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Introduction

In structural engineering the elastic equilibrium problem of any loaded

body can be properly solved assigning it to one of the following classes, ac-

cording to its spatial character: massive bodies, plates and shells, beams.

The first class includes all those bodies whose three dimensions are compa-

rable, so that the relative problems and solution methods, concerning the

stress and strain fields determination, are dealt with in the general theory of

elasticity. The second class, instead, is made up of all those elements hav-

ing one dimension, namely the thickness, small if compared with the other

two, namely the length and the breadth, which are of the same order of

magnitude. Finally, the third class, including all those bodies characterized

in that two of their dimensions, namely the cross-sectional ones, are small

if compared with the third one, namely the beam length, can be further

subdivided into solid and thin-walled beams. Solid beams, loaded only in

correspondence of the two extremities by a generic equilibrated system of

forces, are generally analyzed by the engineering theory based on the ap-

plication of the Saint-Venant’s principle, according to which all the internal

forces acting on the cross-section can be reduced, sufficiently far away from

the beam ends, to a 6-dimensional space vector, made up of 3 force and 3

moment components, obtained thanks to the uncoupling and superposition

of four basic responses: stretching; major-axis bending, coupled with major

shear; minor-axis bending, coupled with minor shear and pure torsion.

On the other hand, the theory of thin-walled beams, having a wall thick-

ness small respect to the dimensions of the cross-section, takes its name from

the work of V.Z. Vlasov [1] who, in 1940, published a quite comprehensive

book on the argument, collecting the results of an entire lifetime of scien-
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Introduction

tific activity devoted to the analysis of thin structures. Its second edition,

published posthumously in 1959, in a revised and enlarged form, was trans-

lated from Russian into English and introduced in the western scientific

community by the Israel Program for Scientific Translations in 1961. Since

the 1970s, thanks to the growing efficieny in terms of cost of thin-walled

structures, significant advances have been made through experimental test-

ings and theoretical works. From this point of view, either complete beam

theories, essentially originated by the Vlasov’s method, or restrained warp-

ing theories, mainly based on the Saint-Venant’s theory, have been devel-

oped, the first ones by Capurso [2] and Pittaluga [3], the second ones by

Kármán and Christensen [4]; Kollbrunner and Hajdin [5]; Burgoyne and

Brown [6],[7]; Mandarino [8], [21].

The Vlasov’s theory is based on the observation that thin-walled beams with

open cross-section, subjected to a torque load and restrained at one or both

ends, develop considerable axial warping stresses and deform without sub-

stantial shear deformations in the shell middle surface. The fundamental

hypotheses of this theory are:

• further to Navier rigid body motions, the cross-section may develop

warping out of its plane as a result of torsion;

• the separation of cross-sectional and along-the-axis variables is as-

sumed, so that any displacement of a structural point may be expressed

as the product of two functions: the first one, namely the warping

function, independent of the position along the axis, the other one,

namely the twist function, assumed equal to the unit twist angle and

independent of the position on the section;

• the tangential stress field, produced by the applied twist moment,

is divided into two parts: the primary and the secondary one; the

primary stress, typical of Saint-Venant’s theory, is associated to the

so called pure torsion; the secondary one, instead, is connected with

the normal stress field caused by the non-uniform warping of the beam

cross-section.
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Introduction

The theory, developed for thin-walled beams with open (monoconnected)

cross-section, was extended by Kármán and Christensen (1944) to beams

with closed (pluriconnected) cross-section subjected to non-uniform torsion,

as in this case the middle surface undergoes large shear strains, assumed

equal to the Bredt’s ones, as well as for the pure torsion problem. In the

years, further theorical developments have been achieved. Kollbrunner and

Hajdin (1972) modified the Vlasov’s theory assuming that the twist function

is not more proportional to the unit twist angle, but it is a function obtained

thanks to a global congruence condition based on the principle of virtual

work. Pittaluga (1978) applied the Vlasov’s generalized method introduc-

ing new cross-sectional functions, called shear potentials, which allow for

shear deformation and are related to the first derivative of the bending and

warping curvature. Burgoyne and Browne (1994) treated the non-uniform

torsion problem, as a mixed flexure/torque one, obtaining a solution non

restricted to thin-walled beams and based on appropriate Fourier develop-

ments of the displacement field, in order to define a warping function which

could fully respect the indefinite equilibrium equation along the beam axis.

Finally, Mandarino proposed two new theories, the first one (1997) in which

the influence of the cross-section distortions on the transversal shear stress

(i.e. the non conservative character of the relative field) and the relevant in-

fluence on the restrained warping one, can be taken into due consideration,

the second one (2007) for the bending-shear stress determination, in which

the effect of the longitudinal variability of the vertical shear force is taken

into due consideration.

As Vlasov’s simplified model, particularly useful in the global analysis of

longitudinally developed structures, offers some advantages such as a good

feasibility in the structure’s schematization and a great conciseness in the

results’ analysis, it was adopted from 1960s, by Abrahamsen [9]; De Wilde

[10]; Haslum and Tonnensen [11] for the analysis of ships with large hatch

openings, subjected to a torque load, for which considerable warping stresses

arise, regarding a single hatch length as a thin-walled beam restrained in

correspondence of two adjacent transverse bulkheads. As years went by, the

feasibility of this theory was so proved that still today, despite the large use

of three dimensional finite element programs, it is accepted by the major
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classification registers, not only for the evaluation of tangential and warping

stresses due to shear and torque, but also for determining the ship flexural

and torsional vibration modes.

So, as this theory represents an important model to analyze ship struc-

tures, in this thesis the problem of the elastic equilibrium of a ship hull

subjected to a combined bending/shear/torque load is discussed from the

beginning, to highlight, and in some cases eliminate, the assumptions and

approximations of the classical theories.

Chapter 1 deals with the Mandarino’s bending-shear theory, whose numer-

ical code was developed by the present writer. In this theory, in which it

is assumed that the shear force can generate both warping displacements

and rigid body translations of the structural section, new relations, based

on the Vlasov’s structural hypotheses and developed in orthogonal curvi-

linear coordinates, that allow to account for the influence of the branches

curvature, are obtained for the normal and tangential stress fields. A nu-

merical procedure, which differs from the one proposed by Hughes [12] is

also proposed, assuming a cubic law for the warping function distribution

along the branches and substituting the condition of absence of rigid body

warping components for the one of zero value of the warping function on

the section neutral axis, what allows to translate the classical Neumann

boundary problem into a mixed Dirichlet-Neumann one. Besides, it is ver-

ified that warping shear stresses, not considered either by Rules or by the

classical theories, depend directly on the unit vertical load c(x), and can

assume appreciable values, if compared with the bending ones, for all those

loading conditions that include quasi-concentrated loads and, consequently,

great values of c(x), so significantly influencing the scantling procedures.

In Chapter 2 a new bending-shear theory for thin-walled beams, substan-

tially based on the Saint-Venant’s displacement field and suggested by the

present writer, is developed, eliminating the fundamental Vlasov’s struc-

tural hypothesis of maintenance of the cross-section contour. New relations

are obtained for tangential and normal stresses; a numerical method, based

on a Ritz variational technique, is developed and a procedure to determine

the shear center vertical position, taking into account the cross-section’s de-

formability, is presented. The fundamental differences between the Vlasov’s
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and Saint-Venant’s theories are also pointed out, verifying that the Vlasov’s

theory may be regarded as the limit of the Saint-Venant’s one, when the

Poisson modulus ν → 0.

In Chapter 3 the problem of a ship with large hatch openings subjected to

a variable torque is analyzed, starting from the displacement field proposed

by Kollbrunner and Hajdin and analitically developed in a new original form

by the present writer. Despite the classical theories, the longitudinal distri-

bution of the applied torque proposed by RINA Rules [13] is taken into due

consideration, so influencing the solution of the warping equation and the

bimoment longitudinal distribution. Besides, as a still unsolved problem is

the role of transverse bulkheads, generally assumed as rigid in the solution

of the warping equation, a method based on the global energy procedure

proposed by Senjanović et al. [14], but varied for the different bulkhead’s

deformed shape law, is presented, schematizing the bulkhead as a stiffened

clamped orthotropic plate.

In Chapter 4 the mixed flexure/torque theory developed by Burgoyne and

Brown (1994) for beams with axial-symmetric and asymmetric cross-section

is discussed from the beginning and extended to beams with multicon-

nected cross-section, such as ship structures, imposing, by the present writer,

boundary conditions different from the ones proposed by the authors and

better adaptable to ships. The theory, based on the Fourier development

of the displacement field, despite the classical ones, permits to fully respect

the indefinite equilibrium equation along the beam axis, solving by a FE

technique, for each harmonic three Neumann boundary problems associated

to the Helmholtz equation.

In Chapter 5, as bulkheads have been schematized in Chapter 3 as clamped

orthotropic plates, the Huber’s differential equation for orthotropic plates

with all edges clamped is solved by the Rayleigh-Ritz method, expressing

the displacement field by a double cosine trigonometric series. Numerical

results are presented as design charts similar to the ones given by Schade,

[19] for all the non-dimensional coefficients identifying the plate response.

Some comparisons with the well known data published by Timoshenko and

Woinowsky-Krieger [20] for the isotropic plate case are also presented in

order to verify the goodness of the applied numerical technique. In Chap-
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ter 6 some comparisons with the results presented by Hughes and the ones

obtained by a FEM analysis carried out by ANSYS, are presented for a

simplified ship section; the open profile analyzed by Burgoyne and Brown is

analyzed in order to verify the reliability of the developed numerical tech-

niques proposed in Chapter 4. Finally, in order to apply and compare the

proposed theories, two numerical applications, in which the normal and tan-

gential stress fields due to vertical shear and torsion are determined, are car-

ried out, the first one for a bulk-carrier, the second one for a containership.

Suitable numerical codes have been developed by MATLAB MathWorks

7.0, applying both the Euler Lagrange functional technique, both a FEM

analysis. For the second case the Partial Differential Equation Toolbox has

been utilzed and integrated in a suitable code developed, for beams with

axial-symmetric cross-section by the present writer and Ing. A. Pranzitelli,

and for beams with asymmetric cross-section by the present writer only.
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Chapter 1

The refined bending-shear

theory

This chapter deals with the Mandarino’s bending-shear theory, whose

numerical code was developed by the present writer, in which it is admitted

the longitudinal variability of the vertical shear force. It is well known, in

fact, that in the traditional shear theory, bending and shear are assumed

each other as independent, and the shear effect reduces only to warping; the

invariability of the shear force is also admitted and, as a consequence, no

warping effects are considered on the normal stresses. The stress field is

reduced to the only σ and τ components, the first one evaluated by a the

Saint-Venant’s procedure, the second one by the Vlasov’s procedure. The

shear influence on the vertical displacement and the bending/shear interac-

tion induces to a re-examination of the theory, devoted to a careful individ-

uation of the stress and strain fields.

1.1 The displacement field

Let us regard the hull girder cylindrical body as a thin-walled beam,

made up of homogeneous and isotropic material, and let us suppose that the

external loads are neglegible respect to the internal stress characteristics. Let

us define the global Cartesian frame, sketched in Fig. 1.1, with origin G in

correspondence of the amidships structural centre and y, z axes defined in the

7



Chapter 1. The refined bending-shear theory

Figure 1.1: Global and local reference system

section plane and coinciding with the section principal axes of inertia. Let us

also define the local Cartesian frame with origin G(x) in correspondence of

the section at x-abscissa, x-axis coinciding with the global one and η, ζ axes

defined in the section plane and coinciding with the principal axes of inertia

of the section at x-abscissa. Adopting a mixed P (x, η, ζ) representation and

assuming the fundamental Vlasov’s structural hypothesis - maintenance of

the cross section contour - it is possible to reduce the displacement function

u(x, η, ζ) to the following one:

u(x, η, ζ) =
(
ϑ(x)ζ + uv(x, η, ζ)

)
i+ w(x)k (1.1)

where ϑ(x) is the rotation of the section about the η-axis, positive if counter-

clockwise, w(x) is its ζ rigid translation and uv(x, η, ζ) is the warping dis-

placement, for which the following representation:

uv(x, η, ζ) =
Q(x)

GI(x)
ϕ(x, η, ζ) (1.2)

can be assumed, having denoted by Q(x) the applied vertical shear force

at x-abscissa, G the Coulomb modulus, I(x) the section moment of inertia

about η-axis at x-abscissa and ϕ(x, η, ζ) the warping function. The eq.(1.2)

8



Chapter 1. The refined bending-shear theory

can be simplified by the following one:

uv(x, η, ζ) =
Q(x)

GI
ϕ(η, ζ) (1.3)

where the I moment and the warping function have been assumed constant

with x, according to the hypothesis of cylindrical hull, approximately valid

in the neighbourhood of the section. With these assumptions and notations

the displacement field can be rewritten as follows:




u = ϑ(x)ζ +
Q(x)

GI
ϕ(η, ζ)

v = 0

w = w(x)

(1.4)

1.2 The strain and stress fields

The strain field (for small deformation) is given by:





εy = εz = γyz = 0

εx =
dϑ

dx
ζ +

c(x)

GI
ϕ(η, ζ)

γ =
Q(x)

GI
∇ϕ+ λ(x)k

(1.5)

where the positions:

c(x) =
dQ(x)

dx
; γ = γxyj + γxzk (1.6)

have been made and the function:

λ(x) = ϑ(x) +
dw

dx
(1.7)

has been introduced, which vanishes when it is admitted - as in the practical

procedure - that the vertical displacement w(x) of the beam section is con-

nected with the rotation ϑ(x) by the geometrical condition of orthogonality

between the section and the elastic surface z = 0.

The substitution of whatever sections with the equivalent angle profiles

(with the thickness of the web equal to that one of the section, and the other

three dimensions obtained imposing equal values of area, inertia moments

9



Chapter 1. The refined bending-shear theory

and equal center position) allows to consider the structural section consti-

tuted by branches of constant t thickness, whose smallness has three main

consequences:

• the indefinite equilibrium equation assumes a simplified form, which

directly involves the unit surface load p;

• it can be admitted the anisotropic behaviour characteristic of a thin

plate: rigid through the thickness, elastic along the orthogonal direc-

tions; what implies that the elastic stresses reduce to the only normal

and tangential ones, σxi and τ ;

• it is possible to reduce the bidimensional problem of the ϕ(η, ζ) de-

termination to a monodimensional one, assuming all the geometrical

and mechanical quantities constant on the thickness branch, with their

integral mean values.

As regards the anisotropic behaviour, it can be satisfactory studied refer-

ring each branch to an appropriate local system of orthogonal curvilinear

coordinates. Concerning this, let ℓ1, ℓ2 and ℓ be three parallel curves (see

Fig.1.2) of a given branch, the first two lying on the structure boundary,

the third one coinciding with the median line. The orthogonal curvilinear

coordinates (ξ, s, n) can be so introduced:

• s is the curvilinear abscissa on the median line, with the O origin in

one of the two extremities (nodes) of the line;

• n is the linear abscissa on the thickness line through the considered

point P , with origin on ℓ;

• ξ = x−x (with: x = global coordinate of the considered cross-section)

is the linear abscissa with origin in O, on the parallel through O, to

the x-axis of the global frame.

Denoting by r the position vector relative toO, for the orthogonal coordinate

curves through the point P (s, n), the following vectorial equations are given:




r = (P (s, n)−O) + ξi

r = r(s, n)

r = r(s, n)

(1.8)
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Chapter 1. The refined bending-shear theory

Figure 1.2: Local curvilinear reference system

The first curve coincides with the parallel to the x-axis, the second one with

the line parallel to ℓ while the last one with the P thickness line. Denoting

by S the curvilinear abscissa, the natural basis, variable with P , will be the

system of the three orthogonal unit vectors:

{
∂r

∂ξ
;
∂r

∂n
;
∂r

∂S

}
;
∂r

∂S
=
∂r

∂s

∂s

∂S
(1.9)

Both the last two basis vectors are constant on any thickness line; their

values coincide with the ones assumed in the ℓ intersection, and can be

expressed by the functions of the only s variable:

t(s) =
dr

ds
; n(s) = t(s)× i (1.10)

when the conventional position has been assumed for the ℓ equation: r(s, 0) =

r(s) and the n coordinate has been assigned, according to the vector prod-

uct (1.10); finally, the first vector is, in turn, constant on the entire cross

section, because equal to i.

The reference to the natural basis allows to analytically express the (ap-

proximate) anisotropic behaviour of the branch: denoting by σx, σs, σn, τxs, τxn, τns

the relative stress components, the only elastic ones will be, according to

Vlasov’s hypothesis:

σx, σs, τxs

and, consequently, the same ones will be the only involved both in the

Navier relations and in the expression of the Beltrami-von Mises sigma.

Their expressions can be obtained starting from those ones of the strain

components, referred to the curvilinear coordinates (ξ, s, n), that, in turn,

11



Chapter 1. The refined bending-shear theory

are obtained by the development of the general expressions (see [15]):





εp = hp
∂up

∂αp
+

∑
i6=p

∂(
1

hp
)

∂αi
hphiui

γpq =
hp

hq

∂(hquq)

∂αp
+
hq

hp

∂(hpup)

∂αq

;





αp = ξ, s, n

up = u · ep

ep = i,n, t

(1.11)

where the Love’s functions hp(ξ, s, n) have been introduced, connected with

the Lamé parameters ℓp(ξ, s, n) by the relations:

ℓp(ξ, s, n) =
1

h2
p(ξ, s, n)

(1.12)

and so given by:

hx(ξ, s, n) =
1

∣∣∣
∂r

∂ξ

∣∣∣
= 1 , hn(ξ, s, n) =

1
∣∣∣
∂r

∂n

∣∣∣
, hs(ξ, s, n) =

1
∣∣∣
∂r

∂s

∣∣∣
(1.13)

As far as the (1.13) development is concerned, denoting by: ρ = ρ(s, n)

and ρ(s) = ρ(s, 0) the algebraic curvature radii of the r = r(s, n) and

r = r(s, 0) lines; by C(s) the curvature center of the parallel lines through

the s thickness line gives:

{
ρ(s) = (C(s)− P (s)) · n(s)
ρ(s, n) = (C(s)− P (s, n)) · n(s) = ρ(s)− n

(1.14)

Then the second Frénet formula implies:





∂r

∂s
=
∂P

∂s
=
ρ(s)− n
ρ(s)

t(s)

∂r

∂n
=
∂P

∂n
= n(s)

(1.15)

and the condition
ρ(s)− n
ρ(s)

> 0, verified on straight or quasi-straight branches

for which
∣∣∣
n

ρ(s)
<< 1

∣∣∣, gives:





hs(s, n) =
ρ(s)

ρ(s)− n
hn(s, n) = 1

(1.16)

12



Chapter 1. The refined bending-shear theory

Finally, denoting by ϕ(s, n) the function composed of the three ones: ϕ(η, ζ),

η(s, n), ζ(s, n) and utilizing the relations (1.11), (1.16) and the first Frénet

formula according to which:

d2ζ

ds2
= − 1

ρ(s)

dη

ds
;
d2η

ds2
=

1

ρ(s)

dζ

ds
(1.17)

the strain field in local curvilinear coordinates can be rewritten for straight

branches, for which
ρ(s)− n
ρ(s)

→ 1, as follows:





εx =
dϑ

dx
ζ(s, n) +

c(x)

GI
ϕ(s, n)

εs = 0

εn = 0

;





γxs =
Q(x)

GI

∂ϕ

∂s
+ λ(x)αsz

γxn =
Q(x)

GI

∂ϕ

∂n
+ λ(x)αnz

γsn = 0

(1.18)

where αsz and αnz are the director cosines of the unit vectors s and n respect

to the ζ axis. Concerning the Navier relations, their general expressions in

local curvilinear coordinates for linear elastic materials can be rewritten as

follows: 



εx =
1

E
[σx − ν(σs + σn)]

εs =
1

E
[σs − ν(σx + σn)]

εn =
1

E
[σn − ν(σx + σs)]

;





γxs =
τxs

G

γxn =
τxn

G

γsn =
τsn
G

(1.19)

Assuming the fundamental Vlasov’s hypothesis of maintenance of the cross-

section contour, according to which the beam section may be regarded as

rigid along the thickness, the stress-strain relations can be rewritten as fol-

lows: 



εx =
1

E
[σx − νσs]

εs =
1

E
[σs − νσx]

γxs =
τxs

G

(1.20)

13



Chapter 1. The refined bending-shear theory

finally becoming, thanks to the fundamental result εs = 0 from which it

follows σs = νσx: 



σx =
E

1− ν2
εx

σs = νσx

τxs = Gγxs

(1.21)

Now, according to the Beltrami-Von Mises criterion, the ideal stress is:

σid =

√
1 + ν2 − ν
(1− ν2)2

E2ε2x + 3τ2
xs (1.22)

that reduces for steel (ν = 0.3) to:

σid =
√
0.954E2ε2x + 3τ2

xs (1.23)

This value is lightly lower than the one obtained taking σx = Eεx and

σs = 0, as it is currently made in the scantling procedures, in favour of

safety.

