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Introduction

There are several motivations to consider a non-commutative structure

of space-time. One of them is that at short distances that is, at distances of

the order of the Planck length:

`P =

√
G}
c3

≈ 10−33cm

the geometry of space-time has to be described by a different theory because

its points become no longer localizable. Therefore, one is forced to deal with

a “pointless” geometry and this leads in a natural way to the introduction

of non-commutative geometry [1, 2, 3, 4]. A historical motivation [5, 6]

to consider a non-commutative structure of space-time was the hope that

a modification of the short distance properties of space-time, by means of a

deformation parameter, could resolve the problem of the infinities of quantum

field theory, like the introduction of the fundamental quantity } solved the

so-called ultraviolet catastrophe of the black-body radiation.

The simplest kind of non-commutativity is the so-called canonical one

which is characterized by the following commutation relation between the

coordinate functions on the space-time:

[xµ, xν ] = iθµν

where (θµν) is constant matrix i.e. it does not depend on the x’s. There are

several reasons to consider such a kind of non-commutativity, going from the

localizability of events in space-time [7, 8] to the string theory [9]. Moreover,

field theories on a space-time equipped with the canonical non-commutativity

have interesting renormalization properties [10, 11, 12]. What is generally

done to construct a non-commutative field theory [13, 14] is to deform the

ordinary pointwise commutative product among functions on space-time with

the introduction of a star product which is non-commutative and reduces to
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the usual one in certain limit. The choice of the star product compatible

with the canonical non-commutativity is not unique and throughout this

thesis we discuss two different products, the Moyal product [15, 16] and the

Wick-Voros one [17, 18, 19, 20] and investigate their ultraviolet behaviour

and compare their “physical predictions”.

In the case of a field theory with the Moyal product the hope that the

product resolve the problem of the infinities of quantum field theory is not

fulfilled. Indeed, in this case instead of the elimination (at least partial) of the

ultraviolet divergences, we encounter the phenomenon of ultraviolet/infrared

mixing [21], one of the novel features of a non-commutative field theory.

Therefore, while the ultraviolet properties of the theory are changed in the

sense of a mitigation of the infinities, the price paid is the appearance of new

kind of infinity. We show that the ultraviolet/infrared mixing persists in an

unchanged way as well as for a field theory with the Wick-Voros product [22]

which can be seen as a variant of the Moyal one. This is to be expected

because heuristically this is consequence of commutation relation which is,

of course, the same for both products. Our analysis is centered mainly on

the one-loop correction to the propagator which is the source of all mixing

and we discuss only the scalar φ4 theory, but the results are more general.

Moreover, we show that the ultraviolet/infrared mixing for the Moyal product

is a generic feature of any translation invariant associative product [23].

We have to note that the two field theories with the Moyal and Wick-

Voros products are not completely equivalent because their Green’s functions

are different and this leads to a contradiction. In fact, one can heuristically

reason as follows. What really counts is the non-commutative structure of

space-time and the star product is just a way to express such a structure

so that one can always choose the most convenient star product. As long

as one is describing the same field theory, the results should be the same as

already noted in [24]. We see that this contradiction is only apparent. Indeed,

Green’s functions are not observable quantities and what is observable is the

S-matrix.

Discussions of the properties of the S-matrix naturally go together with

the issue of Poincaré invariance. The canonical non-commutativity relation

is not Poincaré invariant and this can cast doubts on its being fundamental.

However, it is possible to preserve the Poincaré symmetry at a deformed level,

as a non-commutative and non-cocommutative Hopf algebra because both

the Moyal and Wick-voros products come from a Drinfeld twist [25, 26, 27].
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In other words, the theory has a twisted Poincaré symmetry [28, 29, 30].

The presence of a twist forces us to reconsider all of the steps in a field

theory which has to be built in a coherent twisted way and we show that there

is equivalence between the Moyal and Wick-Voros field theories at the level

of S-matrix only if a consistent procedure of twisting all products is applied.

There can be some ambiguity in the issue of twisting and in an ideal context

one should let experiments resolve these ambiguities. However, the non-

commutative theory is not yet mature for a confrontation with experiments.

Thus what we do is just to use the field theories built with the Moyal and

Wick-Voros products to check each other. This gives us the indication on

the procedure to follow for non-commutative theories coming from a twist.

The thesis is organized as follows. In the first chapter we will introduce

the Moyal and Wick-Voros products and show that they are both coming from

a “Weyl map”. In particular, we will see that the Moyal product comes from

the usual Weyl map while the Wick-Voros one comes from a generalization

of Weyl map called a weighted Weyl map.

In the second chapter we will discuss that the Moyal and Wick-Voros

product can be set in a more general framework. Indeed, we will show that

both products can be derived from a general quantization scheme as well.

In particular, we will see that the Moyal product derives from the so-called

Weyl-Wigner quantization scheme.

In the third chapter we will investigate the ultraviolet behaviour of a

non-commutative field theory obtained from a commutative one replacing

the ordinary product with the Moyal one. To this end, we will discuss the

one-loop corrections to the two- and four-point Green’s functions and see that

in the non-planar cases the Moyal product softens the ultraviolet divergences,

but it is responsible for the infrared divergence. Therefore, the Moyal product

presents the phenomenon of ultraviolet/infrared mixing.

In the last three chapters we will present our original work. In the fourth

chapter we will investigate the ultraviolet behaviour of a non-commutative

field theory with the Wick-Voros product. We will show that the ultraviolet

properties in this case is the same as in the Moyal one and in particular

they present the same ultraviolet/infrared mixing as heuristically expected.

However, we will find that the two theories are not equivalent since their

Green’s functions are different.

In the fifth chapter we will proceed to the discussion of the relationship
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between the translation invariance and the ultraviolet/infrared mixing and

show that the ultraviolet/infrared mixing found for the Moyal and Wick-

Voros products is not specific of the two products, but it is a generic feature

of any translation invariant associative product.

In the last chapter we will present a comparison of the non-commutative

field theories with the Moyal and Wick-Voros products in the framework of

the twisted non-commutativity and see that the two theories are equivalent at

level of S-matrix by means of a consistent procedure of twisting all products,

in agreement with our physical intuition, although the Green’s functions are

different.

Finally, there is an appendix in which we will recall the principal notions

of Hopf algebras that we will use throughout the thesis.
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Chapter 1

The Moyal and Wick-Voros

products from a Weyl map

In this chapter we introduce the Moyal and Wick-Voros products and show

that the two products can be cast in the same general framework in that they

are both coming from a “Weyl map”. More precisely, we show that the Moyal

product comes from a map, called the Weyl map, which associates operators

to functions with symmetric ordering, while the Wick-Voros one comes from

a similar map, a weighted Weyl map, which associates operators to functions

with normal ordering. Furthermore, we exhibit the integral form of the two

products.

1.1 The Weyl map

For the sake of simplicity, we consider the Weyl map on the plane since its

generalization to a several dimension is straightforward. The Weyl map [31]

is the map which associates to a function on the plane an operator according

to

Ω̂M(f) =
1

2πθ

∫
d2α f̃(α)eiθij x̂iαj

(1.1.1)

where θ is a real constant parameter of dimensions of a square length,

f̃(α) =
1

2πθ

∫
d2x f(x)e−iθijxiαj

(1.1.2)

is the symplectic Fourier transform of the function f ,

θij = θ−1εij with (εij) =

(
0 −1

1 0

)
(1.1.3)
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and the x̂’s are operators which satisfy the commutation relation

[x̂i, x̂j] = iθij (1.1.4)

where the matrix (θij) is the inverse of the matrix (θij). In general, it is

always possible to consider the operators x̂’s in an abstract way and define

them as

x̂1 =
â + â†√

2

x̂2 =
â− â†

i
√

2
(1.1.5)

where â and â† are two operators which satisfy the commutation relation

[â, â†] = θ. (1.1.6)

Therefore, the Weyl map can be explicitly written as

Ω̂M(f) =
1

(2πθ)2

∫
d2x d2α f(x)e−iθijxiαj

eiθij x̂iαj

. (1.1.7)

It can be equivalently written as

Ω̂M(f) =
1

(2πθ)2

∫
d2x d2αf(x)e−iθijxiαj

W (α) (1.1.8)

where

W (α) = eiθij x̂iαj

. (1.1.9)

This last formula has the advantage to involve the operators W (α) which

form a Weyl system [31, 32]. Indeed, by using the Baker-Campbell-Hausdorff

formula1, it is easy to verify that

W (α)W (β) = W (α + β)e
i
2
θijαiβj

. (1.1.10)

1If Â and B̂ are two operators such that [Â, [Â, B̂]] = [B̂, [Â, B̂]] = 0, then

eÂeB̂ = eÂ+B̂e
1
2 [Â,B̂]

from which follows that
eÂeB̂ = eB̂eÂe[Â,B̂].
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The Weyl map is linear and invertible and its inverse is given by the Wigner

map

Ω−1
M

(
Ω̂M(f)

)
=

1

2πθ

∫
d2α eiθijxiαj

Tr
(
Ω̂M(f)W †(α)

)
. (1.1.11)

In fact,

Ω−1
M

(
Ω̂M(f)

)
=

1

(2πθ)2

∫
d2α d2β f̃(α)eiθijxiβj

Tr
(
W (α)W †(β)

)

=

∫
d2α d2β f̃(α)eiθijxiβj

δ(2)(α− β)

=

∫
d2α f̃(α)eiθijxiαj

= f(x) (1.1.12)

since in the last line appears the symplectic Fourier antitransform of f̃(α).

Moreover, it can be show that [33] the Weyl map is an isomorphism between

L2(R2) i.e the Hilbert space of square-integrable functions on the plane and

HS(L2(R)) i.e. the Hilbert space of Hilbert-Schmidt operators on L2(R).

1.2 The Moyal product from the Weyl map

The Moyal product [15, 16], often called the Grönewold-Moyal product,

is defined by the relation

Ω̂M(f ?M g) = Ω̂M(f)Ω̂M(g). (1.2.1)

We can very easily obtain the integral form of the Moyal product. Indeed,

from (1.1.8) follows that the left-hand side of (1.2.1) can be written as

Ω̂M(f ?M g) =
1

(2πθ)2

∫
d2x d2α (f ?M g)(x)e−iθijxiαj

W (α) (1.2.2)

and the right-hand side of (1.2.1) as

Ω̂M(f)Ω̂M(g) =
1

(2πθ)4

∫
d2y d2β d2z d2γ f(y)g(z)

e−iθijyiβj

e−iθijziγj

W (β)W (γ) (1.2.3)

which can be written because of (1.1.10) as

Ω̂M(f)Ω̂M(g) =
1

(2πθ)4

∫
d2y d2β d2z d2γ f(y)g(z)

e−iθijyiβj

e−iθijziγj

e
i
2
θijβiγj

W (β + γ). (1.2.4)
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By means of the linear transformation

β =α− 2x + 2y

γ =2x− 2y (1.2.5)

with y constant, it takes the form

Ω̂M(f)Ω̂M(g) =
22

(2πθ)4

∫
d2x d2α d2y d2z f(y)g(z)

e−2iθij(x
i−yi)(xj−zj)e−iθijxiαj

W (α). (1.2.6)

By confronting (1.2.2) with (1.2.6) we obtain the integral form of the Moyal

product

(f ?M g)(x) =
1

(πθ)2

∫
d2y d2z f(y)g(z)e−2iθij(x

i−yi)(xj−zj). (1.2.7)

Other integral expressions are possible some of which can be found in the

appendix of [34]. Note that the Moyal product can be expressed as well as in

a differential form which is an asymptotic expansion of the integral one [35].

However, the integral form has the advantage to be defined on a set wider

than the one on which is defined the differential form.

1.3 The Wick-Voros product from a weighted

Weyl map

A weighted Weyl map is a generalization of the Weyl map defined as

Ω̂(f) =
1

(2πθ)2

∫
d2x d2αf(x)w(α)e−iθijxiαj

W (α) (1.3.1)

where w(α) is an invertible function, called weighted function. A general

weighted Weyl map is linear and invertible and its inverse is

Ω−1
(
Ω̂(f)

)
=

1

2πθ

∫
d2α w−1(α)eiθijxiαj

Tr
(
Ω̂(f)W †(α)

)
. (1.3.2)

Here we are interesting to the weighted Weyl map given by

Ω̂V (f) =
1

(2πθ)2

∫
d2x d2αf(x)e−

1
4θ

α2

e−iθijxiαj

W (α) (1.3.3)
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which leads to the Wick-Voros product. This weighted Weyl map can be

written in complex coordinates:

x± =
x1 ± ix2

√
2

(1.3.4)

as

Ω̂V (f) =
1

(2πθ)2

∫
d2x d2αf(x)e−

1
2θ

α+α−e−
1
θ (α+x−−α−x+)W (α) (1.3.5)

where

α± =
α1 ± iα2

√
2

. (1.3.6)

In these coordinates the Weyl system (1.1.9) takes the form

W (α) = e
1
θ (α−â−α+â†) (1.3.7)

and the relation (1.1.10) is given by

W (α)W (β) = W (α + β)e
1
2θ

(α+β−−α−β+). (1.3.8)

The Wick-Voros product is then defined by the relation

Ω̂V (f ?V g) = Ω̂V (f)Ω̂V (g). (1.3.9)

and it is possible to show that it reads

(f ?V g)(x) =

∫
d2y

πθ
f(x−, y+)g(y−, x+)e−

1
θ
(x−−y−)(x+−y+). (1.3.10)

This product, like the Moyal one, can be expressed as well as in a differential

form which is an asymptotic expansion of the integral one as we will see in

the following.
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Chapter 2

The Moyal and Wick-Voros

products from a quantization

scheme

In this second chapter we show how the Moyal and Wick-Voros products

can be derived from a general quantization scheme. To this end, we first

review a general quantization scheme for associating operators with functions

and vice versa and producing new star products. In particular, we describe

the duality symmetry of a quantization scheme and the notion of dual star

product. We finally introduce the Weyl-Wigner and Wick-Voros quantization

schemes for the Moyal and Wick-Voros products respectively.

2.1 Quantization schemes and star products

We begin with a review of a general scheme to associate operators with

functions and vice versa [36] and produce new star products [37] for operator

symbols. In this scheme the symbols of the operators are defined in terms of a

family of operators, called dequantizers, while the reconstruction of operators

in terms of their symbols is determined using another family of operators,

called quantizers.

Let us consider a Hilbert space H and two sets of operators Û(x) and

V̂ (x) on H parameterized by an n-dimensional vector x = (x1, x2, ..., xn) and

suppose they satisfy the consistency condition

Tr
(
Û(x)V̂ (x′)

)
= δ(n)(x− x′). (2.1.1)
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With these two families of operators we can construct an invertible map which

associates to each operator Â on H a function fÂ(x), called the symbol of

the operator Â, defined by

fÂ(x) = Tr
(
ÂV̂ (x)

)
(2.1.2)

and to each function fÂ(x) an operator Â on H defined by

Â =

∫
fÂ(x)Û(x)dnx. (2.1.3)

Indeed, multiplying both sides of equation (2.1.3) by the operator V̂ (x′) and

taking the trace, we have

Tr
(
ÂV̂ (x′)

)
= Tr

∫
fÂ(x)Û(x)V̂ (x′)dnx (2.1.4)

and, assuming it is possible to exchange the trace with the integral, we have

Tr
(
ÂV̂ (x′)

)
=

∫
fÂ(x) Tr

(
Û(x)V̂ (x′)

)
dnx = fÂ(x′) (2.1.5)

where we have used (2.1.1). Therefore, the operators V̂ (x) associate to

the operator Â (quantum observable) a function fÂ(x) (classical observable)

i.e. they “dequantize” the quantum observable, while the role of the other

operators Û(x) is opposite; they associate to the function fÂ(x) an operator

Â i.e. they “quantize” the classical observable. For this reason we call the

operators Û(x) and V̂ (x) quantizers and dequantizers respectively. However,

there is an ambiguity in defining the operators Û(x) and V̂ (x). Indeed, we

can make a scaling transformation of the operators Û(x) and V̂ (x) without

violating the consistency of the quantization scheme i.e. the condition (2.1.1).

Moreover, if we require that the symbol of identity operator 1 is equal to the

constant function 1, this ambiguity is removed because the operators V̂ (x)

have to satisfy the condition

Tr V̂ (x) = 1 (2.1.6)

and the operators Û(x) the condition

∫
Û(x)dnx = 1. (2.1.7)
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Now we can introduce the star product of the symbols fÂ(x) and fB̂(x)

of two operators Â and B̂ on H by the relationships

fÂ(x) ∗ fB̂(x) = fÂB̂(x) (2.1.8)

that is,

fÂ(x) ∗ fB̂(x) = Tr
(
ÂB̂V̂ (x)

)
. (2.1.9)

In other words, the star product of the symbols fÂ(x) and fB̂(x) of two

operators Â and B̂ on H is the symbol of the their product. The star product

is associative due to the associativity of the operator product. Indeed,

(fÂ(x) ? fB̂(x)) ? fĈ(x) = fÂB̂(x) ? fĈ(x) = f(ÂB̂)Ĉ(x) = fÂ(B̂Ĉ)(x)

= fÂ(x) ? fB̂Ĉ(x) = fÂ(x) ? (fB̂(x) ? fĈ(x)).

