

ω(K) 6 Φ−1(c′σ(K)). (4.6)

Now, by the regularity of ω and of σ, (4.6) holds for any Borel set and then for any

Lebesgue set E on ∂B. In fact,

ω(E) = sup{ω(K) | K compact set, K ⊂ E}

6 Φ−1(c′ sup{σ(K) | K compact set, K ⊂ E})

= Φ−1(c′σ(E)).

Hence the absolute continuity of ω with respect to σ,

∀ε > 0,∃δ > 0 : σ(E) < δ ⇒ ω(E) < ε (4.7)

holds true. Indeed one can choose in (4.7), δ = Φ(ε)
c′ .

Now to complete our proof we need to show that ω ∈ Bq0 . Let us start by observing
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that the weighted maximal operator Mω is pointwise subadditive. In fact, let f, g ∈ L1(dω).

Obviously we have ∫

∆

|f + g|kdσ 6
∫

∆

|f |kdσ +

∫

∆

|g|kdσ

for any surface ball ∆ ⊂ ∂B, so that

Mω(f + g)(P ) 6 Mωf(P ) + Mωg(P )

for any P ∈ ∂B. Hence, for any f ∈ LΦ(dσ), let us consider f+ and f− be the positive and

negative part of f respectively, i.e.

f+ =





f if f > 0

0 if f 6 0

f− =





0 if f > 0

−f if f 6 0

so that

f = f+ − f−.

Obviously f ∈ LΦ(dσ) implies that also f+ and f− are in LΦ(dσ). Then, let u1, u2 be the

solution of the LΦ- problem with boundary data f+ and f− respectively. By the subadditivity

of Mω and by the second part of Lemma 1.2.2, we have

Mωf 6 Mωf+ + Mωf− 6 Cβ(Nu1 + Nu2).

On the other hand, by the ∆2 condition and the convexity of Φ, by (2.12) and by the
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assumption of LΦ-solvability, we obtain

∫

∂B

Φ(Mωf)dσ 6
∫

∂B

Φ(Cβ(Nu1 + Nu2))dσ

6 C(β, Φ)

(∫

∂B

Φ(Nu1)dσ +

∫

∂B

Φ(Nu2)dσ

)

6 C(β, Φ)

(∫

∂B

Φ(f+)dσ +

∫

∂B

Φ(f−)dσ

)

6 C(β, Φ)

(∫

∂B

Φ(|f |)dσ

)

Hence, we obtain that for any f ∈ LΦ(dσ):

∫

∂B

Φ(Mkf)dσ 6 C

∫

∂B

Φ(|f |)dσ. (4.8)

Using again Theorem 3.2.1 the thesis follows.

It is worth to point out that in general the integral inequality (4.1) is stronger than the

norm inequality (1.34). Indeed it holds the following

Proposition 4.1.2. Let Φ ∈ ∆2 be a Young function. Then

∫

∂B

Φ(Mωf)dx 6 C

∫

∂B

Φ(|f |)dx (4.9)

implies

‖Mωf‖LΦ 6 K‖f‖LΦ(dx) (4.10)

Proof. Assume (4.9). Then, in particular, for any h > 0,

∫

∂B

Φ

(
Mωf

h

)
dx 6 C

∫

∂B

Φ

( |f |
h

)
dx.

Let

kf = ‖f‖LΦ = inf

{
k :

∫

∂B

Φ

( |f |
k

)
dx 6 1

}
,
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and let B = 1
C

. There exists A > 0 such that Φ(At) 6 BΦ(t). Then, for any h = k
A

>
kf

A
we

have

∫

∂B

Φ

(
Mωf

h

)
dx =

∫

∂B

Φ

(
Mω

f

h

)
dx 6

6 C

∫

∂B

Φ

( |f |
h

)
dx

6 CB

∫

∂B

Φ

( |f |
k

)
dx

6 1.

Hence, the infimum of h such that
∫

∂B
Φ

(
Mωf

h

)
dx 6 1, verifies inf h 6 kf

A
= 1

A
‖f‖LΦ , i.e.

‖Mωf‖LΦ 6 1

A
‖f‖LΦ(dx)

as we claimed.

Note that from the ’openness’ of the condition ω ∈ Bq(dσ) (Theorem 1.3.2, iv)), it follows

that the LΦ-solvability implies also the LΦδ -solvability of the Problem (1.32), with suitable

δ > 0, and the upper index of LΦδ is bigger than the one of LΦ.

Moreover, we observe that, in the case Φ(t) = tlgα(e+ t), 0 6 α < 1, Theorem 1.4.1 does

not hold (see Section 4.3).

In what follows we will show same examples of Young function Φ such that Theorem

4.1.1 can be applied.

4.2 Examples

Let

Φ(t) = tp logα(e + t) (4.11)

Obviously Φ(t) verifies the ∆2 condition. Moreover, Φ is a Young function

i) when p > 2 and α > 2 − p. In particular, choosing α < 0, we have Φ(t) < tp. This
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implies Lp ⊂ LΦ,

ii) when p > 3
2

and α > 3− 2p so that it can be α < 0, and hence Φ(t) < tp. This implies

again Lp ⊂ LΦ.

Once that Φp,α is a Young function, using [FiK] we have ρ < 1 (or equivalently α(Φ) > 1)

so that Φ and its complementary function Ψ verify the ∆2 condition. Hence, Theorem 4.1.1

can be applied for example when

Φ(t) = tp logα(e + t), ∀p >
3

2
, α > 3− 2p.

Note that thanks to [FiK] we can exactly compute the upper index ρ of Φ. Indeed by easy

computation we have

lim
t→0

tϕ(t)

Φ(t)
= p

Analogously,

lim
t→∞

tϕ(t)

Φ(t)
= p

Hence the upper and lower Boyd index of Φ are ρ = ϑ = 1
p
.

4.3 The L(lgL)α-unsolvability. A counterexample

In this section we will show, with an example, the unsolvability of the Dirichlet problem

with L(lgL)α boundary data. To be more precise, we will show that in case f ∈ L(lgL)α,

0 6 α < 1, an analogue inequality to (1.34)

‖Nu‖L1(∂B,dσ) 6 C ‖f‖L(lgL)α(∂B,dσ)

does not hold.
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Example 4.3.1. Let B be the unit ball in R2, f ∈ L(lgL)α(∂B, dσ) and let u be the solution

to the Dirichlet problem for the Laplacian





∆u = 0 in B

u|∂B
= f

(4.12)

We recall that a solution of the problem (4.12) is given by the Poisson integral formula.

u(% cos ϑ, % sin ϑ) =
1− %2

2π

∫ π

−π

f(cos s sin s)

1 + %2 − 2% cos(ϑ− s)
ds (4.13)

Let now consider the function Φ : [0, +∞[→ [0, +∞[ defined by

Φ = Φ(t) = tlgα(e + t).

When α > 0, Φ is a convex, continuous, strictly increasing function with Φ(0) = 0, limt→∞ Φ(t) =

+∞.

For small δ > 0, let γ = γ(δ) be the (unique) positive solution to the equation:

δγlgα(e + γ) = lgα(e + 1) = Φ(1) (4.14)

(Note that for α = 0, γ = 1
δ
) and, for Q ∈ ∂B, Q = (cos s, sin s) define:

fδ = fδ(Q) = fδ(s) =





γ if 0 6 s 6 δ

0 elsewhere

These functions fδ, δ > 0 belong to L(lgL)α(∂B, dσ) with unit norm. Indeed, for λ > 0,

we have

∫

∂B

Φ(λf(Q))dσ(Q) =

∫ δ

0

λγlgα(e + λγ)ds = δλγlgα(e + λγ) R Φ(1) ⇔

λ R 1
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(the equivalence follows by (4.14), being Φ a strictly increasing function) and then, recalling

that, by definition:

‖fδ‖L(lgL)α(∂B) = inf

{
1

λ
:

∫

∂B

Φ(λf(Q))dσ(Q) 6 Φ(1)

}
,

we have

‖fδ‖L(lgL)α(∂B) = 1, ∀δ. (4.15)

If for any δ, uδ = P [fδ] is the Poisson solution to the problem (4.12) with f = fδ, we have:

Nuδ(W ) > sup
06%<1

u(%W ), ∀W = (cos ϑ, sin ϑ) ∈ ∂B,

that is:

Nuδ(W ) > 1

2π
sup

06%<1

∫ δ

0

1− %2

1 + %2 − 2% cos(ϑ− s)
γds,

and, if δ 6 ϑ 6 π
2
,

Nuδ(W ) > δγ

2π sin ϑ
> δγ

2πϑ
.

Hence, for the norms we have:

2π‖Nuδ‖L1(∂B) > δγ

∫ π
2

δ

1

ϑ
dϑ = δγ[lg ϑ]

π
2
δ > δγ lg

1

δ
. (4.16)

On the other hand, by (4.14) it follows that:

δγ =
Φ(1)

lgα(γ + e)
,

and then

lgα(γ + e) =
Φ(1)

δγ
.

Consequently:

lg lgα(γ + e) = lg

(
Φ(1)

δγ

)
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that is

lg

(
1

δ

)
= lg γ + α lg lg(γ + e)− lg(Φ(1));

we also obtain that, when δ → 0+,

γ lgα(γ + e) → +∞

and so γ → +∞ too. By the above considerations and by (4.16), we have:

2π

Φ(1)
lim

δ→0+
‖Nuδ‖L1(∂B) >

1

Φ(1)
lim

δ→0+

(
δγ lg

1

δ

)
=

lim
γ→+∞

lg γ + α lg lg(γ + e)− lg(Φ(1))

lgα(γ + e)
=





+∞ if 0 6 α < 1

1 if α = 1

0 if α > 1

Hence, by the last inequality and by (4.15), follows that, if 0 6 α < 1, then there is no

constant C > 0 satisfying:

‖Nu‖L1(∂B,dσ) 6 C ‖f‖L(lg L)α(∂B,dσ)

with u = P [f ], for any f ∈ L∞(∂B) (⊂ L(lg L)α(∂B, dσ)).

4.4 On the case α = 1

In this section we establish a maximal inequality which could be useful in view of sufficient

conditions for the L(lg L)-solvability of the Dirichlet problem (1.32). It corresponds to a

limit case, as q → ∞, of the Bq-condition. To this purpose, we recall the main result of B.
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Muckenhoupt [M] about a weighted maximal function. Given a measure m on an interval

J , define:

Mmf(x) = sup
y∈J

∫ y

x
|f(t)|dm(t)∫ y

x
dm(t)

where the quotient is to be taken as 0 if the numerator and the denominator are both ∞.

