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DISSERTATION ABSTRACT 

MULTISCALE DESIGN AND MANUFACTURING OF ADVANCED COMPOSITES 

INTEGRATING DAMPING FEATURES  

 

Alfonso Martone 

Doctor of Philosophy, December 2009 

 

Multi-functionality is a current issue in materials design, in particular, the fast growing 

application of advanced composites in commercial aeronautic is raising the need to design 

primary structures with composite material that perform multiple functions: i.e. able to 

fulfil not only mechanical allowable but also functional requirement such as vibroacoustic 

and fire reaction. 

  

The development of multifunctional design tools integrating structural and damping 

features enables a next step toward the exploitation of the composite materials benefits. It 

is worth noting that the structural damping in the case of a composite fuselage is a 

multiscale problem. The fuselage vibroacoustic requirement is determined by the behaviour 

of stringers reinforced skin, that is determined by the panel damping behaviour which 

owns its damping features to its laminate architecture and constituents materials. 

 

The requirement chain for a composite structure is formulated by a top-down approach 

determined by the behaviour of sub-structures which compose the final structural 

component. Aim of this work is to individuate and implement a design procedure able to 

describe a composite structure starting from its constituents, moreover for each 

dimensional scales the behaviour have to be modelled. The through dimensional scales 

model proposed for describing composite materials use the formulation of constitutive 

equation for describe the material behaviour at each sub-component. From the 

homogenization of fibres and hosting matrix it is possible to formulate a micro-scale 

constitutive matrix describing mechanical and dissipative lamina behaviour, with analogous 

approach the laminate behaviour is described by the homogenization of the constituents 

layers. 
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The potential of describe mechanical and dissipative feature for a laminate starting from its 

elementary constituents gives the chance of imagine hybrid architecture able to improve a 

desired feature. Keeping in mind the passive damping feature, three possible hybrid 

architecture have been proposed for suit the requirement of increment material 

performance, moreover the composite have to maintain its mechanical properties above a 

defined level to preserve structural safety. The insertion of a viscoelastic layer within the 

laminate has been individuated as promising architecture for increase damping 

performance although this configuration is susceptible to interlaminar stress and prone to 

de-bonding. From theoretically study on the energy allocation within the laminate is 

formulated the novel idea of an hybrid laminate where the viscoelastic material is 

embedded as long fiber in the reinforcement preform, this architecture contribute to 

increment the damping properties withstand the mechanical properties but enhancement 

level is less than an interleaved containing the same volume of added material. Rather than 

modifying the fiber arrangement the lamina passive damping could be increased by means 

of introducing high damping nano-fillers within the hosting matrix. For the prediction of 

the overall laminate properties an hierarchical procedure has proposed accounting the 

hybridization at each laminate level. Considering elementary structures, such as a beam, 

subjected to boundary condition which induce that energy is allocated in only one 

component, the damping predicted is the overall damping capacity for the considered 

energy component. 

 

A valuable technology for manufacturing composite materials have to be flexible in 

changing constituents properties as well as the insertion of a softer material as lamina or 

the use of hybrid layer stacking the fibres or the use of a pre-hybridised hosting matrix. 

Process technologies allowing the listed item are based on the liquid moulding, in particular 

the VARTM process is selected as this process could be easily extended on large scale 

fabrication. 

 

Unidirectional composites of the proposed lamina architecture were manufactured and 

tested. In each case a valuable increment in passive damping were measured. Both the 

interleaved layer and the hybrid preform lead to a loss in mechanical performances, whilst 

the hybrid laminates manufactured by the nanofilled hosting matrix kept the its mechanical 

features leading to an enhancement of loss factor until 40% at temperatures suitable for 

aeronautical applications. 
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The most promising architecture selected from experimental study was the multiscale 

laminate, as they are reinforced by microscale long fibres and nanoscale nanotubes. As 

proof of the industrial feasibility of this solution a simple typical aeronautical component 

has manufactured. A stiffened composite plate is designed and manufactured for further 

acoustical testing. In addition the angle ply laminate has fabricated and mechanical tested. 

 

Keywords: Hybrid composites, Multiscale modelling, Damping , Viscoelastic, Carbon 

nanotubes. 
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1  

Multi-scale design of  composite 

structures 

 

1.1 Introduction 

In recent years, the global slump required the reorganization of the main airline company in 

terms of  better resource management, i.e. air routes have been re-arranged, and the global 

efficiency of aeronautical system has been improving trough the adaption of the airport 

and aircraft efficiency as well as maintenance cost and fuel consumption or fatigue life. A 

key parameter for the aerospace industry is to anticipate customers exigencies, in fact, as 

The Boeing Company reports, although the uneven economic recovery, in the next two 

decades the projections indicate the need of about thirty thousand new aircrafts above all in 

the range of single aisle commercial liner, where market will absorb twenty thousand 

vehicles. 

 

Figure 1- 1: Airlines continue to adapt to the realities of the market. From The Boeing Company. 
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Figure 1- 2: Aircraft market projections. From The Boeing Company. 

 

The aerospace industry challenge, therefore, is to meet the more exigent requirement of 

more efficient aircrafts, as the volatile fuel price engraves fleet handling, furthermore the 

new environmental rules have to be satisfied. 

The introduction of composite materials thanks to their versatility as well as the material 

adjustable architecture and the high strength to weight ratio offers themselves as base 

technology for next aircraft generation. Composite materials were employed in aeronautical 

industry since the late 70‘s, but always in secondary structural components. Often the main 

advantage accounted to the use of composites is the weight saving estimated about 30% of 

the final weight, but this gain, which implies less than 10% in terms of the directing 

operational costs, is a not convincing argument for the industry change. However, if the 

improvement in the flight performance is attempted in a more general sense, the composite 

technology represents the more attractive evolution for the new aircraft generation. Both 

the actual biggest aerospace companies individuate the composite application for the 

aircraft primary structural part as a strategical manufacturing technology. A more realistic 

estimation of weight reduction would be guessed in 10%, but if the weight is saved on 

primary structures, as fuselage, wings or empennage the reduction in operating costs will be 

proportional. 

A main aircraft structure, such as a fuselage barrel have to obey, beyond the essential 

structural performances, even to acoustical or damage tolerance features. Moreover, the use 

of composite materials allows to geometrically define components to improve aerodynamic 

efficiency, in particular the overlapping of more than one component represents a critical 

point for the classic metallic fuselages.  
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The improving study for the final structure may be focused not only on the final 

component but also on the composite material itself and on the manufacturing process 

which could be not independent of the final component.  

 

1.2 Multi-disciplinary design of composite structure 

The necessity of a multidisciplinary design approach addressing the transition from the 

metallic to the composite fuselage aircraft that includes not only mechanical issues but also 

the vibration suppression and thermal insulation aspects has been illustrated by a series of 

papers from Van Tooren et al. [1].  

The starting point individuated for the choice of a new combination of materials, structural 

concepts and manufacturing technology is the improvement of the efficiency by integration 

of functions. They schematically represented the problem of the requirements which have 

to  be fulfilled during the development of an aircraft fuselage crossing the most important 

material and structural design criteria, the horizontal axis in the figure 1-3, with the level of 

fulfilment of design requirements, the vertical axis. 

 

 

Figure 1- 3: Design requirements for fuselage structures. From Van Tooren [1]. 

  

Current design practise is characterized by a sequential methodology and structural 

optimization is only done with respect of stiffness and strength. The respect of physical 

requirements such as thermal and acoustical insulation is done at the end with additional 

weight and costs. 
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The use of composite material implies the possibility to integrate within a single system all 

needed features to fulfil physical requirements, i.e. thermal insulation or damping material, 

moreover they allow a freedom in the shape valuable for structure efficiency. Composites 

necessitate more attention during the design phase, these materials show a brittle behaviour 

and they are sensitive to the presence of flaws, therefore attention should be paid to avoid 

stress concentration and load conditions may be carefully predicted. It becomes clear that 

the combination of materials, structural concepts and manufacturing technologies are 

strictly related to final component and to all the requirements that should be satisfied. 

Van Tooren examined, as case study, the integrate design for a fuselage panel; in its study 

the decisive feature is the material technology, metallic or composite, addressing the 

analysis both to structural and to sound insulation requirements. 

A simple example of integrated design is represented by the analysis of a fuselage barrel. 

The introduction of composite material, in fct, undoubtedly lead to the decreasing of final 

weight of the structure. 

 

 

Figure 1- 4: Typical aeronautical fuselage barrel and a stiffened plate. 

 

The buckling stress of the stringer-skin panel is determined by the Euler stress for columns 

 

It needs to be remarked that this formula could be applied for composite structure in term 

of its equivalent isotropic material. Composite fuselage demands thinner skin panels that 

could influence the damage tolerance feature of the system, furthermore the sound 

insulation properties could be changed. The sound insulation of a fuselage depends on 

many variables, the noise spectrum of the source incident, the resonances frequencies of 

the structure, the pressure difference from the inside and the outside. 
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The improvement in transmission loss for a stiffened plate related to the frames and 

stiffeners pitch can be expressed as follows:   

 

From this equation it can be concluded that an increment of the stiffener pitch (normally 

the lower) gives a large increment in TL. An increasing of the skin thickness leads to two 

separated effects: a direct increment in TL as the mass of the fuselage panel increase and a 

panel stiffness increase which in turn moves panel natural frequency potentially depressing 

the TL value. 

Considering the structure loss factor as a damping constant an increment in structure loss 

factor will approximately result in a TL improvement defined as 

 

A method to improve the structure loss factor is to modify material architecture 

embedding high loss factor materials within laminate stacking. In particular, the local 

addition of the viscoelastic materials to the vibrating structure has been the standard 

procedure to control vibration amplitude for composite fuselage panels. The detrimental 

effect on the structural efficiency resulting by the application of a viscoelastic layer to the 

fuselage skin panel for the improvement of the acoustical insulation has been discussed in 

latest papers leaving room to further improvement.  

Through the reported examples, two key parameters for the study of a composite structure 

could be individuated, firstly the importance of the overall material architecture on the final 

response of the structure, in fact both mechanical performances (stiffness and strength) 

and sound insulation (transmission loss and loss factor) could be controlled by a proper 

definition of the material architecture; moreover this feature could lead to contrasting 

requests needing an optimization process accounting the multiple disciplinary aspects. 

 



21 
 

1.3  Multi-scale design of a composite fuselage 

As matter of fact, the flexibility of composite materials architectures gives the chance to 

design and manufacture materials that are simultaneously compliant for both the structural 

and the vibroacoustic requirements of a primary structure.  

The development of multifunctional design tools integrating structural and damping 

features enables a next step toward the exploitation of the composite materials benefits. It 

is worth noting that the structural damping in the case of a composite fuselage is a 

multiscale problem. As illustrated in the Figure 1- 5 the fuselage structure vibroacoustic 

requirement is top-down determined by the behaviour of the stringers reinforced skin, that 

is, in turn, determined by the panel damping behaviour, that owns its damping features to 

its laminate architecture and constituent materials. 

 

 

Figure 1- 5: Multiscale analysis of a composite fuselage barrel. From ARCA [3]  

  

Different technical disciplines are in charge to develop design tools for the different 

dimensional scales. From the bottom-up perspective, robust constitutive equations for the 

structural and viscoelastic behaviour of constituents materials to be passed through the 

different dimensional scales at the laminate level are needed to perform reliable dynamical 

structural analysis of proper bounded sub elements and, in turn, to be implemented into 

the whole fuselage barrel design.  

In particular, the insertion of viscoelastic layer within the laminate has been individuated as 

the most promising architecture for increasing damping performance of plane structures. 

The dynamical behaviour of elementary structures (beam, plates) based on the interleaved 

viscoelastic layer architecture has been intensely investigated and a plenty of models have 
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been proposed for the evaluation of the damping loss factor at the structure mechanical 

resonances (modal analysis).  

The pioneering works of Ross, Kerwin and Ungar, RKU [5], have been investigated the 

constrained layer configuration where a metallic plate have been added with a viscoelastic 

layer upper constrained by a thin metallic layer. They have been focused on the evaluation 

of the flexural modal damping properties of the hybridised plate structure where 

mechanical energy dissipation has been assigned only at the viscoelastic layer. Based on the 

RKU method, Cupial and Niziol [7] have been later developed a method for calculating the 

modal in-plane flexural loss factor of a composite panel with a viscoelastic interleaved layer 

by the use of first order shear deformation theory where the composite layers have been 

considered orthotropic. A considerable effort has been made by the group of Saravanos 

that in a series of paper introduced a real multiscale model for the modal behaviour of an 

interleaved hybrid composite starting from constituent materials. In particular, Saravanos 

and Pereira  [8] have been demonstrated the increasing in damping properties of composite 

plates by embedding viscoelastic layers in the material stacking sequence. A semi-analytical 

method has been further proposed by Saravanos [9] for solving the dynamical motion of 

the hybrid interleaved laminate that involves high-order and discrete layer theories to 

include transverse shear effects in laminates. Finally, Berthelot [10] has been proposed a 

generalised method for modal damping calculation in the case of composite plates and 

beam that has been based on the Ritz method where the transverse shear effects are 

introduced trough equilibrium condition on laminate thickness.  

Modelling the composite materials viscoelasticity has led to two alternative approaches: the 

correspondence principle and Strain Energy Method (see Chandra et al., [11]). In particular 

the latter method, relates the total damping of a composite material or a composite 

structure to the damping of each constituent phase and the fraction of the total strain 

energy stored in that phase. The method states that for any system of linear viscoelastic 

elements the loss factor can be expressed as a ratio of summation of the product of 

individual element loss factor and strain energy stored in each element to the total strain 

energy. 

The potential application of Strain Energy Method formalism to different dimensional 

scales has driven the present work. Ni and Adams [4] have been first developed a model 

for flexural damping behaviour of a composite laminate based on the classical plate theory 

by using the ―Strain Energy Method‖. Saravanos proposed later in 1989 a micromechanics 

treatment for calculation of the lamina loss factor including the out-of-plane effects 
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through high order thick laminate theory.  Yim and Gillespie [12] have been used the 

equilibrium equations to account for the transverse shear stresses in predicting the modal 

loss factor. Only recently.  Radford and Mèlo [13] proposed the use of the Dynamical 

Mechanical Analysis method to characterize the composite lamina constitutive equation 

based on the Strain Energy Method  by the introduction of only four viscoelastic 

independent parameters for lamina. 

An alternative to insert viscoelastic layer within the laminate is to engineer the damping 

feature into the structure by introducing at lamina level filler capable to increment the 

passive damping.  A number of hybrid solution could be imagined by the modification of 

the lamina basic constituents: the fibres and the hosting matrix. 

The presence of viscoelastic sheet within a laminate make the material prone to de-bonding 

induced by high shear stress reached, however if the viscoelastic material would be 

embedded in fibres preform the final damping could be incremented [14], the arrangement 

of viscoelastic fibres in warp or weft direction induces, for effect of stiffness gradient, a 

deformation field enhancing energy stored in material and hence the dissipated energy. 

Rather than modifying fiber arrangement, that certainly introduces technological efforts in 

the final manufacturing process due to the handling of different stiffness fibres,  the lamina 

damping could be improved by introducing nanoscale fillers (such as carbon nanotubes) 

into the host structure matrix. For such nano-composites [15], [16], the combination of 

extremely large interfacial contact area and low mass density of the filler materials implies 

that frictional sliding of nanoscale fibres within the polymer matrix has the potential to 

cause significant dissipation of energy with minimal weight penalty. Another attractive 

feature of this concept is that the nanoscale additives could be seamlessly integrated [17] 

into composite systems without sacrificing mechanical properties or structural integrity. 

The damping behaviour of nanocomposites has modelled from Finegan and Gibson 

applying the correspondence principles at Halpin-Tsai model for short fiber composites, 

their predictions show that composites having very low fiber aspect ratios should have 

higher damping than those having high fiber aspect ratios [18]. Multi-walled nanotubes 

have observed to be a better reinforcement than single-walled, moreover are more effective 

in enhancing damping characteristic of the composites [19].  

The reinforcement effect of carbon nanotube in polymeric matrix depends not only by 

their content within the hosting system according to traditional micro-mechanics of 

composites but also by the level of dispersion within the final nano-composite [20]-[21]. 
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Percolation theory [22] can be suitably considered to describe these boundaries. The 

percolation phenomenon represents a well-known and studied topic for many filler matrix 

systems, mainly for electrical properties. In fact, the first evidence of percolation threshold 

to model electrical behaviour of CNT/polymer nano-composite is due to Coleman et al. 

back in 1998 [23]. 

 

1.4 Research outline 

This work is ideally divided in four parts. In the first part, constituted by chapters I, II and 

II, the analytical solution for damping predictions and experimental methods for measuring 

it are presented. The second part, chapters IV and V, reports the proposed material 

architectures for enhancement passive damping for a material at each dimensional scale,, 

furthermore, the numerical procedure for simulating multiscale behaviour of composite 

structure is described. The third part, chapter VI, reports all the experimental activities on 

the hybrid unidirectional composites; while in the fourth part  chapter VII the feasibility of 

the selected architecture on large scale components. 

Each chapter is arranged by following the dimensional path, as illustrated in the following 

Figure 1- 6, both the modelling analysis of hybrid composites and the experimental 

manufacturing and testing have covered item starting from nanocomposites to the final 

structural component. 

 

 

Figure 1- 6: Through the scale analysis of a composite structure. 
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In the chapter II the problem of material damping is presented with the aim of 

understanding dissipation mechanisms within the composites. The proposed approach 

analyse material dissipative properties  by the strain energy method which allows to keep 

the same formalism over different dimensional scales. 

Composite damping depends on many aspect of material architecture, this phenomenon is 

analysed at three different dimensional scale. At laminate levels the dissipation mechanism 

is explained by the evaluation of each energy components, introducing the calculation of 

out of the plane stress components. At micro-level a complete description of dissipative 

component for transversely isotropic material is proposed following Saravanos unified 

approach. Then the analysis of nano-composites is proposed extending short fiber 

composite theories for nano-dimensional fillers.  

The purpose of the chapter III is to introduce the fundamental of damping by means of 

viscoelastic material and measuring the relevant parameters for any specific polymer. 

Damping is an important parameters related to the study of dynamic behaviour of fiber-

reinforced composite structures and the successful characterization of dynamic response of 

viscoelastically damped composite materials is essential to verify the effectiveness of 

analytical methods based upon its constituents. The main damping mechanisms are 

described and attention is focused on the viscoelastic materials which are characterized by 

high ratio between the dissipative and elastic features.The measuring techniques are also 

described. Structural damping is based on the analysis of a vibrating structure and damping 

feature is measured at system‘s resonance, this is usually indicated as modal damping. 

Moreover the dynamical mechanical approach is reported, in that case the material 

damping is expressed in terms of the phase shift form exiting sinusoid force and the 

material response. 

The chapter IV describes hybrid laminate architectures able to improve the passive 

damping. The well known interleaved solution is examined by literature works of Berthelot, 

moreover based on the principle of maximize stored energy a novel hybrid architecture for 

the lamina has been proposed. The passive damping of a composite lamina could be 

enhanced by imaging an hybrid fiber preform which includes viscoelastic material or by 

means of a lamina consisting in an high damping matrix. Passive damping of the hosting 

matrix could be improved by dispersing carbon nanotubes within the resin before the 

lamina infusion. 

The numerical tool based on the model developed in the previous chapter is described in 

the chapter V, the matlab code developed has been embedded in the multi-objective 
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platform, called modeFRONTIER, which integrate optimization and statistical procedure 

that would be used for the individuation of the optimal hybrid architecture related to the 

specific boundary conditions. 

First the numerical analysis on the mechanical and dissipative behaviour of hybrid 

unidirectional laminae are presented, i.e. the hierarchical procedure for the evaluation of 

mechanical properties of multiscale unidirectional composites is discussed. 

The integrated multi-level procedure, Figure 1- 7, for the analysis of hybrid composited is 

explained and as application the analysis of two possible hybrid laminate including 3% in 

volume of damping material is led accounting the final engineering constants of material 

and the final dissipative constant describing overall material dissipation are evaluated. 

 

 

Figure 1- 7: Multi-level analysis of composite structures. 
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In the chapter VI the experimental analysis of the proposed hybrid architecture have  been 

presented. For each proposed architecture, unidirectional coupons have been tested to 

verify the increment in loss factor.  The hybridization of the laminate was experimentally 

studied over all dimensional scales. On the macro scale laminates with macroscopically 

integrated viscoelastic layer have fabricated and tested. Moreover the concept of hybrid 

lamina is examined in terms of hybrid preforms, where viscoelastic material is integrated as 

fiber along carbon tow direction, and in terms of laminae infused by a nanoloaded epoxy 

system. In each case a valuable increment in passive damping were measured, mainly at the 

requirement temperature, i.e. the cruise condition in the case of an aeronautical application. 

Both the interleaved layer and the hybrid dry preform lead to a loss in mechanical 

performances for the considered material, although the material damping is enhanced at 

each testing temperature. In the case of nano loaded matrix composites, mechanical 

performances are kept over all test conditions, but the enhancement in material damping is 

sensible only at temperatures below zero degrees. 

Among the hybrid architectures examined in the course of this study the most promising, 

capable of enhance the damping response of a composite structure withstand the 

mechanical performance, was found to be the “multiscale” laminate. 

A multiscale laminate is a fiber reinforced polymer modified with CNTs, is indicated as 

―multiscale‖ as they are reinforced with microscale fibres and nanoscale nanotubes. High 

energy sonication has been widely used to disperse the CNT load in the resin before the 

infusion, however more recently calendaring has gained popularity as a means to disperse 

CNTs due to its efficiency and scalability which make it the suitable for high volume and 

high rate production. 

The chapter VII address to describe the design and the manufacturing of a typical 

composite structure for aeronautical application. A stiffened composite plate is 

manufactured by VARTM for further acoustical testing, moreover large scale panel were 

manufactured in order to mechanically characterize the hybrid laminate.   
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2  

Energy methods for damping 

evaluation 

 

2.1 Summary 

In this chapter the problem of material damping is presented with the aim of 

understanding dissipation mechanism within the composites. 

Specific damping capacity is evaluated as the ratio of dissipated energy and the overall 

stored energy in the structure. In the proposed approach material dissipative properties are 

analysed by the strain energy method which allows to keep the same formalism over 

different dimensional scales. 

