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ABSTRACT

An aerodynamic analysis of low-Reynolds number flows is presented. The

focus is placed on the laminar separation bubbles, a peculiar phenomenon of

these kind of flows. The only simulations techniques feasible to be applied to

complex configurations appear to be the methods based on the Reynolds Av-

eraged Navier Stokes equations. A critical point is the turbulence modelling.

In fact, the turbulence models are calibrated for flows at high Reynolds num-

ber with separation in the turbulent regime.

The flow over a flat plate with an imposed pressure gradient, and around

the Selig-Donavan 7003 airfoil is considered. Large eddy simulations have

also been performed and used as reference for the RANS results.

Laminar separation bubbles have been found by the Spalart-Allmaras

and the κ − ω SST turbulence models. The models have been used without

prescribing the transition location and assuming low values of the free-stream

turbulence.

The main results have been achieved for the κ−ω SST turbulence model.

This model is very reliable for transonic flows at high Reynolds number, but

has shown limits when applied to low-Reynolds number flows. A modification

of the model has been proposed. The modified model, named as κ− ω SST-

LR, has provided a correct simulation of the boundary layer in the tests

performed at low and high Reynolds numbers. The laminar separation bubble

arising of the SD 7003 airfoil has been well captured. The accuracy of the

new model is not reduced in transonic regime.
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Nomenclature

∇ Nabla operator

B Constant in the logarithmic law of velocity

b Wing span

c Airfoil chord

CD Drag coefficient

CF Friction coefficient

CL Lift coefficient

CP Pressure coefficient

DES Detached eddy simulation

DNS Direct numerical simulation

e Energy (Internal + Kinetic) per unit mass

ILES Implicit large eddy simulation

L Length

LES Large eddy simulation

LSB Laminar separation bubble

p Static pressure

RANS Reynolds Averaged Navier Stokes

Re Reynolds number

RSM Reynolds Stress Model

SD Selig-Donovan

SST Shear Stress Transport

T Temperature

t Time
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tij Viscous stress tensor

u,v,w Velocity components in x,y,z directions

ui Velocity in tensor notation

uτ Friction velocity

V Module of the velocity

x,y,z Cartesian coordinates

xi Position vector in tensor notation

y+ Viscous coordinate in the wall-normal direction, uτ y
ν

Subscripts

∞ Free stream conditions

ref Reference

tr Transition

Symbols

α Angle of attack

δ∗ Displacement thickness

δij Kronecker delta

η Kolmogorov length scale

Self-similar coordinate

κ Turbulent kinetic energy

κa von Kármán constant

λ Heat conduction coefficient

µ Molecular viscosity

µt Eddy viscosity

ν Kinematic viscosity, µ
ρ

Ω Vorticity

ω Specific turbulent dissipation rate

ρ Density

τij Sub-grid stress tensor

Reynolds stress tensor

τw Surface shear stress

τxy Reynolds shear stress
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ν̃ Working variable of the Spalart-Allmaras turbulence model

ε Turbulent dissipation rate

tη Kolmogorov time scale

uη Kolmogorov velocity scale

Superscripts

+ Viscous units
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Chapter 1

Introduction

Aerodynamic perfomances of aerial vehicles are largely influenced by the

Reynolds number. The different flow regimes occurring in a wide range of

Reynolds numbers are well described by Carmichael [1].

The regime at Reynolds number lower than 102 is of interest for devices

used to reduce the turbulence level of wind tunnels, but not for airfoil-like

machines.

The regime of Reynolds number up to 104 regards insects and small model

airplanes. The flow is strongly laminar and not able to sustain adverse pres-

sure gradients. Some interesting solutions are adopted in nature in order to

prevent the separation. The dragonfly has a saw tooth single surface airfoil.

It is thought that eddies are formed in the troughs and keep the flow at-

tached. The fly has a large number of fine hair-like elements that promote

an eddy-induced energy transfer and prevent separation.

The range of Reynolds number between 104 − 105 is typical of flying an-

imals and large model airplanes. At the lower end of this regime, natural

laminar regime is possible provided that the lift coefficient of the flying ma-

chine remains quite low (≈ 0.5). Higher lift coefficients would produce a flow

separation without re-attachment with a drop in lift and a rise of the drag

coefficient. Carmichael [1] has pointed out that, under natural laminar flow

separation, the distance betweeen the separation and the re-attachment point

expressed in terms of Reynolds number is about 50000. Thus, if a separation

occurs at Reynolds number lower than 50000, the distance to the trailing

edge is insufficient for the re-attachment of the flow. At higher Reynolds
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1.1 Aerodynamics of Low Reynolds Number Flows

number re-attachement is possible, but the bubble is of significant length

with an important impact on the performance.

The next Reynolds number regime, up to 106, is of interest of large soaring

birds but also of large radio controlled model aircrafts, ultra-light gliders,

and human powered aircrafts. Airfoils for wind turbines also operate in this

regime. Extensive laminar flow is possible and the performances of the airfoils

are improved with respect to lower Reynolds numbers.

Large aircrafts fly at Reynolds numbers of order of magnitute 107−108. It

is still possible to obtain large regions of laminar flows. The flight altitude has

to be high in order to keep the Reynolds number per unit length reasonably

low. Favourable pressure gradients are necessary and are obtained through

a careful design of the wing sections. Devices to stabilize the boundary layer

are also used.

Reynolds numbers still higher are typically for large water-immersed ve-

hicles such as tankers and nuclear submarines.

1.1 Aerodynamics of Low Reynolds Number

Flows

The limit of the low Reynolds number regime is usually indicated to be 2×105

[2, 3]. Below this limit, the drag polar of the airfoils present a decline of the

aerodynamic efficiency due to the presence of laminar separations.

The research in the field of the low Reynolds number flows is being pushed

by the the growing interest of the aerospace industries in unmanned and

micro-aerial vehicles (UAV and MAV). UAV wings typically operate at a

Reynolds number of 104 − 105. At these Reynolds numbers, the flow cannot

sustain strong adverse pressure gradients and often separates in the laminar

regime. The disturbances present in the laminar region are amplified inside

the separated shear layer and transiton to the turbulent regime occurs. The

turbulence developing inside the re-circulation region enhances the momen-

tum transport and the flow re-attaches.
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1.1 Aerodynamics of Low Reynolds Number Flows

This phenomenon, the laminar separation bubble, is one of the main

critical aspects of flows at low Reynolds numbers and adversely affects the

performance of an airfoil. Thick bubbles change the effective contour of an

airofil. This results in an increase of the pressure drag. Suction is reduced

in the aft part and pressure recovery is decreased in the rear part of the

airfoil. Skin friction drag increases as well due to the rise of the turbulent

momentum. A more significant effect occurs when the turbulent transport

is not sufficient to close the bubble. The separated region extends up to the

trailing edge. This causes a loss of lift and an increase of drag with hysteresis

effects of the force coefficients with the angle of attack.

The only simulation techniques feasible to be applied to complex config-

urations such as High Altitude Long Endurance (HALE) unmanned vehicles

appear to be the methods based on the Reynolds Averaged Navier Stokes

equations. A critical point in applying the RANS approach to low Reynolds

number flows is the turbulence modelling. In fact the presence of separation

bubbles means that the separation is laminar and that the transition points

are very difficult to be set. The turbulence models are instead calibrated for

separation in the turbulent flow regime, and need the transition points to be

known a priori.

Spalart and Strelets [4] performed a direct numerical simulation (DNS) of

a separation bubble over a flat plate. They also applied the RANS equations

arguing that turbulence models should be able to deal with this kind of flow,

where the transition is due to the flow that re-circulating inside the separated

region brings turbulent fluid upstream in the laminar zone. They used a so-

called ”trip-less” approach consisting of setting non-zero turbulence inflow

values during the first iterations and then setting zero turbulence values until

a steady state is reached. The Spalart-Almars model [5] finds a bubble but

with a slow recovery and a re-attachment more downstream with respect to

DNS results. The κ−ω SST model [6] provides a separation only if modified

by a term derived from the Spalat-Allmras model.

The possibility of using the Reynolds Averaged Navier Stokes equations

for the numerical simulation of low Reynolds number flows and laminar sep-
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1.1 Aerodynamics of Low Reynolds Number Flows

aration bubbles is addressed in several papers. Howard et al. [7] performed

RANS simulations of a laminar bubble over a flat plate using the κ−g model

[8] with and without fixing the transition point, and modified by using co-

efficients depending on the local turbulent Reynolds number as proposed by

Wilcox [9]. The model without any treatment of the transition provides a

very weak separation. The model with modified coefficients presents a bub-

ble with a re-attachment anticipated with respect to DNS. The κ− g model

not modified but applied with the transition point imposed returns a bubble.

The re-attachment point is located more downstream than DNS data.

The RANS approach, with some treatment to take into account the tran-

sition phenomenon, has been applied to the Selig-Donovan 7003 airfoil by

several researchers. This airfoil has been specifically designed for small model

gliders at Reynolds number below 105, and exhibits a relatively large laminar

bubble over a broad range of incidences at Reynolds number of 6×104 . The

Selig-Donovan 7003 airfoil has been the subject of numerical and experimen-

tal investigations [3].

Windte [10], Radespiel [11], Yuan et al. [12] employed a RANS solver

coupled to a transition prediction method to simulate the flow around the

SD7003 airfoil at Re = 6 × 104. Contour plots of Reynolds stresses are

presented. Some interesting results were achieved by the Menter BSL-two

layer model [6], the explicit algebraic Reynolds stress model by Wallin [13],

and the Wilcox RSM model [9]. The drag polar of the airfoil is computed with

a reasonable accuracy at low angle of attack. A systematic over-prediction of

the CL with respect to the experiments is however noted. Some dependence

of the results on the choice of the Ncrit is seen mainly at the high incidences.

An easier approach has been also tried. Tang [14] applied the RANS

equations without any particular treatment of the transition to the flow at

Re = 6 × 104 around the SD 7003 airfoil. First a laminar simulation is

performed. The transition is considered to occur in the separated region at

the point where the flow reverses direction and moves downstream. Then, a

simulation with imposed transition point is performed. Results are presented

for the flow at α = 4◦ in terms of contour plot of the Reynolds stresses,
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1.1 Aerodynamics of Low Reynolds Number Flows

pressure coefficient, and velocity contours with stream-lines. Good results

are achieved by the Spalart-Allmaras model. A too short bubble is instead

returned by the Menter BSL-two layer, and the Jones-Launder [15] κ − ε

models.

Large eddy simulations of low Reynolds number flows are becoming af-

fordable, at least for validating the results of the much faster RANS solvers.

Indeed, LES of the flow around the SD 7003 airfoil have been performed.

Yuan et al. [12] employed an incompressible solver using the SIMPLE al-

gorithm [16] for the pressure-velocity coupling. The static Smagorinsky and

the selective scale model by Lenormand et al. [17] have been used as sub-

grid closures of the Navier Stokes equations. The flow at Re = 6 × 104, and

α = 4◦ has been computed. Differences with respect to RANS results in the

zone of the bubble in terms of pressure and friction coefficients are shown.

The importance of 3D fluid structures is discussed. Galbraith and Visbal

[18] applied an high-order implicit LES to compute the entire drag polar of

the SD7003 airfoil at Re = 6 × 104. Good accuracy with the experimental

data is shown. The stall is well predicted. The CL compares well with the

experiments also at a post-stall angle, while the CD is over-predicted.

Rumsey and Spalart [19] have performed an analysis of the behaviour

of the Spalart-Allmaras and the κ-ω SST (modified adding sustaining terms

[20]) turbulence models in low Reynolds number regions of an aerodynamic

flow field. They tested the behaviour of the models over a flat plate with

decreasing values of the free-stream turbulence, and found that the κ-ω SST

exhibits a correct trend for the transition to turbulence. Rumsey and Spalart

[19] also considered the flow around the NACA 0012 airfoil at Reynolds

number 1 × 105. The main conclusion of their article is that “these models

are intended for fully turbulent high Reynolds number computations, and

using them for transitional (e.g., low Reynolds number) or relaminarizing

flows is not appropriate. Competing models which fare better in these areas

have not been identified.”

The main aim of the activities reported in this thesis has been to give a

contribution to the numerical simulations of low Reynolds number flows.
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1.1 Aerodynamics of Low Reynolds Number Flows

The physical and mathematical models adopted are described in the chap-

ter 2.

Chapter 3 deals with the phenomenon of the laminar separation bubbles.

A RANS method is applied by using several turbulence models to the incom-

pressible flow over a flat plate with an imposed pressure gradient and around

the Selig-Donovan 7003 airfoil. Large eddy simulations of the flow around

the SD 7003 airfoil have been also performed and used as a reference for the

results achieved by RANS. The laminar separation bubbles are reproduced

without specifying the location of the transition from the laminar to the tur-

bulent regime. The turbulence models are run assuming the flow turbulent

in all the flow field and adopting low values of the free-stream turbulence.

The chapter 4 focus on the κ-ω SST turbulence model, a model that,

despite of the limits shown in low Reynolds number applications, is very re-

liable for transonic flows, as pointed out by different authors (cfr. Catalano

and Amato [21, 22]). The limits of this model have been confirmed. How-

ever it is shown that they are not due to “design” problems of the model

but rather to its implementation. Indeed a modification of the SST for-

mulation is proposed. This allows for a very satisfactory simulation of the

laminar separation bubble when the transition point is prescribed. An ex-

cellent agreement with the LES results is obtained in terms of pressure and

skin friction distributions along the SD 7003 airfoil. The κ-ω SST model,

with low Reynolds modifications, has been applied to compute the drag po-

lar of the SD 7003 airfoil. The new turbulence model has shown results in

good agreement with both experimental and LES data. The angle and the

characteritics of the stall of the SD 7003 airfoil have been well predicted.

The “performance” of the new model is not reduced in transonic regime

at high Reynolds number. This is shown in chapter 5 where the flow around

typical transonic benchmark, such as the airfoil RAE 2822 and the wing RAE

M2155, is discussed.

The conlcusions are drawn in the chapter 6.
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Chapter 2

Physical and Mathematical Model

The equations of the fluid dynamics are the well-known Navier-Stokes equa-

tions that come directly from the conservation laws of mass, momentum and

energy. These equations, under the hypothesis of continuum flow, no disso-

ciation, no real gas effects, fluid in a state of thermodynamic equilibrium,

neglegibility of body forces and heat sources, have the following form in a

cartesian coordinate system :

∂U

∂t
+

∂F c
1

∂x
+

∂F c
2

∂y
+

∂F c
3

∂z
=

∂F ν
1

∂x
+

∂F ν
2

∂y
+

∂F ν
3

∂z
(2.1)

where

U =




ρ

ρu

ρv

ρw

ρe




(2.2)

is the vector of the unknown flow variables,

F c
1 =




ρu

ρu2 + p

ρuv

ρuw

(ρe + p)u




F c
2 =




ρv

ρvu

ρv2 + p

ρvw

(ρe + p)v




F c
3 =




ρw

ρwu

ρwv

ρw2 + p

(ρe + p)w




(2.3)
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are the convective, and

F ν
1 =




0

t11

t12

t13

ut11 + vt12 + wt13 − q1




F ν
2 =




0

t21

t22

t23

ut21 + vt22 + wt23 − q2




F ν
3 =




0

t31

t32

t33

ut31 + vt32 + wt33 − q3




(2.4)

the diffusive fluxes. The stress tensor tij is related to the strain tensor through

the molecular viscosity µ

tij = µ
(∂ui

∂xj

+
∂uj

∂xi

− 2

3

∂uk

∂xk

δij

)
(2.5)

with i = 1..3, j = 1..3 and the convention on the summation of the repeated

indices is used. The heat flux qj is defined by the Fourier law as

qj = −λ
∂T

∂xj

(2.6)

The equations (2.1) with the intial and boundary conditions are, for a lam-

inar flow regime, a closed system of equations once the dependence of the

molecular viscosity and thermal conducivity on the thermodynamic proper-

ties of the flow are specified. The relations µ = µ(p, T ), λ = λ(p, T ) together

with the state thermodynamic equation are the closures needed.

