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II.  ABSTRACT 

 

p63, a p53 family member, plays an essential role in epidermal development by regulating its 

transcriptional program. Here we report a previously uncovered role of p63 in controlling 

BMP/Smad signaling, which we find to be essential for maintaining low expression levels of several 

non-epidermal genes. P63 represses transcription of the inhibitory Smad7, thereby sustaining BMP 

signaling. In the absence of p63, compromised BMP signaling leads to inappropriate non-epidermal 

gene expression in postnatal mouse keratinocytes and in embryonic epidermis. Reactivation of BMP 

signaling by Smad7 knockdown and/or –to a lesser extent– by BMP treatment suppresses expression 

of non-epidermal genes in the absence of p63. Canonical BMP/Smad signaling is essential for 

control of non-epidermal genes as use of a specific inhibitor, or simultaneous knockdown of Smad1 

and Smad5 counteract suppression of non-epidermal genes. Our data indicate that p63 prevents 

ectopic expression of non-epidermal genes by a conserved mechanism involving Smad7 repression 

and consequent enhancement of BMP/Smad signaling.  

Human syndromes caused by mutations in p63 gene resemble the phenotype of p63 knock-out mice 

characterized by ectodermal dysplasia, split hand/foot malformation and orofacial clefting. To 

understand the molecular defects of AEC syndrome, in our laboratory has been generated a knock-in 

mouse model for AEC syndrome.  We searched for the expression of non-epidermal genes and 

known direct targets of p63 such as Bmp7 and Smad7 in AEC mutant mice. We found that neither 

non-epidermal genes or Bmp7 and Smad7 change their expression in this mouse model. 

Interestingly, we observed that known targets of p63 did not change their expression in AEC mutant 

mice. Here, we found that AEC mutation affects gene expression of small group of genes. Among 

them we identify p53 family members, p73 that is inhibited in AEC mutant epidermis demonstrating 

that p73 is a direct targets of p63.  
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1. INTRODUCTION 

 

1.1 The skin and its structure  

The skin is the first barrier of our body that protects us from infectious agents, hazardous 

substance,  UV radiation, mechanical stress. Mammalian skin is a stratified epithelia and the 

epidermis represents the major part of epithelium covering the body. The epidermis is derived 

primarily from ectoderm germ layer as its appendages. The other components of the skin is the 

dermis that gives rise from the mesoderm germ layer and that recovers a crucial role in 

promoting epidermal development and hair placodes formation during embryogenesis.  

The dermis is tightly connected to the epidermis by a basement membrane. Structural 

components of the dermis are collagen, elastic fibers, and extrafibrillar matrix. On the other 

side the dermis is connected with hypodermis and it preserves the body from stress and strain. 

The dermis structure is divided into two areas: a superficial area adjacent to the epidermis, 

called the papillary region, and a deep thicker area known as the reticular region. In itself 

there  are located many mechanoreceptor/nerve endings that provide the sense of touch and 

heat.  The dermis also contains the hair follicles, sweat glands, sebaceous glands, apocrine 

glands, lymphatic vessels and blood vessels. The blood vessels provide nourishment and waste 

removal from the dermis and epidermis.  

The dermis shows a crucial role during early stage of epidermal keratinocytes development 

releasing inductive signals to promote ectodermal progenitors to specify epidermal 

commitment (1). The epidermis constantly replenishes itself by a proliferation and 

differentiation process. In human, it is estimated that the epidermis turns over every 40-56 

days ( 2; 3), whereas in mice the estimated epidermal turnover time is 8-10 days (4). This 

constant turnover of the epidermis is mediated by epidermal stem cells which reside in the 

basal layer, each one generates a columns of epidermal proliferative units composed by 

Transient Amplified (TA) cells (5). The TA cells reside in the basal layer and they undergo a 

few rounds of cell division before initiate an asymmetric cells division to lead terminal 

differentiation (6;7). After few rounds  dividing cells in the basal compartment of the 

epidermis  continually execute a program of terminal differentiation. 
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As cells exit from the basal layer and begin their journey towards the skin surface, the cells 

switch expression of basal layer specific keratin s, Keratin5 and Keratin 14 (Krt5; Krt14) , to 

Keratin1 and Keratin10 (krt1; Krt10) typical of the spinous layer (8). The cells of spinous 

layer expressing the intermediate filament of Krt1/Krt10 are connected trough cell-cell 

junctions known as desmosomes. These connections provide a cohesive, integrated 

mechanical structure across and within stacks of epithelial sheets. Keratin6, Keratin16 and 

Krt17 (Krt6; Krt16 and Krt17) are also expressed suprabasally, but only in hyperproliferative 

condition such as wound healing. 

This keratin network not only 

remodels the cytoskeleton 

organization for migration but 

also regulates cell growth 

through binding to the adaptor 

protein 14-3-3! and stimulating 

Akt/mTOR signaling (9;10).  

As spinous cells progress to the 

granular layer, they produce 

electrondense keratohyalin 

granules packed with the protein 

profilaggrin which, when 

processed, wrap up keratin 

intermediate filaments even more to generate large macrofibrillar structures. In addition, 

cornified envelope proteins (Lce), which are rich in glutamine and lysine residues, are 

synthesized and deposited under the plasma membrane of the granular cells. As response to 

the increased permeability to the calcium, the cells activate transglutaminase, generating "-

glutamyl #-lysine crosslinks to create an indestructible barrier. The final steps of terminal 

differentiation involve the destruction of cellular organelles including the nucleus, and the 

extrusion of lipid bilayers, packaged in lamellar granules, onto the scaffold of the cornified 

envelope. The dead stratum corneum cells create an impenetrable layer that is continually 

replenished as inner layer cells move outwards and are sloughed from the skin surface (11). 
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The hair follicle shows a more complex structure, composed at least of seven distinct cell 

types organized in three compartments: an outer root sheath (ORS), an inner root sheath (IRS) 

and hair shaft (12). In the epidermis two different population of stem cells have been found the 

interfollicular stem cells and hair follicle stem cells. The hair stem cells reside in the bulge 

region, a morphologically distinct area of the hair follicle located in the mid portion of the 

follicle (13). One gene that is expressed at high levels in the bulge region is keratin15 (Krt15). 

Krt15 expression is also detected in the interfollicular epidermis, although at lower levels (14). 

During physiological growth of the skin, interfollicular and hair follicle stem cells contribute 

to their respective compartment of origin. However, transplantation experiments and lineage 

tracing experiments have demonstrated that, in response to injury, firstly bulge-derived 

keratinocytes participate into repair of the interfollicular epidermis (15;16). Within the wound 

healing, the bulge derived cells survive transiently and they are rapidly replaced by progeny of 

interfollicular stem cells. Consistent with these findings, mice that lack hair follicle show 

delay in wound healing (17). However, wound healing ultimately takes place, presumably due 

to the activation of interfollicular epidermal stem cells.  

Upon severe injury, the interfollicular Stem Cells (IFE) can even regenerate hair follicle stem 

cells (HFs). Thus, epidermal cells are also multipotent (18). Recent studies with lineage 

tracing of single basal cells in tail skin, suggests that, while the majority of labeled cells are 

lost within 3 months, some survive and clonally expand in size over time. This behavior seems 

indicate that discrete epidermal proliferating unit composed of one stem cell surrounded by a 

steady-state pool of ~10 transit-amplifying progeny that subsequently exit the niche and 

terminally differentiate (7). The exact identity and location of interfollicular epidermal stem 

cells remains unknown. Recently, a population of murine HF stem cells was identified and 

these populations are enriched for Lrg1 and Blimp1. These cells give rise to IFE and 

Sebaceous Glands cells (SGs) when stimulated by retinoic acid in vivo (19). It has been 

suggested that these cells might be the elusive IFE stem cells. However, three different lineage 

tracing studies using Cre-recombinase driven by either Shh, Sox9, or cytochrome P450 

promoters each document that mouse IFE harbors its own resident progenitors, which can 

sustain long-term epidermal homeostasis (20; 21; 22).  
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1.2 Signaling pathways in epidermal development. 

After gastrulation, the embryo surface emerges as a single layer of ectoderm and specific 

signals determinate the commitment of neuroectodermal cells to neural or epidermal fate (23). 

One of the most important signaling required for this process is the Wnt signaling that plays a 

crucial role in early step of ectodermal commitment. Wnt signal blocks the ability of ectoderm 

to respond to fibroblast growth factors (FGFs). In the absence of FGF signaling the cells are 

prone to respond to bone morphogenetic proteins (BMPs), initiating the epidermal 

development. Conversely, the acquisition of neural fate depend on the absence of a Wnt 

signal. In this conditions the ectoderm is able to receive and translate activating signal 

mediated by FGFs to induce neurogenesis. Loss of Wnt signaling induces the expression of 

specific inhibitors of BMP signaling (Follistatin, Chordin or Noggin) that induces the neural 

fate (24) (Figure 1). 

 

Adapted from Fuchs E. Nature Review 2007  

Figure 1. Signaling pathways in early embryogenesis. In early stages of embryogenesis the Wnt 

signaling play an important role. In the absence of Wnt signal, ectodermal progenitors responds to 

FGFs, downregulate BMP signaling and progress towards neurogenesis. On the other hand the Wnt 

signaling blocks the ability of early ectodermal cells to respond to FGFs, allowing them to respond to 

BMP signaling to drive and epidermal fate. As development progress, a single-layer expressing Wnt 

signaling is formed. Some cells fail into respond to Wnts signal, and these become fated to became 

epidermal cells trough BMP, EGF, and Notch signaling. The cells that do respond to Wnt signaling 

also receive underlying FGF and BMP inhibitory signals from mesenchymal compartment and, 

together, these signals the cells to make an appendage (hair follicle).  
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The embryonic epidermis that results from this process consists of a single layer of 

multipotent epithelial cells expressing the ectodermal markers Keratin 8 and keratin 18 (Krt8 

and Krt18) (25; 26). When the commitment to stratification occurs, Krt8 and Krt18 expression 

is down-regulated  with concomitant induction of Krt5 and Krt14 expression (E13.5). In the 

adult Krt5 and Krt14 are only expressed in stratified epithelia and never expressed in single-

layered epithelia (27).  

One gene that is essential for this switch and for the commitment to stratification is the 

transcription factor p63, a p53 family member (28). In the primordial epidermis a transient 

protective layer known as periderm recovers the whole embryo. This layer is characterized by 

Krt17 expression (29). During late stages of skin development the peridem is lost when the 

epidermal cells begin to stratification and differentiate becoming  impermeable. 

As described before, epidermal development is due to a complex signaling network in early 

stage of embryogenesis where the BMP signaling shows a key role as determinant of 

ectodermal specification in low vertebrates (30; 31). In mammals a putative BMP function in 

regulating epidermal fate or specific gene expression has not been demonstrated consistent 

with a possible redundant function among the BMP family members or with other signaling 

pathway. The BMP signaling during late stage of embryogenesis show a crucial role in the 

hair follicle morphogenesis, it is active in  the interfollicular epidermis  in which represents as 

much an epidermal promoting signal as it is a follicle inhibitory signal (32; 33; 34) (Figure 1).  

 

 

1.3 The transcription factor p63.  

 

The p63 gene is a member, together with p73, of the p53 family.  All three proteins show high 

amino acid homology and share three functional domains commonly found in transcription 

factor: an N-terminal transactivation domain which shares 25% homology with N-terminal 

part of p53, a central DNA binding domain which shares 65% of homology with the 

corresponding p53 domain and C-terminal tetramerization domain, which shares 35% of 

homology with the oligomerization domain of p53 (Figure 2). The p63 and p73 genes are 

transcribed at least in six different isoforms due to two alternative promoter at the N-terminus 

of the gene. The two alternative promoters give rise to TA and $Np63 transcript. In addition 
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to use two different promoters, the p63 and p73 genes increase their complexity by alternative 

splicing at the C-terminus, which gives rise to three different carboxyl terminal isoforms 

named  %, &, " and seven isoforms (%, &, ", ', #, (, )) respectively for p63 and p73 (35; 36) 

(Figure 2).TAp63 isoforms contain an N-terminal transactivation domain, whereas $Np63 

isoforms lack this domain and show an alternative transactivation domain (35; 37).  In 

addition, the p63%  isoforms contain a sterile alpha motif (SAM) domain at C-terminal of the 

gene, which is absent in p53 (38; 39). This domain is a protein-protein interaction domain. It is 

an evolutionary conserved domain commonly found in proteins controlling developmental 

processes such as several Eph receptor tyrosine kinase (40). Although the SAM domains are 

known to be involved in protein-protein interactions, in vitro studies demonstrated that SAM 

domains of p63 can also bind to RNA or lipids (41;42; 43). At this time the protein partners of 

SAM domain of p63 is unknown and is one of the field unexplored into study of p63. Another 

unique domain of p63alpha isoforms is the post-SAM domain Transcriptional Inhibitor 

Domain (TID) which has been shown to have an inhibitory function (44; 45). The 

transactivation inhibitory domain of p63 binds to the N-terminal TA domain masking residues 

that are important for transactivation (45). In fact, p63 isoforms that contain the " and & C-

termini are associated with higher transactivation competency that the ones with % terminus 

protein (46). The lack of TA domain in $Np63% isoforms suggests that they are 

transcriptionally competent. Since $Np63 isoforms retain the oligomerization and DNA 

binding domains, it is plausible that they act as dominant negative inhibitors of p53 and TA 

containing p53 family members (35; 47). Indeed, numerous studies show that co-expression of 

$Np63% with either TAp63, TAp73, or p53 has inhibitory effect on TAp63-mediated 

transcription. A plausible mechanism is due to the formation of transcriptionally inactive $N-

TA heterotypic or homotypic tetramers (composed of either all-TA or all-$N monomers) that 

compete for the same DNA binding sites. Despite the well-documented role of $Np63 as a 

dominant negative transcriptional repressor, several studies have shown that $Np63 isoforms 

directly transactivated a set of genes including Hsp70 and p57Kip (48; 49; 50). This is 

possible thanks to existence of two cryptic transactivation domains in $Np63 isoforms: a 

region encompassing the first 26 N-terminal amino acids named TA2 domain and a prolin rich 

sequence corresponding to exon 11/12 present in p63 & and % isoforms (44). 
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Different studies reported that the stability as well as the transcriptional activity of p63% is 

regulated by sumoylation of this domain by small ubiquitin modifier-1 (SUMO-1) (51; 52). 

Surprisingly, overexpression of SUMO-1 caused a decrease in DNp63alpha but not in 

TAp63alpha protein. 

 

 

 

Figure 2. p53 family. A) The p63 gene encodes a tetrameric transcription factor that can be expressed 

in at least six isoforms with widely different transactivation potential that share an identical DNA 

binding domain. Alternative transcription start sites give rise to transactivation (TA) isoforms, 

encoding proteins with a canonical transactivation domain similar to p53. B) A very high degree of 

homology is seen in the different domains of p53, p63 and p73. All three members of the family are 

able to regulate cell cycle arrest, apoptosis and in parallel show developmental effects. However, the 

knockout mice reveal striking differences, with p63 showing mainly an epidermal phenotype, and p73 a 

neuronal phenotype.  

 

This apparent difference in protein stability in response to sumoylation may be caused by the 

interaction between the TAp63% transactivation domain and the post-SAM TID, which may 

mask the sumoylation site (52). 

The expression pattern of  p63 in early stage of embryogenesis at E9.5 is restricted within oral 

ectoderm, in the ectodermal part of limb buds (Apical Ectodermal Region, AER) and tail bud 

region, whereas in later stages of embryogenesis the expression of p63 is restricted to 

interfollicular epidermis and in outer root sheath of hair follicle. The essential role of p63 in 

skin development was revealed  by two independent studies of p63-null mice generated trough 

two different knockout gene strategies. These mice lack stratified epidermis, producing a 
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disorganized single layered surface epithelium that is negative for epidermal markers such as 

Krt5 and Krt14 (53; 54). Both two groups showed that the p63 null mice lack the epidermis 

and its appendages, associated to limb truncation, craniofacial abnormality. Although, the 

mutant phenotype in these two studies is similar, the interpretation of the biological function 

of p63 remains controversial. Nonetheless, these mouse models have been showed a unique 

role played by p63 during development, in contrast to the p53 null mice that it doesn’t show 

development defects (Figure 2).   

 

 

1.4  p63 knock-out: toward a comprehension of p63 physiological function. 

 

To understand the biological functions of p63, two different mouse models have been 

generated. Although, the phenotype of p63 null mice reported by both group was similar, the 

interpretation is dramatically different. In succession,  the biological interpretations are 

showed based on the evidence of knockout mouse model and other studies.   

 

a) p63 is required for stem cell proliferative potential 

 

p63 gene and in more detail the $Np63% isoforms is highly expressed in the basal layer of 

epidermis and in the highly proliferative compartment of the other stratified epithelia as the 

cervix, urogenital tract, prostate and breast tissues (35; 55).The knockout mouse model 

generated by McKeon’s group is born alive but has striking developmental defects. Their 

limbs are absent or truncated, defects caused by a failure of the apical ectodermal ridge (AER) 

to differentiate. The lack of a proper AER limb buds in p63 null mice results from a failure of 

the ectoderm to undergo growth and differentiation that give rise to this stratified epithelium. 

At birth, p63-deficient mice have striking and visible skin defects; in fact, they die within few 

hours from the birth for dehydration. Structures dependent upon epidermal mesenchymal 

interactions during embryonic development, such as hair follicles, teeth and mammary glands, 

are also absent in p63 deficient mice (Figure 3).  

The skin lacks expression of the basal layer markers as Krt5 and Krt14 and also spinous layer 

markers Krt1 and Krt10, although the isolated patch of the epidermis showed the expression of 

late differentiation markers such as Loricrin, Involucrin, Filaggrin. 
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Adapted from Yang A. Cell 1999  

Figure 3. Phenotype of p63 knockout  mice .  A) The  p63 null mice at birth show defects in limb 

formation craniofacial defects associated with skin and appendages aberrant development for lack of 

stratification and differentiation. B)Defects in stratified epithelial differentiation in p63-deficient mice. 

H&E staining of the epidermis at E17, p63-/- mice lacking squamous stratification in the epidermis 

(top) and tongue epithelium (bottom). Middle, wilde-type H&E control mice showing extensive 

stratification. In the right the basal staining with anti-p63 antibody to show the endogenus expression 

of p63 in the epidermis  

 

The authors argue that p63 is required for the maintenance of epidermal stem cell, because the 

p63 null mice showed in late stage of embryogenesis and in newborn mice isolated patch of 

disorganized epithelial cells expressing the late differentiation markers. The epidermis appears 

as disorganized epithelia. The cells showed highly pyknotic nuclei which positive for TUNEL 

indicating apoptosis processes. This study concluded that p63 is required for the initial 

development and continued regeneration of the epidermis and that the loss of p63 in the 

tissues failed to maintain the proliferative potential of stem cells (35). In addition, to reinforce 

this hypothesis the same authors in another study strongly showed that p63 is dispensable to 

maintain the proliferative potential of epithelia stem cells of the thymus and epidermis  (56). 

