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“Human subtlety will never devise an invention more beautiful, more simple or more

direct than does nature because in her inventions nothing is lacking, and nothing is

superfluous.”

Leonardo da Vinci

An Italian polymath (1452 - 1519)
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Abstract

Optics in Soft-Matter

Dipartimento di Scienze Fisiche

Doctor of Philosophy

by Ebrahim Karimi

Light orbital angular momentum (OAM) has been recognized as a new promising re-

source for classical and quantum information applications. In contrast to the spin angu-

lar momentum, the OAM is an inherently multidimensional. Thus, the information can

be encoded in the higher-dimensional OAM alphabets. Recently, Marrucci et al. have

invented a new device named q-plate (QP), made of liquid crystal cell patterned in such a

way to introduce a topological charge q at the transverse plane, which is able to generate

a well-defined values of photon OAM. My research has been aimed at investigating the

physics of the QP, of the optical fields that it generates and of its possible applications

for optical communication and quantum information. We studied both theoretically and

experimentally a novel set of non-orthogonal but over-complete paraxial modes, named

Hypergeometric-Gaussian modes, that is typically associated with OAM-carrying opti-

cal fields. We have also found the light propagation kernel inside the QP and we have

shown analytically that if small losses due to reflection, absorption, and scattering are

neglected, the QP can convert the photon spin into OAM with up to 100 % efficiency.

We implemented a technique to control the QP optical retardation by tuning the QP

temperature. At the optimal temperature, the QP can generate a beam with up to 97%

efficiency. Moreover, the OAM state generated by QP can be rotated easily in the 2D

OAM Hilbert space by proper manipulation of the input polarization state, a fact which

opens a new way of beam shape controlling in MHz scale. We also performed a novel

way to encode and read two bits information on the 4D OAM space by using only one

QP. Finally, we experimentally demonstrated the transfer of quantum information from

spin to OAM and vice versa, including the case of bi-photon states having quantum

correlations. Furthermore, by exploiting these quantum information transfer devices,

we demonstrated the Hong-Ou-Mandel effect and the optimal quantum cloning with

OAM-carrying photons.

http://www.unina.it
http://people.na.infn.it/~marrucci/softmattergroup/
http://www.infn.na.it
mailto:karimi@na.infn.it


Preface

The classical regime of orbital angular momentum of light has been developed signifi-

cantly during the last three decades with progress in such diverse fields as manipulation

of small particles, microfluidic optical pump, astronomy, and classical communications.

The quantum applications of light orbital angular momentum has been more recently

developing.

In my thesis, I organized the content according to the logical development, rather than

separating my own contribution from previous work in distinct chapters. However, in

order to clearly indicate where my own work is reported, I added a reference to my

papers in the corresponding section’s title.

Ebrahim Karimi

27 November 2009, Napoli
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Chapter 1

Introduction

“If you are going to be a physicist, you will have a lot to study: two hundred years of

the most rapidly developing field of knowledge that there is. So much knowledge, in

fact, that you might think that you cannot learn all of it in four years, and truly you

cannot.” [1].

Richard P. Feynman

1.1 Introduction

It is almost impossible to mention whole work on the orbital angular momentum in this

thesis and surely I have missed many important works in this field. I apologize to those

researches whose works I did not mention here!

As an introduction to my thesis, I would like to start with my feeling and my experience

about light. My first touch to light was at primarily school where a small dark and

white structures (nowadays known as a fringes for me) were a surprising toys when I

tried to close my “thumb” and “index finger”. I learnt that light is one of the essential

keys to having life on the universe and without light is impossible to live on the earth.

The reflection and spectrum were a nice play to produce some nice structures at home

with mirrors and plastic pens. After my B.Sc., I had a magic-like feeling for a light

as an essential particle which can change the behavior when one is going to detect or

propagate it. A massless particle or an electromagnetic wave! Photon was an attractive

concept in my mind in such a way that I changed my field from a mathematical physicist

to an optician physicist. At the beginning of my new research field, it was surprising

to see that light look like a particle has rotational behavior. More exciting result were

1
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to see that its properties almost 100% are predicted by quantum mechanics. I was so

excited to see that after many calculations and projections over many bases when I tried

to do the quantum tomography. It seemed to me that photons have already perused my

calculations and tried to follow the calculations precisely.

1.2 Angular momentum of light

From both classical (wave) and quantum (particle) point of view light has mechanical

properties. Kepler proposed that the tail of comets are due to the light radiation pres-

sure of the sun and he could prove it by observing the tail and the sun positions for

different comets (of course, there is another tail due to the electrostatic interaction of

ionic particles of the comets and the sun which is not our interest in this case). The first

quantitative development on the electromagnetism theory has been done by Maxwell

which nowadays are still using by physicists. Maxwell has proved that a light beam is

made of a transverse time-position oscillating orthogonal electric and magnetic fields

which are traveling in the space with speed of c [2]. Poynting shows that an electro-

magnetic wave also carries linear momentum and well-defined energy flux which passes

through a transverse plane. This quantity is equal to E×H and is a linear momentum

per unit of volume. From quantum point of view, each photon carries a well-defined

linear momentum which is equal to ~k, where ~ and k are the reduced Planck’s constant

and photon wave vector, respectively. The angular momentum at the position of r with

respect to beam axes, then, is given classically by r × (E ×H) and quantum mechani-

cally by r× ~k. Poynting in analogy with the wave notation associated to a line of dots

marked on a rotating cylindrical shaft showed that a circularly polarized light beam

must carry angular momentum. He showed that a circularly polarized beam carries a

flux of angular momentum equal to λ
2π u, where u and λ are the average energy density

and the beam wavelength, respectively [3]. In the quantum formalism, u = n~ω, where

n is the number of photon per unit volume [4]. So, a circularly polarized beam carries

angular momentum of ~ per photon.

Twenty years after Poynting dead, Beth has experimentally proved that a circularly po-

larized beam carries a finite angular momentum and he measured corresponding torque

over a quarter wave plate with a help of a suspended mirror [5].

The polarization (spin) angular momentum is not the only type of angular momentum

which an electromagnetic wave can carry. Photon looks like all particles and can also

carry orbital angular momentum. In fact, a transverse component of linear momentum

can produce an angular momentum in the direction of propagation. A careful examina-

tion of angular momentum shows that the total angular momentum can be divided in

sum of two different angular momenta; spin and angular momentum [4].
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Humblet showed that the total angular momentum of an electromagnetic wave can be

decomposed into two terms

Si =
1

2µ0ω

∑
j,k

∫
Ej
∗(−iεijk)Ekd3r,

Li =
1

2µ0ω

∑
j

∫
Ej
∗(−ir×∇)iEjd3r

The first term, named spin angular momentum, is completely independent on the frame

coordinate and it just depends on the electric field. The second term, instead, is frame

dependent and in analogy to the quantum mechanics is called orbital angular momentum.

Later on it has been understood that the z-component of OAM in the paraxial regime

is also independent of the frame origin [6]. SAM is independent of the coordinate

and is only depend on the electric field. In contrast, as we see the OAM in analogy

to quantum mechanics is frame dependent (in general). The z-component of angular

momentum is our interest here and it can be shown that the z-component of SAM is

Sz ∝ (EL2 − ER2) and the z-component of OAM is Lz ∝ −i(EL∗∂φEL + ER
∗∂φER),

where EL,R are corresponding to electric field of Left and Right circular polarizations.

The SAM is associated to the vectorial property of electric field. In the quantum point

of view, Left or Right circularly polarized photon carry angular momentum of +~ or

−~ in the direction of propagation, respectively (see figure 1.1-(a)). The OAM, instead,

is independent of the vectorial property of the field and depends on the optical phase

front. A beam with helical phase front ei`φ carries OAM of `~ per photon in the direction

of propagation (see figure 1.1-(b)). Apart some similarities between SAM and OAM,

they are conceptually different. Nevertheless in the case of light waves SAM and OAM

can be classically distinguished only in the paraxial approximation. In the general case,

instead, it is impossible to distinguish the SAM and OAM of an electromagnetic field

in vacuum (in absence of matter). The difference arises only when are interacting with

matter. Let us consider a small particle located in the waist of a light beam possessing

SAM and OAM together. The SAM part of the angular momentum causes a rotation

of the particle around its own axis and the OAM part causes a rotation around the

beam axis. An identification of OAM is suggested also by the analogy between paraxial

optics and quantum mechanics where the Schrödinger wave equation is identical to

the paraxial wave equation (PWE) just by replacing time t by z. In this case the

operator of OAM can be written in the form of Lz = −i ∂∂φ in units of ~. A physically

realizable example of beam which carries OAM is a Laugerre-Gaussian (LG) beam in

the paraxial regime. However, LG beams are not the only eigenstates of OAM and

there are several families of the PWE which are eigenstate of OAM such as; Mathieu [7],

Bessel [8], Bessel-Gaussian [9], Ince-Gaussian [10], Circular [11], Hypergeometric [12],

Hypergeometric-Gaussian type-I and type-II beams [13, 14]. Allen and his coworkers
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Figure 1.1: (a) The optical field structure of Left and Right circularly polarized beam,
respectively. (b) The helical phase front of beams carrying different values of OAM.

were the first group to show that a beam with a helical phase front has a definite

value of OAM in the direction of propagation [15]. They used a set of proper aligned

cylindrical lenses to convert Hermite-Gaussian modes into LG modes. The LG and HG

modes are two important solutions of the PWE in cylindrical and cartesian coordinates,

respectively [16]. Both LG and HG are complete set of modes in their appropriate

coordinates. So, there is a possible expansion of LG modes in the HG basis and vice

versa. In a similar way, diagonal HG modes can be expanded in the HG basis too.

The only difference between diagonal HG and LG mode expansion is the relative phase

factor between each terms of expansion coefficients. If an astigmatic system introduces

a relative phase factor between the expansion coefficients, the diagonal HG mode will

be converted into the LG modes.

There is another possible way to produce a beam which posses OAM. Beijersbergen

et al used a new device, called spiral phase plate (SPP),to imprint helical structure

over impinging beam [17]. SPP is an optical element made of a glass with an optical

thickness that increases with azimuthal angle, such that, upon transmission, an incident

plane wave emerges with a helical phase front. In order to having a proper topological

charge and optical retardation, the SPP is keeping inside a liquid with a refractive index

close to the SPP material. When the final increase of the optical thickness is tuned to
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multiples of λ, TEM00 beam transfers directly into a beam with a well-defined value of

OAM.

Holography is also another way to produce a beam with OAM [18]. Let us make an

interference of a tilted helical beam with a plane-wave reference beam. The interference

pattern is called pitch-fork hologram. One can use this hologram to generate helical

modes (a beam which carries OAM). When the pitch-fork hologram is illuminated by

a TEM00 beam part of power is diffracted. In the first two diffraction orders we have

a helical beam with opposite OAM values. Due to diffraction process, hologram unlike

Mode converters and SPP has a low efficiency. However, owing to the presence of

commercially programable spatial light modulators (SLM) holograms are now widely

used to generate and detect OAM in real time.

Recently, a novel method has been introduced by Marrucci et al. in which one can

introduce a topological charge in the phase front of a beam depending on the initial

polarization state of the beam [19]. The heart of this process is an anisotropic birefrin-

gent plate made of liquid crystal with a well-defined topological charge in the transverse

plane, named q-plate. So, when a circularly polarized beam traverses the plate an overall

phase equal to twice of plate topological charge is introduced in the beam phase front

and the polarization of the input beam is flipped. Therefore, at the output we gain

an value of OAM. When the polarization of the input beam changes the values of the

output OAM is reversed accordingly.

All OAM generators, especially SPP, pitch-fork hologram and q-plate do not produce

a pure LG mode [20]. The output beam, indeed, is a superposition of infinite LG

mode with a fixed values of OAM and different radial number. We have shown experi-

mentally and theoretically that typical emerging beams from a pitch-fork hologram are

particular solutions of the PWE and the transverse profile of optical field given by a

confluent-hypergeometric and gaussian functions [13]. This set of new PWE solution

are overcomplete, non-orthogonal set of modes. This situation can be extended to the

case of non-truncated SPP [21]. We have also solved the Maxwell wave equation inside

the q-plate and we showed that for a good paraxial beam and low birefringent material

there is an analytical solution which shows the spin-to-orbit conversion and foresees the

emerging beam profile for any plate optical retardation of the plate.

Sato et al. were the first group to use the OAM to rotate and align microscopic ob-

jects [22]. The first explicit demonstration of the transfer of light angular momentum

to microscopic objects, however, was performed by optical tweezers by Higurashi and

coworkers on (1994) [23].

In 2002 Padgett and his coworkers showed experimentally that for particles held away

from the axis of beam, the SAM and OAM components of the light angular momentum
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behaved differently. Transfer of SAM to the particles resulted in a spinning rotation of

particle about its own axis, while transfer of OAM caused an orbiting rotation of the

particle around the beam axis where the phase singularity is located [24]. When acting

on a superposition of smaller particles this OAM transfer created a swingling flow or

pumping action. The torque due to the SAM transfer is limited to ~ per photon while

by increasing the beam winding number the OAM transfer torque can be increased at

will. Leach and coworkers, on (2006), used the SAM conservation to increase the torque

due to SAM transferring on two half wave micro spheres [25]. They were able to make

an optically driven pump for microfluidics.

SAM is inherently binary and only a bit of information can be encoded in the beam

SAM. Instead, OAM dimensionality is infinite. So, in the OAM space more alphabets

are available. More recently, Gibson et al. used the multi-dimensionality of OAM to

encode information for free space telecommunication [26].

Apart classical applications, SAM and OAM have quantum perspective. 30 years ago,

Aspect and coworkers showed that AM of two photons can be entangled. In such away

that a measurement on the polarization of one of the photons appears to modify in-

stantaneously the polarization state of the other photon [27]. This process can be done

irrespective of the distance between the particles. The polarization of the entangled

photon pair has the following form

|ψ〉 =
1√
2

(| 	〉i| �〉s + | �〉i| 	〉s)

where | 	〉, | �〉 denote the left and right polarization states, and i, s are the idler and

signal photons. They experimentally demonstrated a violation of the Bell’s inequality

on the entangles pairs of photons. The evidence of this experiments strongly supports

quantum mechanics and provides convincing existence of entangled states. SAM en-

tangled states are the basis of many impressive quantum processes such as; quantum

teleportation, quantum cloning, quantum communication, quantum cryptography and

. . . [28–30].

The entanglement of OAM in photon pair has been demonstrated in spontaneous para-

metric down conversion (SPDC) by Zeilinger and coworkers on (2001) [31]. The SPDC

can generate an entangled state over whole OAM states;

|ψ〉 =
1√
2

+∞∑
l=−∞

(| − `〉i|`〉s + |`〉i| − `〉s)

where |`〉 denotes the OAM state. In this experiment signal and idler photons were

projected over a well known OAM state by means of computer generated holograms
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and single mode optical fibers. This experiment confirmed that OAM of light is a

quantum variable associated with a single photon. Recently, Leach et al. rebuilt the

same experiment with a dynamically changeable holograms. They were able to violate

the Bell’s inequality for two photons entangled on the OAM state [32].

Recently, we were able to show experimentally that two identical photons will bunch

where they have the same value of OAM. This photon bunching has been observed in a

beam splitter and also in terms of detecting via a proper holograms [33, 34]. We were

able to destroy the coalescence of photons just by making a delay between signal and

idler photons.



Chapter 2

Light angular momentum

2.1 Introduction

The main traits of the electromagnetic wave can be explained via the four important

laws that James Clerk Maxwell (a Scottish scientist 1831−1879) collected and corrected

them in 19 century; Coulumb’s law (∇ ·D = ρ), Gauss law for the magnetism which

comes from the Biot-Savar law (∇·B = 0), Farady’s law (∇×E = −∂B
∂t ) and Ampere’s

law (∇×H = J + ∂D
∂t ). Maxwell in a smart way collected them and especially corrected

the Ampere’s law by adding the drift current, the last term, to the free current source.

In this chapter based on the Maxwell’s equations, we show that the electromagnetic

waves possess three important quantities; energy, linear momentum and angular momen-

tum as the same as a particle has. Then, we focus our attention to the electromagnetic

angular momentum of a multipole radiation. Indeed, the light angular momentum can

be divided into two parts: spin angular momentum (SAM) which is position indepen-

dent and orbital angular momentum (OAM) which depends on the position. After that,

we show that these definitions can also be extended to the quantized light angular mo-

mentum field. The SAM and OAM of a beam are also written in terms of creation and

annihilation operators. Finally, we consider a subfamily of the scalar wave equations,

named paraxial wave equations (PWE). A general solution of this PWE is presented

which covers a large families of PWE such as, Laguerre-Gauss, elegant Laugerre-Gauss,

Bessel, Hypergeometric, Hypergeometric-Gauss type I, Hypergeometric-Gauss type II,

. . . .

8
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2.2 Multipole Radiation and Light angular momentum

The full description of the electromagnetic wave can be done by Maxwell’s equations; the

Gauss’s law for electric and magnetic field , Maxwell - Faraday’s equation and Ampère’s

law. The Maxwell’s equations in the vacuum, in the absence of free charges and currents,

are given by; 
∇ ·E = 0

∇ ·B = 0

∇×E = −∂B
∂t

∇×B = ε0µ0
∂E
∂t

(2.1)

where E, B, ε0 and µ0 are the electric field, magnetic field, permittivity and permeability

of free space, respectively [2]. Note that we have chosen SI system in this section.

Without loss of the generality , by using the Fourier theorem, we can express electric

and magnetic field as{
E(x; t)

B(x; t)

}
=
∫ +∞

−∞

{
E(x;ω)

B(x;ω)

}
e−iωt dt

(2.2)

where ω is the frequency of electromagnetic field. By substituting Eq. (2.2) in the

Maxwell’s equations we will have obtain
∇ ·E = 0

∇ ·B = 0

∇×E = iωB

∇×B = − iω
c2

E

(2.3)

where c is the speed of light in vacuum and is equal to 1/
√
ε0µ0. One can easily show

that electric and magnetic fields obey vector Helmholtz’s equation.

(
∇2 + k2

){ E

B

}
= 0 (2.4)

with constraints ∇ · E = 0 and ∇ · B = 0. Each equation is made of three scalar

Helmholtz’s equations. The solution of the scalar Helmholtz’s equation in the spherical

coordinates is given in Appendix (A). For our purpose it is convenient to avoid solving

these three scalar equations. So, I prefer to solve the vectorial Helmholtz’s equation

rather than scalar one. There are several methods to achieve the right solutions of

vectorial Helmholtz’s equation. I choose the Casimir’s way [35]. For a well-behaved
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vector field, A, the following equation is valid

∇2(x ·A) = x · (∇2A) + 2∇ ·A (2.5)

By using this equation, one can show that x ·E and x ·B also satisfying the scalar wave

equation

(
∇2 + k2

){ x ·E
x ·B

}
= 0 (2.6)

We divided the general solution into two cases; transverse electric (TE) and transverse

magnetic (TM) fields. These two set of solutions together are general and complete.

The general solution of equation (2.6) is a given in Appendix (A). For the TE field, we

may consider

x ·BM
l,m =

(
A

(1)
l,mh

(1)
l (kr) +A

(2)
l,mh

(2)
l (kr)

)
Yl,m(θ, φ) (2.7)

and

x ·EM
l,m = 0 (2.8)

where A(1,2)
l,m are the constant coefficients, h(1,2)

l are the Hankel functions, and Yl,m(θ, φ)

is the spherical harmonic (see Appendix A). From the Maxwell’s 3rd equation, we can

show that

L ·EM
l,m = ω

(
A

(1)
l,mh

(1)
l (kr) +A

(2)
l,mh

(2)
l (kr)

)
Yl,m(θ, φ) (2.9)

where L = 1
i x×∇ is the angular momentum operator.

In equation (2.9), L ·EM
l,m is given in terms of the spherical harmonic with a given l and

m. Furthermore, angular momentum’s operator does not change the l index of spherical

harmonic and it acts only on the azimuthal index, i.e. m. So, we can conclude that

EM
l,m = ω

(
A

(1)
l,mh

(1)
l (kr) +A

(2)
l,mh

(2)
l (kr)

)
Yl,m(θ, φ)

BM
l,m = − i

ω
∇×EM

l,m (2.10)

The same analogy can be used to find the TM modes. A possible solution for the TM

modes is

BE
l,m = ω

(
B

(1)
l,mh

(1)
l (kr) +B

(2)
l,mh

(2)
l (kr)

)
Yl,m(θ, φ)
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EE
l,m =

ic2

ω
∇×BM

l,m (2.11)

where A(1,2)
l,m are the constant coefficients. Therefore, we can write the general solution

to the Maxwell equations

B =
∑
l,m

(
aE(l,m)fl(kr)Xl,m −

i

ω
aM(l,m)∇× gl(kr)Xl,m

)
E =

∑
l,m

(
ic2

ω
aE(l,m)∇× fl(kr)Xl,m + aM(l,m)gl(kr)Xl,m

)
(2.12)

where aE(l,m), aM(l,m) are specifying the electric and magnetic multipole strength which

are determined by the source and boundary conditions, fl(kr) = A
(1)
l,mh

(1)
l (kr)+A(2)

l,mh
(2)
l (kr)

and gl(kr) = B
(1)
l,mh

(1)
l (kr)+B

(2)
l,mh

(2)
l (kr) are superposition of Henkel’s functions (see ap-

pendix A). Xl,m is the vector spherical harmonic with following orthogonal property∫
Xl,m ·Xl,m

∗dΩ = δl,l′δm,m′ (2.13)

As we have already discussed the EM waves possess energy, linear momentum and

angular momentum. We use multipole field radiation Eq. (2.12) to calculate energy

and angular momentum carried by the radiation. The energy and angular momentum

densities of the EM fields are given by the following well-known formulas;

u =
1
2

(
ε0E

2 +
1
µ0

B2

)
j =

1
µ0

(r× (E×B)) (2.14)

For harmonically oscillating fields, e.g. monochromatic field, the time averaged energy

and angular momentum densities are

〈u〉 =
1
4

(
ε0E

2 +
1
µ0

B2

)
〈j〉 =

1
2µ0

(r× (E×B∗)) (2.15)

where 〈〉 denotes the time average. Now, we are considering two spherical shells with

radius r and r+dr in the radiation zone, i.e. kr � 1. The radiation energy and angular

momentum in between these shells are equal to

dU

dr
=

µ0

2k2

∑
l,m

(
|aE(l,m)|2 + |aM(l,m)|2

)
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dJ
dr

=
µ0

2ωk2
<

∑
l,m,l′,m′

{(
aE(l,m)a

∗
E(l′,m′) + aM(l,m)a

∗
M(l′,m′)

)∫
(L ·Xl′,m′)∗Xl,mdΩ

+ il−l
′
(
aM(l,m)a

∗
E(l′,m′) − a

∗
M(l′,m′)aE(l,m)

)∫
(L ·Xl′,m′)∗n×Xl,mdΩ

}
(2.16)

where n = r
r is a unit vector in the radial direction. As we expected, the total energy is

an incoherent superposition over all multipoles strength. The first term in the angular

momentum expression is given by the sum of the electric and magnetic multipoles sep-

arately. The second term is an interference between electric and magnetic multipoles.

It can be shown that the interference term between electric and magnetic multipole ap-

pears for integer l values differing by one. This “golden-like” rule can be shown also by

using the parity properties of the multipoles radiation.

Now, we pass to disscuss some issues of angular momentum. Let us consider a purely

transverse electric field with a fixed l number and superposition over all m multipoles.