8



Chapter 2. Physical and Mathematical Model

In the turbulent regime, the scenario is different. The flow exhibits scales

with large variations in space and time. The direct resolution of all the

motion scales can be prohibitively expensive and depends on the Reynolds

number. Following the Kolmogorov hypotheses, the statistics of the smallest

scales of motion are uniquely determined by the molecular viscosity ν and by

the dissipation rate of the turbulent kinetic energy ε. The length, velocity

and time Kolmogorov scales are built on the basis of dimensional analysis as

η = (ν3/ε)1/4 uη = (νε)1/4 τη = (νε)1/2 (2.7)

with ε ≈ u3/L. The spatial resolution must to be of order of magnitude η

and the size of the computational domain has to be proportional to the most

energetic scale of the flow L. The number of points required to resolve the

Kolmogorov scales in the three computational directions is

N = N1 ∗ N2 ∗ N3 =
(L

η

)3

= ©(Re9/4) (2.8)

The equations have to be resolved in time with a time step ∆t ≈ τη (without

taking into account numerical stability requirements) for a number of time

steps

NT =
T

∆t
≈ L

uτη

= ©(Re1/2) (2.9)

The cost of a simulation is proportional to N ∗ NT = ©(Re11/4) rapidly

growing with the Reynolds number.

The direct numerical simulation (DNS) of all the motion scales of a tur-

bulent flow is limited to flows at Re = ©(103,4). An averaging of the Navier

Stokes equations is performed in order to make affordable the numerical sim-

ulation of flows at higher Reynolds number. The results discussed in this

thesis have been achieved by numerical methods based on Large Eddy Simu-

lations (LES), and the Reynolds Averaged Navier Stokes equations (RANS),

based respectively on a spatial and time averaging of the (2.1).

9



2.1 Large Eddy Simulation

2.1 Large Eddy Simulation

A spatial filtering of the Navier-Stokes equations is introduced by the follow-

ing operation

f(x, t) =

∫

D

f(x′, t)G(x − x′,△)dx′ (2.10)

where f is a fluid dynamic variable, G the filter function, △ the filter width,

and D stands for the computational domain. The filtered equations allow

to resolve the scale of the motion up a certain size, while the effect of the

unresolved scales needs to be modelled. The Large Eddy Simulation resolves

the large scales of motion; the scales that carry the energy, are dinamically

more important, and are characteritics of the flow. The small scales of the

motions; the scales where the dissipation of energy in heat takes place are

modelled. These scales are believed to be homogeneous, isotropic and not

dependent on the particular flow.

The unknown term, that takes into account the effect of the unresolved

scales on the resolved ones, is the subgrid stress tensor given by :

τij = uiuj − ui uj (2.11)

2.1.1 Subgrid Modelling

Many subgrid models make use of the ”eddy viscosity” concept relating the

subgrid stress tensor (2.11) to the resolved strain tensor through the subgrid

scale visosity νsgs as

τij −
1

3
δijτkk = −2νsgsSij = −νsgs

(∂ui

∂xj

+
∂uj

∂xi

)
(2.12)

The Smagorinsky model, the progenitor of most subgrid models, comes from

the equilibruim hypothesis. It is supposed that at the small scale level, the

production of the subgrid kinetic energy is balanced by the viscous dissipation

εν :

−τijSij = εν (2.13)

10



2.1 Large Eddy Simulation

The substitution of (2.11) into the (2.13) yields

−2νsgsSijSij ∝
κ3

sgs

l
(2.14)

where it has been considered that the viscous dissipation is proportional to

the subgrid kinetic energy κsgs and to a length scale l

ǫν ∝
κ3

sgs

l
(2.15)

Since ν ∝ κsgsl and l is proportional to the filter width △, the subgrid kinetic

energy results

κsgs ∝ △(2SijSij) = 2△|S| (2.16)

Therefore, the subgrid viscosity is obtained as

νsgs = (CS△)2|S| (2.17)

The Smagorinsky constant CS is real with an usual value between 0.1 and

0.2. In presence of solid boundaries, the length scale is modified by the Van

Driest damping function in order to take into account the reduced growth of

the small scale close to a wall. The (2.17) is modified to

νsgs =
[
CS△(1 − e

−y+

25 )
]2|S| (2.18)

2.1.2 Dynamic Models

In the dynamic models the Smagorinsky constant CS is not more assigned ”a

priori” but is computed during the numerical simulation. A new filter, the

test filter function Ĝ with a width △̂ > △ is introduced. The application of

the filter function Ĝ to the Navier Stokes equations gives rise to the filtered

quantities

f̂(x, t) =

∫

D

f(x′, t)Ĝ(x − x′, △̂,△)dx′ (2.19)

and to subgrid stresses that read as

Tij = ûiuj − ûi ûj (2.20)

11



2.1 Large Eddy Simulation

It is possible to consider the resolved turbulent stresses

Lij = ûi uj − ûi ûj (2.21)

that represent the contribution to the Reynolds stresses of the scales whose

length is intermediate between the test filter △̂ and the filter △. It is worth

noting that Lij are not unknown and can be computed explicitly. Instead,

an eddy viscosity model is assumed for both τij and Tij

τij −
1

3
δijτkk = −2C△2|S|Sij (2.22)

Tij −
1

3
δijTkk = −2C△̂2|Ŝ|Ŝij (2.23)

Equation (2.21) can be rearranged as

Lij = ûi uj − ûi ûj + ûiuj − ûiuj = Tij − τ̂ij (2.24)

The subsitution of equations (2.22) and (2.23) into the (2.24) provides a re-

lation usable for the determination of C. Equation (2.24) cannot be satisfied

exactly because the stress tensors have been replaced by a model. Further-

more the system of equations (2.24) is overestimated since there are more

equations than unknowns. These issues are addressed by considering that

the error in resolving the (2.24)

eij = Lij −Tij + τ̂ij = Lij +2C
(
△̂2|Ŝ|Ŝij −△2|S|Sij

)
= Lij +2CMij (2.25)

be minimized in a least-square sense

∂ < eijeij >

∂C
= 2

〈
eij

∂eij

∂C

〉
= 2

〈
(Lij + 2CMij)Mij

〉
= 0 (2.26)

and

C = −1

2

< LijMij >

< MijMij >
(2.27)

2.1.3 LASSIE Code

An incompressible flow solver of the Navier Stokes equations has ben used

for the large eddy simulations [23]. The code employs an energy-conservative

12



2.1 Large Eddy Simulation

numerical scheme. Second order central differences in stream-wise and wall-

normal directions, and Fourier collocations in the span-wise direction are

used. The code is written in body-fitted coordinates with a staggered ar-

rangement of the flow variables. The fractional step approach [24], in com-

bination with the Crank-Nicholson method for the viscous terms and the 3rd

order Runge-Kutta scheme is used for the time advancement. The continu-

ity constraint is imposed at each Runge-Kutta substep by solving a Poisson

equation for the pressure. The subgrid scale stress tensor is modelled by the

dynamic Smagorinsky model [25] in combination with a least-contraction and

span-wise averaging [26].

2.1.3.1 Numerical method

The momentum equation of the (2.1) is written for an incompressible flow as

∂uj

∂t
+

∂uiuj

∂xj

= − ∂p

∂xj

+
∂

∂xk

(
(ν + νSGS)

∂uj

∂xk

)
(2.28)

The (2.28) is advanced in time with a time step ∆t in three stages (m = 1..3).

1. A velocity field is evaluated as

ûj − un
j

∆t
+

(
γmH(un

i ) + ζmH(un−1
i )

)
= −∂pn

∂xj

+

+
(
αmL(un

j ) + βmL(ûj)
)

(2.29)

where H and L stand for the convective and diffusive operator.

2. The field ûj is updated as

u∗
j − ûj

∆t
=

(
αm + βm

)∂pn

∂xj

(2.30)

3. The field u∗
i is not divergence-free. The continuity is enforced by up-

grading the pressure solving

1

∆t

∂u∗
j

∂xj

=
(
αm + βm

)∂pn+1

∂xj

(2.31)

13



2.2 Reynolds Averaging of the Navier-Stokes Equations

4. The solenoidal velocity field at the time level n + 1 is evaluated as

un+1
j = u∗

j −
(
αm + βm

)
∆t

∂pn+1

∂xj

(2.32)

The coefficients used are the following :

γ1 =
1√
3

γ2 =
1

2
√

3
= γ3 = 1.0

ζ1 = 0 ζ2 =
1

2
− 1√

3
ζ3 = −1

2
− 1

2
√

3
αm = βm = γm + ζm (2.33)

It is worth noting that α1 + α2 + α3 = β1 + β2 + β3 = 0.5

2.2 Reynolds Averaging of the Navier-Stokes

Equations

A time averaging process of the (2.1) is performed. Instantaneous flow vari-

ables are considered as the sum of a mean and a fluctuating value :

f(x, t) = f(x, t) + f
′

(x, t) (2.34)

The mean value is computed by averaging the variable over a time interval

∆T much larger than the period of the fluctuating part but smaller than the

time interval associated with the unsteady flow :

f(x, t) =
1

∆T

∫ ∆T

0

f(x, t)dt (2.35)

Therefore :

f ′(x, t) = 0 , f(x, t) = f(x, t) (2.36)

but

f ′(x, t)g′(x, t) 6= 0 (2.37)

The time averaging of (2.1), performed by applying the (2.34 - 2.35) taking

into account the (2.36 - 2.37), leads to a system of equations for the mean

14



2.2 Reynolds Averaging of the Navier-Stokes Equations

value of the unknown flow variables (2.2). These equations, named Reynolds

Averaged Navier Stokes (RANS), are formally identical to (2.3-2.4) with the

exception of a new unknown term that comes from the convective fluxes. This

term, the Reynolds stress tensor, is constituted by the double corrrelation of

the turbulent velocity fluctuations :

τij = −ρu
′

iu
′

j (2.38)

A set of transport equations to directly compute the components of (2.38)

can be derived by multiplying the Navier Stokes equations by the velocity

fluctuations and then time-averaging. The resulting Reynolds stress equa-

tions read, for an incompressible flow, as:

∂τij

∂t
+ uk

∂τij

∂xk

= −τik
∂uj

∂xk

− τjk
∂ui

∂xk

+ 2µ
∂u

′

i

∂xk

∂u
′

j

∂xk

+ p′

(∂u
′

i

∂xj

+
∂u

′

j

∂xi

)
+

+
∂

∂xk

[
ν
∂τij

∂xk

+ ρu
′

iu
′

ju
′

k + p′u
′

iδjk + p′u
′

jδik

]
(2.39)

New unknows have been generated. Although equations for these terms could

be obtained, the non linearity of the Navier Stokes equations would generate

additional unknown terms. The usual approach is to relate the Reynolds

tensor to the resolved mean flow variables through a turbulence model.

The Reynolds tensor, in analogy to (2.5), is made proportional to the

mean flow strain tensor through the eddy viscosity :

τij = µt

(∂ui

∂xj

+
∂uj

∂xi

− 2

3

∂uk

∂xk

δij

)
− 2

3
ρκδij (2.40)

where κ is the turbulent kinetic energy. The task on any turbulence model

is to close the RANS equations by computing the eddy viscosity µt that is

assumed to depend on the velocity and length scale of the turbulent eddies

µt ∝ κ1/2lα (2.41)

Several turbulence models, ranging from algebraic to Reynolds stress models,

have been developed and can be found in literature. In the algebraic mod-

els [27], the eddy viscosity is completely determined in terms of local flow

variables. These models are cheap and robust, but are not able to take into

account important effects of the flow history.
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2.2 Reynolds Averaging of the Navier-Stokes Equations

2.2.1 The One-equation Spalart-Allmaras Turbulence

Model

In the one-equation models, only one or a combination of the turbulent scales

are computed by solving a transport equation.

Likely, the Spalart-Allmaras [5] is the most famous one-equation turbu-

lence model. In this model the eddy viscosity is computed by an intermediate

variable ν̃ through the relation

µt = ρνt = ρν̃fv1(χ) (2.42)

where χ is the ratio between the model working variable ν̃ and the molecular

kinematic viscosity, and fv1 is a damping function accounting for the wall

effects. The intermediate variable ν̃ is computed by solving a differential

equation that can be written as:

Dν̃

Dt
= Cb1

[
1 − ft2

]
S̃ν̃ +

1

σ

[
∇ · ((ν + ν̃)∇ν̃) + Cb2(∇ν̃)2

]

−
[
Cw1fw − Cb1

κa
2
ft2

][
ν̃

d

]2

+ ft1∆U2 (2.43)

The physical meaning of each term of the (2.43), and the way the model

has been built are explained in the following sections.

2.2.1.1 Free Shear Layer Flows

The basic Spalart-Allmaras turbulence model is well suited for free shear

layer flows only, and constists of a transport equation, with a production

and a diffusive term, for the eddy viscosity itself

Dνt

Dt
= Cb1Sνt +

1

σ

[
∇ · (νT∇νt) + Cb2(∇νt)

2
]

(2.44)

where S is assumed to be the flow vorticity |Ω|.
Three constants need to be determined. A first idea for the order of

magnitude of Cb1 can be obtained considering an homogeneous shear layer

(S = |∂u
∂y
|). For this kind of flow, experimental and DNS data say that νT
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2.2 Reynolds Averaging of the Navier-Stokes Equations

increases with a growth rate between 0.10 and 0.16, while the present model

yields an eddy viscosity that grows exponentially as eCb1St. This means that

Cb1 must be of order of magnitude 0.10.

On other hand the lack of a destruction term in the (2.44), gives an in-

consistency in case of an isotropic (S = 0) turbulent flow where the eddy

viscosity decreases with the time as t−
1
5 , and generally for the class of shear

flows, such as an axisymmetric wake, in which νT decreases. Anyhow the

diffusion term of the (2.44) can eliminate this deficiency. In fact the diffu-

sion term can bring down the eddy viscosity if the quantity ν1+Cb2
T does not

decrease. Considering an axisymmetric wake this condition is satisfied only

if Cb2 ≤ 1.

An upper limit for Cb2 is obtained from the behaviour of a turbulent front

which propagates into a non turbulent region. The solution provided by the

(2.44) is physically correct only if Cb2 > −1.

Two other constrains for the constants can be found by requiring that the

model provides correct levels of the shear stress in two dimensional mixing

layer and wakes.

After these calibrations a degree of freedom has still been left. Assuming

a value of the constant σ between 0.6 and 1 (the chosen value is 2/3), the

resulting model is better suited for wakes than for jet flows that are anyway

less relevant for aeronautical applications.

2.2.1.2 Wall Bounded Flows

In case of boudary layer flows, the equation (2.44) must be modified.

