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Introduction  

1. Heavy metals

Metals are natural constituents of soils, waters and organisms. Seventeen of the 

53 metals are involved in the functioning of organisms and ecosystems. 

Heavy metals (HMs), such as Fe, Mo, and Mn, are important as micronutrients; 

others have roles as trace elements, Zn, Ni, Cu, V, Co, W, and Cr. There are 

some HMs without any known nutritional  function,  but  they are nonetheless 

toxic  for  animals,  plants  and  microorganisms  (Hg,  Ag,  Cd,  Pb,  and  U) 

(Schu¨tzendu¨bel, 2002). In addition to these HMs, some metalloids, including 

As, are toxic for plants. 

The definition “heavy metal” is based on the density of the elemental form of 

the metal, on the reactivity of metal, on atomic number and on other chemical 

properties and toxicity (Duffus, 2002). Generally, HMs are classified as those 

metals  with  elemental  density  greater  than  5  g/cm–3, with  atomic  number 

superior to 20, and with aptitude to form some complexes.  

Although  HMs  are  natural  constituents  of  soils  and  occur  naturally  in  the 

environment, nowadays contamination of soils by toxic metals and metalloids is 

a  major  concern  worldwide.  A  portion  of  HMs  in  soils  derives  from 

geochemical  processes  (weathering  of  rocks,  volcanic  eruptions,  continental 

dusts) and in many regions there are natural mineral deposits (Maksymiec, 2007; 

Memon, 2009). Moreover a noteworthy pollution by metals has been accelerated 

by civil, agricultural and industrial activities since the beginning of the Industrial 

Revolution (Padmavathiamma, 2007). Sources of pollution include the burning 

of  fossil  fuels,  mining  and  smelting,  industrial  emissions,  municipal  wastes, 

mineral fertilizers and pesticides. About 235 million hectares are contaminated 

by  HMs  (Giordani,  2005).  Extensive   pollution  is  adversely  affecting 

environment and human health (Bodar, 2006). Soil can be considered a source 

of pollution with the capacity to transfer pollutants to the groundwater, into the 
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food chain and finally also into human body. Metals are the most studied soil 

pollutants  because  of  their  ubiquity,  toxicity,   bioavailability,  mobility and 

persistence. 

1.1  Heavy metals stress and plant responses

HMs have become one of the main abiotic stress agents for living organisms. 

The  exposure  to  toxic  levels  of  HMs  induces  some  of  the  macroscopic 

consequences in plants (the topic of this thesis), such as the inhibition of plant 

growth (of both roots and aboveground parts), leaf chlorosis and necrosis, turgor 

loss,  a  decrease  of  seed  germination  and  of  photosynthetic  apparatus,  often 

correlated  with  progressing  senescence  processes,  or  with  plant  death  (Foy, 

1978). All these effects are related to ultrastructural, biochemical and molecular 

changes in plant  tissues  and cells  brought about by the presence of  the HM 

(Gamalero, 2009). 

The  effects  of  HMs  on  plants  may  be  the  result  of  their  direct  effect  on 

membranes and on the photosynthetic apparatus, or their indirect effect caused 

by the induction of  some signaling pathways through ethylene synthesis  and 

ROS (Reactive Oxygen Species) production (Miller, 2008;  Shao, 2008).  The 

photosynthetic  apparatus  can  be  damaged  by a  direct  effect  of  HMs excess, 

affecting all cell membranes,  including thylakoids. Several studies report that 

HMs can determine the release of proteins, lipids and element components of 

thylakoid  membranes,  causing  damage  to  light-harvesting  complexes  and 

Photosystem II (Hsu, 2004; Backor, 2007). However, some HMs can replace 

Mg in the chlorophyll (Chl) . Chl synthesis reduction, which is usually observed 

after HMs stress, may be a consequence of enzyme inhibition involved in the 

pathway of its synthesis (Boddi, 1995). In the cell nucleus, HMs can bind to 

nucleic  acids  and  mutagenize  them and  even  modify  both  transcription  and 

DNA  replication;  HMs  can  also  affect  microtubule  assembly–disassembly, 

thereby  inhibiting  cell  division  (Fusconi,  2006).  The  exposure  of  plants  to 
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stressful conditions raises the ethylene level, a gaseous hormone, which affects 

several  plant  responses,  including senescence and stress (Deikman,  1997).  In 

higher  plants,  Cu-induced  ethylene  synthesis  can  increase  senescence 

(Maksymiec, 2007), inhibit cell growth and increase cell wall rigidity by means 

of  lignification  (Enyedi,  1992).  It  has  been  shown  that  HMs  (Cu,  Zn)  can 

stimulate  ethylene  production  by  over-expression  of  genes  involved  in  its 

synthesis (1-aminocyclopropane-1-carboxylate synthase - ACC synthase) (Pell, 

1997) and by increased lypoxygenase activity (Gora, 1989), which can mediate 

ROS formation. HMs cellular toxicity can result in the accumulation of ROS, 

such as  superoxide anion radical (O2
– ), H2O2 and hydrogen peroxide radical 

(OH.), which usually damage the cellular components, membranes, nucleic acids 

and  chloroplast  pigments.  Accumulated  H2O2 can  rapidly  increase  cell  wall 

rigidity  and  Jasmonic  Acid  (JA).  HMs  induce  stress  responsive  genes  and 

secondary  metabolites (Schutzendubel,  2002).  ROS  production  is  dependent 

upon the particular metal elements; Cu can directly generate ROS, whereas Cd 

is a redox inactive metal and can only generate ROS indirectly by inducing the 

expression of lipoxygenases in plant tissues and therefore causing oxidation of 

polyunsaturated fatty  acids (Cho, 2005; Skcrzynska-Polit,  2006).  ROS action 

may  result  in  cell  disturbances  and  it  enhances  senescence  processes  in 

cooperation with ethylene and JA,  although the activation of  the antioxidant 

machinery can help plants to overcome HM stress (Gamalero, 2009).

1.2 HM contaminated sites in Italy and in the Campania region 

Soil contamination by toxic and persistent HMs, mainly associated to intensive 

agriculture, urban-industrial expansion and illegal waste disposal,  has adverse 

effects on human health and ecosystems. The remediation of pollutant sites is a 

widespread  and  urgent  problem.  The  attention  of  many  scientists  and 

Institutions, such as the US Environment Protection Agency, or the European 

Environment Agency, have focused on a common objective, namely, to improve 
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significantly  the  understanding  on  the  complexities  involved  in  identifying 

contaminated sites, determining liability and defining remediation standards. In 

the European Thematic Strategy for Soil Protection (ETSSP), recently published 

by the European Commission (EC 2002), improving knowledge on HM contents 

and on sources to European soils is a priority objective for the European Union 

(EU) to protect soils, using a common and specific strategy and to control the 

emissions of pollutants. Many nations in the EU, as in the developed countries, 

have adopted legislation to assess soil pollution. 

Italy  has  a  land  use  oriented  law  with  the  threshold  limits  for  pollutants 

changing according to the use of the soil (Table 1). The Legislative Decree N° 

471/99  (1999)  includes  the  regulations  and  methods  for  remediation  and 

recovery of polluted sites. 

These norms and their implementation define the ‘environmental damage’, the 

thresholds set values of pollutants, introduce soil assessment methods to identify 

affected areas and contamination sources and define methods to permanently 

reduce  the  concentration  of  contaminants  and/or  capacity  to  infiltrate 

environmental or biological systems. The Italian government has approved some 

laws  implementing  institutional  controls  of  criminal  offences  that  affect  the 

environment  (Legislative  Decree  N° 471/9,  Legislative  Decree  N°  468/2001, 

etc.).  Therefore,  the presence of pollutants in the environment,  or in the soil 

matrix  is  insufficient  to  classify  a  site  as  contaminated.  In  accordance  with 

italian  law,  it  is  possible  to  define  a  site  as  polluted  site,  when  the  HMs 

thresholds exceed the set norms. In order to plan a remediation procedure, it is 

necessary  to  assess  the  pollution  level  in  the  soil,  through  official  methods 

National Soil Sampling Guidelines (NSSG - Theocharopoulos, 2001), based on 

the assessment  of  total  metal  concentration in  the soil  as  established  by the 

Italian  law  (Legislative  Decree  N°  152/2006),  even  if,  recently,  scientific 

literature  offers  new  and  more  sensitive  investigation  procedures  (such  as 

Diffusive Gradients in Thin Film) (Clarisse, 2006). Although the contamination 
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Table   1:  Threshold  limits  for  HM  pollutants  according  to  the  use  of  soil 
(Legislative Decree N° 152/06)

Heavy metal Private and residential soil
(mg kg-1 D.W.)

Industrial soil
(mg kg-1 D.W.)

Arsenic 20 50
Cadmium 2 15
Chromium 150 800
Mercury 1 5

Nikel 120 500
Lead 100 1000

Copper 120 600
Zinc 150 1500
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evaluation can be very difficult and cost effective, the identification of polluted 

areas and sites is growing. On the basis of European Environmental  Agency 

(EEA)  data,  principal  sources  of  soil  contamination  include  industrial  or 

municipal  waste  disposal  sites,  industrial  and  commercial  activities,  mining 

sites,  oil  spills  sites,  etc.  In  Italy,  industrial  and commercial  activities,  often 

associated  with  illegal  disposal  of  pollutants  cause  significant  environmental 

contamination,  releasing a large quantities  of  pollutants,  such as  mineral  oil, 

Polycyclic  Aromatic  Hydrocarbons  (PAH),  Aromatic  and  Chlorinated 

Hydrocarbons  (BTEX  and  CHC).  These  pollutants  contribute  to  soil 

contamination to a different extent amongst the  European nations (Fig. 1). 

A picture of the number of sites requiring cleanup, including HMs, in Campania 

region has been reported in the environmental report entitled “ The State of the 

Environment Report 2009 – Campania region”, produced by Campania Regional 

Environmental Protection Agency (ARPAC). The report presents an extensive 

collection  of  validated  data  on  air,  water  and  soil  monitoring  in  Campania 

region.  According  to  the  existing  legislation  in  Italy,  ARPAC  has  been 

committed to detect and include in the census polluted and potentially polluted 

sites in Campania. From 2005 to 2008, the number of these sites has doubled. In 

2005, the agency recorded 2.599 polluted, or potentially polluted sites, among 

which, 766 areas were characterised by massive illegal waste disposal and 1.833 

sites were contaminated with several harmful substances. To date, the agency 

identified 5.281 polluted, or potentially polluted sites in Campania: 1.548 sites 

are  areas  featuring  massive  illegal  waste  disposal  and 3.733 are  polluted,  or 

potentially polluted sites. Among those, 462 sites revealed trespassing of law 

limits for some contaminants. The province of Caserta is the leader amongst the 

areas featuring massive illegal waste disposal (851 sites). Fig. 2 illustrates the 

distribution of the major classes of pollutants and their combinations in the soil. 

Inorganic pollutants, including HMs (ca 6% of pollutants, defined “special”) are 
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Fig.  1:  Environmental  contamination  by  Mineral  oil,  PAH,  Phenols,  BTEX, 
CHC,  Heavy  metals,  Cyanide  and others  polluted  in  European  nations 
(European Environmental Agency, 2005) 

Fig. 2: Distribution of major classes of pollutants in soil and their combinations 
(Campania  region)  (Campania  Regional  Environmental  Protection  Agency, 
2009)
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localized in Salerno and Caserta provinces and are essentially produced after 

treatment of civil wastes.

After evaluation of soil contamination, the choice of a remediation technique 

that will eliminate or at least reduce the concentration of contaminants is not 

simple.   At present,  contaminated sediments  are often not  remediable  due to 

their high content of pollutants. Several remediation technologies are available 

for contaminated soils, but they are very expensive, have  detection limits and 

sometimes secondary effects on ecosystems.
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2. Plant survival strategies
Plants are generally highly sensitive and show various physiological symptoms 

in  response  to  toxic  HMs.  However,  some  plant  species  adopt  specific  and 

useful strategies in order to grow on soil with high concentrations of a particular 

metal. Generally, plants can be considered as metal excluders, metal indicators 

or  metal  accumulators  (Baker,  1990).  Metal  excluders  prevent  metal  uptake 

from polluted soil; however, they may still contain large amounts of metals in 

their roots. Metal indicator species can accumulate metals in their tissues; the 

translocation  of  metal  is  regulated,  in  fact  metal  levels  in  the  living  tissues 

generally  reflect  metal  levels  in  the  soil.  Metal  accumulator  group  includes 

plants  that  concentrate  metals  in  their  above-ground  tissues  to  levels  far 

exceeding  those  present  in  the  soil.  Usually,  this  latter  category  includes 

hyperaccumulator plants capable of accumulating potentially phytotoxic metals 

to  concentrations  more  than  100  times  those  found  in  nonaccumulators. 

However, some plants, considered as tolerant, can grow in HM contaminated 

soils, taking up high amount of the pollutants. 

Plants that are able to tolerate high concentrations of HMs have evolved several 

mechanisms that control and respond to the uptake and accumulation of both 

essential  and  nonessential  HMs.  Physiological,  biochemical  and  molecular 

approaches continue to be employed to identify the underlying mechanisms of 

metal  accumulation,  tolerance and adaptive mechanisms  to cope HMs stress. 

Some  adaptive  mechanisms  evolved  by  tolerant  plants  (Hall,  2002)  include: 

synthesis of specific metal transporters; chelation and sequestration of HMs by 

particular  ligands  (Phytochelatins  -  PCs,  Metallothioneins  -  MTs)  (Cobbett, 

2002);  induction of  mechanisms  contrasting the effects  of  ROS,  such as  the 

biosynthesis of antioxidant molecules and stress proteins; the up-regulation of 

peroxidase  (Sanita`  di  Toppi,  1999);  the  biosynthesis  of  salicylic  acid 

(Choudhury, 2004).
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2.1 Metal uptake

Inorganic  contaminants  of  soil  (HMs)  are  taken up by plants  via  membrane 

transporter  proteins.  Although  exact  mechanisms  of  up-take,  transport,  and 

accumulation of HMs in plants are only partially understood, several genes that 

are likely to be involved in these processes have been described. They include: 

Zn-regulated  transporter  (ZRT);  Fe-regulated  transporter  (IRT)-like  proteins 

(ZIP); natural resistance associated macrophage proteins (NRAMP); and cation 

diffusion facilitator (CDF) (Thomine, 2000; Hall, 2003). 