(2.1.10)

However, it is not commutative. From the definition of the star product

follows that

fÂ(x) ∗ fB̂(x) = Tr

∫
fÂ(x′)fB̂(x′′)Û(x′)Û(x′′)V̂ (x)dnx′dnx′′ (2.1.11)

and, assuming once again it is possible to exchange the trace with the integral,

we have

fÂ(x) ∗ fB̂(x) =

∫
fÂ(x′)fB̂(x′′) Tr

(
Û(x′)Û(x′′)V̂ (x)

)
dnx′dnx′′. (2.1.12)

Therefore, we can rewritten the star product as

fÂ(x) ∗ fB̂(x) =

∫
K(x′, x′′, x)fÂ(x′)fB̂(x′′)dnx′dnx′′ (2.1.13)

where the kernel is given by

K(x′, x′′, x) = Tr
(
Û(x′)Û(x′′)V̂ (x)

)
. (2.1.14)

Note that the usual product is also of this kind for

K(x′, x′′, x) = δ(n)(x′ − x)δ(n)(x′′ − x). (2.1.15)

Moreover, the expression (2.1.14) is quadratic with respect to Û(x) and linear

with respect to V̂ (x) and then there is an asymmetry in the kernel with
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respect to quantizers and dequantizers. Furthermore, thanks to the cyclical

property of the trace, the kernel and then the star product is invariant under

the transformation

Û ′(x) = ŜÛ(x)Ŝ−1 (2.1.16)

V̂ ′(x) = ŜV̂ (x)Ŝ−1 (2.1.17)

where Ŝ is an invertible operator. Finally, the associativity condition for

the operator symbols imposes a strong constrain on the kernel K(x′, x′′, x).

Indeed, for associativity

(fÂ(x) ? fB̂(x)) ? fĈ(x) =

∫
K(x1, x2, x)(fÂ(x1) ? fB̂(x1))fĈ(x2)d

nx1d
nx2

=

∫
K(x1, x2, x)K(x3, x4, x1)fÂ(x3)fB̂(x4)fĈ(x2)d

nx1d
nx2d

nx3d
nx4

(2.1.18)

must be equal to

fÂ(x) ? (fB̂(x) ? fĈ(x)) =

∫
K(x1, x2, x)fÂ(x1)(fB̂(x2) ? fĈ(x2))d

nx1d
nx2

=

∫
K(x1, x2, x)K(x3, x4, x2)fÂ(x1)fB̂(x3)fĈ(x4)d

nx1d
nx2d

nx3d
nx4

=

∫
K(x3, x1, x)K(x4, x2, x1)fÂ(x3)fB̂(x4)fĈ(x2)d

nx1d
nx2d

nx3d
nx4.

(2.1.19)

Therefore, the kernel K(x′, x′′, x) must satisfy the equation
∫

K(x1, x2, x)K(x3, x4, x1)d
nx1 =

∫
K(x3, x1, x)K(x4, x2, x1)d

nx1

(2.1.20)

which is, of course, satisfied by (2.1.14). Observe that this equation has like

symmetry a scaling transform. That is, given a solution K(x′, x′′, x) of the

equation (2.1.20),

K ′(x′, x′′, x) = λK(x′, x′′, x) (2.1.21)

is still a solution of (2.1.20), where λ is a non-vanishing complex number.

Note that the scaling transform of the kernel can be induced transforming

the quantizers and dequantizers as

Û ′(x) = λÛ(x) (2.1.22)

V̂ ′(x) = λ−1V̂ (x). (2.1.23)
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In the next section we will introduce the duality symmetry namely we will

show that the role of Û(x) and V̂ (x) can be exchanged without violating the

consistency of the quantization scheme. Furthermore, we will define dual

star products.

2.2 Dual quantization schemes

As we have already said, the duality symmetry is due to the fact that the

role of Û(x) and V̂ (x) can be exchanged without violating the consistency of

the quantization scheme. The dual quantization scheme [38, 39] is defined

by

Û (d)(x) = V̂ (x) (2.2.1)

V̂ (d)(x) = Û(x) (2.2.2)

and condition (2.1.1) is obviously satisfied. In the dual scheme, the symbol

f
(d)
A (x) of an operator Â on H, called the dual symbol of the operator Â, is

given by

f
(d)

Â
(x) = Tr

(
ÂÛ(x)

)
(2.2.3)

and the reconstruction formula for the operator Â is given by

Â =

∫
f

(d)

Â
(x)V̂ (x)dnx. (2.2.4)

Therefore, in the dual scheme the operators Û(x) are used to dequantize,

while the operators V̂ (x) to quantize. In other words, the dual dequantizers

correspond to old quantizers, while the dual quantizers correspond to old

dequantizers.

In the dual scheme, the star product of the dual symbols f
(d)

Â
(x) and

f
(d)

B̂
(x) of two operators Â and B̂ on H, called dual star product, is given by

f
(d)

Â
(x) ∗ f

(d)

B̂
(x) = f

(d)

ÂB̂
(x), (2.2.5)

that is,

f
(d)

Â
(x) ∗ f

(d)

B̂
(x) = Tr

(
ÂB̂Û(x)

)
. (2.2.6)

Equivalently, we can rewritten the dual star product as

f
(d)

Â
(x) ∗ f

(d)

B̂
(x) =

∫
K(d)(x′, x′′, x)f

(d)

Â
(x′)f (d)

B̂
(x′′)dnx′dnx′′ (2.2.7)
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where the kernel, called the dual kernel, is given by

K(d)(x′, x′′, x) = Tr
(
V̂ (x′)V̂ (x′′)Û(x)

)
. (2.2.8)

The dual kernel K(d)(x′, x′′, x), unlike the kernel K(x′, x′′, x), is linear with

respect to Û(x) and quadratic with respect to V̂ (x). So, in general, the star

product and its dual are different to each other. We will call the quantization

scheme self-dual if

K(d)(x′, x′′, x) = K(x′, x′′, x). (2.2.9)

In other words, a quantization scheme is self-dual if it and its dual scheme

produce the same star product.

2.3 The Moyal and Wick-Voros products from

a quantization scheme

The main quantization scheme known is the Weyl-Wigner quantization

scheme. This scheme is self-dual and the star product associated with it is

the Moyal product.

In order to introduce this scheme, let us consider a system with a single

degree of freedom. In this case, the Hilbert space H is identified with L2(R),

the Hilbert space of square-integrable functions on R, and the quantizers and

dequantizers [39] are given respectively by

Û(λ) =
1

2π
V̂ (λ) (2.3.1)

V̂ (λ) = 2D̂(λ)(−1)a†aD̂(−λ) (2.3.2)

where λ = x + ip, with x and p representing respectively the position and

momentum, (−1)a†a is the parity operator, with the annihilation and creation

operators a and a† given respectively by

a =
1√
2
(x̂ + ip̂) (2.3.3)

a† =
1√
2
(x̂− ip̂) (2.3.4)

which satisfy the commutation relation (1.1.6) and the displacement operator

D̂(λ) given by

D̂(λ) = eλa†−λ∗a (2.3.5)
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which is unitary and obeys the relation

D†(λ) = D−1(λ) = D(−λ). (2.3.6)

As well-known, the displacement operator creates the coherent states namely,

the eigenstates of the annihilation operator a, from the vacuum state:

D(λ)|0〉 = |λ〉 (2.3.7)

for every complex number λ where the vacuum state is as usual defined by

a|0〉 = 0. (2.3.8)

It is not difficult to show that [37, 39] the star product associated with the

Weyl-Wigner quantization scheme is the Moyal product (1.2.7). Moreover,

this scheme is self-dual and from (2.1.2) follows that:

f1(x, p) = 1 (2.3.9)

fq̂(x, p) = x (2.3.10)

fp̂(x, p) = p. (2.3.11)

Eventually, consider the following quantization scheme [36, 39] described

by the two families of operators

Ûs(λ) =
1

2π
V̂−s(λ) (2.3.12)

V̂s(λ) =
2

1− s
D̂(λ)

(
s + 1

s− 1

)a†a

D̂(λ) (2.3.13)

where s is a real parameter. It is possible to show that the Wick-Voros

product (1.3.10) is obtained in the limit s = 1. Moreover, it is easy to see

that the case s = 0 corresponds to the Weyl-Wigner scheme described above.

19



Chapter 3

Non-commutative Moyal field

theory

In this chapter we briefly review a non-commutative field theory obtained

from a commutative one replacing the ordinary product with the Moyal one.

We show that the free case is the same as the ordinary one, but the interacting

case does not. In particular, we show that in the interacting case the Moyal

product softens the ultraviolet divergence, but it is responsible for the so-called

ultraviolet/infrared mixing.

3.1 The Moyal product

For the sake of simplicity, we consider a (1 + 2)-dimensional space-time

and consider exclusively spatial non-commutativity. Therefore, the canonical

non-commutative relation between the coordinate functions on the space-

time takes the form

[xi, xj] = iθij (3.1.1)

where

θij = θεij with (εij) =

(
0 1

−1 0

)
(3.1.2)

and θ is a real constant parameter of dimensions of a square length which

can be seen as a deformation parameter. Consider now the differential form

of the Moyal product [35] which is given by

f ?M g = fe
i
2
θij

←
∂ i

→
∂ jg (3.1.3)
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where
←
∂ i and

→
∂ j act respectively on the left and on the right. More explicitly,

it can be written as

f ?M g = fe
i
2
θ
(←

∂ 1

→
∂ 2−

←
∂ 2

→
∂ 1

)
g (3.1.4)

which reduces to the commutative product in the limit when θ goes to 0,

namely it is a deformation of the commutative one. The Moyal product is

associative, but not commutative. In particular, we have

x1 ?M x2 = x1x2 +
i

2
θ (3.1.5)

x2 ?M x1 = x1x2 − i

2
θ. (3.1.6)

Hence the Moyal bracket of x1 and x2 reads

[x1, x2]?M
= x1 ?M x2 − x2 ?M x1 = iθ (3.1.7)

in agreement with the canonical non-commutative relation (3.1.1). More in

general, the Moyal bracket of two functions1

[f, g]?M
= f ?M g − g ?M f (3.1.8)

to first order in θ reads

[f, g]?M
= iθ{f, g}+ . . . (3.1.9)

where as usual

{f, g} = (∂1f)∂2g − (∂2f)∂1g. (3.1.10)

Thus the Moyal bracket of two functions to first order in the deformation

parameter θ is proportional to the Poisson bracket of the two functions.

1Like every commutator, the Moyal bracket is bilinear and antisymmetric. Moreover,
it satisfies the Jacobi identity

[f, [g, h]?M ]?M + [g, [h, f ]?M ]?M + [h, [f, g]?M ]?M = 0

and the Leibniz rule

[f, g ?M h]?M
= [f, g]?M

?M h + g ?M [f, h]?M
.
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It is very useful to write the Moyal product in momentum space. Since

in Fourier transform

f(x) =

∫
d3p

(2π)3
f̃(p)e−ip·x (3.1.11)

from (3.1.3) we have

(f ?M g)(x) =

∫
d3p

(2π)3

d3q

(2π)3
f̃(p)g̃(q)e−

i
2
θijpiqjei(p+q)·x

=

∫
d3p

(2π)3

d3q

(2π)3
f̃(p)g̃(q)e−

i
2
θp∧qei(p+q)·x (3.1.12)

where we have set

p ∧ q = εijpiqj (3.1.13)

which is, of course, antisymmetric for the exchange of p and q. Therefore, the

Moyal product in momentum space is the standard convolution of Fourier

transforms twisted by a phase. For example, we can calculate the Moyal

product of two exponentials. Indeed, by using (3.1.12) we easily get

e−ip·x ?M e−iq·x =

∫
d3r

(2π)3

d3s

(2π)3
δ(3)(r − p)δ(3)(s− q)e−

i
2
θr∧sei(r+s)·x

= e−
i
2
θp∧qei(p+q)·x. (3.1.14)

It is now easy to see that from (3.1.12) follows that the integral of the Moyal

product of two functions is equal to the integral of the ordinary product of

the two functions. Indeed,
∫

d3x f ?M g =

∫
d3x

d3p

(2π)3

d3q

(2π)3
f̃(p)g̃(q)e−

i
2
θp∧qei(p+q)·x

=

∫
d3p

(2π)3
f̃(p)g̃(−p) =

∫
d3x d3y

d3p

(2π)3
f(x)g(y)eip·(x−y)

=

∫
d3x f(x)g(x). (3.1.15)

This property is very important in non-commutative field theory since, as we

will show in the next section, it allows to state that the free non-commutative

field theory with the Moyal product is the same as the commutative one.

Finally, note that from (3.1.15) follows that the Moyal product has the trace

property ∫
d3x f ?M g =

∫
d3x g ?M f. (3.1.16)
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3.2 The Moyal field theory

At this point we proceed to the discussion of a non-commutative field

theory obtained from a commutative one replacing the ordinary product with

the Moyal one. To this end, consider the commutative field theory described

by the action

S(0) = S
(0)
0 + S

(0)
int , (3.2.1)

where S
(0)
0 is the free Klein-Gordon action given by

S
(0)
0 =

∫
d3x

1

2

(
∂µφ ∂µφ−m2φ2

)
(3.2.2)

and S
(0)
int is the interacting action given by

S
(0)
int =

g

4!

∫
d3xφ4. (3.2.3)

In order to construct a non-commutative field theory, we replace the ordinary

product with the Moyal one. This procedure is part of a general framework

called deformation quantization which consists in a modification of a theory

in such a way that it reduces to the undeformed one in a certain limit. So

the free non-commutative action is given by

S0M
=

∫
d3x

1

2

(
∂µφ ?M ∂µφ−m2φ ?M φ

)
(3.2.4)

which, of course, is equal to the ordinary one (3.2.2) because of (3.1.15).

Then the free non-commutative field theory with the Moyal product is the

same as the commutative one. Instead, the interacting non-commutative

action is given by

SintM
=

g

4!

∫
d3xφ ?M φ ?M φ ?M φ (3.2.5)

which is different from the commutative one.

We now move on to the quantum case, we calculate the Green’s functions

up to one-loop for the two- and four-point cases and discuss the ultraviolet

behaviour of the theory. Since the free non-commutative field theory with

the Moyal product is the same as the commutative one, the propagator that

is, the two-point Green’s function is as the usual one

G̃
(2)
M (p) =

1

p2 −m2
. (3.2.6)
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To calculate the four-point Green’s function to the tree level in the Moyal

case, we first have to determine the vertex. In this case, the vertex is different

with respect to the usual one since it acquires a phase [40]. To determine the

vertex, let us write down the interacting action (3.2.5) in momentum space.

By using the relations (3.1.12) and (3.1.15) we have

SintM
=

g

4!

∫
dx

dk1

(2π)3

dk2

(2π)3

dk3

(2π)3

dk4

(2π)3
φ̃(k1)φ̃(k2)φ̃(k3)φ̃(k4)

e−
i
2
θ(k1∧k2+k3∧k4)ei(k1+k2+k3+k4)·x

=
g

4!
(2π)3

∫
dk1

(2π)3

dk2

(2π)3

dk3

(2π)3

dk4

(2π)3
φ̃(k1)φ̃(k2)φ̃(k3)φ̃(k4)

e−
i
2
θ[k1∧k2+k3∧k4+(k1+k2)∧(k3+k4)]δ(3)(k1 + k2 + k3 + k4) (3.2.7)

which can be rewritten as

SintM
= i

∫ 4∏
a=1

d3ka

(2π)3
φ̃(ka)V?M

(3.2.8)

where

V?M
= V e

∑
a<b− i

2
θka∧kb = V e

∑
a<b− i

2
θijkaikbj (3.2.9)

is the Moyal vertex and

V = −i
g

4!
(2π)3δ(3)

(
4∑

a=1

ka

)
(3.2.10)

is the usual vertex which is proportional to the coupling constant multiplying

the δ of momentum conservation. Note that the presence of the phase in the

vertex (3.2.9) makes it non-invariant for a generic exchange of the momenta.

This is a consequence of non-commutativity and of the fact that the integral

of Moyal product of more than two functions is not invariant for an exchange

of the functions. However, it is invariant for a cyclic exchange of the factors.