Composite damping depends on many aspect of material architecture, this phenomenon is 

analysed at three different dimensional scale. At laminate level the dissipation mechanism is 

explained by the evaluation of each energy components, introducing the calculation of out 

of the plane stress components. At micro level a complete description of dissipative 

component for transversely isotropic material is proposed following Saravanos unified 

approach. Then the analysis of nanocomposites is proposed extending the short fiber 

composite theories for nano-dimensional fillers, the nano-loaded material could be 

described in the lamina analogy by a stiffness and loss matrices formulated according to 

dispersion state assumed within hosting matrix. 
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2.2 Loss factor of composite materials  

Damping is an important parameter for vibration control, fatigue endurance, impact 

resistance, etc… Although the damping of composite materials is not very high, it is 

significantly higher than that measured for most usual metallic materials. Unfortunately 

structures composed of composite materials lose this distinctive feature while typically are 

built as monolithic elements in order to enhance the mechanical behaviour of the overall 

structure, instead in metallic structures an important contribution to structural damping is 

the aerodynamic bump effect near structural joints. 

The lack of passive damping in composite structures lead to the need of proper treatments 

to improve system dynamic response which could waste part of the weight gain. Moreover, 

composites offer the capability of tailoring material behaviour trough opportune 

functionalization, consequently combining the characteristic of composite materials, as 

high specific strength, specific stiffness, viscoelastic properties, it is possible to recover the 

damping feature. 

The successful characterization of dynamic response of damped composite materials 

depends upon the use of appropriate analytical models/methods describing properties of 

composites based upon its constituents and their interaction. Essentially, mechanics of 

material and elasticity approaches have been utilised for elastic solution of moduli and the 

damping is further predicted using two different methods (a) Correspondence Principle 

and (b) Strain Energy Method. 

The Correspondence Principle states [2] that the linear elastostatic analysis can be 

converted to dynamic linear visco-elastic analysis by replacing elastic moduli or 

compliances with complex moduli and compliances, respectively. The loss factor has been 

expressed as a ratio of the imaginary stiffness to the real stiffness, whereas the strain energy 

method relates the total damping in the material or structure to the damping of each 

element and the fraction of the total strain energy stored in that element. In the strain 

energy method for any system of linear viscoelastic elements the loss factor can be 

expressed as a ratio of summation of the product of individual element loss factor and 

strain energy stored in each element to the total strain energy. Applying these methods to 

composites, the material is seen as a system and whether the analysis is micromechanical or 

macromechanical is dependent on the nature of the elements. 

In micromechanical analysis, the elements include the constituents such as fibres, matrix 

and void content, on the other hand for macromechanical analysis the individual lamina are 
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the elements whose strain and dissipation energies combine to give the overall loss factor 

of the laminate. 

 

2.2.1 Loss factor prediction by the strain energy method 

Each of this approaches has its own scope and limitations, with regards to damping 

prediction in composites, since the strain energy method allows the use of the same 

symbolism over different dimensional scales makes this approach the more suitable in this 

work where an unified approach to composite damping prediction is proposed. 

Strain energy is stored within an elastic solid when the solid is deformed under load. In the 

absence of energy losses the strain energy is equal to the work done by external loads. 

When the elastic solid carries the load it deforms with strains (ε, γ) and the material is 

stressed (σ, τ).  The work of external forces is stored as strain energy U within the elastic 

solid. 

   

The total energy stored within the material is the sum of the energy stored in all the phases  

constituent the elastic body, 

 

The specific damping capacity (SDC) is commonly used as a measure of the mechanical 

energy dissipated by a material per cycle. The SDC of a material system is  

 

Where  U is the dissipated energy and U is the maximum strain energy per cycle, tan δ is 

the ratio of the storage material property over the dissipative terms,  is the loss factor.  

Damping is indeed calculated as the summation over the different mechanical energies 

dissipated by the material due to different stress components. The dissipated energy is   

 

where ψ  is the material specific damping capacity. 
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2.3 Layered composites analysis 

In the present paragraph the damping capacity of a composite materials is examined in 

terms of its constituents. Material sub-elements change according to the dimensional scale 

considered, in fact in the case of a transversely isotropic lamina the constituents are fibres 

and hosting matrix, while a laminate could be separated in layers which could be described 

by their homogenised stiffness matrix in the global laminate reference system. 

At each level the material behaviour could be described by the stress-strain relationship, the 

stiffness matrix, or by its inverse, the compliance matrix. In particular the material 

behaviour determines the independent elements. 

 

 

Figure 2- 1: Compliance matrix elements dependences. From [3] 

 

In the global reference system the elements of compliance (stiffness) matrices could be 

associated to the effects of stress-strain field imposed to the material. In the Figure 2- 1 the 

coupling deformation associated to the elongational-shear stress are highlighted, in addition 

the diagonal terms represent the strain induced by pure elongational and shear stress. 

 

2.3.1 Micro scale - Unified approach for unidirectional fiber reinforced 

composites [6]  

Fiber composites are non homogeneous materials, therefore, candidate sources of 

composite damping would be: (1) Hysteretic damping in the polymer matrix, (2) hysteretic 

damping in the fibres and (3) friction damping at the fiber-matrix interface as a result of 

bonding imperfections, broken fibres, or debonding.   

Saravanos and Chamis developed an integrated micromechanics methodology for the 

prediction of damping capacity for unidirectional fiber-reinforced composites. In the 
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proposed unified approach they considered all six damping coefficient related to each 

stress component. 

Important assumptions made in their work are the isotropic dissipative behaviour for the 

matrix and the transversely isotropic behaviour for the fibers. As a result explicit 

micromechanics equations based on strain energy approach relating on-axis damping 

capacity to fiber, matrix and fiber volume fraction are obtained.  

The elastic behaviour of a transversely isotropic material is  characterized by 5 independent 

engineering constants E1, E2, G12, 12, 23, other engineering parameter are related them by 

the following equations: 

 

the stress strain relationship is expressed as 
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where the elements of stiffness matrix could be expressed as function of the engineering 

constants [3]. 

 

 

Figure 2- 2: Unidirectional composite material 

 

A square packaging array of fibres is assumed representing the average value of randomly 

distributed fibres, nevertheless similar analysis could be developed for other packaging 



35 
 

patterns. The square array of a ply consists of one fiber and the surrounding matrix [6], 

assuming that an uniform cyclic longitudinal normal stress of amplitude 11 is applied to 

the ply, then the strain energy within the representative fiber/matrix would be: 

 

a coefficient accounting the energy dissipated in the longitudinal mode is defined regarding 

the dissipated energy, isolating contribution of fibres and matrices: 

 

 

 

Considering the iso-stress load condition for material‘s constituents and assuming 

constituent‘s SDC (Specific Damping Capacity) independent from stress and strains levels: 

 

 

the SDC associate to the longitudinal modulus could be evaluated by comparison 

 

Further, considering the stored strain energy during one vibration cycle leads to the broadly 

accepted rule of mixtures for the longitudinal modulus 

 

   

In order to evaluate the transverse normal damping a cyclic transverse normal stress of 

amplitude σ22 is applied to the representative, similarly to the normal longitudinal the total 

stored energy is considered and then the damping factor is calculated: 
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Introducing the SDC, representing the energy fraction dissipated in the transverse normal 

mode the dissipated energy could be defined as: 

 

Separating energy dissipated in both components (fiber and matrix)  

 

The stress distribution in the matrix and the fibres is not uniform mainly due to the 

curvature of fibres, however after Chamis who used successfully this assumption in the 

development of a simple micromechanics model for lamina properties in the case of 

transverse and shear modulus. 

 

  

The final value of the SDC in transverse normal direction is function of the 

micromechanics model followed 

 

Based on the same assumptions and following a similar procedure as in the case of 

transverse damping, the in plane shear damping capacity is given by a analogous rule 

   

In the case of the trough the thickness shear damping for a transversely isotropic lamina 

 

  

The final complete lamina dissipative matrix (in terms of loss factors) could be built 

accounting the dissipative properties relates to each stress component 
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During off-axis cyclic loading, more than one of the non-axis SDC could be contribute to 

the overall ply damping, therefore the off-axis damping is related to both on-axis damping 

properties and the orientation of fibres. A transformation law could be derived taking in 

account the invariant property of strain energy to the stress strain transformations. 

 

The non diagonal terms are indicated as coupling between axial and shear stresses, the off-

axis loading will affect the overall damping capacity of a ply altering the diagonal terms of 

the loss matrix which is equivalent to altering the dissipative capability of the ply and 

changing the non-diagonal terms which control the amount of energy dissipated by 

coupled deformation modes. 

 

2.3.2 Macro scale - Damping of angled plies composites 

By the strain energy method the estimation of dissipated energy is reached trough the 

evaluation of energy allocation in terms of stress contribution within the system. A suitable 

approach, as obtained at the micro-scale, may include the effect of all the stress 

component.  

The study of dissipative property requires also the study of the elastic behaviour, therefore 

the homogenization problem for a layered composite is examined both for the elastic and 

dissipative material feature.  

2.3.2.1 Elastic behaviour of laminates 

In the field of composite structures, the layerwise laminate theories developed aim to the 

efficient prediction of the trough the thickness composite laminate response.  

The three dimensional stress analysis could be performed using mainly two possible 

approach: 1) displacement assumed based on approximation of displacements trough the 

thickness, 2) equilibrium where the in plane stresses are computed from the displacement 

approximation and out of plane stresses from the equilibrium equations [9]. 
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A fundamental concept is that in a perfect theory of laminates the condition of continuity 

for both the displacement and transverse stresses must be satisfied trough the whole 

thickness of the part. The continuity of transverse stresses at the interface can be satisfied 

only if transverse strains are discontinuous, there as follows from HOOKE‘s law, this in 

turn leads to the discontinuity of the first derivative of displacement at the material 

interface 

The displacement assumed approach assumes that the displacement field can be described 

by some predetermined set of functions  belonging to some family of 

polynomial functions. The solution of the problem is formulated in term of the unknown 

coefficients in the approximation functions, while in the equilibrium approach the in-plane 

strains (εx, εy, γxy) and the in-plane stresses (σx, σy, τxy) are calculated following a 

displacement assumed approach in a first step and then out-of plane stresses (σz, τxz, τyz ) 

are evaluated by the equilibrium equations using the in-plane stresses previously calculated. 

The equilibrium approach appears to be the more suitable approach, in fact for calculation 

of the in-plane stress and strain tensor the well known zero-order lamination theory could 

be used and then transverse shear stress are evaluated by equilibrium. 

 

In-Plane Stress and Strain tensor evaluation: The Classical Lamination Theory 

The broadly used homogenization approach applied for laminated composites is the zero-

order lamination theory by Kirchoff and Love. The basic assumption of the Classical 

Lamination Theory (CLT) are summarized as follow: 

 Each layer of the laminate is quasi-homogeneous and orthotropic  

 The laminate is thin compared to the lateral dimensions and is loaded in its plane  

 State of stress is plane stress 

 All displacements are small compared to the laminate thickness  

 Displacements are continuous throughout the laminate 

 Straight lines normal to the middle surface remain straight and normal to that 

surface after deformation. 

     - In-plane displacements vary linearly through the thickness, 

     - Transverse shear strains (γxz e γyz) are negligible. 

 Transverse normal strain εz is negligible compared to the in-plane strains εx and εy  

 Strain-displacement and stress-strain relations are linear  
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Figure 2- 3: Plate deformation according to Kirchoff-Love assumptions 

 

For an orthotropic lamina the assumption of plane stress and negligibility of the trough the 

thickness effects leads to a simplified expression of the constitutive matrix for each lamina. 

         

 

 

 

The displacement field under the cited assumptions is 

  

The strain field is the superposition of the in-plane strains (mid-plane strains) and the 

flexural strains (bending and twisting) 

 

 

 

The global laminate behaviour could be expressed in terms of the resultant loads applied by 

the integration of stress in the volume [3]. 
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The constitutive equation of a laminated plate expresses the resultants and the moments as 

functions of the in-plane strains and of the curvatures 

 

Where N is the resultant in-plane forces vector, M is the resultant flexural moments vector, 

ε0 is the in-plane strain vector and k represents the mid-plane curvatures. 

Inverting the equation in plane strains of reference surface and its curvature are evaluate 

from applied loads. 

Matrices A, B and D defined as follow are 3x3 material stiffness respectively extensional, 

coupling and flexural. 

 

 

 

The Kirchoff-Love approach (CLT) describes accurately the behaviour of laminates in the 

case of thin beams and plates with  layers having comparable stiffness, conditions where 

the assumption of plane stress represent properly the material status. Moreover, CLT based 

approach does not allow an accurate calculation near boundaries and constraints. 

 

 

Figure 2- 4:  Thickness and boundary affecting solution 
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Out of plane Stress and Strain evaluation 

Integrating  over the thickness the transverse shear part of the material law  gives 

the resultant transverse shear forces  , where Gk represents shear moduli matrix of 

the kth lamina.  

Transverse shear stress could be evaluated by the integration of  equilibrium equations: 

 

Following Rolfes and Rohwer [10] in the case of cylindrical bending transverse stresses are 

related directly to resultant matrices defined in the previous step. 

Using in-plane material law for the kth lamina : 

 

Where Qk is the reduced stiffness matrix the vector of transverse shear stresses could be 

expressed as 

 

B1 and B2 are Boolean matrices 

 

Since strain and curvature of laminate reference surfaces could be related to the resultant 

applied load τz could be expressed in terms of the load derivatives: 

 

The matrix F(z) is definied as 

 

Where a(z) and b(z) are the partial membrane and coupling stiffnesses of the laminate 

           

In the case of cylindrical bending the derivatives of moments are related to shear forces by 
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Which finally results in  

 

The contribution to total strain energy of transverse shear forces could be easily evaluated  

 

An improved transverse shear matrix based on equilibrium is then provided 

 

After the calculation of transverse shear stress the transverse normal stress could be 

evaluated by integrating the third out of plane equilibrium equation [11]: 

 

 

2.3.2.2 Laminate loss matrix definition 

Laminate overall damping capacity depends on both the material stacking and the resultant 

loads applied. In fact the load pattern could induce some coupling effects due to the 

particular material structure, for example in a layered material, which stacking sequence has 

a strong gradient in mechanical properties, loaded in pure bending presents not only 

dissipation effect due to the bending moment applied  (longitudinal stress) but also 

transverse shear stresses affect the system dissipated energy. 

The trough the scales homogenization approach followed aims to the definition of a 

constitutive formulation of material damping that describes the dissipative potential for 

each stored energy component.  

The total stored energy in the laminate is given as sum of each stress-strain component 

contribution, similarly the overall dissipated energy is the sum of energy dissipated in each 

mode. The energy stored for each component of stress-strain tensor is defined as  
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Final laminate damping is the ratio of total dissipated and the total stored energy 

 

where energy stored and dissipated in the kth lamina is defined as follows: 

 

The energy distribution is evaluated by the elastic characterization previously examined, as 

in the elastic analysis dissipation, is studied separating in-plane and out-of-the plane effects. 

Laminate loss matrix is separated in two sub-matrices one accounting in plane loss 

elements and another accounting transverse elements. 

 

Off-axis analysis accounting the effective laminate stacking respect the same 

transformation rule as the stiffness matrices examined in previous paragraph. 

In plane contribution to total stored and dissipated energy is evaluated as follow 

 

 

Integration leads to the definition of equivalent dissipative matrices for in plane effects to 

the homologues for elastic behaviour 
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The in plane total dissipated energy reads as 

 

Transverse shear contribution to total strain energy is the integration of shear stress strain 

relationship,  

 

 

The corresponding dissipative transverse shear matrix could be defined as 

 

Out of plane dissipate energy could be then evaluated from the resultants shear forces as 

 

 

2.4 Nano scale – Damping of nanocomposites 

Micromechanical improvements in composite material damping results from changes in 

damping properties and geometries at or below the lamina constituents material level. 

Some of the micromechanical level geometric and material parameters that affect the 

damping of the composite system are fiber aspect ratio, fiber orientation, fiber spacing, 

fiber and matrix properties. 

In this paragraph the problem of damping evaluation for nano-loaded composites is 

presented. The simplest approach to describe nanocomposite behaviour is to adapt 

theoretical models for short fiber reinforced composites. 

As previously showed, following Saravanos approach, it is possible describe the dissipative 

behaviour for an anisotropic material by the energetic analysis starting from its elastic 

properties.  In the simplest possible case the composite could be modelled as an isotropic, 

elastic matrix filled with aligned elastic fibres. Assuming that fibres and matrix are well 

bonded, the application of a load in fiber direction produce the same strain field in the 
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fiber and in the matrix, under this circumstances the composite tensile modulus in the 

aligned direction is given by 

 

where Ef is the filler modulus, Em is the matrix modulus and Vf is the fiber volume fraction. 

This represent the well known rule of mixtures. When is applied a load the stress is 

transferred to the fiber by the interfacial stress, the entity of stress transferred scales with 

fiber length. This means that short fibres would carry loads less efficiently than long fibres, 

this results in a lower effective modulus for the matrix reinforcement. Cox showed in the 

case of aligned fiber that composite modulus depends on a factor accounting the length 

efficiency of the filler.  

 

where  represents the length efficiency factor and it can be described by the following 

expression [15] 

       

The length efficiency factor approaches 1 for l/D> 10, underlining the fact that high aspect 

ratio fillers are preferred for reinforcing material. 

The case of misaligned fibres could be included in the model by the introduction of an 

efficiency factor accounting the fibres orientation 

 

 values 1 in the case of aligned fibres, 3/8 for fibres oriented in a plane and 1/5 for 

fibres randomly oriented in space. The description of mechanical behaviour of nanoloaded 

material is quite difficult since its response is strictly dependent on how good is the filler 

dispersion. In addition carbon nanotubes tend to re-aggregate and clustering creating a 

material including more than one dimensional filler which implies an anisotropic behaviour. 

Assuming a good level of dispersion within the hosting matrix and a randomly dispersion 

of the filler, condition achievable in the case of low filler content, it is an acceptable 

approximation to assume the composite behave isotropically. 

An isotropic material is described by two elastic constants, the elastic modulus evaluable by 

the proposed model and another parameters such as the Poisson ratio, moreover in the 

case of low filler content the Poisson could be assumed as invariable from matrices value. 
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In the case of isotropic material the shear modulus is related by other two independent 

parameters by the following simple rule 

 

Finally the specific damping capacity of the nanocomposite could be evaluated by applying 

the energetic analysis as showed in paragraph 2.3 

To account the possible load condition according to the previously consideration a 

generalised expression for the SDC of a two phase material is proposed as follows. 
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3  

Measuring composite damping 

 

3.1 Summary 

The objective of this chapter is to introduce the fundamentals of damping by means of 

viscoelastic material and measuring the relevant parameters for any specific polymer. 

Damping is an important parameters related to the study of dynamic behaviour of fiber-

reinforced composite structures, the successful characterization of dynamic response of 

viscoelastically damped composite materials is essential for verify the effectiveness of 

analytical methods based upon its constituents. 

In the first paragraph the main damping mechanisms are described, the attentions is 

focused then on the viscoelastic materials which are characterized by high ratio between 

the dissipative and elastic features, therefore suitable for improve damping feature of a 

structure.  

Finally measuring techniques are described, structural damping is based on the analysis of a 

vibrating structure and damping characteristic is measured at system‘s resonance, this is 

usually indicated as modal damping. Furthermore, the dynamical mechanical approach is 

described, in that case the material damping is expressed in terms of the phase shift form 

exiting sinusoidal applied force and the material response. 
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3.2 Damping mechanisms  

Damping is an invisible requirement for good mechanical design. The reason for this is that 

most structures, machines and vehicles are designed and built to meet many often 

conflicting requirements. 

The dynamic response and sound transmission characteristics of structures are determined 

by essentially three parameters: mass, stiffness and damping. Mass and stiffness are 

associated with storage of kinetic and strain energy, respectively, whereas damping relates 

to the dissipation of energy, i.e. to the conversion of mechanical energy associated with a 

vibration to a form (usually heat) that is unavailable to the vibration. 

Damping in essence affects only those vibrational motions that are controlled by a balance 

of energy, vibrational motion that depends on a balance of forces are virtually unaffected 

by damping. For example, consider the response of a classical mass-spring-dashpot system 

subject to a steady sinusoidal force, if the applied force acts at frequencies much lower than 

system‘s natural frequency the response is controlled by a balance between the applied 

force and the spring force, instead if the applied force acts at frequencies considerably 

higher than system‘s natural the response is controlled by a balance between the applied 

force and the mass‘s inertia. However, at resonance, where the force frequency match the 

natural frequency of the system, spring and inertia effects cancel each other and the applied 

force supplies some energy to the system. 

The simplest approach to introduce damping mechanism is to consider the viscous 

damping, where energy dissipation results from a force that is proportional to the velocity 

of a vibrating system and act opposite to the velocity. Viscous damping is linear, so that the 

observed response does not change qualitatively as the amplitude increases. This is usually 

not the case of internal damping mechanism which come into play when metals, alloy and 

many other structural materials are deformed during vibration. The amount of energy 

dissipated for each cycle is extremely small for many metals unless the material is deformed 

near the yield point, some other metal exhibit a much greater degree of damping. 

One way of viewing the internal damping behaviour of materials is to examine the plot 

stress versus strain under steady harmonic excitation, the area of the hysteresis loop is a 

direct measure of the damping. 

Some other damping mechanism rely on the presence of air, or any other fluid, to dissipate 

energy in a structure. For example when a thin panel vibrates at a specific frequency, it 

disturbs the surrounding medium and causes sound waves to radiate away from the panel 

taking energy with them and thereby providing a mechanism of dissipation. 
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When structural panels are constructed from multiple sheets, the joints require overlap of 

surfaces, and rivets or bolts are used to hold together the sheets, in that case as the panel 

vibrates laterally the overlapping zones can be cyclically displaced in such way that air is 

pumped into and out to the gap between the surfaces. Material that have both damping 

(energy dissipation) and structural (strain energy storage) capability are called viscoelastic. 

Although, virtually all materials falls in this category, the terms is generally applied only to 

materials, such as plastics and elastomers, that have relatively high ratios of energy 

dissipation to energy storage capability. 

 

3.2.1 Viscoelastic materials 

Viscoelastic materials have a relationship between stress and strain which depends on time 

and frequency. The loss angle δ is the phase angle between stress and strain during 

sinusoidal deformation in time. The loss angle or the loss tangent tanδ is a measure of 

damping or internal friction in a linear material. It is advantageous as is clearly defined in 

terms of observable quantities. 

