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INTRODUCTION 

 

1. The importance of iron 

1.1 Iron : an indispensable and potentially toxic nutrient  

Iron is a basic requirement for most forms of life, including humans and most 

bacterial species and is one of the most commonly used metals in biological 

system. In fact, in vertebrates several physiological processes, as well as oxygen 

transport, cellular respiration, DNA synthesis, production of various 

neurotransmitters and hormones, xenobiotics metabolism and some aspects of 

host defense make use of iron-containing proteins. 

Iron is one of the most important trace elements required and the adequate daily 

supply is in the low milligram range (Wood et al., 2006). The total iron content 

of body varies with age, sex, nutrition and state of health. Normal adult man is 
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estimated to contain 4.5 g of iron, of which about 60-70% as haemoglobin and 

3% as myoglobin.  

The critical role of iron in human health is supported by the relationship between 

sufficient iron intake and the prevention of some diseases (Neilands, 1991). In 

fact iron deficiency causes anemia, impairs muscle, immune and cognitive 

functions and can increase the incidence of low birthweight and preterm 

delivery. At present, the nutritional importance of iron is evident, given the 

worldwide prevalence of disorders arising from iron deficiency and the evidence 

of the central role of iron-containing proteins in multiple cellular processes 

(Bothwell, 1995). However, when present at levels that exceed the capacity of 

organism to safely use it, iron can be toxic because of its ability to promote 

oxidation of lipids, proteins and other cellular components. High levels of iron 

have been associated with increased incidence of some cancers, dysfunction of 

organs, such as heart, pancreas, or liver and development of neurodegenerative 

disorders (Halliwell, 1992). 

 

1.2 Toxicity of iron 

The ability of Fe(II) to donate electrons and of Fe(III) to accept electrons is a 

fundamental feature for many biochemical reactions. However iron can also be 

potentially toxic because under aerobic conditions it can catalyze the production 

of reactive oxygen species (ROS) that can cause damage to a wide variety of 

cellular structures and ultimately kill the cell (Aisen et al.,1990). Iron’s toxicity 
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is largely based on Fenton and Haber-Weiss chemistry (Fig. 1A), where catalytic 

amounts of iron are sufficient to yield hydroxyl radicals (OH.) from superoxide 

(O2
.-) and hydrogen peroxide (H2O2), collectively known as “reactive oxygen 

intermediates” (ROIs) (Halliwell and Gutteridge, 1990). ROIs are byproducts of 

the aerobic respiration and arise by incomplete reduction of oxygen in 

mitochondria. Iron catalyzes the generation also of organic reactive species, such 

as peroxyl (ROO.), alkoxyl (RO.), thiyl (RS.), or thiyl-peroxyl (RSOO.) radicals 

(Fig. 1B). 

 
 
 
A. 
 
  Fe (II) + H2O2 → Fe (III) + OH- + OH · (Fenton) 
 
  Fe (III) + O2

·- → Fe(II) + O2 

 
  Net reaction: 
 
  H2O2  + O2

·-  Fe→ OH- + OH· + O2 (Haber-Weiss) 
 
B. 
    
   Fe (II) + ROOH →  Fe (III) + OH· + RO· 

 

    Fe (III) + ROOH → Fe (II) + H+ + ROO· 

 

     RSH + OH· → RS· + H2O 
 
   RS· + O2 → ROO· 

 
C. 
 
   Heme-Fe (II)- O2 +  H2O2  → Heme- Fe (IV)- OH· + O2 + OH· 

 

     Heme- Fe (IV)- OH· + ROOH → Heme- Fe (III) + ROO· + H2O2   
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D. 
 
   Fe (II) + H2O2 → Fe (II)-O + H2O 
 
   Fe (II) + O2  → [Fe (II)-O2 → Fe (III)- O2

·-] → Fe (III) + O2
·- 

 
 
 
 
 
Fig. 1. Iron and free radicals 
(A) Iron-catalyzed generation of the hydroxyl radical via the Fenton reaction; 
the net Haber-Weiss reaction is also indicated. (B) Iron-catalyzed generation of 
organic radicals. (C) Heme-catalyzed production of oxygen radicals via 
oxoferryl intermediates. (D) Direct interaction of iron with oxygen.  
 
 

Interestingly, heme iron may catalyze the formation of radicals, mainly via 

formation of oxoferryl intermediates (Ryter and Tyrrell, 2000) (Fig. 1C). 

Finally, ferrous iron can contribute as reactant, rather than as catalyst, to free 

radical generation by a direct interaction with oxygen, via ferryl (Fe 2+-O) or 

perferryl (Fe 2+-O2) iron intermediates. 

An increase in the levels of reactive oxygen species beyond the antioxidant 

capacity of the cell causes oxidative stress and occurs in many pathological 

conditions, such as chronic inflammation, ischemia-reperfusion injury or 

neurodegeneration (Ischiropoulos and Beckman, 2003). Excess of redox active 

iron exacerbates oxidative stress and leads to tissue degeneration.  

Under physiological conditions, extracellular iron is bound to transferrin, a 

glycoprotein working as the plasma iron transporter, which maintains iron 

soluble and non-toxic (Ponka et al.,1998). In healthy individuals, only 30% of 
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circulating transferrin binds to iron. In pathological iron overload conditions, 

iron gradually saturates the iron-binding capacity of transferrin and forms 

redox-active, low-molecular-weight chelates. Non-transferrin-bound iron 

ultimately gets into tissues resulting in tissue injury.  

 

 

 

1.3 Cellular iron uptake  

Transferrin receptor provides for entrance of transferrin to cells. Two types of 

receptor have been described. The first and more studied of these is known as 

transferrin receptor 1 (TfR1). It consists of two disulfide-bonded identical 90 

KDa subunits, each bearing three asparagines-linked and one threonine-linked 

carbohydrate chains. TfR1 is expressed by all iron-requiring cells, and is more 

abundant than transferrin receptor 2 (TfR2). The first 61 amino acids of each 

subunit form the cytoplasmatic domain, and a membrane-anchoring 

hydrophobic sequence of residues 62-89 that spans the lipid bilayer once. The 

rest of the protein, bearing the transferrin recognition sites, lies in the external 

region. The TfR2 exists in two forms, TfR2-α, with a 45% sequence identity to 

TfR1 and TfR2-β, lacking of the N-terminal portion, including the cytoplasmic 

and transmembrane regions. Expression of TfR2 is predominantly in liver and 

in some proliferating cells (Brissot et al., 2004). 
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Transferrin (Tf) binds to the TfR at the cell surface and is internalized though 

clathrin-coated pits into endosomes via a well characterized pathway (fig. 2). 

At the acidic pH of the endosome, iron dissociates from Tf and goes into the 

cytoplasm, presumably via a membrane transporter. The rate of iron release 

from Tf to cells depends on the pH of the endosome and its association with 

the TfR (Sipe et al., 1991), but the efficiency is probably less than 100%. 

Endosomal pH varies with cell type, ranging from 6 to 5.5.  

Even the lowest pH achieved by endosomes, however, is not sufficient to 

remove iron from transferrin in the few minutes, so that other mechanisms 

must participate in iron release. Such mechanisms might include the 

availability of iron-sequestering molecules, such as citrate or ATP, or the 

reduction of iron in the transferrin-transferrin receptor complex, as suggested 

by identification of a membrane ferrireductase (McKie et al., 2001). After the 

return of the receptor/Tf complex to the cell surface, the extracellular pH 

triggers the release of apo-Tf, allowing another round of binding and 

endocytosis to begin.  

The transferrin/TfR1 pathway represents the major way for cellular iron uptake 

and some cell types (for example erytroid cells) depend on it for iron 

acquisition. 
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Fig. 2. The transferrin cycle 
Transferrin binds to the transferrin receptor (TfR) at the cell surface in 
proximity of clathrin-coated pits, which invaginate to initiate endocytosis and 
form specialized endosomes. At acid pH iron is released from transferrin (Tf) 
and is transported out of the endosomes by the divalent cation transporter 
DCT1 or DMT1. Apotransferrin come again to the cell membrane to 
participate in further rounds of iron delivery.  
 

 

1.4 Absorption of iron 

The absorption of dietary iron takes place in the duodenum and small intestine. 

From total iron intake only 5-15% is absorbed. Absorption depends on many 

factors, as requirement of the organism and type of iron (ferric or ferrous 

form). Before the entrance into enterocytes, insoluble ferric ion can be reduced 
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by a cytochrome b-like hemoprotein Dcytb at the plasma membrane level (Fig. 

3) (McKie et al., 2001). A transmembrane protein Nramp2 (also known as 

DCT1 or DMT1) is expressed on the lumen of the intestine and transports 

ferrous ion across the membrane. DMT1 is a proton/divalent metal co-

transporter that carries several transition metals including iron, manganese and 

cobalt (Gunshin et al., 1997). The DMT1 mRNA contains IREs and the 

expression of the protein is regulated post-transcriptionally by the iron level. 

