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Preface

This  PhD thesis  is  part  of  a  general  research  project  focused  on  the  realization  of 

bioactive biomaterials and led by Prof. P.A. Netti. It is organized into an introduction, 

two chapters describing the state of the art,  three chapters describing the performed 

experiments  and  discussing  the  obtained  results,  and  a  final  chapter  with  the  main 

conclusions of the research.  The two chapters  on the state  of the art  (1 and 2),  are 

focused on bioactive biomaterials and gene activated biomaterials, respectively. Each of 

the following three chapters (3 trough 5) is relative to one scientific article about the 

experiments carried out to realize 3D gene activated biomaterials able to recruit external 

cells, and transfect them once internalized. The article which chapter 3 refers is “Cell 

Recruitment  and Transfection  in Gene Activated Collagen Matrices” by Silvia  Orsi, 

Antonia De Capua, Daniela Guarnieri, Daniela Marasco, and Paolo A Netti, published 

in Biomaterials 2010 (Epub 2009) 31(3) 570-576. Chapter 4 includes the article “Design 

of novel 3-D gene activated PEG scaffolds with ordered pore structure” by Silvia Orsi, 

Daniela Guarnieri and Paolo A. Netti, submitted for publication to Journal for Material 

Science Materials in Medicine, and presently under revision. In chapter 5 is reported the 

article “Gene activated PEG matrices designed to direct cell migration” by Silvia Orsi, 

Daniela  Guarnieri,  Antonia  De  Capua  and  Paolo  A.  Netti,  to  be  submitted  for 

publication.

The  work  carried  out  within  the  PhD  program  has  benefited  from the  skilled 

collaboration  of  biologists  and  chemists  of  the  CRIB  (Centro  di  Ricerca 

Interdipartimentale sui Biomateriali dell’Università di Napoli Federico II), as well as 

from the thorough and bright supervision of Professor P.A. Netti.
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Chapter 1

1.1 Introduction

Intelligent  biomaterials  able  to  induce  controlled  mechanism of  action  and reaction 

within the physiological environment are becoming more and more potentially powerful 

tools  in  drug  and  gene  delivery,  diagnostics,  and  tissue  engineering  [1].  Different 

approaches  have  been  proposed  to  generate  intelligent  biomaterials.  Among  these 

approaches, those based on biological solutions have recently attracted the interest of an 

increasingly number of researchers [2]. These researchers have developed biomaterials 

that  can  provide  a  range  of  biological  signals,  or  a  combination  of  them,  in  an 

homogeneous or spatial-temporal orchestrated manner, in order to control and stimulate 

the biological microenvironment (bioactive biomaterials) [3].

Incorporation  of  DNA in  biomaterials,  as  biological  signal,  [4]  is  one  of  the  most 

promising  methods  among  those  proposed  to  bioactivate  biomaterials.  As  genes 

naturally  carry  on  specific  instructions  for  cells  on  how  to  work,  it  derives  that 

modification  of  their  genetic  DNA  is  a  powerful  approach  for  affecting  their  fate. 

Transfer of genes encoding for proteins involved in specific cellular processes, suitably 

isolated and modified (gene transfer) is a promising technology with many therapeutic 

and  research  applications  such  as  gene  therapy,  tissue  engineering,  and  functional 

genomics [5]. The success of the in vivo application of gene transfer is limited by both 

extracellular and intracellular barriers. Extracellular barriers include stability, transport 

and cellular  association,  while the intracellular  barriers are related to internalization, 

endosomal  escape,  cytoplasmic  transport  and  stability,  and  nuclear  localization  [6]. 

With the final aim of overcoming the barriers, many attempts have been performed in 

order  to develop  both viral  and non viral  vectors  for gene transfer.  A step forward 

relatively to traditional delivery systems can be achieved by integrating gene vectors 

2



Chapter 1

into  biomaterials.  Gene  transfer  from  biomaterial  can  protect  gene  vectors  against 

extracellular  barriers  by both protecting them from attack by immune response,  and 

limiting degradation by serum nuclease or protease [7]. Moreover, gene transfer from 

biomaterials has the potential to maintain effective vector concentration for prolonged 

times,  which  extends  the  opportunity  for  cellular  internalization,  and  increases  the 

likelihood  of  gene  transfer.  In  addition  it  enhances  localized  gene  expression  [8], 

improving  the  application  of  gene  transfer  to  many  biomedical  applications.  Gene 

transfer from most biomaterial systems likely occurs through a combination of vector 

interactions, with the vector and material designed to regulate these interactions. Gene 

transfer  from biomaterials  with  physically  entrapped  or  chemical  immobilized  gene 

vectors,  can  result  in  significantly  different  transfection  profiles,  suggesting  unique 

opportunities for each of them in various biomedical applications [9]. Biomaterials with 

dispersed vectors have the capacity to deliver large quantities of vector with transgene 

expression correlating to the dose of DNA delivered [4, 10]. In such a case, release 

occurs trough biomaterial degradation or vector diffusion, or a combination of them. On 

the  contrary,  immobilization  of  vectors  to  biomaterial  prevents  the  aggregation  of 

vectors and places the vector directly into cellular microenvironment, mimicking the 

natural process of virus binding to extracellular matrix proteins [11, 12].

While  in  traditional  gene  delivery  the  gene  vectors  locate  the  target  cells,  in  gene 

transfer from biomaterials, the cells locate the vectors following their migration into the 

biomaterial.  The  ability  to  direct  cell  migration  towards  vectors  within  or  upon  a 

biomaterial, could be useful for improving cell transfection, because migration may help 

cells to find vectors. To control and guide cell migration, current approaches imply the 

formation  of  time/space  controlled  gradients  of  attracting  signals  [13-15].  In  this 

context,  researchers  are  moving  towards  the  identification  of  techniques  to  prepare 
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biomaterial  with assigned gradients  of biomacromolecular  signals  able  to guide cell 

migration into biomaterials [13-19]. The importance of signal gradients in dictating the 

characteristics of cell migration, in terms of speed and directionality of cell motion, has 

been recently highlighted and the possibility to control cell fate has been stressed [20-

23]. 

Aim  of  the  research  object  of  this  PhD  thesis  is  designing  and  manufacturing 

biomaterials able to both guide cell migration and mediate gene transfer. To do so the 

potency of gene activated biomaterials has been investigated. Furthermore, this strategy 

has been implemented in order to achieve a control of gene expression, as well as a 

specific cell  recruitment, mostly through the design and construction of different 3D 

gene activated matrix systems. 

The first part of the research has been devoted to realization of a 3D DNA bioactivated 

collagen  matrix  by Poly  (ethylenimine)  (PEI)/DNA (encoding  for  green  fluorescent 

protein  GFP)  complex  immobilisation  in  the  matrix  through  biotin/avidin  bond. 