Viscoelastic material properties are generally modelled in the complex domain because of 

the nature of viscoelasticity. As previously discussed, viscoelastic materials possess both 

elastic and viscous properties. The moduli of a typical viscoelastic material are given in 

equation set 

 

 

where the ‗*‘ denotes a complex quantity. In the equation set, as in the rest of this report, E 

and G are equivalent to the elastic modulus and shear modulus, respectively. Thus, the 

moduli of a viscoelastic material have an imaginary part, called the loss modulus, associated 

with the material‘s viscous behavior, and a real part, called the storage modulus, associated 

with the elastic behavior of the material. This imaginary part of the modulus is also 

sometimes called the loss factor of the material, and is equal to the ratio of the loss 

modulus to the storage modulus. The real part of the modulus also helps define the 

stiffness of the material. Furthermore, both the real and imaginary parts of the modulus are 

temperature, frequency (strain rate), cyclic strain amplitude, and environmentally 

dependent. 
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Temperature Effects on the Complex Modulus 

The properties of polymeric materials which are used as damping treatments are generally 

much more sensitive to temperature than metals or composites. Thus, their properties, 

namely the complex moduli represented by E, G, and the loss factor h , can change fairly 

significantly over a relatively small temperature range. There are three main temperature 

regions in which a viscoelastic material can effectively operate, namely the glassy region, 

transition region, and rubbery region [2]-[3]. 

Figure 3- 1 shows how the loss factor can vary with temperature. The glassy region is 

representative of low temperatures where the storage moduli are generally much higher 

than for the transition or rubbery regions. This region is typical for polymers operating 

below their brittle transition temperature. However, the range of temperatures which 

define the glassy region of a polymeric material is highly dependent on the composition 

and type of viscoelastic material. Thus, different materials can have much different 

temperature values defining their glassy region. Because the values of the storage moduli 

are high, this inherently correlates to very low loss factors. The low loss factors, in this 

region, are mainly due to the viscoelastic material being unable to deform (having high 

stiffness) to the same magnitude per load as if it were operating in the transition or rubbery 

regions where the material would be softer. On the other material temperature extreme, the 

rubbery region is representative of high material temperatures and lower storage moduli. 

However, though typical values of storage moduli are smaller, like the glassy region the 

material loss factors are also typically very small. This is due to the increasing breakdown of 

material structure as the temperature is increased. In this region, the viscoelastic material is 

easily deformable, but has lower interaction between the polymer chains in the structure of 

the material. 

Cross-linking between polymer chains also becomes a less significant property as 

temperature is increased. A lower interaction between the chains results in the material 

taking longer to reach equilibrium after a load is removed. Eventually, as the temperature 

hits an upper bound critical value (also known as the flow region temperature), the material 

will begin to disintegrate and have zero effective loss factor and zero storage modulus. 
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Figure 3- 1: Temperature effects on complex modulus and loss factor material properties.  

From Jones, Handbook of Viscoelastic Damping,  2001. 

 

The region falling between the glassy and rubbery regions is known as the transition region. 

Materials which are used for practical damping purposes generally should be used within 

this region because loss factors rise to a maximum. In more detail, if a material is within the 

glassy region and the temperature of the material is increased, the loss factor will rise to a 

maximum and the storage modulus will fall to an intermediate value within the transition 

region. As the material temperature is further increased into the rubbery region, the loss 

factor will begin to fall with the storage modulus.  

Therefore, it is extremely important to know the operating temperature range during the 

design phase of a host structure to which a viscoelastic damping treatment will be applied 

so that the viscoelastic treatment will be maximally effective. 
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Frequency Effects on the Complex Modulus 

Like temperature, frequency also has a profound effect on the complex modulus properties 

of a viscoelastic polymer, though to a much higher degree with an inverse relationship. The 

three regions of temperature dependence (glassy, transition, rubbery) can sometimes be a 

few hundred degrees, more than covering a typical operational temperature range of an 

engineered structure. But the range of frequency within a structure can often be several 

orders of magnitude. The frequency dependence on complex moduli can be significant 

from as low as 8 10− Hz to 8 10 Hz, a range much too wide to be measured by any single 

method [2]. Furthermore, relaxation times after deformation of a viscoelastic material can 

be anywhere from nanoseconds to years and will greatly affect one‘s measurement 

methods, especially at low temperatures. 

Frequency has an inverse relationship to complex moduli with respect totemperature. At 

low frequency, the storage moduli are low and the loss factors are low. This region is 

synonymous with the rubbery region (high temperatures). This is due to the low cyclic 

strain rates within the viscoelastic layer. As the frequency is increased, the material hits the 

transition region where the loss factor hits a maximum value. As the frequency is increased 

further, the storage moduli increase as the loss factor decreases. Thus, the transition region 

is again the range of frequency for which a material should be chosen to correspond to a 

host structure‘s typical operating range. Figure 3- 2 illustrates this behavior. 
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Figure 3- 2: Frequency effects on complex modulus and loss factor material properties. 

From Jones, Handbook of Viscoelastic Damping, 2001. 

 

The effect of cyclic strain amplitude on polymeric complex moduli is highly dependent on 

the composition and type of the polymer, particularly the molecular structure. Experiments 

have shown that the complex moduli of polymers generally behave linearly only at low 

cyclic strain amplitudes. 

There are, however, polymers such as pressure sensitive adhesives, which exhibit linearity 

even at high cyclic strain amplitudes. These polymers usually have very few cross links 

between long, entangled polymer chains. Therefore, the low interaction between these 

chains seems to have an effect on the linear behavior over wide strain amplitude ranges. 

However, most viscoelastic polymers used in typical damping applications behave 

nonlinearly at high strain amplitudes. This nonlinearity is very difficult to model accurately 

and involves very complicated theories and a significant number of tests, many more than 

for linear complex modulus behaviour, to gather data sufficient to establish trends for a 

specific material [2]. 
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3.3 Measuring damping of materials 

Most approach of measurement of damping of structure are based on the response of 

simply systems, in fact many of the approaches  applicable to simply system can be applied 

only to structural modes whose response could be separated from all others because of 

differences in natural frequencies or in mode shapes. The mainly used method for 

measuring the viscoelastic response of material are briefly described in the following sub-

paragraph, moreover the dynamical mechanical approach is explained as allows the 

characterization of material behaviour independently from the structure. 

 

3.3.1 Vibration damping 

A vibrating structure, such as a panel, has a carries kinetic energy related to its mass and 

potential energy related to its stiffness. The dissipated energy, i.e. by heating the structure,  

during vibration is defined as structural damping. 

The mostly used approach for measure the structural damping is to excite the structure in 

frequency domain, methods based on this approach evaluate damping by isolating each 

mode in system‘s transfer function. 

However, for structures characterised by an high modal density this methods hardly 

accurately measure system‘s damping coefficients. A more accurate approach is to consider 

the Hilbert envelope, which does not use the temporal signals but their envelope. 

Figure 3- 3 shows the test set-up, specimen is hung to an heavy holder by two spring with 

the aim to replicate boundary condition of free sample in the space. Two springs are 

needed to avoid rotation of specimen during the test, moreover spring stiffness have to be 

accurately studied, in fact the holder system may have a resonant frequency much lower 

than the predicted first specimen‘s natural mode. 

All the test fixture is placed in a climatic chamber able to keep the specimen at temperature 

range from -60°C to 20°C. 

Specimen would be excited by a shaker in frequency range from 0 to 10000 Hz, the 

dynamic response is acquired by a number of accelerometers bonded to the vibrating 

sample 
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Figure 3- 3: Damping test set-up.  

. 

Damping is calculated from acquired data in the range of frequencies below 2000 Hz by 

the half-power bandwidth method, in fact in this range usually modal shapes and modal 

frequency could be individually observed and isolated for damping calculation. Above 2000 

Hz the Hilbert approach is considered as more accurately due to the superposition of 

specimen‘s modal shapes. 

 

 

Figure 3- 4: Typical frequency response of a vibrating cantilever beam.  
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The half bandwidth method could be synthesized as follow: using the response curve from 

each mode, measure the resonant frequency and the frequencies above and below the 

resonant frequency where the value of the response curve is 3 dB less (the 3 dB down 

points) than the value at resonance. The frequency difference between the upper 3 dB 

down point and the lower 3 dB down point is the half-power bandwidth of the mode. The 

modal loss factor (η) is the ratio of the half-power bandwidth to the resonant frequency. 

 

The higher the frequency the higher is the modes having close frequencies then the Hilbert 

method may be applied analysing data in terms of octave of the bandwidth.  

 

Decay of unforced vibration [1] 

Many aspects of the behaviour of vibrating system can be understood in terms of the 

simple ideal linear mass system, if the system is displaced by an amount x from its 

equilibrium position, the mass less spring produce a force of magnitude kx tending to 

restore the mass toward its equilibrium position, while the mass less dashpot produces a 

retarding force of magnitude c ; k is known as spring constant and c as viscous damping 

coefficient. 

 

 

Figure 3- 5: System with one degree of freedom. From Beranek, Noise and Vibration Control [1]. 

 

If the system is displaced from its equilibrium position by an amount X0 and then relased, 

the resulting displacement varies with the time as: 

 

where ωn and  ωd represent the undamped and damped natural frequencies of the system.  
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These obey  

 

 

With fn representing the cyclic natural frequency, the constant ζ is called damping ratio or 

fraction of critical damping. 

 ;       

Where cc is known as critical damping coefficient. 

 

Figure 3- 6: Time variation of displacement of mass-spring-dashpot system released by intial 
position X0.  

 

The logarithmic decrement δ is a convenient representation of how rapidly a free 

oscillation decays 

 

Where Xi represent the value of x at any selected peak, Xi+N represent the value at the peak 

at N cycles from the mentioned one. For a viscously damped system  . 

The total energy W of the considered simple system consists of the kinetic energy Wk af the 

mass and the potential energy of stored in the spring Wp. The dissipated energy correspond 

to the work that is done form the dashpot Wd. 

The ratio of the energy dissipated per cycle to the energy present in the system is called 

damping capacity ψ. The ratio of the average energy dissipated per radian to the energy in 

the system is called the loss factor. The loss factor then is equal to 1/2π times the damping 

capacity and for a viscous damped system is related to ζ as 
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3.3.2 Dynamical mechanical analysis   

 Dynamic mechanical properties refer to the response of a material as it is subjected to a 

periodic force. These properties may be expressed in terms of a dynamic modulus, a 

dynamic loss modulus, and a mechanical damping term. 

For an applied stress varying sinusoidally with time, a viscoelastic material will also respond 

with a sinusoidal strain for low amplitudes of stress. The sinusoidal variation in time is 

usually described as a rate specified by the frequency (f = Hz; ω =rad/sec). The strain of a 

viscoelastic body is out of phase with the stress applied, by the phase angle, δ. This phase 

lag is due to the excess time necessary for molecular motions and relaxations to occur. 

Dynamic stress, σ, and strain, ε, given as 

 

 

 

Figure 3- 7: Stress-strain phase shift for a sinusoidally exited material. 

 

The storage modulus is often times associated with ―stiffness‖ of a material and is related 

to the Young‘s modulus, E. The dynamic loss modulus is often associated with ―internal 

friction‖ and is sensitive to different kinds of molecular motions, relaxation processes, 

transitions, morphology and other structural heterogeneities. Thus, the dynamic properties 

provide information at the molecular level to understanding the polymer mechanical 

behaviour. 

Axial analyzers allow a great deal of flexibility in the choice of fixtures, which allows for the 

testing of a wide range of materials. Three-point bending depends on the specimen being a 

freely moving beam, and the sample should be about 10% longer on each end than the 
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span. The four sides of the span should be true, i.e., parallel to the opposite side and 

perpendicular to the neighbouring sides. There should be no nicks or narrow parts. Rods 

should be of uniform diameter. Throughout the experiment the beam should be freely 

pivoting: this is checked after the run by examining the sample to see if there are any 

indentations in the specimen. If there are, this suggests that a restrained beam has been 

tested, which gives a higher apparent modulus. The sample is loaded so the three edges of 

the bending fixture are perpendicular to the long axis of the sample. 

 

 

Figure 3- 8: Three point bending testing set-up 

 

Time-Temperature Superposition 

Due to the viscoelastic nature of polymeric materials, the analysis of their long term 

behaviour is essential. For a viscoelastic polymer, the modulus is known to be a function of 

time at a constant temperature. The modulus is also a function of temperature at a constant 

time. According to this time-temperature correspondence, long term behaviour of a 

polymer may be measured by two different means. First, experiments for extended periods 

of time can be carried out at a given temperature, and the response measured directly. This 

technique becomes increasingly time consuming due to the long response times of many 

polymers. The second method takes advantage of the principles of time-temperature 

correspondence wherein experiments are performed over a short time frame at a given 

temperature, and then repeated over the same time frame at another temperature. The two 

methods are equivalent according to the principles of time-temperature super-positioning. 

These principles for studying long-term behaviour of polymers have been well established 

by Williams, Landel, and Ferry [3]. The methods of time-temperature super-positioning (i.e. 

reduced variables) are used to accelerate the mechanism of a relaxation or molecular event 

by either increasing the temperature or increasing the stress, in the experiment. A classic 

example of such a procedure is given below  where the stress relaxation modulus from a 

tensile test is plotted as a function of time, over an accessible time scale, for various 
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temperatures. A reference temperature of To=25°C was selected and the modulus-versus-

time curves for the remaining isotherms were horizontally shifted towards this reference 

until an exact superposition is accomplished. 

Shifting of each isothermal curve results in a much larger, smooth continuous curve known 

as a master curve. It can be seen that this procedure results in a dramatic increase in the range 

of the time scale. The inset below is known as the shift factor plot. The shift factor, aT, 

represents the magnitude of shifting along the x-axis, necessary for a specific isotherm to 

superimpose on its neighbour in the final master curve with respect to a given reference 

temperature. The log aT versus temperature plot should be a smooth monotonic curve, 

provided the mechanism of relaxation remains the same during the process. An inflection 

in the shift factor plot would be indicative of a change in the mechanism of the process, 

thus invalidating the procedure. 

 

 

Figure 3- 9: Typical master curve for a viscoelastic material 

 

The actual graphical procedure can be mathematically described for a shifted isotherm T1 

as 

 

This implies that the effect of changing temperature is the same as multiplying the time 

scale by a factor aT, i.e., an additive factor to the log time-scale. 

The criteria for the application of time-temperature super-positioning have been described 

in detail in Ferry‘s text.  The first criterion is that all adjacent curves should overlap over a 
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reasonable number of data points. The second criterion is that the same values of the shift 

factor must translate all of the viscoelastic functions. Finally, the shift factor must follow 

one of the well-established relationships. The shift factor is usually described either by the 

WLF equation or the Arrhenius relationship. The WLF equation, named after its founders 

Williams, Landel, and Ferry, is described as 

 

and is associated with the transition, plateau, and terminal regions of the time scale. The 

constants C1 and C2 are material dependent parameters that have been associated with 

fractional free volume. The values of C1=17.4 and C2=51.6°K were originally thought to 

be ―universal‖ and are still widely used. The glassy region of a polymer is accurately 

described by the second form of the shift factor, namely the Arrhenius form 

 

Where ΔE is the activation energy (kJ/mole), R is the universal gas constant, T is  

temperature (°K) and Tref the reference temperature (°K). The material response is shifted 

by a phase angle δ (<0) representing the damping character of the material under testing. 

The total stored energy for a system sinusoidally stressed could be easily evaluated as the 

integral over a cycle of vibration: 

 

Recalling the stress-strain relation 

 

 

the total stored energy is 

 

 

Instead the dissipated energy during a cycle of vibration is 
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The loss factor is evaluated as 

 

Because of this equivalence between loss factor and tanδ, in the rest of the work the two 

terms would indifferently used. 
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4  

Hybrid composites embedding 

damping features 

 

4.1 Summary 

In this chapter, hybrid laminate architecture enhancing damping features are presented and 

described. The passive damping of a composite material could be improved by modifying 

the laminate structure at each of its characteristic level. 

The well known interleaved solution is examined considering the experimental works 

published by Berthelot et al., the insertion of a viscoelastic sheet within laminate contribute 

to enhance damping of the laminate. This architecture induce greater interlaminar stresses 

within the soft viscoelastic layer due to the stiffness gradient, then dissipation gain due to 

capability of the  viscoelastic material. 

The passive damping of a composite lamina could be enhanced by imagining an hybrid 

fiber preform which includes viscoelastic material or by means of a lamina consisting in an 

high damping matrix. In the fourth paragraph. based on the concept of directional 

damping a novel hybrid architecture is presented, viscoelastic material is embedded in the 

lamina as long fibres arranged along carbon tow into the preform. Passive damping of the 

hosting matrix could be improved by dispersing carbon nanotubes within the resin before 

the lamina infusion. 
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4.2 Enhancement of damping in polymer composites 

Polymer composites have generated increasing interest, in the development of damped 

structural materials, because of their low density and excellent stiffness and damping 

characteristics, it appears that design changes enhancing in damping will also cause a 

corresponding reduction in stiffness and strength. The improvement of damping can be 

achieved by active and/or passive means. Active damping control requires sensors and 

actuators, a source of power, etc... Passive damping control consists of the use of structural 

modifications, damping materials and/or isolation techniques. Passive damping typically 

requires high loss viscoelastic materials or fluid material and thermal control. Material 

damping can contribute to the passive control system by using the inherent capacity of the 

material to dissipate vibrational energy. Due to reduced system complexity, passive 

damping contributes more effectively to the improvement of machine and structures 

reliability than active solutions. In addition, some passive damping may be required in 

order to have a stable active control system. 

At the macro-mechanical level, research has emphasized the study of constituent layer 

properties and orientations, interlaminar effects, vibration coupling, surface attachments 

and damping treatments, co-cured damping layers and hybridization of laminae, all of this 

parameters may have a significant influence on the attainment of improved damping 

characteristics. At micromechanical level, damping increment could be achieved by 

optimizing the fiber orientation, fiber aspect ratio, fiber spacing, fiber/matrix interphase 

effects, fiber coating, fiber and matrix properties, and by using constituent material 

hybridization. 

The objective of designing composite structures with improved or optimized damping 

characteristics has led to the development of mechanical theories for the modelling of 

composite damping at the micromechanical and macromechanical levels. Improved 

damping of composite materials combined with high stiffness and strength can be realized 

by control of the geometrical and mechanical properties at several levels. 

One passive method for increasing the damping capacity of composite structures involve 

the use of surface damping treatments, this can be achieved by the application of damping 

tapes to the structure after manufacturing. The damping tape is typically a viscoelastic 

material sandwiched between the base structure and a thin constraining layer,; damping will 

be improved by the fact that the vibration energy will be dissipated by shearing motion of 

the viscoelastic layer as the base structure vibrates in flexure. Damping due to constrained 

layer could also be optimized by selecting the proper length of the constraining layer. 
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Interlaminar stresses generally arise at lamina interfaces near free edges in composite 

laminates, the existence of this interlaminar stresses means that part of the total energy 

dissipation in a laminate will be due to inter laminar damping.  Hwang and Gibson [2] by 

using a three dimensional finite element/ strain energy techniques showed that there exist 

an optimal fibres orientation and an optimal laminate width to thickness ratio (w/t) for 

maximizing the contribution of interlaminar damping, it was also shown that the 

interlminar damping is important only when the laminate is thick. 

 

Figure 4- 1- A) Contribution of interlaminar damping as function of fibres orientation. B) Variation 
of total loss factor with fibres orientation under uniaxial extension. From Hwang and Gibson [2]  

 

Coupling effects could also been used for damping enhancement, in fact, additional 

dissipation mechanism could be induced in the laminate by change the structure 

deformation mode (e.g. properly defining the stacking sequence). The damping of fiber-

reinforced composite materials is often too low for many applications and appropriate 

form modifications are usually required. Starting from basic dissipation mechanism within 

composite materials (Chapter II) it is possible to design hybrid composites integrating 

damping features based on the use of a appropriately chosen filler, capable to improve the 

passive dissipation performance ofthe material. Hybrid solutions could be proposed by 

modifying the material architecture over different dimensional scales. At macro level the 

interlaminar damping dissipative mechanism could be triggered by inserting a viscoelatic 

layer in stacking sequence, whereas at micro level hybrid solution could be implemented 

making hybrid the dry preform or toughening the resin. The main focus of this chapter is 

to examine suitable architectures paying attention on the dimensional scale. The hybrid 

architecture examined consist of a carbon-fiber based laminate with damping material 

embedded. Hybrid architectures at lamina level (micro scale) could be proposed or 

integrating viscoelastic material within the dry preform, or functionalizing the resin system. 
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4.3 Macro scale: Interleaved visco-elastic layer  

Although surface damping treatments can increase damping significantly, the constrained 

layer adds undesirable weight to the structure. The advantage of the using composites with 

embedded co-cured viscoelastic layer is that no extra constraining layer is needed and the 

weight add to the system is less than the weight added by the constrained layer in surface 

treatment. In the Figure 4- 2 the concept of interleaved layer architecture is shown, a layer 

of damping material is embedded within the laminate building a sandwich-like structure 

with a dissipative core and two orthotropic faces. 

 

 

Figure 4- 2: Hybrid laminate, Interleaved viscoelastic layer architecture 

 

At the laminate level, damping is strongly dependent on the layer constituent properties as 

well as layer orientations, interlaminar effects and stacking sequence. 

The concept behind this solution is the interlaminar damping effect highlighted in the 

previous paragraph, as first choice the viscoelastic layer is positioned at laminate center as 

the interlaminar stress reach its maximum value. Architectures with more than one 

viscoelastic layer could be valuable after a study of the interlaminar stress distribution based 

on mechanical stiffness of each layer and on stacking sequence. 

 

4.3.1 Experimental proof of concept 

In this paragraph, experimental data from literature are reviewed as proof of the capability 

of enhance the damping by increasing the ratio of total energy stored in transverse shear 

mode. The effectiveness of this architecture for damping enhancement has been proven by 

Kishi et al. [4], in their study unidirectional prepreg tapes has been considered (supplied by 

Toray Industries Inc.). 
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Figure 4- 3: Dynamic visco-elastic properties of thermoplastic elastormers considered as interleaf 
films, measured at the frequency of 10 Hz. From Kishi et al. [4]  

 

Thermoplastic materials have a storage modulus significantly less than the carbon 

reinforced ply (order of 100 GPa along and 10 GPa orthogonal fibres), moreover the 

exhibit a strong damping capacity.  

Hence in the lower stiffness interleaf films higher strain would be easily achieved and it 

would absorb more energy, apart from the gradient in stiffness within the material the 

energy stored (and then the dissipated energy) could be increased by tailoring the 

arrangements of the ply in the laminate. 

 

Figure 4- 4: Damping properties of thermoplastic polyurethane interleaved laminates and non 
interleaved laminate, depending on the lay-up sequences. From Kishi et al. [4] 

For simple laminate sequences without interleaf films, the loss factor of (±45°)3S laminates 

was higher than that of (0°)12, but the loss factor of the (0°)12 with an interleaved layer is 

greater than the (±45°)3S using the same film disposition (Figure 4- 4). The arrangement of 
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the reinforcing fibres control the stiffness of the interlaminar zone and it would have 

considerable influence on the amount of local strain of the interlaminar film. 

Another decisive effect may be considered in this architecture configuration,is represented 

by the resultant reduction in modulus of the composite laminate whilst obtaining better 

damping properties, which is a disadvantage for structural applications. 

