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Abstract

The measure of the aerodynamic force around an oscillating airfoil rep-
resents the object of many theoretical and experimental researches in the
modern Aerodynamics. The classical near field methods, based on the solid
surface integration of the pressure and shear stresses, and the far field meth-
ods, obtained through the integral balance of the momentum equations, are
the main categories in which all the force calculation techniques are included.
The far field methods offer several advantages with respect to the classical
near field ones and represent a positive solution to several limitations ob-
served in the applications. Currently, the use of far field methods in the
numerical solutions is limited only to the steady flows. It does not exist a
well assessed far field method for unsteady flow regimes.

The present thesis concerns the development of a new measurement tech-
nique of the aerodynamic force by means of a far field approach. The method
is based solely on the knowledge of the vorticity field. The role of the Lamb
vector (i.e. the vortex force) in the determination of the aerodynamic force
is clearly highlighted.

Several numerical solutions around an airfoil in pitching conditions (from
pre-stall to the dynamic stall) have been achieved in the flow transition
regime. The method employed in the fluid dynamic computations is based
on the Reynolds Averaged Navier Stokes (RANS) equations in an unsteady
reference system. The results obtained in the thesis demonstrate the effec-
tiveness of the present RANS method in the prediction of the dynamic stall
characteristics.

By means of the new far field method, the real possibility to measure the
aerodynamic force also in case of unsteady flows has been demonstrated. In
addition, useful qualitative and quantitative information for the aerodynamic
design have been extracted through the unsteady breakdown of the force.
This technique can be exploited also in the experimental applications, in
which the measurement of the aerodynamic force without the knowledge of

the pressure is particular critical.
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CHAPTER 1

Introduction

1.1 Scientific and industrial motivations

The Aerodynamics of the oscillating airfoils has been the object of important
researches in fluid dynamics since the 60’s. Nowadays the motivations that
encourage this kind of studies originate from the plurality of the applications
in several technological sectors. Some examples in which the unsteady Aero-
dynamics of oscillating wings or airfoils is fundamental are reported in the
following.

In the aeronautical industry the unsteady Aerodynamics is essential for
the helicopter flight. Of particular concern is the Aerodynamics of the main
rotor. It has the double role to balance the helicopter weight and to supply
the thrust necessary to advance in the flight. Several phenomena that in
the classical steady Aerodynamics are usually well distinguished, occur on
the same rotor blade in few tenths of a seconds. Taking as an example the
main rotor of the Agusta-Westland AW119, with a diameter of 10.83m, the
nominal maximum speed reached by the helicopter is about 257 km/h, as
indicated by the manufacturer. By considering a rotational speed of 400rpm,
a simple computation of the Mach number reached at the tip during the
advancing phase gives a value greater than 0.8 without considering the ad-
ditional effects of the blade motions, which means a full compressible regime
occurs. Conversely, in the region of the retreating blade, the composition
of the free stream velocity with the rotational one produces so small total

kinematic velocities that the blades run the risk to stall. This phenomenon



Compressibility effects

o

Figure 1.1: Scheme of the unsteady aerodynamic phenomena on an helicopter rotor.

is usually identified as dynamic stall. Zones of reverse flow arise near the hub
as well. A scheme of the aerodynamic phenomena occurring on a helicopter
rotor are represented in figure (1.1). In the 60’s, a quite similar behaviour
in terms of flow phenomena was discovered by Ham [1], considering the flow
past an airfoil in pitching conditions. This finding produced a great number
of researches oriented to the study of the oscillating airfoil Aerodynamics.
Generally, the dynamic stall is introduced by referring to any lifting surface
in which the combination of its motion with the asymptotic flow conditions
produces a dynamically stalled condition [2]. In the forward flight case, the
maximum velocity of an helicopter is strongly limited by these factors and
possible progresses are achievable only by improving the blade design or in-
troducing control devices to alleviate the dynamic stall phenomenon.

The studies on the unsteady Aerodynamics, and in particular on the



Figure 1.2: Composition of the effective velocities viewed by the blade of a vertical axis

wind turbine.

oscillating airfoils, is encountered in many other technological contexts. The
design of rapidly maneuvering aircrafts, for example, has the objective to
extend the boundaries of the flight envelope by exploiting the unsteady effects
of the Aerodynamics. In this direction, numerical and experimental works are
becoming popular since the 80’s highlighting the limited applicability of the
linear steady Aerodynamics in such situations. Also in this field, many basic
studies are carried out on two and three dimensional pitching and rolling
models [3]. The severe pitch roll and yaw rates, of the order of the ten
degrees per second, applied to the lifting surfaces of such aircrafts, produce
strong non linear aerodynamic phenomena such as the dynamic stall.
Similar problems arise on the blades of the wind turbines used for the
electrical power generation, even if for different flow parameters. The working

conditions are easily altered by any change in the wind direction reducing the



aerodynamic efficiency. The blade sections work in a wide range of angles of
attack and for some conditions can meet the dynamic stall phenomenon (see
the scheme in figure 1.2). This problem is made critical by the relatively low
Reynolds number of the flow (~ 10°). For both the horizontal and the vertical
axis wind turbines, the exact knowledge of the aerodynamic load intensities
can improve the design and the structural life of the plant in terms of fatigue
limits. Furthermore, other requirements, such as the low sound emissions,
must be respected in order to reduce the environment impact. The dynamic
stall is the object of intensive investigations both numerical and experimental,
because may affect the effectiveness of the whole wind turbine plant [4]. In
this regard, Carr [2] pointed out that an error of 30% on the aerodynamic
loads corresponds to a reduction of 70% of the life duration of a wind turbine.

In each of these scientific and technological fields, advancements and pro-
gresses on the performance are achievable by improving the aerodynamic

design of the oscillating airfoils.

1.2 Characteristics of the unsteady airfoils

The first theoretical studies on the non uniform airfoil Aerodynamics were
conducted in the 30’s thanks to Burgers and Von Karman [5]. The basic
concept was that any time change in the airfoil state is equivalent to a time
variation in the angle of attack. This point of view allows for a first level
of interpretation of the fundamental characteristics of the unsteady Aerody-
namics (McCroskey 1982, [6]).

A first issue of the pitching airfoil Aerodynamics is that the unique cor-
respondence between the angular position and the lift and drag experienced
by the airfoil is lost. For a given flow incidence « different values of the
aerodynamic force may correspond that depend on the time response of the
flow-airfoil system. With respect to the corresponding steady performances,
more or less large hysteresis loops are observed when a lift or drag curve is
drawn as function of the angle of attack «. The time lag occurring between

the angle of attack and the applied load demonstrates that the flow exhibits
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a sort of memory of the past time history. Within this frame, several static
phenomena have to be revisited under the perspective of the unsteadiness.
One of these is the aerodynamic stall of the airfoil, that, as introduced in the
previous section, is of fundamental importance in many application fields. By
comparing the dynamic stall of a wing or an airfoil with the corresponding
static one, several differences appear.

In figure (1.3), the typical unsteady aerodynamic characteristics of a
pitching airfoil are plotted. The corresponding static data are also drawn
for reference. It is a common practice to subdivide the unsteady aerody-
namic cycle as a sequence of events (Leishman [8]). Starting from the stage

(1), which corresponds to the static stall of the airfoil, the first substantial



difference is that under dynamic conditions the lift curve continues to grow.
An extrapolation of the linear slope is observed up to the points (2) or (3).
The excess of lift is explained by a production of vorticity in the boundary
layer. The vortices contribute to the flow expansion on the upper side of the
airfoil providing a lift increase. But, if the effect on the lift seems to be almost
linear, the flow structure is completely different from the steady situation.
Zones of reverse but confined flow arise on the upper side of the airfoil. From
the stage (2) the so called dynamic stall vortex is formed and a change on
the lift curve slope takes place. The stall of the moment coefficient occurs
between the stages (2) and (3) before the lift stall. Tt is associated with the
position of the dynamic stall vortex, that during its movement produces an
unbalanced pressure distribution. In the helicopter rotors, the moment stall
is particularly dangerous because of the strong torsional loads transferred to
the structure [9]. The maximum peak of lift is reached when the dynamic stall
vortex is approximately at the trailing edge of the airfoil. Then, it is shed in
the wake, and secondary vortices detach. During the decreasing phases (3)
and (4), the flow remains separated for a certain time interval, during which
the process of the reattachment begins. The reattachment point advances at
a velocity less than Uy, and after several time units the flow acquires again
the linear behaviour (stage 5).

From the point of view of the aerodynamic design, a very important pa-
rameter is the so called aerodynamic damping coefficient, which is a measure
of the work done by the aerodynamic forces on the airfoil in pitching con-
ditions. The most dangerous situation (negative damping) occurs when the
airfoil receives energy from the fluid producing an unstable and diverging
condition. The aerodynamic design of a pitching airfoil has the objective to
control and reduce the damping associated with the moment curves.

In literature, (McCroskey [10]), three regimes of pitching conditions are
usually classified for an oscillating airfoil.

The pre stall is the regime in which the pitching motion amplitude is
smaller than the static stall angle. No significant separations arise, and the

hysteresis associated with the aerodynamic coefficients are small.



The light stall regime is characterized by a pitching motion in which
stalled and non stalled conditions alternate. The instantaneous flow incidence
exceeds the static stall angle only for a portion of the entire loop. The
reattachment process has the time to be completed in a fraction of the whole
period. Usually the light stall occur at low values of the adimensional (i.e.
reduced) frequency.

The deep stall regime is encountered when the angular motion is such
that fully separated flow conditions arise for the most part of the cycle. In
such a situation, the flow reattachment is not completed within an oscillating
period. Large hysteresis of the aerodynamic coefficients are obtained and the

extension of the separated flow is of order of the airfoil chord length.

1.3 Literature overview

While the Aerodynamics of the pre-stall regimes is replicated by analytical
and semi-empirical models in a satisfactory manner, a light stall or a deep
stall regime is not tackled in the same straightforward fashion. The dif-
ficulty derives from the many factors involved in the determination of the
dynamic stall typology and in the lack of a complete physical modelling of

the phenomenon. Such factors are summarized below:
e geometry of the airfoil/wing
e typology of the motion
e unsteadiness (reduced frequency, natural flow frequencies, ...)
e compressibility effects
e viscous effects
e transition
e turbulence

e flow three dimensionality



In addition, in real applications, the external Aerodynamics and the dynam-
ics of the structures are coupled in a unique complex physical system. A
full characterization of an airfoil in dynamic conditions needs to establish
reliable relationships between each of these factors. The aerodynamic force
past an oscillating airfoil can be evaluated by means of three methodologies:
the experimental measurements, the Computational Fluid Dynamics (CFD)
and the semi-empirical methods. In the following an overview on the state

of art in each of these field is given.

1.3.1 Experimental investigations

The experimental research has been the pioneer in many sectors of the ap-
plied Aerodynamics. In the case of oscillating airfoil investigations, the first
systematic studies were due to McCroskey in the 70’s. The work of Mc-
Croskey et al. [11] in 1976 remarked some fundamental characteristics of the
two dimensional oscillating airfoil Aerodynamics. A first indication of the
dynamic stall vortex (DSV) speed was also given. Between the 1976 and
1980 Ericsson and Reding, [12, 13, 14] provided useful physical information
on the dynamic stall. A first analytical method was achieved as well. A more
comprehensive exposition of the dynamic stall features and a classification
based on geometrical and physical parameters can be found in the work of
McCroskey in 1981 [10]. Later, specific experiments on some parameters of
the phenomenon became to appear, such as the pitch rate, the Reynolds
number and the compressibility [15, 16, 17]. In 1988, the review paper of
Carr [2] pointed out the relevance on the topic by collecting the main results
achieved until then. In the recent years, several experimental researches have
been published concerning the use of the flow control techniques applied the
dynamic stall [18, 19, 20].

However, even if at the end of the 80’s, the experimental researches inves-
tigated the main aspects of the oscillating airfoil flows, no satisfactory results
were achieved on the accurate prediction of the aerodynamic force. Many

experimental tests on the dynamic stall used the wall integration methods



(near field ) of the pressure signals providing reliable values only for the lift
component. In such cases, the use of the aerodynamic balances is often not
feasible because of the movement of the test model and the interferences as-
sociated with the mechanical vibrations. Accurate calculations of the drag
are quite rare for an oscillating airfoil for these reasons.

More sophisticated and less intrusive approaches were developed in the
90’s, by introducing the flow visualization methods like the Laser Doppler
Velocimetry (LDV) and Particle Image Velocimetry (PIV) techniques. Their
employment in case of oscillating airfoils began some years later. The ad-
vantages of these approaches are undisputed, even though the problem of
measuring the aerodynamic force through the flow field occurs. This prob-
lem was tackled by Panda & Zaman [21], in 1994, by exploiting the vorticity
field for the measure of the lift of an oscillating airfoil. Special techniques
based on the far field methods are developed expressly for these applications,
[22]. Wernert et al. in 1996 [23] used a PIV technique to examine the flow
field around an oscillating airfoil at low Reynolds number. Recently (2008-
2009) Ferreira et al. [24, 25] published an application of the PIV technique
to measure the unsteady aerodynamic loads on a vertical axis wind turbine

model.

1.3.2 Numerical simulations

With a delay of about ten years with respect to the experimental results,
reliable CFD simulations of the flow past oscillating airfoils appeared in the
90’s. The reasons for such a delay are manifold. The turbulence represents
a crucial point for the numerical simulations of any flow at Reynolds num-
ber greater than 10*. Alternative methods to the Direct Numerical Solution
(DNS) of the Navier Stokes equations are introduced to avoid the Reynolds
limitations arising from the wide range of time and spatial scales to be solved
in a turbulent flow. A proper compromise between the computational cost
and the turbulence modeling accuracy yields to define a hierarchy of inter-

mediate approaches such as the Large Eddy Simulation (LES), the Detached



Eddy Simulation (DES), and the Reynolds Average Navier Stokes (RANS)
methods (Spalart [26]). Concerning the turbulent simulation of an oscillating
airfoil the only feasible method remains the one based on the RANS equa-
tions in the unsteady form. To date, it is still the unique approach able to
respond positively to the industrial requirements in terms of CPU time and
computational cost.

However, in the case of oscillating airfoils, the problem complicates due to
the introduction of moving body techniques and of the massive separations
flows typical in the dynamic stall. As the computer power grew more realistic
simulations were performed first in two dimensional cases, [27] and then over
three dimensional geometries [28]. In 2005, Spentzos et al. [29, 30, 31]
performed three dimensional RANS simulations of a dynamic stall on wings
with different planforms. Unsteady RANS simulations of multi-blade rotors
(UH60) including the deformation data are becoming feasible with the use
of highly performing computers, as demonstrated by Hahn et. al. in 2006
[32, 33] and by Choi et al. in 2007 [34]. Besides, numerical flow control
techniques applied to the dynamic stall , [35, 36], and procedures design and
optimization of the oscillating airfoils, [37], have been developed in the last
years.

However a crucial point remains the turbulence modeling and its valida-
tion in so different flow conditions. The problem of the laminar-turbulent
transition and of the massive separated flows is still far to be resolved ( Van
Dyken et al., [38]). Geissler & Haselmeyer [39] pointed out these aspects
for the dynamic stall of a 2D-wing. New experimental and numerical works
continue to be published, (Martinat et al. 2008 [40]) providing useful in-
formation to establish the confidence level of the RANS approach for the
simulation of such complex flows. For the near future other techniques as
the LES methods are designed only for moderate Reynolds flows without
complex geometries. In this regard, a significant LES application of the flow
past an oscillating airfoil was achieved in 2006 at a Reynolds number of order
10° by Nagarayan et al. [41].

In principle, the computation of the aerodynamic force through a nu-

10



merical flow solution should not represent any difficulty. But the practical
experience disproves this statement. The numerical prediction of the aero-
dynamic drag represents one of the most delicate aspects of an airfoil or
wing design already for the steady configurations. The American Institute
for Aeronautics and Astronautics (ATAA) periodically plans dedicated work-
shops on the drag prediction of aeronautical configurations [42, 43, 44]. The
goal of numerically predicting the true drag with the accuracy of one count
(AC 4 = 107%) seems to be still far from the industrial practice, even if this
uncertainty for a commercial aircraft may correspond to about one thousand
of kilograms in terms of payload [45]. This gives an idea of the tremendous
impact that a small error on the drag has on the whole perfomance of an
aircraft, and the consequences in terms of engine design, weight and con-
sumptions. The problems increase for the oscillating airfoils or wings. To
tackle this problem, the CFD community holds a particular interest on the
capabilities of the far field methods applied to a numerical flow solution.
Even if the near field and far field formulations provide the same informa-
tion, on condition that the numerical solution is fully converged everywhere
in the field and the scheme is conservative, there is the possibility through
the far field methods to exclude some spurious contributions from the aero-
dynamic force computation. These techniques allow to obtain a weaker grid
dependency on the computed drag, so avoiding expensive convergence stud-
ies, especially on complex and three dimensional configurations, as pointed

in the works of Paparone & Tognaccini, [46], and Tognaccini [47, 48].

1.3.3 Semi-empirical methods

A third way to compute the aerodynamic force is represented by the use
of semi-empirical methods. In spite of the popularity of the CFD methods
and of the important progresses achieved in the wind tunnel measurements,
the development of the semi-empirical methods covers a significant part of
the research on the dynamic stall. In fact, in case of effective rotorcraft

design the use of such methods is unavoidable since the high computational

11



effort of a numerical simulation and the costs of the wind tunnel experiments.
Many all-comprehensive flight-mechanic softwares incorporate several analyt-
ical models able to predict the characteristics of the dynamic stall of airfoils.
The Beddoes-Leishman method [49] is one of the most widely used. Several
modifications and improvements of the original version have been proposed
during the years [50]. However other models are also successfully employed
as well [51]. For small angular oscillations these models exploit the theories
of the linear unsteady aerodynamics and for the dynamic stall conditions use
empirical correlations based on the flow physics observations. The input of
such models consist of a series of parameters depending on the airfoil charac-
teristics. The tuning and the improvements of such methods can be achieved
only by providing new and more accurate correlations between the unsteady

flow evolution and the aerodynamic force experienced by the airfoil.

1.4 Objectives

The literature survey has shown that the calculation of the aerodynamic
force for an oscillating airfoil is a critical problem in both the experimental
and numerical aerodynamics. The far field methods offer several advantages
with respect to the classical near field methods and they represent a positive
solution to several limitations observed in the applications.

First of all, they can allow for an explicit interpretation of the physical
processes involved in the genesis of the aerodynamic force. By means of
the integral balance on an opportune control volume, the breakdown of the
aerodynamic coefficients is possible and the specific contributions to the total
drag (induced, viscous and wave drag), are definable (Destarac & van der
Vooren [52], Yamazaki et al. [53]). Of particular importance for the designers
is the computation of the induced drag (Spalart, 2008 [54]). Conversely, with
a near field method only the mechanical breakdown of the aerodynamic force
(pressure and viscous contributions) is obtainable.

In the experimental aerodynamics, the far field methods are employed

because they represent an effective and non intrusive technique to extract
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the aerodynamic force from a wind tunnel simulation. In the last years, the
renewed interest on these aspects has been due to the growing popularity of
measurement techniques such as the PIV.