Three distinct regions, the sublayer, the log, and the defect layer, can be

discerned in a turbulent boundary layer. The log layer is the zone sufficiently

close to the wall where inertial terms can be neglected, but also sufficiently

far from the surface that the molecular stress is negligible with respect to the

Reynolds stress. The sublayer is the region closest to a solid surface where

the turbulence is negligible with respect to the molecular viscous effects.

The defect layer extends from the end of the log layer to the border of the
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2.2 Reynolds Averaging of the Navier-Stokes Equations

boundary layer.

For the defect and log layers, the transport equation of the Spalart and

Allmaras turbulence model is the following

Dνt

Dt
= Cb1Sνt +

1

σ

[
∇ · (νt∇νt) + Cb2(∇νt)

2
]
− Cw1

[
νt

d

]2

(2.45)

where d is the distance from the wall, and Cw1 a new constant. The adding

of this new term does not affect the values of Cb1, Cb2, and σ since the last

term of equation (2.45) becomes negligible for free shear flows (d ≫ δ).

The value of Cw1 is determined considering the log layer region of a tur-

bulent flow where

S =
uτ

κad
νt = uτκad (2.46)

where uτ =
√

τw

ρ
is the friction velocity and τw = µ∂u

∂y

∣∣∣∣
y=0

the wall shear

stress. The equilibrium between prodution, diffusion, and destruction terms

results in the following equation for Cw1:

Cw1 =
Cb1

κ2
a

+
(1 + Cb2)

σ
(2.47)

Nevertheless since the last term of the (2.45) decays too slowly in the outer

region of the boundary layer, it is multiplied by a function fw which, following

the algebraic models, can be considered dependent on the mixing length

l ≡
√

νt/S. The function fw is defined in the following way

fw = g

[
1 + C6

w3

g6 + C6
w3

] 1
6

(2.48)

g = r + Cw2

(
r6 − r

)

The variable r depends on the mixing length and on the distance from the

wall through the following relation

r =
νt

Sκ2
ad

2
(2.49)

The new constants introduced are calibrated by matching the skin friction

coefficient on a flat plate.
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In order to deal with the sub-layer region of a turbulent flow, the eddy

viscosity needs to be computed in terms of a new variable through the intro-

duction of a damping function

νT = ν̃fv1(χ) fv1 =
χ3

χ3 + C3
v1

(2.50)

where χ = ν̃/ν. All the variables of the (2.45) are reformulated in terms of

ν̃ instead of νt, and S is replaced by

S̃ = S +
ν̃

κ2
ad

2
fv2 fv2 = 1 − χ

1 + χfv1

(2.51)

The functions fv1 and fv2 are constructed in such a way that the new variables

maintain their log layer behaviour through the boundary layer. The value of

the new constant Cv1 is 7.1, and has been chosen by Spalart and Allmaras

on the basis of their experience.

The final version of the model valid for free shear layer flows, and for

boundary layer flows is

Dν̃

Dt
= Cb1S̃ν̃ +

1

σ

[
∇ · ((ν + ν̃)∇ν̃) + Cb2(∇ν̃)2

]
− Cw1fw

[
ν̃

d

]2

(2.52)

where also the diffusion term has been modified by the adding of a molecular

diffusion term.

In the equation (2.52) the transition is left free. In order to control the

flow parameters in the laminar region and to initiate the transition near the

specified points, so-called ”tripping” terms are added to the (2.52). With

these terms the transport equation of the model assumes the form of the

(2.43).

The production term of the (2.52) is multiplied by the function 1 − ft2,

with

ft2 = Ct3e
−Ct4χ2

(2.53)

whose aim is to keep, in the laminar region, the working variable ν̃ in the

range between 0 and its free stream value. The values, chosen on empirical

basis, for Ct3 and Ct4 are respectively 1.2 and 0.5. In the equation (2.43) ∆U
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represents the absolute value of the difference between the velocity at the

wall trip point (actually zero) and that at the considering field point. The

function ft1 is given by the following expression

ft1 = Ct1gte

(
−Ct2

ω2
t

∆U2 [d2+g2
t dt2]

)
(2.54)

with gt ≡ min(0.1, ∆U/ωt∆xt), and ωt the vorticity at the trip point, and

∆xt the grid spacing along the wall at the trip point. The function ft1 is of the

Gaussian type and is dependent on the grid spacing through the parameter

gt. This allows to keep the influence of the transition terms confined nearby

the trip point. Numerical experiments have shown that suitable values for

Ct1 and Ct2 are respectively 1 and 2.

2.2.2 The Two-equation Turbulence Models

The two-equation models, in the limits of the (2.40), are complete in the

sense that two transport equations for both the turbulent scales are solved,

and the Reynolds tensor can be completely determined from the local state

of the mean flow and of the mean turbulent quantities. The velocity scale

is chosen to be the square root of the turbulent kinetic energy κ, while the

length scale is usually determined from κ and an auxiliary variable ζ.

The transport equations for a generic two-equation turbulence model κ−ζ

[21], can be written, in a cartesian coordinate system, as :

∂Uκζ

∂t
+

∂Eκζ

∂x
+

∂F κζ

∂y
+

∂Gκζ

∂z
=

∂Eκζ
ν

∂x
+

∂F κζ
ν

∂y
+

∂Gκζ
ν

∂z
+ Hκζ (2.55)

where the the vector of the unkwnown variables is

Uκζ =

(
ρκ

ρζ

)
(2.56)

the convective fluxes are

Eκζ =

(
ρuκ

ρuζ

)
F κζ =

(
ρvκ

ρvζ

)
Gκζ =

(
ρwκ

ρwζ

)
(2.57)
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and the diffusive fluxes read as

Eκζ
ν =

(
µκ

∂κ
∂x

µζ
∂ζ
∂x

)
F κζ

ν =

(
µκ

∂κ
∂y

µζ
∂ζ
∂y

)
Gκζ

ν =

(
µκ

∂κ
∂z

µζ
∂ζ
∂z

)
(2.58)

with µκ and µζ the eddy diffusivities of the turbulent variables. The source

term is given by

Hκζ =

(
Pκ − Dκ

Pζ − Dζ

)
(2.59)

where Pκ,Dκ and Pζ ,Dζ stand for the production and destruction term of κ

and ζ respectively.

The terms of the transport equation of κ can be derived by considering the

equation (2.39) with i = j since τii = −ρu
′

iu
′

i = −2ρκ. The diffusive fluxes

take into account for the molecular diffusion of κ, the turbulent transport

and the pressure diffusion

µκ
∂κ

∂xj

= µ
∂κ

∂xj

− 1

2
ρu

′

iu
′

iu
′

j − p′u
′

j (2.60)

The production represents the rate at which the kinetic energy is transferred

from the mean flow to the turbulence

Pκ = τij
∂ui

∂xj

(2.61)

and the destruction is equal to the dissipation, the rate at which the turbulent

kinetic energy is converted into thermal internal energy

Dκ = ε = ν
∂u

′

i

∂xk

∂u
′

i

∂xk

(2.62)

The equation for ζ can be derived from the Navier Stokes but results much

more complicated than (2.39) and involves many unknowns for which reliable

closures have not been found. The transport equation for ζ is obtained

from the transport equation of κ multiplyng by ζ/κ and calibrating the new

constants.

The most popular turbulence models make use, as second turbulent scale,

of the turbulent dissipation rate ε [15], or of the specific turbulent dissipation

21



2.2 Reynolds Averaging of the Navier-Stokes Equations

rate ω ∝ ε/κ [9]. The κ-ω models are less stiff and more accurate than κ-

ε models for boundary layers flows subject to adverse pressure gradients

[28, 29]. Neverthless, κ-ε models maintain their relaiability for wakes and in

the zones of the field far from the solid boundaries.

2.2.2.1 The κ-ω Wilcox model

The κ-ω turbulence models consist of two transport equations to determine

κ and ω, with the eddy viscosity computed as:

µt = γ∗ρκ

ω
(2.63)

The constant γ∗ can be incorporated, with no loss of generality, in the defi-

nition of ω.

The transport equations for the standard κ-ω model as proposed by

Wilcox [30] are

∂(ρκ)

∂t
+

∂(ρκuj)

∂xj

= τij
∂ui

∂xj

− β∗ρωκ +
∂

∂xj

[
(µ + σkµt)

∂κ

∂xj

]
(2.64)

∂(ρω)

∂t
+

∂(ρωuj)

∂xj

= γ
ω

κ
τij

∂ui

∂xj

− βρω2 +
∂

∂xj

[
(µ + σωµt)

∂ω

∂xj

]
(2.65)

The constants present in the above equations have the following values

β∗ = 0.09 σκ = 0.5 β = 0.075 σω = 0.5 (2.66)

γ =
β

β∗
− σωκa

2

√
β∗

(2.67)

and have been determined by calibrating the model for basic flows.

2.2.2.1.1 Free Shear Layer Fows A first indication for the values of

the constants can be achieved by evaluating the decaying process of the

homogeneous isotropic turbulence. The equations 2.64 - 2.65, in case of

homogeneous isotropic turbulence, simplify to:

∂κ

∂t
= −β∗ωκ (2.68)

∂ω

∂t
= −βω2 (2.69)
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from which the solution for κ is found to be:

κ ∝ t−β∗/β (2.70)

Experimental observations indicate that κ ∝ t−n with n = 1.25 ± 0.06 and

therefore the ratio
β∗

β
=

6

5
(2.71)

has been chosen.

2.2.2.1.2 Boundary Layer Flows Other information to determine the

constants, and the near wall behaviour of ω can be achieved by assessing the

model for the three regions (viscous, logarithmic and defect) of a turbulent

boundary layer.

2.2.2.1.2.1 The log layer is the portion of the boundary layer far

enough from the surface to make the molecular viscosity negligible with re-

spect to the eddy viscosity, but close enough to neglect the convection with

respect to the production and the diffusion of turbulence. In this zone the

logarithmic law of the velocity

u+ =
1

κa

log y+ + B (2.72)

stands, the eddy viscosity varies linearly with the distance from the wall, and

the Reynolds shear stress

τxy = µt

(∂u

∂y
+

∂v

∂x

)
(2.73)

results to be constant.

The momentum equation, and the 2.64 - 2.65 reduce to

0 =
∂

∂y

[
νt

∂u

∂y

]
(2.74)

0 = νt

(
∂u

∂y

)2

− β∗ωκ + σk
∂

∂y

[
νt

∂κ

∂y

]
(2.75)

0 = γ

(
∂u

∂y

)2

− βω2 + σω
∂

∂y

[
νt

∂ω

∂y

]
(2.76)
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and yield the following solution:

u =
uτ

κa

log y + constant κ =
u2

τ√
β∗

ω =
uτ√

β∗κay
(2.77)

with uτ =
√

τw/ρ the friction velocity.

By sostistution of the above solution in the (2.64) or (2.65), the following

expression for the Kármán constant is obtained

κa
2 =

√
β∗

(
β
β∗

− γ
)

σω

(2.78)

from which the (2.67) can be retrieved.

From the definiton of the friction velocity, follows that

τw = ρuτ
2 =

√
β∗ρκ (2.79)

Several experimental data indicate for the the ratio τ/κ in the log layer a

value of about 0.3; thus the value of 0.09 can be assigned to β∗.

2.2.2.1.2.2 The defect layer is the outer region of the boundary

layer where the molecular viscosity is negligible with respect to the eddy

viscosity. Wilcox [9] has analyzed the defect layer by using a perturbation

method. This has allowed to determine, by means of a numerical experimen-

tation, the values of the constants σκ and σω.

The perturbation expansion of the defect layer has been made in terms

of the ratio of the friction velocity to the Eulerian velocity Ue at the edge

of the boundary layer, and of dimensionless coordinates, ξ and η, defined as

follows

ξ =
x

L
η =

y

∆
∆ =

Ueδ
∗

uτ

(2.80)

where δ∗ is the displacement thickness, and L is a characteristic streamwise

length scale supposed to be very large with respect to δ∗.

The velocity is expressed as

u(x, y)

Ue

= 1 −
(

uτ

Ue

)
U1(ξ, η) + ...... (2.81)
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where U1(ξ, η) is the solution of the first order transformed momentum equa-

tion with the following boundary conditions

η → ∞ U1 → 0 (2.82)

η → 0
∂U1

∂η
→ − 1

κaη
(2.83)

The turbulent variables, κ and ω, can be expressed as:

κ =
uτ

2

√
β∗

[
K0(η) + ....

]
(2.84)

ω =
uτ√
β∗∆

[
W0(η) + ....

]
(2.85)

with K0 and W0 solution of the first order transformed turbulence equations

with the following boundary conditions

η → ∞ K0(η) → 0 W0(η) → 0 (2.86)

η → 0 K0(η) →
[
1 + κ1η log η + ....

]

W0(η) → 1

κaη

[
1 + w1η log η + ....

]
(2.87)

where κ1 and w1 are given by

κ1 =
βT /κa

σκκa
2

2
√

β∗
− 1

(2.88)

w1 =
σκκa

2/(2
√

β∗)

1 − β/(γβ∗)
κ1 (2.89)

and βT = δ∗

τw

dP
dx

represents the pressure gradient in dimensionless form.

The defect layer analysis, by using the pertubation method briefly sum-

marized above, has been used by Wilcox to predict the boundary layer over

a flat plate in case of zero pressure gradient and for βT ranging from −0.5 to

9. The best matching between the numerical and experimental results has

been found using σκ = σω = 0.5, and therefore these are the values assigned

to the two constants.

2.2.2.1.2.3 The viscous sublayer is the region of the boundary

layer closest to the surface. In this zone the velocity varies linearly with
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2.2 Reynolds Averaging of the Navier-Stokes Equations

the distance from the wall, and the molecular diffusion has to be taken into

account. Considering an incompressible pressure constant case and being the

convective terms negligible in the sublayer, the momentum equation and the

(2.64) - (2.65) reduce to

uτ
2 =

(
ν + νt

)∂u

∂y
(2.90)

0 = νt

(
∂u

∂y

)2

− β∗ωκ +
∂

∂y

[(
ν + σkνt

)∂κ

∂y

]
(2.91)

0 = γ

(
∂u

∂y

)2

− βω2 +
∂

∂y

[(
ν + σωνt

)∂ω

∂y

]
(2.92)

Wilcox has shown that, for a perfectly smooth surface in the equation (2.92)

dissipation and molecular diffusion balance, and the following asymptotic

behaviour for ω can be retrieved

ω → 6ν(
βy2

) y → 0 (2.93)

The above equation can be used to specify ω at the wall, and permits together

with the other boundary conditions

y+ → ∞ κ → uτ√
β∗

ω → uτ√
β∗κy

(2.94)

y+ → 0 u = κ = 0 (2.95)

to close the set of equations (2.90)-(2.92).

From the solution obtained it is possible to calculate the constant of the

logarithmic wall law (2.72) as

B = lim
y+→∞

[
u+ − 1

κa

]
(2.96)

The standard Wilcox model yields B = 5.1, a value that falls well within the

scatter of the experimental data.

These results show that the model can be used without additional special

viscous damping terms.
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2.2.2.1.3 Free-stream Dependency Several applications of the Wilcox

κ-ω turbulence models to wall bounded flows can be found in literature [29,

28, 31, 8]. The model has always provided satisfactory results becoming

widely used for external transonic aerodynamics. The reason is the semplicity

of its formulation in the viscous sublayer. The model does not require the

use of damping functions and employs straightforward Dirichlet boundary

conditions resulting to be less stiff and more robust than other popular two

equation models (i.e. κ-ε).

