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Riassunto

La persistenza ereditaria di emoglobina fetale (HPFH) è una sindrome

benigna caratterizzata da alti livelli di emoglobina fetale in età adulta. Questo

tipo di condizione è di notevole interesse poichè può migliorare

notevolmente il quadro clinico nelle b-talassemie o in altre forme di

emoglobinopatie. I livelli di emoglobina fetale sono regolati da meccanismi

molecolari molto complessi che possono coinvolgere elementi in cis rispetto

al locus b-globinico o fattori esterni a tale locus genico. Allo scopo di

individuare fattori trascrizionali potenzialmente coinvolti nella regolazione

dell’espressione dei geni g-globinici, abbiamo analizzato il trascrittoma

reticolocitario di tre fratelli che, pur presentando lo stesso genotipo a- e b-

globinico, mostravano diversi livelli di emoglobina fetale e differente

espressione clinica di una forma di b-talassemia intermedia. Mediante

esperimenti di differential mRNA display abbiamo identificato il cDNA della

cold shock domain protein A (CSDA), un fattore trascrizionale per il quale

era già precedentemente ipotizzato un possibile ruolo di modulatore

dell’espressione dei geni g-globinici. Studi di espressione nella linea

eritroleucemica umana K562 e in cellule eritroidi primarie hanno mostrato

una correlazione inversa esistente tra i livelli di espressione della g-globina e

quelli di CSDA. Esperimenti di Chromatin Immunoprecipitation (ChIP) e

saggi di attività trascrizionale nella linea eritroleucemica umana K562 hanno

mostrato che CSDA può legare il promotore g-globinico e reprimerne

l’espressione trascrizionale. Dall’analisi dei profili di espressione delle

diverse isoforme di CSDA è risultato che le due principali isoforme presenti

in cellule di origine eritroidi sono l’isoforma a che corrisponde all’intera
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sequenza codificante (esoni 2-9) e l’isoforma b  che, in seguito a un

meccanismo di splicing alternativo, differisce dall’isoforma a per l’assenza

della regione corrispondente all’esone 6. Inoltre, l’isoforma a è risultata

maggiormente espressa in soggetti adulti normali rispetto a pazienti con

HPFH o a cellule eritroidi di tipo embrio-fetali. Poiché le due isoforme

differiscono nella regione C-terminale che è coinvolta in meccanismi di

interazione proteina-proteina, al fine di identificare gli interattori molecolari

delle due isoforme di CSDA, sono stati effettuati esperimenti di

immunoprecipitazione su cellule K562 trasfettate con costrutti esprimenti

l’isoforma a  o b  di CSDA. L’analisi mediante Western blot su tali

immmunoprecipitati ha mostrato la presenza di NF-kB e della deacetilasi

istonica 2 (HDAC2) solo nelle proteine co-immunoprecipitate con l’isoforma

a di CSDA ma non in quelle co-immunoprecipitate con l’isoforma b.

Inoltre, al fine di valutare il possibile ruolo di NF-kB e di deacetilasi

istoniche nel meccanismo di repressione trascrizionale dei geni g-globinici

mediato da CSDA, sono stati effettuati trattamenti con Bortezomib, un

farmaco che impedisce la traslocazione nel nucleo del complesso p65-p50 di

NF-kB, e con la tricostatina A, un inibitore di deacetilasi istoniche. In

entrambi i casi, i risultati ottenuti mostrano un aumento dell’espressione dei

geni g-globinici, in seguito a questi trattamenti farmacologici, confermando il

ruolo di NF-kB e delle deacetilasi istoniche nel meccanismo di repressione

trascrizionale dei geni globinici fetali.

Esperimenti di Chromatin Immunoprecipitation hanno inoltre messo in

evidenza che tali trattamenti sono in grado di modificare il grado di

acetilazione istonica nella regione del promotore g-globinico che lega CSDA.
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Nel complesso questi dati dimostrano che NF-kB e HDAC2 partecipano con

l’isoforma a di CSDA nella formazione di un complesso multiproteico

coinvolto nella repressione trascrizionale dei geni globinici fetali attraverso

un meccanismo di regolazione del grado di acetilazione istonica.
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Introduction

The switch from fetal to adult globin gene expression occurs around birth

when fetal globin genes are progressively silenced thereby leading to a

gradual decline of fetal hemoglobin (HbF) (Fig. 1 and 2). Impaired

hemoglobin switching leads to the persistence of the expression of fetal

globin genes throughout adulthood. This condition is without clinical

relevance except when co-inherited with hemoglobinopathies. In fact, HPFH

(Hereditary Persistence of Fetal Hemoglobin) has great therapeutic potential

because high levels of HbF reduce the a/non a globin chain imbalance and

thus ameliorate the thalassemic and sickle cell disease phenotypes.1-4

Consequently, there is a race to clarify the molecular basis of hemoglobin

switching and persistence of high HbF levels in the hope of identifying new

therapeutic tools for thalassemia and sickle cell disease.