Berthelot and Sefrani published in 2006 ([10], [6]) the experimental data on unidirectional 

tapes of glass fiber composites, they systematically proven the effectiveness of this 

architecture for damping improvement, they proposed also a theoretical model based on 

the Ritz method for the modal solution of equation of motion. Three types of laminates 

have been investigated by Berthelot and Sefrani: a) a laminate with a single viscoelastic layer  

interleaved at the mid-plane with nominal thickness of 200 µm, b) ) a laminate with a single 

viscoelastic layer  interleaved at the mid-plane with nominal thickness of 400 µm and c) a 

laminate with two viscoelastic layers of 200 µm symmetrically disposed from the middle 

plane. 

 

Figure 4- 5: Two different laminates with interleaved visco elastic layers. a) a layer interleaved in the 
mid-plane and b) two layers interleaved away from the mid-plane 

 

The test specimens have been tested by the impulse test, an instrumented hammer is used 

to induce the excitation of flexural vibrations of the beam and the beam response is 

detected by using a laser vibrometer [7]. Data shows a strong improvement in damping 

capacity of the specimen (Figure 4- 6,Figure 4- 7) in each case the insertion of a damping 

layer inside the material lead to a better damping behaviour of the material. 
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Figure 4- 6: Experimental results in the case of glass fiber composites with a single viscoelastic layer 
of thickness of 200 µm interleaved in the middle plane and for three lengths of the test specimens. a) 
laminate damping as function of the fiber orientation and b) laminate damping as function of the 
modal frequency. From Berthelot and Sefrani [10]. 

 

In Figure 4- 7 the behaviour of laminates with the same volume content of damping for 

the first two modes have been reported, in fact in both laminates an overall thickness of 

400 µm are embedded but in the second laminate the damping material is split in two layer 

of 200 µm positioned away from the middle plane. Both cases exhibit an increment in 

damping but the best solution is the middle plane positioning of the damping material. 

 

 

Figure 4- 7: Experimental laminate damping as function of the fiber orientation for three lengths of 
the test specimens. a) laminate with a single viscoelastic layer of thickness 400 µm interleaved at 
middle plane, b) laminate with two viscoelastic layers of 200 µm interleaved away from the middle 
plane. From Berthelot and Sefrani [10]. 

 

Berthelot and Sefrani experimental analysis allows to remark regarding, the effect of 

interlaminar damping, they considered in experimental work unidirectional tape, where the 

shear stress are distributed as a parabola which reaches its maximum value at the beam 

neutral axis (in this case it coincides with the middle plane) therefore to maximize the strain 

energy stored in the viscoelastic material is opportune to stack the damping layer in its 

correspondence. This general concept could be applied to an angle ply laminates, where the 

shear stress are distributed as arc of parabola within the single ply continuous at the 

boundary but with discontinuous tangent value related to the stiffness of each lamina.  
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As evidence for an angle ply laminated composite the enhancement in passive damping 

could be tailored by the analysis of shear stresses distribution, in fact the presence of ±45° 

layers could create a central region in the laminate where the shear stresses are quite 

constants, in that way not only the shear strain energy of the viscoelastic material could 

contribute to dissipating phenomenon. In fact, if the viscoelastic layer is away from neutral 

axis normal strains are non zero and the elongational components of the stress / strain 

tensor could contribute.   

 

4.3.2 Macro-mechanics for hybrid laminates 

Under the hypotheses of perfect bonding, interleaved layer could be analysed by the 

theoretical approach proposed in the chapter II, where the proposed 3-D laminates analysis 

allows the evaluation of energy stored in both in-plane and out-of-plane mode.  

The visco-elastic layer is accounted in the stacking sequence as a ply with isotropic elastic 

behaviour. For an isotropic material, certain relations between the engineering constants 

must be satisfied, the shear modulus is defined in terms of the Young modulus E and 

Poisson‘s ratio ν, as 

 

therefore the elastic behaviour of an isotropic material could be described by only two 

independent parameters. The stiffness matrix is then represented as follows 

 

 

 

Similarly the loss matrix could be arranged, as well as for the elastic characterization two 

independent parameters describes the loss behaviour of an isotropic material [8], the 

elongational loss factor η11 and the shear loss factor η12 then the on-axis loss matrix is 

formulated in terms of SDC (specific damping capacity  2π η, as demonstrated in the 

chapter III) 
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A transformation law could be derived taking in account the invariant property of strain 

energy to the stress-strain transformation, 

 

The off-axis loads could induce coupling effects contributing at the global dissipation. 

Below the hypothesis of perfect bonding with adjacent orthotropic layers the approach 

presented in the chapter II allows the evaluation of damping performances of an hybrid 

laminate embedding viscoelastic layers, in order to utilize the numerical model the 

complete elastic and loss matrices have to be split in their sub-matrices including in plane 

and out of plane components. 

The in-plane elastic and dissipative matrices in the material principal reference system (on-

axis) are formulated as [8],[9]: 

 

 

The out of plane sub-matrices representing transverse shear elements in the material 

principal reference system (on-axis) 

 

 

The approximation of the model suggested ensures the transverse stress continuity at the 

layer interfaces, then the strains within materials are calculated by the constitutive laws 

assuming the perfect bonding from layers.  

The strain in the viscoelastic sheet is a critical parameter because as results of the external 

loads excessive deformation could incur.  
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4.4 Micro scale: hybrid layers 

As matter of fact, the overall composite stiffness is an averaged properties based on their 

constituents and their configuration within the material, since the increment of interlaminar 

shear energy enables to a stronger dissipation, then a soft material is required for properly 

assemble the hybrid laminate. Two effects may be accounted for hybrid laminates with 

interleaved ―soft‖ layer: a) a softer material implies a loss in the material stiffness, and b) 

the increment of transverse shear effects implies greater interlaminar stresses. Both these 

effects can be very  dangerous due to reduction of laminate delamination strength and 

potential failure which can occur in the soft material to the stress level reached. 

Many studies have been conducted to decrement the hazard of an excessive loss in 

mechanical performance of the final composite, in particular modifications based on the 

interleaved configuration have been proposed, bearing in mind, the concept of the 

stiffening up of the viscoelastic layer [11]. However, the simple stiffening of viscoelastic 

layer leads to the decrement in elastic modulus gradient in thickness direction and then the 

possibility of decrease the interlaminar damping worsening overall performance of the 

material. 

 

 

Figure 4- 8: Damping ratio vs normalised bending stiffness, from [10] 

 

In the previous figure, the relationship between the bending stiffness and measured 

damping is presented for an interleaved layer hybrid laminate. It is observed that as the 

damping area increases the bending stiffness decreases and damping increases, thus the 

bending stiffness is sacrificed to achieve higher damping [10]. 

A suitable strategy for improving material damping capacity is to use the distinguishing 

anisotropy behaviour of composites to define an hybrid architecture able to dissipate 
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energy not mainly in interlaminar damping but thought up that it is capable to store energy 

also in elongational mode. 

In their pioneering works on the damping behaviour of composite materials Adams et al. 

[12], [13] assumed that the damping mechanism for a orthotropic composite material 

consists of only three components: longitudinal damping, transverse damping and 

longitudinal shear damping, afterwards following Saravanos and Chamis [14] the damping 

behaviour of the lamina has been characterised by six damping component each associate 

with the corresponding element in the stress tensor. Hence the damping mechanism 

depends on the load pattern and the capability of the material to allocate energy in the six 

available modes. 

 

 

Figure 4- 9: Allocation of dissipation components vs fiber orientation in a composite beam [11]. 

 

The hybrid architecture proposed has the damping material embedded at lamina level as 

long fibres in carbon tows.  

 

 

Figure 4- 10: Proposed hybrid lamina architecture 
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The conceptual idea behind this architecture is based on the concept of energy allocation 

within the lamina, the insertion of a viscoelastic material in the carbon tow direction allows 

a less decrease of mechanical modulus of the final composite, moreover the geometry itself 

of the added damping material generate a dominant deformation in elogational mode, 

rising up the corresponding stored energy and consequently the energy dissipated by this 

component. In addition, the novel architecture proposed implies lower interlaminar stress 

and then a better failure strength for the final composite. 

  

4.4.1 Visco-elastic modelling for hybrid fiber layers   

 Hybrid composites have higher degree of freedom than single fiber reinforced  composites 

as well as more advanced comprehensive qualities. By impregnating two or more kinds of 

fiber in one matrix, hybrid composites can provide a large range of properties. The 

establishment of hybrid model not only aids to the survey of the hybrid mechanism, but 

also provides a theoretical foundation for the design of mechanical properties in materials. 

Evaluation of viscoelastic properties of the hybrid composite require an estimation of fiber 

content for each type of filler.  

 

If fibres have comparable diameters their content in the final composite is represented by 

volume fraction of perform within the composite, then in reason of the dry perform 

composition the volume fraction in each case could be calculated. 

More considerations need the case of hybrid lamina with different diameter fibres, a simple 

mechanical model was proposed in the case of hybrid systems constituted of BF-CFRP or 

SiCF-CFRP [15]. Fibres are assumed to be arranged tightly, closely and regularly; large 

diameter fibres are tangent to each other and small diameter fibres are nested into the 

interval space formed. Regular triangle and quadrilateral hybrid formation are two kinds of 

the most popular model.  If smaller diameter fibres are arranged as in the regular triangular 

model, Figure 4- 11a, indicating as vf the fiber volume fraction of the single small diameter, 

fiber composite, the number of fibres nested is equal to: 

 

Whereas if fibres are arranged as the regular quadrilateral model the number of small fibres 

included in the representing area is: 
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where R and r are respectively the diameters of large and small fibres. 

 

 

Figure 4- 11: Two ideal hybrid models: a) regular triangle model b) regular quadrilateral model. 

 

Assuming a region with area, S including nF large diameter fibres, whose filled area is  

 

while the area occupied by the small fiber 

 

Then the fiber volume content in hybrid composites is  

 

Starting from the fiber volume content in each case the mechanical and dissipative 

properties could be calculated by a simple application of the rules of mixtures for 

composites and averaging the mechanical and dissipative properties. 

In the proposed approach, the hybrid fibres lamina is divided in two composites, which 

mechanical and dissipative properties are function of their fiber content and by the unified 

micromechanical approach explained in the chapter II completely determined by the 

constituents properties. The final hybrid lamina properties would be evaluated by 

considering how the amount of  fiber in the composite is arranged in terms of percentage 

content for each fiber type. The final stiffness matrix and the final loss matrix are evaluated 

by averaging the stiffness and loss matrices of each sub-composite in reason of their 

content. 
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4.5 Increment of dissipation energy by nano-fillers 

An alternative to the examined architectures for increment the material damping is to 

engineering the damping properties into the structure by introducing nanoscale fillers (such 

as carbon nanotubes) into the hosting matrix . There are numerous reports in literature on 

the use of carbon nanotubes to augment mechanical properties of composite materials, 

these reports have focused primarily on static strength and stiffness [17-19]. For such 

nanocomposites, the combination of extremely large interfacial contact area and low mass 

density of the filler materials implies that frictional sliding of nanoscale fibres within the 

matrix has the potential to cause significant dissipation of energy with minimal weight 

penalty. Figure 4- 12 shows the stick-slip mechanism, when a normal tensile stress is 

applied to a composite, it starts elongating, as a results of the applied stress the matrix 

starts to applying a shear stress on the nanutube, thus causing the load to be transferred to 

nanotubes. When the applied stress is small, the nanotubes remain bonded to the epoxy 

(sticking phase), as the applied stress increases the shear stress on nanotubes increases too. 

If the shear stress the critical value for the debonding the matrix start flowing over the 

surface of nanotube, and no more load is transferred, there occurs energy dissipation due 

to the slippage between the matrix and the filler. 

 

 

Figure 4- 12: Stick-slip mechanism. 

 

If the adhesion between nanotubes and epoxy is good, less slippage will occur. The 

stiffness of the composite increases as a result of good adhesion and better load transfer. 

Higher stiffness leads to an increase in the natural frequency of the composite. On the 

other hand, if the adhesion between nanotubes and epoxy is poor, there would not be any 

significant load transfer. Instead, there will be more slippage at the interface which will 

result in more dissipation of energy. 
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Several papers have reported significant increases in internal damping of polymer 

nanocomposites when CNTs are used as reinforcement. Koratkar et al. [20] reported that 

densely packed MWNT nanofilms have been embedded as inter-layers within laminates 

sandwich to enhance both stiffness and damping of the laminates. 

Rajora and Jalili [21] examined the stiffness and the damping properties of carbon 

nanotube-epoxy system, an increment of material damping up to 700% had observed. 

In their study a comparison of damping feature for epoxy nano-composites filled by both 

single walled and multi-walled carbon nanotubes has conducted. The multi-walled 

nanotubes exhibit a damping enhancement extremely stronger than single walled. 

 

 

Figure 4- 13: percent increment of passive damping changing dimension. From Rajora  [20]. 

 

Moreover they experimentally observed the existence of an optimum content of carbon 

nanotubes within the matrix, phenomenon that could be related to the state of dispersion 

of filler. 

 
Figure 4- 14: Effect of filler content in damping ratio. From Rajora [20]. 
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5  

Multi-scale modelling of  hybrid 

composites 

 

5.1 Summary 

The analytical model describing the damping behaviour of hybrid composite material 

proposed in the previous chapters allows the design of hybrid multifunctional material 

accounting not only the mechanical performances but also its dissipative features. 

The numerical tool, based on the presented model, has embedded in the multi-objective 

platform modeFRONTIER, which integrate optimization and statistical procedure which 

are used for the individuation of the optimal hybrid architecture related to the specific 

boundary conditions. 

In this chapter, first the numerical analysis on the mechanical and dissipative behaviour of 

hybrid unidirectional laminae are presented; in particular the hierarchical procedure for the 

evaluation of mechanical properties of multiscale unidirectional composites is discussed. 

The integrated multi-level procedure for the analysis of hybrid composited is described and 

later applied to analyse two possible hybrid laminate characterised by 3% in volume of 

damping material. The final engineering constants and the final dissipative constants for 

the two systems are evaluated and discussed. 
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5.2 Nano scale: hybrid matrices integrating carbon nanotubes  

 Much of the attention in nanocomposites research has been directed toward the use of 

carbon nanotubes as reinforcement, for modelling purpose nanocomposites consistent of 

an hosting matrix filled by carbon nanotubes could be analysed following the theoretical 

approaches proposed for both particulate composites and short fiber composites. 

Good agreement with experimental data were found by the application of the simple model 

based on the mixture rule for the analysis of mechanical properties of nano-composites 

below its statistical percolation threshold content [1]. 

The reinforcement effects due to a short fiber within an hosting  matrix is explained by the 

shear stresses transferred between the two phases, which is inversely proportional to the 

filler length, this lead to an effective reinforcement modulus expressed lower from short 

fiber filler. As examined in the chapter II, the effect of the length and fiber orientation 

could be accounted in the elastic modulus predictions by the introduction of two separated 

efficiency factor ηl and η0 respectively. 

 

This expression could be easily rewritten in the rule of mixture form, introducing a term 

representing the equivalent modulus carried by the filler phase in the system. 

 

 

The percolation threshold represents the limiting concentration from which nanotubes 

could not be consider individually dispersed, that is the maximum volume content of the 

filler before the creation of a connected paths within the system. In the case of non 

interacting rods this statistical limit depends on the filler aspect ratio as follows 

 

Figure 5- 1 reports the effective reinforcement modulus simulation for a nanocomposite in 

function of the filler‘s aspect ratio. The matrix is assumed to have elastic modulus of 2.8 

GPa, this values is assumed as typical for an epoxy system at room temperature, whereas 

nanotubes modulus is assumed of 2000 GPa value reported from literature data. Fillers 

with higher aspect ratios are the more suitable reinforcement when the mechanical 

properties is the primary  material performance  to improve [2-3]. 
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Figure 5- 1: Effective reinforcement modulus vs filler aspect ratio 

 

Assuming the filler well dispersed within the hosting matrix the nanoloaded composite 

could be considered an isotropic material, hence only two independent parameters will 

describe its mechanical behaviour the elastic modulus as previously evaluated, moreover as 

the amount of CNT is typically small, considering percolation threshold, the Poisson‘s ratio 

could be assumed to be the same of the hosting system, hence the shear modulus for a 

nanocomposite matrix could be evaluated as follows: 

 

Below the hypotheses of isotropic behaviour two independent loss factors describe its 

dissipative behaviour. 

The specific damping capacity of the system could be then evaluated by energetic analysis 

following Saravanos unified approach as previously explained.  In calculations the filler 

mechanical properties used was the effective reinforcement modulus for filler phase in the 

system. A comprehensive form for the evaluation of composite dissipative loss factor could 

be written with the following formalism 

 

The Figure 5- 2 reports the loss factor component evaluated as linear combination (α=0) of 

nanotubes and matrix loss factors, in the micromechanics analogy this represent an 

isostrain deformation field between matrix and filler, also in this case the fiber content is 
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assumed as the maximum possible for individually dispersed fillers. Short fibres does not 

contribute to increment the dissipation mechanism if they operate in this condition. 

 

Figure 5- 2: Longitudinal loss factor vs filler aspect ratio 

 

 

Figure 5- 3: Transverse loss factor vs filler aspect ratio 

Figure 5- 3, reports the loss factor evaluated assuming iso-stress field between matrix and 

filler; under these conditions, the lower aspect ratio filler contribute to an enhancement in 

dissipation mechanism, moreover as known transverse and in plane shear could be 

analysed in analogy with the iso-stress condition, therefore considering the overall 

nanocomposite behaviour the use of low aspect ratio filler definitely contributes to the 

improvement of the material loss factor. 
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5.2.1 Transversely isotropic lamina  

To predict material properties of multiscale composites, the previous proposed model and 

the boundary micromechanics would be used in hierarchy. First, for mechanical properties 

of carbon nanotube composites the independents viscoelastic parameters were evaluated.  

 

 

Figure 5- 4: Schematic of composite hierarchy for computation of viscoelastic properties of hybrid 
composites 

The carbon nanotube composite properties were then utilized to compute the viscoelastic 

properties of the multiscale composite using the Saravanos unified micromechanics. 

 

5.3 Micro scale: Hybrid dry preform 

In the previous paragraph, the modelling problem of an hybrid matrix has been discussed. 

The final considered hybrid lamina is composed by structural fibres embedded in an hybrid 

matrix. In the present paragraph, the hybrid lamina consists of an hybrid dry preform 

which contains a viscoelastic material arranged as fibres contiguous to structural 

reinforcement within the material. 

The analytical approach followed to model the viscoelastic behaviour of this hybrid system 

is schematically represented in the Figure 5- 5. The system is considered as two transversely 

isotropic laminae which mechanical and dissipative behaviour would be examined by the 

unified micromechanics approach (chapter II) then stiffness and dissipative matrices for 

the hybrid lamina were formulated by weighted average.  
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Figure 5- 5: Schematic of composite hierarchy for computation of viscoelastic properties of hybrid 
dry preform composites 

 

Key parameter in this analysis is represented by the accurate evaluation of the fiber content 

for each reinforcement embedded in the hosting matrix, in the case of fibres having similar 

diameters it could be assumed each composite constituent the lamina containing the same 

volume fraction of fibres equal to the overall dry preform volume fraction of the final 

lamina, in fact it is easily understood that the influence region for the stress transfer is 

similar. More attention requires the case of different diameter fibres, in this case the 

volume fraction of each fiber system could be evaluated following the approach explained 

in the fourth chapter.  

 

 

Figure 5- 6: Different diameter fibres arrangement 

 

The volume fraction of the smaller fibres is evaluated as function of the volume fraction of 

the larger diameters ones. The following formula indicates the overall volume fiber content 

of the material, the small fiber content could be straightforwardly by inversion. 

 

The total hybrid lamina mechanical properties could be evaluated by superposition of the 

two stiffness matrices. In the hierarchy introduced in the Figure 5-5, an additional step 

could be considered when the matrix is itself a composite, i.e. a nanoloaded resin, in that 

case the resin in modelled as a matrix filled by carbon nanotubes, and in next step the 

homogenised stiffness matrix is accounted. 
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5.3.1 Viscoelastic definition set for hybrid dry preform composites   

In this paragraph an application of the suggested modelling procedure is proposed. In 

particular, an hybrid configuration is examined where one of the reinforcement fixed in the 

hosting matrix has not structural features, but only the capability of dissipate energy, in fact 

viscoelastic material have usually elastic modulus quite smaller than epoxy resin and 

reinforcement fibres, but respect the latter an damping ratio considerably higher. 

The three phases composite examined has two different fiber with comparable diameters, 

that is the same volume fraction it is assumed for the two constituents composites. The 

following table 5-1 reports typical properties for each phase. These materials are isotropic, 

stiffness and dissipative matrices would be described by only two independent parameters. 

The elastic parameters considered are Young modulus and Shear modulus, while the 

dissipative behaviour is represented by the longitudinal and shear specific damping 

capacity. 

 

 Table 5- 1: Properties of the three different phases constituent the hybrid laminate 

 
Carbon 

fiber  
Viscoelastic 

fiber 
Epoxy 
resin 

E (MPa) 260000 20 3500 
G (MPa) 104000 7.7 1300 

Ψ11 0.0055 0.167 0.029 
Ψ12 0.0055 0.167 0.029 

 

Following the proposed homogenization technique, the lamina is divided in two 

composites. The two constituents are both transversely isotropic materials and their 

mechanical properties are described by five independent parameters, E1, E2, v12, G12, G23 

whereas their dissipative properties are described by four independent parameters ψ11, ψ22, 

ψ12, ψ23. The engineering constants representing the constituent composites are evaluated by 

applying the generalization of the unified micromechanics, and completely described by the 

constituents properties. 

 

 

where P is the generic composite elastic property, Vi is the volume fraction of the ith 

constituent,  the damping capacity for the ith constituent, α a fitting parameters which 
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allows to modulate the combination law from the simple rule of mixtures (iso-strain field) 

to the iso-stress condition. 

The final hybrid lamina mechanical and dissipative properties are evaluated by the weighted 

average. 

 

 

 

 

Figure 5- 7: Hybrid composite elastic domain 

 

Figure 5- 7 shows the set for the mechanical properties of an hybrid composites 

constituted by three phase as function of the volume fraction content of the dry preform. 