However a dependency of the results on the free-stream value of ω has

been found. This free-stream dependency has been seen to be very strong for

free shear layer flows but is also significant for boundary layer flows. Menter

[32] has shown that a correct solution for high Reynolds number boundary

layer flows can be achieved if a lower limit on ω is imposed. Applying the

perturbation analysis of the defect layer the following estimate for this limit

is obtained

ωlim =
1

β

1

δ∗
d

dx

(
Ueδ

∗
)

= ©
(

10
U∞

L

)
(2.97)

where L is a characteristic length in the streamwise direction. In practical

applications, however, ωlim could result to be too high with respect to the

free-stream values of the turbulent variables and therefore its use could be

not appropriate.

The κ-ε turbulence model generally does not show to have this free-stream

dependency, and since, by performing the change of variable ω → ε, it is

possible to see that the main difference between the two models is the so-

called cross diffusion term (∝ ∂κ
∂xj

∂ω
∂xj

), Menter has proposed to resolve this

drawback of the κ-ω models by taking into account this additional term in

the evaluation of ω.

Wilcox [33] has proposed a revised model with the inclusion of the cross-

diffusion term, and has shown that this term is effective in eliminating the

sensitivity to the free-stream value of ω but adversely affects the compressible

boundary layer predictions.
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2.2 Reynolds Averaging of the Navier-Stokes Equations

2.2.2.2 The κ-ω TNT model

Kok has proposed the TNT κ-ω model [34]. The cross diffusion term is taken

into account only if positive, and therefore it is not effective in the near wall

region where the gradients of κ and ω have opposite signs. The computation

of distances from the wall is avoided. Thus the main advantages of the κ-ω

models are preserved.

The equations of the TNT model are

∂(ρκ)

∂t
+

∂(ρκuj)

∂xj

= τij
∂ui

∂xj

− β∗ρωκ +
∂

∂xj

[
(µ + σkµt)

∂κ

∂xj

]
(2.98)

∂(ρω)

∂t
+

∂(ρωuj)

∂xj

= γ
ω

κ
τij

∂ui

∂xj

− βρω2 +
∂

∂xj

[
(µ + σωµt)

∂ω

∂xj

]
+ CD(2.99)

where

CD = σd
ρ

ω
Max

[
∂κ

∂xj

∂ω

∂xj

, 0

]
(2.100)

The constants are

β∗ = 0.09 σκ =
2

3
β = 0.075 σω = 0.5 σd = 0.5 (2.101)

and the (2.67) always stands for γ.

The values assigned to β and β∗ follow from the (2.71) and (2.79), the

value of σω has been chosen in order to try to minimize the impact in the

near-wall region, and γ always comes from the (2.78). The values of the

other two constants σκ and σd have a weak influence on the solution in the

inner boundary layer, and have been determined by Kok by performing an

analysis of the 1-dimensional diffusion problem:

∂u

∂t
=

∂

∂y

[
νt

∂u

∂y

]
(2.102)

∂κ

∂t
=

∂

∂y

[
σkνt

∂κ

∂y

]
(2.103)

∂ω

∂t
=

∂

∂y

[
σωνt

∂ω

∂y

]
+ σd

1

ω

∂κ

∂y

∂ω

∂y
(2.104)
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2.2 Reynolds Averaging of the Navier-Stokes Equations

This set of equations admits a solution consisting of a front between a tur-

bulent and a non turbulent region moving with a velocity c in the positive y

direction

u = u0H(ct − y)|ct − y

δ0

|
σκσω

σω−σκ+σd

(2.105)

κ = κ0H(ct − y)|ct − y

δ0

|
σω

σω−σκ+σd

(2.106)

ω = ω0H(ct − y)|ct − y

δ0

|
σκ−σd

σω−σκ+σd

(2.107)

where H is the Heaviside function, u0, κ0, ω0 are positive constants, and c is

given by

c =
κ0

ω0δ0

σκσω

σω − σκ + σd

(2.108)

Cazalbou et al. [35] have studied the behaviour of the turbulence models at

the edges of a turbulent region and have shown that the (2.105)-(2.107) can

be considered as a local solution of the general mono dimensional problem at

y = ct if, in the (2.98)-(2.99), the source terms become negligible compared

to the diffusion terms when approaching the front. From (2.98) the diffusion,

the production, and dissipation terms result respectively

∂

∂y

[
σkνt

∂κ

∂y

]
∝ H(ct − y)|ct − y

δ0

|
σκ−σd

σω−σκ+σd

(2.109)

νt

[
∂

∂y

]2

∝ H(ct − y)|ct − y

δ0

|
(2σκ−1)σω+σκ−σd

σω−σκ+σd

(2.110)

β∗κω ∝ H(ct − y)|ct − y

δ0

|
σω+σκ−σd
σω−σκ+σd

(2.111)

and requiring that the exponent in the production and dissipation terms be

larger than the one in the diffusion term, the following constraints

σκ > 0.5 σω > 0.0 (2.112)

are obtained. The same constraints can be obtained from the (2.99).
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2.2 Reynolds Averaging of the Navier-Stokes Equations

Imposing that the transported variable (u, κ, ω) go to zero when approach-

ing the front, the following relations are obtained

σω − σκ + σd > 0.0 (2.113)

σκ − σd > 0.0 (2.114)

Examination of the (2.105) shows that the velocity profile could exhibit an

infinite slope at the edge of the front unless

σω − σκ + σd ≤ σκσω (2.115)

The (2.112) and (2.113) also ensure that the velocity of the front is positive

and therefore that the turbulent front moves into the non turbulent region.

The set of constants proposed by Kok satisfies all the contraints of the

turbulent non turbulent (TNT) analysis presented above, while neither the

standard Wilcox model nor the Wilcox model including the cross diffusion

term (σω = 0.6, σκ = 1.0, σd = 0.3) [33] respect the relation (2.113).

2.2.2.3 The κ-ω SST turbulence model

The Shear Stress Transport (SST) κ-ω turbulence model has been designed

by Menter [6] with the aim to retain the robust and accurate formulation

of the Wilcox model in the near wall region, and to take advantage of the

free-stream independence of the κ-ε model in the outer part of the boundary

layer and in the wakes. In order to achieve this, the constants of the model

and the cross diffusion term are multiplied by a blending function equal to

one in the near wall region and equal to zero away from the surface.

The transport equations of the SST κ-ω turbulence model read as

∂(ρκ)

∂t
+

∂(ρκuj)

∂xj

= τij
∂ui

∂xj

− β∗ρωκ +
∂

∂xj

[
(µ + σkµt)

∂κ

∂xj

]
(2.116)

∂(ρω)

∂t
+

∂(ρωuj)

∂xj

= γ
ρ

µt

τij
∂ui

∂xj

− βρω2 +
∂

∂xj

[
(µ + σωµt)

∂ω

∂xj

]
(2.117)

+ 2(1 − F1)ρσω2

1

ω

∂κ

∂xj

∂ω

∂xj
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2.2 Reynolds Averaging of the Navier-Stokes Equations

where each constant is calculated as

φ = F1φ1 + (1 − F1)φ2 (2.118)

The values of the constants are:

• for the inner zone (κ-ω type)

σκ1 = 0.85 σω1 = 0.5 β1 = 0.075 (2.119)

• for the outer zone (κ-ε type)

σκ2 = 1.0 σω2 = 0.856 β2 = 0.0828 (2.120)

and

β∗ = 0.09 γ1,2 =
β1,2

β∗
− σω1,2κa

2

√
β∗

(2.121)

The blending function F1 is computed as

F1 = tanh(arg1
4) (2.122)

with

arg1 = Min

[
Max

( √
κ

0.09ωy
,
500ν

ωy2

)
,

4ρσω2κ

CDκωy2

]
(2.123)

and

CDκω = Max

[
2ρσω2

1

ω

∂κ

∂xj

∂ω

∂xj

, 10−20

]
(2.124)

In the (2.123) the first argument represents the turbulent length scale Lt =
√

κ/(β∗ω) divided by the shortest distance to the next surface, the second

term becomes important in the viscous sublayer and ensures that F1 does not

go to zero in that region, while the last term prevents a possible free stream

dependence of the κ-ω type solution.

In order to improve the simulation of adverse pressure gradient flows, the

effect of the tranport of the principal shear stress (τxy = −ρu′v′) has been

included in the definition of the eddy viscosity. Following the Bradshaw’s
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2.2 Reynolds Averaging of the Navier-Stokes Equations

assumption, employed also by the Johnson-King model, τxy is assumed to be

proportional, in the boundary layer, to the turbulent kinetic energy

τxy = ρa1κ (2.125)

where a1 is a constant.

In a two equation model, the shear stress is usually computed by means

of the vorticity

τxy = µtΩ (2.126)

a relation that, if the eddy viscosity is expressed by the (2.63), can be also

written as

τxy = ρ

√
Pκ

Dκ

a1κ (2.127)

where Pκ and Dκ represent the production and the destruction of κ respec-

tively.

The ratio Pκ/Dκ can be significantly greater than one in adverse pressure

gradient flows. Therefore, the equation (2.127) could lead to an overpredic-

tion of τxy unless the eddy viscosity is defined as follows

µt = ρ
a1κ

Ω
(2.128)

However the following expression

µt = ρ
a1κ

Max(a1ω, Ω)
(2.129)

is employed instead of the (2.128). In fact, the equation (2.128) cannot be

used in the complete flow field because there are points where Ω goes to zero.

The (2.129) guarantees the use of equation (2.128) for most of the adverse

pressure gradient regions where Ω > a1ω, and of equation (2.63) for the

rest of the boundary layer. Nevertheless, in order to recover the (2.63) for

free shear layer flows, where the relation (2.125) does not necessarly hold, a

blending function, that limites the use of Ω only to wall bounded flows, has

been included in the 2.129.

Finally the eddy viscosity is written as

µT =
ρa1κ

Max(a1ω, ΩF2)
(2.130)
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with a1 = 0.31, and the blending function F2 evaluated as

F2 = tanh(arg2
2) (2.131)

with

arg2 = Max

[
2

√
κ

0.09ωy
,
500ν

ωy2

]
(2.132)

The function F2 has been designed to be 1 close to solid boundaries and 0 in

the upper part of the logarithmic region of a turbulent boundary layer where

Eq. (2.125) should be recovered.

The κ-ω Shear Stress Transport (SST) model has been successively ap-

plied in a wide range of applications, and is regarded in the aeronautical

community as the best linear two equation model for compressible external

aerodynamics [36, 37].

2.2.3 ZEN Code

The flow solver adopted for the RANS simulations is a multi-block well as-

sessed tool for the analysis of complex configurations in the subsonic, tran-

sonic, and supersonic regimes [21, 38]. The equations are discretized by

means of a standard cell-centered finite volume scheme with blended self

adaptive second and fourth order artificial dissipation. The pseudo time-

marching advancement is performed by using the Runge-Kutta algorithm

with convergence accelerators such as the multi-grid and residual smoothing

techniques.

The turbulence equations are weakly coupled with the RANS equations

and solved only on the finest grid level of a multi-grid cycle. Algebraic,

one-equation, two-equations [39], and non linear eddy viscosity turbulence

models [40] are available.
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2.2 Reynolds Averaging of the Navier-Stokes Equations

2.2.3.1 Numerical definition

The Navier-Stokes equations (2.1), after applying the Gauss theorem, are

written for each cell (i, j, k) of a computational domain as

d

dt

∫

Vijk

UijkdVijk +

∫

∂Vijk

(F c − F v)dSijk =

∫

Vijk

QdVijk (2.133)

where U is the vector of the unknown variabls, F c is the convective flux, F v

the viscous (physical and artificial) flux, and Q stands for the source term

(if any). The volume of the computational cell is Vijk.

The (2.133), by means of a cell centered finite volume approach, reduce

to

Vijk
dUijk

dt
+ Rc

ijk − Rv
ijk − VijkQijk = 0 (2.134)

with Rc and Rv the total net fluxes ( convective and viscous respectively )

positive if outgoing from the volume Vijk.

The residual Rc
ijk is obtained as the sum of the fluxes across the six faces

of the cell (i, j, k)

Rc
ijk = fi+1/2 − fi−1/2 + fj+1/2 − fj−1/2 + fk+1/2 − fk−1/2 (2.135)

At the interface i+1/2 of the cell (i, j, k), the flux fi+1/2, positive if outgoing

from the volume Vijk, is evaluated as

fi+1/2 =





qi+1/2ρi+1/2

qi+1/2(ρu)i+1/2 + pi+1/2Ai+1/2

qi+1/2Hi+1/2

(2.136)

where ρi+1/2 is the density, pi+1/2 the termodynamic pressure, (ρu)i+1/2 the

momentum, and Hi+1/2 the enthalpy evaluated at the cell face by averaging

between the values at the centers of the cells (i, j, k) and (i + 1, j, k). The

volume flux qi+1/2 is computed as :

qi+1/2 =
(ρu)i+1/2 · Ai+1/2

ρi+1/2

(2.137)

where Ai+1/2 is the area vector of the face (i + 1/2, j, k) pointing in the

positive i direction.
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The residual Rv
ijk is obtained as the sum of the fluxes across the six faces

of the cell (i, j, k)

Rv
ijk = gi+1/2 − gi−1/2 + gj+1/2 − gj−1/2 + gk+1/2 − gk−1/2 (2.138)

The generic flux gi+1/2 requires, for the momentum equation, the evaluation

of the velocities derivatives and of the heat flux for the energy equation.

The derivatives of the velocities are computed by integrating over a cell

volume and applying the Gauss theorem. The gradient of the generic velocity

component u is obtained as

(∇u)i,j,k =
1

Vi,j,k

6∑

f=1

ufAf (2.139)

where uf is the value of u at the face center, and Af is the area vector of the

face. Thus the derivative of u in the xi direction results to be

∂u

∂xi

=
1

Vi,j,k

(
(ui+1,j,k + ui,j,k)

2
Axi

i+1/2,j,k −
(ui,j,k + ui−1,j,k)

2
Axi

i−1/2,j,k

+
(ui,j+1,k + ui,j,k)

2
Axi

i,j+1/2,k −
(ui,j,k + ui,j−1,k)

2
Axi

i,j−1/2,k (2.140)

+
(ui,j,k+1 + ui,j,k)

2
Axi

i,j,k+1/2 −
(ui,j,k + ui,j,k−1)

2
Axi

i,j,k−1/2

)

with Axi

i+1/2,j,k the xi-component of the area vector of the face (i + 1/2, j, k)

Axi

i+1/2,j,k = Ai+1/2,j,kn
xi

i+1/2,j,k (2.141)

where ni+1/2,j,k is the normal versor of the face.

The heat flux is computed as (λtot)i+1/2(∇iT )i+1/2 where

(λtot)i+1/2 =
Cp µi+1/2

Pr
+

Cp(µt)i+1/2

Prt

(2.142)

is the total heat conduction coefficient with µ the molecular and µt the turbu-

lent viscosity and Pr and Prt the Prandtl and the turbulent Prandtl number

respectively. The molecular and turbulent viscosity are computed by aver-

aging between the cells sharing the considered interface

µi+1/2 =
µi,j,k + µi+1,j,k

2
(2.143)
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(µt)i+1/2 =
(µt)i,j,k + (µt)i+1,j,k

2
(2.144)

The i component of the gradient of the temperature T is evaluated as

(∇iT )i+1/2 =
Ti+1 − Ti

△Li+1/2

(2.145)

where

△Li+1/2 =
Vi,j,k + Vi+1,j,k

2|Ai+1/2|
(2.146)

with |Ai+1/2| the area of the face (i+1/2, j, k), and Vi+1,j,k the volume of the

cell (i + 1, j, k).