It holds the following:

Theorem 4.4.1. Let m be a Borel measure on an interval J which is 0 on sets consisting

of single points. Let U(x) and V (x) be nonnegative functions on J , assume that 1 6 p < ∞,

0 6 a < ∞ and given f(x) on J let Ea be the subset of J where Mm(f) > a. Then, there is

a constant, B, independent on f and a such that

∫

Ea

U(x)dm(x) 6 Ba−p

∫

J

|f(x)|pV (x)dm(x) (4.17)

iff there is a constant K such that for any subinterval I of J ,

[∫

I

U(x)dm(x)

] [∫

I

[V (x)]
−1
p−1 dm(x)

]p−1

6 K[m(I)]p. (4.18)

In particular we have the next

Corollary 4.4.2. Let v > 0 be a weight on J . Then, if 1 6 p < ∞ and 0 6 a < ∞, there

is a constant B such that

|{Mvf > a}| 6 B

ap

∫

J

|f(x)|pdx (4.19)

for all f iff there is a constant K such that for every subinterval I of J ,

|I|
[∫

I

v
1

p−1 vdx

]p−1

6 K

[∫

I

vdx)

]p

. (4.20)

(Note that if v is a weight on the interval J we can choose in the last theorem U(x) =

V (x) = 1
v(x)

and so Udm = V dm = dx, m = vdx).
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Hence, we have (4.19), p = 1 iff there is a constant K such that:

ess sup
x∈I

6 K
1

|I|
∫

I

vdx

for all subinterval I of J (that is the well known Gehring condition v ∈ G∞(dx)).

With trivial changes the results hold also for maximal operator where the interval J is

taken with both extremal points variable and so we obtain the following result

Theorem 4.4.3. [Z1] Let B be the unit circle in R2 and let v be a weight, v ∈ G∞. Then

the weighted Hardy-Littlewood maximal operator

Mvf(x) = sup
∆3x

1∫
∆

vdx

∫

∆

|f |vdx

is such that

Mv : f ∈ LlgL(dx) → Mvf ∈ L1(dx) (4.21)

Proof. We preliminary observe that the following equality, which is an immediate conse-

quence of Fubini’s theorem, holds:

∫

∂B

|f |dx =

∫ ∞

0

|{|f | > t}|dt

If v ∈ G∞(dx) there exists a constant C > 0 (independent on f) such that, x > 0,

|{Mvf > x}| 6 C

x

∫

∂B

|f |dx

for any function f ∈ L1(dx). Now, fix x > 0,and define f = gx + hx where

gx =





f if |f | > x
2

0 elsewhere

It is hx = f − gx and then ‖hx‖L∞ 6 x
2
, so ‖Mvhx‖L∞ 6 x

2
; by the subadditivity of the

maximal operator Mv, Mvf 6 Mvgx + x
2
, and then {Mvf > x} ⊂ {Mvf > x

2
}. Applying
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Muckenoupt’s result to gx we have

|{Mvf > x}| 6 |{Mvf >
x

2
}| 6 C

x

∫ ∞

0

|{|gx| > t}|dt

Observe that

|{|gx| > t}| =





|{|f | > t}| if t > x
2

|{|f | > x
2
}| elsewhere

and then

|{Mvf > x}| 6 C

x

∫ x
2

0

|{|gx| > t}|dt +
C

x

∫ ∞

x
2

|{|gx| > t}|dt =

C

x

∫ x
2

0

|{|f | > x

2
}|dt +

C

x

∫ ∞

x
2

|{|f | > t}|dt =

C

x

x

2
|{|f | > x

2
}|+ C

x

∫ ∞

x
2

|{|f | > t}|dt

Obviously, we have

∫

∂B

Mvfdx =

∫ 2

0

|{Mvf > x}|dx +

∫ ∞

2

|{Mvf > x}|dx.

The first term of the last is bounded by

∫ 2

0

|{Mvf > x}|dx =

∫ 2

0

∫

{Mvf>x}
dϑdx 6 2|∂B|

and for the second one we have

∫ ∞

2

|{Mvf > x}|dx 6
∫ ∞

2

C|{|f | > x

2
}|dx + C

∫ ∞

2

1

x

∫ ∞

x
2

|{|f | > t}|dtdx

But ∫ ∞

2

C
∣∣∣{|f | > x

2
}
∣∣∣ dx 6 C

∫ ∞

0

∣∣∣{|f | > x

2
}
∣∣∣ dx = C‖f‖L1(∂B)

and
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∫ ∞

2

1

x

∫ ∞

x
2

|{|f | > t}| dtdx =

∫ ∞

1

1

x

∫ ∞

x

|{|f | > t}| dtdx =

∫ ∞

1

1

x

[∫ ∞

x

(∫

{|f |>t}
dϑ

)
dt

]
dx =

by Fubini’s theorem ∫ ∞

1

1

x

[∫

{|f |>x}

∫ |f(eiϑ)|

x

dtdϑ

]
dx 6

6
∫ ∞

1

1

x

[∫

{|f |>x}

∫ |f(eiϑ)|

0

dtdϑ

]
dx =

By integrating

=

∫ ∞

1

1

x

[∫

{|f |>x}
|f(eiϑ)|dϑ

]
dx =

by Fubini’s theorem again

=

∫

{|f |>1}
|f(eiϑ)|

∫ |f(eiϑ)|

1

1

x
dxdϑ =

and by integrating

=

∫

{|f |>1}
|f(eiϑ)| lg |f(eiϑ)|dϑ =

∫

∂B

|f | lg+ |f |dϑ < ∞,

that is

‖Mvf‖L1(dx) 6 2|∂B|+ C ‖f‖L1(dx) + C

∫

∂B

|f | lg+ |f |dϑ.

This completes our proof.
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Chapter 5

Lp-solvability in dimension n = 2.

Sharp results

In this chapter we will concentring our attention to the case n = 2. This will give us the

possibility to obtain a number of quantitative results, many of which sharp.

So, let us denote by D the unit disc in R2 and assume that the elliptic operator L =

div(A(x)∇) is Lp- resolutive, p > 1 on D. One of our results is Proposition 5.4.1 in which we

explore the “self improving” property of Gehring classes (ω ∈ Bq ⇒ ω ∈ Bq+ε), see Theorem

1.3.3. Thanks to Theorem 1.4.1, we are able to answer in the same vain the Lp- solvability

question; Lp- solvability ⇒ Lp−η- solvability). The point to make here is that we found the

supremum of such η in terms of the Bq constant of ω. For the sake of readibility we formulate

here the following particular case of Proposition 5.4.1

Theorem 5.0.4. Assume that Problem (1.32) is L2- solvable and set B = B2(ω). Then this

problem is also Lr- solvable, whenever

r > 1 +

√
B − 1

B
. (5.1)

This lower bound for r in terms of B is best possible.

It is worth pointing out that 1+
√

B−1
B
→ 1 as B → 1, which is the case of the Laplacian.

85



86 CHAPTER 5. LP -SOLVABILITY IN DIMENSION N = 2. SHARP RESULTS

Indeed, let L = ∆ be the Laplace operator. We have ωL = 1
2π

dσ and then B = 1. So we

re-obtain the known fact (see for example [F]) that the Laplacian “tends” to have its Lp-

Dirichlet problem solvable in the full range 1 6 p < ∞.

From now on we will denote by Es(K) the subclass of E(K) of symmetric matrices. In

Section 5.3 we will specify the precise doubling property of ω as a function of the ellipticity

constant K, at least for harmonic measures ω relative to the operators L = div(A(x)∇ ) on

the half plane R2
+ with A ∈ Es(K) verifying detA = 1 a.e. We notice that in this case ω

turns out to be equal to dh
1+h2 for certain homeomorphism h : R→ R with

D2(dh) 6 eC(K−1), (5.2)

where C turns out to be an absolute constant, Theorem 5.3.1.

Let us denote by E1(K) the subclass of Es(K) of symmetric matrix functions satisfying

the condition

detA(x) = 1 a.e. x ∈ D.

The restriction to coefficient matrices A ∈ E1(K) poses any loss of generality. For this

we recall [IS] that, if u ∈ W 1,2
loc solves div(A(x)∇u ) = 0 for some A ∈ Es(K) then there is a

correction A ∈ E1(K) such that div(A∇u) = 0.

Now let L0 = div(A0∇ ) and L1 = div(A1∇ ) be two (elliptic) operators and suppose that

we know that the Dirichlet problem is solvable for the first operator L0. A natural question

arises as to whether one can easily verify that the second operator has its Dirichlet problem

solvable as well?

For example, consider the two operators L0 = ∆ and L1 = div(A1∇ ) with A1 ∈ E1(K).

It is well known that L0 is L2- resolutive and there are a number of interesting results in

order L1 to be Lq- resolutive, many of which require the coefficients of L1 to be uniformly

close to those of ∆ (i.e. δij) as we approach the boundary of D (see e.g. [D3], [FKP], [F]).

Here we present a different point of view: an elliptic operator is thought of as a pertur-

bation of the Laplacian after a suitable change of variables.
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Actually, all matrices in E1(K) generate pull-back of Laplacian via K- quasiconformal

mappings. More precisely, let F : R2 → R2, F = (α, β) be K- quasiconformal ; that is, F is

a homeomorphism of class W 1,2
loc (R2;R2) such that

|DF (x)|2 6
(

K +
1

K

)
JF (x) a.e.. (5.3)

Here |DF (x)| stands for the Hilbert-Schmidt norm of the differential matrix DF (x) and

JF (x) for the Jacobian determinant of F . Then, with R2
+ denoting the half-plane x2 > 0,

we have F (R2
+) = R2

+ and F (R) = R. Moreover, if u satisfies ∆u = 0, then v = u ◦ F is a

solution to Lv = div(A∇v) = 0 where A = A(x1, x2) is given by

A =
1

JF




β2
x1

+ β2
x2

−αx1βx1 − αx2βx2

−αx1βx1 − αx2βx2 α2
x1

+ α2
x2




(5.4)

and verifies (1.1), see [IS]. Hence L = ∆F is the pull-back under F of the Laplacian. It is

well known that A belongs to E1(K), see [IS] e.g.