The thymus has an epithelial component derived to ectoderm germ layers. In p63 null mice 

this region exhibited a hypoplastic phenotype compared to wild-type. Unlike the epidermis, 

the p63 null thymus showed the typical markers for epithelia development and in this case was 

fully competent to support the maturation of developing T cells. However, the hypoplastic 

phenotype of the thymus is due to a reduction in proliferative potential of stem cells in thymus 

compartment and in epidermis. They showed by colony- forming assay that p63 is involved in 

proliferative potential of epidermal keratinocytes. Clones lacking p63 had a reduction in cell 

size for decrease of proliferative potential of stem cells (56). These data, support the 
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hypothesis that p63 is involved in maintenance of proliferative potential of stem cells in 

stratified epithelia.   

 

b) p63 is required for cell differentiation 

 

The knockout mice generated by Allan  Bradley showed defects in limb formation due to 

failed to stratification of Apical Ectodermal Region (AER), craniofacial defects associated 

with skin and appendages aberrant development for lack of stratification and differentiation 

(53). The authors showed that in p63 null mice all structures that required the ectodermal-

mesenchymal signal were compromised because the ectoderm failed to receive the signal. 

They showed that the skin of p63 null mice is covered by a single layers of ectodermal cells or 

flattened epidermal cells, lacking the differentiate layers (Figure 4).  

 

 

 

Adapted from A.A Mills. Cell 1999  

Figure 4. The phenotype of p63-deficent newborn mice.  A) The p63 null mice show severe limb and 

skin defects. B) The expression of different markers in the epidermis of p63 null mice show the staining  

for Krt14 in red and Krt1, filaggrin and krt6 in green.  Krt14 is  weakly express in p63 null mice, 

whereas Krt1, filaggrin and Krt6 are not detectable  in the epidermis  

 

 

 

These results suggested that p63 is determining factor of stratification, because they did not 

detect the expression of any early or late differentiation markers in the epidermis of p63 null 

mice. The stratified epithelia showed a single disorganized layer well visible in the epidermis 
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(53). This model supported the hypothesis that p63 is required for simple epithelial cells to 

commit to a stratified epithelial lineage during development. 

Complementary studies  show that over-expressing $Np63 in keratinocytes culture blocks 

Ca2+-induced growth arrest and terminal differentiation  suggesting a key role of $Np63 in 

controlling the differentiation process (50). In addition Roop et al. showed that ectopic 

expression of TAp63 in epithelial cells, but not $Np63, coverts a normal Krt8 positive 

epithelia cells into Krt5/Krt14 expressing cells, indicating that TAp63 is sufficient to drive 

epidermal specification and promoting differentiation (57). The same authors have 

demonstrated a balance from TAp63 and $Np63 in embryonic development, in which the 

TAp63 isoforms played a key role in early embryogenesis to promote the epidermal 

specification, whereas in late stage the TAp63 expression left place to $Np63 isoforms 

involved in maintenance of proliferative state of basal layer. They conclude that the balance of 

TAp63 and $Np63 is crucial to determinate the proliferative state of keratinocytes. The 

proposed model of Bradley and Roop argue that p63 is required for commitment to 

stratification and differentiation (57).  

Other studies reported that $Np63% represses the expression of p21 and 14-3-3!, two genes 

induced during epidermal terminal differentiation, and the expression of these genes are 

required for cell cycle progression including cyclin B2 and cdc2 (58). These genes are directly 

inhibited by p63 in the basal layer where the cells are undifferentiated. Their induction 

represents an important step to initiate terminal differentiation program. p21 induction is 

mediated by two different mechanisms: Rb-Jk that directly binds its promoter and the 

activation of Notch pathway. The Notch pathway is required for differentiation process 

whereas the $Np63% maintains the undifferentiated state. The balance between un-

differentiation and differentiation state is regulated by cross-talk between p63 and Notch (59). 

In primary mouse keratinocytes, p63 expression counteracts the ability of Notch1 to restrict 

growth and promote differentiation in keratinocytes, effect mediated by repression of Hes1 an 

activator of Notch. In these way the cells in the basal layer proliferates whereas, when the cells 

escape to highly proliferative state show a reduction of  $Np63% and the induction of Notch 

activity inducing cell differentiation. These studies showed that p63 and in more details the 

TAp63 isoforms in involved in early stage of embryogenesis to drive epidermal specification 
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whereas the  $Np63% is important for maintenance of proliferative state of epidermal cells in 

the basal layer inhibiting the terminal differentiation.   

 

c) p63 is required for cell adhesion 

 

In the epidermis and in all epithelia, cell adhesion has a fundamental role into support epithelia 

formation and structure. Three different types of junction complexes mediate cell-cell 

adhesion in epithelia: tight junction, adherents junction and desmosomes junction. While the 

tight junction perform a role in establishment of barrier formation and in para-cellular 

transport, the adherents junction and desmosome are crucial in promoting cell adhesion. The 

importance of these junctions for epidermal integrity is highlighted by the autoimmune or 

genetic blistering diseases in humans caused by dysfunctional desmosome components (132). 

Similarly, mouse model lacking desmosomal components are prone to epithelial blistering 

(60). Cell adhesion process as attachment to the extracellular matrix via integrins is an 

important step not only for structural organization of tissues but also for epithelial cell 

proliferation, migration, differentiation and survival. Therefore, physical detachment from the 

extracellular matrix for defects in cells adhesion results in induction of apoptosis or anoikis in 

a wide range of epithelial cell types (61; 62). Loss of p63 causes the reduction in gene 

expression of adhesion molecule with consequent cell death. The ability of p63 to regulate key 

matrix adhesion proteins could play an important role in maintenance of tissue integrity since 

the attachment of cells to underlying basement membrane is crucial for epithelial tissue 

integrity and homeostasis. Carrol et al in 2007 showed the reduction of multiple adhesion 

molecules in p63 null mice (63;65). They found that p63 directly controls the gene expression 

of Perp a desmosomes junction. Perp is highly express in stratified epithelia and it is a 

component of desmosomes junction. Interestingly, Perp-null mice showed lethally associated 

with the presence of epithelia blistering in the skin and in oral epithelium, some phenotype 

observed in p63 null mice (64). Moreover, they showed also that p63 directly controls the 

expression of other adhesion molecules as integrin alpha 3, 4, 5 and 6 and laminin-2. Genes 

encoding many classes of proteins involved in multiple aspect of cell adhesion were regulated 

by p63, including extracellular matrix component, integrins, adherents and desmosomal 

junction (63;65). Accordingly with these data, the down regulation of p63 in breast cancer 



13 

 

cells (MCF10A) or in mouse primary epithelia cell, induced cell detachment and subsequent 

apoptosis. Interestingly, this affects are specific of down-regulation of $Np63 isoforms, 

whereas the reduction of TAp63 isoforms had a little phenotype. Conversely, the induction of  

$Np63% and TAp63" isoforms protected the cells from death induced by detachment of the 

cells from matrix. These finding suggest that the $Np63 isoforms are essential for adhesion 

process and survival in epithelial cells in vitro (63;65).   

 

1.5 BMP signaling in skin development.  

 

Skin morphogenesis is a complex process resulting from a cross-signal from ectodermal and 

mesenchymal component of the embryo involving Wnt, FGF and BMP signals. BMP 

signaling together with its antagonist and BMP receptor perform many roles in skin and 

appendage morphogenesis and control a large number of biological processes as cell 

proliferation, differentiation, apoptosis and cell fate decision not only in skin but also in other 

tissues. 

The Bone Morphogenetic Protein (BMPs) is secreted signaling molecules that belong to 

Transforming Growth Factor-! family and perform their biological function via interaction 

with specific receptor. The BMP signaling is modulated by different mechanisms: at 

extracellular levels thought the BMP antagonist that recovers the main role in regulating the 

magnitude and spatio- temporal specificity of the signal. On the other hand, the signal is also 

controlled at intracellular levels by the inhibitory-Smad or MAP kinase and finally, in the 

nucleus by controlling the transcription of BMP target genes (66). The BMP family consists of 

more than 20 secreted proteins that share structural homology that are able to form homo-

heterodimers. The intensity of signal and the spatio-temporal specificity is due to a structurally 

distinct protein families in which there are Noggin, Chordin, Follistatin, Cerberus/DAN family 

and Ectodin.  All of these proteins selectively bind distinct members of BMP family restricting 

the action to specific tissues compartment. The signaling is activated by binding of BMPs on 

transmembrane receptor complex formed by type I and type II receptor. Combinatorial 

interaction in the tetrameric receptor complex allow differential ligand binding or differential 

signaling in response to the same ligand (67). One receptor combination often binds different 

ligands, and pattern of ligand and receptor expression often dictate which receptor are 
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activated. The BMP signal can be transduced by combination of type II receptor (ActRII and 

ActRIIB) with type I receptor (BMP-RIA and BMPRIB). In addition, the BMP type II 

receptor (BMPRII) can combine with three type I receptor as,  BMPRIA, BMPRIB, and 

ActRI/ALK2. The binding to specific receptor leads the activation that induces the 

phophorylation of intracellular domain of type I receptor by the type II receptor kinase and 

leads a transmission of an intercellular signal thought BMP/Smad canonical pathway or 

BMP/MAPK non-canonical pathway (68; 69; 70;71).  

The activated type I receptor induces the posphorylation of R-Smad proteins (Smad1, Smad5, 

Smad8) at their C-terminal domain (72) (Figure3).Among the R-Smads family there are  

Smad2 and Smad3 but they are activated by ActRI and TGF-bRI kinases and are not 

mediators of the BMP signaling pathway (72). R-Smad phosphorylation in turn induced the 

recruitment of Smad4 and the formation of heteromeric complex that are able to translocate 

into the nucleus to control gene expression of direct targets of BMP signaling.  

The second negative control of BMP signaling is performed by inhibitory Smads, Smad6 and 

Smad7 that act with different mechanisms to block the BMP activity. The inhibitory Smads 

are able to antagonize the phosphorylation of Smad1, Smad5 and Smad8 by the binding to 

activated BMPRI kinases. In addition, the inhibitory Smads compete with Smad4 to binding to 

Smad1 (73). Finally the inhibitory Smads induce the degradation of the BMP receptor and R-

Smad by recruitment of Smurf1 (Smad ubiquitination regulatory factor-1), which interacts 

with Smad1 and Smad5 to promote their degradation by proteosome (74). More recent study, 

has showed a new non-canonical role of Smad7 in controlling other signaling pathway, 

including &-catenin (75; 76). The Smad4 and R-Smad proteins have a two highly domain 

conserved at N- and C-terminus of the proteins, MH1 and MH2 domain that are involved into 

binding to DNA and into recruitment of specific co-regulator respectively that can induce or 

repress the expression of downstream direct targets of BMP signaling (70) (Figure 5).  

As indicated before the BMP signaling  activates a Smad canonical pathway. On the other 

hand, BMP signaling can elicit its effects trough  a non-canonical pathway. The non-canonical 

pathway is activated when the BMPs firstly bind the type I receptor followed by the 

recruitment of BMPRII (71). These interactions induces the recruitment of XIAP and/or 

BRAM1, an adaptor protein that link BMPRI complex to TAK1 binding protein, that in turn 

activates the TAK1 (77;78). TAK1 is a TGF-beta-activated kinase member of the MAPK 
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family. The activation of TAK1 induces the activity of p38 and JNK pathway that is known to 

be involved into apoptosis process. 

 

 

Adapted from Ignacio Munoz-Sanjuan Nat Rev 2002  

Figure 5. The BMP signaling pathway and the specification of ectodermal cell fates. In Xenopus, 

activation of the bone morphogenetic protein (BMP) pathway in the ectoderm leads to the acquisition 

of epidermal fates, whereas inhibition of BMP signaling induces neural fates.  However, signaling that 

is mediated by the nodal/activin branch of the transforming growth factor-! (TGF-!)pathway induces 

mesodermal gene expression in ectodermal cell. The ligands bind and activate a subset of type I and 

type II TGF-! receptors, which form heterodimers. Activation of the BMP pathway leads to 

phosphorylation of the signal transducers Smad1,-5, -8, which form a complex with Smad4 (DPC4) 

and translocate to the nucleus, where they associate with various developmentally regulated 

transcription factors to direct epidermal gene expression. Smad7 is thought to exert part of its 

inhibitory activities by preventing the activation of Smad1 and 2. In addition, the ubiquitin ligases 

Smurf1 target Smad1 and smad2 and the TGF-! receptors for degradation by the proteasome.  

 

 

Interestingly, the BMP signaling displays different role depending cell context and timing. 

Many studies demonstrated that the BMP signaling is able to be repressor or activator of 
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transcription in the same cells, action that depend only from recruitment of co-transcription 

factor are able to give different role at BMP signal in the cells (70; 79).  

The BMP ligands are differential expressed in the epidermis, BMP2 and BMP4 are expressed 

respectively in hair follicle compartment and in the mesenchymal component of the skin 

during embryogenesis (80; 81).  Whereas, BMP6 is restricted to differentiated layers during 

late stages of embryogenesis and in post natal life in mice. Finally, the Bmp7 is expressed in 

the basal layer of epidermis during embryogenesis  and interestingly in p63 null mice has been 

shown that its expression is reduced at E14 (80; 82; 83).  

Data in vitro in primary mouse keratinocytes showed the main role performed by BMP2 and 

BMP6 in controlling  proliferation and differentiation of keratinocytes (84; 85; 86). In 

addition, has been demonstrated that BMP6 stimulates the differentiation and induces Krt1 

expression in primary mouse keratinocytes (85). 

Many are the function recovered by BMP signaling in vivo as well as in vitro and these effects 

underline the pleyotropic  function of the signaling  and the redundancies due to the possibility 

of activate the pathway in different way.  In fact, mouse model deleted for several component 

of the pathway have been generated. Some of them have little phenotype due to the 

redundancies of BMPs family in the epidermis. The major of them showed defects in hair 

follicle morphogenesis or failed into growth and cycle progression of the hair follicle. The 

BMP signal represent an important signaling in hair follicle but in this work has not been 

addressed this issue.   

 

 

1.6 p63 and BMP signaling evidences for direct functional correlation. 

 

BMP signal is an important determinant of epidermal fate specification acting as epidermal 

inducers and suppressing neurogenesis. During embryogenesis, epidermal and neuronal 

precursors are supposed to be derived from a common neuroectodermal precursor. In Xenopus 

embryos, epidermal commitment is induced by BMP-4 in the ventral part of the egg, while its 

absence within the dorsal part leads to a “default neural” program (87).  

Little is known on the role of p63 and BMP signaling in mammals systems. Thus, in low 

vertebrate it has been demonstrated that p63 is important into promoting ectodermal 

proliferation and differentiation and its expression is an early events in xenopus epidermal 
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development (88). In addition, it has been shown that the down-regulation of $Np63 by 

morpholino injection in the early Xenopus embryo potentiates mesoderm formation whereas 

ectopic expression of $Np63 inhibits mesoderm formation inducing epidermal commitment, 

suggesting that $Np63 is a key function in defining a squamous epithelial phenotype 

activating or suppressing mesodermal cell fates during early development (89).  

Other studies have been performed that showed a key role of p63 in controlling epidermal 

commitment in vivo by inhibition of $Np63 in zebrafish embryos. The lack of p63 disturbs 

skin formation and AER maintenance while overexpression of $Np63 is sufficient to block 

anterior neural specification while promoting early steps of epidermal fate, even in embryos 

lacking BMP-4 signaling (90; 91). These two studies into zebrafish development suggest that 

$Np63 plays a dual role in the early steps of epidermis formation; it acts as both an epidermal 

inducer and an inhibitor of neuroectodermal formation and later on, it is required for the 

epidermal cell proliferation (90; 91).  

The Embryonic Stem (ES) cells are pluripoten stem cells derived from inner cell of the 

blastocyst. These cells can reproduce in vitro the early stage of embryogenesis. The use of cell 

model is able to discover new molecules or known molecule that could direct the different 

commitment of ES cell to different fate. This strategy, at this moment, could represent new 

frontiers for regenerative medicine.  One of these cases is the differentiation of ES cell to 

produce epidermal cells trough different approach. Aberdam and co-workers showed that a 

synergistic effect of the mesenchymal extracellular matrix and BMP4 is able to induce mouse 

ES cells to differentiate into keratinocytes (92). In mammals as well as low vertebrate, BMP4 

plays a similar critical role in epidermal commitment and displays an inhibitory effect on 

neural induction (93).  Neural differentiation process of ES cells is inhibited by BMP-4 

through specific apoptosis process of Sox-1+ neural precursors cells that leads the epidermal 

fates (94). They suggest the existence of bipotent ES derived neuroectodermal precursors able 

to become either neurons or epidermal cells depending on the presence or the absence of 

BMP-4, respectively. Finally, an important role performed by p63 is elicited in this system. 

Aberdam et al showed that the drastic switch to ectodermal commitment occurs through the 

activation of $Np63 in early stem of differentiation of ES cells after BMP4 addition, whereas 

TAp63 is never activated during this commitment process (Figure 6).  
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p63 loss of function drastically prevents ectodermal cells to commit to the Krt5/Krt14 positive 

stratified epithelial expression while gain of function experiments show that $Np63 allows 

this commitment. Interestingly, they showed that other epithelial cell fates are not affected, 

allowing the production of Krt5/Krt18 positive epithelial cells (95). By these evidence 

emerges that p63 could have an uncovered role in promoting cell fate determination in 

association with BMP signaling and in maintaining the cell identity of the epidermal cells, by 

day little is discovered. 

 

 

Adapted from Matthieu Rouleau Cell Cycle 2007  

 

Figure 6. Schematic representation of ectodermal commitment and epidermal differentiation of ES 

cells. A) ES cells cultured on fixed NIH-3T3 cells under serum-free conditions efficently differentiate 

into neural precursor. When  BMP4 is added to medium from day 3 to 5 neural commitment is 

prevented while ectodermal cells (Krt8 and Krt18) are produced. Same of theme became keratinocytes 

(Krt5/Krt14) after the addition of serum. Soon after the addition of BMP4, "Np63 is induced. This 

induction is followed by activation of "Np63 and its target gene Bmp-7 and FGF2R2b.      
 

 

 

1.7 p63 and related human autosomic dominant disorders. 