A  number  of  ZIP  genes  that  are  expressed  upon  Zn  deficiency  have  been 

isolated from Arabidopsis (Arabidopsis thaliana (L.) Heynh. (Wintz, 2003), in 

rice (Oryza sativa L. - Ishimaru,  2005), in soybean (Glycine max L.- Moreau, 

2002) and in Alpine Pennycress (Thlaspi caerulescens L. - Pence, 2000). Other 

classes  of  metal  transporting  protein  identified  in  plants  belong to  the  large 

family of cation-transporting P-type ATPases and to the ATP-binding cassette 

(ABC)  family  transporters  (Hall,  2003).  Recently,  some  Arabidopsis  ABC 

transporters were found to participate in detoxification processes as well as in 

plant growth and development (Geisler, 2005).

2.2 Metal chelation and detoxification: phytochelatins and metallothioneins

One  recurrent  general  mechanism  for  HM  detoxification  in  plants  is  the 

chelation  of  metal  by  a  ligand  and,  in  some  cases,  the  subsequent 

compartmentalization of the ligand-metal complex either in the cell wall or in 

vacuoles. In these cell compartments, pollutants, chelated by organic compounds 

or bound to cell wall components, are less toxic for cells. To this purpose plants 

can  produce  several  kinds  of  metal  chelating  agents,  such  as  organic  acids 

(malic or oxalic acid) or ligand peptide as PCs and/or  MTs.
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2.2.1 Phytochelatins

Phytochelatins are a family of Cys-rich polypeptides with several repetitions of 

the γ -Glu-Cys dipeptide followed by a terminal Gly. PCs have been identified in 

a  wide  variety  of  plant  species  and  in  some  microorganisms.  They  play  an 

essential  role in the detoxification of HMs, such as Cd, Cu, Zn, Hg, Pb, and 

metalloids  (As,  and  Se)  (Cobbett,  2002;  Vivares,  2005).  PCs  are  structurally 

related to glutathione (GSH) and are synthesized in response to several  HMs 

(Cobbett  2002),  as  products  of  a  biosynthetic  pathway  involving  γ-

glutamylcysteine  synthetase  (GCS),  GSH  synthetase  (GS),  phytochelatin 

synthase  (PCS),  HM  tolerance  1  (HMT1),  ABC  type  vacuolar  membrane 

transporter of PC–HM complexes. Expression of PCS genes has been examined 

in several studies (A. thaliana,  Indian Mustard- Brassica juncea, Lotus -  Lotus 

japonicus) (Ramos 2007), indicating that PCs play a central role in homeostasis 

of HMs in plants and that they regulate cation availability in plant cells (Guo, 

2008). Ramos and co-workers (2007) showed a complex and multiple regulatory 

mechanisms of PC gene expression in plant tissues and of their protein products 

in Lotus in response to HMs and to other environmental stimuli. In addition, PCS 

expression studies in  garlic (Allium sativum L.) plants exposed to HMs (Zhang, 

2005) and in  in vitro analysis in the marine alga  Dunalliela tertiolecta (Tsuji, 

2002)  suggested  a  role  of  PCs  also  in  the  detoxification  of  HMs and in  the 

mitigation of oxidative stress.

2.2.2 Metallothioneins

Metallothioneins (MTs) are ubiquitous proteins that can bind HMs and may play 

a role in their intracellular sequestration. They are members of a superfamily 

characterized  by  a  common  low molecular  weight  (5.000–10.000 Da)  and a 

large content of cysteine residues arranged in typical pattern. Since they were 

first purified from horse kidney (Kägi, 1960), MT genes and polypeptides have 

been founded in many prokaryotic micro-organisms (cyanobacteria,  - and  -
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Proteobacteria  and  some  Firmicutes)  and  also  in  many  eukaryotes  (protists, 

yeasts,  fungi,  and higher plants) (Cobbett,  2002). In animals and fungi,  MTs 

form complexes with HMs and the transcription of MT genes is regulated by 

HM (Thiele, 1992). In plant, the first Cys-rich polypetide was isolated more than 

25  years  ago  from  wheat  (Triticum  sp.)  (Lane,  1987).  These  polypeptides 

present distinct differences from members of the other MT families, such as the 

three Cys-rich regions as well as the longer linker sequences (Freisinger, 2008). 

The  MT plant  family  is  divided into  four  subfamilies:  p1,  p2,  p3,  and pec. 

Assignment  of  a  new  plant  MT  with  two  Cys-rich  domains  to  one  of  the 

subfamilies p1, p2, or p3 is usually straightforward and is based on the number 

of Cys residues and their distribution pattern in the N-terminal domain. With 

few exceptions, a typical plant MT1, from the p1, contains 6 Cys residues in its 

N-terminal domain, a MT2, from p2, 8 Cys residues and an MT3, from the p3, 

contains 4 Cys residues. In contrast, the distribution of Cys residues within the 

C-terminal domain follows the consensus sequence CxCxxxCxCxxCxC, with x 

denoting  any  amino  acid  other  than  Cys.   Consensus  sequence  is  strictly 

conserved in all three subfamilies and even is shared by the central Cys-rich 

region of the Ec proteins from the subfamily pec (Freisinger, 2008). Several data 

demonstrated the role of MTs in HM detoxification and homeostasis, but metal-

inducibility of plant MTs has not always been demonstrated.

In plant, MTs are induced in response to oxidative stress, abscisic acid (ABA), 

heat/cold shock, wounding, viral infection, senescence, salt stress and sucrose 

starvation (Chyan, 2005). However, the situation in plants is complicated by the 

in fact that plants are able to synthesize MTs enzymatically from phytochelatins 

(Cobbett, 2002). Studies on plant MT structure and function have been limited, 

in part due to the difficulties encountered in purifying these proteins from native 

sources, with the exception of proteins from seeds. In recent years, it has been 

argued that MTs may play a role in HM detoxification either because they bind 

HMs, or because they function as antioxidants (Akashi, 2004). The evidence is 
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largely based on MT gene expression studies, and on yeast complementation 

experiments  with  plant  MT  genes  (Kohler,  2004;  Hassinen,  2009).  Gene 

expression studies were performed to quantify mRNA levels in different tissues, 

at  different  developmental  stages  and  under  stress  conditions  such  as  HM 

exposure.  MT genes  appear to  be differentially  regulated  in  a tissue-specific 

manner and in relation to developmental stage and also in response to a number 

of stimuli, including HMs (Castiglione, 2007). Kohler and co-workers (2004) 

analysed the mRNA levels of multiple isoforms of hybrid P. x generosa MTs 

after  supplying  a  single  metal  (Cd,  Zn,  Cu)  at  different  concentrations  to 

hydroponically growning plants. The analysis of  PaMT1,  PaMT2 and PaMT3 

gene in response to high zinc concentrations, in a micropropagated white poplar 

clone, showed a differential expression (Castiglione, 2007). 

Further  information  regarding  the  structures  and  properties  of  MTs  could 

clearify their mechanism of action and the functions.

2.3 Oxidative stress and metal tolerance: GSH and polyamines

Abiotic stress, including HMs, disrupts the metabolic balance of cells, resulting 

in  enhanced  production  of  ROS,  that  may  cause  wide-ranging  damage  to 

proteins, nucleic acids and lipids, eventually leading to cell death (Miller, 2008). 

However, plants have developed a complex and efficient network of scavenging 

mechanisms that allows them to overcome ROS toxicity and use some of these 

toxic  molecules  as  signal  transduction  mediators. Detoxification  of  ROS can 

occur  via  specific  enzymes,  such  as  peroxidase,  catalase  and  others,  that 

detoxify  ROS  and/or  via  antioxidant  compounds  as  ascorbate,  GSH  and 

tocopherol, which play an important role in the regulation of the cellular ROS 

homeostasis,  influencing  gene  expression  associated  with  abiotic  and  biotic 

stresses (Miller  2008). GSH, the tripeptide γ-glutamylcysteinylglycine (γ-glu-

cys-gly) is involved in both direct and indirect control of ROS concentrations. 

GSH is a component of the ascorbate-glutathione pathway and takes part in the 

13



removal  of  the  H2O2  excess  (Noctor,  1998),  in  a  reaction  in  which  GSH is 

oxidized. GSH  also  induces  some  defence  mechanisms  through  a  redox 

signalling  pathway,  where  GSH  interacts  with  ROS,  redox  molecules  and 

hormones to protect plant against stress effects (Shao, 2008).

2.3.1 Polyamines 

Polyamines (PAs), which are small organic polycations, are found in all living 

organisms. The common PAs in plants are spermidine (Spd), spermine (Spm) 

and their diamine precursor, putrescine (Put). They often occur in free, bound 

and conjugated forms to low-molecular mass compounds, mainly phenolics, and 

in some cases, they also serve as precursors for secondary metabolites such as 

nicotin (Bagni, 2001). The principal enzymes involved in PA biosynthesis in 

plants are Arginine Decarboxylase (ADC), Ornithine Decarboxylase (ODC), S-

AdenosylMethionineDecarboxylase  (SAMDC),  Spermidine  Synthase  (SPDS) 

and  Spermine  Synthase  (SPMS)  (Fig.  3-  Page,  2007).  Put  is  the  obligate 

precursor of Spd and Spm; it is synthesized via ADC and ODC from Arginine or 

Ornithine, while Spd and Spm biosynthesis requires the activities of SAMDC 

and of SPDS. PAs are essential  for normal growth and development through 

transcriptional  and  translational  regulations (Kusano, 2008),  although  their 

physiological significance derives from their involvement in various kinds of 

biotic and abiotic stress responses. PAs have a protective role with respect to 

membrane  damage  and  lipid  peroxidation  (Groppa,  2008  a)  and  function  in 

quenching the accumulation of ROS (Papadakis, 2005). Thus, enhancement of 

cellular PAs levels is associated with osmotic, salt, and drought stress as well as 

toxic HM concentrations (Groppa, 2008 a, b, c). Several genes coding for the 

enzymes involved in PAs metabolism have been characterized and cloned from 

different plant species. ADC genes have been identified in many plant species 

and  their  expression  under  several  stress  conditions  have  been  analyzed 

(Minguet, 2008). Not surprisingly, therefore, PAs over-production in engineered 
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plants, over-expressing PAs biosynthetic genes, confers increased tolerance to 

multiple environmental stresses (Prabhavathi, 2007; Wen, 2008), including HMs 

(Franchin,  2007).  PAs  biosynthesis  and  accumulation  in  response  to  high 

concentrations of Zn and Cu were investigated in the white poplar  (Populus 

alba L.) commercial clone ‘Villafranca’ (Franchin, 2007). In leaves and stems, 

PaADC  and  PaODC  transcript  levels  were  enhanced  by  increasing  Zn 

concentrations, while increasing Cu concentrations cause leaf toxicity. Tobacco 

BY-2 cells exposed to CdCl2 produced a significant accumulation of total, free 

and conjugates PAs, (Kuthanova´, 2004). Although there are some evidences for 

a  positive  involvement  of  PAs  in  ecto-mycorrhizal  interactions  (as  assessed 

through measurement of free and conjugated Put, Spd and Spm in plant tissues 

during  mycorrhiza  formation  -  Niemi, 2007),  there  are  poor  informations 

regarding their biosynthetic genes, except for the fact that no difference in ADC 

expression  was  found  between  roots  of  Scots  Pine  (Pinus  sylvestris L.) 

inoculated and not inoculated with  Suillus variegatus (Niemi, 2007). To date, 

the PA profile in inoculated plant using Arbuscular Mycorrhizal (AM) fungi and 

exposed (or not) to HMs has not been examined. 

15



Fig. 3: Abbreviated polyamine biosynthetic pathway and related 
pathways. The enzymes are ODC, ornithine decarboxylase; ADC, 
arginine decarboxylase; SAMDC, S-adenosylmethionine 
decarboxylase; SPDS, spermidine synthase; SPMS, spermine 
synthase (Page, 2007)
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3. Phytoremediation technology 
Some HMs are essential for life, but when present in excess, they are toxic and 

cause  soil  deterioration.  To  avoid  the  toxicity  associated  with  these  metals, 

several technologies and methodologies have been applied to remove them from 

the environment. Conventional ex situ and in situ methods include soil removal, 

or  extraction  through  chemical  or  physical  means,  such  as  excavation  and 

incineration, off-site storage, soil washing and  in situ capping for stabilization 

(Mulligan, 2001). 

Although  traditional  methods  are  adequate  for  treating  and  removing  high 

concentrations  of  contaminants,  unfortunately,  these  techniques  are  generally 

invasive  causing  changes  to  the  structure  and  the  physical,  chemical  and 

biological properties of soils, and are cost effective. The estimated cost of land 

filling,  or  incineration of  a  ton of  soil  is  between $200–$1500 (Pilon-Smits, 

2005).  Recently,  phytoremediation  has  become  a  promising  remediation 

technique  that  is  readily  accepted  by  a  concerned  public,  to  clean-up  soils 

contaminated by organic and inorganic pollutants, including HMs. This natural 

technology,  based  on  the  ability  of  selected  plant  species  and  genotypes  to 

interact and/or adsorb specific types of contaminants,  has received increasing 

interest  due  to  its  cost  effectiveness  (70-100 $,  for  decontamination  of  HM 

polluted  soils  -  Glass,  2000)  and  its  environment-friendly  characteristics. 

Different  phytoremediation  technologies  are  suitable  for  different  classes  of 

pollutants,  organic  and  inorganic.  The  first  class  of  pollutants  includes 

polychlorinated biphenyls,  polycyclic aromatic  compounds,  nitroaromatics,  or 

linear  halogenated  hydrocarbons.  They  can  be  mineralized,  degraded, 

sequestered or volatilized by plants. The second group includes contaminants, 

such as toxic HMs and radionuclides that cannot be degraded, and only a few 

remediation techniques are available to remove them. 

Some phytoremediation technologies (Pilon-Smith, 2005) used for remediating 

polluted matrix are: 
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 Phytostabilization: use of plant to stabilize pollutants in soils or waters; 

in this  way,  the plant  can prevent  soil  erosion,  leaching or  runoff  of 

pollutants by stabilization,  or  by converting them to less  bioavailable 

forms; 

 Phytovolatilization:  after  uptake  in  plant  tissues,  pollutants  can  be 

released in volatile forms by plant into the atmosphere; 

 Phytodegradation:  degradation  of  pollutants  through  intracellular 

accumulation,  or  via  enzymatic  transformation  in  plants,  or  through 

transformation by specific plant associated microorganisms; 

 Rhyzoremediation:  degradation  of  pollutants  in  the  rhyzosphere  by 

microbes.  The  degradation  of  compounds  in  the  rhyzosphere  can  be 

enhanced by Plant Growth-Promoting Rhizobacteria (PGPR) and fungi; 

 Phytoextraction:  use  of  plants  for  cleaning  up,  sequestering  (in  the 

harvestable tissues), or detoxifying pollutants.

3.1 Phytoextraction of heavy metals

Among the various approaches included in phytoremediation, phytoextraction is 

probably the most studied and potentially the most feasible in low or moderately 

HM contaminated soils. 