DMT1 is also involved in the transport of ferrous ion across endosomal 

membrane into the cytoplasm after the transferrin-iron release from transferrin 

in endosomes. After the absorption of iron by intestinal Nramp2, the transport 

of iron across the basolateral membrane to the portal vein occurs. The iron-

regulated transporter-1 specifically expressed in the duodenal mucosa, IREG1, 

also known as ferroportin 1, functions in the stimulation of iron efflux from the 

cells. Ferroportin 1 is a transmembrane protein that transports iron from the 

inside of a cell to the outside of it. It is located on the surface of cells that store 

or transport iron, as enterocytes, hepatocytes and macrophages. The expression 

of this protein is dependent on the iron absorption and the 5´-UTR region of its 

mRNA contains a functional iron-responsive element (IRE) (Donovan et al., 

2000).   

In addition, for the export of iron from non-intestinal cells the ceruloplasmin is 

required. This protein oxidizes ferrous ion exported by ferroportin 1 to ferric 

ion to facilitate the binding of iron to transferrin. Humans and mice deficient in 
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ceruloplasmin accumulate iron in several cells, including macrophages, neural 

cells and hepatocytes, indicating that a serum ferroxidase activity is essential 

for the mobilization of iron between macrophages and other tissues.  

Another protein implicated in iron transport is the hephaestin, a transmembrane 

copper-dependent ferroxidase responsible for transporting dietary iron from 

intestinal enterocytes into the circulatory system (Anderson 1998; Vulpe et al., 

1999). Finally, a central role to maintain iron homeostasisis is carried out by 

hepcidin, a peptide hormone produced by the liver. In fact, this protein inhibits 

ferroportin 1, the cellular iron exporter, reducing iron absorption. Thus, 

hepcidin appears to be the master negative regulator of systemic iron 

homeostasis in humans and other mammals (Ganz 2003; Nemeth et al., 2004). 
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Fig. 3. Proteins involved in the transport and utilization of iron and heme 
HFE, DcytB, hephaestin, transferrin receptor 2, ferroportin 1, and hepcidin are 
involved in iron metabolism; HIF-1α proline hydroxylase and HIF-1α 
asparagine hydroxylase are regulators as an oxygen sensor. 

 

 

 

 

 

1.5 Cellular iron utilization 

After the entry into the cytosol iron is distributed to the various intracellular 

proteins and organelles that need iron. Generally, there are three possible fates 

for iron in the cytoplasm: a) synthesis of iron-containing proteins; b) storage; c) 

export out of the cell. The use of intracellular iron in metabolic pathways or 

into storage proteins depends on the cellular iron condition and metabolic 

requirements of the cell. In mitochondria iron is involved in assemblage of 

heme and FeS proteins and in liver and in erythroid cells a large fraction of 

iron is incorporated into protoporphyrin IX to heme formation (Ponka et al., 

1997).  

As concern the mitochondrial iron trafficking various components of 

mitochondrial iron uptake and efflux pathway have identified (Allikmets et al., 

1999; Lange et al., 1999) and several data indicate that mitochondria have a 

dynamic iron pool that functionally interacts with the cytosolic iron pool 

(Knight et al., 1998). 
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A critical aspect of the maintenance of cellular iron homeostasis is the control 

of the expression of genes encoding proteins required for the uptake (TfR1, 

DMT1), storage (ferritin) or export (FPN) of iron (McKie et al., 2000; 

Abbound et al., 2000). To coordinate these processes, sensing of cellular iron 

status is required. Iron regulatory proteins (IRPs) are central components of a 

sensory and regulatory system required for the maintenance of iron 

homeostasis in vertebrates. 

 

1.6 Ferritin structure and function 

Ferritin is a ubiquitous and highly conserved iron-binding protein. In 

vertebrates, the cytosolic form consists of two subunits, termed H and L. 

Twenty-four ferritin subunits assemble to form the apoferritin shell (fig. 4). 

Each apoferritin molecule of 450 KDa can sequester up to approximately 4500 

iron atoms (Harrison et al., 1996). Depending on the tissue type and 

physiologic status of the cell, ratio of H to L subunits in ferritin can vary 

widely, from predominantly L in such tissues as liver and spleen, to 

predominantly H in heart and kidney. The H to L ratio is readily modified in 

many inflammatory and infectious conditions, and in response to xenobiotic 

stress, differentiation and developmental processes, as well as other stimuli. 

Ferritin H and L subunits are encoded by different genes. Although a single 

functional H and L gene was thought to be expressed in all vertebrate species, a 
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functional mitochondrial ferritin gene has been described (Levi et al., 2001). 

Multiple pseudogenes are also present.  

Moreover ferritin has enzymatic properties, converting Fe (II) to Fe (III) when 

iron is internalized and sequestered in the ferritin mineral core. This function is 

evolutionarily conserved and it is an intrinsic characteristic of the H subunit, 

which has a ferroxidase activity (Rucker et al., 1996).  

Small quantities of ferritin are present in human serum and are elevated in 

conditions of iron overload and inflammation (Torti et al., 1994). Serum 

ferritin is iron-poor and immunologically resembles ferritin L.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4. Ferritin structure 
Twenty-four ferritin subunits assemble to form the apoferritin shell, that has a 
molecular weight of  ~ 450  KDa.     
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Despite  general use of serum ferritin as clinical indicator of body iron stores, 

little is known of source of this ferritin. 

The critical role of ferritin in cellular iron homeostasis is closely linked to its 

function of iron sequestration. The toxicity of iron in cellular systems is 

attributable in large part to its capacity to participate in the generation of 

reactive species, which can directly damage DNA, lipids, and proteins, leading 

to cellular damage. In the organism iron balance is maintained with fine 

regulation. Ferritin, by capturing the intracellular labile pool (Kakhlon et al., 

2001) plays a key role in maintaining iron homeostasis. It is not surprising that 

H ferritin gene deletion in mice knockout is lethal (Ferreira et al., 2000). 

Actually, is evident that regulatory factors, in addition to those that control iron 

flux, have an important impact on cellular ferritin. In fact, ferritin can be 

viewed not only as part of a group of iron metabolism regulatory proteins that 

include transferrin and transferrin receptor, but also as a member of protein 

family that orchestrates the cellular defense against stress and inflammation. 
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2. Regulation of ferritin and transferrin receptor expression 

2.1 Post-trascriptional regulation by iron regulatory proteins 

The cellular levels of ferritin and transferrin receptor (TfR) are primarily 

regulated at translational level by changes in iron availability, through 

interactions between iron regulatory proteins (IRP1 and IRP2) and iron-

responsive elements (IRE) contained within the 5’ UTR of H- and L-ferritin 

mRNA and the 3’ UTR of TfRmRNA (fig. 5). When cellular iron levels are 

low, IRPs binds to the IRE cis-element in ferritin mRNA and protein 

translation is blocked. When intracellular iron levels rise, IRP1 is no longer 

able to bind IRE, IRP2 is degraded and ferritin mRNA is efficiently translated. 

When cellular iron levels are low, IRPs binds to the IRE cis-element in ferritin 

mRNA and protein translation is blocked. When intracellular iron levels rise, 

IRP1 is no longer able to bind IRE, IRP2 is degraded and ferritin mRNA is 

efficiently translated. On the contrary, the TfR expression is largely controlled 

through changes in RNA degradation (Wallander et al., 2006). During low 

iron conditions, IRPs  bind to 3’ UTR IREs in Tf R mRNA, resulting in the 

stabilization of the TfR mRNA. During high iron conditions, IRPs lose their 

affinity for IREs mediating degradation of the Tf R mRNA.  

There are two RNA binding proteins, iron regulatory proteins 1 and 2 (IRP1 

and IRP2), that bind to IRE stem loop. These proteins are regulated differently: 
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IRP1 is an iron-sulfur cluster protein that exists in two forms. When iron level 

is high , it exist as a cytosolic aconitase. When iron islow, it assumes an open 

configuration associated with the loss of iron atoms in the iron-sulfur cluster, 

and can bind the IRE stem loop. In contrast, IRP2 is regulated by its 

degradation: IRP2 protein is abundant in iron deficiency, but is degraded 

rapidly in iron overload (Iwai et al., 1998). 

 

 

 
 
 
 
 
Fig. 5. Cellular regulation of mammalian iron homeostasis by the IRPs. 
Decreased iron supply activates binding of IRPs to IRE resulting in 
translational inhibition of the mRNAs encoding ferritin and stabilization of the 
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Tf R mRNA. During high iron conditions, IRPs lose their affinity for IREs, 
increasing translation of ferritin mRNAs and degradation of the Tf R mRNA. 
 