 

The transcription factor p63 is associated to several autosomic dominant human syndromes 

causative of ectodermal dysplasia, orofacial clefting and limb malformation. Ectodermal 

dysplasia is manifested as the abnormal development or growth of tissues and structures that 

are developed from ectoderm. In this condition skin, hair, teeth, nails and several exocrine 

glands, such as sweat and sebaceous glands are usually abnormally developed.  
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This gene is characterized by several point mutation in all domains that causes different 

specific syndrome in human. The mutations identified in this gene are causative of five 

different syndromes in human (Figure 8).  The clinical signs are matched in different way in 

the patients.  Interestingly, human phenotypes caused by mutations in p63 gene resembles the 

phenotype of p63 knockout mice characterized by ectodermal dysplasia, split hand/foot 

malformation and orofacial clefting (Figure 7). 

 

 

Figure 7. the phenotype of knock 

mouse model resembles the main 

signs of AEC syndrome. p63 

knockout mouse model shows the 

defects in limb formation due to 

failed to stratification of Apical 

Ectodermal Region (AER), 

craniofacial defects associated 

with skin and appendages 

aberrant development for lack of 

stratification and differentiation. 

The p63 human syndrome show 

ectodermal dysplasia, split 

hand/foot malformation and 

orofacial clefting.  

 

 

 

 

Adapted by Yang A Cell 1999; and McGraft JA Hum. Mol. Genet. 2001; Celli  Cell 1999 

 

The localization and functional effects of the mutations that underlie these syndromes 

establish a striking genotype-phenotype correlation. 

The Ectrodactyly, Ectodermal Dysplasia, and Cleft Lip/Palate Syndrome (EEC) is the most 

common between these autosomic disorders (96). The point mutations underling this 

syndrome were found in the DNA binding domain of p63 and at this moment were identified 
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34 different mutations. The mutations are frequently located in CpG island, and some of this 

mutations cause the impairment of DNA binding. The autosomal dominant inheritance of EEC 

suggests that these mutations have a dominant negative effect on p63 function. The EEC 

patients  are invariably characterized by one or more features of ectodermal dysplasia, which 

can present as defects of hair, skin, nails, teeth and glands. The genotype–phenotype is highly 

variable and depends to exact nature of mutation. EEC patients occasionally also have 

mammary gland/nipple hypoplasia (14%) and hypohidrosis (11%). About two thirds of these 

patients have ectrodactyly, and syndactyly is also frequent (43%). Cleft lip/palate is present in 

about 40% of the EEC patients, mostly as Cleft lip with or without Cleft palate (Figure 8).  

Limb Mammary Syndrome (LMS), belongs to human syndrome associated to p63 mutation. It 

resembles the phenotype of EEC syndrome but shows lesser ectodermal manifestation. A 

consistent feature of LMS is the mammary gland and/or nipple hypoplasia (100%). Lachrymal 

duct obstruction and dystrophic nails are frequently observed (59 and 46% respectively), 

hypohydrosis and teeth defects are detected in about 30%, but other ectodermal defects such 

as hair and skin defects are rarely detected. About 70% of LMS patients have similar limb 

malformations as in EEC syndrome, and about 30% orofacial clefting, notably always in form 

of cleft palate (96). The point mutation is found in LMS patients are located as in the N-

terminus as well as in the C-terminus of the p63 gene (Figure 8). 

The ADULT,  Acro-Dermato-Ungual-Lacrimal-Tooth syndrome is less characterized at 

molecular levels. Now, four family and three sporadic cases were identified. All three families 

and one sporadic cases show the point mutation in exon 8 of DBD (R298). This mutation 

causes the changing in an arginin located outside DNA-binding interface, so this mutation 

does not cause impairment to DNA binding. Two other mutations are located in the N-

terminus: N6H mutation affects only the DN-isoforms and in another isolated patient a 

missense mutation G134D* is located just front of the DBD in exon4 (97) (Figure 8). 

The Ankyloblepharon-Ectodermal defects-Clefts Lip/palate (AEC), has more dramatic 

phenotype than other p63 human syndromes. AEC patients show a strong skin phenotype and 

are characterized by eyelid fusion at birth and the absence of limb malformations. 

Approximately 80% of the patients have severe skin erosion at birth, which usually will 

recover in the first years of the life. The eyelid fusion, also called ankyloblepharon, is present 

in about 45% of AEC patients, but only rarely in other p63-associated conditions. The other 
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ED symptoms, such as nail and teeth defects are present in more than 80% of patients, and 

hair defects and/or alopecia are almost constant features (94%). 

 

Adapted by Rinne T.  Cell Cycle 2007 

 

Figure8. Mutations in p63 gene. Distribution of mutations in p63, revealing a striking genotype-phenotype 

correlation. The positions of mutations and aminoacid correlation are indicated.  

 

Lachrymal duct obstruction is seen in 50% of patients, whereas mammary gland hypoplasia 

and hypohydrosis occur occasionally (both 13%). Interestingly, almost 40% of patients have 

hearing impairment and genito-urinary defects. Cleft lip is present in 44% and cleft palate in 

about 80%. Limb malformations are almost absent. Ectrodactyly has never been reported, but 

25% of patients have only mild syndactyly (96).  The most of point mutations of AEC 

syndrome were located in SAM domain of p63 alpha isoforms or TI domains. The SAM 

domain is known to be involved in protein-protein interactions and therefore mutations in this 

domain are most could hamper the binding to interacting proteins. One known interactor of 

p63 SAM domain is the Apobec-1-binding protein-1 (ABBP1), which is a member of RNA 

processing machinery and known to regulate the alternative splicing of the Fibroblast-growth-

factor-receptor-2 (FGFR2) towards the epithelial specific isoform. AEC mutations in the SAM 

domain abolish the binding to ABBP1, which most probably leads to changes in FGFR2 RNA 

splicing (98). 
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The Rapp-Hodgkin Syndrome (RHS) show a phenotype very similar to AEC syndrome. The 

differences discussed earlier in several papers are the absence of ankyloblepharon in RHS and 

the more severe skin phenotype in AEC. Other ED symptoms, such as orofacial clefting and 

the near absence of limb malformations are similar to AEC. These two conditions could be 

considered as a single entity, since the ankyloblepharon is present only in about 45% of AEC 

syndrome patients, and therefore is not a discriminating factor. Although, the severity of the 

skin phenotype is obvious and more severe in AEC patients than in RHS patients, the strong 

overlap between AEC and RHS suggest, that they are variable manifestations of the same 

clinical entity (99). They are either point mutations in the SAM domain or deletions in the 

SAM or TI domains (100; 101; 102).  Frequently, in the same family affected by p63 human 

syndrome are found variable phenotype. It is clear that variability within the family may be 

reflecting the presence of modifier genes. At this moment it is unknown but in literature it is 

known the modifier gene for p53 in human cancer and at least one of these has also been 

shown to affect p63 protein levels and transcription (103; 104). 

 

1.7 Aims of the thesis. 

My research activity, during the last three years,  focused on the elucidation of the molecular 

mechanisms through which p63 exerts its function in primary mouse keratinocytes and in 

embryonic epidermis. Complementary approaches were used from  the identification of p63 

specific transcriptional targets and to identify  the signaling pathways downstream p63. The 

study of relationship from p63 and the BMP signaling has identified a new role of p63 in 

controlling gene expression of non-epidermal genes. In addition, I investigated if this specific 

regulation occurred also in knock-in mouse model generated in our laboratory. Part of this 

studies is published in Journal of Biological Chemistry in August 2009. The second part of the 

study is unpublished and is the objective of my recent research activity.   
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2. MATERIAL AND METHODS 

2.1 Cell cultures, transfections of siRNA. 

Mouse primary keratinocytes were isolated from 2-day-old Swiss CD1 mice and cultured 

under low-Ca
2+

 conditions (0.05 mM) in the presence of 4% Ca
2+

-chelated fetal bovine serum 

(Invitrogen, Carlsbad, CA), and epidermal growth factor (Invitrogen). The cells are cultured in 

8% CO2 and 34 °C.  A total amount of 200nM siRNA (Stealth siRNA, Invitrogen) for pan-

p63, for specific p63 isoforms, and/or for Smad7, Smad1, Smad5,  or control medium GC rich 

siRNA (Stealth siRNA, Invitrogen) were transfected by Lipofectamine 2000 for 5h. After 5h 

the medium were changed and replacing in medium with low-Ca
2+

 conditions (0.05 mM) in 

the presence of 4% Ca
2+

-chelated.  In some experiments cells were treated with BMP7 

(20ng/ml) (R&D Systems) 24 hrs after transfection. The BMP type I receptor inhibitor LDN-

193189 (200 nM) was given to the cells 30’ before BMP7 addition.  

 

2.2 Transfections, constructs, reporter assays. 

The tansfections were performed 5 days after plating using Lipofectamine 2000 (Invitrogen). 

siRNA oligonucleotides specific for p63 and relative isoforms were designed by invitrogen 

tools. Reporter plasmids (250ng) were co-transfected with pCMV2-FLAG-*Np63% or 

pCMV2-FLAG control. A 4.3kb Smad7 promoter (3.6 kb promoter region and 0.7kb 5’UTR 

upstream) (105) was cloned into the XhoI-HindIII sites in the pGL3 reporter plasmid 

(Promega). The Smad7 fragment (-3.0/-2.6) was generated by deletion of Smad7 promoter 

using NheI-PstI and cloned into pGL3-TKLuc reporter plasmid. Mutations in the p63 binding 

sites were generated using the QuikChange Site-directed mutagenesis kit (Stratagene).  

Reporter plasmids (250ng) were co-transfected with 100nM siRNA for pan-p63 (Stealth 

siRNA, Invitrogen). A 0.5kb p73 promoter (+ 5kb to TSS)  was cloned into the KpnI-SacI 

sites in the pGL3 reporter plasmid (Promega). The p73 fragment (+4.25/+ 5.25) was generated 

by PCR amplification and cloned into pGL3-TKLuc reporter plasmid. Mutations in the p63 

binding sites were generated using the QuikChange Site-directed mutagenesis kit (Stratagene). 

Luciferase activity was determined 48 hours (hrs) after transfection with the dual-luciferase 

reporter assay kit (Promega). pCMV-Renilla reporter (20ng; Promega) was used to normalize 

transfection efficiency. 
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2.3 Retroviral production. 

High titer retrovirus production was obtained in HEK-293T cells by transient transfection 

of the pBABE-Smad7 (105) using Lipofectamine 2000 as previously described. Primary 

keratinocytes were infected twice with the retrovirus 24 and 48h after plating in the presence 

of 8µg/mL polybrene (Sigma). After 48hrs infected keratinocytes were selected with 2µg/ml 

puromycin for 48 hrs, and grown after selection for an additional 24 hrs in the absence of 

puromycin. 

 

2.4 Analysis of gene expression, Real-time RT-PCR. 

Total RNA was extracted 48 hrs after transfection from primary mouse keratinocytes using 

TRIzol reagent (Invitrogen), and from mouse embryonic skin (E14.5) using RNAspin Mini 

RNA isolation kit (GE Healthcare) according to the manufacturer’s instruction. RNA samples 

were treated with RNase-free DNase
 

I (Promega), and cDNA was synthesized using 

SuperScript Vilo (Invitrogen). Two-step real-time reverse transcription
 

RT-PCR was 

performed using the SYBR Green PCR master mix in an ABI PRISM 7500 (Applied 

Biosystems). Levels of the target genes were quantified using specific oligonucleotide primers 

and normalized for Gapdh or Act-b expression.  

For microarray analysis,  total RNA was extracted 48h after transfection and sent to the 

Boston University Microarray Facility for labeling, amplification, and hybridization to the 

Affymetrix Mouse Genome 430A 2.0 microarrays. Raw probe intensities for each of the 

hybridized microarrays were normalized to gene expression levels using the dChip algorithm. 

We then computed the P-values and false discovery rate (FDR). To identify differentially 

regulated genes in the siRNA experiment, we used Cyber-T (Baldi and Long 2001; 

http://cybert.microarray.ics.uci.edu). Cyber-T estimates experiment-wide false positive and 

negative levels based on the modeling of P-value distributions by computing the posterior 

probability density estimate (PPDE). We selected 1920 genes with PPDE + 0.9900 and 719 

with a PPDE + 0.9999. The use of a different threshold is suggested for a small number of 

replicates, typical for microarrays (106). Among the genes affected by loss of p63, 106 genes 

were upregulated more than 5-fold by p63 knockdown (Table 2). Tissue expression profiling 

of upregulated genes was obtained from a custom made mouse GNF1M (MAS5) GNF gene 

expression database (http://symatlas.gnf.org) (107). Among 72 genes that were upregulated 
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more than 5-fold by p63 knockdown (FDR<0.25), 48 (67%) were not expressed in normal 

epidermis, but rather in other tissues.  

 

2.5 ChIP assay. 

Approximately 3 x10
6
 mouse keratinocytes were fixed with 1% formaldehyde in growth 

medium at 37 °C for 10 minutes. Extracts were extensively sonicated on ice to obtain DNA 

fragments ranging from 200 to 800 bp in length. Chromatin was immunoprecipitated 

following the Upstate protocol (http://www.upstate.com). Immunoprecipitation was performed 

using anti-p63 (H-137; Santa Cruz Biotechnology) and anti-ERK-1 (K23; Santa Cruz 

Biotechnology) antibodies. Real-time PCR was performed using the SYBR Green PCR master 

mix in an ABI PRISM 7000 (Applied Biosystems), using specific oligonucleotide sequences. 

 

2.6 Immunostaining, immunoblotting. 

 

Embryos were fixed in 4% paraformaldheide and either embedded in OCT (Sakura) or in 

paraffin. Fluorescent signals were monitored under a Zeiss confocal microscope LSM510meta 

using a Zeiss EC Plan-Neofluar 63X/1.3 oil immersion objective. For immunoblotting cells 

were lysed in sample buffer or in 1% Triton X-100 lysis buffer (10 mM Tris-HCl pH7.5, 150 

mM NaCl, 1% Triton X-100, 1 mM EDTA) for Smad7, and protein extracts were run on SDS-

PAGE gels, transfer on Immobilon-P transfer membranes (Millipore), probed with the 

indicated antibodies and detected by chemiluminescence (ECL, GE Healthcare Life Sciences).  

The following primary antibodies were used for immunofluorescence staining: p63 (4A4, 

Santa Cruz Biotechnology), Krt8 (Troma-1 rat monoclonal antibody developed by Rolf 

Kemler, obtained from the Developmental Studies Hybridoma Bank at The University of 

Iowa), Cldn7 (34-9100, Invitrogen), Cldn3 (34-1700, Invitrogen), Cdh1 (610181, BD 

Biosciences) for paraffin-embedded tissue, Cdh1 (13-1900, Invitrogen) for frozen-embedded 

tissue, phospho-Smad1/5/8 (9511, Cell Signaling), Smad1 (sc-7965, Santa Cruz), phospho-

Smad2 (3108, Cell Signaling), Smad2 (3103, Cell Signaling). Alexa Fluor ® secondary 

antibodies (Invitrogen) were used for detection. The following primary antibodies were used 

for immunoblotting analysis in addition to the ones listed above: Smad7 (MAB2029, R&D 
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Systems), polyclonal anti-Bex1 (a gift from Frank Margolis), ERK-1/2 (K-23, Santa Cruz 

Biotechnology), ß-actin (AC-15 Sigma). The following secondary antibodies were used for 

immunofluorescence staining: Alexa Fluor ® 488 goat anti-mouse (Invitrogen), Alexa Fluor ® 

594 goat anti-rabbit (Invitrogen), Alexa Fluor ® 594 goat anti-rat (Invitrogen). 

 

2.7 In situ hybridization. 

 

In situ hybridization was performed on frozen sections of P1 skin and E14.5 embryos as 

previously described skin was fixed in 4% fresh paraformaldehyde overnight
 
at 4°C, washed 

in PBS, incubated in 30% sucrose/PBS overnight
 
at 4°C and embedded in OCT compound 

(Sakura). Sections of
 
7 ,m were treated with proteinase-K 20 ,g/ml

 
for 15 min and hybridized 

with DIG-riboprobe in 50% formamide
 
overnight at 60°C. After extensive washings, slides 

were
 
incubated with anti-DIG-alkaline phosphatase antibodies (Roche),

 
washed and incubated 

in NBT/BCIP solution (Roche), 1 mM
 
levamisole (Sigma) for 6–12 h.

 
Digoxigenin (DIG)-

labeled antisense and sense RNA probes were transcribed from the SP6 and T7 promoters 

using a DIG labeling kit (Roche Applied Science) according to manufacturer’s instructions. 

The Smad7 probe corresponding to a 485bp cDNA fragment was kindly provided by Xiao-

Jing Wang (Han, 2006). The Bmp6 probe was synthesized from a 893bp SacI-EcorI cDNA 

fragment kindly provided by Dr. M. Mikkola. The Bmp7 probe corresponds to a 440bp long 

cDNA fragment generated by PCR and inserted in the pCR
®
II vector vector (Invitrogen). For 

PCR oligonucleotide sequences see Table S2. DIG labeling was monitored under a Zeiss 

Axioskop2 plus microscope using a Zeiss Plan-Neofluar 20X/0.50 objective.   

 

2.8 Mice and Skin Explants. 

All experiments performed with mice were conducted under IACUC approval. p63-null mice 

(B6.129S7-Trp63
tm1Brd

/J) were obtained from the Jackson Laboratory. For skin explants, 

dorsal skins from embryos at E14.5 were laid on culture plate insert (Millipore) and cultured 

in the presence or in the absence of BMP7 in DMEM with or without 5% FBS, overnight at 37 

°C and 5% CO2.  
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2.9 Oligo sequences for gene expression analysis, cloning, siRNA sequences. 
 