Together with epigenetic factors such as age and gender, several genetic

determinants in cis to the b-globin gene cluster as well as HPFH quantitative

trait loci (QTL) (6q23, 8p, Xp22.2-23) unlinked to the b-globin gene cluster

influence HbF levels.5-12 However, little is known about the trans-acting

factors mapping on such external loci, although experimental evidence

suggests that HBS1L and MYB, whose genes map on chromosome 6q23,

and BCL11A, a zinc-finger protein encoded by a more recently described

QTL on chromosome 2p15, may modulate HbF production in adult life.13-20

However, direct interactions between these factors and globin genes have not

yet been reported and therefore the molecular mechanisms by which they

affect HbF levels remain unclear.
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Figure 1: Schematic representation of the hemoglobin switching during
development.
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Figure 2: Hemoglobin switching: models of functional interaction between
the LCR and globin gene promoter regions .
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CSDA is a member of the protein family, also called Y-box proteins,

characterized by a cold shock domain (CSD) which is highly conserved

throughout evolution from bacteria to mammals40-43. CSD proteins have three

functional domains: an N-terminus, the central CSD and a C-terminal

domain. The N-terminus region of the protein contribute to single-stranded

DNA binding; the central cold shock domain contains an RNP1 motif that is

essential for sequence-specific DNA and RNA binding, whereas the C-

terminus of the protein has alternating basic and acidic domains and has been

implicated in both no-sequence specific RNA binding and protein-protein

interactions with transcriptional regulators like RelA, ZO-1, TATA binding

protein, NF-Y, YY-1 and AP-242 (Fig. 3). On the basis of all these binding

activities, CSD proteins have been shown to be involved in transcriptional

activation and repression, as well as post-transcriptional mechanisms of gene

expression regulation, including mRNA packaging, transport, localization

and stability.

The CSDA gene, located at position 12p13.1, contains 10 exons spanning 24

kb of genomic DNA, with the cold shock domain being encoded by exons 2-

5. The C-terminal domain is instead encoded by exons 5-8, with exon 6

alternatively spliced. As consequence of alternative splicing, different C-

terminal domains may be expressed, potentially able to take part to distinct

protein complexes. CSDA is able to recognize H-DNA structures generated

by homopyrimidine tracts46. HPFH point mutations (Gg-202 C’G or C’T)

occur in a region with homopyrimidine tracts resulted to be essential for g-

globin gene repression38 and abolish the high-affinity binding sites for

CSDA46 by disrupting the formation of the intramolecular triplex. In this
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Figure 3: Protein structure CSDA. (A) 3D model of CSDA protein; (B)
schematic representation of CSDA protein domains.
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way, reduced binding of CSDA in the -200 Gg-promoter region leads to

persistent expression of g-globin genes in adult life (Fig. 4).

This study was aimed at identifying factors and characterizing protein

complexes putatively involved in modulation of g-globin gene expression.

Our findings provide experimental evidence that CSDA expression levels

modulate g-globin gene expression in adult life. Furthermore,

characterization of CSDA interactors shed light on the molecular

mechanisms involved in this regulation and could lead to innovative gene

therapy approaches in hemoglobinopathies.
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Figure 4: Schematic representation of a functional model between CSDA and
the g-globin promoter.
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Materials and methods

Patients and hematological data

Thalassemia intermedia was diagnosed in three adult siblings. The eldest

brother underwent splenectomy at the age of 33 years and was on chronic

transfusion therapy since his thirties. His two sisters received blood

transfusions only occasionally during their pregnancies. Other five

thalassemic patients were enrolled as control in this study. Table 1 lists the

hematological and clinical data of all examined patients.

Genetic analysis of a- and b-globin gene clusters

Screening for a - and b-globin gene mutations and polymorphisms was

carried out on DNA obtained from peripheral leucocytes by reverse dot-blot,

sequencing or Southern blot analysis as reported elsewhere after local Ethics

Committee approval and written informed consent were obtained. The b-

globin gene cluster haplotypes were determined as reported previously.21

RNA isolation, differential mRNA display, quantitative real-time RT-PCR

and Western blot

Total RNA was isolated from peripheral reticulocytes according to a recently

described procedure.22 Differential mRNA display analysis was performed

using the Delta Differential Display kit (BD Biosciences-Clontech, Palo

Alto, CA, USA) according to the manufacturer's instructions. cDNA for

quantitative real-time analysis of CSDA and g-globin gene mRNAs was

synthesized using an MMLV reverse transcriptase (Invitrogen, Carlsbad, CA,
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USA) from 1 mg of total RNA. Selected bands were cloned in a pGEM T-

vector (Promega, Madison, WI, USA) and sequenced on a ABI-Prism 3730

automatic sequencer (Applied Biosystems, Foster City, CA, USA).

Comparative sequence searches were performed using the BLAST algorithm

(http://blast.ncbi.nlm.nih.gov/Blast.cgi). Quantitative real-time RT-PCR was

carried out with an iCycler instrument (Bio-Rad Laboratories, Hercules, CA,

USA) using the SyBR Green master mix (Bio-Rad Laboratories) and the

manufacturer's protocol. Primers were designed using the Primer Express 2.0

program (sequences available on request). All data were normalized using

endogenous b2-microglobulin mRNA as control.23, 24

CSDA protein levels were evaluated by Western blot with the 4D9

monoclonal antibody against CSDA (Sigma-Aldrich, Saint Louis, MO, USA)

using a procedure described previously. 25

Cell cultures

K562 cells were grown in RPMI 1640 medium supplemented with 10% fetal

calf serum plus 4 mM glutamine, 10 U/mL penicillin and 10 mg/mL

streptomycin at 37°C in a humidified 5% CO2-containing atmosphere. Cell

cultures were kept sub-confluent and transfected for CSDA RNA

interference (RNAi) or over-expression analysis.

Isolation and culture of primary erythroid cells

CD34+ cells were isolated in high purity using MACS magnetic separation

system (Miltenyi Biotec GmbH, Bergisch, Germany), according to

manufacturer’s instructions, from buffy coats of healthy blood donors at our
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local Transfusion Centre, after informed consent had been obtained. To

induce erythroid differentiation, cells were kept for one week in IMDM

medium (Mascia Brunelli, Milan, Italy) supplemented with 20% fetal calf

serum (HyClone, Thermo Scientific, Logan, UT, USA) plus 10 ng/ml Stem

Cell Factor (Peprotech, Hamburg, Germany), 1u/ml erythropoietin (Sigma-

Aldrich, St. Louis, MO, USA), 1ng/ml interleukin 3 (Peprotech), 10 U/mL

penicillin (BioWhittaker, Basel, Switzerland) and 10 mg/mL streptomycin

(BioWhittaker) at 37°C in a humidified 5% CO2-containing atmosphere,

according to procedures previously described. 26, 27

Cells were stained with anti CD34 phycoeritrin (PE)-conjugated

(Pharmigen/Becton Dickinson, San Diego, CA) and CD71 fluorescein

isothiocyanate (FITC)-conjugated (Pharmigen/Becton Dickinson) for 20 min

at room temperature. Then cells were washed and analysed with a flow

cytometer (FACScan Becton Dickinson).