Moreover, a serum based chemotactic gradient within the matrix has been realised in 

order to directionally attract NIH3T3 cells. In this system, cells are recruited and forced 

to migrate through the matrix, where they find the bound PEI/DNA  complexes and are 

transfected. 3D cell migration and cell transfection have been monitored through time-

lapse videomicroscopy and fluorescence microscopy.  Cell  transfection has also been 

quantified through FACS analysis. The obtained results show that the engineered matrix 

is able to recruit external cells and transfect them once internalised. 

In  the  second  part  of  the  research,  a  DNA bioactivated  high  porous  poly(ethylene 

glycol) (PEG) matrix by Polyethylenimine (PEI)/DNA (encoding for GFP) complexes 

adsorption  has  been  realized.  As  the  design  of  the  microarchitectural  features  of  a 

matrix also contributes to promote and influence cell fate, the inner structure of gene 
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activated  PEG hydrogels  has been appropriately  designed by gelatine  microparticles 

templating.  Furthermore,  the  microarchitectural  properties  of  the  matrix  has  been 

analysed by scanning electron microscopy, and 3D cell migration and transfection has 

been  monitored  through  time-lapse  videomicroscopy  and  confocal  laser  scanning 

microscopy.

Based upon the results of the performed experiments, the last part of the research has 

been devoted to the realization of 3D DNA bioactivated PEG porous matrix by PEG-

PEI/DNA (encoding for GFP) complex immobilization. Moreover, in order to spatially 

guide the cell movement a gradient of the adhesive RGD peptides has been realized 

inside the matrix. The efficiency of this system is under evaluation in respect to its cell 

recruitment (effect of RGD gradient on cell migration) and cell transfection (expression 

of GFP) capability in relation to DNA immobilization into the matrix.

The results of the research carried out have provided the feasibility of preparing gene 

activated matrices using different both materials and approaches. In particular they have 

highlighted  the  suitability  of  (i)  using  natural-based  (Collagen)  as  well  as  synthetic 

(PEG) materials, (ii) introducing DNA into the matrix by adsorption and (covalent or 

non)  immobilization  of  the  gene  vectors,  and  (iii)  influencing  cell  migration  by 

microarchitectural matrix features or biomacromolecular signals gradients.

On the whole the obtained results show that the realized DNA bioactivated matrices can 

be used to recruit external cells and transfect them once internalized, and therefore they 

are useful tools in many biomedical applications.
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Chapter 2

2.1 Introduction

Achievement  of  any  advance  in  medical  treatment of  a  large  variety  of 

pathophysiological conditions, requires the development of new therapeutic agents, as 

well as their combination with biomaterials that can serve as sensors and carriers [1-4]. 

Design of intelligent biomaterials able to sense and respond, is a promising path to be 

followed  for  development  of  better  diagnostic  and  therapeutic  medical  systems. 

Furthermore,  biomaterial-based  tissue  regeneration  scaffolds,  biosensors,  and  drug 

delivery  devices,  provide  new  opportunities  to  mimic  the  natural  intelligence  and 

response of biological systems [5-8].

Different approaches have been proposed to generate intelligent  biomaterials  able to 

induce  controlled  mechanisms  of  action  and  reaction  within  the  physiological 

environment, and finally to stimulate specific cellular responses at molecular level, and 

recognize external biological stimuli [8]. To  reach this goal an increasing number of 

researches are carried out with the aim of finding physics-derived solutions such as 

development  of  methods  for  fabricating  polymeric  particles  with variable  controlled 

parameters  (i.e.  shape  [9-11],  mechanical  properties  [12,  13],  surface  topology  and 

compartmentalization  [14]).  Conversely  biological-derived  solutions  (bioactive 

biomaterials) have also been proposed. These solutions are based on development of 

materials that can provide, in homogeneous or spatial-temporal orchestrated manner a 

range or a combination of biological signals able to control and stimulate the biological 

microenvironment around them [15]. Biomaterials are designed as a drug, and the set up 

of a drug starts from the biological recognition of the process to control. Therefore, the 

10



Chapter 2

design of a biomaterial has to be based on the individualization of the function that it 

has to induce, relatively to the specific application.

Biological  activation  of  materials  can  take  several  forms such  as  incorporation  of 

adhesion  factors,  incorporation  of  growth  factors,  incorporation  of  enzymatic 

recognition sites and incorporation of DNA, here briefly summarized and described in 

more details in the following section. Incorporation of biomimetic adhesion sites is used 

to promote cell adhesion and migration on or within bioactive materials. The optimal 

density  and  spatial  distribution  of  ligands  upon  or  within  bioactive  materials  are 

important factors to consider when designing biomimetic materials. The selection of the 

types of cells adhering to a material and their spatial distribution can also be controlled 

through  the  selection  of  the  adhesion  sites  that  are  incorporated  into  a  bioactive 

material.  Incorporation  of  growth  factors  is  used  because  these  factors,  biologically 

active proteins, act in highly specific manner and can enhance cell survival, promote 

cell  proliferation,  or  control  cellular  phenotype.  Their  release  can  occur  through  a 

number  of  mechanisms,  including  diffusion-based  or  cell-triggered  release,  or 

degradation of the material. An important feature for functional biomaterials, on which 

is based another approach is that active material enzymatic remodelling can occur in 

presence of cells. Material remodelling can be designed to occur in response to specific 

enzymes produced by the cells. Incorporation of DNA into biomaterials can enhance 

plasmid DNA uptake and subsequent protein expression of genes encoded within the 

plasmid. It provides the potential for long-term delivery of bioactive signals. The use of 

plasmid  DNA to generate  therapeutic  proteins  within a host  tissue,  provides several 

advantages  over  traditional  protein-based  approaches.  An  ideal  DNA  therapeutic 

approach would limit the number of doses necessary to achieve long term effects. From 

a commercialization viewpoint, plasmid DNA manufacturing is simpler and more cost-
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effective  than  recombinant  protein  production  [16].  While  DNA-based  therapeutics 

offer  promising  new modes  for  treating  disease,  efficient  systems  to  facilitate  gene 

transfer and sustain gene expression are critical to their success.