In the computational fluid dynamics, the far field techniques can be ar-
ranged in such a way to reduce grid dependency of the aerodynamic force
components and to eliminate the spurious contributions associated with the
drag.

Currently, the use of far field methods in the numerical solutions is limited
only to the steady flows. It does not exist a well established and tested far
field method for unsteady flow regimes.

On the basis of the above observations, the objectives of the present thesis

are defined as follows:

e to assess the reliability of the unsteady RANS simulations against the

experimental data of flows past oscillating airfoils.

e to define a far field method for the prediction of the aerodynamic force

suitable for unsteady and turbulent flows.

e to enhance the dynamic stall description by using the far field point of

view.

e to provide useful information for the input of the semi-empirical meth-

ods in the prediction of dynamic stall loads

1.5 OQOutline

The thesis is organized as follows:

e in chapter 2, a description of the governing equations and of CFD
flow solver used for the flow simulations is given. The numerical solu-
tions have been obtained using a standard finite volume method solving
the compressible RANS equations, The turbulent calculations are per-

formed with different two equation turbulence models.
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e in chapter 3, a review of the unsteady aerodynamics for inviscid flows
is reported. The analytical solution of Theodorsen, [55], is demon-
strated and compared with an inviscid unsteady flow solution around
an oscillating airfoil. Some fundamental mechanisms concurring in the

determination of the aerodynamic force are highlighted.

e in chapter 4, a new far field method is developed and adapted to the nu-
merical flow solutions of the RANS codes. An original theory developed
in the ambit of the Vortex Dynamics has been revisited and discussed
for case at high Reynolds number. Several applications on the steady
RANS solutions demonstrate the possibility to infer the aerodynamic

force by means of the knowledge of the vorticity field.

e in chapter 5, the CFD simulation of a dynamic stall past an oscillating
airfoil at transitional Reynolds number is carried out. Three oscillating
regimes have been investigated: the pre stall , the light stall and the
deep stall case. The reliability of the present RANS method has been
confirmed by the comparisons with the data of a recent experiment and

with other numerical solutions.

e in chapter 6, a discussion on the dynamic stall features is carried out by
exploiting the far field point of view. A criterion for the dynamic stall
onset has been identified and useful information about the dynamic

stall vortex in terms of position and velocity are given as well.

e in chapter 7 the conclusions of the work are drawn.
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CHAPTER 2

l\iIathematical and numerical mod-
els

In this chapter, the fundamental equations of the Fluid Dynamics are re-
ported. A brief description of the numerical models employed in the simula-

tions is presented.

2.1 Governing equations

The most accurate mathematical model for the description of the fluid motion
is represented by the Navier Stokes equations [56]. In the present study,
the fluid is the air behaving as a single phase perfect gas without chemical

reactions. The thermodynamic state is described by the perfect gas law:
p=pRT (2.1)

In equation (2.1), p is the thermodynamic pressure, p is the flow density, R
is the gas constant and T is the temperature. The second state equation

relates the specific internal energy e to the pressure and the density:

em 1 P (2.2)

y—1p
where v is the ratio of the specific heat coefficients. For the air in the standard
conditions, the gas constant is R = 287m?/(s?°K) and v = 1.4. In the present
formulation, the equations of the motion are referred to an inertial system

without apparent forces. Let €2 be the fluid domain with a boundary 0€2, the
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Navier Stokes equations express the fundamental principles of the balance of

the mass, momentum and total energy in 2. They are:

9 pdV+/ pu-ndS=0 (2.3a)
ot Jg 89

0

—/pudV+/ (puu+pl) ndS= | 7-ndS (2.3b)
ot Jo o0 - o0~

g/pEquL/ (pEg+pg)~@dS:/ (z-u +AVT)- ndS
ot Jg o9 o
(2.3c)

In equations (2.3), I is the unit tensor. The viscous stress tensor r for

Newtonian fluids is defined as:

[ ]t

v - g) (2.4)

[GSA )

T

= (ZquZuT—

and E = e + ¢*/2 is the total specific energy, with ¢ = |u|. The dynamic
viscosity p and thermal conductivity A of Fourier’s law for heat transfer vary

with the temperature according to Sutherland’s laws:

T1.5
=C
H 1T+C2
T1.5
A=C
T+ C,

The constants C; (i = 1,4) are reported in case of air.

Oy =1.458 - 1075 kg/(msVK)

Cy=1104 K
C3 = 2.495-107% kg/(mK"?)
Cy = 194K

A flow solution is obtained in a time interval [to, t] when the velocity vector
u, the flow density p and the thermodynamic magnitudes p, T" and e are
known in ) V¢ € [ty,?]. The problem is completely defined by setting proper

initial and boundary conditions on the state vector
U=(p pu, pE)" (2.5)
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The existence and uniqueness of the solution of the system (2.3) is still
not rigorously established. By means of the Gauss theorem, the integral

balance equations (2.3) are transformed in the differential form as follows:

ap B

E—FZ 'pg—O (2.6&)
O WY ()t V=Y oz (2.60)
opE

- +Y [(pE+pul =Y - (2-u+AVT)  (260)

In some special cases, the inviscid flow models are also employed. Thus, the

Euler equations are obtained from the Navier Stokes by setting y = A = 0:

dp

E+Z cpu=0 (2.7a)
%Jr u-V(pu)+Vp=0 (2.7b)
OpFE

S+ Y - [(pE+ p)u]=0 (2.7¢)

Furthermore, in the regimes in which the compressibility is negligible, the
flow density can be regarded as a constant. The energy equation is no longer
coupled with the momentum equation and the equations (2.6) take the fol-

lowing form:

u=0 (2.8a)

+u - -Yu+-Vp=vViu (2.8b)

I=

o)}
SIS
= | =

In equation (2.8b), v = u/p is the kinematic viscosity. The set of equations
(2.6), (2.7) and (2.8) have a different mathematical character. Proper ini-
tial and boundary conditions have to be established. For the applications of
external aerodynamics, undisturbed flow conditions are assigned on the pres-
sure and flow velocities on the surface at an infinite distance from the solid
body. For viscous computations, (equations (2.6)), an adherence condition is
assigned on three components of the velocity. For the Euler equations (2.7),

an impermeability condition is specified for the wall normal flow velocity.
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Finally, by defining a set of reference quantities ( L., U, p,, pr) the

nondimensional form of the equations (2.6) are achieved:

dp
il . — 2.
TR (2.92)
Jdpu 1
W—F E'Z(PHH—ZP—EZ T (29b>
OpE B M?

(2.9¢)

where the numbers of Reynolds, Mach and Prandtl are defined as follows:

T UT’ LT’
iy
M:U /YpT
Dr
:LLT' Cp
Pr=
r N

The Arbitrary Lagrangian Eulerian (ALE) formulation [57] is used to take
into account the rigid motion of bodies in the fluid domain. The exposition
is referred to the inviscid flow equations (2.7), being the viscous terms not
affected by the rigid moving frame. In particular, by considering a moving

control volume (%), we have:

0
—/ pdV+/ p(lu—u,)  -ndS=0 (2.10a)
ot Jou 290(1)
%)
—/ pudVJr/ PE(E—HS)'ﬂds‘i‘/ pndS=0
ot Jow a90(1) a90(1)

(2.10b)
o[ oopave [ pE@-uw)-nds+ [ puewds=o
It Jaw 20(1) 29(1)

(2.10c)

where u, is the velocity of the points on 9€2(¢). In the hypothesis of rigid
displacements, the measurement of volume €(t) does not change in time, and

the velocities u, and u, of two points S and O of 02 are related by:
u,=u,+0x(S-0) (2.11)
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where © is the angular velocity of the rigid motion of Q. The effectiveness
of this approach has been verified by simulating several basic flow test cases

of moving solid bodies (Marongiu et al. [58]).

2.2 RANS equations

The Navier Stokes equations are able to resolve the flows in both laminar
and turbulent regimes. However, the Direct Numerical Solution (DNS) of the
equations (2.6) and (2.8), in case of turbulent flows, requires so high time
and spatial resolutions that they become no longer applicable to Reynolds
numbers greater than 10* (based on the scale length of the problem, [59]).
For high Reynolds and turbulent flow simulations, other set of equations are
employed. By introducing the Reynolds decomposition, the instantaneous

velocity is given by the sum of two terms:
u=(u)+u (2.12)

where (1) is the mean velocity and u' is the fluctuation. In a turbulent
flow, the mean velocity can be estimated in several ways ([59]). Let u be
the instantaneous velocity, for statistically stationary flows, the time average

over an interval T is defined as:

(u )y = %/t udt (2.13)

For flows that have a defined periodicity 7', the ensemble average is intro-

duced as:

N
1
N = NZ u(t+ NT) (2.14)

where N is the number of realizations. The spatial average for a cubic domain

Q) = L3 is defined in the cases of homogeneous turbulence as:

(u), = L13/udV (2.15)

The averages (2.13), (2.14) and (2.15) are approximated ways to define the

exact mean, which is given once that the probality density function f(V') of
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u is known:

<u>5/_+me(V) dv (2.16)

o

For statistically stationary flows it results that (u)r — (u) for T — occ.
The Reynolds Averaged Navier Stokes (RANS) equations are obtained by
exploting the definition (2.12). The incompressible form (2.8) is used for

these scopes. We have:

Hu)=0 (2.17a)
<£> +<H>'Y<E>+%Z<p> ZVV2<u>+%Z .7t (2.17D)

|

The mean velocity (u ) is governed by the same set of equations except for
the presence of the Reynolds stress tensor 7 = —p (u'u’). Due to the
symmetry of Lt, six new unknowns are introduced. The turbulent viscosity
hypothesis of Boussinesq assumes that the deviatoric part of the Reynolds

stress is proportional to the velocity gradient. Namely:

= (Y () + Y ()" - 2L 218)

=

where £ = (u’ - u' )/2 is the turbulent kinetic energy. The scalar coefficient
e = pe(x,t) is called eddy viscosity. The closure problem is now reduced
to two unknowns. The turbulence modelling tries to establish one or more

relations among i, k£ and the mean velocity (u ).

2.2.1 The closure models

A large variety of models are used in the CFD solvers, from the simplest
algebraic relations to one and two differential equations [60]. The x — w
models are the class of turbulence models in which the eddy viscosity u; is

computed as:

(2.19)

pK
My = —
w

where w o €/k and ¢ is the dissipation rate at which the turbulent kinetic

energy is converted into thermal internal energy. The standard x — w model
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of Wilcox [61] is constituted by the following two equations:

0
gtﬁ_FZ'(p/{u):p(P’“_wﬁ*H)+z'[/i+ peor VK] (2.20a)
Jpw ,
—8t +2~(pwﬂ):p(Pw—wﬁw)—|—z.[M+Mtawzw] (220b)
where
Pk :Tij&
J
and

W U
Pw = Yo—Tij—
K l‘j

The constants of the Wilcox x — w model are reported:

pB* =10.09, o, =0.5, f=0.075, o, =0.5;

B ouk

VTR
(3 -)

Ow

2 _
Ky =

2.2.2 The TNT model of Kok

Kok [62] provided a modification of the original £ — w model of Wilcox. The
Turbulent Non Turbulent (TNT) s — w model modifies the k — w equation

(2.20b) by introducing a cross diffusion term Cp as follows:

0
gtw+z'(pwﬂ) = p(Po —wfw’) + ¥V - [p+ o, Vw]+ Cp (2.21)

where

(2.22)

Cp = adﬁMcw: [8/{ O O]
w

The constants of the TNT s — w model are:

2
B* =0.09, o = 3 3 =0.075, o,=0.5, 04=0.5
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2.2.3 SST model of Menter

A further development of the k —w models is represented by the Shear Stress
Transport (SST) model of Menter [63]. In this model the cross diffusion term

C'p is modified as follows:

1 0k Ow
Cp=2(1-F wy— 2.23
b =21 Fpou, 5o o” (223
where each constant is calculated by using the blending function:
dp=F ¢+ (1 —Fi)po (2.24)
The values of the constants for the inner zone are:
0y, = 0.85; o, =0.50; By = 0.075;
For the outer zone:
0w, = 1.0; 04, = 0.856; [ = 0.0828;
and 5 )
Oy K
ﬁ* _ 0.09; Vors = L2 L2 e
) ﬂ* \/F
The blending function F} is computed as:
Fy = tanh arg] (2.25)
where
500 4
arg; = Min |max Vr : v : poves (2.26)
0.09wy wy? Cpy?
and
1 Ok Ow
Cp = Max |2po,, ———,107% 2.27
P { P70 } (2.21)
In the SST model the eddy viscosity is computed as:
ay K
= 2.28
M= P 0 (0., OF) (2.28)
with @ = 0.31. The second blending function F is:
Fy = tanh arg? (2.29)
VE  500v
=M 2 2.30
g a“ [ 0.09wy’ wy? (2:30)
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2.3 The numerical method

2.3.1 ZEN Code

The flow solver used in the present thesis is ZEN, a multi-block code widely
used and tested for the analysis of complex configurations in the subsonic,
transonic, and supersonic regimes (Catalano & Amato [64]). The equations
are discretized by means of a standard cell-centered finite volume scheme
with blended self adaptive second and fourth order artificial dissipation. The
turbulence equations are weakly coupled with the RANS equations and solved
only on the finest grid level of a multi-grid cycle. Algebraic, one-equation,
two-equations, and non linear eddy viscosity turbulence models are available.

In the following, some details about the time integration scheme are given.

The residual form

By indicating with u, v, w the cartesian components of the velocity u the

vector form of the Navier Stokes equations (2.3) is given by:

ﬁ/g+/E.Qd5:o (2.31)
ot Jq 09

where F = F _—F , is the flux vector composed of the convective and viscous

contributions:
pu
F.=| puu +pI (2.32)
puH
0
F, = r (2.33)
—g+u-1 |

where H = E + pp~! is the total specific enthalpy.  The finite volume
approach exploits the semi-discretized form of the equation (2.31) by sub-
dividing the volume (2 into a set of elementary volumes V; ;; delimited by

the surfaces S; ;. The balance equation (2.31) in V;;; between two time

23



instants " and t"*! is:

tn+1
/ U(x, t"“)dV—/ U (x,")dV + / / F (x,1) - ndS | dt = 0
Vijk Vijk 136 Siik
(2.34)
By defining the averages over the volume Vj:
1
U - / U (x, ")V (2.35)
vijk Vijk
1
Uttt = / U (x,t"™)dV (2.36)
Vijk Vijk
and the averaged residual between " and "'
1 tn-‘,—l
R = L / / F (x,) - ndS | dt (2.37)
the balance equation (2.34) becomes:
1 1
— U™ —-U") + —R"" =0 2.38
[U U+ R (2:38)

The limit of the equation (2.38) for t"™' — ¢" provides the residual form of

the Navier Stokes equations:

U
Vijk 88—7 +R=0 (2.39)

In case of steady flows, the equation (2.39) reduces to:
R=0 (2.40)

The residuals R are obtained as the difference of the fluxes on the six faces
of each cell. The same fluxes are evaluated by averaging the values at the

centers of the cells.

The integration in case of steady flows

The equation (2.39) is evaluated throughout the multi-stage Runge Kutta
scheme (Jameson, [65]). Let ¢ the number of stages, and m the index of the

single stage, the step of the Runge Kutta is:

R (2.41)
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where the coefficients «,, depend on the number of stages ¢ and are deter-
mined on the basis of accuracy requirements. For the steady computations

several techniques are introduced to accelerate the convergence rate.

The time integration for unsteady solutions

The Dual Time Stepping (DTS) method is used for the unsteady computa-
tions (Jameson, [66]). The flow solution at each time step is obtained by
reformulating the problem as a steady one; the steady state solution is com-
puted by integrating over an unphysical parameter called dual time. Starting
from the semidiscrete equation (2.39), the time derivative is computed by a

second order accuarate formula:

3u™tt —4un - Ut 1
— —~ = = -——R"" 2.42
2N\t V;'jk_ ( )

By indicating with & the dual iteration index and with n the current time
level, the DTS method modifies the residual as follows:

3Uk: o 4Hn o H’nfl

R* =R' + Vi, — 2.4
The new residual R* is such that
lim R* =0 (2.44)
k—oo
As a consequence, the solution at each time step of the equation
R*=0 (2.45)

provides the unknown U™, It is worth noting that the equation (2.45) is
formally analogous to the equation (2.40) used for the steady state formula-

tions. Thus, by introducing a pseudo time derivative of the state variable

ou 1
— = — R* 2.46
or ‘/ijk_ ( )

the equation (2.46) can be treated by using the same numerical techniques
adopted for the steady solvers. In ZEN, the unsteady procedure has been

verified on several test cases ( Marongiu et al. [67, 68]).
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CHAPTER 3

Unsteady aerodynamics of ideal
flows

The hypothesis of inviscid and incompressible fluid represents a strong ide-
alization with respect to a real flow case. However, several and useful results
are obtained under these hypotheses. The basic mechanisms that gener-
ate the unsteady aerodynamic force on the oscillating airfoils are identified
and discussed. An analytical solution for thin oscillating airfoils found by
Theodorsen is demonstrated and applied. The results presented in the chap-
ter are collected from some classical text-books on Fluid Mechanics ([69],
[70], [71]).

3.1 Basic concepts

In case of an inviscid and incompressible flow, the velocity u and pressure p
are determined by means of the Euler equations (2.7). By applying the curl
operator to the momentum equation (2.7b), and using the following vector
identity,

u-Zuz%Zlu!Q—uxg (3.1)
where w = V X u is the vorticity, the Helmholtz equation is achieved:

g—erzxchu:O (3.2)

The vector I = w x u is called Lamb vector. The flows in which the vorticity

and velocity vectors are parallel are said Beltrami flows. If u-w = 0 with
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w # 0, the flows are said complex lamellar flows. A particular case of complex
lamellar flow is any two dimensional flow. The flow is irrotational when the
vorticity w is zero in any connected region. For an irrotational flow, the

velocity potential is defined as:

u=Vo¢ (3.3)

By exploiting equation (3.3), the continuity equation transforms to Laplace’s
equation:

Vi = 0. (3.4)
The momentum equation (2.7b) is cast as:

9 2
SV o+ v uf?=—Vp (3.5)

By moving any term under the gradient sign, one obtains that:

v (gf + V|u|2+p) =0. (3.6)

Namely, Bernoulli’s equation for unsteady irrotational flows is achieved:

9¢

5 - V\u[2+p F(t) (3.7)

where F(t) is an arbitrary function of the time that can be included in the
definition of ¢ without altering the velocity u. The equations (3.4) and (3.7)
describe the unsteady motion of an incompressible irrotational flow. In such
a case, the problem is defined by specifying an opportune set of boundary

conditions for the potential function ¢.

3.2 Aerodynamic force for an inviscid flow

The aerodynamic force, exerted by an inviscid flow on a solid body B, is

determined by integrating the pressure along the body surface JB:

Ez/ pndS (3.8)
oB
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In the definition (3.8), n is the wall normal versor pointing outward of the
fluid domain. There are several and fundamental mechanisms concurring in
the determination of the force F. In the case of inviscid and incompress-
ible flows, they may be related to the kinematic properties of the vorticity

distributions. In the following, some basic concepts are recalled.