Oligonucleotide Primers for Real Time RT-PCR 

Gapdh 

GTATGACTCCACTCACGGCAAA 

TTCCCATTCTCGGCCTTG 

 

Actin& 

CTAAGGCCAACCGTGAAAAGAT 

GCCTGGATGGCTACGTACATG 

 

p63 

CATGAGCTGAGCCGTGAGTTC 

GGCTGTTCCCTTCTACTCGAA 

 

Krt14 

TGACGTCTCCACCCACCTG 

ACCACGAGGAGGAAATGGC 

 

Krt8 

TGCTCATGTTCTGCATCCCA 

GATCACCACCTACCGCAAGC 

 

Cldn7 

ACAGGAGCAAGAGAGCAGGG 

CTGCCATCTTTATCGGCTGG 

 

Tmprss2 

CCTACATACAGACTAAATGTGCAA 

GAAATAACCAACCAACAGCAAAGA 

 

Bex1 

TGACCACCATGATGAGTTTTGC 

TCCCCATGTCATCTTCAGAGAA 

 

Smad6 

GGCTGTCTCCTCCTGACCAGTA 

CAATGTAGAATCGGACAGATCCAG 

 

 

Smad7 

GAAGGTGGTGCCCACTTTCA 

AACGAGAGTCAGCACTGCCA 

 

Bmp7 

CATCGTCCAGACACTGGTTCA 

AGCAGGGCTTGGGTACTGTG 

 

Bmp2 

GGCCGTTTTCCCACTCATCT 

CCATCACGAAGAAGCCGTG 

 

Bmp4 

TGAGGAGTTTCCATCACGAAGAA 

CACTGGTCCCTGGGATGTTC 

 

Bmp6 

TGTCCAACAAAAATAGGTCAGAGT 

AAGTCTTGCAGGAGCATCAGC 

 

Lce1g 

TGGTACAGGAGGAGAACACGC 

GAGGGAAGCAGGAGGAGAGG 

 

Lce1d 

TCGTCTTGCTCCAGAGCACTCACC 

GGAGGCTGGCACTGCTGTTGG 

 

Lce1a2 

GTTCTGCTGGCAGGACATCT 

GCCCAAGGATCTTGTACTGC 

 

Id1 

GAGCAGCAGGTGAACGTCCT 

TCCTTGAGGCGTGAGTAGCA 

 

Id2 

TGATGCAGGCTGACGATAGTG 

TCTTGGACCTGCAGATCGC 

 

Smad1 

ATTGAAAACACCAGGCGACATA 

CCAACGTAATAAAGGTGGACTCCT 

 

Smad5 

ACTATTGAAAACACTAGGCGGCATA 

CACCTCCCCACCAACGTAGTA 

 

Oligonucleotide Primers for ChIP 

 

Smad7 -0.2Kb 

GCGAAACACAATCGCTTTTTT 

CGTCACGTGGCCGTCTAGA 

 

Smad7 -2.7Kb 

ATCTGTTTTTACCCGGGCCT 

CGTGAGTGGTGCTAATCCCCT 

 

Smad7 -3.1Kb 

GTGAGGCGAAAGAAGAGCCC 

GCTCTGACTGGCTTGTATGCC 

 

 

siRNA oligonucleotides 
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Smad7: AGTCAAGAGGCTGTGTTGCTGTGAA 

Smad7_2: CCCATCACCTTAGTCGACTCTGTGA 

Smad1_a: CATATTGGGAAAGGAGTCCACCTTT 

Smad1_b:CAATCCTATTTCATCCGTGTCTTAA 

Smad5_a: CAGAGATGTTCAGCCTGTCGCCTAT 

Smad5_b: ATTCATAGTAGACAATCGAACACCA 

 

Cloning of Bmp7 probe for in situ hybridization: 

TCTTCCACCCTCGATACCAC 

CCGGATACTACGGAGATGGA 

 

Cloning of p73 promoter region +4.75/+5.25 

AGCTTGGTACCTTGCCTGGGGTTAGTGACTG 

AGCTTGAGCTCAGACAACTCGCCTTTGCTGT 
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3. RESULTS 

 

3.1 p63: crucial regulator of gene expression in epidermal cells. 

 

To shed light on the role of p63 in controlling gene expression in epidermal cells, our laboratory 

previously performed a global gene expression profile analysis identifying new putative targets of 

p63 (108). As a model system, we used primary mouse keratinocytes isolated from 2-day-old Swiss 

CD1 mice where p63 expression was suppressed by specific double strand small interfering RNA 

(siRNA) oligonucleotide targeting  p63. Using this approach, we identified members of the TGF-& 

family and their regulators that were affected by p63 knockdown (Table I). Some members of the 

TGF-& were varied in p63 knockdown cells but we focalized our attention on Bmp7 a member of 

BMP signaling and its negative regulator Smad7. These two genes were inhibited and induced 

respectively by p63 knockdown. So, we selected them for further investigation, as potential p63 

targets genes. Other members of TGF-& family changed their expression in primary mouse 

keratinocytes, however these variations did not reflect difference in TGF-& signaling activity as 

described below. 

 

3.2 p63 directly controls Bmp7 expression in epidermal cells. 

 

We used siRNA oligonucleotides targeting the DNA-binding domain of p63 to knockdown p63 

expression. The DNA-binding domain is conserved  in all p63 isoforms and thus represented an 

ideal region for knockdown siRNA strategy (Figure 2A). Loss of p63 affected gene expression of 

TGF-& family members in epidermal cells. We focalized our attention on Bmp7 a members of BMP 

signaling and its negative regulator Smad7. These two genes were inhibited and induced 

respectively by p63 knockdown  from gene expression profiling in p63 knockdown keratinocytes. 

Forty-eight hours after siRNA transfection we analyzed Bmp7 expression in p63 knockdown cells 

by real time RT-PCR. As showed in Figure 9A, Bmp7 was the most highly expressed ligand of the 

BMP family in keratinocytes and was inhibited by p63 knockdown. Specific knockdown of  TAp63 

and p63" isoforms had no effect on Bmp7 expression whereas specific knockdown of *Np63 and 

p63% isoforms inhibited Bmp7 expression, demonstrating a specific regulation operating by the  

*Np63% isoform in epidermal cells (Figure 9B). To confirm this data in vivo, we isolated  p63 null 
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skin at E14.5 and measured by real time RT-PCR the expression levels of Bmp family members. 

p63 null skin displayed lower levels of Bmp7 than wild-type controls (Figure 9C) accordingly with 

in vitro data. In contrast, loss of p63 had little or no effect on Bmp2 and Bmp6 either in isolated 

keratinocytes or in embryonic skin (Figure 9A and 9C).  Bmp6 was modestly induced by p63 

knockdown. However, Bmp6 expression was very low under non-differentiating conditions, 

consistent with its suprabasal expression in newborn skin (Figure 10A) and in the developing 

murine epidermis (Lyons. K.M. et al Genes & development 1989, Wall, N. A., JCB 1993).  Bmp4, 

which is mainly expressed in the mesenchimal component of the skin, was unaffected by p63 

knockdown in cultured keratinocytes, whereas it was reduced in p63 null skin, suggesting that p63 

may also indirectly control Bmp4 expression in the adjacent dermis. 

By in situ hybridization, we detected Bmp7 mRNA levels in the basal layers of newborn epidermis 

and in embryonic epidermis of p63 null skin and control littermate at E14.5 (Figure 10A and 10B). 

Bmp7 partially co-localized with p63 mRNA in newborn epidermis while their expression 

overlapped during embryogenesis suggesting a putative common function of p63 and Bmp7 in skin 

development.  

To determine if p63 is involved in control of Bmp7 we analyzed the Bmp7 gene expression at early 

times point after p63 knockdown. Upon siRNA transfection, p63 protein levels decreased quickly 

with a complete suppression at 8hrs. In parallel, strong reduction of Bmp7 occurred at 8 hrs, 

suggesting a putative direct regulation of Bmp7 by p63 (Figure 11A and 11B). To explore the 

possibility that Bmp7 may be a transcriptional target of p63, we performed a ChIP assay in primary 

mouse keratinocytes. We identified three phylogenetically conserved p63-binding hemi-sites located 

in the Bmp7 first intron at +2.4kb from the TSS (Figure 11C , right panel), in a region corresponding 

to a recently identified human genomic region bound by all p53 family members in a breast cancer 

cell line (109) (Figure 11C, left panel). Taken together these data showed that p63 directly controls 

Bmp7 in epidermal cells by direct binding to a specific consensus sequence located in a genomic 

region downstream transcription start site TSS. 
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3.3 p63 directly controls Smad7 expression in epidermal cells. 

 

p63 knockdown keratinocytes showed the increase of Smad7 mRNA levels  48hrs after transfection  

as well as at protein levels, without affecting the related inhibitory Smad6 (Figure 12A and 12C). 

Specific knockdown of *Np63 and p63% isoforms induced Smad7 expression, whereas knockdown 

of TAp63 and p63" isoforms had no effect on Smad7 expression (Figure 12B), suggesting that the 

*Np63% isoform is required for Smad7 repression. As demonstrated by real time RT-PCR Smad7 

expression was higher in p63-null skin at E14.5 than in wild-type controls, confirming that p63 

exerted its effect also in vivo (Figure 12D). In line with these data, in situ hybridization analysis 

demonstrated  that  higher Smad7 mRNA levels are found in p63 null skin than in wild-type skin 

(Figure 12E).  

To determine if p63 is involved in control of Smad7, we analyzed the Smad7 gene expression at 

early times point after p63 knockdown.  Smad7 was strongly reduced at 8h after p63 siRNA 

transfection, suggesting that Smad7 could be a direct  target gene of p63 (Figure 11A and 13A). To 

test this hypothesis, we searched for p63-binding site in a 48.5kb genomic sequence covering the 

Smad7 locus. Using chromatin immunoprecipitation- (ChIP-on-chip), we identified a single putative 

p63-binding region located at -2.7kb from the TSS. The p63-binding region was found in an 

evolutionary conserved genomic sequence containing four canonical p63 binding hemi-sites (Figure 

13B). ChIP followed by real time PCR with two independent sets of oligonucleotides confirmed that 

p63 specifically bound this genomic region (Figure 13C). In addition, p63 overexpression 

significantly inhibited the activity of a 3.6kb Smad7 promoter, as well as the activity of a 0.4kb 

fragment containing the p63 binding sites (Fig. 13D, left panel). Conversely, p63 knockdown 

resulted in enhancement of the activity both of the Smad7 promoter and of the portion containing 

the p63 binding sites (Fig. 13D, right panel). Mutations in three canonical p63 binding hemi-sites in 

the promoter fragment failed the ability of p63 knockdown to enhance promoter activity. Thus we 

demonstrated the direct regulation of p63 on  Bmp7 and Smad7 two signaling molecules belonging 

to the TGF-&/BMP pathway. 
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3.4  p63 positively controls BMP signaling. 

 

As described before p63 directly regulates Bmp7 and Smad7 expression in epidermal cells. Bmp7 is 

the most highly expressed member of the BMP family in keratinocytes. On the other hand, 

inhibitory Smad7 is expressed at low levels. In the absence of p63 we observed a reduction of Bmp7 

and an increase of Smad7 expression (Schema I).   

 

  

Schema I: p63 directly regulates Bmp7 and Smad7 expression. This regulation 

             determinates the activation of the pathway.  

 

As Smad7 is a common regulator  of BMP signaling as well as TGF-ß signaling, we investigated if 

p63 displayed a specific effects on BMP signaling pathway. To this aim we co-transfected different 

amounts of a *Np63% expressing vector with BMP (BRE) or TGF-ß (CAGA and 3TP) responsive 

reporters in primary mouse keratinocytes. As shown in Figure 14A, p63 resulted in a dose-

dependent induction of the BMP responsive element, without affecting the TGF-ß one. Conversely, 

p63 knockdown resulted in specific inhibition of the BMP responsive element without affecting the 

TGB-ß responsive elements (Figure 14B). Expression of two well-characterized BMP targets genes, 

Id1 and Id2, were strongly inhibited by p63 knockdown (Figure 14C). In parallel, p63 knockdown 

resulted in a significant reduction in Smad1/5/8 phosphorylation under basal conditions and upon 

BMP7 treatment (Figure 14D). In contrast, p63 knockdown had no effect on Smad2 

phosphorylation, either under basal conditions or upon TGF-ß1 stimulation (Figure 14D and data 
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not shown). To assess whether  p63 regulates BMP signaling during embryonic skin development, 

we measured Smad1/5/8 phosphorylation in p63 null and in wild-type counterpart. Immunoblotting 

analysis and immunofluorescence staining using anti phospho-Smad1/5/8 revealed strong activation 

of BMP signaling in embryonic epidermis of wild-type epidermis, whereas decrease signal was 

showed in p63-null epidermis (Figure 14E and 14F). In contrast, Smad2 phosphorylation was 

similar in wild-type and in p63 null skin at this embryonic stage (Fig. 14D). Taken together, these 

data indicate that p63 positively regulates the activity of BMP signaling in primary mouse 

keratinocytes and in embryonic epidermis, without significantly affecting TGF-ß signaling. 

 

3.5  Loss of p63 induces the expression of non-epidermal genes in primary keratinocytes and 

in embryonic epidermis.  

 

In parallel with a regulation operating by p63 on BMP signaling, gene expression profiling reveled 

that large set of genes are induced by loss of p63. These genes are preferentially expressed in other 

tissues (non-epidermal genes), including the previously reported Krt8 and Krt18 (110; 111), and 

were highly expressed in early development, simple epithelia, in neural tissues (Table II) (Schema 

II).  

 

 

Schema II. Non–epidermal genes are induced in p63 knockdown epidermal cells,  

            whereas in  physiological condition p63 represses the expression of these genes.  
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Aberrant expression of non-epidermal genes were confirmed in several independent sets of primary 

mouse keratinocytes in the absence of p63 at the RNA and protein levels (Figure 15A and 15B). 

Specific knockdown of the *Np63 and the p63%  isoforms strongly induced the expression of these 

proteins, indicating the main  role exerted by *Np63% in controlling non-epidermal genes expression 

in keratinocytes. Interestingly, we found that the induction of non-epidermal genes were related with 

the reduction of BMP activity, measured by the amount of p-Smad1,5,8 phosphorylation, in p63 

knockdown cells (Figure 15B). Given that, we analyzed the expression of non-epidermal genes in 

total embryonic skin of p63-null embryos and their wild-type counterparts. Non-epidermal genes 

were strongly induced in embryonic epidermis of p63-null mice both at the RNA and protein levels 

at E13.5 and E14.5 suggesting that their aberrant expression is an early event in embryonic skin 

lacking p63 (Figure 15C and 15D). Krt14 and Krt1, specific keratin-markers expressed respectively 

in the basal layer and in spinous layer of the epidermis, were down-regulated in p63 null skin 

consistent with previous reports  (Figure 15E and data not shown) (53; 54). A shown in Figure 15E, 

aberrant expression of non-epidermal proteins in p63-null mice occurred also in snout skin and in of 

E15.5 mice. The p63 null epidermis appeared as a multilayer tissue defective of proper 

differentiation markers. Non-epidermal genes expression after E16.5 is extremely difficult  due to 

the detachment of epidermis from dermis in p63 null skin. Taken together these data indicated that 

p63 is required to suppress several non-epidermal genes during embryonic skin development and in 

postnatal keratinocytes. The aberrant expression of non-epidermal genes was related with decrease 

of BMP activity. 

 

3.6 p63 controls non-epidermal genes through BMP signaling activation. 

 

To test whether p63 directly controlled non-epidermal genes expression in epidermal cells, we 

analyzed the effects of p63 knockdown at early times after siRNA transfection. We measured the 

expression of several non-epidermal genes in p63 knockdown versus control cells. The p63 

expression is already downregulated at 8h after siRNA transfection (Figure 11A), as its direct 

targets, Bmp7 and Smad7 (Figure 11B and 11B and 12A).On the other hand, the non-epidermal 

genes showed  a different gene expression profile. They were first induced at 24hrs and strong 

accumulation was observed at 48hrs (Figure 16A). Thus, p63 could regulate non-epidermal gens 

through indirect mechanisms that might require the activation or repression of other pathways. As 
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shown in Figure 15B, non-epidermal gene induction in p63 knockdown cells were related with a 

decrease of BMP signaling, therefore we hypothesized that this event was a functional linked in 

epidermal cells.  

BMP signaling plays crucial  roles in cell fate determination of ectodermal cells during early 

development in lower vertebrate by suppressing alternative fate (23). Moreover, the main role of 

BMP signaling in promoting epidermal and suppressing neural fate has been shown also in ES cells 

(94;95). For these reasons we hypothesized that p63 could maintain low levels of non-epidermal 

genes via a BMP-dependent mechanism. 

To investigate whether p63 regulated non-epidermal gene expression through BMP signaling 

dependent mechanism, we re-activated the BMP signaling in p63 knockdown keratinocytes by either 

Smad7 knockdown and/or by BMP7 treatment. In this way, we could restore physiological levels of 

non-epidermal genes in p63 knockdown cells.  

Smad7 knockdown resulted in a significant re-activation of Smad1/5/8 phosphorylation, indicating 

the reactivation of BMP signaling in the absence of p63 (Figure 16C). However,  no effects was 

observed on Smad2  phosphorylation accordingly  with our previous data (Figure 16C). 

Interestingly, siRNA targeting Smad7 resulted in strong down-regulation of non-epidermal gene 

expression in p63 knockdown keratinocytes both at the RNA and protein levels (Fig. 16B and 16C), 

suggesting that Smad7 depletion counteracted the effect of p63 knockdown on BMP signaling.  The 

same effect was obtained by treating p63 knockdown cells with recombinant BMP7  (Figure 16B 

and 16C). Concomitant Smad7 knockdown and BMP7 treatment had little additional effect on the 

expression of non-epidermal genes as compared to each treatment alone, suggesting that these 

treatments repressed non-epidermal genes through overlapping mechanisms. Neither Smad7 

knockdown nor BMP7 treatment affected p63 expression, excluding a feedback loop mechanism.  

Intriguingly, we showed a reduction of non-epidermal gene expression by treatment of epidermal 

cells with SB431542 a selective inhibitor of TGF-ß type I receptors. As showed in Figure 17A, p63 

knockdown cells selectively treated with SB431542 displayed  reduction of Krt8 expression and 

concomitant induction of Smad1,5,8.  

A concomitant treatment of the cells with SB431542 or BMP7 did not show additional effects, 

thereby a possible explanation is that the inhibition of TGF-& signaling may result in a release 

amount of Smad4, a crucial mediator of both BMP and TGF-ß signaling (Figure17A).   
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To demonstrate that loss of BMP signaling contributes to the expression of non-epidermal genes in 

p63-null epidermis, skin explants were isolated at E14.5 from p63-null and wild-type mice and 

cultured with or without BMP7. BMP7 treatment significantly down-regulated Krt8 expression in 

p63-null skin (Figure 15D), consistent with a role of BMP signaling in repressing non-epidermal 

genes in the embryonic epidermis. To show that the BMP signaling specifically regulates non-

epidermal genes in epidermis, we measured the expression of Krt14 in p63-null skin under treatment 

with or without BMP7. As previously reported, Krt14 is a marker of basal layers of epidermis was 

down-regulated in p63 null skin. Interestingly, BMP7 treatment was insufficient to rescue loss of 

Krt14 expression in p63-null skin explants, indicating that BMP7 elicited a selective effect on non-

epidermal genes in embryonic epidermis (Figure 15D). 

Thus, Using these keratinocytes as a model system and skin explants isolated from p63 null skin, we 

provide functional evidence for the involvement of BMP signaling as negative control on non-

epidermal genes expression downstream of p63.  