Two prerequisites for successful phytoextraction process are: the ability of the 

plants used to tolerate the type and level of contamination in the soil, and the 

capacity of the plants to take up large amounts of pollutants into their biomass. 

Few plant  species naturally  tolerate  and accumulate  HMs,  in  fact  plants  are 

generally highly sensitive even to small amounts of HMs. However, there are 

some plant species that are able to adsorb specific pollutants in quantities that 

exceed several times their natural contents (0,1-1% dry matter), during normal 

growth and reproduction (McGrah, 2003). 

These plants are commonly know as hyperaccumulators and they have adapted 

to live on metalliferous soils and are thus able to survive in extreme soils with a 
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high metal content. Around 400 terrestrial and aquatic species are recognized to 

be  natural  hyperaccumulators  of  metals.  Thay  belong  to  45  different  plant 

families  including:  Asteraceace,  Brassicaceae,  Caryophyllaceae,  Poaceae, 

Violaceae  and  Fabaceae  (Verbruggen,  2009).  New  metal  hyperaccumulating 

species, or populations are continuously identified. The Brassicaceae family is 

the best represented amongst these families, with 87 Brassica spp. classified as 

metal  hyperaccumulators.  This  plant  family  includes  Alpine  pennycress  and 

Arabidopsis extensively  studied for  their  ability  to  hyperaccumulate  different 

HMs, mainly Zn, Cd and Ni (Khan, 2000; Verbruggen, 2009). However, not all 

metal hyperaccumulating plants have a high biomass, in fact many are small and 

slow growing plants. These characteristics thus reduce the potential for metal 

phytoextraction and restrict their use in this technology (Khan, 2000). 

For the purpose of HM remediation soil, a promising alternative to the use of 

hyperaccumulators is the utilization of plants able to tolerate one or more HMs, 

highly competitive, fast growing, and producing a high aboveground biomass.

Deep-rooted tree of the Salicaceae family, such as willows and poplar have been 

considered  suitable  for  phytoextraction  (Pulford,  2002;  Di  Baccio,  2003; 

Castiglione, 2007 and 2009). These species are perfect indicators of pollution 

(Mertens, 2004) and they are characterized by a low environmental requirement, 

rapid growth and strong transpiration rate (Pulford, 2002). Particularly, Populus 

spp. present several attributes that make them good candidates for remediation 

purposes. They can be easily propagated, they are excellent biomass producers 

and they adapt to  in vitro cultures and to genetic transformation (Castiglione 

2007; Franchin, 2007).  At the same time, several studies revealed a remarkable 

clonal  variability  in  metal  accumulation  in  their  organs  (Castiglione,  2009; 

Utmazian, 2007).  

The efficiency of the phytoextraction process on HM polluted soils depends on 

many factors that are closely related (Mleczek, 2009). Some important factors 

are soil parameters (pH, granulometric composition, type of soil, etc.), climatic 
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factors  (humidity,  latitude,  ect.),  bioavailability  of  pollutants  and  biological 

activity of soils (Pilon-Smith, 2005).

The bioavailability of pollutants,  which depend upon chemical  properties,  on 

soil characteristics and on environmental conditions, is important for pollutant 

remediation.  It  has been possible  to  improve  the phytoextraction capacity  of 

plants  by  adding  to  soil,  contaminated  by  HMs,  synthetic  chelants  such  as 

EDTA (Etilendiamminotetracetic acid), EGTA (Etileneglicoletetracetic acid), or 

biodegradable  as  EDDS  (S,S-etilendiaminodisuccinic  acid)  and  NTA 

(Nitrilotriacetic  acid).  Chelant  addition  is  capable  to  solubilize  and  complex 

HMs into the soil solution as well as promoting HMs translocation from roots to 

the harvestable parts of the plant (Komarek, 2007). Nevertheless, these chelants 

and the formed EDTA–metal complexes are phytotoxic. In addition, they have 

low biodegradability and high solubility in soil, which results in a high risk of 

eco-incompatibility  for  their  persistence  and  in  an  alteration  of  the  ground 

micro-flora (Komarek, 2007).

HM phytoextraction  can  be  enhanced  by  coupling  the  technology  to  soil 

bioaugmentation. Rhizospheric microorganisms, which live in tight association 

with plant roots,  can act on pollutants,  mainly organic ones, using their own 

degradative  capabilities  (phytostimulation  or  rhizodegradation).  They  also 

positively affect plant growth and health, enhancing root development, and/or 

increasing plant tolerance to various environmental stresses (Gamalero, 2009) 

Phytoextraction can also be improved by increasing plant biomass, using PGPR 

(Lebeau, 2008). Several strains of PGPR have been isolated to date, each with 

one or  more  traits  that  might  enhance  plant  growth.  Some of  these  bacteria 

directly  influence  plant  growth,  e.g.,  by  synthesizing  plant  hormones,  or 

facilitating uptake of nutrients from the soil. Others exert their beneficial effects 

indirectly  by  enhancing  HM  uptake,  thanks  to  the  production  of  enzymes, 

siderophores (Braud, 2009), or even organic acids. 
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The natural ability of plants to degrade or remove contaminants, as HMs, can be 

integrated and improved by AM fungi (see section 4). 

An alternative and very promising method to improve plant phytoremediation 

capacity is to generate transgenic plants that have a higher capacity to tolerate, 

accumulate  and  metabolize  pollutants,  through  the  overproduction  of  HMs 

chelating molecules  (e.g.,  phytochelatins  -  Cobbett,  2002;  Vivares,  2005),  or 

metal transporters involved in metabolism, uptake or transport of pollutants. To 

date,  transgenic  tobacco  (Nicotiana  tabacum),  canola  (Brassica  napus),  and 

tomato (Solanum lycopersicum) expressing bacterial ACC deaminase genes, or 

Indian mustard plants over-expressing enzymes involved in GSH accumulation 

have been constructed (Pilon-Smith, 2005). 

Another  fascinating  proposal  for  phytoremediation  application  is  the  use  of 

endophytic bacteria, that live inside the plant and promote growth and resistance 

to pathogens and to stresses. Recently, it has been reported that plant endophytes 

might be partially responsible for the degradation of environmental pollutants. 

Pseudomonas (Germaine,  2006)  and  other  endophytic  strains  isolated  from 

poplar (Moore, 2006) have in fact been shown to improve tolerance to HMs and 

ability to degrade organic pollutants.  Engineering endophytes have also been 

tested  for  enhancing  remediation  of  metals  (Doty,  2008).  Although  genetic 

engineering  of  plants  for  enhanced  phytoremediation  capacity  has  obvious 

environmental benefits, their use could be associated to some hypothetical risk 

and is not well  accepted by public opinion in Europe,  in particular,  where a 

strong Green movement is present. 

3.2 Phytoextraction: risks, feasibility, perspectives

Phytoextraction is the use of plants and their  associated microbes to remove 

HMs from contaminated sites: soil, water and sediment. Although this technique 

seems to be a simple method to remediate contaminated matrices, few studies in 

the field report a successful decontamination and the applicability might in some 

21



cases be limited. Essentially, a metal phytoextraction protocol might consist of 

three steps: cultivation of the appropriate plant species on the contaminated site, 

removal of harvestable metal-enriched biomass from the site, and postharvest 

treatments  to  generate  a  cost–benefit,  such as  energy recovery  from thermal 

treatment   (Vassilev,  2004), or contaminant  recovery  through  a  series  of 

chemical and physical methods.

At present,  phytoextraction  is  limited  by  the  long  period  required  for  soil 

cleanup, by the restricted types of HMs that can be extracted and by limited 

production of biomass in some selected species. Some authors have determined 

theoretical feasibility of phytoextraction, as the amount of metals being removed 

from soil in relation to total amount in contaminated matrix (Mertens, 2004). For 

example, it has been estimated it would take 15 years to obtain Cd soil reduction 

of 1,0 mg kg-1.  However, to increase efficiency and for a shorter duration of 

phytoextraction, it is possible to choose some plant species, especially selected 

for metal uptake. The phytoextraction can be ameliorated by using of engineered 

plants and soil amendments. Chemically assisted phytoextraction is based on the 

combined use of fast-growing tree (natural, or engineered species), that produce 

high biomass and metal chelating agents to increase the metal soluble fraction. 

Moreover long duration of soil  cleanup could be accepted in phytoextraction 

projects, if the cost of application were sufficiently low and if, for instance, the 

phytoextraction were combined with a profit making operation, such as forestry 

or energy production. 

Phytoextraction of HMs from soil might cause ecological risks due to dispersion 

of metals in the environment, to accumulation of HMs in food chain, to leaf fall 

and to accumulation of pollutants in topsoil. However, the risk of cumulative 

accumulation  of  HMs  in  herbivores  can  be  calculated  only  with  theoretical 

methods and it should be further investigated. To avoid plant material diffusion 

(leaves, branches, litter) and a redistribution of HMs in the upper soil profile, 

during growth and phytoextraction, it is possible to control the dispersion into 
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adjacent  environments,  to  remove  the  litter,  or  to  apply  a  coppice  regime. 

Phytoextraction  techniques  need  some  ameliorations  because  they  may  be 

economically feasible. However, further investigation is necessary to ensure the 

protection of the environment and  to prove its sustainability on a field scale.
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4. Arbuscular mycorrhizal symbiosis
Arbuscular  mycorrhizal  (AM)  symbiosis  is  the  most  common  type of 

mycorrhizal association. Fossil evidences suggest that early land plants formed 

similar associations with ancestral AM fungi, and thus the symbiosis has existed 

for over 450 million years. Under natural conditions, 80%–90% of plants are 

colonized by AM leading to mutualistic associations, that are present in almost 

all  terrestrial,  including  some  aquatic  ecosystems  (Smith,  1997;  Iaccarino, 

2006).  The  fungi  that  form  AM  symbiosis  are  all  members  of  the 

Glomeromycota,  a  sister  group  to  the  Ascomycota  and  Basidiomycota 

(Iaccarino, 2006). AM fungi are obligate biotrophs. The development of an AM 

symbiosis initiates with an exchange of signals between the two symbionts: the 

plant and the fungus. Germinating fungal spores detect the presence of a plant 

root through exuded from P- or N-deprived roots.  In turn, AM fungal  signal 

molecules elicit changes in gene expression in the plant (Siciliano, 2007). When 

the fungus interacts with root cells, it forms an appressorium, through which it 

invades the root cortical cells. AM fungus colonizes the plant root and forms 

differentiated hyphae, called arbuscules. The plant cell envelops it in a novel 

membrane, providing a symbiotic interface across which bi-directional nutrient 

transfer between the plant and AM occurs (Smith, 1997). Outside the root, the 

AM  fungi  develop  an  extensive  extraradical  mycelium  that  ramifies  and 

modifies  the  architecture  and  topology  of  the  plant  root  system.  These 

associations  generally  result  in  longer,  or  more  branched root  system,  called 

Wood Wide Web, and therefore in more efficient absorption and translocation of 

minerals, such as inorganic phosphate and nitrogen. While large amounts (up to 

100%) of plant P can be supplied via the mycorrhizal pathway, AM fungi also 

have an important role in uptake of other nutrients. It has been demonstrated that 

up to 60% of plant Cu, 25% N, 25% Zn and 10% K, can be delivered by the 

external  hyphae  of  AM fungi  (Marschner,  1994).  AM fungi  have  a  positive 

impact on plant mineral nutrition, but, also, on plant health, influencing nutrient 
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availability via their effects on soil physico-chemical properties, nutrient cycling 

and microbial  communities.  Besides  promoting  plant  growth,  AM fungi  can 

enhance  plant  tolerance  to  environmental  stresses,  including  HMs  (Leyval, 

1997). Many plants growing on metal-contaminated soils possess mycorrhizae, 

indicating that these fungi have evolved a tolerance to HMs. Colonized plants by 

AM fungi are usually more tolerant to certain HMs than plants that bare. These 

positive effects on plant development result from an improved nutrient supply 

and can partly be ascribed to the complex, and not fully understood, interactions 

between the plant and the fungus.

It has been suggested that the AM effects on host plant tolerance to HMs may 

depend on enhanced HM uptake and root-to-shoot transport and immobilization 

(phytoextraction) (Khan, 2000), and also on reduced metal transfer from roots to 

shoots (Joner, 2000). In other cases, AM fungi contribute to HM immobilization 

within the soil and thereby improve phytostabilization. Several mechanisms for 

metal  accumulation  have  been  suggested:  immobilization  of  metals  by 

compounds, such as MTs, or PCs synthesized by the fungus, or by the plant; 

extrusion  from the  cytosol  by  specific  HM transporters  located  on  root  cell 

membranes by the fungus; precipitation in polyphosphate granules in the soil; 

chelation of HMs to fungal cell walls; sequestration by siderophores, deposited 

into the root apoplasm, or into the soil (Schu¨tzendu¨bel, 2002; Ouziad 2005). 

Glomalin is an example of an insoluble glycoprotein, produced and released by 

AM fungi, in fact it is able to bind HMs in the soil (Gonzalez-Chavez, 2004). 

Gonzalez-Chavez and co-workers (2004) showed that glomalin, extracted from 

polluted soil, or from fungus hyphae, strongly and irreversibly sequesters HMs, 

such as Cu, Cd, and Zn. Through HM stabilization in soil, AM fungi reduce 

their availability, and decrease the risk of toxicity to soil microorganisms and 

plants growing in the immediate vicinity.

Binding of HMs in mycorrhizal structures and immobilization of HMs in the 

plant  mycorrhizosphere have been reported in several  studies  (Ouziad,  2005; 
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Gohre, 2006; Chen, 2007; Hildebrandt, 2007), reflecting the suitability of AM 

fungi to phytostabilization applications.

The  colonization  by  AM  fungi  can  influence  the  uptake  and  subsequent 

accumulation  of  HMs  in  above-ground  tissues  of  plants (Davies,  2002). 

Mycorrhizal  symbiosis  can  affect  plant  growth  in  HM  polluted  sites  by 

influencing the fate of the metal in the plant and also by increasing the plant 

tolerance to this type of stress.  Reduction (Lin, 2007), increase (Joner, 1997; 

Lingua,  2008),  or  no  change  (Galli,  1995)  of  HM concentrations  in  plants, 

following mycorrhizal  inoculation,  have  been all  observed depending on the 

fungal–plant  association  (Liao,  2003;  Wang,  2005).  Thus,  HM  uptake  and 

accumulation, in AM fungi inoculated plant, can vary dramatically and  they are 

also  influenced by soil  conditions  and HM concentration  in  soil.  Audet  and 

Charest  (2007)  have  designed  a  meta-analytical  approach  that  relates  plant 

growth  and  HM  uptake  to  tolerance.  This  conceptual  model,  proposed  to 

determine  the  role  of  AM  symbiosis  in  HM  phytoremediation,  fuses  two 

antithetical hypotheses. At low soil HM concentrations, AM fungi enhance the 

HM sequestration process in the plant/root, increasing root uptake capacity with 

the extra-radical hyphal network and resulting in an extra HM uptake in plant 

tissues  (“Enhanced  uptake”  model).  At  high  soil  HM  levels,  the  plant 

mycorrhizosphere furnishes additional metal binding sites, resulting in soil HM 

immobilization and in their decreased availability for plants (“Metal binding” 

model).  In this condition, the AM symbiosis increases plant biomass because 

HM immobilization reduces potential toxic effects and enhances plant tolerance 

through HM stress avoidance (Audet, 2007).