The equation (2.134) is advanced in time by using a Runge Kutta (RK)

algorithm. The m - stage formula, assuming that n is the known time level,

is

U
(0)
i,j,k = U

(n)
i,j,k (2.147)

(U
(k)
i,j,k − U

(0)
i,j,k) = αk△ti,j,k

[
− 1

Vi,j,k

(Rc
i,j,k + Rv

i,j,k) + Qi,j,k

]
(2.148)

U
(n+1)
i,j,k = U

(m−1)
i,j,k (2.149)

where αk is the RK coefficient and △ti,j,k is the time step which is evaluated

for each grid cell separately. The convective residuals Rc
i,j,k are computed at

each stage of the procedure, while the terms Rv
i,j,k and Qi,j,k are calculated

only at the first stage and then are frozen.

The use of a local time step does not influence the steady-state solu-

tion, and allows to have, where possible, larger time steps and thus to expel

disturbances faster.

2.2.3.2 UZEN: the Time-accurate Version

A time-accurate version of the flow solver has also been developed [41]. The

time integration is based on the dual-time stepping method [42] where a

pseudo steady-state problem is solved at each physical time step. The DTS

considers the residual equations in an implicit way. All the variables are

known at time level n, and the equations at the time level n + 1 become :

LtU
n+1 = −R(Un+1) (2.150)
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where Lt is the time derivative operator, and

R = RC + RV (2.151)

is the sum of the convective and viscous (physical and artificial) fluxes.

A second order backward difference formula is applied for the time dis-

cretization :

LtU
n+1 =

3Un+1 − 4Un + Un−1

2 △ t
(2.152)

At each physical time level, the DTS method considers a new residual :

R̃(U) = R(U) +
3Un+1 − 4Un + Un−1

2 △ t
(2.153)

and the following equation

dU

dτ
= −R̃(U) (2.154)

is solved in the dual-time τ . The integration of equation (2.154) to its steady

state provides the solution of equation (2.152); the flow variables U at the

time level n + 1.

2.3 Detached Eddy Simulation

The detached eddy simulation belongs to the class of numerical techniques

named hybrid LES-RANS. The accuracy of LES is tried to be achieved at

a lower computational cost exploiting a RANS approach in the zone of the

flow field where the boundary layer is expected to stay attached to the body.

The LES approach should be applied only in the zone of saparated flow.

The detached eddy simulation based on the Spalart-Allmaras and κ-ω

SST models is implemented in the UZEN code [43]

2.3.1 SA-DES

The Detached Eddy Simulation was proposed by Shur and Spalart [44] by

re-defining the length scale of the Spalart Allmaras model (Eq. 2.43). The
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equilibrium hypothesis applied to the model reads as

Cb1S̃ν̃ = Cw1

( ν̃

d̃

)2

(2.155)

and hence

ν̃ ≈ S̃d̃2 (2.156)

The comparison of the above relation with the equation (2.17) shows that

a Smagorinky-like form of the model can be achieved by posing d̃ = CS△.

The DES version of the Spalart-Allmaras turbulence model is achieved by

defining a length scale as

d̃ = Min(d, CDES△) (2.157)

where d is the distance from a solid boundary, CDES = 0.65, and △ has to

be considered as the maximum local grid spacing

△ = Max(△x,△y,△z) (2.158)

2.3.2 SST-DES

The DES approach consists of multiplying the dissipation term of equation

(2.64) by

FDES = Max

[
Lt

CDES∆
(1 − F2), 1

]
(2.159)

where Lt =
√

κ
β∗ω

is the turbulent length scale. The constant CDES is com-

puted, following equation (2.118), as

CDES = F1C
κω
DES + (1 − F1)C

κε
DES (2.160)

with Cκω
DES = 0.78 and Cκε

DES = 0.61
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Chapter 3

Laminar Separation Bubbles

Flows at low Reynolds number are not able to sustain strong adverse pressure

gradients and often separate in laminar flow regime. The turbulence develop-

ing inside the re-circulation region enhances the momentum transport, and

the flow re-attaches. A laminar separation bubble (LSB) is formed. A sketch

of the typical structure of a LSB is shown in figure 3.1. A large part of the

Figure 3.1: Structure of a laminar separation bubble, from Horton [45]

separated zone is characterized by a slow flow motion. This is named as

dead-air region. The last part of the bubble presents a strong re-circulation

vortex flow. Looking at the path of the dividing stream-line, it is clear that

a sudden pressure recovery leading to the re-attachment of the flow occurs

in this zone.

The capability of the RANS models to predict a laminar separation bub-

ble is discussed in this chapter. The presence in the flow field of laminar

separation bubbles means that the transition points cannot be set a pri-

ori. This is a critical point for the turbulence models that are calibrated for
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3.1 Flow over a Flat Plate

separation in the turbulent flow regime, and need the transition points to be

known. This issue has been addressed perfoming numerical simulations with-

out specifying the transition location and using low values of the free-stream

turbulence [46].

The first test-case discussed is the flow over a flat plate with an imposed

pressure gradient. The results obtained by applying the ZEN code are com-

pared to experimental [47] and DNS [48] data found in literature. Then the

flow at Reynolds number 6.0 × 104 around the Selig-Donovan 7003 is taken

into consideration. RANS and large eddy simulations have been performed

and compared to experimental [49] and other numerical results [18].

3.1 Flow over a Flat Plate

A flat plate is mounted in the laminar water tunnel of the Institute of Aero-

dynamics and Gasdynamics of University of Stuttgart [48, 47]. A pressure

gradient is imposed by means of a body located at the upper boundary of

the experimental apparatus. The free-stream velocity V∞ is 0.125 m/s, and

the viscosity ν is 1 × 10−6 m2/s. The resulting Reynolds number is about

1×105. At the inflow, the measured velocity profile can be approximated by

a Falkner-Skan solution with a Reynolds number based on the displacement

thickness Reδ∗ of 900 and a Hartree parameter β of 0.13.

3.1.1 Numerical Set-up

A computational grid composed of 4 domains has been employed (figure

3.2a). The first and fourth block do not have any wall, while the second

and third block have a solid boundary. The second domain is adopted to

set up the velocity at the inflow of the third block that corresponds to the

experimental flat plate. A laminar boundary layer develops in the second

computational domain for a length

Lδ∗ =
(Reδ∗

C1

)2 ν

V∞
(3.1)
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Figure 3.2: Numerical Set-up for the LSB over a Flat Plate.

obtained considering that

Reδ∗ = C1

√
V∞

ν
Lδ∗ C1 = 1.7208 (3.2)

The stream-wise velocity obtained numerically at the inflow of the domain

of interest matches the experimental data (figure 3.2b).

This numerical set-up has been verified by considering the flow over the

flat plate withuot an imposed pressure gradient. The ZEN code has been ap-

plied to simulate a laminar flow with a Reynolds number based on the length

of the second and third domain of 4.935× 105. At the inflow boundary, free-

stream conditions are imposed for the velocity components and density while

the pressure is extrapolated from the interior. At the outflow boundary all the

fluid dynamic variables are extrapolated. The friction coefficient compares

very well with the Blasius curve [50] as shown in figure 3.3. The stream-wise

and normal-wise components of the velocity are presented as functions of the

self-similar coordinate η = z
√

u∞

νx
in figure 3.4. The velocities obtained at

different locations x/L collapse in an unique plot in excellent agreement with

the Blasius solution.
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Figure 3.3: Laminar flow over a flat plate : Friction Coefficient
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Figure 3.4: Laminar flow over a flat plate: Velocity profiles

The next step has been to increase the Reynolds number of an order of

magnitude and simulate the flow imposing the transition at x/L = 0.1. The

height of the wall-adjacent cells has been decreased with respect to the case

at Re = 4.935 × 105. The Spalart-Allmaras and the κ-ω SST turbulence

models have been employed. The friction coefficient is shown in figure 3.5.

The Blasius laminar and Prandtl turbulent curves [50] are reproduced very

well.

The experiment performed at the University of Stuttgart [48, 47] has been
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Figure 3.5: Transitional Flow over a flat plate: Friction Coefficient
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Figure 3.6: Normal-wise velocity profile at the top boundary of the domain

of interest

simulated by adopting the numerical set-up described above. A pressure

gradient is imposed at the top boundary of the 3rd computational domain

(figure 3.2a) by prescribing a normal-wise velocity as come out by DNS data

(figure 3.6). The following boundary condition has been implemented

w < 0 ⇒





u v w ρ imposed

p extrapolated
w > 0 ⇒





w imposed

u v ρ p extrapolated
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Figure 3.7: LSB over a Flat Plate : Pressure Coefficient. Effect of imposing

transition point

3.1.2 Influence of free-stream Turbulence

The transition of the flow from the laminar to the turbulent regime is a

critical point in reproducing laminar separation bubbles. This is shown in

figures 3.7 and 3.8 where the pressure and friction coefficients achieved by

the Spalart-Allmaras and κ-ω SST turbulence models with standard inputs

are reported. It is clearly seen that only imposing the transiton point, the

flow separates and a laminar bubble is formed. No separation occurs if the

turbulence models are run in a ”fully turbulent” way without specifying the

transition location.

Some researchers have coupled transiton prediction methods to RANS

solvers in order to simulate laminar bubbles [10, 11, 12].

An other way has been tried [46]. Indeed laminar bubbles are found if

the turbulence models are run with low values of the free-stream turbulent

variables. No particular treatment of the transtion mechanism is employed.

The figures 3.9 and 3.10 show the pressure and friction coefficients achieved

by lowering the free-stream values of the turbulent variables (the ratio ν̃
ν

for the Spalart Allmaras; µt

µ
, and

√
κ

V
for the κ-ω SST). The RANS results

are compared to DNS [48] data in the laminar part of the bubble. The
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Figure 3.8: LSB over a FLat Plate : Friction Coefficient. Effect of imposing

transition point
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Figure 3.9: LSB over a Flat Plate : Pressure Coefficient. Effect of lowering
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re-attachment of the flow provided by the DNS is at x = 0.6.

The bubble is found if the free-stream values are sufficiently low. The

Spalart-Allmaras (figures 3.9a, and 3.10a) returns a bubble if ν̃
ν
|∞ ≤ 1×10−15

with the results obtained with ν̃
ν
|∞ = 1 × 10−20 and ν̃

ν
|∞ = 1 × 10−30 almost

indistinguishable. All the simulations with bubble show the same separation

45



3.1 Flow over a Flat Plate

X

C
F

•0.5 0 0.5 1
•0.004

•0.002

0

0.002

0.004

0.006

0.008

DNS
Free Transition (1e•10)
Free Transition (1e•15)
Free Transition (1e•20)
Free Transition (1e•30)

Spalart•Allmaras Turbulence Model

(a) Spalart-Allmaras

X

C
F

•0.5 0 0.5 1
•0.004

•0.002

0

0.002

0.004

0.006

0.008

DNS
Free Transit. • 1e•3
Free Transit. • 1e•9

SST κ−ω Turbulence Model

(b) κ-ω SST
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point as the DNS. The simulation with ν̃
ν
|∞ ≤ 1 × 10−15 follows better the

CF in the ”dead air” region but gives a re-attachment point located more

downstream than DNS data. The computation with ν̃
ν
|∞ ≤ 1×10−20 provides

a dead-air region shorter with respect to DNS but the length of the bubble

is well reproduced.

The κ − ω SST model (figures 3.9b, and 3.10b), with difference to what

found by Spalart [4], finds a bubble when used with µt

µ
|∞ = 1 × 10−9, and

√
κ

V
|∞ = 10−6. The separation point is well predicted, the transition antici-

pated and the re-attachment slightly posticipated with respect to DNS.

The effect of lowering the free-stream turbulence has been investigated in

more detail. The stream-wise velocity profiles at different locations achieved

by the κ-ω SST and Spalart-Allmaras turbulence models are shown in figure

3.11 and 3.12 respectively. Velocities have been obtained by considering

different conditions at the top boundary of the computational domain. Solid

curves refer to simulations performed by imposing a pressure gradient, as

reported in the previous section. The dashed-dot lines are for free-stream

condition applied at the top boundary.

Two ways of dealing with the transition phenomenon are reported. Black
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Figure 3.11: LSB over a flat plate - κ − ω SST turbulence model: Influence

of free-stream tubulence on stream-wise velocity: —- Pressure gradient PG;

− · − No pressure gradient; NOPG

lines are for the runs carried out by prescribing the location of the transition

a priori, while the results achieved by fully turbulent simulations are shown

in coloured curves. Decreasing values of the free-stream tubulence are used.

The results obtained with free-stream conditions imposed at the top

boundary of the computational domain are compared to the velocities achieved
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Figure 3.12: LSB over a flat plate - Spalart and Allmaras turbulence model:

Influence of free-stream tubulence on stream-wise velocity: —- Pressure gra-

dient; − · − No pressure gradient;

by a laminar simulation. The results of the simulation with an imposed pres-

sure gradient are compared to the DNS data [48] at the stations where these

are available.

The results of the simulations performed without an imposed pressure

gradient and using standard value of the free-stream turbulence are first ana-
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lyzed. Both the Spalart-Allmaras and the κ-ω SST turbulence models return

the same kind of results. The flow obtained in case of prescribed transition

location (at x = 0.42) remains in the laminar regime up to the transition

point. In fact, it is possible to note from both figure 3.11 and 3.12, how

the velocity profiles (black dash-dotted curves) compare with the laminar

solution (square symbols) very well. A turbulent flow develops only down-

stream the transition location. Instead in case of simulation without fixing

the transtion location, the velocity profiles (green dash-dotted curves) do not

follow the laminar solution (square symbol) showing a logarithmic turbulent

region already at x = 0.15.

The simulations with an imposed pressure gradient have been performed

by prescribing the transition location and by assuming the flow turbulent

everywhere with decreasing values of the free-stream turbulence.

Different solutions corresponding to the free-stream ratio µt

µ
have been

computed by applying the κ-ω SST model as shown in figure 3.11. The results

obtained by imposing the transition (black solid curves) reproduce the DNS

data very well. At the first station (figure 3.11a), all the velocity profiles

achieved without fixing the transition location (coloured solid curves) follow

the DNS data. The situation changes as the flow develops along the flat plate.

Only the results achieved by using µt

µ
|∞ = 1×10−9 (red solid curve) follow the

DNS data at x = 0.15 and provide a separation at x = 0.225. Downstream

the separation point, the velocity obtained by prescribing the transiton is

still in good agreement with the DNS data. Instead the simulation with
µt

µ
|∞ = 1× 10−9 shows a velocity with some disagreement and provides a re-

attachment anticipated with respect to the computation with the transition

point fixed. The other simulations return a flow that develops a turbulent

region upstream of the transition location and do not show any separation.