2.2 Selection of methods used for the bioactivation of biomaterials

2.2.1 Bioactivity by incorporation of adhesion factors

Biomaterials  can  be  endowed  with biological  activity  through  incorporation  of 

adhesion-promoting  oligopeptides,  if  needed  by  the  specific  application.  Cell 

recognition of traditional  biomaterials  (i.e.  polytetrafluoroethylene,  silicon rubber,  or 

polyethylene)  occurs  indirectly  in  vivo.  Proteins  from  body  fluids  adsorb 

nonspecifically onto the surfaces of these materials, and some of them (i.e. fibronecting, 

vitronectin, and fibrinogen) promote adhesion of cells via specific cell-surface adhesion 

receptors.  Direct  control  of  cell  adhesion  on biomaterials  can  be enhanced by both 

preventing nonspecific adhesion of proteins on the material surface and incorporating 

cell-type-specific adhesion-promoting peptides [17].

Incorporation  of  adhesion-promoting  peptides  into  biomaterial  surfaces  has  been 

extensively investigated.  These peptides are short  primary sequences taken from the 

receptor-binding domains  of adhesion proteins such as laminin and fibronectin.  The 

most commonly studied adhesion peptide is the tri-peptide sequence, RGD. Since the 

first description of the use of RGD-containing peptides to promote cell attachment [18], 

RGD has been used extensively to biologically activated surfaces and materials. Cell-

type selectivity is a common goal in therapeutic targeting and it may also represent an 

important goal in tissue engineering as well as in diagnosis.
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2.2.2 Bioactivity by incorporation of growth factors

Incorporation  of  growth  factors,  powerful  regulators  of  biological  functions,  is  an 

additional approach for biologically activate biomaterials. For this reason they are being 

explored as key components of biomaterials and biomaterial systems. Their biological 

activity depends upon their identity, and how their are presented to the cells in space 

and time. Some growth factors are more effective when provided to cells  through a 

controlled release process, whereas others are more effective when presented as bolus 

[19-21]. This difference in behaviour may be related to how the cells traffic and recycle 

their receptors for the growth factors. Trafficking and recycling may be modulated by 

altering  either  the  growth  factors,  or  their  interactions  with  a  biomaterial  that  is 

releasing or incorporating them [22-23]. 

Controlled release systems have been developed for growth factors, such as those based 

on traditional biomaterials for angiogenic growth factors delivery in vascular repair [24-

26] or for neuronal survival and differentiation factors delivery in neurodegenerative 

diseases [27]. Many of such growth factors bind heparin, as well as heparin sulphate 

proteoglycans in the extracellular matrix. To exploit this binding affinity, heparin was 

conjugated with several biomaterials used for different applications. This immobilised 

heparin served as an affinity site to bind and slowly release the growth factors in the 

target site [28].

2.2.3 Bioactivity by incorporation of enzymatic recognition sites

Incorporation of  growth  factors  or  DNA  into  a  biomaterial  addresses  the  topic  of 

transmitting biological information from a biomaterial to the neighbouring cells. On the 

other end it is possible to insert signals into a biomaterial able to receive the information 
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produced by cells. One such form of information is the enzymatic activity associated 

with the cell surface during cell migration. Cell migration through natural biomaterials 

involved in  the generation,  remodelling  and regeneration  of tissues,  depends mainly 

upon (i)  the  sensitivity  of  the  materials  to  proteases  produced by the  cells,  (ii)  the 

amount  of  enzyme  produced  by  the  cells,  and  (iii)  the  amount  of  materials  to  be 

remodelled by the cells as they migrate through them [29].

Variable  approaches  have  been  developed  to  engineer  biomaterials  that  can  be 

remodelled  by  cells  through  cell-associated  enzymatic  activity  [30].  Cells  naturally 

remodel the extracellular matrix in development, adaptation and healing, and materials 

subject to the remodelling activities of cell may enable exploitation of these biological 

activities in tissue engineering. A method for the chemical incorporation of bioactive 

signals  has  been  developed  for  fibrin,  a  natural  biomaterial  matrix  that  can  be 

remodelled proteolytically [29]. Exogenous peptides bear in one domain a substrate for 

the  transglutaminase  involved  in  coagulation,  factor  XIIIa,  and  are  thus  covalently 

conjugated to the fibrin network as it forms, incorporating the bioactive peptide within 

the gel. Another domain of the peptide bears a bioactive peptide, for example, with cell 

adhesion or growth factor binding activity [29]. Trough such a route, it is possible to 

incorporate  the  biological  activity  of  a  host  of  non-fibrin  proteins  (e.g.  laminin)  as 

synthetic components added into the platform of the biologically-derived fibrin gel.

Completely  synthetic  biomaterials,  proteolytically  degradable  and  comprising  other 

bioactive  components,  have  been  designed.  Gels  have  been  formed  based  on 

poly(ethylene glycol)  chains comprising central  oligopeptides,  that  are substrates for 

collagenase or plasmin, both involved in cell migration [30]. These water-soluble hybrid 

chains  may  than  be  coupled  at  their  termini  to  form three-dimensional,  completely 

synthetic  elastic  gels,  degradable  by  cell-associated  enzymatic  activity.  Additional 
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biological  activity  can  be  conferred  upon  proteolytically  remodable  gels  by 

copolymerisation  of  suitably  reactive  oligopeptides,  such  as  terminally  reactive 

poly(ethylene glycol) grafted with the adhesion peptide RGD. These approaches permit 

to  construct  totally  synthetic  materials,  but  with  many characteristics  of  the  natural 

extracellular  matrix.  Moreover  enzymatic  recognition  introduced  on  linkers  for  the 

binding of other biomacromulecular signals can be used to modulate the release on cell 

demand (only in presence of cells). 

2.2.4 Bioactivity by incorporation of DNA

Bioactivation by  DNA incorporation is only briefly summarized in this chapter, as it 

will the main topics of the Chapter 2 of this thesis.

Immobilization  of  DNA is  another  method  for  incorporating  biological  signals  into 

biomimetic materials. Typically, plasmid DNA is presented on or within a biomaterial 

to enhance the efficiency of its uptake, and limit the expression of the protein encoded 

for by the plasmid to the target tissue of interest [31-33]. DNA incorporation provides 

an additional degree of control in manipulating the cellular response during tissue repair 

and  regeneration.  DNA delivery  can  be  used  to  express  proteins  that  typically  act 

primarily as an extracellular component in a signalling cascade, such as growth factors. 

It can also be used for delivering proteins that act intracellularly, such as transcription 

factors. Release of DNA incorporated into the biomaterial and its uptake by cells can be 

regulated through modifications of the material.
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2.3 Bioactive signal gradients

Spatial patterning of biological signals is a field of growing interest. Several of these 

bioactive factors are well  characterized for different biomedical applications  and are 

known to  induce  concentration-dependent  cell  type–specific  responses.  Furthermore, 

they  usually  work  in  a  synchronized  manner  with  other  similar  factors  under 

physiological  conditions.  While  these  factors  are  traditionally  homogeneously 

delivered,  both  temporal  and  spatial  control  over  their  delivery  is  an  important 

requirement for biomedical applications.

