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1. INTRODUCTION 

1.1. Weeds and their management 

Perennial weeds are common problem in different crops. Weeds can compete with 

productive crops or pasture, or convert productive land into unusable scrub. They are also 

often poisonous, distasteful, produce burrs, thorns or other damaging body parts or otherwise 

interfere with the use and management of desirable plants by contaminating harvests or 

excluding livestock. 

Weeds tend to thrive at the expense of the more refined edible or ornamental crops. 

They provide competition for space, nutrients, water and light, although how seriously they 

will affect a crop depends on a number of factors.  

The presence of weeds does not necessarily mean that they are competing with a crop, 

especially during the early stages of growth when each plant can find the resources it requires 

without interfering with the others. However, as the seedlings size increases, their root 

systems will spread as they each begin to require greater amounts of water and nutrients. 

Estimates suggest that weed and crop can co-exist harmoniously for around three weeks, 

therefore it is important that weeds are removed early on in order to prevent competition 

occurring. Weeds competition can have quite dramatic effects on crop growth. Distribution of 

weeds is determined by various environmental and biological characteristics. Human 

activities are mainly responsible for their regional patterns and have certainly played an 

important role in their spread. Plant species are also affected when their habitat are disturbed 

(Harlan and dieWelt, 1965). In fact, in a balanced and healthy ecosystem weeds do not exist. 

They originated only after humans disturbed the balance of natural ecosystems, and weeds 

have now become their integral components. In agroecosystem weeds have evolved due to 

continuous selection pressure imposed by humans, technological advancement, and/or 
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through agricultural practices. The role of humans in selecting crop plants vis-à-vis evolution 

of weeds is clear from the fact that over 40 percent of the world’s total weed species belong to 

Asteracee (sunflower family) and Poaceae (grass family), which happen to provide over half 

of world’s food and food products. Nearly 44 percent of the world’ s worst weeds belong to 

family Poaceae, which happens to provide eight major crops, namely, wheat, maize, rice, 

sorghum, barley, millet, oat, and sugarcane  (Kohli et al., 2006). 

Weeds assume large proportions of the area of their invasion. They possess certain traits 

or characteristics that make them ideal for proliferation. Traits such as the ability to reproduce 

at a faster rate, rapid growth from seedling to sexual phase, phenotypic plasticity, and high 

tolerance to environmental heterogeneity are associated with weedy plant species (Baker, 

1974). Weed population are highly adaptable to production system through herbicidal 

resistance and shifts in their populations. Weeds possess adaptive strategies that determine 

their survival, productions and success in a particular environment (Holt, 1988). On the basis 

of intensity of stress and disturbance for successful establishment of a given area , plants can 

be stress tolerators, competitors or ruderals (Grime, 1979). Weeds, however, falls into two 

combined categories: they can be competitive ruderals or stress- tolerant competitors (Grime, 

1979). They take advantage of human-made habitats and are highly responsive to changes in 

environmental conditions in such a beneficial manner, enabling them to survive and grow in 

nature (Grime, 1979). Many annual, biennial and even perennial weed species found on arable 

fertile land are know as competitive ruderals that grow rapidly and competition in them 

occurs before flowering. Stress-tolerant competitors primarily trees or shrubs and even some 

perennial herbs, are characterized by rapid dry matter production, large stem extension, and 

high leaf area production. In addition to grow strategies, weeds possess several other 

characteristics that make them successful colonizer of a given area (Kohli et al., 2006). 
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Such the typical plant species are Cirsium arvense (L.) Scop. (Fig. 1) and Sonchus 

arvensis L. (Fig. 2) (both from Asteraceae) commonly called Canada thistle and perennial 

sowthistle, respectively (Donald, 1990; Lemna and Messersmith, 1990).  

Canada thistle is a persistent perennial weed that grows vigorously, forming dense 

colonies and spreading by roots growing horizontally that give rise to aerial shoots. It spreads 

by seed, either by wind or as a contaminant in crop seed. Canada thistle is native to south 

Eastern Europe and the eastern Mediterranean area. It has spread to most temperate parts of 

the world and is considered an important weed all around the world as it infests many habitats 

such as cultivated fields, roadsides, pastures and rangeland, railway embankments, and lawns 

(Holm et al., 1977).  

Classified as a noxious weed in many states and provinces, perennial sowthistle is a 

problem in several crops, where it causes economic losses due to reduced crop yields, 

increased cultivation and herbicide expenses, and land depreciation. At high densities (27 

shoots/m2), it has reduced spring wheat yields up to 45 percent in North Dakota. Perennial 

sowthistle is also a host of several economically important plant pests (Lemna and 

Messersmith 1990). A native of Eurasia, perennial sowthistle is distributed from South 

Scandinavia to Italy and from east to the western portions of the former Soviet Union (Holm 

et al., 1977). Since its introduction to North America, it has spread widely throughout the 

northern United States and southern Canada. The plant has also established in South America, 

Australia, and New Zealand. Widely established in temperate regions, it is not found in the 

tropics (Lemna and Messersmith 1990).  

On the Canadian prairie, perennial sow-thistle is among the 15 most abundant weeds in 

annual crops. It was the most abundant weed in the biennial-perennial category in Manitoba 

between 1975-1978 (Thomas and Donaghy, 1991) with 39% of the cultivated fields infested 

with an average of 4.8 plants/m2. Densities of 5 and 10 S. arvensis shoots/m2 reduced canola 
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yields by 12 and 18% (Peschken, 1984). In Alberta, Saskatchewan and Manitoba rapeseed 

yield reductions were estimated at 6.7 million dollars annually. Densities of 3 to 27 stems/m2 

reduced spring wheat yields by 4.5 to 27% (Lemna and Messersmith, 1990). Perennial sow-

thistle is readily eaten by cattle so vigorous stands are confined to ungrazed areas. There are 

two varieties of perennial sow-thistle in Canada that hybridize: var. arvensis and var. 

glabrescens. In some floras these are given species status, S. arvensis and S. uliginosus 

respectively. Both have a hairless lower stem, but in S. arvensis the upper stem and bracts 

have conspicuous gland-tipped hairs. Sonchus arvensis var. arvensis is most abundant in 

Ontario, Quebec and the Atlantic provinces. Var. glabrescens is most abundant on the prairies 

and extends north to Great Slave Lake. 

Two annual sow-thistles also occur in Canada: Sonchus asper and Sonchus oleraceous. 

These have taproots but their flower heads are smaller, 1.5-2.5 cm in diameter. S. asper has 

unlobed leaves with weak spines. S. oleraceous has deeply lobed leaves that are almost 

spineless. Annual sow-thistles are an increasing problem. In 1987 they ranked 48th in 

abundance in Alberta cereal and oilseed crops. By 1997 they were 29th in the survey (Thomas 

et al., 1998) and they are most serious in pulse crops.  

Perennial sow-thistle seed germinates when the soil has warmed in the spring, weeks 

until the leaves are about 3 cm long and then forms a rosette. First year rosettes form vertical 

roots up to 2 m deep, produce vegetative buds from depths up to 50 cm and horizontal roots 

with a spread of 60-100 cm. The roots are mycorrhiza (Wein et al.,  1992). Bolting usually 

occurs in the second year when the rosette has 12-15 leaves. When cut during cultivation, root 

pieces as small as 1 cm can produce a flowering plant within a year. 

Flowers are produced as a succession from early July until frost. They open 2-3 h before 

sunrise and close near noon, are insect pollinated and cross pollination is necessary for viable 

seed production. Each head produces about 30 seed and in oats produces about 3,000 
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seeds/plant. The seed, attached to a pappus, is dispersed by wind (about 10 m in a 16 km/h 

wind) and hooked pappus tips catch in fabric and animal fur. In Saskatchewan, 18 out of 20 

seeds flew out of sight at average wind speeds of 15 km/h gusting to 22km/h. The pappus of 

all but one of 26 seeds was firmly attached at wind speeds averaging 7 km/hr and gusting to 

22 km/h. The pappus of one seed became entangled on vegetation and fluttered in the wind 

for 15 minutes but did not separate from the seed (Peschken, 1984.). 

Seed is also spread in hay. Seed viability is 70-90% with 85% emerging in the first year. 

Seedling survival is generally poor unless they are under litter or are irrigated. The thistle is 

moderately resistant to most broadleaf herbicides, but auxin type herbicides used on early 

vigorous growth can prevent flowering. 

 A combination of chemical and cultural controls is often more effective at reducing 

both crop competition and reproduction by both seed and root. The introduction of herbicide 

tolerant canola has reduced losses in this crop; but a serious problem remains in field peas and 

beans. 

The effort to control weeds is as old as agriculture itself. Humans, however, were 

familiar with weeds even before the dawn of agriculture, as several aboriginal nomadic tribes 

suffered from allergies, hay fever, and other health problems caused by poisonous plants. 

Weeds management has progressed from bare hands to tools, to animal power, to machine 

power and finally to chemicals and integration of such powers. Weed management strategies 

have evolved with the advancement of agricultural technology, shifts in weed flora, and the 

formation of weed biotypes with herbicidal resistance  (Kohli et al., 2006). 

Today chemical methods have largely replaced the other methods of weed management. 

Although fraught with accompanying problems of pollution of soil and groundwater, and 

toxicity of food products, herbicides are valuable and  important tools that have provided 

major benefit to the production system (Buhler, 1999). However new and alternate options 
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would provide farmers with more flexibility for enhancing the effectiveness of the herbicides. 

These includes herbicidal mixtures, varietal mixtures, synergist, herbicide antidotes, breeding 

of herbicide-tolerant and more competitive crops, allelopathy and genetic engineering 

(Gressel, 1992, 2002). 
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1.2. Weed management strategies 

 A number of weed management strategies have been followed, but none probably 

provides a satisfactory solution to the weed problems. Broadly, four methods are  employed 

for the management of weeds: mechanical, cultural, chemical and biological. Each of these 

methods has certain advantages and disadvantages. Among these, mechanical methods are 

one of the oldest, involving physical removal of weeds by soil disturbance prior to planting or 

by hand weeding or hoeing during crop growth. On the other hand, cultural methods are 

applied largely during the active growth period of the crop. This include crop rotation, use of 

cover, smother and green manure crops, crops residues, crop genotypes with better 

competitive and allelopathic ability and manipulation of sowing or planting date, crop density 

and crop pattern (Kohli et al., 2006). These are effective when they are able to enhance the 

differential development between crop and weeds to the advantage of the former (Mohler, 

1996). These methods were in use in traditional agroecosystems, but with the modernization 

of agriculture and herbicide application these declined. 

The use of chemical methods is probably a twentieth-century technology when the 

herbicides, especially the hormonal ones discovered in 1940s, revolutionized agriculture. 

Their improved efficacy and production of herbicide-resistant crop have further expanded this 

revolution and become an important tool of modern weed management. They are widely use 

not only in  the developed nations but also in developing nations such as India. A 350 percent 

increase in the use of herbicides occurred from 1971 to 1987 for control of weeds in rice and 

wheat fields in India (Alstrom, 1990). 