3.2.1 Virtual or apparent mass

In case of flow around a moving solid body B without circulation, the aero-

dynamic force is related to the wvirtual or apparent mass contribution, which
is defined as (see Saffman [71]):

1,= [ ¢ndS (3.9)

aB
where ¢ is the velocity potential function of the flow field. It is possible to
show that the relation between the aerodynamic force and the wvirtual mass
is:

d
F=-11, (3.10)

In fact, by using the definition (3.9), the time derivative of I 5 is calculated:

d d 0¢
S1,=2 [ Lhas+ v 11
dt =B dt OB ¢ EdS 8B ot ndS /83(11 ¢) nd5 (3 )

By using the unsteady Bernoulli equation (3.7), we have:

d 1

—le—/ (—Z|g|2+p)QdS+/ u-nVaodS (3.12)
dt oB 2 OB

The aerodynamic force contribution is recognized by using the definition in

equation (3.8):

d 1
Y1, = —F-— “lu)?n — (u- 1
s /83 <2\u\ n — (u n)u)dS (3.13)

The surface integral on 0B can be replaced by any surface integral enclosing
B provided that there is no vorticity in the field. For an unlimited flow

domain, the surface integral vanishes and the equation (3.10) is obtained.
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The significance of I 5 is evident. In fact, if MU is the momentum of the
solid body and f the resultant of the external forces applied on the solid body,

Newton’s second law is:

d
CMU=F+f 14
g =T ETE (3.14)

By exploiting the equation (3.10), we have:

d
Z(MU+15) =1 (3.15)

The presence of the virtual mass I g alters the solid body inertia. The term
I, accounts for the effects of the fluid surrounding B. The external force f
applied on B is balanced by the real mass of the body and by the virtual
mass of the fluid. It is worth noting that such effects appear only in case
of unsteady equilibrium. This kind of contribution is associated with any
solid body moving with acceleration. If the B is steady, this effect does not

appear.

3.2.2 Vortex force

The presence of vorticity in the field, even if the flow is inviscid, changes com-
pletely the scenario in which the aerodynamic force interacts. By supposing
a steady moving body B, the lift is produced when a non zero circulation
of the velocity around a circuit surrounding B occurs. In this regard, the
concept of wortex force is introduced (Prandtl 1918 and von Karman and

Burgers [5]). The vortex force of a vorticity distribution in € is defined as
(Saffman [71]):

EV:—/QX@W:—/iWr (3.16)
Q Q

By inserting the relation (3.1) in equation (3.16), we have:
Evzlkész—gnZgMV (3.17)
and by using the Gauss theorem:
EvZ/Q(%ZIQIQ—QEQ)dV:/ (%|E|2E—HE - n)dS  (3.18)
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Figure 3.1: Scheme of the bound vorticity for an inviscid flow field.

By supposing that €2 contains the solid body B, as indicated in the scheme
(3.1), it is possible to show that the aerodynamic force is equivalent to the
vortex force in B. In fact, by indicating with 3 the external surface surroud-

ing B, the momentum equation provides:

E:/ deS:—/des—/gg-QdS (3.19)
OB > >

By adding and subtracting the vector |u|?/2 n in equation (3.19), we have:
Lo Lo
F=—[(p+=uP)nds+ [ (GlufI—uu)- ndsS (3.20)
by 2 n 2 B

If the surface X is far enough that the total head (p + |ul?/2) is constant,

equation (3.20) reduces:

F:/Z(luﬁl—gg)-nds (3.21)
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Recalling equation (3.17), we have

E:_/ u x wdV (3.22)
QUB

Since the flow is irrotational in €2,
E:—/HXQOWZEV (3.23)
B

The last equality confirms the concept that in a steady and inviscid case, the
aerodynamic force can be modelled as a bound vorticity distribution inside
the solid volume B. Thus, any time variation of the flow topology (i.e. the
angle of attack of an airfoil) produces a time change of the circulation that
must be compensated by an equivalent release of vorticity. This last one is
called free vorticity. In the unsteady cases, the bound and free vorticity have
to be in equilibrium in such a way to fulfill the conservation of the total

circulation.

3.2.3 Hydrodynamic impulse

Further relations are obtained by considering the application of impulsive
forces on a vorticity distribution. For these purposes, it is useful to introduce

the hydrodynamic impulse, as
1:/;><c_udV (3.24)
Q

The time derivative of I provides:

dl ow

— = —dV 3.25

dt /Q2 " ot (3:25)

In absence of solid bodies and external forces, the impulse is time invariance,
ie.

dl

=29 3.26
- (3.26)

When the flow motion is generated from an impulsive force of kind f =

i 0(t —tp), where (t — 1y) is the Dirac function, the impulse is no longer a
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time invariant and further relations must be established. In such a case, since
the time interval is small, the convection terms in the momentum equation
are negligible, and an expansion in time is applicable for the velocity and

pressure as follows:

(x)H(t —to) +u'H'(t — 1) (3.27)
P(x)0(t — to) + p' H' (L — to) (3.28)

I
I
=
Il
=

=
%4
o~
S—
Il

where H is the Heaviside function (H' = §) and P(x) is usually called im-

pulsive pressure. In such a case, the momentum equation provides:
u(x) o(t —to) + VP ot —to) =16(t — o) (3.29)
Namely,
u(x)+ VP =i (3.30)

The curl of (3.30) yields the following relation:

1<

X i (3.31)

(LJ:

The application of the impulsive external force f produces a vorticity governed

by the equation (3.31). The volume integral of i can be cast as follows:

/idV:/ngxidV—/ rxnxidS (3.32)
Q Q a0

Since the surface integral vanishes for an unbounded domain, the volume

integral of i reduces to:

/;dV:/;xyx;dvz/;xwv (3.33)
Q Q Q

where the last equality has been obtained by using equation (3.31). But, in
equation (3.33) the definition of the hydrodynamic impulse (3.24) is recog-
nizable. Thus, by integrating in time the equation (3.33), we obtain that:

dl
— = | fdV 3.34
1 o
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The relation (3.34) establishes a link between an impulsive external force and
the time variation of the hydrodynamic impulse.
By collecting the results exposed so far, the aerodynamic force around a

moving body B can be expressed by the sum of three contributions:

d dl
F = ——IB—/ _ldV— <__> (3-35)

The hypotheses of incompressible and inviscid flow contained in an un-
bounded domain (i.e. the external surface > does not intersect any vortical

region) underlie the equation (3.35).

3.3 Thin oscillating airfoils

In 1935 Theodorsen [55] obtained the unsteady flow solution for a thin oscil-
lating airfoil. The hypotheses of this solution are:

e incompressible and inviscid flow
e thin airfoils
e small and harmonic oscillations

Theodorsen’s solution represents an example in which the mechanisms illus-
trated in the previous sections occur simultaneously. The demonstration of
this problem can be found in the text of Bisplinghoff [72] as well. In the
following, the main steps of this proof are reported.

By supposing the free stream velocity parallel to the x axis, the hypothesis

of thin airfoil is expressed in terms of velocity components as:

u="Uyx+u (3.36)
u,w < Uy (3.37)

Besides, by introducing the potential perturbation ¢', we have:

9 _ , 99 _
3x_u’ 8z_w
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The potential perturbation satisfies the equation of Laplace:
Vi =0 (3.38)

The linearized Bernoulli equation is also written as
0¢'
ot

The problem is defined by setting the initial and boundary conditions. On

P = Poo = —pUstt = p (3.39)

the solid body, the unsteady component of the velocity is associated with the
body motion. In the hypotheses of small displacements, it can be expressed
as:

Theodorsen obtains the aerodynamic force as sum of two contributions: the

w = wg(z, 1) (3.40)

first is the non circulatory force determined by a distribution of sources and
sinks along the airfoil surface; the second is the circulatory force created by

means of the bound and free vorticity distributions.

3.3.1 Non circulatory contribution

The proof of Theodorsen’s solution is achieved by transforming the flat plate
from the physical plane xzz in a circle in the complex plane X Z. The prop-

erties of such transformation are illustrated.

The conformal transformation

Let ¢ = 2b be the chord of the profile. The following transformation is
introduced from the physical plane xz to the complex plane X Z:

b2
1 z2=X+ 14+ ——— 3.41
T4z +1i +4(X+2‘Z) (3.41)

where 7 = \/—1 is the imaginary unit. The relation (3.41) transforms the
profile of length ¢ to a circle of radius r = b/2 (see figure 3.2). In fact, by
putting X = rcosf and Z = rsin#, the equation (3.41) provides:

2

r4+iz=re?+ =
4ret

= 2rcosf (3.42)
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The velocity between the planes zz and X Z is subjected to the following
relation: it 2) 2

AX+iz) T ax+izp (3.43)
The equation (3.43), evaluated on the circumference points, gives the com-
ponents of the velocity. In the plane X7, these components are indicated

with ¢gx and ¢z. By calculating ¢x and ¢z at r = b/2, we have:

' Ux — 14z i(o-r/2)
v 2sin 6 ¢
1 L (0—m ¢ (0—m
= Send lax et 0=/ 4 g, et )] (3.44)
Since, e*=7/2) = gin@ — i cosh, and e~ = — cos@ — i sin ), the equation

(3.44) provides:

1
W —tw = Qsine[qxsine—qzcose—i(ch059+quin9)]

By using a polar coordinate system, it results that ¢, = ¢x cos #+¢q sin 6 and
g9 = qzcosf — gxsinf. From these relations, the equations on the velocity

components between the two planes are obtained:

/ do
— 3.45
Y 2sinf ( )
qr
- 3.46
v 2sind ( )

The potential function in the two planes is related by the following equation:
[15% b To
oy — @) = / G db = —/ u' dx (3.47)
01 1
with ;1 > 29 and 92 > 91.

The distribution of sources and sinks

Let H' be an infinitesimal source sheet distributed on the upper side of
the circle. The potential function ¢’ in the point (z, z), induced by such a

distribution, is given by the following integral:
1 b
# i 0) = £ / HHE ) In [(2 — €) + 2] de (3.48)
T J—b
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Figure 3.2: Conformal transformation of a circle in the plane X Z to a flat plate in the

plane zz.

The wall normal velocity is obtained by evaluating in z = 0 the derivative of
(3.48) with respect to z:

w(z,07,t) = aai;(x,OJ“,t) (3.49)

The calculation of this derivative is reported.

Since the flat plate is in z = 0, a limit process for z — 0T has to be considered.

b
w(z,0T,t) = 1 lim 8/ HT (¢ t)In [(z — &)* + 2%]dé =
—b

47 20+ Oz

b
-llml/ ZHNEY e (3.50)

A 2ot f oy (. — €)% 4 22

It can be observed that the limit (3.50) is equal to zero for z # £. For z = £ the integrand
function is not defined. A second limit process is considered. Let [z — €, 2 + €] be a small

intervall and compute the integral within it. We obtain:

1 T LHT(E, 1)
0, )= — i 7
w0 ) =on i | Gt

d¢ (3.51)

Because of the continuity of H (€, ), it differs from the mean value for a quantity of order

O(e). Then, it can be moved out of the integral sign. By defining ¢’ = (z — ¢)/z, we have:

Ht(z,t /=1
w(z,0,t) = H (1) lim ———df' =
27 =0t o2 & +1
= M lim atan (E) -1 H"(z,t) (3.52)
N T 20t z) 2 ’ '
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Thus, the relation between the source intensity and the wall normal velocity is established.

On the basis of equation (3.52), the source intensity is related to the wall

normal velocity as:
HF(z,t) = 2w, (z, 1) (3.53)

In a similar fashion, a distribution of sinks on the lower side of the flat plate

provides the following relation:
H™(z,t) = —2w,(z,1) (3.54)
Because of the equation (3.46), we have the same relations in the plane X 7:
HT(0,t) = 4wy (,t)sinf (3.55)
H™(0,t) = —4w,(x,t)sinf (3.56)

The velocity resulting from the distribution of sources and sinks has to be
derived. Consider two points Q™ (r, ) and Q™ (r, —1) symmetrically located
on the circumference (see scheme in figure (3.3)). The velocity in a point
P(r,0) induced by the source H™ r di) and by the sink H~ r di is built on
the basis of geometrical considerations.

Since the velocity induced by a source is inversely proportional to the radial distance,

we have:
HYrdy
+|
_ H™rdy
d = 3.58
7| = 51 (359)

From the scheme (3.3), we have:

|P— QY| ry/(sin ¢ — sin#)2 + (cosf — cos))? = 2rsin

P +0
2

-0
2

|[P—Q~] = 2rsin

The component dgg along the @ direction is obtained by projecting the components dg™ e

dg~ on the tangent direction in P. The angle between dgt and dgy is wae and between

37



XZplane 4 7

Qi(raigo)

Figure 3.3: Scheme of the velocity components on the circumference in the complex

plane

_ c o Ut
dq~ and dqy is ¢T Then

dgy = —|dq+|cos¢;9+|dq*|cosw;_6:
r H+ -0 H- v+ 0
- 5 (gt T gt
1 o+ v—0  H- b+ 0
= E<_Sin¢THCOS 5 +Sian+0ws 2 >d¢_
— wa(xy t) Sina CO8 w ok 9 + Cos w_dlzﬁ d (3 59)
G -t grg |V '
Sin D) Sin 5

By exploiting the following trigonometrical identity:

cos -0 cos w—;ﬁ —94ind 360
_ 1/)—9+ . Y +6  cosy —cosh (3:60)
sin — sin ——
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we have that

wq(z,t)  2sin® e
d = d .61
1 m™  costy —cosf v (3.61)

The velocity induced by the whole distribution is obtained by integrating in ¢ in the in-

terval [0 7].

The final result is:

™ <2
w0, = 2/0 de (3.62)

T cos 1 — cos b

The potential function ¢’ is obtained on the basis of the equation (3.47):

2
$(0,8) — ¢ (1, 1) = —— / / Lol DSV g (3.63)

cos ) — cos cost) — cos B

Because of the arbitrary time function in the definition of the potential ¢,
it is possible to put ¢'(m,t) = 0. Besides, for the symmetry, we observe that

the following relation subsists between the lower and upper side potential:

qﬁlL(—H, t) = _QslU(ev t)

We suppose the profile oscillates around an axis located at a distance a from
the origin and makes vertical displacements A in z direction. Then, the

instantaneous position is given by:
2o(2,t) = —h — a(z — ba) (3.64)
from which
wolx,t) = —h — é(x — ba) — Usex (3.65)

By taking into account that x = bcos § and using the relation (3.63), we need

to calculate the following integral:

oy (0,1) = h+Ua// sy dibdh +

COS 1/) — cosf

/ / sin” y(cos ) D (3.66)

cos — cos b
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It is useful to calculate the following primitive:

1
F = / —— dt (3.67)
c1cost 4+ cs

with the hypothesis that ¢; + ¢2 # 0. By defining m as
€1 — Co
Tate
two cases have to be solved in function of the sign of m. If we suppose that m < 0 the
primitive of (3.67) is

2 1 _
F= PR tan™" (g(t)v/—m ) (3.68)
Otherwise
1 RZERI0) ‘
F = 3.69
cte \/_ &\ Vim —g(t) (3.69)
with
1 —cost
9(t) = 1+ cost

By considering in equation (3.66) the integration in ¢ we have:

T sin® ¢ T 1—c3
2 d — - =2 o | diy =
/0 cosyy +b v /0 (cosz/;+cz cosw—f—cz) v

T 1
= (1-¢2 —d . 3.70
1-6) | ot +er (3.70)
where ¢; = — cosf. The primitive of the integral in equation (3.70) is obtained using the
equation (3.67) with @ = 1. In such a case m = 1 + gggz > 0 for 6 €]0, 7). It can be noted

that ¢(0) = 0 and, as a consequence, from (3.69) F(0)=0. Int =, g(m) is not defined.
However for ¢t — 7, the limit of (3.69) provides F'(r) = 0. The first integral in equation
(3.66) gives:

2 kg
/ / _SIY s = —7r/ cosf df = 7 siné (3.71)
0 [4

cos ) — cosf

The second integral in (3.66) is calculated as:

// sin’ 1) cos 6 =L dydd = - T sinf cosd (3.72)

cost — cosf

On the basis of the integrals (3.71) and (3.72), we obtain that
. 1
¢1;,(0,t) = b(h + Uy @) sin 0 + b%c ( 5 cos 0—a) (3.73)
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From the Bernoulli equation (3.39), the pressure can be related to the po-
tential function. The pressure difference py — py, is computed as:

o¢y,, 09 0} 0
pu —pr = [Uoo(;;(f— ;;L>+< gtU— ;Lﬂ (3.74)

By exploiting the symmetry properties of ¢, we have:

%_28_&_ 2Us 00y _28_qz5’
ox Ot bsinf 00 ot

By integrating equation (3.75), the expression of the non circulatory portion
of the lift is obtained:

pv —pr = —2Ux (3.75)

’ ’ ooy 00y
Lyc = —/b(pU—pL)dx—/b2Uoo O -2 5 dr =
1 b 09y
— 2, [qﬁU}b—/_pr 2L do (3.76)

It is worth noting that the source and sink distributions do not introduce
circulation in the field. As a consequence, the potential function ¢’ is single
valued and vanishes at the trailing edge because ¢'(0,¢) = 0. With this

information, we obtain that:

* 99, o [
LNC = —Q/b ot dl’——za/b¢[]d.f—

a (™., .
= 2§/0 ¢y sin 0 db (3.77)

By calculating the integral in equation (3.77), the non circulatory part of the
lift is obtained.

Lye = =70 (h+Uwni—aba) (3.78)
It must be pointed out that a vertical displacement at a constant velocity h
does not have unsteady effects on the lift. It is fully equivalent to the effects
of a steady flow incidence a such that A = Ua. We report also the non
circulatory part of the aerodynamic moment

b
Myc = / (pv — Pp)(x — ba)dx (3.79)

—b
The final result is:

. . 1
Myc = 7b° {Uooh +bah + ULo — b (g + a2> oz] (3.80)

41



XZ plane 7z

Figure 3.4: Bound vortex of intensity Ty and its image of intensity —I.

3.3.2 Circulatory contribution

The non circolatory part is not able to fulfil the Kutta condition at the
trailing edge. In fact, from the equations (3.45) e (3.46) for x = b, # = 0
and u — oco. Theodorsen resolves this problem by superimposing a vorticity
distribution on the body surface ( bound vorticity) and in the wake (free
vorticity). But, the boundary conditions of the non circulatory part have to
be respected together with the condition that circumference in the plane X 7
and the plate in the plane xz are stream lines. For this reason, the technique
of the image vortices are used. A vortex located at (,0) of intensity —I'y in
the plane X Z has its image Ty in (b*/4x,0). This vortex pair respects the
condition of a stream line for the circumference. By referring to the figure
(3.4), consider the bound vortex of intensity I'y and its image —I'yg. The
centers are located in (b?/4x, 0) and (x, 0) respectively. The induced velocity

in the point P(r,#) is tangent to the circumference. It is possible to show
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that the radial component is zero. In this way, the boundary conditions on

the body are not modified by the vorticity distribution.

q(r,0) = q cos(fy —0) —q" cos(f, —0) =
_ Lo [racos(b—0) ricos(bh —6)
o7

(3.81)

r2 r?