For such kind of wave the energy is

dU

dr
=

µ0

2k2

∑
m

|aE(l,m)|2 (2.17)

and angular momentum components are given

dJx
dr

=
µ0

4ωk2
<
∑
m

(√
(l −m)(l +m+ 1)a∗E(l,m+1) +

√
(l +m)(l −m+ 1)a∗E(l,m−1)

)
aE(l,m)

dJy
dr

=
µ0

4ωk2
=
∑
m

(√
(l −m)(l +m+ 1)a∗E(l,m+1) −

√
(l +m)(l −m+ 1)a∗E(l,m−1)

)
aE(l,m)

dJz
dr

=
µ0

2ωk2

∑
m

m|aE(l,m)|2 (2.18)

where < and = denote the real and imaginary part of the expression, respectively. It

is clear that just the z-component of angular momentum for a given l has a simple

form. If we fix m, i.e. for a pure multipole mode, the transverse components of angular

momentum are zero while the z-component is equal to

dJz
dr

=
m

ω

dU

dr
(2.19)

This shows that, for a pure multipole mode, the amount of z-component of the angular

momentum is proportional to the amount of energy with a coefficient which is propor-

tional to the azimuthal number of the multipole mode. Moreover, Eq. (2.19) has a

simple quantum interpretation: the radiation from a multipoles of order (l,m) carries

m~ unit of z-component of angular momentum per photon. We would expect from the

quantum theory that the ratio of square of total angular momentum of EM wave to the
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square of energy must be

J (q)2

U2
=
l(l + 1)
ω2

(2.20)

But, from Eq.(2.18) can be seen easily that for a pure (l,m) multipoles mode the classical

value is

J (c)2

U2
=
m2

ω2
! (2.21)

This difference lies on the quantum nature of the EM field for a photon. If the z-

component of the angular momentum of a single photon is known precisely, the un-

certainly principle requires that the other components of angular momentum must be

uncertain with a mean square values such the Eq. (2.20) holds. On the other hand,

for a radiation state containing many photons the mean square values of the transverse

components of angular momentum can be made negligible compared to the square of

the z-component. It can be shown, in fact, that for a (l,m) multipoles field containing

N photons we have hence

J (q)(N)
2

U(N)2
=
Nm2 +Nl(l + 1)−m2

Nω2
(2.22)

This expression covers the classical (2.21) (N large) and quantum (2.20) behavior of

angular momentum [36].

2.3 Decomposition of the light angular momentum

It is a common feature of quantum mechanics that angular momentum can be naturally

decomposed into SAM an OAM part. The two Gauss laws for the electric and mag-

netic fields allow us to write the electromagnetic field in terms of a scalar and vector

potential [2]. {
E = −∇Φ− ∂A

∂t

B = ∇×A
(2.23)

where Φ is the scalar and A is the vector potential. Due to the gauge freedom, A (or

Φ) can be chosen in such away that obeys the radiation gauge (Coulomb’s gauge), i.e.

∇ ·A = 0 and Φ = 0, The electromagnetic field, then, can be rewritten{
E = −∂A

∂t

B = ∇×A
(2.24)
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Substituting these field in terms of vector potential into the classical expression of an-

gular momentum and expanding the vector triple product we have

Ji =
1
µ0

εi,j,k

∫
AjȦk d

3r +
1
µ0

εi,j,k

∫
xj∂k(Ȧp)Ȧp d3r (2.25)

where εi,j,k is the Levi-Civita semi tensor, and Ȧ denotes the partial time derivative of

A. The first term obviously is independent of the coordinate. The second term is frame

dependent, in contrast. The second term, however, has the quantum orbital angular

momentum operator form, i.e. Li = εi,j,k xj∂k. Therefore, we may decompose the light

angular momentum into two parts of the SAM and OAM;

J = S + L (2.26)

where

S =
1
µ0

∫
A× Ȧ d3r

L =
1
µ0

∑
i=x,y,z

∫
Ai(r×∇Ȧi) d3r (2.27)

This decomposition is not the unique representation of SAM and OAM. Furthermore,

A vector is not physically measurable quantity, and it is not unique and any A + ∇χ
gives the same electromagnetic fields. So, these SAM and OAM are obviously not

gauge invariant. In the following, we mention other two different angular momentum

decompositions; Humblet and standard decomposition of optical angular momentum

which are the closest to what people could measure in practice [37–40]. Humblet replaced

the magnetic field in terms of electric field curl, via Faraday’s law Eq. (2.3), on the

angular momentum expression and he showed that it can be rewritten as

Si =
1
µ0

∫
E∗j (−iεi,j,k)Ek d3r

Li =
1
µ0

∑
j=x,y,z

∫
E∗j (−ir×∇)iEj d

3r (2.28)

In this form the OAM is strictly similar to the quantum mechanics one where the OAM

operator is sandwiched between two wave functions, i.e. electric field. The SAM is

appropriately named. It is independent on the frame coordinates and is only dependent

on the optical field. Moreover, the operator inside parenthesis (Σi = −iεi,j,k) is the

spin 1 particle operator. The Humblet decomposition explicitly depends on the electric

filed and vector potential does not play any role here. So, it is obviously gauge invariant.
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In the standard decomposition, the magnetic field is replaced by the curl of the vector

potential (see 2.24), instead of the Fraday’s law. Then

Si =
1
µ0

∫
E∗j (εi,j,k)Ak d3r

Li =
1
µ0

∑
j=x,y,z

∫
E∗j (−ir×∇)iAj d

3r (2.29)

This decomposition also is gauge invariant. To show that it is convenient to write

electromagnetic fields and vector potential in terms of longitudinal and transverse parts.

The gauge transformation, then, is given

A‖ → A‖ +∇χ
A⊥ → A⊥ (2.30)

where A⊥ and A‖ denote the transverse and longitudinal part of the vector potential.

The total angular momentum also can be divided into two transverse and longitudinal

parts. The longitudinal part can be attributed to the angular momentum of the charged

particles in the source of the field. The transverse part is equal to

J⊥ =
1
µ0

∫
E∗⊥ ×A⊥ d3r +

1
µ0

∑
j=x,y

∫
E∗⊥j (r×∇)i A⊥j d

3r (2.31)

which is obviously gauge invariant.

2.4 Angular momentum of the quantized electromagnetic

field

The quantized electric and magnetic field are given in terms of the photon creation and

annihilation operators [4];

Ê(r; t) =
∑
k,s

√
~ω

2ε0V

(
εk,sâk,se

i(k·r−ωt) +H.C.
)

B̂(r; t) =
∑
k,s

√
~

2ωε0V

(
(k× εk,s)âk,sei(k·r−ωt) +H.C.

)
(2.32)

where H.C. denotes the Hermitian Conjugate of the preceding term, V is the volume, εk,s
is the polarization unit vector, â†k,s and âk,s are the creation and annihilation operators

for photon in the mode k and polarization state s, respectively. In this notation we

did not care about spatial properties of photon and we have only kept its vectorial

characteristic. The creation and annihilation, of course, are not commuting. Their
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commutation relations are [
âk,s, â

†
k′,s′

]
= δ3

k,k′δs,s′[
âk,s, âk′,s′

]
= 0[

â†k,s, â
†
k′,s′

]
= 0 (2.33)

It can be shown that, using the above commutation relations, that the electromagnetic

field also are not commutating[
Êl(r; t), B̂m(r′; t)

]
= − i~

µ0c2
∂nδ

3(k− k′)[
Êi(r; t), B̂i(r′; t)

]
= 0 (2.34)

where l,m, n form a cyclic permutation of x, y, z. Substituting the quantized electro-

magnetic field in the classical expression of the energy, we obtain

U =
∑
k,s

~ω
(
â†k,sâk,s +

1
2

)
(2.35)

where the summation is over all modes and polarization states. The ~ω
2 term is the

well-known zero point energy. Note that the transformation from classical expression

of the energy to the quantum one does not need Hermiticity. This formula is already

Hermitian. With this representation of the quantized electromagnetic field we can just

find an explicit expression for the spin angular momentum. To find an elegant expression

for OAM part we must quantize the transverse spatial space. We have postponed it to

the paraxial wave equation’s section.

The classical expression of the SAM unlike the energy is not Hermitian. So, we must

first make it Hermitian. A proper Hermitian expression is given by

Ŝ =
1

4π

∫ (
Ê× Â− Â× Ê

)
d3r (2.36)

Substituting the quantized field (2.32) into the above equation we have

Ŝ = i
∑
k

~uk

(
â†k,H âk,V − â

†
k,V âk,H

)
(2.37)

where uk is the unit vector in the propagation direction, H and V are the Horizontal

and Vertical polarization states. Ŝ is off diagonal in terms of the Fock states in the HV

polarization basis. It is much more convenient and elegant to rewrite the SAM operator

in the Left (L) and Right (R) circular basis.

Ŝ =
∑
k

~uk

(
â†k,Lâk,L − â

†
k,Râk,R

)
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=
∑
k

~uk (n̂k,L − n̂k,R) (2.38)

where n̂k,i = â†k,iâk,i is the number operator in the Fock space, L and R are the left and

right polarization states, respectively, and are defined by

εk,L =
1√
2

(εk,H + iεk,V )

εk,R =
1√
2

(εk,H − iεk,V )

(2.39)

Eq. (2.38) shows that the SAM with any wave vector is quantized, ~uk, and is propor-

tional to the difference between number of Left circularized photon and right circularized

photon. Furthermore, for a plane wave the SAM is in the direction of propagation and

for the Left (Right) circularly polarized photon is equal to ~ (−~). In general, the pro-

jection of the SAM over the propagation direction is called helicity. These two eignvalues

of helicity are characteristics of spin 1 particle of zero mass.

2.5 Paraxial Wave Equation

2.5.1 Paraxial wave equation and decomposition of angular momen-

tum

In the last sections, we discussed a general approach to the Maxwell’s wave equations

without any approximation and we extended these characteristics to the quantized elec-

tromagnetic field. In the following, we paid particular attention to the practical solution

of wave equation, for “paraxial waves”. Then we present explicit expression for the both

spin and angular momentum in the paraxial regime of light. Paraxial wave optics is a

class of the wave’s optics which deals with the propagation of light beams whose trans-

verse dimensions are much smaller than the typical longitudinal distance over which the

field changes applicably in magnitude. The transverse and longitudinal magnitude are

of order of the beam waist (w0) and Rayleigh parameter (zR = kw2
0/2), respectively. So,

the paraxiality can be measured by the ratio zR/w0 [16].

For a monochromatic beam which propagates along the z-direction, the electric field can

be chosen as

E(r) = eikz Ẽ(r) (2.40)
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Substituting this ansatz into the Helmholtz wave equation (2.4) we have

(
∇2
⊥ + 4i∂ζ

)
Ẽ(r) = 0 (2.41)

where ∇2
⊥ := ∂ξ,ξ + ∂η,η is the transverse laplacian, and (ξ = x/w0, η = y/w0, ζ = z/zR)

are the dimensionless coordinates. To derive this equation we have used the paraxial

approximation, |∂
2Ẽ(r)
∂z2
| � k|∂Ẽ(r)

∂z |. The paraxial approximation may be interpreted in

the momentum space too. In the momentum space paraxiality is equal to neglecting

of the transverse components of wave vector with respect to the longitudinal compo-

nent [41]. Furthermore, in the paraxial regime, it can be shown via the Gauss law that

the z-component of the Ẽ(r) is smaller than the transverse part by the scale of w0/zR,

i.e. Ẽz = − i
k ∇⊥ · Ẽ. Then, we may neglect the z-component of the electric field and

just kept the transverse components until we explicitly said.

According to the uncertainty priciple just the z-component of angular momentum will

be the subject of our discussion. The z-component of angular momentum in the paraxial

regime

Jz =
<
{
−i~

∫∫
dσ⊥

(
Ẽ∗ · (uz · (−ir×∇)) Ẽ

)
+ uz · Ẽ∗ × Ẽ

}
<
{∫∫

dσ⊥Ẽ∗ · Ẽ
} (2.42)

where uz is the unit vector in the z-direction, Ẽ is the transverse part of paraxial field and

dσ⊥ is the transverse surface element. This expression is quite similar to the Humblet

decomposition of angular momentum which was derived without paraxial approximation

and is valid for three dimensional beams. It is appropriate to use the circular basis

|E〉 =

(
EL

ER

)

=
1√
2

(
Ex + iEy

Ex − iEy

)
(2.43)

Then we can rewrite the Eq. (2.42)

Jz =
〈Ẽ|L̂z|Ẽ〉+ 〈Ẽ|Ŝz|Ẽ〉

〈Ẽ|Ẽ〉
(2.44)

with

Ŝz = ~

(
1 0

0 −1

)
, L̂z = −i~ (r×∇) (2.45)

The denominator is just a normalization factor. So, without losing of generality we

may consider it unity, i.e. 〈Ẽ|Ẽ〉 = 1. Equation (2.44) is the well-known expression for
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angular momentum in the quantum theory. Unlike the general theory of light angular

momentum (2.3), this decomposition is not based on the position-dependent separation.

In another words, linear momentum in the paraxial approximation is almost longitudinal

and the averages of the transverse components are almost zero. So, changing of the

coordinate’s origin over the transverse plane does not change the z-component of the

orbital angular momentum. Therefore, both z-component of angular momenta (SAM

and OAM) are origin invariant and they do not change by shifting the coordinate’s origin

in the transverse plane. However, the SAM depends on the photon polarization state,

while the OAM depends on the spatial profile of the transverse field.

Sz = ~
∫
dσ⊥

(
|EL|2 − |ER|2

)
Lz = ~

∫
dσ⊥ (EL∗∂φEL + ER

∗∂φER) (2.46)

where φ is the azimuthal variable (we have already considered a normalized beam).

Sz can have values of ±~ associated to to the left and right circular polarized beam,

respectively. Lz is related to the spatial structure of beam, especially is depending

on the azimuthal structure. For instance, a light beam with a helical structure (eimφ)

possesses m~ angular momentum per photon. Moreover, it has been shown that OAM

is associated to the dislocation lines in the optical field or singular optics. Let us show

it by choosing a special class of paraxial beams family, named “spiral beams” with the

beam waist w0 at the pupil

ψ(ρ, φ; 0) =
∑̀
m=0

fmr
m e
− ρ2

2w0
2 +imφ

(2.47)

where (ρ, φ) are the cylindrical coordinates. Substituting (2.47) into (2.46) we have

Lz = 〈m〉~

with

〈m〉 =
∑`

m=0mm!|fm|2w0
2m∑`

m=0m!|fm|2w0
2m

(2.48)

For a pure phase mode we have Lz = `~. It is an interesting example to distinguish

optical dislocation lines and the OAM eigenvalue.
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Table 2.1: Classification of modes families.

a b p(ζ) w(ζ) Mode class
0 0 0 1 Bessel Modes
0 1/2 0

√
ζ HyG Modes[12]

0 1 ζ
√

1 + ζ2 LG Modes
-i/2 0 ζ

√
ζ(i+ ζ) HyGG Modes[13]

i/2 0 0
√

1 + iζ HyGG type-II Modes[14]

2.5.2 Paraxial wave equation and its orbital angular momentum eigen-

states

We showed that the SAM is related to the beam vectorial properties (polarization states)

of the transverse optical field. The azimuthal part of the complex optical field is also

defining the beam OAM. However, the radial part of the optical field in the paraxial

regime also plays an important role in the photon classical and quantum information

theory. The radial part like azimuthal and unlike spin, is inherently infinite dimensional.

We, then, consider the scalar paraxial wave equation instead of vectorial one. Let us

start to find some interesting families of the scalar PWE. We look for some solutions

which are already the eigenstates of OAM. Our suggested ansatz has the following form

ψ(ρ, φ; ζ) =
1

w(τ)
u

(
ρ

w(τ)
, τ

)
e
−ip(τ) ρ2

w2(τ)
+imφ

(2.49)

where τ := τ(ζ) is a function of ζ, w(τ) and p(τ) are two dimensionless functions of τ

which are associated to the diffraction effects. Inserting this ansatz into the scalar PWE,

yields a partial differential equation for u(r, τ). We can cast this differential equation

similar to the standard Schrödinger equation

i∂τu(r, τ) = Ĥ(τ)u(r, τ) (2.50)

where τ -depend Hamiltonian is

Ĥ(τ) := − 1
4

(
P̂ + 4

(
∂τw(τ)
w(τ)

− p(τ)
)
Ŷ − |m|

2

ρ2

)
+ ρ2

(
∂τp(τ) + p2(τ)− 2p(τ)

∂τw(τ)
w(τ)

)
(2.51)

with

P̂ := ∂ρ,ρ +
∂ρ
ρ

+
∂φ,φ
ρ2

Ŷ := −iρ ∂ρ − i (2.52)
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are two Hermitian operators with respect to the measure ρ dρ. Ĥ(τ) is Hermitian if w(τ)

and p(τ) are real valued functions of parameter τ . It is convenient to work out with the

stationary Schrödinger equation and define these two arbitrary parameters

∂τw(τ)
w(τ)

− p(τ) = a

∂τp(τ) + p2(τ)− 2p(τ)
∂τw(τ)
w(τ)

= b (2.53)

which are defining the Hermiticity of the Hamiltonian and the solution families. These

two parameters and initial conditions for the diffraction property effects, i.e. p(τ) and

w(τ), define the wave class of the scalar PWE. Table (2.1) shows some classes of the

PWE solution based on proper choice of these four values. Due to complexity of w(τ),

some families such as HyGG and HyGG type-II are not orthogonal set of modes.

2.5.2.1 Laugerre-Gaussian modes

For instance, by choosing a = 0, b = 0, p(0) = 0 and w(0) = 1, we will get the well-

known Laugerre-Gaussian modes which are the famous solution of the scalar PWE in

the cylindrical coordinate

|LG〉p,m =

√
2|m|+1p!

π(p+ |m|)!

(
i

ζ + i

)m( i− ζ
i+ ζ

)p
ρ|m|e

− iρ2

ζ+iL|m|p

(
2ρ2

1 + ζ2

)
(2.54)

where m is a integer valued and defining the OAM eigenvalues, p is the integer number

p ≥ 0 and is defining the radial nodes in the transverse plane, and L|m|p is the generalized

Laguerre polynomial. The LG modes are important solution of PWE, because they are

orthogonal set of PWE’s solution, i.e. p′,m′〈LG|LG〉p,m = δp,p′δm,m′ and they carry a

finite power[16]. Indeed, they are shape invariant modes under free propagation. In

another word, while beam propagates along ζ, its intensity pattern does not change and

is just scaled. Figure (2.1) shows the propagation of LG0,2 in interval of −2 < ζ < +2.

Moreover, they are eigenvalues of OAM and they possess a well-defined values of OAM.

The intensity and phase profiles of several LG modes are shown in Fig. (2.2) and (2.3).

As you can see the intensity profile for positive and negative values of OAM are the

same and just the phase patterns are reversed.
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Figure 2.1: Propagation of the LG0,2 in interval of −2 < ζ < +2. As you can see by
propagation the transverse profile, mesh lines, are the same and just is scaled.

Figure 2.2: The LG intensity profiles for different radial and azimuthal number at the
distance of ζ = 0.25. The intensity profiles for absolute values of OAM are the same.

The rows and column are defining the azimuthal and radial number, respectively.
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Figure 2.3: The LG phase structures for different radial and azimuthal number at the
distance of ζ = 0.25. The phase patterns for absolute values of OAM are reversed. The
rows and column are defining the azimuthal and radial number, respectively. Black and

yellow colors are corresponding to 0 and 2π.

2.5.2.2 Hypergeometric-Gaussian modes (Karimi et al. [13])

A novel family of the scalar PWE can be found by setting a = −i/2, b = 0, p(0) = 0

and w(0) = 0,

|HyGG〉pm =

√
2p+|m|+1

πΓ(p+ |m|+ 1)
Γ(1 + |m|+ p

2)
Γ(|m|+ 1)

i|m|+1ζ
p
2 (ζ + i)−(1+|m|+ p

2
)

× ρ|m|e
− iρ2

(ζ+i) eimφ 1F1

(
−p

2
, |m|+ 1;

ρ2

ζ(ζ + i)

)
(2.55)

where m is integer, p ≥ −|m| is real valued, Γ(x) is the gamma function and 1F1(a, b;x)

is the confluent hypergeometric function [42]. The amplitude of this novel modes are

proportional to confluent hypergeometric function, so, we called them Hypergeometric-

Gaussian (HyGG). w(τ) is not real function (see Table 2.1), so, the HyGG modes are

not orthogonal set of modes

p′,m′〈HyGG|HyGG〉p,m = δm,m′

√
Γ(p/2 + p′/2 + |m|+ 1)

Γ(p′ + |m|+ 1)Γ(p+ |m|+ 1)

. Nevertheless, the HyGG modes carry a finite power. The HyGG modes can be ex-

panded in the complete basis of the LG modes. In general, the mode HyGGpm is a

superposition of the infinite LGqm modes with same m and any integer q ≥ 0. In

fact, when both the HyGG and the LG modes are normalized (2.54,2.55), we have
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|HyGG〉pm =
∑∞

q=0Apq|LG〉qm with coefficients Apq given by

Apq =

√
(q + |m|)!

q! Γ(p+ |m|+ 1)
Γ(q − p/2)Γ(p/2 + |m|+ 1)

Γ(−p/2)Γ(q + |m|+ 1)
. (2.56)

The HyGG modes can exhibit different features when the mode parameters p and m are

changed. It is then convenient to separate the HyGG modes in a few subfamilies having

similar properties.

1. p = m = 0

This mode is the well known Gaussian mode TEM00.

2. p = −|m|, odd.

At planes ζ > 0 the modes are linear combinations of the modified Bessel functions

I0(x) and I1(x), where x = ρ2/2ζ(ζ + i). We call this subfamily of modes the

modified Bessel Gauss (MBG) modes. Unlike the well known Bessel modes, these

modes carry a finite power and are not diffraction free. When ρ → ∞ at fixed

ζ > 0, the intensity of these modes vanishes according to |upm|2 ∝ ρ−4.

3. p = −|m|, even.

At planes ζ > 0 the modes are linear combinations of exponential ρ-dependent

terms. We call this subfamily of modes the Modified Exponential Gauss (MEG)

modes. When ρ → ∞ at fixed ζ, the intensity of these modes vanishes according

to |upm|2 ∝ ρ−4.

4. p ≥ 0, even.

When p is a non negative even integer, the confluent hypergeometric function

reduces to a Laguerre polynomial. We will refer to these modes as to the modified

Laguerre-Gauss modes (MLG). The asymptotic behavior of the intensity of the

MLG modes as ρ → ∞ at fixed ζ > 0 is the same as for the usual LG modes

(i. e. |HyGGpm|2 ∝ ρ2(p+|m|)e−2ρ2/(1+ζ2)). Unlike the LGpm modes, however, the

MLGpm modes have a single-ring intensity profile for any admitted value of p. The

MLGpm modes can be expressed as the linear superposition of a finite number of

LGqm modes, namely, the LGqm modes having the samem and integer 0 ≤ q ≤ p/2.

In fact, when p is a non negative even integer, Eq. (2.56) reduces to

Apq = (−1)q
(p/2)! (p/2 + |m|)!

(p/2− q)!
√
q! (p+ |m|)! (q + |m|)!

(2.57)

where 0 ≤ q ≤ p/2, p even. The quantities Apq form the entries of a non singular

(p/2+1)×(p/2+1) matrix. It is then obvious that this sub-family of HyGG modes
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forms a complete, yet not orthogonal, set of functions in the transverse plane and

that the full set of HyGG modes is therefore overcomplete.

Figure 2.4: The HyGG intensity profiles for different radial and azimuthal number
at the distance ofζ = 1. The intensity profiles for the negative and positive values of
the same OAM are equal. The rows and column are defining the azimuthal and radial

number, respectively.

The HyGG modes are not shape invariant under free propagation. While beam prop-

agates a dramatic change of intensity profile can be seen. We will mention further

important properties of this family in the following chapters.