The results achieved by the Spalart-Allmaras turbulence model are re-

ported in figure 3.12. The solution with the pressure gradient and fully

turbulent conditions are obtained with decreasing value of the free-strem

ratio ν̃
ν
. The velocity corresponding to the value ν̃

ν
|∞ = 0.1 shows a tur-

bulent flow and does not return a separation. The solution obtained with

49



3.1 Flow over a Flat Plate

Z

•0.0005 0 0.0005
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

CONVECTION
DIFFUSION
PRODUCTION
DISSIPATION

X = 0.30

(a) x = 0.30

Z

•0.0005 0 0.0005
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

CONVECTION
DIFFUSION
PRODUCTION
DISSIPATION

X = 0.40

(b) x = 0.40

Z

•0.0005 0 0.0005
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

CONVECTION
DIFFUSION
PRODUCTION
DISSIPATION

X = 0.47

(c) x = 0.47

Z

•0.0005 0 0.0005
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

CONVECTION
DIFFUSION
PRODUCTION
DISSIPATION

X = 0.54

(d) x = 0.54

Z

•0.0005 0 0.0005
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04
CONVECTION
DIFFUSION
PRODUCTION
DISSIPATION

X = 0.65

(e) x = 0.65

Z
•0.0005 0 0.0005

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04 CONVECTION
DIFFUSION
PRODUCTION
DISSIPATION

X = 0.70

(f) x = 0.70

Figure 3.13: LSB over a flat plate: Balance of κ. The colours of the curves

are the same as in figure 3.11

ν̃
ν
|∞ = 10−15 follows both the DNS data and the results achieved by impos-

ing the transition location very well. The velocity profile at the separation

point (x = 0.225) is in excellent agreement with the DNS. The solution with
ν̃
ν
|∞ = 10−30 also shows a flow separation but the agreement with DNS is a

little worse.

The budget of the turbulent kinetic energy has been analyzed by con-

sidering the different terms, namely convection, diffusion (equation 2.60),

production (equation 2.61) and dissipation (equation 2.62), of the transport

equation of κ (equation 2.116). The simulations with an imposed pressure

gradient, already evaluated in terms of velocity profiles, are reported in figure

(3.13).

The first station (figure 3.13a) is located well upstream of the separation.

The terms of the κ equation are different from zero only for the simulations

performed with µt

µ
|∞ = 1 × 10−1 (green curve) and 10−3 (blue curve).

50



3.1 Flow over a Flat Plate

At x = 0.40 (figure 3.13b), the flow is approaching the transition (oc-

curing at x = 0.42). The terms provided by the computation with µt

µ
|∞ =

1×10−9 become active and result larger than the ones provided by the other

two simulations performed without imposing the transition location. At the

station x = 0.47 (figure 3.13c), located downstream the transition point, also

the simulation performed with the transition prescribed (black curve) has all

the terms that contribute to the balance of κ. The results of the computa-

tions with µt

µ
|∞ = 1 × 10−1 and 10−3 are quite similar. The production and

dissipation obtained by fixing the transtion point become larger (in absolute

value) than all the other simulations and resemble the ones obtained with
µt

µ
|∞ = 1 × 10−9. The convection achieved by fixing the transition is similar

to the convection obtained with µt

µ
|∞ = 1 × 10−9 in the inner part of the

boundary layer while becomes larger in the outer part. Instead, the diffu-

sion, both molecular and turbulent, resulting by the two simulation is very

similar.

In all the simulations, the diffusion is positive close to the wall and in the

last part of the boundary layer, while gives a negative contribution in the

central region. Convection is first positive and then becomes negative. Pro-

duction and dissipation are the terms that mainly contribute to the budget

of κ in the outer part of the boundary layer.

The results reported in the figures (3.11)-(3.13) show that in case of sim-

ulations with the transtion point prescribed, the flow remain in the laminar

regime upstream of the transition and that the terms of the transport equa-

tion of κ are activated only downstream the transition. The use of low values

of free-stream turbulence do not reproduce exactly the results achieved by fix-

ing the transition a priori but allows to obtain a solution that resembles quite

well a laminar flow upstream the actual transition. The Spalart-Allmaras has

provided results better than the κ-ω SST turbulence model.

The analysis of the budget of the turbulent kinetic energy at different

stations along the flat plate, has highlighted that the production of κ re-

sulting from the computation with low value of µt

µ
|∞ becomes different from

zero a little upstream of the transition point. However the terms concurring
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Figure 3.14: Incompressible flow over a flat plate : Friction Coefficient. Effect

of lowering free-stream values of the turbulent variables; ν̃
ν

(a); µt

µ
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to the budget of κ obtained by fixing the transtion point are similar, also

from a quantitative point of view, to the ones resulting from the simulation

performed with low values of free-stream turbulence for all the length of the

flat plate.

The behaviour of the turbulence models when run with very low values of

the turbulent variables has been further investigated by simulating the flow

over a flat plate at ReL = 1 × 106.

A sort of numerical transition is shown. The friction coefficient is reported

in figure 3.14 toghether with the Blasius and the Prandtl curves [50]. The

Spalart-Allmaras model provides a jump from the laminar to the Prandtl

curve if the ratio ( ν̃
ν
)|∞ is kept low. This jump occurs at higher Reynolds

number as this ratio decreases. A sort of convergence as the free-stream

values are lowered is instead shown by the κ-ω SST model. The jump occurs

at a Reynolds number of about 1×105. Both the models slightly underpredict

the Prandtl curve.
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3.2 Flow around the SD 7003 Airfoil

3.2 Flow around the SD 7003 Airfoil

The laminar separation bubble over an airfoil has been analyzed. The incom-

pressible flow around the Selig-Donovan (SD) 7003 airfoil presents interesting

characteristics. At Reynolds number 6×104 a bubble is formed on the upper

surface of the airfoil. The bubble is located in the rear zone close to the

trailing edge at low incidences, and moves upstream as the angle of attack

increases.

This is a widely-used test case for which experimental [49] and numerical

[18] data are available in literature. RANS and large eddy simulations at

several angles of incidence have been performed. The main aim is to analyze

the limits of the RANS methods by comparison with LES results.

A first set of results have been obtained by running the turbulence models

without specifying the transition points (flows is assumed turbulent every-

where). Laminar separation bubbles are detected if the turbulence models

are robust enough to be run with very low values of free-stream turbulence.

An other set of results are presented by running the turbulence model with

the transition location fixed at a point retrieved by the LES data.

The NEC SX6 machine has been used. A RANS simulation has been

obtained in about 8 hours while a LES solution has required about 30 days

CPU of a single processor.

3.2.1 Grid Assessment

A C-topology grid with 768 (96 in the wake) cells in the stream-wise and 176

cells in the normal-wise direction has been employed. The far-field bound-

aries are located at a distance of 30 chords from the airfoil. The height of

the wall-adjacent cells in viscous coordinates remains less than one for all the

upper surface of the airfoil, as shown in Fig. 3.15a where the y+ obtained by

the RANS with the κ − ω SST turbulence model is presented.

The 2D mesh of the RANS computations has also been employed for

the large eddy simulations. The only difference is that the branch-cut line is

adapted with the angle of attack to follow the wake. The span-wise extension
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Figure 3.15: SD7003 Airfoil, Re = 6×104, α = 6◦. Size of wall-adjacent grid

cells; −−: ∆y+, —: ∆z+, − · −: ∆x+
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Figure 3.16: SD7003 Airfoil, Re = 6.0×104, α = 4◦. Grid convergence study

of the RANS solution

of the computational domain is 0.1×c with 48 cells. The wall-adjacent cells in

viscous coordinates have size less than one in the wall-normal direction, and

order of magnitude 10 in the stream and span-wise directions (Fig. 3.15b).

A grid convergence study (Fig. 3.16) has been performed for the RANS

solutions. Five levels of the computational mesh are considered. The two
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3.2 Flow around the SD 7003 Airfoil

coarsest grids provide a separated flow. The flow re-attaches in the three

finer meshes with the re-attachment point between the 50% and 60% of the

chord. Differences between the 4th and 5th level of the grid are negligible for

both pressure (Fig. 3.16a) and friction coefficient (Fig. 3.16b). Therefore 4

levels of the grid are considered sufficiently accurate, and have been used in

the simulations discussed in the following sections.

3.2.2 Turbulence Models Assessment

RANS simulations of the flow at Re = 6 × 104 and α = 4◦ around the SD

7003 airfoil have been performed by using several turbulence models. The

transition is not specified and the flow is assumed to be turbulent everywhere.

The Spalart-Allmaras [5], the κ−ε Myong-Kasagi [51], and the κ−ω Wilcox

[30], TNT [34], BSL, and SST [6] are the models tested. The value of the

free-stream turbulence is decreased provided that a converged solution can

be achieved. The large eddy simulations by Galbraith and Visbal [18] are

taken as reference data.

All the RANS results show a different solution in terms of pressure (Fig.

3.17a and c) and friction coefficient (Fig. 3.17b and d) with respect to LES.

The differences are better appreciated looking at the friction coefficient on

the upper surface. The κ− ε does not provide a flow separation. A flow with

a separation and a re-attachment is returned by all the other turbulence

models. The κ − ω SST and the Spalart-Allmaras provide a qualitatively

good result. The CF presents the same shape as LES data although the

re-attachment point is anticipated. The κ−ω BSL yields a result in between

the TNT and SST models.

3.2.3 Results by κ-ω SST turbulence model

In the following, the focus is placed on the κ-ω SST turbulence model. This

model is very popular and reliable for transonic high-Reynolds number flows,

as pointed out by different authors (cfr. Catalano and Amato [21, 22], Bezard

et al. [37]), but its effectiveness for low-Reynolds number flows is doubtful
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Figure 3.17: SD7003 Airfoil, Re = 6.0 × 104, α = 4◦. Results by several

turbulence models

(Catalano and Tognaccini [46], Rumsey and Spalart [19]).

3.2.3.1 Main Characteristics of the Flow

The model is applied at several angles of incidence with µt

µ
|∞ = 1×10−9 and

√
κ

U
|∞ = 10−6. The friction and pressure coefficient as function of the angle

of attack are presented in Fig. 3.18. A bubble is predicted in the trailing

edge zone of the airfoil at α = 0◦ and then moves towards the leading edge
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Figure 3.18: SD7003 Airfoil, Re = 6.0×104. RANS, κ−ω SST with laminar-

turbulent transition not prescribed: CP and CF over the airfoil at different

angles of attack.

as α increases.

The evolution of the laminar bubble as a function of the angle of incidence

is also presented in figure 3.19. The contour map of the turbulent kinetic

energy shows that the turbulence is formed inside the bubble. The airfoil

is stalled at α = 10◦. This is likely a combined stall due to the interaction

between the laminar bubble in the leading edge zone and a separated region

appearing in the rear part of the airfoil at the high incidences.

3.2.3.2 Large Eddy Simulations

Large eddy simulations of the flow around the SD 7003 airfoil have been

performed at several incidences. A RANS flow field has been used as initial

solution and the simulation has been advanced in time with a time step

△t = 1.5 × 10−4. Figure 3.20 shows the three-dimensional turbulent flow

that develops in the rear part of the airfoil downsteam the separation. The

time history of the lift and drag coefficients for the case at α = 4◦ is shown

in figure 3.21a and 3.21b. The large eddy simulation has been advanced in

time for more than 20 characteristic times, and then the results have been
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Figure 3.19: SD7003 Airfoil : RANS. Evolution of the bubble with the angle

of attack. Contour map of k is shown
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Figure 3.20: SD7003 Airfoil : Large Eddy Simulation. Contour map of the
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Figure 3.21: SD7003 Airfoil : Large Eddy Simulation at α = 4◦. Time

history of the aerodynamic coefficients.
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Figure 3.22: SD7003 Airfoil : Large Eddy Simulation at α = 4◦. Time

averaging of pressure and friction coefficient.

time-avergaed. Figure 3.22 shows the time-averaging process of the pressure

and friction coefficients. The solution achieved at a certain instant shows a

well-defined separation point, and a series of separation and re-attachment

points downstream the dear-air region. The bubble with one separation and

one re-attachment point is obtained only when the solution is averaged in
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Figure 3.23: SD7003 Airfoil, Re = 6.0 × 104, α = 4◦. Pressure and friction

coefficient; ©: ILES (Galbraith and Visbal), △: present LES , —–: RANS

κ − ω SST with laminar-turbulent transition not prescribed.

time for a significant period.

3.2.3.3 RANS-LES Comparison

The RANS solutions are compared in terms of pressure and friction coeffi-

cients to the large eddy simulations data by the authors and Galbraith and

Visbal [18] in the figures 3.23, 3.24, and 3.25 at α = 4◦, 6◦, and 8◦ respec-

tively. The pressure recovery in the zone of the bubble is much stronger in

LES than in RANS data, as can be seen in all the CP and CF plots. The

separation point is well predicted in the RANS simulations, but the RANS

provide a re-attachment anticipated with respect to LES results. Down-

stream the flow re-attachment, the RANS recover to a level of pressure lower

than LES.

The present large eddy simulations are in excellent agreement with the

ILES by Galbraith and Visbal [18] at α = 4◦ and 8◦. Some discrepancies can

be noted for the flow at α = 6◦.

The RANS simulations have been performed without an a priori knowl-

edge of the laminar-turbulent transition. It has been shown that a laminar
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Figure 3.24: SD7003 Airfoil, Re = 6.0 × 104, α = 6◦. Pressure and friction

coefficient; ©: ILES (Galbraith and Visbal), △: present LES, —–: RANS

κ − ω SST with laminar-turbulent transition not prescribed.
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Figure 3.25: SD7003 Airfoil, Re = 6.0 × 104, α = 8◦. Pressure and friction

coefficient; ©: ILES (Galbraith and Visbal), △: present LES, —–: RANS

κ − ω SST with laminar-turbulent transition not prescribed.

bubble is returned by the RANS methods with the κ-ω SST and the Spalart-

Allmaras turbulence models used with low values of free-stream turbulence.

The RANS satisfactorily predict the separation point and the flow in the
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3.2 Flow around the SD 7003 Airfoil

dead air region. A shorter bubble length and a weaker pressure recovery is

provided by RANS with respect to LES.

3.2.3.4 Flow at α = 4◦

A comparison between the bubble returned by the RANS and LES methods

at α = 4◦ is presented in Fig. 3.26. The stream-lines with the contour map

of the axial velocity and the pressure coefficient in the zone of the bubble

are presented. The LES results are averaged along the span direction and in

time for about 8 characteristic times. The structure of a laminar separation

bubble [45] (Fig. 3.1) can be recognized. A dead-air region is returned

by both RANS and LES. The zone of reverse flow lying below the dividing

stream-line is characterized by very low value of the U/U∞ for a large extent

of the bubble. The pressure recovery occurs in the zone where stronger

negative velocities are attained by the flow. A reverse flow vortex is seen in

the LES results while a more spread region of pressure recovery is returned

by the RANS method.

The flow has also been computed by imposing the transition location at

xtr/c = 0.53, a value retrieved by LES data. The results are expected to

improve when the turbulence models are run with the transition point fixed

at a reasonable location. This is shown in literature and has been verified

by the author [46] for the flow over a flat plate with an imposed pressure

gradient [48, 47].

The κ-ω BSL turbulence model [6] is also applied. The comparison be-

tween the friction and pressure coefficient achieved by applying the two mod-

els without and with the transition location fixed a priori is shown in Fig.

3.27. The two κ-ω models provide a similar result when used without fixing

the transition location. On the contrary, a large difference occurs when the

simulations are performed with the transition point fixed a priori. The κ-ω

BSL provides a pressure recovery closer to the LES data. On the contrary,

the κ-ω SST produces a too low turbulence and the flow does not reattach.