 

 

3.7 Loss of p63 induces late differentiation markers independently from BMP signaling.  

As described before, we showed that loss of p63 induced non-epidermal genes in isolated epidermal 

cells and in embryonic epidermis. p63 knockdown caused also increase levels of several late 

differentiation markers such as members of  the cornified envelope genes family (Lce) (Table II). To 

address if late differentiation markers were under control of BMP signaling  we performed the same 

experiments made for non-epidermal genes.  In p63 knockdown cells we showed that neither Bmp7 

treatment nor Smad7 knockdown rescued the effect of p63 knockdown on the differentiation genes 

(Figure 18), indicating that BMP signaling selectively restored low levels of non-epidermal genes 

without affecting late differentiation genes. Taken together  these and previously results showed that 

BMP signaling specifically regulates non-epidermal genes expression in keratinocytes, indicating a 

specific role of BMP signaling in epidermal cells. 
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3.8 Canonical BMP/Smad signaling regulates the expression of non-epidermal genes. 

Our results indicated that p63 positively controls BMP signaling by induction of Bmp7 expression 

and repression of  the inhibitor Smad7. BMP proteins binds their specific receptor  and leads to 

induction of  canonical signaling pathway mediated by Smad1/5/8 protein. On the other hand, it has 

been recently demonstrated that the binding of BMP on its specific receptor leads to activate of non-

canonical pathway mediated by MAPK including p38 (112). In addition, recent work has shown that 

the inhibitory Smad7  plays  crucial roles not only by regulating R-Smad but also to regulate 

independent pathways (75;76).   

To further explore if p63 controlled non-epidermal gens by BMP/Smad canonical pathway we firstly  

measured the expression of Smads in primary mouse keratinocytes. Smad1 and Smad5 were highly 

expressed in primary mouse keratinocytes whereas Smad8 was absent (data not shown). To 

investigate the contribution of Smad1 and Smad5 in BMP/Smad canonical pathway we used two 

different approaches. Firstly, we used a specific small-molecule named LDN- 193189  that is able to 

block BMP type I receptor kinases selectively inhibiting Smad1 and Smad5 phosphorylation and 

BMP signaling activity (113).  As shown before, the induction of non-epidermal genes due to p63 

knockdown was rescued by the addition of BMP7. Co-treatment with BMP7 and LDN-193189  in 

p63 knockdown keratinocytes could not rescue the expression of non-epidermal genes suggesting 

that p63 controlled BMP/Smad canonical pathway (Figure 19A). As control of proper LDN-19318 

function, we measured the expression levels of BMP downstream targets such as Id1 and Id2 (data 

not shown).  To further demonstrate that the rescue occurred trough the canonical BMP/Smad 

pathway we designed specific siRNA oligonucleotide targeting Smad1 and Smad5. Specific 

knockdown of Smad1 or Smad5 alone had no effect on BMP direct targets Id1 and Id2 indicating 

the redundant role playing by BMP-responsive Smads  in epidermal cells, while concomitant 

Smad1/5 knockdown  inhibited the expression of direct targets of BMP signaling (figure 19B and 

19D).  We then tested if  the activation of Smad1/5 by  phosphorylation dependent mechanism is 

required for suppression of non-epidermal genes. Co-silencing of p63 with double knockdown of 

Smad1/5 in the presence of BMP7 treatment could not  rescue the expression of Krt8 and Bex1, two 

non-epidermal genes (Figure 19C). 

Finally, we decided to  investigate the contribution of Smad7 on BMP/Smad canonical pathway. We 

performed double knockdown of Smad1/5 in presence of co-silencing of p63 and Smad7 showing 

that in this condition the silencing of Smad7 could not rescue the  expression of Krt8 and 
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Bex1(Figure 19D). These data were confirmed also at protein levels as showed in Figure 19E. 

Finally, we investigated the BMP/non-canonical pathway and in more details the p38 MAPK. We 

measured by western blot analysis the phosphorylation of p38 and we observed no effect on p38 

phosphorylation in p63 knockdown cells versus wild-type cells (data not shown).  

Taken together, these results strongly  demonstrate  that BMP/Smad canonical pathway is required 

for suppression of non-epidermal genes downstream of p63. 

 

 

3.9  Loss of BMP signaling induces the expression of non-epidermal genes in keratinocytes. 

 

Our results showed a crucial role played by p63 in controlling BMP signaling to suppress non-

epidermal markers in epidermal cells. As showed BMP signaling plays a key role in our system, so 

we asked if the reduction by itself of BMP signaling in epidermal cells is necessary and sufficient to 

induce aberrant expression of non-epidermal genes. 

To address this issue, we used two different approaches. First of all,  we over-expressed Smad7 via 

retroviral vector in keratinocytes than we treated the cells with specific inhibitor of BMP signaling 

LDN-193189. Smad7 plays an inhibitory effect on BMP and on TGF-& signaling. Thus,  to 

investigate the specific effect played by Smad7 in controlling BMP and not TGF& signaling,  we 

over-expressed Smad7 by retroviral infection in primary mouse keratinocytes. Smad7 

overexpression inhibited BRE-Luc activity without affecting CAGA-Luc (Figure 20A), indicating a 

selective role in repressing BMP signaling in epidermal cells. Interestingly, we showed that 

overexpression of Smad7 by itself in keratinocytes is sufficient to induce the expression of non 

epidermal genes although more modestly than p63 knockdown (Figure 20B). These data are in 

agreement with previous results shown in Figure 19D in which we concluded that Smad7 played a  

crucial role in controlling BMP/Smad canonical pathway.  

As a second approach, we used a selective small-molecule LDN-193189 that blocks BMP type I 

receptor kinases. As control, we measured the BMP-Luc by luciferase assay in primary mouse 

keratinocytes transfected with $Np63% and treated with LDN-193189 for 24h. The BMP responsive 

elements was induced by  $Np63%  whereas resulted in a drastic inhibition by LDN-193189 

treatment (Figure 20C). On the other hand, keratinocytes treated for 24h with LDN showed the 

induction of non-epidermal genes although more modestly than p63 knockdown (Figure 20D). 
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By this approach we concluded that BMP signaling is a crucial negative regulator of non-epidermal 

genes in keratinocytes. However, in embryonic epidermis Smad7 overexpression (76) or 

homozygous deletion of Bmp7 (114), or double homozygous deletion of BMP type II receptor 

Bmpr2a/Acvr2a (115) were insufficient to induce non-epidermal genes (data not shown) suggesting 

that inactivation of BMP signaling is by itself in vivo to inhibit non-epidermal genes. 

 

 

3.10 Transcriptional targets of AEC mutant p63.  

 

Missense mutation in the SAM domain of p63% isoforms is the main cause AEC syndrome 

characterized by skin fragility and erosion at birth (96). The induction of non-epidermal markers 

observed in the absence of p63 could be a cause of skin fragility. To test this hypothesis, we 

measured gene expression profiling in the epidermis derived from wild-type mice versus AEC 

mutant mice generated in our laboratory by Dr. Ferone Giustina. Now, she are investigating on the 

molecular basis of AEC syndrome and she characterized the phenotype of AEC mutant mice.  

Surprisingly, we observed that non-epidermal genes were not affected. In addition, most of known 

direct p63 target genes did not change in AEC mutant epidermis such as Bmp7 and Smad7. 

Interestingly, in AEC mutant epidermis we identified a small group of genes affected by AEC 

mutation. Among them we identified the third member of p53 family p73. We confirmed p73 

expression in different sets of epidermis isolated from AEC mutant mice and wild-type littermates 

(Figure 21A).  We analyzed the possibility that p73 was directly regulated by p63, by searching p63-

binding site in p73 gene. To facilitate this work, we analyzed p63 ChIP-on ChIP data performed in 

human cells published by Yang A. et al in 2006 to identify putative binding sites (116). Using 

Chromatin Immunoprecipitation assay (ChIP), we demonstrated that putative p63-binding region is 

located in intron 1 at +5Kb from TSS of p73 and that effectively p63 bound this region in epidermal 

cells isolated from AEC mutant mice and control mice (Figure 21B). The p63-binding region was 

centered on an evolutionary conserved genomic sequence. ChIP followed by real time PCR 

confirmed that p63 specifically bounds this genomic region (Figure 21C). We cloned the region 

from +4.75 to +5.25 to TSS of p73 in a luciferase vector (pGL3TK-Luc) and analyzed the activity in 

vitro. As shown in (Figure 21D), p63 knockdown cells showed a reduction of promoter activity of 

p73. We mutated two canonical p63 binding sites in the first intron of p73 and we demonstrated that 
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one of them abolished the ability of p63 knockdown to inhibits promoter activity (Figure 21D). This 

results will be confirmed in epidermal cell isolated from AEC mutant and control mice.  

Taken together  this results showed a novel target of p63 that may have a key role in pathogenesis of 

AEC syndrome. p73 is a member of p53 family and recent work has shown a new role of p63 with 

p73 in promoting cells survival of embryonic neural precursor cells antagonized p53 effects (117). 

So we are investigating if p63 together with p73 control a specific gene expression program in 

epidermal cell to promote cell survival. 
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4. Discussion 

p63 gene, a homologue of the tumor suppressor p53, is crucial for the development and maintenance 

of squamous epithelia. It is specifically expressed in the basal layers of stratified epithelial tissues 

and is considered a specific marker for these cell type. p63 played a crucial role in controlling gene 

expression in epidermal cells. To date, the interaction with other signaling during  embryonic skin 

development is still poorly understood.  

Here, for the first time we shed light on a new role of BMP/Smad signaling downstream of p63 in 

suppressing non-epidermal lineage markers in isolated epidermal cell and in skin embryonic 

development. We show that lack of p63 in epidermal cells induce the expression of non-epidermal 

lineage markers as the previously reported Krt8 and Krt18 (57),  as well as genes expressed in early 

stages of embryogenesis, or in neural and simple epithelial tissues. The induction of non-epidermal 

gene occurred also in vivo in p63 null mice at until E15.5. Non-epidermal gene expression after 

E16.5 is extremely difficult to assess due to the detachment of the epidermis from the dermis in p63 

null skin. In parallel, loss of p63 in squamous cell lines elicits the induction of non-epidermal genes 

(118), indicating that p63 may be involved in controlling a proper gene expression program in 

stratified epithelia both in human and in mouse.   

In this work, we show that p63 directly controls the expression of Bmp7, a member of TGF-& family 

in epidermal cells, and we demonstrate that p63 binds a highly genomic conserved region in the 

Bmp7 first intron. In situ hybridization shows  reduced levels of Bmp7 expression in p63 null mice 

although the mRNA levels of Bmp7 is still detectable, suggesting that Bmp7 is positively controlled 

in this context also by other transcription factors. On the other hand, we show the inhibitory effect of 

p63 on Smad7 expression. Smad7 is a negative regulator of TGF-& family and acts on BMP and on 

TGF-& signaling. Smad7 is a direct target of p63 which bins to a conserved genomic region on 

Smad7 promoter. Loss of p63 in  primary mouse keratinocytes increases the levels of Smad7, 

therefore the BMP signaling activity is lost in p63 knockdown cells. To reinforce these data,  in situ 

hybridization shows  increased mRNA levels of Smad7 in p63 null mice indicating  that this 

misregulation occurred also in vivo.  

It has been known that p63 can work as an activator or repressor of transcription depending on the 

promoter context  but the co-activator or/and co-repressor that works with p63 are still unknown. 

Our work identify two direct targets of p63 Bmp7 and Smad7 and  it could be interesting to identify 
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the protein partners that differentially control  Bmp7 and Smad7 expression in epidermal cells in a 

future studies. 

The decrease expression of Bmp7 and the increased levels of Smad7  cause the inhibition of BMP 

signaling in p63 knockdown cells and in the epidermis of p63 null mice. We show that BMP 

signaling is reduced in p63 knockdown cells whereas, no effect is observed in TGF-& signaling. In 

addition, this work strongly demonstrates that Smad7, an inhibitor protein of the TGF-& family, 

preferentially acts on BMP signaling rather than on TGF-& in epidermal cells.  

We identify that  the increased levels of non-epidermal genes in primary mouse keratinocytes and in 

p63 null mice is related to a decreased activity of BMP signaling, thus suggesting a functional 

association between these phenomena. We confirmed this hypothesis restoring proper expression of 

non-epidermal genes in p63 knockdown cells cultured in the presence of BMP7. Smad7 knockdown 

elicits the same effect, indicating that also Smad7 acts on BMP signaling.  

BMP signaling plays different function in controlling cell proliferation, differentiation, apoptosis 

and cell fate decision (66). These functions are exerted by Smad-canonical and/or non-canonical 

pathways such as trough MAP-kinase activation (71; 77;78). Here, we demonstrate that p63 induces 

the BMP/Smad canonical pathway in epidermal cells to repress the non-epidermal genes expression. 

In addition, we demonstrate that Smad7 in primary mouse keratinocytes  acts also on BMP/Smad 

canonical pathway. It has been reported that induction of  Smad7 in primary mouse keratinocytes 

induced the expression of Krt8. This induction is dependent to increased levels of Cripto in 

cooperation with Smad7 (105). In our system, we do not observe the increase levels of Cripto in p63 

knockdown cells, suggesting that Smad7 works independently to induce non-epidermal gene 

expression. In conclusion , we show that the overexpression of Smad7 or blockage of the BMP 

signaling can induce the expression of non-epidermal genes in primary mouse keratinocytes, 

although more modestly than p63 knockdown,  suggesting that the non-epidermal genes are under 

the control of BMP signaling downstream p63. 

However transgenic mice over-expressing Smad7 (76) or double homozygous knockout of BMP 

type II receptor Bmpr2a/Acvr2a (115) are  insufficient to induce non-epidermal genes, suggesting 

that lack of an epidermal phenotype in mice carrying a deletion of single components of  the 

pathway may be due to expression least in part to functional redundancy among the components of 

the signaling. Alternatively, other pathways in vivo may be required for non-epidermal gene 

expression. Among the BMP receptors, Bmpr1A/ALK3 plays a crucial role in hair follicle 
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development with little phenotype in the epidermis (119; 120; 121). However, Bmpr1B/ALK6 and 

Acvr1/ALK2 are also expressed in the embryonic epidermis ( 122; 123; 124), and Acvr1/ALK2 is 

the main receptor for BMP7 (125; 126; 127), suggesting that depletion of multiple receptors may be 

required to observe an epidermal phenotype. Interestingly, it has been reported that Bmp7 null mice 

showed defects in urethra epithelium and lack of Bmp7 in urethra epithelium is by itself sufficient to 

induce Krt8 expression (128), suggesting that in the epidermis the expression of non-epidermal 

genes are controlled by multiple BMP family members or by multiple mechanisms underlying a 

major complexity of the physiological context of the epidermis. 

This work describes a uncovered role of p63 in controlling BMP signaling and for the first time 

demonstrates a direct correlation with p63 and BMP signaling in epidermal cells. Here, we 

demonstrate that p63 is crucial transcription factor for specification of epidermal gene expression 

program. Its absence determinates the aberrant expression of non-epidermal markers that could  

partially explain the phenotype observed in p63 null mice. The epidermis results as a single layers 

lacking the expression of stratified epithelia markers and cell-adhesion molecules crucial for the 

integrity of the tissue (63; 65) and acquired the expression of gene involved in early embryogenesis 

as Krt8 and Kr18 or genes express in neural or simple epithelial tissues. These aberrant expression 

could modify the mechanical strength of the epidermis leading skin fragility or to lead an primordial 

epidermal layer is unable to precede in proper differentiation program activating an incorrect 

expression program . Loss of p63 causes not only the reduction of Bmp7,but also reduction of Bmp4 

(our results).  Bmp4 is preferentially expressed  in mesenchymal compartment of the skin and has 

been reported as an important positive regulator of epidermal fate (94; 95). Reduced Bmp4 

expression in the absence of p63 could also play a role in the observed induction of in non-

epidermal genes. The reduction of BMP4 and BMP7 in the absence of could explain the strong 

reduction observed in BMP activity during embryogenesis.  This work elucidates a new functional 

correlation between p63 and BMP signaling that could represent an important step during early 

embryogenesis for appropriate gene expression program.  

In addition to BMP signaling control, there might be other mechanisms involved in regulation  of  

non-epidermal genes in epidermis. Recent studies have reported that chromatin remodeling is an 

additional control of gene expression in epidermal cells . This control represses genes involved in 

terminal differentiation in the basal layer of the epidermis (129; 130; 131). In our system, we 

observed the induction of late differentiation markers in the absence of p63. Thus, we hypothesize 
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that non-epidermal genes as for late differentiation gene may be regulated by different mechanisms  

due to a double control by BMP signaling and chromatin remodeling downstream of p63. This 

mechanism is currents unknown and will be a key subject for subsequent investigation. Moreover, 

our preliminary data show that the inhibition of  HDAC with Trichostatin A  (TSA) induces the 

expression of non-epidermal genes although more modestly than p63 knockdown (data not shown), 

suggesting a putative role of chromatin remodeling in controlling non-epidermal genes. 

 

 

Proposed Model: p63 Suppresses Non-epidermal Lineage Markers in a Bone Morphogenetic 

Protein-dependent Manner via Repression of Smad7 

 

Finally, in our laboratory has been generated a knock-in mouse model for AEC syndrome. This is 

the first mouse model for AEC syndrome and closely resembles the phenotype of AEC patients. We 

found that neither non-epidermal genes or Bmp7 and Smad7 changes their expression in AEC 

mutant mice. Thus, we conclude that mutations in SAM domain affects different functions of p63. 

Interestingly, we observed that the known targets did not change  their expression in AEC mutant 

mice reinforcing our hypothesis that p63 through SAM domain exerts a selectively function in the 

epidermis.  Here, we found that AEC mutation affects gene expression of a small group of genes. 

Among them, we identify the p53 family members, p73 that is inhibited in AEC mutant epidermis.  
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We demonstrate that p73 is a direct targets of p63 and that the L514F mutation of AEC syndrome 

did not alter the binding to DNA of p63. The ChIP assay demonstrates that p63 efficiently bound the 

DNA compared to wild-type suggesting that the mutation in SAM domain alters the recruitment of 

co-activator. A recent work showed a new role of p63 together with p73 in promoting cells survival 

of embryonic neural precursor cells antagonized p53 effects (117). So we are investigating if p63 

and p73 control a specific gene expression program in epidermal cell to promote cell survival and to 

control specific gene sets in epidermal progenitor.  

The AEC mutant mice shows a hypoplastic epidermis. Recent data obtained in our laboratory by Dr. 