In Section 5.2 we will prove the following theorem which enlights a quantitative version

of the solvability for couples of special elliptic operators L0 and L1. It reveals a kind of

duality between the associated harmonic measures ωL0 and ωL1 , expressed by equality of the

respective A∞- constants (for the definitions of the constants Ã∞(ν) or B̃1(ν) see Section

1.3).

Theorem 5.0.5. Let F : D→ D be a K- quasiconformal mapping. Then, the operator

L0 = ∆F (5.5)

is resolutive if and only if

L1 = ∆F−1 (5.6)



88 CHAPTER 5. LP -SOLVABILITY IN DIMENSION N = 2. SHARP RESULTS

is resolutive. Actually, for the harmonic measures ωL0 and ωL1 we have

Ã∞(ωL0) = B̃1(ωL1) and Ã∞(ωL1) = B̃1(ωL0). (5.7)

Moreover, if L0 is Lp- resolutive for a p > 1 and let B = Bq(ωL0) < ∞ with q = p
p−1

, then

L1 is Lr- resolutive for

r >
p− x

p(1− x)
(5.8)

where x = x(B, p) ∈ (0, 1) is the unique solution to the equation

(
1− x

p

)p

= B(1− x). (5.9)

The result is sharp.

We point out that under the definitions (5.5) and (5.6) it is not really meaningful to

speak of the “distance” between L0 and L1. Indeed the underlying domains of operators L0

and L1 are D and F (D) respectively. Nevertheless, even after composition with most natural

map F, the coefficient matrix A1 ◦ F is not close to A0 in the sense of any natural distance

between coefficients as it is shown in Example 5.2.1.

In Section 5.2 we also show that the solvability of the problem for a matrix A in our

class is equivalent, up to a rotation of π
2

of the unit disc D, to the solvability of the problem

for the inverse matrix A−1 (see Theorem 5.2.2). In this case, the integrability exponent for

solvability is the same.

As a corollary of Theorem 5.0.5 we obtain the following

Theorem 5.0.6. Let F : D → D be K- quasiconformal, L0 = ∆F , L1 = ∆F−1, and

the operator L0 be L2- resolutive. Then also the operator L1 is L2- resolutive, provided

B2(ωL0) < 4
3
.

Another sharp Lp- solvability result pertains to Serrin’s type operator

L = div(A(x)∇ )
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where A(x) ∈ E1(K) takes the form

A(x) =
I

K
+

(
K − 1

K

)
x⊗ x

|x|2 for x = (x1, x2) ∈ R2
+,

for some K > 1, as in [IS]. We notice that the Radon-Nikodym derivative k = dωL
dx

of the

associated harmonic measure ωL belongs to the Gehring class Bq if and only if 1 < q < K
K−1

.

5.1 Quasiconformal mappings and Beltrami equations

For the convenience of the reader, we recall basic feature of quasiconformal mappings which

are relevant to our results.

Let Ω1 and Ω2 be planar domains and F : Ω1 → Ω2 be a homeomorphism. F is said to

be quasiconformal if:

i) F belongs to Sobolev class W 1,2
loc (Ω1),

ii) F satisfies the complex Beltrami equation:

∂F (z) = µ(z)∂F (z), where ‖µ‖L∞ < 1. (5.10)

Here we have used the Cauchy-Rieman derivatives ∂ = 1
2
(∂x + i∂y) and ∂ = 1

2
(∂x− i∂y)

with respect to the complex variable z = x + iy.

The function µ is called the Beltrami coefficient or complex dilatation of F . It determines

F , unique up to a (post) composition with a conformal transformation.

Expressing the directional derivatives ∂αF (z) in terms of ∂F and ∂F , (5.10) is equivalent

to the distortion inequality

max
α
|∂αF | 6 K min

α
|∂αF |. (5.11)

Here the smallest possible choice of the constant K is
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K =
1 + ‖µ‖L∞

1− ‖µ‖L∞
∈ [1,∞).

Obviously, the condition ‖µ‖L∞ < 1 is equivalent to K < ∞. When µ = 0, or equivalently

K = 1, we obtain the usual Cauchy-Riemann system, and F is conformal in Ω1 in the classical

sense, i. e. it is an analytical one-to-one map. That is why the constant K in (5.11) gives us

the degree of nonconformality of F . Traditionally we refer to such F as K-quasiconformal

mappings.

Next, we us define a 2× 2 measurable matrix function

A(x) =

[
tDF (x)DF (x)

JF (x)

]−1

(5.12)

where DF stands for the Jacobian matrix of F and JF (x) = det DF (x) its Jacobian deter-

minant which is almost everywhere positive. A simple computation shows that detA = 1,

A is symmetric, and, using (5.11), we can prove the uniform ellipticity

1

K
|ξ|2 6 〈A(x)ξ, ξ〉 6 K|ξ|2, ξ ∈ R2. (5.13)

An important point here is that a converse statement is also true. More precisely, given

any measurable symmetric matrix A(x) on the unit disc D ⊂ R2 with detA = 1 that

satisfies (5.13), there exists a K-quasiconformal mapping F : D→ D for which (5.12) holds

a.e. x ∈ D. For this we recall the measurable Riemann mapping theorem, see the seminal

work of Morrey [Mo], and [IM] for most recent account.

Theorem 5.1.1. Let µ be a measurable function defined in D ⊆ C such that ‖µ‖L∞ < 1.

Then there is a K-quasiconformal mapping g : D → C whose Beltrami coefficient equals µ

almost everywhere. Moreover, every W 1,2
loc (D,C) solution F to the Beltrami equation takes

the form

F (z) = H(g(z))

where H : g(D) → C is a holomorphic function.
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We shall confront this result with the classical Riemann mapping theorem

Theorem 5.1.2. Let Ω be a proper simply connected open subset of C. Then, there exists a

conformal mapping η : Ω → D.

In particular, combining Theorem 5.1.1 and Theorem 5.1.2, we see that for every µ as

before there exists a K quasiconformal F : D→ D, K = 1+‖µ‖L∞
1−‖µ‖L∞

∈ [1,∞), such that

∂F (z)

∂F (z)
= µ(z), a.e. z ∈ D, (5.14)

In addition to that we have uniqueness of homeomorphic solutions F : D → D which are

“normalized” by fixing the values F (0, 0) = (0, 0) and F (1, 0) = (1, 0).

Theorem 5.1.3. Given a 2 × 2 matrix A(x) = [aij(x)] defined on the unit disc, such that

aij = aji, det A = 1 and (??) holds. Then there exists a unique normalized K-quasiconformal

mapping F : D→ D satisfying (5.12).

In fact equation (5.12) is equivalent to a complex Beltrami equation with

µ(x) =
a22 − a11 − 2ia12

a22 + a11 + 2
, ‖µ‖L∞ < 1.

For more details see [IM].

5.2 Some cases of simultaneous solvability for two dif-

ferent operators

In this section we consider two elliptic operators which arise as pull-back of the Laplacian:

L0 = ∆F and L1 = ∆F−1 . We prove the solvability of Dirichlet problem for L1 knowing it for

L0 (and conversely). Moreover, we show that the A∞- constants of the respective harmonic

measures ωL0 and ωL1 agree in a suitable way (Theorem 5.0.5).

Let L0 and L1 be operators as in Theorem 5.0.5. As we already mentioned, it is not

meaningful to speak about the “distance” between L0 and L1. Indeed, the operators L0 and
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L1 are defined on D and on F (D), respectively. On the other hand, even after composition

with most natural map F , the coefficient matrix A1 ◦ F is not close to A0 in the sense of

natural distance between the coefficients as it is shown in the following example

Example 5.2.1. Let Q = [0, 1] × [0, 1] be the unit cube of R2 (analogous result can be

obtained by replacing Q with the unit disc D ⊂ R2 with just technical adjustments). Let

F : Q → Q be defined by the rule

F (x, y) =

(∫ x

0

a(χ)dχ,

∫ y

0

b(η)dη

)
, (5.15)

where a, b are non negative measurable functions defined for (x, y) ∈ Q. We assume that

i) 1
K

6 a(x)
b(y)

6 K

so that F is K-quasiconformal. Now, let A0 be the pull-back of the Laplacian defined by

A0(x, y) =

[
tDF DF

JF (x, y)

]−1

=




b(y)
a(x)

0

0 a(x)
b(y)


 .

The reader may wish to observe that writing F (x, y) = (h(x), k(y)) = (s, t), we have the

following formula for the inverse map

F−1(s, t) =

(∫ s

0

1

a(h−1(τ))
dτ,

∫ t

0

1

b(k−1(σ))
dσ

)
.

We then compute,

A1(s, t) =

[
tDF−1 DF−1

JF−1

]
=




a(h−1(s)
b(k−1(t))

0

0 b(k−1(t))
a(h−1(s))


 .

Composing A1(s, t) with F (x, y) we are able to compute the gap function ε(x, y) (see

[FKP]) between matrices A0 and A1 ◦ F . (In this case A1 ◦ F is also equal to the inverse
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matrix A−1
0 , because DF is a symmetric matrix). More precisely, we have

ε(x, y) = A0(x, y)− A1 ◦ F (x, y) =




b(y)
a(x)

− a(x)
b(y)

0

0 a(x)
b(y)

− b(y)
a(x)


 .

Assuming“closeness” between coefficients, as in [FKP], Theorems 2.3 - 2.5, we find that

ε(·) ≡ 0 on the boundary. So let us consider points (x, 0) ∈ ∂Q,

ε(x, 0) = 0 ⇔
(

a(x)

b(0)
− b(0)

a(x)

)
= 0 ⇔ a(x) = b(0), a.e. x ∈ [0, 1].

This occurs iff a(x) is a constant function. In particular, it must be that a(x) ≡ 1. Analo-

gously, b(y) ≡ a(0),; that is, b(y) ≡ 1, for almost every y ∈ [0, 1]. Then, unless F (x, y) is the

identity map, the closeness hypotheses fails.

Let us proceed to the proof of the Theorem 5.0.5:

Proof. of Theorem 5.0.5 Let L0 = ∆F = div(A0∇), where F : D→ D is a K-quasiconformal

mapping and A0 is defined by

A0(x) =

[
tDF (x) DF (x)

JF (x)

]−1

. (5.16)

Moreover, let h : ∂D→ ∂D be the orientation preserving homeomorphism on ∂D induced

by F , h(σ) = F |∂D(σ).