The two curves corresponds to an hybrid preform which contain 5% vol. of viscoelastic 

fibres and the case of 10% vol. of dry preform. The linear upper curves represent the 

longitudinal modulus which significantly change by increasing the viscoelastic material 

content, less marked is the change in the transverse modulus. In terms of elastic properties, 

the main effect associated with the introduction of viscoelastic fibres  within the laminate 

isrepresented by a decrement in the longitudinal modulus, in fact the structural fiber 

content decrease in reason of the viscoelastic fibre. Transverse modulus, instead, depends 

on the matrix properties which is comparable with elastic modulus of elastic fibres, this 

property is less affected by the detrimental effects due to the introduction of a softer phase 

in the lamina. 
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Figure 5- 8: Hybrid composite dissipative domain 

 

In Figure 5- 8, the definition set for the loss factor of hybrid laminae containing 5 %vol. 

and 10 %vol. of viscoelastic fibre respectively are reported. The lower curves represents the 

elongational damping capacity of material. The effect in the transverse damping coefficient 

is need to be highlighted because does not correspond to a strong variation in the 

transverse mechanical property.  

An increasing of the viscoelastic material content lead to a shift of the curve rising up both 

the longitudinal and the transverse damping parameter; however, the augmentation of 

damping material content is significant only at volume content above the 10%, content 

which implies a strong decrease in the structural performance of the material. In addition 

increasing the viscoelastic fiber content the manufacturing of the dry preform would be 

difficult implemented since the viscoelastic fibres could hardly arranged without induced 

deformation due to the strong gradient of stiffness. 
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5.4 Macro scale: Damping of hybrid laminates 

In this paragraph, the specific damping capacity for laminates is proposed. A matlab 

software based on the theory background examined in the Chapter 2 is developed with the 

aim of analyse the behaviour of laminated composites. In this paragraph first the analysis of 

a conventional laminate is proposed, data available in literature were used to potentially 

validate the numerical procedure. 

An additional sub-paragraph analyse hybrid laminates based on the hybrid architectures 

previously proposed and analytically modelled. 

 

5.4.1 Damping of angle-ply laminates 

In this paragraph the matlab tool developed upon the laminate numerical analysis 

previously proposed is applied to describe viscoelastic behaviour of laminated compostes. 

Literature experimental data have been used to verify model efficiency. Radford and Mèlo, 

have investigated experimentally viscoelastic behaviour of transversely isostropic laminae 

for unidirectional bend-beam specimen for a complete material characterization  through 

dynamical mechanical analysis. In table 5-2 three point bending PEEK/IM7 data have 

been reported [13], the clamp span was 50 mm for the equipment used.  

As preliminary validation of the numerical tool a bending beam reproducing the three point 

bending experiment set-up reported by Radford and Mèlo, has executed, span was set equal 

to 50 mm  and stacking sequence of [(0/90)2]sym. Simulation reproduced for the cross ply 

laminate the loss factor 4.82 10-3 within the 5% error respect to the measured data. In this 

system 99.3% of energy is stored in extensional mode. 

The numerical tool was integrate in the multi-objective platform modeFRONTIER®. The 

modeFRONTIER software allows to statistically discussing the behaviour of the laminate, 

in fact a design of experiment, DOE, is required to start each analysis. 

The increment of damping performance of the material could induce a decrease in 

mechanical properties, therefore according to the application, the geometry of the structure 

and its boundary condition the Pareto analysis could individuate the optimum 

configuration which allows an increment in damping response of the system without 

sacrificing the mechanical performance. 
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Figure 5- 9: The matlab tool developed was integrate in the multi-objective platform, 
modeFRONTIER.  

 

A symmetric and balanced layered composite constituted of eight layer is numerically 

analysed, this laminate will be considered in the further analysis as base for the hybrid 

architecture modelling.  

The laminate stacking sequence is assumed to be [0/45/-45/90]sym, each lamina is 

constituted of the PEEK-IM7 prepreg unidirectional tape,which nominal thickness is 0.125 

millimeters. 

 

 Table 5- 2: Mechanical and dissipative properties of PEKK-IM7 unidirectional prepreg at -20°C 

E1 
(GPa) 

E2 
(GPa) 

G12 
(GPa) 

ν12 ν23 
η11 

(10-3) 

η12 

 (10-3) 
η12 

(10-3) 

155.4 10.2 7.4 0.34 0.48 4.7 7.8 8.8 

 

A composite beam subject to a transverse force of 1N in three point bending mode is 

considered. The laminate thickness is of 1 millimeter, the span distance is assume to be 60 

millimetrs. The following figure represent the scheme for a three point bending test. 

 

 

Figure 5- 10: Beam subjected to three point bending load scheme 
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Firstly the mechanical analysis of the beam is led to understand the forces acting in each 

section. In the three point loading scheme the momentum is maximum at the section 

where load is applied and there is a shear force in each section with half intensity respect to 

the applied load. 

The Figure 5- 11 reports the stress distribution within the laminate at the section , 

the only non zero stresses in the material are the longitudinal stress, and the transverse 

shear stress due the bending.  

 

 

Figure 5- 11: Static stress distribution within the laminate thickness at the section x=L/4 .  
A)Longitudinal normal stress, B)Transverse shear stress. 

 

The following table reports the numerical results for the composite beam analysed. It is 

important to notice that the energy stored in this simple structure is principally in 

longitudinal normal mode, in fact calculation reports that 99.4% of the total energy is due 

to normal stress associated to the cylindrical bending of the structure. 

 

Table 5- 3: Predicted laminate properties 

Ex 
(GPa) 

ExB 
(GPa) 

Gxy 
(GPa) 

Gxz 
(GPa) 

ηtot 

(10-3) 

61.3 101 23.7 9.14 5.045 

 

Figure 5- 12 shows the effect of distance between the beam supports. It is verified 

according to usual bending test procedure that load scheme with span to thickness ratio 

above 50 the loss factor approach to an asymptotic value, whereas for lower span to thick 

ratio there is an increase in the system loss factor. 

Considering the energy distribution, it could be observed that higher the span to ratio the 

higher is the energy stored in normal stress mode, at the asymptotic value the energy stored 

in normal mode become 99.9% of the total with loss of 5.022 10-3, this value represents the 

elongational dissipative character of the material. 
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When span decreases a similar behaviour is noticed, at the span distance of 2 millimetres 

the loss factor predicted is 8.222 10-3 corresponding to 82% of energy stored in transverse 

shear energy mode. 

 
 
 

 

Figure 5- 12: Laminate loss factor in function of the distance between supports 

 

The latter remark suggest the possibility of identify the homogenised dissipative constants 

for a material trough the simulation of condition exciting each of the energy components. 
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5.5 Multi-scale analysis of hybrid laminates 

In this paragraph is presented the integrate procedure for the analysis of an hybrid laminate 

composite. The Figure 5- 13 hierarchically describes the proposed approach; the inputs are 

split in two separate action, the first belongs to material mechanics, whilst the second 

action describe the structure which material is computed in the upper part of the scheme. 

 

 

Figure 5- 13: Schematic representation for the integrated analysis of hybrid laminates  

 

The lamina level include computational analysis of the material at micro and nano scale, in 

fact in this calculation box (blu-shadowed) the lamina material is assembled starting from 

its constituents, in the case of long fiber composites or short fiber composites the usual 

micromechanics rules would be applied, while if an hybrid architecture is selected the 

computational procedure for hybrid dry preform lamina or for hybrid matrix are exited. 
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At lamina level, instead, the laminate is assembled starting from its stacking sequence, 

which corresponds to stiffness and loss matrices for each lamina and the orientation in 

material reference system. Both computational levels give as output homogenised stiffness 

and loss matrices, which describe all the material behaviour. Afterwards, the energetic 

analysis is led over the structure calculating the overall loss factor and the stress 

distribution. 

As an application of the shown procedure the analysis on two hybrid composites 

embedding 3 % in volume of viscoelastic material was conducted and hereafter presented. 

The two examined architectures are respectively the interleaved and the hybrid preform. 

For the simulation the basic laminate, examined in the previous paragraph, is assumed as 

neat material for further hybridization. The viscoelastic material considered has Young 

modulus of 20 MPa, Shear modulus of 8 MPa and loss factor of 0.167 in both direction. 

In order to compare the damping features of the described composites a simple structural 

scheme of a three points bending was considered. 

The table 5-4 reports the obtained simulation results. The best solution in terms of 

damping behaviour has resulted for the interleaved configuration, however this architecture 

reduces the mechanical performances of the material.  The strong difference in mechanical 

modulus for the composite laminae and the viscoelastic sheet lead to a very low transverse 

shear stiffness due to more pronounced effect determined by the viscoelastic material. 

 

Table 5- 4: Comparison for architecture 

 
Ex 

(GPa) 
ExB 

(GPa) 
Gxy 

(GPa) 
Gxz 

(GPa) 

ηtot 

(10-3) 

Reference 61.3 101 23.7 9.14 5.045 

Interleaved 59.5 99.8 22.97 0.20 34.57 

Hybrid preform 61.3 101 23.7 9.14 5.949 

 

The hybrid preform architecture, instead, allows the increment in loss factor withstanding 

mechanical performances, even if the increment is smaller respect to the interleaved 

configuration, an 18% increment is reached. 

It is worth to highlight the asymptotic results for each configuration, the analysis at 

different span in the two hybrid cases allows the individuation of the material characteristic 

constant. The asymptotic values reached for interleaved and hybrid preform are 

respectively 5.608 10-3 and 5.840 10-3; a span tending to infinite means that the only 

significant energetic component becomes the elongational damping related to the bending, 

these values represent then the elongational damping capacity of the two architectures. 
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In the case of span approaching to zero, the only significant component is represented by 

the transver shear. Moreover due to the architecture, the rate of zeroing the elongational 

contribution and the final values are different, in fact the shear damping factors are 0.162 

and 0.0151 respectively for interleaved and hybrid preform. As expected the interleaved 

configuration contribute by transverse shear mode to the dissipating energy mechanism. 

It is worth noting that performed analyses have been conducted beyond the hypothesis of 

linear elastic behaviour, and the simulations do not account for material failures. In fact the 

insertion of  a softer material at laminate middle plane induce high interlaminar shear 

stresses which could lead material to failure. 
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5.6 The HYLAN.m code 

% MULTISCALE MODELLING OF HYBRID STRUCTURAL COMPOSITES WITH INTEGRATED 

% DAMPING FEATURES 

 

% HYbrid Laminates ANalyzer 

%-------------------------------------------------------------------------- 

%                          MAIN PROGRAM 

%-------------------------------------------------------------------------- 

  

function [eta,Ratio] = damping 

global MAT MATDISS NMAT LAYUP ID SP NPLY T NZ NX SPAN FX FY %A B D Q z 

geometryinput  

[N,M,R,x]=BC('SS',SPAN,FX,FY); 

%type 'SS' Simply Supported Beam 

%     'CC' Double Cantilever Beam 

materialinput 

laminateinput 

%-------------------------------- 

% Laminate Properties: IN-PLANE Calculation 

[A,B,D,Q,z,D1]=CLT(MAT,NMAT,LAYUP,ID,SP); 

[Ad,Bd,Dd]=CLTdiss(NMAT,MATDISS,LAYUP,ID,SP,NPLY,Q,z); 

% Laminate Properties: OUT-OF-PLANE Calculation 

[H,Hd]=FSDT(NMAT,MAT,MATDISS,NPLY,LAYUP,ID,SP,T,NZ,Q,z,A,B,D1); 

%--------------------------------  

%-------------------------------- 

% Laminate Beam: Deformation of the neutral axis 

[rot,eps]=neutralaxis(N,M,A,B,D1); 

% rot(x) eps(x) 

%-------------------------------- 

%-------------------------------- 

% Energy Analysis : IN-PLANE Calculations 

[EiP,EiPd]=Einplane(eps,rot,A,B,D,Ad,Bd,Dd); 

% Energy Analysis : OUT-OF-PLANE Calculations 

[EoP,EoPd]=Eoutplane(H,Hd,R,NX); 

% EiP(x) EiPd(x) EoP(x) EoPd(x) 

%-------------------------------- 

%-------------------------------- 

% INTEGRATION: IN-PLANE  

[OEiP,OEiPd]=integration(x,EiP,EiPd); 

% INTEGRATION: OUT-OF-PLANE 

[OEoP,OEoPd]=integration(x,EoP,EoPd); 

%-------------------------------- 

EnergyTot=sum(OEiP)+sum(OEoP); 

DissEnergyTot=sum(OEiPd)+sum(OEoPd); 

Ratio=[OEiP; OEoP]./EnergyTot; 

Lossfactor=DissEnergyTot/EnergyTot; 

eta=Lossfactor/(2*pi); 

end 

%% 

%-------------------------------------------------------------------------- 

%     SUBROUTINES 

%-------------------------------------------------------------------------- 

%% 

% GEOMETRIC PARAMETERS 

%---------------------------------- 

function geometryinput 

% GLOBAL VARIABLES: geometrical definition of the problem 

global SPAN FX FY NX NZ 

SPAN=40;  

FX=1; 

FY=0; 

NX=100;                                                                     

NZ=500;                                                                    

end 

%% 

% LOADS AND CONSTRAINTS 

%------------------------------------ 

% Two possible load/BC:  

% "Simply Supported Beam" "Double Cantilever Beam" 

  

function [N,M,R,x]=BC(type,SPAN,FX,FY) 

  

global NX x 

d=SPAN/(2*NX); 

x1=linspace(0,SPAN/2-d,NX); 

x2=SPAN/2; 

x3=linspace(SPAN/2+d,SPAN,NX); 

x=[x1 x2 x3]; 

switch type 

    case {'SS'} 

    disp('Simply Supported Beam') 

    Mx1=0.5*FX*x1;  

    Mx2=0.250*FX*SPAN; 

    Mx3=0.5*FX*(SPAN-x3); 

    Mx=[Mx1 Mx2 Mx3]; My=zeros(1,length(x)); Mxy=zeros(1,length(x)); 

    M=[Mx;My;Mxy]; % 3 rows x NX columns 

     

    Nx=zeros(1,length(x)); Ny=zeros(1,length(x)); Nxy=zeros(1,length(x)); 

    N=[Nx;Ny;Nxy]; 

     

    Rxz1=0.5*FX*ones(1,length(x1)); 

    Rxz2=FX; 

    Rxz3=-0.5*FX*ones(1,length(x1)); 

    Rxz=[Rxz1 Rxz2 Rxz3]; 

    Ryz=zeros(1,length(x)); 

    R=[Rxz;Ryz]; 
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    case {'CC'} 

    disp('Double Cantilever Beam') 

    Mx1=-0.125*FX*(SPAN-4*x1); 

    Mx2=0.125*FX*SPAN; 

    Mx3=-0.125*FX*(4*x3-3*SPAN); 

    Mx=[Mx1 Mx2 Mx3]; My=zeros(1,length(x)); Mxy=zeros(1,length(x)); 

    M=[Mx;My;Mxy]; 

     

    Nx=zeros(1,length(x)); Ny=zeros(1,length(x)); Nxy=zeros(1,length(x)); 

    N=[Nx;Ny;Nxy]; 

     

    Rxz1=0.5*FX*ones(1,length(x1)); 

    Rxz2=FX; 

    Rxz3=-0.5*FX*ones(1,length(x1)); 

    Rxz=[Rxz1 Rxz2 Rxz3]; 

    Ryz=zeros(1,length(x)); 

    R=[Rxz;Ryz];       

end       

end 

%% 

% LAMINATE DEFINITION 

%----------------------------------                                        

function laminateinput 

% GLOBAL VARIABLES: Laminate definition 

global LAYUP ID NPLY SP T SMAT 

% Stacking sequence 

LAYUP=[0 45 0 -45 90 90 -45 0 45 0]; 

NPLY=length(LAYUP); 

% Materials 

ID=[1 1 1 1 1 1 1 1 1 1]; 

  

% Thickness assignation 

for i=1:NPLY 

    SP(i)=SMAT(ID(i)); 

end     

  

%Laminate thickness 

T=sum(SP); 

  

end 

% Elastic formulation of classical lamination theory 

% cfr. Mechanics of Composite materials, Jones... 

%------------------------------- 

function [A,B,D,Q,z,D1]=CLT(MAT,NMAT,LAYUP,ID,SP) 

  

format short; 

%GLOBAL VARIABILES: 

global T NPLY %A B D Q z 

% In-plane compliance matrix definition 

  

for k=1:NMAT 

    Slam(:,:,k)=[1/MAT(k,1),-MAT(k,3)/MAT(k,1),0;... 

        -MAT(k,3)/MAT(k,1),1/MAT(k,2),0;0,0,1/MAT(k,4)]; 

end 

  

% Conversion matrix for Teps Tsig 

% Berthelot...... 

RR=[1,0,0;0,1,0;0,0,2]; 

% Vector of plies  

z(1)=-T/2;  

  

%Inizializzazione delle matrici A,B,D 

A=zeros(3,3);    %Matrice A 

B=zeros(3,3);    %Matrice B 

D=zeros(3,3);    %Matrice D 

  

% Calculation of elongational A, coupling B, bending D stiffness matrices 

for id=1:NPLY 

    S=Slam(:,:,ID(id)); %Matrice S di ogni layer 

    phi=(pi/180)*LAYUP(id);   %Conversione in radianti degli angoli 

    m=cos(phi); 

    n=sin(phi); 

     

    %Matrice di rotazione e sua inversa 

    TT=[m*m,n*n,2*m*n;n*n,m*m,-2*m*n;-m*n,m*n,m*m-n*n];    

    TTinv=[m*m,n*n,-2*m*n;n*n,m*m,2*m*n;m*n,-m*n,m*m-n*n]; 

     

    Q(:,:,id)=TTinv*inv(S)*(RR*TT*inv(RR));%Rotazione della matrice Q 

    z(id+1)=z(id)+SP(id);%Vettore z delle posizioni attraverso lo spessore 

     

    A=A+Q(:,:,id)*(z(id+1)-z(id));       %Calcolo della matrice A 

    B=B+(Q(:,:,id)*(z(id+1)^2-z(id)^2)); %Calcolo della matrice B 

    D=D+(Q(:,:,id)*(z(id+1)^3-z(id)^3)); %Calcolo della matrice D 

end 

  

B=(1/2)*B; 

D=(1/3)*D; 

D1=D-B'*inv(A)*B; 

%d=inv(D1); 

%a=inv(A)+inv(A)*B*d*B*inv(A); 

  

end 

  

%% 

%  CLASSICAL LAMINATION THEORY  

%  Dissipative formulation of CLT 

%  cfr. Saravanos NASA Technical Memorandum..... 

  

function [Ad,Bd,Dd]=CLTdiss(NMAT,MATDISS,LAYUP,ID,SP,NPLY,Q,z) 

  

format short; 

global T 
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%Calcolo della matrice di perdita dei tipi di lamine utilizzati nel 

%laminato 

for k=1:NMAT 

       psiqlam(:,:,k)=2*pi*[MATDISS(k,1),0,0;... 

        0,MATDISS(k,2),0;0,0,MATDISS(k,3)]; 

end 

  

RR=[1,0,0;0,1,0;0,0,2]; 

  

%Inizializzazione delle matrici Ad,Bd,Dd 

Ad=zeros(3,3);    %Matrice Ad 

Bd=zeros(3,3);    %Matrice Bd 

Dd=zeros(3,3);    %Matrice Dd 

  

%Calcolo delle matrici Ad,Bd,Dd 

for id=1:NPLY; 

    psiq=psiqlam(:,:,ID(id));       %Matrice psi di ogni layer 

    phi=(pi/180)*LAYUP(id);         %Conversione in radianti degli angoli 

    m=cos(phi); 

    n=sin(phi); 

     

    %Matrice di rotazione e sua inversa 

    TT=[m*m,n*n,2*m*n;n*n,m*m,-2*m*n;-m*n,m*n,m*m-n*n];    

    TTinv=[m*m,n*n,-2*m*n;n*n,m*m,2*m*n;m*n,-m*n,m*m-n*n]; 

     

    psi(:,:,id)=(RR*T*inv(RR))'*psiq*T;  %Rotazione della matrice psi 

     

    Ad=Ad+psi(:,:,id)*Q(:,:,id)*(z(id+1)-z(id));    %Calcolo di Ad 

    Bd=Bd+psi(:,:,id)*Q(:,:,id)*(z(id+1)^2-z(id)^2);%Calcolo di Bd 

    Dd=Dd+psi(:,:,id)*Q(:,:,id)*(z(id+1)^3-z(id)^3);%Calcolo di Dd 

end 

  

Bd=(1/2)*Bd; 

Dd=(1/3)*Dd; 

  

end 

function [H,Hd]=FSDT(NMAT,MAT,MATDISS,NPLY,LAYUP,ID,SP,T,NZ,Q,z,A,B,D1) 

  

[G,Ginv]=SHEARSTIFF(NMAT,MAT,LAYUP,NPLY,ID); 

GG=SHEARDISS(NMAT,NPLY,MATDISS,LAYUP,ID,G); 

[zit,ir]=zita(SP,T,NPLY,NZ); 

[a,b]=ab(Q,z,NPLY); 

[az,bz]=azbz(NZ,Q,ir,zit); 

f=effe(NPLY,A,B,D1,a,b); 

fz=effe(NZ-1,A,B,D1,az,bz); 

H=acca(Ginv,f,z,NPLY); 

Hd=acca(GG,f,z,NPLY); 

  

end 

function [G,Ginv]=SHEARSTIFF(NMAT,MAT,LAYUP,NPLY,ID) 

  

%Matrice G di ogni tipo di lamina costituente il laminato 

for i=1:NMAT 

    Glam(:,:,i)=[MAT(i,5),0;0,MAT(i,4)]; 

end 

for id=1:NPLY; 

    Gl=Glam(:,:,ID(id));%Matrice G del layer considerato 

    phi=(pi/180)*LAYUP(id);   %Conversione in radianti degli angoli 

    m=cos(phi); 

    n=sin(phi); 

    R=[m,-n;n,m]; 

    G(:,:,id)=inv(R)*Gl*R; 

    Ginv(:,:,id)=inv(G(:,:,id)); 

end  

end 

function GG=SHEARDISS(NMAT,NPLY,MATDISS,LAYUP,ID,G) 

for i=1:NMAT 

    PSItagliolam(:,:,i)=2*pi*[MATDISS(i,4),0;0,MATDISS(i,3)]; 

end 

for id=1:NPLY; 

    PSItagliol=PSItagliolam(:,:,ID(id));%Matrice PSI del layer considerato 

    phi=(pi/180)*LAYUP(id);   %Conversione in radianti degli angoli 

    m=cos(phi); 

    n=sin(phi); 

    R=[m,-n;n,m]; 

    PSItaglio=inv(R)*PSItagliol*R; 