1.3 The warping function: local and global devel-

opment

The indefinite equilibrium equations, which naturally involve all the

stress components, can be written by applying a direct differential procedure

to an infinitesimal volume element, of which one elementary dimension is t,

so involving the unit surface load p; on the contrary the boundary equation

doesn’t change, because applied to an elementary surface that doesn’t in-

clude the thickness. Denoting by σ the stress tensor, defined in orthogonal

curvilinear coordinates as follows:

Σ =




σx τxs τxn

τxs σs τsn

τxn τsn σn


 (1.24)

the indefinite and boundary equilibrium equations can be so expressed:



∇ ·Σ+

p

t
= 0

Σn = p
(1.25)

14
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The only relevant scalar equations, in the study of the hull girder strength,

are the x-projections of the vectorial (1.25), as the other ones include the

components of p tangential and normal to the plating and so coinciding

with the transverse stiffeners’ reactions, that can be by them determined.

Thanks to the hypothesis of cylindrical hull, that allows to assume px = 0

and denoting by A the cross-section domain and by ∂A its frontier, the

warping function must be solution of the following differential problem:




∂τxs

∂s
+
∂τxn

∂n
= −∂σx

∂x
∀P ∈ A

τxn = 0 ∀P ∈ ∂A

(1.26)

whence:




Q(x)

I
∇2ϕ = − E

1− ν2

[d2ϑ

dx2
ζ(s, n) +

1

GI

dc

dx
ϕ(s, n)

]
∀P ∈ A

∂ϕ

∂n
= −Gλ(x)

Q(x)
Iαnz ∀P ∈ ∂A

(1.27)

From the first of (1.27) it is possible to remarke a noticeable property of

the warping function. It must be firstly considered that the symmetry of

the structural section A as regards the ζ axis allows to introduce the parity

notion, respect to η for functions defined on A. Particularly, as the function
d2ϑ

dx2
ζ(s, n) is even on A, then

Q(x)

I
∇2ϕ+

2

I(1− ν)
dc

dx
ϕ(s, n) must be even

on A too, what is verified if ϕ is, in turn, even respect to η, as it will be

from now on admitted.

Denoting by M(x) the applied bending moment in correspondence of the

section at x-abscissa, the second order derivative of ϑ(x) may be obtained

by the following global equilibrium equation:

M(x) =

∫

A

σxζdA =
EI

1− ν2

dϑ

dx
+

2

1− ν
c(x)

I

∫

A

ϕζdA (1.28)

from which it follows that:

d2ϑ

dx2
= (1− ν2)

Q(x)

EI
− 1

GI2

dc

dx

∫

A

ϕζdA (1.29)

Assuming from now on that the shear force longitudinal distribution is linear

at intervals, what implies
dc

dx
= 0, and substituting the equation (1.29)

15
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into the first of (1.27), the problem of the ϕ determination reduces to the

following one: 



∇2ϕ = −ζ ∀P ∈ A

∂ϕ

∂n
= −Gλ(x)

Q(x)
Iαnz ∀P ∈ ∂A

(1.30)

according to which the warping function ϕ is solution of the Neumann

boundary problem associated to the Poisson equation. Concerning λ(x),

this function can be obtained by the global equilibrium equation involving

the vertical shear force, according to which:

Q(x) = G

∫

A

γ · kdA =

∫

A

[
τxsαsz + τxnαnz

]
dA (1.31)

whence:

Q(x) =
Q(x)

I

∫

A

[∂ϕ
∂s
αsz +

∂ϕ

∂n
αnz

]
dA+Gλ(x)A (1.32)

from which it is possible to obtain λ(x):

λ(x) =
Q(x)

GI

I −
∫

A

[∂ϕ
∂s
αsz +

∂ϕ

∂n
αnz

]
dA

A
(1.33)

Applying, now, the first Green identity (see [17]), the following equality

holds:

∫

A

∇2ϕζdA =

∫

∂A

∂ϕ

∂n
ζdΓ−

∫

A

[∂ϕ
∂s
αsz +

∂ϕ

∂n
αnz

]
dA = −I (1.34)

from which it follows, by the first of (1.30), that:

λ(x) = −Q(x)
GI

∫

∂A

∂ϕ

∂n
ζdΓ

A
(1.35)

By (1.35) the problem (1.30) becomes:





∇2ϕ = −ζ ∀P ∈ A

∂ϕ

∂n
=
αnz

A

∫

∂A

∂ϕ

∂n
ζdΓ ∀P ∈ ∂A

(1.36)

This problem shows that the geometrical quantities of the cross-section are

the only ones involved, and so it is proved that ϕ is related to the only
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geometry of the structural cross-section, what allows to assume the warping

function constant with x, as it has been made according to the hypothesis

of cylindrical hull. To determine the solution of this differential problem,

let us rewrite the warping function as the sum of two unknown functions

ϕ1(η, ζ) and ϕ2(η, ζ), so obtaining:





∇2(ϕ1 + ϕ2) = −ζ ∀P ∈ A

∂

∂n

(
ϕ1 + ϕ2

)
=
αnz

A

∫

∂A

∂

∂n

(
ϕ1 + ϕ2

)
ζdΓ ∀P ∈ ∂A

(1.37)

The problem (1.37) can be uncoupled as follows:





∇2ϕ1 = −ζ ∀P ∈ A

∂ϕ1

∂n
= 0 ∀P ∈ ∂A

(1.38)

and: 



∇2ϕ2 = 0 ∀P ∈ A

∂ϕ2

∂n
=
αnz

A

∫

∂A

∂

∂n

(
ϕ1 + ϕ2

)
ζdΓ ∀P ∈ ∂A

(1.39)

Thanks to the boundary condition of (1.38) the problem (1.39) can be rewrit-

ten as follows:




∇2ϕ2 = 0 ∀P ∈ A

∂ϕ2

∂n
=
αnz

A

∫

∂A

∂ϕ2

∂n
ζdΓ ∀P ∈ ∂A

(1.40)

The problem (1.40) admits, for thin-walled beams, the solution ϕ2(η, ζ) = 0,

formally obtaining the equality: ϕ(η, ζ) = ϕ1(η, ζ). From this result, by

(1.35) it also follows λ(x) = 0, so verifying the orthogonality condition

between the section and the elastic surface z = 0, what implies that the
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Chapter 1. The refined bending-shear theory

stress field and the differential problem (1.36) can be so rewritten:




σx = E
[dϑ
dx
ζ(s, n) +

c(x)

GI
ϕ(s, n)

]

τxs =
Q(x)

I

∂ϕ

∂s

τxn =
Q(x)

I

∂ϕ

∂n

(1.41)

and: 



∇2ϕ = −ζ ∀P ∈ A

∂ϕ

∂n
= 0 ∀P ∈ ∂A

(1.42)

Concerning the necessary solvability condition of the problem (1.42), it can

be so expressed (see [16]):
∫

A

∇2ϕdA =

∫

∂A

∂ϕ

∂n
dΓ (1.43)

By the second of (1.42) the right side integral is certainly null; concerning the

left side integral, by the first of (1.42), it is also null, because the reference

system has the origin in correspondence of the structural center of mass:

so the condition (1.43) is always verified. From (1.42) it also follows that

ϕ is solution of a Neumann problem, defined except an arbitrary constant:

this indeterminacy is generall removed for beams with monoconnected cross-

section assigning the ϕ value in the section center; for multiconnected cross-

section whose center doesn’t normally belong to the ϕ domain, a method

useful for the numerical applications may consist of a separate calculation

of the two ϕ restrictions to the parts A1 and A2 of A, the first one above

the neutral axis, the second one under it; each one uniquely determined

as solution of a mixed Dirichlet-Neumann boundary problem, given by the

assumption ϕ = const. on the section neutral axis:




∇2ϕ = −ζ ∀P ∈ Ai

∂ϕ

∂n
= 0 ∀P ∈ ∂(A) ∩ ∂(Ai) for i = 1, 2

ϕ = const. ∀P ∈ ∂(Ai)−
(
∂(A) ∩ ∂(Ai)

)

(1.44)
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Concerning the global equilibrium conditions, with λ(x) = 0, by (1.32)

and (1.34) it is immediately possible to verify that the tangential stress field

automatically balances the vertical shear. Besides, the other following global

equilibrium conditions are implicitly satisfied:
∫

A

σxηdA = 0 (1.45)

∫

A

τxydA = 0 (1.46)

∫

A

[
τxyζ − τxzη

]
dA = 0 (1.47)

Particularly, the (1.45) is verified as the following integrals are null:
∫

A

ηζdA = 0 ;

∫

A

ϕηdA = 0 (1.48)

The (1.46) is null as the partial derivative as regards η of the warping func-

tion is an odd function, respect to η, on A so obtaining:
∫

A

∂ϕ

∂η
dA = 0 (1.49)

Finally, the (1.47) is verified as, respect to η,
∂ϕ

∂ζ
and ζ are even functions,

while
∂ϕ

∂η
and η are odd functions on A, so that the products under the

following integrals are odd functions, too:
∫

A

∂ϕ

∂η
ζdA = 0 ;

∫

A

∂ϕ

∂ζ
ηdA = 0 (1.50)

Concerning the stretching condition, the warping function must verify the

following global equation:
∫

A

σxdA = 0⇒
∫

A

ϕdA = 0 (1.51)

1.4 Minimum of the Euler-Lagrange functional

To solve the problem (1.44) with the global equilibrium condition (1.51),

it is preferable to preliminarily assume all the geometrical and mechanical

quantities constant on the branch thickness with their integral mean values,

what is rigorously verified by the unit vectors of the “natural” basis and can
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be accepted for the other ones, because of the thickness smallness. Further-

more all branches are assumed straight, so approximating a curvilinear one

by a sufficient number of straight branches with nodes on its center line.

The first hypothesis allows to substitute the bidimensional parameter (s, n)

with the monodimensional one s in all the equations and relations till now

considered; the second one, instead, allows to express all the vector opera-

tors in the same way they are for the Cartesian basis (hx = hn = hs = 1).

Denoting by li and ti the length and the thickness of the i− th branch and
starting from the equation:

ζi(s, n) = ζi(s, 0) +
ζi

(
s,
ti
2

)
− ζi

(
s,− ti

2

)

ti
n (1.52)

it is immediately possible to verify that the ζi(s) mean value coincides with

the one on the median line ζi(s, 0), as it follows from the following relation:

ζi(s) = ζi(s, 0) =
1

ti

∫ ti
2

−
ti
2

ζi(s, n)dn (1.53)

Denoting by the suffixes m and n, with m < n, the initial and final nodes

of each branch, the function ζi(s) can be so expressed:

ζi(s) = ζm,i +
ζn,i − ζm,i

li
s (1.54)

Similarly, for the i − th branch, it is possible to introduce the mean value

ϕi(s) of the warping function:

ϕi(s) =
1

ti

∫ ti
2

−
ti
2

ϕi(s, n)dn (1.55)

so that, denoting by ϕm,i and ϕn,i the mean warping function nodal values

in correspondence of the initial and final nodes of each branch, the problem

(1.44) can be rewritten in a local form as follows:




d2ϕi

ds2
= −ζi(s) ∀s ∈ [0, ℓi]

ϕi(0) = ϕm,i ; ϕi(ℓi) = ϕn,i

(1.56)

as the Neumann boundary condition is in this case implicitly satisfied. Ob-

viously, the condition ϕi = const. in correspondence of the nodes belonging
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to the section neutral axis must be added. The (1.56) represents the lo-

cal approximate form of the (1.44) and shows that the points belonging to

the neutral axis are inflexion points for ϕ(s), whose expression and its first

derivative are uniquely determined:





ϕi(s) = ϕm,i +
[ϕn,i − ϕm,i

ℓi
+
ℓi(ζn,i + 2ζm,i)

6

]
s−

[
ζm,i +

ζn,i − ζm,i

3ℓi
s
]s2
2

dϕi

ds
=
ϕn,i − ϕm,i

ℓi
+
ℓi
6
(ζn,i + 2ζm,i)−

[
ζm,i +

ζn,i − ζm,i

2ℓi
s
]
s

(1.57)

As far as the ϕ nodal values are concerned, their numerical determination

can be carried out by the resolution of a variational problem, whose Euler’s

equation is the first of (1.56). It’s well known (e.g.: [18]) that solving the

Poisson equation with some boundary conditions is equivalent to finding

the function that satisfies the same boundary conditions and minimizes the

corresponding Euler-Lagrange functional, that can be written, according to

the introduced notation, as follows:

U =

∫

A

[(dϕ
ds

)2
− 2ϕζ

]
dA (1.58)

So, denoting by N the number of branches of the half-section, thanks to the

ship symmetry respect to the xz plane, the functional can be so rewritten:

U = 2

N∑

i=1

ti

∫ ℓi

0

[(dϕi

ds

)2
− 2ϕiζi

]
ds (1.59)

To determine the warping function nodal values, it is necessary to search

for the extremals of the functional U . The stationarity condition permits to

write P linear equations, if P is the nodes number on the half-section:

∂

∂ϕk

N∑

i=1

ti

∫ ℓi

0

[(dϕi

ds

)2
− 2ϕiζi

]
ds = 0 for k = 1...P (1.60)

The uniform continuity of the under integral functions allows the derivation

under the integral sign, so obtaining:

n(k)∑

i=1

ti

∫ ℓi

0

∂

∂ϕk

[(dϕi

ds

)2
− 2ϕiζi

]
ds = 0 (1.61)
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having denoted by n(k) the number of branches concurrent in the k-th-node.

The eq. (1.61) can be rewritten as follows:

n(k)∑

i=1

ti

∫ ℓi

0

[dϕi

ds

∂

∂ϕk

(dϕi

ds

)
− ζi

∂

∂ϕk

ϕi

]
ds = 0 (1.62)

finally becoming:

n(k)∑

i=1

ti
ℓi

(
ϕk − ϕr,i

)
=
1

6

n(k)∑

i=1

tiℓi
(
2ζk + ζr,i

)
(1.63)

having denoted, for each branch concurrent in the k-th-node, by r the

node different from the k-th one. Obviously, as this equation system is

indetermined, to obtain a solution, it’s necessary to impose the condition

ϕi = const. in correspondence of the nodes belonging to the section neu-

tral axis. Finally, as the global condition (1.51) has to be verified, too, the

following constant cϕ must be added to the obtained nodal values:

cϕ = −

∫

A

ϕdA

A
(1.64)

whence:

cϕ = −

N∑

i=1

tiℓi

[
ϕm,i + ϕn,i +

l2i
12

(
ζm,i + ζn,i

)]

2
N∑

i=1

tiℓi

(1.65)

1.5 Analysis of the stress field

Obviously, as well as for the warping function, it is possible to introduce

the mean values of the stress components. The σx mean value may be

expressed in a local form for the i− th branch as follows:

σx,i =
1

ti

∫ ti
2

−
ti
2

σx,i(s, n)dn (1.66)

from which it follows:

σx,i =
E

1− ν2

dθ

dx
ζi(s) +

2

1− ν
c(x)

I
ϕi(s) (1.67)
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The mean value of the tangential stress component can be similarly intro-

duced:

τxs,i =
1

ti

∫ ti
2

−
ti
2

τxs,i(s, n)dn (1.68)

finally becoming, thanks to the uniform continuity of the under integral

function:

τxs,i =
Q(x)

I

dϕi

ds
(1.69)

Then the stress field becomes:




σx,i = σB,i + σW,i

τxs,i =
Q(x)

I

dϕi

ds

(1.70)

with:




σB,i =
M(x)

I
ζi(s)

σW,i =
2c(x)

(1− ν)I
[
ϕi(s)− 2

ζi(s)

I

N∑

i=1

ti

∫ ℓi

0
ϕi(s)ζi(s)ds

]
(1.71)

The warping part of the normal stress field can be rewritten as follows:

σW,i =
2c(x)

(1− ν)I ψi(s) (1.72)

with:

ψi(s) = ϕi(s)−
2

I
ζi(s)

N∑

i=1

tiκi (1.73)

and:

κi =
(ϕn,i + 2ϕm,i)ζm,i + (ϕm,i + 2ϕn,i)ζn,i

6
+
4ζ

2
m,i + 4ζ

2
n,i + 7ζm,iζn,i

180
(1.74)

It seems quite clear that the variability of the shear force generates warp-

ing normal stresses and, consequently, a consistent redistribution of the σ

stresses, strictly related to the c(x) values, which can have an appreciable

influence on the global and local scantling procedures, especially for all those

loading conditions including quasi-concentrated loads, such as the alternate

holds loading condtion for bulk-carriers.
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1.6 The shear center vertical position

It is well known that in all beam theories the shear forces are assumed to

be applied in correspondence of the section shear center, defined as the point

that permits to avoid torsion. For ship structures, thanks to the symmetry

respect to the xz plane, the shear center will lie on the ship symmetry plane,

so that only its vertical position has to be determined. In the following

paragraph a procedure to determine the shear center vertical position is

proposed, starting from the horizontal bending-shear displacement field; all

the assumptions made in the previous paragraphs will be considered valid

and only the fundamental steps will be pointed out. The displacement field

can be assumed as follows:




u = −ϑH(x)η +
QH

GIζ
χ(η, ζ)

v = v(x)

w = 0

(1.75)

having denoted by ϑH(x) the rotation of the section about the ζ-axis positive

if counter-clockwise, v(x) its η rigid translation, QH the applied horizontal

shear force constant vs. x, Iζ the section moment of inertia about the ζ

axis and χ the horizontal warping function. Thanks to the orthogonality

condition between the section and the elastic surface y = 0:

ϑH(x) =
dv

dx
(1.76)

the mean values of the stress field for the i− th branch are:




σx,i = −E
dϑH

dx
ηi(s)

τxs,i =
QH

Iζ

dχi

ds

(1.77)

with:

ηi(s) = ηm,i +
ηn,i − ηm,i

ℓi
s (1.78)
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and:




χi(s) = χm,i +
[χn,i − χm,i

ℓi
+
ℓi(ηn,i + 2ηm,i)

6

]
s−

[
ηm,i +

ηn,i − ηm,i

3ℓi
s
]s2
2

dχi

ds
=
χn,i − χm,i

ℓi
+
ℓi
6
(ηn,i + 2ηm,i)−

[
ηm,i +

ηn,i − ηm,i

2ℓi
s
]
s

(1.79)

The unknown warping function nodal values can be determined after solving

the following equation system extended, in this case, to the nodes of the

entire cross-section:

n(k)∑

i=1

ti
ℓi

(
χk − χr,i

)
=
1

6

n(k)∑

i=1

tiℓi
(
2ηk + ηr,i

)
(1.80)

having denoted, for each branch concurrent in the k-th-node, by r the node

different from the k-th one. As regards the shear center vertical position,

it can be easily determined taking into account that the horizontal shear, if

applied in correspondence of the section barycenter, can determine a twist

moment, so considering the equivalence of the following systems:

{
G(x), QHj,Mti

}
⇔

{
P (0, ζQ), QHj

}
(1.81)

having denoted by ζQ the unknown vertical position of the shear center as

regards the Cartesian frame sketched in Fig. 1.1. As the two systems must

have the same resultant, the following equality holds:

QH

[
P (0, ζQ)−G(x)

]
× j =Mti (1.82)

from which it follows:

ζQk × j =
Mt

QH
i (1.83)

finally obtaining:

ζQ = −Mt

QH
(1.84)

The twist moment generated by the horizontal shear can be so expressed:

Mt =

∫

A

r × τxss · idA (1.85)

with: r = P −G(x) = ηj + ζk. Denoting by M the number of branches of

the entire cross-section and assuming for all the geometrical and mechanical
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quantities their integral mean values, the eq. (1.85) becomes:

Mt =

M∑

i=1

ti

∫ ℓi

0

[
ri × τxs,isi · i

]
ds (1.86)

so obtaining:

Mt =
QH

Iζ

M∑

i=1

tihi

∫ ℓi

0

dχi

ds
ds (1.87)

with: hi =
ηm,iζn,i − ηn,iζm,i

ℓi
. Finally the vertical position of the shear

center can be easily determined:

ζQ = −

M∑

i=1

tihi

(
χn,i − χm,i

)

Iζ
(1.88)
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Chapter 2

The SV-like bending-shear

theory for thin-walled beams

This chapter focuses on the application of Saint-Venant’s bending-shear

theory to thin-walled beams, generally analyzed assuming the fundamental

Vlasov’s structural hypothesis of maintenance of the cross-section contour.