The tolerance towards HMs observed in mycorrhized plants may vary depending 

on the species,  or  even on the strain of  mycorrhizal  fungi  employed.  Mixed 

mycorrhizal inoculants seem to be more effective than single ones in promoting 

phytoextraction efficiency. HM concentrations of several metals in maize (Zea 
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mays)  plant  inoculated with  Glomus caledonium have resulted lower  than in 

plants treated with a mixture of AM fungi (Wang,  2007). 

Alteration  of  the  metal  content  in  mycorrhizal plants  and,  consequently,  an 

improvement in plant tolerance, may be related to extensive changes in gene 

expression  and  protein  synthesis  induced  by  the  symbiosis  itself.  Several 

experiments have been performed to study the specific expression of selected 

fungal  genes in extraradical  mycelium and in mycorrhizal-colonized roots of 

different  plant,  grown  on  polluted  soils.  Analyses  on  mycorrhizal-colonized 

tomato  (Solanum  lycopersicum)  roots  revealed  that  HM stress  influences 

differentially the transcript levels of genes of MT family (Lemt1, Lemt3 and 

Lemt4) and of Nramp, (Ouziad, 2005). These data have demonstrated the HM-

dependent expression of different AM fungi genes in the intra- and extra-radical 

mycelium.

Use  of  metal  tolerant  mycorrhizal  plants  is  a  very  promising  approach  for 

phytoremediation of metal-contaminated soils.
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5. Poplar 
The genus Populus L. belongs to the Salicaceae family. It is collectively known 

as poplar and includes a large variety of species widely distributed in different 

regions of the boreal hemisphere. Discrepancies in the recognised number of the 

species, from 22 to 85, could be attributed to difficulties to clearly recognise and 

classify  species.  The extensive interspecific  hybridization and the consequent 

morphological  variation,  in  fact,  influenced  and  posed  limitations  to 

comparative  evolutionary  studies.  The  genus  Populus (Eckenwalder,  1996; 

Hamzeh, 2004) includes 29 species classified in six sections (Abaso, Aigeiros,  

Tacamahaca,  Populus,  Turanga,  Leucoides).  All  poplar  species  are  fast-

growing,  economically  and  ecologically  important  multipurpose  forest  trees. 

Generally, poplar species are dioecious, and their reproduction is mainly sexual, 

but  sometimes  a single  tree  can spread around through rootsuckers  (Brundu, 

2008) 

P. alba belongs to the section  Populus;  it also referred to as European white 

poplar and is widely distributed in river basins over northern Africa, southern 

Europe  and  central  Asia.  This  tree  can  reach  considerable  height  (up  to  30 

metres), and diameter (up to 2 metres). The crown is broad, rounded and thick. 

The bark is white, powdery and soft to the touch when young, but it tends to 

fissure with the age and becomes rough and black, particularly at the base of the 

trunk. Some specimen of white poplar (Fig. 4) can be 300-400 years old. Over 

the past decade, several species of Populus genus have emerged as model plants 

for phytoremediation purposes (Laureynses, 2004; Castiglione, 2007 and 2009) 

because they display a range of different  growth characteristics,  including an 

excellent  resistance  to  insects  and  pathogens,  and  tolerance  towards  various 

stress conditions, such as HMs, drought, wind, salinity and high temperatures 

(Dickmann,  2001).  Generally  poplar  trees  can  be  easily  propagated,  they 

establish and displays rapid growth, high biomass production as well as a high 

transpiration rate and a widespreading root system. 
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Fig. 4: Populus alba trees
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In addition, it is amenable to coppicing and short rotation harvesting, as well as 

to in vitro propagation and genetic transformation (Franchin, 2007; Balestrazzi, 

2009). The whole genome (http://genome.jgi-psf.org/Poptr1/Poptr1.home.html) 

of P. trichocarpa T., is sequenced and available on public data bases (Tuskan, 

2006). Thus there is an array of tools that are still not available for any other 

forest tree species. 

5.1 Phytoremediation capability of white poplar

For several  characteristics some  poplars and willows are ideal candidates for 

phytoremediation purposes, not only for their high biomass production and deep 

wide-spreading  root  system,  but  also  for  their  excellent  tolerance  and 

accumulation capacity of pollutants. 

Poplar trees have been studied for cleaning up contaminated soils and water with 

organic pollutants such as atrazine (Burken, 1997), trichloroethylene (Newman, 

1997), petroleum hydrocarbons, such as benzene, toluene and xylenes ( Jordahl, 

1997), herbicides (Gullner, 2001). 

In  addition,  poplars  are  selected  for  high  biomass  production,  high  growth 

vigour, and disease resistance and used for short rotation coppice (SRC) cultures 

(Laureysens, 2004; Baum, 2009). The SRC includes the cutting of a tree at the 

base  of  its  trunk,  resulting  in  the  emergence  of  new shoots  from the  stump 

and/or  roots,  and  permits  an  intensively  managed  plantations  for  rotations 

shorter  than  15  years.  Populus species  are  currently  grown  as  a  renewable 

energy source  and for economically use, such as for plywood, pulp and paper 

industry (Dutton, 2005). At the same time, several studies have focused their 

attention  on  the  potentiality  of  poplars  in  phytoextraction  of  HMs (Pulford, 

2003;  Laureysens,  2004;  Castiglione,  2007  and  2009).  Moreover  tolerance 

characteristic,  metal  uptake   and  compartmentalization  are  highly  variable 

among poplar tree species and hybrids (Laureysens, 2004) and sometimes even 

within  a  single  species  (Castiglione,  2009).  The  ability  to  accumulate  and 
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tolerate  high  concentrations  of  HMs  have  been  studied  in  controlled 

environments particularly suitable for preliminary screenings, such as  in vitro, 

hydroponic  or  pot  conditions (Di Baccio,  2003; Franchin,  2007;  Castiglione, 

2007; Lingua, 2008), but also on polluted fields (Castiglione, 2009). Castiglione 

and co-workers (2009) report a comparative study on two poplar collections, 

derived from P. alba and P. nigra natural populations, growing on heavily Cu 

and  Zn  contaminated  site,  to  select  the  best  performing  clone  that  shows 

improved tolerance and uptake capacity for remediation of HM polluted soil. 

The  study  evidenced  a  high  genetic  dissimilarity  within  clonal  collections 

growing in contaminated soil.  After one growth season,  clonal  differences in 

plant survival and growth were observed, and the six best performing clones 

were selected for their survival capacity and consistent amounts of metals in 

plant organs. One of these clones belonging to  P. alba, named by the authors 

AL35, had a distinctly higher concentration of both metals in the leaves and in 

the  roots,  making  it  particularly  suitable  for  both  phytoextraction  and 

phytostabilization. Plant diversity and adaptation can be associated to a range of 

different  strategies  for  tolerating  high  concentrations  of  HMs in  the  growth 

substrate, such as the synthesis of PAs and of MTs and/or PCs. In particular, the 

high metal accumulating clone AL35 exhibited a extremely high concentration 

of  free  and  conjugated  Put.  Up-regulation  of  PA metabolism  has  been  also 

reported for  poplars  exposed to high Zn or  Cu concentrations under in vitro 

(Franchin, 2007), or greenhouse (Lingua, 2008) experiments.  Different poplar 

species  can  respond  differently  in  terms  of  MT  expression  (Kohler,  2004; 

Castiglione,  2007).  The  analysis  of  PaMT1,  PaMT2 and  PaMT3 gene 

expression in response to high Zn concentrations in a micropropagated white 

poplar commercial clone (Villafranca) showed that they were also differentially 

expressed in organ-specific manner (Castiglione, 2007).  PaMT1 and especially 

PaMT3  gene  expression  is  stimulated  by  high  concentrations  of  Zn 

preferentially in leaves. The response of these genes is generally not linear with 
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respect to metal concentration and/or exposure time. The treatment with high 

concentrations  of  Zn  interferes  with  important  metabolic  processes  and 

negatively  affects  the  photosynthetic  machinery.  In  fact,  total  chlorophyll 

declined markedly upon Zn treatment and also reduced the chl a:chl b ratio, in 

Villafranca clone (Castiglione, 2007). 

Poplar tolerance and translocation of HMs in different organs can be influenced 

by  mycorrhizal  symbiosis  with  AM  fungi.  Lingua  and  co-workers  (2008) 

assessed the effects of high Zn concentrations on different clones of poplar (P. 

alba clone ‘Villafranca’ and  P. nigra clone ‘Jean Pourtet’), inoculated or not 

with AM fungi (G. mosseae or  G. intraradices). In the Villafranca clone,  G. 

mosseae increased  the  total  amount  of  Zn  in  the  plant,  but  reduced  its 

accumulation in leaves, whereas G. intraradices did not affect Zn levels in any 

organ. In  P. nigra, the AM fungi decreased the Zn content in the whole plant. 

These  results  suggested  that  the  performance  of  the  Villafranca  clone  is 

improved  by  Glomus spp. inoculation.  In  contrast,  the  Jean  Pourtet  clone 

accumulated  more  Zn  in  the  absence  of  mycorrhiza  without  a  significant 

reduction  of  leaf  biomass,  probably  with  a  different  protective  mechanism, 

linked to  reduction of  translocation to  the leaves,  more  intense  colonization. 

Additionally, AM fungi may affect tolerance to HMs by modulating plant stress 

reactions.
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The aim of work
The main  objectives  of  the  present  work  were  those  of,  i)  investigating  the 

impact of AM symbiosis on metal tolerance in a  P. alba clone, named AL35, 

selected  on  a  HM  polluted  site  for  its  high  survival  ability,  on  metal 

accumulation  capacity  (Castiglione,  2009),  and  ii)  detecting  the  stress-

responsive gene modulation in poplar leaves, after prolonged exposure to high 

concentrations of Cu and Zn. 

In  AL35  plants,  pre-inoculated  with  the  AM  fungi  G.  mosseae or  G. 

intraradices,  growth,  HM contents,  expression of  MT,  PaSPDS and  PaADC 

genes and PA accumulation were investigated during the first (2006) and second 

growing  season  (2007),  and  then  compared  with  that  of  plants  grown  on 

unpolluted soil,  inoculated or  not  with the same AM fungi.  The plants  were 

grown in pots and under controlled conditions (greenhouse) in order to minimise 

the effects of other environmental stress factors (such as drought, pests, etc.), but 

under conditions as similar as possible to those of the field. Thus, the soil has 

been collected from a multi-metal  (Cu and Zn) contaminated site,  where the 

large field scale trial was established to evaluate the phytoremediation potential 

of  a  large  clonal  collection  of  poplars  belonging  to  different  species 

(Castiglione, 2009). 

A major  objective  of  this  study  was  also  to  correlate  improved  nutrition, 

sequestration of HMs, enhanced tolerance and functional stress-related genes to 

AM fungi colonization. Results are discussed in relation to the differences in 

plant biomass, metal uptake and translocation observed in mycorrhizal vs non 

mycorrhizal AL 35 plants. 
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Materials and Methods

1. Plant material

The poplar clone AL35 used in the present study, was selected during a field 

trial that tested different poplar clones on a heavily Cu and Zn contaminated site, 

located next to the KME-Italy S.p.A. factory (Castiglione, 2009). Twenty-cm 

long cuttings were collected in February 2006 from plants growing in the field, 

and stored at 4°C until use.

2. Fungal inoculation

In March 2006, the poplar cuttings were placed overnight under running tap 

water. They were then put into 20-cm high plastic pots (750 mL) containing 

heat-sterilised (180°C, 3 h) quartz sand (3-4 mm diameter).  Pots were either 

separately inoculated with Glomus mosseae (Gerd. and Nicol.) Gerdemann and 

Trappe BEG 12, or  Glomus intraradices (Schenck and Smith) BB-E (supplied 

by Biorize, Dijon, France as described by Lingua and co-workers, (2008), or 

were  uninoculated  (controls).  The  inoculum  was  provided  at  50%  (v/v) 

concentration, using a 50-mL bottomless Falcon tube placed around the cutting. 

Cuttings were fed on alternate days with 80 mL of Long Ashton solution (Table 

2),  modified  according  to  Trotta  and  co-workers  (1996).  After  one  month, 

cuttings  were  transferred  into  sterilized  7.5-L  plastic  pots  containing  either 

polluted, or unpolluted autoclaved soil.

3. Analysis of growth and mycorrhizal colonisation

At the end of the experiment (July 2007), growth was evaluated on the basis of 

leaf,  stem  and  root  fresh  and  dry  weights.  The  degree  of  mycorrhizal 

colonisation of all plants, pre-inoculated or not, was evaluated microscopically 

using the method of Giovannetti and Mosse (1980), with some modifications as 

described below. Roots of 1 cm in length were cleared in 10% KOH for 3 h at 

34



90 °C, washed thoroughly in distilled water, bleached for 1 min in 1% KMnO4 

followed by 10 min in 5% oxalic acid. After acidification in HCl for one night, 

treated  roots  were  stained  with  Aniline  Blue  for  1  h  at  90  °C  and  finally 

differentiated in glycerin:water (1:1) for at least one week before observation 

under bright field microscopy. Microscopy observations were carried out at 50-

630x  magnifications.  Results  are  expressed  as  intensity  of  colonisation,  i.e., 

percentage of colonised roots (M%). The number of arbuscules and vesicles was 

also evaluated.

 4. Experimental design and growth conditions 
The soil originating from the polluted area is a sandy loam (according to USDA 

specifications: sand 31%, silt 46%, clay 23%), and has the following chemical 

features:  organic  matter  2.24%  DW;  N<  0.01%  DW;  K  0.0237%  DW;  P 

0.0026% DW; pH 6.2, with a mean soil total  Zn concentration of 950 mg kg-1 

DW and 1300 mg kg-1 DW of  Cu  (Castiglione,  2009).  The  unpolluted  soil, 

collected  from  a  nearby  uncontaminated  area,  had mean Zn  and  Cu 

concentrations of 60 and 14 mg kg-1 DW, respectively. The chemical analyses 

were carried out on the soil (see above paragraph of Materials and Methods). 