Eventually, to determine the four-point Green’s function to the tree level, we

must attach to the vertex (3.2.9) four propagators (3.2.6). We have

G̃
(4)
M = −ig(2π)3 e

∑
a<b− i

2
θka∧kb

∏4
a=1(k

2
a −m2)

δ(3)

(
4∑

a=1

ka

)
(3.2.11)

which is different with respect the usual one.
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3.3 UV/IR mixing for the Moyal product

In order to discuss the ultraviolet behaviour of the theory in the Moyal

case, we calculate the one-loop corrections to the two- and four-point Green’s

functions. Because the vertex (3.2.9) is not invariant for a generic exchange

of the momenta, we must consider both the planar and non-planar diagrams

in the calculation of the corrections. To obtain the one-loop corrections to

the propagator, consider first the planar case in figure 3.1(a). The amplitude

is obtained using three propagators (3.2.6), two with momentum p, one with

momentum q, and the vertex (3.2.9) with assignments

k1 = −k4 = p and k2 = −k3 = q (3.3.1)

and the proper symmetry factor [41]. We have

&%

'$

p

q

−p &%

'$

&%

'$

&%

'$

&%

'$
qqqq

p −p

(a) (b)

Figure 3.1: The planar (a) and non-planar (b) one-loop two-point diagrams.

G̃
(2)
P = −i

g

3

∫
d3q

(2π)3

1

(p2 −m2)2(q2 −m2)
(3.3.2)

which is the same as the ordinary one. Consider now the non-planar case in

figure 3.1(b). The structure is the same as in the planar case, but this time

the assignments are

k1 = −k3 = p and k2 = −k4 = q. (3.3.3)

We have

G̃
(2)
NP = −i

g

6

∫
d3q

(2π)3

e−iθp∧q

(p2 −m2)2(q2 −m2)
. (3.3.4)

Therefore, the q-contribution does not cancel completely and the oscillating

factor in the integral softens the ultraviolet divergence because it dampens

the functions for high q. However, it is responsible for the infrared divergence.

Notice that the persistence of some divergences is more general than the
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present calculation and was noted in [42] in the general framework of Connes’

non-commutative geometry, while in [43] it is shown that not all divergences

can be eliminated in the presence of the commutation relation (3.1.1).

Finally, to get the one-loop correction to the four-point Green’s function,

consider first the planar case of figure 3.2. The one-loop correction to the

four-point Green’s function can easily be calculated by properly joining two

vertices (3.2.9). We have

k1

k2 k3

k4

q

Figure 3.2: The planar one-loop four-point diagram.

G̃
(4)
P =

(−ig)2

8
(2π)3

∫
d3q

(2π)3

e
∑

a<b− i
2
θka∧kbδ(3)

(∑4
a=1 ka

)

(q2 −m2) [(k1 + k2 − q)2 −m2]
∏4

a=1(k
2
a −m2)

.

(3.3.5)

Therefore, the internal momentum q appears only in the denominator so that

also in this case the planar diagram has the same ultraviolet behaviour as

the ordinary one. Consider now the non-planar diagrams shown in figure 3.3.

We have

k1 k1 k1

k2 k2 k2k3 k3

k4 k4

q q k3

k4

(1) (2) (3)

Figure 3.3: The non-planar one-loop four-point diagrams.

G̃
(4)
NPa

=
(−ig)2

8
(2π)3

∫
d3q

(2π)3

e
∑

a<b− i
2
θka∧kb+Eaδ(3)

(∑4
a=1 ka

)

(q2 −m2) [(k1 + k2 − q)2 −m2]
∏4

a=1(k
2
a −m2)
(3.3.6)
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with

E1 = iθk1 ∧ q

E2 = −iθ (k2 ∧ q + k3 ∧ q)

E3 = −iθ (k1 ∧ q + k2 ∧ q) . (3.3.7)

So in non-planar cases the one-loop correction to the two- and four-point

Green’s function have the same oscillating factor and then in both cases hold

similar considerations. In the next chapter we will introduce the Wick-Voros

product that is, a variant of the more studied Moyal product and compare

the Wick-Voros field theory with the Moyal one.
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Chapter 4

Non-commutative Wick-Voros

field theory

In this chapter we describe another non-commutative field theory obtained

from the same commutative one of the previous chapter replacing the ordinary

product with the Wick-Voros one. We show that the free case is the same as

the Moyal one (and the ordinary one) while the interacting case is different

and, in fact, we find different Green’s functions. However, the interacting

case present the same kind of ultraviolet/infrared mixing as the Moyal one.

4.1 The Wick-Voros product

Let us consider the differential form of Wick-Voros product which is given

by

f ?V g = fe
i
2
θ

[←
∂1
→
∂ 2−

←
∂2
→
∂ 1−i

(←
∂1
→
∂ 1+

←
∂2
→
∂ 2

)]

g (4.1.1)

where θ is still a real constant parameter of dimensions of a square length.

In this case is more natural working with complex coordinates than real ones

and in complex coordinates (1.3.4) the Wick-Voros product takes the form

f ?V g = feθ
←
∂+

→
∂−g (4.1.2)

where

∂± =
∂

∂x±
=

1√
2

(
∂

∂x1
∓ i

∂

∂x2

)
=

1√
2
(∂1 ∓ i∂2). (4.1.3)
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Note that the Moyal product (3.1.3) can be rewritten in these coordinates as

f ?M g = fe
θ
2

(←
∂+

→
∂−−

←
∂−

→
∂ +

)

g. (4.1.4)

Moreover, the Laplacian is

∇2 = 2∂+∂− (4.1.5)

and the d’Alembertian is as usual

2 = ∂2
0 −∇2. (4.1.6)

The Wick-Voros product is associative and non-commutative. In particular,

we have

x+ ?V x− = x+x− + θ (4.1.7)

x− ?V x+ = x+x−. (4.1.8)

Hence the Wick-Voros bracket of x+ and x− reads

[x+, x−]?V
= x+ ?V x− − x− ?V x+ = θ (4.1.9)

which gives the canonical non-commutative relation (3.1.1) going back to the

x’s. It is very easy to see that the Wick-Voros bracket, like the Moyal one,

of two functions:

[f, g]?V
= f ?V g − g ?V f (4.1.10)

is proportional to the Poisson bracket of the two functions to first order in

θ:

[f, g]?V
= iθ{f, g}+ . . . (4.1.11)

Therefore, both products are a deformation of the ordinary one which reduce

to the ordinary one in the limit θ → 0 and reproduce to first order in the

deformation parameter θ the Poisson strutture.

Even in the Wick-Voros case, it is very useful to write the product in

momentum space. Since in complex coordinates the Fourier transform can

be expressed as

f(x) =

∫
d3p

(2π)3
f̃(p)e−i(p+x−+p−x+) (4.1.12)

with

p± =
p1 ± ip2√

2
(4.1.13)
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from (4.1.2) we have

(f ?V g)(x) =

∫
d3p

(2π)3

d3q

(2π)3
f̃(p)g̃(q)e−θp−q+ei(p+q)·x

=

∫
d3p

(2π)3

d3q

(2π)3
f̃(p)g̃(q)e−

θ
2
(p·q+ip∧q)ei(p+q)·x (4.1.14)

since1

p−q+ =
1

2
(p · q + ip ∧ q) . (4.1.15)

So the Wick-Voros product in momentum space is the standard convolution

of Fourier transforms twisted by a factor which is not just a phase like in the

Moyal case, but a phase multiplied by a real exponential. Furthermore, from

(4.1.14) follows that
∫

d3x f ?V g =

∫
d3x

d3p

(2π)3

d3q

(2π)3
f̃(p)g̃(q)e−θp−q+ei(p+q)·x

=

∫
d3p

(2π)3
f̃(p)g̃(−p)eθp−p+ =

∫
d3p

(2π)3
f̃(p)g̃(−p)eθp2

.

(4.1.16)

Therefore, unlike for the Moyal case, the integral of the Wick-Voros product

of two functions is not equal to the integral of the ordinary product of the

two functions ∫
d3x f ?V g 6=

∫
d3x fg. (4.1.17)

This has a precise interpretation in non-commutative field theory. It means

that also the free non-commutative field theory with the Wick-Voros product

could be different from the ordinary one. However, it has the trace property
∫

d3x f ?V g =

∫
d3x g ?V f. (4.1.18)

Notice that the integral of the Wick-Voros product of two functions can be

written as well as
∫

d3x f ?V g =

∫
d3x

∞∑
n=0

θn

n!
(∂n

+f)(∂n
−g) =

∫
d3x

∞∑
n=0

(−θ)n

n!
f∂n

+∂n
−g =

∫
d3x fe−θ∂+∂−g =

∫
d3x fe−

θ
2
∇2

g (4.1.19)

1In complex coordinates
p · q = p−q+ + q−p+.
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where we have integrated by parts and neglected all the boundary terms.

We conclude this section by noting that at the algebraic level the Moyal

and Wick-Voros products are equivalent in sense that they define the same

deformed algebra, namely there exists an invertible map [44, 45] T such that

T (f ?M g) = T (f) ?V T (g) (4.1.20)

where

T = e
θ
4
∇2

. (4.1.21)

Note that from invertibility of T follows that

T−1(f ?V g) = T−1(f) ?M T−1(g). (4.1.22)

We can easily show that the Moyal and Wick-Voros products are algebraically

equivalent. In fact, by using (4.1.14) the left-hand side of (4.1.20) can be

written as

T (f ?M g) = e
θ
4
∇2

∫
d3p

(2π)3

d3q

(2π)3
f̃(p)g̃(q)e−

i
2
θp∧qei(p+q)·x

=

∫
d3p

(2π)3

d3q

(2π)3
f̃(p)g̃(q)e−

θ
4
(p+q)2e−

i
2
θp∧qei(p+q)·x (4.1.23)

and the right-hand side of (4.1.20) can be written in the same way

T (f) ?V T (g) = e
θ
4
∇2

∫
d3p

(2π)3
f̃(p)e−ip·x ?V e

θ
4
∇2

∫
d3q

(2π)3
f̃(q)e−iq·x

=

∫
d3p

(2π)3

d3q

(2π)3
f̃(p)g̃(q)e−

θ
4
(p2+q2)e−ip·x ?V e−iq·x

=

∫
d3p

(2π)3

d3q

(2π)3
f̃(p)g̃(q)e−

θ
4
(p2+q2)e−

θ
2
(p·q+ip∧q)ei(p+q)·x

=

∫
d3p

(2π)3

d3q

(2π)3
f̃(p)g̃(q)e−

θ
4
(p+q)2e−

i
2
θp∧qei(p+q)·x (4.1.24)

since from (4.1.14) follows immediately that the Wick-Voros product of the

two exponentials e−ip·x and e−iq·x is given by

e−ip·x ?V e−iq·x =

∫
d3r d3s δ(3)(r − p)δ(3)(s− q)e−

θ
2
(r·s+ir∧s)ei(r+s)·x

= e−
θ
2
(p·q+ip∧q)ei(p+q)·x. (4.1.25)
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4.2 The Wick-Voros classical field theory

We now study a classical field theory with the Wick-Voros product and

we describe both the Lagrangian and the Hamiltonian formalisms.

4.2.1 Lagrangian formalism

At this point we proceed to the discussion of another non-commutative

field theory obtained from the commutative one described by the action

(3.2.1) substituting the ordinary product with the Wick-Voros one. So the

free non-commutative action (as well as the Lagrangian and the Lagrangian

density) is given by

S0V
=

∫
dt L0V

=

∫
d3xL0V

=

∫
d3x

1

2

(
∂µφ ?V ∂µφ−m2φ ?V φ

)
(4.2.1)

which, unlike the Moyal one, does not reduce to the commutative one and

the interacting non-commutative action is given by

SintV
=

g

4!

∫
d3x φ ?V φ ?V φ ?V φ. (4.2.2)

As we have already seen, the Moyal product and the Wick-Voros one are

algebraically equivalent. However, this does not mean that any deformation

of an action with the two products are the same. Indeed, mapping the free

action with the Wick-Voros product (4.2.1) to the corresponding action with

the Moyal one by means of (4.1.21)

S0V
→

∫
d3xT−1L0V

(4.2.3)

we have

S0V
→

∫
d3x

1

2

[(
e−

θ
4
∇2

∂µφ
)

?M

(
e−

θ
4
∇2

∂µφ
)
−m2

(
e−

θ
4
∇2

φ
)

?M

(
e−

θ
4
∇2

φ
)]

=

∫
d3x

1

2

[(
e−

θ
4
∇2

∂µφ
)(

e−
θ
4
∇2

∂µφ
)
−m2

(
e−

θ
4
∇2

φ
)(

e−
θ
4
∇2

φ
)]

=

∫
d3x

1

2

(
∂µφ e−

θ
2
∇2

∂µφ−m2φ e−
θ
2
∇2

φ
)

(4.2.4)

which is not the free action with the Moyal product namely the ordinary one.

We begin with the discussion of the free case since the free action (4.2.1) is

different from the ordinary one. As well-known, the dynamical behaviour of
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a dynamical system is determined by the action principle which affirms that

the equation of motion, namely the field equation, is obtained demanding

that the variation of the action is vanishing under any infinitesimal variation

of the field. So given an infinitesimal variation of φ:

φ → φ + δφ (4.2.5)

the corresponding infinitesimal variation of the action S0V
is given by

δS0V
=

∫
d3x

(
∂µφ ?V ∂µδφ−m2φ ?V δφ

)
. (4.2.6)

By integrating by parts we obtain, up to boundary terms,

δS0V
= −

∫
d3x δφ ?V

(
2 + m2

)
φ (4.2.7)

and using the relation (4.1.19) we have

δS0V
= −

∫
d3x δφ e−

θ
2
∇2 (

2 + m2
)
φ. (4.2.8)

Since the variation of the action δS0 has to vanish for any variation of the

field δφ, we get the equation of motion

e−
θ
2
∇2 (

2 + m2
)
φ = 0 (4.2.9)

which is different from the ordinary Klein-Gordon equation given by

(
2 + m2

)
φ = 0. (4.2.10)

However, the two equations of motion have exactly the same solutions due

to the invertibility of the operator e−
θ
2
∇2

. Moreover, the on shell condition

is not deformed. That is, the dispersion relation is the same as the ordinary

one. In fact, in Fourier transform the equation of motion (4.2.9) becomes

e−
θ
2
∇2 (

2 + m2
)
φ(x) = e−

θ
2
∇2 (

2 + m2
) ∫

d3k

(2π)3
φ̃(k)e−ik·x

=

∫
d3k

(2π)3
e

θ
2
k2 (−k2 + m2

)
φ̃(k)e−ik·x = 0. (4.2.11)

Hence on shell condition is given by

e
θ
2
k2 (

k2 −m2
)
φ̃(k) = 0 (4.2.12)
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which reduces to the ordinary one

(
k2 −m2

)
φ̃(k) = 0 (4.2.13)

because the exponential never vanishes. Therefore, at classical level the free

non-commutative field theory with the Wick-Voros product, like that with

the Moyal product, is the same as the commutative one.

4.2.2 Hamiltonian formalism

Before proceeding further in our analysis, we investigate the Hamiltonian

formalism in the free case. To begin with, let us find the field conjugate to

φ. As well-known, it is defined by

π =
δL0V

δφ̇
(4.2.14)

where we have set φ̇ = ∂0φ. To determine the functional derivative of the

Lagrangian L0V
with respect φ̇, consider an infinitesimal variation of φ̇:

φ̇ → φ̇ + δφ̇. (4.2.15)

The corresponding infinitesimal variation of the Lagrangian L0V
is given by

δL0V
=

∫
d2x δφ̇ ?V φ̇ (4.2.16)

and using the relation (4.1.19) we have

δL0V
=

∫
d2x δφ̇ e−

θ
2
∇2

φ̇. (4.2.17)

So the field conjugate to φ is given by

π = e−
θ
2
∇2

φ̇. (4.2.18)

We now assume that the free non-commutative Hamiltonian in the Wick-

Voros case is given by

H0V
=

∫
d2xH0V

=

∫
d2x

(
πφ̇− L0V

)
(4.2.19)

expressing φ̇ as a function of the conjugate field π. The choice of Hamiltonian

can be justified thinking of our theory as just as a theory with infinitely many
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numbers of derivatives without any consideration about non-commutative

geometry. Therefore, by using the relation (4.1.19) the free Hamiltonian can

be written as

H0V
=

∫
d2x

[
πe

θ
2
∇2

π − 1

2

(
e

θ
2
∇2

π ?V e
θ
2
∇2

π + ∂iφ ?V ∂iφ−m2φ ?V φ
)]

=

∫
d2x

1

2

(
πe

θ
2
∇2

π − ∂iφ ?V ∂iφ + m2φ ?V φ
)

(4.2.20)

which is different from the one that we would write if we started directly

from Hamiltonian formalism rather Lagrangian one2. We now are ready to

derive the Hamilton equations:

φ̇ =
δH

δπ
(4.2.21)

π̇ = −δH

δφ
. (4.2.22)

To evaluate the time evolution of φ, consider an infinitesimal variation of π:

π → π + δπ. (4.2.23)

The corresponding infinitesimal variation of the Hamiltonian is given by

δH0V
=

∫
d2x

1

2

(
π e

θ
2
∇2

δπ + δπ e
θ
2
∇2

π
)

. (4.2.24)

That is,

δH0V
=

∫
d2x δπ e

θ
2
∇2

π (4.2.25)

where we have integrated by parts and neglected all the boundary terms. So

the time evolution of φ is given by

φ̇ = e
θ
2
∇2

π (4.2.26)

which is, of course, consistent with (4.2.18). Instead to calculate the time

evolution of π, consider an infinitesimal variation of φ:

φ → φ + δφ. (4.2.27)

2Indeed, in such a case we would write the free non-commutative Hamiltonian as

H0V =
∫

d2x
1
2

(
π ?V π − ∂iφ ?V ∂iφ + m2φ ?V φ

)

where the field conjugate to φ is easily seen to be π = e
θ
2∇2

φ̇.
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The corresponding infinitesimal variation of the Hamiltonian is given by

δH0V
= −

∫
d2x

(
∂iφ ?V ∂iδφ−m2φ ?V δφ

)
(4.2.28)

By integrating by parts we get, up to boundary terms,

δH0V
= −

∫
d2x δφ ?V

(∇2 −m2
)
φ (4.2.29)

and using the relation (4.1.19) we have

δH0V
= −

∫
d2x δφ e−

θ
2
∇2 (∇2 −m2

)
φ. (4.2.30)

So the time evolution of π is given by

π̇ = e−
θ
2
∇2 (∇2 −m2

)
φ. (4.2.31)

It is now easy to show that combining (4.2.26) with (4.2.31) we obtain the

ordinary equations of motion for φ and π fields. This result confirms that

at classical level the free non-commutative field theory with the Wick-Voros

product is the same as the commutative one.