The Shear Stress Transport formulation should allow for a better charac-
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Figure 3.26: SD7003 Airfoil, Re = 6.0 × 104, α = 4◦. Structure of the

Laminar bubble.

terization of flow separations and re-attachments. This has been verified for

typical transonic benchmarks, but, as shown by the present results, at low

Reynolds number seems to provide results even worse than the baseline BSL

model. This confirms the analysis performed by Rumsey and Spalart [19] on
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the poor accuracy of the κ-ω SST for low-Reynolds number flows.
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Chapter 4

Turbulence Modelling

This chapter is devoted to the derivation and description of the κ-ω SST-LR

turbulence model. This consinst in some modifications apported to the κ-ω

SST model.

First the equations of the κ-ω SST are re-called, and some results achieved

by the model are critically revised. Some features of the model are analyzed

at decreasing Reynolds numbers. The implementation of the model will be

shown to become critical as the Reynolds number decreases [52].

Modifications of the κ-ω SST model are proposed and applied to flows at

low as well as high Reynolds number. The results obtained at low Reynolds

number are noticeably improved by this modified model, and the characterit-

ics at high Reynolds number are preserved [53].

4.1 Analysis of the the κ-ω SST model

The SST formulation accounts for computing the shear stress as

τ = a1κ (4.1)

in a suitable part of the boundary layer. This is obtained by considering that

for boundary layer flows

τ ≈ µtΩ (4.2)

where Ω is the vorticity. The eddy viscosity is computed by making use of a

switching between the specific turbulent dissipation ω and Ω

µt =
ρa1κ

MAX(a1ω, F2Ω)
(4.3)
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4.1 Analysis of the the κ-ω SST model

where a1 = 0.3 and F2 is a blending function computed as

F2 = tanh(Arg22) (4.4)

where

Arg2 = max(Arg21, Arg22) (4.5)

with

Arg21 =
2
√

κ

β∗ωy
, Arg22 =

500µ

ωy2
(4.6)

The function F2 has been designed to be 1 close to solid boundaries and

zero in the upper part of the logarithmic region of a turbulent boundary

layer where Eq. (4.1) should be recovered. The presence and extension of

the logarithmic region depends on the Reynolds number. In particular, its

extension increases as the Reynolds number increases.

The flow around the SD 7003 airfoil has been analyzed at α = 0◦ and

Reynolds numbers 6.0×106, 6.0×105, and 6.0×104. The turbulent intensity

has been set to 0.1% and the ratio between the free-stream turbulent and

molecular viscosity to 0.1. This numerical setting allows to concentrate on

the effect of the Reynolds number on the boundary layer because laminar

separation bubbles are not returned by any of the simulations. The spacing

of the first layers of cells has been adapted to the Reynolds number in such

a way to obtain a y+ of order of magnitude one for all the simulations.

The stream-wise velocity profiles at three stations along the upper surface

of the SD 7003 airfoil are shown in the Fig. 4.1. The curves u+ = y+

corresponding to the viscous sub-layer, and u+ = u
uτ

= 1
κa

log y+ + B (with

κa = 0.41, and B = 5.0) corresponding to the log-layer are also shown. The

flow at the highest Reynolds number (Fig. 4.1a, Fig. 4.1b, and Fig. 4.1c)

presents a well-defined logarithmic region in a large extent of the boundary

layer. At Reynolds number 6.0 × 105 (Fig. 4.1d, Fig. 4.1e, and Fig. 4.1f),

the log-layer still exists, but both the thickness of the boundary layer and

the extension of the logarithmic region are reduced of an order of magnitude.

The numerical results follow fairly well either the linear and the log law of the

velocity at both the Reynolds numbers. On the contrary, at Re = 6.0 × 104
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Figure 4.1: κ − ω SST. Velocity profiles on the SD 7003 Airfoil at three

Reynolds numbers, α = 0◦

(Fig. 4.1g, Fig. 4.1h, and Fig. 4.1i), the logarithmic region is totally absent

in the calculations. The stream-wise velocity has a linear behaviour with y+

for most of the boundary layer but does not follow the viscous law u+ =

y+. The velocity reaches higher values with respect to the other two lower
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4.1 Analysis of the the κ-ω SST model

Reynolds numbers.

The eddy viscosity is shown in Fig. 4.2. The two quantities a1ω and

F2Ω at denominator of Eq. (4.3) are also reported as symbols, and their

maximum as a solid line. Similar results are obtained at Reynolds numbers

6.0 × 106 (Fig. 4.2a, Fig. 4.2b, and Fig. 4.2c) and 6.0 × 105 (Fig. 4.2d, Fig.

4.2e, and Fig. 4.2f). The eddy viscosity is computed as µt = ρκ/ω in most

of the boundary layer. F2Ω is greater than a1ω in a narrow region close to

the zone where µt/µ has reached its maximum and starts to decrease. In this

region, the eddy viscosity is computed as µt = a1κ/F2Ω.

At Reynolds number 6.0 × 104 (Fig. 4.2g, Fig. 4.2h, and Fig. 4.2i), the

eddy viscosity µt/µ is lower than 0.01 at x/c = 0.40 and 0.1 at x/c = 0.60,

and greater than one only at the station x/c = 0.90. At this location,

F2Ω > a1ω in the region where µt/µ is maximum. The flow can be considered

turbulent only at x/c = 0.90.

The behaviour of the blending function F2 (Eq. 4.4) and its arguments

(Eq. 4.5 and Eq. 4.6) is presented in the Fig. 4.3. At Reynolds number

6.0 × 106 (Fig. 4.3a, Fig. 4.3b, and Fig. 4.3c), the F2, as expected, is

computed as a function of the viscous quantity Arg22 in the sub-layer and

then as a function of the turbulent length scale Arg21 in the remaining part

of the boundary layer. It is worth noting that at the station x/c = 0.40, the

F2 presents a little jump. This can be seen also at Reynolds number 6.0×105

(Fig. 4.3d, Fig. 4.3e, and Fig. 4.3f) at x/c = 0.40 and in a less pronounced

way at x/c = 0.60. This occurs in the upper part of the boundary layer when

the viscous argument Arg22 becomes greater than the turbulent argument

Arg21. At Reynolds number 6.0 × 104 (Fig. 4.3g, Fig. 4.3h, and Fig. 4.3i),

the F2 shows a large oscillation. Indeed, in the outer part of the boundary

layer it again grows while it was expected to vanish in order to correctly

perform the switch in the eddy viscosity calculation.
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Figure 4.2: κ−ω SST. Eddy viscosity profiles on the SD7003 airfoil at three

Reynolds numbers, α = 0◦; −·−: µt/µ, 2: a1ω, ∇: F2Ω, —–: max[a1ω, F2Ω]

4.2 The κ-ω SST-LR model

The computation of F2 in the standard SST formulation requires the calcu-

lation of the maximum between two arguments (Eq. 4.4). The first one is
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Figure 4.3: κ− ω SST. Function F2 on the SD7003 airfoil at three Reynolds

numbers, α = 0◦; − · −: F2, ∇: Arg21, 2: Arg22, —–: max[Arg21, Arg22]

Arg21 (Eq. 4.6), the turbulent length scale divided by the distance from the

wall. Arg21 is zero at the body surface, reaches a maximum in the log-region,

and then vanishes in the upper part of the boundary layer. The second ar-

gument is Arg22 which depends on the molecular viscosity µ, the specific
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4.2 The κ-ω SST-LR model

dissipation rate ω, and the square of the distance from the body surface.

The quantity Arg22 has a constant value close to a solid boundary since

ω ∝ 1

y2
as y −→ 0 (4.7)

and behaves as y in the outer part of the boundary layer. Arg22 should

be important in the viscous sublayer, while Arg21 should play a role in the

logarithmic part of the boundary layer. This occurs at Re = 6 × 106 (Fig.

4.3a, 4.3b, and 4.3c) and Re = 6 × 105 (Fig. 4.3d, 4.3e, and 4.3f). In these

cases a log region can be clearly discerned in the boundary layer (Fig. 4.1a,

4.1b, 4.1c, and Fig. 4.1d, Fig. 4.1e, Fig. 4.1f). Arg21 should be small as

the Reynolds number decreases and the log layer tends to disappear, but this

is not true at Re = 6 × 104. Indeed, the logarithmic region is absent (Fig.

4.1g, Fig. 4.1h, Fig. 4.1i), but Arg21 > Arg22 and F2 = tanh(Arg212) in a

significant part of the boundary layer at x/c = 0.90 (Fig. 4.3i).

A modification is here proposed in order to correctly apply the SST for-

mulation to low Reynolds number flows. F2 is again computed following Eq.

4.4, but Eq. 4.5 is modified as :

Arg2 = max(1/kf ∗ Arg21, Arg22) (4.8)

with

kf =
∣∣∣ln

(
kr/Re

)∣∣∣ kr = e
B

2κ2
a (4.9)

The coefficient kf is of order of magnitude one if Re ≈ 106, and greater than

one at lower Reynolds numbers. In this way Arg21 decreases in case of low

Reynolds numbers flows, but the original formulation is recovered for high

Reynolds number flows.

The analysis in the previous section has also highlighted some oscillations

of F2, more clear as the Reynolds number decreases. As recommended by

Menter [6], a limiter for the turbulent specific dissipation in the form

ω ≥ ωlim = kω
U∞

Lref

, kω = 10 (4.10)
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4.2 The κ-ω SST-LR model

has been used in the numerical simulations. This limiter does not properly

work as the Reynolds number decreases. It has been here updated as follows:

ω ≥ ωlim = kω
U∞

Lref

∗ kf (4.11)

The modified model (equations 4.8, 4.9, and 4.11) is referenced as κ − ω

SST-LR in the following sections.

4.2.1 Analysis for Low Reynolds Number Flows

The simulations of the flow around the SD 7003 airfoil at α = 0◦ and Reynolds

numbers 6× 106, 6× 105, and 6× 104 have been repeated by using the κ−ω

SST-LR model.

The velocity profiles are presented in the Fig. 4.4. There are negligible

differences with the velocities provided by the κ−ω SST at Reynolds numbers

6× 106, and 6× 105. Large differences are instead seen at Reynolds number

6 × 104. Indeed a viscous region is now clearly identified in the boundary

layer. The velocity profiles follow the linear law u+ = y+ very well. The

levels of u+ remain of the same order of magnitude as at the higher Reynolds

numbers. It is interesting to compare in Fig. 4.1 and 4.4, the solutions

obtained at x/c = 0.90. The κ − ω SST-LR, with difference to the standard

SST, provides a boundary layer profile with a small visible log region, which

implies a significant turbulence.

The eddy viscosity is shown in Fig. 4.5. The results obtained by the κ−ω

SST-LR model at Reynolds number 6×106 present the same behaviour as the

µt/µ provided by the κ−ω SST (Fig. 4.5) in terms of either maximum value

and zone where this maximum is attained. At Reynolds number 6× 105, the

κ−ω SST-LR returns a slightly more turbulent flow than standard SST. The

eddy viscosity behaviour after the maximum is slightly more irregular than

standard SST. At Reynolds number 6 × 104, the κ − ω SST-LR provides a

turbulent flow (µt/µ ≥ 1) also at x/c = 0.60. With difference to the SST

model (Fig. 4.2g, 4.2h, 4.2i), the eddy viscosity is computed as µt = ρκ/ω

in the entire boundary layer at both x/c = 0.60, and x/c = 0.90. The new
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Figure 4.4: κ − ω SST-LR. Velocity Profiles on the SD7003 airfoil at three

Reynolds numbers, α = 0◦

limiter Eq. 4.11 increases significantly the value of a1ω at the edge of the

boundary layer.

The Fig. 4.6 shows the function F2 computed by equations 4.4, 4.8, and

4.9. There are not significant differences between the results obtained by the
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Figure 4.5: κ − ω SST-LR. Eddy viscosity profiles on the SD7003 airfoil

at three Reynolds numbers, α = 0◦; − · −: µt/µ, 2: a1ω, ∇: F2Ω, —–:

max[a1ω, F2Ω]

κ−ω SST-LR and SST at all the three Reynolds numbers. The F2 obtained

by the κ − ω SST-LR has the same behaviour and goes to zero in the same

zone of the boundary layer as the results provided by κ − ω SST (Fig. 4.3).
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Figure 4.6: κ − ω SST-LR. Function F2 on the SD7003 airfoil at three

Reynolds numbers, α = 0◦; − · −: F2, ∇: Arg21, 2: Arg22, —–:

max[Arg21, Arg22]

The oscillation in the F2 is still present but reduced. F2 depends on Arg22

close to the airfoil surface, and is F2 = tanh(Arg212) in the log-layer zone.

At Reynolds number 6 × 104, F2 = tanh(Arg222) except in a very narrow
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4.2 The κ-ω SST-LR model

zone at the station x/c = 0.90. This is consistent with the fact that the

κ− ω SST-LR provides at Re = 6× 104 and x/c = 0.90 a turbulent solution

with a logarithmic region in the boundary layer. It is worth noting that

the discontinuous behaviour of the F2 at Reynolds number 6 × 104 has no

effect on the solution since, as already seen, the eddy viscosity is computed

as µt = ρκ/ω in all the boundary layer.

In conclusions, the κ − ω SST-LR has returned the same results as the

κ − ω SST model at high Reynolds number and improved the results at

low Reynolds number. In particular at Reynolds number 6 × 104, the flow

presents a well-defined viscous region and a developing turbulent logarithmic

zone.

The κ−ω SST-LR model has been applied to compute the flow at α = 4◦

and Reynolds number 6 × 104 around the SD 7003 airfoil. The free-stream

values of the turbulence are lowered
((

µt

µ

)
∞

= 1 × 10−9 and
(√

κ
U

)
∞

=

10−6
)

in such a way to obtain a laminar separation bubble. The model has

been employed with and without the transition imposed (same numerical

input as previous tests with the standard formulation). The new and some

previous results are presented together in Fig. 4.7. In case of simulation with

transition point fixed, the results obtained by the κ − ω SST-LR model are

significantly improved with respect to the standard SST. The κ − ω SST-

LR model has returned a flow more turbulent than the standard SST. This

has allowed the re-attachment of the flow and a pressure recovery in a far

better agreement with LES results. The results are also slightly improved

with respect to the κ− ω BSL, with a better agreement of the reattachment

point. The stream-lines and the countour map of the axial velocity achieved

by the κ − ω SST-LR are shown in Fig. 4.8. The structure of a laminar

separation bubble (Fig. 3.1) is well resembled. The height and the length

of the bubble are in good agreement with LES results (Fig. 3.26b), and

improved with respect to the κ − ω SST model (Fig. 3.26a).

In case of simulation without specification of the transition point, the

modifications of the results are not so dramatic, in particular the agreement
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Figure 4.7: SD7003 Airfoil, Re = 6 × 104, α = 4◦. Pressure and friction

coefficient; ©: ILES (Galbraith and Visbal), △: present LES, − · −: RANS

κ− ω BSL, −−−: RANS κ− ω SST, —–: RANS κ− ω SST-LR; red lines:

transition not specified, black lines: transition fixed (xtr/c = 0.53).
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Figure 4.8: SD7003 Airfoil, Re = 6.0 × 104, α = 4◦. RANS κ − ω SST-LR,

transition fixed (xtr/c = 0.53): Structure of the Laminar bubble.

of the reattachment point with LES results remains poor.