Continuous  gradients  of  chemical  signals  are  a  form  of  spatially  patterned  signals 

successfully developed and employed in variable field, such as probing directed axonal 

regeneration  [34-41],  nerve  regeneration  [42],  controlled  cellular  migration,  and 

localization and/or alignment involving fibroblasts, endothelial cells, Chinese hamster 

ovary  cells,  vascular  smooth  muscle  cells,  leukocytes,  and neutrophils  [43-56].  The 

chemical signal gradients, in their soluble or immobilized forms induce specific cellular 

responses, which may include controlled cellular migration (chemotaxis or haptotaxis, 

respectively), usually in the direction of increasing concentration/surface density of the 

chemical  signal.  A positive effect  on directed axonal  growth has been demonstrated 

under  the  influence  of  various  chemical  signal  gradients,  including  gradients  of 

IKVAV-containing peptide [57], laminin [34-36], nerve growth factor (NGF) [37-39], 

combined laminin and NGF [42], and combined NGF and neurotrophin-3 [38, 40].In 

such conditions neurite extensions were found to be superior in the presence of signal 

gradients compared to corresponding homogeneously delivered signals. Wound healing 

is another area of investigation. Controlled movement of fibroblasts takes place under 

the influence of chemotactic factors secreted by macrophages and platelets [58], and 
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represents a key area to explore the effect of various chemical signal gradients on the 

migratory behaviour of fibroblasts, leukocytes, and neutrophils. In addition, the ability 

of chemical signal gradients (such as an RGD-containing peptide density gradient) to 

influence the alignment of the fibroblasts, can also be exploited in the tissue engineering 

of ligaments  and tendons [47].  Moreover,  gradient  substrates  can also be used as  a 

screening tool  in  optimizing  the dosage of growth factors  that  lead to a higher cell 

proliferation rate or improved juxtracrine signalling [51].
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3.1 Introduction

Altering or manipulating genes or gene expression has tremendous therapeutic potential 

for  the  treatment  of  a  variety  of  disorders.  The  use  of  plasmid  DNA  to  generate 

therapeutic  proteins within a host tissue provides several  advantages over traditional 

protein  based  approaches.  Gene transfer  approach  can  be  employed  to  increase  the 

production  of  specific  proteins  or  block  the  expression  of  unwanted  proteins. 

Additionally,  gene  transfer  has  the  potential  to  provide  protein  expression  for  long 

periods of time at effective concentrations, and target any cellular process by altering 

expression of a specific protein. An ideal DNA therapeutics would limit the number of 

doses necessary to achieve long term effects and, from a commercialization viewpoint, 

plasmid  DNA  manufacturing  is  simpler  and  more  cost-effective  than  recombinant 

protein production [1]. While DNA-based therapeutics offer promising new modes for 

treating disease, critical to the success of these programs are efficient systems to both 

facilitate gene transfer and sustain gene expression. 

Effective in vivo gene delivery requires that the DNA has to be delivered to the desired 

cell population, efficiently internalized by the cell, and transported to the appropriate 

cellular compartment. Although the path is known, many barriers exist that limit the 

efficiency of delivery. The inability to cross biological membranes, such as plasma and 

nuclear membrane, results from both size and charge density of naked DNA. Vectors 

for gene delivery are being developed to overcome the barriers of the stability, size and 

charge density, and consist of modified virus and lipid or polymeric-cationic polymers 

that package the DNA.

In vivo production and secretion of therapeutic proteins by gene vectors delivery are 

also limited,  because of the presence of extracellular  barriers,  by the administration 
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approach.  Classical  gene  vectors  administration  approach  is  based  on  injection  [2]. 

Targeting a cell population or anatomical location by injection or systemic delivery, is a 

complex goal to be achieved.

A new approach to gene delivery entails the incorporation of DNA or gene vectors in 

biomaterial systems. Biomaterial devices systems have been proven for various small-

molecule drug and protein delivery and have recently been applied to the delivery of 

nucleic acids. Direct delivery of the vector from a biomaterial can localize transgene 

expression  primarily  to  the  implant  site.  In  addition  to  localized  delivery,  the 

biomaterial  can  protect  the  vector  against  extracellular  barriers  that  reduce  their 

therapeutic  efficacy by both protecting them from attack by immune responses,  and 

limiting degradation by serum nucleases or proteases [3].

Biomaterial-mediated gene transfer is a promising technology that has many therapeutic 

and  research  applications  such  as  gene  therapy,  tissue  engineering,  and  functional 

genomics.  In  addition  to  the  established  challenge  of  biomaterials-mediated  gene 

transfer in gene therapy, there are evolving challenges associated with the relationships 

between  cellular  microenvironment  and  gene  transfer,  and  between  transgene 

expression  and  subsequent  tissue  formation,  in  tissue  engineering  and  regenerative 

approaches [4-10]. As well as the are challenges associated with integrated miniaturized 

lab in high-throughput studies on gene function or activity [11-13]. Therefore research 

at interface of biomaterials, gene therapy, and tissue engineering has identified several 

design parameters for vector and biomaterial  that must be satisfied in relation to the 

specific application. 

In this chapter the current knowledge on challenges of gene transfer from biomaterials 

will  be  summarized.  A brief  introduction  of  vector  design  and biomaterials  design, 
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provides  the  foundation  to  examine  the  advantages  and  limitations  with  different 

delivery modalities and mechanisms.

3.2 Vectors design

Nucleic acids (e.g., DNA, RNA, siRNA) can be delivered alone, or packaged using viral 

or non-viral vectors to increase expression of therapeutic gene or knockdown expression 

of a specific gene (i.e. RNAi). For delivery, vector must evade the immune system and 

be transported to the cell microenvironment for internalization, typically into endosome, 

from which the vector must escape prior to being degraded as the endosome transitions 

into  a  lysosome.  To induce  expression  of  an  encoded gene,  the  nucleic  acids  must 

dissociate from any packaging component and traffic to the nucleus for expression. For 

delivery of siRNA or similar strategies, the nucleic acid only needs to be present within 

the cytoplasm for activity.