2.5.2.3 Hypergeometric-Gaussian type-II modes (Karimi et al. [14])

There is another novel solution family of the scalar Helmholtz PWE in the cylindrical

coordinates. This family can be found by setting a = i/2, b = 0, p(0) = 0 and w(0) = 1,

|HyGG-II〉pm =

√
2p+|m|+1

πΓ(p+ |m|+ 1)
Γ
(
1 + |m|+ p

2

)
Γ (|m|+ 1)

(
1

1 + iζ

)p/2+|m|+1

× ρ|m| e−
ρ2

(1+iζ) eimφ 1F1

(
−p

2
, |m|+ 1;

ρ2

(1 + iζ)

)
, (2.58)

where m is an integer, p is a real number. We named this novel family Hypergeometric-

Gaussian type-II modes. We see that |HyGG-II〉pm stays finite as long as p is so that

p ≥ −|m|, which ensures that the power carried by HyGG-II beams is finite. It can

be shown that the HyGG-II modes, like the HyGG modes [13] (but unlike the HyG
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Figure 2.5: The HyGG phase structures for different radial and azimuthal number
at the distance of ζ = 1. The phase patterns for absolute values of OAM are reversed.
The rows and column are defining the azimuthal and radial number, respectively. Black

and yellow colors are corresponding to 0 and 2π.

modes [12]), form a non-orthogonal set, i.e.

p′m′〈HyGG-II|HyGG-II〉pm = δmm′
Γ(p/2 + p′/2 + |m|+ 1)√

[Γ(p′ + |m|+ 1)Γ(p+ |m|+ 1)]

. Moreover, the HyGG-II modes, unlike the HyGG and HyG ones, have no singularity

at the pupil, i.e. at ζ = 0.

Because all zeros of the hypergeometric function are on the real axis, the intensity of

the HyGG-II modes never vanishes in the transverse plane for ζ > 0, except at ρ = 0

where the vortex singularity is located when m 6= 0. Finally, we will discuss briefly some

possible subfamilies of the HyGG-II modes.

1. p = |m| = 0,

In this case the mode is the gaussian TEM00 beam.

2. p = −|m| a negative integer number

The HyGG-II can be expanded as a superposition of two modified-Bessel beams;

|HyGG-II〉−|m|,m(ρ, φ; ζ) =
1√
2

(
1

1 + iζ

)3/2

eimφ ρ e
− ρ2

2(1+iζ)

×
[
I |m|−1

2

(
ρ2

2(1 + iζ)

)
− I |m|+1

2

(
ρ2

2(1 + iζ)

)]
(2.59)
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We call this sub-family “modified Bessel Gauss modes of type-II” (MBG-II), for

distinguishing them from those introduced in [13].

3. For p ≥ 0 even integer number

One can easily show that

u2n,m(ρ, φ; ζ) =

√
22n+|m|+1

πΓ(2n+ |m|+ 1)
Γ(n+ 1)

(
1

1 + iζ

)n+|m|+1

×e−
ρ2

1+iζ ρ|m| eimφ L|m|n (
ρ2

1 + iζ
). (2.60)

which are the well-known “elegant Laguerre-Gauss” (eLG) beams [11].

4. For p > 0 odd integer number

The HyGG-II modes reduce to a polynomial superposition of the modified Bessel

functions I0(x) and I1(x). We call this sub-family “modified-polynomial Bessel-

Gauss” (MPBG) beams.

Figure 2.6: The HyGG type-II intensity profiles for different radial and azimuthal
number at the distance of ζ = 0.25. The intensity profiles for the negative and positive
values of the same OAM are equal. The rows and column are defining the azimuthal

and radial number, respectively.

A very interesting property of HyGG-II modes is that they suffer very low diffraction.

In fact, the divergence angle at waist of the HyGG-II modes is smaller than for the BG

and LG modes. Figure (2.7) compares the variation of the maximum intensity radius

of HyGG-II, BG and LG beams while they propagate along the z-axis. We see that

HyGG-II has a slope 12.5% lower than LG beam and 28% lower than BG beam, where
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Figure 2.7: The HyGG type-II phase structures for different radial and azimuthal
number at the distance of ζ = 0.25. The phase patterns for absolute values of OAM
are reversed. The rows and column are defining the azimuthal and radial number,

respectively. Black and yellow colors are corresponding to 0 and 2π.

we define slope = w(zR)−w0

zR
. We will show in chapter (4) that one can use this property

to generate a needle beam below the diffraction limit.

Figure 2.8: Variation of maximum intensity radius during the propagation for LG0,1,
BG1, HyGG-II−1,1



Chapter 3

Generation and detection of the

orbital angular momentum of

light

3.1 Introduction

We have shown that a light beam, besides energy and linear momentum, possesses two

“rotational” like degrees of freedom: SAM and OAM. The SAM is related to the vecto-

rial properties of optical field and it could take +~ or −~ in the direction of propagation

for Left or Right circular polarized beam, respectively. The OAM is associated to the

spatial structure of the complex optical field. Especially, a beam with a helical phase-

front, i.e. whose complex field expression includes the phase factor eimφ, where m is

an integer and φ the azimuthal coordinate around the beam axes is endowed with a

well-defined value of OAM per photon in the propagation direction, given by m~. The

OAM Hilbert space is hence inherently infinite-dimensional while SAM’s Hilbert space

is binary.

It is well-known that the SAM (polarization state) can be generated and manipulated by

using birefringent wave plates. As we will show in section (4.4) all possible polarization

states in the SAM’s Hilbert space can be easily generated by using a half-wave plate

sandwiched between two quarter wave plates.

In this chapter we review some recent novel techniques to generate and manipulate the

OAM of a given light beam. The same techniques with small variations can be also used

as detectors of specific given values of OAM.

29
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3.2 Spiral phase plate

The spiral phase plate (SPP) is a transparent dielectric plate with one plane and one

spiral surface. The SSP thickness increases proportional to the azimuthal angle, φ,

around a point at the center of plate. So, the surface resembles a turn of a staircase, i.e.

the spiral surface forms a period of helix. Such a thin transparent plate typically has

strips or radial sectors that can be obtain by coating or etching a substrate. Figure (3.1)

shows a schematic of a SPP illuminated by a TEM00 beam and its outgoing wave. In this

example the step is designed to generate OAM beam with OAM equal to ~ per photon.

When a light beam of wavelength λ passes through the SPP, the helical surface can be

Figure 3.1: Schematic of a SPP illuminated by a TEM00 beam and its outgoing wave.
In this example, the step is designed to generate OAM beam with OAM equal to ~ per

photon.

expected to give a helical structure to the beam wavefront. In fact, SPP introduces in

the outgoing beam a phase shift, δ, which depends on the azimuthal angle φ

δ =
(n1 − n2)d

λ
φ (3.1)

where n1, n2 are the refractive indices of the SPP and surrounding medium, respectively,

and d is the physical step height at φ = 0. For generating a beam with a well-defined

value of OAM, e.g. `~, the total phase delay around the SPP must be an integer multiple

of 2π, i.e. 2π`. Thus, to produce this beam, the physical height of the step in the SPP

is given by

d =
`λ

(n1 − n2)
. (3.2)

When the step height is not an integer number of wavelength, the phase of beam is

discontinuous at the step and this discontinuity breaks the ring intensity pattern. Bei-

jersbergen et al. [17] modelled the detuning of the step height through the transmission

from one helical mode to another one. In their small-angle approximation the converter
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only changes the phase pattern of beam and it does not change the beam’s intensity. The

annular intensity pattern arises from the far field diffraction of the beam’s screw disloca-

tion. However, the beam produced is not a pure LG mode, but is an infinite superposition

of the LG mode with fixed azimuthal index and summed over whole radial numbers [20].

A rigorous calculation of the SPP operation would require vector-diffraction theory. For

beam with small divergence and with a height of step that is sufficiently small we remain

in the paraxial regime. So, the effect of the SPP can be considered to be an operation

acting on the field phase only. We have decided to calculate the action of SPP by using

the ray optics analysis [43]. We just use the ray optics model to gain insight into how

OAM content of the beam arises from the SPP. Although the OAM is property of the

beam as a whole. It is useful to consider this in terms of two equivalent angular mo-

mentum per photon.

Let us consider a ring of radius r projected on the spiral surface. The angle, θ, of the

local azimuthal slope of the spiral surface is then given by

tan θ =
d

2πr
. (3.3)

A ray parallel to, but a distance r from, the optical axes will be refracted as it emerges

from the spiral surface. The deflection angle, α, may be found using Snell ’s law

n2 sin (α+ θ) = n1 sin θ

before refraction, the beam has a linear momentum of n2
~

2πλ per photon. After refrac-

tion, there is a component of linear momentum in the azimuthal direction

Pφ =
n2~
2πλ

sinα. (3.4)

There is a transfer of angular momentum, L, between the SPP and the beam of light of

Lz =
n2~ r
2πλ

sinα (3.5)

per photon in the beam. For a small angle than we can be shown that the OAM transfer

form the plate to the light is equal to

Lz ≈ `~ (3.6)

per photon in the direction of beam. This agrees with the reset for LG beam derived

from the analysis of Maxwell’s equations (2.5.2.1).
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3.3 Cylindrical lenses Mode converter

The essential understanding of the cylindrical lens mode converter is lying under the

Laugerre-Gaussian and Hermite-Gaussian mode relations. Indeed, the expansion for-

mula for the LG mode in the basis of Hermite-Gaussian will be the essential under-

standing of the mode converter’s action.

A possible solution of the scalar wave equation in the cartesian coordinates is given by

the HG modes:

|HG〉m,n =

√
2

2(m+n)πm!n!
1√

1 + ζ2
e−i(m+n+1) arctan ζ

× e
−
(

1+iζ

1+ζ2

)
(η2+ξ2)

Hm

(√
2

1 + ζ2
η

)
Hn

(√
2

1 + ζ2
ξ

)
(3.7)

where Hn(x) is the Hermite polynomials of order n, (ξ, η, ζ) are the dimensionless co-

ordinates (2.5). The HG modes are an orthogonal set of modes and they carry finite

power

m′,n′〈HG|HG〉m,n = δm,m′δn,n′ (3.8)

The Gouy phase here is the sum over the two Gouy phases for η and ξ axis. It will be

convenient to rewrite the LG modes (2.54) according to mode order N := m+ n;

|LG〉m,n = (−1)min(m,n)

√
2

πm!n!
1√

1 + ζ2
e−i(m+n+1) arctan ζ

× e
−
(

1+iζ

1+ζ2

)
ρ2
ei(m−n)φ

(√
2

1 + ζ2

)|m−n|
L
|m−n|
min(m,n)

(
2ρ2

1 + ζ2

)
(3.9)

where min(m,n) denotes the minimum between m and n. The indices we used here

differ from those normally used in the previous chapter (2.54). The radial index p

normally used is min(m,n) and the azimuthal index m is m − n. This notation has

advantages with respect to the normal notation. We will show that a cylindrical mode

converter transforms a HGm,n mode into a LGm,n mode and vice versa. Both HG and

LG modes carry finite power and they form an orthogonal and complete set of modes.

So, it is possible to expand one of them in the base of the others. Using the relation

between Hermite and Laugerre polynomials, one can easily show that a LG beam can

be expanded into a set of HG modes of the same order:

|LG〉m,n =
N∑
k=0

ikb(m,n; k)|HG〉N−k,k (3.10)
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where b(m,n; k) are the real expansion coefficients and are given by

b(m,n; k) =

√
(N − k)!k!
2m+nn!m!

1
k

dk

dtk
((1− t)n(1 + t)m) |t=0 (3.11)

The factor ik corresponds to a π
2 relative phase different between successive components.

Figure (3.2) shows this mode decomposition for the first two mode orders. A HG mode

Figure 3.2: Decomposition of the LG0,1, LG0,−1, HG0,1|@45◦ and HG0,1|@−45◦ modes
in the HG basis. N indicates the mode order.

whose principal axis is rotated about 45◦ degree around the propagation axes, i.e. ζ,

can be similarly expanded in the HG basis, by using the following relation the product

of Hermite polynomials;

|HG〉m,n|@45◦ =
N∑
k=0

ikb(m,n; k)|HG〉N−k,k (3.12)

where @45◦ denotes the orientation of the mode principal axis, with exactly the same

real coefficients b(m,n; k) of Eq. (3.11). The only difference between this expansion

(3.12) and the previous one (3.10) is the relative phase between successive terms. In this

expansion, instead, all terms are in phase. Figure (3.2) shows this mode decomposition

for the first two mode orders. It is quite clear from these two Equations (3.10), (3.12),



Chapter 3. Generation and detection of the orbital angular momentum of light 34

Figure 3.3: The schematic of π mode converter. The distance between two cylindrical
lenses is 2f . The π mode converter converters LG0,` to LG0,−`. f indicates the lenses

focal length.

that in order to invent a mode converter from a diagonal (or anti-diagonal) HG to the

proper LG mode of the same order, one must rephase the terms in the expansion. This

rephasement can be obtained via the Gouy phase.

First consider an astigmatic beam which has its nodal lines parallel to the astigmatism.

Such kind of beam can be produced by passing the HG mode through a cylindrical

lens aligned along the axes of the mode pattern. The amplitude of the mode can be

considered separately in two beams in the (η, ζ) and (ξ, ζ) plane. In each plane, the

beam is characterized by the ζ-coordinate and the Rayleigh range of the waist. Of

course, these two beams waists, used hence the two Rayleigh parameters are different in

general. Instead, for non-astigmatic HG beam these two waists coincide, therefore, their

Rayleigh ranges are equal. So, non-astigmatic HG beam of the same order N = m+ n

has the same Gouy phase. Nevertheless, for the astigmatic HG beam the dependence of

the field directions that a parallel and orthogonal to the lens axes have different Gouy

phases. Therefore, a relative phase as a function of propagation and mode order will

appear between parallel and orthogonal beams.

In order to exploit the Gouy phase to construct a mode converter the beam should be

made astigmatic in a confined region only while it must be non-astigmatic outside this

region. When the beam is passed through this region a definite phase difference will

be introduced between the HG mode components which are oriented along the axes

of astigmatism. In order to transform a HG into the proper LG mode, an i factor

must be introduced for each expansion terms. This i factor is corresponding to a π/2

phase difference between the successive terms. Only two types of mode converters are
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interesting for our purposes; π
2 and π-mode converter. The first one can be used to

transform HG modes into LG modes of the same order, and the second one to reverse

the azimuthal index of LG mode or to change s diagonal HG mode into the corresponding

anti-diagonal one. It has been shown that these two configurations of mode converters

can be achieved by a properly aligned set of two cylindrical lenses in the f√
2

and confocal

configurations, respectively, where f denotes the focal length of the lens.

The working principle of these type of mode converters is easy. A diagonal (or anti-

diagonal) HG mode of order N can be decomposed into orthogonal and parallel (with

respect to principal axes of the cylindrical lenses) HG modes (see figures 3.3 and 3.4).

As they pass through the mode converters, they will acquire a phase difference that

Figure 3.4: The schematic of π/2 mode converter. The distance between two cylin-
drical lenses is f√

2
. The π/2 mode converter converters diagonal HG0,1|@45◦ to LG0,1.

f indicates the lenses focal length.

varies according to their mode order. An ik or (−1)k phase factor can be obtained based

on the distance between the lenses, which must be set to f√
2

and 2f for a π/2 and π

converter, respectively. An analogy with the wave plates action on the polarization can

be used. A QWP transforms a diagonal polarization state with no SAM in a circular

polarization which possesses a SAM equal to ±~, and a HWP can switch the helicity

of the polarization, e.g. it changes left (+~) circular polarized light to the right (−~)

circular polarization and vice versa. Similarly, a π
2 -converter, like a QWP, transforms a

diagonal HG into the proper LG beam which possesses a well-defined value of OAM, and

a π-converter, like a HWP, just switches the sign of OAM. This analogy is illustrated

also in figure (3.5).



Chapter 3. Generation and detection of the orbital angular momentum of light 36

Figure 3.5: The schematics of π/2 and π mode converters. π
2 -converter is similar

to QWP (in the OAM space) and it transferrers diagonal HG into LG beams and
π-converter like HWP switches the sign of helical beams.

3.4 Pitch-fork hologram and computer generated holograms

As we have shown, OAM is associated to a helical wavefront of the beam. If we gener-

ate a beam having helical wavefront, indeed, such beam would also have a well-defined

value of OAM. A possible and simple method to record and generate an arbitrary beam

wavefront is holography. In the holography technique, the interference pattern between

an interesting and a simple reference beam is recorded over a plate named “hologram”.

In general we have two possible kind of hologram: amplitude and phase hologram. For

both kinds of hologram, the interference pattern is the same. An amplitude hologram

transmits the light in the transparent fringes and absorbs it in the opaque ones. The

amplitude-modulated outgoing light is diffracted in such a way that the beam acquire a

prescribed phase-front defined by the fringes pattern. In contrast, the phase hologram

does not absorb light. Instead, it changes the optical retardation spatially based on the

printed phase pattern. An useful quantity to characterize a hologram is the hologram
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efficiency, which is the ratio of the fraction of power located in the first order of diffrac-

tion, P1 that is the wave component which has acquired the desired wavefront, to the

impinging power on the hologram, P0, i.e. E = P1
P0

. It is clear that an amplitude holo-

gram, in the average absorbs about half of impinging power assuming total absorbtion

in the opaque fringes. So, we expect a lower efficiency for the amplitude holograms with

respect to the phase holograms.

In order to plot a hologram that generates a helical phase front starting from a planar

reference we must consider the interference pattern of these two beams in a given plane,

for example x− y.

Let us consider a plane reference beam

Er = E0 e
i(kxx+kzz) (3.13)

with an incident angle α = arcsin kx
k and intensity |E0|2. At the z = 0 plane, the

interference pattern with a helical beam, E` = E0 e
i`φ, is given by

I = 2|E0|2 (1 + cos (kxx− `φ)) (3.14)

where we have considered that these two beams have uniform and equal intensities. Eq.

(3.14) gives the required interference pattern. Figure (3.6) shows the intensity pattern

of interference between a helical and plane wave beams for several different values of

singularity charges. A photographic plate recordings of these patterns can now act as

Figure 3.6: The intensity density pattern of interference between helical with a planar
beam for several different values of the charge singularities.

holograms capable of reconstructing the original helicon beam when they are illuminated

by a beam with a plane wavefront. For the case of a plane-wave input traveling along

the z axis, immediately after the exit face of the hologram the optical field is given by

Et = A0 T (x, y)

=
A0

2
(1 + cos (kxx− `φ)) (3.15)
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where |A0|2 is the intensity of illuminating beam and T (x, y) is the spatial transmittance

of the hologram (we have considered an amplitude hologram). By simplifying this field,

we can rewrite (3.15) as

Et =
A0

2

(
1 +

1
2
e(kxx−`φ) +

1
2
e−(kxx−`φ)

)
(3.16)

This optical field can be recognized as consisting of a zero order beam propagating

along the axes and two (conjugate) first order diffracted beams each of them containing

a singularity of opposite charge +` and −` (see Fig. 3.7). The grating’s shape, that

Figure 3.7: Beams generated by a sinusoidal pitch-fork holograms. A fraction of
power diffracted on the first order and other part remains on the zeroth order. The

topology of the hologram is objected to generate beams with |`|=2.

is fringe’s shape patterns, of a hologram also plays an important role in determining

the efficiency of a given hologram, in addition to the way of encoding, in amplitude or

phase. Nevertheless, the diffracted beam wavefront is the same for all different shapes

of grating. We mention four different types of grating here:

1. Sinusoidal grating

g(α) :=
1
2

(1 + cosα) (3.17)

2. Blazed grating (saw-tooth shape)

g(α) :=
1

2π
Mod(α, 2π) (3.18)

3. Squared grating

g(α) :=
1
2

(1 + Sign(cosα)) (3.19)
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4. Triangle grating

g(α) :=
1
π

Sign(α) (π −Mod(α, 2π)) (3.20)

where α = kxx − `φ, Mod(m,n) is the reminder on division of m by n, and Sign(α) is

the sign function of α, i.e. α
|α| . Figure (3.8) shows four different type of gratings that

generate a helical beam with ` = 2. For amplitude holograms, the squared grating has

Figure 3.8: Different holograms pattern in order to generate a helical beam with
` = 2. (a) is the sinusoidal, (b) is the blazed, (c) is the binary, and (d) is the Triangle

holograms.

the maximum efficiency of around 10%, among all grating types (See Table 3.1).

The phase hologram pattern is exactly the same as the amplitude one. However, such

hologram does not absorb light, so, its power transmittance is unity. For the phase

hologram the Fresnel transmittance coefficient is given by

t(x, y) = eiag(α) (3.21)

where g(α) is the grating type given by one of the four mentioned functions Equations

(3.17, 3.18, 3.19, 3.20), and a is the phase depth of hologram.

For example, the Fresnel coefficient for a sinusoidal grating can be written, apart from

a constant phase, in terms of Fourier series

t(x, y) =
+∞∑

n=−∞
in Jn(a)ei(kxx−`φ) (3.22)

where Jn(a) is the Bessel function of order n. This expansion shows that, for a sinusoidal

phase hologram, all orders of beam diffraction are present and their efficiency is equal

to the square modules of |Jn(a)|2. Table (3.1) shows the maximum theoretical efficiency

and generated order of the amplitude and phase hologram for all possible types of grat-

ings.

In our laboratory first we manufacture amplitude holograms, then, we change them into
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Table 3.1: Ideal efficiency of different types of grating and different kind of holograms.

Type of grating Amplitude Hologram Phase Hologram
Generated order Efficiency Generated order Efficiency

sinusoidal zero + first orders 6.25% all 33.85%
blazed all 2.53% Just first order 100%
squared odd 10.13% odd 40.52%
triangle odd 4.10% all 29.81%

phase ones by chemical bleaching procedure. In order to generate amplitude hologram,

we numerically calculate a density plot of a pitch-fork hologram with a definite topologi-

cal charge and diffraction angle by Mathematica from Stephan Wolfram. The dimension

of simulated holograms were 1024×1024 pixel. Then, we simulated the computer gener-

ated holograms (CGHs) over a proper aligned 19′′ monitor. An ILFORD PAN F PLUS

ASA 50 negative black and white film and a camera (Contax 167MT) with a standard

52mm objective were then used to transfer the pattern on a photographic film. Pho-

tographes were taken from the a distance of 3.2m away from aligned monitor. For our

purpose, the combination of f# = 8 and exposure time of 1
4 s gave the best result. Note

that, the monitor refreshing time must be at least three times shorter than the exposure

time of film. The film, then can be developed in a normal way. We used ILFORD

developer (ILFOSOL3), ILFORD indicator stop bath (ILFOSTOP) and ILFORD rapid

fixer (RAPID FIXER) with the recommended times and concentrations. The quality of

the developed negative film can be checked via a microscope. The black and white line

thicknesses must be equal for optimal efficiency. Moreover, a good amplitude hologram

must have a wide range of gray levels. A very dark hologram absorbs light to much

and very light hologram proved inefficient at diffracting light. So, for both cases the

efficiency is low. We were able to produce amplitude holograms with 6% efficiency and

22 lines/mm. However, the best amplitude holograms to make a phase holograms were

those with an efficiency around 1%.

A solution of 9 gr Fe(No3)3 · 9H2o, 5 gr ammonium dichromat and 6ml concentrated

sulphuric acid into 1 liter distilled water was used for bleaching the developed negative

film. Another possible bleaching solution is 10 gr mercuric chloride diluted into 1 liter of

distilled water. After bleaching the developed negative film with the first solution, the

bleached negatives were washed carefully with distilled water at least for 15 minutes.

Then, the film was dried in a cleaned place, e.g under extractor fan. The bleaching

solution is toxic, so, all process must be done in chemical hood.