By geometrical considerations in figure (3.4), we obtain the following rela-

tions:
b 2
Ty = x>+ <§> — xbcos0 (3.82)
b2\ (b\? ¥
2 P — f— _— —
ry = <4X> + <2> I cosf (3.83)
Furthermore:
b
ro cos(ly — 0) = 5 X cos 0 (3.84)
cos(f, — 0) = b_ b cos (3.85)
(] 1 2 4y .

By substituting these relation in equation (3.81), we have:

o(r) = L0 2 — xcosf 2 Gy eost =
’ 2m |2+ (%)2 —xb cosf b%/(4x?) [(%) + x* — xbcosf
r _ E
_ L X (3.86)
) I —Xbcose

And, by computing the potential function ¢j;:

, "
o(0,1) = —/ 0 g d =
0

r b? 1
- 0 (X — _> / > de (3.87)
2 4/ Jo x>+ 7% — xbcost

The integral (3.87) can be computed by exploiting the equation (3.67) with ¢; = —x b

and ¢z = x* + (3b). In such a case,
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The primitive (3.68) must be used, which provides:

— 1y 1
(x ) /14 cost (3.89)
(x +3b) V1—cost
As a consequence,

/ Ty [ (x—3b) [1+cost W_
¢ (0,t) = - ltan ((X+%b)‘/1—cost 0_
Dy (x —3b) [1+cosf
= 7Ttan ((X"’%b) T~ cosd (3.89)

By means of equation (3.89), we are able to compute the pressure distribution

=

by using the equation (3.75). But in such a case, the time dependency appears
through the variable x(¢) which indicated the instantaneous position of the
wake vortex. The hypothesis that the vortex is shed at the free stream
velocity is adopted. This assumption allows for the following transformation:

ds _

U, 3.90
7 (3.90)

where £ is the vortex location in the plane xz which corresponds to
2

b
f =x+ & (391)

in the plane X 7. Equation (3.91) can be cast as follows:

§-b_ x—(b/2)
E+b x+(b/2) (892

In this way, equation (3.89) can be written as:

6, (0,8) = Otan~! \/(6 — D)+ cosb) (3.93)

T (£+b)(1 —cosh)

The derivative of (3.93) with respect to the time ¢ is:

! ! 3
0oy, _U 0dy  bUxTy  sinf 1 (3.94)

ot o¢ T m E—beosh J(@ 1)
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The derivative with respect to 6 gives:

9y _ Ei\,éﬁ—bz (3.95)

06 — 27 (£ —b cosh)
By using the expressions (3.94) and (3.95) in the Bernoulli equation (3.75) the pressure

difference can be computed:

_ 2Us 09y, o9

o =pelre = 15500 " Zar
_ UsTo &+ bcosb (3.96)
- mbsinf (€2 —b?) '

From equation (3.96) the lift produced by the pair of vortices of intensity

[y is determined:

™ ooF
LFOZ_/ (pU—pL>bSHl0d9: U 06
0

Ve

It can be noted that for & — oo, (i.e.,, t — o0o) the lift tends to the value

(3.97)

produced by a single vortex of intensity I'y. When we deal with a distribution

of wake vorticity, the treatment must be referred to an element of vorticity:

Lo = —(&, 1) dS (3.98)

Now, the velocity expressed by equation (3.86) transforms to:

2
* Y dE X =%
q(r,0) = / rall beany - (3.99)
b T x?+ % — xbcost

The pressure difference due to the complete system of wake vorticity is
obtained by integrating the equation (3.96) in £ from b to oo downstream

the airfoil.

 Us &+ bcosh
Pu —PL = b sin@/b (ﬁ) %}(fﬂf)df (3-100)

It is convenient to arrange the last integral as follows:

Uso ©1&(1 — cosb) £+
Pv —PL = . /b [ﬁ + cosf m] vw(f,t)df (3.101)

By integrating from the trailing edge to infinity we find the complete effect

of the wake vorticity on the lift:

(3.102)

Lo = _Uoo/b \/%’Vw(fﬂf)dg
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3.3.3 The Kutta’s condition

Equation (3.102) establishes that the circulatory portion of the lift is deter-
mined by the distribution of wake vorticity 7, (£,t) which is unknown. The
Kutta condition allows to specify a further equation to compute this quan-
tity. The velocity at the trailing edge is given by adding the relations (3.62)
and (3.86) with = 0. The Kutta condition establishes that the velocity at

the trailing edge is zero, namely:

2 (7 w(e, t)sin’ ¢ * o, dé
/ it

T cosy — 1 b

X2-¥
1

b2
X2_|_Z_

xb] =0  (3.103)

By taking into account the relation (3.92) between y and &, the Kutta con-

dition can be written as:

2 we(, t) sin 1 t) sin® ¢ /f—l—
;/0 cosy — 1 wb/ wgtdg—() (3.104)

In equation (3.104), the boundary condition prescribes w,(z, t), (see equation
3.65). Then the unique unknown is v,(&,t). Theodorsen indicates with @

the following integral:

_ /5 +0
Q= %b o (€,1) (3.105)

Then, equation (3.104) becomes:

Q — l /7r W dd) (3106)
0

s cosyy — 1

By substituting the expression of w,(x,t) in equation (3.65), we have:

L N . B . 9
QO = l/ (=h — ab(cos ) — a) — Usar) sin® 1
0

T cosy — 1

dip =

— l/ow [h+o’zb(cosz/) —a) —l—UooOz] (1+cosep) dyp =

™

: 1
= h+Upa+b (5 —a> é (3.107)
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Then, we can write the circulatory part of the lift as:

%% (&, t)d€
LC:27TbUOOQ/ 62

Vs

The effects of the wake vorticity 7, (&, t) are represented by the ratio of the

(3.108)

two integrals in equation (3.108). By assuming simple harmonic oscillations

in time, we can write the displacement and the velocity on the flat plate as:
Zo(2,1) = Z,e™" (3.109)

We (1w, 1) = Wee™" (3.110)

When a periodic solution is established, also the wake vorticity takes a similar
form. However, because it is convected downstream, a time delay has to be

considered. The wake vorticity can be described in the form:

Yol&, 1) = Fpe T (3.111)
By defining the reduced frequency k = w b/Us and £ = £ b,

Yoo (€, ) = Fupe™HE) (3.112)

The ratio of the integrals in (3.108) can be manipulated as:
7%1}(5 )df
/€2 _ |2 /7*2
A = O(k) (3.113)

/boo \/ng(&t / gti

C(k) is said Theodorsen’s function and can be expressed by means of Hankel

functions of the second kind:

CUk) = F (k) +iG(k) = ——F) (3.114)
Hi(k) + iHE (k) '
where H?2(k) is a combination of Bessel’s functions:
H2(k) = J, —iYy (3.115)
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The C(k) function is then computed for a given value of the reduced fre-
quency. Therefore, by collecting the equations (3.78), (3.107) and (3.108)

the final expression of the Theodorsen’s solution is obtained:

L = 7b*(h+Uxé—aba) +

+ 2w b U C(k) [h + U+ b (% - a) a] (3.116)

The expression of the aerodynamic moment is also reported:

) 1 1
M = xb? {bah—Uoob<§—a> d—62<§+a2>d}

+ 27U b <a + %) C(k) [ﬁ + Uy +b G - a) a] (3.117)

3.3.4 Observations

Theodersen’solution highlights the fundamental features of the unsteady in-
viscid flow around a thin airfoil. By specializing the equation (3.116) with
h=h=0,a=-1/2and a = ¢*' and dividing by U2 /2, the expression of

the lift coefficient for an oscillating airfoil is obtained:

k
C=7ka <2—§> +27C(k) (1 +ik) (3.118)
where the position
2U ok
w =
c

has been used. The Theodorsen function C(k) = F(k) + iG(k) is repre-
sented in figure (3.5). It is worth noting that as k¥ — 0, F(k) — 1 and
G(k) — 0 obtaining the linear steady theory of thin airfoils. In figure (3.6a)
the curves obtained by the equation (3.118) are reported for different values
of the reduced frequency. For k — oo, F'(k) — 0.5 and G(k) — 0 as well,
producing a clockwise rotation of the real part of equation (3.118), as can be
seen in figure (3.6b). The complex terms are reported in figure (3.6¢). For
k — oo, the non circulatory part diverges because of the proportionality to
k. However, for high reduced frequencies, the theory is no longer reliable be-

cause the hypothesys of small disturbances is mismatched. Finally, in figure
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Figure 3.5: Theodorsen function, C(k) = F(k) +iG (k).

(3.6d) a numerical comparison between the inviscid flow solution around the
NACA0012 and NACAO0006 airfoils against the function (3.118) is reported
at k = 0.05 and a = 3°sin(2kt). The agreement improves by reducing the
thickness of the airfoil because such contribution is not taken into account

by the Theodorsen solution.
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Figure 3.6: Inviscid flow past an oscillating airfoil. (a), Theodorsen solution from &k = 0.2
to k = 1.1; (b), real part of Theodorsen’s solution; (c), imaginary part of Theodorsen’s
solution; (d), numerical flow solutions at k£ = 0.1 and « = 3°sin(2kt): NACA0012 — - —,
NACA0006 — — —, Theodorsen’s solution —.
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CHAPTER 4

A New Far Field Theory

In the present chapter, a far field theory, expressing the aerodynamic force by
means of the Lamb vector field, is discussed. As pointed in the introduction,
many far field techniques are usually applied to numerical solutions for steady
flows. The extension of the force prediction methods to unsteady flows is not
trivial. In this regard, much theoretical research has been carried out on the
Vortex Dynamics. Several interesting theories able to supply the far field
aerodynamic force also in the unsteady case have been developed, even if for
incompressible flows. Among various results, the work of Wu J.C. [73] in 1981
is of particular relevance because it constitutes a first far field aerodynamic
theory for viscous and unsteady flows.

In 2006, Wu J.Z. & al. [74] published an improvement of the Wu J. C.’s
formulation. In this theory, The Lamb vector l appears to be the key quantity
in the generation of the aerodynamic force. In 2007, the same research group
[75] showed the first numerical applications of this theory to flows at low
Reynolds number (~ 10%). There are not yet published results concerning
the use of such theory to flow at very high Reynolds number.

The aim of the present chapter is to explore the potentialities of Wu’s
theory in predicting the aerodynamic force for high Reynolds turbulent flows.
The conceptual gap between the results obtained for the inviscid flows and
the viscous and turbulent ones is thus filled. By means of the Lamb vector
integrals we show a practical way to extract the aerodynamic force from a
numerical flow field. Such approach includes also the possibility to deal with

unsteady flow regimes. For this purpose, the theory is reviewed and extended
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under the perspective of the Reynolds Averaged Navier Stokes equations.

4.1 The far field approach

The aerodynamic force F is defined as the resultant of the actions exerted
on one o more solid bodies by the external flow. By following the notation
introduced in chapter 3, let 0B be the boundary surface that separates the
airfoil volume B from the fluid volume Q (see the scheme in figure 4.1).
The definition of the aerodynamic force, already given for inviscid flows in

equation (3.8), is modified for viscous flows as follows:

E: /8B(p

The equation (4.1) represents the near field definition of the aerodynamic

| | e

)-ndS (4.1)

=

force because is based on the surface integration along the solid body con-
tours. Generally, the integral (4.1) depends on the time ¢. Such a dependency
is caused from the unsteady behaviour of the integrand functions, pressure
and the shear stresses, as well as by the motion or deformation of the body
surface 0B = 0B(t). Other forms of the aerodynamic force are achievable

by exploiting the balance equation of the flow momentum:

/npgdv:/m(_py;)'ﬁds (4.2)

where 02 = 0BUY., and ¥ is a closed external surface around B. In equation
(4.2),

is the material derivative of the velocity (fluid acceleration). In equation
(4.2), by isolating the surface integral on B, we obtain the far field form of

the aerodynamic force:

F=- [ padV- [(pl-1)-ndS (4.3)
fyonav= [ 1=z

Equations (4.1) and (4.3) are equivalent and represent two alternative way

to compute the aerodynamic force. The hypothesis is the validity of the

22



momentum equation (4.2). In equation (4.3), the surface ¥ can be chosen in
an arbitrary way. The use of the near field form (4.1) or the far field one (4.3)
depends on the capability of measuring the respective integrand functions.
Further manipulations are usually introduced with the aim to address some

specific issues.

4.2 Wu’s theory

In the hypothesis of constant density, we can set p = 1 throughout the
formulas without loss of generality. The following transformations, called
Derivative Moment Transformations (DMT), are used in the proofs. Let a
be a vector field defined in €2, we have that:

/QQde/Q£><(Z><Q)dV—/£><(@><Q)d5 (4.4)

N

where r = x /(d — 1) is the scaled position vector and d = 2,3 is the space
dimension. Moreover, for a vector field ¢ n, the following identity is also

applicable on the boundary of €:
Mds:—/ rx (nx ¥V 6)dS (4.5)
a0 80

By exploiting the Helmholtz equation for the vorticity (obtained by applying

3

the curl operator to the equation (2.8b))
— 4+ Vx1l=vViuw (4.6)

the first side of equation (4.6) can be cast by using the definition of the

accelerator vector:
V x a=vViw (4.7)

We apply the transformation (4.4) to the acceleration vector as follows:

/ngz/;ngV—/ rx (nxa)dS (4.8)
Q Q 89
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In equation (4.8), the curl of the acceleration is substituted using the equation
(4.7):
/ng:/£Xl/V2ng—/ rx (nx a)dS (4.9)
Q Q o0

In equation (4.9), the surface integral on 9€2, in which the acceleration vector

appears, is manipulated by exploiting the momentum equation (4.7):

_/agzx(ﬂx g)dS:/sz [Qx(zp_y.;)}dS—/ rx(n x a)dS (4.10)

0B

The surface integral on 0B in equation (4.10) is calculated from the solid

surface motion. We indicate this contribution with F ;;; :

EIH:/ rxnx adS (4.11)
oB

The pressure contribution in the right hand side of (4.10) is transformed

using equation (4.5):
/;xgxipdS:—/pﬂdS (4.12)
> >
By substituting equations (4.10) and (4.12) in the integral (4.9), we have:
/ adV/ = /;xuvgng—/p@dS%—
Q Q s
— / rxnxV -7dS—F, (4.13)
B

By inserting the relation (4.13) in the far field form expressed by equation
(4.3), we have:

I

F = —/gxyVQQdV+/g><@xZ~;dS
Q )

b

Also the shear stress tensor 7 can be expressed in terms of vorticity taking

into account that:
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Now, the aerodynamic force is expressed solely through the knowledge of the
vorticity field. In fact:

F = —/;xuvgng—/QXﬂx(nyg)dS
Q )

+ /ygxndeLEHI (4.15)
»
In synthesis, F is given by the sum of three contributions:
F=F,+F;+E;; (4.16)
The contribution F ; is formed by a volume integral on 2
F, = —/ (; X I/VQQ) dV  (diffusion form) (4.17)
Q

Equation (4.17) is called diffusion form because contains only viscous vortical
terms. In the following, such form will be labeled with F; ;. The second

contribution F ;; is made by surface integrals on ¥ as follows:

F, = —/E(;xmxu@x@])ds+/u<gxmds (4.18)

¥

Finally, F ;;;, defined in equation (4.11), is associated with the local solid
body acceleration. By exploiting the Helmholtz equation for the vorticity
(4.6) and the transformation (4.4), the diffusion form (4.17) can be cast in

an alternative form,

—/ rx (nx 1)dS  (advection form) (4.19)
onN

In equation (4.19), the contribution F ; is expressed in terms of the rate of
change of the hydrodynamic impulse and Lamb vector integrals. It is called
advection form and indicated as F ; ,. The vortex force, namely, the volume
integral of the Lamb vector, appears explicitly in equation (4.19). In virtue
of equation (4.6), the diffusion form and advection form are equivalent

and they represent alternative ways to account for the same flow physics. It

25



™
—
I

[}
8
vy

A

Figure 4.1: Scheme of the fluid control volume around a solid body.

is worth noting that the surface integral in equation (4.19) is extended to
00 = 0B U X. In the following the contribution on @B will be embodied in
F ;;; obtaining that:

—/£><(@>< )dS (4.20)

and
F; = / rXxnXx (g—_l)dS (4.21)
oB
Once a fluid dynamic field is provided, in terms of velocity, vorticity w and

Lamb vector [ fields, the aerodynamic force is evaluable in the diffusion form

by using the set of equations (4.17), (4.18) and (4.11), or, alternatively, in
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the advection form by using (4.19), (4.18) and (4.21). These expressions are
exact being a direct transformation of the Navier Stokes equations.
It is interesting to note the analogy between the advection form and the

aerodynamic force for inviscid and unbounded flows expressed by equation
(3.35).

4.3 High Reynolds number flows

The equations derived in the previous section apply only to velocity fields
which are solutions of the Navier Stokes equations. Specifically, the flow
field must be a solution at a certain time ¢ in a given volume €. In this
form, the advantage of theory is restricted to the availability of this kind of
data. Conversely, the most common practice is to deal with time average or
space filter flow fields. Also in case of experimental measurements, the data
storage often occurs by averaging in time the flow velocity. Such processes
produce the appearance of the extra terms associated with the mean effects of
turbulence. In the following section, we address the effects of such processes

on the formulas achieved so far.