Viral  vectors  are  composed of either  DNA or RNA surrounded by a  capsid,  which 

provides greater efficiency than non-viral vectors, yet  provokes an immune response 

that can lead to clearance of vector or infected cells [14, 15]. A variety of viruses have 

been utilized as gene delivery vectors, with adenovirus and retrovirus among the most 

common,  and adeno-associated  virus  (AAV) among  the  most  promising  vectors  for 

future therapies. Naked plasmid and non-viral vectors initiate inflammatory responses 

that are milder than viral vectors, yet  lack their intrinsic efficiency.  Plasmid alone is 

able to transfect cells in vivo, but generally has a low efficiency in vitro. Alternatively, 

the nucleic acids (e.g., plasmid, siRNA) are complexed with cationic polymers or lipids, 

with  the  design  of  these  transfection  reagents  dependent  upon  the  nucleic  acid 

properties, such as size [16, 17]. Complexation with cationic polymers or lipids protects 
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against  degradation,  creates  a  less  negative  particle  relative  to  naked  plasmid,  and 

facilitates internalization and intracellular trafficking [18, 19] Cationic polymers contain 

high density of primary amines, which are protonable at neutral pH. This high density 

of positive charges allows the cationic polymers to form stable complexes. In addition 

to proving positive charges for DNA complexation, the primary amines also serve as 

functional  groups  with  which  to  chemical  modify  the  polymers  with  ligand  and 

peptides. The most used cationc polymers for gene delivery are Poly-L-lysine (PLL) 

and Poly(ethylenimine) (PEI). Furthermore mixing cationic lipid results in the collapse 

of the DNA to form a condensed structure (lipoplex) in which nucleic acid are buried 

within the lipid. The most used cationic lipids for gene delivery are DOTMA, DOTAP 

and DOPE.

In  selecting  among  available  vectors  for  delivery  to  promote  the  specific  needed 

process, multiple aspects of vector must be considered, such as the immune response to 

the  vector,  the  target  cell  population  for  gene  delivery,  the  required  duration  of 

expression,  and  the  stability  of  the  vector.  The  first  aspect  concerns  the  immune 

response  elicited  from  the  vector  limits  transgene  expression  [20,  21],  yet  local 

inflammatory response can potentially influence the therapeutic process. The extent of 

the immune response can determine whether the vector could be delivered more than 

once. The second aspect relates to the different vectors that have differential activity 

based on cell  division. Some viruses can infect both dividing and non-dividing cells 

(e.g.,  neurons),  whereas  other  are  effective  only  in  dividing  cells.  Many  non-viral 

vectors  are   restricted  to  dividing  cells.  A  third  consideration  aspect  concerns  the 

required  duration  of  expression,  which  is  based  on  the  progenitor  cells  and  the 

requirements of the therapy. Some viruses integrate their DNA into the chromosome 

and thus provide permanent expression, whereas many applications require expression 
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only  during  specific  periods.  In  addition,  the  vector  must  retain  its  bioactivity 

throughout  the  conditions  used  for  biomaterials  fabrication.  Some  viral  vectors 

inactivate rapidly at room temperature and may not be appropriate for incorporation into 

biomaterials.  Non-viral  vectors  generally  have  good  stability,  though  plasmid 

degradation and aggregation of DNA complexes are significant concerns. Finally, the 

level and duration of gene expression may need to be modulated to avoid side effects 

resulting from excessive protein activity at the target site, or inappropriate activity at a 

distant  site.  Expression can be modulated  using inductible  promoters  that  are  either 

tissue specific or activated by small molecules [22].

3.3 Biomaterials design

Gene transfer from biomaterials  enables localized expression,  as the biomaterial  can 

enhance  gene  transfer  relative  to  traditional  delivery  system  (e.g.,  injection)  [2]. 

Targeting a cell population or anatomical location by injection or systemic delivery is 

complex,  but direct  delivery of the vector from a biomaterial  can localize transgene 

expression  primarily  to  the  implant  site.  In  addition  to  localized  delivery,  the 

biomaterial  can  protect  the  vector  against  extracellular  barriers  that  reduce  their 

therapeutic efficacy, by protecting them from attack by immune responses and limiting 

degradation  by  serum nucleases  or  protreases  [23].  Biomaterials  have  been  able  to 

increase the half-life of viral vectors and reduce the immune response that normally 

targets the virus [24]. Additionally, biomaterial based gene transfer has the potential to 

maintain  the  effective  levels  of  the  vector  for  prolonged  times,  which  extends  the 

opportunity for cellular  internalization and increases  the likelihood of gene transfer. 
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Sustained  release  formulations  can  compensate  for  vectors  lost  due  to  clearance  or 

degradation.  Alternatively,  interactions  between  biomaterial  and  vector  can  retain 

vectors  locally  and prevent  clearance.  Gene transfer  from most  biomaterial  systems 

likely occurs trough combination of vector interactions with the matrix, and subsequent 

release,  or  cellular  uptake  directly  from biomaterial,  with  both  vector  and  material 

designed to regulate such interactions. Gene activated biomaterials can be categorized 

according to two basic mechanisms by which the DNA is incorporated into biomaterial: 

vectors dispersion (release) and vectors immobilization.

3.4 Release versus Immobilization

The efficacy of gene activated biomaterials depends upon the interaction mechanism 

between  gene  vector  and  biomaterial.  The  material  and  or  the  vector  are  being 

engineered to provide specific interactions that mediate their release or retention in the 

biomaterial, which can affect their function within the biological system. 

Gene  transfer  from  biomaterials  with  physically  or  chemically  entrapped  or 

immobilized  gene  vectors,  can  result  in  substantially  different  transfection  profiles, 

suggesting unique opportunities for each of them in various biomedical applications. 

Biomaterials with dispersed vectors have the capacity to deliver large amount of vector 

(mg quantities) with transgene expression correlating to the dose of DNA delivered, and 

release occurring over a period of weeks or months [25, 26]. In such a case, release 

from biomaterials occurs by a combination of polymer degradation and vector diffusion. 

A critical aspect associated with the encapsulation of gene therapy vectors, is that the 

biomaterial fabrication method must be compatible with the vector integrity.
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Contrary  to  release  approaches,  immobilization  prevents  aggregation  of  DNA 

complexes and places the vector directly into the cellular microenvironment, mimicking 

the  natural  process  of  virus  binding  to  extracellular  matrix  proteins  [27,  28].  This 

approach has been used to efficiently transfect cells with significantly less vector than 

more conventional methods [29]. One explanation for such an increased efficiency is 

that  by  maintaining  elevated  concentration  of  DNA  directly  in  the  cell 

microenvironment, significantly less DNA is required to drive transgene expression at 

levels comparable to release approaches. Likely owing to the low amount of DNA used, 

this expression is more transient, occurring for relatively short times (days to weeks). In 

fact,  short-lived expression may be advantageous in applications such as initiating a 

cascade of events, or when prolonged expression may lead to undesirable effects. 

Molecular interactions between vector and polymer dictate whether the vector will be 

bound or released.