Numerous herbicide families are known that differ widely in respect to spectrum, unit 

activity, crop safety, toxicology and environmental effects. However, increasing herbicidal 

resistance, environmental and toxicological concerns have put a question mark on their large 

scale use (Burnside, 1993; Heap, 2005). 
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   Combinations of mechanical, cultural, and chemical methods are more effective than 

any single method used alone. (Trumble and Kok, 1982). Herbicides recommended for 

chemical control of the perennials in non-organic cropping systems are restricted to few active 

substances (clopyralid, dicamba, chlorsulfuron, bentazon, phenoxy-acids) (Lemna and 

Messersmith, 1990; Grekul et al., 2005). These chemical are frequently low specificity and 

are weakly biodegradable, accumulating in plants and in drinkable water, producing heavy 

environmental pollution, or creating problems to human and animal health (Evidente and 

Abouzeid 2006). Management of weeds, should, therefore, be achieved through strategies that 

do not affect the sustainability of agroecosystems and the life support system. Obviously, new 

compounds should be actually developed as herbicides against the composite weeds. The 

biological agents offer the advantage of being compatible with the environment, often with 

high specificity and represent a long term solution also in the control of weed particularly 

resistant to chemical herbicides. The application of biological weed control offers significant 

opportunities not only for farmers, nature conservationists and other vegetations managers but 

also for institutions and companies that wish to sell plant protection services and products, 

and for the general public that demands safe food and a visually attractive and diverse 

environment. New herbicides have become of great interest due to either the few natural 

product derived commercial herbicides already in use or the rapidly evolving resistance to 

current herbicides. This supports the need for more effort to be expended on a natural product 

derived herbicides and makes attractive the prospect of evaluating a vast number of 

undiscovered or understudied natural compounds that are likely to have biological activity 

(Evidente and Abouzeid 2006). The identification and the biological and molecular 

characterization of microorganisms, useful as biocontrol agents or as producers of bioactive 

compounds, is of great interest for the modern and echo-compatible agriculture. Among the 

microorganisms, fungi are the most common pathogens of plants and therefore for weeds as 
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well. Some insects and fungi, which satisfy the criteria of efficacy, specificity and long-time 

persistence, have been already commercialised essentially outside from Europe (Bottiglieri et 

al., 2000).  The use of phytopathogenic fungi in biological control of weeds may represent a 

promising alternative to the use of chemicals. Researches in this field are carried out 

according to the two fundamental strategies: the inundative and the classical method. The first 

one consists in the application of the pathogenic agent in the environment, as for herbicides, 

so that these pathogens are usually called "mycoherbicides". 

With the classical approach the biocontrol agent is introduced in a restricted infested 

area and, subsequently, allowed to spread. An alternative approach to weed biocontrol is the 

use of toxic metabolites produced by weed pathogens, in addition or in alternative to the 

pathogen, or in integrated weed control programmes. The replacement or the integration of 

traditional chemical control methods to plant disease by the use of microorganisms and/or 

their bioactive metabolites reduces the environmental impact of agricultural productions and 

gives effort to the agricultural biological production which is more and more present in the 

national and international markets. 

In this respect these bioactive secondary metabolites could play an interesting role in the 

induction of disease symptoms (phytotoxins, antibiotics and phytohormones) or of defence 

response (elicitors).  

The first approach is the isolation of microorganisms from tissues of infected infesting 

plants, followed by selection of the strains with higher specificity and virulence. The second 

step is to find appropriate conditions for the in vitro growth of the fungi to obtain culture 

filtrates with high phytotoxicity against the host plants. Next, the phytotoxins are isolated, 

characterized and in some cases derivatized before to be tested as potential herbicides. 

Finally, the knowledge of the chemical structure of these substances may allow the partial or 

total synthesis of the most appropriate natural herbicide. Furthermore, (if they are a virulent 



 

 

10 

factor), the toxins could be used in indirect mode as biomarkers, to select the best fungal 

strain or to optimise for their large scale production (Evidente, 2006; Evidente and Abouzeid 

2006) and in combination with low dose of herbicides and the phytopathogenic fungus, to 

develop integrated weed management strategy. 
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1.3. Fungal phytotoxins  

Numerous studies have been conducted on the use of natural enemies such as insects, 

nematodes, bacteria and fungi for weed control, but particular interest has been directed to 

phytopathogenic fungi that could be applied with safety and simplicity. They have attracted  

attention due to the hazards they cause to the agricultural productivity of economic interest 

and the environmental damage for which they are responsible. 

Plant pathogens are good sources of potent phytotoxins (Abbas and Duke 1995), as they 

usually kill tissues before they consume them. In spite of this, those that kill weed species 

have received relatively little attention in natural product herbicide discovery efforts, with a 

notable exception. Maculosin, produced by Alternaria alternata, a pathogen responsible for 

diseased spotted knapweed (Centaurea maculosa Lam.), is the first phytotoxins with a high 

degree of host specificity. Moreover, other studies on the biological activity of this 

phytotoxins and its practical application as a knapweed control agent were described in 

previous work by Strobel and colleagues (1991). 

Almost all fungal species produce phytotoxic metabolites. (Evidente and Abouzeid 

2006). Phytotoxins are defined as microbial metabolites that are harmful to plants at very low 

concentrations. Most of the plant pathogenic fungi produce toxins in culture and in their hosts. 

Frequently, these compounds play an important role in the pathogenesis as reproduce some or 

even all of the symptoms of the disease. In many cases the toxins are low molecular weight 

compounds belonging to a variety of class of natural products. They are able to diffuse from 

the site of the infection to surrounding tissues or are translocable within the plant. The 

virulence of the plant pathogen may depend on its capability to synthesize one or more toxins.  

Fungal phytotoxins have facilitated advances in our understanding of numerous 

phenomena in plant and fungal physiology, biochemistry, genetics, and molecular biology. 

During the past few decades, phytotoxins have been employed as tools contributing to 
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fundamental discoveries in plant pathogenesis, host specificity, mechanisms of resistance and 

susceptibility, secondary metabolism, fungal genome organization, plant cell and organelle 

functions, and fungal ecology. 

Fungal phytotoxins can be classified as host-selective or non-selective. Although it is 

difficult to find a clear line of demarcation, host selective toxin are usually highly toxic only 

to host-species or cultivars susceptible to the producing pathogen. Non host or resistant 

cultivars are less sensitive to these toxins (Graniti et al., 1989). 

It is possible to isolate phytotoxins from infected plant tissues and germinating conidia 

of fungi, but this approach in not productive because of the low content of the target 

compounds. Therefore, in order to isolate phytotoxins in amounts sufficient for studies of 

chemical and biological properties, the fungi are cultured in liquid nutrient media (the average 

yield ranges from 1 to 50 mg per 1 l of liquid culture). In a number of cases, it is possible to 

isolate phytotoxins in settings that involve solid phase fermentation on natural substrates 

(Berestetskiy, 2008). 

 Phytotoxin production is sensitive to a number of diverse factors (e.g., the composition 

of the medium, its acidity, and the duration and conditions of culturing), most of which are 

not identified in advance as being able to affect the process. Distinct strains of the same 

species may very considerably in their capacity for phytotoxin production (Berestetskiy, 

2008). Microorganism strains are genetically unstable, and their storage or reinoculation may 

adversely affect the ability to produce toxins (Kale end Bennet, 1992). 

Phytotoxins produced  by fungal pathogens cause necrotic symptoms in most cases. It 

has been long assumed that such pathogens kill host tissue by extracted toxin in advance of 

colonization and live as saprophytes from the dead substrate. Actually, leakage of cell 

constituents frequently occurs after the application of host-specific phytotoxins and non-host-

specific phytotoxins. 
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1.3.1. Host-specific phytotoxins 

This class of extracellular fungal metabolites is produced by plant-specific pathogens. 

Some compounds are so specific that they are only toxic to certain cultivars, e.g. maculosin, a 

cyclic dipeptide which is produced by Alternaria alternata and is host-specific to spotted 

knapweed (Cantaeurea maculosa). Similarly, bipolaroxin from Bipolaris cyanodontis. 

Shoemaker, a fungal pathogen of Bermuda grass (Cynodon dactylon), has been found to be 

host selective in low concentrations. At concentrations 20 times greater than that required to 

affect Bermuda grass, bipolaroxin causes phytotoxicity to wild oats, sugarcane and maize. 

(Saxena and Pandey, 2001) 

Maculosin is the only host-specific phytotoxins for spotted knapweed in the true sense. 

Phomalairdenone is a new member of this group. This is produced by black crop species share 

common problem weed species, so host-specific toxin will be of little use and, commercially, 

it would be prohibitively expensive to develop and use different herbicides for each weed 

species, when compared to non-specific-toxins. (Saxena and Pandey, 2001). 

 

1.3.2. Non-host-specific phytotoxins 

Non-host-specific phytotoxins have a broader range of activity and applicability on 

weeds. Tentoxin, a by-product of Alternaria alternata, is a cyclic tetrapeptide causing 

phytotoxic damage to both monocotyledonous and dicotyledonous weed species. The mode of 

action of this secondary metabolite is the inhibition of CF1 ATPase activity (Steele et al., 

1978). Zinniol is produced by a number of Alternaria spp. and Phoma macdonaldii Boerma. 

It causes necrosis in tissues, probably through calcium regulation (Strobel and Sugawara 

1986; Thuleau et al., 1988). 

Scopulariopsis candidus, Cepahlosporium sp. and Fusarium sp. produce a potent 

phytotoxins, 1233A, which is inhibitor of 3-hydroxy-3-methylglutaryl co-enzyme A 
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sinthetase (Greenspan et al., 1987). Ascochyta hyalospora, the causal agent of leaf spot on 

lambsquaters, produce several phytotoxins: ascochyte, pyrenolide A  and hyalopyrone. All 

three compounds exhibit phytotoxic activity to nine weed species, including Chenopodium 

album  (lambsquarters), Sida spinosa L. (prickly sida), Ipomea sp. (morning glory) and 

Sorghum halepense. Recently, two phytotoxic nonenolides (viz. putaminoxin and pinolidoxin) 

produced by phytopathogenic Phoma and Ascochyta species have exhibited potent herbicidal 

activity (Evidente et al.,1998b). 

Fusaric acid is produced both by the virulent plant pathogen Fusarium oxysporum 

Schlechtend Fr. and by non-pathogenic fusarial species. Fusaric acid has been demonstrated 

to have herbicidal activity against several weed species, including jimsonweed and duckweed 

(Vesonder et al., 1992). 
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1.3.3. Biological activities of fungal toxins 

One of the major difficulties in studying and utilizing a given phytotoxin is its 

availability. This problem was overcome when European groups in 1970s succeeded in 

isolating and characterizing fusicoccin, a phytotoxin produced by Fusicoccum amygdali 

(Ballio et al., 1964; Ballio 1977). This unleashed an unprecedented number of physiologists, 

biologists, chemists, pathologists, and agronomist in an attack on the mode of action, 

usefulness, and general biology of this phytotoxin. Each of the many new phytotoxin that has 

since been described provides a new target for a thorough, concerted chemical and biological 

investigation. 

Besides their obvious role in the development of symptoms of certain plante diseases, 

phytotoxins also posses some unusual chemical and biological proprieties.  

The effect of phytotoxins on plants is characterized by the appearance of specific 

symptoms; wilting and general growth suppression, as well as chloroses, necroses, and 

spotting of aerial portions are the most common. The reverse is also true: if a plant disease has 

symptoms described above, its causative agent conceivably forms  phytotoxins, which play a 

role in the pathogenesis.   

Reviews on phytotoxins, published in Russia, cover toxins produced by soil 

micromycetes (Berestetskiy et al., 1976; Berestetskiy and Borovkov, 1979; Berestetskiy and 

Borovkov 1981) and causative agents of plant diseases from the genera Alternaria (Belyakova 

and Levkina, 1990), Fusarium (Bilai et al., 1977), Phytophthora, Verticillium (Filippov et al, 

1980), Phoma, and Ascochyta (Uspenskaya and Reshetnikova, 1975). 