New relations are obtained for tangential and normal stresses; a numerical

method, based on a Ritz variational procedure, is developed and a procedure to

determine the vertical position of the shear center is presented. Finally, the

fundamental differences between Vlasov’s and Saint-Venant’s theories are

pointed out, particularly for the tangential stress field evaluation, verifying

that the Vlasov’s tangential stress field may be regarded as the limit of the

Saint-Venant’s one, when the material Poisson modulus ν → 0 .

2.1 The displacement field

Let us consider the hull girder cylindrical body as a Saint-Venant solid,

composed of homogeneous and isotropic material, and loaded only on the

two beam-ends, hypothesis certainly true if the external loads are negligi-

ble, if compared to the internal stress characteristics. With reference to the

global and local Cartesian frames schetched in Fig. 1.1 and Fig. 1.2, let us

define by u, v, w the three displacement components in the x, η, ζ directions

respectively. Assuming the Saint-Venant’s hypotheses: body forces’ negleg-
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Chapter 2. The SV-like bending-shear theory for thin-walled beams

ibility, lateral surface unloaded, σy = σz = τyz everywhere in the body, it is

well known that a displacement field is a Saint-Venant field only if it satis-

fies the following conditions:

Navier relations 



εy = εz = −νεx

γyz = 0

(2.1)

Indefinite equilibrium equations




∂τxy

∂x
= 0

∂τxz

∂x
= 0

∂τxy

∂η
+
∂τxz

∂ζ
= −∂σx

∂x

(2.2)

Boundary condition on the lateral unloaded surface

τxyαny + τxzαnz = 0 (2.3)

having defined by ν the Poisson modulus and by αny and αnz the director

cosines of the unit normal vector n, positive outwards. The Saint-Venant’s

bending-shear displacement field can be introduced as follows:





u = ϑ(x)ζ +
Q

GI
ϕ(η, ζ)

v = −ν dϑ
dx
ηζ

w = w0(x) +
ν

2

dϑ

dx

(
η2 − ζ2

)

(2.4)

having denoted by ϑ(x) the section’s rotation about the η-axis, positive if

counter-clockwise; Q the applied vertical shear force, constant vs. x; ϕ(η, ζ)

the warping function and w0(x) the section rigid body motion along the

ζ-axis, connected with the rotation by the geometrical condition of orthgo-

nality between the section and the elastic surface z = 0:

ϑ(x) = −dw0

dx
(2.5)
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As it will be subsequently verified, the condition Q = const. permits to

assume:
d3ϑ

dx3
= 0 (2.6)

so that the equations (2.3) define a Saint-Venant’s displacement field.

2.2 The stress and strain fields

With the previous assumptions and notations, the strain field for small

deformations becomes: 



εx =
dϑ

dx
ζ

εy = −νεx

εz = −νεx

(2.7)

and: 



γxy =
Q

GI

∂ϕ

∂η
− ν d

2ϑ

dx2
ηζ

γxz =
Q

GI

∂ϕ

∂ζ
+
ν

2

d2ϑ

dx2

(
η2 − ζ2

)

γyz = 0

(2.8)

Denoting by E the Young modulus, the inverse Navier relations can be

written as follows:




σx =
E

1 + ν

[
εx +

ν

1− 2ν

(
εx + εy + εz

)]

σy =
E

1 + ν

[
εy +

ν

1− 2ν

(
εx + εy + εz

)]

σz =
E

1 + ν

[
εz +

ν

1− 2ν

(
εx + εy + εz

)]

(2.9)
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and: 



τxy = Gγxy

τxz = Gγxz

τyz = Gγyz

(2.10)

By (2.9) and (2.10), it is immediately possible to verify that the non-null

stress components are:





σx = E
dϑ

dx
ζ

τxy =
Q

I

∂ϕ

∂η
− νGd

2ϑ

dx2
ηζ

τxz =
Q

I

∂ϕ

∂ζ
+G

ν

2

d2ϑ

dx2

(
η2 − ζ2

)

(2.11)

Introducing from now on for each branch of the cross-section the curvilinear

reference system defined in Chapter 1 and denoting by αsy and αsz the

components of the unit tangential vector respect to the η and ζ axes, the

stress field can be rewritten in local curvilinear coordinates as follows:




σx = E
dϑ

dx
ζ(s, n)

τxs =
Q

I

∂ϕ

∂s
+G

ν

2

d2ϑ

dx2

[(
η2 − ζ2

)
αsz − 2ηζαsy

]

τxn =
Q

I

∂ϕ

∂n
+G

ν

2

d2ϑ

dx2

[(
η2 − ζ2

)
αnz − 2ηζαny

]

(2.12)

2.3 The warping function: local and global devel-

opment

First of all, it is convenient to determine the function
d2ϑ

dx2
, connected to

the applied vertical shear Q by the global condition:

M(x) =

∫

A

σxζdA (2.13)
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from which it follows:
dϑ

dx
=
M(x)

EI
(2.14)

and:
d2ϑ

dx2
=

Q

EI
(2.15)

having denoted by A the cross-section domain. The indefinite equilibrium

equation along the beam axis and the relevant boundary condition are:




∂τxy

∂η
+
∂τxz

∂ζ
= −∂σx

∂x
∀P ∈ A

τxn = 0 ∀P ∈ ∂A

(2.16)

By (2.12) and (2.15) the differential problem (2.16) becomes:




∇2ϕ = − 1

1 + ν
ζ ∀P ∈ A

∂ϕ

∂n
=

ν

2(1 + ν)

[
ηζαny −

αnz

2

(
η2 − ζ2

)]
∀P ∈ ∂A

(2.17)

From (2.17) it follows that the warping function must be solution of a Neu-

mann boundary problem associated to the Poisson equation and depends,

by means of the Poisson modulus, on the material, supposed homogeneous

and isotropic and on the cross-section’s geometry. It is well known that the

necessary solvability condition for a Neumann boundary problem associated

to the Poisson equation is the following one:
∫

∂A

∂ϕ

∂n
ds =

∫

A

∇2ϕdA (2.18)

Thanks to the second of (2.17) the first member of (2.18) can be rewritten

as follows:
∫

∂A

∂ϕ

∂n
ds =

ν

2(1 + ν)

∫

A

[
ηζαny −

αnz

2

(
η2 − ζ2

)]
dA (2.19)

and then, thanks to the Gauss theoreme, it becomes:
∫

∂A

∂ϕ

∂n
ds =

ν

2(1 + ν)

∫

A

[ ∂
∂η

(
ηζ

)
− 1

2

∂

∂ζ

(
η2 − ζ2

)]
dA (2.20)

so obtaining: ∫

∂A

∂ϕ

∂n
ds =

ν

(1 + ν)

∫

A

ζdA = 0 (2.21)
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as the ζ axis passes through the section’s centroid. Finally, the necessary

solvability condition (2.18) can be rewritten as follows:
∫

A

∇2ϕdA = 0 (2.22)

so that, thanks to the first of (2.17), it is always verified. It is also possible

to verify immediately that the tangential stress field obtained after solving

the problem (2.17) automatically balances the vertical shear; in other terms

the following global condition must be verified:
∫

A

τxzdA = Q (2.23)

Starting from the third of (2.11), by (2.15), the left hand side of (2.23) can

be so rewritten:

Q

I

[ ∫

A

∂ϕ

∂ζ
dA+

ν

4(1 + ν)

(
Iζ − I

)]
= Q (2.24)

having denoted by Iζ the section moment of inertia as regards the ζ axis.

Applying now the generalized integration by parts formula and then the

Gauss theoreme, the following equality holds:
∫

A

∂ϕ

∂ζ
dA =

∫

∂A

∂ϕ

∂n
ζds−

∫

A

∇2ϕζdA =
ν

4(1 + ν)

[(
5 +

4

ν

)
I − Iζ

]
(2.25)

Finally, substituting the eq. (2.25) into the (2.24) it is simply possible to

verify that the equation (2.23) becomes an identity. Now, the negligibility

of the thickness branch as regards its length permits, without great errors,

to neglect the dependence of the function η(s, n) and ζ(s, n) on the variable

n, regarding them as functions of the only curvilinear abscissa s, evaluated

on the branch center line. Denoting, from now on, by ℓi and ti the length

and the thickness of the i-th branch and by m, i and n, i, with m, i < n, i

the initial and final nodes of each branch, these functions can be expressed

as follows:

ηi(s) = ηm,i +
ηn,i − ηm,i

ℓi
s ; ζi(s) = ζm,i +

ζn,i − ζm,i

ℓi
s (2.26)

Furthermore, the warping function ϕ(s, n) can be expressed as the sum of

two terms: the first one ϕ(s) constant through the thickness and defined on

the branch center line, the second one ψ(s, n) determined assuming that the
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tangential stress component τxn, null on the beam boundary surface, is null

along the thickness too, thanks to its smallness:

ϕ(s, n) = ϕ(s) + ψ(s, n) (2.27)

Thanks to the condition τxn = 0, the restriction of the function ψ(s, n) to

the i-th branch remains uniquely determined:

ψi(s.n) = −
ν

4(1 + ν)

[(
η2

i − ζ
2
i

)
αnz − 2ηiζiαny

]
n (2.28)

Now, denoting by ϕm,i and ϕn,i the unknown values of the warping func-

tion in correspondence of the initial and final nodes of each branch, the

other component can be obtained as a solution of the following differential

problem, whose local form relative to the i-th branch, is:





d2ϕi

ds2
= −kνζi(s)

ϕi(0) = ϕm,i ; ϕi(li) = ϕn,i

(2.29)

with kν =
2 + ν

2 + 2ν
. The assumption τxn = 0 ∀(s, n) =

[
0, li

]
×

[
− ti
2
,
ti
2

]

implies that the tangential stress field τxs doesn’t necessary balance the

vertical shear, so that it is necessary to modify the differential problem,

adding an unknown constant k:





d2ϕi

ds2
= −kν

k
ζi(s)

ϕi(0) = ϕm,i ; ϕi(li) = ϕn,i

(2.30)

The constant k can be determined from the following global condition:

Q =

∫

A

τxsαszdA =
Q

I

∫

A

∂ϕ

∂s
αszdA+

ν

4(1 + ν)

∫

A

[(
η2−ζ2

)
α2

sz−2ηζαsyαsz

]
dA

(2.31)

Applying the generalized integration by parts formula, the following equality

holds:

∫

A

∂2ϕ

∂s2
ζdA =

∫

∂A

∂ϕ

∂s
ζ
(
s · n

)
ds−

∫

A

∂ϕ

∂s
αszdA =

kν

k
I (2.32)
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Taking into account that s · n = 0 and substituting the eq. (2.32) into the

(2.31) the unknown constant k can be immediately obtained:

k =
kν

1− ν

4(1 + ν)I

∫

A

[(
η2 − ζ2

)
α2

sz − 2ηζαsyαsz

]
dA

(2.33)

Finally, the differential problem to be solved can be rewritten as follows:





d2ϕi

ds2
= −ρζi(s)

ϕi(0) = ϕm,i ; ϕi(li) = ϕn,i

(2.34)

with:

ρ = 1− ν

4(1 + ν)I

∫

A

[(
η2 − ζ2

)
α2

sz − 2ηζαsyαsz

]
dA (2.35)

It is noticed that this corrective constant ρ for ship structures generally as-

sumes values comprised between 0.92 and 0.94, so that it is very near to the

unity. Furthermore it appears clear that when the Poisson modulus ν → 0,

then ρ → 1, so that the problem (2.34) coincides with the one obtained

applying the Vlasov’s theory. In other terms, this constant permits to ap-

proximately take into account the effect of the section lateral contraction

for thin-walled beams, assumed null in the classical theories of thin-walled

beams, where the shape of the section is totally preserved after the applica-

tion of the external loads.

2.4 Minimum of the Euler-Lagrange functional

Starting from the problem (2.30), that represents the local approximate

form of (2.17), the warping function and its first derivative are uniquely

determined:




ϕi(s) = ϕm,i +
[ϕn,i − ϕm,i

ℓi
+ ρ

ℓi(ζn,i + 2ζm,i)

6

]
s− ρ

[
ζm,i +

ζn,i − ζm,i

3ℓi
s
]s2
2

dϕi

ds
=
ϕn,i − ϕm,i

ℓi
+ ρ

ℓi
6
(ζn,i + 2ζm,i)− ρ

[
ζm,i +

ζn,i − ζm,i

2ℓi
s
]
s

(2.36)
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As far as the ϕ nodal values are concerned, their numerical determination

can be carried out by the resolution of a variational problem, whose Euler’s

equation is the first of (2.34). It’s well known (e.g.: [18]) that solving the

Poisson equation with some boundary conditions is equivalent to finding

the function that satisfies the same boundary conditions and minimizes the

corresponding Euler-Lagrange functional, that can be written, according to

the introduced notation, as follows:

U =

∫

A

[(dϕ
ds

)2
− 2ρϕζ

]
dA (2.37)

So, denoting by N the number of branches of the half-section, thanks to the

ship symmetry respect to the xz plane, the functional can be so rewritten:

U = 2
N∑

i=1

ti

∫ ℓi

0

[(dϕi

ds

)2
− 2ρϕiζi

]
ds (2.38)

To determine the warping function nodal values, it is necessary to search

for the extremals of the functional U . The stationarity condition permits to

write P linear equations, if P is the nodes number on the half-section:

∂

∂ϕk

N∑

i=1

ti

∫ ℓi

0

[(dϕi

ds

)2
− 2ρϕiζi

]
ds = 0 for k = 1...P (2.39)

The uniform continuity of the under integral functions allows the derivation

under the integral sign, so obtaining:

n(k)∑

i=1

ti

∫ ℓi

0

∂

∂ϕk

[(dϕi

ds

)2
− 2ρϕiζi

]
ds = 0 (2.40)

having denoted by n(k) the number of branches concurrent in the k-th-node.

The eq. (2.40) can be rewritten as follows:

n(k)∑

i=1

ti

∫ ℓi

0

[dϕi

ds

∂

∂ϕk

(dϕi

ds

)
− ρζi

∂

∂ϕk

ϕi

]
ds = 0 (2.41)

finally becoming:

n(k)∑

i=1

ti
ℓi

(
ϕk − ϕr,i

)
=
1

6
ρ

n(k)∑

i=1

tiℓi
(
2ζk + ζr,i

)
(2.42)
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Chapter 2. The SV-like bending-shear theory for thin-walled beams

having denoted, for each branch concurrent in the k-th-node, by r the node

different from the k-th one. Obviously, as the solution of a Neumann bound-

ary problem is always indetermined, to make the solution determined, it is

necessary to impose the condition ϕi = const. in correspondence of what-

ever node. Also in this case it is immediately possible to verify that if ρ→ 1

the equation system coincides with the one obtained applying the Vlasov’s

theory.

2.5 Analysis of the stress field

Considering the restriction to the i-th branch of the stress field, the axial

stress component reduces to the Navier one:

σx,i =
M(x)

I
ζi(s) (2.43)

while the tangential component can be expressed as the sum of two terms,

the first one depending on the first derivative of the warping function, the

second one instead depending on the branch position over the cross-section:

τxs,i = τϕ,i(s) + τ g,i(s) =
Q

I

dϕi

ds
+
Q

I

ν

4(1 + ν)

[(
η2

i − ζ
2
i

)dζi

ds
− 2ηiζi

dηi

ds

]

(2.44)

In order to determine the warping function nodal values it is preliminarily

necessary to evaluate the corrective factor ρ that can be easily obtained as

follows:

ρ = 1− ν

6(1 + ν)I

(
A1 −A2 −A3

)
(2.45)

with:




A1 =

N∑

i=1

ti
ℓi

(
ηn,i − ηm,i

)(
ζn,i − ζm,i

)(
2ηm,iζm,i + 2ηn,iζn,i + ηm,iζn,i + ηn,iζm,i

)

A2 =

N∑

i=1

ti
ℓi

(
ζm,i − ζn,i

)2(
η2

m,i + η2
n,i + ηm,iηn,i

)

A3 =

N∑

i=1

ti
ℓi

(
ζm,i − ζn,i

)2(
ζ
2
m,i + ζ

2
n,i + ζm,iζn,i

)

(2.46)
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Also in this case the Vlasov tangetial stress field can be obtained imposing

the condition ν → 0.

2.6 The shear center vertical position

Similarly to Chapter 1, in order to determine the shear center verti-

cal position (the only interesting coordinate for ship structures, symmetric

respect to the xz plane), it is necessary to start from the Saint-Venant hor-

izontal bending-shear stress field. According to the introduced symbols and

notations the Saint-Venant displacement field can be so expressed:





u = ϑH(x)ζ +
QH

GI
χ(η, ζ)

v = v0(x) +
ν

2

dϑH

dx

(
η2 − ζ2

)

w = ν
dϑH

dx
ηζ

(2.47)

having defined by QH the horizontal shear, χ(η, ζ) the horizontal warping

function, v0 the rigid body motion of the section along the η axis and ϑH(x)

its rigid rotation around the ζ axis, connected to v0(x) by the geometrical

condition of orthogonality between the section and the elastic surface:

ϑH(x) =
dv0
dx

(2.48)

Assuming all the hypotheses relative to the vertical bending-shear stress

case, the restrictions to the i-thbranch of the mean stress components can

be easily obtained:





σx,i = −
MH

Iζ
ηi(s)

τxs,i = τχ,i(s) + τ g,i(s) =
QH

Iζ

dχi

ds
+

ν

4(1 + ν)

QH

Iζ

[(
ζ
2
i − η2

i

)dηi

ds
− 2ηiζi

dζi

ds

]

(2.49)

The mean value of the warping function can be obtained as solution of the

following equation system, extended in this case to the nodes of the entire
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cross-section:

n(k)∑

i=1

ti
ℓi

(
χk − χr,i

)
=
1

6
ρH

n(k)∑

i=1

tiℓi
(
2ηk + ηr,i

)
(2.50)

The corrective constant ρH can be expressed similarly to the previously

described case:

ρH = 1− ν

12(1 + ν)Iζ

(
H1 −H2 −H3

)
(2.51)

with:





H1 =
M∑

i=1

ti
ℓi

(
ηm,i − ηn,i

)2(
ζ
2
m,i + ζ

2
n,i + ζm,iζn,i

)

H2 =

M∑

i=1

ti
ℓi

(
ηn,i − ηm,i

)(
ζn,i − ζm,i

)(
2ηm,iζm,i + 2ηn,iζn,i + ηm,iζn,i + ηn,iζm,i

)

H3 =
M∑

i=1

ti
ℓi

(
ηm,i − ηn,i

)2(
η2

m,i + η2
n,i + ηm,iηn,i

)

(2.52)

having denoted by M the branches of the entire cross-section. Concerning

the shear center vertical position, similarly to Chapter 1, it can be deter-

mined starting from (1.84) and (1.85), from which it follows:

ζQ = −

M∑

i=1

tihi

∫ ℓi

0

dχi

ds
ds− ν

4(1 + ν)

M∑

i=1

tihi

∫ ℓi

0

[(
η2

i − ζ
2
i

)dηi

ds
+ 2ηiζi

dζi

ds

]
ds

Iζ
(2.53)

whence:

ζQ = −

M∑

i=1

tihi

(
χn,i − χm,i

)
− ν

4(1 + ν)

M∑

i=1

tihi

(
ZI

i + ZII
i

)

Iζ
(2.54)

with:




ZI
i =

ζn,i − ζm,i

3

(
2ηm,iζm,i + 2ηn,iζn,i + ηm,iζn,i + ηn,iζm,i

)

ZII
i =

ηn,i − ηm,i

3

(
η2

m,i + η2
n,i + ηm,iηn,i − ζ

2
m,i − ζ

2
n,i − ζm,iζn,i

)

(2.55)
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Comparing the expression (1.88) with this last one, a corrective term ap-

pears. Particularly, also in this case when ν → 0 the corrective term becomes

null and the horizontal warping function coincides with the Vlasov’s one. So

it is possible to adfirm that, starting from the bending-shear Saint-Venant

displacement field applied to thin-walled beams, the Vlasov’s theory can be

easily obtained as a particular case when the Poisson modulus is fixed equal

to zero.
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Chapter 3

The refined theory of

non-uniform torsion

In this chapter the problem of the elastic equilibrium of a thin-walled

beam subjected to a variable torque and restrained at both ends is discussed

from the beginning, assuming the fundamental hypothesis of Kollbrunner

and Hajdin, based on the assumption that the longitudinal distribution of

the warping deformations is an arbitrary function independent of the unit

twist angle. Despite the classical theories, the effective longitudinal distri-

bution of the applied torque, given by RINA Rules 2009, is taken into due

consideration to determine the longitudinal distribution of the warping func-

tion and the unit twist angle, imposing that the unit twist angle is null in

correspondence of the extremities of a single hull module. Furthermore, as a

still unsolved problem is the role of transverse bulkheads, generally assumed

as perfectly rigid in the evaluation of the bimoment longitudinal distribution,

a method, based on a global energy approach, is presented to take into ac-

count the deformability of transverse bulkheads, schematized as orthotropic

plates.