To see the harmonic measure ωL0 of the operator L0 (following an idea contained in

[CFK]), let us choose and fix an arbitrary continuous function f defined on ∂D. We solve

the Dirichlet problem 



div(A0∇u) = 0 in D

u|∂D = f
(5.17)

Let us observe that u is the solution to problem (5.17) if and only if the function v =
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u ◦ F−1 is a solution of the Dirichlet problem





∆v = 0 in D

v|∂D = g
(5.18)

where g = f ◦ F−1. Indeed, assuming F = (F1, F2), x = (x1, x2), we have,

DF =




∂F1

∂x1

∂F1

∂x2

∂F2

∂x1

∂F2

∂x2




, (DF )−1 =
1

JF




∂F2

∂x2
−∂F1

∂x2

−∂F2

∂x1

∂F1

∂x1




and then

(tDF )−1 =
1

JF




∂F2

∂x2
−∂F2

∂x1

−∂F1

∂x2

∂F1

∂x1




. (5.19)

So we can compute

JF (DF )−1(tDF )−1 =
1

JF




|∇F2|2 −(∇F1,∇F2)

−(∇F1,∇F2) |∇F1|2




.

Assuming y = F (x) and u = v ◦ F we have

∂u

∂xi

=
∂v

∂y1

∂F1

∂xi

+
∂v

∂y2

∂F2

∂xi

and

∇xu = (tDF )∇yv (5.20)
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Combining (5.16), (5.19) and (5.20) we have

A0∇xu = JF (DF )−1∇yv =




∂F2

∂x2

∂v
∂y1

− ∂F1

∂x2

∂v
∂y2

−∂F2

∂x1

∂v
∂y1

+ ∂F1

∂x1

∂v
∂y2




and then it holds

Lu = divx(A0∇xu) = JF ·∆yv.

Hence,

divx(A0∇xu) = 0 ⇐⇒ ∆yv = 0.

So, by the Poisson integral formula for the unit disc, we have (see [K])

v(x) = u ◦ F−1(x) =

∫

∂D

1− |x|2
2π|x− σ|2 g(σ)dσ

Then, for all z ∈ ◦
D it holds

u(z) = v ◦ F (z) =

∫

∂D

1− |F (z)|2
2π|F (z)− σ|2 g(σ)dσ.

We now change variables, σ = F (τ), and recall that h(σ) = F (σ) on ∂D to obtain,

u(z) =

∫

∂D

1− |F (z)|2
2π|F (z)− h(τ)|2f(τ)dh(τ).

Since F (0, 0) = (0, 0) and |h(σ)| = 1 on ∂D, we have

ω(z) =
1

2π
dh(z). (5.21)

Combining (5.21), Theorem 1.4.1 and (1.21) we have that L0 resolutive implies

dh ∈ A∞. (5.22)
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Moreover, the measure dh is absolutely continuous with respect to the arc length dσ, so

we have the Radon-Nikodym derivative k0 = dh/dσ.

Now, let us consider the operator L1 = ∆F−1 = div(A1∇ ), where

A1(y) =

[
tDF−1(y)DF−1(y)

JF−1(y)

]−1

.

The orientation preserving homeomorphism on ∂D, induced by F−1, coincides with h−1

and, by similar considerations as before, the harmonic measure of the divergence form of

the uniformly elliptic operator L1 is equivalent to d(h−1). Now, we are ready to prove that

(5.22) implies

d(h−1) ∈ A∞ (5.23)

This is a consequence of equations between the various A∞- constants defined in (1.22),

(1.24). Namely, we prove now (5.7), i.e.

Ã∞(ωL0) = B̃1(ωL1), (5.24)

Ã∞(ωL1) = B̃1(ωL0). (5.25)

In fact, by Definition 1.3.2, (5.22) implies that there exist 0 < α 6 1 6 M such that

σ(F )

σ(Λ)
6 M

(∫
F

k0dσ∫
Λ

k0dσ

)α

, (5.26)

for any rectifiable set F ⊂ Λ arc on ∂D.

For any rectifiable set F ⊂ ∂D we have

∫

F

k0dσ =

∫

F

dh

dσ
dσ = σ(h(F ))

where h(F ) stands for the image of the set F ⊂ ∂D under the mapping h : ∂D→ ∂D. Then

(5.26) can be rewritten as

σ(F )

σ(Λ)
6 M

(
σ(h(F ))

σ(h(Λ))

)α

. (5.27)
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for arbitrary rectifiable set contained in the arbitrary arc Λ ⊂ ∂D.

Since h : ∂D→ ∂D is a homeomorphism, inequality (5.27) can be reformulated as

σ(h−1(E))

σ(h−1(Γ))
6 M

(
σ(E)

σ(Γ)

)α

, (5.28)

(where h−1(E) denotes the inverse image of E via h) for any rectifiable set E contained in an

arc Γ ⊂ ∂D. Hence, by (5.28) the measure µ1, defined by µ1(E) = σ ◦ h−1(E), is absolutely

continuous with respect to σ. If we introduce its Radon-Nikodym derivative k1 = dµ1/dσ,

then (5.28) can be restated as

∫
E

k1dσ∫
Γ
k1dσ

6 M

(
σ(E)

σ(Γ)

)α

, (5.29)

Hence (5.24) and (5.25) follow directly from (1.24) and (1.22). In fact (5.26) holds for

arbitrary rectifiable subset F of the arbitrary arc Λ, if and only if (5.29) holds for arbitrary

rectifiable subset E of the arbitrary arc Γ ⊂ ∂D. Combining (5.24), (5.25), Theorem 1.4.1

and (1.21), the simultaneous solvability of Dirichlet problems for L0 and L1 follows.

In order to obtain more precise information about the Lp- solvability for L0 and Lr-

solvability for L1, let us preliminary observe that

ωL0 ∈ Bq ⇔ ωL1 ∈ Ap (5.30)

where q = p/(p− 1), and that

Bq(ωL0) = Ap(ωL1). (5.31)

In fact, by (5.21) ωL0 is equivalent to dh, where h = F|∂D is the trace on ∂D of the K-

quasiconformal mapping F : D→ D and, as already mentioned, ωL1 is equivalent to d(h−1).

Then, according to Lemma 2.3 [JN], we deduce that

dh ∈ Bq ⇔ d(h−1) ∈ Ap



98 CHAPTER 5. LP -SOLVABILITY IN DIMENSION N = 2. SHARP RESULTS

and

Bq(dh) = Ap(d(h−1))

establishing (5.30) and (5.31).

Now, assume L0 to be Lp- resolutive for an exponent p > 1, and B = Bq(ωL0). By (5.31)

we obtain Ap(ωL1) = B. Combining Theorem 1 in [V] about the optimal connection between

the Ap and Bq−classes, and Theorem 1.3.3 we are able to determine the sharp Bθ in the

Gehring class pertaining to ωL1 as a function of B and p. More precisely, let us denote by

x = x(B, p) ∈ (0, 1), the (unique) solution to the algebraic equation

(
1− x

p

)p

= B(1− x) (5.32)

and use Theorem 1 in [V] and Theorem 1.3.3 to conclude that for 1 6 θ < p−x
x(p−1)

it holds

Bθ(ωL1) 6 B
θ−1

p
(1− x)γ

1− γx

where γ = (pθ − θ + 1)/p. By Theorem 1.4.1 we deduce that L1 is Lr- resolutive, whenever

r satisfies

r >
p− x

p(1− x)
. (5.33)

To see that the result is sharp, we bound ourselves to the case p = q = 2. Let us consider

the mappings (1 < K < 2)

F (z) =
z

|z|1− 1
K

, z = (x, y) ∈ R2
+,

G(w) =
w

|w|1−K
, w = (s, t) ∈ R2

+.

These are the standard radial stretchings and they arise as extremals in many problems for

K- quasiconformal mappings and planar PDE’s. We notice that

G = F−1.
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Let A0 be the coefficient matrix (5.4) of the pull-back under F of the Laplacian:

A0(z) =
I

K
+

(
K − 1

K

)
z ⊗ z

|z|2 .

z = (x, t), where we have used the shorthand notation

z ⊗ z =




x2 xt

xt t2




and let A1 be the coefficient matrix (5.4) of the pull-back under G = F−1 of the Laplacian

A1(w) = KI +

(
1

K
−K

)
w ⊗ w

|w|2 .

The harmonic measures ωA0 and ωA1 are given by

ωA0(x) ∼ 1

|x|1− 1
K

ωA1(s) ∼
1

|s|1−K

and we assume

B2(ωA0) = B < ∞.

An elementary calculation shows that

B =
1

K(2−K)

and that for 1 < q <
√

B
B−1

= 1
K−1

Bq(ωA1) < ∞,
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while

B 1
K−1

(ωA1) = ∞,

hence Lr- solvability fails for L1 if r verifies equality in (5.33).

Corollary 5.2.1. Let A0 be a matrix in E1(K) and let L0 = div(A0∇ ). Then there exists

a K- quasiconformal mapping F : D → D such that L0 is resolutive iff L1 = div(A1∇) is

resolutive, where

A1(y) =

[
DF tDF

JF

]
◦ F−1(y)

Proof. Let A ∈ E1(K). By the measurable Riemann mappings theorem (see Theorem 5.1.1)

we can find a K- quasiconformal mapping F : D→ D such that

A0 =

[
tDFDF

JF

]−1

so that L0 = ∆F . The statement follows by observing that L1 = ∆F−1 .

Let A0 ∈ E1(K); our goal is to find a connection between the solvability of the Dirichlet

problem for the operator L0 = div(A0∇ ) and the operator L1 = div(A1∇ ), where A1 =

A−1
0 (ix). We have the following

Theorem 5.2.2. Let A0 ∈ E1(K). Then the problem





div(A0∇u) = 0 in D

u|∂D = f
(5.34)

is Lp- solvable, p > 1, if and only if the problem





div(A1∇u) = 0 in D

u|∂D = f
(5.35)
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is Lp- solvable, where

A1(y) = A−1
0 (iy) a.e. y ∈ D.

Proof. Let us observe that the hypothesis A0 ∈ E1(K) implies that (see Theorem 5.1.3) there

exists a K-quasiconformal mapping F : D→ D such that

A0 =

[
tDF DF

JF

]−1

=




a11 a12

a12 a22


 .

So, let us search for T such that,

A−1
0 ◦ T =

[
tDG DG

JG

]−1

=




a22 −a12

−a12 a11


 ◦ T, where G = F ◦ T.

Notice that the Beltrami coefficient of F is given by (see Section 5.1)

µF =
a22 − a11 − 2ia12

a22 + a11 + 2
.