 As a rule, plants sensitive to a specific phytotoxin (genera, species, and even cultivars) 

fall within the range of the hosts of its producer. The spectrum of activities of a non-specific 

phytotoxin is not limited to phylogenetic specialization of the producer pathogen. If the list of 
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sensitive plants is still limited, e.g., to members of a certain family, the non-specific toxin is 

considered selective. (Berestetskiy, 2008) 

Depending on the pathogenetic role, specific phytotoxin are divided into pathotoxins 

and vivotoxins. Pathotoxins (as a rule, at very low concentrations, of nanomolar to 

micromolar order) are prerequisite to induce plant infection by necrotrophic pathogens 

(certain species of Alternaria, Cochliobolus, Drechslera, etc.). Mutant strains of these fungi, 

incapable of synthesizing pathotoxins, lack virulence. (Berestetskiy, 2008) 

By definition, vivotoxins are synthesized by pathogens in infected plant tissues; using 

appropriate concentrations, these toxins account for the emergence of certain symptoms of the 

disease. Vivotoxins are commonly non-selective. (Sock and Hoppe, 1999). A considerable 

number of phytotoxins are toxic to animals and/or microorganisms. Depending on the 

economic importance, they are classified with mycotoxins or antibiotics. For example 

ascochytin, the phytotoxin produced by  Ascochyta pisi, the causal agent of a leaf-spotting 

disease in pea, is structurally related to the potent mycotoxin citrinin and exhibits antifungal 

properties (Oku and Nakanishi, 1963; Lepoivre, 1982). The well-known antibiotic 

griseofulvin (one of its producers is Penicillium griseofulvum) is also phytotoxic (Berestetskiy 

and Borovkov, 1979). 

Biological assays are used for both identifying phytotoxins in culture liquid and 

assessing phytotoxic activity of extracts or pure substances. In selecting biological assays, the 

biology and ecology of the fungus are taken into account. For example, if a phytotoxin 

originates in soil fungi or is causative agent of root rot diseases, the bioassay involves plant 

seedlings. The extent of growth suppression of roots treated with serial dilutions of the culture 

filtrate or the pure toxin is calculated using untreated roots as controls. If the symptoms of the 

disease caused by a phytotoxin producer involve leaves, a solution of the substance tested or 

the culture filtrate (5-20 µl) is applied on to the leaf punctured by a needle. 
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The results (chloroses, necrotic spots) are read after 24-72 h. In order to reduce the 

requisite time for obtaining the results, isolated leaves (or parts thereof) may be placed into a 

moist chamber or onto the surface of water agar (Berestetskiy, 1982; Stierle et al., 1992). Of 

course, the spectrum of bioassays is considerably broader that those described.  

Thus, in recent years, effects of toxins have increasingly been studied in cultures of 

plant or animal cells. The use of several bioassays and diverse toxin concentrations likely 

increases the value of the results. In addition, it is desirable to assay new phytotoxins 

simultaneously for antibiotic and zootoxic activities (Cole et al., 1986; Kohmoto , 1992). 
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1.3.4. Potential new herbicides 

Microbially produced herbicidal compounds have relatively short lives, compared to 

synthetic, halogenated chemical structures. They are biodegradable and do not leave  residues 

toxic to the environment. They are active in small quantities, compared to the hight quantities 

of pesticides currently used. Thus, it can be generalized that significant contamination of food 

products, or the soil and water would be less likely with microbial compounds than with most 

synthetic herbicides used at the same rates (Saxena and Pandey, 2001). 

Most microbial phytotoxins are water-soluble and non-halogenated compounds. They 

are also more benign toxicologically and environmentally, compared to synthetic herbicides. 

They have built-in species-selectivity, perhaps due to their isolation from host-specific plant 

pathogens and weed hosts. This is a highly desirable property, as avoidance of  injury to crop 

plants is a goal of synthetic herbicide development programs (Saxena and Pandey, 2001). 

Microbial phytotoxins have a limited shelf-life as compared to synthetic chemicals. 

Finding new herbicides with a new site of action is most important, since the rate of 

appearance of weeds that have evolved resistance to synthetic herbicides has increased 

logarithmically and market niches for currently exploited sites are reaching saturation (Saxena 

and Pandey, 2001). 

Microbial phytotoxins are used as tools for envisaging new molecular sites of action not 

discovered by the traditional approaches of herbicide discovery (Cutler 1991). Moreover, 

there is little overlap between the sites of action of phytotoxins and those of traditional or 

commercial herbicides. (Table 1). The newer sites would be useful in overcoming the current 

herbicide resistance problems encountered in weeds. These attributes of microbial phytotoxins 

have been found to satisfy the complex set of questions put forth by crop protection research 

groups; and this has influenced research by institutions and industry (Ayer et al., 1986; 
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Kenfield et al., 1989). With advances in chemical technology and biotechnology, this strategy 

is becoming less time consuming. 

Traditionally most investigators were concerned with the isolation, characterization and 

mode of action of phytotoxins from plant pathogens of crop plants. 

Numerous surveys were carried out to find pathogens of C. arvense (Berestetskiy, 1997; 

Leth and Andreasen, 1999; Bailey et al., 2000) and, to a lesser extent, of S. arvensis 

(Berestetskiy and Smolyaninova, 1998).  

Phytopathogenic fungi belonging to the genus Ascochyta are responsible for several 

diseases, that cause necrotic lesions on leaves and stems (Melnik, 1971). 

Some Ascochyta spp. have also been proposed as mycoherbicides for the biological 

control of noxious weeds, i.e.: A. caulina against Chenopodium album (Netland et al., 2001), 

or A. cypericola against Cyperus rotundus (Upadhyay et al., 1991). The ability of many of 

these pathogens to produce phytotoxins has been ascertained and their involvement in 

symptoms appearance has been discussed (Evidente et al.,1993a,b; Strange, 1997). Recently, 

three novel toxins have been purified and identified from the liquid culture of A. caulina and 

proposed as natural herbicides to be utilized in addition to or as an alternative to the use of the 

pathogen (Evidente et al., 1998a , 2000; Vurro et al., 2001). 

 Ascochyta sonchi (Sacc.) Grove is a natural pathogen isolated from necrotic leaves of 

sowthistle (Sonchus arvensis L.) (Evidente et al., 2004). 

A new phytotoxic enol tautomer of 4-pyridylpyruvic acid, named ascosonchine, was 

isolated from the culture filtrate of Ascochyta sonchi (Evidente et al., 2004). 

Ascosonchine (1; Fig. 3), characterised as (Z)-2-hydroxy-3-(4-pyridyl)-2-propenoic 

acid by spectroscopic methods, showed selective herbicidal properties, that are not associated 

with antibacterial, antifungal or zootoxic activities (Evidente et al., 2004). 
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A simple and sensitive method has been developed for the rapid quantitative analysis of 

ascosonchine based on HPLC with UV detection. The toxin content in culture filtrates of 

different strains of A. sonchi was measured. Toxin production was compared with the 

virulence on the host plant of each strain to determine if the most virulent strains could be 

simply selected by choosing the best toxin producers. The results obtained do not support this 

approach. The same HPLC method was also applied to quantify toxin production under 

different fungal growth conditions, in order to achieve the highest toxin production (Evidente 

et al., 2006).  

Two of the strains analysed, that don’t produced ascosonchine (C-177 and S-9) was 

reclassified as Phoma exigua var. exigua. (Cimmino et al., 2008). It was demonstrated that the 

above two strains, grown in liquid and solid cultures, produced p-hydroxybenzaldehyde, 

cytochalasins B, F, Z2  and Z3, and deoxaphomin (2, 3, 4, 5, 6 and 7, Fig. 4). When assayed 

on the leaves of both C. arvense and S. arvensis, p-hydroxybenzaldehyde  was inactive, 

whereas deoxaphomin demonstrated the highest level of toxicity on leaves of S. arvensis. 

Cytochalasin Z2  appeared to be the less toxic cytochalasin on both plants according to the 

lack of the secondary hydroxyl group on C-7 (Cimmino et al., 2008). 

 Stagonospora cirsii, a fungal pathogen isolated from C. arvense and proposed for its 

biocontrol, produces phytotoxic metabolites in liquid and solid cultures. Recently, the main 

metabolite, stagonolide A (8, Fig. 5) , with interesting phytotoxic properties, was isolated 

from a liquid culture and characterized as a new nonenolide (Yuzikhin et al., 2007). Five new 

nonenolides, named stagonolides B-F (9, 10, 11, 12, 13, Fig. 5), were isolated from solid 

culture and characterized using spectroscopic methods. When tested by a leaf disk puncture 

assay at a concentration of 1 mg/ml, these compounds showed no toxicity to C. arvense and 

S. arvensis, whereas stagonolide A was highly toxic. Stagonolide A  and stagonolide C  were 
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weakly toxic to Colpoda steinii, a protozoan, when tested at 0.05 mg/ml, with the other 

stagonolides non-toxic (Evidente et al., 2008a). 

A further four nonenolides were isolated and characterized by spectroscopy. Three were 

new compounds and named stagonolides G-I, and the fourth was identified as modiolide A 

(14, 15, 16 and 17, Fig. 6), previously isolated from Paraphaeosphaeria sp., a fungus 

separated from the horse mussel (Tsuda et al., 2003). Leaf disk-puncture assays at 1 mg/ml of 

stagonolides H-I and modiolide A were phytotoxic to C. arvense. Only stagonolide H  

inhibited chicory seedling root growth. The most potent toxin, stagonolide H, indicated 

selectivity when tested on leaves of eight different plants. Canada thistle was most sensitive to 

the compound (Evidente et al 2008b). 

Considering that some pathogens of this perennial weeds produced nonenolides and 

cytochalasins, a structure-activity relationships study was conduced assaying 15 natural 

analogues and derivatives belonging this two groups of organic compounds. The toxic 

nonenolides (stagonolide A, putaminoxin, pinolidoxin) and cytochalasins (deoxaphomin, 

cytochalasins A, B, F, T, Z2 and Z3) were isolated from phytopathogenic Stagonospora, 

Phoma and Ascochyta spp. (Berestetskiy et al., 2008). 

Among the 15 compounds tested, stagonolide A and deoxaphomin proved to be the 

most phytotoxic to C. arvense and S. arvensis leaves, respectively. The tested phytotoxic 

nonenolides were stronger inhibitors of photosynthesis in C. arvense leaves than 

cytochalasines A and B. Stagonolide A  had less effect on membrane permeability in C. 

arvense leaves than cytochalasin B. Significant changes of light absorption by C. arvense 

leaves in visible and infrared spectra were caused by stagonolide A. The functional groups 

and the conformational freedom of the ring, appear to be important structural features for the 

nonenolides toxicity, whereas and the presence of the hydroxy group at C-7, the functional 
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group at C-20 and the conformational freedom of the macrocyclic ring are important for the 

cytochalasins toxicity (Berestetskiy et al., 2008). 

Also Phyllosticta cirsii, a fungal pathogen isolated from diseased C. arvense leaves was 

evaluated as a biocontrol agent of this noxious perennial weed, and was find produce different 

phytotoxic metabolites with potential herbicidal activity when grown in liquid cultures 

(Evidente et al., 2008c).  

Phyllostictines A-D (18, 19, 20 and 21, Fig. 7), four novel oxazatricycloalkenones, were 

recently isolated from this pathogen and chemically and biologically characterized. Structure-

activity relationship showed that the size and functionalities of macrocyclic ring are features 

important for the phytotoxicity, with the β-lactone appeared to be unessential (Evidente et al., 

2008d). To support the potencial use of phyllostictine A as a natural herbicide, toxin 

production has been studied using different media and cultural conditions. The toxin content 

in the crude extracts has been determinate by using a HPLC method set up for this purpose. 