       
 
                   
 

 

 

2.2 IRP1 and IRP2 

IRP1, an evolutionarily conserved protein, is highly homologous with 

mitochondrial (m-)aconitase, which converts citrate into isocitrate in the 

tricarboxylic acid cycle. The informations concerning the structure of m-

aconitase has allowed the construction of an model that implies a post-

translational switch between an apoprotein form capable of binding iron-

responsive-element (IRE) and an enzymically active protein with 4Fe-4S 

cluster (Eisenstein et al., 1998; Wallander et al., 2006). In the holoprotein, the 

four domains are in closed conformation and permit the assembly of a 4Fe-4S 

cubane cluster co-ordinated by cysteine residues. By contrast, as result of 

cluster disassembly, the apoprotein can accommodate the RNA in a cleft 

between domains 1-3 and 4. The switch between these two mutually exclusive 

functions of IRP1 is regulated by intracellular iron levels, because a high 

degree of aconitase activity is present under conditions of iron overload and 

full IRE-binding capacity exists in iron-depleted cells. The mechanism 
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underlying the insertion and removal of cluster, and hence the conversion 

between the two functions of IRP1, remain poorly defined. 

IRP2 is usually less abundant and can be electrophoretically distinguished from 

IRP1 only in murine cell extracts. IRP2 is highly homologous with IRP1, but 

has two major differences: the presence of a 73-amino-acid insertion in the N-

terminus and lack of aconitase activity (Cairo et al., 2000). 

The IRP2 specific sequence mediates the characteristic way by which this 

protein is regulated: in presence of  high iron levels, IRP2 is rapidly targeted to 

proteasome-mediated degradation (Iwai et al., 1998) (fig. 6).  

Although both IRP1 and IRP2 bind the IRE and exert the same effect on 

ferritin and TfR synthesis, these proteins may have distinct tissue-specific role. 

The ratios of IRP1/IRP2 differ in a tissue-specific fashion, with IRP1 being 

more abundant than IRP2 in liver, kidney, intestine, and brain, and less 

abundant in pituitary and pro-B-lymphocytic cell line (Eisenstein, 2000).   

A  e B                          
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Fig. 6. IRPs regulation by iron and other stimuli 
A) Regulation of bifunctional IRP1 protein in response to iron and other 
stimuli via iron-sulfur cluster switch. 
B) Iron-dependent degradation of IRP2. 
 

 

Moreover, IRP2 deletion in knockout mice determines a pronounced 

misregulation of iron metabolism in the intestinal mucosa and central nervous 

system (LaVaute et al., 2001).  

 

 

2.3 IRPs regulation by other stimuli  

IRPs are considered as intracellular iron sensors, but they also respond to other 

stimuli. Exposure of cells to hydrogen peroxide (H2O2) or nitric oxide (NO) 

induces IRE-binding activity (Cairo et al., 2002) (fig. 6). The response of IRP1 

to H2O2 and NO are complex. The H2O2-mediated conversion of IRP1 from 

cytosolic aconitase to IRE-binding protein is a result of signalling pathway 

rather than of direct chemical modification of the 4Fe-4S cluster by H2O2. The 

mechanism for IRP1 activation by NO is distinct. Exposure of purified IRP1 to 
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NO in vitro was shown to activate IRE binding (Soum et al., 2003), although 

this effect was only partial.  

The IRPs RNA-binding activity is also regulated by protein phosphorylation, 

hypoxia conditions, as well as by oxalomalic acid, a known inhibitor of 

aconitase/IRP1 (Wallander et al., 2006; Festa et al., 2000).  

 

 

3. Hypoxia 

Hypoxia is oxygen starving at the tissue and cellular levels. It is caused by 

reduction of oxygen supply in blood and in tissues below physiological levels. 

Severe hypoxia can result in anoxia, a complete loss of oxygen to an area of 

tissue. 

There are four major types of hypoxia. The first type, hypoxic hypoxia, is 

decrease of fraction of inhaled oxygen possibly due to hyperventilation from 

respiratory depression or altitude above sea level. The second type of hypoxia 

is termed anaemic hypoxia, and is characterized by a decrease in the amount of 

haemoglobin that binds oxygen in the blood. This can be caused by multiple 

factors, including but not limited to: blood loss, reduced red blood cell 

production, carbon monoxide poisoning, and a genetic defect of haemoglobin. 

Stagnant hypoxia, the third type of hypoxia that has been defined, results in 

low blood flow and is caused by vasoconstriction and/or heart failure. The 



 
 

 30

fourth type of hypoxia is hystotoxic hypoxia, a poisoning of oxidative enzymes 

that causes vasodilatation in brain arteries and veins, resulting in more blood 

flow to the brain tissues. This response is probably mediated by nitric oxide 

(NO) and adenosine. 

Hypoxia is a fundamental angiogenic stimulus and an important mediator of 

this primary stimulus is the transcription factor hypoxia-inducible factor-1 

(HIF-1α) (Semenza et al, 1997). The regulation of most proteins necessary for 

hypoxic adaptation occurs at DNA level and involves transcriptional induction 

via the binding of the transcription factor HIF-1α to the conserved sequence, 5-

(A/T)CGTG-3, in the hypoxia response element (HRE) on the regulated genes. 

To date, more than 100 hypoxia-inducible genes have been found to be directly 

regulated by HIF-1. 

HIF-1 is a heterodimer composed of 120 kDa HIF-1α subunit and a 91-94 kDa 

HIF-1α subunit. In addition to the ubiquitous HIF-1α, the HIF-1α family 

contains two other members, HIF-2α  (Tian et al., 1997; Hogenesch et al., 

1997; Ema et al., 1997)  and HIF-3α (Gu et al., 1998), both of which have 

more restricted tissue expression (Wenger et al., 2002). HIF-2α and HIF-3α 

contain domains similar to those in HIF-1α and exhibit similar biochemical 

properties, such as heterodimerization with HIF-1α and DNA binding to the 

same DNA sequence in vitro. HIF-2α is also tightly regulated by oxygen 

tension and its complex with HIF-1α appears to be directly involved in hypoxic 

gene regulation, as is HIF-1α (Wiesener et al., 1998). However, although HIF-
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3α is homologous to HIF-1α, it might be a negative regulator of hypoxia-

inducible gene expression (Hara et al., 2001).  

 

3.1 Regulation of HIF-1α 

Under normoxic conditions HIF-1α protein undergoes prolyl hydroxylation by 

specific cellular prolyl hydroxylases. Hydroxylated HIF interacts with the 

VHL, a critical member of an E3 ubiquitin-protein ligase complex that 

polyubiquitylates HIF (Fig.7). Polyubiquitylation targets HIF-1α for 

destruction by the 26S proteosome. Under hypoxia hydroxylation does not 

occur and HIF-1α is stabilized and then dimerizes with HIF-1α. The 

heterodimeric HIFs upregulate numerous hypoxia-inducible genes, triggering 

physiologic responses to hypoxia..  
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Fig.7. Transcriptional gene regulation by the hypoxiainducible factor HIF-
1α. HIF-1α protein undergoes prolyl hydroxylation under normoxic conditions 
by specific proyl hydroxylases. Hydroxylated HIF is then degraded by the 
proteosome. Under hypoxia hydroxylation does not occur and HIF-1α is 
stabilized. The heterodimerization with ARNT forms the active HIF complex 
that binds to hypoxia response element in various genes.  
 
In addition to mediating adaptation to hypoxia, HIF-1 also contributes to other 

cellular processes that occur under normoxic conditions, such as the 

development of normal tissues or tumors, the determination of cell death or 

survival, immune responses and the adaption to mechanical stress. Under 

normoxic conditions HIF-1 can be activated by various cytokines, growth 
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factors, transition metals, iron chelation, as well as nitric oxide (NO) (Bemis et 

al., 2004).  

 

 

3.2 Hypoxia-mediated iron metabolism regulation 

The genes coding for the main proteins involved in the iron metabolism 

respond to hypoxia. Hypoxia determines an increase in TfR RNA, despite a 

decrease of IRP1 activity. This increase results from hypoxia-induced 

stabilization of HIF-1 and increased TfR gene transcription (Tacchini et al., 

1999). Moreover hypoxia increases transferrin gene expression in hepatoma 

cells (Rolfs et al., 1997); transferrin is a member of the HIF-1-regulated gene 

family. Finally,  the activity of the RNA-binding proteins, IRP1 and IRP2 are 

regulated by hypoxia. Hypoxia exposure decreases IRP1-RNA binding activity 

and increases IRP2-RNA binding activity. The hypoxic increase in IRP2-RNA 

binding results from increased IRP2 protein levels. Recent evidence 

demonstrates that the response of IRP1 to hypoxia and reoxygenation can vary 

in a cell type specific manner (Irace  et al., 2005). 
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3.3 How would hypoxia regulate iron metabolism? 

One proposed mechanism of hypoxic regulation of iron metabolism is via 

hydrogen peroxide (H2O2), possibly from a heme-containing oxygen sensor 

that acts as an IRP2 degradation signal (Hanson et al., 1999). The use of 

oxygen-derived free radicals in the regulation responses appears to be a general 

mechanism for regulating the stability of proteins that mediate hypoxic 

adaptation. The hypoxia-induced changes in the level of this reactive oxygen 

species may involve HIF-1α activation (Fig.8).  