4.3 The Wick-Voros quantum field theory

We now move on to the quantum case and proceed to the determination

of Green’s functions in the Wick-Voros case. To calculate the propagator, we

can start from its general definition:

e−
θ
2
∇2 (

2 + m2
)
G

(2)
V (x− x′) = −δ(3)(x− x′). (4.3.1)

In Fourier transform it becomes

e−
θ
2
∇2 (

2 + m2
)
G

(2)
V (x− x′) = e−

θ
2
∇2 (

2 + m2
) ∫

d3p

(2π)3
G̃

(2)
V (p)e−ip·(x−x′)

=

∫
d3p

(2π)3
e

θ
2
p2 (−p2 + m2

)
G̃

(2)
V (p)e−ip·(x−x′)

= −
∫

d3p

(2π)3
e−ip·(x−x′) (4.3.2)

from which follows that

e
θ
2
p2 (−p2 + m2

)
G̃

(2)
V (p) = −1 (4.3.3)
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and then

G̃
(2)
V (p) =

e−
θ
2
p2

p2 −m2
. (4.3.4)

Note that to get the propagator, we can proceed as well as follows. The free

action (4.2.1) can be written as

S0V
=

∫
d3x

1

2

(
∂µφ e−

θ
2
∇2

∂µφ−m2φ e−
θ
2
∇2

φ
)

=

∫
d3x

1

2
φ e−

θ
2
∇2 (−∂2

µ −m2
)
φ (4.3.5)

where we have used (4.1.19), integrated by parts and neglected the boundary

terms. So it can be rewritten as

S0V
=

∫
d3x d3x′ φ(x)K(x, x′)φ(x′) (4.3.6)

with

K(x, x′) = e−
θ
2
∇2

(−∂2
µ −m2)δ(3)(x− x′) (4.3.7)

or equivalently

K(x, x′) = e−
θ
2
∇2

(−∂2
µ −m2)

∫
d3p

(2π)3
e−ip·(x−x′)

=

∫
d3p

(2π)3
e

θ
2
p2 (

p2 −m2
)
e−ip·(x−x′). (4.3.8)

Therefore, the propagator, the inverse of the operator K(x, x′), is

G
(2)
V (x, x′) =

∫
d3p

(2π)3

e−
θ
2
p2

p2 −m2
e−ip·(x−x′). (4.3.9)

from which we can read off the propagator in momentum space (4.3.4). Since

the poles in the propagator (4.3.4) are the same as in the Moyal and ordinary

cases (3.2.6), the free field theory in the Wick-Voros case is the same as in the

two cases at the quantum level as well. Nevertheless, the two propagators

are not identical. Moreover, for infinite momentum there is an essential

singularity or a zero of the propagator according to the sign of θ. The meaning

of the essential singularity is not clear, but the oddity is that the sign of θ

has no physical meaning since it can be changed by the exchange of the two

coordinates.
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To calculate the four-point Green’s function to the tree level in the Wick-

Voros case, we first must determine the vertex. To this end, let us write down

the interacting action (4.2.2) in momentum space. By using the relations

(4.1.14) and (4.1.16) we have

SintV
=

g

4!

∫
dx

dk1

(2π)3

dk2

(2π)3

dk3

(2π)3

dk4

(2π)3
φ̃(k1)φ̃(k2)φ̃(k3)φ̃(k4)

e−θ(k1−k2++k3−k4+)ei(k1+k2)·x ?V ei(k3+k4)·x

=
g

4!
(2π)3

∫
dk1

(2π)3

dk2

(2π)3

dk3

(2π)3

dk4

(2π)3
φ̃(k1)φ̃(k2)φ̃(k3)φ̃(k4)

e−θ(k1−k2++k3−k4+−k−k+)δ(3)(k1 + k2 + k)δ(3)(k3 + k4 − k)

=
g

4!
(2π)3

∫
dk1

(2π)3

dk2

(2π)3

dk3

(2π)3

dk4

(2π)3
φ̃(k1)φ̃(k2)φ̃(k3)φ̃(k4)

e−θ[k1−k2++k3−k4++(k1−+k2−)(k3++k4+)]δ(3)(k1 + k2 + k3 + k4) (4.3.10)

where

V?V
= V e

∑
a<b−θka−kb+ = V e

∑
a<b− θ

2
(ka·kb+ika∧kb) (4.3.11)

is the Wick-Voros vertex and V is the ordinary vertex (3.2.10). To calculate

the four-point Green’s function at the tree level, we have to attach to the

vertex (4.3.11) four propagators (4.3.4). We have

G̃
(4)
V = −ig(2π)3 e−θ(

∑4
a=1 ka−ka++

∑
a<b ka−kb+)

∏4
a=1 (k2

a −m2)
δ(3)

(
4∑

a=1

ka

)

= −ig(2π)3 e−
θ
2 [

∑4
a=1 k2

a+
∑

a<b(ka·kb+ika∧kb)]
∏4

a=1 (k2
a −m2)

δ(3)

(
4∑

a=1

ka

)

= −ig(2π)3 e
− θ

4

[∑4
a=1 k2

a+(
∑4

a=1 ka)
2
+2i

∑
a<b ka∧kb

]

∏4
a=1 (k2

a −m2)
δ(3)

(
4∑

a=1

ka

)

= −ig(2π)3 e−
θ
4(

∑4
a=1 k2

a+2i
∑

a<b ka∧kb)
∏4

a=1 (k2
a −m2)

δ(3)

(
4∑

a=1

ka

)
(4.3.12)

since the δ of conservation of momentum kills the mid term in the exponential.

The presence of a real exponent in the Green’s functions signifies that the

ultraviolet behaviour of the theory could be different from the Moyal and

ordinary ones. In order to investigate ultraviolet behaviour of the theory

in the Wick-Voros case, we will calculate in the next section the one-loop

correction to the two- and four-point Green’s functions.
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4.4 UV/IR mixing for the Wick-Voros prod-

uct

We now proceed to the calculation of the one-loop corrections to the two-

and four-point Green’s functions in the Wick-Voros case. In order to get

the one-loop corrections to the propagator, consider first the planar case

in figure 3.1(a). The amplitude is then obtained using three propagators

(4.3.4), two with momentum p, one with momentum q, the vertex (4.3.11)

with assignments (3.3.1) and the proper symmetry factor. We have

G̃
(2)
P = −i

g

3

∫
d3q

(2π)3

e−θ(2p−p++q−q+)e−θ(p−q+−p−q+−p−p+−q−q+−q−p++q−p+)

(p2 −m2)2(q2 −m2)

= −i
g

3

∫
d3q

(2π)3

e−θp−p+

(p2 −m2)2(q2 −m2)
(4.4.1)

where the first exponential is due to the propagators and the second one to

the vertex. Therefore, the q-contribution cancels completely that is, there is

no change in the convergence of the integral with respect the ordinary case.

Consider now the non-planar case in figure 3.1(b). The structure is the same

as in the planar case, but with assignments given by (3.3.3). We have

G̃
(2)
NP = −i

g

6

∫
d3q

(2π)3

e−θ(2p−p++q−q+)e−θ(p−q+−p−p+−p−q+−q−p+−q−q++p−q+)

(p2 −m2)2(q2 −m2)

= −i
g

6

∫
d3q

(2π)3

e−θ(p−p++ip∧q)

(p2 −m2)2(q2 −m2)

since

p−q+ − q−p+ = ip ∧ q. (4.4.2)

Therefore, the q-contribution does not cancel completely. We can conclude

that the ultraviolet divergence of the planar diagram in both the Moyal and

Wick-Voros cases is unchanged with respect to the ordinary one. Instead, in

the non-planar diagram the presence of the oscillating factor in the integral

softens the ultraviolet divergence, because it dampens the functions for high

values of q. However, it is responsible for infrared divergences. Therefore,

the ultraviolet behaviour in both cases is exactly the same and this can be

seen like a consequence of the canonical non-commutative relation (3.1.1)

which is unchanged between the Moyal and Wick-Voros cases. Nevertheless,

the Green’s functions for the two cases are not the same.
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Finally, to get the one-loop correction to the four-point Green’s function,

consider first the planar case of figure 3.2. We have

G̃
(4)
P =

(−ig)2

8
(2π)3

∫
d3q

(2π)3

e−θ(
∑4

a=1 ka−ka++
∑

a<b ka−kb+)δ(3)
(∑4

a=1 ka

)

(q2 −m2) [(k1 + k2 − q)2 −m2]
∏4

a=1(k
2
a −m2)

(4.4.3)

Therefore, the internal momentum q appears only in the denominator, like in

the Moyal case, that is, the planar diagram has the same ultraviolet behaviour

as the ordinary one. In the determination of the one-loop correction to the

four-point Green’s function we must consider the non-planar diagrams shown

in figure 3.3 as well. We have

G̃
(4)
NPa

=
(−ig)2

8
(2π)3

∫
d3q

(2π)3

e−θ(
∑4

a=1 ka−ka++
∑

a<b ka−kb++Ea)δ(3)
(∑4

a=1 ka

)

(q2 −m2) [(k1 + k2 − q)2 −m2]
∏4

a=1(k
2
a −m2)

(4.4.4)

where Ea’s are still given by (3.3.7). We can conclude that the ultraviolet

properties in the Wick-Voros case remain unchanged with respect to the

Moyal case and, in particular, the ultraviolet/infrared mixing is unchanged.

This is to be expected since heuristically this is consequence of commutation

relation which is, of course, the same in both theories. However, the two

theories are not equivalent, despite the physical intuition, since the Green’s

functions differ for a factor can be considered as a momentum dependent

coupling constant. In the last chapter we will discuss this problem and show

that the Moyal and Wick-Voros field theories describe the same physics at

the level of S-matrix and in the framework of twisted non-commutativity.

Instead, in the next chapter we will introduce a general translation invariant

associative product and show that the ultraviolet/infrared mixing is still the

some as for the Moyal and Wick-Voros products.
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Chapter 5

UV/IR mixing for a general

translation invariant product

In this chapter we introduce a general translation invariant associative

product and describe a non-commutative field theory with such a product in

order to investigate the relationship between the translation invariance and

the ultraviolet/infrared mixing. We show that the ultraviolet/infrared mixing

for the Moyal and Wick-Voros products is a generic feature of any translation

invariant associative product.

5.1 A general translation invariant product

In this section we introduce a general associative star product1 between

functions on Rd and then we discuss the condition of translational invariance

in order to investigate the relationship between the translation invariance and

the ultraviolet/infrared mixing. Notice that we contemplate the possibility

that the star product be commutative although in general it is not so.

Consider a generalization of the Moyal product (3.1.12) given by

(f ? g)(x) =

∫
ddp

(2π)d

ddq

(2π)d

ddr

(2π)d
f̃(q)g̃(r)K(p, q, r)eip·x (5.1.1)

where K is in general a distribution. Note that the ordinary product is also

of this kind for

K(p, q, r) = δ(d)(r − p + q). (5.1.2)

1General star products were first introduced in [46, 47] in the framework of deformation
quantization of Poisson manifolds.
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In order to have an associative product, we have to impose

((f ? g) ? h)(x) =

∫
ddp

(2π)d

ddq

(2π)d

ddr

(2π)d
(f̃ ? g)(q)h̃(r)K(p, q, r)eip·x

=

∫
ddp

(2π)d

ddq

(2π)d

ddr

(2π)d

dds

(2π)d

ddt

(2π)d
f̃(s)g̃(t)h̃(r)K(p, q, r)K(q, s, t)eip·x

=

∫
ddp

(2π)d

ddq

(2π)d

ddr

(2π)d

dds

(2π)d

ddt

(2π)d
f̃(r)g̃(s)h̃(t)K(p, q, t)K(q, r, s)eip·x

(5.1.3)

is equal to

(f ? (g ? h))(x) =

∫
ddp

(2π)d

ddq

(2π)d

ddr

(2π)d
f̃(q)(g̃ ? h)(r)K(p, q, r)eip·x

=

∫
ddp

(2π)d

ddq

(2π)d

ddr

(2π)d

dds

(2π)d

ddt

(2π)d
f̃(q)g̃(s)h̃(t)K(p, q, r)K(r, s, t)eip·x

=

∫
ddp

(2π)d

ddq

(2π)d

ddr

(2π)d

dds

(2π)d

ddt

(2π)d
f̃(r)g̃(s)h̃(t)K(p, r, q)K(q, s, t)eip·x.

(5.1.4)

In other words, we have to impose
∫

ddq K(p, q, t)K(q, r, s) =

∫
ddq K(p, r, q)K(q, s, t). (5.1.5)

We can show that this condition is nothing but the usual cocycle condition

in the Hochschild cohomology. To this end, we recall that the 2-cochain

c ∈ C2(A) is the map

c : A⊗A → A (5.1.6)

defined by

c(f, g) = f ? g (5.1.7)

whereA is the non-commutative algebra of functions with the product (5.1.1)

and the coboundary operator is the map

∂ : Ck(A) → Ck+1(A) (5.1.8)

which transforms the k-cochain c(f1, . . . fk) in the (k +1)-cochain defined by

∂c(f0, . . . , fk) = f0 ? c(f1, . . . , fk) +
k−1∑
i=0

(−1)i+1c(f0, . . . , fi ? fi+1, . . . , fk)

+ (−1)k+1c(f0, . . . , fk−1) ? fk. (5.1.9)
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In order for the 2-cochain (5.1.7) to be a 2-cocycle, it has to be

0 = ∂c(f, g, h) = f ? c(g, h)− c(f ? g, h) + c(f, g ? h)− c(f, g) ? h

= 2 (f ? (g ? h)− (f ? g) ? h) (5.1.10)

which gives (5.1.5). In general, the product (5.1.21) is non-commutative.

However, it becomes commutative if we impose a constraint on K. Indeed,

imposing

(f ? g)(x) =

∫
ddp

(2π)d

ddq

(2π)d

ddr

(2π)d
f̃(q)g̃(r)K(p, q, r)eip·x

=

∫
ddp

(2π)d

ddq

(2π)d

ddr

(2π)d
g̃(q)f̃(r)K(p, r, q)eip·x = (g ? f)(x)

(5.1.11)

we get the commutativity condition

K(p, q, r) = K(p, r, q). (5.1.12)

This condition means that the 2-cochain c given by (5.1.7) is a 2-coboundary.

That is,

c(f, g) = ∂b(f, g) = f ? b(g) + g ? b(f)− b(f ? g) (5.1.13)

where the 1-cochain b is simply given by the identity map. In other words, the

commutativity condition (5.1.12) is a coboundary condition in the Hochschild

cohomology.