    GG(:,:,id)=PSItaglio*inv(G(:,:,id)); 

end  

end 

function [zit,ir]=zita(SP,T,NPLY,NZ) 

spessum(1)=-T/2+SP(1); 

for id=2:NPLY 

    spessum(id)=spessum(id-1)+SP(id); 

end  

zit=linspace(-T/2,T/2,NZ); 

k=1; 

ir(1)=1; 

for i=2:NZ-1 

    if zit(i)<=spessum(k) 

        ir(i)=ir(i-1); 

    else 

        ir(i)=ir(i-1)+1; 

        k=k+1; 

    end 

end 

end 

function [a,b]=ab(Q,z,NPLY) 

a(:,:,1)=Q(:,:,1)*(z(2)-z(1)); 

b(:,:,1)=Q(:,:,1)*(((z(2))^2)-((z(1))^2)); 

  

for i=2:NPLY 

    a(:,:,i)=a(:,:,i-1)+Q(:,:,i)*(z(i+1)-z(i)); 
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    b(:,:,i)=b(:,:,i-1)+Q(:,:,i)*(z(i+1)^2-z(i)^2); 

end 

  

b=(1/2)*b; 

end 

 

function [az,bz]=azbz(NZ,Q,ir,zit)  

az(:,:,1)=Q(:,:,ir(1))*(zit(2)-zit(1)); 

bz(:,:,1)=Q(:,:,ir(1))*((zit(2))^2-(zit(1))^2); 

  

for i=2:NZ-1 

    az(:,:,i)=az(:,:,i-1)+Q(:,:,ir(i))*(zit(i+1)-zit(i)); 

    bz(:,:,i)=bz(:,:,i-1)+Q(:,:,ir(i))*(zit(i+1)^2-zit(i)^2); 

end 

  

bz=(1/2)*bz; 

  

end 

 

function f=effe(Nlayer,A,B,D1,a,b); 

  

for i=1:Nlayer 

    F(:,:,i)=(a(:,:,i)*inv(A)*B-b(:,:,i))*inv(D1); 

    f(:,:,i)=[F(1,1,i),F(3,2,i);F(3,1,i),F(2,2,i)]; 

end 

  

end  

 

 

function [rot,eps]=neutralaxis(N,M,A,B,D1)  

%rot(x) function 

rot=inv(D1)*(M-B*inv(A)*N);   

%eps0(x)  

eps=inv(A)*N-inv(A)*B*rot;    

  

end 

   

function [EiP,EiPd]=Einplane(eps,rot,A,B,D,Ad,Bd,Dd) 

  

AAe=(A*eps+B*rot); 

BBe=(B*eps+D*rot); 

AAd=(Ad*eps+Bd*rot); 

BBd=(Bd*eps+Dd*rot); 

  

EiP=0.5*(eps.*AAe+rot.*BBe); 

EiPd=0.5*(eps.*AAd+rot.*BBd); 

End 

 

function [EoP,EoPd]=Eoutplane(H,Hd,R,NX) 

  

for i=1:NX 

    FF(:,i)=H*R(:,i); 

    EoP(:,i)=(R(:,i).*FF(:,i))/2; 

end 

  

for i=1:NX 

    FF(:,i)=Hd*R(:,i); 

    EoPd(:,i)=(R(:,i).*FF(:,i))/2; 

end 

  

end 

  

function  [En,Endiss]=integration(x,Energy,DissEnergy) 

dx=x(2)-x(1);    

n=size(x,2);   %  

numcomp=size(Energy,1  

En=zeros(numcomp,1);%  

dimEnElem=size(Energy,2) 

if dimEnElem==n   

    for i=1:numcomp 

        for k=1:n-1 

            En(i)=En(i)+((Energy(i,k)+Energy(i,k+1))/2)*dx; 

        end 

    end 

else   

    for i=1:numcomp 

        for k=1:dimEnElem 

            En(i)=En(i)+Energy(i,k)*dx; 

        end 

    end 

  

end   
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6  

Manufacturing and testing of  

hybrid composites 

 

6.1 Summary 

In this chapter, the experimental analysis of the proposed hybrid architecture will be 

presented. For each proposed architecture,  unidirectional coupons were tested to verify 

the increment in loss factor.  

The hybridization of the laminate is experimentally studied over all dimensional scales. On 

the macro scale. laminates with macroscopically integrated viscoelastic layer have been 

fabricated and tested. Moreover, the concept of hybrid lamina is examined in terms of 

hybrid preforms, where viscoelastic material is integrated as fiber along carbon tow 

direction, and in terms of laminae infused by a nanoloaded epoxy system,  

In each case a valuable increment in passive damping were measured, mainly at the 

requirement temperature, i.e. the cruise condition in the case of an aeronautical application. 

Both the interleaved layer and the hybrid dry preform lead to a loss in mechanical 

performances for the considered material, although the material damping is enhanced at 

each testing temperature. In the case of nano loaded matrix composites, mechanical 

performances are kept over all test condition, but the enhancement in material damping is 

sensible only at temperatures below zero degrees. 
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6.2 Manufacturing of hybrid multi-scale laminates 

The main purpose leading this work is the study of laminated architectures which allows an 

enhancement in the loss property of the final composite. The study is arranged following  a 

trough the scale approach by proposing architectures which modify the laminate at its 

different dimensional scales. 

To modify laminate architecture it is possible to operate on the laminate constituents, on 

the macro-scale the simplest modify proposed is to insert as a ply in the laminate a material 

with improved passive damping. The ply could be a lamina of damping material, then the 

hybridization is attended at laminate level (hybrid laminate), however even each lamina 

could be an orthotropic hybrid layer modified in its constituents for passive damping 

enhancement. The hybridization could be execute by modifying the weave fiber preform 

(at micro-scale) or loading resin with a filler (for example carbon nanotubes) able to 

enhance matrix dissipative character.. Figure 6- 1 describes the dimensional scale path for 

laminate hybridization. 

 

Figure 6- 1: Hybrid laminate hierarchy 

 

A valuable technology for manufacturing composite materials have to be flexible in 

changing constituents properties as well as to allow an insertion of softer material as 

lamina; moreover, the manufacturing process should also allow the use of hybrid layer in 

the material forming and being easily extended on large dimension coupon production. 

Among the different process technologies, liquid moulding allows all listed item. Liquid 

moulding is a composite fabrication process capable to fabricate extremely complex and 

accurate dimensionally parts. One of the main advantages is part count reductions, in 

situations where a number of parts would normally made individually, and either fastened 

or bonded together, these are integrated into a single moulded part. Another advantage is 

the ability to incorporate molded-in features, such as sandwich core section in the interior 
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of a liquid moulded part. The resin transfer moulding, RTM, is the most widely used of 

liquid molding processes it consists of fabricating dry fiber preform which is placed in a 

closed mold, impregnated with a resin, and then cured. The basic resin transfer moulding 

process consists of the following steps: 

 Fabricate a dry composite preform, 

 Place the preform in a closed mold, 

 Inject the preform with a low viscosity liquid resin under pressure, 

 Cure the part at elevated temperature in the closed mold under pressure, 

 Demoulded and clean up the cured parts. 

 

Figure 6- 2: Process flow for Resin Transfer Molding 

 

There are many variations developed for this process, including RFI (Resin Film Infusion), 

VARTM (Vacuum Assisted Resin Transfer Moulding) and SCRIMP (Seeman‘s Composite 

Resin Infusion Molding Process). 

By the RTM process it is easily possible fabricate hybrid composites based on the 

considerations proposed in the previous chapters. An hybrid laminate could be 

manufactured by placing a layer of viscoelastic material before inserting preform in the 

mould, as well as hybrid dry preform could be used in the first phase or liquid resin could 

be injected after it is mixed with a properly chosen filler.  
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In addition, by using this technology, complex structure, like a stiffened plate, could be 

manufactured monolithically integrating features previously tested on the coupon scale. 

In the following sub-paragraph, VARTM process is briefly summarised, the manufacturing 

process for the fabrication of hybrid dry preform and the dispersion process of nanofillers 

in the hosting matrix are examined in next paragraphs [1].  

 

6.2.1 The VARTM process 

Since VARTM processes use only vacuum pressure for both injection and cure, the single 

biggest advantage of VARTM is that the tooling cost is much less, and simpler to design, 

than for conventional RTM. In addition, since an autoclave is not required for curing, the 

potential exists to make very large structures using the VARTM process. Also Since much 

lower pressures are used in VARTM processes, lightweight foam cores can easily be 

incorporated into lay-ups. VARTM type processes have been used for many years to build 

fiber-glass boat hulls, but have only recently attracted the attention of the aerospace 

industry. 

 

 

Figure 6- 3: Typical VARTM process set-up 

 

A typical VARTM process, shown in Figure 6- 3, consists of single-sided tooling with a 

vacuum bag. VARTM processes normally use some type of porous media on top of the 

preform to facilitate resin distribution. The porous distribution media should be a highly 

permeable material that allows resin to flow through the material with ease, the resin 

typically flows through the distribution media and then migrates down into the preform. 
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Since the VARTM process uses only vacuum pressure for both injection and cure ovens 

and integrally heated tools are normally used, and since the pressures are low, low-cost 

lightweight tool can be used. 

The resin used for VARTM processing should had even a lower viscosity than those used 

for traditional RTM to let the flow to impregnate the preform at vacuum pressure. Vacuum 

degassing prior the infusion is normally used to help to remove entrained air from the 

mixing operation. For large scale parts sizes, multiple injection and venting ports are 

utilized. 
  

6.2.2 Materials 

The matrix used in this research is a commercially available thermosetting resin, 

denominated RTM6. It is a mono-component premixed epoxy-amine system already 

degassed, specifically developed to fulfil the requirements of the aeronautical and space 

industries to manufacture composite parts by Liquid Infusion processes (LI). According to 

material supplier, this resin is recommended to be infused within the rage 100°C-120°C 

depending on preheating of the mould. The system was provided by Hexcel Composites 

(Duxford, UK). Figure 6- 4 reports viscosity of the resin in isothermal scans at different 

temperature rates. 

The RTM6 resin  is processed in a two step curing cycle, 1h at 160°C for the cure and a 

second step of post curing 2h at 180°C . The resin has its glass transition temperature near 

190°C, furthermore resin has a secondary transition at -50°C as it is shown by the 

dynamical mechanical test in Figure 6- 5 . 

 

 

Figure 6- 4: Dynamic viscosity profiles at three different heating rate 1-2.5-10°C/min 
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Figure 6- 5: Dynamical mechanical analysis of the Hexcel RTM6 

  

The hybrid architectures, proposed in the chapter IV, required the availability of 

viscoelastic materials in form of sheet and fiber.  

Commercial damping material are commonly available in form of adhesive films, for the 

manufacturing of hybrid laminates the thermoplastic polyurethane MOBILON® supplied 

from Nisshinbo has used. Viscoelastic sheets have been received as adhesive film of 

controlled thickness. The Figure 6- 6 reports the Mobilon nomograph.  

 

 

Figure 6- 6: Nomograph Nisshimbo Mobilon® Film 
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Unfortunately, viscoelastic material does not are easily obtainable in form of fiber for 

damping treatment, although a class of thermoplastic polyurethanes is available for fashion 

purpose. The commercial product Lycra® supplied form INVISTA is used as fiber in the 

hybrid preform manufacturing as proof of concept, in fact the main issue of this work if 

verify if the insertion of a softer material along structural reinforcement could lead to 

increasing the passive damping capacity of material in its elongational component. 

The viscoelastic material selected are both thermoplastic polyurethanes, as first proof for 

feasibility of the VARTM process a test for weight decrease in the curing process has been 

done. Figure 6- 7 reports the Thermogravimetric analysis for Lycra, test shows that any 

volatile substances are released in the heating. 

 

 

Figure 6- 7: Thermoplastic Polyurethane Thermogravimetric analysis. Lycra® does not release flier 
substances at temperature of curing cycle for the epoxy system used. 

 

Figure 6- 8 and Figure 6- 9 report results of dynamical mechanical test on the viscoelastic 

materials. Materials were scanned at the frequency of 1 Hz over temperature range of -100 

°C  to up 100 °C. Polyurethanes have glass transition temperature well below thus the final 

composite. 
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Figure 6- 8: Dynamical mechanical analysis of the MOBILON® 

 

 

Figure 6- 9: Dynamical mechanical analysis of the Lycra® 

 

The two selected thermoplastic polyurethanes exhibit the peak of tanδ at about -50°C, 

since the reference cruise temperature for a commercial liner aircraft corresponds to -30°C 

both the material maintain in a much stable region than the peak of transition a good 

viscoelastic behaviour, therefore both the material are suitable for the requirement of 

improve passive damping of the hybrid composite. 
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6.3 Set-up hybrid dry preform technology 

The most important types of preforms for liquid moulding processes are, woven, knitted, 

stitched and braided. In many cases conventional textiles machinery has been modified to 

handle the high modulus fibres needed in structural applications.  

Weaving is essentially the action of producing a fabric by the interlacing of two sets of 

yarns: warp and weft. The warp yarns run in the machine direction, the 0° direction, and 

are fed into the weaving loom from a source of yarn. This source can consist of a multitude 

of individual yarn packages located on a frame (a creel), or as one or more tubular beams 

onto which the necessary amount of yarn has been pre-wound (warp beams). The warp 

yarns may then go through a series of bars or rollers to maintain their relative positioning 

and apply a small amount of tension to the yarns, but are then fed through a lifting 

mechanism which is the crucial stage in the weaving process. The lifting mechanism may 

be mechanically or electronically operated and may allow individual yarns to be selectively 

controlled (jacquard loom) or control a set of yarns simultaneously. 

The crucial point is that the lifting mechanism selects and lifts the required yarns and 

creates a space (the shed) into which the weft yarns are inserted at right angles to the warp 

(the 90° direction). The sequence in which the warp yarns are lifted controls the 

interlinking of the warp and weft yarns and thus the pattern that is created in the fabric. It 

is this pattern that influences many of the fabric properties, such as mechanical 

performance, drapability, and fibre volume fraction. Therefore to manufacture a suitable 

2D or 3D preform an understanding of how the required fibre architecture can be 

produced through the design of the correct lifting pattern is crucial in the use of this 

manufacturing process [2]. 

 

6.3.1 Textile geometry  

The commonly used hybrid advanced composites are fabricated by weaving different types.  

Hybrid dry preform are manufactured inserting the distinct fiber yarn in the weft direction, 

or arranging onto the creel layout the yarn of different material. Textile process subject 

yarns to bending and abrasion, in general the higher the modulus of the fiber, the harder it 

will be the process. The definition of geometry have to keep in account that the hybrid 

system proposed has two critical points, in fact the assignment is to insert as viscoelastic 

fiber in the dry preform. As previous noticed the high modulus of carbon fiber leads to a 

massive weaving process, moreover below to equal loads the viscoelastic fiber deformation 
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is considerably stronger than carbon fibres thus could induce a shrinkage on the final 

hybrid dry preform. 

As discussed in Chapter IV,  with the aim of producing a composite able to store and then 

dissipate a larger part of its total energy in elongational mode, viscoelastic fibres may be 

arranged along warp direction. 

The unidirectional fabric used as reference for further hybridization weaving is a plain 

weave carbon unidirectional fabric where the carbon yarn (8000 dtex) is sewn with a glass 

fiber yarn (34 dtex), the final dry perform is large 200 millimetres which weights is 

distributed in 92% in warp direction.  In the following figure the datasheet of pristine dry 

perform is reported. 

 

 

Figure 6- 10: Pristine  dry perform datasheet 

 

Two possible architectures are drawn in the Figure 6- 11. In the upper picture, the softer 

viscoelastic fibres are attached to the carbon yarns and then dragged in the weaving, 

another scenario consists in keeping viscoelastic fibres isolated from carbon tows and 

weaving them independently in the preform. 
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Figure 6- 11: Suitable preform micro-architectures. a) viscoelastic fibres are arranged alongside of 
carbon yarn. b) viscoelastic fibres are arranged to form an independent yarn in the preform. 

 

Since viscoelastic fibres are much deformable respect to the carbon fiber yarns the 

architecture used in the final weaving process is to use the carbon yarn characterised by a 

low deformability to drag along the viscoelastic fibres, this solution avoids the shrinkage of 

the final dry preform. 

The final hybrid dry preforms were produced at two viscoelastic material content, a first 

batch accounting 5 percent in volume of Lycra® fibres (dtex 78) and a second batch 

containing 10 percent of Lycra® fibres, the preform kept its width of 200 millimetres and 

the nominal thickness of 260 μm. 

 

6.3.2 Manufacturing hybrid dry preform 

Weaving the hybrid preform did not required particular precautions respect to the standard 

procedure. A critical issue would be the problem of carrying viscoelastic fibres into the 

fabric, but the idea of attach them to carbon yarns allows to proceed in the manufacturing 

process by applying only a simple adjustment on the yarn positioning into the creel. In the 

following pictures the main moments in the weaving process have been reported. First 

operation was to move Lycra form pristine package to many cardboard cylinders each of 

the required length, Figure 6-7 reports the reel in of viscoelastic fibres. 

 

 

Figure 6- 12: Phases of reeling in process for Lycra® fibres in roll compatibles with the weaving creel 
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Afterwards Lycra reels are disposed on the creel according to the chosen architecture, 

Figure 6-8 reports the arrangement of yarns on the weaving creel. 

 

 

Figure 6- 13: Arrangement of yarns on the weaving creel. 

 

The following figures (Figure 6-9, 6-10) report the fabric manufacture in the loom. In 

Figure 6-9 a) the hybrid yarn, i.e. the carbon tow carrying the needed viscoelastic wires, 

enter the loom, in Figure 6-9 b) the application of weft glass fibres is shown.  

 

 

Figure 6- 14: Weaving phases. a) the carbon hybrid yarns input in the loom. b) weft yarn positioning.  

 

Figure 6-10 shows the final dry preform output from the loom and automatically packaged 

in reel.  
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Figure 6- 15: The final hybrid preform is automatically reel in cardboard cylinder by the loom. 

 

6.4 Hybrid nano-loaded epoxy system 

In the present paragraph the enhancement of material passive damping at lamina level is 

examined by providing hybridization of the epoxy system before the infusion process. 

An high damping nanofiller that could be embedded in resin are carbon nanotubes, Suhr et 

al. [7] observed approximately 200% increase in damping ratio by addition of multi-walled 

nanotubes (MWNTs) in a rubbery state polymer matrix. Such good enhancement in 

damping ratio could be further improved by increasing proportion and improving 

dispersion and alignment of CNTs, Rajora et al. [8].   

 

6.4.1 Dispersion of nanotubes 

The nano-composites investigated were prepared using 40 mL of resin, sonicated for a 

constant time (1 hour) at the temperature of 120 °C with a nominal power of 18W.  

The high energy sonicator used is a Misonix S3000, characterised by a generator with 600 

W output, a 20 kHz convertor and a temperature controller.  A titanium tapped horn with 

a 1/2‘‘ (12.7 mm) diameter tip was connected with the convector and directly put into the 

liquid mixture of resin and MWCNTs to perform dispersion.   

All mixtures were degassed in vacuum oven at 90°C for 30 min, and then cast in an 

aluminium mould and cured; in all cases an identical temperature profile (1 h at 160°C 

followed by 2 h at 180°C) was adopted.  According to the previously found kinetics results, 

this cure and co-cure temperature profile will lead to complete polymerization with highest 

obtainable value of glass transition.  
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It is well known that the effect of ultrasonication is likely associated with cavitation 

phenomenon in the liquid medium, i.e. the formation of bubbles or cavities which form 

and expand with the impressed pressure field when the wave pressure is lower than the 

actual liquid pressure. The bubbles originate by two distinct factors: the presence of gas 

dissolved or entrapped in the liquid (gaseous cavitation) or due to the vapours of the hosting 

medium itself (vapours cavitation). The maximum intensity of the cavitation phenomenon is 

reached just below the horn tip, therefore a cone-like zone, where the effect of cavitation is 

more intensive, is originated. The density gradient produced by the collapsing of the 

cavitated bubbles gives a rise to convective flows which progressively moves different 

volumes of the mixture under the cone-like zone. Viscosity, along with other factors such as 

sizes of nuclei, amount of dissolved gasses, vapour pressure and time of sonication 

represent the most influencing parameter of the sonication on-set, affecting the rate of 

growth and the collapsing of the cavitation bubbles, therefore very high viscosity may 

preclude the generation of cavitation reducing the cone-like extension and effectiveness 

and also, weakening the convective flows.  

 Figure 6- 16 reports the bending modulus (DMA measured) of nano-composites obtained 

by isothermal sonication for 60 min at 60°C, 90°C and 120°C respectively. Experimental 

results reveal that mechanical properties improve as dispersion temperature is increased. In 

fact, optical micrograph images, superimposed in figure, show the presence of coarse 

submicron particles of pristine nanotubes agglomerates, in the case of 60°C sonicated 

nanocomposite. Instead, a fine texture, as well as no evidence of micron sized 

agglomerates, has been observed for the highest sonication temperature (90°C and 120°C), 

with very rarely found nanotube agglomerates. 

 

 

Figure 6- 16: Bending modulus of nanocomposites processed by sonication at three different 
temperatures with a MWCNT content of 0.1 % wt  
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Dispersion state and cluster morphology at the micron scale has been investigated by 

transmission optical microscopy. Table 6- 1 shows the micrographies of MWCNT/RTM6 

samples at different nanotubes concentration (0.05 %wt, 0.1 %wt, 0.2 %wt, 0.3 %wt, 0.5 

%wt) cured after sonication dispersion for 60 min at 120°C. At low nanotube content (0.05 

%wt and 0.1 %wt – Table 1 a/b) samples appear homogeneous under optical microscope 

analysis, showing no micro-texture, so at least down to micron scale the sonication 

provides a dispersion of nanotube agglomerates within the hosting system. At higher 

concentrations (0.3, 0.5 %wt - Table 1 d/e), optical microscopy reveals not only a sub-

micrometric texture but also the formation of micro-sized nanotube agglomerates. At 

intermediate nanotube content (0.2 %wt – Table 1 c) only a submicron scale texture is 

observed. As a conclusion, a nanotube network is growing due the increasing nanotube 

concentration within the matrix by changing the nano-loading content from 0.05 to 0.5 

%wt. 

 

Table 6- 1: Optical microscopy of final nano-composites (Nanocyl N7000) with different CNT 
content: 0.05  %wt (a); 0.1 %wt (b); 0.2  %wt (c); 0.3  %wt  (d); 0.5  %wt  (e) MWCNT content. 

 

 

6.4.2 Characterization of hybrid nano-scale hosting matrix 

The potentiality of carbon nanotubes as reinforcement for polymer matrix is primarily due 

to their exceptional mechanical property, very high aspect ratio and specific surface to 

volume ratio [9].  However, in real random carbon nanotube composites, the tubes 

aggregation or their networking may become a defect causing a loss of the theoretical 

enhancement of the mechanical properties. Percolation is a statistical topological game, 

which describes the formation of an infinitive cluster of contacting particles by means of 

their random distribution on a lattice. Moreover, even if the interparticles potential do play 

a role in the real organization of the nanotubes network, and then influences the real 

percolative content, the scaling law relating critical volume fraction, , at which the 
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statistical percolation transition occurs, and filler aspect ratio, AR, fixes a proper upper 

bound: 

 

In line with this argument, three types of multiwalled carbon nanotubes (MWNT) with 

nominal aspect ratios AR=30, 55, 505 were used as received to prepare epoxy matrix 

composites to experimentally evaluate the effect of the tubes aspect ratio upon the 

reinforcement mechanism. To this aim, carbon nanotube volume loadings have been 

chosen within the range of statistical percolation threshold. 