Furthermore, its phytotoxicity has been evaluated on tobacco protoplasts by flow cytometric 

analysis, and on C. arvense protoplasts, by fluorescence microscopy. The pure metabolite 

proved to have rapid dose-dependant toxic effects on host and non host plant protoplasts 

(Zonno et al., 2008). 

 Further purification of the same organic extract provided two other metabolites, named 

phyllostoxin  and phyllostin (22 and 23, Fig. 8) , which were characterized by spectroscopic 

technique (essentially NMR and MS). Phyllostoxin and phyllostin proved to be a new 

pentasubstituted bicyclo-octatrienyl acetic acid ester and a new pentasubstituted 

hexahydrobenzodioxine carboxylic acid methyl ester, respectively. When tested on punctured 

C. arvense leaves, phyllostoxin proved to be highly phytotoxic, causing rapid and large 

necrosis, whereas phyllostin had no phytotoxicity in this bioassay. This is not surprising, 

considering the noteworthy structural differences between the two compounds, suggesting the 
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presence of active functional groups in phyllostoxin not present in the other metabolite 

(Evidente et al., 2008c). 

Recently, the fungus Alternaria sonchi has been evaluated as a possible biocontrol agent 

of sowthistle (Gannibal et al., 2006). 

As also reported at paragraph 1.3, species belonging to the genus Alternaria are known 

to produce bioactive metabolites, including non-host phytotoxins e.g.: solanapyrones isolated 

by cultures of A. solani, the causal agent of early blight of tomato and potato (Ichara et al., 

1983), dextrusins, ciclodepsipeptides, isolated from A. brassicae, which causes diseases on 

numerous oil-yielding, vegetable, condiment, ornamental, and wild and some cultivated and 

wild non-cruciferous plants (Tewari and Bains, 1997). Brefeldin and α,β-dehydrocurvularin 

were isolated from A. zinniae (Vurro et al., 1998) and several phytotoxins belonging to 

different group of natural compounds including toxic tetramic acid, dibenzo[a]pyrones moiety 

containing compounds, and alternatoxins I and II (Cole and Cox, 1981; Turner and Aldridge, 

1983). 

Considering the interest for bioactive metabolites produced by weed pathogens as 

sources of novel natural herbicides, it seemed interesting to investigate the production of 

toxins by Alternaria sonchi. 
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 2. OBJECTIVES 

The present thesis has different objectives all finalized to the identification of  

phytotoxic compounds produced in solid cultures by Alternaria sonchi, a fungal pathogen 

isolated from Sonchus arvensis and proposed as biocontrol agent of this noxious perennial 

weed. 

1. The first aim is the isolation and the identification of the fungus. These studies 

were conduced by the research group of Dr. Alexander Berestetskiy , All Russian 

Institute of Plant Protection, in Saint Petersburg.  

2. The second aim of the present thesis was to isolate from solid culture of A. 

sonchi, one or more metabolites with phytotoxic activity, using common tecniques for 

their extraction (solid-liquid) and for chromatographic purification (CC and TLC) . 

3. The third aim of the present thesis is to characterize by spectroscopic methods 

(IR; UV; 1H and 13C NMR; MS), the phytotoxins isolated from A. sonchi.  

4. The fourth aim is the biological characterization of the phytotoxins isolated as 

potential herbicides, carried out in collaboration with the plant pathologist group. 
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3. MATERIALS AND METHODS 

3.1. Fungus  

The fungus A. sonchi Davis was isolated from diseased leaves of S. arvensis by Dr. 

Alexander Berestetskiy and monoconidial isolate (S102) was deposited in the culture 

collection of All-Russian Research Institute of Plant Protection, Pushkin, Saint-Petersburg, 

Russia. The isolate was maintained in sterile tubes containing potato-dextrose-agar (PDA).  

 

3.2. General Procedures 

 Optical rotation was measured in CHCl3 solution on a JASCO (Tokyo, Japan) P-1010 

digital polarimeter. 

 IR spectra were recorded as glassy film on a Perkin-Elmer (Norwalk, CT, USA) 

Spectrum One FT-IR Spectrometer and UV spectra was taken in MeCN solution on a Perkin-

Elmer Lambda 25 UV/Vis spectrophotometer.  

1H spectra were recorded at 600, 400 MHz, in CDCl3 on Bruker (Kalsrhue, Germany) 

spectrometers. 13C NMR spectra were recorded at 150, 100 and 75 MHz, in the same solvent 

and using the same instruments. The same solvent was used as internal standard. Carbon 

multiplicities were determined by DEPT (Distortionless Enhancement by Polarization 

Transfer) experiment. DEPT, COSY-45 (Correlated Spectroscopy), HSQC (Heteronuclear 

Single Quantum Correlation), HMBC (Heteronuclear Multiple Quantum Correlation) and 

NOESY (Nuclear Overhauser Effect Spectroscopy) experiments (Berger and Braun 2004) 

were performed using Bruker microprograms. Chemical shifts are in δ (ppm). 

Coupling constants (J) are in Hertz. The following symbols were used: s=singlet; d: 

doublet; dd: double doublet; q: quartet.  

ESI (ElectroSpray Ionization) and HRESI MS (Hight resolution ElectroSpray Ionization 

Mass Spectroscopy) spectra were recorded on Waters Micromass Q-TOF Micro and Agilent 
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1100 coupled to a JOEL AccuTOF (JMS-T100LC) (Milford, MS, USA) instruments. EI MS 

spectra were taken at 70 eVon a QP 5050 Shimadzu spectrometer. 

Analytical and preparative TLC were performed on silica gel (Kieselgel 60 F254, 0.25 

and 0.50 mm, respectively, Merck, Darmstadt, Germany) or reverse phase (Whatman, KC18 

F254, 0.20 mm, Maidstone, UK) plates; the spots were visualized by exposure to UV light or 

by spraying first with 10% H2SO4 in methanol and then with 5% phosphomolybdic acid in 

ethanol, followed by heating at 110°C for 10 min.  Column chromatography was performed 

on silica gel (Merck, Kieselgel 60, 0.063-0.200 mm).  
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4. EXPERIMENTAL 

4.1. Production, extraction and purification of alternethanoxins A and B (24-25). 

A. sonchi was grown on autoclaved pearl barley in ten 1000-ml Erlenmeyer flasks (pearl 

barley 100 g, water 60 ml) for 21 days in the darkness. Fungal metabolites were extracted 

from dry mycelium according to a slightly modified protocol of Evidente et al. 2002 

(Evidente et al., 2002). The dried material was extracted with the mixture acetone-2% NaCl 

(1:1, 2 l). The suspension obtained was centrifuged at 10000g for 40 min. The same protocol 

has been repeated  two times on solid phase using the same volume of the mixture acetone-

2% NaCl (1:1). The extract were combined and after acetone evaporation, the aqueous residue 

was liophylized. The residue was dissolved in 500 ml of distilled water and extracted with 

EtOAc (3x500 ml). The organic extracts were combined, dried (Na2SO4) and evaporated 

under reduced pressure yielding a brown oily residue (975 mg). The organic extract, showing 

high phytotoxicity, was purified by silica gel column chromatography eluted with the CHCl3-

i-PrOH (9:1, v/v), to give 11 groups of homogeneous fractions (Scheme 1). Fractions were 

tested for bioactivity against S. arvensis  as described below and those showing phytotoxicity 

were further purified. The residue (174.7 mg) of the fourth fraction was purified by silica gel 

column, eluted with CHCl3-i-PrOH (95:5, v/v), to yield 5 fractions. The residue (88 mg) of 

the second fraction was purified by preparative TLC on silica gel [eluent CHCl3-i-PrOH 

(95:5, v/v)], to yield 8 fractions. The residue (51 mg) of the sixth fraction appeared to be 

homogeneous yellow solid, which was named alternethanoxin A (24, Rf 0.38; 51.0 mg; Fig. 

9). The residue of the fourth fraction was purified by preparative TLC on reverse phase 

[eluent EtOH-H2O (6:4, v/v)] to yield an amorphous solid, which named alternethanoxin B 

(25, Rf 0.47; 2.2 mg; Fig. 9; Scheme 1). 
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4.1.1. Alternethanoxin A (24).  

Alternethanoxin A (24, Fig. 9) obtained as an amorphous solid, had : [α]25 D -16° (c 

0.2); IR νmax 3341, 1697, 1635, 1583, 1515, 1291 cm-1; UV λmax (log ε) nm 381 (sh); 299 

(3.82); 241 (4.07); 1H and 13C NMR spectra: see Table 2; HRESIMS (+) m/z 627 [2M+Na]+, 

325.0701 [C16H14NaO6 calcd. 325.0688, M +Na]+ , 287 [M-Me]+. 

 

4.1.2. Alternethanoxin B (25).  

Alternethanoxin B (25, Fig. 9) obtained as an amorphous solid, had : [α]25 D -32.5° (c 

0.1); IR νmax 3232, 1688, 1656, 1608, 1589, 1519, 1291, 1259 cm-1; UV λmax (log ε) nm 381 

(3.6), 294 (3.8), 262 (4.4), 237 (4.3); 1H and 13C NMR spectra: see Table 3; HRESI MS (+) 

m/z 623 [2M+Na]+ 323.0541 [C16H12NaO6 calcd. 323.0532, M+Na]+. 

 

4.1.3. Triacetylalternethanoxin A (26).  

Alternethanoxin A (24, 10.0 mg) was acetylated with acetic anhydride (70 µl) and 

pyridine (70 µl), at room temperature overnight. The reaction was stopped by addiction of 

MeOH, and evaporated by a N2 stream. The residue (11.0 mg) was purified by preparative 

TLC on silica gel [(eluent CHCl3-i-PrOH (98:2, v/v)], yielding the triacetyl derivative of 

alternethanoxin A (26, Fig.10) as an amorphous solid (Rf 0.56, 8.0 mg). It had: [α]25 D –15° 

(c 0.2); IR νmax 1770, 1724, 1670, 1620, 1575, 1433, 1176 cm-1; UV λmax (log ε) nm 287 (sh); 

253 (3.93); 1H NMR, δ: 7.82 (1Η, d, J=7.7, H-8), 7.50 (1H, dd, J = 8.0, 7.7, H-9), 7.40 (1H, d, 

J= 8.0, H-10), 6.86 (2H, each s, H-3 and H-6) 3.72 (3H, s, OMe), 2.40 (3H, MeCO), 2.02 

(3H, MeCOO), 1.95 (6H, 2xMeCOO); 13C NMR, δ: 188.4 (MeCO), 168.8 (2xMeCOO), 

168.5 (MeCOO), 165.9 (C-7), 150.5 (2C, s, C-4 and C-5), 147.6 (C-1), 144.2 (2C, s, C-6a and 

C-10a), 136.2 (C-10b), 130.6 (C-2), 129.0 (d, C-9), 127.3 and 127.2 (2C, d, C-8 and C-10), 
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122.0 (2C, d, C-3 and C-6), 52.5 (OMe), 21.55 (MeCOO), 20.5 (3xMeCOO); ESIMS (+) m/z: 

879 [2M+Na]+, 451[M+Na]+. 