Then, analogously,

µG =

(
a11 − a22 + 2ia12

a11 + a22 + 2

)
◦ T.

So, for all z ∈ D, it must be that

µG(z) = −µF (T (z)). (5.36)

Now, let G(z) = F (iz). Taking into account that ∂(iz) = 0, ∂(−iz) = −i, ∂(iz) = i and

∂(−iz) = 0, we obtain

∂G(z) = (∂F )(iz)∂(iz) + (∂F )(iz)∂(−iz) = −i(∂F )(iz)

and

∂G(z) = (∂F )(iz)∂(iz) + (∂F )(iz)∂(−iz) = i(∂F )(iz).
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This means that the Beltrami coefficient of G is given by

µG(z) =
∂G

∂G
(z) = −∂F (iz)

∂F (iz)
= −µF (iz))

so that (5.36) is true.

Now following the proof of Theorem 5.0.5, one can see that the harmonic measures of

the operators L0 = div(A0∇ ) = ∆F and L1 = div(A1∇ ) = ∆G are dh(z) and d(h(iz)),

respectively. Then by Theorem 1.4.1 we complete the proof.

Notice that Theorem 5.2.2 states that, up to a rotation of the unit disc D by π
2
, the

solvability of the Dirichlet problem for a matrix A ∈ E1(K) is equivalent to the solvability

of the Dirichlet problem for the inverse matrix A−1.

We point out that, in this case, the exponent of Lp- solvability for problems (5.34) and

(5.35) is the same.

As an application of Theorem 5.0.5 we have a sufficient condition for both operators L0

and L1 to be L2- resolutive. In other words we see that it is possible to deduce from Theorem

5.0.5 that Bq condition is preserved for a fixed q > 1. Namely, we give now the

Proof. (of Theorem 5.0.6). By Theorem 1.4.1, we have that B2(ωL0) < ∞. So, let B =

B2(ωL0). We find the unique solution x = x(B, 2) ∈ (0, 1) to the equation (5.32). We have

x = 2
√

B − 1
(√

B −√B − 1
)

and then, by Theorem 5.0.5, L1 is L2- resolutive if the right

hand side in (5.33) is less than 2; that is

2− x

x
=

√
B

B − 1
> 2. (5.37)

Elementary calculation reveals that B < 4
3

yields (5.37), thus Theorem 5.0.6 follows.
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5.3 Sharp estimates for harmonic measures on R2
+

A classical theorem of Beurling and Ahlfors (see [FKP]) states that, given a homeomorphism

h from the real line R onto itself (or from the unit circle ∂D onto itself), a necessary and

sufficient condition for the existence of a quasiconformal mapping from the upper half plane

in itself F : R2
+ → R2

+ such that F |R = h (or F : D → D such that F |∂D = h) is that the

distributional derivative dh is a doubling measure i.e. there is a constant D > 1 such that

1

D
6

∫ x+t

x
dh∫ x

x−t
dh

6 D ∀x ∈ R,∀t > 0. (5.38)

We will refer to the infimum of constants D such that (5.38) holds as doubling constant

D2(ω) of the measure ω = dh. Consider the set

F =
{
F : R2 → R2 K-quasiconformal, F |R : R→ R fixes the points− 1, 0,∞}

see [L]. We introduce the distortion function

λ(K) = max
F∈F

F (1).

Then, it is possible to evaluate the sharp doubling constant of dh for all such traces

h = F|R , as F runs through the class Ψ(K) of all K- quasiconformal mappings. Namely,

D2(dh) 6 λ(K). (5.39)

Conversely, we are able to obtain an explicit estimate for the doubling constant D2(ω) of

the harmonic measure ω of any elliptic operator whose coefficients matrix belongs to E1(K).

Theorem 5.3.1. Let A ∈ E1(K) be defined on R2
+ and let L = div(A∇ ). Then the harmonic

measure ω of L has the form

ω =
dh

1 + h2
,
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where the homeomorphism h : R→ R verifies:

D2(dh) 6 e5(K−1).

Proof. Let us observe that by analogous computations as in the proof of Theorem 5.0.5 (see

also [K]), the form of the harmonic measure for an operator L = div(A∇), where A ∈ E1(K)

in R2
+, can be recognized. Namely, let us denote by F = (α, β) the K- quasiconformal

mapping such that L = ∆F , and let h : R→ R, h = F|R be the trace of F on the real axis R.

We have that if ∆v = 0 in R2
+, then u = v ◦ F satisfies the equation Lu = 0 in R2

+. Hence,

if g ∈ C0(R) (the set of all continuous functions with compact support) and f = g ◦ F−1,

then, by the Poisson integral formula,

v(x, t) = C

∫

R

t

|x− y|2 + t2
f(y)dy, so that

u(z, s) = C

∫

R

β(z, s)

|α(z, s)− y|2 + β(z, s)2
f(y)dy =

= C

∫

R

β(z, s)

|α(z, s)− h(ξ)|2 + β(z, s)2
g(ξ)dξ.

Hence, the harmonic measure ωL of the operator L evaluated at the point F−1(0, 1) is

given by

ωL =
dh

1 + h2
. (5.40)

Moreover, by the Beurling Ahlfors Theorem, the distributional derivative dh is a doubling

measure. It satisfies (5.39). The result follows by the estimate on the distortion function

λ(K) (see formula (2.6) in [L]).

The last estimate shows that when K tends to 1, the doubling constant of L tends to 1,

i.e. to the doubling constant of the Laplacian. So, we re-obtain a well known result contained

in [CFMS], where (5.38) is proved in the general case but with slight more complicated proof.
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5.4 The self-improving property of the Lp- solvability

for a single operator, a sharp result

As we already mentioned, the so called “openess” property of the reverse Hölder inequality

(see after Theorem 1.4.1) imply that if Problem (1.32) is Lp- solvable, then automatically it

is also Lr- solvable, for all r ∈ (p− η, p], with sufficiently small positive η.

In this section we want to determine the infimum of exponents r < p such that the Lp-

solvability ⇒ Lr- solvability as a function of p, and find the constant Bp(ω) (see (1.25)) of

the measure ω, in the case of the unit disc D ⊂ R2.

Let us emphasize that here the hypotheses det A = 1 and A = tA are not necessary,

because we will not use quasiconformal mappings. In the following proposition we will

adapt a result of L. D’Apuzzo and C. Sbordone [DAS], A. A. Korenovskii [Ko], C. Sbordone

([S], Theorem 2.1) to our needs (Theorem 1.3.3).

Proposition 5.4.1. Let A ∈ E(K) and the operator L = div(A∇ ) be Lp- resolutive, 1 < p <

∞. Moreover, let B = Bq(ωL) be the Bq- constant of the harmonic measure ωL (q = p
p−1

)

and q1 > q the unique solution y of:

ϕ(y) = 1−Bq−1 y − q

y

(
y

y − 1

)q

= 0. (5.41)

Then the operator L is also Lr- resolutive, for all r ∈ (p1, p], where p1q1 = p1 + q1. The

result is sharp.

Proof. Let ωL be the harmonic measure of the operator L. By the hypothesis and Theorem

1.4.1, we know that ωL ∈ Bq. So, let us start by proving that for all q 6 θ < q1, we have

ωL ∈ Bθ with:

[Bθ(ωL)]
1
θ′ 6 B

1
q′

[
q

θϕ(θ)

] 1
q

,
1

θ
+

1

θ′
= 1,

1

q
+

1

q′
= 1. (5.42)

To this aim, let k = dωL
dσ

, and let
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v : R→ [0, +∞)

be defined by

v(σ) = k(eiσ).

Thus v is defined on the whole R, periodic with period 2π. For any Γ ⊂ ∂D let α, β ∈ R,

β − α 6 2π be such that Γ = (eiα, eiβ). Then, by (1.25) we have

(
1

β − α

∫ β

α

vq(σ)dσ

) 1
q

=

(
1

σ(Γ)

∫

Γ

kq(z)dσ(z)

) 1
q

6 B
1
q′

(
1

σ(Γ)

∫

Γ

k(z)dσ(z)

)

= B
1
q′

1

β − α

∫ β

α

vq(σ)dσ

By Theorem 2.1, [S], applied to the weight function v restricted to any interval [a, b] ⊂ R
with (b − a) = 2π, we obtain that (5.42) holds. Moreover ω ∈ Bq implies ω ∈ Bθ, for all

q 6 θ < q1. The result is sharp. Notice that, by the periodicity of v, the result does not

depend by the particular choice of the interval [a, b].

Combining (5.42) and Theorem 1.4.1 completes the proof of Proposition 5.4.1 .

Let us observe that in case p = 2, we can give an explicit value of exponents r < 2 for

which the L2- solvability ⇒ Lr- solvability as a function of the constant B2(ωL).

Corollary 5.4.2. Let A ∈ E(K) and let problem (1.32) be L2- solvable, and B = B2(ωL) be

the B2- constant of the harmonic measure ωL. Then problem (1.32) is also Lr- solvable for

all r > 1 such that

1 +

√
B − 1

B
< r. (5.43)

The result is sharp.

Proof. For q = 2 equation (5.41) admits the solution q1 = 1+
√

B
B−1

; hence Bθ(ωL) < ∞ for

2 6 θ < 1 +
√

B
B−1

. By Theorem 1.4.1 we deduce Lr- solvability for r > q1

q1−1
= 1 +

√
B−1

B
.
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In order to verify that the result is sharp, fix K > 1 and consider the K-quasiconformal

mapping on R2
+ (see [FKP])

F (x, t) = (x2 + t2)
1−K
2K (x, t) = (α(x, t), β(x, t)). (5.44)

Let A = A(F ) be the coefficient matrix (5.4) of the pull-back under F of the Laplacian.

We know that A belongs to E1(K), and has the following expression ([IS]), z = (x, t) :

A(z) =
I

K
+

(
K − 1

K

)
z ⊗ z

|z|2 . (5.45)

The harmonic measure ωA is locally equivalent to h′(x)dx, where h : R→ R is the increasing

homeomorphism defined by

F (x, 0) = (h(x), 0), (5.46)

hence h(x) = |x|γx and ωA ∼ |x|γ, with γ = 1
K
− 1 > −1. An elementary calculation shows

that

B2(|x| 1−K
K ) =

1

K(2−K)
= B.