In normoxic cells HIF-1α is rapidly degradated by a proteosomal mechanism. 

It has been reported that hypoxia upregulates tumor suppressor protein pVHL 

and this protein could be required for oxygen-dependent HIF-1α  degradation. 

The ability of pVHL to degrade HIF1 appears to be iron-dependent. Treatment 

with iron chelators prevented the association of pVHL with HIF1, suggesting 

that iron may be necessary for the interaction of pVHL with HIF1 (Maxwell et 

al., 1999).  

A close relationship exists between oxygen and iron. In fact, iron and oxygen 

regulate overlapping cellular activities. Both iron depletion and hypoxia 

compromise cellular ATP production by oxidative phosphorylation. In the iron-

depleted cell, oxidative phosphorylation is arrested because this process 

depends on various iron-containing proteins. In hypoxic cell oxidative 
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phosphorylation is arrested due to oxygen deficiency. It appears that the 

common cellular responses to iron depletion and oxygen depletion may be 

cellular adaptations to compensate the ATP deprivation. In iron depletion, the 

cell compensates in two ways. First, to restore the free iron available for 

essential cellular processes, the cell tries to increase its iron uptake and 

decrease its iron storage. Second, while the intracellular iron is being 

replenished, the cell tries to find other means of generating ATP. To this aim, 

iron-depleted cells up-regulate glycolitic enzymes and glucose transporters via 

a HIF1α -dependent pathway. Similarly, during hypoxia the cell compensates 

for ATP-depletion by increasing glycolysis. The hypoxic injury causes the 

stabilization of HIF-1α, resulting in transcriptional up-regulation of glycolitic 

enzymes and glucose transporters. The restored ATP production may be an 

important mechanism by which iron chelators could prevent cellular injury 

during  ischemic insult. 
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Fig. 8. Hypoxia and iron metabolism 
A. Normoxic Cell. This cell is well oxygenated, and the oxygen sensor is 
saturated. This may lead to generation of H2O2, which facilitate the degradation 
of HIF-1α and IRP-2. 
B. Hypoxic Cell. HIF-1α is stabilized and after heterodimerizing with HIF-1β, 
translocates into the nucleus, where it binds to the hypoxia response element 
(HRE) upstream of a multitude of genes, including TfR and Tf. IRP2 is also 
stabilized and activated. 
 

 

4. Myocardial ischemia  

Myocardial ischemia occurs when the heart muscle is not getting enough 

oxygen-rich blood for a short period of time. The mammalian heart is an 

aerobic organ and a regular supply of oxygen is indispensable to maintain 

cardiac function and viability. For this reason heart tissue is extremely sensitive 

to oxygen deprivation and relatively short periods of ischemia and subsequent 

reperfusion lead to cell death. The inadequate blood flow is caused by total or 
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partial obstruction of the coronary arteries (Opie 1998). When the coronary 

arteries cannot supply enough oxygen-rich blood to the heart symptoms of 

myocardial ischemia can occur. Actually cardiovascular disease and the 

resulting cardiac ischemia is a most important cause of heart failure worldwide 

(Lakatta and Sollott, 2002). 

Myocardial ischemia is a complex phenomenon affecting the mechanical, 

electrical, structural and biochemical properties of the hearth. When blood flow 

is restricted the supply of oxygen  to the respiratory chain fails. During 

ischemia cardiac cells can maintain ATP levels by glycolysis but accumulate 

glycolytic by-products (lactate, H+) that cause a decrease in cytoplasmic pH; 

this condition can damage cardiac cells irreversibly (Solaini and Harris, 2005).  

Paradoxically, the major injure to ischemic cells comes on the re-introduction 

of oxygen (reperfusion). During reperfusion, electrons transfer and ATP 

synthesis start again and the cytoplasmic pH is restored to 7.0. Nevertheless, 

this leads further deterioration of cell function with membrane damage 

followed by cell death (Piper et al., 2004). 

The heart is able to develop natural protection against ischemic injury through 

a variety of defensive responses triggered by different stimuli. Procedures 

recognized to stimulate cardioprotection include exercise (Locke et al. 1995), 

ischemic preconditioning (Hutter et al. 1994), oxidative stress (Sharma and 

Singh ,2001), and certain pharmacological treatments. However, the 

preconditioning response of the myocardium may be reduced with ageing 
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(Abete et al. 2000; Schulman et al. 2001; Broderick et al. 2001). A decreased 

capacity of the myocardium to tolerate an hypoxic stress during ageing has 

been observed (Starnes et al. 1997, Mariani et al. 2000). In addition, ageing 

decreases myocardial tolerance to specific features of ischemic injury, 

including oxidative stress (Abete et al., 1999). 

 

4.1 Ferritin and ischemic heart disease  

Oxygen radical production may significantly contribute to myocardial damage 

during ischemia/reperfusion injury. While in the absence of Fe2+ 

hydroxyl radicals are relatively slowly formed (Haber-Weiss reaction), the 

reaction rate is greatly enhanced in the presence of Fe2+ (Fenton reaction). In 

this context, it is of interest to note that use of Fe-chelators reduce myocardial 

infarction size subsequent ischemia/reperfusion injury.  

Beneficial effects of ferritin protein with respect to the ischemia/reperfusion 

injury could be explained either by an increase of the myocyte storage capacity 

for ferric iron, or by an increase of the enzymatic activity of ferritin 

(ferroxidase activity) that reduces the availability of Fe2+ for free radical 

production (Ponka et al. 1998, Torti and Torti 2002). These effects might be 

achieved if the ferritin levels in myocardium during ischemia increase. 
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4.2 Ferritin synthesis regulation during ischemia 

Tissue ischemia and cellular hypoxia have been studied in various conditions 

and changes in ferritin synthesis are well documented. In particular, it has been 

reported that hypoxia induces ferritin synthesis in rat oligodendrocytes and 

human oligodendrogliomas (Qi et al., 1995). Similar effects were observed in a 

rat model of acute hypoxic/ischemic insult (Chi et al., 2000; Cheepsunthorn et 

al., 2001). Ferritin expression changes during hypoxia are in part mediated by 

IRPs RNA-binding activity. In fact, a modulation of IRPs activity has been 

reported during hypoxia/ reoxygenation in epithelial cells (Hanson et al., 1999; 

Schneider and Leibold 2003), in rat hepatoma cells (Hanson and Leibold, 

1998), in mouse macrophages (Kuriyama et al., 2001) and in some mammalian 

tissues (Meyron-Holtz et al., 2004). In contrast, IRP2 activity was found to 

increase under similar conditions (Toth et al., 1999). Finally, more recently a 

divergent modulation of IRPs activity and ferritin biosynthesis by 

hypoxia/reoxygenation has been reported in neurons and glial cells (Irace et al., 

2005).  

The phase of reperfusion after ischemia is critical and in many tissues, as heart 

and brain, the oxidant damage is considerable. During post-ischemic 

reoxygenation of rat liver, early ferritin degradation was counteracted by 

enhanced ferritin transcription and simultaneous IRP down-regulation. It was 
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suggested that this might act to re-establish ferritin levels and limit reperfusion 

damage (Tacchini et al., 1997).  
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AIM OF RESEARCH 
 
 
 
 

 

 

 

5.1 Aim of the research 

In the cardiac ischemia hypoxia and free iron appear to interact in causing the 

cellular death. Ischemia and re-establishment of blood flow cause the 

generation of reactive oxygen species catalysed by intracellular free iron with 

deleterious effects in post-ischemic reperfused tissue.  

The aim of this research has been to investigate the molecular mechanisms 

involved in the regulation of iron metabolism in cardiomiocytes exposed to 

hypoxia/reoxygenation and evaluate the relationships with cell viability 

parameters. 
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MATERIALS AND METHODS 

 

 

6.1 Cell cultures  

The rat embryonic ventricular myocardial cell line H9c2 was purchased from 

American Type Culture Collection. Cells were cultured in Dulbecco’s modified 

Eagle’s medium (DMEM) containing 4.5 g/L glucose and supplemented with 

10% fetal bovine serum (FBS), L-glutamine (2 mM), penicillin (100 units/mL) 

and streptomycin (100  

g/mL). Cells were cultured at 37°C in a humidified 5% CO2 atmosphere. Cells 

were cultured to ~90% confluence before experimental procedures.  

 

 

 

6.2  Combined oxygen, glucose and serum deprivation and   reoxygenation  

The H9c2 cells were exposed to oxygen, glucose and serum  deprivation 

(OGSD) for different times. Briefly, the culture medium was replaced with 

deoxygenated (saturated for 10 min. with 95% N2 and 5% CO2) glucose-free 

Earle’s balanced salt solution containing NaCl 116 mM, KCl 5.4 mM, MgSO4 

0.8 mM, NaHCO3 26.2 mM, NaH2PO4 1 mM, CaCl2 1.8 mM, glycine 0.01 mM 



 
 

 43

and 0.001 w/v phenol red. Cultures were then placed in an humidified 37°C 

incubator inside an anaerobic chamber containing a gas mixture of 95% N2 and 

5% CO2. Reoxygenation was achieved by replacing the OGSD medium with 

oxygenated regular medium containing glucose and serum and returning 

cultures to normoxic conditions (37°C in a humidified 5% CO2 atmosphere) for 

various times (3h and 24h). 