N7000 series from Nanocyl (AR=505) and 659258 (AR=55) and 636843 (AR=30) series 

from Aldrich MWNTs were dispersed into the monocomponent epoxy system RTM6 

according to the dispersion process previously defined. In order to isolate the effect of the 

filler all tests have led at the temperature of 80°C, Figure 6- 5 reports the DMA test for the 

neat epoxy system considered, the RTM6 resin exhibits two transition temperature, a small 

transition is detected at -50°C whilst the glass transition of the overall system starts at 150 

°C. The temperature test has chosen at 80°C so that any effects of the transitions would 

affect the measurements. 

Since percolation status has been identified as a critical issue for the mechanical behaviour 

of the system each samples were electrically tested. Electrical measurements were 

performed in DC current on nanocomposite samples cut and polished on both surfaces 

until a mean thickness of 1 0.1mm. Electrodes consisting of 50 mm2 of area circles were 

painted on the flat surfaces with conductive silver paint. Two-point conductivity 

measurements were performed on composites through the thickness direction by means of 

a pico-amperometer connected to a two-probe station (Signatone 1160). A voltage 

generator was used to apply a constant voltage of 40 V for 300 seconds. 

 

 

Figure 6- 17: Electrical conductivity measurement. Data are plotted against the ratio of actual filler 
content and the statistical critical value. 
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Figure 6- 17 shows the electrical measurement results, data have been reported as function 

of the filler content to statistical threshold ratio. It is possible to individuate for each hybrid 

system tested a critical threshold in some cases quite different from the statistical one 

which allows the definition another critical threshold for the system, depending on the 

system as representative of the filler status within the hosting matrix, i.e. the effective 

percolation limits for the AR 505 is at 0.06 % vol corresponding to an aspect ratio effective 

of 811, further details of this analysis have reported from Martone et al.[13].  

 

 

Figure 6- 18: Effect of the aspect ratio in the increment of bending modulus. At higher nanotubi 
content in each case a decrement in the effect of introducing nanotubes in the matrix is present. 

 

 

Figure 6- 19: Effect of the aspect ratio in the increment of tanδ. The filler with aspect ratio 50 
granted a stepwise increment in tanδ. 

 

In Figure 6- 18 and Figure 6- 19 DMA measurement for each type of filler have reported 

against the volume content within the hosting matrix. 

Even if the enhancement of elastic modulus is clearly identified according to the 

percolation status of the system, the dissipative behaviour does not follows a trend. In fact, 
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for two families (AR=505, and AR=30) there is not enhancement in the damping capability 

of the system, although the MWNTs with aspect ratio 55 shows a stepwise behaviour in 

terms of tanδ, below percolation their improve the damping capacity of the system until 

the 45%, whereas for higher loading content this effect disappear. 

 

6.5 Coupons for testing 

The aim of this experimental work is to identify a suitable composite architecture capable 

both to keep the required structural features, and improve passive damping response of the 

overall structure. As first step, once identified the manufacturing technology allowing the 

proof for each dimension scale proposed hybrid architecture, unidirectional composites 

were manufactured to verify if there was the global enhancement of the material response. 

In the case of interleaved layer, as literature report clearly the advantages of an 

unidirectional laminate interleaved by a damping film, angle ply composite were 

manufacture in order to understand if this architecture could be further refined. 

   

6.5.1 Hybrid matrix- RTM6 + MWCNT Unidirectional laminates 

Since the VARTM process, considered for fabrication of coupons, requires that additived 

resin  keep a viscosity behaviour to allows the infusion. From results obtained on the resin 

the nanotubes more promising for the application under study are the MWNT provided by 

Sigma-Aldrich characterised by a nominal aspect ratio of 55, moreover as previously 

verified interesting contents are below 2 %vol. (about 3 %wt). 

The well dispersed states can be characterized by their reproducible profile of the 

rheological linear response. Increasing nanotubi concentration increases the values of 

effective viscosity, a study has led to verify the processability of resin mixed with carbon 

nanotubes at the interesting concentration. Figure 6- 20 shows the isothermal behaviour of 

solution containing 0.5 %wt, 1%wt, 3%wt of MWNT, in addition the measurement for the 

neat resin is reported as baseline.   
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Figure 6- 20: Viscosity measurements for the nano-loaded matrix at different nanotubes content. 
Hybrid system consists of the RTM6 epoxy resin mixed with MWNT having aspect ratio of 55.  

 

Although there is an increment in the resin viscosity the viscosity of the mixture is 

compatible with the infusion process, moreover in each case the hybrid resin keep this 

feature for the time need for the infusion process. Figure 6- 21 shows the dispersion state 

of MWNT within the resin at the content of 1 %wt. 

 

 

Figure 6- 21: Optical microscopy for the hybrid 1%wt nano-composite. Image is magnified at 50X. 

 

Panels were fabricated using VARTM, first precalculated  amounts of CNTs and resin were 

weighted and mixed together such as the weight fraction is the required, then the mixture is 

sonicated using the procedure defined in section 6.4.1. Unidirectional plates of 8 layer each 

measuring approximately 220mm x220mm were stacked. Once the fiber preform was 

infiltrated with RTM6/MWNT system it was allowed to cure 1h at 160°C and post-cure 2h 

at 180°C. In this study four fiber reinforced panels were fabricated – one control panel 

with neat resin and three panels with 0.5 %wt, 1 %wt, 3%wt CNT dispersed resin, 

respectively (Figure 6- 22).  
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Figure 6- 22: Manufacturing of hybrid unidirectional multiscale composite. 

 

From analysis of the nanocomposite based on the RTM6 and nanotubes characterised by 

nominal aspect ratio of 55, the more interesting concentration of filler within the matrix 

would be both 1%wt or 3%wt, the nanocomposite exhibits a stepwise behaviour at the 

latter contents. Although there is a quite similar enhancement in mechanical and dissipative 

performance of the system, as preliminary verification on the behaviour of the 

unidirectional composite the damping test have executed on the reference neat panel and 

to the 1%wt. 

Samples for the further damping tests have cut from the manufactured panel with 

dimension of 200 mm x 180 mm, with bigger side along the fiber direction.  

Damping test had performed in a conditioning chamber at different temperature from -

50°C to RT, the specimen is positioned in the chamber hung up with metallic coil to create 

a boundary condition of free motion the space. The specimen is then exited by a shaker 

covering all the frequencies, for each testing temperature the experimental loss factor is the 

mean value over all frequencies. 

In the following figures the damping measurement for the baseline plate and for the 1%wt 

nanocomposite have reported. 

 

 

Figure 6- 23: Damping test for the unidirectional composite used as baseline.  
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Figure 6- 24: Damping test for the unidirectional composite containing 1% wt of CNTs.  

 

It is important to highlight that at lowers temperatures there is a consistent increment in 

passive damping for the material, whereas at higher temperature the material response is 

not sensitive of the matrix hybridization. 

  

6.5.2 Unidirectional laminates integrating hybrid dry preform  

Hybrid carbon fiber preform with previously integrated viscoelastic fibres at two volume 

fraction percentage ( 5 % vol., 10 % vol.) have been used to manufacture laminate by using 

the RTM6 epoxy system through the vacuum infusion process. The following figures show 

the relevant steps in hybrid flat panel manufacturing. In addition to the hybrid laminate a 

plate without damping treatment was manufactured as baseline for testing phase. 

The Figure 6- 25 a) shows the stacking of the hybrid laminae upon the tool, in the b) and c) 

are shown the vacuum bag preparation and the infusion process.  Figure 6- 25 d), e) and f) 

report the curing phase of coupons, the demoulding  phase and the final composite plate, 

respectively. 
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Figure 6- 25: Composite manufacturing via vacuum infusion process. The relevant phases of the 
process are: the stacking upon the tool a), vacuum bag preparation b), resin infusion c), cure of the 
system, d) demoulding of composite plate. 

 

Critical items in the manufacturing of the hybrid dry preform composite, are related to the 

viscoelastic fibres behaviour within the dry preform. 

Before the infusion viscoelastic fibres could introduce a shrinkage phenomenon in the 

preform for effect of a excessive strains induced by the weaving, moreover a similar 

consequence could be brought out when mould is heated. 

Micrographs confirm that the viscoelastic fibres resists to the manufacturing process, even 

if, perhaps due to cutting of preform of to the stacking phase Lycra fibres seems to became 

stretched, Figure 6- 26 shows the carbon tow and the contiguous viscoelastic fibres. 
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Figure 6- 26: Micrograph of hybrid laminate including 5 % vol. of viscoelastic fibres, picture is 
magnified at 20X. The thermoplastic elastomeric fibres are visible contiguous to carbon tow 
according to the textile architecture defined. 

 

The hybrid preform whit 5 percent in volume of viscoelastic fibres maintains its cohesion, 

unfortunately preforms with 10 percent in volume are extremely sensible to the thermal 

effects Figure 6- 27 a), in that case for the manufacturing of the composite plate the 

vacuum bag required to be prepared upon a cold tool. Although this expedient in resin 

infusion final composite had some regions where hybrid tow have moved away Figure 6- 

27, rationale for such finding is the effect of hot flow during infusion process. 

 

 

Figure 6- 27: Hybrid dry preform containing 10 % vol. of viscoelastic fibres exhibits important 
manufacturing problems. a) shrinkage due to the contact with the heat tool b) composite plate after 
demoulding, 

 

Dynamical mechanical measurement were carried out using  a TA DTMA Q800 in three 

point bending testing mode, with 50 mm span between the supports. The temperature scan 
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measurement were performed over the temperature range of -50 °C to 180 °C with heating 

rate of 5.0 °C/min and constant frequency of 1.0 Hz. 

The following pictures reports dynamical mechanical tests for the unidirectional 

composites. In Figure 6- 28 and Figure 6- 29 elastic modulus and tanδ for unidirectional 

composite made of the neat dry preform and RTM6 resin were reported, this data will be 

used as baseline in further investigations. 

 

 

Figure 6- 28: DMA analysis of TCU260+RTM6 composites, unidirectional 0° samples 

 

 

Figure 6- 29: DMA analysis of TCU260+RTM6 composites, unidirectional 90° samples 

 

In the following Figure 6- 30 and Figure 6- 31 experimental data for the composited 

fabricated with the hybrid dry preform including 5 volume percent of viscoelastic fibres.  
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Figure 6- 30: DMA analysis of Hybrid 5%+RTM6 composites, Unidirectional 0° samples. 

 

 

 

 

Figure 6- 31: DMA analysis of Hybrid 5% +RTM6 composites, Unidirectional 90° samples. 

 

 

Whereas in the Figure 6- 32 and Figure 6- 33 experimental data for composites made with 

the 10 volume percent hybrid dry preform have reported. 
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Figure 6- 32: DMA analysis of  Hybrid 10%+RTM6 composites, unidirectional 0° samples 

 

 

 

 

Figure 6- 33: DMA analysis of  Hybrid 10%+RTM6 composites, unidirectional 0° samples 

 

6.5.3 Hybrid laminates- Angle ply laminates embedding viscoelastic sheets 

The capacity of unidirectional laminates with interleaved viscoelastic layer has been proved 

by a number of literature works, in chapter IV a review of the more interesting activities 

has been provided. As observed the main criticality related to the use of a softer layer in the 

stacking is the effect of interlaminar stresses that could promote material failure. Another 

aspect is the role that laminate stacking exercises in the damping capacity of a layered 

material. Combining the effects of the damping layer on the raising up of interlaminar 

stresses and consequently the damping with the tuning of the interlaminar shear stress due 

to the stacking sequence, hybrid laminates including viscoelastic layer have fabricated in 
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order to individuate an optimum configuration able to keep mechanical property and able 

to increment passive damping feature. 

Four composite plates were fabricated by VARTM process, three hybrid laminates where 

viscoelastic layers are positioned at centre, symmetrically moved from middle plane of one 

layer , moved of two layer, as baseline for the investigation were fabricated a layer without 

damping treatments. The base stacking sequence used is (0/90/0)s , viscoelastic material 

used for this investigation was the Mobilon provided by Nisshimbo available as adhesive 

film of controlled thickness. Figure 6- 34 shows manufacturing process for the hybrid 

plates. 

The symmetric balanced laminates were fabricated with dimension of 220 mm x 220 mm, 

viscoelastic sheet were cut in sheet of 200 mm x 200 mm and located at the centre of 

laminate. Each hybrid plate contain the same amount of viscoelastic material, the 

configuration with the layer at middle plane has an only sheet of 200 μm, whereas in other 

configurations there are two sheet of 100 μm. 

 

 

Figure 6- 34: Manufacturing of hybrid interleaved layer architecture composites.  Baseline plate and 
laminate with the viscoelastic layer at the middle C0 have been fabricated together a), e). The hybrid 
laminates with viscoelastic layer moved away from middle plane have fabricated below a common 
vacuum bag. 

 

The following table describes the configuration of laminates fabricated. 

Table 6- 2: Interleaved layer fabricated panels 

Reference (0/90/0)sym 
C0-middle plane (0/90/0/VM)sym 

C1-middle plane +1 (0/90/VM/0)sym 
C2-middle plane +2 (0/VM/90/0)sym 
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Specimens cut from the manufactured plates were tested by Dynamical Mechanical 

Analyzer, in three point bending mode. Span distance in the test was set to 50 mm, the test 

has led at constant frequency of 1 Hz over the temperature range of -40°C to 160°C at 

constant temperature rate of 5 °C/min. Following figures reports test results. 

 

 

Figure 6- 35: DMA test for the reference angle ply laminate 

 

 

 

Figure 6- 36: DMA test for the interleaved layer configuration 

 

The test on the C0 configuration, where the viscoelastic sheet is arranged in 

correspondence of the middle plane, indicates that laminate passive damping is greatly 

improved, but it is evident the decrease in bending modulus. 

In the case of C1 or C2 there is not relevant variation from the reference laminate, 

rationale for this behaviour is the fact that in each case the viscoelastic layer position does 

not reach a region with high interlaminar stresses, moreover the sheet (0.10 mm) are too 

thin to trigger the high strain required for increment the energy stored by it selves. 
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Figure 6- 37: DMA test for the C1 configuration 

 

 

 

 

 

Figure 6- 38: DMA test for the C2 configurations 
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6.6 Conclusions and Discussions 

In this chapter the experimental analysis of the proposed hybrid architecture have 

proposed. For each architecture proposed an unidirectional coupon has tested to verify the 

increment in loss factor.  

In each case a valuable increment in passive damping were measured, mainly at the 

requirement temperature, i.e. the cruise condition in the case of an aeronautical application. 

Both the interleaved layer and the hybrid dry preform lead to a loss in mechanical 

performances for the considered material, although the material damping is enhanced at 

each testing temperature. 

In the case of nanoloaded matrix composites, mechanical performances are kept over all 

test condition, but the enhancement in material damping is sensible only at temperatures 

below zero degrees. 

 

6.6.1 Macro-scale analysis of hybrid composites. 

The experimental data on the interleaved architecture confirm that this solution allows to a 

strong increment in material loss factor, however a sensible effect is recorded in term of 

material stiffness. 

The most efficient configuration for damping enhancement is discovered to be the 

laminate with a viscoelastic layer at middle plane. In a laminate beam the shear stress 

distribution is a curve formed by arcs of parabola with the boundary condition of to be 

zero at laminate faces and reaches its maximum value in correspondence of the middle 

plane. The strong increment in damping performance measured indicates that shear 

stresses induce a great deformation in the viscoelastic layer which allows to store an higher 

energy and thus an increase in the dissipated energy. 

 

Figure 6- 39: Comparison of mechanical data for interleaved layer architectures 
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The C0 configuration is the most suitable for temperatures well below zero degree, in fact 

at the standard temperature of -30°C an increasing of about 25% in material damping is 

measured, this enhancement is magnified increasing temperatures. Unfortunately 

approaching to room temperature coupling to the increment of material damping capacity 

the bending modulus progressively decrease, at room temperature 20% in mechanical 

performance is lost by this phenomenon. 

 

Figure 6- 40: Comparison of dissipative data for interleaved layer architectures 

 

Other configurations, instead does not reveal any variation in material performance, this 

could be attribute to two main causes, the sheet are thinner enough to do not excessively 

deforms and away from high shear stress. 

Furthermore the use of this architecture may require a modification in the case of 

automated production process due to the stacking of viscoelastic sheet within dry preform 

before the infusion. 

  

6.6.2 Micro-scale analysis of hybrid composites. 

In the following figures are highlighted experimental data extrapolated from tests on the 

hybrid preform composites at the temperature of -30 °C, actually requirements for 

damping performance for aeronautical application are formulated for the cruise phase. 

 



134 
 

 

Figure 6- 41: Comparison of the mechanical and the dynamic properties of the hybrid unidirectional 
composites. The data have been extrapolated from previous tests at the temperature of -30 °C in 
fiber direction. 

 

The 5 % hybrid preform performed a negligible effect in fiber direction, but in transverse 

direction a 20% increment has obtained over the decreasing in transverse elastic modulus. 

The 10 % hybrid preform had a strong decrease in material stiffness. 

 

 

Figure 6- 42: Comparison of the mechanical and the dynamic properties of the hybrid unidirectional 
composites. The data have been extrapolated from previous tests at the temperature of -30 °C 
orthogonal to fiber direction. 

 

At the temperature of -30 °C an increment of damping capacity in the orthogonal to fiber 

direction of 60 % has been reached in the case of 10 % specimens even if this lead to a loss 

in mechanical performances of the final composite. In the case of 5 % specimens the 

increase of the loss capacity is of 20 % and in the latter case the bending modulus in fiber 

direction has been kept to the reference value. 

 

6.6.3 Nano-scale analysis of hybrid composites 

The  Figure 6- 43 shows the effective reinforcement modulus, E , as a function of the 

volumetric filler content normalised to the electrical percolation threshold. Mechanical 
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reinforcement data have been redrawn with reference to the effective mechanical modulus 

of the reinforcing phase, E , according to the following equation: 

composite matrix

η matrix

tubes

E -E
E = -E

 

For all filler typologies the effective filler modulus, is a monotonic decreasing function 

of the content. E  is characterised by two limiting behaviours, both aspect ratio dependent, 

whose transition region coincides with the development of the network of the nanotubes 

within the matrix. Well below the percolation threshold, the carbon nanotubes contribute 

to the composites stiffness with highest , with effective modulus that varies with the 

aspect ratio, whereas the effective dramatically decreases as the filler content increases.  

 

 

Figure 6- 43: Effective reinforcement modulus, E , as a function of normalised volume content of 
nanotubes for the different aspect ratios fillers. 

 

To predict the material properties of multiscale composites, a three step micromechanics 

would be used. First mechanical properties of the nano-composite is evaluated, then the 

classical micromechanics for long fiber composites lead to the final properties of the hybrid 

lamina. In the following table the prediction for the mechanical properties of the 1%wt 

composite have reported. 

 

Table 6- 3:Multi-scale composite properties for 1%wt plate 
  Dry preform MWNT+RTM6 @ RT Composite 

Preform 
volume 
content 

0.60  

E 231.0 GPa E 2.89 GPa E1 139.8 GPa 
vf 0.30  vr 0.38  E2 7.09 GPa 
ρf 1790 kg/m3 ρr 1140 Kg/m3 v12 0.33  
G 88.85 GPa G 1.05  G12 2.57 GPa 

       ρ 1530 Kg/m3 
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Figure 6- 44: Damping test for unidirectional hybrid multi scale unidirectional composite. 

 

Figure 6- 44 reports the comparison for the averaged loss factor for the baseline and the 

1% nano-loaded unidirectional composites over the temperature of test. 

In the range of interest for aeronautical application ( from -20 °C to -40 °C) the use of 

nanoloading lead to a strong increment in dissipative material property, in fact in this range 

there is a gain of 30%, moreover the use of a filler as carbon nanotubes, capable to 

increment the elastic modulus, allows to acquire a neat increment of damping performance 

without loss in mechanical performances of the overall strucuture.  
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7  

Hybrid composite Stiffened Plate  

 

7.1 Summary 

Among the hybrid architectures examined in the course of this study the more promising 

which is, at same time, capable of enhancing the damping response of a composite 

structure and withstand its mechanical performances, has resulted the ―multiscale‖ 

laminate. 

A multiscale laminate is a fiber reinforced polymer modified with CNTs, is indicated as 

―multiscale‖ as they are reinforced with microscale fibres and nanoscale nanotubes. High 

energy sonication has been widely used to disperse the CNT load in the resin before the 

infusion, however more recently calendaring has gained popularity as a means to disperse 

CNTs due to its efficiency and scalability which make it the suitable for high volume and 

high rate production. 

This chapter addressed  the design and the manufacturing of typical composite structures 

for aeronautical application. A stiffened composite plate is manufactured by using VARTM 

process and acoustical tests performed; large scale panel was also manufactured to 

mechanical characterize the hybrid laminate.   
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7.2 Manufacturing and testing of multi-scale plane plate 

In chapter VI, the comparison of the obtained experimental data between the considered 

hybrid material architectures has indicate as most valuable configuration the hybrid 

multiscale system. In fact, at low temperatures range (-50 °C to 0°C), which are typical  

cruise condition for a commercial aircraft, this architecture warrants an improvement for 

damping features, without loss in mechanical performances. 

In chapter VI only the material performance at coupons level and unidirectional layup has 

been examined. In order to verify if the proposed solution maintains its special features at 

component level Angle ply composites were manufactured and statically tested. This 

chapter present the experimental results obtained on hybrid ―multiscale‖ angle ply 

composite specimens. 

 

7.2.1 Material architecture 

According to the study performed on carbon nanotube effects on damping performances it 

has been resulted that nanocomposites loaded with low aspect ratio filler can improve their 

passive damping feature, therefore confirming the numerical study presented in chapter V. 

Furthermore, the CNT characterised by aspect ratio of 50 (nominal property are reported 

in Table 7- 1)  determine  an improvement of the overall material damping.  