3.1 The displacement field

The classical theory of non-uniform torsion in thin-walled beams, nor-

mally known as theory of sectorial areas, was initially developed by Vlasov,
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Chapter 3. The refined theory of non-uniform torsion

1941 and Timoshenko, 1945, for beams with monoconnected cross-section,

and generalized by Kármán and Christensen, 1944, for beams with a generic

cross-section. The theory is based on the subdivision of the tangential stress

flow, produced by the applied twist moment, into two parts: the primary

and the secondary one. The primary flow, typical of the Saint-Venant’s the-

ory, is associated to the so-called pure torsion; the secondary one, instead, is

associated to the tangential stress field connected, for the equilibrium, to the

normal one caused by a non-uniform warping of the beam cross-section, due

to the primary flow. This theory, however, neglects the warping produced

by the secondary stress flow that, in some cases, can be as considerable as

the primary one.

The fundamental hypothesis that, from now on, will be done, is the trans-

verse indeformability of the beam cross-section. This hypothesis, typical

of the theory of sectorial areas, can be considered sufficiently true, thanks

to the presence of transverse frames that prevent shape variations of the

beam cross-section. Furthermore, thanks to their neglegible bending stiff-

ness around the in-plane axes, these frames gain no resistance to any longi-

tudinal deformation of the cross-section. Let us regard the hull girder cylin-

drical body as a thin-walled beam, composed of homogeneous and isotropic

material, and let us suppose that the external loads are negligible respect

to the ones of the internal stress characteristics. Let us define the global

Cartesian frame, sketched in Fig. 1.1, with origin G in correspondence of

the amidships structural section centre, and y, z axes defined in the section

plane and coinciding with the section principal axes of inertia. Let us also

define the local Cartesian frame, with origin G(x) in correspondence of the

cross-structural section at the x-abscissa, x-axis coinciding with the global

one and η, ζ axes defined in the section plane and coinciding with the prin-

cipal axes of inertia of the section at x-abscissa.

In the hypothesis of pure torsion, assuming that the cross-sections rotation

occurs around the shear centre, denoting by u, v, w the three displacement

components in the x, η,ζ directions respectively, with a mixed P (x, η, ζ)

representation, and applying to the first function a by parts decomposition,
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Chapter 3. The refined theory of non-uniform torsion

the displacement field can be expressed as follows:





u = −θ(x)ω(η, ζ)
v = −ϑt(x)

(
ζ − ζQ

)

w = ϑt(x)η

(3.1)

where θ(x) is the axial displacement function, ω(η, ζ) is the warping func-

tion, ϑt(x) is the section’s rotation about an axis parallel to the x-axis and

passing through the shear center, positive counter-clockwise , ζQ is the verti-

cal position of the shear center; the transverse component of the shear center

ηQ was assumed directly null, because of the symmetry of ship structures as

regards the xz plane. It is noticed that the displacement field (3.1) differs

from the Vlasov’s one for the axial component, which is assumed directly

equal to u = −ϑ1(x)ω(η, ζ) having defined the unit twist angle as the first

derivative of the section’s rotation:

ϑ1(x) =
dϑt

dx
(3.2)

3.2 The strain and stress fields

With the previous assumptions and notations, the strain components

(for small deformation) are then given by:





εx = −
dθ

dx
ω(η, ζ)

γxy = −θ(x)
∂ω

∂η
− ϑ1(ζ − ζQ)

γxz = −θ(x)
∂ω

∂ζ
+ ϑ1η

εy = εz = γyz = 0

(3.3)

Introducing the orthogonal curvelinear coordinate system defined in Fig-

ure 1.2 with:

• s the curvilinear abscissa on the median line, with the O origin in one

of the two extremities (nodes) of the line;
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• n the linear abscissa on the thickness line through the considered point
P , with origin on ℓ;

• ξ = x−x (with: x = global coordinate of the considered cross-section)

the linear abscissa with origin in O, on the parallel through O, to the

x-axis of the global frame.

and applying the relations γpq = 2
(
Eep

)
·eq for p 6= q and εp =

(
Eep

)
·ep

for p = q, it is possible to rewrite the strain components respect to the local

curvlinear coordinate system, having denoted byE the strain tensor, written

with regard to the orthonormal basis {i, j,k}, and by ep the unit vector of

the local coordinate system relative to the orthonormal basis. Denoting by

ω(s, n) the function composed of the three ones: ω(η, ζ), η(s, n) and ζ(s, n),

by αij the director cosine of the unit vector i of the local coordinate system

as regards the unit vector j of the orthonormal basis, the strain field written

with regard to the local curvilinear coordinate system, becomes:




εx = −
dθ

dx
ω(s, n)

γxs = −θ(x)
∂ω

∂s
+ ϑ1

[
ηαsz −

(
ζ − ζQ

)
αsy

]

γxn = −θ(x)
∂ω

∂n
+ ϑ1

[
ηαnz −

(
ζ − ζQ

)
αny

]

εs = εn = γsn = 0

(3.4)

Denoting by E, G and ν the Young, Coulomb, and Poisson modulus respec-

tively and taking into account that only σx, σs and τxs are elastic stresses,

the Navier equations can be specialized as follows:




σx =
E

1− ν2
εx

σs = νσx

τxs = Gγxs

(3.5)

Now, according to the Hencky-Von Mises criterion, the ideal stress reduces

for steel (ν = 0.3) to σid. =
√
0.954E2ε2x + 3τ2

xs which is slightly lower than
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the values obtained taking σx = Eεx and σs = 0, as it is currently made in

favour of safety, so that the stress field can be so simplified:





σx = Eεx

τxs = Gγxs

(3.6)

3.3 The warping function: local and global devel-

opment

Concerning the indefinite and boundary equations, the only ones, rele-

vant in the study of the hull girder strength, are the x-projections. In the

further hypothesis of cylindrical body, assuming n · i = 0, the equlibrium

conditions inside the body and on the boundary become:





∂τxs

∂s
+
∂τxn

∂n
= −∂σx

∂x
∀P ∈ A

τxn = 0 ∀P ∈ ∂A

(3.7)

having denoted by A the cross-section domain and by ∂A its frontier. It

is easy to verify that the full respect of (3.7) implies the warping function

variability vs. x and, consequently, the rigorous unacceptability of the hy-

pothesis about the u function. The normally applied method assumes for the

ω differential condition the same solution of the uniform torsion problem:





∇2ω = 0 ∀P ∈ A

∂ω

∂n
= ηαnz −

(
ζ − ζQ

)
αny ∀P ∈ ∂A

(3.8)

having denoted by αny and αnz the director cosines of the unit normal

vector, positive outwards. Concerning the necessary solvability condition of

a Neumann boundary problem associated to the Laplace equation, it is well

known that this problem admits a solution if the following global condition

is verified: ∫

∂A

∂ω

∂n
ds = 0 (3.9)
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Substituting the second of (3.8) in the (3.9) and applying the Gauss theo-

reme, it is possible to verify that the previously defined condition is always

verified: ∫

A

[ ∂
∂ζ
η
]
dA−

∫

A

[ ∂
∂η

(
ζ − ζQ

)]
dA = 0 (3.10)

The negligibility of the thickness branch allows to assume all the geometrical

and mechanical quantities uniformly distributed along the thickness with

their mean values, what implies for straight branches that:

ηi(s) = ηi(s) = ηm,i +
ηn,i − ηm,i

ℓi
s ; ζi(s) = ζi(s) = ζm,i +

ζn,i − ζm,i

ℓi
s

(3.11)

having denoted, for the i-th branch, by ηi(s) and ζi(s) the mean values,

ηi(s) and ζi(s) the values on the mean line, by ℓi and ti the lenght and

the thickness of the branch and by the suffixes m and n the initial and

final nodes. Consequently it is also possible to assume the restriction to the

i−th branch ∂ωi

∂n
uniformly distributed on the thickness with its mean value

∂ωi

∂n
= ηiαnz,i −

(
ζi − ζQ

)
αny,i where the following equalities hold:

αsy,i = −αnz,i =
dηi

ds
=
ηn,i − ηm,i

ℓi
(3.12)

αsz,i = αny,i =
dζi
ds

=
ζn,i − ζm,i

ℓi
(3.13)

The restriction of the warping function to the i− th branch can be seen as
the sum of terms: the first one ωi(s) variable with the curvilinear abscissa

s, the second one χi(s, n) variable along the thickness and the branch and

null in correspondence of the median line:

ωi(s, n) = ωi(s) + χi(s, n) with χi(s, 0) = 0 (3.14)

and χi(s, n) =
[
ηiαnz,i −

(
ζi − ζQ

)
αny,i

]
n. It is noticed that the expression

(3.14) implicitly satisfies the Laplace equation ∇2χi = 0 with the relevant

Neumann boundary condition. On the other hand, the mean values of the

warping function may be obtained as solution of the following differential

problem: 



d2ωi

ds2
= 0 ∀s ∈

[
0, ℓi

]

ωi(0) = ωm,i ; ωi(ℓi) = ωn,i

(3.15)
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having denoted by ωm,i and ωn,i the unknown values of the warping func-

tion in correspondence of the initial and final nodes. Obviously, to make the

solution determined, it is sufficient to impose the condition ωi = 0 in corre-

spondence of wathever node. From the problem (3.15) it also follows that

the mean value of the warping function varies linearly along each branch

according to the following law:

ωi(s) = ωm,i +
ωn,i − ωm,i

ℓi
s (3.16)

Similarly, it is possible to introduce the mean value of the tangential stress

component:

τxs,i =
1

ti

∫ ti
2

−
ti
2

τxs,idn = G
[
ϑ1(x)hi(s)− θ(x)

dωi

ds

]
s (3.17)

with hi(s) = hi = ηi(s)αsz,i−
(
ζi(s)−ζQ

)
αsy,i = ηm,iαsz,i−

(
ζm,i−ζQ

)
αsy,i.

Thanks to these assumptions for multiconnected cross-sections, denoting by

M the number of branches of the entire cross-section, the tangetial stress

field must also verify the following global condition in which the applied

external torque appears:

Mt(x) =

M∑

i=1

ti

∫ ℓi

o

τxs,ihids = G
[
ϑ1(x)Ihh − θ(x)Ih∂ω

]
(3.18)

having done the following positions:

Ihh =
M∑

i=1

ti

∫ ℓi

0
h2

i ds , Ih∂ω =
M∑

i=1

ti

∫ ℓi

0
hi
∂ωi

∂s
ds (3.19)

The compatibility condition between the functions ϑ1(x) and θ(x) can be

established by the principle of virtual works. The external work is the sum

of the one done by the applied torque and the one done by the increment

of the normal stresses σx over dx. This external work must be equal to the

internal work absorbed by the shear stresses, so obtaining:

Mt(x)ϑ1(x) +

∫

A

∂σx

∂x
udA = G

∫

A

γ2
xsdA (3.20)

The second member of (3.20) can be rewritten as follows:

ϑ1

∫

A

τxsh(s)dA− θ(x)
∫

A

τxs
∂ω

∂s
dA (3.21)
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so that, by (3.18), and taking into account that
∂u

∂s
= −θ(x)∂ω

∂s
the com-

patibility condition (3.19) becomes:
∫

A

∂σx

∂x
udA =

∫

A

τxs
∂u

∂s
dA (3.22)

whence:

2
(
1 + ν

)d2θ

dx2
Iωω = θ(x)I∂ω∂ω − ϑ1Ih∂ω (3.23)

having done the following positions:

Iωω =
M∑

i=1

ti

∫ ℓi

0
ω2

i ds ; I∂ω∂ω =
M∑

i=1

ti

∫ ℓi

0

(dωi

ds

)2
ds (3.24)

The term
d2θ

dx2
can be easily obtained considering the second order derivative

of (3.20), whence:
d2θ

dx2
= ρ

d2ϑ1

dx2
− 1

GIh∂ω

dmt

dx
(3.25)

having done the positions mt(x) =
dMt

dx
and ρ =

Ihh

Ih∂ω
. By (3.23) and (3.25)

the function θ(x) can be expressed as follows:

θ(x) = ϑ1 + 2
(
1 + ν

) Iωω

Ih∂ω

[
ρ
d2ϑ1

dx2
− 1

GIh∂ω

dmt

dx

]
(3.26)

Finally, substituting the eq. (3.26) into the (3.20), it is possible to obtain

the warping equation:

Gϑ1

(
Ihh − Ih∂ω

)
− ρEIωω

d2ϑ1

dx2
=Mt(x)− kt

dmt

dx
(3.27)

having done the position:

kt = 2
(
1 + ν

) Iωω

Ih∂ω
(3.28)

According to the classical theory of warping restrained torsion, it is possible

to introduce the beam torsional modulus It = Ihh − Ih∂ω and the beam

warping modulus Iw = ρIωω, so that the left hand side of the warping

equation can be considered as the sum of two terms: the first one Tt = GItϑ1

relative to the pure torsional part, the second one Tw = −EIw d2ϑ1

dx2 relative

to the warping contribution:

GItϑ1 − EIw
d2ϑ1

dx2
=Mt(x)− kt

dmt

dx
(3.29)
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3.4 The classical solution of the warping equation

In the classical warping restrained theory, it is assumed that the beam,

of length 2L, is warping restrained at both ends and is loaded at the two

extremities by a torque Mt. Considering the first order derivative of (3.29)

the warping equation can be rewritten as follows:

GIt
d2ϑt

dx2
− EIw

d4ϑt

dx4
= 0 (3.30)

Its general solution reads: ϑt(x) = A0+A1x+A2cosh
(√

βx
)
+A3sinh

(√
βx

)
,

having done the position β =
GIt
EIw

. First of all, thanks to the symmetry of

the beam and the antysymmetry of the loading, the following two boundary

conditions can be written:




ϑt(x = 0) = 0

ϑt(x = x+) = −ϑt(x = x−) = −ϑt(x = −x+)

(3.31)

from which it follows that A0 = A2 = 0. The other two coefficients can be

determined by the following two other boundary conditions:




dϑt

dx

(
x = L

)
= 0

d3ϑt

dx3

(
x = L

)
= 0

(3.32)

from which it follows that ϑt(x) =
MtL

GIt

[x
L
− sinh

(√
βL

)
√
βLcosh

(√
βL

)
]
. The two

parts of the section forces, i.e. the pure twisting and the warping ones can

be expressed as follows:

Tt =Mt

[
1− cosh

(√
βx

)

cosh
(√
βL

)
]
; Tw =

cosh
(√
βx

)

cosh
(√
βL

) (3.33)

In the following figure the
Tw

Mt
distribution is shown for different values of

√
βL: it is possible to verify that close to the support the warping torque

alone counteracts the external torque Mt, while close to the mid span this

term may be of little significance. Furthermore, larger is the value
√
βL,

smaller is the region where the warping torque is dominant. According to
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Figure 3.1: Warping torque distribution

the classical theories of warping restrained torsion, it is possible to introduce

the bimoment sectional force, defined as follows:

B = −EIw
d2ϑt

dx2
=Mt

sinh
(√
βx

)
√
βcosh

(√
βL

) (3.34)

From (3.34), it is possible to verify that the largest value of the bimoment

occurs near the supports. It is of interest to know how far from the support

this generalized sectional force has any significant influence. Particularly,

when
√
βL = 0 the bimoment decays at least at a linear rate between the

support and the middle span.

3.5 The still water and wave torque

For ship structures the total torque is, as usual, the sum of a a still

water term and a wave one. According to RINA Rules 2009, the still water

torque must be considered only for containerships: in this case (see Part E

Ch2,Sec2) the still water torque Mt,SW induced by the non-uniform distri-

bution of cargo, consumable liquids and ballast, may be obtained in kNm
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Figure 3.2: Bimoment distribution

at any hull transverse section, by the following formula:

Mt,SW = 31.4STcBFT (x) (3.35)

where:

• B is the ship breadth in m;

• S is the number of container stacks over the breadth B;

• Tc is the number of container tiers in cargo hold amidships (excluding

containers on deck or on hatch covers);

• FT (x) is the longitudinal distribution factor as function of the x-

coordinate of the hull transverse section (it is noticed that the expres-

sion suggested by RINA Rules doesn’t coincide with the one adopted

from now on, as the RINA reference co-ordinate system has the origin

in correspondence of the ship aft extremity).

The distribution factor FT (x) is linear with a maximum in correspondence

of the amidships (see figure 3.3) ; denoting by L the ship scantling length it
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Figure 3.3: Static torque distribution

can be expressed as follows:





FT (x) = 0.5− x

L
∀x ∈

[
0,
L

2

]

FT (x) = 0.5 +
x

L
∀x ∈

[
− L

2
, 0

[
(3.36)

The wave torque, instead, can be expressed according to PartB, Ch5, Sec2,

considering the ship in two different conditions:

• condition 1 : ship direction forming an angle of 60 deg with the pre-

vailing sea direction;

• condition 2 : ship direction forming an angle of 120 deg with the pre-

vailing sea direction.

The wave torque, calculated as regards the section center of torsion, can be

expressed for the first and second condition respectively, as follows:

Mt,WT−1 = a1

{
1− cos

[
π
(2x
L
+ 1

)]}
+ a2sin

[
π
(2x
L
+ 1

)]
(3.37)
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Figure 3.4: Wave torque distribution - condition 1

and:

Mt,WT−2 = a1

{
1− cos

[
π
(
1− 2x

L

)]}
+ a2sin

[
π
(
1− 2x

L

)]
(3.38)

with: 



a1 =
HL

4
nCM

a2 =
HL

4
nCQd

(3.39)

having done the following positions:

• H is the wave parameter so defined: H = 8.13−
(250− 0.7L

125

)2
;

• n is the navigation coefficient, equal to one for unrestricted navigation;

• CM is the wave torque coefficient so defined: CM = 0.38B2C2
W ;

• CW is the waterplane coefficient, to be taken not greater than the

value obtained from the following formula: CW = 0.165+0.95CB with

CB block coefficient, to be taken not less than 0.6;
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Figure 3.5: Wave torque distribution - condition 2

• CQ is the horizontal wave shear coefficient so defined: CQ = 2.8TCB

with T scantling draught in m;

• d is the vertical distance, in m, from the center of torsion to a point

located at 0.6T above the baseline.

In the following figures the wave torque distribution for the loading condi-

tions 1 and 2 respectively is shown.

3.6 Solution of the warping equation for ship struc-

tures

In this section the solution of the warping equation (3.29) is obtained,

assuming as external torque the static and wave components obtained by

(3.35), (3.37) and (3.38). The solution may be obtained in the following

form:

ϑ1(x) = A1sinh
(√

βx
)
+A2cosh

(√
βx

)
+ ϑP (x) (3.40)
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where ϑP (x) represents its particular solution. Considering the sum of the

static term and the wave component of the applied torque, for the loading

conditions 1 and 2 respectively, it can be expressed as follows:

ϑP−I =
Mt,SW + a1

β1
−
(
1+

4π2

L2
kt

)a1cos
[
π
(2x
L
+ 1

)]
− a2sin

[
π
(2x
L
+ 1

)]

β1 +
4π2

L2
β2

(3.41)

and:

ϑP−II =
Mt,SW + a1

β1
−
(
1+

4π2

L2
kt

)a1cos
[
π
(
1− 2x

L

)]
− a2sin

[
π
(
1− 2x

L

)]

β1 +
4π2

L2
β2

(3.42)

having done the positions: β1 = GIt and β2 = EIw. Concerning the two

boundary conditions, as the warping of a ship hull subjected to torsion is

restrained in correspondence of two adjacent bulkheads, considering a single

hold between the abscissa x1 and x2, it is possible to assume:

ϑ1(x1) = ϑ1(x2) = 0 (3.43)

So, denoting by β =
β1

β2
, the two constants A1 and A2 are solution of the

following equation system:




cosh
(√

βx1

)
A1 + sinh

(√
βx1

)
A2 = −ϑP (x1)

cosh
(√

βx2

)
A2 + sinh

(√
βx2

)
A2 = −ϑP (x2)

(3.44)

3.7 Minimum of the Euler-Lagrange functional

It is well known that solving the Laplace equation with some boundary

conditions is equivalent to find the function satisfying the same boundary

conditions that minimizes the functional:

U =

∫

A

|∇ω|2dA (3.45)

which is equal to the Euler-Lagrange functional of the equation ∇2ω = 0.