CSDA RNA interference and over-expression in K562 cell line and in

primary erythroid cells

Transfection of K562 cells was performed with Lipofectamine 2000

(Invitrogen) as transfectant agent. The day before transfection, cells were

plated into 12- or 6-well plates at a density of 2.5x105/ml in Optimem

medium (Invitrogen) according to the manufacturer’s instructions. Primary

erythroid cells were transfected at day 7 of culture with HiPerFect

Transfection Reagent (Qiagen) according to the manufacturer’s instructions.

The day before transfection, cells were diluted at a density of 3x105/ml in the

culture medium containing serum and antibiotics and incubated under normal
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growth conditions. On the day of transfection cells were plated into 24well

plates at a density of 2x105/ml in the culture medium. CSDA RNAi was

achieved by transiently transfecting cells with double-stranded small

interfering RNAs (stealth™ siRNAs) from Invitrogen. Two different siRNA

oligos were used for CSDA isoform a knock-down as follows (sense strand

shown): siRNA 1 GCCUUACCACGUGGGACAGACCUUU; siRNA 2

ACCUUUGACCGUCGCUCACGGGUCU; an RNAi negative control (High

GC, Invitrogen), certified by the manufacturer to have no matches with

mRNAs sequences in GenBank, was used as mock control. Cells were

collected 48 h after transfection for total protein or RNA isolation

procedures, as previously described, in order to perform Western blot or real-

time RT-PCR analysis.22, 25 CSDA silencing was verified at protein level by

Western blot with the 4D9 anti-CSDA antibody, whereas quantitative real-

time RT-PCR analyses were carried out to evaluate variations of CSDA as

well as of e- and g-globin gene mRNA levels, using the procedure described

above.

For over-expression experiments, the cDNA of CSDA isoform a

(Genbank accession number: NM_003651.4) and isoform b (Genbank

accession number: NM_001145426.1) were amplified by PCR using the

HotStart Taq DNA Polymerase (Qiagen) and cloned in a p3xFLAG-CMV

7.1 plasmid vector (Sigma-Aldrich). K562 cells were transiently transfected

with 2 mg of each p3xFLAG-CSDA expression vector. Cells were collected

48 h after transfection for total protein or RNA purification in order to

perform Western blot or real-time RT-PCR analysis. Western blot analysis

was carried out with an antibody against the FLAG epitope (Sigma-Aldrich)
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to check exogenous CSDA over-expression, whereas quantitative real-time

RT-PCR analysis for g- and e-globin gene mRNA were performed as above

described in order to evaluate effects on fetal and embryonic globin gene

expression.

Plasmid constructs and reporter gene assays

The recombinant plasmid –268g-luc containing the firefly luciferase reporter

gene was obtained by cloning the -268 bp fragment of the proximal Gg-

globin gene promoter in a pGL4 vector (Promega). To normalize the

luciferase assay, 0.1 mg of the pRL-CMV vector (Promega) coding for the

Renilla luciferase was transiently co-transfected with 0.9 mg of construct

–268g-luc in K562 cells at the density of 1.5x105 cells per well in 24-well

dishes. The pGL4-null and p3XFlag-null empty vectors (0.9 mg) were used

as negative controls whereas the pCMVluc (0.9 mg) was the positive control

for the assay. To evaluate the effect of CSDA, cells were co-transfected with

0.5, 1 or 2 mg of the expression vector p3xFLAG-CSDA described above.

Luciferase activity was measured 48 h after transfection with the Dual-

Luciferase Reporter Assay System (Promega) on a 20/20n luminometer

(Turner Biosystems, Sunnyvale, CA, USA), according to the protocols of the

manufacturers.

Chromatin ImmunoPrecipitation (ChIP) analysis

Chromatin from K562 cells (12.5x106) was purified and immunoprecipitated

with antibodies against CSDA (Sigma-Aldrich), p65, p50, HDAC2 (Upstate

Biotechnology) and with immunoglobulin G (IgG) (Sigma-Aldrich) as
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described previously.24 Analysis of histone modification was carried out as

recommended by the manufacturer using an antibody against acetyl-histone

H3 (acH3, 06-599; Upstate Biotechnology). Antigen-DNA complexes cross-

links were reversed over-night at 65°C after addition of RNase (10 ng/ml) in

a 100 ml final volume. SDS (0,5% final concentration) and proteinase K (0,6

mg/ml final concentration) were then added and the mix was incubated at

50°C for 3h followed by phenol-chloroform extraction and EtOH

precipitation. DNA pellets were resuspended in 30 ml of distilled water. Real-

time PCR detection of the proximal Gg- and b-globin gene promoter regions

were performed in a 20 ml reaction mix containing 1X SYBR Green I PCR

Master mix (Bio-Rad Laboratories), 20 mM of each primer mix (gamma For:

A C T A C A G G C C T C A C T G G A G  a n d  g a m m a  R e v :

T G G A A C T G C T G A A G G G T G C ;  b e t a  F o r :

T G T A C T G A T G G T A T G G G G C C  a n d  b e t a  R e v :

T G A T A C C A A C C T G C C C A G G G ;  G A P D H  F o r :

GGTCGTATTGGGCGCCTGGTCACCA and GAPDH Rev:

CACACCCATGACGAACATGGGGGC), 1/10 volume of purified DNA

and nuclease-free water on an iCycler instrument (Bio-Rad Laboratories).