We now proceed to the discussion of translation invariance of the product

(5.1.1). We recall that the translation by a vector a is defined by

Ta(f)(x) = f(x + a). (5.1.14)

Since in Fourier transform
∫

ddp

(2π)d
T̃a(f)(p)eip·x =

∫
ddp

(2π)d
f̃(p)eip·(x+a), (5.1.15)

we have

T̃a(f)(p) = eia·pf̃(p). (5.1.16)

By translation invariant product we mean as usual a product which satisfies

the property

Ta(f) ? Ta(g) = Ta(f ? g). (5.1.17)
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For the translational invariance of the product (5.1.1) we have to impose

Ta(f ? g) =

∫
ddp

(2π)d

ddq

(2π)d

ddr

(2π)d
eip·(x+a)f̃(q)g̃(r)K(p, q, r) (5.1.18)

is equal to

Ta(f) ? Ta(g) =

∫
ddp

(2π)d

ddq

(2π)d

ddr

(2π)d
eip·xT̃a(f)(q)T̃a(g)(r)K(p, q, r)

=

∫
dp dq dr eip·xeia·qf̃(q)eia·rg̃(r)K(p, q, r). (5.1.19)

This is achieved by setting

K(p, q, r) = eα(p,q)δ(d)(r − p + q) (5.1.20)

where α is a generic function. Therefore, because of translation invariance,

the product (5.1.1) takes the form

(f ? g)(x) =

∫
ddp

(2π)d

ddq

(2π)d
f̃(q)g̃(p− q)eα(p,q)eip·x. (5.1.21)

The ordinary product is given by α = 0, the Moyal product (3.1.12) by

αM(p, q) = − i

2
θijqi(pj − qj) =

i

2
θp ∧ q (5.1.22)

and the Wick-Voros product (4.1.14) by

αV (p, q) = −θq−(p+ − q+) = αM(p, q)− θ

2
(p− q) · q. (5.1.23)

We can express the associativity condition (5.1.5) in terms of α. Indeed,

from (5.1.5) and (5.1.20) follows that

∫
ddq eα(p,q)δ(d)(t− p + q)eα(q,r)δ(d)(s− q + r) =

∫
ddq eα(p,r)δ(d)(q − p + r)eα(q,s)δ(d)(t− q + s) (5.1.24)

That is,
∫

ddp eα(p,r+s)+α(r+s,r)δ(d)(r+s+t−p) =

∫
ddp eα(p,r)+α(p−r,s)δ(d)(r+s+t−p).

(5.1.25)

44



Therefore, α has to satisfy the condition

α(p, r + s) + α(r + s, r) = α(p, r) + α(p− r, s) (5.1.26)

which can be rewritten as

α(p, q) = α(p, r)− α(q, r) + α(p− r, q − r). (5.1.27)

Note that we can get the associativity condition by starting directly from

(5.1.21). Indeed, imposing

((f ? g) ? h)(x) =

∫
ddp

(2π)d

ddq

(2π)d
(f̃ ? g)(q)h̃(p− q)eα(p,q)eip·x

=

∫
ddp

(2π)d

ddq

(2π)d

ddr

(2π)d
f̃(r)g̃(q − r)h̃(p− q)eα(p,q)+α(q,r)eip·x

(5.1.28)

is equal to

(f ? (g ? h))(x) =

∫
ddp

(2π)d

ddq

(2π)d
f̃(q)(g̃ ? h)(p− q)eα(p,q)eip·x

=

∫
ddp

(2π)d

ddq

(2π)d

ddr

(2π)d
f̃(q)g̃(r)h̃(p− q − r)eα(p,q)+α(p−q,r)eip·x

=

∫
ddp

(2π)d

ddq

(2π)d

ddr

(2π)d
f̃(r)g̃(q − r)h̃(p− q)eα(p,r)+α(p−r,q−r)eip·x

(5.1.29)

we reobtain the condition (5.1.27). We also require

f ? 1 =

∫
ddp

(2π)d

ddq

(2π)d
f̃(q)δ(d)(p− q)eα(p,q)eip·x =

∫
ddp

(2π)d
f̃(p)eα(p,p)eip·x = f

(5.1.30)

and

1?f =

∫
ddp

(2π)d

ddq

(2π)d
δ(d)(q)f̃(p−q)eα(p,q)eip·x =

∫
ddp

(2π)d
f̃(p)eα(p,0)eip·x = f.

(5.1.31)

That is, the identity of the algebra of functions with the product (5.1.21) is

the constant function with value 1. These conditions impose

α(p, p) = 0 (5.1.32)

α(p, 0) = 0. (5.1.33)
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In particular,

α(0, 0) = 0 (5.1.34)

Moreover, we require the algebra to be a ∗-algebra. That is, there must be a

map which satisfies the following conditions [48]:

(f ∗)∗ = f (5.1.35)

(λf + µg)∗ = λ̄f ∗ + µ̄g∗ (5.1.36)

(f ? g)∗ = g∗ ? f ∗ (5.1.37)

for any complex numbers λ and µ where the bar dentes complex conjugation.

In our case the involution ∗ is given by complex conjugation and in particular

the last relation imposes a constrain on α. Indeed, since

(f ? g)∗ =

∫
ddp

(2π)d

ddq

(2π)d
f̃(q)∗g̃(p− q)∗eα(p,q)∗e−ip·x (5.1.38)

has to be equal to

g∗ ? f ∗ =

∫
ddp

(2π)d

ddq

(2π)d
g̃∗(q)f̃ ∗(p− q)eα(p,q)eip·x

=

∫
ddp

(2π)d

ddq

(2π)d
g̃(−q)∗f̃(q − p)∗eα(p,q)eip·x

=

∫
ddp

(2π)d

ddq

(2π)d
f̃(q)∗g̃(p− q)∗eα(−p,q−p)e−ip·x (5.1.39)

then α has to satisfy the condition

α(p, q)∗ = α(−p, q − p). (5.1.40)

We can express the commutativity condition (5.1.12) in terms of α as well.

Indeed, from (5.1.12) and (5.1.20) follows that

eα(p,q)δ(d)(r − p + q) = eα(p,r)δ(d)(q − p + r)

= eα(p,r)δ(d)(r − p + q)

= eα(p,p−q)δ(d)(r − p + q). (5.1.41)

That is,

α(p, q) = α(p, p− q). (5.1.42)
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Note that we can get the commutativity condition by starting directly from

(5.1.21). Indeed, imposing

(f ? g)(x) =

∫
ddp

(2π)d

ddq

(2π)d
f̃(q)g̃(p− q)eα(p,q)eip·x

=

∫
ddp

(2π)d

ddq

(2π)d
g̃(q)f̃(p− q)eα(p,p−q)eip·x = (g ? f)(x) (5.1.43)

we reobtain the condition (5.1.42). From the associativity condition (5.1.27),

we can derive some very useful relations. For q = r = p we have

α(p, p) = α(0, 0) (5.1.44)

and for q = r = 0 we have

α(p, 0) = α(0, 0) (5.1.45)

in agreement with (5.1.32) and (5.1.33) respectively. For q = 0 and r = p we

have

α(0,−p) = α(0, p). (5.1.46)

For r = p we have

α(p, q) = −α(q, p) + α(0, q − p). (5.1.47)

Moreover, from (5.1.27) we have

α(0, q) = α(0, p)− α(q, p) + α(−p, q − p) (5.1.48)

and by using (5.1.47) we obtain a very important relation

α(p, q) = −α(0, p) + α(0, q) + α(0, p− q)− α(−p, q − p). (5.1.49)

With a symbolic manipulation programme and a little work is not difficult to

construct polynomial expression for α. For example, the following expression

in two-dimensions

α = Ap2q1 + Bp1q2 − (A + B)q1q2 + C
(
p2q

2
2 − p2

2q2

)

+ D

(
p2

2q1 − p1q
2
2

2
+ p1p2q2 − p2q1q2

)
(5.1.50)
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gives rise to an associative product for any complex numbers A,B,C and D.

However, the condition (5.1.40) imposes some conditions on these coefficients.

Indeed, it is easy to see that

B∗ = A, C∗ = −C and D∗ = −D. (5.1.51)

Note that the integral of the product of two functions can be written as

∫
ddx f ? g =

∫
ddx

ddp

(2π)d

ddq

(2π)d
f̃(q)g̃(p− q)eα(p,q)eip·x

=

∫
dq

(2π)d
f̃(q)g̃(−q)eα(0,q). (5.1.52)

Therefore, the integral of the product of two functions is not equal to the

integral of the ordinary product of the two functions. However, from (5.1.46)

follows the trace property
∫

ddx f ? g =

∫
ddx g ? f. (5.1.53)

5.2 Cohomology

We now proceed to show that it is possible to define an “α-cohomology”

with respect to which α is a 2-cocycle in the associative case while it is a

2-coboundary in the commutative one. Let α ∈ A2(Ã) be the map

α : (p, q) ∈ Ã ⊗ Ã −→ Ã (5.2.1)

with Ã the algebra of Fourier transforms (to be more precise α is defined on

translations, realised as linear functions in Ã) and the coboundary operator

∂ : Ak(Ã) → Ak+1(Ã) (5.2.2)

defined by

∂γ(p0, . . . , pk) =
k∑

i=0

(−1)iγ(p0, . . . , pi−1, pî, pi+1, . . . , pk)

− (−1)kγ(p0 − pk, pi − pk, . . . , pk−1 − pk). (5.2.3)

Note that a straightforward calculation verifies that

∂2 = 0. (5.2.4)
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In order for α in (5.2.1) to be a 2-cocycle in the α-cohomology, it has to be

0 = ∂α(p, q, r) = α(q, r)− α(p, r) + α(p, q)− α(p− r, q − r)

= 2 (f ? (g ? h)− (f ? g) ? h) (5.2.5)

that is (5.1.27). Therefore, the associativity condition (5.1.27) is a cocycle

condition in the α-cohomology. Analogously the commutativity condition

(5.1.42) is a coboundary condition. Indeed, for α to be a 2-coboundary in

the α-cohomology, it has to be

α(p, q) = ∂β(p, q) = β(q)− β(p) + β(p− q) (5.2.6)

which implies the commutativity condition (5.1.42). If α is a 2-coboundary

in the α-cohomology, then it is a 2-cocycle because of (5.2.4) so that the

product (5.1.21) is associative and commutative. However, the coboundary

condition in the α-cohomology (5.2.6) is not equivalent to the commutative

condition (5.1.42). Indeed, the function

α(p, q) = Aβ(p) + β(q) + β(p− q) (5.2.7)

with A a complex number and A 6= −1 is not a 2-coboundary, but it makes

the product (5.1.21) commutative and, of course, non-associative. As we have

already seen, the Moyal and Wick-Voros products, both non-commutative,

are respectively given by (5.1.22) and (5.1.23) which are both 2-cocycles in

the α-cohomology and more interestingly they differ by a term which is a

α-coboundary according to (5.2.6) with β so defined

β(q) = q2 (5.2.8)

Indeed, it is easy to verify that

αV (p, q) = αM(p, q) +
θ

4
∂β(p, q). (5.2.9)

5.3 Differential form of a general product

Another way to get a general star product is generalizing the differential

form of the Moyal product (3.1.3). To this end, consider a product which is

a series in a deformation parameter which we call again θ:

f ? g =
∞∑

r=0

Cr(f, g)θr (5.3.1)
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where C’s are in general bidifferential operators i.e. bilinear maps which

are differential operators with respect to each argument of globally bounded

order. To recover the ordinary product in the limit θ → 0 we need to impose

C0(f, g) = fg. (5.3.2)

Therefore, we can rewritten the product which we are considering as

f ? g = fg +
∞∑

r=1

Cr(f, g)θr. (5.3.3)

Instead, in order to ensure associativity the remaining Cr’s have to satisfy

the following conditions

fCr(g, h)− Cr(fg, h) + Cr(f, gh)− Cr(f, g)h =

=
∑

j+k=r

(Cj(Ck(f, g), h)− Cj(f, Ck(g, h))) (5.3.4)

for all r > 0. Note that a problem with the product (5.3.1) is that it is

defined on the space of formal series in the coordinates and then there is

in general no control on the convergence of the series after the product has

been taken. This kind of product is considered in the very general framework

of deformation quantization [49, 50]. This approach consists in finding a

deformation of the algebra of functions on a Poisson manifold2 with the

additional property that to first order in the deformation parameter θ the

star commutator of two functions:

[f, g]? = f ? g − g ? f (5.3.5)

reduces, or better is proportional, to the Poisson bracket of the two functions.

This requires that

{f, g} = C1(f, g)− C1(g, f). (5.3.6)

2In general, a Poisson manifold is a manifold endowed with a Poisson bracket that is,
a bilinear and antisymmetric map {·, ·} which satisfies the Jacobi identity

{f, {g, h}}+ {g, {h, f}}+ {h, {f, g}} = 0

and the Leibniz rule
{f, gh} = {f, g}h + g{f, h}.
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Since in general the Poisson bracket of two function can be written as

{f, g} = Λij∂if∂jg (5.3.7)

we have

Λij = C1(x
i, xj)− C1(x

j, xi) (5.3.8)

which can be easily proved by setting f = xi and g = xj. Note that if

C1(f, g) = C1(g, f) (5.3.9)

then the product (5.3.1) is commutative. The proof is the following. First

consider (5.3.4) for r = 2, f = h = xm and g = xn. Then relation (5.3.4)

becomes

fC2(g, f)− C2(fg, f) + C2(f, gf)− C2(f, g)f =

= xm(C2(x
n, xm)− C2(x

m, xn))− C2(x
m+n, xm) + C2(x

m, xm+n) =

= (C1(C1(f, g), f)− C1(f, C1(g, f))) = 0 (5.3.10)

because of the symmetry of C1. The second line of the above equation has

to hold for all x’s and therefore it must be

C2(x
m+n, xm) = C2(x

m, xm+n) (5.3.11)

for generic m and n. This implies that

C2(f, g) = C2(g, f). (5.3.12)

It is then possible to prove exactly in the same way that if

Cl(f, g) = Cl(g, f) (5.3.13)

for l < r then all the terms in the right hand side of (5.3.4) pairwise cancel

and we are left to the equivalent of (5.3.10) with a generic r proving that

Cr(f, g) = Cr(g, f). (5.3.14)

In general, given a Poisson manifold it is not easy to prove that it is always

possible to find a star product whose commutator reduces, to first order in

the deformation parameter θ, to the Poisson bracket because the associativity

conditions (5.3.4) are difficult to satisfy. A general result of Kontsevich [51] in
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the context of formal series solves this problem for a generic Poisson manifold.

Moreover, it proves that two products with the same Poisson structure are

equivalent in sense that there exists a map T such that

T (f ? g) = T (f) ?′ T (g). (5.3.15)

We have seen an instance of such an equivalence for the Moyal and Wick-

Voros products for which the equivalence map is given by (4.1.21).

To conclude this section, we briefly discuss the translation invariance of

the product (5.3.1). Since the Cr’s are bidifferential operators, the product

(5.3.1) becomes translation invariant if and only if the Cr’s are combinations

of derivatives only. Therefore, it can be written as

f ? g = fg +
∞∑

r=1

∑
i1,...ir,j1,...jr

θrci1...irj1...jr(∂i1 . . . ∂irf)(∂j1 . . . ∂jrg) (5.3.16)

where c’s are complex constant coefficients. By using (5.3.1) and the fact

that the Cr’s are combinations of derivatives only, we easily get

[xi, xj]? = xi ? xj − xi ? xj = C1(x
i, xj)− C1(x

j, xi). (5.3.17)

That is, the commutator of coordinates reads

[xi, xj]? = Λij. (5.3.18)

Therefore, it reproduces the Poisson structure of the underlying space.

5.4 Field theory with a general translation

invariant product

We now proceed to the discussion of a non-commutative field theory with

the general translation invariant product (5.1.21) in order to investigate its

ultraviolet behaviour. So let us consider a field theory described by the action

S = S0 + Sint (5.4.1)

where S0 is the free action given by

S0 =

∫
ddx

1

2

(
∂µφ ? ∂µφ−m2φ ? φ

)
(5.4.2)
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and Sint is the interacting one given by

Sint =
g

4!

∫
ddxφ ? φ ? φ ? φ. (5.4.3)

To begin with, we calculate the equation of motion. To this end, we consider

an infinitesimal variation of φ:

φ → φ + δφ. (5.4.4)

The corresponding infinitesimal variation of the action S0 is given by

δS0 =

∫
ddx

(
∂µφ ? ∂µδφ−m2φ ? δφ

)
. (5.4.5)

By integrating by parts we obtain, up to boundary terms,

δS0 = −
∫

ddx
(
2 + m2

)
φ ? δφ (5.4.6)

and using the relation (5.1.52) we have

δS0 = −
∫

ddp eα(0,p)(−p2 + m2)φ̃(p)δ̃φ(−p). (5.4.7)

Since the variation of the action δS0 have to be vanishing for every variation

of the field δφ, we get the equation of motion in Fourier transform

eα(0,p)(p2 −m2)φ̃(p) = 0 (5.4.8)

which reduces to the same ordinary equation of motion in Fourier transform

due to the invertibility of the exponential factor. Therefore, at classical level

the free non-commutative field theory with the general translation invariant

product (5.1.21) is the same as the commutative one.

We now move on to the quantum case and proceed to the calculation

of Green’s functions. The propagator can be easily obtained by solving the

equation

eα(0,p)(p2 −m2)G̃2(p) = 1 (5.4.9)

which gives

G̃2(p) =
e−α(0,p)

p2 −m2
. (5.4.10)

Note that in general the presence of the exponential in the propagator (5.4.10)

modifies its properties. In order to calculate the vertex, let us write down
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the interacting term of the action in momentum space. Using the relations

(5.1.21) and (5.1.52) we have

Sint =
g

4!