 

 

 

6.3 Cell viability assay 

Cell viability was evaluated by measuring the level of mitochondrial 

dehydrogenase activity using 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-

tetrazolium bromide (MTT) as substrate. The assay was based on the redox 

ability of living mitochondria to convert dissolved MTT into insoluble 

formazan. Briefly, after OGSD and OGSD/Reoxy, the medium was removed 

and the cells were incubated in 20 µl of MTT solution (0.5 mg/mL) for 1 h in a 

humidified 5% CO2 incubator at 37°C. The incubation was  stopped by 

removing the MTT solution and adding 100 µl of  DMSO solution to solubilize 

the formazan. The absorbance was monitored at 540 nm by using a Perkin-

Elmer LS 55 Luminescence Spectrometer (Perkin-Elmer Ltd, Beaconsfield, 

UK). The data are expressed as the percentage of cell viability to control 

cultures.  
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6.4 Evaluation of living/dead cells 

The relative number of live and dead cells in cultured cell populations was 

evaluated through the simultaneous measure of two protease activities using 

the MultiTox-Fluor Cytotoxicity Assay (Promega Corporation). The assay use 

two fluorogenic substrates (live cell reagent and dead cell reagent) supplied as 

DMSO solutions. The substrates are differentially cleaved in live and dead 

cells to yield the fluorescent products AFC and R110. AFC and R110 have 

sufficiently different excitation and emission wavelengths to allow the measure 

in the same mixture. The AFC signal increases with increasing cell viability 

and the R110 signals increases as the number of dead cells increases. By 

monitoring the AFC and R110 signals the ratio of live to dead cells in a cell 

population can be determined. The MultiTox-Fluor Cytotoxicity Assay can be 

performed in 96- well plates without additional washing or cell harvesting 

steps. 

 

 

 

6.5  Cellular energetic state 

The intracellular levels of ATP were determined using a test of 

bioluminescence (Bioluminescent somatic cell assay kit, Aldrich Sigma, St. 
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Louis USA). Such method uses the luciferase enzyme that catalyzes the 

oxidation of the luciferin involving adenosine triphosphate (ATP) and produce 

a luminous light with intensity proportionl  to the cellular ATP. 

The cells were resuspended in PBS to the concentration of 106 cellule/mL. To 

50 µL of such suspension were added 50 µL of sterile water and 100 µL of 

buffer (Somatic Cell Releasing Reagent) to allow the instantaneous release of 

cellular ATP. Successively, 100 µL of ATP mix assay to 100 µL of sample 

were added and the intensity of the luminous emission was measured by 

luminometer. The results are expressed as percentage respect to the control and 

were standardized for number of cells. 

 

 

 

6.6 Measurement of ROS 

The formation of ROS was evaluated using the probe 2',7'-dichlorofluorescin-

diacetate (H2DCF-DA) as described (LeBel et al., 1992). Briefly, H9c2 cells 

were grown in DMEM containing 10% (v/v) fetal bovine serum and 

subsequently were plated at a density of 20.000 cells/well into 96-well. Cells 

were cultured for 24 h and then incubated in medium containing 50 µM of 

H2DCF-DA (Sigma) for 1 h at 37 °C. 

H2DCF-DA is a non-fluorescent permeant molecule that passively diffuses into 

cells, where the acetates are cleaved by intracellular esterases to form H2DCF. 
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In the presence of intracellular ROS, H2DCF is rapidly oxidized to the highly 

fluorescent 2',7'-dichlorofluorescein (DCF). Cells were washed twice with PBS 

buffer and then were treated with deoxygenated, serum and glucose-free 

Earle’s balanced salt solution  for various times. After treatment, cells were 

washed twice with PBS buffer and the dishes were positioned in a fluorescent 

microplate reader (Perkin Elmer LS 55 Luminescence Spectrometer, Perkin- 

Elmer Ltd., Beaconsfield, England). Fluorescence was monitored using an 

excitation wavelength of 485 nm and an emission wavelength of 538 nm. 

 

 

 

6.7 Lipid peroxidation assay 

Lipid peroxidation products in the cells were measured by the thiobarbituric 

acid colorimetric assay (Esterbauer and Cheeseman, 1990). Briefly, after 

OGSD and OGSD/Reoxy cells were washed and collected in PBS Ca2+/Mg2+ 

free medium containing 1 mM EDTA and 1.13 mM butylated hydroxytoluene 

(BHT). Cells were broken up by means of sonicator. Trichloroacetic acid, 10% 

(w/v), was added to cellular lysate and, after centrifugation at 1,000g for 10 

min., the supernatant was collected and incubated with 0.5 % (w/v) 

thiobarbituric acid at 80°C for 30 min. After cooling, malondialdehyde (MDA) 

formation was recorded (A530 nm and A550 nm) in a Perkin Elmer LS-55 

spectrofluorimeter. Samples were scaled for protein concentration determined 
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by the Bio-Rad protein assay and a standard curve of MDA was used to 

quantify the MDA levels formed during the experiments. The results are 

presented as percentage of MDA production versus a control obtained in 

untreated cultures.  

 

 

 

6.8 LDH assay 

Cytosolic levels of LDH in the extracellular medium were measured by using 

an LDH assay Kit from Promega. The CytoTox-ONE™ Assay rapidly 

measures the release of lactate dehydrogenase (LDH) from cells with a 

damaged membrane. The CytoTox-ONE™ Reagent mix does not damage 

healthy cells, therefore the reaction can be performed directly in wells 

containing a mixed population of viable and damaged cells. Production of 

fluorescent resorufin product is proportional to the amount of LDH. 

Assay plates are allowed to equilibrate to ambient temperature, and CytoTox-

ONE™ Reagent is added to each well and incubated for 10 minutes. Stop 

Solution is added, and the fluorescent signal is measured. The amount of 

fluorescence produced is proportional to the number of lysed cells. Briefly, 

after induction of OGSD and OGSD/reoxygenation, the medium was removed 

and LDH content was evaluated by measuring the fluorescence in a microplate 

reader (Perkin Elmer LS 55 Luminescence Spectrometer, Perkin- Elmer Ltd., 
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Beaconsfield, England). using an excitation wavelength of 560 nm and an 

emission wavelength of 590 nm. 

The results were expressed as percentage of LDH released versus untreated cell 

cultures. 

 

 

 

6.9 Preparation of cytosolic extracts  

After OGSD and OGSD/Reoxy treatment H9c2 cells were washed and scraped 

off with PBS containing 1 mM EDTA. To obtain cytosolic extracts for 

electrophoretic mobility shift assay (EMSA) cells were treated with lysis buffer 

containing 10 mM HEPES, pH 7.5, 3 mM MgCl2, 40 mM KCl, 5% (v/v) 

glycerol, 1 mM dithiothreitol (DTT), 0.2% (v/v) Nonidet P-40 (NP-40) and 

protease inhibitor tablet (Roche, Mannheim, Germany)  at 4°C.  Cell debris and 

nuclei were pelleted by centrifugation at 15,000 g for 10 min. at 4°C and 

supernatants were stored at –80°C. For Western blot analysis cells were 

collected by scraping and low-speed centrifugation. Cell pellets were lysed at 

4°C for 1 h in a buffer containing 10 mM KCl, 1.5 mM MgCl2, 20 mM 

HEPES, pH 7.5, 1 mM EDTA, 1 mM DTT, 0.1 mM phenylmethylsulphonyl 

fluoride and proteases inhibitors tablets (Roche). The protein concentration was 

determined by the Bio-Rad protein assay according to the supplier's manual 

(Bio-Rad, Milan, Italy).  
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6.10 Electrophoretic mobility-shift assay (EMSA)  

Plasmid pSPT-fer, containing the sequence corresponding to the IRE of the H-

chain of human ferritin, linearized at the Bam HI site, was transcribed in vitro 

with T7 RNA polymerase (Promega). The transcriptional reaction was 

performed at 38.5 °C  for 1 h with 200 ng of plasmid in the presence of 50 µCi 

of [α-32P] CTP (800 Ci/mM) (Amersham Biosciences) and 0.5 mM ATP, GTP 

and UTP (Promega), in 20 µl reaction volume (Festa et al., 2000).  The DNA 

template was digested with 10 units of RNase-free DNase I for 10 min at 37 

°C. Free nucleotides were removed on Sephadex G-50 column (Roche). For 

RNA-protein band-shift analysis, cytosolic extracts (5 μg) were incubated for 

30 min. at room temperature with 0.2 ng of in vitro transcribed 
32

P-labeled IRE 

RNA. The reaction was performed in buffer containing 10 mM HEPES, pH 

7.5, 3 mM MgCl2, 40 mM KCl, 5% (v/v) glycerol, 1 mM DTT and 0.07% (v/v) 

NP-40, in a final volume of 20 μL. To recover total IRP1 binding activity, 

cytosolic extracts were pre-incubated for 10 min with 2-mercaptoethanol at a 

2% (v/v) final concentration, before the addition of 32P-labeled IRE RNA. 