Ferone Giustina demonstrates that hypoplastic phenotype is due to  a reduction of epidermal 

progenitor cells. Thus we hypothesize that p63 together with p73 could regulate the survival of stem 

cells. This regulation could also involve p73 that with p63 could activate a specific expression 

program to promote cell survival. The mutations in the SAM domain could create a dominant 

negative mechanism altering the formation of specific tetramers formed by p63 and p73 and 

determinates the loss of function. 

Taken together these data show an uncovered role of p63 in controlling of non-epidermal genes 

through BMP signaling and in controlling p73 gene expression in AEC mutant mice. This work 

elucidates the multiple role of p63 in the epidermis, and reflects the highly complexity of this gene 

due to different isoforms and to different functions that may be carried out synergistically with 

others co-activators or co-repressors. 
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Figure 9 

 

 

Figure 9. p63 positively regulates Bmp7expression (A) BMPs expression was measured by Real Time 

RT-PCR in p63 knockdown keratinocytes transfected with 200nM of siRNA for pan-p63 and control siRNA. 

Values represent means of independent experiments ± SE (*P<0.05, n=4) and RNA levels were normalized 

versus Gapdh mRNA levels. Bmp7 is the most abundant BMP family member expressed in keratinocytes 

whereas low expression is found for BMP6 and BMP2. Bmp4 is mainly expressed in the mesenchimal 

component of the skin and was unaffected by p63 knockdown. (B) BMP7 expression was measured in primary 

mouse keratinocytes transfected with siRNA specific for pan-p63, #Np63, TAp63, p63$, and p63% isoforms, 

or ctr siRNA. RNA levels were normalizedas in (A). Specific knockdown of #Np63 or p63$ isoform elicited a 

strong effects on Bmp7 expression whereas no effect was observed with knockdown of TA and gamma p63 

isoforms (C) BMPs mRNA levels were measured in p63 null skin  and wild-type  at E14.5 by Real Time RT-

PCR. Bmp7 and Bmp4 are significantly down-regulated in p63 null skin (**P<0.005, n=4 embryos).  
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Figure 10 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10. Expression of p63, TGF-! family and their regulator Smad7 in skin (A) p63, Smad7, 

Bmp7 and Bmp6 mRNA levels  was determined  by in situ hybridization in newborn mouse skin at P1. Frozen 

sections were hybridized with digoxygenin-labeled antisense probes. Corresponding sense RNAs were used 

as control. The dashed lines indicate the dermal–epidermal junction. Scale bar 60&m. (B) In situ 

hybridization of Bmp7 mRNA was performed on frozen sections of p63 null (KO) and wild-type (WT) 

embryos at E14.5. Scale bar 50&M. 
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Figure 11 

 

Figure 11. Bmp7 is a direct target of p63 (A) Knockdown of p63 was performed at early time point using 

specific siRNA for pan p63 and control siRNA. Protein extracts were collected from 8h to 48h after 

transfection and were normalized using anti-ERK (ERK) antibodies. (B) Expression of Bmp7 was measured 

by real time RT-PCR at early time point after siRNA transfection. Red line represented siRNA for p63,  green 

line control siRNA. RNA levels were normalized versus Actin-b mRNA levels.(C) In the right panel, the 

predicted p63-binding hemi-sites located at +2.4Kb from the Bmp7 TSS are indicated with their nucleotide 

sequence and phylogenetic conservation in multiple species. Bold nucleotides correspond to the core 

nucleotide sequence required for p63-binding, while underlined nucleotides are matches in the consensus 

sequence. ChIP followed by real time PCR was performed on mouse Bmp7 promoter. Primary keratinocytes 

were processed for ChIP with specific antibodies for p63 (blue bars), or unrelated anti-ERK antibodies as 

control (red bars), followed by real-time PCR amplification using oligonucleotide primers designed at the 

indicated position from the TSS. The amount of precipitated DNA was calculated relative to the total input 

chromatin, and expressed as the percentage of the total DNA. 
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Figure 12 

 

Figure 12.Smad7 is negatively regulates by p63 (A) Smad7 and Samd6 expression was measured by 

Real Time RT-PCR in p63 knockdown keratinocytes using 200nM of siRNA for pan-p63 and control siRNA. 

Values represent means of independent experiments ± SE (*P<0.05, n=4) and  RNA levels were normalized 

versus Gapdh mRNA. Smad7 was strongly induced by lack of p63 in keratinocytes whereas no effects was 

observed on Smad6 expression. (B) Smad7 expression was measured in primary mouse keratinocytes 

transfected with siRNA specific for pan-p63, #Np63, TAp63, p63$, and p63% isoforms, or ctr siRNA. RNA 

levels were normalized as in (A). Specific knockdown of #Np63 or p63$ isoforms elicited a strong effects on 

Smad7 expression whereas no effect was observed with knockdown of TA and gamma p63 isoforms (C) 

Protein extract was collected from p63 knockdown cells to perform western blot analysis. P63 knockdown 

cells showed the induction of Smad7 at protein levels using specific antibody recognizing Smad7 protein. 

Protein extracts was normalized using anti-Actinb (Actb) antibody. (D) Smad7 and Sma6 mRNA levels were 

measured in p63 null skin  and wild-type  at E14.5 by Real Time RT-PCR. Smad7 was significantly up-

regulated in p63 null skin whereas no effects was observed on Smad6 expression (**P<0.005, n=4 

embryos).(E) In situ hybridization of Smad7 mRNA was performed on frozen sections of p63 null (KO) and 

wild-type (WT) embryos at E14.5. P63 null skin showed increased Smad7 mRNA levels than control skin. The 

dashed lines indicate the dermal–epidermal junction. Scale bar 50&m.  
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Figure 13 

 

 

 

 

Figure 13. Smad7 is a new target of p63 (A) The Expression of Smad7 was measured by real time RT-

PCR at early time point after siRNA transfection. Red line represented siRNA for p63,  green line control 

siRNA. Values were normalized versus Actin-b mRNA levels.(B) Predicted p63-binding hemi-sites located at -

2.8Kb from the Smad7 TSS are indicated with their nucleotide sequence and phylogenetic conservation in 

multiple species. Bold nucleotides correspond to the core nucleotide sequence required for p63-binding, 

while underlined nucleotides are matches in the consensus sequence. (C) ChIP followed by real time PCR 

was performed on mouse Smad7 promoter. Primary keratinocytes were processed for ChIP with specific 

antibodies for p63 (blue bars), or unrelated anti-ERK antibodies as control (black bars), followed by real-

time PCR amplification using two different oligonucleotide primers. The amount of precipitated DNA was 

calculated as in 10C  
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Figure 13. Smad7 is a new target of p63. (Following up the figure 13)(D)In the upper panel, schema of  

Smad7 promoter cloned in pGL3TKluc with its deletions indicating the position of p63 binding site.  Left 

panel, the activity of  3.6kb Smad7 promoter was inhibited by p63 overexpression, as well as the activity of a 

0.4kb fragment containing the p63 binding sites. Right panel, on the other hand p63 knockdown resulted in 

enhancement of the activity both of the Smad7 promoter and of the portion containing the p63 binding sites. 

Mutations in three canonical p63 binding hemi-sites lose the ability of p63 knockdown to enhance promoter 

activity. Values of luciferase assay are normalized to Renilla luciferase activity and are expressed as fold-

changes over the promoter activity in the presence or absence of p63. Values represent mean +/- S.E. of three 

independent experiment. 
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Figure 14 

      

Figure 14. p63 positively regulates the BMP signaling (A)Primary mouse keratinocytes were co-

transfected with BMP reporter vector (BRE-luc) or two different reporters for TGF-ß (CAGA-luc and 3TP-

Luc) and increased amount of #Np63$ and examined 48h after transfection. Values are normalized to Renilla 

luciferase activity and are expressed as fold-changes over the promoter activity in the presence or absence of 

p63. Values represent mean +/- S.E. of three independent experiment. The increase amount of p63 displayed 

a strong induction of BMP reporter vector, whereas no effects was showed in TGF-ß one.(B) BMP and TGF-

ß responsive elements were co-transfected with siRNA targeting p63. P63 knockdown keratinocytes displayed 

decrease of BMP reporter activity, no effect was showed in TGF-ß activity.(C) Id1 and Id2 were a direct 

targets of BMP signaling. Their expression were measured by real time RT-PCR in primary mouse 

keratinocytes silenced with specific siRNA targeting p63. Values were normalized versus Actinb mRNA. (D) 

Immunoblotting of total lysates collected from p63 knockdown keratinocytes transfected with siRNA targeting 

p63.The specific antibody was used to detect the activity of BMP (pSmad1,5,8) and related total protein 

(Smad1) and TGF-ß signaling (pSmad2) and total protein extract (Smad2). Cells lysates were normalized 

using anti-ERK antibody (ERK).        
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Figure 14. p63 positively regulates the BMP signaling. (Following up the figure 14) (E) 

Immunoblotting of skin total lysates collected from p63 null mice isolated from E14.5.The specific antibody 

was used to detect the activity of BMP (pSmad1,5,8) and related total protein (Smad1) and TGF-ß signaling 

(pSmad2) and total protein extract (Smad2). Cells lysates were normalized using anti-ERK antibody (ERK). 

(F) Immunofluorescence was performed in p63-null skin at E15.5 with specific antibody recognizing the 

phosphorilation on Smad1,5,8 in red and E-Chaderin specific marker of epithelia cells in green. The images 

was captured with confocal microscopy. Nuclei were stained with DAPI (Blue).        
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Figure 15 

 

 

Figure 15. Aberrant expression of non-epidermal genes in the absence of p63 (A) Non-epidermal 

gene expression were measured by real time RT-PCR in primary mouse keratinocytes silenced with specific 

siRNA for pan-p63, #Np63, TAp63, p63$, and p63% isoforms, or ctr siRNA. RNA levels were normalized 

versus Gapdh mRNA, and represent the mean of independent experiments. Specific knockdown of #Np63 or 

p63$ isoforms elicited a strong effects on non-epidermal genes expression whereas no effect was observed 

with knockdown of TA and gamma p63 isoforms.(B) Immunoblotting analysis of protein extract collected 

from p63 knockdown keratinocytes 48h after transfection. The protein extracts were normalized with anti-

ERK antibody(ERK).  
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Figure15. Aberrant expression of non-epidermal genes in the absence of p63. (Following up the 

figure 15). (C) Immunofluorescence analysis using antibody for  Krt8, Cldn7 and Clnd3 (non-epidermal 

genes) in dorsal skin of p63 Knock-out mice and wild-type embryos. Non-epidermal genes were expressed in 

Knock-out embryos and not in wild-type epidermis, scale bar 30&m (D)  Immunoblotting analysis of protein 

extract collected from E14.5 probed with indicated antibody. Protein extracts were normalized as in B. (E) 

Immunofluorescence analysis was performed with  indicated antibody in embryonic epidermis isolated from 

E15.5 mice. Krt1 are specific markers expressed in wild type epidermis. Its expression was absent in p63 

null-mice, on the other hand the non-epidermal genes were induced. 
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Figure 16 

 

 

 

Figure 16. Re-activation of BMP signaling restores low levels of non-epidermal genes in p63 

knockdown keratinocytes and p63 knock-out  skin explants (A) Non-epidermal genes were measured 

by real time RT-PCR at early time point after p63 knockdown. Solid line represented siRNA for p63, versus 

control keratinocytes  dot-line. mRNA levels of  Krt8, Clu, Cldn7 were showed induction after 24h after 

transfection. Values were normalized versus Actin-b mRNA levels.(B) mRNA expression levels of several non-

epidermal genes  were measured by real time RT-PCR in primary mouse keratinocytes transfected with p63, 

Smad7, p63 and Smad7 p63/S7 or control siRNA. Cells were treated with BMP7 for at least 24h or left 

untreated and collected at 48h after transfection. Values were normalized versus Actin-b mRNA levels and 

represented the means of independent experiments.  
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Figure 16. Re-activation of BMP signaling restores low levels of non-epidermal genes in p63 

knockdown keratinocytes and p63 knock-out  skin explants. (Following up the figure 16).(C) 

Immunoblotting analysis of total cell lysates collected from primary mouse keratinocytes treated as in B. The 

indicate antibodies were used to detect krt8 and Clu two non-epidermal genes and p-smad1,5,8 to 

determinate the activity of BMP signaling and Smad2 for TGF-!. Protein extracts were normalized using 

anti-ERK antibody, Smad1 to normalize p-smad1,5,8 and Smad2  for p-smad2.(D) Skin explants was isolated 

from E14.5 p63 null and control mice. Skin explants was cultured overnight in DMEM with or without 5% 

FBS and were treated with additional 24h with BMP7 (80ng/ml) or left untreated in the absence (WT1 and 

KO1) or in presence of FBS (WT2 and KO2). Krt8 and Krt14 were measured as in B and represented the 

average of two independent experiments.    
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Figure 17 

 

Figure 17. The expression of non-epidermal genes were rescued by blockage of TGF-! 

activity. Immunoblotting analysis of protein lysates collected from primary mouse keratinocytes 

transfected for 48h with siRNA targeting p63 or control RNA. The cells were treated 24h after 

transfection with 20ng/ml of BMP7 or 2.5&M of SB431542 in presence of serum supplied with FBS. The 

immunoblotting was performed using the indicated antibodies. Protein extracts was normalized versus 

anti-ERK antibody.    
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Figure 18 

 

Figure 18. Loss of p63 induces late differentiation markers independently from BMP signaling. 
mRNA expression levels of two late differentiation genes (Lce1a2 and Lce1d)  were measured by real time 

RT-PCR in primary mouse keratinocytes transfected with p63, Smad7, p63 and Smad7 (p63/S7) or control 

siRNA. Cells were treated with BMP7 for at least 24h or left untreated and collected at 48h after 

transfection. mRNA values were normalized versus Actin-b mRNA levels and represented the means of 

independent experiments. 
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Figure 19 

 

Figure 19. Canonical BMP/Smad pathway regulates the expression of non-epidermal genes (A) 

mRNA expression levels of Bex1 and Krt8 were measured by real time RT- PCR in primary mouse 

keratinocytes  transfected with siRNA targeting p63 and treated after 24h from transfection with BMP7 

20ng/ml or BMP7 and LDN-193189 200nM until to 24h. mRNA values were normalized versus Actin-b 

mRNA levels. (B) mRNA expression levels of Id1 was measured by real time RT-PCR in primary mouse 

keratinocytes  transfected respectively with p63, Smad1 (S1_a and S1_b), Smad5 (S5_a and S5_b) and Smad1 

and Smad5 (S1_b/S5_B) siRNA for 48h. The values were normalized as in A (C) mRNA expression levels of 

Bex1 and Krt8, non-epidermal genes, were measured by real time RT- PCR in primary mouse keratinocytes  

transfected with siRNA targeting p63 or Smad5/Smad1 and p63siRNA . Cells were treated after 24h from 

transfection with BMP7 20ng/ml until to 24h. mRNA values were normalized as in A.(D) mRNA expression 

levels of Bex1 and Krt8 was measured by real time RT-PCR in primary mouse keratinocytes transfected 

respectively with p63, and Smad1 and Smad5 (S1/S5/p63) siRNA for 48h. The values were normalized as in . 
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Figure 19. Canonical BMP/Smad pathway regulates the expression of non-epidermal genes. 

(Following up the figure 19).(E) Expression of indicated proteins was measured by immunoblotting in 

primary mouse keratinocytes co-transfected with the indicated combinations of siRNA. Protein extracts were 

normalized using ERK antibody. 
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Figure 20 

 

Figure 20. The canonical BMP/Smad signaling is able to induce non-epidermal genes (A) Primary 

mouse keratinocytes were transfected with TGF-! (CAGA) or BMP (BRE) responsive elements and infected 

with retroviral vector carrying the inhibitory Smad7. The overexpression of Smad7 inhibited the activity of 

BMP responsive elements whereas no effects was observed on TGF-! one. Values of luciferase assay are 

normalized to Renilla luciferase activity and are expressed as fold-changes over the promoter activity in the 

presence of Smad7 overexpression. Values represent mean +/- S.E. of three independent experiment. (B) 

Primary mouse keratinocytes was infected with retrovirus vector carrying Smad7. mRNA levels of Smad7, 

Krt8 and Cldn7 was measured by real time RT-PCR. Values were normalized versus Actin-b mRNA levels. 

(C) Primary mouse keratinocytes were co-transfected with BMP responsive elements (BRE) and "Np63$ 

isoform and treated with or without LDN-193189 200nM for 24h. Values of luciferase were normalized as in 

(A).(D) mRNA expression levels of non-epidermal genes and Id2 direct target of BMP signaling were 

measured in primary mouse keratinocytes treated with LDN-193189 200nM for 24h. Values were normalized 

versus Actin-b mRNA levels.  
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Figure 21 

 

Figure 21. p73 a new target of p63 (A) mRNA expression levels of Tap73 and "Np73were measured in 

primary mouse epidermis isolated from AEC mutant mice and WT mice. The values were normalized versus 

Hprt mRNA levels. (B) Predicted p63-binding hemi-sites located at +5Kb from the p73 TSS are indicated 

with their nucleotide sequence and phylogenetic conservation in multiple species. Bold nucleotides 

correspond to the core nucleotide sequence required for p63-binding, while underlined nucleotides are 

matches in the consensus sequence. (C) ChIP followed by real time PCR was performed on mouse p73 in first 

intron of p73 gene. Primary keratinocytes isolated from AEC mutant mice and wild-type mice were processed 

for ChIP with specific antibodies for p63 ( grey bars), or unrelated anti-GFP antibodies as control (black 

bars), followed by real-time PCR amplification using different oligonucleotide primers for p73 and known 

target gene of p63 as control. The amount of precipitated DNA was calculated relative to the total input 

chromatin, and expressed as the percentage of the total DNA. (D) In the left,  schema of p63BS in p73 gene 

cloned in pGL3TKluc with its mutant BS. In right, the activity of  0.5 kb of p73first intron was inhibited by 

p63 knockdown. Mutations in one canonical p63 binding hemi-sites lose the ability of p63 knockdown to 

inhibits promoter activity. Values of luciferase assay are normalized to Renilla luciferase activity and are 

expressed as fold-changes over the promoter activity in the absence of p63. 