Thanks to the eq. (3.14) the eq. (3.45) can be rewritten as follows:

U =
N∑

i=1

ti

∫ ℓi

0

(dωi

ds

)2
ds (3.46)
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The stationarity condition permits to write P linear equation, if P is the

node’s number of the entire cross-section:

∂

∂ωk

N∑

i=1

ti

∫ ℓi

0

(dωi

ds

)2
ds = 0 for k = 1...P (3.47)

so that, denoting on each branch concurrent in the k − th node by r, i the

node different from the k − th one, the following system is obtained:

n(k)∑

i=1

ti
ℓi

(
ωk − ωr,i

)
=

n(k)∑

i=1

±hi (3.48)

where, with reference to the second member, it is necessary to introduce

the plus sign when the index k > r, i and the minus sign when k < r, i.

As the equation system is obviously indetermined, to make it determined

it is sufficient to impose the condition ωi = 0 in whatever node of the

section. Furthermore, as the axial stress field must be equivalent to zero,

the following sectional conditions must be always satisfied:

∫

A

ωdA =

∫

A

ωηdA =

∫

A

ωζdA = 0 (3.49)

For ships structures, whose transverse section is symmetric as regards the ζ

axis, the first and the third conditions are implicitly satisfied, if the equation

system is solved imposing the condition ωi = 0 in correspondence of a node

belonging to the ζ axis. The second condition, instead, is verified only if

the rotation occurs around the shear center: so if the vertical position of

the shear center is preliminary known, the second integral is null; otherwise

assuming preliminarily ζQ = 0, it is possible to obtain another distribution of

the warping function ω̃, solution of the equation system (3.48) and connected

to ω by the following relation, according to Vlasov’s theory:

ω = ω̃ + ηζQ (3.50)

Finally, by the second of (3.49) it is possible to determine the vertical posi-

tion of the shear center:

ζQ = −

∫

A

ω̃ηdA

Iζ
(3.51)
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3.8 The stress field

As it is well known the warping stresses define a new balanced generalized

force system, namely the bimoment, so defined:

B =

∫

A

σxωdA = −EIωω
dθ

dx
(3.52)

from which it is possible to express the mean values of the stress field for

the i− th as follows:




σx,i =
B

Iωω

(
ωm,i +

ωn,i − ωm,i

ℓi
s
)

τxs,i = G
(
ϑ1(x)hi − θ(x)

ωn,i − ωm,i

ℓi

)
(3.53)

3.9 Effect of transverse bulkheads

As a dry cargo hull consists of both open and closed cross-sections, ac-

cording to Senjanović t al., it is possible to take into account the effect of

transverse bulkheads substituting the section torsional modulus It by an

equivalent torsional modulus I∗t defined as follows:

I∗t = It + Ib (3.54)

where Ib is the bulkhead contribution, sum of two terms: one due to the

high torsional rigidity of the closed cross-section at the extremities of the

hull module, the second due to the bulkhead deformation as an orthotropic

plate. These two terms can be obtained by a global energetic approach. Let

us denote by l0 the bulkhead spacing, by a the longitudinal extension of the

closed cell at the two extremities of the hull module, by l1 = l0 − a the net
hatch length and by I0

t the torsional modulus of the closed section. Starting

from the position: ϑ1 =
Mt

GIt
and assuming Mt constant vs. x, the torsional

strain energy of a hull module can be so expressed:

Um =
1

2

∫ l

0
Mtϑ1dx =

M2
t l

2GIt
=
1

2
GItlϑ

2
1 (3.55)

The contribution due to the high torsional rigidity of the closed cross-section

can be obtained from the following energy equivalence:

M2
t l0

2GI∗t1
=
M2

t l1
GIt

+
M2

t a

2GI0
t

(3.56)
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Figure 3.6: Hull module scheme

from which, taking into account that a << l0 and It << I0
t , it follows that:

I∗t1 =
(
1 +

a

l1

)
It (3.57)

The energy absorbed by the bulkhead as an orthotropic plate can be ex-

pressed as follows:

Ub = 2(1 + ν)GCϑ2
1 (3.58)

with:

C =
Ub

Eϑ2
1

(3.59)

The energy balance in this case becomes:

1

2
I∗t2l0ϑ

2
1 =

1

2
I∗t l0ϑ

2
1 + 2(1 + ν)GCϑ2

1 (3.60)

from which it follows:

I∗t2 =
[
1 +

4(1 + ν)C

Itl0

]
It (3.61)
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So the final expression of the hull torsional modulus will be:

I∗t =
[
1 +

a

l1
+
4(1 + ν)C

Itl0

]
It (3.62)

Obviously, to obtain the equivalent torsional modulus it is necessary to

evaluate the bulkhead energy coefficient C, preliminarily determining its

deformed shape. First of all, it is possible to assume that the bulkhead

reduces only the intensity of the axial displacements, while the warping

function ω(η, ζ) remains the same one of the open section. This hypothesis

implies that the bulkhead will be subjected to the following three types of

deformation:

1. screwing;

2. horizontal bending;

3. vertical bending.

so that, to determine C it is sufficient to express three displacement func-

tions, each one relative to one of the previously defined deformation fields.

The bulkhead screwing substantially coincides with the axial displacement

of the open hull section; it can be approximated by the following deflection

distribution, linear vs. η and ζ, having denoted by ζB and ζD the verti-

cal coordinates of bottom and deck, the first one negative the second one

positive, as regards the assumed reference system:

u(s)(η, ζ) = −η
(
ζ − ζB − ζD

)
ϑ1 (3.63)

As the side boundaries of the bulkhead have to be orthogonal to the de-

formed hull double shell, the bulkhead is also exposed to bending in hori-

zontal plane with respect to screwing. The rotation of the hull side shells

can be expressed by the following relation:

ϑz = −
∂v

∂x
= ϑ1

(
ζ − ζQ

)
(3.64)

The total bulkhead rotation βz, instead, is the sum of two terms: the first

one χz =
∂u(s)

∂η
is the screwing rotation at the shell boundary, the second

one ϕz is the rotation due to the horizontal bending:

βz = χz + ϕz (3.65)
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Imposing the orthogonality condition ϑz = βz, the rotation due to the hori-

zontal bending can be expressed as follows:

ϕz = 2
[
ζ − ζQ + ζB + ζD

2

]
ϑ1 (3.66)

The bulkhead horizontal bending deformation field will be an antisymmetric

function represented by the odd terms of a third order polinomial with zero

boundary displacement and rotation:

u(h)(η, ζ) = −η
[
1−

(η
b

)2][
ζ − ζQ + ζB + ζD

2

]
ϑ1 (3.67)

Similarly, the lower boundary of the transverse bulkhead has to be orthog-

onal to the deformed hull double bottom. The longitudinal variation of

the vertical displacement w will generate a rotation of the hull bottom, so

expressed:

ϑy = −
∂w

∂x
= −ηϑ1 (3.68)

The bulkhead rotation βy will be the sum of three terms: the first one

χy =
∂u(s)

∂ζ
is the bulkhead screwing rotation at the bottom, the second one

ϕy =
∂u(h)

∂ζ
is the rotation due to the horizontal bending, the third one δy

is the rotation due to the vertical bending. The total bulkhead rotation will

be:

βy = χy + ϕy + δy (3.69)

Imposing the orthogonality condition βy = ϑy, the rotation due to the ver-

tical bending becomes:

δy = η
[
1−

(η
b

)2]
ϑ1 (3.70)

This rotation can be obtained by a displacement field with null bottom and

deck deflections and zero deck rotation; such function, recognized in the

second type of Hermitian polynomials can be so expressed:

u(v)(η, ζ) = η
[
1−

(η
b

)2][
1− ζ − ζB

ζD − ζB

]2(
ζ − ζB

)
ϑ1 (3.71)

The total bulkhead deformed shape will be a screwed antisymmetric function

with a more pronounced horizontal deflection than the vertical one:

u(b)(η, ζ) = u(s)(η, ζ) + u(h)(η, ζ) + u(v)(η, ζ) (3.72)
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To evaluate the bulkhead energy coefficient C, it is preliminary necessary

to evaluate the total absorbed strain energy. Regarding the bulkhead as

an orthotropic plate and denoting by DY , DZ and H its two flexural and

torsional rigidities, the strain energy can be so expressed:

Ub =
1

2

∫ ζD

ζB

∫ b

−b

[
DY

(∂2u(b)

∂η2

)2
+DZ

(∂2u(b)

∂ζ2

)2
+H

∂u(b)

∂η

∂u(b)

∂ζ

]
dηdζ (3.73)

So, denoting by hB = ζD − ζB the bulkhead height, the total strain energy

becomes:

Ub =
[116h3

B

35b
DY αY +

32b3

105hB
DZ

16bhB

75
HαT

]
ϑ2

1 (3.74)

with: 



αY = 1− 175

116

(
1 +

ζQ
hB

)
+
105

116
(1 +

ζQ
hB

)2

αT = 1 +
195

4

(
1 +

ζQ
hB

)
(3.75)

According to Shade’s work, the flexural and torsional rigidities can be so

expressed: 



DY = E
IeY
sY

DZ = E
IeZ
sZ

H = E

√
IpY

sY

IpZ

sZ

(3.76)

where sY (sZ) is the distance betwenn horizontal (vertical) bulkhead gird-

ers, IeY (IeZ) is the moment of inertia, including effective width beY (beZ) of

plating, of horizontal (vertical) girders respect to the section neutral axis,

IpY (IpZ) is the moment of inertia of effective breath of plating working

with horizontal (vertical) girders. Finally, the bulkhead energy coefficient

becomes:

C =
116h3

B

35b

IeY
sY

αY +
32b3

105hB

IeZ
sZ

+
16bhB

75

√
IpY

sY

IpZ

sZ
αT (3.77)

A similar procedure can be adopted to determine the contribution of an

upper stool exposed to bending, shear and torsion. Assuming for the ver-

tical position of the upper stool the equality ζstool = ζD, the three energy

60



Chapter 3. The refined theory of non-uniform torsion

components can be expressed as follows:

Horizontal bending

Us−h =
1

2

∫ b

−b

EIs

[∂2u(b)

∂η2
(η, ζD)

]2
dη =

3Is

(
hB − ζQ

)2

b
Eϑ2

1 (3.78)

Horizontal shear

Us−s =
1

2

(EIs)
2

GAs

∫ b

−b

[∂3u(b)

∂η3
(η, ζD)

]2
dη = 18(1 + ν)

(
hB − ζQ

)2

b3
I2
s

As
Eϑ2

1

(3.79)

Torsion

Us−t =
1

2
GIs−t

∫ b

−b

[∂2u(b)

∂η∂ζ
(η, ζD)

]2
dη =

9bIs−t

10(1 + ν)
Eϑ2

1 (3.80)

having denoted by Is the upper stool moment of inertia as regards an axis

parallel to ζ and passing through its center of mass, by Is−t its torsional

moment of inertia and by As the effective shear area.
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Chapter 4

The exact theory of

non-uniform torsion

This chapter deals with the problem of non-uniform torsion in thin-walled

elastic beams, removing the basic concept of a fixed center of twist, neces-

sary in the Vlasov’s and Benscoter’s theories to obtain a warping stress

field equivalent to zero. In this new torsion/flexure theory, despite the clas-

sical ones, the warping function will punctually satisfy the first indefinite

equilibrium equation along the beam axis and it won’t be necessary to intro-

duce the classical compatibility condition, to take into account the effect of

the beam restraints. The solution, based on the Fourier development of the

displacement field, is obtained assuming that the applied external torque is

constant along the beam axis and the unit twist angle and the warping axial

displacement functions are totally restrained at both beam ends. The theory

is developed for beams with asymmetric cross-section and the special case of

a beam with a section having two symmetry axes is analyzed as well.

4.1 The displacement field

It is well known that the classical Saint Venant’s theory is based on the

uncoupling and superposition of four basic responses: stretching; major-axis

bending, coupled with major shear; minor-axis bending, coupled with minor

shear and pure torsion. Anyway, when the beam is subjected to a varying
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Figure 4.1: Global reference system

torque or the axial warping displacements are partially or totally restrained

at one or both member ends, the torsion becomes non-uniform, the twist

rate varies along the beam and the displaced centroids describe a curve. In

this case two great problems arise: first of all, it is not possible to uncouple

a pure torque loading from the bending one caused by the curvature of the

centroidal axis; then, the centre of twist is not constant along the beam

axis. So, in the following, the traditional concept of a fixed centre of twist

is abandoned and a more general theory is developed.

Let us assume that the beam cross-section rotates undeformed through a

small angle ϑt(x)about the centroidal axis x, warps out of its plane and is

subjected to rigid body motions along the section principal axes of inertia.

Let us define the global Cartesian frames sketched in the following figure,

with origin O in correspondence of the left beam end, x axis defined along

the beam length and passing through the section centroid and η, ζ axes

defined in the section plane and coinciding with the section principal axes of

inertia. In this hypothesis, denoting by u,v, and w the three displacement

components in the x, η and ζ directions respectively, the displacement field
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can be assumed as follows:




u = ũ(x, η, ζ)− ηdv0
dx

− ζ dw0

dx

v = v0(x)− ϑt(x)ζ

w = w0(x) + ϑt(x)η

(4.1)

where ũ(x, η, ζ) is the axial displacement function, ϑt(x) is the rotation of the

section about the x-axis, positive if counter-clockwise, v0(x) and w0(x) are

the centroidal lateral rigid body motions along the η and ζ axes, respectively.

4.2 The strain and stress fields

With the previous assumptions and notations the strain field (for small

deformation) is given by:





ǫx =
∂ũ

∂x
− ηd

2v0
dx2

− ζ d
2w0

dx2

γxy =
∂ũ

∂η
− ϑ1ζ

γxz =
∂ũ

∂ζ
+ ϑ1η

ǫy = ǫz = γyz = 0

(4.2)

Denoting by E the Young Modulus, G the Coulomb modulus and ν the

Poisson modulus, the Navier equations can be so specialized:





σx = E
[∂ũ
∂x
− ηd

2v0
dx2

− ζ d
2w0

dx2

]

τxy = G
[∂ũ
∂η
− ϑ1ζ

]

τxyz = G
[∂ũ
∂ζ

+ ϑ1η
]

(4.3)
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As regards the first of (4.3), it is derived by assuming as inelastic tensions σy

in the web, σz in the flanges, what allows to reduce the relevant coefficient

to the ratio
E

1 + ν2
≃ E.

4.3 The FE solution: local and global formulations

The first indefinite equilibrium equation and the relevant boundary con-

dition on the lateral surface can be expressed as follows:





∂τxy

∂η
+
∂τxz

∂ζ
= −∂σx

∂x
∀P ∈ A

τxn = 0 ∀P ∈ ∂A

(4.4)

having denoted by A the cross-section domain and by τxn the tangential

stress component, normal to the boundary. In terms of displacements the

problem (4.4) can be rewritten as follows:





∂2ũ

∂η2
+
∂2ũ

∂ζ2
= −2

(
1 + ν

)[∂2ũ

∂x2
− ηd

3v0
dx3

− ζ d
3w0

dx3

]
∀P ∈ A

∂ũ

∂n
= −ϑ1

(
ηαnz − ζαny

)
∀P ∈ ∂A

(4.5)

having denoted by αny and αnz the director cosine of the unit normal vector,

positive if outside. The axial stress field must also verify the following global

conditions: 



∫

A

σxdA = 0

∫

A

σxηdA = 0

∫

A

σxζdA = 0

(4.6)

The tangential stress field, instead, is connected to the external torque Mt,

assumed constant vs. x, by the global condition:

Mt = GIpϑ1 +G

∫

A

[∂ũ
∂ζ
− ∂ũ

∂η

]
dA (4.7)
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having denoted by Ip the polar inertia moment, defined as follows:

Ip =

∫

A

[
η2 + ζ2

]
dA = Iζ + Iη (4.8)

Concerning the support end conditions, denoting by L the beam length, let

us suppose that the beam is ”warping clamped” in correspondence of two

adjacent bulkheads where the two lateral dispacements and the torsional

rotation are free and the following constraints can be addded, so obtaining:

u(0, η, ζ) = u(L, η, ζ) = 0 ; ϑ1(0) = ϑ1(L) = 0 (4.9)

and:
dv0
dx

(0) =
dv0
dx

(L) = 0 ;
dw0

dx
(0) =

dw0

dx
(L) = 0 (4.10)

from which it results that ũ(0, η, ζ) = ũ(L, η, ζ) = 0. In order to solve

the problem, it is possible to preliminarily expand the axial displacement

function, the unit twist angle and the two rigid body motion functions into

appropriate trigonometric series, verifying the previous boundary conditions

at both beam ends, and reduced to the partial M -sums:




ũ(x, η, ζ) =

M∑

m=1

Wm(η, ζ)sin
mπx

L

ϑ1(x) =
M∑

m=1

Ωmsin
mπx

L

v0(x) =
M∑

m=1

Bmcos
mπx

L

w0(x) =
M∑

m=1

Cmcos
mπx

L

(4.11)

The indefinite and boundary equations (4.5), thanks to the orthogonality of

the trigonometric functions, can be rewritten ∀m = 1...M as follows:




∇2Wm = 2
(
1 + ν

)m2π2

L2
Wm + 2

(
1 + ν

)m3π3

L3

[
ηBm + ζCm

]

∂Wm

∂n
= Ωm

(
ζαny − ηαnz

)
(4.12)
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Expressing the unknown m-th term Wm(η, ζ) in the form:

Wm(η, ζ) = αm(η, ζ)Ωm + βm(η, ζ)Bm + γm(η, ζ)Cm (4.13)

the problem (4.12) can be decomposed into three Neumann boundary prob-

lems associated to the Helmholtz equation:





∇2αm = 2
(
1 + ν

)m2π2

L2
αm

∂αm

∂n
= ζαny − ηαnz

(4.14)





∇2βm = 2
(
1 + ν

)m2π2

L2
βm + 2

(
1 + ν

)m3π3

L3
η

∂βm

∂n
= 0

(4.15)





∇2γm = 2
(
1 + ν

)m2π2

L2
γm + 2

(
1 + ν

)m3π3

L3
ζ

∂γm

∂n
= 0

(4.16)

The first of (4.6) implies that the three unknown functions α(η, ζ), βm(η, ζ)

and γm(η, ζ) must also respect the following global conditions:





∫

A

αmdA = 0

∫

A

βmdA = 0

∫

A

γmdA = 0

(4.17)

The unknown amplitudes Ωm, Bm and Cm can be determined thanks to the

second and third of (4.6) and the eq. (4.7), obtaining the following equation

system:

[
S
]
·




Ωm

Bm

Cm


 =




2

GL

∫ L

0
Mtsin

mπx

L
dx

0

0


 (4.18)
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specialized as follows, if MT constant vs. x is assumed:

[
S
]
·




Ωm

Bm

Cm


 =




2Mt

G

1− cosmπ
mπ
0

0


 (4.19)

The matrix
[
S
]
is the following one:

[
S
]
=




αm1 + Ip βm1 γm1

αm2 βm2 −
mπ

L
Iζ γm2 −

mπ

L
Iηζ

αm3 βm3 −
mπ

L
Iηζ γm3 −

mπ

L
Iη




(4.20)

having denoted by Iηζ the section product of inertia and by αm1, αm2, αm3

the following coefficients (similarly for βm and γm):





αm1 =

∫

A

[
η
∂αm

∂ζ
− ζ ∂αm

∂η

]
dA

αm2 = −
∫

A

ηαmdA

αm3 = −
∫

A

ζαmdA

(4.21)

4.4 Analysis of the stress field

The stress field can be finally expressed as follows:





σx = E
M∑

i=1

Fm(η, ζ)
mπ

L
cos

mπx

L

τxy = G

M∑

i=1

[(∂αm

∂η
− ζ

)
Ωm +

∂β

∂η
Bm +

∂γ

∂η
Cm

]
sin

mπx

L

τxz = G

M∑

i=1

[(∂αm

∂ζ
+ η

)
Ωm +

∂β

∂ζ
Bm +

∂γ

∂ζ
Cm

]
sin

mπx

L

(4.22)
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having introduced the following function:

Fm(η, ζ) = αm(η, ζ)Ωm +
[
βm + η

mπ

L

]
Bm +

[
γm + ζ

mπ

L

]
Cm (4.23)

Similarly to the Vlasov’s theory it is possible to introduce the bimoment as

follows:

B =
E

L

M∑

m=1

mπ

Ωm
cos

mπx

L

∫

A

F 2
m(η, ζ)dA (4.24)