∫
ddx

ddk1

(2π)d

ddk2

(2π)d

ddk3

(2π)d

ddk4

(2π)d
φ̃(k2)φ̃(k1 − k2)φ̃(k4)φ̃(k3 − k4)

eα(k1,k2)eα(k3,k4)eik1·x ? eik3·x

=
g

4!
(2π)d

∫
ddk1

(2π)d

ddk2

(2π)d

ddk3

(2π)d

ddk4

(2π)d
φ̃(k2)φ̃(k1 − k2)φ̃(k4)φ̃(k3 − k4)

eα(k1,k2)eα(k3,k4)

∫
ddk

(2π)d
eα(0,k)δ(d)(k1 − k)δ(d)(k3 + k)

=
g

4!
(2π)d

∫
ddk1

(2π)d

ddk2

(2π)d

ddk3

(2π)d

ddk4

(2π)d
φ̃(k2)φ̃(k1 − k2)φ̃(k4)φ̃(k3 − k4)

eα(k1,k2)+α(k3,k4)+α(0,k1)δ(d)(k1 + k3) (5.4.11)

which can be rewritten as well as

Sint =
g

4!
(2π)d

∫
ddk1

(2π)d

ddk2

(2π)d

ddk3

(2π)d

ddk4

(2π)d
φ̃(k1)φ̃(k2)φ̃(k3)φ̃(k4)

eα(k1+k2,k1)+α(k3+k4,k3)+α(0,k1+k2)δ(d)(k1 + k2 + k3 + k4). (5.4.12)

Therefore, the vertex is given by

V? = V eα(k1+k2,k1)+α(k3+k4,k3)+α(0,k1+k2) (5.4.13)

where

V = −i
g

4!
(2π)dδ(d)

(
4∑

a=1

ka

)
(5.4.14)

is the ordinary d-dimensional vertex. It is possible to show that the vertex

loses the invariance for arbitrary exchanges of the external momenta, but it

maintains invariance for cyclic permutations. Finally, to calculate the four-

point Green’s function to the tree level, we must attach to the vertex (5.4.13)

four propagators (5.4.10). We have

G̃(4) =− ig(2π)d eα(k1+k2,k1)+α(k3+k4,k3)+α(0,k1+k2)

4∏
a=1

e−α(0,ka)

k2
a −m2

δ(d)

(
4∑

a=1

ka

)

=− ig(2π)d eα(k1+k2,k1)+α(k3+k4,k3)+α(0,k1+k2)−∑4
a=1 α(0,ka)

∏4
a=1(k

2
a −m2)

δ(d)

(
4∑

a=1

ka

)
.

(5.4.15)
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5.5 UV/IR mixing for a general translation

invariant product

We now proceed to the calculation of the one-loop corrections to the

propagator in order to investigate the ultraviolet behaviour of the theory.

Consider then both diagrams of figure 3.1. The correction for the planar

case (a) is obtained using three propagators (5.4.10), one with momentum

p, one with momentum −p, one with momentum q and the vertex (5.4.13)

with assignments given by (3.3.1) and the integration in q. We have up to a

constant

G
(2)
P =

∫
ddq

e−α(0,p)−α(0,−p)−α(0,q)

(p2 −m2)2(q2 −m2)
eα(p+q,p)+α(−p−q,−q)+α(0,p+q)

=

∫
ddq

e−2α(0,p)−α(0,q)+α(p+q,p)+α(−p−q,−q)+α(0,p+q)

(p2 −m2)2(q2 −m2)

=

∫
ddq

e−α(0,p)

(p2 −m2)2(q2 −m2)
(5.5.1)

since by using (5.1.49) we have

α(p + q, p) = −α(0, p + q) + α(0, p) + α(0, q)− α(−p− q,−q). (5.5.2)

We see that with respect to the commutative case the only correction is in

the factor e−α(0,p) which is the correction of the free propagator. Therefore,

the ultraviolet divergence of the planar diagram is the same as the ordinary

one. Consider now the non-planar case in figure 3.1(b). The structure is

the same as in the planar case, but this time the assignments are given by

(3.3.3). We have up to a constant

G
(2)
NP =

∫
ddq

e−α(0,p)−α(0,−p)−α(0,q)

(p2 −m2)2(q2 −m2)
eα(p+q,p)+α(−p−q,−p)+α(0,p+q)

=

∫
ddq

e−2α(0,p)−α(0,q)+α(p+q,p)+α(−p−q,−p)+α(0,p+q)

(p2 −m2)2(q2 −m2)

=

∫
ddq

e−α(0,p)+α(p+q,p)−α(p+q,q)

(p2 −m2)2(q2 −m2)
(5.5.3)

since by using again (5.1.49) we have

α(−p− q,−p) = −α(0,−p− q) + α(0,−p) + α(0,−q)− α(p + q, q)

= −α(0, p + q) + α(0, p) + α(0, q)− α(p + q, q). (5.5.4)
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The one-loop correction to the propagator in the non-planar case can be

rewritten as

G
(2)
NP =

∫
ddq

e−α(0,p)+ω(p,q)

(p2 −m2)2(q2 −m2)
(5.5.5)

where we have set

ω(p, q) = α(p + q, p)− α(p + q, q). (5.5.6)

Note that for both the Moyal and Wick-Voros products this term is given by

ωM(p, q) = ωV (p, q) = −iθijpipj. (5.5.7)

The function ω has some important properties which will be useful in the

discussion of the ultraviolet behaviour of the non-planar diagram. Using

(5.1.49) it is easy to get the following relations:

ω(p, p) = 0 (5.5.8)

ω(p, 0) = 0 (5.5.9)

ω(0, q) = 0 (5.5.10)

ω(p, q) = −ω(q, p) antisymmetry (5.5.11)

ω(−p,−q) = ω(p, q) parity (5.5.12)

ω(−p, q) = ω(p,−q). (5.5.13)

Moreover, ω satisfies the associativity condition (5.1.27) and then it satisfies

the condition (5.1.49) from which follows

ω(p, q) = ω(p− q, p), (5.5.14)

where we have used antisymmetry (5.5.11) and parity (5.5.12). It can be

written as well as

ω(p, q) = ω(q, q − p), (5.5.15)

where we have exchanged p and q and used once again antisymmetry (5.5.11).

Finally, from (5.1.27) we have

α(p + q, p) = α(p + q, r)− α(p, r) + α(p + q − r, p− r) (5.5.16)

and by setting r = q we get

ω(p, q) = α(p, p− q)− α(p, q). (5.5.17)
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This quantity vanishes if the product is commutative because of (5.1.42).

This means that the non-planar diagram captures the non-commutativity of

the product. In other words, no change in the ultraviolet can come from a

commutative product.

We now prove that the contribution to the correction to the non-planar

one-loop two-point diagram must necessarily be of the form

ω(p, q) = −iθijpipj (5.5.18)

exactly like in the Moyal and Wick-Voros cases. We only need the extra

assumption that α and so ω can be expanded in a power series of p and q.

The parity relation (5.5.12) requires the series to be composed only of even

monomials. Let us express the function ω with a multi-index notation as

ω(p, q) =
∑

ij

aijp
iqj (5.5.19)

with i = (i1, i2, . . . , id) and

pi = pi1
1 pi2

2 . . . pid
d . (5.5.20)

Note that from (5.5.12) follows that

∑

ij

aijp
iqj = −

∑

ij

aijq
ipj = −

∑

ij

ajip
iqj . (5.5.21)

That is, ∑

ij

(aij + aji)p
iqj = 0 (5.5.22)

Because of the independence of p and q, we have

aij = −aji. (5.5.23)

Therefore, the coefficients a’s are antisymmetric for the exchange of the

multi-indices i and j. Now from (5.5.15) follows that

∑

ij

aijp
iqj =

∑

ij

aijq
i(q − p)j =

∑

ij

aji(q − p)iqj = −
∑

ij

aij(q − p)iqj

(5.5.24)

That is, ∑

ij

aij [p
i + (q − p)i]qj = 0. (5.5.25)
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This condition implies, because of the independence of p and q, that the

coefficients a’s must vanish except in the case in which all of the ja’s but one

vanish. In this case the antisymmetry of the a’s ensures that (5.5.25) vanishes

without putting further constraints on the coefficients. Using antisymmetry

the same reasoning can be done for the first multi-index and this shows that

ω is of the kind

ω(p, q) = Aεijpipj (5.5.26)

where A is in general a complex number. Moreover, since from (5.1.40)

follows that Ā = −A, we can set A = −iθ with θ real number and this

concludes the proof. Therefore, like in the Moyal and Wick-Voros cases, the

non-planar diagram presents the phenomenon of ultraviolet/infrared mixing.

In other words, for high internal momentum the ultraviolet divergences are

damped by a phase, but these divergences reappear in the infrared namely

for low incoming momenta.

We now want to highlight that ω is related to the commutator of the

coordinates. To this end, we must first derive the commutation relations and

for this it is more useful to rewrite (5.1.21) as

(f ? g)(x) =

∫
ddp

(2π)d

ddq

(2π)d
f̃(p)g̃(q)eα(p+q,p)ei(p+q)·x (5.5.27)

with a change of variables. We have

xi ? xj = −
∫

ddp

(2π)d

ddq

(2π)d

(
∂

∂pi

δ(d)(p)

) (
∂

∂qj

δ(d)(q)

)
eα(p+q,p)ei(p+q)·x

=

∫
ddp

(2π)d

ddq

(2π)d
δ(d)(p)

(
∂

∂qj

δ(d)(q)

)
∂

∂pi

[
eα(p+q,p)ei(p+q)·x]

=

∫
ddp

(2π)d

ddq

(2π)d
δ(d)(p)

(
∂

∂qj

δ(d)(q)

)(
∂α

∂pi

(p + q, p) + ixi

)
eα(p+q,p)ei(p+q)·x

=

∫
ddq

(2π)d

(
∂

∂qj

δ(d)(q)

)(
∂α

∂pi

(q, 0) + ixi

)
eiq·x

= −
∫

ddq

(2π)d
δ(d)(q)

∂

∂qj

[(
∂α

∂pi

(q, 0) + ixi

)
eiq·x

]

= −
∫

ddq

(2π)d
δ(d)(q)

[
∂2α

∂pi∂qj

(q, 0) +

(
∂α

∂pi

(q, 0) + ixi

)
ixj

]
eiq·x

= xixj − i
∂α

∂pi

(0, 0)xj − ∂2α

∂pi∂qj

(0, 0). (5.5.28)
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In a similar way we get

xj ? xi = xixj − i
∂α

∂pj

(0, 0)xi − ∂2α

∂pj∂qi

(0, 0). (5.5.29)

Therefore, the commutator of the coordinates is given by

[xi, xj]? = −i
∂α

∂pi

(0, 0)xj+i
∂α

∂pj

(0, 0)xi− ∂2α

∂pi∂qj

(0, 0)+
∂2α

∂pj∂qi

(0, 0). (5.5.30)

The first two terms of this expression vanish because α has no linear term

because of (5.1.33) and (5.1.46). So the commutator of the coordinates is

simply given by

[xi, xj]? = − ∂2α

∂pi∂qj

(0, 0) +
∂2α

∂pj∂qi

(0, 0). (5.5.31)

Expanded α in a power series of p and q as3

α(p, q) = αijpiqj + . . . (5.5.32)

we have

[xi, xj]? = −αij + αji. (5.5.33)

Moreover, from the definition of ω we have

ω(p, q) = αij(pi + qi)pj − αij(pi + qi)qj = αij(pi + qi)(pj − qj) (5.5.34)

in which survive only the mixed terms because of (5.5.9) and (5.5.10). That

is,

ω(p, q) = −αijpiqj + αijqipj =
(−αij + αji

)
piqj. (5.5.35)

Therefore, the term appearing in the exponent of the one-loop correction

to the propagator in the non-planar case is just the commutator of the x’s

multiplied by the external and internal momenta like in the Moyal and Wick-

Voros cases. In other words, the Moyal and Wick-Voros cases are generic

and their behaviour is replicated by any translation invariant associative

product. More in general we can conclude that star products with the same

commutator and hence the same Poisson structure, which are equivalent

in the sense of Kontsevich, have the same structure of ultraviolet/infrared

mixing.

3Note that α has no constant term because of (5.1.34).
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Chapter 6

The Moyal and Wick-Voros

products as twisted products

In this chapter we present a comparison of the non-commutative field

theories built using the Moyal and Wick-Voros products in the context of the

twisted non-commutativity. The comparison is made at the level of Green’s

functions and S-matrix and we show that while the Green’s functions are

different for the two theories, the S-matrix is the same in both cases and is

different from the commutative case.

6.1 Towards twisted non-commutativity

We have seen that the vertex and Green’s functions of the Wick-Voros

field theory are different from the Moyal ones. This leads to a contradiction.

Indeed, with the introduction of another star product which gives the same

commutation relation, one can heuristically reason as follows. The presence

of the non-commutativity described by (3.1.1) gives the non-commutative

structure of space-time regardless of the realization of the product one uses.

Therefore, the star product is just a way to express the structure of space-

time and so the results should be the same.

The element that we need consider to solve this puzzle is symmetries.

The commutation relation (3.1.1) breaks the Poincaré symmetry and this is

not a desirable feature for a fundamental theory. In particular, it breaks the

Lorentz symmetry, but retain the translational one. However, the symmetry

can be reinstated at a deformed level since both products can be seen as
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coming from a Drinfeld twist [25, 26]. The non-commutativity described by

the two star products is therefore a twisted non-commutativity.

The presence of a twist forces us to reconsider all of the steps in a field

theory which has to be built in a coherent twisted way. We will see that there

is equivalence between the Moyal and Wick-Voros field theories at the level

of S-matrix. This is in agreement with our physical intuition since Green’s

functions are not observable quantities while S-matrix is. Furthermore, the

equivalence is only obtained if a consistent procedure of twisting all products

is applied. In this way the Poincaré symmetry, which appears to be broken

in (3.1.1), is preserved, though in a deformed way, as a non-commutative and

non-cocommutative Hopf algebra. However, there is some ambiguity in the

issue of twisting [52, 53, 54, 55, 56, 57, 58, 59, 60, 61] and what we do in this

chapter is just to use the field theories built with the Moyal and Wick-Voros

products to check each other. This gives us an indication on the procedure

to follow for non-commutative theories coming from a twist [28, 29, 30, 62].

6.2 The Moyal and Wick-Voros products as

twisted products

Given the Poincaré algebra P and its universal enveloping algebra U(P),

a twist F is an invertible element of U(P)⊗ U(P) such that

F12(∆⊗ id)F = F23(id⊗∆)F (6.2.1)

(ε⊗ id)F = (id⊗ ε)F = 1 (6.2.2)

where

F12 = F ⊗ 1 and F23 = 1⊗F . (6.2.3)

Observe that the condition (6.2.1) nothing other than a cocycle condition1.

Before to proceed further, we recall that the Poincaré algebra P describes

the symmetries of ordinary Minkowski space-time M and it is characterized

by the following commutation relations:

[Mµν ,Mρσ] = i(ηµσMνρ − ηνσMµρ + ηνρMµσ − ηµρMνσ) (6.2.4)

[Mµν , Pρ] = i(ηνρPµ − ηµρPν) (6.2.5)

[Pµ, Pν ] = 0 (6.2.6)

1See appendix A.
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where Mµν and Pµ are respectively the Lorentz generators and translation

generators which are represented on the algebra of functions on Minkowski

space-time M by

Pµ = −i∂µ (6.2.7)

Mµν = i(xµ∂ν − xν∂µ). (6.2.8)

Moreover, its universal enveloping algebra U(P) has a non-commutative, but

cocommutative Hopf algebra structure with the coproduct, the counit and

the antipode given respectively by

∆0(X) = X ⊗ 1+ 1⊗X (6.2.9)

ε0(X) = 0 (6.2.10)

S0(X) = −X (6.2.11)

where X stands for Mµν and Pµ. For the Moyal and Wick-Voros cases the

twist is given respectively by

FM = e−
i
2
θij∂i⊗∂j (6.2.12)

FV = e−θ∂+⊗∂− . (6.2.13)

We now assume the following point of view in agreement with [29, 63, 64, 65].

The non-commutativity can be seen a consequence of twisting of all products.

Thus, for example, the ordinary commutative product between functions2 on

space-time M
m0 : Fun(M)⊗ Fun(M) → Fun(M) (6.2.14)

defined by

m0(f ⊗ g) = fg (6.2.15)

is consistently deformed by composing it with the twist F which can be

viewed as well as a map

F : Fun(M)⊗ Fun(M) → Fun(M)⊗ Fun(M). (6.2.16)

obtaining a deformed version m? of the ordinary product m0. In other words,

the star product can be seen as the composition of the ordinary product m0

with the twist F :

m? = m0 ◦ F−1. (6.2.17)

2At this level we need not specify which kind of algebra of functions we are considering.
The algebra of formal series of the generators is adequate, but more restricted algebras
such as algebra of Schwarzian functions can also be considered.
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In particular, the Moyal and Wick-Voros products are given respectively by

f ?M g = m ◦ F−1
?M

(f ⊗ g) (6.2.18)

f ?V g = m ◦ F−1
?V

(f ⊗ g). (6.2.19)

Note the the associativity of the product is ensured by the cocycle condition

(6.2.1) [63, 64]. Moreover, notice that the twist F deforms the structure of

the universal enveloping algebra of Poincaré algebra U(P) which becomes a

non-cocommutative Hopf algebra. Indeed, the twist F changes the coproduct

of U(P) according to [26]

∆?(X) = F∆0(X)F−1. (6.2.20)

Since the translation generators Pµ are commutative, their coproduct is not

deformed:

∆F(Pµ) = ∆0(Pµ). (6.2.21)

However, the coproduct of the Lorentz generators is changed [28]:

∆F(Mµν) = ∆0(Mµν)−1

2
θρσ [(ηµρPν − ηνρPµ)⊗ Pσ + Pρ ⊗ (ηµσPν − ηνσPµ)] .