The experimental design therefore consists in growing of plants pre-inoculated 

with  either  G.  mosseae (Gm plants)  or  G.  intraradices (Gi  plants)  for  two 

vegetative seasons (from March 2006 to July 2007), in pots containing either 

polluted or unpolluted soil. Ten plants per treatment were prepared, placed in 

pots and grown in a glasshouse and automatically watered (from above) twice a 

week before dawn for 3 min; in July and August, plants were watered for 8 min 

on alternate days. A commercial organic slow release fertilizer (Grenagro Medio 

Plus, Grena, San Bonifacio, Verona, Italy) was supplied (16,5 g per pot) once. 

The same number of uninoculated plants were grown under the same conditions.
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Table  2:  Chemical  composition  and  concentration  of  basal  nutrient  solution, 
based on Long Ashton Formula 

Compound gL-1 mM Element mgL-1

KNO3 0,505 5,0 K 195
N 70

Ca(NO3)2 0,656 4,0 Ca 160
N 112

NaH2PO4. 2H2O 0,208 1,33 P 41
Na 31

MgSO4.7 H2O 0,369 3,0 Mg 24
Fe.citrate.5 H2O 0,0245 0,1 Fe 5,6

MnSO4 0,00223 0,01 Mn 0,55
CuSO4.5 H2O 0,00024 0,001 Cu 0,064
ZnSO4.7 H2O 0,000296 0,001 Zn 0,065

(NH4)6.Mo7O24.4 H2O 0,000035 0,0002 Mo 0,019
NaCl 0.00585 0,1 Cl 3,55
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5. Sampling procedure
Samples  were  taken in  July  2006 (first  sampling)  and in  July  2007 (second 

sampling, end of experiment). In the first year, only leaf samples were taken. In 

the second year,  the whole plant was harvested;  root,  stem and leaf  samples 

were collected and stored separately for fresh and dry weight measurements, and 

for determination of Cu and Zn concentrations. Leaf samples of each treatment 

were pooled together at each sampling time, frozen in liquid nitrogen, and stored 

at -80°C for RNA extraction and polyamine determination. 

6. Chemical analysis

Approximately 0,5 g DW of material was used for the determination of Zn and 

Cu concentration in leaves, stems and roots, separately. Samples were weighed 

and dried at 75 °C up to constant weight, pulverized in an agate mortar (Eatchs, 

Retsch, Germany) and digested with an acid mixture (HNO3 65%:HF 50% = 2:1 

= v:v). Metal concentration was assessed by means of a calibration curve, after 

measurement  determined  using  an atomic  absorption spectrometer  (AAnalyst 

100, PerkinElmer, Wellesley, MA, USA). Atomic absorption spectroscopy is a 

technique used to asses the concentration of metal  elements in a sample.  All 

atoms can absorb the electromagnetic radiation and the wavelengths at which 

radiation is absorbed or emitted is exclusive for a particular chemical element. 

Generally in atomic absorption spectroscopy, the radiation source is a hollow 

cathode  lamp.  In  this  lamp,  filled  with  argon or  neon  gas,  there  is  a  metal 

cathode containing the metal for excitation, and an anode. When a high voltage 

is applied across the anode and cathode, gas particles are ionized and excited; 

these atoms emit light with the frequency characteristic of the metal. The sample 

to analyze, containing some metals, must be atomized. Generally the sample is 

atomized with a flame, but other atomizers, such as a graphite furnace, can be 

used.  The atoms,  produced by the  sample,  absorb  the  light  produced by the 

radiation source. The quantity of energy, put into the atomizer from source, is 
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known, and the quantity transmitted by the atomized sample can be measured by 

a detector. According to the Beer-Lambert law, the quantity of transmitted light 

is  proportional  to  the  concentration  of  the  element  being  measured.  All  the 

chemical  analyses  were  carried  out  on  three  subsamples.  Certified  standards 

(BCR 062, 100,  129 and 145R, by the Institute for  Reference  Materials  and 

Measurements, Ratieseweg, Belgium), with known element concentration, were 

analyzed with the samples in order to confirm the correctness of the procedure. 

The same method was used for the determination of HMs in soil. 

7. RNA extraction 

Total  RNA was extracted from approximately  100 mg of  frozen  leaf  tissues 

using  the  RNeasy  PlantMini  Kit  (Qiagen,  Milano,  Italy)  and  the  buffers 

provided with the kit, designed specifically for RNA purification from different 

plant organs. Plant tissue were ground in mortar with liquid-nitrogen. 450 μl of 

lysis buffer and 4 μl of β-mercaptoethanol were added to tissue powder. A short 

incubation at 56°C promotes the disruption of the tissues. Tissue lysates were 

transferred onto spin columns to remove cell  debris.  After  centrifugation the 

cleared lysate  was  mixed  to  0,5  volume of  ethanol  and transferred  onto the 

column that  retains  RNA on the membrane.  To eliminate  traces  of  genomic 

DNA, on-column DNA digestion is performed according to the manufacturer’s 

instructions. Two wash buffers were added to spin column membrane to wash 

RNAs. RNA-free water was directly added to the column to elute the RNA.

8. RNA electrophoresis

The  integrity  and  size  distribution  of  total  purified  RNA  is  checked  by 

formaldehyde agarose (FA) gel electrophoresis and ethidium bromide staining. 

Agarose powder is mixed to 1X FA gel buffer (Table 3a and b) to prepare FA 

1,2 % agarose gel. After agarose melting, 37% formaldehyde and ethidium 
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Table  3: Composition of 10X and 1X Formaldehyde Agarose (FA) gel buffer 

a) 10X FA gel buffer

b) 1X FA gel buffer

Table 4: Composition of 5X RNA loading buffer

 

Component Concentration (mM)
MOPS 200

Sodium acetate 50
EDTA 10

NaOH (to pH 7,0)

Component Volume (ml)
10X FA gel buffer 100

37% Formaldehyde (12,3M) 20
RNase-free water 880

Component Volume (ml)
Saturated aqueous bromophenol blue solution 0,016

EDTA (500 mM pH 8,0) 0,080
37% Formaldehyde (12,3M) 0,720

100%Glycerol 2,0
Formamide 3,084

10X FA gel buffer 4
RNase-free water to 10 ml
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bromide are added to  the gel. One volume of 5X loading buffer (Table 4) is 

added to 4 volumes of RNA samples. After incubation for 3 minutes at 65°C (in 

this way hairpins and double strand RNAs are removed) and chilling on ice, the 

RNA is loaded on the equilibrated FA gel.

9. cDNA synthesis

Total RNA, extracted from leaf tissues and treated with RNAse-free DNAase 

(Qiagen,  Milano,  Italy),  was  used  to  generate  cDNA  using  SuperScript  III 

Reverse Transcriptase synthesis kit (Invitrogen, Milano, Italy). 1-2 µg of total 

RNA were added to 500ng of oligo(dT)18 and dNTPs Mix (10 mM). The mixture 

was heated to 65°C for 5 min and incubated on ice for, at least, 1 min to disrupt 

high secondary structures.  To generate cDNA, 5X First-Strand buffer,  0,1 M 

DTT and 200 U SuperScript III RT enzyme were added to the mix containing 

RNA and incubated at 50°C for 60 min.

10. Quantitative Reverse Transcription- Polymerase Chain Reaction 

(qRT-PCR)

The polymerase  chain  reaction  (PCR – Mullis,  1994)  has  revolutionized  the 

detection of DNA and RNA. As little as  a single copy of a particular  DNA 

sequence  can  be  specifically  amplified. A  special  kind  of  amplification 

technique is Real-time PCR. Reactions are characterized at specific time points 

during cycling when amplification of a PCR product is first detected rather than 

the amount of PCR product accumulated after a fixed number of cycles. Real-

time systems were improved by probe-based, or intercalator-based (e.g. SYBR 

green  dye)  PCR  product  detection.  When  the  starting  copy  number  of  the 

nucleic acid target is high, a rapid and significant  increase in fluorescence is 

observed. Real-time PCR was performed in a reaction mixture containing 2x iQ 

SYBR green supermix (Bio-Rad Laboratories, Hercules, CA), specific primers, 

cDNA template and RNase-free sterile water in a final volume of 20 µl. Gene-
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specific primers used for PCR experiments and relative annealing temperatures 

(T) are listed in Table 5. All the primers were designed on poplar sequences 

available  at  the  P.  trichocarpa  database  (http://genome.jgi-

psf.org/Poptr1_1/Poptr1_1.home.html)  using  the  primer  design  software 

Primer3 (version 0.4.0). The cDNA was used as a template for amplification 

using  the  BioRad  iQ5  cycler  (Bio-Rad  Laboratories).  Each  reaction  was 

performed  in  duplicate  to  verify  the  reproducibility  of  the  system  and  for 

standard error calculation. The following thermal cycle conditions were used for 

the amplifications of the target and housekeeping genes: an initial denaturing 

step  at  95°C  for  3  min  was  followed  by  45  cycles,  each  cycle  consists  of 

denaturation at 95°C for 10 s, annealing at T °C for 40 s, and extension at 55°C 

for 10 s. In each experiment, a negative (no-template) control was used to test 

for false-positive results or contaminations. Primers, specific for P. trichocarpa 

actin B gene, were used for the normalization of reactions. The housekeeping 

gene actin B was chosen as a control for all RT-PCR experiments after testing 

also  poplar  ubiquitin  and  18S-rDNA  genes.  The  actin  gene  was  the  most 

reproducible and stable in time and among samples. Data collection and analysis 

were performed  using  the Optical  System Software  (iQ5 version  2.0).  Fold-

changes  in  RNA  expression  were  estimated,  using  threshold  cycles,  by  the 

comparative CT method (2-ΔΔCt) (Livak, 2001).  The ΔCt value is calculated for 

each sample as the difference between the Ct values of the gene of interest and 

the  housekeeping  gene.  The  ΔΔCt  value  is  the  difference  between  the  ΔCt 

values of the experimental  and the control samples.  The fold-change in gene 

expression is therefore equal to 2-ΔΔCt if the PCR replication efficiency for all 

analyzed genes is 100%. Threshold cycle (CT) values were in the range of 25-27 

cycles for actin, and 20-22 for the genes of interest. Data are the means (± SD) 

of  two  biological  replicates. Genes  were  considered  to  be  up-regulated  in 

mycorrhizal plants relative to uninoculated controls when mRNA levels were > 

2-fold, and down-regulated when they were < 0.5-fold.
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Table  5: List of primer pairs and of annealing temperatures used for RT-PCR 
amplifications of PaMT gene family, PaSPDS, PaADC and Actin genes

Primer name Primer sequence (5’-3’) Annealing T 
(°C)

MT1a_for  ATGTCTGGCTGTAGCTGTGG 60
MT1a_rev_UTR  CCATGTCCATGTGTCCTCAT 60
MT1b_for  CCTAAAGAAAATGTCTGGTT 55
MT1b_rev_UTR  TATAGGCCACAATAACTACTT 55
MT2a_for  ATGCT TGCTGTGGTGGAAGC 55
MT2a_rev_UTR  GAATCAACGCAGCCAGC 55
MT2b_for  CAGATGCAGCATGTACCCA 55
MT2b_rev_UTR  GTTTTCTCATTTGCAGGAGC 55
MT3a_for  ATGTCTAGCACCTGCGACAA 55
MT3a_rev_UTR  ACACATGACGGTTTACGTG 55
MT3b_for  AATCATCATGTCTAGCACCT 55
MT3b_rev_UTR  CATGATAGTTGATGTGCTTG 55
PaADC_for  TGGTGATAGCGATCATGGAA 55
PaADC_rev  CGGGGATGTTACTCTCAAGC 55
PaSpds1_for  TCGATTCCATCTCCCAAAAC 55
PaSpds1_rev  CCTCAAATCCAACAGCCAAT 55
PaSpds2_for  TGACGTAGCAATCGGGTATG 55
PaSpds2_rev  TGTGCTCACAACTCCTCCTG 55
Actin_for  GCCCAGAGGTCCTCTTCCAA 55-60
Actin_rev  GGGGCTAGTGCTGAGATTT 55 – 60
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11. HPLC analysis of polyamine content

Plant material (0.3-0.5 g FW leaves) was homogenized in 10 volumes of 4,0% 

perchloric acid, kept for 1 h on ice, and centrifuged at 15’000 g for 30 min. The 

pellets were washed twice by resuspension in perchloric acid, centrifuged and 

resuspended in the original volume of perchloric acid and free and conjugated 

PAs  (Put,  Spd  and  Spm)  were  extracted.  Aliquots  of  the  supernatants  and 

standard solutions of Put, Spd and Spm were subjected to acid hydrolysis with 

6,0 M HCl at 110° C overnight, derivatized with dansyl chloride, essentially to 

release polyamines from their perchloric acid insoluble and soluble conjugates, 

as  described by Bregoli  and co-workers  (2002).  Dansylated derivatives were 

extracted with toluene, taken to dryness and resuspended in acetonitrile.  PAs 

were separated and quantified by HPLC (PU-980 Jasco, Tokyo, Japan) using a 

reverse phase C18 column (Spherisorb ODS2, 5-mm particle diameter, 4.6, 250 

mm,  Waters,  Wexford,  Ireland)  and  a  programmed  acetonitrile:water  step 

gradient, as that allowed polyamine separation in 15 min.

12. Statistical analyses

Mean values and standard errors were calculated, and the data compared by one-

way analysis of variance (ANOVA), followed by a post-hoc F-test with P<0.05 

as the significance cut-off. ANOVA, ANalysis Of VAriance, is a powerful and 

common statistical procedure used to evaluate the observed variance partitioned 

into components  due to  different  explanatory variables.  In  its  simplest  form, 

ANOVA represents a statistical test of whether the means of several groups are 

all equal. This analysis can be different depending on the number of variables, 

dependent and independent. 

The  one-way  ANOVA  is  used  to  test  for  differences  among  two  or  more 

independent groups. In this case, there is only one dependent variable and one 

independent variable.

Two-way ANOVA is used for repeated measures in the experiments. 
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Factorial  ANOVA is  used  to  study  the  effects  of  two  or  more  independent 

variables on one dependent variable. 

ANOVA analysis is often followed up by one or more different follow-up tests, 

such as F-test to assess if differences in groups are statistically significant.
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Results

1. Mycorrhizal colonisation
At the end of the experiment,  AL35 plants were harvested and the extent of 

mycorrhizal  colonisation  of  all  plants,  pre-inoculated  or  not,  was  evaluated 

microscopically after staining. Percentage of colonised roots (M%), was below 

1% in uninoculated plants,  on both polluted and unpolluted soil. By contrast, 

plants  inoculated  with  G. intraradices or  G. mosseae showed levels  of  M% 

ranging from 5 to 23% without significant differences between the two fungal 

species, and without any significant difference between polluted and unpolluted 

soil (Fig. 5). Although many vesicles were observed, no arbuscules were seen in 

any observed root samples.