The thermal profile consisted of 1 cycle at 95°C for 3 minutes followed by

40 cycles at 95°C for 15 seconds, 58°C for 30 seconds, 72°C for 20 seconds.

Real time PCR data analysis followed the methodology described in a recent

report. 27
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ImmunoPrecipitation (IP) and Western blot analysis in K562 cell line

K562 cells transfected with plasmid vectors p3xFLAG-CSDA isoform a and

p3xFLAG-CSDA isoform b and collected after 48 hours from trasfection,

washed two times with PBS 1X and lysed in buffer containing 150 mM

NaCl, 50 mM Tris (pH 8), 0.1% NP-40, 10% glicerol, 1mM EDTA, 0.5 mM

PMSF, and 1:100 protease inhibitors cocktail (Sigma-Aldrich). Protein

extracts, containing the FLAG-tagged CSDA isoforms a and b, were

immunoprecipitated with anti-FLAG-M2 affinity gel (Sigma-Aldrich), a

highly specific monoclonal antibody covalently attached to agarose resin,

according to the manufacturer’s protocol. Immunoprecipitated proteins were

separated by SDS-PAGE and analysed by Western blot using the anti-p65

(AB1604a, Millipore), anti-p50 (AB1602b, Millipore) and anti-HDAC2 (sc-

7899, Santa Cruz Biotechnology) antibodies.

Treatment with Bortezomib and Trichostatin A (TSA) in K562 cell line

K562 cells, 5 hours after transfection with the p3xFLAG-CSDA isoform a

and isoform b  expression vectors, were treated with increasing

concentrations of Bortezomib (0.1 nM, 1 nM and 10 nM) or Trichostatin A

(80 nM, 160 nM and 240 nM) for 48 h and were analyzed by quantitative

Real Time PCR. K562 cells treated with 1 nM Bortezomib or with 160 nM

TSA for 48 h were used for ChIP assays as described previously.

Immunoprecipitation was carried out using 5 mg of anti-p65, anti-p50, anti

HDAC2, anti-CSDA and anti-acetyl-H3 antibodies.
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Results

Genetic analysis of a- and b-globin gene clusters

We identified three siblings affected by different severity degrees of b-

thalassemia intermedia. Characterization of b-thalassemic defects revealed

b+IVSI-6 (T’C) in homozygosis in all of them. For both alleles, the

mutation was associated to Orkin's haplotype VI.28 To search for genetic

determinants of different levels of g-globin gene expression we first carried

out an extensive sequence analysis of putative regulatory regions within the

b-globin gene cluster potentially involved in these mechanisms. We

examined sequence variations in binding sites for transcriptional factors or in

polymorphic sequences within the hypersensitive site-2 (HS-2) of the locus

control region (LCR) and the promoter region of the Gg- and b-globin genes,

all of which have been reported to be involved in modulation of globin gene

expression (Table 2). 5, 7, 29-35 We found the same b-globin gene cluster

genotype in the three patients, and were able to exclude known HPFH

mutations and hypothetical parental germ line rearrangements within this

locus. Screening for deletional and non-deletional a-globin gene mutations

revealed a normal set of a-globin genes in all three siblings (data not shown).

Identification of CSDA as a putative modulator for g-globin gene expression

Based on the foregoing data, it was conceivable that HbF level variations

were mostly associated to genetic determinants not linked to the b-globin

gene cluster. To explore this hypothesis, we analyzed the reticulocyte

transcriptome from the three patients using a differential mRNA display

approach. We found several bands that were differentially expressed in the
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sample from patient I-1, the more severely affected sibling, compared with

his two sisters (Fig. 5). Selected bands were cloned in a pGEM T-vector and

sequenced. Among clones, a complete homology was found between the

cDNA sequence of the Cold Shock Domain Protein A (CSDA) known to act

as a repressor factor for several hematopoietic genes and clones originated

from two different up-regulated bands of patient I-1. CSDA expression levels

were evaluated by real time PCR analysis in the three siblings and confirmed

the differential display results (Fig. 6A). Also, protein levels of CSDA were

found consistent with these findings (Fig. 6B). Therefore, in this family,

there was an inverse relationship between CSDA and g-globin gene mRNA

levels comparable to that found for peripheral blood values of HbF (Fig. 6C).

To further confirm this correlation we examined by real time RT-PCR and

Western blot (Fig. 7) three other unrelated homozygotes for the IVSI-6

mutation along with two homozygotes for the b°39 mutation affected by

varying degrees of clinical conditions (Table 1). In all the cases examined we

found that severity of clinical conditions and HbF values inversely correlated

with CSDA levels, thus reinforcing our previous findings in the three

siblings.
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Figure 5: Identification of transcripts differently expressed in peripheral
reticulocytes isolated from the examined patients. Silver stained differential
mRNA display electropherogram and family tree. The arrows indicate bands
differently expressed among the three patients.
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Figure 6: Correlation between CSDA mRNA levels and fetal globin gene
expression. (A) Inverted correlations between reticulocyte CSDA and g-globin
mRNA levels evaluated by quantitative real-time PCR in the three siblings; (B)
Western blot analysis with anti-CSDA or anti-a-actin antibodies on protein
extracts isolated from peripheral reticulocytes; (C) HbF values detected in the
peripheral blood.
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Figure 7: Evaluation of CSDA expression levels in thalassemic patients. (A)
Quantitative real-time PCR of CSDA mRNA levels isolated from peripheral
reticulocytes. (B) Western blot analysis with anti-CSDA or anti-actin antibodies
on protein extracts isolated from peripheral reticulocytes.
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Effects of CSDA knock-down and over-expression on g-globin gene

expression in K562 and primary erythroid cells

We first examined the role played by CSDA in the regulation of g-globin

gene expression using transient RNAi in the K562 cell line and two siRNAs

specific for CSDA isoform a mRNA sequences. Cells were collected 48 h

after transfection and subjected to total protein and RNA extraction

procedures. Knock-down of CSDA was verified at protein and mRNA levels

by Western blot and real-time PCR procedures, respectively (Fig. 8). The

effects of CSDA silencing on g- and e-globin gene expression were evaluated

by quantitative real-time PCR in cells treated with specific or mock siRNAs.