The self improving property of Gehring’s classes implies that for 2 < q < 1 +
√

B
B−1

,

Bq(|x| 1−K
K ) 6

√
2B(q − 1)√

q[(q − 1)2 −Bq(q − 2)]

(see [S]) and the value q0 = 1 +
√

B
B−1

cannot be attained.

Proposition 5.4.3. Let K > 1 and let A be defined by (5.45). Then the operator

L = div(A∇u)

is Lp- resolutive if and only if p > K. Moreover

B̃1(ωA) = K. (5.47)
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Proof. We begin by observing that (see [IS], pag. 532) z = (x, t)

A(F )(z) =
I

K
+

(
K − 1

K

)
z

|z| ⊗
z

|z|

and that locally ωA ∼ dh ∼ d
(

1
K
|x| 1

K
−1

)
. On the other hand we have

Bq(ωA) =
1

K[K − q(K − 1)]
1

q−1

. (5.48)

In fact, for ω(E) =
∫

E
t−γ, an elementary calculation gives,

Bq(ω) =
(1− γ)q′

(1− γq)
1

q−1

, for q <
1

γ
.

In our case we have γ = 1− 1
K

, hence (5.48) holds. Then, Bq(ωA) < +∞ ⇔ q < K
K−1

. But

q = p′ < K
K−1

⇔ p > K and then Proposition 5.4.3 follows. The equality (5.47) follows by

Remark 1.3.1.

We end this section by observing that all the results contained in this chapter can be

easily extended in the context of the Orlicz functional spaces by similar arguments as in

Section 4.1.



Chapter 6

Sequences of Dirichlet problems

In this chapter, we examine a sequence of operators Lj = divAj∇ where Aj ∈ E1(K). We

formulate a necessary and sufficient condition in order to ensure that the harmonic measures

ωAj
converge weakly to ωA with some A ∈ E1(K). These conditions are formulated in terms

of G- convergence, if Aj in a certain subclass of E1(K). Here G- convergence is understood

in the sense of De Giorgi and Spagnolo [DGS], [MT].

6.1 Harmonic measures and the G- convergence

Let us consider a sequence Aj ∈ Es(K) and denote by ωAj
(or ωLj

) the harmonic measures

associated with the operators

Lj = div(Aj∇ ). (6.1)

In [K], [KP1] it is proved that if

Aj(x) → A(x) (6.2)

a.e. for A ∈ Es(K), then

ωAj
⇀ ω weakly (6.3)

in the sense of measures.

The converse statement (6.3) ⇒ (6.2) is not true. Moreover, if we replace the a.e.

109
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convergence in (6.2) by the weak convergence:

Aj ⇀ A weakly in σ(L∞, L1) (6.4)

then (6.3) may fail, as the following example shows. It is convenient to construct examples

in R2
+ rather than in the unit disc D.

Example 6.1.1. Consider, for x = (x1, x2) ∈ R2
+, the sequence of matrix fields

Aj(x) =




1
aj(x1)

0

0 aj(x1)




with

1√
K

6 aj(t) 6
√

K a.e. t ∈ R

such that

aj ⇀ a,
1

aj

⇀
1

a∞
σ(L∞, L1) (6.5)

with a∞ < a. Hence the matrix fields Aj converge weakly to the matrix field A∞ defined by

A∞(x) =




1
a∞(x1)

0

0 a∞(x1)


 .

Now define:

hj(x1) =

∫ x1

0

aj(τ)dτ, h(x1) =

∫ x1

0

a(τ)dτ. (6.6)

Then we know that the harmonic measures for R2
+ associated with the operators

Lj = div(Aj∇ )

and

L = div(A∇ )
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where A(x) is the matrix

A(x) =




1
a(x1)

0

0 a(x1)




are, respectively, given by

dωAj
(t) =

h′j(t)

1 + h2
j(t)

dt

and

dωA(t) =
h′(t)

1 + h2(t)
dt.

Hence, by (6.5), (6.6) we deduce

dωAj
⇀ dωA weakly in the sense of measures (6.7)

while the sequence Aj(x) does not converge a.e. to A(x). It nevertheless weakly converges

to A∞(x) 6= A(x). Notice that det A∞ > 1.

The above example suggests to consider another type of convergence of operators to

compare with the weak convergence (6.7) of harmonic measures. To this effect, let Ω be an

open set in R2. Here and below we will denote by Es(K; Ω) the class of symmetric matrices

A = A(x), x ∈ Ω, satisfying (1.1) a.e. x ∈ Ω, and by E1(K; Ω) the subset of Es(K; Ω) whose

elements satisfy the condition det A(x) = 1 a.e. x ∈ Ω.

Let us recall now the definition and properties of G- convergence of elliptic operators in

Es(K;R2). According to De Giorgi- Spagnolo ([DGS], [MT]) we write

Definition 6.1.1. Given Aj, A ∈ Es(K,R2), we say that Aj G- converges to A and denote

Aj
G−→ A

if for every bounded open subset Ω of R2 and for every f ∈ L2(Ω) one has

uj ⇀ u weakly in W 1,2
0 (Ω),
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where uj and u are defined by




− div(Aj(x)∇uj) = f in D
uj ∈ W 1,2

0 (Ω)




− div(A(x)∇u) = f in D
u ∈ W 1,2

0 (Ω)

The fundamental compactness theorem of S. Spagnolo asserts that

Theorem 6.1.1. The class Es(K;R2) is sequentially compact with respect to G- convergence.

It is interesting to note that E1(K;R2) is a G- closed (and G- compact) subset of Es(K;R2)

[FM].

The following result provides another sufficient condition for the weak convergence of

harmonic measures in (6.7).

Theorem 6.1.2. Let Aj and A be matrices from the class Es(K;D). Assume that

Aj
G−→ A.

Then

ωAj
⇀ ωA weakly in the sense of measures.

Proof. Assume Aj
G−→ A. Since

∫

∂D
dωAj

= 1, ∀j ∈ N,

∫

∂D
dωA = 1,

in order to obtain the condition ωAj
⇀ ωA weakly in the sense of measures, that is

lim
j

∫

∂D
fdωAj

=

∫

∂D
fdωA, ∀ f ∈ C(∂D) (6.8)

it will be sufficient to prove (6.8) for every f ∈ C∞(D̄).
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Let f ∈ C∞(D̄) and uj be the unique solution in W 1,2
loc (D)∩C(D̄) to the Dirichlet problem





div(Aj∇uj) = 0 in D

uj |∂D = f

Similarly, let u be the unique solution in W 1,2
loc (D) ∩ C(D̄) of the Dirichlet problem





div(A∇u) = 0 in D

u|∂D = f

In view of G- convergence Aj
G−→ A we have

uj(0) → u(0). (6.9)

Therefore, by the definition of harmonic measures ωAj
, ωA we conclude that

uj(0) =

∫

∂D
fdωAj

,

u(0) =

∫

∂D
fdωA.

Thus (6.8) follows (see [DGS]).

The converse implication (ωAj
⇀ ωA) ⇒ (Aj

G−→ A) also holds under some restrictions.

Let us denote by S(K) the subset of E1(K,R2
+) consisting of matrices of the form

A =

[
(tDF )(DF )

JF

]−1

where F = BA(h) is the Beurling-Ahlfors extension to R2
+ of a normalized homeomorphism

h : R → R (i.e. such that h(0) = 0, h(1) = 1, h(∞) = ∞) with dh doubling. Namely
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F = F (x) is defined for x = (x1, x2) ∈ R2
+ by

F (x) =
1

2
(α(x) + β(x), α(x)− β(x)) , (6.10)

where

α(x) = α(x1, x2) =

∫ x1+x2

x1

h(t)dt, (6.11)

β(x) = β(x1, x2) =

∫ x1

x1−x2

h(t)dt. (6.12)

Then

F = BA(h) ∈ Q0(K) = {F : F is K-quasiconformal; F (0, 0) = (0, 0),

F (1, 0) = (1, 0), F (∞) = ∞} .

Theorem 6.1.3. Let Aj and A belong to S(K). Then

ωAj
⇀ ωA ⇒ Aj

G−→ A.

Proof. Assume ωAj
⇀ ωA. We know that

Aj =

[
(tDFj)(DFj)

JFj

]−1

, (6.13)

A =

[
(tDF )(DF )

JF

]−1

,

and that (see (7.5)) the corresponding expressions of the harmonic measures are

ωAj
=

dhj

1 + h2
j

, ωA =
dh

1 + h2
,

where Fj = BA(hj), F = BA(h), Fj(x, 0) = (hj(x), 0) and F (x, 0) = (h(x), 0).

Since ωAj
⇀ ωA in the sense of the measures, then dhj ⇀ dh in the sense of measures as
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well. Moreover, hj(0) = 0 and hj(1) = 1. Then, we have

hj → h locally uniformly. (6.14)

Since the K- quasiconformal mappings Fj are normalized with the condition Fj(0, 0) = (0, 0),

Fj(1, 0) = (1, 0), then by a Montel’s theorem {Fj} is a normal family ; that is, it contains

a subsequence {Fjr} converging locally uniformly to a mapping F0 ∈ Ψ0(K). According to

(6.10)-(6.14) we deduce for the whole sequence that

Fj → F0 = F

locally uniformly, and weakly in W 1,2
loc (R2

+,R2
+).