4.5 The simplified solution for beams with axial

symmetric cross-section

A special case of the previously analyzed problem concerns a beam hav-

ing an axialsymmetric cross-section. In this case, in fact, the bending com-

ponents are directly null, so that the displacement field can be reduced to

the following one: 



u = ũ(x, η, ζ)

v = v0(x)− ϑt(x)ζ

w = w0(x) + ϑt(x)η

(4.25)

With all the previous notations the strain field becomes:





ǫx =
∂ũ

∂x

γxy =
∂ũ

∂η
− ϑ1ζ

γxz =
∂ũ

∂ζ
+ ϑ1η

ǫy = ǫz = γyz = 0

(4.26)
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while the stress field can be so expressed:





σx = E
∂ũ

∂x

τxy = G
[∂ũ
∂η
− ϑ1ζ

]

τxyz = G
[∂ũ
∂ζ

+ ϑ1η
]

(4.27)

The first indefinite equilibrium equation with the relevant boundary condi-

tions on the beam lateral surface and at the two extremities can be written,

in terms of displacements, as follows:





∂2ũ

∂η2
+
∂2ũ

∂ζ2
= −2

(
1 + ν

)∂2ũ

∂x2
∀P ∈ A

∂ũ

∂n
= −ϑ1

(
ηαnz − ζαny

)
∀P ∈ ∂A

ũ(0, η, ζ) = ũ(L, η, ζ) = 0 ; ϑ1(0) = ϑ1(L) = 0

(4.28)

Adopting for the warping function and the unit twist angle the same de-

velopments into trigonometric series of eq. (4.11), which already satisfy the

boundary conditions at the two beam extremities, and taking into account

that in this case for any Ωm equal to zero alsoWm(η, ζ) will be equivalent to

zero, for non zero Ωm it is possible to introduce another unknown function

fm(η, ζ) so defined:

fm(η, ζ) =
Wm(η, ζ)

Ωm
(4.29)

Thanks to the orthogonality of the trigonometric functions, by (4.11) and

(4.29), the differential problem (4.28) can be so rewritten:





∇2fm = 2
(
1 + ν

)m2π2

L2
fm ∀P ∈ A

∂fm

∂n
= ζαny − ηαnz ∀P ∈ ∂A

(4.30)

so that ∀m = 1...M , fm(η, ζ) will be the solution of a Neumann boundary

problem associated to the pure Helmholtz equation. It is noticed that the
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previous developements into trigonometric series of the axial displacement

function and the unit twist angle automatically satisfy the boundary condi-

tions at the two beam extremities. Also in this case, since it is not possible

to find an analytical solution of the problem (4.30), for a generic beam cross-

section, it is necessary to resort to numerical methods to solve it. In the

applications the Finite Element Method (FEM) is adopted, by means of the

Mathworks Matlab software. To solve this problem for an assigned beam

section and for the varying harmonics’ index m, it was necessary to realize

a suitable script file. In our case the computational domain is subdivided

by a triangular mesh, made up of an enough large number of elements and

the partial differential equation is discretized on it. The solution fm(η, ζ)

is calculated at the vertices of the triangles (i.e. the nodes of the mesh)

and it is assumed to vary linearly on each triangle, obtaining a continuous

piecewise linear function on the mesh. Its first derivatives, as regards the η

and ζ axes, instead, are evaluated in correspondence of the centre of each

triangle. Furthermore, as the axial stress σx must also verify the eq. (4.6),

thanks to the double symmetry of the section as regards the η and ζ axis, it

is sufficient that the function fm(η, ζ) satisfies the following global condition:
∫

A

fmdA = 0 (4.31)

Finally, to determine uniquely the solution, it is necessary to find the un-

known coefficient Ωm. Starting from eq. (4.7), this global condition can be

expressed as follows:

Mt(x) = GIp

M∑

m=1

Ωmsin
mπx

L
+G

M∑

i=1

ΩmHmsin
mπx

L
(4.32)

having done the position:

Hm =

∫

A

[
η
∂fm

∂ζ
− ζ ∂fm

∂η

]
dA (4.33)

Then, thanks to the orthogonality of the trigonometric functions. it is pos-

sible to determine the coefficient Ωm as follows:

Ωm =

2

∫ L

0
Mt(x)sin

mπx

L
dx

GL
(
Ip +Hm

) (4.34)
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Particularly, assuming Mt(x) = const. the eq. (4.34) can be so specialized:

Ωm =
2Mt

G
(
Ip +Hm

) 1− cosmπ
mπ

(4.35)

Similarly to the Vlasov’s theory, denoting by σx−m the m-th component of

σx, it is possible to introduce the bimoment as follows:

B =
M∑

m=1

Bm =
M∑

m=1

∫

A

σx−mfmdA (4.36)

so that, defining the warping modulus relative to the m-th harmonic Iw−m =∫

A

f2
mdA, the bimoment can be finally expressed as follows:

B =
4
(
1 + ν

)
Mt

L

M∑

m=1

1− cosmπ
Ip +Hm

cos
mπx

L
Iw−m (4.37)

The stress field finally becomes:





σx =
M∑

m=1

Bm

Iw−m
fm(η, ζ)

τxy = 2Mt

M∑

m=1

1− cosmπ
mπ

∂fm

∂η
− ζ

Ip +Hm
sin

mπx

L

τxz = 2Mt

M∑

m=1

1− cosmπ
mπ

∂fm

∂ζ
+ η

Ip +Hm
sin

mπx

L

(4.38)
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Chapter 5

Solution of the clamped

orthotropic plate equation

This chapter focuses on the application of orthotropic plate bending the-

ory to stiffened platings. Schades design charts for rectangular plates are

extended to the case where the boundary contour is clamped, which is al-

most totally incomplete in the afore mentioned charts. A numerical solution

for the clamped orthotropic plate equation is obtained: the Rayleigh-Ritz

method is adopted, expressing the vertical displacement field by a double

cosine trigonometric series, whose coefficients are determined by solving a

linear equation system. Numerical results are proposed as design charts sim-

ilar to those ones by Schade. In particular, each chart is relative to one of

the non-dimensional coefficients identifying the plate response; each curve

of any chart is relative to a given value of the torsional parameter ηt, in

a range comprised between 0 and 1, and is function of the virtual aspect

ratio ρ, comprised between 1 and 8, so that the asymptotic behaviour of the

orthotropic plate for ρ→∞ is clearly shown.

5.1 The Huber’s differential equation

Schade, 1942, proposed some practical general design curves, based on

the orthotropic plate theory, in order to obtain a rapid, but accurate, di-

mensioning of plating stiffeners. Schade considered four types of boundary
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Figure 5.1: Orthotropic plate reference system

conditions for the orthotropic partial differential equation: all edges rigidly

supported but not fixed; both short edges clamped, both long edges sup-

ported; both long edges clamped, both short edges supported; all edges

clamped. The last case with all edges clamped was left almost totally in-

complete. The few data useful for this boundary condition were taken from

Timoshenko et al. [22], and Young [23], as given for the isotropic plate only

for the torsional coefficient value ηt = 1 and for a range of the virtual aspect

ratio ρ comprised between 1 and 2. In the following paragraph a numerical

solution of the clamped orthotropic plate equation is obtained. Numeri-

cal results are presented in a series of charts similar to the ones given by

Schade.

It is well known that orthotropic plate theory refers to materials which

have different elastic properties along two orthogonal directions. In order to
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apply this theory to panels having a finite number of stiffeners, it is neces-

sary to idealize the structure, assuming that the structural properties of the

stiffeners may be approximated by their average values, which are assumed

to be distributed uniformly over the width and the length of the plate. Re-

ferring to the coordinate system of Fig. 5.1, the deflection field in bending

is governed by the so called Hubers differential equation:

DX
∂4w

∂x4
+ 2H

∂4w

∂x2∂y2
+DY

∂4w

∂y4
= p(x, y) (5.1)

having denoted by w the vertical displacement field, DX the unit flexural

rigidity around the y axis, DY the unit flexural rigidity around the x axis,

H = ηt

√
DXDY the unit torsional rigidity according to Schade’s works,

p(x, y) the pressure load over the surface. It is noticed that the behaviour

of the isotropic plate with the same flexural rigidities in all directions is a

special case of the orthotropic plate problem. Indicating by n the normal

external to the plate contour, the following boundary conditions are added

to the differential equation along all edges:

w = 0 ;
∂w

∂n
= 0 (5.2)

Now, as the plate domain is rectangular, the boundary conditions (5.2) can

be rewritten as follows:

w = 0 ;
∂w

∂x
=
∂w

∂y
= 0 (5.3)

So, any displacement function w(x, y), satisfying the boundary conditions

(5.3), must belong with the first order derivatives to the function space with

compact support in Ω, having denoted by Ω the function domain.

5.2 The numerical solution

In order to solve the eq. (5.1) with the boundary conditions (5.3) along

all edges, two solution methods are available: the double cosine series and the

Henky’s method. It’s well known the second one converges very quickly but

it gives some difficulties concerning the programming due to over/underlow

problems in the evaluation of hyperbolic trigonometric functions with large
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arguments. The double cosine series method, instead, is devoid of the

over/underflow issue but it is known to converge very slowly. Denoting

by a an b the plate lengths in the x and y directions respectively, the ver-

tical displacement field may be expressed by means of the following double

cosine trigonometric series:

w(x, y) =
M∑

m=1

N∑

n=1

(
1− cos2πmx

a

)
·
(
1− cos2πny

b

)
wm,n (5.4)

whose terms already satisfy the boundary condtions (5.3). The unknown co-

efficients wm,n may be determined using the Rayleigh-Ritz method, search-

ing for the minimum of a variational functional. Now, denoting bu u the and

f two classes of functions belonging to a Hilbert Space, for linear differential

operators as:

ℓu = f (5.5)

that are auto-added and defined positive, it is possible to find a numerical

solution of the eq. (5.5) searching for the stationary point of the functional:

Π(u) =
1

2

∫

Ω
ℓu · udΩ−

∫

Ω
f · udΩ (5.6)

The linear operator ℓ of the eq. (5.5) is auto-added if, ∀u(x, y) ∈ L2(Ω) and

∀v(x, y) ∈ L2(Ω) satisfying the assigned boundary conditions, it is verified

that: ∫

Ω
ℓu · vdΩ =

∫

Ω
ℓv · udΩ (5.7)

where Ω is an open set of Rk. Now, let us consider the generalized integra-

tion by parts formula:
∫

Ω

(
uDiv

)
dt =

∫

∂Ω
uv

(
ei · n

)
dσ −

∫

Ω

(
vDiu

)
dt (5.8)

where n is the versor of the normal external to ∂Ω and ei is the versor of

the ti axis. First of all, in order to apply the eq. (5.8), it is necessary to

suppose that Ω ⊂ R2 is a regular domain, i.e. that it is a limited domain

with one or more contours that have to be generally regular curves.In the

case under examination, as Ω is a rectangular domain these conditions are

certainly verified. Furthermore as w ∈ C1
0(Ω), it derives that:

∫

Ω

(
uDiv

)
dt = −

∫

Ω

(
vDiu

)
dt (5.9)
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but, thanks to the boundary conditions (5.3), it is also possible to verify

that: ∫

Ω

(
uDαv

)
dt = −(1)|α|

∫

Ω

(
vDαu

)
dt (5.10)

whatever is the multi-index α = (α1, α2) with |α| < 4, having denoted by

|α| = α1 +α2 the sum of the derivation number respect to the first variable

and the second one, respectively. From eq. (5.10) it is immediately verified

the condition (5.7), as the partial differential operators are of even order.

Furthermore the linear operator ℓ is defined positive if it is verified that:
∫

Ω
ℓu · udΩ > 0 (5.11)

Applying the generalized integration by parts formula the integral (5.12)

becomes:
∫

Ω

[
DX

(∂2w

∂x2

)2
+ 2H

( ∂2w

∂x∂y

)2
+DY

(∂2w

∂y2

)2]
dA > 0 ∀w(x, y) 6= 0 (5.12)

The previously defined integral is certainly ≥ 0 and it is equivalent to zero

only if it punctually results:

∂2w

∂x2
=

∂2w

∂x∂y
=
∂2w

∂y2
∀(x, y) ∈ Ω (5.13)

what implies that:

∂w

∂x
=
∂w

∂y
= const. ∀(x, y) ∈ Ω (5.14)

But as on the boundary it puncutally results:

∂w

∂x
=
∂w

∂y
= 0 ∀(x, y) ∈ ∂Ω (5.15)

thanks to the continuity of the displacement function it would result:

∂w

∂x
=
∂w

∂y
= 0 ∀(x, y) ∈ Ω (5.16)

so obtaining w(x, y) = const.∀(x, y) ∈ Ω and then, thanks again to the

continuity on the boundary where the displacement function is punctually

null, w(x, y) = 0 ∀(x, y) ∈ Ω. So if the integral of eq. (5.12) is null then the
solution reduces to the null displacement function, what implies that the

integral is defined strictly positive and the eq. (5.11) is verified. In order
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to find the coefficients of eq. (5.4), it is imposed that the functional (5.5) is

stationary, so imposing the following MxN conditions:

∂Π

∂wm,n
= 0 ∀m ∈ 1...M and n ∈ 1...N (5.17)

In this case the functional (5.6) can be rewritten as follows:

Π(w) =
1

2

∫

Ω

[
DXw

∂4w

∂x4
+2Hw

∂4w

∂x2∂y2
+DY w

∂4w

∂y4

]
dA−

∫

Ω
wpdA (5.18)

Applying the generalized integration by parts formula, the functional (5.18)

can be rewritten as follows:

Π(w) =
1

2

∫

Ω

[
DX

(∂2w

∂x2

)2
+ 2H

∂2w

∂x2

∂2w

∂y2
+DY

(∂2w

∂y2

)2]
dA−

∫

Ω
wpdA

(5.19)

To carry out the computations, it is convenient to use the following coordi-

nate transformations:

x = aξ ; 0 ≤ ξ ≤ 1 (5.20)

and:

y = bη ; 0 ≤ η ≤ 1 (5.21)

so that the series is given in non-dimensional form as follows:

w(ξ, η) =

M∑

m=1

N∑

n=1

(
1− cos2πmξ

)
·
(
1− cos2πnη

)
wm,n (5.22)

and the functional Π(w) can be rewritten in the non-dimensional form:

Π̂(w) =
1

2

∫ 1

0

∫ 1

0

[DX

a4

(∂2w

∂ξ2

)2
+ 2

H

a2b2
∂2w

∂ξ2
∂2w

∂η2
+
DY

b4

(∂2w

∂η2

)2
− wp

]
dξdη

(5.23)

and the stationary point is obtained imposing the M xN equation system:

∂

∂wm,n
Π̂(w) = 0 form = 1...M ; n = 1...N (5.24)

So, considering p as uniformly distributed, the generic equation for m = m

and n = n assumes the form:

∂

∂wm,n

∫ 1

0

∫ 1

0

[
DX

(∂2w

∂ξ2

)2
+2

(a
b

)2∂2w

∂ξ2
∂2w

∂η2
+DY

(a
b

)4(∂2w

∂η2

)2]
dξdη = 1

(5.25)
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as it results:

∂

∂wm,n

∫ 1

0

∫ 1

0
wpdξdη =

∫ 1

0

∫ 1

0

(
1− cos2πm̄ξ

)
·
(
1− cos2πn̄η

)
dξdη = 1

(5.26)

Introducing the previously defined torsional coefficient ηt and the virtual

aspect ratio ρ defined as follows:

ρ =
a

b
4

√
DY

DX
(5.27)

the eq.(5.25) becomes:

1

ρ4

[
m4wm,n+

N∑

n=1

2m4wm,n

]
+n4wm,n+

M∑

m=1

2n4wm,n+2
ηt

ρ2
m2n2wm,n =

pb4

4π4DY

(5.28)

Defining the non-dimensional vertical displacements:

δ = DY
w

pb4
; δm,n = DY

wm,n

pb4
(5.29)

the equation system finally becomes:

1

ρ4

[
m4δm,n+

N∑

n=1

2m4δm,n

]
+n4δm,n+

M∑

m=1

2n4δm,n+2
ηt

ρ2
m2n2δm,n =

pb4

4π4DY

(5.30)

Even if the double cosine trigonometric series converges very slowly, adopting

sufficiently high values for M and N , it is possible to obtain a very accurate

solution of the equation (5.1) with the boundary conditions (5.2).

5.3 Characterization of the behaviour of clamped

stiffened plates

The orthotropic plate bending theory can be applied to the plate of

Fig. 5.1 , reinforced by two systems of parallel beams spaced equal distances

apart in the x and y directions. The rigidities DX and DY of equation (5.1)

can be specialized as follows:

Dx =
EIex
sx

; Dy =
EIey
sy

(5.31)
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where E is the Young modulus and sx (sy) is the distance between girder

(transverses). It is noticed that Iex (Iey) is the moment of inertia, includ-

ing effective width bex (bey) of plating and the attached ordinary stiffeners,

of long (short) repeating primary supporting members, respect to the axis

whose eccentricity from the reference plane (z = 0) ex (ey) is to be deter-

mined as follows:

bex
1− ν2

∫

Px

(z− ex)dz+
∫

Ax

(z− ex)dz+
( bex
sex

−1
)∫

ax

(z− ex)dA = 0 (5.32)

and:

bey
1− ν2

∫

Py

(z− ey)dz+
∫

Ay

(z− ey)dz+
( bey
sey
− 1

)∫

ay

(z− ey)dA = 0 (5.33)

According to Shade’s works, the torsional coefficient ηt and the virtual aspect

ratio ρ can be specialized as follows:

ηt =

√
ipxipy

ixiy
; ρ =

a

b
4

√
iy
ix

(5.34)

where ipx (ipy) is the moment of inertia of effective breadth of plating work-

ing with long (short) supporting stiffeners per unit of length. The meaning

of the two parameters is quite clear: the torsional coefficient ηt which lies be-

tween 0 and 1, exists because only the plating is subject to horizontal shear,

while both the plating and the stiffeners are subject to bending stress. Ob-

viously ηt = 1 and ipx = ipy = ix = iy = 1 represent the isotropic plate

case. The virtual side ratio ρ is the plate side ratio modified in accordance

with the unit stiffnesses in the two directions; as usual it has been admitted

that ρ is always equal to or greater than unity. In the next paragraph the

quantities represented in the following diagrams are presented.

Deflection at center

The vertical displacement at the plate center (η = ξ = 0.5) is the maximum

and can be so expressed:

wmax =

M∑

m=1

N∑

n=1

δm,n

(
1− cosπm

)(
1− cosπn

) pb4
Eiy

(5.35)

Edge bending stress in plating

The curves of Fig. 5.3 give the bending stress in the plating at the centers
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of edges where fixity exists. The stress at the center of such an edge may

be treated as the maximum along that edge. The maximum stresses in the

plating in the long and short directions respectively are:

σxp−sup =
E

1− ν2

1

a2

∂2δ

∂ξ2

∣∣∣
(0, 1

2
)
rxp

pb4

Eiy
(5.36)

σyp−sup =
E

1− ν2

1

b2
∂2δ

∂η2

∣∣∣
( 1

2
,0)
ryp

pb4

Eiy
(5.37)

as along the edges it results:

∂2δ

∂η2

∣∣∣
(0, 1

2
)
= 0 ;

∂2δ

∂ξ2

∣∣∣
( 1

2
,0)
= 0 (5.38)

The equations (5.36) and (5.37) become:

σxp−sup =
1

ρ2

4π2

1− ν2

pb2rxp√
ixiy

M∑

m=1

N∑

n=1

δm,nm
2
(
1− cosπn

)
(5.39)

σyp−sup =
4π2

1− ν2

pb2ryp

iy

M∑

m=1

N∑

n=1

δm,nn
2
(
1− cosπm

)
(5.40)

Edge bending stress in free flanges

The curves of Fig. 5.4 give the bending stress in the free flanges at the

centers of the edges where fixity exists. The stress at the center of such an

edge may be treated as the maximum along that edge. The maximum stress

for girders and transverses are respectively:

σxf−sup = −E
1

a2

∂2δ

∂ξ2

∣∣∣
(0, 1

2
)
rxf

pb4

Eiy
(5.41)

σyf−sup = −E
1

b2
∂2δ

∂η2

∣∣∣
( 1

2
,0)
ryf

pb4

Eiy
(5.42)

These equations finally become:

σxf−sup = −
4π2

ρ2

pb2rxf√
ixiy

M∑

m=1

N∑

n=1

δm,nm
2
(
1− cosπn

)
(5.43)

σyf−sup = −4π2 pb
2ryf

iy

M∑

m=1

N∑

n=1

δm,nn
2
(
1− cosπm

)
(5.44)

It is important to note that when ρ→∞, kyf−sup is substantially indepen-

dent on ηt and is equal to
1
2 that is the beam theory value. Furthermore the
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curves show that for low values of ηt the maximum deflections and stresses

parallel to the short direction occour at values of ρ between 1.5 and 2.0: this

indicates that the long beams add to the load taken by the short beams,

instead of helping to support it.