The expression level of the g-globin gene was on average four fold higher

when CSDA isoform a mRNA levels were reduced to about 40-50% (Fig.

8A and 8B). CSDA isoform a knock-down did not affect expression levels of

the e-globin gene, suggesting that, within the b-globin gene cluster, CSDA

could specifically act as a repressor of the g-globin gene.

To verify the quantitative effects of CSDA levels on the regulation of g-

globin gene expression in K562 cells, we over-expressed two recombinant

FLAG-tagged CSDA proteins, corresponding to CSDA isoform a and b,

respectively. CSDA over-expression was evaluated in total protein extracts

by Western blot with an anti-FLAG antibody, whereas the effects on g- and

e-globin gene expression were evaluated by real-time PCR analysis. As

shown in Figure 9A and 9B, increased CSDA levels resulted in a substantial

reduction (around 50%) of g-globin gene mRNA levels versus untreated

cells, whereas no variations were found on the expression levels of the e-
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Figure 8: Knock-down of CSDA in K562 and in primary erythroid cells and
evaluation of the corresponding variations of g- and e-globin mRNA levels.
(A) Quantitative real-time PCR analysis of CSDA, g- and e-globin gene mRNA
levels in K562 cells transfected with CSDA siRNA 1, CSDA siRNA 2 or a siRNA
negative control (mock); (B) Western blot analysis with anti-CSDA or anti-
tubulin antibodies on protein extracts from K562 cells transfected with CSDA
siRNA 1 (lane 1), CSDA siRNA 2 (lane 2) or a siRNA negative control (lane 3);
(C) Quantitative real-time PCR analysis of CSDA, g- and e-globin gene mRNA
levels in primary erythroid cells transfected with CSDA siRNA 1 or a siRNA
negative control (mock); (D) Western blot analysis with anti-CSDA or anti-a-
actin antibodies on protein extracts from primary erythroid cells transfected with
CSDA siRNA 1 (lane 1) or a siRNA negative control (lane 2). Results depicted
are representative of 3 independent experiments.
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globin gene. Moreover, this effect is specific for CSDA isoform a because

over-expression of CSDA isoform b did not affect g-globin gene expression

levels (Fig. 9).

Effects of CSDA knock-down and over-expression on g-globin gene

expression were also evaluated in primary erythroid cells in which similar

results were found (Fig. 8C, 8D, 9C and 9D), although CSDA silencing

apparently enhanced g-globin gene expression more efficiently in K562 cells

than in primary erythroid cells (Fig. 8A and 8C).

CSDA interacts with the region at –200 bp of the Gg-globin gene promoter

To verify whether CSDA plays a transcriptional role on the g-globin gene

promoter, we performed reporter gene assays by transiently transfecting into

K562 cells a plasmid construct containing a luciferase gene driven by the

–268 bp fragment of the Gg-globin gene promoter. When K562 cells were co-

transfected with a CSDA expression vector (p3XFLAG-CSDA), the

luciferase activities showed a slight but statistically significant decrease in a

manner dependent on the amount of the CSDA vector transfected (Fig. 10B),

thus providing further evidence that CSDA acts as a repressor factor of g-

globin gene expression. To verify that CSDA is capable of binding to the

proximal promoter of the Gg-globin gene we performed ChIP analysis on

chromatin from K562 cells immunoprecipitated with anti-CSDA antibody.

Primers specific for the Gg-promoter revealed a strong enrichment compared

with IgG controls. As control we examined the proximal b-globin gene

promoter region for which no chromatin enrichment was found (Fig. 11).

Therefore, CSDA specifically interacts in vivo with the proximal promoter
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Figure 9: CSDA over-expression in K562 and in primary erythroid cells and
evaluation of the corresponding variations of g- and e-globin mRNA levels.
(A) Quantitative real-time PCR analysis of g- and e-globin gene mRNA levels
in K562 cells transfected with the 3xFLAG-CSDA expression plasmid vectors
for CSDA isoform a or isoform b (p3xFLAG-CSDAa or p3xFLAG-CSDAb) or
with a 3xFLAG empty plasmid vector (p3xFLAG) used as negative control; (B)
Western blot analysis with anti-FLAG or anti-a-actin antibodies on protein
extracts from transfected K562 cells with p3xFLAG-CSDAa (1), p3xFLAG-
CSDAb (2) or p3xFLAG (3); (C) Quantitative real-time PCR analysis of g- and
e-globin gene mRNA levels in primary erythroid cells transfected with a
3xFLAG-CSDA expression plasmid vector (p3xFLAG-CSDAa) or with a
3xFLAG empty plasmid vector (p3xFLAG) used as negative control; (D)
Western blot analysis with anti-FLAG or anti-a-actin antibodies on protein
extracts from transfected primary erythroid cells with p3xFLAG-CSDAa (1) or
p3xFLAG (2). Representative data from 3 independent experiments are shown.
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Figure 10: CSDA suppresses transcriptional activity of the g-globin gene in
K562 cells.
(A) Schematic representation of the –268g-luciferase construct (–268g-LUC)
used. (B) Relative luciferase activities measured 48 h after transfection in K562
cells. The –268g-LUC costruct was used as reporter plasmid (lanes 3-6). Co-
transfection of  plasmid p3XFlag-CSDA represses the reporter gene in a dose
dependent manner (lanes 4-6). pGL4-null empty vector indicates the
background reporter activity (lane 1), pCMV-LUC and p3XFlag-null were used
as positive (lane 2) and negative (lane 3) controls, respectively, pRL-CMV
plasmid was used to normalize the results. The mean activities from 3
independent experiments are shown.
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Figure 11: CSDA interacts with the proximal promoter region of g-globin
gene in K562 cells. (A) Schematic representation of the b-globin gene locus
and of the g- and b-globin gene promoter fragments examined in this study. (B)
1.5% ethidium bromide-stained agarose gel showing amplification of the
indicated promoter fragments from K562 DNA immuno-precipitated with anti-
CSDA or IgG antibodies. (C) Quantitative real-time PCR of the immuno-
precipitated samples normalized to input (total genomic DNA) quantities for
any given promoter. Representative data from 3 independent experiments are
shown.
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region of the Gg-globin gene.