A typical efficiency around 15% was achieved at green wavelength, 532nm, with this

kind of film and bleaching solution.
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3.5 q-plate

All methods presented in the previous sections to generate OAM were based on the

direct manipulation of the beam’s phase front only, without touching the polarization of

the beam. We considered the beam OAM as an independent degree of freedom. Indeed,

the sum of SAM+OAM, i.e. total angular momentum, is one of the possible constants

of motion. Nevertheless, they cause different “rotational”-like motions. Before 2006,

physicists considered them as an uncoupled degrees of freedom and no significant inter-

action between SAM and OAM was normally expected.

Marrucci et al. [19] showed that there is an interaction between SAM and OAM in

an inhomogeneous anisotropic medium. The essential concept of this process is lying

under the well-known Pancharatnam-Berry phase context. When a polarization state

of a given beam adiabatically follows a closed path over the SAM Poincaré sphere, an

additional phase given by half of the closed path’s solid angle will appear with respect

to initial optical field.

Let us consider an optical field passing through a transverse varying birefringent plate

with a uniform thickness. If the input and output polarization states are homogenous,

an inhomogeneous geometrical phase, then, is induced by the plate, thus corresponding

to a modification of the output phase front. Clearly, based on the input polarization

state the output phase front can be controlled. This is the heart of the SAM-OAM

interaction optical elements.

We consider an uniaxial birefringent plate having an uniform thickness for a light prop-

agating in the longitudinal z-direction, but, a transversely inhomogeneous optical axis

laying in the transverse plane. For our purpose we assume that the optical axis of the

uniaxial birefringent depends on the azimuthal angle only:

α(r, φ) = qφ+ α0 (3.23)

where q is the topological charge of the plate, and α0 is a real constant value. This

pattern requires a singularity at the center of plate. For an integer or semi-integer value

of q there will be no discontinuity in the transverse plane. q is an important parameter

which defines the plate topology, i.e. the uniaxial varying geometry. Due to importance

of topological charge q, this plate was named “q-plate”. Some interesting topologies

of the q-plate are shown in Figure (3.9). A complete analytical analysis of the light

propagation inside a q-plate is postponed to the next chapter (4.3). However, based on

the Jones formalism, in a good approximation, the q-plate action at least for a plane

wave input beam can be readily calculated.

The Jones matrix to be applied on the field at each point over the q-plate transverse
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Figure 3.9: Four different topologies of q-plate. (a) (q, α) = ( 1
2 , 0), (b) (q, α) = (1, 0),

(c) (q, α) = (1, π2 ) and (d) (q, α) = (2, 0). The vectors are defining the liquid crystal
orientation on the transverse plane.

plane is given by

Û δq = R(−α) ·

(
ei
δ
2 0

0 e−i
δ
2

)
·R(α)

= cos
(
δ

2

) (
1 0

0 1

)
+ i sin

(
δ

2

)(
0 e2iα

e−2iα 0

)
(3.24)

where R(α) is the 2× 2 rotation matrix in the transverse plane about angle α, and δ is

the q-plate optical retardation. This action is now rewritten in the circular polarization

basis (2.39).

When a left-circular polarized light passes through the q-plate, we will have two com-

ponents of light, based on the q-plate optical retardation at the plate exit face. A com-

ponent of the beam remains unchanged, i.e., it is a non-converted part, and other part

comes out with the right-circular polarization state and an additional phase transverse-

modulation which corresponds to the presence of the OAM m = 2q.

Û δq · |L〉 = cos
(
δ

2

)
|L〉+ i ei(2q)α0 sin

(
δ

2

)
|R〉 ei(2q)φ (3.25)

It can be easily shown that by changing the input polarization state to the right circular

polarization, the output phase front changes to m = −2q with the left circular polar-

ization. In other words, the OAM value generated by the plate depends on the input

polarization state. So, the q-plate is an optical device to generate OAM based on the

SAM-OAM interaction. As we will show, the optical retardation δ of the q-plate can

also be controlled, e.g. by exciting a mechanical pressure, applying an electric field or

changing the plate temperature.

A q-plate with a “π” optical retardation δ (half of wavelength) is hereafter called a

“tuned” q-plate. The tuned q-plate’s acts just as a pure converter of SAM-to-OAM. So,

the left (right) circular polarized beam converts to the right (left) circular polarization

with a well-defined values of OAM which is two times of the plate’s topological charge
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+2q (−2q). This process my cause a torque, due to change of the total angular momen-

tum, on the plate. In order to calculate this torque it will be continent to trace out the

total angular momentum of initial and final beams. For instance, for the above men-

tioned process, the total changes of angular momentum in the direction of propagation

is equal to

∆jz = ±2(q − 1)~ (3.26)

per photon. The ± sign are denoting these value for left and right circular polarization

input beam, respectively. It is zero for the case of q = 1 topological charge, radial

or azimuthal orientation of uniaxial birefringent. This result was expected from the

physical cylindrical symmetry of the q = 1-plate. In this case one can talk of a pure

SAM-To-OAM conversion (STOC) taking place in the optical beam.

3.5.1 Manufacturing a q-plate

The uniaxial liquid crystal is a good candidate to generate transverse spatial varying

patterns. Indeed, liquid crystal can be easily aligned by the electrostatic interaction with

surfaces. In our laboratory, we are able to manufacture a plate with a unit topological

charge, i.e circular oriented pattern. Our plate is made of a 6µm thick film of E7 liquid

crystal from Merk, sandwiched between two fused silica glasses. These two glasses

were coated with a proper mixture of PI2555 polyimide from DuPont for inducing the

planar alignment. In order to introduce the unit topological charge to the Liquid crystal

molecules the glasses were rubbed circularly. The two plate singularities, after that,

were precisely superimposed. This process was done with a help of a setup which gives

control of all degrees of freedom to the plates. A microscope was inserted to check

the position of two singularities during the positioning. In the meanwhile, on the same

setup, the parallelism of the plates was precisely controlled by reflection of the HeNe

laser light beam from the two inner surfaces of the glasses. We, then, inject liquid

crystal between the plates. By time, liquid crystal molecules find the minimum energy

interaction between these two circularly rubbed plates. The preferential direction for

liquid crystal is circular at the glass surfaces. The used polyimide substrates align liquid

crystal molecules parallel to the glasses surface for both plates. However, other kinds

of surfactants, for example DMOAP, were also used in our laboratory to prepare the

orthogonal alignment of liquid crystal at glass surface (called “homeotropic” alignment).

In practice, these two kinds of q-plates, i.e. planar-planar and planar-orthogonal (also

called “hybrid”), are different. Figure (3.10) shows the structure of two different type

of q-plates under a microscope. In order to test the q-plate operation, we measured

the beam phase front via Mach-Zender interferometer. A verdi laser TEM00 Gaussian
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Figure 3.10: The fringes of q-plates sandwiched between two crossed polarizers. q-
plate made by (a) ultra-violet (UV) technique (b) rubbing technique.

beam was split in two beams; signal and reference. The signal was switched to left

circular polarization beam by means of a proper aligned QWP. Then, it passed through

the q-plate. A converted part of output beam then was chosen with another QWP and

polarizer. This QWP and polarizer selected the left circular polarization (orthogonal

polarization). Finally, the signal beam was superimposed with reference beam. Figure

(3.11) shows the interference pattern taken by CCD camera.

Figure 3.11: Interference patterns of outgoing beams from the q-plate with planar
and spherical TEM00 beams for two different input polarization states. (a) and (b)
Interference patterns of the Left and right circularly polarized input beams with a planar
TEM00, (c) and (d) interference patterns of the Left and right circularly polarized input

beams with a spherical TEM00 light, respectively [44].

3.5.2 Thermal tuning of the q-plate and its characterizations (Karimi

et al. [45])

High efficiencies in producing and detecting the light OAM are highly desirable in all cir-

cumstances where only few photons are at disposal. Examples are weak signals coming

from far sources, such as astronomical ones [45] or after propagation in highly absorbing

media, or in quantum information applications [31]. Achieving high efficiencies, how-

ever, requires accurate tuning of the q-plate retardation δ. In order to tune the optical
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retardation δ and thus optimize the q-plate efficiency, in this subsection we adopted a

method based on controlling the material temperature, which presents good features in

terms of a realization simplicity and stability of the obtained retardation [46]. However,

temperature tuning is not the only way to tune the optical retardation of the q-plate and

there are some other methods like applying uniform electric field and uniform pressure

over the plate.

We used the Spin-to-OAM conversion (STOC) process for transforming an input TEM00

laser beam into a beam having OAM ` = ±2. The transmittance T of our q-plate was

measured to be 88%, with the losses arising from scattering due to manufacturing im-

perfections and from the lack of antireflection coating on the cell bounding glasses. The

Figure 3.12: Setup to measure the STOC efficiency and the state purity. Legend:
QWP - quarter-wave plate; PBS - polarizing beam-splitter. The fork hologram was
inserted on the converted beam arm for verifying the degree of purity of the OAM

` = 2 mode generated on the output [46].

optical setup used to measure the STOC efficiency of our q-plate as a function of its op-

tical retardation is shown in Fig. (3.12). The input light was a linearly polarized TEM00

laser beam generated by a frequency-doubled continuous-wave Nd:YVO4 (λ = 532 nm).

After changing the polarization into left-circular (L) by a suitably oriented quarter wave

plate (QWP), the beam was made to pass through our controlled-temperature q-plate.

In the q-plate, a fraction of the photons will undergo the STOC process and will there-

fore emerge with right-circular (R) polarization and OAM ` = 2, and the others will

remain in the OAM ` = 0 and with L polarization. For arbitrary q-plate tuning, the

transverse intensity pattern of the beam emerging from the q-plate exhibits a central

spot, corresponding to the light fraction that is left in the initial OAM state ` = 0,

surrounded by a single ring, corresponding to the light converted into the OAM m = 2

mode (doughnut beam) at the far field . By inserting in the output beam a second QWP
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and a polarizing beam-splitter (PBS) oriented so as to select the R-polarization for, say,

the transmission output, a pure doughnut beam is obtained. The reflected output of the

PBS shows instead only the central spot (unconverted light). If Pin is the total input

power, the respective powers of the coherently converted and unconverted components,

PR,2 and PL,0, are expected to depend on the optical retardation δ according to the

following Malus-like laws [47, 48]:

PR,2 = P0 sin2 δ

2
, PL,0 = P0 cos2 δ

2
(3.27)

where P0 = TPin is the total power transmitted coherently by the q-plate. To adjust the

retardation δ, the temperature of the q-plate was varied while measuring the power of

the two output beams of the PBS. The results are shown in figure. (3.13), together with

best-fit curves based on Eqs. (3.27), assuming a second-order polynomial dependence

δ(T ) = a + bT + cT 2 and adding a constant offset of 0.5% that accounts for the finite

PBS and wave-plates contrast ratios. When the PBS-transmitted power (full squares in

Fig. (3.13)) reaches its maximum, we obtain the optimal STOC and almost all photons

emerge in the ` = 2 OAM state. More precisely, in this optimal situation, about 99.2%

of the beam power is transmitted by the PBS, and after taking into account the finite

contrast ratio of the waveplates and PBS (as measured without the q-plate), the actual

q-plate efficiency in inverting the optical polarization is estimated to be 99.6%. Near

the minima of the same curve, the STOC process is minimum and almost all photons

emerge in the original ` = 0 state. To test the purity of the OAM eigenmode generated by

Figure 3.13: STOC power fraction PR,2/P0 (blue squares) and no STOC power frac-
tion PL,0/P0 (red squares) as functions of the q-plate temperature. The curve is the

best fit obtained as explained in the text [46].

our q-plate, at the optimal temperature we inserted along the beam a double pitchfork

hologram as OAM-mode splitter [18, 20] and, on the first-order diffracted beam we
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selected the central spot by a suitable iris placed before the detector. After suitable

calibration of the detection efficiency, the measured OAM ` = 2 mode content fraction

was estimated to be F = 97.2% (in quantum optics, F is the squared “fidelity”, i.e. the

overlap with the desired mode ` = 2), so that the overall q-plate efficiency in generating

a pure OAM ` = 2 mode is η = 97.2% × 99.6% = 96.9% (this value is net of reflection

and scattering losses in the q-plate; including all losses, the efficiency of our q-plate

is 85%, a figure which could be however easily improved to more than 90% by simply

adding antireflection coatings). Moreover, we note that in order to invert the sign of

the generated OAM value ` (e.g., from +2 to −2) with our setup it is enough to switch

the input and output polarizations to the orthogonal ones. This can be achieved at

gigaHertz rates by means of Pockel cells. No switching capability is instead possible

with passive holograms, while computer-controlled spatial light modulators (SLM) can

achieve at most switching rates of the order of few kiloHertz.

3.5.3 q-plate as a mode sorter (Karimi et al. [45])

In this subsection, we present a setup for sorting the four modes given by combining the

two OAM modes ` = 2 and ` = −2 and the two orthogonal polarizations L and R. The

setup is similar to the previous one, except that the input laser beam was made to pass

through a SLM driven with a computer generated hologram (CGH) for determining its

input OAM state. The temperature of the q-plate was held fixed at the optimal value for

maximum STOC efficiency. We used double-pitchfork CGHs to produce alternatively

` = 2 and ` = −2 OAM eigenstates in the input. The first QWP was also rotated so

as to produce, alternatively, right-circular and left-circular polarizations. In this way,

Figure 3.14: Calculated far-field patterns of OAM modes ` = 0 and ` = 4 gen-
erated by the q-plate for input OAM ` = ±2 (The input beam was assumed to
HyGG−2,±2(r, φ, 0.1) (2.5.2.2) mode). The dashed circle shows the discriminating area

used in the balanced mode sorter [46].

we created in sequence the four photon states |L, 2〉, |L,−2〉, |R, 2〉, |R,−2〉, where the

first symbol in the ket denotes the polarization and the second is the ` value of the
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photon OAM. Because the STOC process is complete in a tuned q-plate, after passing

through the q-plate these four states are expected to change respectively into |R, 4〉,
|R, 0〉, |L, 0〉, |L,−4〉. The QWP after the q-plate, changes these states into |H, 4〉,
|H, 0〉, |V, 0〉, |V,−4〉, respectively, so that the two states |H, 4〉, |H, 0〉 are transmitted

by the PBS and the other two states |V, 0〉, |V,−4〉 are reflected. We see that owing

to the q-plate, the two states in each of the reflected and transmitted beam have a

different value of photon OAM (` = 0 and ` = 4). After propagating in the far-field

(or in the focal plane of a lens), these two modes can then be separated by exploiting

their different radial distribution, i.e., a central spot for ` = 0 and an outer ring for

` = 4, as shown in Fig. (3.14), thus finally sorting all four initial spin-orbit modes into

separate beams. The radial sorting can be obtained, for example, by means of a mirror

with a hole at its center. We note that in our measurements we are using the PBS

only for discriminating the two input polarizations. In many applications, the input

polarization state is fixed and known and one is interested only in sorting the OAM

` = ±2 modes. In this case, the PBS is unnecessary, the input light can be always

made L-polarized, by suitable wave plates, and the output beam will then be only R-

polarized. The OAM sorting is then still based on the radial-mode separation in the

far field. The efficiency of this mode-sorter, here defined as the fraction of the optical

power in a given eigenmode to be sorted that is directed in the correct output mode is

however not 100%, because of the radial mode overlap, leading to some energy going in

the “wrong” OAM output mode. This also leads also to a finite contrast ratio, i.e., to

cross-talk between the input channels. In Table (3.2) we report the measured efficiencies

and contrast ratios for the four input spin-orbit base states previously mentioned, with

a discriminating hole radius chosen so as to balance the output efficiencies for opposite

input OAM (see Fig. (3.14)). The measured efficiency of the q-plate as mode sorter is of

about 81.5% (72% with q-plate losses), i.e., 2.7 times larger than for the best available

holograms (≈ 30% efficiency, as blazing cannot be used for multiple outputs). The

extinction ratio due to radial overlap between ` = 0 and ` = 4 OAM modes can be

improved by introducing a suitable opaque belt mask that cuts away the overlapping

region of the two modes, although at the expense of a reduced efficiency. In principle

the contrast ratio can be made arbitrarily large. Theoretically, we estimate a contrast

ratio > 103 for an efficiency of about 50% and > 106 for an efficiency of 10% [45].

Increasing the contrast ratio at the expense of efficiency can be useful in many quantum

optics applications where good fidelity is required [32]. We note that the radial-overlap

problem leading to cross-talk is not unique of the q-plate approach; a similar problem

and an equivalent efficiency/contrast-ratio tradeoff is present also with hologram-based

OAM sorting. We also tested our q-plate mode-sorter with coherent superpositions of

m = +2 and m = −2 OAM modes (obtained with suitable CGHs), obtaining results
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Table 3.2: The QP’s efficiency as a mode sorter.

Input state Output state Efficiency Extinction ratio
|L, 2〉 |R, 4〉 81.1% ≈ 4.6:1
|L,−2〉 |R, 0〉 81.8% ≈ 4.5:1
|R, 2〉 |L, 0〉 81.6% ≈ 4.7:1
|R,−2〉 |L,−4〉 81.5% ≈ 4.6:1

consistent with the efficiencies reported in Table (3.2).

3.5.4 Schemes for generating higher orders of OAM

The q-plate is highly transparent and can be cascaded along the beam to produce ar-

bitrary values of the OAM [44]. The tuned q-plate in order to generate higher order of

OAM is necessary and non-tuned q-plate cannot be used in the cascaded configuration.

Indeed, a suitable configuration of waveplates and q-plates can be used to generate an

arbitrary high value of OAM. In order to clarify this point we will start with a simple

example. Let us consider a HWP sandwiches between two tuned q-plates with unite

topological charge. When a left circularly polarized beam with no OAM, |L, 0〉 enters

to this configuration, the first q-plate, then, generates a right circular polarized beam

with ` = 2, |R,+2〉. The HWP just inverts the polarization state. The second q-plate

instead changes both SAM and OAM states to |R,+4〉. By removing the HWP the

OAM output state will be ` = 0. Marrucci et al. [44] presented a smart way to gener-

ate whole even number of OAM. They used a Pockel cell (PC) followed by a QWP to

change the polarization state from Left to Right and vice versa. Then a q-plate were

used to transfer the SAM state to OAM state and finally a QWP was used to return

back the polarization state to the linear states. By cascading this element one will be

able to generate whole even value of angular momentum. Furthermore, there is an issue

regarding to the beam radial profile which must be addressed. The free-air propagation

changes the radial profile of outgoing beam from the q-plate.

However, we also developed another way to generate the −4,−2,+2,+4 OAM states

by inserting a q-plate in one arm of Sagnac interferometer as will be discussed in sec-

tion (4.6.1).



Chapter 4

The OAM propagation and

classical application

4.1 Introduction

In the previous chapter, we introduced some well-known techniques to generate, manip-

ulate and detect light orbital angular momentum. We presented basic and simple views

for explaining the working principle of these devices. In our elementary pictures we did

not touch the other important degrees of freedom of light, i.e. the beam radial number.

The beam radial index is as important as spin and OAM indices. In many practical

applications of OAM in the quantum and classical regime of light, the SAM, OAM and

radial index may be are strongly entangled. Therefore, the beam is not a pure OAM and

SAM eigenstate. Indeed, the photon coherency or density matrix can be reconstructed in

these three individual degrees of freedom’s Hilbert spaces. By neglecting the radial part,

the output beam is considered in the reduced Hilbert space of SAM and OAM, which

is not the real physical state. The radial part plays an important role independent of

the OAM’s generator and detector. The transverse degree of freedom plays an essential

role in the spatial filtering of light beams. Even, two given beams with the same values

of OAM may have different transverse profiles. This difference can be reconduced to a

different distinction of radial index number.

In order to handle such kind of issues we must study and calculate the beam radial

profile generated by different type of OAM generator devices. In determining the light

propagation kernel for different types of OAM generators will be the aim of this chapter.

Of course, we expect to obtain different propagation kernels, and radial profiles for

different OAM generators.

50



Chapter 4. OAM propagation and classical application 51

Finally, we present some new applications of the q-plate as an OAM generator and

a special radial profile generator in the classical optics regime. The q-plate with half

topological charge can be used with a system of high numerical aperture and optical

phase mask to generate a very narrow beam with a waist radius below the diffraction

limit, which is called “needle beam”. Furthermore, I will show how two classical bits of

information can be encoded over OAM state of a photon, independent of the SAM state.

Alice (sender) uses a q-plate to generate one of the four states on the OAM space, i.e.

−4,−2,+2,+4, and Bob (receiver) can use a 2D pitch-hologram to project each state

over 4 individual detectors.

4.2 Outgoing wave from the pitch fork hologram (Karimi

et al. [13])

The pitch fork holograms are widely used for generating and detecting the OAM of a

light beam. These kind of holograms provide a static (passive) generator or detector of

OAM, and they cannot be used for switching dynamically among different OAM states.

However, an optoelectronic device, named spatial light modulator (SLM), recently pro-

duced commercially can instead be used to obtain a reconfigurable holograms, allowing

for dynamical control of the OAM state, although at a slow rate (. 1 KHz). The SLM

is made as a nematic liquid crystal display. The normal dimension of each pixel of the

SLM is of about 9µm. The optical phase retardation of each pixel can be controlled in

the interval [0, 2π) with 256 steps, corresponding to a GrayLevel color scale, by applying

a voltage which is driven by a personal computer (PC) graphic card. In fact, when a

hologram with a correct dimension is displayed on the PC screen, a well-defined voltage

corresponding to the color of each pixel on the screen in the gray scale level is applied to

the same pixel of the SLM. This voltage changes the liquid crystal alignment inside the

cell. Due to this new orientation of the liquid crystal, the optical retardation of the cell

also changes. So, pixel by pixel, the optical retardation is modulated according to the

displayed hologram color. So, the SLM is working as a pure phase object. The hologram

pattern can be changed by changing the displayed pattern. The SLM speed is limited

by the graphic card and by the response time of the liquid crystal molecules. Moreover,

the SLM’s efficiency is strictly dependent on the beam polarization state. The SLM has

a wide range of applications in optical trapping and optical tweezers when a beam shape

control is needed. Due to availability of such kind of optical elements the computer

generated holograms are widely used to generate and detect light OAM. So, it will be

worth of investigation to study the outgoing wave from a pitch-fork holograms.
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A pitch fork hologram with any different encoded pattern cannot produce a pure LG

mode [20]. Indeed, the output beam must have a well-defined azimuthal index number.

But, there is not a rule to define a specific radial index number (only azimuthal index is

well-defined for a pitch-fork hologram). In order to face this problem, we have considered

a perfect blazed hologram with a well-defined value of OAM = `, in which the whole

impinging power is diffracted into the first order of diffraction. We choose the case of a

blazed hologram just for simplifying our calculations, but our approach can be extended

to any type of holograms. We suppose that this blazed hologram is illuminated with a

LGp,m beam. The optical field in the first order of diffraction exactly after the hologram

is, then, given by

Et(r′, φ′; 0) = LGp,m(r′, φ′, 0) ei`φ
′

(4.1)

where we have supposed that the hologram is thin enough and that the beam waist of

the LG mode is located on the hologram, (r′, φ′, 0) are the cylindrical coordinates at that

frame. The LG beam is a solution to the PWE and carries finite power. The hologram

output beam also carries finite power. So, we have chosen the free-air paraxial Fresnel

propagator to calculate the optical field at any plane far from the holograms. The pupil

function (4.1) of this propagator is given by a phase singularity due to the presence of

hologram and input LG beam. The optical field, then, in any transverse plane is given

by

Et(r, φ; ζ) =
(
− i

πζ

)∫
r′dr′

∫
dφ′e

i
ζ (r2+r′2−2rr′ cos (φ−φ′))LGp,m(r′, φ′, 0) ei`φ

′
(4.2)

where we have used the dimensionless coordinates (See 2.5). There is no unique function

to cover all integrals for different LG beams. However we consider an important type of

impinging LG beam: LG0,0 that is the normal gaussian TEM0,0. The TEM0,0 output is

commonly used to generate OAM. As we will show, the outgoing wave from an OAM

generator has a maximum power at the zero order of radial number.