2. Biomass production 
In July 2007, at the end of the experiment, fresh and dry weight measurements 

were made for all plants that underwent the various treatments. Fig. 6 shows that 

root,  stems  and  leaf  biomass  of  plants  grown  on  unpolluted  soil  was  not 

significantly affected by mycorrhization, with exception for leaves of Gm plants. 

By contrast, when AL35 plants were grown on polluted soil, in the absence of 

AM fungi, their biomass was severely affected, with decreases of approximately 

85% relative to controls (unpolluted soil). On polluted soil, both fungal species 

exerted a positive effect on the growth of all plant organs, except for leaves of 

Gi plants, with about 4- to 6-fold increases in mycorrhizal plants relative to non 

mycorrhizal ones. 

3. Copper and zinc concentrations in plant organs
3.1 Copper concentration

Cu concentration was determined in leaves after first sampling and separately in 

all  organs  at  the  end  of  the  experiments  (Fig.  7).  On  unpolluted  soil,  the 

concentrations of Cu in roots, stems and leaves were similar in 
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Fig. 5: vesicles of G. mosseae in colonized AL35 roots
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Fig. 6: Root, stem and leaf biomass of AL35 plants after two growth 
seasons  on  unpolluted  or  polluted  soil.  Plants  were  either 
uninoculated  (C)  or  inoculated  with  G.  mosseae (Gm)  or  G. 
intraradices (Gi). Values are means ± standard deviation (n = 3). 
Different  letters  indicate  significant  differences  for  amoung 
treatments (P<0.05). 

0
2

4
6

8

10
12

14

16

18

C G m G i

B
io

m
as

s 
(g

 D
W

 p
la

n
t

-1
)

Leaf Root Stem

0

2

4

6

8

10

12

C G m G i

Leaf Root Stem

NO N P O LL UTE D P O LLUTE D

a a

aa

a a

b
a

a

b

a

a

b

a

a

b b

a

47



Fig. 7: Cu concentrations in leaves, stems and roots of AL35 
plants grown on non-polluted or polluted soil, in the presence or 
absence (C) of either G. mosseae  (Gm) or G. intraradices  (Gi). 
White bars indicate Cu concentration in leaves, collected after one 
growth seasons; stems and roots were harvested only at the 
second growth season (end of experiment). Different letters 
indicate significant differences (P<0.05) for treatments referred to 
the same organ and for each sampling time separately.
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mycorrhizal  and  non  mycorrhizal  plants. On  polluted  soil,  Cu  reached  the 

highest concentration in roots up to 600 mg kg-1 DW. In Gm plants, in fact, it 

was detected at concentrations over 6 times that of non-mycorrhizal plants. In 

stems, Cu concentration was comparatively low, ranging from about 5 to 20 mg 

kg-1 DW. On unpolluted soil, differences were not significant among treatments. 

While  on  polluted  soil,  significant  differences  were  observed  among 

mycorrhizal plants and controls. In leaves, Cu was always rather low (ranging 

from ca 10 to 30 mg kg-1 DW) as compared to roots. Although at the second 

sampling date, on polluted soil, AL35 plants inoculated with Gm and Gi showed 

a significant Cu concentration increase. 

3.2 Zinc concentration

Zn  was  mainly  accumulated  in  the  leaves  (Fig.  8).  On  unpolluted  soil,  no 

differences  were  detected  in  leaves  and  stems  of  mycorrhizal  and  non 

mycorrhizal plants. In roots of Gm and Gi plants, Zn content was less than half 

that of control (Fig. 8).

On polluted soil  at  the first  sampling date (white bars),  leaves of Gm plants 

accumulated a significant and higher concentration (about twice) with respect to 

control  and  Gi  plants.  At  the  second  sampling  (black  bars),  leaf  Zn 

concentrations reached the highest values, about 400-500 mg kg-1 DW, although 

differences  between  mycorrhizal  and non-mycorrhizal  plants  were  no  longer 

significant. In stems, Zn concentrations were lower than in leaves (60-120 mg 

kg-1 DW) and higher in uninoculated and Gi plants than in Gm plants. In roots, 

Zn concentrations were of the same order of magnitude as in stems. However, 

metal quantities detected in roots were higher in Gm plants than in control and 

Gi plants (which were not significantly different among them). 
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Fig. 8: Zn concentrations in leaves, stems and roots of AL35 
plants grown on non-polluted or polluted soil, in the presence or 
absence (C) of either G. mosseae  (Gm) or G. intraradices  (Gi). 
White bars indicate Zn concentration in leaves, collected after one 
growth seasons; stems and roots were harvested only at the 
second growth season (end of experiment). Different letters 
indicate significant differences (P<0.05) for among treatments 
referred to the same organ and separately for each sampling time.
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In Table 6, total amount of HMs, extracted by the plants for each organ, and the 

Translocation Factor (TF, shoot to root ratio) are reported. Total amount of Zn 

and Cu extracted by AL35 plants increased in all organs after inoculation with 

AM fungi.  

Cu  concentration  increased  dramatically  in  roots  after  mycorrhization.  An 

increase, albeit smaller, was also observed in leaves and stems. Thus, the total 

amount of Cu extracted by Gm plants as a whole, relative to uninoculated ones, 

rose 30-fold. The organ distribution of Cu (in percentage) was also different in 

non-mycorrhizal and mycorrhizal plants. In control plants, (uninoculated plants) 

the percentage of Cu concentration in roots was 68,7. In Gm and Gi plants, total 

amount of Cu was 95,0 and 93,5% respectively. Consequently, the TF was also 

much higher in uninoculated plants compared to mycorrhizal plants. 

Zn concentration was always higher in mycorrhizal plants, with the exception of 

Gi leaves, as compared with non mycorrhizal ones. The TF for Zn was reduced 

in mycorrhizal plants relatively to the control.

4. PaMT and PaSPSD gene expression patterns in AL35 leaves
MT proteins and PA synthesis can be induced by a wide variety of chemical and 

physical  stimuli  in  plant.  To  determine  the  effect  of  HM  stress  on  gene 

expression of PaMT and  PaSPDS gene family  and  PaADC gene,  qRT-PCR 

experiments were performed in AL35 leaves.

4.1 Transcript levels of PaMT genes 

Gene expression analyses  were  performed  to  evaluate  steady  state  transcript 

levels of  PaMT genes in leaves of AL35 poplar plants grown on polluted and 

unpolluted soil, in the presence or absence of AM fungi, during the first (Fig. 9) 

and second vegetative season (Fig. 10).
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Table  6:  Total  Cu  or  Zn  content  (calculated  as  the  product  of  mean  metal 
concentration by mean DW) in leaves, stem and roots of AL35 plants after two 
growth seasons on polluted soil in the absence (C) or in the presence of  G. 
mosseae (Gm) or  G. intraradices (Gi). Percentage content (%) in each organ 
relative  to  the  total  (leaves+stems+roots),  and  the  shoot  (leaf+stem)–to–root 
ratios (Translocation Factor, TF) are also given.

Leaves Stems Roots
total (mg) % total (mg) % total (mg) % TF

Copper
C 0.010 8.9 0.025 22.3 0.077 68.7 0.45

Gm 0.089 2.9 0.064 2.1 2.955 95.3 0.05
Gi 0.012 1.3 0.047 5.3 0.832 93.5 0.07

Zinc
C 0.194 44.1 0.166 37.7 0.078 17.7 4.6

Gm 1.502 50.0 0.525 16.9 1.035 33.7 2.0
Gi 0.203 12.8 0.967 61.9 0.394 15.2 3.0
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Fig. 9: Transcript levels of  PaMT genes in leaves of  P. alba clone 
AL35 at the first sampling date, on polluted or non-polluted soil in 
the  presence  or  absence  (C)  of  either  G.  mosseae (Gm)  or  G. 
intraradices (Gi). The value 1 was arbitrarily given to control plants 
(C).  Bars  represent  95%  confidence  intervals  calculated  on  two 
biological replicates. 
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Fig. 10: Transcript levels of PaMT genes in leaves of P. alba clone 
AL35 at the second sampling date, on non-polluted or polluted soil 
in the presence or  absence (C) of  either  G. mosseae (Gm) or  G. 
intraradices (Gi). The value 1 was arbitrarily given to control plants 
(C).  Bars  represent  95%  confidence  intervals  calculated  on  two 
biological replicates.
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At the first sampling date (Fig. 9), transcript levels of all PaMT genes in leaves 

of all plants, grown on unpolluted soil, were either lower in the presence of AM 

fungi,  or  unaffected  compared  with  uninoculated  controls.  In  particular,  the 

transcription levels of all PaMT gene isoforms were strongly down-regulated in 

Gi  mycorrhizal  plants.  While,  in  Gm  plants,  all  PaMT  genes  were  weakly 

affected  by  mycorrhization.  On  polluted  soil,  gene  expression  of  all  PaMT 

genes was strongly up-regulated by AM fungi (from ca 3 to ca 6-fold), with the 

exception of PaMT3a in Gm plants. At the end of the experiment (Fig. 10), on 

polluted soil, the up-regulation of MT genes, induced by AM fungi, was always 

very  high (up to  8-9 folds).  At  second sampling,  compared to  the first  one, 

however, transcription of PaMT1a, PaMT1b and PaMT2a was enhanced in all 

plants  by  the  presence  of  AM  fungi.  In  contrast,  PaMT2b,  PaMT3a  and 

PaMT3b genes were strongly enhanced,  also in Gi plants, on unpolluted soil. 

4.2 Transcript levels of PaADC and PaSPDS genes

qRT-PCR analyses were performed to evaluate steady state transcript levels of 

the  PaADC and PaSPDS, key genes of PA biosynthetic pathway (Fig. 11 and 

12). The mycorrhization of AL35 trees on unpolluted soil caused a slight down-

regulation of PaADC gene at both sampling dates (Fig. 11 a and c). By contrast, 

on contaminated soil, an induction of PaADC transcription (7-fold in Gm and 4-

fold in Gi plants - Fig. 11 b) was observed in mycorrhizal plants at the first 

sampling  date.  At  the second sampling,  the expression of  PaADC gene was 

down-regulated in inoculated plants as compared to uninoculated ones, and to 

the same extent on polluted and non polluted soil (Fig. 11, c and d).

The transcription of both PaSPDS genes at first sampling date was lower in Gi 

plants, or unchanged in Gm, relatively to uninoculated control (Fig. 12 a) grown 

on unpolluted soil.
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Fig. 11: Transcript levels for PaADC in leaves of AL35 plants at the 
first (a, b) and second (c, d) sampling date. Plants were grown on non-
polluted or polluted soil in the presence or absence (C) of either  G. 
mosseae (Gm) or  G. intraradices (Gi).  The value 1 was arbitrarily 
given to control plants (C). Bars represent 95% confidence intervals 
calculated on two biological replicates.
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Fig. 12: Transcript levels for  PaSPDS1 and PaSPDS2 in leaves of 
AL35 plants at the first (a, b) and second (c, d) sampling date. Plants 
were  grown  on  non-polluted  or  polluted  soil  in  the  presence  or 
absence (C) of either G. mosseae (Gm) or G. intraradices (Gi). The 
value 1 was arbitrarily given to control plants (C). Bars represent 
95% confidence intervals calculated on two biological replicates.
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In contrast, on contaminated soil both PaSPDS1 and PaSPDS2 gene were up-

regulated by AM fungi, with a strong induction in Gi plants (Fig. 12 b). 

At the second sampling date, both genes were up-regulated by the presence of 

AM fungi, either on polluted (Fig. 12 d) or unpolluted soil (Fig. 12 c), with  the 

exception  of  PaSPDS2  gene  in  Gm  plants  (Fig.  12  d),  where  only  a  low 

induction is observed.

5. Analysis of PA content
The most common PAs in plants are Spd, Spm and their diamine precursor, Put. 

All of them were detected in their free (Fig. 13 a and b) and soluble conjugated 

form (Fig. 13 c and d) both at first and second sampling date, in leaves of AL35 

plants grown on polluted and unpolluted soil. At first sampling, free Put and Spd 

levels  were  significantly  higher  in  plants  grown on  contaminated  soil  when 

compared  with  the  plants  grown  on  unpolluted  soil.  At  first  sampling,  on 

unpolluted soil (Fig. 13 a), free PA levels, particularly Put and Spd contents, 

were strongly reduced in the presence of AM fungi, especially in Gm plants. 

While leaf contents of conjugated Put, Spd and/or Spm were significantly higher 

in mycorrhizal plants,  if compared with uninoculated control (Fig. 13 c).  On 

polluted soil (Fig. 13 b), free Put titers were similar in AL35 leaves either in the 

presence  or  in  the  absence  of  AM  fungi.  Spd  and/or  Spm  levels  were 

significantly higher in Gm plants (Fig. 13 b). On polluted soil, conjugated Spd 

and Spm titers were also dramatically enhanced, up to 5-folds, only in Gi plants 

(Fig. 13 d), relative to uninoculated controls.

At the end of the experiment  (June 2007), free and conjugated PA levels in 

mycorrhizal plants vs uninoculated controls were not significantly different on 

both soils. 
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Fig.  13:  Free  (a,  b)  and  soluble  conjugated  (c,  d)  putrescine  (Put), 
spermidine (Spd) and spermine (Spm) levels in leaves of  P. alba clone 
AL35 (first sampling date) grown on non-polluted (a, c) or polluted (b, d) 
soil  in  the  presence  or  absence  (C)  of  either  G.  mosseae (Gm)  or  G. 
intraradices (Gi). Different letters indicate significant differences (P<0.05) 
for each polyamine referred to uninoculated control. 



Discussion

1.  G.  mosseae  and  G.  intraradices  fungi  restore  plant  biomass  

despite  a  higher  copper  and  zinc  accumulation  in  AL35  plant  

organs
The  natural  ability  of  plants  to  remove  contaminants  can  be  integrated  and 

improved by symbiosis with AM fungi (Smith, 1987). They colonize roots of 

almost all plant species. AM fungi may, depending upon the particular host plant 

and  fungus,  promote  a  better  plant  growth  and  nutrient  acquisition,  P  in 

particular, and modify the architecture of root system, through their extensive 

extraradical mycelium (Smith, 1987; Lebeau, 2008). Mycorrhizal fungi can also 

play  an  important  role  in  the  protection  of  plants  against  root  pathogens 

(Schelkle, 1996). 