(6.2.22)

In the untwisted case the action of the Poincaré generators X on the ordinary

product of two functions f and g is given by

X(fg) = (Xf)g + fXg (6.2.23)

which can be rewritten as

X(fg) = m0(∆(X)(f ⊗ g)). (6.2.24)

In other words, their action is applied through the original coproduct (6.2.9).

Instead, in the twisted case their action has to be applied through the twisted

coproduct (6.2.20). That is,

X(f ? g) = m?(∆?(X)(f ⊗ g)). (6.2.25)

It is now possible to show that the Poincaré symmetry is retained as a twisted

symmetry (see [66] for a discussion of twisted conformal symmetry). Indeed,

it is not difficult to see that the canonical non-commutative relation (3.1.1)

is a twisted Poincaré invariant [28]:

X([xµ, xν ]?) = 0. (6.2.26)
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Eventually, we also introduce the universal R-matrix which represents the

permutation group in non-commutative case

R = F21F−1 (6.2.27)

with

F21(a⊗ b) = τ ◦ F ◦ τ(a⊗ b) (6.2.28)

and τ the usual exchange operator

τ(a⊗ b) = b⊗ a. (6.2.29)

For the cases at hand, it is easy to see that

R?V
= R?M

= F−2
?M

. (6.2.30)

Therefore, the exchange operator and so the statistics are the same in both

the Moyal and Wick-Voros cases.

We conclude this section by nothing that it is possible to introduce an

unified notation for the Moyal and Wick-Voros products which will be very

useful in the following. Indeed, we can write the vertex in both cases as

V? = V
∏

a<b

eka•kb (6.2.31)

and the four-point Green’s functions as

G̃
(4)
0 = −ig(2π)3 e

∑
a≤b ka•kb

∏4
a=1 (k2

a −m2
a)

δ(3)

(
4∑

a=1

ka

)
(6.2.32)

where

ka • kb =

{ − i
2
θijkaikbj Moyal

−θka−kb+ Wick-Voros.
(6.2.33)

The one-loop corrections to the propagator can be written for the planar case

as

G̃
(2)
P = −i

g

3

∫
d3q

(2π)3

ep•p

(p2 −m2)2(q2 −m2)
(6.2.34)

and for the non-planar one as

G̃
(2)
NP = −i

g

6

∫
d3q

(2π)3

ep•p+p•q−q•p

(p2 −m2)2(q2 −m2)
. (6.2.35)

64



Furthermore, one-loop correction to the four-point Green’s function can be

written for the planar case as

G̃
(4)
P =

(−ig)2

8
(2π)3

∫
d3q

(2π)3

e
∑

a≤b ka•kbδ(3)
(∑4

a=1 ka

)

(q2 −m2) [(k1 + k2 − q)2 −m2]
∏4

a=1(k
2
a −m2)
(6.2.36)

and for the non-planar one as

G̃
(4)
NPa

=
(−ig)2

8
(2π)3

∫
d3q

(2π)3

e
∑

a≤b ka•kb+Eaδ(3)
(∑4

a=1 ka

)

(q2 −m2) [(k1 + k2 − q)2 −m2]
∏4

a=1(k
2
a −m2)
(6.2.37)

where in unified notation

E1 = q • k1 − k1 • q

E2 = k2 • q − q • k2 + k3 • q − q • k3

E3 = k1 • q − q • k1 + k2 • q − q • k2. (6.2.38)

6.3 Twist-deformed products

We have now the necessary ingredients to calculate a physical process,

like the S-matrix for the elastic scattering of two particles. We recall that

one of the crucial ingredients in the study of the S-matrix is the issue of

Poincaré invariance. If we näıvely insert the Green’s functions found for the

Moyal and Wick-Voros cases into the calculation of the S-matrix, we find a

dependence of it from the external momenta, something like a momentum

dependence of the coupling constant. Furthermore, we find that the result

is different for the two cases in contradiction with the heuristic reasoning we

made in the introduction. We also find a breaking of Poincaré invariance.

The reason for the breaking of Poincaré invariance is that the commutator

(3.1.1) breaks this invariance3.

The invariance can be reinstated considering it as a twisted symmetry

i.e. as a symmetry described by a non-commutative and non-cocommutative

Hopf algebra [28, 29, 30]. Our purpose is therefore to show, with an explicit

calculation of scattering amplitudes, that the näıve procedure which leads

to a difference among the two cases can be corrected by a coherent twisting

3We are considering θij to be constant. Another possibility which preserves Poincaré
invariance is to have it a tensor [7, 67] or to have it transform together with the product [68].
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procedure. We see that if the twisted symmetry is properly implemented,

then the final “physical” result will be the same in the Wick-Voros and Moyal

cases, despite the presence of different propagators and vertices.

Consider the elastic scattering of two particles as described in figure 6.1.

The first consequence of non-commutativity is that, since the vertex is not

y
¡

¡¡

k1 k3

k2 k4

Figure 6.1: The two-particles elastic scattering.

invariant for noncyclic exchange of the particles, we have to twist-symmetrize

the incoming and outgoing states using the R-matrix. Several aspects of

this twist-symmetrization and the consequences for spin and statistics have

been discussed in [53, 69, 70]. In the commutative case the order of the

propagators into the vertex is irrelevant, but in our case there are several

twists at work and we must be careful in considering all of them. Therefore,

let us become with the definition of multiparticle states as twisted tensor

products. Consider first the one-particle state. It is defined as usual as

|k〉 = a†k |0〉 (6.3.1)

where the operators ak and a†k can be expressed in terms of the free field of

Klein-Gordon equation

φ(x) =

∫
d3k√

(2π)32ωk

(
ake

−ik·x + a†ke
ik·x

)
(6.3.2)

respectively as

ak =
i√

(2π)32ωk

∫
d3x eik·x ↔

∂0 φ(x)

a†k = − i√
(2π)32ωk

∫
d3x e−ik·x ↔

∂0 φ(x) (6.3.3)

with

f
↔
∂0 g = f∂0g − (∂0f)g. (6.3.4)
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Since ak and a†k may be regarded, for any fixed k, as functionals of the fields,

their star product can be obtained as in [65] obtaining in the Moyal case

a(k) ?M a(k′) = e−
i
2
θijkik

′
ja(k)a(k′) (6.3.5)

a(k) ?M a†(k′) = e
i
2
θijkik

′
ja(k)a†(k′) (6.3.6)

a†(k) ?M a(k′) = e
i
2
θijkik

′
ja†(k)a(k′) (6.3.7)

a†(k) ?M a†(k′) = e−
i
2
θijkik

′
ja†(k)a†(k′) (6.3.8)

and in the Wick-Voros one

a(k) ?V a(k′) = e−θk−k′+a(k)a(k′) (6.3.9)

a(k) ?V a†(k′) = eθk−k′+a(k)a†(k′) (6.3.10)

a†(k) ?V a(k′) = eθk−k′+a†(k)a(k′) (6.3.11)

a†(k) ?V a†(k′) = e−θk−k′+a†(k)a†(k′). (6.3.12)

Consider now the two-particle state. In the ordinary case it is defined by

|ka, kb〉 = |ka〉 ⊗ |kb〉 (6.3.13)

and the symmetrized state, which is an eigenstate of the exchange operator

τ |ka〉 ⊗ |kb〉 = |kb〉 ⊗ |ka〉 (6.3.14)

with eigenvalue 1, is

|ka, kb〉simm =
|ka〉 ⊗ |kb〉+ |kb〉 ⊗ |ka〉

2
. (6.3.15)

Note however that for the comparison we are going to make later we will

not actually use the fact that the state has to be symmetrized. In fact,

inserting the two expressions (6.3.13) or (6.3.15) in the calculation of the

S-matrix does not make a difference (for the connected diagrams) because of

the invariance for exchange on the incoming momenta and we are discussing

the issue of symmetrization of states just for completeness. The symmetries

for identical particles change for the non-commutative case [53, 69, 70] and

we must take into account the fact that the tensor product is twisted as well

as the exchange of particles. Therefore, we define

|ka, kb〉? = F̃−1 |ka〉 ⊗ |kb〉 = F̃−1 |ka, kb〉 (6.3.16)
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where by F̃ we indicate the twist acting in momentum space:

F̃−1
?M
|ka〉 ⊗ |kb〉 = e−

i
2
θijkai⊗kbj |ka〉 ⊗ |kb〉 (6.3.17)

F̃−1
?V
|ka〉 ⊗ |kb〉 = eθka−⊗kb+ |ka〉 ⊗ |kb〉 . (6.3.18)

This is not the only change we have to make to the state (6.3.13). Indeed, it

has to be eigenstate of the twist-exchange, given by the R-matrix acting in

momentum space. The properly symmetrized state is

|ka, kb〉simm?
=

1

2

(
F̃−1 |ka〉 ⊗ |kb〉+ F̃−1R̃−1 |ka〉 ⊗ |kb〉

)

=
1

2

(
F̃−1 |ka〉 ⊗ |kb〉+ F̃−1F̃F̃−1

21 |ka〉 ⊗ |kb〉
)

. (6.3.19)

We can reexpress equation (6.3.16) as

|ka, kb〉? = a†ka
? a†kb

|0〉 (6.3.20)

and equation (6.3.19) as

|ka, kb〉simm?
=

a†ka
? a†kb

+ a†kb
? a†ka

2
|0〉 . (6.3.21)

The next step is to twist the inner product among one-particle states. In the

commutative case we have

〈k|k′〉 = 〈0| aka
†
k′ |0〉 = δ(3)(k − k′). (6.3.22)

We twist this product in the usual way composing it with the twist

〈
k1

?∣∣ k2

〉
= 〈·|·〉◦F−1(|k〉⊗|k′〉) = F̃−1(k, k′)〈k|k′〉 = 〈0| ak?a†k′ |0〉 (6.3.23)

where we have set

F̃−1
?M

(k, k′) = e−
i
2
θijkik

′
j (6.3.24)

F̃−1
?V

(k, k′) = e−θk−k′+ . (6.3.25)

for the Moyal and Wick-Voros products respectively. We finally have to twist

the inner product among two-particle states. In the commutative case:

〈k1, k2|k3, k4〉 = δ(3)(k1 − k3)δ
(3)(k2 − k4). (6.3.26)
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Instead, in the non-commutative case we have to twist the two-particle state

according to (6.3.16) and then we have to twist the inner product according to

the two-particle generalization of (6.3.23). To this end, we must consider the

action of the twist on two-particle states which is given by the coproduct of

the Hope algebra. Given a representation of an element of the Hope algebra

on a space, the representation of the element on the product of states is given

in the undeformed case by

∆0(u)(f ⊗ g) = (1⊗ u + u⊗ 1)(f ⊗ g) (6.3.27)

For the twisted Hope algebra the coproduct is deformed according to the fact

that it is the R-matrix which realizes the permutations:

∆?(u)(f ⊗ g) =
(
1⊗ u +R−1(u⊗ 1)

)
(f ⊗ g) (6.3.28)

However, the twists we are considering are built out of translations whose

coproduct is undeformed

∆?M
(∂i) = ∆?V

(∂i) = ∆0(∂i) = 1⊗ ∂i + ∂i ⊗ 1. (6.3.29)

Since we are acting on two-particle states we need to define also

∆?(∂i ⊗ ∂j) = ∆0(∂i ⊗ ∂j) = 1⊗ 1⊗ ∂i ⊗ ∂j + ∂i ⊗ ∂j ⊗ 1⊗ 1. (6.3.30)

Therefore, the twisted inner product among two-particle states
〈

k1, k2

?∣∣ k3, k4

〉
= 〈·|·〉 ◦∆?

(F−1
)
(|k1, k2〉 ⊗ |k3, k4〉) (6.3.31)

may be easily computed to be
〈

k1, k2

?M∣∣ k3, k4

〉
= e

i
2
θij(k1i+k2i)(k3j+k4j)〈k1, k2|k3, k4〉

〈
k1, k2

?V∣∣ k3, k4

〉
= eθ(k1−+k2−)(k3++k4+)〈k1, k2|k3, k4〉. (6.3.32)

We can now calculate the twisted inner product of twisted states. Combining

(6.3.32) with (6.3.16) we obtain the simple expressions

?M

〈
k1, k2

?M∣∣ k3, k4

〉

?M

= e
i
2
θij

∑
a<b kaikbj〈k1, k2|k3, k4〉 (6.3.33)

?V

〈
k1, k2

?V∣∣ k3, k4

〉

?V

= eθ
∑

a<b ka−kb+〈k1, k2|k3, k4〉. (6.3.34)
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That is, in unified notation

?

〈
k1, k2

?∣∣ k3, k4

〉

?

= e−
∑

a<b ka•kb〈k1, k2|k3, k4〉 (6.3.35)

which can be cast in the form

?

〈
k1, k2

?∣∣ k3, k4

〉

?

= 〈0| ak1 ? ak2 ? a†k3
? a†k4

|0〉 . (6.3.36)

This is in some sense also a consistency check. We could have started with

the commutative expression

〈k1, k2 |k3, k4〉 = 〈0| ak1ak2a
†
k3

a†k4
|0〉 (6.3.37)

and twisted the product among the creation and annihilation operators ak

and a†k obtaining the above result. We decided to follow a longer procedure

to highlight the appearance of the various twists.

6.4 The twisted S-matrix

Let |f〉 and |i〉 denote a collection of free asymptotic states at t = ±∞
respectively. We also assume that we can define in some way the one-particle

incoming and outgoing states. This is a very nontrivial assumption since in

a theory in which localization is impossible, the concept of asymptotic state

may not be well defined. Nevertheless, is it reasonable to expect that also

in this theory for small θ and for large distances and times, it is possible

to talk on incoming and outgoing states expandable in terms of momentum

eigenstates |k〉.
As in standard books in quantum field theory, we define the S-matrix

as the matrix which describes the scattering of the initial |i〉 states into the

final |f〉 states

Sfi =
in?

〈
f

?∣∣ i

〉

?out

=
out?

〈
f

?∣∣ S
?∣∣ i

〉

?out

=
in?

〈
f

?∣∣ S
?∣∣ i

〉

?in

.

(6.4.1)

The one-particle asymptotic state is defined as in (6.3.1) to be

|k〉in = N?(k)a†k |0〉in = −N?(k)
i√

(2π)32ωk

∫
d3x e−ik·x ↔

∂0 φin(x) |0〉in
(6.4.2)
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for the in states and an analogous formula for the out states where N?(k)

is a normalization factor to be determined for the Moyal and Wick-Voros

cases separately. Moreover, we assume, as in the commutative case, that

the matrix elements of the interacting field φ(x) approaches those of the free

asymptotic field as time goes to ±∞. That is,

lim
x0→±∞

〈f |φ(x)|i〉 = Z1/2〈f |φout
in

(x)|i〉 (6.4.3)

with Z a renormalization factor. To be definite, let us consider an elastic

process of two particles in two particles. According to the previous section

we have

Sfi?(k1, . . . , k4) =
in?

〈
k1, k2

?

| k3, k4

〉

in?

= e
∑

a<b ka•kb
in 〈k1, k2 |k3, k4〉out

(6.4.4)

which can be expressed in terms of Green’s functions following the same

procedure as in the commutative case [41]. On repeatedly using (6.4.2) and

(6.4.3) we arrive at

Sfi =
in?

〈
k1, k2

?

| k3, k4

〉

out?

= disconnected graphs

+ N̄?(k1)N̄?(k2)N?(k3)N?(k4)
(
iZ−1/2

)2
e−

∑
a<b ka•kb

∫ 4∏
a=1

d3xa

√
(2π)32ωka

e−ika·xa (
∂2

µ + m2
)

a
G(4)(x1, x2, x3, x4) (6.4.5)

where G(4)(x1, x2, x3, x4) is the four-point Green’s function. In order to fix

the normalization of the asymptotic states, let us compute the scattering

amplitude for one particle going into one particle at zeroth order. Up to the

undeformed normalization factors N(pa), this has to give a delta function

N̄(k)N(p)δ(3)(k − p) = N∗
? (k)N?(p)

in?

〈
k

?

| p

〉

out?