Taken as a whole, these results demonstrate that CSDA suppresses g-globin

gene expression at least in part at the transcriptional level.

Analysis of the expression pattern of CSDA isoforms

To characterize erythroid-specific CSDA isoforms, we amplified full-length

cDNAs of CSDA, using primers located at the 5’- and 3’-UTR regions. We

found two amplification products in the three patients, which resulted

corresponding to CSDA isoform a and isoform b, respectively. Furthermore,

in the patient with the lower HbF level, we found higher expression of CSDA

isoform a respect to his two siblings, suggesting that this isoform could be

more involved in the transcriptional repression of g-globin gene expression.

According to this hypothesis, we also found low expression levels of this

isoform in K562 cell line, which shows an embrio-fetal globin gene

expression pattern (Fig. 12).

CSDA isoform a interacts with NF-kB and HDAC2

To identify putative molecular interactors of CSDA isoform a and isoform b,

we performed immunoprecipitation experiments with the anti-FLAG

antibody in K562 cells over-expressing CSDA isoform a or isoform b.

Whole protein extracts immunoprecipitated with anti-FLAG were analyzed

by Western blot. This study showed that the NF-kB heterodimer complex

(p65-p50) specifically interacts with CSDA isoform a, but not with CSDA

isoform b (Fig. 13). Since histone deacetylases have been described as

molecular partners of NF-kB in repression mechanisms of gene expression51,
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Figure 12: Characterization of erythroid specific CSDA isoforms. 0.9%
ethidium bromide-stained agarose gel showing PCR products of CSDA full
length cDNAs from peripheral reticulocytes of patients I-1, I-2 and I-3 and from
K562 cells. 1: amplification fragment of 1560 bp corresponding to isoform a; 2:
amplification fragment of 1350 bp corresponding to isoform b.
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Figure 13: CSDA isoform a associates with p65, p50 and HDAC2. Western
blot analysis (WB) with anti-p65, anti-p50 and anti-HDAC2 antibodies on
transfected K562 protein extracts respectively with p3xFLAG-CSDAa (lanes 1
and 4), p3xFLAG-CSDAb (lanes 2 and 5) or p3xFLAG (lanes 3 and 6)
immunoprecipitated with the anti-FLAG antibody (lanes 1, 2, 3) or not
immunoprecipitated (lanes 4, 5, 6).

WB: anti NF-kB p65

IP: anti-FLAG

WB: anti NF-kB p50

WB: anti HDAC2

1           2          3           4           5          6
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we also analyzed the possible interaction between CSDA and HDAC2. Even

in this case we found that HDAC2 specifically interacts with CSDA isoform

a, but not with isoform b. Taken altogether these data support our hypothesis

of CSDA isoform a as a trascriptional repressor factor for g-globin genes.

NF-kB and HDAC2 form a multiprotein complex with CSDA on the region at

–200 bp of the Gg-globin gene promoter

To investigate if NF-kB and HDAC2 interact with CSDA isoform a at the

–200 region of the Gg-globin gene promoter, we performed ChIP assays,

using antibodies against p65, p50 and HDAC2. The results demonstrated that

NF-kB p65-p50 heterodimer complex and HDAC2 both interact in vivo with

the region at –200 bp of the Gg-globin gene promoter containing the CSDA

binding site (Fig. 14), indicating that NF-kB and HDAC2 are CSDA partners

at this region.

Bortezomib induces g-globin gene transcriptional expression

To examine the role played by NF-kB on transcriptional repression of g-

globin gene expression mediated by CSDA, we treated K562 cells,

previously transfected with constructs expressing FLAG-CSDA isoform a or

isoform b, with Bortezomib, a proteasome inhibitor which is able to arrest

NF-kB complex (p65-p50) nuclear traslocation.

Quantitative analysis by Real Time PCR showed that, following the

Bortezomib treatment, g-globin gene expression increased only in K562 cells

over-expressing CSDA isoform a, whereas no effects on g-globin gene

expression were found in K562 cells over-expressing CSDA isoform b (Fig.
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Figure 14: NF-kB (p65-p50) and HDAC2 interact with the proximal
promoter region of g-globin gene in K562 cells. (A, B) 1.5% ethidium
bromide-stained agarose gel showing amplification of the indicated promoter
fragments from K562 DNA immunoprecipitated with anti-p65, anti-p50, anti-
HDAC2 or IgG antibodies. (C, D) Quantitative real-time PCR of the
immunoprecipitated samples normalized to input (total genomic DNA)
quantities for any given promoter. Representative data from 3 independent
experiments are shown.
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15A). These findings suggest that NF-kB can interact with CSDA isoform a

to negatively regulate g-globin expression gene.