4.3.1 Far field theory in the RANS form

By applying the curl operator to the RANS equation (2.17b), we obtain:

N w)
ot

+VxVx({(w)yx(u)=VxV - (z+1") (4.22)

=

where (w) = V x (u ). In equation (4.22), the shear stress tensor r is
computed by using the mean velocity (u). In order to obtain a far field form
based on the RANS equations, we need to introduce the averaged Lamb

vector as

(1) =(w)x{u)+(1") (4.23)

where (1") = (W' xu'), and ' =V x u'. It is easy to show that the mean

fluctuating Lamb vector (1") is related to the Reynolds stress tensor r°, as
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shown by Wu et al. in [76]. In fact, by the definition, we have:

(1")=(u' xu')=((¥xu)xu) (4.24)
Taking into account that for any vector field is:
1
(Vxa)xa=-;Va'+a-Va (4.25)

we apply this identity to (4.24), obtaining that:

(") = (—%Z(u’-u’)Jru“Zu’) (4.26)

Again, by using the property
V-(uu)=u-Vu+(V -u)u

and taking into account that V -u’ = 0, we have:

(W -Vu')=(V -uu)=-V -7 (4.27)

1=

Namely,

(1")=-V 7'~ Vx (4.28)

where k = (u' - u' }/2 is the turbulent kinetic energy. The curl of (1"} is

Vx{(l"Y=-VxV -1 (4.29)

This last relation is used to derive the averaged form of the Helmholtz equa-

tion. By substituting the equation (4.23) into equation (4.22), we have:

R U (- () =Y ) (430)
Namely,
Nw) _ o2
W‘i‘zx(_”—’/v (w) (4.31)

The Helmholtz equation for the average vorticity ( w ) takes the same form
of the equation (4.6). The non linearity effects of the averaging process are

contained in the definition of the average Lamb vector (4.23). By using the
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DMT relations, the far field form of the aerodynamic force is cast for an

averaged flow field as follows:
(Era)=- [ £x 0¥ (w)) v +(E")
Q

<£H>=—/sznxu<zx<g>>ds+/zv<<g>xn>ds—<£t>
(4.33)

(4.32)

where

<Et>=/Q£><Z><(_l”>dV (4.34)

groups the explicit effects of the mean fluctuating turbulent field. Analo-

gously, the advection form is derived by using equation (4.31):

(EM>:—/Q;>< %dV—/ﬂ(_ﬁdV—/ﬁﬂ;xgx (1)dS+(FE")
(4.35)

The body acceleration term ( F ;;; ) is not altered by the averaging process.
It results that:

<E1H > =F (4-36)

It can be noted that the term (F") is simultaneously added and subtracted
from equations (4.32), (4.33) and (4.35). Namely, the mean aerodynamic
force (F ) given by

(Fra) +(E;)+(Er)

e

(E)

or by
(E)=(F;,)+(F;;)+(F)

does not depend on ( F'). The final expression of averaged aerodynamic

force is formally similar to the original form derived by Wu for the Navier

Stokes equations.
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4.3.2 Dimensional analysis

A discussion on the orders of magnitude is reported. First, a uniform dimen-
sionalization based on some reference quantities is considered. In particular,

by fixing a velocity and a length of reference,
Ur, Ly

and defining the reference Reynolds number Re = U, L, /v, the non dimen-
sional form of equations (4.17), (4.18), (4.20) and (4.21) is obtained:

* 1 * * *
F = >y / (r* x V2" ) dV (4.37)
’ * 8t* * 3Q*

(4.38)
F%, =- ! / (r*x[nx(wa*)])dS*+ ! / (Ww* x n)dS*
=M Re, [y \T - Re, Js- — T

(4.39)
Fin= / r' x (nxa’)ds” (4.40)

oB*

where * indicates the non dimensional quantities. The non dimensional aero-
dynamic force F* is given by F = UZL? F*. It is worth noting that the
reference Reynolds number appears only in the expression of 7 ; and F7;.
The advection form , even if is equivalent to the diffusion form , does not

depend on the Reynolds number explicitly.

Steady laminar boundary layer analysis

In case of a two dimensional steady and laminar boundary layer flow (Re >
1), the classical analysis of the order of magnitude of the different terms
can be performed by choosing a different scaling for the stream wise and
the normal wise directions. By indicating with x and y the stream-wise
and the normal wall directions, we introduce § = y/(0L,) and © = v/(0U,),
where § ~ 1/v/Re is the length scale of the boundary layer [77]. In a two

dimensional flow like the boundary layer, the vorticity w is wk with w given
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by :

ov ou U, <6 ov 18u*> U oow

YToy oy L \"ar s05)" oL 0y
By calculating the integrand functions of the equation (4.17), we have:
0%w 02w
2 _ . . _
rx Viw = (yl—xl)<w+a—y2)—

R p— d3u +@ B
- W ox20y  oyd )

_ % 1 *r2_ a1 g 83u* +ia3u*
- 2\o" LT V) oy T 52 o

Taking into account that dV = L2 § dV* and v = U, L, 6% we obtain that:

.. o a3u* 1 93%u* .
D(EXVQU_J)dV — L3U3(52$l—53y1) (m+ﬁay3>dv

Thus, the component along the stream wise direction is given by:

* . _a3u* * 3
| R A 573 dv* +0(6”) (4.41)
0 Y

whereas the normal wise component is:

. L03ur
Efyd'l: —/Q*ZL’ 83]3 dV +O(52) (442)

Concerning the advection form integrals expressed in equation (4.20), we

need to compute the Lamb vector for a laminar boundary layer. It results:

l—wxu=Yr 0 i — Lur)
:(.L) p— _—
TR T ey 5L
and
2 Qau* — * - *
ldV—LTUra—g((Svg—u j)dv
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The surface element d.S is expressed in the non dimensional form as dS =
§L2dS*. Thus:

(£xnx1)dS = —szzaa

(W'ng +nydv) (diy—ja*)dS*

Then, the advection form integrals in a boundary layer are:

ou* ou*
FY - i=—0 / dV* + / g u* _nmdS*>+O(52
" < o 0F == / 9y &)
(4.43)

ou* ou*
L - * ay n* ay ( )

(4.44)

Finally, we estimate the integral F ;;. The curl of the vorticity is:

wa—Ur 0% _Z,EQQU*
+re=512 \Larag 1o op

It follows that:

rxnxv(Vxw)dS= L*U?s 582 w +n 0w (10— ja*)dS”
- - ozt ay ) ay Y J
and
l/andS—LQU2528*( ¢ J)dS”
o0y My L
Then,
. 0%u* _ Ou* .
EU'Z:52/* <— agg Y+ ay > nde —|—O((53) (4.45)
. o2u* . )
FYyp-j=0 [ —5a"n,dS"+0O(57) (4.46)
- s O

By resuming, we have obtained that:

This dimensionalization provides that the integral F ;; is negligible with
respect to F ; for both the x and y components. For high Reynolds number
and wall bounded flows, the aerodynamic force is valued only in terms of
F,.
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Turbulent boundary layer analysis

In case of a turbulent boundary layer on a wall, the previous analysis still
holds for the mean flow quantities, by considering § = Re™?, with 8 > 1/2
[77]. The additional term ( F') in general is not negligible. By expressing

the integral (4.34) in terms of the Reynolds stress tensor, we have:

<Et>=/2§><@><(2-;t)ds+/zf-@ds (4.47)

In a turbulent boundary layer only the derivatives of the shear stress com-
ponents 7;, have the same order of magnitude of the mean quantities (see

Pope [59] p.114). Thus, within this approximation:

a t
Fx@x¥ ), ~ —gn, 52 (4.48)
ot
.7t R~ =Ll 4.4
ex@x ¥ L), = o0 5 (4.49)

while the terms ;t -n results negligible. As a consequence, the integral (4.47)

reduces to:

0, S
(F') =~ : ayyny(yg—xl)ds (4.50)

It is worth noting that this contribution is not negligible, but is zero on %

when n, = 0.

4.3.3 Some remarks

In a practical application the diffusion form has the advantage that all

integrals can be computed by means of the average vorticity (w ) only. An
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important drawback is the involvement of the third spatial derivatives of
the velocity field which are more difficult to compute accurately. On the
contrary, the advection form requires the first order spatial derivatives of
the velocity. In addition, the advection form allows to recognize the explicit
role of vortex force. For these reasons such form will be adopted.

The computation of the aerodynamic force using the sum (F ; ,)+(F ;7)+
(F,;;; ) does not require the explicit knowledge of { F'). However, the
Reynolds stress tensor Lt and turbulent kinetic energy x are involved in the
computation of ( I) by equations (4.23) and (4.28). An alternative way is
to compute (F ) in terms of the mean velocity (u ) and vorticity (w ) as

follows:
(B0 = = [ex B2av— (o) xqu)av
— /89§><Q><(<g>x(g))d5 (4.51)

The advection form is correctly computed by using the equation (4.51), but,
as a consequence, the need to calculate {( F*) in ( F,; ) now arises. The
analysis of the orders of magnitude, previously conducted, allows to neglect
these contributions for high Reynolds and wall bounded flows.

The 2D advection form (4.51) and the body surface contribution (4.36)
can be explicated in an orthogonal cartesian reference system Ozy. The ex-
pressions of lift and drag coefficients are obtained by assuming the z axis
parallel to the free stream velocity Us,, and dividing by U2 ¢/2. By special-
izing the advection form (4.35) and the body surface contribution (4.36), we
have r = (z,y), n = (ng,ny), (u) = ((u),(v)), (w)=(w)k. The lift and

drag coefficients are expressed as:

Ci=(Ca+C)o+(C)s+(Ci)p (4.52a)
Cd:(Cd)Q—i-(Cd)@—F(Cd)E—F(Cd)B (4.52b)
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where

(C)a = —2/0(w)(u)dv (4.53a)

(C)o = 2/x<w>dv (4.53b)
(€ = 2/2x<w><<g>~@>ds (4.53¢)
)y = —2/ v ap dS (4.53d)

and

(Co)a = 2/Q(w><v)dV (4.54a)

(Co)o = —2/y(w>dV (4.54b)
(Ca)s = —Q/Ey(wﬂ(g)-ﬂ)dS (4.54c¢)

In the formulas (4.53) and (4.54), ap = |n x (a—1I)|, and (@) is the time
derivative of (w). In case of unsteady periodic RANS solutions, the quantities
in above equations must be considered as phase averages, which are the direct
outcome of the unsteady RANS based CFD solvers.

4.4 Applications

The verification and the numerical validation of the present far field theory
is carried out by the analysis of several steady RANS solutions past an airfoil

at high Reynolds number.

4.4.1 Steady RANS solutions

A two dimensional C-type structured grid around the NACA0012 airfoil has
been created with 768 x 200 cells in stream wise and normal wise directions

respectively. The outer boundary is located at a distance of about 30¢ from
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(a) (b)

Figure 4.2: Steady turbulent flow solutions at Reynolds numbers 108, 5-10° and 107.
Comparisons with the experimental data of McCroskey [78]. (a) C4; (b) Cy4 at a = 0°.

the airfoil surface. The wake edge is discretized with 128 cells. The airfoil
surface has 512 cells. Standard free stream boundary conditions have been
set on the outer boundary. Three Reynolds numbers have been investigated,
Re =10%, 5 x 10%, and 107 at angles of attack within the range 0° < a < 6°.
The TNT turbulence model has been used. The first cell size along the wall
normal direction on the airfoil surface has been accomodated to mantain
the y™ of the order one at each Reynolds number. As a reference, the C';,
and the C'y at o = 0° obtained from the standard near field integration are
compared with some experimental data reported in literature, [78]. In figures
(4.2a) and (4.2b), the C', and the C' 4 at o = 0° are plotted as function of the
Reynolds number. A good agreement is achieved confirming the reliability
of the present CFD data.

4.4.2 Far Field analysis of steady RANS solutions

The far field form of the aerodynamic force expressed by equations (4.52)
does not dependent on the volume () selected for the integral calculation.
Nevertheless some dependencies are expected when we deal with the numeri-

cal solutions. Furthermore, the single contributions can vary according to the
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Figure 4.3: Selection of the domain used for the far field integration.

position assumed by the surface ¥ in the flow field. An integration domain
Q2 based on a typical computational grid for CFD calculations is proposed in
figure (4.3). The surface ¥ is defined as ¥; U 3; by fixing some grid lines.
The surface X; intersects the airfoil wake at a distance xg from the trailing
edge while the surface ¥; is located at ys from the solid surface. In the fol-
lowing, the normalized aerodynamic coefliecients, (C;)* and (C4)*, defined
as the ratio of the far field coefficient by the corresponding near field one,

are used:
(Cl)* _ (Cl)Fanield . Cd * (Cd)Farfield
(Cl)Nearfield ’ (Cd)Nearfield

where the superscript * specifies the normalization operation.

Effects of the X; location on (

In figure (4.4a), the normalized lift coefficients (C';)* are reported for several
Reynolds numbers and angles of attack by increasing the xg location of the
> surface from zero to 25¢ downstream the airfoil. The X ; surface is located
at about 15¢ from the airfoil surface (ys =~ 15¢). The contributions related
to the volume integral (C';)%, are reported in figure (4.4b). The surface
contributions, (€)%, and (C))%;,, are plotted separately in figures (4.4c)
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Figure 4.4: Steady turbulent flow solutions at Re = 105, 5-10% and 107, angles of attack

a = 2°, 4° and 6°. Normalized contributions of the lift coefficients by varying zs: (a)

(C1)75 (b) (C)s (¢) (C)%,; (A) (C), -

and (4.4d). Although the curves refer to different oz and Reynolds numbers,
no significant dependency on these parameters is visible. The (C'})* is & 1
within a narrow band of 2% while the vortex force contribution (C)%, and
(C))%, vary linearly compensating each other. A constant term is obtained
from the surface integral on ;. The variation of (C';)%;, with zs is an effect

of the external boundary conditions on the lift. This aspect can be explained
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considering the analytical expression of (C})y,, which is:

(C))s, :2/ rwudS
3r

The wake is intersected by ¥; at a distance xg from the trailing edge. This

integral can be calculated by exploiting the boundary layer approximation

of the vorticity, i.e. w = —g—Z. Thus, the intregral on 3; becomes:

ou ou?
Co)sy==2 [ w -t udS =—ss | S dS = —ws[u(ws,ys) — v(zs, -
(Ci)s, /2196 o " Ts /21 a9 zs|u”(zs,ys) — u” (s, —ys)

For ys greater than the wake thickness, the Bernoulli equation provides a

relation between the velocity and pressure:

(Ci)s, = —ws [ — p(ws,ys) + p(rs, —ys)]

The slope of (C))x, is given by:
d<cl)21

dl’s

= p(iﬂ& ys) - P(iE& —ys)

For ys — oo the flow takes the real free stream conditions and p(xg, ys) —

Poo- As a consequence,

When yg is limited, and p(zs, ys) # p(zs, —ys), (C})s, grows linearly. This
effect reflects also on (C')q. The linear behaviour is visible in figures (4.4b)
and (4.4c). With a more extended CFD domain of about 100c, it has been
proved that the surface contributions (C';)%;, and (C';)%;, vanish and (C)g ~
1. In figure (4.5a) it is shown a plot of (C';)5, obtained by moving the far
field boundary at a distance ys = 50c. It is visible a significant reduction in
the slope with respect to the case ys = 15¢. In figure (4.5b) the contribution
(C1)%;, vanishes as the distance yg of the external boundary from the body

increases.
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Figure 4.5: Steady turbulent flow solutions at Re = 107 and angle of attack o = 6°.
Normalized contributions of the lift coefficients by varying the outer boundary distance.
—, ys = 50¢; ——, ys = 15¢. (a), (C'1)%,; (b), (C')%,-

Effects of the ¥; location on Cy

In figure (4.6a) the normalized drag coefficients at o = 0° are reported. The
drag coefficient, computed by the formula (4.52), agrees with the near field
data up to g ~ 10c. The 25 % of uncertainty on the normalized drag
coefficient is equivalent to about 30 drag counts at Reynolds 10° , and to
19 drag counts at Reynolds 107. The volume contribution (Ca)o—0aszg
increases, figure (4.6b), and the main part of the drag remains associated with
the surface contribution (C4)s;,, as shown in figure (4.6¢). The contribution
(C4)sx,, (figure 4.6d), provides a constant term. As g — 00, it is possible to
proof that (C'4) 51, reduces to the well known formula of the viscous drag [79],
as already shown by J.C. Wu [73] in 1981. In fact, by assuming a boundary
layer approximation, in the far wake it is possible to put u &~ 1 — v’ where
u' < 1 is the flow defect,

2 +ys tys
(Ca)x, = —2/ ywudS:/ yaidS:[UQy} —/ u?dy
b4 o Ay ~Us —Ys
+ys +ys
= 2ygs— / (1—2u")dy = 2/ u'dy = 26 (4.55)
~ys —ys
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Figure 4.6: Steady turbulent flow solutions at o = 0°. Normalized contributions of the
drag coefficients by varying 5. — - —, Re = 105, ——, Re = 5-10%, —, Re = 107. (a),
(Cd)*; (b)a (Cd)?)a (C)> (Cd)*EI; (d)a (Cd)*EJ'

where 6 is the displacement thickness of the wake. As a consequence, when
Y1 is located far in the wake, the drag coefficient accuracy is mainly affected
by the quality of the CFD solution, which is usually not sufficient after few

chords downstream in the wake.
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Figure 4.7: Steady turbulent flow solutions at Re = 10¢, 5-10¢ and 107, angles of attack

a =2° 4° and 6°. Normalized contributions of the lift coefficients by varying ys. (a),

(€))7 (b), (C); (), (Co)g,; (d), (CO),-

Effects of the X ; location on

The effects on the far field aerodynamic coefficients are analyzed by varying
the location yg of the surface ¥;. The X; surface is fixed at x5 = 0.004 just
after the trailing edge airfoil. In figure (4.7a), the lift coefficient contributions
(4.52a) are reported as function of yg. The logarithmic scale is used to
highlight the turbulent viscous layer. The integrals converge toward the near

field values for yg greater than the boundary layer thickness. No dependency
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is visible upon o and Re. once the convergence is achieved. It has also
to be noted, in figure (4.7b), that for ys greater than the boundary layer
thickness, (C})%, — 1, whereas, in figures (4.7c) and (4.7d), the normalized
surface contributions (C'y)%;, and (C;)%, — 0. For yg > 10c an effect of
the numerical boundary conditions is visible on (C';)%, and (C))%,. For
ys < 107 !¢, large overshoots are obtained because of the neglected terms

associated with the turbulent and laminar shear stress components.

Effects of the X ; location on (',

The diagrams of the drag coefficients are reported in figures (4.8a), (4.8b),
(4.8¢) and (4.8d). The C'4 contributions are correctly computed by increasing
the distance ys beyond the boundary layer. It can also be noted that for the
selected domain the surface contribution (C'4)%;, tends to 1.45, and (C'y)%, —
—0.55. These singular values depend on the distance of the surface ¥; from

the airfoil as already seen from the C'; diagrams in figures (4.6).
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Figure 4.8: Steady turbulent flow solutions at Re = 10°, 5-10° and 107 angles of attack:

a =0° a=2° 4° and 6°. Normalized contributions of the drag coefficients by varying
Ys.- (a)v (Cd)*; (b)a (Cd)*Qa (C)a (Cd)*EI; (d)v (Cd)*EJ

Convergence of the far field method towards the near field

The analysis of the previous sections has been carried out by using the aero-
dynamic coefficients expressed by (4.52), and by neglecting the terms associ-
ated with (F ;;). We analyze the behaviour of the far field when 3 intersects
the turbulent boundary layer. In such a case, the relative weight of (F ;; )
increases as > — 0B, and the Lamb vector integrals vanish. First, we verify

the consistency of ( F ;) with the near field form (4.1) by expressing the
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equation (4.33) in terms of the divergence of the shear stress tensor:

(En>=/£><ﬂ><2-zdSJr/z-ﬁdS—(Et)
by - >

The integral { F") can be cast as:

(B') = [s¥xpr)av == [rxTxv.riv -

Namely, by grouping the terms,

(Eu>=/£><@><2-(z+_t)d5+/f'@d5+/z-@d5
by - > >

A B c

We note that the part (A) contains the divergence of the laminar and turbu-
lent stress tensors, which are equilibrated by the momentum convective terms
and by the pressure gradient. The parts (B) and (C') instead are the direct
contribution of the laminar and turbulent shear stresses. When ¥ — 0B,

the Reynolds stress tensor ;t ~— 0 and,

<En>=/£><ﬁ><2~zd5+/z~@ds
b - T

By the momentum equation, we have:

(Ey)= [rxnx(u) Y (u)+ Yp)as+ [z onds

Finally, when ¥ = 0B,

<EU>:/£XEXYPdS+/I'EdS
b Y

and, by the transformation (4.5)

<Ell>:—/pﬂd5+/l‘ﬂd5
b A
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The sign is opposite with respect to the standard near field form expressed by
equation (4.1) because the surface ¥ has the normal direction in opposition
with respect to 0B.