Viral and non-viral vectors, which contain negatively charged DNA or RNA, potentially 

complexed with proteins, cationic polymers, or cationic lipids, interact with polymeric 

biomaterials.  Such an interaction occurs through non-specific  mechanisms, including 

hydrophobic,  electrostatic,  and  van  der  Waals  interactions,  that  have  been  well 

characterized for adsorption and release of proteins from polymeric systems [30]. Non-

specific  binding  depends  upon  the  molecular  composition  of  the  vector  (e.g.  lipid, 

polymer,  protein),  and the relative  quantity  of  each  vector  component  (e.g.  ratio  of 

amines on the polymer to phosphates in DNA (N/P)). Alternatively, specific interactions 

can be introduced trough complementary functional groups on the vector and polymer, 

such as antigen-antibody or biotin-avidin, to control vector binding to the substrate. For 

examples  Poly  (L-lysine)  (PLL)  and  Polyethylenimine  (PEI)  can  be  modified  with 

biotin residues for subsequent complexation with DNA and binding to a neutroavidin 
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substrate  [31,  32].  Complexes  can be formed with mixture of biotinylated and non-

biotinylated  cationic  polymer.  Release  studies  demonstrated  that  only  25%  of 

immobilized DNA complexes were released over an 8-day period, with approximately 

15% released within the first 24 h.  For complexes formed with PLL, the number of 

biotin  groups  and  their  distribution  among  the  cationic  polymers  were  critical 

determinants  of  both  binding  and transfection.  The  number  of  biotin  groups  in  the 

complex can be manipulated through the fraction of biotinylated PLL used for complex 

formation and the number of biotin residues per PLL. Increasing the number of biotin 

groups per complex can led to increased  binding [33]. However,  in vitro  transfection 

was maximal when complexes contained biotin residues attached to a small fraction of 

the cationic polymers [32]. At this condition, less than 100 ng of immobilized DNA can 

mediated  transfection,  which  was  increased  100-fold  relative  to  bolus  delivery  of 

similar complexes [33]. Additionally, transfection can be observed only in the location 

to which complexes were bound, suggesting the possibility of spatially regulating DNA 

delivery. For complexes formed with PEI, substantial transfection can be observed  in  

vitro but  was  independent  of  the  number  of  biotin  groups  present  on  the  complex, 

suggesting that complex immobilization occurred through nonspecific interactions [32]. 

Nonspecific binding  of DNA complexes to substrates has been employed with other 

systems  to  mediate  delivery.  PLGA  and  collagen  membranes  can  be  coated  with 

phosphatidyl  glycerol  (1–5%)  to  support  binding  of  complexes  formed  with 

polyamidoamine dendrimers [34]. Vectors can be slowly released from this matrices, to 

yield  transfection  in vitro  comparable  to  bolus transfection controls.  In vivo  studies 

demonstrated a six- to eightfold enhancement in transfection relative to plasmid DNA 

delivery. Adsorption of PEI/DNA complexes to silica nanoparticles [35, 36] can result 

in transgene expression in vitro comparable to that observed by bolus delivery and with 
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reduced  toxicity.  Plasmid  DNA  can  also  be  incorporated  into  inorganic  calcium 

phosphate coprecipitates that are adsorbed onto PLGA matrices, which can be mostly 

released by 48 h [37].

The effective affinity of the vector for the biomaterial is determined by the strength of 

these molecular interactions, which may also be influenced by environmental conditions 

(e.g. ionic strength, pH), binding-induced conformational changes, or vector unpacking. 

3.5 Cellular responses and transgene expression

3.5.1 Inflammation and vector activity

Biomaterial implantation induces a foreign body response, which together with the host 

response to the vector, may influence gene transcription.  The foreign body response 

following biomaterial implantation can be described according to multiple stages: acute 

inflammation,  chronic  inflammation,  granulation  tissue  development,  foreign  body 

reaction,  and fibrous capsule development [38, 39]. Neutrophils are the first cells  to 

arrive,  followed  by  macrophages.  Infiltrating  macrophages  could  potentially  have 

beneficial  functions  such  as  secretion  of  angiogenic  and  other  growth  factors  that 

promote cell proliferation, vascularization, and wound healing [40]. This inflammatory 

response to the material can be accompanied by an inflammatory response to the vector 

that  can result  in  cell  lysis  or  phagocytosis.  Cell  infected  or  transformed with viral 

vectors  stimulate  apoptosis  by  cell-autonomous  mechanism  or  extracellular  signals 

derived from other cells. Infection can also induced the expression of molecular markers 

that flag the affected cells for killing by for example natural killer cells. Unmethylated 

CpG  motifs  on  plasmid  can  trigger  antigen-specific  immune  defences  [41,  42].  In 
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summary, the inflammatory response induced by the biomaterial and gene vectors has 

the  potential  to  degrade,  clear  or  inactivate  the  vector,  inhibit  promoter  activity, 

attenuate gene transcription, eliminate transfected cells, or prevent repeated dosing.

The design of vector and biomaterial may be able to reduce the inflammatory response 

and thus enhance gene expression. For example, macrophage invasion is dependent on 

the  type  of  cell  adhesion  molecules  [40],  and hydrogels  may produce  a  more  mild 

foreign body response compared with porous sponges. The material  may be able to 

modulate some of the inflammation stemming from the vector, as the material could 

prevent  some  antibody  responses.  Alternatively,  the  vector  design  can  modulate  or 

reduce the inflammatory response and thus enhance transgene expression, such as by 

removing CpG motifs from plasmids [43] or incorporating the pharmacological agent 

dexamethasone into a non-viral vector transfection reagent [44].

3.5.2 Concentration and duration

Non-viral  vectors  delivered  from  the  biomaterial  can  induce  localized  transgene 

expression with a duration that may be significantly longer than the duration of vector 

release  [2,  45];  however,  the  precise  relationship  between  delivery  and duration  of 

expression must be developed. Low dosages of DNA released from a biomaterial had 

shorter durations of expression relative to larger dosages, with modest differences in the 

expression level. Modifications to either the vector or biomaterial properties will likely 

affect the duration of expression through either controlling the duration of delivery or 

altering the gene silencing mechanisms.
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3.5.3 Spatially patterned gene delivery

The ability to release multiple factors from a biomaterials , with spatial control, may be 

particularly  important  for  many  applications  in  particular  in  tissue  engineering  and 

functional  geneomics.  The  spatially  patterned  delivery  of  DNA encoding  for  tissue 

inductive  factors  in  the  case  of  tissue  engineering,  may  be  able  to  spatially  direct 

cellular  processes in order to recreate  complex tissue architectures.  For example,  an 

injury at the bone/cartilage interface requires that both bone and cartilage be restored. 

Transplanted or endogenous progenitor cells have been shown capable of forming either 

bone [26, 46] and cartilage [47] when presented with the appropriate factors. Spatial 

patterning of DNA on biomaterials is very useful in constructing integrated microarrays 

for functional geneomics.