In the case of TEM0,0 input beam the outgoing wave at distance ζ from the hologram is

Et(r, φ; ζ) = C`ζ
−|`| (ζ + i)−(|`|/2+1)r|`| e

− ir2

(z+i)
+i`φ

1F1

(
|`|
2
, |`|+ 1;

r2

ζ(ζ + i)

)
(4.3)

where C` is a normalization constant value dependent on `. This field is a special

category of HyGG modes family introduced in chapter (2), i.e. when p is replaced by

−|`|. The main properties of the HyGG modes have been presented in chapter (2) or

reference [13]. So, we could say that the pitch-fork hologram generates a new type of

paraxial wave modes, i.e. HyGG−|`|,` modes. The hologram topology is defined only by

the ` integer value. So, we could expect that the output beam must be also defined just
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Table 4.1: The outgoing beam power spectrum from a pitch fork hologram in the
LG modes basis. ` indicates the topological charge of hologram and q shows the LG

radial index number.

q = 0 q = 1 q = 2 q = 3
` = 1 0.785 0.098 0.036 0.019
` = 2 0.500 0.166 0.083 0.050
` = 3 0.294 0.165 0.103 0.070

by the value of this integer number. It may be interesting to find this beam spectrum in

the LG mode basis. The expansion coefficients are given by equation (2.56) by replacing

p→ −|`|.

Aq =

√
1

q!(q + |`|)!
Γ(|`|/2 + 1)Γ(|`|/2 + q)

Γ(|`|/2)
(4.4)

where Γ(x) is the gamma function. So the power which the zeroth mode, LG0,`, carries

is equal to

P q0 =
Γ2(|`|+ 1)Γ2(|`|/2 + q)

|`|!Γ2(|`|/2)
(4.5)

Table (4.1) shows this power spectrum for several pitch fork holograms. As you can see

from the table (4.1), by increasing the hologram topological charge the higher radial

orders of LG modes are excited more. So, we expect a bigger doughnut for large holo-

gram topological charges. Moreover, the LG beams are propagation shape invariant. Of

course, the output beam from a pitch-fork hologram is a superposition of infinite LG

beams with a fixed azimuthal index number and different radial numbers. Since these

beams have different Gouy phases, their superposition, i.e. the HyGG−|`|,` modes in

this case, is not shape invariant anymore. Their intensity profile changes dramatically

Figure 4.1: The free-air propagation of the outgoing beam from a pitch-fork hologram.
The impinging beam and hologram topological charge are considered TEM00 and m =

2, respectively.

by free-space propagation and after the Rayleigh range they become brilliant doughnuts
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(See figure (4.1)).

Figure 4.2: Experimentally observed intensity distributions of the |HyGG〉−m,m mode
for m = 1, ..., 6 in the transverse plane z = 0.18z0. The Rayleigh range was z0 =

747.4 cm.

In order to test our theory, we performed some measurements on the beam propagation

profiles. In our experiment, a TEM00 linearly polarized laser beam from a frequency dou-

bled Nd:YVO4 (λ = 532 nm, Model Verdi V5, Coherent) was used to illuminate a grey

scale computer generated hologram (CGH) sent onto the LCD microdisplay of an SLM

(HoloEye Photonics LC-R 3000), with 1920×1200 pixels in a rectangle 18.24×11.40 mm

wide. The SLM was located in the waist of the incident beam. We performed two series

of measurements, according to the beam waist values w0 at the SLM position. The two

values were w0 = 1.1 mm and w0 = 0.1 mm, corresponding to Rayleigh ranges z0 = 747.4

cm and z0 = 7.8 cm, respectively. We focused our attention on the HyGG modes with

p = −|`|. In accordance with the theoretical predictions, we observed an intensity profile

in the transverse plane essentially made of a single bright annulus, whatever the value of

` we used or the observation z-plane. Some instances of the observed intensity profiles

are shown in figure (4.2). The ring diameter of the beam as a function of ` is reported in

figure (4.3). The diameter d of the ring was defined as the maximum distance between

any two opposite maxima of the intensity profile. The scaling law of d versus ` turned

to be in good agreement with the theoretical predictions. We measured also the ratio

between the diameter d(z) of the luminous ring and the gaussian beam size w(z) at

different z-planes. The measurements were made by switching on and off the CGH to
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Figure 4.3: The ring diameter d of the |HyGG〉−m,m mode for m = 1, ..., 6 measured
at plane z = 0.18z0. The Rayleigh range was z0 = 747.4 cm. The reported values of
the diameters were scaled with respect to the value d1 for m = 1. blue • – theory, red

• – experiment.

compare the intensity profile of the HyGG mode with the gaussian profile TEM00 beam

profile at the same plane. Figure (4.4) shows that the ratio d(z)/w(z) was the same in

all z-planes, as predicted by theory when z > z0. The constant value of the ratio d/w

obtained from the experiment was 3.1±0.3, which is close to the theoretical prediction

d/w = 3.6.

Figure 4.4: The ratio between the diameter d(z) of the |HyGG〉−3,3 mode and the
1/e2 intensity radius w(z) of the generating TEM00 gaussian beam as a function of z.

The Rayleigh range was z0 = 7.8 cm.
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4.3 Propagation of wave inside the q-plate (Karimi et al.

[46])

We presented an elementary approach to the q-plate action in the previous chapter based

on the Jones analysis. In this approach, we have considered the q-plate as an optical

optical element in which the SAM of the impinging light converted into the OAM by the

flipping the output beam polarization state. Based on the plate’s optical retardation,

the q-plate action on the circular polarized light beam is a superposition of two circular

polarization states: a portion of light comes out unchanged from the q-plate and the

other part comes out with flipped circular polarization and an OAM twice of the plate

topological charge, its sign depending on the input polarization.

In such approach we considered a very thin q-plate in which when a light beam passes

through the plate, its intensity profile at the exit face does not change at all. In this

picture the q-plate acts as a pure phase object, introducing a phase factor e±2iqφ, with

the sign determined by the input polarization state. Actually, the intensity profile also

changes in the q-plate due to the presence of the singularity at the center of the plate.

A dark hole at the beam center, independent of input intensity profile of plate’s opti-

cal retardation, due to strong diffraction (scattering) from the disordered birefringent

molecules at the center is expected.

The first attempt to find the propagation kernel inside the plate with topological charge

and radial index number for a Gaussian input beam was done by Calvó and Picon [49].

Their approach is analogues to what we have presented in the previous section (3.5.1).

They consider a small element of the plate located far enough from the singularity center.

In this small region the optical axes of the birefringent is uniform and constant. For this

small element, one can solve the light propagation inside the uniform plate. Of course,

two waves associated to the ordinary and extraordinary optical axis are expected inside

the q-plate. The propagation kernel for a transverse monochromatic optical field with

wave vector k, by using the Fourier integral in the paraxial approximation can then be

easily found

K
(
ρ, ρ′; z

)
=
(
Fo + Fe

2

)
1̂+

(
Fo − Fe

2

)
R(α) · σ̂z ·R(α) (4.6)

with

Fo : = eiknoz+
iknoz

2 (ρ2+ρ′2−2ρρ′ cos (φ−φ′))

Fo : = eiknez+
ik(n2

o+n
2
e)z

4ne
(ρ2+ρ′2−2ρρ′ cos (φ−φ′))

× e
ik(no2−ne2)z

4ne (ρ2 cos 2(α−φ)+ρ′2 cos 2(α−φ′)−2ρρ′ cos (2α−φ−φ′)) (4.7)
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where no, ne denote the ordinary and extraordinary refractive indices, Fo, Fe are the

ordinary and extraordinary Fresnel kernels, α denotes the angle of the optical axis of

the plate with respect to the x-axis, 1̂, R(α) and σz are the 2× 2 identity, rotation and

pauli matrices, respectively. They could show that when a light beam propagates inside

the q-plate produces two distinct fields: a beam which preserves the input polarization

state (the first term of Eq. (4.7)) and the second part that rotates the input polarization

state (the last term of Eq. (4.7)). However, in both cases the radial profiles are modified

by the ordinary and extraordinary Fresnel propagators. They applied this kernel to the

case when α (the optical axes of small element) changes coordinate dependently. They

claimed that the replacement of α→ q arctan (y/x) is an excellent approximation as long

as α varies slowly on the wavelength scale of the input beam. However, this approach

is a rough approximation. From the beginning, the Fresnel kernel has been found for a

case where α is constant and this expansion is only valid if α is not position-dependent.

For the case where α is a function of (x, y), that is our case, this Fourier expansion fails.

In fact, the formal replacement α→ φ(x, y) is justified only if the function α(x, y) varies

smoothly over the optical wavelength scale (the so-called geometric optics approximation

(GOA)) [49], which is not true in the present case, because no unique length scale is

defined by the function arctan(y/x). Moreover, as we said, we expect a dark hole at

the center of the output beam, independent of the plate’s optical retardation, due to

the presence of singularity. This approximation does not show this effect. Indeed, the

first term shows that we have the same profile of the input beam. However, this simple

picture is enough to account for some qualitative effects such as, for instance, the SAM-

to-OAM conversion (STOC) [19], the associated optical Berry phase [44] and the changes

of the SAM and OAM content of the beam at different depths in the q-plate [49], but it

cannot be used to determine the detailed quantitative behavior of the beam during its

propagation.

To overcome this broad discrepancy, in this section, we present a general solution based

on the series expansion to the light propagation in the q-plate without recursing to the

GOA. Moreover, in a special case where beams are in very good paraxial regime an

analytical solution can be used to find the light profile inside the q-plate. For such good

paraxial beams the SAM and OAM density fluxes also have been calculated for different

input LG beams and different polarization states. It has been theoretically shown that

for the 1-plate there will not be any torque on the plate due to this conversion, and the 1-

plate, when is tuned, gives rise to a complete SAM-to-OAM transfer. Particularly, when

the 1-plate is thin enough, the Spin-to-OAM conversion (STOC) efficiency is essentially

100%. By increasing the plate thickness, however, this conversion will decreases. We

start from the Maxwell’s wave equation inside the q-plate

∇2E−∇(∇·E) + k2
0 ε̃·E = 0 (4.8)
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where k0 = 2π/λ = ω/c is the wave vector, ε̃ is the relative dielectric tensor at frequency

ω, c is the speed of light and λ is the wavelength. In the local frame of the liquid crystal

the relative dielectric tensor is given by

ε̃local = n2
o1̂ + (n2

e − n2
o)n̂n̂ (4.9)

where 1̂ is the 3 × 3 identity matrix, n̂ is the unite vector in the direction of liquid

crystal ordinary axes, and no and ne are the liquid crystal ordinary and extraordinary

refractive indices

ε̃local =


n2
o 0 0

0 n2
e 0

0 0 n2
o

 (4.10)

The laboratory and local frame are related to each other by a rotation of qφ about the

beam propagation axes, assumed z. The relative dielectric tensor in the laboratory,

then, is given by

ε̃lab = R̂(qφ)· ε̃local· R̂(−qφ)

=


n2 − δ2 cos (2qφ) δ2 sin (2qφ) 0

δ2 sin (2qφ) n2 + δ2 cos (2qφ) 0

0 0 n2
o

 (4.11)

with

n2 :=
n2
e + n2

o

2
, δ2 :=

n2
e − n2

o

2
(4.12)

where R̂(α) is the rotation matrix about the z-axes. Our liquid crystal is a positive

(ne > no) and low birefringent material (ne − no) � no, the ordinary and extraordi-

nary refractive indices are 1.5 and 1.7, respectively. In a good approximation we may

neglect absorption by the liquid crystal molecule. In most materials, including liq-

uid crystals, where the birefringence is small the longitudinal part of the optical field

can be neglected with respect to the other terms, i.e. ∇·E ' 0. This term can be

neglected with respect to other terms which are present in the laplacian for a region

enough far from the center of singularity. Indeed, it is proportional to the Ex and Ey

and their first derivatives with a small coefficient equal to (n2
e − n2

o)/2. In this approxi-

mation, the wave equation reduces to Helmholtz’s vector equation ∇2E⊥ + k2
0 ε̂·E⊥ = 0

for the transverse part E⊥ of the field. Note that no frame work has been chosen

for our calculation yet and the transformation from laboratory to the local frame does

not require the derivative transformation and it has been just used to find the right

dielectric tensor. However, in view of the cylindrical symmetry of the problem, it is
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convenient to find the eigenmodes of the Helmholtz’s vector equation in the circular

polarization basis E± = (Ex ± iEy)/
√

2 and in the cylindrical coordinates (r, φ, z), by

setting E⊥(r, φ, z) = (E+(r)ei(m+q)φ, E−(r)ei(m−q)φ, 0)e−ik0γz+iωt, where γ is the longi-

tudinal spatial frequency and z = 0 is the input-face of the q-plate. Inserting this field

into Helmholtz’s equation, yields a pair of coupled radial equations(
1
r

d

dr

(
r
d

dr

)
− (m2 + q2)

r2
+ k2

0(n2
o − γ2)

)
f(r) =

2mq
r2

g(r)(
1
r

d

dr

(
r
d

dr

)
− (m2 + q2)

r2
+ k2

0(n2
e − γ2)

)
g(r) =

2mq
r2

f(r) (4.13)

where f(r) = (E+ + E−)/
√

2, g(r) = (E+ − E−)/
√

2. These pair of differential equations

are strongly coupled. Equations (4.13) are exact and can be solved by the Frobenius

series. Let us discuss some properties of these couple of ordinary differential equations.

At the first sight, it is obvious that by changing no → ne this equations reversed. So,

fne,no(r) = gno,ne(r). Furthermore, we can cast these differential equations similar to

the Schrödinger equation{(
P̂

2 − m2 + q2

r2

)
1̂− k2

0δ
2σ̂z −

2mq
r2

σ̂x

}
ψm,β(r) = k2β2ψm,β(r) (4.14)

where β2 = n2− γ2 is the transverse spatial frequency and P̂
2

:= 1
r
d
dr

(
r ddr
)

is the radial

part of laplacian operator in polar coordinate. The radial part of laplacian operator,

P̂
2
, is Hermitian with respect to the radial measure r dr. It is obvious that the pauli

matrices also are Hermitian. Therefore, this hamiltonian is Hermitian with respect to

radial measure. So, the eigenvalues, β2, are real and its eigenvectors, i.e. ψm,β(r) :=(
fm,β(r)

gm,β(r)

)
, are orthogonal. In other word, we expect the following orthogonality

relation

∫
rdr

{(
fm,β(r) gm,β(r)

)
·

(
fm,β(r)

gm,β(r)

)}
=

1
β
δ(β − β′) (4.15)

It is impossible to diagonalize 1̂, σ̂x and σ̂z at the same time. So, no analytical solution

can be found by digitalization technique. However, we have applied the Frobenius series

method to find the mode solutions. A possible solution of Eqs. (4.13) is(
fm,β(r)

gm,β(r)

)
= rs

+∞∑
j=0

rjCj (4.16)
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where s, Cj =

(
Fj

Gj

)
are constant parameters. Substituting this ansatz into Eqs.

(4.13) we will have the following recursion equations

Mj ·Cj + k2
0N ·Cj−2 = 0 (4.17)

with

Mj =

(
(j + s)2 − (m2 + q2) −2mq

−2mq (j + s)2 − (m2 + q2)

)
, N =

(
β2 − δ2 0

0 β2 + δ2

)
(4.18)

The proper value of s can be found from the recursion relation for n = 0. The right

value of s is, then, equal to |m|+ |q|. By replacing s into the first term of the recursion

relation we will get two conditions based on the sign of |mq| for the F and G constant.

For positive and negative values of mq the F0 and G0 must be vanish, respectively.

However, for simplicity of our calculation, without losing the generality, we consider

a positive topological charge q > 0. It can be shown easily that all odd terms of C’s

coefficient in the series must be vanished due to having non zero determinate for Mj . So,

the radial functions of modes can be expressed in terms of the these recursion relations(
fm,β(r)

gm,β(r)

)
= (k0r)s

∞∑
j=0

(k0r)
2j {Pj ·Pj−1 . . .P1} ·

(
1

0

)
for m ≥ 0(4.19)

(
fm,β(r)

gm,β(r)

)
= (k0r)s

∞∑
j=0

(k0r)
2j {Pj ·Pj−1 . . .P1} ·

(
0

1

)
for m ≤ 0(4.20)

where Pj = −M2j
−1 ·N and s = |m| + q. The radial functions are real and they are

vanishing at the origin, due to presence of rs. The final form of the mode inside the

q-plate, then, is given(
E+(r, φ, z)

E−(r, φ, z)

)
=

1√
2

∫
βdβ

{ ∞∑
j=0

Fm,β0

(
ei(m+q)φ(fm,β(r) + gm,β(r))

ei(m−q)φ(fm,β(r)− gm,β(r))

)

+
−∞∑
j=0

Gm,β0

(
ei(m+q)φ(fm,β(r) + gm,β(r))

ei(m−q)φ(fm,β(r)− gm,β(r))

)}
e−ik0

√
n2−β2z(4.21)

By using the orthogonality relation between radial functions, then, the light propagation

kernel inside the q-plate can be calculated(
E+(r, φ, z)

E−(r, φ, z)

)
=

1√
2π

∫
r′dr′

∫
dφ′K[r, φ; r′, φ′; z] ·

(
E+(r′, φ′, 0)

E−(r′, φ′, 0)

)
(4.22)
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with

K[r, φ; r′, φ′; z] =
∫
βdβ

+∞∑
m=−∞

{(
Am,β ei(m+q)(φ−φ′) e2iqφBm,β ei(m−q)(φ−φ

′)

e−2iqφBm,β ei(m+q)(φ−φ′) Cm,β ei(m−q)(φ−φ
′)

)

× e−ik0
√
n2−β2z

}
(4.23)

where

Am,β = (fm,β(r′) + gm,β(r′))(fm,β(r) + gm,β(r))/2,

Bm,β = (fm,β(r′)− gm,β(r′))(fm,β(r) + gm,β(r))/2,

Cm,β = (fm,β(r′)− gm,β(r′))(fm,β(r)− gm,β(r))/2.

Of course, the final output beam can be calculated analytically, if the fm,β(r), gm,β(r)

functions can be found in terms of the well-known special functions. However, the

main characteristic of output beam can be understood only by taking part of the radial

modes property. In many practical applications we are working out with a very good

paraxial beams. There is a regime in which the Eq. (4.13) can be solved in terms of the

well-known special function, i.e. the irrational Bessel functions. Here we consider only

the approximate solutions for paraxial beams at normal incidence. Setting γ = γo =√
n2
o − β2 ' n0 − β2/2no, where β is a transverse spatial spectrum, Eqs.(4.13) reduce

to the equations for the ordinary wave

f ′′o (r) +
f ′o(r)
r

+
(
k2

0β
2 − µ2

r2

)
fo(r) =

ν go(r)
r2

g′′o (r) +
g′o(r)
r

+
(
k2

0β
2Λ2 − µ2

r2

)
go(r) =

ν fo(r)
r2

(4.24)

where Λ2 = 1 + 2(n2
e − n2

o)/β
2. We observe that in commercial liquid crystals we have

n2
e − n2

o ' 0.5 while usual paraxial laser beams at normal incidence have the radial

spatial frequency with β ranging from zero to β ' 10−2. The parameter Λ2 is therefore

very large in all practical cases. We may then solve Eqs.(4.24) as asymptotic series of

Λ2. The Λ2 can be used as an expansion parameter. So, we may expand fo(r) and go(r)

in terms of Λ2

fo(r) = u0
o(r) +

+∞∑
j=1

ujo(r)

go(r) = v0
o(r) +

+∞∑
j=1

vjo(r) (4.25)

where ujo(r) and vjo(r) denote the perturbation order functions for ordinary wave. We

will show that they are function of Λ−j . Replacing Eqs. (4.25) into equations (4.13),
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yields the following differential recursion equations for ordinary modes

ujo
′′(r) +

1
r2
ujo
′(r) +

(
k2

0β
2 − m2 + q2

r2

)
ujo(r) =

2mq
r2

vjo

vjo
′′(r) +

1
r2
vjo
′(r) + (k0βΛ)2 vjo(r) =

(
m2 + q2

r2
vj−1
o (r) +

2mq
r2

vj−1
o

)
(4.26)

The zeros order for vo(r) is

v0
o
′′(r) +

1
r2
v0
o
′(r) + (k0βΛ)2 v0

o(r) = 0 (4.27)

Its solution is then

v0
o = D1 J0(k0βΛr) +D2 Y0(k0βΛr) (4.28)

where D1, D2 are arbitrary constants, J0(x) and Y0(x) are the Bessel functions of index

zero [42]. The argument of bessel function is large, remember that k0βΛ is a large

parameter. So, they are highly oscillating when r changes. The asymptotic behavior of

bessel function for large argument is look like sine and cosine functions. By choosing

a good boundary condition we may take it zero. Replacing, it in the zeros order of the

uo(r) in the recursion equations, yields

u0
o
′′(r) +

1
r2
u0
o
′(r) +

(
k2

0β
2 − m2 + q2

r2

)
u0
o(r) = 0 (4.29)

Its solution, then, is

u0
o = Eo Jµ(k0βr) (4.30)

where E0 is an arbitrary constant and Jµ(x) is the bessel function of order µ =
√
m2 + q2.

We can show that other terms of expansion are two small with respect to vo
0(r) and

uo
0(r) and they are bonded. In order to show this, it is much convenient to work out

with integral form of the recursion relations of Eq. (4.26)

uo
j(r) = mπ

∫ r

r0

(Jµ(k0βζ)Yµ(k0βΛr)− Yµ(k0βζ)Jµ(k0βΛr))
vo
j(ζ)
ζ

dζ

vo
j =

π

2

∫ r

r0

(J0(k0βζ)Y0(k0βΛr)− Y0(k0βζ)J0(k0βΛr))
µ2vo

j−1(ζ) + 2mquoj−1(ζ)
ζ

dζ

(4.31)

where µ =
√
m2 + q2. These two integral relations show that both uo

j(r),voj(r) func-

tions for j > 0 are bounded

|uoj(r)| ≤
(

1
k0βΛ

)n
(O)1(r, r0,m,N)
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|voj(r)| ≤
(

1
k0βΛ

)n
(O)2(r, r0,m,N) (4.32)

where N is the upper bound of the bessel function of second type. This approximation

is not valid for whole transverse plane of the plate. It is obvious, from the zeroth

order of vo0(r), that this high oscillation method is just valid for the whole transverse

plane except a small region close to plate singularity where argument can be compared

to unity, i.e. π/2k0βΛr0 ∼ 1. This small region has a radius about r0 ≈ λ/(Λβ) =

λ/
√
n2
e − n2

o. For commercial liquid crystal we have r0 ≈ 1.25λ. In this small region

the singularity is located and the optical axis is not well defined there. The effect of

this region can be accounted for only by the exact (not paraxial) wave approach, but

we may anticipate on physical grounds that the main effect of this region is to scatter a

small fraction of the light at large angles out of the paraxial beam. In conclusion, only

the zero-order approximation, fo(r) = EoJµ(k0βr) and go(r) = 0, of the asymptotic

solution of Eq.(4.24) for the ordinary wave is important and other order of approximation

asymptotically vanishes for large Λ. The differential equation for the extraordinary wave

is obtained from Eqs.(4.13) by setting γ = γe =
√
n2
e − β2 ' ne − β2/2ne and it can

be obtained from Eqs.(4.24) by the formal replacements f → g, g → f,Λ2 → −Λ2.