We consider an integration domain by fixing x5 = 0.001 and by varying
the position yg of the surface X; within the boundary layer thickness. By

expressing the coordinate yg in wall units y& = ys- where u, =, /77“’ and

Tw — PV <d< U>>
dy r=2xg,y=0

the role of the terms (A), (B) and (C) is analyzed. In figures (4.9a) and (4.9b)
the diagrams of (C'})* and (C'4)* are reported as function of y& for a case at
Re = 10°% and o = 2°. The classical regions of a turbulent boundary layer
(defined in terms of y*,[59]) have also been highlighted. The normalized
liftt and drag coefficients are now correctly computed up to the solid wall.
The contribution (A) takes into account the dynamical part of the boundary
layer and balances the Lamb vector integral. (A) tends to zero outside the
boundary layer and provides the pressure part of the lift and drag at the solid
wall. The Reynolds stress tensor term (B) allows to identify the logarithmic
layer as well as the end of the turbulent boundary layer. The buffer layer,
in which the turbulent fluctuations are the same order of magnitude of the
laminar terms, is recognizable as the region in which (B) and (C') compensate
each other. Finally, in the viscous sub layer, the dominance of the laminar
viscosity is visible. The term (C) provides the viscous part of the lift and

drag at the solid wall.

Observations

The effects of the variation of {2 on the computed aerodynamic coefficients has
been discussed for several steady RANS solutions around a two dimensional
airfoil. It has been shown that the lift coefficient reduces to the Lamb vector
volume integral, namely, to the vortex force, by increasing the dimension

of Q. Analogously, the drag coefficient reduces to a surface integral on the
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Figure 4.9: Steady turbulent flow solution at Re = 10° and « = 2°. Normalized contri-
butions of the aerodynamic coefficients as function of y; —, sum of all contributions; -o-
, Lamb vector integrals; — , (A) v/, (B) A, (C); (a) lift coefficients (b) drag coefficients.

wake. Namely,

lim <Ol)Q:Cl

(zs,ys)— 00

lim (Cd)gI:Cd

($S7 ys)% 0

This result agrees with the theory developed in chapter 3 for inviscid and
unbounded flows. The neglected terms contained in F ;; have a secondary
effect on the aerodynamic force. The substantial difference between the in-
viscid and viscous theories stems in the way in which the vorticity is created.
But, once a distribution of vorticity is achieved, the aerodynamic force is
governed by the same physical mechanisms.

Conversely, as 2 collapses to the solid body surface, the equations (4.52)
are no longer able to predict the aerodynamic force and the turbulent and
viscous terms have to be computed. From a numerical point of view, the
most favourable condition has been obtained for ¢ ~ 0 and yg greater than
the boundary layer thickness. In this way the effects on the aerodynamic

force associated with (F ;) are avoided.
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4.4.3 Inviscid flow applications

In this section, a strategy to compute the aerodynamic force using the advec-
tion form (4.52) also in case of a numerical solution of the Euler equations
is addressed.

An airfoil immersed in an inviscid and steady flow experiences a non
zero lift when the circulation is non zero. This points out the presence of
vorticity in the field. The absence of physical viscosity constrains to model
the vorticity in some way as discussed in chapter 3. The advection form of
Wu’s theory embodies this concept through the Lamb vector, and for this
reason is able to predict the aerodynamic force also in case of rotational
inviscid flow. However, the application of the far field formulation (4.52) to
a numerical solution of an inviscid flow is not trivial.

In fact, the numerical solution of the Euler equations does not provide
vorticity, and, as a consequence, the far field integrals (4.52) applied on a
such flow field do not give any lift. A reconstruction of the vortex sheet by
considering the Euler solution as a limit process of a Navier Stokes solution
for Re — oo is tried to overcome this limitation. Batchelor ([69]) proves that
the correct Euler limit of a Navier Stokes solution is established by taking
first the steady state (t — o0), and then by decreasing the viscosity to zero.
The Lamb vector integral on a volume including such vorticity layer will
provide the correct aerodynamic force. The consistency of this concept is
first proved analytically and then by a numerical application. Let ¢ be the
normal spacing of the first cell near the solid wall and (s, r) a local coordinate
system with s along the body surface and r in the normal direction (opposite
to n), as sketched in the scheme (4.10). For an inviscid flow, the velocity
vector u, in the first cell near the wall at = £/2 is parallel to the s direction.
By assuming a zero velocity at the wall (r = 0), a vorticity layer, extending

for /2, is created. The vorticity at r = /4 is defined as:
2

=

L xn (4.56)

Wejg =

™
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Figure 4.10: Lamb vector definition for an inviscid flow

As a consequence, the Lamb vector at r = /4 is:

2
Lyy=w yxu, = <% X ﬂ) Xu,,y (4.57)

where u,,, = 0.5u, is the velocity at r = £/4. Thus, the aerodynamic force
is obtained by computing the vortex force in a volume {2 surrounding the
solid body, having a thickness /2 in 7:
€/2 9
F = —/_l€/4dV:—/ / K Hl><@>>< ]ds dr
Q aB \Jo €
1 :
= 5 oy xmas=— [ BErg s
2 oB 9B 2

where in the last equality the rule of the double cross product with the

o=

assumption that u, L n has been used. Finally, by using the Bernoulli

theorem, we have:

E:—/ MﬁdS:/ pinds (4.58)
o 2 8B

Thus, the consistency of equation (4.57) for ¢ — 0 is proved by equation
(4.58), which is the standard near field expression of the aerodynamic force

in an inviscid steady flow (see equation (3.8)).
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This result has been verified for a numerical inviscid solution around the
NACAO0012 airfoil at o = 2° and o = 4°. In figure (4.11a), the vorticity at
the wall computed by using equation (4.57) is plotted versus the airfoil chord
for the solution at o = 4° and different mesh size.

As may be seen, the vorticity intensity grows as the grid spacing ratio h
decreases. In figure (4.11b), the lift coefficients calculated by refining the grid
are reported. These values are computed with both the near field formula
and equation (4.52). The vortex force converges towards the near field result

as h — 0.

4.5 Summary

In summary, the present analysis leads to the following observations:

e The theory of Wu was initially developed for flows governed by the
unsteady Navier Stokes equations. Here, an extension to high Reynolds
number flows by using the Reynolds Averaged Navier Stokes equations

has been made.

o It has been shown that in case of laminar boundary layer approxima-
tion, some contributions of the complete expression of the aerodynamic

force are negligible.

e In case of turbulent boundary layer, the same analysis remarks the
importance of a term associated with the turbulent stress tensor. How-
ever, it has been shown that this contribution does not need to be

computed by a proper choice of the external surface orientation.

e The effect of the integration domain has been investigated at different
Reynolds numbers and angles of attack. By decomposing the aerody-
namic force in surface and volume contributions, it has been possible

to identify the specific contributions to the total aerodynamic force.

e [t has also been verified that as the external boundary of the compu-

tational domain tends towards infinity, the lift reduces to the volume
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Figure 4.11: Steady inviscid flow solutions. (a) Wall vorticity from equation (4.57). —,
h=1,—— h=2; — - —, h=4. (b) Lift coefficients: open symbols refer to the near field

method, full symbols to the far field method. circle, a = 2°; square, a = 4°.

integral of the Lamb vector (vortex force), whereas the drag coefficient
results expressed by a surface integral intersecting the airfoil wake. This
represents a linkage with the inviscid theories illustrated in the chapter
3.

e From a numerical point of view, the most accurate values of the aero-
dynamic force have been obtained with an integration domain that
intersects the wake just downstream the airfoil trailing edge and that
contains the whole boundary layer region. A certain dependency upon
the outer boundary conditions has been noted. The accuracy of the
drag is sensitive to the solution quality in the flow region where the

surface is located.

e Through a proper reconstruction of the Lamb vector, the computation
of the aerodynamic force from an inviscid flow field has been possible

as well.
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CHAPTER 5

Numerical Simulations of an Os-
cillating Airfoil

In this chapter, the numerical simulation of a dynamic stall past an oscillating
airfoil is presented. The focus is to investigate the capabilities of the RANS
methods in the prediction of a dynamic stall in the transitional flow regime.
Few applications are found for low Reynolds numbers, even if in some impor-
tant cases the dynamic stall occurs at Reynolds numbers of order ~ 10, as
the wind turbines. The lack of well assessed comparisons between numerical
experimental comparisons at low Reynolds numbers is due to the complexity
of experiments. Besides, the well known limits of the turbulence modeling
in the RANS methods make this kind of analyses fairly uncertain. In the
following, a dynamic stall experiment at Re = 1.35 - 10° past an oscillating
airfoil is taken as a reference for the numerical simulations. A particular
concern is the dynamics of the laminar separation bubble (LSB), formed at
the leading edge of the airfoil, and its interaction with the dynamic stall vor-
tex (DSV). First, a steady analysis is carried out, and then several pitching
conditions are discussed by varying the amplitude and the frequencies of the

airfoil motion.

5.1 The experiment of Lee

In 2004, Lee & Gerontakos [80] published a set of experimental data concern-
ing the flow around an oscillating airfoil at Reynolds number of 1.35 - 105.

The tests were carried out in the wind tunnel test facility at University of
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McGill in Canada. The dimensions of the test section are 0.9m x 1.2m X
2.7m. The model consists of a rectangular wing with a constant NACA0012
section. The chord is 15 cm long and the span is 37.5 cm. Two circular end-
plates, having a diameter of 30 cm, are mounted at the tips of the wing in
order to reduce the three dimensional effects of the flow. The angle of attack
of the model is changed by means of a flywheel oscillation mechanism with
the rotation axis at 0.25¢. A small gap, less than 1 mm, is leaved between
the wing and the stationary end-plates.

The free stream velocity in the experiment is 35 m/s, with a turbulence
level of 0.08%. A natural transition from laminar to turbulent flow occurs
on the airfoil surface. Both static and dynamic measurements of the aerody-
namic lift and drag are obtained by monitoring 61 pressure taps distributed
on the airfoil surface. The description of the phenomenon is supported by
smoke flow visualizations as well. The test model is equipped with an array
of 140 multi-element hot-film sensors (MHS) to check the flow transition,
the separation and the turbulent reattachment of the laminar bubbles. In a
previous work, Lee & Basu, [81], exposed the method to extract such infor-

mation form the MHS signals.

5.2 The numerical setup

The numerical simulation of the experimental conditions indicated by Lee is a
challenging test for any RANS code. The Reynolds number of 1.35-105 allows
for the formation of the LSB on the suction side of the airfoil surface. The
natural transition of the flow requires the use of specific prevision methods
to be coupled in the RANS method. Besides, under pitching conditions, the
transition location and the laminarization abscissas vary with the angle of
attack in unsteady way. This problem was addressed by Radespiel et al. [82]
in 2006 by assembling a transition method coupled with the time integration
of a RANS method. In the present work, the problem has been handled by
performing fully turbulent simulations with very low values of the free stream

parameters. The effectiveness of this approach has been verified by Catalano
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& Tognaccini in 2009 [83] on an airfoil in static conditions at Re = 6 - 10*.
They obtained the formation of a LSB without fixing the transition point by
using a RANS method.

A C-type computational grid has been designed to operate at moderate
angles of attack. The airfoil and the wake edges are discretized with 512 and
128 cells respectively. In the normal wall direction 200 cells are used. The
total CFD grid is constituted by 153600 cells. The flow domain extends for
30c in all the directions. The size of the first cell near the wall is about 10 *¢
to achieve a y* of order one. The turbulence models used in this application
are the SST model of Menter [63] and the TNT model of Kok [62].

5.3 Static analysis

5.3.1 Grid size effects

The numerical simulations of the steady flow have been performed by varying
the angle of attack « from 0° to 14°. The SST model has been used for the
two dimensional simulations at Mach number M = (0.1. By coarsening the
computational grid of a factor 2 in each direction, mesh refinement studies
have been made up to a = 6°. For a > 8° the convergence was improved
by using the time accurate algorithm, even if the flow solution obtained has
always been steady up to o = 14°. In figures (5.1), the effects of the grid
refinement are showed in terms of lift and drag coefficients. The lift and
drag are plotted versus the average grid spacing ratio h. The finest level
corresponds to h = 1. The quadratic behaviour of the interpolating curves
proves the second order accuracy of the solution. In figure (5.2), the pressure
coefficient C'p and the skin friction C} distributions on the airfoil surface are
plotted for the three grid levels at a = 0° and a = 6°. At a = 0°, the grid
refinement effects on Cp are not perceptible, while a difference is visible on
C'y where the transition occurs. At o = 6°, the grid effects are visible on
the pressure coefficient at about x = 0.2¢, and, on skin friction coefficient,

near the LSB. However, these effects have a small influence in terms of global
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Figure 5.1: Steady turbulent flow at Re = 1.35- 10°. Effects of the grid convergence
on the lift and drag coefficient. Quadratic extrapolation to infinite mesh values. (a) C;:
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aerodynamic coefficients.

5.3.2 Two dimensional analysis

In figure (5.3a), the numerical C'; — « curve is compared with a set of exper-
imental data. Lee [80] and McCroskey [78] refer both at Reynolds 1.35 - 10,
while the data of Hansman [84] are at Reynolds 3.1 - 10° and those from
Alreafi [85] at Reynolds 1.1 - 10°. In the linear part of the lift curve o < 6°,
the agreement of the numerical data is satisfactory with all the experimental
curves except for Lee. The slope of the lift curve C';,, obtained numerically,
is 0.0987. In [80], the authors confirms that the measured C, is 0.08. This
value disagrees with the hypothesis of a two dimensional flow, and it is fairly
near to a C';, of a finite wing. The numerical data show a change in the C';,,
for a > 8°. In the computations, the static stall occurs between a = 10°
and o = 12° and it is fairly anticipated with respect to the experimental
one, ag =~ 13°. The lift recovery in the post stall condition is similar in the
shape to the experiments but without a correspondence with the angles. In

figures (5.3b), the drag coefficients are reported against the angle of attack.
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Figure 5.2: Steady turbulent flow at Re = 1.35-10°. Grid convergence effects on Cp
and Cy distributions. (a), Cp at a = 0° ; (b), Cr at a = 0° (suction side); (c), Cp at
a=6°;(d), Cr at @ =6° (suction side). —-— ,h=4;—-—— ,h=2;—- ,h=1.

The present RANS computations are compared with some experimental data
of McCroskey [78] and with a numerical solution using the Detached Eddy
Simulation (DES) model by Shur et al. [86] at Reynolds number 105. The
maximum drag coefficient at o = 13° of Lee’s experiment is also indicated.
At a = 0°, the experimental C'y; provided by McCroskey is slightly higher
than RANS. At a = 8° and a = 10° the RANS data match well the DES
results. The maximum drag coefficient is reached at « = 12° by RANS and
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Figure 5.3: Steady turbulent flow at Re = 1.35- 10°. Lift and drag curves. — , RANS

model; -e-  McCroskey [78]; o, Lee [80]; ¢, Hansman [84] (Re = 3.1-10°); a, Alreafi [85]
(Re =1.1-10%); o , DES [86] (Re = 10°). (a), C; (b), Ca.

is lower than one indicated by Lee. However, an overall agreement between
the lift and drag curves is obtained. Some isolated discrepancies are justified
due the different treatment of the transition in the various numerical and
experimental data.

In figure (5.4a), the position of the laminar separation at the leading edge
is reported for each angle of attack and compared with the corresponding ex-
perimental locations from Lee [80]. In the numerical solutions, the separation
appears for a > 6° while in the experiments is observed already at a > 2°.
The trend in terms of z and « ratio is similar. In figure (5.4b), the transition
location indicated by the experiments is analyzed at different «. The area in
which the numerical eddy viscosity ratio, p;/p, grows from 1 to 10 has been
delimited by two curves. In such a region, the experimental data confirms
the presence of the transition from laminar to turbulent flow. The turbulent
separation location at the trailing edge is reported as function of « in figure
(5.4¢). In the numerical results, the RANS solutions provide a turbulent flow
separation at the trailing edge zone for o« > 6°. In the experiments, large
zones of separated flow occur for lower angles of attack.

From these comparisons, several inconsistencies appear between the ex-
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Figure 5.4: Steady turbulent flow at Re = 1.35-105. Critical flow points on the suction
side of the airfoil. (a) Laminar separation at the leading edge; (b) Transition location;
(c) Trailing edge separation. o, experimental values from Lee [80]; —, present RANS

computation. In (b), — — — ps/p=1and — u;/p = 10.

periment of Lee and the present RANS solutions. For the latter, the agree-
ment improves with other low Reynolds data set. From the numerical point
of view, a critical issue is the treatment of the transition from laminar to
turbulent regime as well as the effectiveness of the turbulence models at low
Reynolds numbers. About the experimental test, some doubts about the two

dimensionality of the flow arise.

5.3.3 The three dimensional analysis

In a paper published in 2005 [87], Birch & Lee reported a scheme of the
experimental setup used in the laboratory. The top view is depicted in figure
(5.5). As may be seen, the wing is limited by two circular end-plates and
a small gap between the test model and the end-plate exists. Besides, the
end-plates are not in touch with the wind tunnel walls, but are located at a
certain distance. It is reasonable to expect that such configuration exhibits
three dimensional effects in the middle sections. To investigate these aspects,
the simulation of the effective experimental apparatus has been conducted.
In particular, two geometrical parameters have been analyzed: the first is
the distance H between the end-plates and the lateral wind tunnel walls, the

second is the gap between the end-plate and the test model. A discussion
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Figure 5.5: Top view of the experimental setup described by Lee in [87].

on the effects of the gap size of the semi-span models can be found in the
work of Marchman in 1987 [88]. A conclusion was that the gap can cause
higher drag values and a shift of the zero lift angle of attack, especially at low
Reynolds number. The size of the gap, instead, seems to have a secondary
influence.

A geometrical model has been defined and indicated in figure (5.6). The
hypothesis of the flow symmetry in the middle section has been adopted.
The semi-span model is 1.25¢ wide. The end-plates have been simulated as
a circular flat plate of zero thickness. A gap of 0.0067¢ has been foreseen.
Besides, the wind tunnel lateral wall has been simulated at different distances
H from the end-plates.

The three dimensional computational mesh has 8.5-10° cells on the finest
level. The topology and the superficial grids are visible in figure (5.7). The
end-plates are simulated with a no-slip wall condition and the lateral wind
tunnel wall with a slip-solid wall one. The flow condition at & = 6° has been
considered. The T'NT turbulence model has been used for these analyses.

First, the effect of the parameter H is examined without considering
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Figure 5.6: Three dimensional CFD model.