Populus genus  is  known to  form both  ectomycorrhizal  and endomycorrhizal 

associations occasionally present in the same root system (Cripps, 1993). This 

flexibility  in  a  double  colonization  capacity  can  result  from several  factors 

(successional  stages,  local  soil  conditions,  geographical  location  -  Rooney, 

2009) and may contribute to its widespread geographic distribution in temperate 

regions of Boreal hemisphere (Khasa, 2002).  

The potential of AM fungi to buffer HM stress has been demonstrated in wide 

range of studies (Hildebrandt et al., 1999; Janouskova, 2006; Chen, 2007), also 

including poplar (Lingua, 2008). Moreover, a considerable variability in plant 

and fungal  interaction  has  been observed in  contaminated  soils  (Liao,  2003; 

Wang, 2005).  Therefore, it  has been proposed that  specific  fungal  tolerance 

mechanisms may contribute to increased HM tolerance of mycorrhizal plants.  

In order to evaluate in AL35 clones the potential benefits of pre-inoculation with 

AM fungi on growth metal accumulation and HM tolerance, it is important to 

determine how the establishment of the symbiosis is affected by contaminants. 

In the present work, percentage of mycorrhization with either G. mosseae or G. 
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intraradices of  AL35  poplar  roots  was  comparable  in  plants  grown  on 

unpolluted and polluted soil, suggesting that the two AM fungi possess specific 

and  unique  mechanisms  of  HM resistance/tolerance,  or  that  the  capacity  to 

rapidly adapt to HM stress, due to pre-AM fungi inoculation could overcome the 

reduced  (or  lack  of)  spontaneous  mycorrhization  frequently  encountered  in 

contaminated soils. HMs, in fact, have been reported to reduce, delay, or even 

eliminate  AM fungi when they are present  at  high concentrations in the soil 

(Leyval, 1997; Citterio, 2005; Repetto, 2003; Lingua, 2008), thus hindering any 

possible  beneficial  effects  of  mycorrhization  (Lingua et  al.  2008).  However, 

even in highly contaminated soils, AM fungi propagules never totally disappear 

(Vallino, 2003), indicating a genetic possibility to evolve HM tolerance under 

selection  pressure  of  the  environment.  Recently,  progress  has  been  made 

towards understanding cellular,  constitutive and adaptive mechanisms  of AM 

fungi to contaminated soils, in order to control HMs and to avoid their toxicity 

(Hildebrand,  2007;  Ferrol,  2009). Moreover the  G.  intraradices genome 

sequence project will contribute to the disclosure of new information on genes 

potentially involved in HM tolerance and homeostasis,  not only in the of  G. 

intraradices, but also in other fungus species. 

In  AL35 the  percentage  of  mychorrizal  colonization  by  G. mosseae and  G. 

intraradices varies from 5 to 23% and it  is  in line with previous reports for 

Populus genus (Khasa, 2002; Takàcs, 2005; Todeschini,  2007; Lingua, 2008; 

Quoreshi,  2009).  However in AL35 roots  many vesicles,  but  not  arbuscules, 

were observed, contrary to other clones of P. alba (Lingua, 2008) and P. nigra 

(Todeschini,  2007),  that  have  been  shown  to  have  low  levels  of  arbuscule 

formation, both on polluted or unpolluted soil, albeit the soil used for the trial 

was not an industrial contaminated soil, but an artificial contaminated soil. The 

lack of arbuscules in our case could be related to specific characteristic of clone-

fungal species and soil interaction, or to the high level of P in the soil (Smith, 

1987). Investment in symbiosis therefore means that plants can indirectly access 
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nutrients  beyond the  nutrient  depletion  zone  of  roots  via  extensive  mycelial 

networks.  When  soil  concentration  of  available  P  is  high,  it  may  be  more 

efficient for plants to absorb P directly, than to take it up via fungus (Jakobsen, 

2001), or the cellular exchange between plant and fungi must be localized in 

structures different from arbuscules. Consistent with this hypothesis, it has been 

reported  that  tomato  mycorrhizal  roots  expressed  five  phosphate  transporter 

genes (LePT1-LePT5) and one of them (LePT5) was also expressed in cells that 

did not contain arbuscules (Balestrini, 2007).   

In  AL35 plants grown on polluted soil, the inhibitory effect of the HMs on its 

growth ability is evident and that is a frequent symptom of phytotoxicity. It is 

noteworthy,  however,  that  biomass  production  was  restored  to  levels 

comparable with that of plants grown on unpolluted soil  by inoculation with 

either  of  the  two AM fungi.  These  data  clearly  indicate  that  mycorrhization 

exerted  a  strong  protective  effect  capable  of  removing  the  negative 

consequences of HM stress at the cellular and tissue levels. Only leaf biomass in 

Gi plants, grown on polluted soil, was not restored by plant mycorrhization. 

Some  histological  analyses  on  leaves  of  a  P.  alba clone  (Villafranca), 

preinoculated with Gm or Gi fungi and grown on Zn supplemented soil, have 

revealed interesting differences at chloroplast level. Chloroplasts of Gi plants, 

which accumulated a very large concentration of Zn (ca 2500 ppm/mg kg-1) had 

almost  a total absence of starch, and the leaves were thinner and smaller.  In 

contrast,  in  Gm plants,  where  Zn  concentrations  were  comparable  (ca  2000 

ppm/mg kg-1), leaf size and starch content were equivalent to the plant controls 

grown on uncontaminated soil in the presence of AM fungi (Todeschini and co-

workers,  manuscript  submitted).  These data concordant with previous studies 

describing differentiatl  effects on plants of the white poplar and black poplar 

exposed (or not)  to HMs,  associated to a specific  AM fungi (Lingua,  2008). 

Other examples of disparity between the effects of G. mosseae as compared with 
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G. intraradices are related to PA levels and to PaMT gene expression in AL35 

clones. 

AM fungi improve nutrient uptake, especially P, thus enhancing plant growth 

(Janouskova, 2005; Wang, 2005). However, at the first sampling date, in AL35 

organ tissues, no significant difference was observed in P concentration between 

inoculated and uninoculated plants. By contrast, on polluted soil, at the second 

sampling,  restoration  of  growth  to  control  levels  in  mycorrhizal  plants  was 

associated with increased P concentrations relative to non-mycorrhizal plants (at 

least in roots of both Gm and Gi plants). This observation suggests that growth 

recovery was at least in part due to a general effect on nutritional status. The 

beneficial effects of mycorrhizal colonization through improved P nutrition may 

become evident only in a highly contaminated soil and under long-term stress-

inducing conditions.

Mycorrhizal  fungi  may  induce the  alleviation  of  HM  stress  either  by 

immobilisation  of  pollutants  in  the  mycorrhizosphere  (Lebeau,  2008; 

Hildebrandt, 2007 and refs therein; Gonzalez-Guerrero, 2008) and by promoting 

their immobilization in the substrate (Janouskova, 2006), or by decreasing HM 

concentration in different plant organs (Kapoor, 2007). 

Variable effects in plants following mycorrhizal inoculation have been observed 

relative  to  metal  uptake  and  sequestration,  depending  on  many  factors.  AM 

fungi  are  able  to  transport  non-essential  elements  (Joner,  1997;  Hutchinson, 

2004) and to promote their sequestration in roots, or in plant leaves (Galli, 1994; 

Janouskova, 2006). However, in some plants, AM fungi can induce metal uptake 

without enhancing growth of the host plant (Hildebrandt, 2007).

A stress alleviating mechanism resulting from enhanced growth in the presence 

of microorganisms is the “dilution effect” (Audet, 2007). Thus, if mycorrhizal 

plants display a greater biomass, then tolerance may derive from the fact that 

total amount of metal extracted increases in the whole plant but not the organ 

concentrations.
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Thus,  dilution  effects  cannot  be  assumed  in  present  study.  In  fact,  stress 

alleviation  due  to  AM fungi,  in  terms  of  growth  recovery  on  polluted  soil, 

occurs in spite of the fact that AL35 plants, in the presence of either G. mosseae 

or G. intraradices, accumulated more Cu and Zn in the plant organs (roots and 

leaves), than those of non-mycorrhizal ones. 

Although it is difficult to compare pot greenhouse experiments with field trials, 

it  is  remarkable  that  the  Zn concentrations  accumulated  over  a  similar  time 

period (i.e., first growth season, i.e., 3-6 months) by AL35 leaves in the present 

study were much lower than in a previous field study on the same contaminated 

soil  (Castiglione,  2009).  This  could  be  due  to  several  factors,  such  as  soil 

sterilization,  lower  transpiration rate,  limited  root  development,  and/or  lower 

metal  bioavailability  (evaluated at  ca 10-15 % at  the second sampling  date). 

However, HM concentrations were comparable, both on polluted and unpolluted 

soil, with those recently reported by Hassinen and co-workers (2009) for hybrid 

aspen (P. tremula x P. tremuloides) grown on a multi-metal contaminated site, 

except for Cu concentrations in roots, which were considerably higher in AL35 

plants. However, in the case of hybrid aspen, the presence of AM fungi was not 

investigated.  

In  uninoculated  AL35 plants  grown on  polluted  soil,  Cu  was  taken  up  and 

accumulated mainly in the roots (approx 5-fold stem/leaf  levels);  this organ-

distribution is in accordance with other studies on woody plants, including Salix 

(Vandecasteele,  2005), and  Populus (Todeschini,  2007). By contrast,  Zn was 

accumulated mostly  in leaves,  again according with the expected pattern (Di 

Baccio, 2003; Lingua, 2008). 

Inoculation with  AM fungi seems to contribute to this redistribution of some 

HMs inside the plant and affect shoot/root partitioning of metals. Thus, although 

at the end of the experiment, Gm plants had higher leaf Cu concentrations than 

non-mycorrhizal  ones,  probably due to  the overall  increase in uptake of  this 

metal (root Cu concentration was 6 times higher and the total amount in plants 

64



30  times  higher),  TF  reveals  an  altered  shoot/root  partitioning  of  HMs  in 

mycorrhizal vs non-mycorrhizal plants for both metals. In particular, Gm plants, 

which grew much better than controls on polluted soil, had substantially higher 

root  concentrations  of  both  HMs.  Thus,  increased  tolerance  in  Gm/Gi 

mycorrhizal plants did not depend upon an exclusion mechanism (i.e., reduced 

metal  uptake  into  roots).  Nevertheless,  plants  that  preferentially  accumulate 

HMs in roots generally display higher tolerance, since photosynthetic apparatus 

is protected by toxicity due to the presence of HMs (Pulford, 2002). Reduced 

HM toxicity has been associated with diminished root-to-shoot translocation due 

to the presence of AM fungi in a tropical grass (Brachiaria decumbens) (Soares, 

2008). In an another greenhouse pot experiment, the effect of  G. mosseae  has 

been  investigated  in  three  leguminous  species  grown  on  multi-metal 

contaminated  soil  (Lin,  2007).  These  plants  grew  better,  indicating  that 

mycorrhization enhanced HM plant tolerance. However, in mycorrhizal plants, 

root/shoot ratios of Cu in all three species, and of Zn in one of them (alfa-alfa), 

were also greater, indicating reduced metal translocability. 

Total amount of extracted HMs, in our study, was always greater in mycorrhizal 

plants. The white poplar AL35 clone, in fact, seems to be a promising plant for 

phytoremediation purposes,  especially  if  preinoculated with  G. mosseae.  The 

present study confirms that AL35 is particularly suitable for phytostabilization 

of HMs as previously reported (Castiglione, 2009). Moreover, probably because 

hyphae display a higher affinity for HMs than plant cells (Joner, 2000), HMs 

become immobilized in mycorrhizal roots more than in non mycorrhizal ones, 

thereby increasing phytostabilization, rather than the phytoextraction. This can 

avoid some of the potential risks described with respect to phytoextraction of 

toxic metals, such as the reintroduction of HMs in the environment due to leaf 

fall.
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2. Metallothionein genes expression in AL35 white poplar and metal  

tolerance
In the present research, AM fungi improved growth and HM accumulation in 

organs of mycorrhizal AL35 plants. This effect depends on different molecular 

and biochemical processes, resolving in an alleviation of HM stress. Sunflower 

plants inoculated with G. intraradices were less sensitive to Cd stress than non 

inoculated plants, despite the greater up take of the metal; this phenomenon was 

associated to a higher amount of photosynthetic pigments as well as to shoot P 

concentrations,  and,  to  a  lesser  extent,  to  the  increased  guaiacol  peroxidase 

activity (de Andrade, 2008). Galli and co-workers (1995) have shown that AM 

fungi protect maize roots against metal toxicity by enhancing metal chelating 

compounds, as cysteine and glutathione. 

Several  studies  have indicated  that  MT gene  expression  responds  to  various 

developmental,  or  environmental  signals  (Kohler,  2004;  Castiglione,  2007). 

Some of these studies have attempted to establish a role for these compounds in 

HM plant tolerance, including poplar.  Kohler and co-workers (2004) showed 

that  PtdMTs from the hybrid  poplar  P.  x  generosa were  able  to  restore  Cd 

tolerance in a Cd-hypersensitive yeast mutant. In addition, PtdMT1 and PtdMT2 

gene expression was up-regulated by Zn, but just slightly by 50  M Cu (and 

totally inhibited by higher concentrations). The diverse expression patterns of 

MT genes in plants suggest that the multiple MT isoforms (in poplar as in other 

plants) may have diverse functions in HM sequestration/homeostasis in different 

plant organs (Cobbett, 2002). 

In a previous  study (Castiglione, 2007), a detailed expression analysis of the 

‘Villafranca’  MT genes  was  carried out  on micropropagated  plantlets  grown 

under  in  vitro conditions,  revealing  that  the  MT  genes  were  differentially 

stimulated by high Zn concentrations, although the observed response was not 

linear with respect to metal dosage and exposure time. At present, few studies 

have  investigated  gene  expression  patterns  in  mycorrhizal  plants  exposed  to 
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HMs. Tomato plants colonized with G. intraradices (Ouziad, 2005) grew better 

than  non-mycorrhizal  plants  on  HM  polluted  soil.  An  analysis  of  gene 

expression  patterns  revealed  that  LeMT2  was  strongly  up-regulated  on 

contaminated soil, and that fungal colonization reduced the amount of Lemt2 

transcripts. Other MT genes, as well as LeNramp2 (coding for HM transporter) 

and LePCS1 (coding for phytochelatin synthase) genes were not differentially 

expressed.  Thus,  despite  higher  tissue  (root,  and  in  some  cases  leaf)  metal 

concentrations, up-regulation of MT gene expression may have contributed to 

stress alleviation in mycorrhizal plants, allowing them to grow distinctly better 

than in the absence of AM fungi colonization.