64 

 

 

Table I 

 

 
 

 

 

Table I. TGF-! family in p63 Knockdown keratinocytes. A subset of genes encoding for members of 

BMP/TGF! family and their regulator were differentially expressed in p63 knockdown versus control 

keratinocytes. The microarray analysis was performed on three independent biological replicates using 

Affymetrix Mouse Genome 430A 2.0 chips.  
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Table II 

 

 

 

Table II. Expression profile of genes induced in the absence of p63. Tissue expression profiling of 

up-regulated genes was obtained from a custom made mouse GNF1M (MAS5) GNF gene expression 

database (107) . In red high expression, in green low expression.   
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p63 Suppresses Non-epidermal Lineage Markers in a Bone
Morphogenetic Protein-dependent Manner via Repression
of Smad7*□S
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p63, a p53 family member, plays an essential role in epidermal
development by regulating its transcriptional program. Here we
report a previously uncovered role of p63 in controlling bonemor-
phogenetic protein (BMP) signaling, which is required for main-
taining low expression levels of several non-epidermal genes. p63
represses transcription of the inhibitory Smad7 and activates
Bmp7, thereby sustaining BMP signaling. In the absence of p63,
compromised BMP signaling leads to inappropriate non-epi-
dermal gene expression in postnatal mouse keratinocytes and
in embryonic epidermis. Reactivation of BMP signaling by
Smad7 knockdown and/or, to a lesser extent, by BMP treat-
ment suppresses expression of non-epidermal genes in the
absence of p63. Canonical BMP/Smad signaling is essential
for control of non-epidermal genes as use of a specific inhib-
itor, or simultaneous knockdown of Smad1 and Smad5 coun-
teract suppression of non-epidermal genes. Our data indicate
that p63 prevents ectopic expression of non-epidermal genes
by a mechanism involving Smad7 repression and, to a lesser
extent, Bmp7 induction, with consequent enhancement of
BMP/Smad signaling.

Mouse embryonic skin develops from an initial undifferenti-
ated monolayer of epithelial cells that subsequently undergoes
stratification beginning at embryonic day 14.5 (E14.5) (recently
reviewed in Ref. 1). During embryogenesis, the surface ecto-
derm initiates the expression of gene products characteristic of
the basal cells of the epidermis, including keratins Krt5 and
Krt14.When stratification begins, suprabasal keratins Krt1 and
Krt10 start to be expressed in the upper layers, followed by

expression of late differentiation markers, including late corni-
fied envelope proteins (Lce). p63 is one of the first genes to be
specifically expressed in the surface ectoderm prior to Krt5 and
Krt14 expression at E7.5–E8, and continues to be expressed
during embryonic skin development and in the basal prolifera-
tive layer in postnatal life (2–4). The p63 gene encodes a tet-
rameric transcription factor that can be expressed in at least six
isoforms with widely different transactivation potential that
share an identical DNA binding domain (4). Alternative tran-
scription start sites give rise to transactivation (TA)6 isoforms,
encoding proteins with a canonical transactivation domain
similar to p53, and!Nisoforms containing an alternative trans-
activation domain (4, 5). !Np63!, the most abundant isoform
in isolated keratinocytes and in the epidermis (4), contains both
a transactivation domain and an inhibitory domain, and has
been shown to activate or repress gene transcription depending
on the promoter context (reviewed in Ref. 6). Mice lacking the
p63 gene die from dehydration shortly after birth and display
cleft palate, limb truncation, and absence of all stratified epithe-
lia, including the epidermis (7, 8), suggesting that p63 plays a
non-redundant role in these tissues. Defects in the surface epi-
thelium of p63-null mice have been ascribed to loss of prolifer-
ative potential of keratinocyte stem cells (8, 9), and/or altered
epidermal stratification and cell differentiation associated with
reduced expression levels of Krt5/Krt14 and Krt1/Krt10 (2, 7,
10). In parallel with suppression of epidermal keratins, loss of
p63 results in aberrant expression of the simple epithelial kera-
tins Krt8 and Krt18 both in vivo and in vitro (2, 11), suggesting
that p63 may be involved in maintaining an epithelial gene
expression program in mammalian cells.
In non-mammalian vertebrates BMP signaling is an impor-

tant determinant of epidermal fate specification, acting as an
epidermal inducer and suppressing neural fate in early devel-
opment (reviewed in Ref. 12). In mammals a putative BMP
function in regulating epidermal fate or specific gene expres-
sion has not been demonstrated consistent with a possible
redundant function among BMP family members or with other
signaling pathways. The BMP family consists of more than 20
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secreted proteins that belong to the transforming growth fac-
tor-! (TGF-!) family. Members of the BMP family are differ-
entially expressed in embryonic skin. Expression of Bmp2 and
Bmp4 transcripts in developing murine skin is restricted to the
hair follicle epithelium and mesenchyme, respectively (13, 14).
Strong expression of Bmp7 mRNA is seen in mouse and rat
epidermis during embryonic development from early stages (3,
15), whereas Bmp6 is expressed in suprabasal layers of the
embryonicmurine epidermis at E15.5 (14). Interestingly, Bmp7
transcripts are strongly down-regulated in the ectodermofp63-
null mice (3), although the functional significance of this find-
ing has not been addressed.
An important role in BMP/TGF-! signaling is played by the

inhibitory Smads, Smad6 and Smad7, which block signaling by
several mechanisms including competition with R-Smads for
interaction with the activated receptors, ubiquitination, and
degradation of the receptors (for a review, see Ref. 16). In addi-
tion Smad7 also plays noncanonical functions by regulating
several other signaling proteins, including !-catenin (16, 17).

Here we report that p63, and more specifically the !Np63"
isoform, activates BMP signaling both in vitro and in vivo. p63
directly binds to an evolutionary conserved regulatory region
on the Smad7 promoter thereby repressing its expression. At
the same time, p63 sustains Bmp7 expression in the epidermis
and indirectly controls Bmp4 expression in the dermis. Induc-
tion of BMP signaling maintains physiological levels of non-
epidermal genes downstream of p63 in a Smad1/5-dependent
manner. Taken together, these findings reveal a previously
uncovered role of BMP/Smad signaling downstream of p63 in
suppressing non-epidermal gene expression in keratinocytes.

EXPERIMENTAL PROCEDURES

Cell Cultures, Constructs, Transfections, Reporter Assays, and
Retroviral Infections—Primary mouse keratinocytes were iso-
lated from 2-day-old Swiss CD1 mice and cultured as previ-
ously described (18). Transfectionswere performed 5 days after
plating using Lipofectamine 2000 (Invitrogen). Reporter plas-
mids (250 ng) were co-transfected with pCMV2-FLAG-
!Np63" or pCMV2-FLAG control (18). A 4.3-kb Smad7 pro-
moter (3.6-kb promoter region and 0.7-kb 5"-untranslated
region upstream) (19) was cloned into the XhoI-HindIII sites in
the pGL3 reporter plasmid (Promega). The Smad7 fragment
(#3.0/#2.6) was generated by deletion of the Smad7 promoter
using NheI-PstI and cloned into a pGL3-TKLuc reporter plas-
mid (20). Mutations in the p63 binding sites were generated
using the QuikChange Site-directed mutagenesis kit (Strat-
agene). Luciferase activity was determined 48 h after transfec-
tion with the dual-luciferase reporter assay kit (Promega).
pCMV-Renilla reporter (20 ng; Promega) was used to normal-
ize transfection efficiency. A total amount of 200 nM siRNA
(Stealth siRNA, Invitrogen) for pan-p63, for specific p63 iso-
forms (18), and/or for Smad7, Smad1, Smad5, Bmp7, or control
medium GC-rich siRNA (Stealth siRNA, Invitrogen) were
transfected by Lipofectamine 2000. In some experiments cells
were treated with BMP7 (20 ng/ml) (R&D Systems) 24 h after
transfection. The BMP type I receptor inhibitor LDN-193189
(200 nM) was given to the cells 30 min before BMP7 addition.
High titer retrovirus production was obtained in human

embryonic kidney-293T cells by transient transfection of the
pBABE-Smad7 (21) using Lipofectamine 2000 as previously
described (20). Primary keratinocytes were infected in the pres-
ence of 8#g/ml Polybrene (Sigma), selectedwith 2#g/ml puro-
mycin for 48 h, and grown after selection for an additional 24 h
in the absence of puromycin.
Analysis of Gene Expression, Real Time RT-PCR, and

ChIP—Gene expression profiling was obtained in p63
knockdown versus control keratinocytes 48 h after transfec-
tion using Affymetrix Mouse Genome 430A 2.0 chips and
analyzed as reported (22). Among the genes affected by loss

FIGURE 1. p63 positively regulates BMP signaling. A, different amounts of
the !Np63" expression vector were co-transfected in primary mouse kerati-
nocytes as indicated with the BMP-responsive reporter BRE-luc (50), or with
TGF-! responsive reporters CAGA-luc (51) or 3TP-lux (52), and examined 48 h
after transfection. Values are normalized to Renilla luciferase activity and are
expressed as fold-changes over the promoter activity in the absence of
!Np63", and represent mean $ S.E. of three independent experiments.
B, immunoblotting of primary keratinocytes transfected with p63 siRNA or
control siRNA for 48 h, and either treated for 24 h with BMP7 (20 ng/ml) or left
untreated, and probed with the indicated antibodies. Activation of BMP and
TGF-! signaling was measured using phosphorylation-specific antibodies for
Smad1/5/8 (p-Smad1/5/8) and Smad2 (p-Smad2), respectively. Total Smad1
and Smad2 expression is shown. ERK was used as loading control. C, immu-
noblotting of total skin extracts isolated from wild-type (WT) and p63-null
embryos (KO) at E14.5, probed with the indicated antibodies. D, immunoflu-
orescence staining was performed with anti-p-Smad1/5/8 (red) and anti-E-
cadherin antibodies (Cdh1, green) in WT and p63 KO at E15.5, and detected by
confocal microscopy. Nuclei were stained with 4",6-diamidino-2-phenylin-
dole (blue). Scale bar is 20 #m.
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of p63, 106 genes were up-regulated more than 5-fold by p63
knockdown (supplemental Table S1). Tissue expression pro-
filing of up-regulated genes was obtained from a custom
made mouse GNF1M (MAS5) GNF gene expression data
base (23). Among 72 genes that were up-regulated more than
5-fold by p63 knockdown (false discovery rate ! 0.25), 48
(67%) were not expressed in normal epidermis, but rather in
other tissues. Total RNA was extracted 48 h after transfec-
tion from primary keratinocytes using TRIzol reagent
(Invitrogen), and from mouse embryonic skin (E14.5) using
the RNAspin Mini RNA isolation kit (GE Healthcare)
according to the manufacturer’s instruction. RNA samples
were treated with RNase-free DNase I (Promega), and cDNA
was synthesized using SuperScript Vilo (Invitrogen). Two-
step real time RT-PCR was performed using the SYBR Green
PCR master mixture in an ABI PRISM 7500 (Applied Bio-
systems). Levels of the target genes were quantified using
specific oligonucleotide primers and normalized for glycer-
aldehyde-3-phosphate dehydrogenase or anti-!-actin ex-
pression as indicated in the figure legends. Approximately
3 " 106 primary keratinocytes were fixed with 1% formalde-
hyde and ChIP was performed using anti-p63 antibodies
(H-137, Santa Cruz Biotechnology), and anti-ERK1 antibod-
ies as negative control. ChIP and real time PCR were per-
formed as previously described (18). For oligonucleotide
sequences, see supplemental Table S2.
Immunostaining, Immunoblotting, and in Situ Hybridiza-

tion—Embryos were fixed in 4% paraformaldehyde and either
embedded in OCT (Sakura) or paraffin. Fluorescent signals
were monitored under a Zeiss confocal microscope
LSM510meta using a Zeiss EC Plan-Neofluar "40/1.3 oil
immersion objective. For immunoblotting cells were lysed in

sample buffer or in 1% Triton
X-100 lysis buffer (10 mM Tris-
HCl, pH 7.5, 150 mMNaCl, 1% Tri-
ton X-100, 1 mM EDTA) for
Smad7, and protein extracts were
run on SDS-PAGE gels, trans-
ferred on Immobilon-P transfer
membranes (Millipore), probed
with the indicated antibodies, and
detected by chemiluminescence
(ECL, GE Healthcare). For a full
list of antibodies, see the supple-
mental data. In situ hybridization
was performed on frozen sections
of P1 skin and E14.5 embryos as
previously described (24). Digoxi-
genin-labeled antisense and sense
RNA probes were transcribed
from the SP6 and T7 promoters
using a digoxigenin labeling kit
(Roche Applied Science) accord-
ing to manufacturer’s instruc-
tions. The Smad7 probe corre-
sponding to a 485-bp cDNA
fragment was kindly provided by
Xiao-Jing Wang (17). The Bmp6

probe was synthesized from a 893-bp SacI-EcoRI cDNA frag-
ment kindly provided by Dr. M. Mikkola. The Bmp7 probe
corresponds to a 440-bp long cDNA fragment generated by
PCR and inserted in the pCR!II vector (Invitrogen). For PCR
oligonucleotide sequences, see supplemental Table S2.
Digoxigenin labeling was monitored under a Zeiss Axios-
kop2 plus microscope using a Zeiss Plan-Neofluar "20/0.50
objective.
Mice and Skin Explants—All experiments performed with

mice were conducted under IACUC approval. p63-null mice
(B6.129S7-Trp63tm1Brd/J) were obtained from the Jackson Lab-
oratory. For skin explants, dorsal skins from embryos at E14.5
were laid on a culture plate insert (Millipore) and cultured in
the presence or absence of BMP7 in Dulbecco’s modified
Eagle’s medium with or without 5% fetal bovine serum, over-
night at 37 °C and 5% CO2.

RESULTS

p63 Positively Controls BMP Signaling—To gain insight into
the role of p63 in controlling gene expression in epidermal cells,
we recently identified a large number of putative p63 target
genes in primary mouse keratinocytes (22). A subset of genes
encoding for members of the BMP family and their regulators
were differentially expressed in p63 knockdown versus control
keratinocytes.
To assess whether p63 affected BMP or TGF-! signaling, we

first co-transfected varying amounts of a #Np63"-expressing
plasmid together with a luciferase reporter gene under the con-
trol of either BMP (BRE) or TGF-! (CAGA and 3TP) respon-
sive elements in primarymouse keratinocytes. As shown in Fig.
1A, expression of p63 resulted in a dose-dependent induction of
the BMP-responsive element, without affecting the TGF-!

FIGURE 2. Smad7 is repressed by p63. A, Smad7 and Smad6 mRNA levels were measured by real time RT-PCR
in primary keratinocytes transfected with p63 (p63) or control siRNA (ctr). Cells were collected 48 h after
transfection. Values are expressed as glyceraldehyde-3-phosphate dehydrogenase-normalized mRNA levels,
and represent the mean of independent experiments $ S.E. (**, p ! 0.005, n % 8). B, Smad7 expression was
measured in primary mouse keratinocytes transfected with siRNA specific for pan-p63, #Np63, TAp63, p63",
and p63# isoforms, or control. RNA levels were expressed as in A. Isoform-specific siRNA specifically inhibited
the corresponding isoforms (data not shown). C, Smad7 protein levels were measured in p63 knockdown and
control keratinocytes 48 h after transfection. Protein extracts were normalized using anti-!-actin (Actb) anti-
bodies. D, Smad7 and Smad6 mRNA levels were measured by real time RT-PCR in p63 KO and wild type (WT) skin
at E14.5 (**p ! 0.005, n % 5 embryos). E, RNA in situ hybridization of mouse embryonic skin sections at E14.5
from WT and p63 knock-out (KO) using a digoxigenin-labeled antisense probe for mouse Smad7. The dashed
line indicates the dermal-epidermal junction. A Smad7 sense probe gave no detectable signal under the same
conditions (data not shown). Scale bar is 50 $m.
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ones. In parallel, p63 knockdown resulted in a significant reduc-
tion in Smad1/5/8 phosphorylation under basal conditions and
upon BMP7 treatment (Fig. 1B). In contrast, p63 knockdown
elicited no effect on Smad2 phosphorylation, a direct TGF-!
effector, either under basal conditions or upon TGF-!1 stimu-
lation (Fig. 1B and data not shown).

To assess whether p63 regulates BMP signaling during
embryonic skin development, we measured Smad1/5/8
phosphorylation in p63-null and in wild-type skin. Immuno-
blotting analysis and immunofluorescence staining using

anti-phospho-Smad1/5/8 revealed
strong activation of BMP signaling
in the developing wild-type epi-
dermis, whereas the Smad1/5/8
signal was dramatically reduced in
the p63-null epidermis (Fig. 1, C
and D). In contrast Smad2 phos-
phorylation was similar in wild-
type and p63-null skin at this
embryonic stage (Fig. 1C). Taken
together, these data indicate that
p63 positively regulates BMP sig-
naling in primary mouse keratino-
cytes and in embryonic epidermis,
without significantly affectingTGF-
! signaling.
p63 Transcriptionally Controls

Smad7 and Bmp7 Gene Expres-
sion—Our previous gene expression
profiling indicated that p63 knock-
down might affect Smad7 expres-
sion (22). Given the key role of
Smad7 in regulating BMP signaling,
we sought to confirm and expand
this finding. p63 knockdown in ke-
ratinocytes caused a significant
induction of Smad7 both at the
RNA and at the protein levels, with-
out affecting expression of the
related gene Smad6 (Fig. 2,A andC).
In addition, specific knockdown of
!Np63 and p63" isoforms induced
Smad7 expression, whereas knock-
down of TAp63 and p63# isoforms
had no effect (Fig. 2B), indicating
that the !Np63" isoform is re-
quired for Smad7 repression. In par-
allel with these findings, Smad7 was
expressed at low levels in wild-type
embryonic and newborn epidermis
(Fig. 2,DandE, andsupplemental Fig.
S1A), whereas its expression was sig-
nificantly increased in the p63-null
epidermis (Fig. 2,D and E).