 

4.1.4. Alternethanoxin A dimethyl ether (27).  

To alternethanoxin A (24, 4.0 mg), dissolved in MeOH (0.5 ml), was added an ethereal 

solution of diazomethane. The reaction was carried out overnight at room temperature in the 

dark. The reaction was stopped by evaporation under N2 stream. The residue (4.2 mg) was 

purified by preparative TLC on silica gel [(eluent petrol-Me2CO (8:2, v/v)], yielding 

alternethanoxin A dimethyl ether (27, Fig.11) as an amorphous solid (Rf 0.31, 2.0 mg). It had: 

[α]25 D -17 (c 0.2); IR νmax 2923, 1721, 1628, 1600, 1574, 1464, 1277 cm-1; UV λmax (log ε) 

nm: 337 (sh); 285 (3.84); 1H NMR, δ: 12.95 (ΟΗ, s), 7.61 (1H, d, J= 7.8, H-8), 7.36 (1H, dd, 

J= 7.8, 7.7, H-9), 7.11 (1H, d, J= 7.7, H-10), 6.46 (1H, s, H-3) and 6.05 (1H,s, H-6), 3.74 (3H, 

s, OMe), 3.72 (3H, s, OMe), 3.31 (3H, s, OMe), 2.29 (3H, s, MeCO); ESIMS (+) m/z: 683 

[2M+Na]+, 353 [M+Na]+.  

 

4.1.5. (S)-α-Methoxy-α-trifluorophenylacetate (MTPA) ester of alternethanoxin A 

(28). 

 (R)-(-)-MPTA-Cl (20 µl) was added to alternethanoxin A (24, 2.0 mg) and dissolved in 

dry pyridine (40 µl). The mixture was kept at room temperature. After 12 h, the reaction was 

complete, and MeOH was added. The pyridine was removed by a N2 stream. The residue was 

purified by preparative TLC on silica gel [(eluent petrol-Me2CO (7:3, v/v)] yielding the S-

MTPA ester of alternethanoxin A, 28 (Fig. 12) as a homogeneous solid (Rf 0.39, 2.0 mg). It 

had: [α]25 D – 12.7 (c 0.15); IR νmax 3374, 1771, 1725, 1637, 1595, 1284, 1214 cm-1; UV λmax 

log (ε) 290 (3.9), 225 (sh) nm; 1H NMR, δ: 7.97 (1H, d, J=7.5 Hz H-8), 7.51 (1H, dd, J=8.0 

and 7.5 Hz, H-9), 7.46-7.31 (5H, m, Ph), 7.39 (1H, d, J=8.0 Hz, H-10), 6.37 (1H, s, H-6), 5.93 
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(1H, s, H-3), 3.76 (3H, s, OMe), 3.44 (3H, s, OMe), 2.23 (3H, s, MeCO); ESIMS (+) m/z 541 

[M+Na]+. 

 

4.1.6. (R)-α-Methoxy-α-trifluorophenylacetate (MTPA) triester of alternethanoxin 

A (29).  

(S)-(+)-MPTA-Cl (20 µl) was added to alternethanoxin A (24, 2.0 mg) and dissolved in 

dry pyridine (40 µl). The reaction was carried out under the same conditions used for 

preparing 28 from 24. 

Purification of the crude residue by preparative TLC on silica gel [(eluent petrol-Me2CO 

(7:3, v/v)] yielding R-MTPA ester of alternethanoxin A, 29 (Fig. 12) as homogeneous solid 

(Rf 0.55, 1.7 mg). It had: [α]25 D -33.6 (c 0.13); IR νmax 1769, 1728, 1670, 1621, 1452, 1265, 

1211, 1168 cm-1; UV λmax (log ε) nm 287 (sh), 256 (4.62); 1H NMR, δ: 87.58-7.25 (15H, m, 

Ph), 7.49 (1H, d, J=7.6 Hz, H-8), 7.19 (1H, dd, J=8.0 and 7.6 Hz, H-10), 6.92 (1H, d, J=8.0 

Hz, H-10), 6.76 (1H, s, H-6), 6.72 (1H, s, H-3), 3.55 (3H, s, OMe), 3.52 (3H, s, OMe), 3.45 

(3H, s, OMe), 3.35 (3H, s, OMe), 2.38 (3H, s, MeCO); ESIMS (+) m/z 973 [M+Na]+. 
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4.2. Biological assay  

All the biological assays were carried out at the laboratory of All Russian Institute of 

Plant Protection, Pushkin (Saint Petersburg, Russia) under the supervision of Dr. A. 

Berestetskyi & Dr. G. Mitina whereas the zootoxic activity assay was carried out at the Saint 

Petersburg State Technical University under supervision of Dr. Vonokhodov.  

 

4.2.1. Leaf-puncture assay.  

 Culture filtrates of A. sonchi, its organic extract, the chromatographic fractions and 

pure compounds 24-27 were assayed by leaf disc-puncture bioassay on S. arvensis and a 

number of non-host plants. The plants were produced from pieces of underground shoots or 

seeds and grown in a greenhouse. The discs (10 mm diam.) were cut off well-expanded leaves 

with cork borer, placed on moistened filter paper and punctured by sharp needle in the centre. 

Crude organic extract, chromatographic fractions and pure compounds were dissolved in a 

small amount of EtOH and then brought up to desirable concentration with distilled H2O. The 

final concentration of EtOH in test solutions was 5% v/v that is non toxic to leaves of all 

plants in the control. Droplets (10 µl) of the test solution were applied on the discs and then 

incubated in transparent plastic boxes at 24°C under 12 h photoperiod. After 2 days of 

incubation the diameter of the necrotic lesions (mm) was measured. 
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4.2.2. Antimicrobial assay.  

Antifungal activity of alternethanoxin A was assayed on Saccharomyces cerevisiae, 

Candida tropicalis, Fusarium poa, Bipolaris sorokiniana, Rhynchosporium secalis, 

Penicillium sp., Aspergillus niger, while alternethanoxins B was assayed only on 

Saccharomyces cerevisiae. Their antibacterial activity was tested on Xanthomonas 

campestris, Escherichia coli and Bacillus subtillis at the concentration 100 µg per disc 

according to the method previously described (Bottalico et al., 1990). 

 

4.2.3. Best solvent assay of alternethanoxin A. 

Solubility of alternethanoxin A (24) in different solvents was tested in order to increase 

its activity. Solutions (2% and 5%) of methanol, ethanol, dimethyl sulfoxide, 

dimethylformamide, acetone, dioxane and acetonitrile were tested as control on leaves of S. 

arvensis and C. arvense using leaf-puncture assay. All solvents used at both concentrations 

did not show phytotoxicity.  

Alternethanoxin A, at the concentration 2 mg/ml, was dissolved in all solvents in 

solution at 5%, and applied on leaves of  S. arvensis and C. arvense using leaf-puncture assay, 

as described before.  
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4.2.4. Seeds germination assay.  

Seeds of different plants were used to evaluate the effect of alternethanoxin A (24) on 

root growth. The seeds of lettuce, chicory, radish, wheat and pea were soaked for 5 minutes in 

a solution 1% of sodium hypoclorite, after washed with distilled water and incubated in water 

for 48 h at 25 °C. Seeds with rootlets of 1-2 mm length were incubated in a solution of DMFA 

at 5% together with the toxin at different concentrations (3.3 x 10-4, x10-5, x10-6 M) for 1 h at 

25 °C. All seeds were replaced in transparent plastic boxes and incubated at 25 °C. The lenght 

of roots (mm) was measured at time 0 and after treatment. DMFA solution (5%) was used as a 

control treatment.  

 

4.2.5. Zootoxic activity 

The zootoxic activity was tested on Paramecium caudatum. Paramecia were grown in 

an infusion of 10 oat grains in 200 ml of water. 100 µl of a suspension with paramecia was 

added to 100 µl of a solution 5% DMFA of alternethanoxin A at different concentration (6.6 x 

10-4, x10-5, x10-6 M). The solution was placed into a microscope slide and incubated in a 

humid chamber. After 3 min, 15 min, 1 h and 3 h of incubation, the cell integrity and activity 

of paramecia were estimated. A paramecium was considered dead if it became no motile and 

morphologically degraded (Biliai, 1982). The tested alternethanoxin A was considered to be 

severely toxic, toxic, and relatively toxic if no less than 70% of the paramecia died after 5, 20, 

and 40 min of incubation, respectively. If most of the paramecia remained morphologically 

unaltered after 60 min of incubation, the tested compound was considered non-toxic.  
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4.2.6.  Electrolyte leakage assay 

For the assay, leaf discs of C. arvense (0.5 cm in diam.) treated with alternethanoxin A 

(2 mg/ml, 5 µl per disc) were cut  for 4 peaces (10 discs per replication, 4 replications per 

treatment) and placed in 5 ml of distilled water. The discs treated with 5% DMFA were used 

for negative control. The discs boiled in water for several minutes were used as a positive 

control. The peaces of discs were incubated at 25 °C for 1 h and conductivity of resulted 

extract was measured by a conductivity meter (Mettler Toledo, Swirzerland, S20 SevenEasy).  

 

4.2.7. Assay of inhibition of mitosis in onion roots. 

The effect of alternethanoxin A on mitotic activity was tested using garlic (Allium 

sativum L.). Garlic cloves were allowed to grow in Petri dishes containing water in a growth 

chamber with constant fluorescent light at 25 °C. Cloves with 2-cm-long roots were selected 

and placed in a plastic dish containing 20 ml of alternethanoxin A solution of DMFA 5% at 

concentrations 3.3 x 10-4, 10-5, 10-6 M. 

After 24 h, 3 mm of the root tip from germinated cloves were cut and fixed with Carnoy 

fixative (absolute ethanol:glacial acetic acid solution 3:1) for 5 minutes at room temperature, 

and for 1 h at -20 °C. The fixed root tips were stored in aceto-carmin for 2.0 minutes at room 

temperature. Root tips (2 mm) were sectioned using a dissection knife, mounted on slides in a 

drop of 45% acetic acid and examined under microscopy.  

The remainder of the root was then discarded. Excess stain was blotted with a paper 

towel and the root tip was treated with a drop of deionised water. A coverslip was then 

lowered onto the root tip and firmly pressed in order to spread the cells into a single layer. 

The mitotic index, frequency of mitotic cells in prophase and frequency of interphases with 

multinucleolus were determinate. At least four root meristems from five different cloves were 

investigated at each fixation time. About 1000 cells per root were sampled to estimate the 
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mitotic index, frequency of mitotic cells in prophase and frequency of interphases with 

multinucleolus. Cloves with 2 cm roots treated with 5% of DMFA  solution without 

alternethanoxin A served as control. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

36 

5. RESULTS AND DISCUSSION 

5.1. Chemical characterization of alternethanoxins isolated from A. sonchi solid 

culture. 

The solid culture of A. sonchi was exhaustively extracted as reported in the 

experimental section (Paragraph 4.1). The organic extract, showing a high phytotoxic activity 

on leaves of  S. arvensis, was purified by a combination of column chromatography and 

preparative TLC on silica gel and reverse phase, as reported in the experimental section 

(Paragraph 4.1), giving two pure phytotoxic metabolites (Scheme 1).  

 Their close relationship was shown by 1H and 13C NMR investigations and they were 

named alternethanoxins A (24) and B (25) (Fig. 9) (51.0 and 2.2 mg/kg, respectively) on the 

basis of fungus source and their carbon skeleton. 