Let us now give a direct proof of the following G- convergence result (for a proof which

uses the G- compactness theorem see [Sp])

Aj
G−→ A. (6.15)

Let uj ∈ W 1,2
loc (Ω) be a weak solution in a bounded open set Ω ⊂ R2

+ to the equation

divAj(z)∇uj = 0 in Ω (6.16)

and assume that

uj ⇀ u W 1,2
loc (Ω). (6.17)

It is plain, in view of the G- convergence, that (6.15) will follows once we obtain the equation

divA(x)∇u = 0 in Ω. (6.18)

Denote by vj ∈ W 1,2
loc (Ω) the stream function defined via the following relation between the



116 CHAPTER 6. SEQUENCES OF DIRICHLET PROBLEMS

gradients

∇vj =




0 −1

1 0


Aj(x)∇uj (6.19)

and set

Gj = uj + ivj. (6.20)

We may assume, passing to a subsequence if necessary, that

vj ⇀ v W 1,2
loc (Ω) (6.21)

The mapping Gj is K-quasiregular, that is

|DGj|2 6
(

K +
1

K

)
JGj

a.e. x ∈ Ω (6.22)

as one can easily check. Hence by Stoilow Factorization Theorem [IM] there exists Hj,

holomorphic on Fj(Ω), such that

Gj(x) = Hj ◦ Fj(x). (6.23)

We need the equicontinuity properties of both factors in (6.23). For the factor Hj note that

∫

Fj(Ω)

|DHj(w)|dw =

∫

Ω

|DHj(Fj(x))|JFj
dx 6

6
( ∫

Ω

|DHj(Fj(x))|2|DFj(x)|2dx

) 1
2
( ∫

Ω

|DFj(x)|2dx

) 1
2

=

=

( ∫

Ω

|DGj(w)|2dw

) 1
2
( ∫

Ω

|DFj(x)|2dx

) 1
2

Let B = B(x, r) be a fixed disk containing Ω, then

( ∫

B

|DFj(z)|2dz

) 1
2

6 c|Fj(B)| 12 6 co < ∞
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Consequently

sup
j∈N

∫

Fj(Ω)

|DHj(w)|dw < ∞

Quasiconformality is equivalent to the uniform quasisymmetry [LV], meaning that

|Fj(y)− Fj(x)|
|Fj(z)− Fj(x)| 6 γ

( |y − x|
|z − x|

)
(6.24)

for distinct points x, y, z ∈ R2. Here γ is an increasing homeomorphism of [0,∞) onto

itself, we deduce that domains Fj(Ω) converge in the Hausdorff metric to the domain F (Ω).

Since Hj(0) = 0 by (6.24) we obtain that {Hj : Fj(Ω) −→ R2} is a normal family. Hence

by choosing a further subsequence we can assume Hj −→ H and H ′
j −→ H ′, uniformly on

compact sets of F (Ω), where H is analytic on F (Ω). Then H ′
j(F (z)) −→ H ′(F (z)) uniformly

in compact subsets of Ω. It follows that

DGj(x) ⇀ D(H ◦ F (x)) in L2(Ω) (6.25)

Moreover,

Gj = Hj ◦ Fj −→ G = H ◦ F (6.26)

and so, by (6.17), (6.20), (6.21) and (6.26), we infer

Gj −→ G = H ◦ F = u + iv (6.27)

and

DG = D(H ◦ F )

This last equality implies that

∆G = ∆F = A (6.28)

because the holomorphic function H does not affect the pullback of the Laplacian ∆F .
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A simple computation reveals that (6.28) is equivalent to

divA(z)∇u = 0

∇v =




0 −1

1 0


A(z)∇u

and the proof is complete.

In the following, we give also a sufficient condition in order that the G- limit of a sequence

of resolutive operators be resolutive as well.

Definition 6.1.2. Let Aj ∈ E1(K). We say that Aj are L2- equiresolutive if there exists

C0 > 0 such that

‖Nuj‖L2(∂D) 6 C0 ‖f‖L2(∂D) (6.29)

for any f ∈ C(∂D).

We conclude this chapter with the following

Theorem 6.1.4. Let Aj, A ∈ E1(K), Aj
G−→ A and Aj be L2- equiresolutive. Then, A is

L2- resolutive.

Proof. The uniform bound (6.29) induces a similar bound for the weighted maximal operator

Mωj
, where ωj is the harmonic measure of Aj relative to D: for any j ∈ N

∥∥Mωj
f
∥∥

L2(∂D,dσ)
6 C1 ‖f‖L2(∂D,dσ) (6.30)

on the unweighted L2 space.

From (6.30) one can deduce a uniform bound for the B2- constants of all harmonic

measures ωj:

B2(ωj) 6 C2, ∀j ∈ N. (6.31)
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By Theorem 6.1.2 we know that

ωj ⇀ ω = ωA, in the sense of measures. (6.32)

Now, fix an open arc Γ ⊂ ∂D and use (6.31) to write

∫

Γ

ω2
j 6 C2

(∫

Γ

ωj

)2

.

Passing to the weak limit in the right-hand side, yields

lim inf
j→+∞

∫

Γ

ω2
j 6 C2

(∫

Γ

ω

)2

.

By lower semicontinuity of L2- norms with respect to weak convergence we find

∫

Γ

ω2 6 C2

(∫

Γ

ω

)2

and this inequality holds for any open arc Γ. Hence

B2(ω) 6 C2

and A is L2- resolutive.
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Chapter 7

Neumann and Dirichlet problems

with Orlicz data

In this chapter we prove in the Orlicz context, a relation between the solvability of Dirichlet

and Neumann problems in the half-plane for special class of operators L = div (A∇) where

A is a real, symmetric, 2× 2 uniformly elliptic matrix and det A = 1.

7.1 Neumann problem: definitions and preliminary re-

sults

Let D denote the unit disc in R2. As usual, we will denote

W
1
2
,2(∂D) =

{
u ∈ L2(∂D) :

∫

∂D

∫

∂D

|u(P )− u(Q)|2
|P −Q|2 dσ(P )dσ(Q) < ∞

}
.

Throughout this section we will assume A ∈ Es(K,D). Now our purpose is to introduce

the Neumann problem for an operator L = div(A∇). To this aim, let g ∈ W− 1
2
,2(∂D) =

(W
1
2
,2(∂D))∗ with 〈1, g〉 = 0. A Sobolev function u ∈ W 1,2(D) is said the variational solution

121
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to the Neumann problem 


Lu = div A∇u = 0, in D

A∇u ·
→
N |∂D = g

(7.1)

if, given any ϕ ∈ W 1,2(D),
∫
D ϕ = 0, it holds

∫

D
A∇u · ∇ϕ = 〈Tr(ϕ), µ〉

(Here for any Q ∈ ∂D,
→
N(Q) denotes the unit normal at Q on ∂D).

Clearly, the Lax Milgram lemma shows that given g ∈ W− 1
2
,2(∂D), 〈1, g〉 = 0, there exists

a unique (modulo constants) u ∈ W 1,2(D) which solves (7.1). For more details we refer the

reader to [K].

Let u ∈ L2
loc(D) and let us introduce a modified non non-tangential maximal function

∼
N(u)(Q) = sup

X∈Γ(Q)

(∫

B(X,
δ(X)

2 )
|u(z)|2 dz

)1/2

.

where Q ∈ ∂D and Γ(Q) ⊆ D is the non-tangential approach region (see formula (1.9)) with

vertex at Q and δ(X) = dist(X, ∂D).

In analogy with (4.1) we have the following (see [KP1])

Definition 7.1.1. Let 1 < p < ∞. We say that the Neumann problem (7.1) is Lp-solvable

if, whenever g ∈ L2(∂D, dσ) ∩ Lp(∂D, dσ), and
∫

∂B
gdσ = 0, the solution u to (7.1), verifies

‖
∼
N(∇u)‖Lp(∂D,dσ) 6 C‖f‖Lp(∂D,dσ) (7.2)

Roughly speaking, the Lp-solvability of the Neumann problem (7.1) says that, for solu-

tions, the whole gradient is controlled by the “conormal derivative” ai,j(Q) ∂u
∂Xi

nj(Q), Q ∈ ∂D,

where
−→
N (Q) = nj(Q) denotes the inward unit normal to ∂D.

One of the first natural questions is whether the condition
∼
N(∇u) ∈ Lp(∂D, dσ) has any

bearing on the existence of “boundary values” of ∇u. An answer is provided in the following
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Theorem 7.1.1. [KP1] Assume that Lu = 0 in D and let u ∈ Lp(D),
∼
N(∇u) ∈ Lp(∂D, dσ),

1 < p < ∞. Then,

i) u converges non-tangentially to f ∈ W 1,p(∂D, dσ), and (∇T u)r(Q) =

∫

B(rQ,(1−r)/2

∇u(X)·
−→
T (Q)dX converges weakly in Lp to ∇T f (here

−→
T (Q) denotes a basis of tangential

vectors on ∂D, and ∇T f = ∇F (Q) · −→T (Q), where F|∂ D
= f).

ii) There exists a unique g ∈ Lp(∂D, dσ),
∫

∂D g = 0 such that

∫

D
A∇u∇ϕ =

∫

∂D
gϕdσ, ∀ϕ ∈ Lip(D̄)

and

(A∇u · −→N )r =

∫

B(rQ,(1−r)/2

A(X)∇u(X) · −→N (Q)dX,

converges weakly in Lp to g.

iii) If f ≡ 0, u ≡ 0.

iv) If there exists {uj} ⊂ W 1,2(D), Luj = 0 in D for any j ∈ N, with uj → u uniformly

on compact sets, with ‖
∼
N(∇u)‖p 6 C, then u(X) =

∫
∂DN(X, Q)g(Q)dσ(Q) + C, and

hence, if g ≡ 0, u ≡ C.

Let now F : D→ D be a quasiconformal map and let L be the pull-back of the Laplacian

under F , i.e. L = ∆F . For this special class of operators the following result holds true (see

[KP1], Section 4 )

Theorem 7.1.2. Let L = ∆F . If Neumann problem (7.1) is Lp-solvable then Dirichlet

problem (1.32) is Lq-solvable, 1
p

+ 1
q

= 1.

Remark 7.1.1. As observed in [KP1], it can be shown that, in Theorem 7.1.2, the converse

is also true. That is, by the special geometric properties of quasiconformal mappings one

can see that the Neumann problem is Lp-solvable if and only if the Dirichlet problem is

Lq-solvable (1
p

+ 1
q

= 1) for operators which arise as the pull-back of the Laplacian under a

quasiconformal change of variables ( see Remark 4.3, [KP1]).
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In this chapter, we extend Theorem 7.1.2 in the context of Orlicz spaces (see Theorem

7.2.1). Moreover, as we will see, we partially give an answer to a question contained in [K]

about planar operators of the type L = div(A∇) with A ∈ E1(K) (see Problem 3.2.6, [K]).

In analogy with Lp-case, we give the following

Definition 7.1.2. The Neumann problem (7.1) is LΨ-solvable if, whenever g ∈ L2(∂D, dσ)∩
LΨ(∂D, dσ), and

∫
∂D gdσ = 0, there exists a unique solution u ∈ W 1,2

loc (D) to (7.1), verifying

the uniform estimate ∫

∂D
Ψ[

∼
N(∇u)]dσ 6 C

∫

∂D
Ψ[|g|]dσ, (7.3)

where
∼
N is the non-tangential maximal function.

Previous definitions require obvious modifications in case the underlying space (∂D, σ) is

replaced by R2
+ = {(x, t) : t > 0}, the arc length σ by Lebesgue area and arcs Γ by intervals

I contained in R.