A possible strategy to compute the flow at low Reynolds number around

an airfoil by the RANS approach can be the following. First, the presence of
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Figure 4.9: SD7003 Airfoil, Re = 6 × 104, α = 6◦. Pressure and friction

coefficient; ©: ILES (Galbraith and Visbal), △: present LES, −−−: RANS

κ − ω SST, —–: RANS κ − ω SST-LR; red lines: transition not specified,

black lines: transition fixed (xtr/c = 0.33).

laminar separation bubbles can be detected by a simulation with low values

of free-stream turbulence. Then, the results can be improved by imposing

the transition location. A reasonable point is downstream the X/C where

the friction coefficient is minimum. The flow at α = 6◦ has been computed

by this strategy and applying the κ-ω SST and SST-LR tubulence models.

The results are shown in figure 4.9. The transition location is fixed 10%

downstream the point of minimum CF . The pressure and friction coefficients

achieved by the κ − ω SST-LR in case of prescribed transition are in very

good agreement with the LES data. The κ-ω SST model returns a poor

result as for the flow at α = 4◦.

The same strategy has been applied also to the flow at α = 8 and 9. The

results are presented in the figures 4.10 and 4.11. The improvement in the

pressure and friction coefficients achieved by the κ − ω SST-LR model with

the transition point prescribed is evident. The κ− ω SST provides the same

kind of results as at the other angles of attack.

The very rough criterion used for imposing the transition could be im-
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Figure 4.10: SD7003 Airfoil, Re = 6 × 104, α = 8◦. Pressure and friction

coefficient; ©: ILES (Galbraith and Visbal), △: present LES, −−−: RANS

κ − ω SST, —–: RANS κ − ω SST-LR; red lines: transition not specified,

black lines: transition fixed (xtr/c = 0.18).
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Figure 4.11: SD7003 Airfoil, Re = 6 × 104, α = 9◦. Pressure and friction

coefficient; ©: ILES (Galbraith and Visbal), △: present LES, −−−: RANS

κ − ω SST, —–: RANS κ − ω SST-LR; red lines: transition not specified,

black lines: transition fixed (xtr/c = 0.13).
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Figure 4.12: URANS of the flow aorund the SD7003 airfoil: Time evolution

of lift and drag coefficients

proved by using methods able to estimate the transition location starting

from a pressure distribution [54].

4.3 Drag polar of the SD 7003 airfoil

The drag polar of the SD 7003 airfoil at Reynolds number 6.0×104 has been

computed by the the κ-ω SST and SST-LR models [55]. RANS simulations

up to α = 9, and time-accurate URANS simulations from α = 10 to 12

have been performed. Three levels of the computational grid are used in the

time-accurate computations in order to limit the CPU time.

The evolution in time of the lift and drag coefficients are shown in figure

4.12. Steady state solutions are obtained in all the simulations. The κ-ω

SST-LR model (figure 4.12 a) provides solutions with a CL slightly increasing

with the angle of attack up to α = 11. A light decrease is seen for α = 12.

Instead, the κ-ω SST (figure 4.12 b) yields a drop of the lift coefficient when

α goes from 9 to 10. The drag coefficient increases with the angle of attack

for both the models. A large variation of CD occurs for the κ-ω SST model

bewteen α = 9 and 10.
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Figure 4.13: Large Eddy simulation of the flow aorund the SD 7003 airfoil:

Time evolution of lift and drag coefficients

Large eddy simulations have also been performed up to α = 11. The

span-wise extension ∆z of the computational domanin is 0.1 × c for α ≤ 9

and 0.2×c for α > 9. The number of cells used in the span-wise direciton is 48

for ∆z = 0.1, and 96 for ∆z = 0.2 The simulations are started from a RANS

flow field. The solution is first advanced in time with a fix Courant number

and a time step computed on the basis of numerical stability analysis. Then,

once the solution has started to develop, a constant time step ∆t = 0.5×10−4

is used. The evolution in time of the aerodynamic coefficients is presented in

figure 4.13 for α = 9 and 11. The behaviour of the aerodynamic coefficient

at α = 11 shows a large variation when the flow starts to separate on the

central region of the upper surface of the airfoil.

The lift and drag coefficients are compared (figure 4.14) to three sets

of experimental data, and to the numerical results obtained by the ILES

approach [18]. The measurements taken from Selig et al. [56] at University

of Princeton in 1989 , from Selig et al. [57] at University of Illinois in 1996,

and from Ol et al. [49] at the Horizontal Fee-Surface Wind Tunnel (HFWT)

of the Air Force Research Laboratory in 2005 are considered.

The differences in the lift coefficient (figure 4.14 a) are mainly seen at the
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Figure 4.14: SD7003 Airfoil : Drag Polar at Re = 6.0 × 104

high incidences. The κ-ω SST model provides a stall anticipated with respect

to all the other set of data. The κ-ω SST-LR model follows the experimental

and ILES data very well. The largest differences are with the HFWT data

and are always lower than 5%.

The large eddy simulations data slightly over-predict the ILES (6% at

α = 6) and experimental data (10% with respect to HFWT, 2% with respect

to Selig 96, 3% with respect to Selig 89 at α = 6) and yields a stall at α = 11,

lower than the stall angle provided by the implicit LES and the experiments

from Selig.

All the computed drag coefficient over-predict the experimental measure-

ments (figure 4.14 b). The large eddy simulations are in good agreement

between them. The largest difference is about 8% at α = 6.

The RANS results under-predict the large eddy simulations (both explicit

and implicit). The κ-ω SST-LR model provides at α = 4 a CD 5% lower

than LES and 9% lower than ILES. The under-prediction with respect to

LES data grows to 15% and 20% at α = 6 and 8 respectively. The ILES data

are under-predicted of 23% at both α = 4 and 6.

The κ-ω SST model has an under-prediciton with presect to ILES data

of 15% at α = 4, 20% at α = 6, and 17% at α = 8. The drag coefficients are
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Figure 4.15: SD7003 Airfoil : Evolution with α of the pressure and friction

coefficient. κ-ω SST-LR turbulence model - transition not specified.

lower than LES data of 18% at α = 4 and 8, 13% at α = 6.

The results at higher angles of incidence are close to the drag rise of the

stall and have not been analyzed from a quatitative point of view.

The comparison between LES and the RANS data obtained by fully tur-

bulent simulations is acceptable at low angles of attack. The CD and CL

achieved by the κ-ω SST-LR with an imposed transition point (also if with a

very rough criterion) are also shown in figure 4.14. The agreement with the

aerodynamic coefficients provided by the large eddy simulations improves.

The largest difference presented by the CD is 14%. This occurs at α = 6 for

the comparison with the explicit LES, and at α = 8 for the explicit LES.

4.3.1 Stall Characteristics

The evolution with the angle of attack of the pressure and friction coefficients

achieved by the κ-ω SST-LR turbulence model is presented in figure 4.15.

The bubble moves towards the leading edge of the airfoil as α increases from

9 to 10. Both the separation and re-attachment points do not change for

α = 11 but the recovery of the pressure is decreased. A separation zone

starts to develop in the trailing edge zone at α = 11. The flow at α = 12
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Figure 4.16: SD7003 Airfoil : Large Eddy Simulation at high α. Instanta-

neous span-wise averaged w/v∞

re-attaches at a level of pressure significantly lower with respect to α = 11.

A large separated region is present on the upper surface of the airfoil. As α

still increases the flow is not more able to re-attach and the bubble joins with

the region of the separated flow forming on the upper surface of the airfoil.

Therefore a combined stall occurs.

This analysis is confirmed by LES results. Figure 4.16 shows the span-

wise velocity at high angle of attack. The w is averaged in the span direction

and is presented at six different instants of time. The bubble in the leading

edge zone can be discerned. Turbulent flow structures downstream the bubble

are also visible in some plots. A large region of separated flow is present in

the upper region of the airfoil.

The fluctuations originating in the zone of the bubble and the large zone

of separated flow are also visible in the pressure distribution (figure 4.17). A

re-circulating flow at low pressure is present on the upper region of the airfoil.
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4.3 Drag polar of the SD 7003 airfoil
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Figure 4.17: SD7003 Airfoil : Large Eddy Simulation at high α. Instanta-

neous span-wise averaged (P − P∞)/(ρ∞v∞
2)

A second low-pressure re-circulating zone appears close to the trailimg-edge,

is fed by the upstream flow, and then is convected downstream in the wake.
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Chapter 5

Transonic Flows

The κ-ω SST-LR is applied to tyipcal transonic benchmarks [22] in order

to verify that the accuracy and reliability of the original SST formulation

is recovered for transonic flows at high Reynolds number. The RAE 2822

airfoil and the wing RAE M2155 are considered.

5.1 RAE 2822 Airfoil

The flow around the RAE 2822 airfoil has been computed at the following

specifications named as case 9 and case 10 in literature [58].

Case 9 Case 10

Mach number = 0.734 0.754

Reynolds number = 6.5 × 106 6.2 × 106

α = 2.79 2.54

The transition is fixed at X/C = 0.3 as in the experiments. The flow is

characterized by a strong shock boundar-layer interaction.

5.1.1 Case 9

The pressure and the friction coefficient achieved by the κ-ω BSL, SST, and

SST-LR turbulence models for the case 9 flow condition are compared to

the experimental data in figure 5.1. The friction coefficients on the lower

surface of the airfoil are reported as negative values. The agreement with
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5.1 RAE 2822 Airfoil
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Figure 5.1: RAE 2822 Airfoil, Case 9 flow condition: Pressure and friction

coefficient; symbols: experimental, − · −: RANS κ − ω BSL, −−−: RANS

κ − ω SST, —–: RANS κ − ω SST-LR;

the experimental data is good for all the three tubulence models. The SST

ans SST-LR provide a very similar pressure and friction coefficients and a

weak shock-induced separation. The BSL model shows a shock located more

downstream with respect to the other results.

5.1.2 Case 10

At the condition named as case 10, the flow is characterized by a shock-

induced separation followed by a pressure recovery and a re-attachment.

The pressure and the friction coefficients are shown in figure 5.2. Differences

between the turbulnce models are more evident with respect to the case 9

flow condition. The κ-ω SST and SST-LR return a shock-induced separa-

tion. The SST predicts the location of the shock better than the SST-LR,

and the SST-LR shows a pressure recovery in the region where the flow re-

attaches stronger than the SST. The κ-ω BSL provides a shock located too

downstream and does not present a separation.

The velocity profiles at three stations on the upper surface of the airfoil

are presented in figure 5.3. The first station is located upstream of the shock
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5.1 RAE 2822 Airfoil
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Figure 5.2: RAE 2822 Airfoil, Case 10 flow condition: Pressure and friction

coefficient; symbols: experimental, − · −: RANS κ − ω BSL, −−−: RANS

κ − ω SST, —–: RANS κ − ω SST-LR;
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Figure 5.3: RAE 2822 Airfoil, Case 10 flow condition: Velocity profiles;

symbols: experimental, − ·−: RANS κ− ω BSL, −−−: RANS κ− ω SST,

—–: RANS κ − ω SST-LR;

and all the three turbulence models provide a velocity profile in very good

agreement with the experimental data. The second station is very critical

because located just downstream the shock in the region of separated flow.

The agreement is not as good as at X/C = 0.40. However, the SST and SST-

LR models show a zone of negative velocity and a behaviour that resembles

the experimental data. The result of the BSL model is definitely worse. The
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5.2 RAE M2155 Wing

last station is located in the region where the flow is re-attached. The κ-ω

SST provides a result better than the SST-LR and a good agreement with

the experimental data in the inner part of the boundary layer. The κ-ω BSL

model has provided a solution without separation, and the boundary layer

at X/C = 0.90 is significantly different with respect to the other solutions.

5.2 RAE M2155 Wing

The RAE M2155 wing placed is a transonic benchmark [59] for which the

κ − ω SST model has provided appreciable results [21].

The case 2 condition:

• Mach number = 0.806

• Reynolds number = 4.1 × 106

• α = 2.50◦

is characterized by a quite complex shock topology [59]. The flow on the

upper surface of the wing is characterized by a triple shock wave system

from the root to about the 50% of the span, and by a single shock wave from

about the 50% to the tip. Inboard the 50% span, changes in the flow direction

occur in the region of the forward leg of the triple shock wave system and

in trailing edge zone but without flow separation. The flow separation starts

where the three shock waves join together and ends at about 90% of the

span. The separation extends for about 10% of the local chord.

A mesh with 35 blocks and about 1.2× 106 cells has been employed. The

κ − ω SST, SST-LR, and BSL turbulence models are applied.

The results are shown in terms of pressure coefficient at several stations

along the span in Fig. 5.4. At the inboard span-wise stations, the interaction

between the shock wave system and the boundary layer is not very strong

and the three κ − ω models present the same pressure coefficients. At the

stations where the shock boundary-layer interaction becomes stronger and
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5.2 RAE M2155 Wing
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Figure 5.4: Pressure coefficients over the RAE M2155 wing; •: experiment,

− − 2 − −: RANS κ − ω SST, —∆—: RANS κ − ω SST-LR, − · ∇ − ·:
RANS κ − ω BSL

the flow separates the κ − ω SST-LR provides the same results as the SST

model and follows the experimental data better than the BSL model.
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Chapter 6

Conclusions

A contribution to the numerical simulation of low-Reynolds number flows

has been given.

The focus has been placed on the methods based on the resolution of the

Reynolds Averaged Navier Stokes equations. The capability of the turbulence

models to return a laminar separation bubble has been investigated. The

incompressible flow over a flat plate with an imposed pressure gradient, and

around the SD 7003 airfoil have been considered. Large eddy simulations

have also been performed and used as a reference for the RANS results.

Laminar separation bubbles have been found by the Spalart-Allmaras and

the κ-ω SST turbulence models. The simulations have been performed using

very low values of the free-stream turbulence without an a priori knowledge

of the laminar-turbulent transition, and by prescribing the transition location

as retrieved by LES data. A satisfactory prediction of the flow characteristics

in the dead air region of the bubble is obtained. On the contrary, a poor

agreement has been provided by RANS with respect to LES in the zone of

pressure recovery. These discrepancies are essentially due to a too low level

of turbulence in the bubble.

The behaviour of the κ-ω SST turbulence model has been investigated

in detail. Simulations of the flow around the SD 7003 airfoil at Reynolds

numbers 6×104, 6×105, and 6×106 have been performed. This model did not

predict correctly the viscous and logarithmic regions of the boundary layer at

the lowest Reynolds number. However, it has been shown that this is related

to the implementation at low Reynolds numbers, rather than to an intrinsic
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Chapter 6. Conclusions

“design” limit of the model. Indeed, a modification has been proposed. The

modified model, the κ-ω SST-LR, has provided a correct simulation of the

viscous sublayer and logarithmic region in the tests performed at high and

low Reynolds numbers. The laminar separation bubble arising on the SD

7003 airfoil is well captured and the results of the RANS simulations are in

excellent agreement with the LES data. In addition, high Reynolds number

performances of the model do not deteriorate with respect to the standard

κ-ω SST as shown by the transonic tests around the RAE 2822 airfoil and

M2155 wing. The κ-ω SST-LR turbulence model ca be used in a wide range

of Reynolds numbers to simulate different flow aspects from the laminar

separation bubbles to the shock-boundary layer interaction.
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