Alternethanoxin A showed a molecular weight of 302 associated to a molecular formula 

C16H14O6, consistent with ten unsaturations, nine of which were due to a 1,2,3-trisubstituted 

(A) and a pentasubstituted (C) aromatic rings and to a carbonyl group. In fact, the 1H NMR 

(Table 2) and COSY (Berger and Braun, 2004) spectra (Fig. 13 and 14 respectively) showed 

two doublets (J=7.5 and J=7.1 Hz) and a double doublet (J=7.5 and J=7.1 Hz) at the typical 

chemical shifts value for a suitable trisubstituted aromatic ring  at δ 7.46 (H-8), 7.11 (H-10) 

and 7.34 (H-9) (Pretsch et al., 2000). The same spectrum showed three singlets due to the 

proton (H-3) of the pentasubstituted aromatic ring and another proton, a methoxy and an 

acetyl groups at δ 6.21, 3.62 and 2.23 (Pretsch et al., 2000). The singlet at δ 6.21, which 

integrated for two protons, was due to the overlapping of the H-3 signal and that of the proton 

(H-6) of the aldehyde group bonded at C-6 of the aromatic A ring and hemiacetalized with a 

phenolic group at C-5 of the aromatic C ring. These results were in full agreement with the 

absorption bands for hydroxy, conjugated carbonyl, and aromatic groups observed in the IR 

spectrum at  3341, 1697 and 1583 cm-1 (Fig. 15) (Nakanishi and Solomon 1977), as well as 
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with the absorptions maxima exhibited in the UV spectrum at 381, 299, and 241 nm (Fig. 16) 

(Pretsch et al., 2000). These partial structures were supported by the data of the 13C and DEPT 

spectra (Fig. 17 and 18 respectively, Table 2) and the couplings observed in the HSQC 

spectrum (Fig. 19) (Berger and Braun, 2004). The aromatic protonated carbons, as well as, the 

methoxy and the acetyl groups were observed at the typical chemical shift value of δ 131.0, 

122. 2, 121.4, 109.5, 52.5 and 22.0 for C-9, C-8, C-10, C-3, MeO and MeCO, respectively 

(Breitmaier and Voelter, 1987). The same spectrum also showed the significant signals for the 

carbonyl and the hemiacetalic carbon (C-6) at δ 198.7 and 109.5, with the latter overlapped to 

the C-3 signal. The signals of the three and five quaternary carbons of the aromatic A and C 

rings resonated at very typical chemical shifts values of δ 167.3, 153.0 and 130.4 for C-7, C-

6a and C-10a and 148.8, 160.0 (double signals), 128.6 and 109.8 for C-1, C-4 and C-5, C-2 

and C-10b and were essentially assigned on the basis of the couplings observed in the HMBC 

spectrum (Berger and Braun, 2004) (Fig. 20, Table 2).  

The couplings reported in Table 2 also allowed to deduce the presence of a 2,6-

pentasubstituted-2H-4-dehydropyran ring (B) accounting for the remaining unsaturation, 

which resulted joined to the other two rings (A and C) by the bridge-head carbons C-6a and 

C-10a and C-5 and C-10b, respectively. These findings allowed to assign the chemical shift to 

all the carbons and the corresponding protons (Table 2) as well as to alternethanoxin A the 

structure of a 1-(1,4,6-trihydroxy-7-methoxy-6H-benzo(d)chromen-2-yl)-ethanone (24, Fig. 

9). 

This structure was supported by other couplings observed in the HMBC spectrum (Fig. 

20, Table 2) that showed, in particular, the correlation of C-1 and C-3 at δ 148.8 and 109.5 

with the protons of methyl (δ 2.23) of acetyl group. Furthermore was observed the correlation 

between C-6a (δ 153) and the protons H-9 (δ 7.34) and H-10 (δ 7.11) of the aromatic ring A. 



 

 

38 

The C-7  (δ 167.3) correlated with the protons H-8 (δ 7.46) and the protons of methoxy group 

at  δ 3.62. 

 The data from the HRESIMS spectrum (Fig. 21), recorded in positive modality, which 

showed sodium clusters formed by the toxin itself and the corresponding dimer at m/z 

325.0701, [M+Na]+ and 627 [2M+Na]+ and the fragmentation peak at m/z 287 [M-Me]+, 

which was generated by the molecular ion by loss of a methyl residue.  

The structure of alternethanoxin A was confirmed by preparing two key derivatives 

whose spectroscopic properties were full consistent with the structure 24. By usual acetylation 

with acetic anhydride and pyridine alternethanoxin A was converted into the corresponding 

triacetyl derivative 26 (Fig. 10), whose IR spectrum showed the significant absence of 

hydroxy groups and the presence of bands due to more ester carbonyl groups at 1770 and 

1724 cm-1 (Fig. 22). Its 1H and 13C NMR spectra (Fig. 23 and 24 respectively) differed from 

those of 24 for the significant presence of the signals of the three acetoxy groups at δ 2.02 and 

1.95 (two MeCOO) and to δ 168.8 (two MeCOO), 168.5 (MeCOO) and 20.5 (three MeCOO). 

In the same spectra also the downfield shifts (∆δ= 0.65) of the overlapped signals of H-3 and 

H-6 at δ 6.86 and (∆δ=12.5) of C-3 and C-6 at δ 122.0 were observed. The ESIMS spectrum 

(Fig. 25) showed sodium clusters formed by triacetylalternethanoxin A itself and the 

corresponding dimer at m/z 451, [M+Na]+ and 879 [2M+Na]+. 

By reaction with an ethereal solution of diazomethane overnight at room temperature 24 

was converted into the dimethyl ether derivative 27 (Fig. 11). Its 1H NMR spectrum (Fig. 26) 

differed from that of 24 only for the presence of two more singlets due to the new methoxy 

groups at δ 3.74 and 3.31. Probably the phenolic hydroxy group at C-1 was not methylated as 

it was hydrogen bonded with the carbonyl group at C-2 generating a stable six-membered ring 

as showed by the singlet observed at typical chemical shift value of δ 12.95 (Pretsch et al., 
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2000). The IR spectrum  of 27 (Fig. 27) showed, in comparison with I spectrum of 24, the 

absence of the hydroxy group band at 3341 cm-1. Probably the proton of the hydroxyl group 

on C-1 formed an hydrogen bond with carbonil of acetyl group. The UV spectrum of 27 (Fig. 

28) showed a maximum of absorbance at λmax 285 nm. 

The ESIMS spectrum (Fig. 29) of 27 showed sodium clusters formed by dimethyl 

alternethanoxin A itself and the corresponding dimer at m/z 353 [M+Na]+ and 683 [2M+Na]+. 

Alternethanoxin B showed a molecular weight of 300 associated to a molecular formula 

of C16H12O6 as deduced from its HRESIMS spectrum and consistent with eleven 

unsaturations. It differs from alternethanoxin A for the lacking of two hydrogens and one 

unsaturation more. They showed very similar IR and UV spectra (Fig. 30 and 31 

respectively), while the comparison of their 1H, 13C and DEPT spectra (Fig. 32, 33 and 34, 

Table 3) showed a very close structures with the only difference in the substitution of the 

aromatic A ring. In fact, its 1H NMR spectrum showed two ortho-coupled aromatic protons 

resonating as doublets (J=9.0 Hz) at δ 7.47 and 7.36 and assigned to H-9 and H-8, which 

coupled in the HSQC spectrum (Fig. 35) with the aromatic protonated carbons at δ 122.2 and 

125.4, and the absence of H-10 (Pretsch et al., 2000, Breitmaier and Voelter, 1987). The 13C 

NMR spectrum also showed the significant downfield shift (∆δ=30.8) of C-10 attributable to 

the presence of a tetrasubstituted furan ring, accounting for the additional unsaturation. This 

new ring probably was generated by the attachment of the oxygen at C-1 of C ring to the 

carbon C-10 of A ring.  

The COSY spectrum (Fig. 36) showed the absence of H-10, while the signals of H-8 

and H-9 (δ 7.36 and 7.74 respectively) appeared as two doublets (J= 9.0 Hz) at δ 7.36 and 

7.74. This is characteristic coupling for two orto proton, a tetra substituted aromatic ring.  

This partial structure was also consistent with the couplings observed in HSQC spectrum 

(Fig. 35), that also showed a further quaternary oxygenated carbon C-10. The assigned of the 
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quaternary carbons was made on the basis of couplings observed in the HMBC spectrum (Fig. 

37, Table 3).  

Furthermore, the examination of the 1H NMR and COSY spectra also showed a 

different chemical shift values for the protons (H-3) of the pentasubstituted aromatic C ring 

and that of the hemiacetalized aldehyde group (H-6) resonating at δ 6.73 and 6.62, 

respectively, which coupled in the HSQC with the signals at δ 107.2 and 111.4 (C-3 and C-6), 

respectively. These findings suggested an opposite stereochemistry at C-6 in 25 in respect of 

24, which was also supported by the presence in the 1H NMR spectrum of 25 of a singlet at δ 

12.20 due to the hemiacetalic hydroxy group, which is probably hydrogen bonded to the 

methoxy group at C-7 and generating a stable six-membered cycle. This result was confirmed 

by the couplings observed in the NOESY spectra (Berger and Braun, 2004) of 24 and 25. In 

fact, the NOESY spectrum of 24, beside the expected effect observed between H-3 and the 

methyl of the acetyl group at C-2, also showed an effect between H-6 and the methoxy group 

at C-7. This latter effect was significantly absent in NOESY spectrum of 25.  

These findings allowed to assign the chemical shift values to all the carbons and the 

corresponding protons (Table 3) and to alternethanoxin B the structure of 1-(7,9-dihydroxy-1-

methoxy-9H-4,8-dioxacyclopenta[def]phenanthren-5-yl)-ethanone (25, Fig. 9). This structure 

was supported by the other couplings observed in the HMBC spectrum (Table 3) and by the 

data of the HRESIMS (Fig. 38), recorded in positive modality, which showed sodium clusters 

formed by the toxin itself and the corresponding dimer at m/z 323.0541, [M+Na]+ and 623 

[2M+Na]+. 

The absolute stereochemistry of the secondary hydroxylated carbon C-6 of 

alternethanoxin A  (24) was determined applying the Mosher’s method (Dale et al., 1969; 

Ohtani et al., 1991). By reaction with the R-(-)-α-methoxy-α-trifluorophenylacetate (MTPA) 

and S-(+)MTPA chlorides, alternethanoxin A was converted in the corresponding 
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diastereomeric S-MTPA ester and R-MTPA triesters (28 and 29, Fig. 12), whose 

spectroscopic data were consistent with the structure assigned to 24. In particular, the IR 

spectrum of 28 (Fig. 39) showed the presence of an hydroxy group band at 3374 cm-1 and the 

presence of a band at 1771 cm-1 for the presence of the ester carbonyl group. The UV 

spectrum (Fig. 40) showed a maximum of absorbance at  λmax 290 nm. The ESIMS spectrum 

(Fig. 41) recorded in positive modality showed the presence of sodium cluster at m/z 541 

[M+Na]+. 

The IR spectrum of 29 (Fig. 42) showed, in comparison with the spectrum of 24, the 

absence of the hydroxy group band, and the presence of bands due to more ester carboxylic 

group at 1769 and 1728 cm-1 . The UV spectrum (Fig. 43) showed a maximum of absorbance 

at  λmax 256 nm. The ESIMS spectrum (Fig. 44)  recorded in positive modality showed the 

presence of sodium cluster at m/z 973 [M+Na]+.  

The comparison between the 1H NMR data of the S-MTPA ester (28, Fig. 45) and those 

of the R-MTPA triester (29, Fig. 46) of 24 [∆δ (28-29): H-3 -0.79; H-8 +0.48; H-9 +0.42; H-

10 +0.49 MeO +0.21 and MeCO -0.15] allowed to assign a R-configuration at C-6. In 

alternethanoxin B C-6 has an opposite stereochemistry in respect to 24, so that a S-

configuration could be assigned to this chiral carbon in 25. 
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5.2. Biological activity of alternethanoxins. 