7.2 A relation between Dirichlet and Neumann prob-

lem

Let A ∈ E1(K) and let us consider the following Neumann problem with LΨ data





div A∇u = 0, in R2
+

A∇u ·
→
N |R = g.

(7.4)

We have the following

Theorem 7.2.1. [CZ] Let L = div (A∇), A ∈ E1(K) and let 1 < p < ∞. Moreover, let

Ψ ∈ ∇2 be a Young function verifying

i)α(Ψ) = p
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ii)∃c1, c2 such that c1t
p−1 6 Ψ′(t) 6 c2t

p−1, for any t > 0.

If Neumann problem (7.4) is LΨ-solvable then Dirichlet problem (1.32) is LΘ-solvable,

for any Young function Θ ∈ ∇2 such that α(Θ) = q, 1
p

+ 1
q

= 1.

Remark 7.2.1. It is worth to point out that in last Theorem if we assume Ψ(t) = tq,

1 < q < ∞, then we get Theorem 7.1.2.

Proof. Let A ∈ E1(K). By the measurable Riemann mappings theorem (see Theorem 5.1.1)

we can find a K- quasiconformal mapping F : R2
+ → R2

+ such that

A =

[
tDFDF

JF

]−1

.

By Theorem 5.3.1, we have that the form of the harmonic measure of the operator

L = div (A∇) can be recognized. Namely, let h : R → R, h = F|R be the trace of F on

the real axis R. Hence, the harmonic measure ωL of the operator L evaluated at the point

F−1(0, 1) verifies

ωL ∼ dh. (7.5)

Now, let us consider the Neumann problem (7.4) and let v be the solution to the problem





∆v = 0, in R2
+

∂v
∂t
|R = f.

(7.6)

We get a solution to (7.4) by composing v and F . Now we want compute the Neumann data

for u. To this aim, let (y, t) = F (x, s). We have, by the chain rule formula

∇u = ∇(v ◦ F ) = (tDF )[(∇v) ◦ F ]

so that

A∇u = JF (DF )−1(tDF )−1(tDF )[(∇v) ◦ F ] = JF (DF )−1[(∇v) ◦ F ].
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Moreover,

DF |R =




h′(x) a(x)

0 b(x)




where a(x) and b(x) are functions depending only on x. Denoting by e2 the vertical unit

vector, e2 = (0, 1) it holds

(A∇u) · e2|R = [(JF (DF )−1)|R(∇v) ◦ F |R] · e2 =


(JF (DF )−1)|R




∂v
∂y
|R ◦ h

∂v
∂t
|R ◦ h





 · e2

and then, by (7.6) we have

(A∇u) · e2|R =




b(x)∂v
∂y
|R ◦ h− a(x)f ◦ h(x)

h′(x)f ◦ h(x)


 · e2 = h′(x)(f ◦ h(x)).

By definition of LΨ-solvability, we know that g = (f ◦ h)h′ ∈ LΨ(R), i.e.

∫

R
Ψ[(f ◦ h)h′]dx < ∞.

Changing variables y = h(x), we get

∫

R
Ψ[(f ◦ h)h′]dx =

∫

R
Ψ

[
f(y) · 1

(h−1)′(y)

]
(h−1)′(y)dy < ∞. (7.7)

Now, let us observe that by hypothesis ii) we have that there exists a constant C > 0

such that

Ψ(st) > CΨ(s)Ψ(t), ∀s, t > 0. (7.8)

Then, by (7.7) and (7.8) we get

∫

R
Ψ[f(y)]Ψ

[
1

(h−1)′(y)

]
(h−1)′(y)dy < ∞
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and, by the second inequality in (2.17), we get

∫

R
Ψ[f(y)]

1

(h−1)′(y)
Ψ′

[
1

(h−1)′(y)

]
(h−1)′(y)dy

6 C

∫

R
Ψ[f(y)]Ψ

[
1

(h−1)′(y)

]
(h−1)′(y)dy < ∞

which yields ∫

R
Ψ[f(y)]Ψ′

[
1

(h−1)′(y)

]
dy < ∞.

On the other hand
∫
RΨ[f(y)]Ψ′

[
1

(h−1)′(y)

]
dy < ∞ if and only if f ∈ LΨ(wdy), where w(y) =

Ψ′
[

1
(h−1)′(y)

]
.

Since Neumann problem (7.4) is LΨ-solvable, then we have that all derivatives of u,

restricted to R, have to be in LΨ (see Theorem 7.1.1 ).

Now, let us observe that v = v(y, t) is harmonic in R2
+. Hence there exists the conjugate

harmonic function vc on R2
+ such that

∂v

∂y
=

∂vc

∂t
,

∂v

∂t
= −∂vc

∂y

i.e. the function V = v + ivc is holomorphic on R2
+ respect to z = y + it. Then, also the

function

iV ′ =
∂v

∂t
+ i

∂v

∂y

is holomorphic. Hence, ∂v
∂t
|R = f implies ∂v

∂t
|R = Hf where Hf denotes the classical Hilbert

transform of f (see (2.21)).

Hf(y) = lim
ε→0+

1

π

∫

|x−y|>ε

f(x)

y − x
dx.

This implies, in particular, that if f ∈ LΨ(wdy), then

∂v

∂y
= Hf ∈ LΨ(wdy),



128 CHAPTER 7. NEUMANN AND DIRICHLET PROBLEMS

and ∫

R
Ψ(Hf)w(y)dy 6 C

∫

R
Ψ(|f |)w(y)dy. (7.9)

To prove (7.9) let us start by observing that u(x, s) = v(F (x, s)) = v(y, t). By considering

the restriction of u to R, we have u(x, 0) = v(F (x, 0)) = v(h(x), 0). Hence, the derivative of

u with respect to x on R is given by,

∂u

∂x
(x, 0) =

∂v

∂y
(h(x), 0)h′(x),

so that ∫

R
Ψ(

∂u

∂x
(x, 0))dx =

∫

R
Ψ(

∂v

∂y
(h(x), 0)h′(x))dx.

Now, changing variables x = h(y), dy = h′(x)dx, by (2.17) and (7.8) we have

∫

R
Ψ(

∂u

∂x
(x, 0))dx =

=

∫

R
Ψ(

∂v

∂y
(y, 0)h′(h−1(y)))

1

h′(h−1(y))
dy

> C

∫

R
Ψ(

∂v

∂y
(y, 0))Ψ′(h′(h−1(y)))dy.

This means ∫

R
Ψ(

∂v

∂y
(y, 0))w(y)dy 6 C

∫

R
Ψ(

∂u

∂x
(x, 0))dx. (7.10)

Now, by the LΨ solvability of the Neumann problem it holds in particular

∫

R
Ψ(

∂u

∂x
(x, 0))dx 6 C

∫

R
Ψ(|f |)w(y)dy,

so that, by (7.10) inequality (7.9) follows.

By a classical result (see Theorem 2.1.4), (7.9) holds if and only if w ∈ AΨ. Then, by
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Theorem 2.3.6, w ∈ Ap-class, where p = α(Ψ). Hence, there exists A > 1 such that

∫

J

Ψ′
(

1

(h−1)′(y)

)
dy

(∫

J

Ψ′
(

1

(h−1)′(y)

)− 1
p−1

dy

)p−1

6 A.

Changing variables y = h(x) we have

(
1

|h(I)|
∫

I

Ψ′(h′(x))h′(x)dx

)(
1

|h(I)|
∫

I

(Ψ′(h′(x)))
− 1

p−1 h′(x)dx

)p−1

6 A,

for all bounded interval I ⊂ R.

By the assumption ii) we get

(
1

|h(I)|
∫

I

h′(x)pdx

)(
1

|h(I)|
∫

I

h′(x)−1h′(x)dx

)p−1

6 A,

so that, (
1

|h(I)|
∫

I

(h′(x))pdx

)( |I|
|h(I)|

)p−1

6 A.

Hence (∫

I

(h′(x))pdx

) 1
p

6 A

∫

I

h′(x)dx (7.11)

and then, by (7.5) and (7.11) we obtain that ωL ∈ Bp.

In conclusion by Theorem 4.1.1 the LΘ-solvability of the Dirichlet problem follows, for

any Θ ∈ ∇2 with Θ(Φ) = q.

7.3 Examples

In this section we present some examples of Young functions verifying the hypotheses of

Theorem 7.2.1.

Example 7.3.1. Let a, b ∈ R+ and let 1 < p, q < ∞. Let us consider the following Young
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function:

Ψ1(t) =





tp, 0 6 t 6 a

ap−qtq, a 6 t 6 b

(a
b
)p−qtp, t > b

By Theorem 2.3.4 [FK2] we can easily compute the fundamental indices of Ψ1. More

precisely we have

α(Ψ1) = α(Ψ1) = p

so that by (2.31) we have Ψ1 ∈ ∇2.

In order to see that Ψ1 satisfies condition ii) of Theorem 7.2.1 let us observe that the

derivative Ψ′
1 of Ψ1 is given by

Ψ′
1(t) =





ptp−1, 0 6 t < a

qap−qtq−1, a 6 t < b

p(a
b
)p−qtp−1, t > b.

Then, when 0 6 t < a or t > b, condition ii) is obvious. On the other hand, whenever

a 6 t < b we have

Ψ′
1(t) = qap−qtq−1 6 c2t

p−1 ⇐⇒ c2 > q max

{
1,

(
b

a

)q−p
}

,

and

Ψ′
1(t) = qap−qtq−1 > c1t

p−1 ⇐⇒ c1 6 q min

{
1,

(
b

a

)q−p
}

.

Hence, Ψ1 verifies the hypotheses of Theorem 7.2.1.

Example 7.3.2. Let us consider (see [FS])

Ψ2(t) =





et3, 0 6 t 6 e

t4+sin log log t, e 6 t 6 ee

(ee+e sin 1)t3, t > ee
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By Theorem 2.3.4 we have

α(Ψ2) = α(Ψ2) = 3,

and by (2.31) we have Ψ2 ∈ ∇2.

The derivative of Ψ2 is given by

Ψ′
2(t) =





3et2, 0 6 t < e

t3+sin log log t(cos log log t + 4 + sin log log t), e 6 t < ee

3(ee+e sin 1)t2, t > ee

so that when 0 6 t < e or t > ee condition ii) is simply verified. On the other hand, if

e 6 t < ee we can choose c1 6 2ee and c2 > 6ee+e sin 1 and condition ii) of Theorem 7.2.1 is

verified.
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