Unbound RNA was digested for 10 min. with 1 unit of RNase T1 (Roche) and 

non specific RNA-protein interactions were displaced by the addition of 5 

mg/mL heparin for 10 min. RNA-protein complexes were separated on 6% non 

denaturing polyacrylamide gel for 2 h at 200 V. After electrophoresis, the gel 

was dried and autoradiographed at –80°C. The IRP-IRE complexes were 
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quantified with a GS-700 imaging densitometer and/or with a GS-505 

molecular imager system (Bio-Rad). The results are expressed as the 

percentage of IRP binding activity versus 2-mercaptoethanol-treated samples. 

 

 

 

6.11 Western blot analysis 

Samples containing 50 or 100 µg of proteins were denatured, separated on a 

12% (for ferritin and caspase-3) or 8% (for IRP1 and TfR) SDS-

polyacrylamide gel and electro-transferred onto a nitrocellulose membrane 

(Amersham Biosciences, UK) using a Bio-Rad Transblot. Proteins were 

visualized on the filter by reversible staining with Ponceau-S solution (Sigma) 

and destained in PBS.  Subsequently the membranes were blocked at 4°C in 

milk buffer (1X PBS, 10% (w/v) non fat dry milk, 0.2 % (v/v) Tween 20) 

overnight and then incubated for 3 h at room temperature with 1:1000 rabbit 

polyclonal antibody to human ferritin (DakoCytomation, Glostrup, Denmark), 

or with1:1,000 mouse antibody to human transferring receptor-1 (Zymed 

Laboratories Inc., CA, USA), or with 1:250 goat antibody to human IRP1 

(Santa Cruz Biotechnology, Inc., Santa Cruz, CA, USA) or with 1:2000 rabbit  

polyclonal antibody caspase-3  (Calbiochem).  

Subsequently, the membranes were incubated for 90 min at room temperature 

with peroxidase-conjugated goat anti-mouse IgG+IgM, or peroxidase-
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conjugated rabbit anti-goat IgG, or peroxidase-conjugated goat anti-rabbit IgG 

(all the secondary antibodies were purchased 

from Jackson ImmunoResearch Laboratories, Baltimore Pike, West Grove, 

PA). The resulting complexes were visualized using chemoluminescence 

Western blotting detection reagents (ECL, Amersham Biosciences). The 

optical density of the bands was determined by a GS-700 imaging densitometer 

(Bio-Rad). Normalisation of results was ensured by incubating the 

nitrocellulose membrane in parallel with the β-actin antibody. 

 

 

 

6.12 RNA extraction  

After OGSD and OGSD/Reoxy treatments, total cellular RNA was isolated 

from cells by the TRIzol reagent (Invitrogen Life Technologies, Carlsbad, CA) 

extraction method. The TRIzol reagent is a ready-to-use  for the isolation of 

total RNA from cells. Briefly, cells grown in monolayer were lysed directly in 

culture dish by adding 1 mL of TRIzol reagent to a 3.5 cm diameter dish, and 

passing the cell lysate several times through a pipette. The homogenized 

samples were incubated for 5 min at room temperature to permit the complete 

dissociation of nucleoprotein complexes. 200 µL of chloroform were added to 

each sample and tubes were shaked vigorously for 15 seconds and then 

incubated for 3 min at room temperature. Successively, samples were 
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centrifuged at 12,000g for 15 min at 4°C. Following centrifugation, RNA 

remains exclusively in the aqueous phase and was precipitated with isopropyl 

alcohol. After centrifugation at 12,000 g at 4°C for 15 min, RNA precipitate 

was resuspended in sterile water and quantified. 

 

 

 

 

6.13 Northern blot analysis 

For Northern blot analysis 25 μg of total RNA were fractionated on a 1.5% 

agarose denaturing formaldehyde gel in MOPS buffer. RNA was transferred by 

blotting in 20X SSC (1X SSC, 0.15 M NaCl, 0.015 M Na-citrate), pH 7.0, to 

Hybond-N filters (Amersham Biosciences). A cDNA fragment corresponding 

to human cDNA for H-ferritin was 32P-radiolabelled using the random priming 

method (Amersham Biosciences) and α-
32

P dCTP, 3000 Ci/mM (Amersham 

Biosciences). The reaction was stopped by adding 0.5 μL EDTA 0.5 M and 

probe was purified on a Bio-Spin 30 chromatography column (Bio-Rad).  The 

hybridization was performed for 18 h at 65°C in 0.5 M sodium phosphate 

buffer, pH 7.2, 1 mM EDTA, pH 8.0, 7% (w/v) SDS. The filters were washed 

in 0.05 M sodium phosphate buffer pH 7.2, 1% (w/v) SDS at 65°C and 

autoradiographed at –80 °C. The ethidium bromide-stained RNA gel was used 
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as control for RNA loading. The bands corresponding to H-ferritin mRNA 

were quantified by densitometry and the results are plotted as arbitrary units. 

 

 

 

6.14 RT-PCR analysis  

The levels of TfR mRNA were evaluated by using PCR amplification of 

reverse-transcribed mRNA. The housekeeping gene β-actin was used as an 

internal control. Total RNA was reverse-transcribed into cDNA by using the 

random priming method and Superscript III-Reverse Transcriptase 

(Invitrogen). cDNA was amplified by PCR using Taq-Polymerase (Invitrogen) 

according to the manufacturer's instructions.  

The primers for TfR were: 

sense 5′- TTCCTCATGTAAGCTGGAAC-3′, 

antisense 5′-ACGTCCTGCATTATCTTCGC-3′. 

The primers for β-actin were : 

sense 5′-ATGAAGATCCTGACCGAGCGT-3′,  

antisense 5′-AACGCAGCTCAGTAACAGTCCG-3′.  
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The amplified fragments were 509 bp and 584 bp, respectively. The PCR 

reaction was performed under the following conditions: a first cycle of 

denaturation at 94 °C for 1 min 40 s, then 30 cycles of denaturation at 94 °C 

for 40 s, annealing at 52 °C for 40 s, extension at 72 °C for 1 min and one 

additional cycle of extension at 72 °C for 8 min. The PCR products were run 

on 1% agarose gel and stained with ethidium bromide. The signals were 

quantified by laser densitometry and values normalized to β-actin levels. 

 

 

 

6.15 Statistical Analysis 

For the determination of vitality parameters the results are expressed as mean  

+ standard error of the mean (SEM) of n observations, where n represents the 

number of experiments performed. All experiments were performed in 

triplicate. The results were analysed by one-way ANOVA followed by a 

Bonferroni post hoc test for multiple comparisons. A P-value less than 0.05 

was considered significant. The densitometric data of EMSA, Western blot, 

Northern blot and RT-PCR analysis are reported as means + SEM. Statistical 

significance among the means was determined by the ANOVA followed by the 

Newman-Keuls test. A p value < 0.05 was considered statistically significant.  
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7. RESULTS 

 
 
7.1 Effects of OGSD/reoxygenation on cellular vitality and  survival  
        
In myocardial ischemia the reduced blood supply to the cardiac muscle can 

induce cellular injure with possible induction of necrosis or apoptosis. We have 

evaluated the effects of the oxygen, glucose and serum deprivation (OGSD) on 

cellular vitality and survival in our model of cardiac ischemia in vitro. To 

investigate the effects of OGSD/reoxygenation on cell survival, we have 

analyzed cell vitality and cell membrane damage. Cell viability was examined 

by measuring the mitochondrial redox capacity with the MTT assay. H9c2 cells 

were exposed to hypoxic conditions for 30 minutes to 12 hours and 

successively to normoxic conditions for 3h and 24h. As shown in Fig. 9 the 

H9c2 cells are particularly responsive to the deprivation of oxygen and 

metabolic nutrients. The hypoxia induces a progressive impairment of 

mitochondrial oxidative capacity with a decrease of cellular vitality of about 

50% when the cells were exposed to OGSD for 6h. After hypoxic conditions, 

when oxygen supply is restored (reoxigenation of 24h) the mitochondrial redox 

activity resulted almost normal. When the cells were exposed to long-term 

hypoxic conditions (12h), an enhanced mitochondrial activity impairment was 

evident also during the reoxigenation. 
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Fig.9. Cell vitality during OGSD/reoxigenation 
The survival of H9c2 cells during OGSD/reoxigenation was evaluated by MTT 
assay measuring the mitochondrial dehydrogenases activity. (*** p<0.001 vs 
Ctrl; °°° p<0.001 vs OGSD) 
 
 
The determination of living or dead cells on a total cell sample was performed 

using a fluorimetric method. The obtained results, reported in table 1, showed a 
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progressive and constant reduction of the percentage of the living cells in 

agreement with to the time of OGSD (30 minutes, 1h, 3h, 6h). The hypoxia of 

12h causes the death of about 70% of the cells, whereas the reoxigenation 

induces the death of about 85% of the cells. Brief-term hypoxic conditions did 

not drastically affect cells viability.  