In the same way the zero-order asymptotic solution for the extraordinary wave is then

given by fe(r) = 0 and ge(r) = AeJµ(k0βr) with constant Ae. All other terms of the

asymptotic solution can be found recursively and are vanished for large Λ. From the

asymptotic paraxial modes of Helmholtz’ equation it is straightforward to calculate the

Fresnel paraxial propagator for the optical field E⊥. The optical field at plane z in the

q-plate is given by

E⊥(r, φ, z) =
1
2

∫ ∞
0
ρ dρ

∫ 2π

0
dψ R̂(qφ)

{
(Ko +Ke) 1̂

+ (Ko −Ke) σ̂z
}
R̂(−qψ)E⊥(ρ, ψ, 0). (4.33)

where 1̂, R̂(φ) and σ̂z are the 2×2 unit, rotation and Pauli’s matrices, respectively.

The Fresnel kernels in Eq.(4.33) are given by Ko,e =
∑

mK
o,e
µ(m)(r, ρ; z)eim(φ−ψ), where

µ(m) =
√
m2 + q2 and

Ko,e
µ(m)(r, ρ; z) =

(
ino,ek0

2πz

)
iµ(m)Jµ(m)

(
k0no,erρ

z

)
× e−

ik0no,e(r
2+ρ2)

2z
−ik0no,ez (4.34)

The Fresnel kernels Ko and Ke in Eq.(4.34) are characterized by the presence of Bessel

function of irrational order. Although, Ko and Ke cannot be obtained in a closed

form, they permit to evaluate analytically the field transmitted by the q-plate in im-

portant cases as, for instance, for Laguerre-Gaussian (2.5.2.1) incident beams. Here we
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Figure 4.5: Beating of SAM (blue line) and OAM (red line) as a function of the
optical retardation ∆nz/λ while a circularly polarized input beam propagates in the
1-plate. (a) For LG00 and (b) LG01 as a input beam. We used the following data:

no = 1.5, ne = 1.7, w0 = 50λ.

consider only the case of a LG0l beam impinging onto the QP. Setting E⊥(ρ, φ, 0) =

eilφLGl
0(ρ)

(
a

b

)
in the circular polarization basis, where LGl

0(ρ) is the radial ampli-

tude of Laguerre-Gaussian modes, we obtain(
E+

E−

)
= ei(lφ−k0noz)

(
K+
µ− K−

µ+e
2iqφ

K−
µ−e
−2iqφ K+

µ+

)(
a

b

)
(4.35)

where K±µ = (HyGG|l|−µ,µ(r, z/no) ± e−ik0∆n zHyGG|l|−µ,µ(r, z/ne))/2, ∆n = ne − no,
µ± = µ(`± q) and HyGGp,m(r, z) is the Hypergeometric-Gaussian mode (2.5.2.2) [13],

viz.

HyGGpm(ρ, ζ) = Cpm ζ
p
2 (ζ + i)−(1+|m|+ p

2
)ρ|m|× e−

iρ2

(ζ+i)
1F1

(
−p

2
, 1 + |m|; ρ2

ζ(ζ + i)

)

where Cpm = i|m|+1
√

2p+|m|+1

πΓ(p+|m|+1)

Γ(1+|m|+ p
2 )

Γ(|m|+1) , ρ = r/w0, ζ = z/zR and zR = k0w
2
0/2 is

the beam Rayleigh range. Because no ' ne, the arguments of the function HyGGpm in

Eq.(4.35) are very close, so that when ∆n z = jλ (j = 1, 2, . . . ) the matrix in Eq. (4.35) is

almost diagonal, the beam in the q-plate has the same value of OAM, i.e. `~ per photon.

When ∆n z = (2j−1)λ/2, instead, only the off-diagonal elements survive, the right and

left circular components of transmitted field assume a phase factor e±2iqφ and the beam

OAM change by ±2q~ per photon, depending on the input circular polarization helicity.

As the beam propagates in the q-plate, its transverse profile, spin and OAM change.

From Eq. (4.35), we may calculate the average SAM and OAM carried by the beam at

the plane z in the q-plate, obtaining

Sz(z) =
1
ω
<
[
e−ik0∆nz

(
|b|2 I|`|−µ+,µ+(z)− |a|2 I|`|−µ−,µ−(z)

)]
(4.36)
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Figure 4.6: Intensity profile for (a) full STOC (b) no STOC in the 1-plate. Red and
blue lines are simulated by [49] and our theory [48], respectively. The input beam

assumed the TEM00.

Lz(z) +
q

ω
Sz(z) =

1
ω

(
(`− q) |a|2 + (`+ q) |b|2

)
(4.37)

where

Ip,m(ζ) =
2p+|m|+1Γ2

(p
2 + |m|+ 1

)
Γ (|m|+ 1) Γ (p+ |m|+ 1)

χ−p/2(ζ)

×
(

no ne
2no ne − i(ne − no)ζ

)p+|m|+1

2F1

(
−p

2
,−p

2
; |m|+ 1;χ(ζ)

)
(4.38)

and χ(ζ) =
(

neno
neno−i(ne−no)ζ

)2
. As expected, we have Ip,m(0) = 1 so that Eqs. (4.37) and

(4.36) yield Sz(0) = (|b|2−|a|2)/ω and Lz(0) = (|a|2 + |b|2)`/ω. In Fig. (4.5) the photon

STOC [19] is shown as a function of the propagation depth in the 1-plate for LG00 and

LG01 input beams. The conversion efficiency is practically 100% and its maximum occurs

at optical retardation ∆n z = (2j − 1)λ/2 with integer j. When the optical retardation

is jλ, no conversion occurs and the beam has no OAM. Changing the optical retardation

of the 1-plate provides a good way to control the STOC process. However, when the

thickness of the 1-plate becomes very large (much larger than the beam Rayleigh range)

the conversion efficiency slowly decays. According to Eqs. (4.35) and (4.36), the field

profile inside the 1-plate (and at its exit face) vanishes as r
√

2 along the beam axis so

that the intensity profile has the characteristic doughnut shape irrespective of the OAM

carried by the beam. Figure (4.7) shows the intensity profiles for (a) full STOC (b) no

STOC. For the sake of comparison, the results obtained in the GOA [49] are also shown.

We can deduce that the GOA approximation is fairly good for the case of full STOC,

but is very bad in the near field and in the case of no STOC. Dramatic changes of the

intensity profile depending on the final OAM are seen, however, in the far-field after

free-air propagation. When the STOC is maximum, in fact, we observe the doughnut

profile, while when no conversion occurs, the far-field pattern has again a maximum at

its center. This is shown in Fig. (4.7).
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Figure 4.7: Intensity profile in the far-field beyond the 1-plate after free-air propaga-
tion. (a) No STOC; (b) Full STOC.

In order to verify our theory we have built up a setup to measure the converted and

non-converted part of beam. The experimental setup was similar to the setup which

we have used to measure the q-plate efficiency (see Fig. 3.12). Instead, a CCD camera

replaced with a power meter in order to record the beam intensity profile of STOC

and non-STOC parts. The intensity pattern for STOC and non-STOC parts has been

recorded for different distances from the q-plate (4.8). The intensity profiles for both

STOC and non-STOC part are quite similar at the near field, 4cm far from the q-

plate, as our theory predicted. By free-air propagation, then, two beams have different

behaviors: the STOC part changed to a doughnut-like beam and the non-STOC part,

instead, changed in such away that it recovered the TEM00-like profile.

4.4 OAM Poincarè sphere and geometrical phase (Karimi

et al. [53])

In many practical cases, the OAM space is however restricted to the o` subspace spanned

by a pair of opposite OAM eigenvalues ±`. This bidimensional optical subspace is then

isomorphic to the standard polarization space, that is the space of the spin angular

momentum of light. A standard geometric representation of any polarization (or SAM)

state of light is provided by the well known Poincaré sphere [50]. In particular, the

spin s = ±1 eigenvalues are usually mapped onto the poles of Poincaré sphere and cor-

respond to left- and right-handed circular polarizations, while their equal-weight linear

combinations are mapped along the equator circle and correspond to differently oriented

linear polarizations. The other points on the sphere describe arbitrary elliptical polar-

izations. Analogously, any state in a given o` subspace can be represented as a point on

a OAM Poincaré sphere [51]. The OAM eigenvalues ±` may again be mapped onto the
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Figure 4.8: The intensity profile of outgoing beams from the q-plate in a different
plane. (a) non-STOC (b) STOC part. The beam waist and beam wavelength were

1.5 mm and 532 nm, respectively.

poles of this sphere and correspond to generalized Laguerre-Gaussian(LG`) transverse

modes, while equal-weight linear combinations are mapped along the equator circle and

correspond to differently oriented generalized Hermite-Gaussian (HG`) modes (By gen-

eralized LG` or HG` modes we mean `-eigenstates of light OAM resulting from linear

combination of LGp,m modes with different radial number p and fixed azimuthal num-

ber `). By this geometrical representation, a one-to-one correspondence is established

between the states of SAM and those of o`, for any `. In the following, we label the axis

joining the right (R) and left (L) circular polarizations states on the Poincaré sphere as

the z-axis, and the axis joining the vertical (V) and horizontal (H) polarization states as

the x-axis. The photon SAM can be manipulated easily by polarizers and birefringent

plates. It is well known that sequences of quarter-wave plates (QW) and half-wave plates

(HW) oriented at suitable angles can change any given polarization state into another
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state at will [52, 53]. Moreover, electro-optical devices can be used to make such light

Figure 4.9: Experimental setup for generating polarization-controlled linear combi-
nations of LG2 beams. Legend: HQHQ - set of waveplates to control the beam polar-
ization; PR - polarization rotator; PBS - polarizing beam-splitter; DP - Dove prism; M

- mirror.

polarization manipulation very fast. No so simple and fast devices are available for ma-

nipulating the light OAM. Cylindrical lens converters and Dove prisms can simulate the

behavior of HW and QW wave plates in the o` space [24], but these devices are difficult

to be aligned and cannot change the light OAM very quickly. Following continuous

paths on the OAM Poincaré sphere by means of these devices would require very care-

ful control and precise mechanics. Recently, a new device, the q-plate was introduced

which is able to transfer the SAM state of the beam to the o2 subspace [19, 44]. In

a previous chapter, we showed that it is possible to achieve efficiencies exceeding 90%

by controlling the QP temperature [48]. A very appealing use of the STOC process is

that of exploiting the easy and fast control that we have on the light polarization degree

of freedom for controlling the OAM degree of freedom. By using STOC, cylindrical

lens mode converters and Dove prisms can be conveniently replaced with birefringent

plates and electro-optical cells. The aim of this work is to demonstrate the easy and

efficient control on the OAM of a light beam that is attainable via the STOC pro-

cess. Arbitrary and continuously controllable linear combinations of LG2 modes have

been generated in a very simple way and with efficiency exceeding 90% by manipulating

the input beam polarization. Our experimental setup is shown in Fig. (4.9) [54]. The

polarization of the light beam entering the QP is controlled by the QHQH waveplate

sequence QW(90◦)HW(−α/4)QW(0◦)HW(90◦+β/4), where in parentheses are the ori-

entation angles of each plate counted from the horizontal plane. As it can be easily

shown, this sequence of waveplates applies to the input polarization state first a rota-

tion of angle α around the y-axis of the SAM Poincaré sphere and then a rotation of

an angle β around the z-axis. After this QHQH set, we inserted the QP, a polarization

rotator (PR) of 45◦ and a Sagnac Polarizing Interferometer (SPI). In the SPI, a Dove

prism rotated by 11.25◦ from the horizontal plane was inserted. The QP, PR, and SPI
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Figure 4.10: Trajectory along the equator of the Poincaré’s sphere. a) Intensity
profiles of generated beams corresponding to differently rotated HG2 modes. (b) Cor-

responding interference patterns with a TEM00 A-polarized reference beam.

Figure 4.11: Trajectory along a meridian of the Poincaré’s sphere.(a) Intensity profiles
of generated beams corresponding to different linear combinations of LG±2 modes. (b)

Corresponding interference patterns with a TEM00 A-polarized reference beam.
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are the heart of our apparatus, because they realize the required mapping 1.

(α|L〉+ β|R〉)|0〉 → (α|2〉+ β| − 2〉)|A〉. (4.39)

where |L〉, |R〉, |H〉, |V 〉, |D〉, |A〉 denote the right-circular, left-circular, horizontal, ver-

tical, diagonal, and anti-diagonal polarization states, respectively, and |`〉, with integer

`, denote the OAM eigenstate with eigenvalue `. It is worth noting that our appara-

tus works in any basis. For example, it also realizes the mapping (α|H〉 + β|V 〉)|0〉 →
(α|h〉 + β|v〉)|A〉, where |h〉 and |v〉 denote the HG2 modes corresponding to the linear

polarization states H and V . The detailed functioning of our apparatus is as follows. Up

to a global phase factor, the action of a tuned QP on the elliptically polarized TEM00

(` = 0) input beam is given by

(α|L〉+ β|R〉)|0〉 Q̂P→ α|R, 2〉+ β|L,−2〉 =

=
1√
2

[|H〉(α|2〉+ β| − 2〉)− i|V 〉(α|2〉 − β| − 2〉)] (4.40)

The radial modes are factorized out and can be omitted. From Eq. (4.40) we see that

insertion of a linear polarizer after the QP would already select the desired linear com-

bination of LG2 and LG−2 modes (or |2〉 and | − 2〉 states), but this would also reduce

the maximum conversion efficiency to 50% [33]. The polarizing Sagnac interferometer

scheme shown in Fig. (4.9) allows one to increase the theoretical efficiency to 100%. The

Sagnac interferometer is made of the Polarizing Beam Spitter (PBS) and the three mir-

rors (M). The H- and V-polarized components of the beam emerging from the q-plate

are initially separated by the PBS and travel through the interferometer in opposite

directions until they are recombined on exit by the same PBS. Equal optical paths of

the counter-propagating beams render this interferometer particularly noise-insensitive,

thus removing the need for active control of the interferometer length [55]. The reflection

in the Dove prism tilted at angle θ adds a phase factor e2i`θ to the OAM eigenstate |`〉
and changes |`〉 into |− `〉. Moreover, the polarization state |H〉 is left unchanged, while

|V 〉 is changed into −|V 〉. In our case, however, because of the counter-propagation,

the H-polarized beam sees the Dove prism tilted at angle θ and the V-polarized beam

sees the Dove prism tilted at angle −θ. With the substitutions |H, `〉 → e2iθ|H,−`〉,
|V, `〉 → −e−2iθ|V,−`〉, and then setting θ = π/16, we see that, up to a phase factor, the

state in Eq. (4.40) is changed into

(2)→ ψout = |D〉(α| − 2〉 − iβ|2〉), (4.41)
1Our apparatus produces constant A-linear polarization in the exit beam.
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We see that the resulting beam is fully polarized, and that its OAM content is a linear

combination of LG±2 modes with coefficients uniquely related to α and β. Thus, we

succeeded to realize one-to-one mapping of the input SAM state onto the output OAM

state 2, but not yet the wanted one, given by Eq. (4.39). First, the ` = ±2 states

in Eq. (4.41) are in the wrong place. This problem can be fixed by adding one more

mirror reflection, in order to make the total number of reflections odd (not counting

the reflections taking place in the Dove prism). This exchanges the ` = ±2 states and

also the D-polarization of the output state into the A-polarization. Second, the phase

difference of π/2 between the two terms on the right of Eq. (4.41) must be eliminated.

This is accomplished by the PR located before the PSI, which introduces a retardation

of π/2 between the circular polarization components of the input beam.

To show the flexibility of our apparatus in manipulating the light OAM, we performed a

set of measurements in which we slowly modulated the polarization of the input TEM00

beam so to make the output beam follow a controlled trajectory on the OAM Poincaré

sphere. In this way, arbitrary states in the o2 subspace were easily and continuously gen-

erated starting from a TEM00 laser beam. The power conversion efficiency from TEM00

H-polarization to o2 modes was found to exceed 90% for all o2 modes. This efficiency

is larger than the maximum typically obtainable (' 80%) with blazed holograms. In

our experiments, we measured the OAM content of the output beam in several points

on the Poincaré sphere by recording the intensity profile and the pattern obtained by

interference with an A-polarized reference beam assimilable to a plane wave (not shown

in Fig. 4.9). The results are shown in Figs. (4.10-4.13).

In the measurements we used a 532 nm TEM00 H-polarized laser beam and a home made

LC q-plate tuned to optimum STOC by temperature. The details of the q-plate and

of the tuning system are described elsewhere [48]. In Fig. (4.10) the observed intensity

profiles and interferograms are shown when the OAM state is moved along the equator

of the Poincaré sphere. The data for the equatorial trajectory shown in Fig. (4.10) were

obtained by fixing α = 0 and moving β from zero to π by rotating from 90◦ to 135◦

the second HW-plate in the HQHQ device. In this way, the continuous sequence of

HG2 modes with different orientations were generated. Similarly, the meridian trajec-

tory on the OAM Poincaré sphere was obtained by fixing β = 0 and changing α from

−π/2 to +π/2 in the QHQH device. This was achieved by rotating the first HW-plate

from +22.5◦ to −22.5◦. The continuous passage from the doughnut beam and down-

fork interferogram corresponding to LG2 mode to HG mode in crossing the equator

to reach finally the doughnut beam and up-fork interferogram corresponding to LG−2

mode is shown in Fig. (4.11). In our last experiment, we drove the OAM state along
2The mapping (4.41) may be enough in many applications
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Figure 4.12: A possible closed path over the OAM-Poincaré sphere. The path starts
and ends at the pole. (a) Intensity profiles of the generated beam at different points of
the path. (b) Corresponding interference patterns with a TEM00 A-polarized reference

beam.

Figure 4.13: Interference patterns for two different closed trajectories on the Poincaré
sphere. (a) Circular path along the equator, as shown in Fig. (4.10). In this case, there
is a π change in the phase when the path is closed. (b) Path shown in Fig. (4.12). In
this case there is a π/4 change in the phase when the path is closed. Blue and red lines

show the fringes of the initial and final states, respectively.

a closed path on the Poincaré sphere and measured the resulting Pancharatnam geo-

metric phase [56] by interference with almost plane-wave A-polarized reference beam.

The closed path we chose and the corresponding intensity profiles and interferograms

are shown in Fig. (4.12). The observed fringe shift due to Pancharatnam geometric

phase after a cycle is shown in Fig. (4.13). As expected, in both cases we found a phase

shift equal to the solid angle subtended by the path on the OAM Poincaré sphere. The

geometrical phase acquired by a light beam when the OAM state was moved along a

closed path on its Poincaré sphere was observed some time ago [57]. However, in this

experiment the light OAM content was changed discontinuously by making the beam

pass through a sequence of fixed Dove prisms and cylindrical lens converters. In the
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present work, the beam OAM was changed adiabatically and the phase was monitored

continuously along the path. We notice that the Pancharatnam geometric phase is al-

ready present when we close the path on the SAM Poincaré sphere of the input beam.

What we have done with our experiment is therefore to prove that the STOC process is

able to transfer coherently global phase shifts, as geometric phase shifts, from the SAM

to the OAM degree of freedom. After the transfer, the polarization is fixed, in our case,

to linear anti-diagonal, so that the SAM degree of freedom is still available for further

encoding of information. Moreover, having a fixed polarization and geometrical phase

transferred to OAM allows to obtain a constant fringe visibility along the whole close

path, which is impossible in experiments on Pancharatnam’s phase based on polarization

only [58].

4.5 Generation of needle beams (Karimi et al. [14])

Richard and Wolf [59] have shown, by using a vector Debye integral, that a non-

propagating component of the electric field can be created near the focal point of high

numerical aperture lens. It has been found, both theoretically [60] and experimen-

tally [61], that a radially polarized light beam can be focused into a much tighter and

deeper spot than a linearly polarized beam. One of the most interesting features of the

radial polarization is the formation of a large non-propagating longitudinal component

of optical electric field near the beam axis. Conversely, the azimuthal polarization gen-

erates a strong magnetic field near the optical axis. Recently, Zhan [62] has studied

the properties of circularly polarized vortex beams and has found the proper combi-

nation of polarization and topological charge of phase singularity to achieve focusing

properties similar to radial polarization. Besides polarization, other parameters such as

the pupil amplitude and phase structure of the field play an important role to achieve

a very narrow beam with a long depth at focus, high beam quality and high optical

efficiency. To this purpose, many different optical beam profiles have been studied

both theoretically and experimentally, such as Bessel-Gaussian (BG), Hypergeometric

(HyG), Hypergeometric-Gaussian (HyGG), fractional elegant Laguerre-Gauss (fr-eLG),

Ince-Gaussian, Laplace-Gauss and Mathieu beams [11–13]. Among them, the radially

polarized BG beams have been to date proved to provide the best results. Moreover,

Wang et al. [63] have recently calculated that an even tighter and deeper focus spot

- a “light needle” - even smaller than the standard diffraction limit, can be obtained

from BG beams by adding a suitable binary phase mask to the high numerical aperture

focusing system.
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In this section, we studied the properties of the HyGG-II modes (2.5.2.3) at the focus

of a large aperture lens [14]. We prove that HyGG-II beams may provide better spot

size, beam quality and depth of focus than BG beams. Let us consider an aplanatic

high-numerical-aperture focusing lens system. The origin z = 0 is located at the lens

focal point, f , NA, α = arcsin (NA
n ), and n = 1 are the focal length, the numerical

aperture, the semi-aperture angle, and the vacuum refractive index, respectively. Using

the vectorial Debye diffraction integral, Richard and Wolf [59] have shown that the

electric field at the point r̃ = (ρ, φ, z), in a region close to the focal point in the cylindrical

coordinates is given by

Ẽ(r̃) = − i
λ

∫ ∫
Ω
ã(θ, ϕ)e2πi(z cos θ+ρ sin θ cos (ϕ−φ))dΩ, (4.42)

where ã(θ, ϕ) is determined by the field distribution in the object space at the pupil

and Ω is the solid angle. In Eq. (4.42), ρ and z are dimensionless, their scale length

being the λ. Youngworth and Brown [60] have calculated this integral for radially and

azimuthally polarized beams. Their calculation showed that the radial polarization is

much more effective than the azimuthal and linear ones for obtaining a tight focusing.

Therefore, we restrict our attention only to radially polarized beams. The electric field

of a radially polarized beam in the focal region is given by

Eρ(r̃) =
f

λ

∫ α

0

√
cos θ sin (2θ) l(θ) J1(2πρ sin θ)ei(2πz cos θ)dθ

Ez(r̃) =
2if
λ

∫ α

0

√
cos θ sin2 θ l(θ) J0(2πρ sin θ)ei(2πz cos θ)dθ, (4.43)

where J0(x) and J1(x) are Bessel’s functions, and l(θ) is the amplitude distribution of the

pupil apodization function. We consider an amplitude-only apodization function given

Figure 4.14: Intensity profile of the longitudinal and radial field components at the
focal point of a high numerical aperture lens (a) and a system of high numerical aper-
ture lens and binary phase mask (b). The black, gray and dashed lines are radial,

longitudinal and total intensity, respectively.

by the HyGG-II−1,1 profile calculated from Eq. (2.58) with the singular phase factor
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omitted. We choose this profile because it exhibits minimum diffraction. Explicitly, l(θ)

is given by

l(θ) = e−β
2( sin θ

sinα)2
(
β

sin θ
sinα

)
1F1

(
1
2
, 2;β2

(
sin θ
sinα

)2
)
, (4.44)

where β is the ratio between the pupil radius and the beam waist. One can solve

the integral in Eq. (4.44) numerically and plot the intensities near the focus for any

values of the numerical aperture. We have chosen the global adaptive strategy to solve

these integrals. In our calculations we considered β = 1 and NA = 0.95 corresponding

to α = 71.8◦. We compared our results with the well-known apodization function of

the BG1 beam. Fig. 4.14(a) shows the intensity profile of the radial and longitudinal

components of the optical field at focus. It is evident that the intensity of the longitudinal

component is higher than the radial component. The beam quality is characterized

by [63]

η =

∫ r0
0 |Ez(r, 0)|2r dr∫ r0

0 |Eρ(r, 0)|2r dr +
∫ r0

0 |Ez(r, 0)|2r dr
(4.45)

where r0 is the first zero of the radial field component. For the HyGG-II−1,1 profile

we found η = 52.5% instead of 44.7% for the BG1 profile in the same conditions. The

hypergeometric apodization function increases the beam quality by 17%. Furthermore,

the HyGG-II−1,1 beam size (full width at half maximum, FWHM) is as small as 0.60λ

which is 13% less than the beam size of the BG1 mode (although it is still larger than

diffraction limit). Also, its depth focus is about ∼ 1.5λ which is 1.4% larger than the

depth focus of the BG1 mode Finally, we calculated the optical electric field near the focal

Figure 4.15: Density plots of intensity distribution for (a) radial, (b) longitudinal
components. (c) the total intensity distribution for the HyGG-II−1,1 beams, respec-

tively.

point when a binary phase mask is inserted just in front of the high numerical aperture

system, as in [63]. Our binary phase mask is made of five concentric belts in which the

phase of each belt changes by π with respect to neighbor belts [63, 64]. Compared with

the mask used in [63] for the BG1 modes, we introduced some small modifications, i.e.,

θ1 = 4.46◦, θ2 = 23.64◦, θ3 = 36.53◦, θ4 = 49.03◦, where θi are related to the inner
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radius of each belts, ri = sin θi/NA. The intensity profiles of the radial and longitudinal

components of the field in the presence of this phase mask are shown in Fig. 4.14(b). The

total field FWHM is 0.426λ, leading to a spot size of 0.142λ2. These values are 1.6% and

3.2% smaller than the in BG1 case [63]. Furthermore, the phase mask increases the beam

quality to 81.76%, which is improved by 1.7% with respect to the BG1 profile. Fig. 4.15

shows the intensity distribution for the radial Fig. 4.15(a), longitudinal Fig. 4.15(b) and

total field Fig. 4.15(c) of the HyGG-II−1,1 profile. It is clear that the depth of focus of

the hypergeometric profile is longer than the Bessel-Gauss case and it is about 4.5λ [63].