Bending stress in free flanges at center

The curves of Fig. 5.5 give the bending stress in the free flanges at the center

of the panel in long and short directions respectively. The stresses :

σxf−cen = −E
1

a2

∂2δ

∂ξ2

∣∣∣
( 1

2
, 1
2
)
rxf

pb4

Eiy
(5.45)

σyf−cen = −E
1

b2
∂2δ

∂η2

∣∣∣
( 1

2
, 1
2
)
ryf

pb4

Eiy
(5.46)

finally becoming:

σxf−cen = −
4π2

ρ2

pb2rxf√
ixiy

M∑

m=1

N∑

n=1

δm,nm
2cosπm

(
1− cosπn

)
(5.47)

σyf−cen = −4π2 pb
2ryf

iy

M∑

m=1

N∑

n=1

δm,nn
2cosπn

(
1− cosπm

)
(5.48)

It is important to note that when ρ→∞, kyf−cen is substantially indepen-

dent on ηt and is equal to 1
24 that is the beam theory value. In order to

verify the goodness of the method, the following tables show a comparison

between the values obtained applying the Rayleigh-Ritz method and the

ones taken from Timoshenko et al., 1959, for the isotropic plate (ηt = 1.00).

ρ Timoshenko kw(ηt = 1.00)

1.00 0.00126 0.00126

1.20 0.00172 0.00172

1.40 0.00207 0.00207

1.60 0.00230 0.00230

1.80 0.00245 0.00245

2.00 0.00254 0.00253

∞ 0.00260 0.00260

Table 5.1: Deflection at center
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Figure 5.3: Edge bending stress in plating
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ρ Timoshenko
(
1− ν2)kyp−sup(ηt = 1.00)

1.00 0.0513 0.0510

1.20 0.0639 0.0636

1.40 0.0726 0.0724

1.60 0.0780 0.0779

1.80 0.0812 0.0811

2.00 0.0829 0.0828

∞ 0.0833 0.0833

Table 5.2: Edge bending moment in short direction

ρ Timoshenko
(
1− ν2)kxp−sup(ηt = 1.00)

1.00 0.0513 0.0510

1.20 0.0554 0.0558

1.40 0.0568 0.0570

1.60 0.0571 0.0571

1.80 0.0571 0.0571

2.00 0.0571 0.0571

∞ 0.0571 0.0571

Table 5.3: Edge bending moment in long direction

5.4 Convergence of the method

In this paragraph the influence of the number of harmonics on k values

is shown. As the convergence behaviour depends on rho and ηt, in the

examined case it was assumed ρ = 5 and ηt = 0.50. The indexes M = N

have been varied from 5 up to 100, in order to obtain a number of harmonics

comprised between 25 and 10000. If the number of harmonics is > 4900,

i.e. M=N > 70, a good convergence in the assessment of k values, and

then of the proposed curves, is obtained for practical purposes, as it can be

appreciated from the following figures, where the convergence behaviour of

kw, Kxf−sup and Kyf−sup is shown.
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5.5 The case of discontinuous loads

The partial differential equation cup(5.1) has been written with reference

to a distributed normal pressure load which is a continuous function in the

plate domain ℵ. Now let us suppose that p(x, y) ∈ L2(Ω), so that the set of
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discontinuity points has zero measure according to Lebesgue. Let’s define

by ℵ0 ⊆ ℵ the point set where p(x, y) is discontinuous and by ℵ1 ⊂ ℵ :

m(ℵ1) = 0 the point set where p(x, y) is discontinuous. The two subsets

define a partition of ℵ:

ℵ0 ∪ ℵ1 = ℵ ; ℵ0 ∩ ℵ1 = ⊘ (5.49)

Rigorously, as the eq. (5.1) is valid point by point only where p(x, y is

continuous, the functional (5.19) has to be extended only to the ℵ0 domain.

But, as p(x, y is continuous almost everywhere in ℵ, the functional Π(w)
can be extended to the entire ℵ domain. It is noticed that, as w ∈ L2(Ω),

according to the Schwartz-Holder inequality pw ∈ L1(Ω). Moreover, as an

integral extended to a set of zero measure is equal to zero according to

Lebesgue, the following equalities hold:

Π(w)|ℵ0
= Π(w)|ℵ0∪ℵ1

= Π(w)|ℵ (5.50)

Then, it is possible to apply the equation (5.1) not only when the load func-

tion is continuous in ℵ, but also when it is continuous almost everywhere

in ℵ , in both cases extending the functional (5.19) to the entire domain

according to the identity (5.50). The extension to load functions continuous
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almost everywhere according to Lebesgue is particularly useful when it is

necessary to schematize loads continuous at intervals such as the wheeled

loads for garage decks. In this case, in fact, the effective load distribution

can be modelled as an equivalent pressure, transversally constant but longi-

tudinally discontinuous:

peq.(ξ, η) = pi ξ ∈ [αi, βi] ∀ η ∈ [0, 1] (5.51)

88



Chapter 6

Numerical applications

Some numerical applications of the proposed theories are presented, to

test the codes developed in MATLAB, and analyze some ships with large

openings on deck. The aim of the first application is to compare the ver-

tical and horizontal tangential stress fields, obtained applying the theories

presented in Ch. 1 and 2, with the results obtained by a FE analysis, carried

out by ANSYS of a section already analyzed by Hughes [12]. The second ap-

plication is relative to the non-uniform torsion analysis of a bulk-carrier; the

theory discussed in Chapter 3 is applied and the relevant results are compared

with the ones obtained by the classical Vlasov’s theory. The deformability

of transverse bulkheads, schematized as orthotropic plates, is discussed and

taken into due consideration in the analysis. The subject of the third group

of applications is the exact solution of the non-uniform torsion problem:

preliminarily, in order to verify the goodness of the applied FE procedure,

a numerical sample is discussed, to compare the obtained results with some

known published data; then a containership is analyzed to highlight some

non-linearities in the warping stress field, not accounted by the classical theo-

ries. Finally, an application of the orthotropic plate bending theory to garage

decks is presented, to evaluate the role of girders and transverses when the

longitudinal distribution of the equivalent pressure due to the vehicle loads

is discontinuous at intervals. A stress and a strain energy analysis is car-

ried out for a ro-ro deck and a procedure to obtain the scatlings of primary

supporting members as function of a mean load parameter, is presented.
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6.1 Shear stress fields for the Hughes’ section

In order to estimate the influence of the shear deflection, an application

has been carried out, based on the simplified structure considered by Hughes

[12]. Two numerical procedures can be developed: the first one, adopted by

Hughes, is a numerical translation of the mixed Dirichlet-Neumann problem,

and by the assumption of ϕ = 0 on the neutral axis it allows to operate on

two systems with a reduced number of equations, but its application to the

equations (1.63) that include nodal values lying to both parts A1(x) and

A2(x) of A(x) necessarily implies a step by step procedure (it is interesting

to note that the reduction of the bidimensional Dirichlet-Neumann problem

(1.44) to a monodimensional one, allows to reduce the second (1.44) to
∂ϕ

∂n
= 0, and so to make the problem direct, from a theoretical point of

view). The second one, a numerical translation of the Neumann problem,

can be applied in a direct form on the whole semi-structure, and removes the

essential indeterminacy of the Neumann problem, by the assumption (1.51)

which makes the warping a pure deformation displacement and allows to

substitute the relevant equation for anyone of the (1.63) system (the first

one in this application).

A validation of this last procedure has been carried out, by a comparison

with the results obtained by the flow theory and presented by Hughes. In

the following the section scheme and geometry data are presented. For each

branch, numbered from 1 to 6, the extremity nodes, the thickness and length

are shown. The system (1.63), written without any attention to the nodes’

Branch I node II node t(mm) ℓ (m)

1 1 2 32 10

2 2 5 32 20

3 2 3 32 10

4 3 4 32 20

5 4 5 68 10

6 5 6 60 10

Table 6.1: Section geometry data
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42
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Figure 6.1: Section scheme

numbering, because of the small rank of the coefficient matrix, and simplified

by dividing by t1 = · · · = t4 reduces to the following matrix equation:

A ·




ϕ1

ϕ2

ϕ3

ϕ4

ϕ5

ϕ6




=




−4000
104.11

44.11

−29.1
−104.11

−75




(6.1)

with:

A =




10 40 30 41.26 60 18.75

−0.1 0.25 −0.1 0 −0.05 0

0 −0.1 0.15 −0.05 0 0

0 0 −0.05 0.26 −0.21 0

0 −0.05 0 −0.21 0.45 −0.19
0 0 0 0 −0.19 0.19




(6.2)
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that gives the same distribution law of the normalized tangential stresses

τn
xs,i =

I

Q(x)
τxs,i obtained by Hughes:

τn
xs,i =





12s 1stbranch

−137.42− 12s+ 0.5s2 2ndbranch

17.42− 12s 3rdbranch

−102.60− 12s+ 0.5s2 4thbranch

−67.10 + 8s 5thbranch

−80.00 + 8s 6thbranch

(6.3)

Now, in order to estimate the differences between the Vlasov’s and Saint-

Venant’s theories for the shear stress determination, a numerical comparison

with the vertical shear tangential stresses obtained by a FE analysis is car-

ried out, in order to verify the goodness of the two theories. In the following

table and figure for each branch the vertical shear normalized tangential

stresses, in m2, are presented: in the relevant figure the red curves are rela-

tive to the Vlasov’s values, the black ones to the Saint-Venant’s values, the

blue ones to the values obtained by the FE analysis carried out by ANSYS.

Similarly, the normalized tangential stresses due to the horizontal shear

τn
xs,i =

Iζ
QH(x)

τxs,i are evaluated applying both the theories. In the rele-

vant figure the red curves refer to Vlasov’s values, while the dashead areas

to the Saint-Venant’s values. Concerning the vertical position of the shear

center, it has been verified that some light differences appear between the

two theories thansk to the effect of the free lateral contraction of the beam

cross-section:

ζQ = 6.15m (SV ) ; ζQ = 6.28m (V ) (6.4)

It seems that this new theory, developed starting from the Saint-Venant

bending-shear displacement field, furnishes, respect to the classical Vlasov

one, results closer to the ones obtained by the FE analysis, especially for the

branches at deck and bottom; some discrepancies may be observed only in

correspondence of the intersections between the longitudinal bulkhead and

the bottom, due to local effects not taken into account either by the Vlasov’s

or by the Saint-Venant’s like theory.
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Figure 6.2: Vertical shear normalized tangential stresses
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Figure 6.3: Horizontal shear normalized tangential stresses
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Branch 1 FEM Vlasov Saint-Venant

First node 0 0 0

Half branch -66.64 -60.00 -62.67

Second node -133.94 -120.00 -125.33

Branch 2 FEM Vlasov Saint-Venant

First node -132.77 -137.42 -125.20

Half branch -191.27 -207.42 -198.30

Second node -143.94 -177.42 -166.97

Branch 3 FEM Vlasov Saint-Venant

First node -1.13 17.42 2.39

Half branch -68.47 -42.58 -60.28

Second node -131.31 -102.58 -122.95

Branch 4 FEM Vlasov Saint-Venant

First node -131.32 -102.58 -110.06

Half branch -189.25 -172.58 -183.17

Second node -154.44 -142.58 -151.84

Branch 5 FEM Vlasov Saint-Venant

First node -82.19 -67.10 -80.76

Half branch -51.88 -27.10 -38.99

Second node -14.63 12.90 2.79

Branch 6 FEM Vlasov Saint-Venant

First node -80.54 -80.00 -83.56

Half branch -40.94 -40.00 -41.78

Second node 0.00 0.00 0.00

Table 6.2: Vertical shear normalized tangential stresses
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Branch 1 Vlasov Saint-Venant

First node 443.36 455.57

Half branch 430.86 441.52

Second node 393.36 399.37

Branch 2 Vlasov Saint-Venant

First node 83.42 97.96

Half branch -16.57 -14.42

Second node -116.57 -126.81

Branch 3 Vlasov Saint-Venant

First node 309.94 315.21

Half branch 247.44 244.97

Second node 159.94 146.63

Branch 4 Vlasov Saint-Venant

First node 159.94 188.95

Half branch -40.06 -35.82

Second node -240.06 -260.59

Branch 5 Vlasov Saint-Venant

First node -112.97 -94.65

Half branch -200.47 -192.99

Second node -262.97 -263.23

Branch 6 Vlasov Saint-Venant

First node -360.21 -361.33

Half branch -397.71 -403.47

Second node -410.21 -417.52

Table 6.3: Horizontal shear normalized tangential stresses
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6.2 Non-uniform torsion analysis for a bulk-carrier

To test the significance of the theory proposed in Chapter 3, an applica-

tion has been carried out for a bulk-carrier, in order to estimate the effect of

the longitudinal distribution of the applied wave torque loads on the bimo-

ment and unit twist angle distributions. The results obtained applying the

classical Vlasov’s theory, the refined one and the one corrected taking into

account the bulkhead deformability, with regards to the unit twist angle and

bimoment longitudinal distribution, are discussed. The bulk-carrier main di-

mensions and geometrical characteristics of the cross-section are listed in the

following table: it is noticed that the shear center vertical position is very

low due to the shape of the cross-section. Youngs modulus, shear modu-

lus and Poissons ratio are: E = 2.08 · 108 kN/m2, G = 0.80 · 108 kN/m2,

ν = 0.3. All the properties of the cross-section have been determined by

a dedicated program developed in MATLAB, based on the strip-theory of

thin-walled girders. Concerning the global energy coefficient CB and CTB,

Length between perpendiculars = 172.00 m

Scantling length = 170.48 m

Breadth = 30.00 m

Depth = 14.70 m

Scantling draught = 9.90 m

Displacement = 43,600 t

Block coefficient = 0.84

Navigation coefficient = 1.00

Cross section area = 2.40 m2

Vertical position of neutral axis above B.L. = 5.56 m

Vertical position of twist centre = -12.13 m

Vertical moment of inertia = 77.45 m4

Horizontal moment of inertia = 293.01 m4

Torsional modulus = 5.40 m4

Warping modulus = 15,603 m6

Table 6.4: Bulk-carrier main dimensions
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as the bulkhead is corrugated, it is possible to assume directly Dy = H = 0.

From the data listed in the previous table, it is possible to calculate CB =

Closed section long. extension a = 7.90 m

Bulkhead spacing l0 = 27.20 m

Net hatch length l1 = 19.30 m

One half of bulkhead breadth b = 15.00 m

Bottom vertical position zB = -5.56 m

Deck vertical position zD = 9.14 m

Bulkhead height hB = 14.70 m

Moment of inertia-half corrug. IeZ = 0.00391 m4

Half corrugation breath sZ = 1.43 m

Upper stool moment of inertia ITB = 0.0401 m4

Table 6.5: Bulkhead main dimensions

0.191 m5 and CTB = 5.773 m5, so obtaining:

I∗t =
(
1 + 0.409 + 0.211

)
It = 1.62It = 8.75m4 (6.5)

It is noticed that the bulkhead contribution in this case is negligible, as

there are no horizontal stiffeners. Anyway, as the contribution due to the

closed hull segment is very important, a consistent global increase of the

hull torsional rigidity is obtained. In the following tables and figures the aft

and fore abscissas of the examined holds are listed and the geometry data

are presented: for each branch the first and the second node, the thickness

t in mm and the length ℓ are shown. Then the longitudinal distributions

of the unit twist angle and the bimoment are also shown assuming for the

wave torque the load condition 1 where the ship direction forms an angle

of 60 deg with the prevailing sea direction. The effect of bulkhead on the

Item Aft Fore

Hold 2 23.64 50.84

Hold 3 -3.56 23.64

Hold 4 -30.76 -3.56

Table 6.6: Holds longitudinal extensions

97



Chapter 6. Numerical applications

1 2 3 4 5 6 7

8

9

10

11

12

13

14

15
16

19

2021222324

17

18

�

Figure 6.4: Bulk-carrier section scheme

longitudinal distribution of the unit twist angle is, in this case, negligible,

while some appreciable differences arise for the bimoment: in the relevant

diagram dashed curves refer to the classical Vlasov’s theory, while the con-

tinuous ones to the refined theory. Particularly, concerning the bimoment

peak values, in table 6.8 the maximum values in Nm2 are shown verify-

ing that the classical theory often overestimates them as regards the refined

one. Some differences arise taking into account the bulkhead deformability

expecially for the hold 2. Finally the warping stress distribution is shown

for a bimoment B = −3.00 · 109Nm2.
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B I II t ℓ B I II t ℓ

1 1 2 16 2.55 16 16 17 26 1.30

2 2 3 15 2.55 17 17 18 26 0.85

3 3 4 15 2.55 18 18 19 20 2.46

4 4 5 15 3.40 19 13 19 16 2.38

5 5 6 15 2.25 20 12 20 19 5.59

6 6 7 15 0.66 21 20 21 24 3.40

7 7 8 15 0.66 22 21 22 24 2.55

8 8 9 15 0.66 23 22 23 24 2.55

9 9 10 15 0.66 24 23 24 24 2.55

10 10 11 14.5 2.45 25 1 24 6.5 (x2) 1.55

11 11 12 16.5 1.35 26 2 23 11 1.55

12 12 13 16.5 5.28 27 3 22 11 1.55

13 13 14 16.5 1.32 28 4 21 11 1.55

14 14 15 26 2.60 29 5 20 14 1.55

15 15 16 26 4.90

Table 6.7: Bulk-carrier geometry data

Hold x (m) Refined Classical Bulkhead deformability

2 23.64 -1.04E+09 -5.72E+08 -5.69E+08

2 50.84 -2.07E+08 2.61E+07 2.50E+07

3 -3.56 -2.68E+09 -2.38E+09 -2.35E+09

3 23.64 1.36E+09 1.81E+09 1.78E+09

4 -30.76 -3.02E+09 -3.16E+09 -3.12E+09

4 -3.56 2.86E+09 3.09E+09 3.05E+09

Table 6.8: Bimoment peak values

99



Chapter 6. Numerical applications

               Hold 4                                 Hold 3                                      Hold 2

0.0E+00

5.0E-07

1.0E-06

1.5E-06

2.0E-06

2.5E-06

3.0E-06

3.5E-06

4.0E-06

4.5E-06

5.0E-06

5.5E-06

6.0E-06

6.5E-06

7.0E-06

-35 -30 -25 -20 -15 -10 -5 0 5 10 15 20 25 30 35 40 45 50 55

x ( m )

θθ θθ
1
 (

ra
d

/m
)

Figure 6.5: Unit twist angle longitudinal distribution
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Figure 6.6: Bimoment longitudinal distribution
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Figure 6.7: Warping stresses distribution
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6.3 The exact solution of restrained torsion for a

double T section

As said, in Chapter 4 a new theory based on the development into

trigonometric series of the displacement field has been extended to beams

with multiconnected cross-section, such as ship structures, and a suitable

numerical code, based on the PDE Toolbox of MATLAB, has been devel-

oped. In order to verify the goodness of the developed numerical code, an

application has been carried out for a beam already analyzed by C.J. Bur-

goyne and H. Brown [6], falling indisputably within the thin-wall domain.

The aims of this application are:

• to verify the goodness of the applied FE method by a numerical com-

parison with the results presented in [6];

• to verify the convergence of the solution when the number of harmonics

increases;

• to make a comparison on the unit-twist angle and bimoment longitudi-

nal distribution with the classical approximate theories for thin-walled

elastic beams.

In the following figure the section scheme is shown, while the other data

useful in the analysis are:

• Poisson modulus ν=0.3;

• Beam length L = 6.4 m;

• Polar moment of inertia Ip = 1.165082E-4 m4.