By ChIP analysis, we also examined if Bortezomib was able to affect NF-kB

binding to the -200 bp region of the Gg-globin gene promoter. Results show a

relevant reduction of NF-kB binding to this region following treatment with

this drug (Fig. 15 B and C). Therefore, the Bortezomib treatment is able to

affect g-globin gene expression by reducing NF-kB binding to this promoter.

Role of histone deacetylase in transcriptional repression of fetal globin gene

To confirm the role of histone deacetylase in transcriptional repression of g-

globin gene, we performed TSA treatments in K562 cells. As shown by

quantitative real-time PCR, K562 cells showed an increased g-globin gene

expression following treatment with the histone deacetylase inhibitor TSA, in

a dose-dependent manner (Fig. 16A). These data demonstrated the role

played by modulation of histone acetylation on transcriptional repression

mechanisms of g-globin gene expression. Therefore, to evaluate variations in

histone acetylation levels at the -200 bp of the Gg-globin gene promoter we

performed ChIP assays in K562 cells using an anti-acetyl-H3 antibody and

analyzed the histone acetylation pattern following the TSA treatment.

Enrichment of chromatin immunoprecipitatated with anti-acetyl-H3 at the Gg-

globin gene promoter was compared with the GAPDH gene used as

endogenous control. Results indicated that the TSA treatment induces a ~15-

fold increase in H3 acetylation level at the -200 bp fragment of the Gg-globin

gene promoter region (Fig. 16B).
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Figure 16: Treatment with TSA in K562 and evaluation of the
corresponding variations of g-globin mRNA and histone H3 acetylation
levels. (A) Quantitative real-time PCR analysis of g-globin gene mRNA
endogenous levels after treatment with increased concentration (80, 160 and 240
nM) of TSA in K562 cell line (B) Quantitative real-time PCR of the fragments
from K562 DNA immunoprecipitated with anti-acetyl-H3 or IgG antibodies
after or without TSA treatment. Immunoprecipitated samples were normalized
to input (total genomic DNA) quantities for any given promoter and corrected
respect to a reference gene (GAPDH). Representative data from 3 independent
experiments are shown.
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Bortezomib increases H3 acetylation levels on gamma globin gene promoter

To investigate if the NF-kB inhibition, mediated by Bortezomib, affects the

histone acetylation levels at the -200 bp of the Gg-globin gene promoter, ChIP

assays were performed in K562 cell line previously treated with this drug.

The results demonstrated a ~10-fold increase in H3 acetylation levels

following the Bortezomib treatment in this promoter region (Fig. 17). Taken

altogether, these data suggest that NF-kB can affect deacetylase activity in

this region which in turn should modulate local chromatin conformation and

thus fetal globin gene expression.
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Figure 17: Evaluation of histone acetylation levels following Bortezomib
treatment. Quantitative real-time PCR of the fragments from K562 DNA
immunoprecipitated with anti-acetyl-H3 or IgG antibodies with or without
bortezomib treatment. Immunoprecipitated samples were normalized to input
(total genomic DNA) quantities for any given promoter and corrected respect to
a GAPDH reference gene. Representative data from 3 independent experiments
are shown.
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Discussion

We examined the reticulocyte transcriptome of three siblings who differed in

HbF levels and in b-thalassemia severity although they had the same a- and

b-globin gene cluster genotypes. The aim of the study was to identify factors

that modulate the level of g-globin gene expression. The two sisters of the

family were affected by a milder form of thalassemia intermedia and had

higher levels of HbF than their elder brother who was affected by a more

severe form of the disorder and was transfusion-dependent. Nevertheless, all

the three siblings were homozygous for the b+ IVS I-6 (T’C) mutation and

all had a normal set of a-globin genes. Therefore, the different severity of

thalassemia intermedia was clearly related to the different HbF levels.

Variability in the severity of the disease has been extensively reported in b+

IVS I-6 (T’C) homozygotes, mainly relied on variations in g-globin chain

production. Molecular studies also indicate that such variations cannot be

attributed to regulatory elements within the b-globin gene cluster, suggesting

a major role for transacting factors able to modulate g-globin gene

expression. 30, 36  Therefore, this type of b-thalassemia condition provides an

interesting experimental model to evaluate the effects of genetic molecular

modifiers of disease severity in b-thalassemia syndromes.

In our study, analysis of genetic loci linked to the b-globin gene cluster

and putatively involved in regulation of globin gene expression showed the

same genetic background for all the three siblings, and this drew our

attention to factors not linked to the b-globin gene cluster. To look for such

potential genetic modifiers, we examined the reticulocyte transcriptome of

the three patients using a differential mRNA display approach. Among
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several bands differentially expressed we focused our attention to those

corresponding to human cDNAs coding for factors potentially involved in

gene expression or in signal transduction mechanisms. Particularly, in clones

originated from two different up-regulated bands of the more severely

affected patient (subject I-1) we found homology with the cDNA of CSDA, a

cold shock domain (CSD) protein.

CSD proteins have been reported to be involved in transcriptional

activation and repression, as well as in post-transcriptional mechanisms of

gene expression regulation, including mRNA packaging, transport,

localization and stability.37-43

Although a general consensus binding site has not been established for

CSD proteins, they are generally considered to bind to CT-rich sequences

that can generate H-DNA structures.41 HPFH point mutations (Gg-202 C’G

or C’T) occurring in a region with homopyrimidine tracts reported to be

critical for g-globin gene repression are thought to abolish the high-affinity

binding sites for CSDA by disrupting the formation of the intra-molecular

triplex and thus the H-DNA structure.44-46 Therefore, reduced binding of

CSDA in the –200 Gg-promoter region could lead to persistent expression of

g-globin genes in adult life.43

In agreement with this proposed model, our differential display results

showed that CSDA expression levels were inversely correlated to g-globin

gene expression. Furthermore, by demonstrating that defective levels of

CSDA contribute to increase fetal globin gene expression, our study

suggested that CSDA could act as a QTL for fetal hemoglobin production.