It is also worth investigating the field distribution obtained at the focus when using

vector vortex beams [62] having the HyGG-II profile of Eq. (2.58) with the singular

phase retained, but we postponed this problem to the near future.

4.6 Classical communication (Slussarenko et al. [64])

The electromagnetic waves have been recognized as the fastest and most convenient way

of long range communication. It is almost two centuries that the telegraph was invented

by Claude Chappe. In the last century there has been much effort to find a secure and

high-channel-capacity communication method. Besides those mentioned practical fea-

tures, scientists were interested in having novel communication encoding procedures [41].

Especially, spin angular momentum (SAM) of an electromagnetic wave which is associ-

ated to the vectorial property of optical field has been recognized as a good candidate

for telecommunication and quantum communication process [30]. SAM is inherently

binary, so that only one bit (in the quantum regime - one qubit) can be encoded over a

single photon. Of course, this fact bounds quantum communication protocols. Recently,

an additional photon degree of freedom associated with the beam phase-front, known

as the light orbital angular momentum (OAM), received much attentions for free-space

communication [26]. In contrast to the SAM, the OAM is inherently multidimensional,

so many novel protocols that were not usable for the binary space now can be used in

the OAM space [31]. In this section, I report a novel method to encode information

over one photon in the four dimensions OAM Hilbert space where two bits (or qubits in

quantum regime) are encoded over a single photon independently of photon polarization

state. Indeed, one may encode three bits of information over one photon by considering

also SAM in this communication configuration.
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4.6.1 Experimental setup

In our experiment we used a q-plate with unit topological charge that corresponds to

azimuthally oriented liquid crystal in the transverse plane. The optical retardation of

the q-plate was tuned by temperature controller (3.5.2) in such a way that it acted as

a half wave plate and induced a value of OAM based on the input polarization [44, 46],

according to

Q̂P π · |L, `〉 = |R, `+ 2〉
Q̂P π · |R, `〉 = |L, `− 2〉 (4.46)

where |L〉, |R〉 and |`〉 denote the polarization and orbital angular momentum states,

respectively and Q̂P π is the operator representing the action of the q-plate. It is worth

noting that we can change the OAM value just by switching the input polarization state

with frequencies restricted only by electro-optical speed limitations (order of MHz). The

sender (Alice) apparatus was made of a triangular cavity where just one arm was used

in the experiment. Due to the presence of the PBS only horizontally polarized light

can enter and exit the interferometer. Moreover, the beam OAM, changes in sign under

reflection from mirrors and PBS. The tuned q-plate is sandwiched between two quarter

wave plates (QWPs) and is inserted in the cavity, as shown in Fig. (4.16-a). In our

experiment, a 532nm TEM00 horizontally polarized laser beam was used. The first

QWP was set to change the polarization of the input beam from horizontal to circular

|L〉 and |R〉. The q-plate coherently transfers this spin state to OAM space, switching

the polarization to opposite one and generating beam with OAM value of -2 or +2,

respectively. By switching the polarization back to horizontal with the second QWP,

the light was led out from the interferometer. If the polarization was changed to vertical,

instead, the beam was reflected back by the PBS and remained in the interferometer.

Given the same parameters of QWPs, and taking in account odd number of reflections

(i.e. the change of the OAM value to opposite one), after the second trip the beam

was horizontally polarized and exited the interferometer with OAM value equal to −4

or +4 depending on the angle of the first QWP. This way, Alice was able to generate

−4,−2,+2,+4 values of OAM by choosing the proper angles for the QWPs. Table

(4.2) shows four possible combinations of QWP angles and their corresponding beam’s

OAM values. Optionally, one may add Pockels cells before each QWP, so to encode the

information in the light beam with rate of the order of MHz. Of course, the length of

interferometer must be properly matched with Pockels cells speed. In our experiment, we

measured the output beam phase front by making an interference with TEM00 beam.

Figure (4.16-(b)) shows the recorded interference pattern for different angles of the
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Figure 4.16: (a) Alice apparatus: q-plate sandwiches between two QWPs inserted on
the Sagnac interferometer, (b) The interference of output beam from the Sagnac inter-
ferometer and TEM beam for different QWPs angles corresponding to table (4.2) (c)
Bob detector apparatus: a 2D hologram and 4 detectors connected to the oscilloscopes

in order to read the -4,-2,+2,+4 signals [65].

Table 4.2: Four possible combinations of QWP angles and their corresponding beam’s
OAM values.

Logical bit QWP1 QWP2 OAM value
00 +45◦ +45◦ +2
01 −45◦ −45◦ -2
10 +45◦ −45◦ -4
11 −45◦ +45◦ +4

QWPs. Bob detector was made of a 2D hologram and 4 detectors, figure (4.16-(c)).

The 2D hologram was made by superimposing two computer generated holograms with

different topological charges (1 and 3) and orthogonal diffraction angles. This hologram

diffracted the beam onto the 4 detectors, according to the beam’s OAM values and

allowing Bob to decode the information carried by the beam OAM. Our apparatus has

been intended for classical telecommunication, but it can be easily applied for single

photon quantum communication. Furthermore, another bit can be encoded into the

outgoing photon polarization by putting a Pockels cell at the output face of the triangular

cavity increasing the total amount of information up to three bits.



Chapter 5

Quantum information application

of OAM

5.1 Introduction

In the previous chapter some new applications of OAM on the classical regime of light

has been presented such as: beam shape controlling, generating the needle beam and

telecommunication (4).

The main different between SAM and OAM of light is their Hilbert space’s dimensions.

The SAM is inherently binary and only a qubit can be encoded on its Hilbert space.

This limitation of SAM dimensions bounds the quantum protocols which may be imple-

mented. Instead, OAM is infinite dimensional and higher dimension of Hilbert space,

“qudit”, for quantum applications are available [66].

Aspect et al. demonstrated that the SAM is a quantum number and can be used for

quantum protocols. However, after 20 years, the first quantum properties of OAM has

been observed by Zeilinger and his coworkers [31]. This experiment confirmed that OAM

is a good quantum number as well as SAM. Recently, our group made some new inves-

tigations on the quantum properties of OAM of a photon pair. The result shows that,

a coherent transferrer of SAM-to-OAM, q-plate, can be used in the quantum regime of

light as well as holograms and other OAM generators.

In this chapter, I present some new researches by our group on the OAM quantum

regime which have been done with collaboration of De Martini’s group at university of

La Sapienza in Rome [33, 34, 67]. The first section deals with quantum properties of

the q-plate. The observation of Houng-Ou-Mandel (HOM) effect, photon bunching, on

the OAM space is presented in the second section. In the third section the bunching of

79
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Figure 5.1: Schematic of q-plate action. [19, 48]

two photons with OAM in a beam splitter is presented. Optimal quantum cloning in

the OAM space is presented in the fourth section. Finally, I present new devices, made

of two q-plates and birefringent wave plates, to built up a universal unitary gate (UUG)

on the SAM-OAM four dimension space [68].

5.2 q-plate: single photon quantum formalism

In a single photon quantum formalism, the q-plate acts as the quantum transferrer on

the single photon state (up to a global phase factor):

|±〉π|`〉o
Q̂P→ |∓〉π|`± 2〉o (5.1)

where |.〉π and |.〉o denote the photon quantum state in the in the SAM and OAM spaces,

|+〉π and |−〉π define the left and right-circular polarization states, respectively [19, 48]

(see Fig. (5.1)). It will be convenient to use the field operators instead of ket notation

for the following calculations. The creations operator for a tuned (π retardation) q-plate

for with unite topological charge are given by

â†H,`
Q̂P→ − i

2

(
â†H,`−2 + â†H,`+2 + i

(
â†V,`−2 − â

†
V,`+2

))
â†H,`

Q̂P→ +
1
2

(
â†H,`−2 − â

†
H,`+2 + i

(
â†V,`−2 + â†V,`+2

))
(5.2)
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where â†π,` is a creation operator of a photon with SAM and OAM states of π and `,

respectively. In our calculation the radial profile does not play a significant role, so,

without losing the generality we have neglected it.

5.3 Holograms and quantum state tomography (Nagali et

al. [66])

A full analogy can be drawn between the polarization SU(2) Hilbert space and each

subspace of OAM with a given |m|, except of course m = 0. This analogy is for exam-

ple useful for retracing the quantum tomography procedure in the OAM space to the

standard one for polarization [51, 69]. In particular, it is convenient to consider the

eigenstates of OAM | ± |m|〉 as the analog of the circular polarizations |L〉 and |R〉, as

the latter ones are obviously the eigenstates of the SAM. To make the analogy more

apparent, small-letter symbols |l〉 = | + |m|〉 and |r〉 = | − |m|〉 are introduced to refer

to the OAM case, while the capital letters are used for the polarization. Following the

same convention, the OAM equivalent of the two basis linear polarizations |H〉 and |V 〉
are defined as

|h〉 =
1√
2

(|l〉+ |r〉)

|v〉 =
1
i
√

2
(|l〉 − |r〉) (5.3)

Finally, the ±45◦ angle “anti-diagonal” and “diagonal” linear polarizations will be here-

after denoted with the kets |A〉 = (|H〉 + |V 〉)/
√

2 and |D〉 = (|H〉 − |V 〉)/
√

2, and the

corresponding OAM states are defined analogously:

|a〉 =
1√
2

(|h〉+ |v〉) =
e−iπ/4√

2
(|l〉+ i|r〉)

|d〉 =
1√
2

(|h〉 − |v〉) =
eiπ/4√

2
(|l〉 − i|r〉). (5.4)

The holograms used for generating or analyzing the above OAM states were manu-

factured from a computer-generated image by a photographic technique followed by

chemical bleaching, producing pure phase binary holographic optical elements (see sec-

tion 3.4). The typical first-order diffraction efficiencies of these holograms are in the

range 10-15%. The patterns we used are shown in Fig. (5.2). Analogously to polarizers,

these holograms are used in two ways: (i) to generate a given input quantum state of

OAM; (ii) to analyze a given OAM component of an arbitrary input quantum state.
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Figure 5.2: Patterns of the 12 binary holograms used in this work. The left box refers
to the OAM subspace o2 (|m| = 2). The right box to the OAM subspace o4 (|m| = 4).
In the upper-left corner of each hologram is shown the quantum state that is generated
by the hologram, when using a TEM00 input, in the first-order diffraction beam [67].

When using the holograms for generating one of the above OAM states, a TEM00 input

mode is sent into the hologram and the first-order diffracted mode is used for output.

The input beam must be precisely centered on the hologram pattern center. The output

OAM quantum state obtained is shown in the upper corner of each hologram pattern

in Fig. (5.2). When using the holograms for analysis, the input mode, having unknown

OAM quantum state, is sent through the hologram (with proper centering). The first-

order diffracted output is coupled to a single-mode optical fiber, which filters only the

m = 0 state, before detection. It can be shown that the amplitude of this output is

then just proportional to the projection of the input state onto the OAM state shown

in the upper corner of each hologram pattern, in Fig. (5.2) (except, possibly, for a sign

inversion of m in the case of the upper row holograms).

5.4 q-plate as OAM quantum information transfer (Nagali

et al. [66])

In order to examine the quantum properties of the q-plate, we have built up four possible

setup configurations, shown in Fig. (5.3), corresponding to the implementations of the

following devices:
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a) Quantum transferrer from polarization to OAM subspace |m| = 2, i.e. π → o2

b) Quantum transferrer from OAM subspace |m| = 2 to polarization, i.e. o2 → π

c) Quantum bidirectional transfer polarization-OAM-polarization, i.e. π → o2 → π

d) Quantum transferrer from polarization to OAM subspace |m| = 4, i.e. π → o4

Each process of quantum information transfer is based on a q-plate (two in the cases

c and d) combined with other standard polarizers and waveplates. The OAM state is

prepared or analyzed by means of suitably-developed holograms, as discussed in the

next Section, preceded or followed by coupling to single-mode fibers, which selects the

m = 0 state |0〉o before detection. After the analysis, the signals were detected by single

photon counters SPCM and then sent to a coincidence box interfaced with a computer,

for detecting and counting the coincidences with the trigger DT (see Fig. (5.3) ).

In our experiment [67], the main optical source was a Ti:Sa mode-locked laser, with

wavelength λ = 795 nm, pulse duration of 180 fs, and repetition rate 76 MHz. By sec-

ond harmonic generation, the output of the laser was converted into a ultraviolet (UV)

beam with wavelength λp = 397.5 nm, which was used as pump beam for the photon

pairs generation. The residual field at λ was eliminated by means of a set of dichroic

mirrors and filters. The UV beam, with an average power of 600 mW, pumped a 1.5

mm thick nonlinear crystal of β-barium borate (BBO) cut for type II phase-matching,

working in a collinear regime and generating polarization pairs of photons with the same

wavelength λ and orthogonal linear polarizations, hereafter denoted as horizontal (H)

and vertical (V ). These down-converted photons were then spatially separated from

the fundamental UV beam by a dichroic mirror. The spatial and temporal walk-offs

were compensated by a half-wave plate and a 0.75 mm thick BBO (C) [70]. Finally, the

photons were spectrally filtered by an interference filter with bandwidth ∆λ = 6 nm.

In order to work in the one-photon regime, a polarizing beam-splitter (PBS) transmitted

the horizontally-polarized photon of the pair and reflected the vertically-polarized one.

The latter was then coupled to a single-mode fiber and revealed with a single-photon

counter (SPCM), which therefore acted as a trigger of the one-photon state generation.

The transmitted photon in the |H〉 polarization state was coupled to another single-

mode fiber, which selected only a pure TEM00 transverse mode, corresponding to OAM

m = 0. The coincidence count rate of the two outputs of the PBS, after coupling into

the fibers, was of typically 16-18 kHz.

After the fiber output, two waveplates compensated (C) the polarization rotation in-

troduced by the fiber. Finally, a polarizing beam-splitter and a set of wave plates were

used for setting the photon polarization to an arbitrary qubit state |ϕ〉π. In this way,

we prepared the one-photon quantum state |ϕ〉π|0〉o for further processing.
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Figure 5.3: Schematic representation of the experimental setup. Outside the dashed
box is the first section of the apparatus, common to all our experiments. In the dashed
box, the four configurations a, b, c, d of the second section of the apparatus are
shown, used in the four experiments discussed in this paper. Legend: BBO - β-barium
borate crystal used for photon-pair generation; C - walk-off compensation stage; PBS
- polarizing beam-splitter; DT trigger detection unit; QP - q-plate; Hol - hologram;
S.P.C.M. - Single photon counter module; P.A. - polarization analysis set, as shown in

solid-line box. [67]

5.4.1 Quantum transferrer from SAM to OAM

In the first experiment, we demonstrated that an initial information encoded in an input

polarization state can be coherently transferred to the OAM degree of freedom. Let us

consider an initial qubit which the information has been encoded over polarization state;

|Ψ〉in = |ϕ〉π|0〉o = (α|H〉π + β|V 〉π)|0〉o (5.5)

where |0〉o indicates the TEM00 mode. A pair of suitably oriented QWPs can be used

to convert the basis into the L,R basis. Then, the q-plate can transfer the SAM state

into OAM space. The output state, however, is an entangled state on the SAM-OAM

spaces. A polarizing beams splitter can be used to trace out the polarization state. The

final state after the PBS is, then, given by

|Ψ〉out = |H〉π(α|+ 2〉o + β| − 2〉o) = |H〉π|ϕ〉o2 , (5.6)
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Table 5.1: Fidelity values between the experimental states generated by the π → o2
transferrer and the theoretical ones expected after the conversion in the OAM degree

of freedom of the qubit initially encoded in the polarization.

Initial state Final state Fidelity
|H〉π |+ 2〉 = |l〉o2 (0.990± 0.002)
|V 〉π | − 2〉 = |r〉o2 (0.972± 0.002)
|A〉π |h〉o2 (0.981± 0.002)
|D〉π |v〉o2 (0.968± 0.002)
|L〉π |a〉o2 (0.998± 0.002)
|R〉π |d〉o2 (0.982± 0.002)

where we have assumed a PBS along the horizontal direction. We note that such conver-

sion process is probabilistic, since the state |Ψ〉out is obtained with a probability p = 50%,

owing to the final polarizing step. Moreover, since we are using the {|H〉, |V 〉} basis for

the polarization encoding and the {|+2〉, |−2〉} = {|l〉, |r〉} for the OAM one, the trans-

fer is associated also with a rotation of the Poincaré sphere. The correspondence of the

six orthogonal states on the polarization Poincaré sphere with the six final ones in the

OAM sphere is given in table (5.1) The experimental layout of this scheme is shown in

Figure 5.4: Experimental density matrices ρ (the left column shows the real part and
right column the imaginary part) measured for the output of the π → o2 qubit transfer,
for each of the three different predicted output states shown in the upper left corner of

each row [67].

Fig. (5.3), dashed box a. The final state tomography has been realized by means of the
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Table 5.2: Fidelity values between the experimental states generated by the o2 → π
transferrer and the theoretical ones expected after the conversion in polarization degree

of freedom of the qubit initially encoded in the OAM.

Initial state Final state Fidelity
|+ 2〉 = |l〉o2 |H〉π (0.981± 0.002)
| − 2〉 = |r〉o2 |V 〉π (0.995± 0.002)
|a〉o2 |L〉π (0.964± 0.002)
|d〉o2 |R〉π (0.972± 0.002)
|h〉o2 |A〉π (0.967± 0.002)
|v〉o2 |D〉π (0.970± 0.002)

six holograms shown in Fig. (5.2) (left box). The experimental results for three specific

choices of the input state are shown in Fig. (5.4). We found a good agreement with

theory as demonstrated by the fidelity parameter, defined as F = 〈ψ|ρexp|ψ〉, where |ψ〉
is the theoretical state to be compared to the experimental one described by density

operator ρexp . The average fidelity in this experiment value between the experimental

states and the theoretical predictions is F = (97.7 ± 0.2)%. The fidelities obtained for

six different input states are shown in table (5.1).

5.4.2 Quantum transferrer from OAM to SAM

In the second experiment we showed that the reverse process can be realized as well,

by transferring a qubit initially encoded in the OAM subspace o2 into the polarization

space. We consider as initial quantum state of the photon the following one:

|Ψ〉in = |H〉π|ϕ〉o2 = |H〉(α|+ 2〉+ β| − 2〉) (5.7)

By injecting the state |Ψ〉in in the q-plate device, and then rotating the output state by

means of a pair of waveplates, we obtain the following state:

1
2
{α|V 〉|+ 4〉+ α|H〉|0〉+ β|V 〉|0〉+ β|H〉| − 4〉} (5.8)

Now, by coupling the beam to a single mode fiber, only the states with m = 0 that is, the

TEM00 modes, will be efficiently transmitted. Of course, this implies that a probabilistic

process is obtained again, since we discard all the contributions with m 6= 0 (ideally,

again p = 50%). After the fiber, the output state reads:

|Ψ〉out = (α|H〉+ β|V 〉)|0〉 = |ϕ〉π|0〉o (5.9)

which demonstrates the successful conversion from the OAM degree of freedom to the po-

larization one. The experimental layout of this “reverse” scheme is shown in Fig. (5.3),
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Figure 5.5: Experimental density matrices ρ (the left column shows the real part and
right column the imaginary part) measured for the output of the o2 → π qubit transfer,
for each of the three different predicted output states shown in the upper left corner of

each row [67].

dashed box b. The input qubit in OAM is prepared using one of the six holograms

shown in Fig. (5.2) (left box), as explained in the previous Section. The output state is

analyzed by standard polarization-state quantum tomography. The experimental results

for three cases are shown in Fig. (5.5). We find again a good agreement with theory,

with an average fidelity F = (97.3± 0.2)%, and the specific cases shown in table (5.2).

We note that this OAM-to-polarization transferrer allows a simple detection of the sign

of the OAM, with a theoretical efficiency of 50%, much larger than what is typically

obtained by the fork holograms (10% ÷ 30%). Therefore, this scheme can be used as a

very efficient OAM detector.

5.4.3 Bidirectional transfer SAM-OAM-SAM

Having demonstrated polarization-to-OAM transfer and OAM-to-polarization transfer,

it is natural to try both schemes together, in a bidirectional transfer which starts and

ends with polarization encoding, with OAM as an intermediate state which can be used

for example for communication. This is also the first quantum experiment based on

the combined use of two q-plates. Although this test in principle is not involving any
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Table 5.3: Fidelity values between the input and output states for the bidirectional
π → o2 → π transferrer.

Initial state and final state Fidelity
|H〉π (0.970± 0.002)
|V 〉π (0.972± 0.002)
|A〉π (0.958± 0.002)
|D〉π (0.955± 0.002)
|R〉π (0.934± 0.002)
|L〉π (0.962± 0.002)

new idea with respect to the previous two experiments, it is important to verify that in

practice the efficiency of the optical manipulation is not strongly affected by the number

of q-plate employed, for example due to alignment criticality.

The layout is shown in Fig. (5.3), dashed box c, and corresponds to the sequence of the

two schemes discussed above. In Fig. (5.6) we show some density matrices obtained by

the quantum tomography technique in the polarization degree of freedom of the output

state. As can be observed in table (5.3), the experimental results are in good agreement

Figure 5.6: Experimental density matrices measured in the polarization degree of
freedom after the bidirectional π → o2 → π transferrer. In each box is reported the
expression of the initial and final state, to be compared with the experimental one

described by the density matrix. [67].

with the theoretical predictions, with a mean fidelity value equal to F = (95.9± 0.2)%.
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We see that the overall fidelity is still quite good, so that there seem to be no significant

problem into the combined use of many q-plates in a cascaded configuration. After the

two q-plates the quantum efficiency of the conversion process, defined as the capability

to convert a TEM00 mode in a pure Laguerre-Gaussian, is still around 80% (to optimize

the efficiency, the q-plate birefringent retardation δ were tuned by mechanical pressure).

5.4.4 Manipulation of OAM in the subspace |m| = 4

In the bidirectional transfer, we have experimentally demonstrated that it is possible to

work with two sequential q-plates without a significant lowering of the overall efficiency.