Compounds 24-27 were tested by leaf disc-puncture assay at a range of concentrations 

from 0.1 to 4 mg/ml on leaf discs of S. arvensis.  

Only alternethanoxins A and B (24 and 25) were shown to be phytotoxic. Small necrotic 

lesions were seen at the concentration of 0.12, 0.25, 0.5, 1 and 2 mg/ml for 24 and 25, 

respectively. At the highest concentration of 24 and 25 (4 mg/ml) lesions reached 3 mm in 

diameter, respectively (Fig. 47a and 47b, Fig. 48a and 48b). 

 When tested at the concentration 2 mg/ml on leaf discs of a number plant species 

(Sonchus arvensis, Cirsium arvense, Taraxacum officinalis, Aegopodium podagaria, Trifolium 

pratense, Phelum pratense, Rumex obtusifolia, Chenopodium album, Cannabis sativa and 

Elytrigia repens)  alternethanoxins A and B showed similar non-specific activity (lesions ~ 1-2 

mm diameter; Fig. 49a and 49b).  

 Furthermore, the inactivity of derivatives 26 and 27 demonstrated that the phenolic 

hydroxy group at C-4 of C ring is a structural feature important for the phytotoxicity while the 

activity of alternethanoxin B showed that the other one at C-1 and the hemiacetal hydroxyl 

group at C-6 are unessential. The reduction of both the hemiacetal and the acetyl groups at C-

6 and C-2 and the eletrophilic substitution of one or more hydrogens of ring A and C rings 

with a suitable group could contribute to demonstrate the importance of the 

benzo(d)crhomene  moiety and the role of the acetyl group. Both 24 and 25 demonstrated 

neither antibiotic nor antifungal activity when tested at 100 µg/disc on Bacillus subtilis, 

Xanthomonas campestris, Escherichia coli and Saccharomyces cerevisiae. 

Alternethanoxins A and B are two fungal metabolites in which an ethanone group was 

bonded to an original polysubstituted benzo(d)chromene and dioxacyclopenta[def]-

phenanthrene residue, respectively, and occur for the first time as natural compounds with 



 

 

43 

interesting biological activity. In particular, the main fungal metabolite alternethanoxin A (24) 

and also alternethanoxin B (25) showed potential herbicidal properties.  

A number of well-known fungal metabolites (alternariol, its monomethyl ether, 

altenuene, and altenuisol), which belong to a class of toxic metabolites containing 

dibenzo[α]pyrone moiety, are structurally close to alternethanoxin A. These compounds are 

produced by different Alternaria species isolated from plant material and their antibiotic, 

cytotoxic and teratogenic activities are usually stressed (Cole and Cox, 1981). Interestingly, 

that alternethanoxins A and B did not demonstrated antimicrobial activity. Furthermore, the 

most closest compounds to alternethanoxin A from the group of ethanones appeared to be the 

acetophenones, namely cynandiones A-D, cynanchone and analogues, isolated from the root 

of different Cynanchum plant species and showing potential pharmacological applications 

(Huang et al., 1999). Compounds close to alternethanoxin B are those belong to the 

cylopenta[d,e,f]phenathrene group including the steriols, toxic metabolites produced by some 

Fusarium sporotrichiella strains, isolated from naturally infected grain (Olifson et al., 1961).  

Taking in the consideration the structural relation of alternethanoxins A and B to some 

mycotoxins of Alternaria spp., it was interesting to assay activity on more species of 

microorganisms. Therefore, alternethanoxins A was tested against fungi Candida tropicalis, 

Fusarium poa, Bipolaris sorokiniana, Rhyncosporium secalis, Pennicillium sp., Aspergillus 

niger, and this assays demonstrated that alternethanoxin A did not showed antifungal activity 

at concentration 100 µg/disc. 

The toxicity of alternethanoxin A and B was tested on leaves of S. arvensis in combined 

application. The toxins are present in fungal culture in mixture, so it was interesting to test 

their synergistic effect. Antagonist effect was found in action of these compounds, possibly 

they interact with the same molecular target and interfere action of each other. The necrosis 
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evaluated on leaves of host plant, showed less diameter when the two toxins were applied 

together, instead of both toxins applied alone (Fig. 50). 

Considering the enough amount of alternethanoxin A available, other assays were 

conduced for the biological investigation of this toxin.  

The best solvent for the solubilization of alternethanoxin A was determinate to be 

dimethylformamide. 

 

5.2.1 Effect of concentration of alternethanoxin A on root growth. 

The  ability of alternethanoxin A to inhibit root growth in seeds of different plants 

(lettuce, chicory, radish, wheat and pea) was investigated. All seedling were sensitive and the 

toxin inhibited significantly the root growth of seeds of lettuce (88% at 1.6 x 10-4 M). Wheat 

was find less significantly sensitive plant (68% at 1.6 x 10-4 M) then lettuce, while sensitivity 

of chicory, radish and pea was intermediate (Fig. 51 and 52). This results show that 

alternethanoxin A is is able to inhibit root growth non-selectively. 

 

5.2.2. Effect of alternethanoxin A on zootoxic activity. 

Paramecium caudatum test model (Protozoa subkingdom) is widely used to study the 

biologic activity of various drugs (Green et al., 1989). P. caudatum has morphological signs 

of a cell and responds to environmental stimuli similarly to multicellular organisms. 

Alternethanoxin A did not show zootoxic activity when tested on the infusorium 

Paramecium c. Even after 3 h of treatment with the toxin 100% of infusoria remained viable. 
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5.2.3. Effect of alternethanoxin A on conductometric properties of C. arvense 

leaves. 

The effect of Alternethanoxin A on electrolyte leakage in leaves of Cirsium arvense was 

investigated. Leaf discs treated with alternethanoxin A in the light showed an increment of 

conductivity significaly different in comparison with discs treated with the toxin in the dark. 

Both the positive controls (light and dark) show an increment of conductivity in comparison 

with the negative control (100%). This results showed that the action of alternethanoxin A is 

light-dependent (Fig. 53). This toxin could be involved in disruption of some photosynthesis 

process. Lost of membrane integrity occurring only in tissues exposed to light may be 

associated with compounds that act as photosynthetic electron diverters (i.e., bipyridiliums) or 

cause photodynamic pigment to accumulate (i.e., inhibitors of protoporphyrinogen oxidase). 

 

 

5.2.4. Effect of alternethanoxin A on inhibition of mitosis in onion roots. 

The differences in mitotic index in onion roots cell’s were measured after treatment 

with alternethanoxin A. The mitotic index was obtained by dividing the total number of cells 

undergoing mitosis by the total number of cells observed (Table 4). At least three replicates 

should be included for each treatment with a minimum of 1000 cells, and their various states 

in mitosis are recorded per replication. In addition to important quantitative data, visual 

observation of the root squashes also may detect an abnormal mitotic arrangement or atypical 

cell wall formation that would suggest either a disruption of the microtubule-organizing 

centers or alteration of processes involved in cell wall biosynthesis. Considering the % of 

cells presented in different phases of mitosis (prophase, metaphase, anaphase, telphase) in 

comparison with the total cells taking in examination, as expressed in Table 4, after 

treatament with the toxin a decrease of cells in metaphase and telophase was observed. The 
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most cells examined  show an abnormal metaphase, with several swollen cells, bigger than 

normal, and some dead cells. Also several cells showed the presence of a vacuole inside the 

nucleo that could indicate the beginning of the cell’s dead. More cells in prophase means the 

inhibition of the division processes. More cells in telophase means appearance binucleate 

cells without septa and division (Fig 54). It means that alternethanoxin A is a potent inhibitor 

of microtubule assembly.  
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6. CONCLUSION 

1. The fungus Alternaria sonchi was selected as a pathogen of Sonchus arvensis. 

2. The best conditions for the production in solid culture of phytotoxic metabolites 

were found. 

3. Bioassay-guided purification of the organic extract of the solid culture allowed to 

isolate two new metabolites with phytotoxic activity. 

4. Two phytotoxic metabolites named alternethanoxins A and B, were characterized by 

extensive use of spectroscopic (essentially NMR and MS techniques) and chemical 

methods, as new phytotoxic policyclic ethanones. 

5. Alternethanoxins A and B showed a significant phytotoxic activity against host plant 

and other several weeds.  

6. Structure-activity relationship studies testing phytotoxic activity, showed that the 

hydroxy group at C-4 is an important factor to impart activity while the other two on 

C-1 and C-6 appear to be unessential. 

7. Alternethanoxins A and B didn’t showed antimicrobial activity. 

8. Application of both alternethanoxins on leaves of host plant did not showed 

synergistic effect. 

9. Other experiments were carried out with alternethanoxin A:  

a) The best solvent for the toxin appeared dimethylformamide.  

b) The toxin inhibited root growth non-selectively. 

c)  The toxin did not showed zootoxic activity. 

d)  The toxin increased conductivity on leaves of C. arvense, and this activity was 

light-dependent. 

e) The toxin was found to be a potent inhibitor of mitosis process in onion roots.  
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Fig. 1. Cirsium arvense 
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Fig. 2. Sonchus arvensis 
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Fig. 3. Structure of ascosonchine (1) isolated from Ascochyta sonchi culture filtrates. 
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Fig. 4. Structure of p-hydroxybenzaldehyde (2), cytochalasins B and F, and deoxaphomin (3, 
4 and 5) isolated from liquid and solid cultures of  P. exigua var. exigua strain C-177; 
structure of cytochalasins Z2 and Z3 (6 and 7) isolated from a solid culture of P. exigua var. 
exigua strain S-9. 
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Fig. 5. Structure of stagonolide A (8), isolated from liquid culture of S. cirsii, and  
stagonolides B-F (9-13), isolated from the same fungus, in solid culture. 
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Fig. 6. Structure of stagonolides G-I (14-16) and modiolide A (17), isolated from liquid 
culture of S. cirsii.  
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Fig. 7. Structure of phyllostictines A-D (18-21) isolated from liquid culture of P. cirsii.  
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Fig. 8. Structure of phyllostoxin and phyllostin  (1 and 2) isolated from liquid culture of P. 
cirsii.  
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Fig. 9. Structure of alternethanoxins A and B (24 and 25) isolated from Alternaria 
sonchi. 
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Fig. 10. Acetylation of alternethanoxin A.  
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Fig. 11. Methylation of alternethanoxin A.  

 
 
 
 
 
 
 
 
 

 



 

 

69 

 
 
 
 
 
 
 

O

MeO
H OH

OH

COMe

OH
1

S-MTPA-Cl/Pyr
R-MTPA-Cl/Pyr
room temperature
12 h

4

7

O

MeO
H OR3

OR2

COMe

OR1
1

6

22228888 R1=R2=H, R3= S-MTPA
22229999    R1=R2=R3= R-MTPA

MTPA= COOPh

OCH3

CF3

4

 
 

 
Fig. 12. Preparation of S-(-)- and R-(+)-α-methoxy-α-trifluorophenylacetate 
(MPTA) of alternethanoxin A (28 and 29).   
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    Fig. 13.    1H NMR spectrum of alternethanoxin A recorded at 600 MHz.   
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Fig. 14. COSY spectrum of alternethanoxin A recorded at 600 MHz. 
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 Fig. 15.  IR spectrum of alternethanoxin A deposited glassy film. 
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Fig. 16. UV spectrum of alternethanoxin A recorded in MeCN solution. 
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Fig. 17.  13C NMR spectrum of alternethanoxin A recorded at 600 MHz. 
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Fig. 18.  DEPT spectrum of alternethanoxin A recorded at 600 MHz. 
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Fig. 19.  HSQC spectrum of alternethanoxin A recorded at 600 MHz. 
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Fig. 20. HMBC spectrum of alternethanoxin A recorded at 600 MHz. 
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Fig. 21. ESI MS spectrum of alternethanoxin A  recorded in positive modality. 
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Fig. 22.  IR spectrum of triacetylalternethanoxin A deposited glassy film. 
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Fig. 23.    1H NMR spectrum of triacetylalternethanoxin A recorded at 600 MHz.   
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Fig. 24. 13C NMR spectrum of triacetylalternethanoxin A recorded at 600 MHz. 
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Fig. 25.  ESI MS spectrum of triacetylalternethanoxin A recorded in positive modality. 
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Fig. 26.    1H NMR spectrum of alternethanoxin A dimethyl ether recorded at 600 MHz. 
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Fig. 27. IR spectrum of alternethanoxin A dimethyl ether deposited glassy film. 
 