To confirm these findings we firstly examined other patients homozygous for
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the b+ IVS I-6 (T’C) b-thalassemia mutation and affected by varying

degrees of clinical conditions. We found that severity of clinical conditions

and HbF values inversely correlated with CSDA levels. We also examined

two homozygotes for the b°39 mutation who were chosen because affected

by different clinical conditions, despite sharing the same b-thalassemic

genotype. Also in these cases lower expression levels of CSDA were

associated to milder thalassemic conditions and higher values of HbF, thus

reinforcing the validity of our previous findings in the three siblings.

The role of CSDA on g-globin gene regulation was also investigated by

expression studies in human erythroleukemia K562 cells and in primary

CD71+ erythroid cells which demonstrated that CSDA represses g-globin

genes and can be considered a QTL for the HPFH phenotype. In fact, in both

these cell systems, down- and up-modulation of CSDA levels consistently

corresponded to variations of g-globin gene expression levels: CSDA knock-

down induced by RNAi resulted in significantly increased expression of g-

globin genes, whereas its over-expression was associated with reduced g-

globin gene mRNA levels, although silencing of CSDA seemed to enhance

g-globin gene expression more efficiently in K562 cells than in primary

erythroid cells.

However, at this regard, it is to be considered that primary cells are less

efficiently transfectable than stable cell lines and consequently CSDA was

silenced at a lower rate in erythroid cells than in K562 cells. Furthermore, the

erythroid cells were trasfected at an early stage of differentiation (7-day

culture) when g-globin mRNA is highly expressed, as already reported.28, 47

Therefore it is expectable that such cells could respond to induction of g-
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globin expression less efficiently than more differentiated cells in which g-

globin genes expression is declined or constitutively repressed.

The putative mechanism by which CSDA modulates g-globin gene

expression was investigated by gene reporter assays and ChIP analysis in

K562 cells. In this way we were able to demonstrate that CSDA is able to

modulate g-globin gene expression at the transcriptional level. Thus, our

study provides the first in vivo evidence that CSDA is a trans-acting

repressor factor of g-globin gene expression.

We also examined the role played by specific CSDA isoforms on g-

globin gene expression and demonstrated that CSDA isoform a specifically

acts as a repression factor for these genes. To investigate the molecular

mechanism of g-globin gene silencing mediated by CSDA isoform a, we

identified CSDA molecular interactors through immunoprecipitation

experiments and found that CSDA isoform a, NF-kB (p65-p50) and HDAC2

take part to a multi-protein complex on the –200 Gg-promoter region.

Several studies suggest that NF-kB factors are involved in normal

erythropoiesis 52. The NF-kB factors p105, p50, p100, p52 and p65 are

present in early normal erythroid precursors and decline during

differentiation, showing a dynamic expression of these components 52.

Moreover, NF-kB contributes to regulate silencing of the human z-globin

gene during the embryo-fetal swiching of globin gene expression 53. The

trans-activation function of NF-kB is also regulated through interaction of

the p65 (REL-A) subunit with histone deacetylase (HDAC) proteins, such as

HDAC1 and HDAC2, to negatively regulate expression of the NF-kB-

dependent genes 54, through a mechanism of protein acetylation and
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deacetylation modulation which regulate the entire NF-kB signaling pathway

(Fig. 18). 55

It is well known that histone acetylation changes at the human b-globin locus

play a key role in the switching mechanisms of globin gene expression

during development. 56

Our study suggest that CSDA recruits NF-kB on the –200 Gg-promoter

region to modulate local HDAC activity and to repress g-globin gene

expression (Fig. 19). This hypothesis is supported by data on different levels

of histone acetylation in the -200 Gg-promoter region, following TSA and

Bortezomib treatments, thus confirming the role of HDAC in the

transcriptional repression mechanisms of g-globin gene expression and

suggesting that NF-kB could modulate HDAC activity.

Taken altogether our results indicate that CSDA multiprotein complexes

contribute to modulation of fetal globin gene expression and shed light on the

molecular mechanisms involved in globin gene switching. Furthermore, the

dose-dependent effects of CSDA repression on fetal globin gene expression

suggest that CSDA itself could be under the control of other putative HPFH

modulators, which could, therefore, indirectly contribute to the regulation of

globin gene expression.

The results of RNAi experiments in K562 and in primary erythroid cells

drive attention on CSDA as a potential molecular target for treatment of

hemoglobinopathies because silencing of CSDA expression is expected to

induce persistence expression of HbF in adult life. Experiments of stable

interference of CSDA expression are required to explore the feasibility of

such approach and to evaluate the long-term effects of this treatment in an
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Figure 18: HDAC deacetylation sites on nucleosome components and  NF-
kB p50 and p65 subunits.  Acetylation and deacetylation events, in
combination with other post-translational protein modifications, generate an
“NF-kB-signaling code” and regulate NF-kB-dependent gene transcription in an
inducer- and promoter-dependent manner. Indeed, theintricate involvement of
histone acetyltransferases and histone deacetylases modulates both the NF-kB-
signaling pathway and the transcriptional transactivation of NF-kB-dependent
genes.
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Figure 19: Schematic representation of the proposed model of the CSDA
protein complex involved in modulation of g-globin gene expression.
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erythroid environment.

In conclusion, our study helps to elucidate the complex network of

factors regulating globin gene expression and could eventually pave the way

to novel RNA interference based therapeutics for hemoglobinopathies.
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