To test the possibility that p63
might directly regulate Smad7, we
tested a putative high affinity p63-
binding region located at "2.8 kb

from the transcription start site, which emerged from our pre-
vious ChIP-on-ChIP experiment in a 48.5-kb genomic
sequence spanning the Smad7 locus (22). The p63-binding
region was centered on an evolutionary conserved genomic
sequence containing four canonical p63 binding hemisites (Fig.
3A). ChIP followed by real time PCRwith two independent sets
of oligonucleotides confirmed that p63 specifically bound this
genomic region (Fig. 3B). In addition, p63 overexpression sig-
nificantly inhibited the activity of a 3.6-kb Smad7 promoter, as
well as the activity of a 0.4-kb fragment containing the p63

FIGURE 3. Smad7 is a transcriptional target of p63. A, a conserved p63-binding site is located at "2.8 kb from
the Smad7 transcription start site. The predicted p63-binding hemisites are indicated with their nucleotide
sequence and phylogenetic conservation in multiple species. Bold nucleotides correspond to the core nucleo-
tide sequence required for p63 binding, whereas underlined nucleotides are matches in the consensus (22, 53).
B, specific binding of endogenous p63 to the mouse Smad7 promoter. Primary keratinocytes were processed
for ChIP with antibodies specific for p63 (gray bars), or unrelated anti-ERK antibodies as control (white bars),
followed by real-time PCR amplification using oligonucleotide primers designed at the indicated position from
the transcription start site. The amount of precipitated DNA was calculated relative to the total input chroma-
tin, and expressed as the percentage of the total DNA, as previously described (54). C, the activity of a 3.6-kb
Smad7 promoter region and its 0.4-kb fragment spanning the p63-binding sites (p63BS) were measured in the
presence of the indicated amounts of a !Np63"-expressing construct (p63) (left panel), or p63 or control (ctr)
siRNA (right panel). A 0.4-kb fragment containing 2-bp mutations in each of the first three binding hemisites
indicated in A (0.4kb 3xmut) was also co-transfected with p63 or control siRNA. Values are expressed as
described in Fig. 1A.

p63 Suppresses Non-epidermal Genes via Smad7

OCTOBER 30, 2009 • VOLUME 284 • NUMBER 44 JOURNAL OF BIOLOGICAL CHEMISTRY 30577

 a
t U

n
iv

e
rs

ità
 d

e
g
li s

tu
d
i d

i M
ila

n
o
, o

n
 N

o
v
e
m

b
e
r 6

, 2
0
0
9

w
w

w
.jb

c
.o

rg
D

o
w

n
lo

a
d
e
d
 fro

m
 

http://www.jbc.org/content/suppl/2009/08/28/M109.049619.DC1.html
Supplemental Material can be found at:

http://www.jbc.org/cgi/content/full/M109.049619/DC1
http://www.jbc.org/cgi/content/full/M109.049619/DC1
http://www.jbc.org/


binding sites (Fig. 3C, left panel). Conversely, p63 knockdown
resulted in enhancement of the activity both of the Smad7 pro-
moter and the fragment containing the p63 binding sites (Fig.
3C, right panel). Mutations in three canonical p63 binding
hemisites in the promoter fragment abolished the ability of p63
knockdown to enhance promoter activity. Taken together,
these data strongly suggest that p63 directly represses Smad7 in
primary mouse keratinocytes and in embryonic skin.
Next we analyzed the expression of selected BMP family

members known to be expressed in skin, in the presence or
absence of p63. Bmp2 and Bmp4 were poorly expressed in pri-
mary mouse keratinocytes and their expression was unaffected
by p63 knockdown (Fig. 4A). Bmp6 was modestly induced by
p63 knockdown, however, its expression was very low under
non-differentiating conditions, consistent with its suprabasal
expression in newborn skin (supplemental Fig. S1A) and in the
developingmurine epidermis (14, 25). In contrast Bmp7was by
far the most highly expressed BMP family member in keratino-
cytes, and its expression was inhibited !50% by p63 knock-
down. Consistent with this observations, low levels of Bmp6
were modestly up-regulated in p63-null embryonic skin at
E14.5, whereas Bmp2 was not significantly altered (Fig. 4B).
Interestingly, Bmp4, which is mainly expressed in the mesen-
chymal component of the skin, was reduced in p63-null skin,
suggesting that p63 may indirectly control Bmp4 expression in
the adjacent dermis, thus possibly contributing to the reduction

in BMP signaling observed in the p63-null epidermis. Strong
signaling for Bmp7mRNAwas detected by in situhybridization
both in the basal layer of newborn epidermis and in embryonic
epidermis (supplemental Fig. S1, A and B). Bmp7 was previ-
ously reported to be absent in p63-null skin at E14 by in situ
hybridization, although no quantitative data were provided (3).
We observed a similar, although more modest, reduction of
Bmp7 transcript in p63-null versus wild-type skin at E14.5 as
assessed by real time RT-PCR and in situ hybridization (Fig. 4B
and supplemental Fig. S1B), in agreement with the reduction
observed in p63 knockdown keratinocytes. ChIP analysis
revealed that p63 bound to an evolutionary conserved genomic
region in intron 1 (supplemental Fig. S1C), previously shown to
bind all p53 family members in a breast cancer cell line (26).
Taken together these data demonstrate that p63 regulates
Smad7 and Bmp7 in epidermal cells, inducing one and repress-
ing the other, by direct binding to specific consensus sequences
in highly conserved genomic regions proximal to their tran-
scription start sites.
Loss of p63 Induces Expression of Non-epidermal Genes in

Primary Keratinocytes and in Embryonic Epidermis—Global
gene expression profiling of p63 knockdown versus control ke-
ratinocytes (22) revealed that p63 negatively regulates a set of
genes that are preferentially expressed in other tissues (non-
epidermal genes), including the previously reported Krt8 and
Krt18 (11, 27). 67% of the genes up-regulatedmore than 5 times
in the absence of p63 were expressed at very low levels in wild-
type keratinocytes, and were enriched in genes expressed in
early embryonic development, in simple epithelia, or in neural
tissues (supplemental Table S1).
Aberrant expression of non-epidermal genes in p63 knock-

down keratinocytes was confirmed at the RNA and protein lev-
els for some relevant genes (Fig. 5, A and B, and data not
shown). Knockdown of the "Np63 and the p63! isoforms
strongly induced expression of non-epidermal genes and their
gene products and at the same time inhibited Smad1/5/8 phos-
phorylation, whereas knockdown of TAp63 and p63" isoforms
had no effect. To test whether the effect elicited by p63 knock-
down in primary keratinocytes correlated with p63 function in
vivo, we analyzed expression of non-epidermal genes in total
embryonic skin of p63-null embryos and their wild-type coun-
terparts at E13.5 and E14.5. Importantly, non-epidermal gene
products were strongly expressed in the p63-null epidermis but
not in wild-type epidermis (Fig. 5, C and D). Taken together
these data indicate that p63 is required to suppress several non-
epidermal genes during embryonic skin development and in
postnatal keratinocytes, and that this regulation is unlikely to
occur directly.
p63 Represses Non-epidermal Genes through a Canonical

BMP/sSmad-dependentMechanism—Non-epidermal geneswere
not identified as early target genes upon p63 activation (22), and
their induction occurred at a late interval upon p63 knockdown
(datanot shown), suggesting that they arenotdirectly regulatedby
p63. Because in lower vertebrates BMP signaling has been shown
to be a crucial determinant of the epidermal cell fate during
ectodermal development by suppressing alternative fates, we
hypothesized that p63 couldmaintain low levels of non-epider-
mal genes via a BMP-dependent mechanism. To this end we

FIGURE 4. Bmp7 is the most abundant BMP family member in keratino-
cytes and embryonic skin and is down-regulated in the absence of p63.
A, expression levels of the indicated BMPs were measured by real time RT-PCR
in primary keratinocytes transfected with p63 or control (ctr) siRNA as
described in the legend to Fig. 2A. Values represent mean of independent
experiments # S.E. (*, p $ 0.05, n % 4). B, BMP mRNA levels were measured in
p63 knockout (KO) and wild-type (WT) skin at E14.5. Bmp7 and Bmp4 are
significantly down-regulated in p63 KO skin (**, p $ 0.005, n % 4 embryos).
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examined whether re-activation of BMP signaling in p63
knockdown keratinocytes by either Smad7 knockdown and/or
BMP treatment could restore physiological levels of non-epi-
dermal genes. Smad7 knockdown resulted in a significant re-
activation of Smad1/5/8 signaling in the absence of p63, with-
out affecting Smad2 activation (supplemental Fig. S2A).
Conversely, Smad7 overexpression inhibited BRE-Luc activity
without affecting CAGA-Luc (supplemental Fig. S2B). In par-
allel, Smad7 knockdown resulted in strong down-regulation of
non-epidermal gene expression in p63 knockdown keratino-
cytes both at the RNA and protein levels (Fig. 6, A and B),
suggesting that Smad7 depletion counteracted the effect of p63
knockdown. A similar counteracting effect was also observed
with a second distinct siRNA oligonucleotide against Smad7
(supplemental Fig. S2C), confirming the specificity of this
effect. Inhibition of non-epidermal genes was also observed by
treating p63 knockdown keratinocytes with BMP7, BMP4, or
BMP6 (Fig. 6, A and B, and data not shown). Concomitant
Smad7 knockdown and BMP treatment had little additional
effect on the expression of non-epidermal markers as compared
with each treatment alone, suggesting that these treatments
repressed non-epidermal genes through overlapping mecha-
nisms. Neither Smad7 knockdown nor BMP treatment affected
p63expression (datanot shown), excluding a feedback loopmech-

anism. TGF-! treatment under the
sameexperimental conditionsdidnot
suppress non-epidermal genes (data
not shown).
To test whether BMP signaling

functions specifically downstream
of p63 to regulate non-epidermal
genes, or has a broader compensa-
tory role on p63 downstream tar-
gets, we measured expression of the
Lce genes (or Sprrl), which encode
epidermal markers involved in late
differentiation and are up-regulated
by p63 knockdown (supplemental
Table S1). Neither BMP treatment
nor Smad7 knockdown rescued the
effect of p63 knockdown on Lce
genes (supplemental Fig. S2D), indi-
cating that BMP signaling selec-
tively restored low levels of non-epi-
dermal genes.
To demonstrate that loss of BMP

signaling contributes to the expres-
sion of non-epidermal genes in p63-
null epidermis, skin explants were
isolated at E14.5 from p63-null and
wild-type mice and cultured with
or without BMP7. BMP7 treat-
ment significantly down-regulated
Krt8 expression in p63-null skin
(Fig. 6C), consistent with a role of
BMP signaling in repressing non-
epidermal genes in the embryonic
epidermis. In contrast, BMP7

treatment was insufficient to rescue loss of Krt14 expression
in p63-null skin explants, indicating that BMP7 elicited a
selective effect on non-epidermal genes in embryonic
epidermis.
We then explored the possibility that loss of BMP signaling

may be sufficient to cause aberrant expression of non-epider-
mal genes. Smad7 overexpression up-regulated non-epidermal
genes in primary keratinocytes (Fig. 7A and data not shown),
although to a lesser extent than p63 knockdown, while inhibit-
ing the expression of the BMP direct target gene Id2 as
expected. Treatment with LDN-193189, a selective small mol-
ecule inhibitor of the BMP type I receptor kinases (28), similarly
induced expression of non-epidermal genes and repressed Id2
(Fig. 7B), whereas SB431542, a selective inhibitor of the TGF-!
type I receptor did not (data not shown). However, in the
embryonic epidermis Smad7 overexpression (17) or homozy-
gous deletion of Bmp7 (29) were insufficient to induce non-
epidermal genes (data not shown). Taken together, these data
indicate that p63 represses non-epidermal genes in a BMP-de-
pendentmanner, and that, at least in isolated keratinocytes, loss
of BMP signaling by itself leads to induction of non-epidermal
genes.
BMP-mediated receptor activation leads to induction of a

canonical signaling pathway mediated by Smad1/5/8 and to

FIGURE 5. Aberrant expression of non-epidermal genes in the absence of p63. A, expression of the indi-
cated non-epidermal genes was measured in primary mouse keratinocytes transfected with siRNA specific for
pan-p63, !Np63, TAp63, p63", and p63# isoforms, or control (ctr). RNA levels were expressed as described in
the legend to Fig. 2A. Efficient knockdown for the specific isoforms was demonstrated at the mRNA level (data
not shown). B, immunoblotting of total cell lysates prepared from primary keratinocytes transfected with siRNA
as in A. C, immunofluorescence analysis of the indicated non-epidermal proteins (in red) and E-cadherin (Cdh1,
in green) in dorsal skin of p63 knockout (KO) and wild-type (WT) embryos at E13.5. Nonspecific staining in the
dermis is due to some autofluorescent cells. Scale bar is 30 $m. D, immunoblotting of total cell lysates prepared
from the dorsal skin of p63 KO and WT embryos at E14.5 and probed with the indicated antibodies.
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activation of other signalingmolecules, including p38mitogen-
activated protein kinase (MAPK). Similarly, Smad7 has also
been shown to regulate R-Smad independent pathways as dis-
cussed above. Among the BMP-responsive Smads, Smad1 and
Smad5 were highly expressed in primary mouse keratinocytes
(supplemental Fig. S3,A and B). Concomitant Smad1/5 knock-
down inhibited Id1 and Id2 expression, consistent with
decreased BMP/Smad signaling, whereas knockdown of either
Smad1 or Smad5 alone was insufficient to elicit any effect (sup-
plemental Fig. S3C and data not shown). We then tested
whether activation of Smad1/5 is required for suppression of
non-epidermal genes. Concomitant Smad1/5 depletion com-
pletely restored high levels of non-epidermal genes in the
absence of p63 and Smad7 (Fig. 7, C and D). A requirement for
Smad1/5 was similarly obtained upon treatment with BMP7
(data not shown). Thus the canonical BMP/Smad signaling

pathway is required for suppression
of non-epidermal genes down-
stream of p63.

DISCUSSION

p63 acts as a crucial regulator of
gene expression in the epidermis
and is essential for epidermal devel-
opment, however, its interaction
with signaling pathways involved
in epidermal development is still
poorly understood. We previously
demonstrated a cross-talk between
p63 and Notch, in which p63 tran-
scriptionally represses the Notch
effectorHes1, thus regulating kerat-
inocyte differentiation (30).Herewe
establish a novel function of p63 in
repressing non-epidermal genes
through a mechanism that involves
BMP/Smad signaling.We show that
besides the previously reportedKrt8
and Krt18, many other non-epider-
mal genes are induced by loss of p63
in epidermal cells both in vitro
and in vivo. Interestingly, loss of
!Np63! expression in human kera-
tinocytes also induces the expres-
sion of a subset of non-epidermal
genes (31), further reinforcing the
notion that p63 may participate in
maintaining an epithelial gene
expression program in mammalian
cells.
BMP7 was recently described as a

novel direct target of the p53 family
in breast cancer cells (26). BMP7 is
induced by p53, p63, and p73, and
all three members of the family
directly bind to the p53 responsive
element located in the BMP7 intron
1. In keratinocytes, we find that

Bmp7 is inhibited in the absence of p63, although the remaining
levels of Bmp7 are still fairly high, possibly suggesting that other
p53 family members are responsible for its basal expression in
keratinocytes. BMP7 promotes cell survival in p53-deficient
breast carcinoma cells, at least in part, through Id2 (26), and has
been demonstrated to promote cell survival in other contexts
and tissues (32–35). Survival of epidermal cells is compromised
in the absence of p63 (36). Thus, besides playing a role in main-
taining epidermal identity, an interesting possibility that will
require further studies is that Bmp7 may cooperate with other
p63 downstream target genes to promote epidermal cell
survival.
We demonstrate that p63 positively regulates BMP signaling

both in isolated keratinocytes as well as in the embryonic epi-
dermis. We provide entirely novel and compelling evidence
that p63 directly suppresses the inhibitory Smad7 by binding to

FIGURE 6. Re-activation of BMP signaling restores low levels of non-epidermal genes in p63 knockdown
keratinocytes and p63 KO skin explants. A, expression of the indicated non-epidermal genes was measured
in primary keratinocytes transfected with p63, Smad7, p63 and Smad7 (p63/S7), or control (ctr) siRNA, and
cultured for 48 h. Cells were either treated with BMP7 for the last 24 h or left untreated. Relative mRNA levels
was measured as described in the legend to Fig. 2A. B, total protein extracts from primary keratinocytes treated
as in A were subjected to immunoblotting with the indicated specific antibodies. Protein extracts were nor-
malized using anti-ERK polyclonal antibodies. C, skin explants at E14.5 were cultured overnight and then
treated with BMP7 (80 ng/ml) or left untreated for an additional 24 h in the absence (WT1 and KO1) or presence
of fetal bovine serum (WT2 and KO2). Krt8 and Krt14 mRNA levels were evaluated by real time RT-PCR and
normalized as in A. Data presented are the average of two independent experiments and the S.E. is indicated.
KO, knockout.
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a highly conserved genomic region in the Smad7 promoter.
Consistent with this notion, Smad7 is poorly expressed in the
developing epidermis and is induced in the p63-null epidermis.
It has been previously reported that Smad7 induces expression
of Cripto-1, and that both Smad7 and Cripto-1 induce Krt8
expression inmouse keratinocytes (21, 37). Loss of p63 does not
affect Cripto-1 expression,7 suggesting that other molecules
downstream of Smad7 are required for repressing non-epider-
mal genes. Accordingly, we show that aberrant expression of
non-epidermal genes seen in p63-deficient cells can be reversed
by Smad7 knockdown or, to a lesser extent, by BMP7 treatment
and that this effect is dependent on the Smad1/5 canonical
pathway. The lack of synergy between BMP7 treatment and
Smad7 knockdown suggests a threshold response, for which a
critical level of BMP signaling is necessary, but additional sig-
naling does not further increase the response.
Loss of BMP signaling by itself induces aberrant expression

of non-epidermal genes in cultured keratinocytes, whereas

Bmp7 deletion or Smad7 overexpression are insufficient to
induce non-epidermal genes in embryonic epidermis. A role for
BMP signaling in epidermal development has remained elusive
despite the strong Smad1/5/8 phosphorylation observed in the
interfollicular epidermis during embryogenesis (present work
and Ref. 38). Lack of an epidermal phenotype inmice carrying a
deletion of single components of the pathway may be due at
least in part to functional redundancy within the pathway.
Among the BMP receptors, Bmpr1A/ALK3 plays a crucial role
in hair follicle development with little phenotype in the epider-
mis (39–41). However, Bmpr1B/ALK6 and Acvr1/ALK2 are
also expressed in the embryonic epidermis (42–44), andAcvr1/
ALK2 is the main receptor for BMP7 (45–47), suggesting that
depletion of multiple receptors may be required to observe an
epidermal phenotype.
In addition to decreased Bmp7 and to the concomitant

induction of Smad7, we observed that Bmp4 is down-regulated
in the p63-null skin at E14.5. Bmp4 is poorly expressed in ke-
ratinocytes and is unaffected by p63 knockdown, indicating
that as yet unidentified indirect signals derived from the p63-
null epidermis inhibit Bmp4 expression in the dermis. BMP7
and BMP4 are capable of forming heterodimers 3–10 times
more active than either BMP4 or BMP7 homodimers (48), sug-
gesting that the concomitant reduction in both molecules
observed in the p63-null skin could have more severe conse-
quences on BMP signaling in the epidermis than loss of BMP7
alone. Interestingly, Bmp7 deletion in the urethra is by itself
sufficient to induce Krt8 expression (49), whereas in the devel-
oping epidermis multiple signaling molecules may be involved
in this function. Thus our data indicate that BMP signaling
plays a crucial and selective role in suppressing the expression
of non-epidermal genes downstream of p63 in embryonic and
postnatal epidermal cells, possibly in conjunction with other as
yet unidentified mechanisms. Further assessment of the role of
BMP signaling in the embryonic epidermis will be a key subject
for subsequent investigations.
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