 



 

 

85 

 
 
 

Fig. 28. UV spectrum of alternethanoxin A dimethyl ether recorded in MeCN solution. 
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Fig. 29.  ESI MS spectrum of alternethanoxin A dimethyl ether recorded in positive modality. 
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Fig. 30. IR spectrum of alternethanoxin B deposited glassy film. 
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Fig. 31. UV spectrum of alternethanoxin B recorded in MeCN solution. 
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Fig. 32.    1H NMR spectrum of alternethanoxin B recorded at 600 MHz.   
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Fig. 33. 13C NMR spectrum of alternethanoxin B recorded at 600 MHz. 
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Fig. 34. DEPT spectrum of alternethanoxin B recorded at 600 MHz. 
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Fig. 35.  HSQC spectrum of alternethanoxin B recorded at 600 MHz. 
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Fig. 36.  COSY spectrum of alternethanoxin B recorded at 600 MHz. 
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Fig. 37. HMBC spectrum of alternethanoxin B recorded at 600 MHz. 
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Fig. 38.  ESI MS spectrum of alternethanoxin B  recorded in positive modality. 
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Fig. 39. IR spectrum of S-MTPA ester of alternethanoxin A deposited glassy film. 
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Fig. 40. UV spectrum of R-MTPA triester of alternethanoxin A  recorded in MeCN solution. 
 

 

 



 

 

98 

 
 
 
 Fig. 41. ESI MS spectrum of S-MTPA ester of alternethanoxin A recorded in positive modality. 
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Fig. 42.  IR spectrum of R-MTPA triester of alternethanoxin A deposited glassy film. 
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Fig. 43. UV spectrum of S-MTPA ester of alternethanoxin A recorded in MeCN solution. 
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Fig. 44. ESI MS spectrum of R-MTPA triester of alternethanoxin A recorded in positive modality. 
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Fig. 45.    1H NMR spectrum of S-MTPA ester of alternethanoxin A recorded at 600 MHz.   
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Fig. 46.     1H NMR spectrum of R-MTPA triester of alternethanoxin A recorded at 600 MHz.   
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b) 
 

 
 
 
 
 
 
Fig. 47a and 48b. Effect of concentration of alternethanoxin A on size of necrotic lesion 
on S. arvensis leaf discs.  
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Fig. 48a and 48b. Effect of concentration of alternethanoxin B on size of necrotic lesion 
on S. arvensis leaf discs.  
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b) 
 

 
 
 
 
 
 
FFiigg..  4499aa  aanndd  4499bb..  HHoosstt  rraannggee  aassssaayy  ooff   aall tteerrnneetthhaannooxxiinnss  AA  ((11==  SSoonncchhuuss  aarrvveennssiiss,,  22==  
CCiirrssiiuumm  aarrvveennssee,,  33==  TTaarraaxxaaccuumm  ooffffiicciinnaall iiss,,  44==  AAeeggooppooddiiuumm  ppooddaaggaarr iiaa,,  55==  TTrr ii ffooll iiuumm  
pprraatteennssee,,  66  ==PPhhlleeuumm  pprraatteennssee,,  77==  RRuummeexx  oobbttuussii ffooll iiaa,,  88  ==CChheennooppooddiiuumm  aallbbuumm,,  99==  
CCaannnnaabbiiss  ssaattiivvaa,,  1100==EEllyyttrr iiggiiaa  rreeppeennss))..  
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Fig. 50. Effect of combined application of alternethanoxins A and B 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

0
0.5

1
1.5

2
2.5

3
3.5

Alternethanoxin
A 

Alternethanoxin 

B 
Alternethanoxin 

A + B (1:1) 
Alternethanoxin

A + B (2.5:1)

 m
m

 n
e

cr
o

si
s 

 toxins 



 

 

108 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 51. Effect of alternethanoxin A tested at different concentration on root growth in 
seedlings of lettuce (24 h post application). Means marked with same letter are not differed 
significantly at p=0.05 by Fischer’s LSD test 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 52. Effect of alternethanoxin A on root growth in seedlings of different plants at the 
concentration 0.05 mg/ml 
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Fig. 53. Effect of alternethanoxin A (tested at the concentration 2 mg/ml) on electrolyte 
leakage in leaves of Cirsium arvense (18 h post application)  
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                         3.3x10-5 M                                              3.3x10-4 M 
 
 
 
 
Fig. 54. Effect of alternethanoxin A on morphology of onion cells. 24 h after treatment. 
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Scheme 1. Process of extraction of solid culture of A. sonchi, and purification of the corresponding organic extract by column 
chromatography 
*The phytotoxicity was assayed by leaf disc puncture assay on leaves of host plant

Solid Culture 
1.5 Kg 
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975 mg 
silica gel column 
Eluent CHCl3- iso-PrOH 9:1 
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A 51 mg 
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Table 1. Promising phytotoxins for use as natural herbicides 

Microbial source  Phytotoxin  Target weed  Site of action  
    
Fungi    
Alternaria alternata  Tenuazonic acid  Datura innoxia   
A. alternata  Tentoxin  Grasses, broad-leaved weeds  CF 1-ATPase  
A. alternata f. sp. lycopersici  AAL-toxin  Garden cress   
A. alternata f. sp. maculosa  Maculosins  Spotted knapweed   
A. zinniae  Zinniol  Lettuce seedlings  Disruption of calcium- 

   regulated cell processes  

Ascochyta hyalospora  Ascochytine;  Lambsquaters, prickly sida  Electrolyte leakage and  

 hyalopyrone   inhibition of root growth  

A. caulina  Trans-4-
aminoproline  

Chenopodium rubrum  Unknown  

Bipolaris cynodontis  Bipolaroxin  Velvet leaf and pigweed   
Cepahlosporium spp  1233A   HMG CoA synthase  

Cercospora kikuchii  Cercosporin  Higher plants (not defined)  Lipid peroxidation and  

   photo-sensitizing action  

Fusarium sp.  Fusaric acid  Broad spectrum  Jimsonweed and duckweed  
Gliocladium virens  Viridol    
Helminthosporium sativum  Prehelminthosporal  Johnsongrass  Unknown  
Irpex polyhedon  Irpexil   Enzyme inhibitor  

Paecilomyces variotii SANK 
21086  

Cornexistin  Dicotyledonous weeds and  Aspartate amino 
transferase  

  some monocotyledonous 
weeds  

inhibition  

Actinomycetes     
Nocardia sp. no. 2–200  Thiolactomycin  Higher plants (not defined)  

Type II fatty acid 
synthetase  

Streptomyces hygroscopicus  Hydantocidin  Broad spectrum   
S. hygroscopicus  Polyethrin A  Garden cress  Inhibits ceramide synthase  
S. hygroscopicus var. geldanus  Geldanamycin  Garden cress   
Streptomyces sp..  Anisomycin  Barnyard grass and crabgrass  Inhibition of 

photosynthesis  
S. suganonensis  Herbicidins A/B  Monocotyledonous and   
  dicotyledonous weeds   
S. toyacaensis  Toyocamycin    
S. hygroscopicus  Nigericin   Potassium ionphore and  

   photophosphorylation  

   inhibitor  

Streptomyces sp. A7847  Herboxidiene  Broad spectrum  Unknown  
Streptomyces sp.  SF-701  Barnyard grass  Inhibition via starch  

   synthesis  

Streptomyces sp. 620061  Pyrizadocidin  Gaint foxtail  Elctron transport inhibition  
Streptomyces sp. AM-3672  Herbimycin  Digitaria spp., giant foxtail  Unknown  

  (Echinocloa crusgalli),   
  Chenopodium and Portulaca   
Bacteria     
Pseudomonas syringae var. tabaci  Tabtoxin  Broad spectrum  GS-GOGAT pathway  
P. syringae var. phaseolicola  Phaseolotoxin  Glycine wightii and  Ornithine carbamoyl  

  Macrophillium atropurpureum  transferase inhibitor  

P. syringae pv. atropurpurea  Coronatine    
Cyanobacteria     
Scytonema hofmanni  Cyanobacterin  Lemna gibba  Inhibits PSII site  
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Table 2. 1H and 13C NMR data of alternethanoxins A (24)a,b 

24 Compound 
Position δC mc δH HMBC 
1 148.8 s  MeCO 
2 128.6 s   
3 109.5 d 6.21 s MeCO 
4 160.0 s  H-3 
5 160.0 s   
6 109.5 d 6.21 s  
6a 153.0 s  H-10, H-9 
7 167.3 s  H-8, OMe 
8 122.2 d 7.46 d (J=7.5 Hz) H-10, H-9 
9 131.0 d 7.34 dd (J =7.5 and 7.1 Hz) H-8 
10 121.4 d 7.11 d (J =7.1 Hz) H-8 
10a 130.4 s  H-9 
10b 109.8 s  H-6 and/or H-3 
MeO 52.5 q 3.62 s   
MeCO 198.7 s  H-3 
MeCO 22.0 q 2.23 s H-3 

aThe chemical shifts are in δ values (ppm) from TMS. 
b2D 1H, 1H (COSY) 13C, 1H  (HSQC) NMR experiments delineated the 
 correlations of all the protons and the corresponding carbons. 
cMultiplicities were assigned by DEPT spectra. 
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Table 3. 1H and 13C NMR data of alternethanoxins B (25)a, b 
25 Compound 

Position δC mc δH HMBC 
1 148.8 s  MeCO 

2 112.4 s  
HOC-C(3), H-3, 
MeCO 

3 107. 2 d 6.73 s HOC-C(3), MeCO 
4 161.1 s  HOC-C(3) 
5 155.6 s  H-3 
6 111. 4 d 6.62 s  
6a 150.8 s  H-8, H-9 
7 169.2  H-8, OMe 
8 125.4 d 7.36 d (J J=9.0 Hz) H-9 
9 122.2 d 7.47 d (J =9.0 Hz) H-8 
10 152.2 s   
10a 155.6 s  H-9 
10b 118.6 s   
MeO 53.2 q 4.00 s  
MeCO 180.1 s  H-3 
MeCO 22.7 q 2.43 s H-3 

aThe chemical shifts are in δ values (ppm) from TMS. 
b2D 1H, 1H (COSY) 13C, 1H  (HSQC) NMR experiments delineated the 
correlations of all the protons and the corresponding carbons. 
cMultiplicities were assigned by DEPT spectra. 
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Table 4. Mitotic index of onion root tips exposed to alternethanoxin A 

Total cells observed, % 

Concentration 

Prophase Metaphase Anaphase Telophase 

0.1 mg/ml 1.45 3.60 1.50 0.20 

0.01 mg/ml 2 1.76 1.23 0.05 

0.001 mg/ml 1.60 2.60 0.80 0.20 

0 1.24 3.80 1.30 0.70 

 
 

 
 

 
 

 