= N∗
? (k)N?(p)e−k•p

in 〈k |p〉out

= N∗
? (k)N?(p)e−k•pδ(3)(k − p) (6.4.6)

from which follows

N?M
(p) = N(p) (6.4.7)

N?V
(p) = e−

θ
4
p2

N(p). (6.4.8)
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Let us now compute the scattering amplitude for the process above that is,

the scattering of two-particles in two particles at one loop. We have two

kinds of contribution to (6.4.5), one coming from the planar term (6.2.36)

which in spatial coordinates reads

G
(4)
P (x1, x2, x3, x4) =

∫ 4∏
a=1

d3ka√
(2π)32ωka

eika·xa

G̃
(4)
P (k1, k2, k3, k4) (6.4.9)

and the other coming from non-planar terms (6.2.37)

G
(4)
NP(x1, x2, x3, x4) =

∫ 4∏
a=1

d3ka√
(2π)32ωka

eika·xa

G̃
(4)
NP(k1, k2, k3, k4). (6.4.10)

In the planar case we find the same result in the Moyal and Wick-Voros cases

which coincide with the ordinary result:

Sfi?P (k1, . . . , k4) =
(−ig)2

8
(2π)3N̄(k1)N̄(k2)N(k3)N(k4)

4∏
a=1

e
θ
4
k2

a

e−
∑

a<b ka•kb

∫ 4∏
a=1

d3xa

√
(2π)32ωka

e−ika·xa

∫ 4∏
a=1

d3pa√
(2π)32ωpa

eipa·xa (−p2
a + m2

)

∫
d3q

(2π)3

e
∑

a≤b pa•pbδ(3)
(∑4

a=1 pa

)

(q2 −m2) [(p1 + p2 − q)2 −m2]
∏4

a=1 (p2
a −m2)

. (6.4.11)

The integration over the xa variables yields factors of (2π)3δ(3)(ka − pa) and

so the propagators of the external legs cancel as in the standard case; as well

as the factor

4∏
a=1

e
θ
4
k2

ae−
∑

a<b ka•kbe
∑

a≤b pa•pbδ(3)(ka − pa) → 1 (6.4.12)

we are left with the usual commutative expression so that

Sfi?P (k1, . . . , k4) = Sfi(k1, . . . , k4). (6.4.13)
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In the non-planar case instead we find

Sfi?NP (k1, . . . , k4) =
(−ig)2

8
(2π)3N̄(k1)N̄(k2)N(k3)N(k4)

4∏
a=1

e
θ
4
k2

a

e−
∑

a<b ka•kb

∫ 4∏
a=1

d3xa

√
(2π)32ωka

e−ika·xa

∫ 4∏
a=1

d3pa√
(2π)32ωpa

eipa·xa (−p2
a + m2

)

∫
d3q

(2π)3

e
∑

a≤b pa•pb+Eaδ(3)
(∑4

a=1 pa

)

(q2 −m2) [(p1 + p2 − q)2 −m2]
∏4

a=1 (p2
a −m2)

. (6.4.14)

After integrating over xa the propagators of the external legs cancel and the

simplification (6.4.12) continues to hold, but we are left with the exponential

of Ea which does not simplify. This factor is an imaginary phase and it has

the same expression in the Moyal and Wick-Voros cases. It depends on the q

so that it gets integrated and modifies the ultraviolet behaviour of the loop.

Furthermore, it is responsible for the UV/IR mixing [21]. Therefore, we can

conclude that

Sfi?MNP (k1, . . . , k4) = Sfi?V NP (k1, . . . , k4) 6= Sfi(k1, . . . , k4). (6.4.15)
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Conclusions

Throughout this thesis we have investigated the ultraviolet behaviour of a

non-commutative field theory obtained from an ordinary one substituting the

commutative product with a non-commutative one that is, a star product. In

particular, we have considered the scalar φ4 field theory deformed with the

Wick-Voros product, a variant of the well-known Moyal product. We have

discussed both the classical and the quantum field theory and calculated the

vertex, the two- and four-point Green’s functions and their corrections up

to one-loop. We have found that the vertex, like in the Moyal case, is not

anymore invariant for the exchange of the external momenta, but it maintains

invariance for cyclic permutations. Thus the planar and non-planar diagrams

for the calculation of the one-loop corrections to the Green’s functions behave

differently. Indeed, the planar diagrams have the same behaviour as the

commutative ones, while the non-planar diagrams present the phenomenon

of ultraviolet/infrared mixing, like in the Moyal case [21]. That is, for high

internal momentum the ultraviolet divergences are damped by a phase, but

these divergences reappear in the infrared (for low incoming momenta). This

is to be expected because heuristically this is consequence of commutation

relation which is, of course, the same in both theories.

More in general, we have shown that the ultraviolet/infrared mixing found

for the Moyal and Wick-Voros products is a generic feature of any translation

invariant associative product. To this end, we have introduced a general

associative product and then discussed its translational invariance properties.

We have found that the vertex is changed by an exponential which maintains

invariance for cyclic permutation of the external momenta, but not for any

arbitrary exchange. So, like in the Moyal and Wick-Voros cases, the planar

and non-planar diagrams behave differently. In particular, the non-planar

diagram present the same kind of ultraviolet/infrared mixing. Moreover, we

have showed that the phase appearing in the exponent in the non-planar
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diagram is related to the commutator of the coordinates so that we can state

that the mixing is given by the Poisson structure of the underlying space.

Going back to the discussion about the Moyal product versus the Wick-

Voros one, the two products are not equivalent at first sight. Indeed, we have

found different Green’s functions despite both the physical intuition and the

fact that the two star products are algebraically equivalent, in the sense that

they define exactly the same deformed algebra [44, 45] and as such describe

the same non-commutative geometry.

The element we have used in order to solve this puzzle is symmetries.

Indeed, the commutation relation (3.1.1) breaks the Poincaré symmetry, but

it can be easily reinstated at a deformed level, as a non-commutative and

non-cocommutative Hopf algebra as described in [28, 29, 30], since both

products can be seen as coming from a Drinfeld twist [25, 26]. We have

showed how the presence of a twist forces us to reconsider all of the steps in

a field theory which has to be built in a coherent twisted way. We have found

that there is equivalence between the Moyal and Wick-Voros field theories at

the level of S-matrix in agreement with our physical intuition, since Green’s

functions are not observable quantities while S-matrix is. Moreover, this

equivalence is obtained only if a consistent procedure of twisting all products

is applied. Therefore, we have used the field theories built with the Moyal

and Wick-Voros products to check each other and to obtain an indication on

the procedure to follow for non-commutative theories coming from a twist.
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Appendix A

An elementary introduction to

the Hopf algebras

In the following appendix we present a very elementary introduction to

the theory of Hopf algebras. We just collect some very essential definitions

of Hopf algebras [71] that we have used throughout the thesis, mainly in the

last chapter.

A.1 Algebras and coalgebras

We begin with the notion of algebra for completeness. A complex algebra

is a complex vector space A equipped with a linear map called multiplication

m : a⊗ b ∈ A⊗A → m(a⊗ b) = ab ∈ A
associative namely which satisfies the condition

m ◦ (m⊗ id) = m ◦ (id⊗m) (A.1.1)

or equivalently the condition

(ab)c = a(bc) (A.1.2)

for any a, b, c ∈ A, where id denotes the identity map of A. An algebra A is

commutative if

m ◦ τ = m (A.1.3)

or equivalently if

ab = ba (A.1.4)

76



for any a, b ∈ A, where

τ : A⊗A → A⊗A
defined by

τ(a⊗ b) = b⊗ a (A.1.5)

for any a, b ∈ A is the exchange map. An algebra A is unitary if there exists

a linear map called unit

η : C→ A
which satisfies the condition

m ◦ (η ⊗ id) = m ◦ (id⊗ η) = id (A.1.6)

or equivalently the condition

η(1)a = aη(1) = a (A.1.7)

for any a ∈ A. In what follows we set

η(1) = 1. (A.1.8)

Finally, a homomorphisms between two algebras A and A′ is a linear map

f : A → A′

such that

f ◦m = m′ ◦ (f ⊗ f) (A.1.9)

or equivalently such that

f(ab) = f(a)f(b) (A.1.10)

for any a, b ∈ A. Moreover, if A and A′ are unitary algebras, we assume that

f ◦ η = η′ (A.1.11)

or equivalently that

f(1) = 1′. (A.1.12)

A complex coalgebra is a complex vector space A equipped with a linear

map called comultiplication

∆ : A → A⊗A
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coassociative namely which satisfies the condition

(∆⊗ id) ◦∆ = (id⊗∆) ◦∆ (A.1.13)

or equivalently the condition

a(1)(1) ⊗ a(1)(2) ⊗ a(2) = a(1) ⊗ a(2)(1) ⊗ a(2)(2) (A.1.14)

for any a ∈ A, where we have used the generalized Sweedler’s notation1:

∆(a) = a(1) ⊗ a(2) (A.1.15)

for any a ∈ A. A coalgebra A is cocommutative if

τ ◦∆ = ∆ (A.1.16)

or equivalently if

a(1) ⊗ a(2) = a(2) ⊗ a(1) (A.1.17)

for any a ∈ A. A coalgebra A is counitary if there exists a linear map called

counit

ε : A → C

which satisfies the condition

(ε⊗ id) ◦∆ = (id⊗ ε) ◦∆ = id (A.1.18)

or equivalently the condition

ε
(
a(1)

)
a(2) = a(1)ε

(
a(2)

)
= a (A.1.19)

for any a ∈ A. Finally, a homomorphism between two coalgebras A and A′

is a linear map

f : A → A′

1For any a ∈ A, the Sweedler’s notation consists of writing

∆(a) =
∑

i

ai
(1) ⊗ ai

(2)

with ai
(1), a

i
(2) ∈ A or more simply

∆(a) =
∑

(a)

a(1) ⊗ a(2).
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such that

∆′ ◦ f = (f ⊗ f) ◦∆ (A.1.20)

or equivalently such that

∆′(f(a)) = f
(
a(1)

)⊗ f
(
a(2)

)
(A.1.21)

for any a ∈ A. Moreover, if A and A′ are counitary coalgebras, we assume

as well

ε′ ◦ f = ε. (A.1.22)

A.2 Bialgebras and Hopf algebras

A complex bialgebra is a complex vector space A that is at the same time

a complex unitary algebra and a complex counitary coalgebra in a compatible

way namely the multiplication, the comultiplication, the unit and the counit

satisfy the conditions

∆ ◦m = (m⊗m) ◦ (id⊗ τ ⊗ id) ◦ (∆⊗∆)

ε ◦m = ε⊗ ε

∆ ◦ η = η ⊗ η

ε ◦ η = idC (A.2.1)

where idC denotes the identity map of C. Equivalently the compatibility

relations between the two structures can be written as2

∆(ab) = ∆(a)∆(b)

ε(ab) = ε(a)ε(b)

∆(1) = 1⊗ 1
ε(1) = 1 (A.2.2)

for any a, b ∈ A. A bialgebra A is commutative if it is commutative like

an algebra and it is cocommutative if it is cocommutative like a coalgebra.

Finally, a homomorphism between two bialgebras A and A′ is linear map

f : A → A′

which is both an unitary algebra and counitary coalgebra homomorphism.

2∆(a)∆(b) = a(1)b(1) ⊗ a(2)b(2) for any a, b ∈ A.
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A complex Hopf algebra is a complex bialgebra A equipped with a linear

map called antipode

S : A → A
such that

m ◦ (S ⊗ id) ◦∆ = m ◦ (id⊗ S) ◦∆ = η ◦ ε (A.2.3)

or equivalently such that

S
(
a(1)

)
a(2) = a(1)S

(
a(2)

)
= ε(a)1 (A.2.4)

for any a ∈ A. The role of the antipode is like that of an inverse. However,

we do not demand that S2 = id. The antipode is unique and satisfies the

conditions

S ◦m = m ◦ τ ◦ (S ⊗ S)

∆ ◦ S = (S ⊗ S) ◦ τ ◦∆

S ◦ η = η

ε ◦ S = ε (A.2.5)

or equivalently the conditions

S(ab) = S(b)S(a)

∆(S(a)) = S
(
a(2)

)⊗ S
(
a(1)

)

S(1) = 1
ε(S(a)) = ε(a) (A.2.6)

for any a, b ∈ A. Therefore, the antipode is an unitary algebra and couni-

tary coalgebra antihomomorphism. Like for bialgebras, a Hopf algebra is

commutative if it is commutative like an algebra and it is cocommutative if

it is cocommutative like a coalgebra. Notice that if A is a commutative or

cocommutative Hopf algebra, then

S2 = id. (A.2.7)

Moreover, a bialgebra homomorphism between two Hopf algebras A e A′

f : A → A′

is automatically a Hopf algebra homomorphism i.e it satisfies the condition

f ◦ S = S ′ ◦ f. (A.2.8)
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An example of Hopf algebra is given by universal enveloping algebra U(g) of

a Lie algebra g, where the comultiplication is defined by

∆(ξ) = ξ ⊗ 1+ 1⊗ ξ (A.2.9)

the counit is defined by

ε(ξ) = 0 (A.2.10)

and the antipode is defined by

S(ξ) = −ξ (A.2.11)

for any ξ ∈ U(g). Furthermore, the comultiplication and the counit are

extended as unitary algebra homomorphisms while the antipode is extended

as a counitary coalgebra antihomomorphism.

A.3 Cocycles and twists

Let A be a Hopf algebra. Consider the maps

∆i : A⊗A . . .⊗A︸ ︷︷ ︸
n−times

→ A⊗A . . .⊗A︸ ︷︷ ︸
(n+1)−times

(A.3.1)

defined by

∆i = id⊗ id . . .⊗ id⊗∆⊗ id⊗ id . . .⊗ id (A.3.2)

with ∆ is in the ith position and i = 1, 2, . . . , n. Moreover, we define

∆0 = 1⊗ () and ∆n+1 = ()⊗ 1. (A.3.3)

An n-cochain is an invertible element

χ ∈ A⊗A . . .⊗A︸ ︷︷ ︸
n−times

(A.3.4)

and its coboundary as the (n + 1)-cochain

∂χ =

( ∏
i even

∆iχ

)(∏

i odd

∆iχ

)
(A.3.5)

and the products are each taken in increasing order. An n-cochain χ is an

n-cocycle if

∂χ = 1 (A.3.6)
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and it is counitary if

εiχ = 1 (A.3.7)

for all

εi = id⊗ id . . .⊗ id⊗ ε⊗ id⊗ id . . .⊗ id (A.3.8)

with ε is in the ith position. For example, a 1-cocycle is an invertible element

χ ∈ A such that

χ⊗ χ = ∆χ (A.3.9)

and it is automatically counitary. Instead, a 2-cocycle is an invertible element

χ ∈ A⊗A such that

(1⊗ χ)(id⊗∆)χ = (χ⊗ 1)(∆⊗ id)χ (A.3.10)

and it is counitary if

(ε⊗ id)χ = (id⊗ ε)χ = 1. (A.3.11)

A twist is a counitary 2-cocycle which is usually denoted by F and with the

generalized Sweedler’s notation it can be written as

F = F(1) ⊗F(2). (A.3.12)

A.4 Quasi-triangular Hopf algebras

A Hopf algebra A is quasi-triangular if there exists an invertible element

R ∈ A ⊗A called a quasi-triangular structure or universal R-matrix which

satisfies the following conditions:

(∆⊗ id)R = R13R23 (A.4.1)

(id⊗∆)R = R13R12 (A.4.2)

τ ◦∆(a) = R∆(a)R−1 ∀a ∈ A (A.4.3)

where with the generalized Sweedler’s notation

R = R(1) ⊗R(2) (A.4.4)

and

R12 = R(1) ⊗R(2) ⊗ 1 (A.4.5)

R13 = R(1) ⊗ 1⊗R(2) (A.4.6)

R23 = 1⊗R(1) ⊗R(2). (A.4.7)
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Note that it is possible to show that

(ε⊗ id)R = (id⊗ ε)R = 1. (A.4.8)

Moreover,

(S ⊗ id)R = R−1 (A.4.9)

(id⊗ S)R−1 = R (A.4.10)

and hence

(S ⊗ S)R = R. (A.4.11)

Finally, it is easy to see that R obeys the abstract Yang-Baxter equation:

R12R13R23 = R23R13R12. (A.4.12)

To conclude this section, we recall that given a Hopf algebra A, we can get a

new Hopf algebra by means of a twist F that is, by twisting the initial Hopf

algebra A. Indeed, it is not difficult to see that there is a new Hopf algebra

AF with the same algebra structure and counit ofA and the comultiplication,

the antipode and the universal R-matrix given respectively by

∆F(a) = F∆(a)F−1 (A.4.13)

SF(a) = US(a)U−1 (A.4.14)

RF = F21RF−1 (A.4.15)

for any a ∈ AF where U is invertible and given by

U =
∑

F (1)S
(F (2)

)
(A.4.16)

and

F21 = F(2) ⊗F(1). (A.4.17)

Notice that if A is just a Hopf algebra, then so is AF .
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