/

Figure 5.7: Computational mesh of the three dimensional geometry.
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Figure 5.8: Steady turbulent flow at Re = 1.35- 10° at a = 6°. Three dimensional
simulations. Effects of the lateral wall of the wind tunnel test section. — — —, H = 0;
—-—, H=0.75¢; —, H = 15¢. (a), Cp; (b), Cy4.

the gap. In this case the end-plates are joined with the test model. The
simulations are compared with the two dimensional numerical simulation in
the symmetry plane at y = 1.25¢. The results are shown in figures (5.8a)
and (5.8b) in terms of Cp and Cy. The case H = 0, which corresponds
to the end-plate in touch with the wind tunnel walls, does not provide any
three dimensional effect. The C'p and C curves overlap to the 2D simulation
plots at the same «. The boundary layer developed between the end-plate
and the test model does not affect significantly the total lift and drag and,
consequently, the flow in the section y = 1.25¢. A second test at H =
0.75¢, which is the distance observed in the scheme (5.5), shows a reduction
of the expansion peak on the pressure distribution at y = 1.25, and, as a
consequence, the disappearance of the LSB. By increasing the distance H up
to 15¢, this trend is confirmed by a further reduction of the expansions on
the upper surface of the test model. The LSB disappears as H increases, and
the turbulent transition is delayed.

The effects of the gap, instead, are analyzed by fixing the lateral wall
distance at H = 15c¢. The results in terms of Cp and C} are reported in

figures (5.9a) and (5.9b). As may be seen, the gap has the effect to reduce
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Figure 5.9: Steady turbulent flow at Re = 1.35-10° at a = 6°. Three dimensional
simulations. Effects of the gap between the end-plates and the test model. — — —, gap
filled; —, gap not filled. (a), Cp; (b), C 4.

the pressure coefficient peak, but to anticipate the transition. However such

effects have a secondary importance on the integrated coefficients.
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Figure 5.10: Steady turbulent flow at Re = 1.35-10° at o = 6°. Stream lines near the
intersection of the end-plate and the test model. Contour slide of the y component of the

velocity vector. (a), without gap; (b), with the gap.

In figures (5.10a) and (5.10b), a three dimensional visualization of the
flow field is reported. The presence of the gap increases the separation near
the intersection between the end-plate and the test model, as can be noted
by the strem lines. A slide reporting the contour levels of the y component
of the velocity highlights the blockage effect caused by the flow passage be-
tween the end-plate and the wind tunnel lateral walls. The configuration
H = 0.75¢ without gap has been used to compute the static lift curve from
a = 3° to @ = 14°. As may be seen in figure (5.11), the experimental C';,, is
correctly reproduced by the three dimensional computations. The lift values
are slightly underestimated. But, further geometrical tuning can improve
the results. The abrupt stall, not captured by the 2D simulations, has been
reproduced as well. The static stall angle, o = 13°, agrees with the experi-
mental information as well as the maximum lift coefficient. The hypothesis
of three dimensional effects in the wind tunnel measurements has been con-
firmed. It has also been verified that the boundary layer developed along the
intersection between the end-plate and the test model has a negligible effect
on the pressure and skin friction distributions in the middle section. Other

aspects, such as the transition, have to be investigated with more proper
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Figure 5.11: Steady turbulent flow at Re = 1.35-10° at a = 6°. Static lift curve. — — —

, 2D computations; — , 3D computations; o, experiments.

techniques.

5.4 Dynamic analysis

The excessive computation effort required by the three dimensional configura-
tion does not permit to continue the numerical simulations for the oscillatory
conditions. For these reasons, the unsteady analysis is carried out by using

the two dimensional geometry.

5.4.1 Pre stall simulations

In the pre stall regime, the airfoil oscillates within a range of a without

reaching the static stall angle. Such simulation is performed by imposing the
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Figure 5.12: Unsteady turbulent flow. Re = 1.35-10°, a = 7.5°sin(2kt), k = 0.05.
- - = 7h:2;_ 7h:1‘(a)70l;(b)70d-

following pitching motion:
«a = 7.5° sin(2kt)

with a reduced frequency & = 0.05 is considered. The non dimensional period
T is related to the reduced frequency as T' = 7 /k. A sensitivity study on
the time step effects has been done by refining of a factor 2, from 7/128 to
T/1024. A full convergence in time has been achieved by sampling T with
1024 steps. The effects of the grid refinements are visible in figures (5.12a)
and (5.12b). For this range of oscillations, the grid independency has been
achieved in terms of C';. A small sensitivity on the C 4 is observed by figure
(5.12b). The hysteresis loops of the lift and drag are exactly symmetrical
because of the symmetry of the angular motion and the airfoil geometry. In
figure (5.13a), the hysteresis cycle of the lift coefficient is compared with the
analytical solution provided by Theodorsen and the static lift curve. The
analytical solution agrees with the numerical one within the range || < 3°.
The fluid viscosity produces a reduction of the maximum lift coefficient ob-
tained at the extremities of the cycle with respect to the theoretical curve.
The static lift coefficients have also been reported for a reference. The com-

parison with the experimental data of Lee is shown in figure (5.13b). The
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Figure 5.13: Unsteady turbulent flow. Re = 1.35-10°, a = 7.5°sin(2kt), k = 0.05.
Hysteresis loops of C';. — |, unsteady RANS; — — — | Theodorsen solution; O , steady
RANS; — o —, experimental data.

agreement is qualitative and a shift in terms of the mean angle of attack and
the angular amplitude is visible. The discrepancies are partially associated
with the three dimensional effects discussed before. A lack of the symmetry
in the hysteresis cycle is visible in the experimental curve. This suggests the
presence of an asymmetry in the pitching motion. Two angular corrections
of kind

a = Aoy, + (7.5° + Aay) sin(2kt)

have been proposed: the first with ( Aa,,, = 1°, Aoy = 0.1°), and the second
with ( Aay, = 2.5°, Aag = 2.5°). The resulting hysteresis loops are reported
in figures (5.14). The first test matches only the actual angular variation.
The second test gives an agreement in the C';,,,,, and C,,;,, - The asymmetry
is numerically reproduced as well, although the agreement is only qualitative.

The effects of the unsteadiness in terms of Cp and C are visible in
figures (5.15). The pressure and skin friction distributions on the airfoils
obtained at o = 7.5°, are compared with the steady solution at the same
angle of attack. The flow unsteadiness produces a smaller expansion peak
on the pressure and delays the laminar separation. Lee finds an important

reduction in size of the laminar separation bubble when the airfoil is pitching
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Figure 5.14: Unsteady turbulent flow. Re = 1.35-10%, a = 7.5°sin(2kt), k = 0.05.
Hysteresis loops of C;. (a) Ay, = 1°, Aag = 0.1°; (b) Aay, = 2.5°, Aag = 2.5°. —o —,
exp; —, unsteady RANS.

Figure 5.15: Unsteady turbulent flow. Re = 1.35-10°, a = 7.5°sin(2kt), k = 0.05.
— — —, steady RANS at o = 7.5°. —, unsteady RANS at a = 7.5°. (a) Cp; (b) C}.

up (from 0.11c of the static case to 0.044c of the unsteady case at oo = 7.5°).
In the present numerical simulations, the bubble extension does not change
significantly. In figure (5.16), the location of the unsteady transition from
laminar to turbulent zone, extracted on the upper side of the airfoil at each

time instant, is reported as function of «. The transition point has been
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Figure 5.16: Unsteady turbulent flow. Re = 1.35-10%, a = 7.5°sin(2kt), k = 0.05.
Transition abscissa on the upper side of the airfoil. — — —, steady computation; —,

unsteady computation at o = 7.5°.

detected through the inspection of the 1,/ field in the boundary layer. The
versus of the hysteresis loop confirms the experimental observation that the

transition is delayed with respect to the steady case during the pitching-up
phase.
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(a) (b)
Figure 5.17: Unsteady turbulent flow. Re = 1.35-10%, a = 5° + 10° sin(2kt), k = 0.05.
Aerodynamic coefficient loops. O static data. — — —, h =2 ; — , h=1; (a), C; ; (b),
Cq.

5.4.2 Light stall simulation

A light stall simulation has been carried out by imposing the following pitch-
ing motion:
a =5+ 10° sin(2kt)

with a reduced frequency £ = 0.05. The angular motion is such that the
dynamic stall occurs within a fraction of the oscillating cycle. The period T
has been sampled with 1024 time steps. Fully periodic conditions have been
achieved after a simulated time equal to 47. The grid refinement study,
(see figures 5.17) shows a mesh size dependency on the C',,., , and during
the pitching down phase. This effect is associated with the convection of
large vortices far away from the solid surface where the grid resolution is not
sufficiently high. The maximum lift and drag coefficients indicated in the
experiment are lower with respect to the numerical ones. The static curve
is also reported for a reference. In the following the discussion is referred to
some specific points of the hysteresis cycle. In figure (5.18) the identification
of these points is reported on the lift, drag and moment curves. Besides, the

corresponding distributions of C'p and C} are reported in figures (5.19) and
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Figure 5.18: Unsteady turbulent flow. Re = 1.35-10%, a = 5° + 10° sin(2kt), k = 0.05.

Identification of some specific points on the aerodynamic coefficient loops.

(5.20).

e Phase (a)-(b). a = 5° + 10.3°. The lift curve is within the linear
behaviour. A sort of extrapolation of the linear slope is achieved even
if the static stall angle is exceeded. The LSB appears at a = 7.3° and,
in the point (b), is clearly visible by the Cf diagram (see figure 5.20b).
The bubble moves toward the leading edge reducing its extension as

the flow incidence increases.

e Phase (b)-(c). o = 10.3° + 13.9°. The lift continues to increases lin-
early. The drag increases showing a rapid change in the slope. The

moment curve is still flat. Several phenomena occur simultaneously in
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the boundary layer. The LSB reaches the minimum extension and the
negative pressure peak grows at the leading edge. A separation begins
at the trailing edge while the LSB disappears leaving the place to the
formation of the dynamic stall vortex (DSV). In (c) the DSV is visible
by the Cp diagram.

e Phase (¢)-(d). @ = 13.9°+14.5°. The C, increases and the lift reaches
the maximum value in the point (d). The drag takes its maximum value
as well. The moment coefficient stalls during the lift growth because
of an unbalanced distribution of pressure. In the point (c), the flow is
separated up to 0.5c. The separation propagates forward toward the
trailing edge. As the DSV is convected forward, secondary vortices
produce a local reattachment around x = 0.4¢. In the outer layers, the
DSV increases in intensity following the external stream direction. A
visible distortion of the pressure coefficient distribution gives evidence

of the DSV passage on the airfoil.

e Phase (d)-(e). a = 14.5° + 15°. After the maximum value reached in
the point (d), the lift collapses suddenly. Simultaneously, the moment
coefficient recovers. The DSV is convected downstream in the turbulent
wake. The secondary vortices detach from the airfoil trailing edge. In
the point (e), the pressure coefficient distribution is quite flat and the

skin friction coefficient reveals partial separations of the flow.

e Phase (e)-(f). a = 15° + 13°. In the point (e), at a = 15°, the lift
reaches a minimum. The drag and the moment curves shows some
peaks associated with the secondary vortices. At o = 15°, the airfoil is
similar to a bluff body of size c¢sin«. The airfoil is completely stalled
and behaves as in a post stall static condition. The Cp and Cy diagrams
confirm the massive separation on the airfoil upper side. The angle
of attack begins to decrease but the airfoil angular position remains

completely dissociated from the time flow evolution.

e Phase (f)-(g). a = 13° +9.3°. The process of the flow reattachment
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begins from the leading edge. The lift and drag decrease while the
moment coefficient recovers. Even if the angle of attack decreases, the
pressure coefficient expands contributing to the reattachment process.

A small LSB appears in the point (g).

e Phase (g)-(h). a = 9.3° + —5°. The aerodynamic coefficients slowly
recover the linear form. The reattachment of the boundary layer con-
tinues from the leading edge achieving gradually fully attached flow

conditions.

The present analysis highlights the fundamental linkage between the LSB
and the DSV. As « increases, the former reduces its dimensions. The lat-
ter originates once the LSB disappears. In the rear part of the DSV, the
secondary vortices produce partial flow reattachments. But, once the DSV
leaves the airfoil surface, a fully stalled condition is achieved. The moment
stall arises before of the lift one. At the maximum flow incidence, the airfoil
behaves as a bluff body of size ¢sin a.. The onset of the reattachment process
occurs from the leading edge zone. As the linear behaviour is recovered, the

pressure gradient allows the new formation of the LSB.

102
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Figure 5.19: Unsteady turbulent flow. Re = 1.35-10°, o = 5° + 10°sin(2kt), k = 0.05.
Cp in different phases.
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Figure 5.20: Unsteady turbulent flow. Re = 1.35-10°, a = 5° + 10°sin(2kt), k = 0.05.
C in different phases.
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Figure 5.21: Unsteady turbulent flow. Re = 1.3-105, a = 10° + 5° sin(2kt), k = 0.5.
Aerodynamic coefficient loops. —, h = 2, medium grid level;, — — —, h = 1, finest grid
level; o0 steady RANS. (a), C; ; (b), Cq .

5.4.3 Deep stall simulation

The deep stall simulation has been carried out by imposing the following
pitching motion:
o = 10° 4 5° sin(2kt)

with a reduced frequency k = 0.5, Re = 1.3 -10° and M = 0.3. Such condi-
tions are similar to a Large Eddy Simulation (LES) carried out by Nagarajan
et al. in 2006 [41] and do not have a correspondence with the experiment
of Lee. However, the comparison with the high accurate LES solution rep-
resents a significant benchmark for the present RANS method. The present
deep stall case differs from the previous light stall in the mean angle of attack
and the higher reduced frequency. The angular motion is such that stalled
flow conditions occur during the whole cycle leaving the reattachment process
incomplete. The time step used is 7/1024. The comparison of the lift and
drag curves obtained on the medium (h = 2) and fine( h = 1) grid levels, (see
figure 5.21), shows a major sensitivity on the mesh size with respect to the
previous cases. In figure (5.22), the time history of C'; and C'; are compared

with the corresponding solutions obtained by LES. The agreement is satisfac-
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Figure 5.22: Unsteady turbulent flow. Re = 1.3-105, a = 10° + 5° sin(2kt), k = 0.5.
Aerodynamic coefficient time histories. — , unsteady RANS; — — —) LES data, [41]. (a),
Cy;(b), Ca.

tory showing that the main flow structures, resolved by LES, are captured by
the present RANS solution. In the C'; time history, the double lift peak gives
evidence of the dynamic stall vortex passage. The RANS solution slightly
underestimates the maximum values of lift and drag. The LES computation
shows higher frequencies that in the RANS curve are fairly smooth, but the
global agreement is satisfactory. Besides, some distributions of the pressure
coefficients of both RANS and LES solutions are reported in figures (5.23a),
(5.23b), (5.23¢) and (5.23d). The instantaneous « correspond to the passage
of the dynamic stall vortex over the upper side of the airfoil. The agreement
of the two numerical methods confirms the reliability of the RANS method
in predicting such complex flow. Some points of the hysteresis loop are dis-
cussed. The identification of the points on the aerodynamic loops is reported
in figures (5.24). In figures (5.25) and (5.26) the corresponding distributions
of Cp and C are indicated.

e Phase (a)-(b). o =9.3° =+ 12.5°. The lift increases with a linear slope.
The drag and the moment raise simultaneously. A LSB is visible from
the Cp and Cy moving toward the leading edge. The LSB restriction

is similar to that observed in the light stall case. However, a small
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Figure 5.23: Unsteady turbulent flow. Re = 1.3-10%, a = 10° + 5°sin(2kt), k = 0.5.
Pressure coefficient distributions on the airfoil surface. — unsteady RANS ; o, LES data,
[41]. (a), a = 10.3°%; (b), @ = 8.8%; (¢), @ = 7.1°; (d), a = 5.6°.

separation in the middle zone of the airfoil surface is visible in the

point (a).

e Phase (b)-(c). a = 12.5° +15°. The lift continues to increase following
the linear slope. The maximum lift coefficient is attained in the point
(c), while a change in the drag slope is achieved. A small variation in
the slope is visible in the moment curve. The LSB reaches the minimum

extension causing the formation of the DSV. The secondary separation
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Figure 5.24: Unsteady turbulent flow. Re = 1.3-10%, a = 10° + 5°sin(2kt), k = 0.5.
Identification of some specific points on the aerodynamic coefficient loops. (a), C; ; (b),
Cd ; (C)a Cm .

in the middle region of the airfoil extends.

e Phase (¢)-(d). @ = 15° = 12.9°. The lift decreases and, in the point
(d), reaches a local minimum. The drag curve shows a maximum after
the point (d) and then decreases. A similar behaviour is observed on
the moment curve. From the pressure coefficient diagrams, the DSV
is clearly detected along the airfoil chord. In the point (d), the flow is
separated for the 60% of the chord.

e Phase (d)-(e). a = 12.9° + 9.4°. After the local minimum, the lift

increases even if the angle of attack is decreasing. The drag is approx-
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imately constant while a strong loss in the moment curve is achieved.
The DSV is convected along the airfoil chord by distorting the pressure
distribution. The secondary vortices produce a partial flow reattach-
ment in the rear part of the DSV. In the point (e), the DSV is approx-
imately at x = 0.5¢. The separated flow extends for the 80% of the
chord.

Phase (e)-(f). o =9.4°+6.5°. The lift continues to increase and in the
point (f) obtains another relative maximum. Simultaneously, the drag
decreases and the moment coefficient collapses. The moment stalls in
the point (f) because of the unbalanced pressure expansion associated
with the DSV position. The partial reattachment of the flow, visible in
the middle part of the chord, is due to the secondary vortices behind
the DSV.

Phase (f)-(g). o = 6.5° + 5.3°. A rapid loss of lift and drag is visible,
accompanied by a moment recovery. The DSV leaves the airfoil surface
and moves toward the turbulent wake. The ' diagram in the point

(g) reveals a small reattachment of the flow at the leading edge.

Phase (g)-(h). @ = 5.3° <+ 5.1°. In this phase, a further decrease of the
lift is achieved. The drag follows the same evolution while the moment
coefficient takes a local maximum in the point (h). A small expansion
in the pressure distribution is visible by the C'p diagram in the points
(g) and (h), which correspond to the onset of the flow reattachment.
The remaining part of the flow is still separated. Between the points
(h) and (a), the flow has not the time to complete the reattachment
process. The secondary vortices persist on the surface when o begins

to increase.

The deep stall case exhibits some differences but also several analogies with

the light stall one. The main angle of attack is such that a partial separation

remains in the airfoil surface during all the cycle. Also for the deep stall case,

the DSV is formed from the LSB, but the scale of the separations is much
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(a) a = 9.3° (b) a = 12.5° (¢) a=15° (d) o =12.9°
e e
(e) a =9.4° (f) a =6.5° (g) a =5.3° (h) @ = 5.1°

Figure 5.25: Unsteady turbulent flow. Re = 1.3-10°, @ = 10° + 5°sin(2kt), k = 0.5.

Cp diagrams in different phases.

higher than the lzght stall . The high reduced frequency of the pitching motion
is comparable with the Strouhal number of the natural vortex shedding of
the flow. Finally, also in this case, the stall of the moment occurs before of
the lift one.
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Figure 5.26: Unsteady turbulent flow. Re = 1.3-10%, a = 10° + 5°sin(2kt), k = 0.5.