This approach can be also adopted to access higher-order subspaces of the orbital angular

momentum, by moving from one subspace to the next using a sequence of QPs alternated

with half-wave plates [44].

Experimentally we have studied the case of two sequential q-plates QP1 and QP2 (both

with q = 1). We demonstrate that it is possible to efficiently encode the quantum

information in the OAM basis {| + 4〉, | − 4〉}, by exploiting the spin-orbit coupling in

the q-plates. In order to analyze the orbital angular momentum with |m| = 4 we have

adopted newly designed holograms, shown in Fig. (5.2) (box on the right).

An initial state in the TEM00 mode and arbitrary polarization |ϕ〉π = (α|H〉+ β|V 〉) is

transformed by a pair of quarter-wave plates and QP1 into the following one:

|ϕ〉π|0〉l → (α|R〉| − 2〉+ β|L〉|+ 2〉) (5.10)

A HWP then inverts the polarization of the output state after QP1, so that we get:

α|L〉|+ 2〉+ β|R〉| − 2〉 (5.11)

Next, the action of QP2 and a polarizer leads to the final state:

(α|+ 4〉+ β| − 4〉)|H〉 = |ϕ〉o4 |H〉π (5.12)

By changing the different hologram masks, we have carried out the quantum state tomog-

raphy reported in Fig. (5.7). The fidelity related to each state is reported in table (5.4),

and the high accordance between theory and experimental data leads to an average value

F = (96.1± 0.2)%.
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Table 5.4: Fidelity values between the expected and the experimental states gener-
ated by the π → o4 transferrer.

Initial state Final state Fidelity
|H〉π |+ 4〉 = |l〉o4 (0.947± 0.002)
|V 〉π | − 4〉 = |r〉o4 (0.958± 0.002)
|L〉π |a〉o4 (0.992± 0.002)
|R〉π |d〉o4 (0.923± 0.002)
|A〉π |h〉o4 (0.994± 0.002)
|D〉π |v〉o4 (0.955± 0.002)

Figure 5.7: Experimental density matrices measured in the OAM basis {|+4〉, |−4〉}
for different predicted final states, shown in the lower-left corner of each panel. [67].

5.5 Hong-Ou-Mandel effect via OAM (Nagali et al. [32])

As we know, photon is a boson. Therefore, two identical photons can interfere together.

This effect called photon bunching (or Hong-Ou-Mandel effect) on the quantum optics.

Hong, Ou and Mandel (HOM) on 1987 demonstrated experimentally that two identical

single photons can interfered together on a 50 : 50 beam splitter[71]. They generated

two photons, says idler and signal, by the SPDC. These two photons were impinging on

two different faces of a beam splitter (BS). When the photons are distinguishable, there

are four probabilities to having photons on the exit faces: two photons on the A exit

face, two photons on the B exit face, idler on the A exit face and signal on the B exit
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face or vice versa, A, and B denote two different exit faces of BS. If two detectors record

the photon counts on the exit faces, there will be a coincidence between this detectors.

Let us now consider a situation where two photons are indistinguishable. In this case,

the two photons will always exit the beam splitter together in the same output face.

Therefore, there will be no coincidence between two detectors. This phenomenon cannot

be explained by classical optics and is purely a quintessentially quantum phenomenon.

The HOM effect can be investigated on the two-photon OAM degrees of freedom too,

which shows that the q-plate can transfer coherently the photon-photon correlation from

the SAM to the OAM space. This experiment shows that the q-plate can be used in

the quantum regime of light as well as in the classical regime. Let us consider the case

of two independent linearly polarized signal and idler photons, one horizontal and the

other vertical, going through the q-plate: each will undergo the q-plate transformation

given in Eq. (5.1)

Q̂P π · |1s〉H,0|1i〉V,0 =
i

2
(−|1s, 1i〉L,2 + |1s〉L,−2|1i〉R,2 + |1s〉R,2|1i〉L,−2 + |1s, 1i〉R,−2)(5.13)

where |1s〉S,O denotes the number of photon with S,O Spin and OAM states, respec-

tively.The two outgoing photons will end up having opposite OAM values 50% of the

times. If the two photons are indistinguishable the output beam at the exit face of

q-plate will be

|Ψout〉 =
i√
2

(|0〉L,−2|2〉R,2 − |2〉L,−2|0〉R,2) (5.14)

where we have used the multi photon quantum states notation. Equation (5.14) shows

that the probability of having one photon in state +2 and other photon in −2 state is

zero. The output from the q-plate is detected by a double pitch hologram and two de-

tectors put in the two first order in order to detect the +2 and −2 OAM states. Then, in

case of indistinguishable photons, there will no coincidence between the detectors, while

for distinguishable photons the destructive interference disappears and the coincidences

between the two detectors appear. The q-plate action can be again interpreted as a

mode converter, coherently transferring the two-photon quantum correlation from the

SAM degree of freedom to the OAM one. The experimental setup is shown in Fig. (5.8).

The coincidence between [DA, DB] detects the state contribution of |1〉l=2|1〉l=−2. Due

to the coalescence interference, for otherwise identical photons the coincidence signal

is vanishing in the state outcoming from the q-plate. In order to study the transition

from the case of classical behavior (distinguishable photons) to the case of full quan-

tum interference, a variable temporal delay td between the H and V polarizations in

the state |Ψin〉 has been introduced (Q in Fig. (5.8)). The experimental visibility of

the quantum interference shown in Fig. (5.9-a) is Vexp = (0.95 ± 0.02). As a further
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Figure 5.8: A Ti:Sa mode-locked laser converted by second harmonic generation
(SHG) into a beam with wavelength λp = 397.5nm. This field pumps a nonlinear crystal
of β-barium borate (BBO) which emits a single-mode biphoton state with H and V
polarizations and λ = 795nm, filtered by the interference filter (IF) with ∆λ = 6nm
and then coupled to a single mode fiber. The gray dot-dashed box has been optionally
inserted to prepare a single photon state triggered by detector DT . Birefringent quartz
crystals (Q) having different thicknesses were used to introduce a controlled temporal
delay between the two photons. After setting the input polarization by means of a
suitably oriented quarter-wave plate, the photons were sent through the q-plate (QP)
and the output OAM states were analyzed with the help of a hologram (Hol). In
OAM-to-spin conversion experiments, Hol and QP were interchanged. To measure
(or prepare) OAM states in the basis l = ±2, a double-fork hologram has been used
(inset A), so that the OAM state of the first diffracted modes is shifted by ∆l = ±2,
while the undiffracted 0-order beam has ∆l = 0. The photons on the first diffracted
modes are then coupled to single mode fibers which select output states with l = 0 and
convey them to the detectors DA and DB . Hence, the detection of a photon in DA

(DB) corresponds to a photon incident on the hologram with OAM l = +2 (l = −2).
The 1st-order diffraction efficiency of the hologram was ∼ 10%. The measurement (or
preparation) of OAM in superposition states has been realized by adopting the other
holograms shown in the inset. (The hologram B refers to |d+〉l, C to |dR〉l, D to
|d−〉l, |dL〉l was also analyzed by hologram C after reversing its orientation”). Due to

reflection losses, the transmittance of the q-plate is T ∼ 0.90 [33].

confirmation, we have measured the contribution of two photons with l = +2 by record-

ing the coincidence counts between two detectors [DA, D
′
A] placed on the output modes

of a fiber-based beam splitter inserted on the same kA diffracted mode (not shown in

figure). Theoretically, the coalescence of the two photons should lead to a coincidence

enhancement by a factor Γ = 2, and experimentally we found Γexp = (1.94± 0.02). For
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Figure 5.9: Coincidence counts between [DA, DB ] versus the temporal delay td, for
the state |Ψout〉. The continuous line shows the best fit of the experimental data. (b)
Coincidence counts [DA, DA′ ] versus td. (c) Coincidence counts [DA, DB ] versus td
(V = (0.91± 0.01)) for the state |Φout〉. (d) Coincidence counts [DA, DA′ ] in different

OAM bases. [33].

the sake of completeness, we verified that even after erasing all information still con-

tained in the polarization degree of freedom, the final state is still coherent and exhibits

the same non-classical photon correlations in OAM. To this purpose, we let both the

two photons pass through a horizontal linear polarizer set in a common state H. We

verified again the coalescence of the photons by a measurement similar to the previous

one: Fig. (5.9-c). To verify that we really obtain a coherent state and not a statistical

mixture having similar OAM correlation properties, we measured the coherence between

the two contributions with opposite OAM states. This was accomplished by analyzing

the photons in the other OAM bases already discussed above. Therefore, our coherence

verification is actually turned into a measurement of two photons in the same OAM state

(|d+〉, |d−〉, |dR〉, |dL〉). As expected, for (|d+〉, |d−〉) the events of two photons with the

same orbital states are strongly suppressed, while for (|dR〉, |dL〉) they are doubled, with

an overall correlation visibility V = (0.86 ± 0.02) (Fig. (5.9 (d))). This shows that q-

plates transfer not only single-photon information between polarization and OAM, but

also multiphoton-encoded information (e.g. biphotons).
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5.6 OAM quantum cloning (Nagali et al. [33])

An unknown qubit |ψ〉 cannot be copied without error. This is a consequence of the

principles of quantum mechanics, as proved in the so-called quantum no-cloning theorem.

It is however still possible to make an imperfect copy, with a maximum quantum fidelity

F = 5/6. This corresponds to saying that the copied qubit has a 5/6 probability of

being exactly equal to the qubit to be copied and a 1/6 probability of being orthogonal

to it. The copied qubit is in mixed state that can be described by the following density

matrix:

ρ̂clon =
5
6
|ψ〉〈ψ|+ 1

6
|ψ⊥〉〈ψ⊥| (5.15)

where ψ⊥ stands for the state orthogonal to ψ. There exist different demonstrated

approaches to implementing the optimal quantum cloning of photons. A particularly

simple one is that based on the so-called symmetrization technique, involving the HOM

coalescence effect in a BS [72]. This technique has been already demonstrated with

polarization [72], and now it becomes possible to replicate such results with OAM photon

qubits. The working principle is based on the introduction of the photon to be cloned,

carrying a OAM qubit |ψ〉 = α|+ 2〉+ β| − 2〉 in one of the two input ports of the BS,

and of an ancilla photon in a totally random mixed state ρ̂ = 1
2 (|+ 2〉〈+2|+ | − 2〉〈−2|)

in the other input port.

The output is given by the two photons that are emerging from the same output port of

the BS. The cloning will be successful only when the two photons came out together from

such a port, otherwise the process fails. Therefore this implementation is a probabilistic

one, and it can be shown that its success probability is 3
8 (if using only one output port

of the BS, it is doubled to 3
4 if both ports are used). Now, the randomized photon,

after being reflected in the BS, can be considered as a mixture of a photon having state

|ψ〉 and state |ψ⊥〉 with equal probabilities. Since the probability of the two photons

of coming out together is doubled when the output photons are in the same state, it is

easy to see that the output will correspond to two identical photons for 2
3 of the times

and to two orthogonal photons for 1
3 of the times. Each photon of the output pair will

therefore have 2
3×100%+ 1

3×50% = 5
6 probability of being identical to the input photon

to be copied and this is just the optimal fidelity.

We have experimentally demonstrated this optimal cloning by preparing the two input

photons by means of the q-plate SAM −→ OAM quantum transfer devices and by

analyzing the output after a OAM −→ SAM transfer [34]. The randomized photon was

obtained by randomizing the polarization before the transfer (by a random rotation of

waveplates). The cloned photons were found to have an average fidelity of about 0.80 to
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Figure 5.10: Experimental setup of the cloning process of the OAM states. The main
source of the photons (not shown in figure) injected on modes a and b is a Ti:Sa mode-
locked laser converted by second harmonic generation into a UV beam with wavelength
λp = 397.5nm. This field pumps a nonlinear crystal of β-barium borate which emit
photon pairs with H and V polarizations and λ = 795nm, filtered by the interference
filter with ∆λ = 6nm and then coupled to a single mode fiber. The coincidence rate
of the source is equal to 16kHz. The two OAM states generated by the q-plate device
on modes a and b interfere on a beam splitter (BS). The two-photons state emerging
on mode a′ pass through the transferrer o2 → π, is injected on a fiber integrated beam

splitter (FBS) and then is analysed by a standard polarization analysis setup. [34].

the input one, fully compatible with the 5
6 expectation value after taking into account

the finite fidelity of the quantum transfer devices.

5.7 q-box (Slussarenko et al. [67])

A proposal for quantum computation application was also made for the q-plate, espe-

cially as a device that can not only generate, but also manipulate single-photon entangles

spin-orbit states, via quantum gates. These gates are the key element for any quantum

algorithm and are the devices that represents a certain linear operator that acts on the

input state. A certain number of quantum gates were proposed for single-photon states,

entangled in polarization and linear momentum, for example controlled-NOT (C-NOT)

gate[ref], which is one of the most important and basic for any algorithm gates, or

even a universal gate that has adjustable parameters and can perform any operation
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Figure 5.11: Experimental Hong-Ou-Mandel effect. a) Injection on the BS of the
same LG state (black spots) and orthogonal LG states (empty spots). The solid curve
represents the best fit based on theoretical prediction. b) Injection on the BS of the

same HG state (black spots) and orthogonal HG states (empty spots) [34].

on any input state[ref]. In the 2D SAM space such unitary gate that can change the

input polarization state to any other we want, is made of two quarter wave plates, one

half wave plate together with a phase retardation plate. The adjustable parameters

in this universal gate, four in total, are the angles of optical axes orientations of the

wave plates and phase retardation of the isotropic plate. A possible implementation of

universal unitary gate for the 4D spin-orbit (2D SAM and 2D restricted OAM) space

can be made using q-plates. The idea is essentially the same that was used for the mode

sorter, described in the section (3.5.3), and uses the spatial separation of the ` = 0 and

` = |4| modes in the transverse plane. The basic element is a so-called q-box which is

made of two q-plates and a unitary spin gate sandwiched between them. The radius

of the wave plates of the spin gate is selected so to act only on the ` = 0 mode. For

having good spatial modes separation and remove any possible decoherence due to the

entanglement of radial modes of the generalized LG beam (that carries different values

of p quantum number) two additional lenses are required. The first one allows the spin

gate, placed at its focal plane to act in the far field of the beam, while the second one

returns back and removes possible radial modes entanglement. A schematic illustration

of the q-box is presented in the Fig. (5.12). The input state in the spin-orbit space

is first transformed by the first q-plate into ` = 0 and ` = |4| modes. After that the
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Figure 5.12: The scheme of the q-box. The structure of the birefringent plate is
shown in the inset. QWP, HWP, and RP are the quarter-wave, the half-wave, and the
retardation plates, respectively. α, β, and γ indicate rotations of the QWP, the HWP,
and the QWP and δ is the retardation of the isotropic plate. The birefringent plate
realizes a SAM-UUG affecting the OAM ` = 0 part of the beam only and it is placed
in the common focal plane of the two lenses L. The local optical axis of both q plates is
tangent to the concentric circles so that q = 1. The optical retardation of both q-plates

is λ/2 [68].

` = 0 part polarization state is changed by the spin gate, while the ` = |4| part remains

unchanged. The last q-plate recombines back the two parts, returning the overall state

into the spin-orbit space. Because of the presence of the small overlapping of ` = 0 add

` = |4| modes (same as in the mode sorter) the fidelity of the q-box is not 100%. This

value depends on the input light state and on the radius of the spin gate, inserted into

the q-box. Theoretical estimations predict that by suitable selection of the radius of the

wave-plates the q-box can have minimum guaranteed fidelity of around 83% (rising up

to 100% for some states). This value is in good compliance with experimental results

of the mode sorter experiment. Some methods to increase the fidelity, sacrificing the

intensity of the output beam were already discussed in section (3.5.3). A cascade of four

q-boxes, separated by quarter and half wave plates in following order: QB → QWP →
QB → HWP → QB → QWP → QB will make a 16-parameter unitary gate that will

correspond to a 4x4 unitary matrix which is universal, meaning that by adjusting the

parameters one can realize any unitary operation on the spin-orbit state of the photon.

Such construction, being general one, however, is not always necessary. Many noted and

important gates can be realized with fewer elements. For example, the C-NOT gate can

be made with just one q-box with only one half wave plate inside.
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Spherical wave solution of scalar

wave equation

Let us consider a scalar field which satisfying the scalar wave equation(
∇2 − 1

c2

∂2

∂t2

)
ψ(x; t) = 0 (A.1)

without lose of generality we can expand ψ(x; t) in the time Fourier space

ψ(x; t) =
∫ +∞

−∞
ψ̃(x;ω) e−iωt dω (A.2)

where k = ω
c .

In the main cases, our problem has some symmetrical properties about origin. Therefore,

it is convenient to have a fundamental solution in the spherical coordinate. Spherical

harmonics, apart the radial part, are a complete set of solution in the spherical coordi-

nate. So, ψ̃(x;ω) can be expand in this complete basis

ψ̃(x;ω) =
∑
l,m

fl,m(r)Yl,m(θ, φ) (A.3)

where Yl,m(θ, φ) are the spherical harmonics and are given by

Yl,m(θ, φ) =

√
(2l + 1)(l −m)!

4π(l +m)!
Pml (cos θ)eimφ (A.4)
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where Pml (cos θ) is the associated Legendre polynomial. fl,m(r) is the radial functions

and must satisfy the following radial equation(
d2

dr2
+

2
r

d

dr
+ k2 − l(l + 1)

r2

)
fl(r) = 0 (A.5)

It is evident, from equation (A.5), that the radial functions only depend on l, so I have

removed subscript m. A possible solution of radial equation is

fl,m(r) =
Al,m

r
1
2

Jl+ 1
2
(kr) +

Bl,m

r
1
2

Nl+ 1
2
(kr) (A.6)

where Jn(x) and Nn(x) denote first and second kind of the Bessel functions, respectively.

However, it maybe proper to transform the radial solution into Hankel’s functions

fl,m(r) = A
(1)
l,mh

(1)
l (kr) +A

(2)
l,mh

(2)
l (kr) (A.7)

where Hankel’s functions are given by

h
(1,2)
l (x) =

√
π

2x

(
Jl+ 1

2
(x)± iNl+ 1

2
(x)
)
. (A.8)

So, the general solution of equation (A.1) in the spherical coordinate can be written

ψ̃(x;ω) =
∑
l,m

(
A

(1)
l,mh

(1)
l (kr) +A

(2)
l,mh

(2)
l (kr)

)
Yl,m(θ, φ) (A.9)

where the coefficients A(1,2)
l,m are to be determined by boundary conditions.

Finally, I would like to mention some interesting properties of the spherical harmonic

functions. In order to introduce these concepts we reexamine the angular function of the

scalar wave equation. The spherical harmonic functions are the solution of the angular

differential equation

−
(

1
sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1
sin2 θ

∂2

∂φ2

)
Yl,m(θ, φ) = l(l + 1)Yl,m(θ, φ) (A.10)

As it is well-known in the quantum mechanics this equation can be written in the

following form

L̂2 Yl,m(θ, φ) = l(l + 1)Yl,m(θ, φ) (A.11)

where L̂ = 1
i r × ∇ is ~−1 times the orbital angular momentum operator of mechanics.

The components of L̂ can be written conveniently in the combinations

L̂+ = L̂x + iL̂y = eiφ
(
∂

∂θ
+ i cot θ

∂

∂φ

)
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L̂− = L̂x − iL̂y = e−iφ
(
− ∂

∂θ
+ i cot θ

∂

∂φ

)
L̂z = −i ∂

∂φ
(A.12)

where L̂± are the creation and annihilation operators, respectively. As is clear from

equations (A.12), the orbital angular momentum operator acts only on the angular

variables and is independent of r. It can be shown from the recursion relations for

Yl,m(θ, φ) the following useful relations

L̂+ Yl,m(θ, φ) =
√

(l −m)(l +m+ 1)Yl,m+1(θ, φ)

L̂− Yl,m(θ, φ) =
√

(l +m)(l −m+ 1)Yl,m−1(θ, φ)

L̂z Yl,m(θ, φ) = mYl,m(θ, φ). (A.13)



Appendix B

Integrals containing confluent

hypergeometric functions

The confluent hypergeometric and hypergeometric function are defining by the following

series

1F1 (α; γ; z) = 1 +
α

γ

z

1!
+
α(α+ 1)
γ(γ + 1)

z2

2!
+ . . .

2F1 (α, β; γ; z) = 1 +
αβ

γ

z

1!
+
α(α+ 1)β(β + 1)

γ(γ + 1)
z2

2!
+ . . . (B.1)

which converges for all finite z; α, β and γ are arbitrary parameters, of course γ must not

be zero or negative integer numbers. The hypergeometric functions also have integral

representations:

1F1 (α, γ, z) = − 1
2πi

Γ(1− α)Γ(γ)
Γ(γ − α)

∮
C′
etz(−t)α−1(1− t)γ−α−1 dt

2F1 (α, β; γ; z) = − 1
2πi

Γ(1− α)Γ(γ)
Γ(γ − α)

∮
C′

etz(−t)α−1(1− t)γ−α−1

(1− tz)β
dt (B.2)

where Γ(x) is the Gamma function [42] and C ′ is a contour around origin and passes

through point +1 on the real axis. However, for calculations of Hypergeometric-Gaussian

type I and II modes, the following integrals will appear:

1. Jνα,γ =
∫∞

0 e−λzzν1F1 (α, γ, κz) dz

This integral will be converge if <(ν) > −1 and <(λ) > |<(κ)| (for negative α,

the last condition can be replaced by <(λ) > 0). Replacing the integral relation

101
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of hypergeometric function into equation we will get the following integral

Jνα,γ =
∫ ∞

0
e−λzzν1F1 (α, γ, κz) dz

= − 1
2πi

Γ(1− α)Γ(γ)
Γ(γ − α)

∮
C′

∫ ∞
0

e−(λ−κt)zzν(−t)α−1(1− t)γ−α−1 dtdz

= − 1
2πi

Γ(1− α)Γ(γ)
Γ(γ − α)

λ−ν−1Γ(ν + 1)
∮
C′

(−t)α−1(1− t)γ−α−1(1− κt/λ)−ν−1 dt

= Γ(ν + 1)λ−ν−1
2F1

(
α, ν + 1, γ,

κ

λ

)
(B.3)

which I use equation (B.2) on the last simplification. There is an interesting case:

where the function 2F1

(
α, ν + 1, γ, κλ

)
reduces to a polynomial the integral Jνα,γ

can be expressed in terms of elementary functions

Jγ+n−1
α,γ = (−1)nΓ(γ)

dn

dλn
(
λα−γ(λ− κ)−α

)
(B.4)

2. J =
∫∞

0 e−λzzγ−1
1F1 (α, γ, κz) 1F1 (α′, γ, κ′z) dz

In order to find the analytical solution for this integral. we must replace one of the

confluent hypergeometric function with its integral representation equation (B.2).

So, we will get the following expression

J =
∫ ∞

0
e−λzzγ−1

1F1 (α, γ, κz) 1F1

(
α′, γ, κ′z

)
dz

= − 1
2πi

Γ(1− α′)Γ(γ)
Γ(γ − α′)

∮
C′

∫ ∞
0

(−t)α′−1(1− t)γ−α′−1zγ−1e−z(λ−κ
′t)

1F1 (α, γ, κz) dzdt

= − 1
2πi

Γ(1− α′)Γ(γ)2

Γ(γ − α′)

∮
C′

(−t)α′−1(1− t)γ−α′−1 (λ− κ′t)α−γ

(λ− κ′t− κ)α 1F1 (α, γ, κz) dt

= Γ(γ)λα+α′−γ(λ− κ)−α(λ− κ′)−α′2F1

(
α;α′; γ,

κκ′

(λ− κ)(λ− κ′)

)
(B.5)

where we have used equation (B.2).
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