In  the  present  work,  PaMT  gene  expression  in  AL35  plants  was  strongly 

affected by inoculation with AM fungi, at the first sampling date. The growth of 

plants on different  soils (unpolluted,  or polluted, with Cu and Zn) causes an 

opposite  effect  on  PaMT  gene  transcription.  On  HM  polluted  soil  gene 

transcription was enhanced, while, on unpolluted soil,  PaMT gene expression 

was reduced, or unchanged. 

Moreover,  no  direct  relation  between  leaf  metal  concentrations  and  MT 

transcript levels has been observed, at first sampling, hence the former cannot 

explain the  observed induction of  the  latter  in  mycorrhizal  plants.  However, 

although roots  were  not  harvested  at  the  first  sampling  date,  data,  from the 

second sampling, indicate that roots of Gm/Gi plants had accumulated higher 

concentrations of one, or both HMs than controls. This suggests that leaf mRNA 

levels  are  induced  by  a  signal  coming  from  roots  (namely,  the  high  metal 

concentration and/or the AM fungi). Since results from unpolluted soil showed 

that the fungus alone does not have this effect,  the two stimuli  (HMs + AM 

fungi) appeared to be necessary for this induction to take place.

Based on biomass data, AL35 mycorrhizal plants performed better under HM 

stress  than  non-mycorrhizal  ones.  This  improved  tolerance  was  probably 

associated, in general, to a higher MT gene expression, suggesting that these 
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polypeptides may afford protection against HM stress. Recently, transgenic  P. 

alba ‘Villafranca’ plantlets, over-expressing a pea MT2 gene (PsMTA1), were 

shown  to  exhibit  improved  tolerance  to  Cu,  lower  ROS  accumulation,  and 

reduced  paraquat-induced  photo-oxidative  stress  (Balestrazzi,  2009).  Thus, 

increased protection against HM stress may be the direct consequence of the, as 

yet  uncertain,  metal-binding  capacities  of  plant  MTs,  or  an  indirect  effect 

deriving from reduction of oxidative stress through their purported free radical 

scavenging properties (Akashi, 2004; Wong, 2004).

At the second sampling date, non mycorrhizal and mycorrhizal  AL 35 plants 

showed a similar trend (up-regulation) on polluted and unpolluted soils. Thus, 

by the middle of the second growth season, probably the plants/fungi symbiosis 

may have adapted to the high concentration of HMs in the polluted soil (metal 

sequestration,  etc.)  and  the  effect  observed  on  PaMT  gene  expression  was 

mainly associated to the presence of the AM fungi.

3. Polyamine metabolism in mycorrhizal plants grown on polluted  

or unpolluted soil
It  has been  well  documented  that  HM  toxicity  induces  changes  in  PA 

metabolism in plants (Geuns, 1997; Lin, 1999; Groppa, 2008 a, b, c).

In plants, Kuthanová and co-workers (2008) found an abnormally high levels of 

Put in Cd treated tobacco cells, and hypothesized that PAs might be involved in 

the process of apoptosis. In tobacco plants, Spd and Spm induced hypersensitive 

cell death after pathogen attack, probably through the production of hydrogen 

peroxide during their catabolism (Yoda, 2003). 

Proline content was found to be significantly increased after treatments at the Cd 

higher concentrations in roots, stems, and leaves (Wu, 2004) of barley plants 

(Hordeum vulgare). This amino acid was probably involved in detoxification of 

HMs by its direct function, or by the biosynthesis of chelating peptides (Wu, 

2004).  PA production  was  related,  at  least  in  part,  to  the  inhibition  of  root 
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growth observed in Cd and Cu treated sunflower seedlings (Groppa, 2008b) and 

in Cd treated wheat plants (Groppa, 2008c). Probably, PA levels are involved in 

the signaling cascade triggered in response to HM stress. Lei and co-workers 

(2007)  observed  in  P.  cathayana exposed  to  high  Mn  concentrations,  the 

accumulation of free amino acids, the activation of the anti-oxidant enzymes, 

superoxide dismutase and ascorbate peroxidase, and the enhanced synthesis of 

ABA and PAs.  A regulation of  PA metabolism has been reported for  white 

poplar  exposed to high Zn or  Cu concentrations in  in vitro (Franchin,  2007) 

growth,  or  in greenhouse (Lingua,  2008) conditions,  and has been shown to 

correlate with the extent of HM tolerance.

Very  little information is available about the changes of PA levels caused by 

AM fungi, and almost nothing as regards the combination of HM stress and AM 

fungi.

In this study, it was observed that PA contents in AL35 poplar leaves after three 

months of exposure to high HM concentration were increased in the presence of 

AM fungi, as revealed by the higher concentration of free and conjugated PAs in 

Gm and Gi plants, and by an up regulation of PaADC, PaSPDS1 and PaSPDS2 

genes.  These  data  support  the  capability  of  different  white  poplar clones  to 

increase PA metabolism in response to abiotic stress induced by HMs (Franchin, 

2007), but also provide a new insight into the combined effect of HMs and AM 

fungi. 

In a previous field study on HM-contaminated soil, it was shown that leaves of 

AL35 clone contained a large amount of Put associated with the very high Zn 

and  Cu  concentration  accumulated  in  all  plant  organs  (leaves,  roots,  stems) 

(Castiglione,  2009). Enhanced Put titres seem to be a common physiological 

response to HM stress (Groppa, 2008 a). However, in the present greenhouse 

study, much lower amounts of these HMs were taken up by the AL35 plants, 

probably due to lower transpiration rate, limited root development in pots, lower 

HM bioavailability, and/or lack of aerial metal deposition. This condition could 
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account for  the limited HM induced PA response.  A modest  increase in Put 

concentration  (ca  40-50%)  was  likewise  reported  for  P.  cathayana plants 

exposed to high Mn concentrations (Lei, 2007). Although, in the present study, 

at first sampling date, AL35 plants don’t accumulate Put, ADC transcripts were 

increased by the presence of HM and AM fungi. The lack of accumulation of the 

Put, diamine precursor of the higher PAs, may depend upon the fact that it was 

converted into Spd, in accordance with the importance of the ADC pathway (for 

Put biosynthesis) in response to different types of stress, such as salt (Liu, 2006) 

and HM (Prabhavathi, 2007).

Gene expression analysis indicated that PaSPDS1 and PaSPDS2 up-regulation, 

in inoculated plants growing on polluted soil was stronger in Gi plants, possibly 

indicating the greater need for these plants, compared with Gm ones, to contrast 

HM induced stress. Moreover, it is not surprising that different fungus species 

exert different effects. Transcriptional changes associated with colonization by 

G. mosseae and G. intraradices in mycorrhizal roots of the model legume barrel 

clover  revealed  that  approximately  200 genes  were  significantly  co-induced, 

while several hundred other genes were up-regulated specifically by one of the 

two symbiotic fungi (Hohnjec, 2005).

As a result of the transcriptional up-regulation of PaSPDS genes, concentrations 

of  free  and  conjugated  Spd  and,  to  a  lesser  extent,  Spm,  were  significantly 

higher  than  in  controls  in  mycorrhizal  plants  on  polluted  soil.  Similarly,  in 

Narrow-leaf Bird's-foot Trefoil (Lotus glaber), the PA balance was modulated 

by inoculation with G. intraradices, since in two month-old mycorrhizal plants 

grown under salt  stress,  the free  (Spd+Spm)/Put  ratio increased in roots  and 

shoots relative to uninoculated plants (Sannazzaro, 2007). Also in alfalfa, free 

Spd and Spm concentrations were enhanced in leaves and roots  under water 

stress conditions in the presence of  G. fasciculatus (Goicoechea, 1998). Taken 

together,  these  data  suggest  that  the  accumulation  of  PAs,  rather  than  their 
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diamine  precursor  Put,  was typical  for  mycorrhizal  plants,  in  response to an 

abiotic stress factor. 

In AL35 plants, also, the conjugated PAs, mainly phenylamides (i.e., products of 

the  covalent  bonding  between  hydroxycinnamic  acids  and  aliphatic  di-  and 

polyamines), increased in leaves of mycorrhizal plants grown on polluted soil, 

especially  in  those  inoculated  with  G.  intraradices.  Mn  treatment,  in  P. 

cathayana, strongly influenced the composition and concentration of free amino 

acids, with the greatest increases observed for His, Pro, Phe, Tyr and Ser (Lei, 

2007).  Phe  is  (via  phenylalanine  ammonia-lyase)  an  important  precursor  of 

many phenolics, and hence also of the phenylamides. There is previous evidence 

suggesting that mycorrhizal roots produce a long-distance signalling, resulting in 

the activation in leaves of  secondary  metabolite  production (Guerrieri,  2005; 

Copetta, 2006).

The  phenylamide  conjugates  operate  as  singlet  oxygen  quencher  (Velikova, 

2007) and have scavenging properties against free radicals (Son, 2002). Thus, it 

is proposed that phenylamides may modulate oxidative stress and ROS-based 

signalling in the response of plants to environmental cues, including HM stress 

(Balestrazzi, 2009).  

When compared with Gm, Gi plants accumulated more conjugated PAs; they 

also exhibited a lower leaf biomass, comparable with that of non mycorrhizal 

plants grown on polluted soil, and, therefore, indicative of a reduced capacity to 

recover from HM-induced stress. This would suggest a different role for the free 

and conjugated forms of PAs, with the latter regarded as secondary metabolites 

(Edreva, 2007), and thus more closely related to defense and, in some cases, to 

growth inhibition associated to NO (Tun, 2006). NO is considered to be a stress-

inducing agent (Leshem, 1997), but it can exercise a protective role, functioning 

as  an  antioxidant  (ROS  scavenger),  limiting  in  this  way  cellular  damages 

(Laspina,  2005).  Likewise,  NO  seems  to  be  a  signalling  compound  in  the 

molecular  cascade leading to changes in gene expression (Delledonne,  2005; 
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Lamattina,  2003).  Thus,  NO  could  be  a  link  between  PA-mediated  stress 

responses and other stress mediators (Groppa, 2008 b).

At first sampling date, AL35 plants grown on unpolluted soil, showed a different 

transcriptional pattern relative to plants grown on polluted soil. This pattern was 

associated  to  an  opposite  PA  profile:  in  mycorrhizal  plants,  free  PA 

concentrations  decreased,  while  those  of  conjugates  increased  slightly.  A 

decrease  in  free  PA levels  was  also  observed in  English  Plantain  (Plantago 

lanceolata)  mycorrhizal  plants  in  the  presence  of  limiting,  or  excess 

concentrations of P, suggesting that PA decrease could depend upon the plant’s 

nutritional  status  (Paradi,  2003).  The  limited  increase  in  conjugated  PAs, 

observed  in  AL35  inoculated  or  not,  grown  on  unpolluted  soil,  can  be 

interpreted as a response to the systemic signal generated by the AM fungi per 

se, in the absence of abiotic stress. Peipp and co-workers  (1997) reported that 

PA-derived  phenylamides,  such  as  coumaroyl-  and  feruloyl-putrescine, 

accumulated  in  barley  upon  G.  intraradices colonization,  and  this  was 

interpreted  as  a  defence  response.  Moreover,  the  increase  in  the  amount  of 

conjugates in mycorrhizal plants of AL35 plants occurred at the expense of the 

respective free forms, suggesting that PA conjugation to phenols (probably due 

to increased availability of the latter) was stimulated, but not by a biosynthetic 

activity  (as  revealed  by  the  down-  rather  than  up-regulation  of  PaADC and 

PaSPDS genes). 

As  observed  for  PaMT  genes,  at  the  second  sampling,  differences  between 

mycorrhizal and non-mycorrhizal plants with regard to PA biosynthetic genes, 

followed  the  same  pattern  on  both  polluted  and  unpolluted  soil.  A  down-

regulation for PaADC gene and an up-regulation for PaSPDS genes are evident. 

This reflected the absence of significant  differences in PA concentrations on 

both  types  of  soil,  and  may  again  be  indicative  of  the  plant’s  long-term 

adaptation to HM stress; at this point, the effect observed on PA gene expression 

was associated only to the presence of the AM fungi.
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In conclusion, present results point to an induction of the synthesis/accumulation 

of PAs, in particular Spd and Spm, in plants grown on contaminated soil and 

colonized by AM fungi, through the transcriptional up-regulation of at least two 

of their biosynthetic genes (PaSPDS1 and PaSPDS2 ). Moreover AL35 plants, 

colonized by  G. mosseae or  G. intraradices, also showed improved biomass 

production, suggesting that stress recovery may also be the result of enhanced 

PA metabolism. 

There is ample evidence indicating a role for PAs in alleviating stress, including 

HM  damages  (Papadakis,  2005),  and  this  has  been  extensively  discussed 

previously  for  the  poplar  (Franchin,  2007;  Lingua,  2008;  Todeschini,  2007; 

Castiglione, 2009). In addition to their putative anti-oxidative role, PAs block 

one of the major vacuolar channels (the fast vacuolar cation channel), and their 

accumulation could facilitate metal ion compartmentation (Brüggemann, 1998) 

by affecting ion conductance at the tonoplast level. This idea is corroborated by 

studies  showing  that  over-expression  of  PA  biosynthetic  genes  enhances 

tolerance to multiple environmental stresses (Prabhavathi, 2007; He, 2008). Wen 

and co-workers (2008) reported that European pear (Pyrus communis) shoots, 

overexpressing an apple SPDS gene (MdSPDS1), showed enhanced tolerance 

not only to salinity and hyperosmosis, but also to Cu.
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Conclusions
This  study  has  showed  how  symbiosis  of  AM  fungi  G.  mosseae or  G. 

intraradices with a P. alba clone (AL35) is able to restore to control levels the 

growth of the plants on HM contaminated soil and this occurs despite the high 

tissue accumulation of both Cu and Zn. During the first vegetative season, the 

enhanced stress  related gene expression in leaves and foliar  accumulation  of 

PAs, in mycorrhizal plants vs non mycorrhizal ones, are part of a systemically 

AM fungi-induced response, as the result of an improved protection of the plant 

from HM stress. 

MTs and PAs appear to play a role in the “mycorrhiza-buffering” of HM stress, 

in AL35 clone. An enhanced transcription of stress-responsive genes, in fact, 

was observed in leaves of plants grown on polluted soil, but not in mycorrhizal 

plants grown on unpolluted soil. These data reaffirm the potential of  P.alba to 

up-regulate PA metabolism and PaMT gene expression in response to external 

factors, such as HMs, and suggest a possible use of AL35 clones in combination 

with AM fungi for phytostabilization purposes. An enhanced phytostabilization 

would reduce potential  risks of phytoextraction avoiding a possible return of 

HMs  into  the  soil  and,  as  consequence,  into  the  food  chain.  Thus,  the 

establishment  of  plant-AM  fungi  association  with  improved  stress  tolerance 

and/or stabilization capacity, or phytoremoval of HMs from soils is a promising 

strategy for the advancement of plant-based environmental clean-up.
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