In table 6.9 a numerical comparison with the results presented in [6] for the

first eight harmonics is presented, verifying a very good agreement between

the two codes; in the analysis a fine mesh with 24576 elements has been

adopted. In tab. 6.10, instead, the number of triangles defining the mesh

has been varied considering two different cases with 96 and 1536 triangles: it

has been verified for the first eight harmonics that, increasing the harmonics

index, the influence of the elements number on the results becomes almost
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Figure 6.8: Double T section scheme

totally neglegible, while it is considerable for the first ones. In the follow-

ing figures, increasing the harmonics number, the convergence behaviour of

the unit twist angle function, evaluated at x = 0.1 m and x = 3.2 m, is

also shown as this parameter is the most representative one in the study of

the non-uniform torsion. All the presented results are relative to a mesh

with 24576 elements; the applied torque has been assumed unitary. In this

case it is possible to verify that 100 harmonics are substantially sufficient

to obtain a consistent result. It seems also useful a comparison with the

classical Vlasov’s theory for thin-walled elastic beams. Concerning the unit

twist angle longitudinal distribution, in the classical theory it can be evalu-

ated by the following differential equation, obtained by a global congruence

condition:

GItϑ1 − EIw
d2ϑ1

dx2
=Mt (6.6)

to which the following boundary conditions must be added:

ϑ1(0) = ϑ1(L) = 0 (6.7)
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Figure 6.9: Unit twist angle convergence at x = 0.1 m
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Figure 6.10: Unit twist angle convergence at x = 3.2 m
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Index Burgoyne (xB) Present (xP ) Percentage difference

m Ip +Hm Ip +Hm
xB−xP

xP
· 100

1 3.38E-07 3.40E-07 0.577

2 7.72E-07 7.74E-07 0.229

3 1.48E-06 1.49E-06 0.100

4 2.46E-06 2.46E-06 0.041

5 3.67E-06 3.67E-06 0.016

6 5.10E-06 5.10E-06 -0.001

7 6.72E-06 6.72E-06 0.003

8 8.49E-06 8.49E-06 -0.002

Table 6.9: Numerical comparison with published data

Index x96 x1536 Percentage diff. Percentage diff.

m Ip +Hm Ip +Hm
x96−xP

xP
· 100 x1536−xP

xP
· 100

1 5.80E-07 3.55E-07 70.331 4.435

2 1.01E-06 7.89E-07 31.025 1.948

3 1.73E-06 1.50E-06 16.276 1.015

4 2.70E-06 2.48E-06 9.942 0.616

5 3.92E-06 3.69E-06 6.763 0.416

6 5.36E-06 5.12E-06 4.975 0.305

7 6.98E-06 6.73E-06 3.885 0.239

8 8.76E-06 8.50E-06 3.181 0.197

Table 6.10: Influence of the mesh

In eq. (6.6) It is the DSV torsional modulus, while Iw is the beam warping

coefficient. Starting from the position:

β =
GIt
EIw

(6.8)

the general solution of eq. (6.6) can be so expressed:

ϑ1(x) =
Mt

GIt

[
1− cosh

(√
βx

)
− 1− cosh(

√
βL)

sinh(
√
βL)

sinh(
√
βx)

]
(6.9)
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η ζ σx−classical σx−exact
σx−classical − σx−exact

σx−exact

m m N/mm2 N/mm2 %

0.09 0.155 0.09959 0.10213 -2.487

0.07 0.155 0.07762 0.07714 0.622

0.05 0.155 0.05542 0.05439 1.894

0.03 0.155 0.03322 0.03242 2.468

0.01 0.155 0.01103 0.01082 1.941

0 0.155 0 0 —

Table 6.11: Warping stresses distribution over the double T section flange

For monoconnected thin-walled beams the following approximate expression

can be adopted for the beam torsional coefficient:

It =
1

3

N∑

i

ℓit
3
i = 1.9533E − 07m4 (6.10)

having denoted by ℓi and ti the length and the thickness of each branch

constituting the beam cross-section. As regards the warping coefficient for

thin-walled double T beams subjected to non-uniform torsion, the following

approximate expression can be adopted (see [5]):

Iw =
1

24
ℓi−WEBℓ

3
i−FLANGEti−FLANGE = 2.3352E − 07m4 (6.11)

In the following figures the unit twist angle and bimoment longitudinal dis-

tributions are shown for a unitary applied torque. In this case no appreciable

differences between the two theories have been noticed. Finally the warping

stresses in some chosen points of the cross-section in correspondence of the

left beam end have been evaluated verifying, also in this case, that a good

convergence is achieved into a low harmonics number (see also fig. 6.13) and

a good agreement with the classical theory is also obtained.
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Figure 6.11: Unit twist angle longitudinal distribution
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Figure 6.13: Warping stresses convergence for the double T section

107



Chapter 6. Numerical applications

6.4 The exact solution of restrained torsion for a

containership

In the following application a simplified containership section is analyzed,

in order to verify the feasibility of the theory presented in Chapter 4 for

the evaluation of the warping stress field. The section main data are the

following ones:

• Poisson modulus ν = 0.3;

• Hold length L = 40 m;

• Cross section area A = 2.50 m2;

• Vertical position of G above baseline zG= 5.81 m;

• Vertical position of twist center ζQ = -11.9 m;

• Vertical moment of inerta Iη = 102.65 m4;

• Horizontal moment of inerta Iζ = 325.07 m4;

• Product of inerta Iηζ = 0;

• Polar moment of inerta Ip = 427.72 m4;

• Torsional coefficient It = 9.57 m4;

• Warping coefficient Iw = 13917 m6.

In the following the section scheme is presented, while in table 6.12 for

each branch the first node, the second node, the length and the thickness

are shown. In table 6.13, assuming a constant applied torque equal to

105kNm, the warping stresses, evaluated applying the exact theory and the

refined one by Hajdin and Kollbruner, are determined in correspondence of

the left beam end section. See also fig. 6.15 for the warping stress distribu-

tion over the cross-section, where the dashed and continuous lines refer to

the classical and exact theories, respectively. From Fig. 6.15 it is clear

that the warping stress distribution over each branch isn’t linear, as some

stress concentrations arise, especially in correspondence of the intersections
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Branches I node II node t ( mm ) l ( m )

1 1 2 20 4.0

2 2 3 20 4.0

3 3 4 20 2.4

4 4 5 20 4.6

5 5 6 15 4.4

6 6 7 15 15.6

7 7 8 15 2.0

8 8 9 15 15.6

9 9 10 15 2.6

10 10 11 15 2.6

11 11 12 18 2.4

12 12 13 18 4.0

13 13 14 18 4.0

14 1 14 15 1.8

15 2 13 15 1.8

16 3 12 15 1.8

17 4 11 15 1.8

18 6 9 15 2.0

Table 6.12: Containership section geometry data

between the branches. Concerning the hull girder yielding check, for ships

having large openings on the strength deck, it is well known that the normal

stresses induced by torque, vertical and horizontal bending moments have to

be superimposed, by means of appropriate combination factors. The maxi-

mum warping stress values are reached in correspondence of the bottom-side

and deck-inner side intersections, where the stresses due to vertical and hor-

izontal bending moments become maximum, too. From the analysis, the

following results have been obtained at the above mentioned intersections:

• Bottom - side : σx−e = 25.05N/mm2 = 1.5σx−c

• Deck - inner side: σx−e = 53.11N/mm2 = 2.0σx−c
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Nodes σx−exact σx−classical
σx−classical − σx−exact

σx−exact

Items N/mm2 N/mm2 %

1 0 0 —

2 4.7 4.44 -5.53

3 10.24 8.9 -13.09

4 14.26 11.61 -18.58

5 25.05 17.01 -32.10

6 10.48 9.44 -9.92

7 -17.08 -19.63 14.93

8 -53.11 -26.44 -50.22

9 13.47 6.75 -49.89

10 -9.73 3.92 -140.29

11 5.28 8.85 67.61

12 2.16 6.83 216.20

13 0.77 3.42 344.16

14 0 0 —

Table 6.13: Containership warping stresses at nodes

Denoting by σB the combined vertical and horizontal bending moment

stress, the total primary one, obtained adopting for the warping part the

classical and the exact theories, respectively, can be so expressed:

• Classical theory : σ1 = σB + σx−c

• Exact theory: σ∗1 = σB + σx−e

Thanks to the positions σx−e = βcσx−c and σx−c = αcσ1, the following

percentage variation, as regards σ1, is obtained:

∆ =
σ∗1 − σ1

σ1
· 100 = αc(βc − 1) · 100 (6.12)

so that for any βc > 1 σ1 is underestimated as regards σ
∗
1 , which is poten-

tially higher than the admissible stress. For example, if αc = 0.20, assuming

at bottom-side βc = 1.5 and at deck-inner side βc = 2.0, the relative per-

centage variations, as regards σ1, are ∆ = 10% and ∆ = 20%.
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Figure 6.14: Containership section scheme
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Figure 6.15: Containership warping stresses distribution
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6.5 An application of the orthotropic plate theory

to garage decks

In this section an application has been carried out for the evaluation

of the highest stresses acting on the primary supporting members of a

Ro-ro PANAMAX ship used to carry heavy vehicles, schematizing the en-

tire deck as a clamped orthotropic plate; particularly, it has been inves-

tigated the influence of the longitudinal distribution of wheeled loads on

the normal stresses in girders and transverses, in order to highlight the

plate effect, which re-distributes the load peaks on transverses, unlike the

isolated beam scheme. The ship main dimensions are: LBP = 195.00 m;

B =32.25 m; D = 25.92 m; ∆ = 44200 t; transverses and girders, have,

respectively, 970x11+320x30 and 970x12+280x30 T sections, while longi-

tudinals are 240x10 offset bulb plates, in high-strength steel with σy =

355 N/mm2. According to the symbols and notations defined in Chap-

ter 5, the data assumed in the analysis are:LX = 160m; ℓ = LY = 24m;

sx = 4m; sy = 2.463m; s = 0.667m; tplating = 14mm; Iex = 967698cm4;

Iey = 911559cm4; Ipx = 178784cm4; Ipy = 244515cm4; rxf = 83.66cm;

ryf = 75.30cm; ρ = 7.41; ηt = 0.22. In the following figures the deck scheme

and the reference vehicle are shown. For primary supporting members sub-
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Figure 6.16: Ro-ro Panamax deck scheme
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jected to wheeled loads, yielding checks have to be carried out considering a

maximum pressure load, equivalent to the maximum vertical, static and dy-

namic, applied forces; the static part in kN/m2 can be evaluated according

to the following formula, suggested by R.I.NA., 2009:

peq.stat =
nVQA

ℓsy

(
3− X1 +X2

sy

)
g (6.13)

having denoted by:

• nV = the number of vehicles located on the primary supporting mem-

ber;

• QA = the maximum axle load in t;

• X1 = the minimum distance, in m, between two consecutive axles;

• X2 = the minimum distance, in m, between the axles of two consecu-

tive vehicles;

• ℓ = the span, in m, of the primary supporting members (in this case

equal to the deck breadth);

• sy = the spacing, in m, between transverses.

The maximum total equivalent pressure is the sum of the static term and

the dynamic one and can be so expressed:

peq.max = peq.stat

(
1 + aZ

)
(6.14)

15005285136016002545 3645

8 t 16 t 16 t 16 t 8 t

�

Figure 6.17: Truck axle loads
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having denoted by aZ the ship vertical acceleration. The formula suggested

by RINA Rules is valid only if an axle is located directly on a supporting

member, but if this condition is not verified, the previous relation can’t be

directly applied. So, it is convenient to generalize the eq. (6.13) by the

following one:

peq.stat =
nV

ℓsy

nA∑

i=1

QA,i

(
1− Xi

sy

)
g (6.15)

where nA is the number of axles between sy and sy and Xi is the distance

of the i − th axle load from the considered supporting member. From eq.

(6.15), the actual equivalent pressure pi, including inertial force, is obtained

similarly to eq. (6.14). In such a way it is possible to model the load distri-

bution on the deck on the basis of axle loads and geometric characteristics

of vehicles. As in this case the deck isn’t loaded by a uniform pressure load,

but by a load function discontinuous at intervals, the eq. (5.26) has to be

replaced by the following one:

∂

∂wmn

∫ 1

0

∫ 1

0
pwdξdη = peq.max

nT∑

i=1

κi

(
βi − αi −

sin2πmβi − sin2πmαi

2πm

)

(6.16)

having denoted by nT the number of intervals where p is continuous, co-

inciding in this case with the number of transverses, peq.max the maximum

equivalent pressure, as given by eq. (6.14) and κi a load parameter defined

as follows:

κi =
pi

peq.max
=
p[αi, βi]

peq.max
(6.17)

In the case under examination, with nV = 8 and aZ = 0.411g, the maximum

total pressure is peq.max = 48647N/m2. The longitudinal distribution of

the equivalent pressure is shown in the following diagram. The maximum

stresses on girders and transverses are, respectively:

σxf−sup = 154N/mm2 ; σyf−sup = 176N/mm2 (6.18)

In the following diagram the ratio k1 between the stress on the i− th trans-
verse and the maximum one is shown: by the comparison with the longitudi-

nal distribution of the equivalent pressure, it is immediately possible to ver-

ify that there is a redistribution of the loads. Particularly, the longitudinal
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distribution of the stresses acting on transverses is much less discontinuous

than the applied external loads: this implies that girders permit to unload

the most loaded transverses and overload the least loaded ones. Concerning
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Figure 6.18: Equivalent pressure longitudinal distribution
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Figure 6.19: Longitudinal distribution of stresses on transverses
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the strain energy evaluation, the total external work can be so expressed:

Le =
1

2

∫

Ω
pwdA (6.19)

so obtaining:

Le =
1

2

p2
eq.maxL

5
Y LX

Eiy

nT∑

i=1

κi

N∑

n=1

M∑

m=1

δm,n

(
βi − αi −

sin2πmβi − sin2πmαi

2πm

)

(6.20)

Similarly, it is possible to evaluate the strain energy absorbed by girders:

Lgirder =
1

2

∫

Ω
DX

(∂2w

∂x2

)2
dA (6.21)

whence:

Lgirder =
2π4

ρ4

p2
eq.maxL

5
Y LX

Eiy

M∑

m=1

N∑

n=1

m4δm,n

(
δm,n + 2

N∑

n=1

δm,n

)
(6.22)

Concerning the transverses, the following equality holds:

Ltransv =
1

2

∫

Ω
DY

(∂2w

∂y2

)2
dA (6.23)

whence:

Ltransv = 2π4
p2

eq.maxL
5
Y LX

Eiy

M∑

m=1

N∑

n=1

n4δm,n

(
δm,n + 2

M∑

m=1

δm,n

)
(6.24)

Finally the third term, relative to the distortion, can be written as follows:

Ldist =
1

2

∫

Ω
2H

∂2w

∂x2

∂2w

∂y2
dA (6.25)

whence:

Ldist = 4π4 ηt

ρ2

p2
eq.maxL

5
Y LX

Eiy

M∑

m=1

N∑

n=1

m2n2δm,n (6.26)

In the case under examination the values of the strain energy components,

in Nm, are:

Le = 306225; Lgirder = 18624; Ltransv = 280462; Ldist = 7139 (6.27)

while the corresponding percentage values as regards the total work done

by the external forces are:

Lgirder = 6.0%; Ltransv = 91.6%; Ldist = 2.4% (6.28)
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Taking into account that there are 5 girders of length 160 m and 64 trans-

verses of length 24 m, the main strain energy per unit of length absorbed

by girders and transverses can be so expressed:

lgirder =
18624

5 · 160 = 23
Nm

m
; ltransvr =

280462

64 · 24 = 183
Nm

m
(6.29)

Finally, if the deck were loaded by a uniform pressure p = peq.max =

48647N/m2 the maximum stresses on girders and transverses would be:

σxf−sup−U = 446N/mm2 ; σyf−sup−U = 475N/mm2 (6.30)

The relevant ratios between the maximum actual stresses and the ones ob-

tained considering a uniformly distributed pressure equivalent to the maxi-

mum values are:

ψx =
σxf−sup

σxf−sup−U
= 0.35 ; ψy =

σyf−sup

σyf−sup−U
= 0.37 (6.31)

Denoting,now, by nT the number of transverses along the deck length (in

this case equal to 64), it is possible to define a new term, namely the mean

load parameter χ:

χ =

nT∑

i

κi

nT
(6.32)

that, in the case under examination, is equal to 0.35, so very close to the

values assumed by ψx and ψy. Starting from this position, it seems possible

to introduce a simplified procedure that permits to evaluate the maximum

actual stresses acting on girders and transverses, starting from a uniformly

distributed pressure equal to peq.max , subsequently multiplying the relevant

stresses by χ, so obtaining:

σxf−sup = χσxf−sup−U ; σyf−sup = χσyf−sup−U (6.33)

The following expressions can be adopted to determine the mean load pa-

rameter χ, , as function of different vehicles’ typologies and the distance

between transverses sy:

• Trailers: χ = 0.212 + 0.076sy;

• Transporters: χ = 0.102 + 0.192sy;
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• Cars: χ = 0.601 + 0.093sy;

• Buses: χ = 0.001 + 0.122sy.

The previous analysis has shown that the effective wheeled load distribution,

expressed by means of the mean load parameter χ has great influence on

the loading of girders and transverses. Particularly, it has been observed

that transverses absorb the great part of the load, while girders contribute

to a re-distribution of stresses, unloading the most loaded transverses and

loading the least loaded ones, so that it seems appopriate to assume that

the entire deck is uniformly loaded by a pressure equal to χpeq−max. Now,

as for ro-ro decks ρ is much greater than 1, it is possible to directly assume

the values kyf−sup = 0.833 and kxf−sup = 0.0571. Denoting by σall.−tr. and

σall.−gird. the allowable stresses for transverses and girders respectively, it is

possible to evaluate the minimum section modulus required for transverses

by the following relation:

Wey−min = χ
0.0833peq.maxL

2
Y sy

σall.−tr.
(6.34)

with peq.max in N/m
2, LY and sy in m, σall.−tr. in N/mm

2 and Wey−min in

cm3. The modulus is inclusive of plating effective breadth bex. The condition

valid for girders is:

Wex−min = χ2
0.0033p2

eq.maxL
4
Y sxsy

Ieyσ2
all.−long.

rxf (6.35)

with sx in m, Iey in cm
4, rxf in cm, Wex−min in cm3. For the symbols not

defined here, see Chapter 5. In conclusion, in this application it has been

highlighted that transverse beams absorb the most part of the external work

done by the pressure load, as it could be expected. Besides, it has been found

that there is an appreciable re-distribution of the load, so that almost the

same maximum stresses are obtained considering simply the mean pressure

acting uniformly on the deck; then those stresses can be evaluated directly

by the orthotropic plate charts. From that, the suggestion for a simple

procedure for the preliminary dimensioning of ro-ro deck primary supporting

members is given. Other extensions of this theory have been carried out to

define a procedure that permits to evaluate, in a preliminary project phase,

119



Chapter 6. Numerical applications

the total deck structural weight as function of the vehicles’ typologies, the

deck breadth, the spacing between ordinary stiffeners and transverses and

the maximum height of primary supporting members.
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At the end of the work, it’s in the writer’s opinion that some useful sug-

gestions have been furnished for a more accurate analysis of tangential and

warping stresses in ship structures due to shear and non-uniform torsion.

Starting from the classical Vlasov’s theory for thin-walled beams, some the-

oretical developments have been reached for the bending-shear response of

a ship structure loaded by a longitudinally variable shear. It has been found

that a new warping stress field, not accounted by the classical theories, arise.

It can be predicted that this stress field can be appreciable for all those load-

ing conditions characterized by great values of the unit vertical load such as

the alternate holds loading one for bulk-carriers. The influence of the warp-

ing stress field has been evaluated for a bulk-carrier and it has been found

that the relevant results are in a good accordance with the ones obtained

by a FE analysis, carried out by ANSYS.

Subsequently, a new theory for thin-walled beams has been developed, start-

ing from the bending-shear Saint-Venant displacement field, verifying that

the contraction of the ship cross-section, assumed null in the classical theo-

ries, produces a redistribution of tangential stresses and a light variation of

the shear center vertical position.

Concerning the non-uniform torsion problem, a new procedure, that per-

mits to take into account the longitudinal variability of the applied static

and wave torque, has been developed starting from the refined displacement

field by Kollbruner and Hajdin. Furthermore, a technique to consider the

influence of bulkhead deformability on the bimoment and unit twist angle

longitudinal distribution, has been presented.

Besides, a new theory for the non-uniform torsion that permits, despite the
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classical one, to fully respect the indefinite equilibrium equation along the

beam axis, has been developed specifically aimed to analyze beams with

multiconnected cross-section, such as ship structures, with the boundary

conditions represented by the transverse bulkheads at the extremity of a

single hold. A containership has been analyzed verifying that the warping

stress field is non-linear along the branches and some stress concentrations

arise, especially at the intersections bottom-bilge and deck-inner side.

As for the non-uniform torsion problem the bulkheads have been schema-

tized as clamped orthotropic plates, the Huber partial differential equation

with all edges clamped has been fully solved and the viability of the or-

thotropic plate theory has also been highlighted by the application to the

stress analysis in primary supporting members of some ro-ro garage decks,

with an equivalent pressure longitudinally continuous at intervals. Some nu-

merical applications have been carried out, in order to verify the viability of

the proposed theories by a numerical comparison with the results obtained

by a FE analysis.

It is in the writer’s hope that this work can give some useful contributions

for the analysis of primary stress in ship structures and new suggestions to

researchers for further developments.
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