Several methods have been developed  in vitro  to spatially control gene delivery and 

obtain patterns of gene expression. The spatially controlled deposition of gene therapy 

vectors can be achieved by several methods, such as spotting, printing, microfluidics, or 

pinning  (i.e.,  the  aqueous vector  solution  wets  the  hydrophilic  but  not  hydrophobic 

regions) [48-50]. The deposition procedure must retain vector activity, while the vector-

material  interactions  must  maintain  the  vector  locally.  The  potential  for  spatially 

controlled gene delivery was demonstrated but, the extension of these techniques to 3D 

systems remains a significant challenge. 

3.6 Challenges and opportunities of gene transfer from biomaterials

Gene activated biomaterials  with nonviral  and viral vectors generally promotes gene 

transfer to cells within or adjacent to the implant.  Depending on the choice of gene 

product,  the  protein  produced  by  transfected  cells  may  function  either  locally  or 
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systematically.  Localized  protein  production  is  being  used  to  stimulate  an  immune 

response,  deliver  a  suicide  gene,  or  promote  wound  healing.  Alternatively,  protein 

secreted  by  locally  transfected  cells  can  be  distributed  systemically,  which  has 

application  to  disorder  such  as  hemophilia.  The  versatility  of  gene  activated 

biomaterials  to  alter  protein  concentrations  locally  or  systematically  may  impact 

numerous applications in vivo and in vitro.

3.6.1 Gene therapy 

The aim of gene therapy is to treat diseases involving deficient or mutated proteins by 

delivering genes that encode intact  proteins to target cells  and making them express 

there.  This  is  thus  expected  to  be  a  new  way  to  treat  refractory  diseases  such  as 

congenital  diseases, cancer, and AIDS. Within this strategy,  gene vectors are widely 

used  to  express  the  target  gene  transiently  without  expecting  its  insertion  into  the 

chromosome for the treatment of those diseases. However, the vector, when given by 

the usual method, is inactivated and degraded immediately after its contact with cells. 

Therefore, the vector method is not suitable for the treatment of a disease requiring gene 

expression  over  several  weeks  or  more,  during  which  the  copy  number  of  the 

administered  gene  decreases  through  dilution  by  cell  division  and  intracellular 

degradation occurs. To overcome this shortcoming, repeated administration of the virus 

vector is required. This, however, imposes a heavy burden on the patients because the 

delivery of  amounts  of  genetic  material  in  excess of  its  physiological  concentration 

causes serious side effects [51, 52]. In order for gene therapy to be applicable in clinical 

medicine,  it  is  imperative that  a suitable  method for stable controlled release of the 

required  amount  of  the  vector  delivered  over  the  desired  period  of  time  has  to  be 

developed.  Biomaterial  based  gene  delivery  systems  may  enhanced  delivery 
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(biomaterial  +  gene  vectors)  of  the  vector  and  extent  the  duration  of  transgene 

expression to achieve sufficient protein quantities, that act locally or systemically. For 

these reasons several studies have been focused on the use of biomaterials based gene 

delivery systems. For example, intranasally delivered nanospheres loaded with plasmid 

encoding acute respiratory syncytial virus RSV antigens can reduce viral titers and viral 

antigen load after RSV infection in mice [53]. Additionally,  IL-2, IL-12 and TNF-α 

expression induced by a virus-releasing gelatine sponge can inhibit  tumor growth in 

heterotopic nodules of tumor-bearing mice [54].

3.6.2 Tissue Engineering

Tissue engineering aims at  repairing and restoring damaged tissue function employing 

three fundamental “tools” namely cells, scaffolds and biological signals such as growth 

factors or DNA [55-61], which however are not always simultaneously used. On the 

other hand, summoning recent experimental and clinical evidences, it follows that the 

success of any tissue engineering approach mainly relies on the dedicate and dynamic 

interplay  among  these  three  components,  and  that  functional  tissue  integrating  and 

regeneration  depends  upon  their  sapient  integration  [59].  Therefore,  biomaterial 

scaffolds  have  to  provide  biological  signals  able  to  guide  and  direct  cell  function 

through a combination of matricellular cues exposition and growth factors and/or DNA 

delivery. In particular the integration of DNA into the scaffold provides the potential for 

long-term bioavailability of bioactive signals as cells themselves produce the proteins 

needed for the regenerative process. Scaffold realised according to this approach, were 

developed few decades ago and called gene activated matrices (GAMs) [8-10, 62]. They 

have been later implemented and used in different tissue engineering applications. In 

particular a clinical  study,  using collagen-embedded adenovirus encoding PDGF, has 
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begun to  evaluate  the  safety  and maximum tolerated  dose  for  treatment  of  diabetic 

ulcers  [63]. Collagen-based delivery of nonviral or viral DNA has been employed in 

models of bone [8,  26, 64], and nerve regeneration [65]; wound healing  [62, 67-69]; 

muscle repair [70]; and cardiovascular disease [71]. Alternatively,  viruses have been 

tethered to endovascular microcoils [72], stents [73], and heart valve replacement cusps 

[10] to localize delivery to the arterial wall and avoid spread to distal sites [73]. Porous 

PLG scaffolds releasing plasmid DNA were able to transfect cells within and around the 

scaffold, with sufficient expression of PDGF to promote tissue formation [10]. While 

these  studies  have  illustrated  the  potential  for  extending  the  production  of  growth 

factors locally, adapting the delivery strategies to control transgene expression spatially 

(micrometers  to  millimeters)  or  temporally  (days  to  months)  may  re-create  the 

environmental  complexity  present  during  tissue  formation  [74-75].  The  ability  to 

regulate  expression of one or more factors in time and space may be critical  to the 

engineering of complex tissue architectures, such as those found in vascular networks 

and the nervous system. These systems would also increase our understanding of the 

biology behind tissue formation, which would serve to identify how gene delivery can 

best augment the regenerative process.

3.6.3 Functional Genomics

Transfected  cell  arrays  represent  a  high-throughput  approach  to  correlate  gene 

expression with functional cell responses, based on gene delivery from a surface [76]. 

While traditional nucleic acid analytical methods are limited to “one gene at a time”, 

DNA  microarray  technology  enables  parallel  processing  of  several  gene  species 

concurrently. In principle, this system can be employed for numerous studies, such as 

screening large collections of cDNAs [76] or targets for therapeutic intervention [77]. 
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Transfected  cell  arrays  were  formed  using  a  substrate-mediated  approach  in  which 

plasmids or adenoviruses were mixed with collagen and spotted onto glass slides or into 

wells [76-78]. Plated cells were transfected and could be analyzed for cellular responses 

using  a  variety  of  imaging  or  biochemical  techniques.  Further  development  of  the 

substrate-mediated  approach  requires  the  development  of  a  cost-effective  delivery 

system, that efficiently transfects a wide variety of primary cells and cell lines, while 

allowing for spatially controlled DNA within the different domains [76, 79].