On the basis of cellular vitality and survival results we suppose that in our 

experimental conditions the hypoxia of 6h is the "point of no return", beyond 

which the cell is devoted to die and can’t revert to normal conditions.  

 

 

 
 
Table 1. Evaluation of living/dead cells after OGSD/reoxygenation 
 

 

 

7.2 Energetic state of cells during OGSD/reoxygenation 

Successively, we have analyzed the energetic state of cells by determination of 

ATP levels, measured using a bioluminescent method. The cells were exposed 
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to hypoxic conditions for 30 minutes to 12 hours and then to normoxic 

conditions for 3h and 24h. The observed intracellular ATP levels are in 

agreement with the mitochondrial redox activity. In fact, exposure to OGD for 

3h and mostly for 6h caused a reduction of the ATP levels, however during the 

reoxygenation phases the ATP levels gradually returned to baseline levels (Fig. 

10). Hypoxia exposure prolonged (12h) led to a decrease of the intracellular 

ATP levels, that can’t revert to normal conditions during reoxigenation.  
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Fig.10. ATP levels evaluation 
The energetic state of the H9c2 cells after OGSD/reoxigenation was evaluated 
by determination of the ATP levels using a bioluminescent analysis. 
(*** p<0.001 vs Ctrl; °°° p<0.001 vs OGSD). 
 
 
 
 
 
7.3 Oxidative stress in cardiac ischemia/reperfusion injury  

The ROS are supposed to play a significant role in tissue ischemia and 

reperfusion injury and several studies have demonstrated that during cardiac 

ischemia/reperfusion there is oxidative stress. To monitor the oxidative stress 

status in our experimental conditions we evaluated the ROS production by 

means of the fluorescent dye H2DCF-DA and lipid peroxidation by 

measurement of MDA production. As reported in Fig. 11 the hypoxic condition 

of 3h was associated with a mild increase of ROS production both during 

hypoxia  and reoxigenation. 

Whereas there is a significant increase of the ROS levels after hypoxic 

conditions of 6h that remains constant during the early reoxigenation phase.  

Lipid peroxidation products from cells were measured by the thiobarbituric 

acid colorimetric assay that quantifies malondialdehyde  

(MDA) levels. As reported in Fig. 12 OGSD did not appreciably enhance the 

MDA production, whereas a significant increase of lipid peroxidation (about 

80%) was evident during the early reoxigenation phase. 
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Fig.11. ROS production  
Measure of ROS levels performed with the H2DCF-DA in H9c2 cells after 
OGSD/reoxigenation treatments. 
(** p<0.001 vs Ctrl; °° p<0.001 vs OGSD). 
 
 
 
 
 
 

 
 

Fig. 12. Lipid peroxidation after OGSD/reoxigenation 

Lipid peroxidation was measured by a thiobarbituric acid colorimetric assay 
and the data are presented as percentage of MDA production versus a control.  
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(*** p<0.001 vs Ctrl). 
 
 

 

7.4 Cardiac cells exposed to OGSD/Reoxygenation die through necrosis or 

apoptosis? 

 
There are diverse ways for a cell to die. Apoptosis is a tightly regulated energy-

dependent process in which cell death follows a programmed set of events. 

Necrosis is a form of cell-death that results from acute tissue injury and 

provokes an inflammatory response.  

To evaluate the effects of OGSD/reoxygenation  on cellular death we analyze 

the expression of caspase-3, an hallmark of apoptosis. Figure 13 shows the 

result of western blot analysis for caspase 3 cleavage. It is evident that the 

exposure of cardiac cells to hypoxia/reoxigenation doesn’t induce activation of 

caspase-3, suggesting a death by necrosis.  
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Fig. 13.  Western blot analysis for caspase-3  
H9c2 cells were exposed to OGSD for 6 h followed by reoxygenation (3h and 
24h). Western blot analysis was performed using caspase-3 antiserum. The 
anti-β-actin antibody was used to standardize the amounts of proteins in each 
lane.  

 

These results was supported by the measurement of cytoplasmic lactate 

dehydrogenase (LDH) release. Cell injury was assessed by measuring the 

amount of lactate LDH released into the medium after OGSD and 

OGSD/reoxigenation. The percent of LDH release was calculated from the 

minimum LDH release (0%) from untreated cells. As shown in Figure 14 

hypoxia exposure from 30 minutes to 6h did not induce LDH release, while 

long-term hypoxic conditions (12h) causes cell membrane damage and induce 

LDH release.  
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Fig.14. Measure of LDH release  
Lactate dehydrogenase (LDH) release evaluated in H9c2 cells after 
OGSD/reoxigenation exposure. (*** p<0.001 vs Ctrl). 
 
 
 
 
 
 
7.5 Iron Regulatory Proteins activity and expression during  
OGSD /reoxygenation 
 

To determine the effects of OGSD on IRP RNA-binding activity, we exposed 

H9c2 cells to normoxic and hypoxic conditions for 30 minutes  to 12 h and 

then we measured the IRP RNA-binding activity by RNA band-shift assay. As 
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shown in Fig. 15 in cardiac cells OGSD caused a decrease IRP1 RNA-binding 

activity. This effect already appeared after only 30 min of OGSD exposure and 

persisted up to 12 h (data not showed). In conjunction with the IRP1 RNA-

binding decrease, there was an OGSD-dependent increase in IRP2 RNA-

binding activity. The reoxygenation reverted OGSD-induced IRP1 modulation 

and IRP1-RNA binding activity increased after 3 h of reoxygenation and 

baseline levels generally were reached after 24 h of reoxygenation.  

To determine the total amount of IRP1 RNA-binding activity, β-

mercaptoethanol was added to the binding reactions before the addition of 32P-

labeled IRE probe. β-mercaptoethanol reveals “latent” IRP1 RNA-binding 

activity thus giving the total amount of IRP1 activity (100% of IRE-binding).  

To evaluate whether the modulation of IRP-1RNA binding activity was caused 

by a variation of IRP-1 protein content, we successively  
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Fig. 15. IRP1 and IRP2 RNA-binding activity in H9c2 cells during 
OGSD/reoxygenation 
EMSA was performed in the absence or presence of 2% β-mercaptoethanol (2-
ME). H9c2 cells were exposed to normoxic or hypoxic conditions for 1h and 
6h followed by exposure to normoxia for 3 and 24h. RNA-protein complexes 
were separated on non-denaturing 6% polyacrylamide gels and revealed by 
autoradiography. IRP1-RNA complexes were quantified by densitometric 
and/or PhosphorImager analysis. The results were plotted as percent of 
respective control treated with 2-ME.  
 

analysed the IRP-1 levels in H9c2 cells exposed to OGSD/reoxygenation for 

the indicated times. 

As shown in Figure 16) immunoblot analysis did not show any appreciable 

variations in the amounts of IRP-1 protein , suggesting that OGSD-induced 

IRP1 modulation was not due to a variation in IRP1 protein levels.  
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Fig.16. Western blot analysis of IRP-1 protein  
H9c2 cells were exposed for 6 h to OGSD followed by reoxygenation for 3 h 
and 24 h. Equal amounts of proteins (100 µg) were separated on a 8% SDS–
polyacrylamide gel and subjected to Western blot analysis using IRP-1 
antiserum. β-actin was used as internal control to standardize the amounts of 
proteins in each lane.  
 
 
 

7.6  Effects OGSD/reoxigenation on transferrin receptor expression  

To evaluate the effect of OGSD/reoxygenation on TfR expression, we 

determined TfR protein levels by Western blot analysis on lysates obtained 

from H9c2 cells after 3h and 6h of OGSD followed by 3h and 24 h of 

reoxygenation. As shown in Figure 17, the hypoxic condition induce a 

reduction of TfR content, while there was a significant increase in TfR content 

in the late phase of reoxygenation (24 h).  Interestingly, the reoxygenation-
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induced increase of TfR content was more evident after an hypoxic exposure of 

6h.  

To assess whether the TfR level variation observed during OGD and 

OGD/reoxygenation might result from transcriptional control, we analysed the 

levels of corresponding mRNA. As shown in Figure 18,  the level of TfR 

mRNA, analysed by RT-PCR, was slightly decreased after the OGD period and 

progressively increased during the reoxygenation phases (3 and 24 h).  