 

Table 7- 1: Properties of CNTs used 

Aldrich – 659258 

 Min Max Average 

L  [μm] 5.0 9.0 7.0 

D [nm] 170 110 140 

L/D 29.4 81.8 50 

ρ [g/mL] 1.7 

 

The study on nanocomposites based on the multiwalled carbon nanotubes Aldrich 659258 

reveals a stepwise behaviour for this typology of hybrid material. For loading below the 1% 

weight, the effects on tanδ is negligible, while, at concentration above this limit, a 

remarkable increment of about 35% was experienced. It was also noted that an increase in 

nanotubes content into the liquid resin will dramatically arise the viscosity affecting its 

potential usage for the infusion processes. 

To strike a compromise between the requirement of improving material damping and the 

necessity of keep low the system viscosity, nanotubes content was fixed at 1% weight, as 
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this percentage could represent an optimal balance between the passive damping 

enhancement of the system, along with an increment in elastic modulus too, and the system 

viscosity at a level suitable for the liquid infusion technology. Figure 7- 1 shows the 

viscosity behaviour of the nanoloaded system for effect of increasing temperature, the 

system reaches it minimum viscosity at the temperature of 120°C, and gelation 

phenomenon starts at 160°C after few minutes.  

 

 

Figure 7- 1: Complex viscosity measurement for the 1% CNTs+ RTM6 system. The isothermal 
measure at the infusion temperature of 90°C shows the increment of the system viscosity  

 

The manufacturing process of multiscale composites is divided in two separated processes; 

first, the amount of needed carbon nanotubes is dispersed into the resin according to the 

process described in the chapter VI, then the composite plate is fabricated by VARTM 

process. Although the minimum value for system viscosity at 120°C, the resin infusion 

temperature was set to 90°C, rationale for this choose is that at 120°C resin system could 

start its cure if the infusion time is elevated, this solution was used taking into account the 

possible stage of infusing a bigger sized component, in addition the high volume of resin 

could create a mass effect on the system making difficult the control on the resin 

temperature during the infusion. 

For mechanical characterization two composite plate were manufactured, one used as 

baseline has been infused with pristine RTM6 and the second with the nanoloaded resin.  

Figure 7- 2 shows the main phases of the manufacturing process. Firstly the reinforcement 

preforms are stacked upon the preheated tool, a), including the peel ply and  b), the 

distribution, package then the vacuum bag is tightened by vacuum application c). Later the 

resin system is infused and the plate is cured 1 hour at 160°C, the plates were subject to a 

post-curing phase of 2 hours at 180°C. 
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Figure 7- 2: Vacuum bag preparation. a) the reinforcement preform is stacked upon the tool, b) 
pellply application, c) vacuum bag application, d) the plate after the curing process 

 

The two manufactured laminate plate are described in the Table 7- 2; laminates stacking 

sequence was defined so that the final composite would be symmetric and balanced. Since 

this material would be used for the final component and knowing how laminate lay-out 

influences the passive damping behaviour, the stacking sequence is chosen with central 

layers oriented at 45°, solution that increment the interlaminar stresses and consequently 

the material damping, the laminate stacking sequence is set to be (0/45/90/-45)sym, the 

dimension of the final plane plates was defined so that from each plate, 5 differents 

specimens for each type of mechanical test could be available. 

 

Table 7- 2: Manufactured hybrid plates 

  Size Lay-up Preform Resin system 
Reference 

Plate 
740x630 mm [0/45/90/-45]s HTA-G1157 Hexcel RTM6 

Multiscale 

Composite 
740x630 mm [0/45/90/-45]s HTA-G1157 

Hexcel RTM6    

+1% MWCNT 
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From manufactured plates were cut five typology of specimens to be used for each 

mechanical test configuration Figure 7- 3.  

 

 

Figure 7- 3: Specimens for mechanical testing 

 

The integrity of specimens cut from the manufactured plate to performed the mechanical 

tests was verified by the ultrasonic NDT technique; in fact in some cases the cutting phase 

could introduce delamination within specimens. Figure 7- 4 shows two images from 

ultrasonic scanner; figure 7-4 a)  represents an image of the plate made by neat resin, the 

ultrasonic investigation confirms that plates are uniformly in thickness and the global 

integrity of material is preserved, even if there are small delaminations at plate edges. 

 

 

Figure 7- 4: Ultrasonic analysis of coupons before testing. a) scanning on the fiber reinforced plate 
manufactured as baseline in testing, b) scanning on the multiscale fiber reinforced plate 
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Figure 7- 4 b) reports the ultrasonic scan for the multiscale composite, also in this case the 

plate integrity is confirmed, however some gaps were detected on the right side of the 

plate. The hybrid plates presents some delaminations at the edges as well as detected for 

the baseline plate. In addition to samples needed for mechanical test, two plates for the 

damping analysis have been prepared in the dimension of 200mm x 600mm corresponding 

to free space from stringers for the final stiffened plate. 

 

7.2.2 Mechanical testing 

In this paragraph mechanical test for the hybrid composites described in the previous 

section are reported. Mechanical tests were defined in order to have a complete mechanical 

characterization of the material and to investigate the effect of carbon nanotubes dispersed 

into the resin system. For a complete mechanical description of a composite material the 

tensile, the compression and the bending behaviour are requested, in addition the 

interlaminar strength feature is examined.  

All the test have been performed with the Instron  8800 system, with load cells of 100 kN 

(for tensile and compression tests) and 10 kN (for bending tests), for each test fixtures 

requested for the corresponding standard have been employed [27]-[30]. 

 

 

Figure 7- 5: Mechanical test set-up. a) Short beam test fixture (SBS), b) Un-notched tensile fixture 
(UNT), c) Uniaxial compression fixture (CLC), d) Four point bending fixture (FPB).  

 



144 
 

In, Figure 7- 6, mechanical test results have been reported comparing the two different 

neat and nanoloaded matrix. The presence of carbon nanotubes in the matrix does not 

influence the mechanical performance in term of elastic modulus, in fact tensile modulus 

and bending modulus for both configuration are quite similar taking into account standard 

deviation. 

 

 

Figure 7- 6: Mechanical test results. Loading the matrix by carbon nanotubes does not modify 
sensibly the mechanical properties of the laminate, only tensile and interlaminar strength decreases.  

 

As well as the elastic modulus flexure strength and the compression strength are 

comparable, in the case of four point bending the standard deviation for the measure of the 

multiscale composite includes the value measured for ―neat‖ composite, moreover the 

deviation from average value is greater than neat measure; analogues considerations could 

be drawn for the compression strength. 

Instead, the effects of nanotubes is evident on the tensile strength feature were the material 

loss over the 20% of its strength. Another critical performance is the interlaminar shear 

strength which is decreased by the nanotubes introduction, in that case besides the loss in 

the mechanical performace of the material, there a change in the failure mode: the ―neat‖ 

composite fails in flexure, the internal fiber breaks in compression mode, whereas the 

―multiscale‖ composite fails due to the inelastic deformation. 
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7.3 Design and Manufacturing of  Stiffened plate 

Aim of this chapter is to verify the feasibility on large scale component for the optimal 

defined material architecture. The technology chosen for the fabrication remains the 

VARTM process thanks to its adaptability on possible geometries and, as mentioned 

before, the capability to process easily the hybrid material. In fact by VARTM it is possible 

to infuse modified resin, i.e. pre-processed by the addition of carbon nanotubes, or to 

infuse an hybrid preform or preform including viscoelastic material sheet. 

In this paragraph, is reported the preliminary definition of a large scale composite 

component, and the manufacturing process. As mentioned in the previous paragraph the 

hybrid solution considered is the ―multiscale‖ composite which consists in a fiber 

reinforced composite with the epoxy matrix is filled by properly chosen carbon nanotubes. 

The defined solution allows to avoid  relevant modifies to manufacturing process, and the 

final composite has been verified to improve passive damping withstanding its mechanical 

performances. Paragraph 7.2 reports the mechanical characterization of a symmetric and 

balanced laminated , stacking sequence is (0/45/90/-45)sym, based upon this architecture 

where the matrix load is 1% of the overall resin weight, the addiction of such a small 

quantity of filler influences only the material strength and the interlaminar strength, 

whereas the elastic modulus does not changes. 

 

7.3.1 Large scale component specification 

The most important structural component of an aircraft, namely the wings, the fuselage 

and the empennage, based on stress analysis can be considered as a bending beam. In 

particular in the case of a modern fuselage a key structural component are the stiffened 

plates constituting a fuselage barrel. 

The simplest structural component valuable for aeronautical application undoubtedly is a 

stiffened plate, in fact its mechanical performance is primary for the structure, moreover 

this components has the further function of insulating the internal cabin from external 

noise and vibration. The basic large scale considered to verify if the material architecture 

respects all the requirements at the industrial scale is a stiffened plane plate. 

A plane plate was preferred since the most important structural properties is the bending 

strength which could be verified even on the plane structure, however the curved plate 

could be fabricated following the same process the only difference is the need of  a curved 
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tool. The primary design load for an integrally stiffened panel is the compression axial load 

[31]. For preliminary design purpose, the primary axial load could be used for panel sizing.  

Figure 7- 7 reports the stiffened plate specifications. The plate dimensions are 1370 mm x 

720 mm, the laminate stacking sequence is (0/45/90/-45)sym, each lamina consist of 

Hexcell G1157 dry preform with nominal thickness of 0.300 mm that is a laminate nominal 

final thickness of 2.40 mm. 

Five ―L-geometry‖ stiffeners have used for strengthen the plate, each stiffener has 

dimensions of 40mm x 40 mm with laminate stacking sequence of (0/45/0/90/-45)sym; 

an additive lamina oriented on the axial load direction is inserted to increment the overall 

buckling stiffness. 

 

 

Figure 7- 7: Composite stiffened plate specifications 

 

A preliminary prediction of the critical load could be execute by considering the equivalent 

isotropic solid to the composite shell, this value could not describe efficiently the 

mechanical behaviour of the composite plate but could indicate a first failure load 

qualitative estimation for the considered plate. 

The effective width of skin is the portion supported by a stringer in a skin-stringer 

construction that does not buckle when subject to axial compression load. The collapsing 

load for a stiffened plate could be evaluated as sum of the critical loads for each stiffeners 

 

Where Ac is the section of the stringers, c the effective width, t the plate thickness.  
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The critical stress for each stringer is evaluated by an iterative procedure where the 

effective width is guessed starting from the Von Karman expression 

 

at each interaction the critical Euler stress as buckling value for stringers, as measured the 

tensile modulus it is assumed as 45 GPa. The von Karman low requires as tension the limit 

of material linear behaviour, since composites have a linear behaviour until the failure as 

limiting stress is assumed 400 MPa. 

In the next step, effective width is evaluated according to the following formula: 

 

In the present case a compressive preliminary load of 17300 daN is expected, although this 

value it is an estimation of the first ply failure load and probably the panel could carry on a 

greater load, the stiffener section is incremented in order to sustain at least a load of 24000 

daN. The final dimension for stringer section was thus assumed to be 150 mm x 40 mm.  

It may be remarked that this is only a preliminary evaluation of the compression load in 

fact composites mechanical behaviour depends on interlaminar stresses distribution the 

axial load could be non separated by the shear effects within material. Furthermore the 

analysis of a bending stiffened plate could be led following the same principles but the 

compressed section could be separated from section under axial tensile load. 

 

7.3.2 Manufacturing 

A three step manufacturing procedure was followed for manufacturing the hybrid stiffened 

composite plate. First the required amount of carbon nanotubes are dispersed within the 

hosting Hexcell RTM6 resin. The dry preforms cut according to material lay-out are 

stacked upon the preheated tool and infused. At the end stringers are bonded to the 

structure. The Figure 7- 8 shows the tool in its components, a stringer is manufactured 

monolithically whit the base panel. 

A critical factor for the infusion process is the temperature control, in fact both the resin 

progress within the preform and the curing phase are dependent on the tool temperature, 

as viscosity changes in reason of the temperature which the resin system is hold, Figure 7- 

1. The tool is heated by a series of electrical resistances automatically controlled by an 
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homemade system, the system consists in a series of solid state power relays and modular 

controllers colligated to a computer which aid to monitoring the tool status,  Figure 7- 9 a). 

Figure 7- 9 b) shows the disposition of thermocouples upon the tool, red highlighted 

marker indicates the sensor mounted on the tool, which have a drive function in the 

system, the green highlighted marker indicate sensor measuring the system temperature 

positioned above the vacuum bag. 

 

 

Figure 7- 8: Tool parts assembly 

 

 

 

Figure 7- 9: Tool control system. a) A series of electrical resistances control the temperature,   
b)Thermocouples “J”  monitor the tool temperature during the infusion process. 

 

Figure 7- 10 illustrates the manufacturing phase for the second step of the process. The dry 

preforms are stacked upon the tool, a), the vacuum bag is and air vent arranged, b), then 

the nanoloaded resin is infused in the preform, c), and after the curing cycle the plate is 

demoulded, d). According to resin supplier instructions the curing cycle is in two step , the 

cure 1,30 hours at 160°C and the post-cure 2 hours at 180°C.    
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Figure 7- 10: Manufacturing of the hybrid stiffened plate. a) stacking of the preform upon the tool, b) 
vacuum bag, c) resin progression within bag, d) final composite.  

 

The base plate was fabricated with only one stiffener monolithic with the panels, other 

stiffener were manufactured on angular tool, as shown by the Figure 7- 11. 

 

 

Figure 7- 11: Stringers manufacturing. a) Stacking of the preform, b) Vacuum bag  

  

The stringers and the composite plate, finally, were bonded by the epoxy adhesive 

ARALDITE® 2011, under a negative pressure (-0.6 bar) applied by a vacuum bag and 

cured at room temperature for 24 hours.  
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Two composite plates have fabricated, one where the matrix is the neat RTM6 as baseline 

for testing, and another with nanoloaded resin as final sample. 

The followings figures 7-12 and 7-13 shows the final plates, non hybrid and hybrid 

multiscale respectively. 

 

 

Figure 7- 12: Final stiffened composite plate- baseline plate 

 

 

 

Figure 7- 13: Final multiscale composite plate 
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7.4 Conclusions 

The work described in this chapter relates to the scaling up technology for an industrial 

application of the study conducted on the damping properties of composites. 

For  verifying the feasibility of the hybridization technology proposed a simple but realistic 

component was chosen as prototype. Stiffened plate represents the base element for the 

main aeronautical components, as well as the wings, the fuselage ant the empennage. 

Since in most cases load condition is dominated by the compression phenomenon the 

sizing load for a stiffened plates is the axial compression. 

The study addressed to examine the design according to an approach bottom-up, starting 

from each composite material constituents until the final laminate predicting its engineering 

constants, the final composite structure could be examined. Parallel to the static behaviour 

the damping behaviour of the composite material was studied, and the damping constant 

for each dimensional scales were identified.  

The final design proposed tool allows a multidisciplinary analysis for hybrid materials 

which include special damping features. 

Experimentally after the efficiency in damping enhancement due to the dispersion of 

carbon nanotubes in the resin system has been verified, the concept was applied to larger 

scale structures. Knowing that laminate passive damping is function of the material 

stacking sequence, in particular the lay-out arrangement could promote the raise of 

interlaminar stresses in bending structures improving the laminate damping. Before the 

design of a structural component, a plate with the selected architecture was manufactured 

and mechanically testes, in addition samples for further damping characterization were 

manufacturing. 

Verified that the pre-process of the resin does not compromise the mechanical behaviour 

of the composite material, a simple composite structure was designed, the mechanical 

requirement to be satisfied is the capability to sustain at least 24000 daN typical 

compressive load for a stiffened plate for a commercial aircraft for long range missions. 

The proper sizing of the component accounting for damage tolerance and post-buckling 

behaviour is beyond the aim of this study, so a preliminary sizing was done considering the 

equivalent material to the laminate by the engineering constants and the concept of 

effective width. The stringer geometry was chosen according to the simplicity of the tool 

because the aim is to prove the scaling up feasibility of the process, the final geometry is 

angular wide 150 mm and pitch of 40 mm. 
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Figure 7- 14: Multilevel composite structure 

 

The figure 7-14 shows the trough the scale approach followed in the design of the final 

structure. Furthermore for each dimensional level has theoretical study with the aim of 

individuate or formulate where is not already available in literature, i.e. damping of carbon 

nanotubes, was conducted.  

The proposed approach allows to cover both the requirement path, from final structure to 

material properties, and the multiscale design path, starting from constituents to the final 

composite structure. In addition the analysis could be entered at each intermediate level for 

propose other material features to take into account. 

As future work acoustical test and buckling on the composite stiffened plate would be 

execute and the final correlation of data.  
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8  

Conclusions 

 

8.1 Final discussion 

The current design technique is characterised by a sequential methodology, where structure 

optimization is primarily done with respect to the stiffness and the strength. The fulfilment 

of relevant functional requirements such as the thermal and the acoustical insulation is later 

addressed with weight penalties for the structure. Current state of the art of damping 

treatments uses viscoelastic polymer-based damping tapes, bonded externally to the 

vibrating structure, however these techniques incur significant weight and volume penalty. 

An alternative to externally bonded damping tapes can be to engineer the damping 

properties into the material, a promising composite architecture embed a layer of 

viscoelastic material within the laminate. This research focused on the study of hybrid 

composite architectures able to enhance the material dissipative behaviour, nevertheless 

material may maintain its structural function. 

The design of a typical aeronautical structure, such as a stiffened composite plate, 

represents a multi-disciplinary problem. The key features which a stiffness plate has to obey 

are the primary structural function, the vibroacoustic and the thermal requirements. 

In this dissertation a study about the optimal material architecture has carried out 

accounting as design variables the damping and mechanical performances. 

Through the study of damping mechanism at each dimensional scale three hybrid 

configuration were considered for improve the laminate damping, analytical study, 

confirmed by the experimental activities, identify as the most promising the pre-processing 

of composite hosting matrix by embedding low aspect ratio carbon nanotubes. 
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8.2 Contributions  

In this dissertation the analysis of passive damping of composite materials were examined 

accounting the multiscale behaviour of composite structure. The work covered two main 

aspects. The numerical description of damping mechanism for composite materials by a 

―through-the-scale‖ analysis allows to propose hybrid architecture able to improve 

damping performance of the final composite. Experimentally the proposed architecture 

were manufactured and tested. 

 

 The passive damping behaviour for a composite material was studied at each 

characteristic dimensional scale, in particular the homogenization of the composite 

properties was obtained through the definition of constitutive matrices describing 

the elastic and dissipative material  behaviour, a composite laminate could be 

decomposed in its sub-components, the layers, and finally in their constituents, 

reinforcing fibres and hosting matrix. 

 A hierarchical procedure for the evaluation of a multiscale hybrid  composite is 

proposed. Starting from the lowest scale the hosting matrix filled by nanoloadings, 

the hybridization process raise up by means of the homogenised matrices at each 

level.  

 An analytical design tool is proposed for the analysis of multi-functional materials 

that integrates high damping performances. The final damping of the examined 

structure will depends not only on the composite material architecture but even on 

the boundary condition influencing the energy component allocation within the 

structure. 

 Composite material could be describe by its equivalent material by the engineering 

constant calculation, in line with this practise the equivalent dissipative material 

constants could be calculated, in particular by applying to simple structural 

elements boundary condition which induce only one energy component, the 

predicted loss factor is the damping constants associated to this component of 

equivalent material. 

 The manufacturing technology selected for the experimental analysis is the Vacuum 

Assisted Resin Transfer Moulding, such as manufacturing process allows the 

fabrication of samples which components could be pre-processed before the 

infusion. 
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 Interleaved composites were manufactured by embedding Mobilon® sheets as a 

layer within the laminate, the passive damping is strongly improved, however the 

mechanical performance exhibits a great decrease. 

 The manufacturing of hybrid preform was performed by a standard loom, 

viscoelastic fibres were arranged along carbon tow in the weaving creel. Two hybrid 

preform were manufactured, containing 5%vol and 10%vol. Composites 

manufactured with this preforms showed an enhancement on passive damping 

performance, but a detrimental effect was measured on the mechanical 

performances. 

 The manufacturing of multiscale composites introduce a number of research item, 

first the state of dispersion of nano-filler within the hosting matrix, the definition 

of the filler content, the filler aspect ratio and the feasibility of the infusion process. 

The most efficient technique for the dispersion of carbon nanotubes is the 

ultrasonication. A sonication procedure, accounting the viscosity and curing 

behaviour of the epoxy system used, was developed. 

 A study on the behaviour of carbon nanotubes based nanocomposites was 

conducted with the aim of understand the mechanical and dissipative behaviour of 

certain nanocomposites. The most important property identified for the optimal 

dispersion state within the hosting system is that filler would not exceed a physical 

threshold indicated as statistical percolation, above this content fillers tend to 

clustering then mechanical and dissipative features of the system decrement. In 

addition the filler aspect ratio (AR), apart from influencing on the statistical 

threshold, affects the damping performance, in fact filler choice could be tailored in 

function of the aspect ratio since high ARs promote mechanical enhancement 

while low AR enhance damping.  

 Unidirectional ―multiscale‖ composites exhibits the best performances, in fact in 

any case a decrement in mechanical performances was measured, moreover 

damping test for this composites indicated an increment in loss factor of about 

40% at the interesting temperature for aeronautical applications. 

 

The most promising architecture from tested was the multiscale composite material, 

which was selected for the manufacturing of the stiffened plate. This  solution appears 

extremely suitable for industrial large scale application. 
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The stiffened plate was assumed plane, in fact the curvature would not add difficult to 

the argument, but requires only a more complex tool beyond the aim of this study. 

In addition a plane plate of the composite employed was manufactured for mechanical 

characterization. Mechanical tests confirmed that the hybridization process of the 

composite does not decrease mechanical features. For a complete dynamic and 

acoustical characterization coupons for damping and transmission loss tests were 

manufactured. 

Finally the stiffened plate will be acoustically tested and its buckling load will be 

measured. For baseline in the experimental analysis a stiffened plate without nanofiller 

was manufactured.  

 

8.3 Future Work 

As described in previous sections, both experimental and computational efforts have 

been presented in the dissertation research. However, limited by the current 

manufacturing challenge and modelling challenges, there are still some limitations for 

the research. 

 

 The mechanical behaviour of nanocomposites is based on short fiber 

modelling, but this kind of filler required more dedicated numerical tool. The 

carbon nanotubes have dimension comparable with the epoxy chain in the 

resin, in addition the re-aggregation above statistical threshold is a phenomenon 

not clearly defined. 

 Although the ultrasonication is the better dispersion technique, its application is 

appropriate only for laboratory application. For large scale composite 

manufacturing needing higher resin volumes a more suitable dispersion 

technique may be individuated. A solution that is gaining popularity is the 

calendering process, in this the nanofiller is dispersed within the laminate by 

high shear rates induced by rotating cylinders. 

 The developed tool integrate only the mechanical analysis of composite 

materials in linear regime and the damping analysis, the introduction of more 

analytical tool, such as the fracture analysis,  would improve the 

multidisciplinary analysis of final composites component 
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