C'y diagrams in different phases.
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5.5 Some comments

The CFD simulations of the flow around an oscillating airfoil has been per-
formed. The flow conditions reproduce a recent experimental test at low
Reynolds number. The numerical simulation of such a flow is complicated
by the coexistence of laminar and turbulent regions on the airfoil surface.
The problem increases in the oscillating airfoil cases. The use of very low
values of the free stream turbulence parameters has allowed the achievement
of anatural (i.e. numerical) transition on the airfoil surface without fixing the
transition point. This approach has been used for the steady analysis as well
as for the dynamic one. The comparisons with the experimental data have
shown several inconsistencies explained, in part, through three dimensional
static simulations. The pitching conditions taken into account correspond
to a pre stall , light stall , and a deep stall flow regime. For the latter, the
agreement with an high accuracy numerical solution (LES) has confirmed the
reliability of the present RANS simulation in predicting such complex flows.
The DSV produces an increase of the lift and causes an anticipated moment
stall.

The analyses and the discussions of the oscillating airfoil results have been
carried out by exploiting a near field point of view, without a quantitative
correlation with the flow field evolution. This issue will be addressed in the

next chapter.
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CHAPTER 6

Far Field Analysis of Oscillating
Airfoil Flows

This chapter deals with the use of the far field technique on the turbulent flow
simulations around oscillating airfoils. With respect to the results showed in
chapter 4, the contribution associated with the time rate of change of the
hydrodynamic impulse has to be taken into account. The body acceleration
term is non zero as well and represents the wvirtual mass of the body. An
intensive post-processing analysis is carried out by storing the flow field at
each time instant during the last oscillation period. The time derivative of
the vorticity field is computed a posteriori by a forward formula accurate at
the second order. By referring to the scheme (4.3) in §4, a proper location
of the external surfaces X; and X; has been considered in the computation
of the far field integrals (4.52). In particular, the surface ¥; is located just
downstream of the airfoil trailing edge (zg ~ 0), and the surface ¥, is outside
of the boundary layer thickness (ys > §). The breakdown of the aerodynamic

force in its main contributions is also presented.

6.1 Far field analysis of the aerodynamic force

6.1.1 Pre stall case

The unsteady flow solution obtained at Re = 1.35- 103, M = 0.1, with
a = 7.5°sin(2kt) and k = 0.05 is analyzed. In figures (6.1) the aerodynamic
coefficients C'; and C'y, computed both with the near field and the far field
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Figure 6.1: Unsteady turbulent flow. Re = 1.35-10%, a = 7.5° sin(2kt), k = 0.05. — — —
, near field method; —, far field method. (a), C; — « curve; (b), C'y — a curve.

methods, are reported. As may be seen from figures (6.1a) and (6.1b), a
very satisfactory agreement has been achieved. The lift and drag hysteresis
curves obtained from the near field integration are faithfully reproduced by
the far field integration. The equations (4.52) represent an alternative way
to the near field computation of the aerodynamic force also in case of an
oscillating airfoil. The viscous and turbulent terms, ( F;;) and (E"), can be
avoided in the computation because of the absence of massive flow separations
intersecting the ¥; surface. By analyzing the single components contained in
equations (4.52a) and (4.52b), it is interesting to observe the part of the lift
and drag associated with the vortex force integrals (i.e. (C})q and (C4)q).
Such contributions are reported in figures (6.2a) and (6.2b). As may be seen,
the vortex force takes into account for the main part of the circulation. The
hysteresis cycle is slightly enlarged with respect to the total lift coefficient.
Besides, the same effects on the drag coefficients are negative, as it can be
noted in figure (6.2d). The vortex force appears as a thrust on the airfoil
surface. The lift and drag are compensated by the terms computed on ¥,
reported in figures (6.2b) and (6.2¢). The drag term (C,)ys accounts for
the main part of the aerodynamic resistance. In figures (6.2c) and (6.2f),

the rate of change of the hydrodynamic impulse contributions, (C); and
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(d) (Ca)a (e) (Ca)s ) (Ca)o

Figure 6.2: Unsteady turbulent flow. Re = 1.35-10°, a = 7.5°sin(2kt), k = 0.05.

Breakdown of the aerodynamic coefficients. —— |, near field method; —, far field integrals

(C4) are plotted. They represent the integrated effects of the vorticity
displacement and are fairly small with respect to the other contributions.
The non circulatory behaviour of these terms is highlighted because of the
zero net mean value over the entire cycle. The solid body acceleration terms,
(C'))p and (C'4)p, (not reported), are negligible because of the small reduced

frequency of the specific case.

6.1.2 Light stall case

In this section, the light stall solution achieved at Re = 1.35-10°, M = 0.1,
a = 5°410°sin(2kt) and k = 0.05, is discussed by using the far field integrals
in the equations (4.52). In such a case, the light stall is characterized by large
zones of separated flow during a portion of the cycle. The lift and drag curves,
obtained with the near field and the far field methods, are reported in figures
(6.3a) and (6.3b). The aerodynamic force computed with the far field is in
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Figure 6.3: Unsteady turbulent flow. Re = 1.35-10°, a = 5° + 10°sin(2kt), k = 0.05.
——, near field method; —, far field method. (a), C'; — « curve; (b), C'y — « curve.

a very good agreement with the near field one. Also in this case, the viscous
and turbulent terms associated with the integrals ( F ;; ) have a secondary
effect in the computation of the aerodynamic force. In the figures (6.4a) and
(6.4b), the (C}) g and (C4) q associated with the vortex force are reported.
The Lamb vector integrals account for the main part of the total lift. The
main slope of the hysteresis cycle is reproduced also in the zone of the stall.
In the linear part of the cycle, instead, a similar behaviour to the pre stall case
is observed. The maximum value obtained in the (C') o exceeds the C',,q,-
Conversely, the remaining contributions, (C';)x and (C'4)y, are associated
with the shedding of the vorticity in the wake. During the stalled portion of
the cycle, strong oscillations are visible in figures (6.4b) and(6.4e) . In figures
(6.4¢), the peaks, visible in the (C) curve, point out the detachment and
the convection of vorticity downstream the airfoil. Such oscillations increase
during the reattachment phase. A sort of compensation between (C';)y and
(C'}), occurs. As for the previous test, the solid body acceleration terms,

(C)) p and (Cy) g, have a negligible effect on total aerodynamics force.
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Figure 6.4: Unsteady turbulent flow. Re = 1.35-10%, a = 5° + 10°sin(2kt), k = 0.05.
——, near field method; —, far field method.

6.1.3 Deep stall case

The far field method is applied to the deep stall case discussed in chapter
5. The flow solution was achieved at Re = 1.3 -10°, M = 0.3, and o =
10° + 5° sin(2kt) with & = 0.5. Even if the compressibility effects of this test
are significant, they are confined in the leading edge zone of the airfoil. The
application of the far field integrals in equation (4.52) provide the hysteresis
curves depicted in figures (6.5a) and (6.5b). A satisfactory agreement is
visible also in this case. The major discrepancies are observed in the lift
curve in the lower angles of the periodical motion, and on the drag curve
at the higher angles of attack. For such a case, the terms associated with
(F;; ) and { F') have to be taken into account because of the massive flow
separations. In figures (6.6), the breakdown of the aerodynamic coefficients
is reported. Very unusual hysteresis loops are visible in each contribution

that make difficult the physical interpretation. The role of each term is
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Figure 6.5: Unsteady turbulent flow. Re = 1.3 -10%, a = 10° + 5°sin(2kt), k = 0.5.
— — —, near field method; —, far field method. (a), C'; — « curve; (b), C 4 — « curve.

g W T g g g B @ J g g i
o o o

(d) (Ca)a (e) (Ca)s ) (Ca)o

Figure 6.6: Unsteady turbulent flow. Re = 1.3 -10%, a = 10° + 5°sin(2kt), k = 0.5.
— — —, near field method; —, far field method.

117



Figure 6.7: Identification of the bound and free vorticity.

no well distinguished as for the previous cases. The Lamb vector integrals
account only for a part of the aerodynamic force. The surface terms (C)x
and (Cy)s point out that a significant part of the vorticity is shed through
the wake surface. A substantial difference with respect to the previous cases
is due to the rate of change of the hydrodynamic impulse terms, (C';); and
(C4)w, reported in figures (6.6¢) and (6.6f). They contribute for a significant

part during the entire cycle.

6.2 Vorticity decomposition

The possibility to detect the contributions associated with the bound and free
vorticity is discussed in the following. As pointed in chapter 3, an inviscid
flow around an oscillating airfoil is characterized by a release of free vorticity
w’ in the wake. This vorticity is responsible for the time delay between the
aerodynamic force and the airfoil angular position, and it is superimposed to
the bound vorticity w’ associated with the airfoil surface. Also in case of the
turbulent oscillating airfoil solutions, the Lamb vector integrals allows for a
decomposition of the aerodynamic force of kind C; = C'/ + C}, where C'/
and Clb are the contributions associated with w/ and w® respectively. The
advection form of the aerodynamic force is used to address these scopes.

By referring to the scheme (6.7), the volume of integration is subdivided

118



in two zones, €2, and {2y, such that Q = €, U €. The aerodynamic force is
computed by integrating over ), and (2; equivalently. Consider a decompo-

sition of kind:
E = Eb + Ef (6-1)

where F ; is the vortex force exerted on the body by the free vorticity:
F, :/ wl xudV (6.2)
Qf

In the vortex force definition (6.2), the sign is changed with respect to the
standard definition because {2y does not contain B. To identify F, and F,
we apply the definition of the aerodynamic force to €2, and to €, U €2;. The

following relation is achieved:

F = —/ gbxng—/ rxnx(wxu)dsS=
Q YUy
= —/ gbxng—Ef—/§><Q><(gfxg)dS
Qb D
- /gxgx(gbxg)ds (6.3)
X
from that
F, = —/Egxgx(gfxg)d5+/zgxax(gbxg)ds (6.4)
f I

If the surface ¥ is sufficiently far its contribution is negligible, and the free

vorticity force is detected:
F, = /EgXQx(gxg)dS (6.5)
I

where w/ and w® are equal on ;. The bound vorticity contribution instead

is given for difference by:
F, :E—/QXQX(ng)dS (6.6)
X
Thus, the force associated to the bound and free vorticity are defined. The
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Figure 6.8: Bound and free decomposition. (a) and (c), turbulent flow solution. (b) and
(d), inviscid flow solution. (a), bound vorticity, — , far field decomposition, — — — near
field ; (b), bound vorticity — | far field decomposition, — — — Theodorsen solution; (c),
free vorticity — | far field decomposition, — — — mnear field ; (d), free vorticity — , far
field decomposition, — — — Theodorsen solution;

verification of these concepts has been made by referring first to an unsteady
inviscid flow solution, and then to the turbulent viscous case (pre stall ). The
analytical solution provided by Theodorsen, expressed in equation (3.118),
has also been used as a reference. For small values of the reduced frequency,
it can be assumed that the real and imaginary parts of equation (3.118)

provide the contribution of the bound vorticity w® and of the free vorticity
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(a) (b)
Figure 6.9: Unsteady turbulent flow. Re = 1.35-10°, @ = 7.5°sin(2kt), k = 0.05. Drag
decomposition. (a) —, bound vorticity contribution; ——, near field data. (b) —, free
vorticity contribution; ——, near field data.

wf to the total lift.

These contributions are plotted in figures (6.8). In the plot (6.8a), the
(C'})p contribution is compared with the total lift coefficient. It can be ob-
served that the bound vorticity provides a contribution in phase with respect
to the instantaneous angular position «. In figure (6.8b), the same com-
parison is made for the inviscid flow solution and the curve provided by
Theodorsen. The differences in the shape of the hysteresis curve are due to
the thickness effects of the airfoil, not taken into account by Theodorsen’s
theory. The free vorticity effects are reported in figures (6.8c) and (6.8d).
This contribution represents the isolated effect of the free vorticity w/ re-
leased by the airfoil. The agreement between the curves shows the ability of
equation (4.52) in detecting the contribution le. The time lag effect of le
is clearly visible in both the viscous and the inviscid flow solutions. The non
circulatory nature of this contribution is highlighted by the zero mean value
over the period T'. By applying such decomposition to the drag components,
the curves C'% and C'] are showed in figures (6.9a) and (6.9b). The bound
vorticity drag C'§ is shifted toward higher values with respect to the near field

data, while the drag associated with the free vorticity has a smaller role.
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6.3 The dynamic stall vortex

As point out in chapter 5, the near field method allows for an analysis based
solely on the superficial distributions of pressure and skin friction coefficients.
The far field method permits to observe the same phenomenon under a differ-
ent perspective. One of the main concerns of the studies on the dynamic stall
regards the identification of the DSV properties. In particular, a significant
problem is the definition of the dynamic stall onset in terms of the angular
position. This turns out useful for the designers as well as for the tuning
of more refined semi-empirical models. For example, the Beddoes-Leishman
model, [49], makes use of several semi-empirical constants to characterize the
dynamic stall vortex. A better definition of some parameters can improve
the quality of the results, as Sheng et al. ([89]) have demonstrated. The most
widely used criterion to detect the DSV onset is based on the observation of
the pitching moment curve. When a drop of 0.05 in the C',, value occurs,
the dynamic stall onset is identified. Other methods consider the lift curve
slope and define the onset of the dynamic stall in the point where the C';,
changes. Procedures based on the pressure coefficient distributions are used
as well.

By using the present far field method, an alternative way to accomplish
this task is proposed. By exploiting the definition of the centroid of a vorticity
distribution (Saffman, [71]),

[ (rxw) -1
Kv—/gT rdV (6.7)

where I is the hydrodynamic impulse, defined in (3.24) the movement of the
DSV center results to be associated with x. In fact, the velocity of the
centroid is given by its time derivative:

dxy d [(exw) -1

U, = = —
=V oat dt J, I?

rdv (6.8)

In equation (6.8), the contribution of the aerodynamic force associated with

the rate of change of the hydrodynamic impulse is recognizable. In fact, it
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Figure 6.10: Unsteady turbulent flow. Re = 1.35-10°, o = 5° + 10°sin(2kt), k = 0.05.

Dynamic Stall onset criterion . —, (C),. — — — moment curve.

results a proportionality of kind:

Ow
U N/ rx —dV 6.9

Thus, the effects of the vorticity convection can be detected by observing the
time history of the contributions (C'); and (C'4),. The application of this
method has been made by referring to the light stall case. In figure (6.10), the
term (C'), is reported during the a-increasing phase and compared with the
moment curve in the interval 10° < o < 15°. The correspondence between
the ¢, curve and the (C)), is visible. As may be seen in the figure, the curve
of (C), is fairly flat up to 13.8°. First, a positive peak is observed followed
by a strong negative drop. Simultaneously, the pitching moment curve has a
similar behaviour and takes a minimum approximately in the same angular
position of (C'});. In order to computed the DSV onset, the analogy between
(C'}), and ¢, curves is useful because it allows to avoid the computation of
the pitching moment.

Another useful information regards DSV convection speed. The first ex-

perimental studies indicated that the DSV is convected at a velocity between
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1/3Us and 1/2U. In 1990, Chandrasekhara and Carr [90] made a system-
atic study on the DSV convection as function of the reduced frequency and
the Mach number confirming this observation. Also in the experiment of Lee
[80] it is reported a convection speed of 0.45U,, for a case with k = 0.1. As
already observed in the previous chapter, the DSV location can be identified
through the distortion of the pressure distribution over the airfoil surface.
Here, by making use of the equations (6.7) and (6.8), the velocity observed
through the far field approach is calculated and compared with the location
of the maximum negative pressure peak on the airfoil surface (near field point
of view). Such comparisons are reported in figures (6.11) for both the light
stall and the deep stall case. In figure (6.11a), the position of the DSV is
reported as function of a. It can be observed that the vorticity distribution
initially is located in the first half of the airfoil chord. As « increases, it
moves downstream and for ¢ > 14° convects toward the trailing edge. In
figure (6.11b), the velocity of DSV is reported and compared with the near
field data. For o < 13° the vorticity centroid moves at a slow constant rate.
For o« > 13°, a sudden increase in the velocity is observed. Then, the DSV
is formed and convected at a speed of 0.15U,, approximately. The near field
method provides a slightly higher convection speed. These values, however,
disagree with the experimental observations.

For the deep stall case a similar analysis is presented. In such a case,
the DSV is formed and convected during the a-decreasing phase. The DSV
appears around at 13° and, as « decreases, it moves toward the trailing edge.
The convection velocity obtained by the far field method is underestimated

with respect to the near field information.
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Figure 6.11: Unsteady turbulent flow. Position and velocity of the DSV. — — —, near

field method; ——, far field method. (a), position of DSV, light stall ; (b), velocity of DSV,
light stall ; (c), position of DSV, deep stall ; (d), velocity of DSV, deep stall .
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CHAPTER 7

Conclusions

The present thesis has described the work carried out on the prediction of
the aerodynamic force for oscillating airfoils. The aims were to provide a
contribution in the physical interpretation of the fundamental mechanisms
of the aerodynamic force generation. This objective has been accomplished
by exploiting both theoretical results and numerical solutions.

A series of numerical flow solutions around an oscillating airfoil has been
obtained at low Reynolds number. The transitional flow regime has been
simulated by an unsteady RANS solver using the x — w turbulence mod-
els. Several pitching conditions have been analyzed by referring to a new
set of experimental data. The preliminary static analysis has permitted to
discover three dimensional effects in the experimental measurements of the
flow. The simulation of the effective experimental apparatus has confirmed
this assertion. The pre stall , light stall , and deep stall flow regimes have
been discussed. The reliability of the present RANS simulations in predicting
such complex flows has been confirmed through other data set. An inten-
sive post processing activity has allowed the identification of the main flow
features of the dynamic stall.

The use of the far field methods has become much popular both in ex-
perimental and numerical aerodynamics. The reasons of such a success are
severals. However, many far field methods apply solely to steady flows. In
this thesis, it has been developed a far field method to analyze the aerody-
namic force on the oscillating airfoil. The theory on which this analysis is

founded, was initially developed for flows governed by the unsteady Navier
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Stokes equations. In the present work, the theory has been extended and
verified to flows governed by the Reynolds Averaged Navier Stokes equa-
tions. It has been shown that in case of boundary layer approximation, some
contributions of the complete expression of the aerodynamic force are negli-
gible. The effect of the integration domain has been investigated at different
Reynolds numbers and angles of attack. By decomposing the aerodynamic
force in surface and volume contributions, it has been possible to identify the
specific components to the total aerodynamic force.

The theory has been applied to the flow solutions obtained around the
oscillating airfoil. The decomposition of the aerodynamic force into the vol-
ume and surface contributions has permitted to detect the effects of the free
vorticity shed in the wake. Such a contribution has been identified by the
Lamb vector integrals and compared with the analytical results provided by
Theodorsen for an oscillating flat plate. In the pre stall case, the effects of
the bound vorticity have also been recognized as the part in phase with the
instantaneous angular position of the airfoil. In the dynamic stall case, this
analysis provides useful information on the dynamic stall vortex, such as the
position and the convection speed.

The far field method discussed in the present thesis represents a useful
device for the analysis of the aerodynamic force. The applications carried
out demonstrate the reliability of the approach as well as its coherence with

other existing theories.
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