 

Fig.1

7. Western blot analysis of TfR protein  

Equal amounts of cytosolic lysates containing 100 µg of proteins, were 
fractionated by 8% SDS–PAGE and subjected to Western blot analysis using 
TfR-1 antiserum. Immunocomplexes were detected by chemoluminescence. 
The anti-β-actin antibody was used to standardize the amounts of proteins in 
each lane.  
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Fig.18. TfR mRNA expression. 
RNA was isolated from H9c2 cells exposed for 3h and 6h to OGSD followed 
by reoxygenation (3h and 24h). 1 μg of total cellular RNA were utilized for 
RT-PCR. The bands corresponding to TfR mRNAs were quantified by 
densitometric analysis and the results plotted in a 
bar graph. Data were normalized on the basis of β-actin levels mRNA.  
 
 
 
 
 

7.7  Effects of OGSD/reoxigenation on ferritin expression  

To evaluate ferritin expression in H9c2 cells during OGSD and following 

reoxygenation, we determined the levels of this proteins by Western blot 

analysis. As shown in Figure 19, ferritin content resulted unchanged after 3h of 

OGSD, while these levels significantly increased in the early phase of 

reoxygenation (3h). Similarly, ferritin content remained unchanged in cells 

exposed to hypoxic conditions for 6h OGD whereas only slightly increased in 
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the early phase of reoxygenation (24 h). Interestingly, the reoxygenation-

induced increase of ferritin content was less evident after an hypoxic exposure 

of 6h.  

To assess whether the ferritin levels variation observed during 

OGD/reoxygenation might result from transcriptional control, we analysed by 

northern blot the levels of corresponding mRNA. As shown in Figure 20, the 

level of H-ferritin mRNA resulted unchanged after short-term hypoxic 

conditions (3h) and also during the following reoxigenation phases. After 

hypoxic conditions of 6h the H-ferritin mRNA content slightly decreased and 

progressively increased during the reoxygenation phases (3 and 24 h).  
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Fig.19. Western blot analysis of ferritin protein  
Equal amounts of cytosolic lysates containing 50 µg of proteins, were 
fractionated by 12% SDS–PAGE and subjected to Western blot analysis using 
ferritin antiserum. Immunocomplexes were detected by chemoluminescence. 
The anti-β-actin antibody was used to standardize the amounts of proteins in 
each lane.  
 
 

 

 

 

 

 

 

 
Fig. 20. Ferritin mRNA expression. 
30 µg of total cellular RNA were hybridized to H-ferritin cDNA 32P-
radiolabelled probe. On the top is shown ethidium bromide-stained RNA gel as 
control for RNA loading. The bands corresponding to H-ferritin mRNA were 
quantified by densitometry and the results are plotted as arbitrary units. 
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DISCUSSION AND CONCLUSIONS 

 

8.1 Discussion and conclusions 

 

 

Perturbations in cellular iron and ferritin content are emerging as an important 

elements in the pathogenesis of disease. The changes in ferritin content are 

important not only in the classic diseases of iron acquisition, transport, and 

storage, such as primary hemocromatosis, but also in diseases characterized by 

inflammation, infection, injury, and repair. Among these are some of the most 

common diseases, as neurodegenerative diseases such as Parkinson disease 

(Linert et al, 2000) and Alzheimer disease (Kondo et al, 1996), vascular 

diseases such as cardiac and cerebral ischemia and reperfusion injury (Chi SI et 

al, 2000), and a variety of premalignant conditions and cancers. 

We have demonstrated that oxygen, glucose and serum deprivation followed 

by reoxygenation (OGSD, OGSD/reoxygenation) affect the viability and 

survival of H9c2 cardiac cells. In particular, exposure of H9c2 to 

OGSD/reoxygenation for different times determined impairment of 

mitochondrial activity. The H9c2 cells are in fact particularly sensitive to the 

deprivation of oxygen, glucose and serum. The hypoxia caused a progressive 

reduction of cell viability, inducing a progressive mitochondrial suffering 
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starting from 30 minutes of OGSD, and leading a decrease of mitochondrial 

dehydrogenases activity of around 50% after 6h of OGSD. However, the return 

to normoxic conditions subsequent to OGSD treatment of 6h, induced the 

almost  complete re-establishment of mitochondrial redox capacity. 

The prolonged hypoxia (12 h of OGSD) induced a marked mitochondrial 

suffering, which was not reverted during the subsequent reoxygenation phases. 

Therefore, in our experimental conditions hypoxia treatment of 6h is 

considered as the "point of no return"; prolonged exposure to hypoxia lead to 

cellular permanent damage.  

Hypoxia caused a progressive and constant reduction of the percentage of  

living cells, according to the duration of OGSD. An hypoxic condition of 12h 

determined approximately the death of about the 70% of the cell population, 

and the subsequent 24h reoxygenation increased this value to about the 85%.  

Similarly, OGSD reduced ATP levels in cardiac cells. In particular, prolonged 

hypoxia (12 h of OGSD) induced a marked reduction of ATP, which is not 

reverted by the subsequent reoxygenation, according to the other viability 

experiments.  

To investigate the effects of OGSD and OGSD/reoxygenation on cellular ROS 

generation, we analyzed the accumulation of ROS and the lipid peroxidation. 

Short hypoxia treatments and following reoxigenation did not change 

significantly ROS production in H9c2. On the contrary, 6h of hypoxia was 
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associated with a significant increase of ROS levels and of lipid peroxidation 

products.  

Generally, in tested “in vitro” experimental models of ischemia there are two 

possible ways in which cells die: apoptosis and/or necrosis. Apoptosis is a form 

of programmed cell death and involves a series of biochemical events leading 

to a characteristic cell morphology and death. Exposure of H9c2 cardiac cells 

to OGSD and to subsequent reoxygenation did not induced activation of 

caspase-3, one of the main hallmarks of apoptosis, thus suggesting a possible 

necrotic pathway of death shown by H9c2 exposed to these pathological 

conditions.  

To confirm that in our experimental model ischemic conditions preferentially 

induced cells death via necrosis, we evaluated damages to the cell plasmatic 

membranes by analyzing LDH release by cells. Short hypoxia did not induced 

LDH release, while prolonged OGSD treatment  induced a dramatically LDH 

release, thus confirming a necrotic cell death. 

With regard to cellular iron homeostasis, IRPs activity appears to be differently  

regulated in hypoxia and reoxigenation. More in detail, IRP1 binding activity 

during OGSD was significantly decreased, and this effect appeared already 

after 30 min of OGSD exposure and persisted up to 12 h of hypoxic treatment. 

The effect was not caused by a change in IRP1 protein content during OGSD, 

as demonstrated by western blot experiments. On the contrary, concomitant to 

the IRP1 RNA-binding decrease, it is possible to observe a slight OGSD-
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dependent increase in IRP2 RNA-binding activity. In our experimental 

conditions the reoxygenation phases reverted IRP modulation by OGSD. The 

re-establishment of IRPs activity by normoxic conditions agrees with reports 

on non-excitable cells (Tacchini et al., 2002; Hanson and Leibold, 1998; 

Schneider and Leibold, 2003).  

The results obtained during reoxygenation can be ascribed to restoration of 

oxygen level or to production of radical oxygen species (ROS) that elicit 

activation of IRP1 (Hanson and Leibold, 1998).  

Next, we investigated the effects of hypoxia/reoxygenation on the expression 

of the main proteins involved in iron metabolism, ferritin and transferrin 

receptor (TfR). Regarding TfR, hypoxic conditions induced a reduction of its 

expression, while there was a significant increase during reoxygenation phases. 

Accordingly, OGSD led to a significant reduction of TfR mRNA levels, while 

there was an up-regulation during the reoxygenation. Interestingly, the 

reoxygenation-induced increase of TfR content was more evident after an 

hypoxic exposure of 6h. Both transcriptional and post-transcriptional 

mechanisms appeared to operate during OGSD and OGSD/reoxygenation  

Concerning ferritin cellular content, it resulted unchanged after 3h of OGSD, 

while there was a significant enhanced expression during reoxygenation. 

Interestingly, the reoxygenation-induced increase of ferritin content was less 

evident after an hypoxic exposure of 6h.  
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The level of H-ferritin mRNA resulted unchanged after brief-term hypoxic 

conditions (3h) and following reoxygenation, thus suggesting the ferritin 

expression was regulated by the post-transcriptional mechanism operated by 

IRPs. In a different way, a prolonged OGSD exposure (6h) caused a reduction 

of H-ferritin mRNA and an increase during the reoxygenation phases. In long-

term hypoxic conditions ferritin expression seemed to be dependent on a 

coupled transcriptional and post-transcriptional control. 

As predicted, the cytoprotective role exerted by ferritin is principally 

appreciable during the reoxygenation phase, when the oxygen availability 

promotes the iron-induced ROS production. However, in our experimental 

conditions the defensive function of this protein is less manifest after long-term 

hypoxic conditions. In these conditions the diverse ferritin and TfR expression 

could explain the minor resistance of the cells to OGD/reoxygenation injury.  

In conclusion, in our in vitro experimental model of ischemia the “point of no 

return” of the H9c2 cardiac cells, is fixed approximately at 6 hours of hypoxic 

conditions. After this point, increased misregulations of iron metabolism 

coupled to reduction of oxygen availability caused permanent damages and 

impaired cell survival. 
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