At  the  end  of  2004,  the  US  Food  and  Drug  Administration  (FDA)  cleared  the 

AmpliChip ™ Cytochrome P450 Genotyping  test (Roche Molecular Systems) for use 

with the Affymetrix  GeneChip Microarray Instrumentation System (Affymetrix).  By 

analyzing  expression  of  a  key  specific  gene  (cytochrome  P4502D6)  within  the 

cytochrome  P450  family  that  plays  an  important  role  in  metabolism  of  commonly 

prescribed drugs, this assay helps predict patient metabolic responses to certain drugs. 

This information assists physicians in prescribing proper drug dosing in patients at risk 

for  drug  toxicity.  In  2007,  the  DNA microarray-based  breast  cancer  prognosis  test, 

MammaPrint® (Agendia, The Netherlands), was cleared by the FDA. MammaPrint®, 

produced by Agilent’s inkjet printing array platform, is part of an  in vitro  diagnostic 

laboratory service  that  profiles  the  expression activity  of  70 breast-tumor-associated 

genes  in  a  surgically-removed  suspect  breast  tumor  biopsy,  yielding  correlative 

information about the likelihood of tumor recurrence [80]. The assay is only approved 

as an adjunct to traditional tumor oncology and histological profiling. Its clinical utility 

is in assisting selection of chemotherapy options to minimize recurrence. Despite some 

success and rapid development of numerous DNA microarray technologies, numerous 

challenges remain in understanding the biological and clinical significance, the assay 

39



Chapter 3

signal, screened data and various practical issues pertaining to reproducibility, quality 

control and correlations among different microarray methods and platforms [81-83]. 
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Chapter 4

Cell Recruitment and Transfection in Gene Activated 
Collagen Matrices 

This  chapter  is  extracted  from the article  “Cell  Recruitment  and Transfection  in  Gene 

Activated  Collagen  Matrices”  by  Silvia  Orsi,  Antonia  De  Capua,  Daniela  Guarnieri, 

Daniela Marasco, and Paolo A Netti. Biomaterials 2010 (Epub 2009) 31(3) 570-576
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4.1 Introduction

One of the main objectives of tissue engineering and regenerative medicine is to produce 

new functional tissues by realising suitable micro-environments able to promote cellular 

processes  involved  in  tissue  formation.  Cells  in  native  tissues  exist  within  a  three-

dimensional,  viscoelastic  milieu  rich  in  biological  information,  and  steadily  sense  and 

respond  to  all  physiological  stimuli  [1-3].  In  tissue  engineering  the  local  micro-

environment is simulated by constructing scaffolds with appropriate physico-chemical and 

biological  characteristics  [4-6].  The constructed  scaffolds,  which  basically  work as  3D 

mechanical platforms for cell attachment and growth, in practice have to induce an action 

and reaction controlled mechanism stimulating cellular response at molecular level. The 

major challenge in designing such scaffolds consists in including a specific combination of 

signals  that  are  pivotal  in  specifically  promoting  cell  response  and  controlling  tissue 

morphogenetic  processes.  These  signals  can  be  soluble  macromolecules  (e.g.  growth 

factors,  chemokines,  cytokines),  or  insoluble  factors  (e.g.  ECM  proteins, 

glycosaminoglycans,  and  proteoglycans  [7-8])  adsorbed  or  covalent  bound  to  scaffold 

matrix, and able to induce and guide tissue formation. However, the main drawback of this 

approach still remains the difficulty to achieve long–term effect of functional molecules 

because of their short biological half life at physiological conditions. An alternative and 

more sophisticated approach to elicit  specific  biological  responses,  relies on the use of 

transfected cells able to synthesize and secrete the desired protein in situ. Therefore cells 

genetically induced to secrete proteins may act as point-source delivery systems, allowing 

a prolonged and more specific  effect  [9-11]. Cells can be transfected  in vitro and then 

transplanted in the damaged tissue or, in alternative, the plasmid DNA, encoding for the 

inductive factor, can be delivered instead of the protein [12]. However, the direct injection 
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of the plasmid may lead to a scarce transfection efficiency because of plasmid dispersion to 

non target  tissue.  To overcome these  limits,  DNA incorporation  into  the  scaffold  is  a 

versatile  alternative  approach,  as  it  connects  localized  transgene expression,  promoting 

expression  of  tissue  inductive  factors  directly  within  the  local  environment,  with  the 

requirements for tissue formation, [13]. Such an approach offers several advantages as it 

circumvents some of the obstacles associated with protein degradation and plasmid deliver. 

This approach provides the potential  for long-term bio-availability of bio-active signals 

from the  tissue  itself.  Scaffolds  realised  according  with  this  approach,  developed  few 

decades  ago  and  called  Gene  Activated  Matrices  (GAMs)  [14-18],  have  been  later 

implemented  and  successfully  used  in  the  field  of  bone,  cartilage  and  skin  tissue 

engineering [19-21]. In addition, recently these scaffolds have been employed in order to 

improve the methodology of incorporation and release of nucleic acid within the matrix 

through formation of DNA complexes with cationic polymers [22-23], or by encapsulating 

plasmid in nanoparticle release systems [24]. 

Conversely, directing cell migration towards plasmid complexes within the matrix could be 

a useful tool for improving cell transfection, because movement through the scaffold may 

facilitate  cells  to  find matrix  embedded plasmid  complexes.  To control  and guide cell 

migration, current approaches imply the formation of time/space controlled gradients of 

signals  [25-27].  In  this  context,  researchers  are  moving  towards  the  identification  of 

techniques  to  prepare  scaffolds  presenting  controlled  gradients  of  biomacromolecular 

signals  able  to  guide  cell  migration  into  the  scaffold  [25-31].  Recent  findings  have 

demonstrated the importance of signal gradients in affecting cell migration,  in terms of 

speed and directionality of cell motion, highlighting the possibility to control cell fate [32-

35]. 
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In this article we investigated the potency of collagen GAMs able to recruit and transfect 

specific cell populations, starting from the idea that once recruited, cells migrate through 

the matrix, where they find pDNA complexes bound to the matrix, and are transfected. The 

matrix was functionalised by immobilising biotinilated poly(ethylene imine) (PEI)/DNA 

complexes into the matrix through the modification of collagen molecules with avidin, and 

cells  were attracted within, and guided through the matrix,  by imposing an appropriate 

gradient of Fetal Bovine Serum (FBS). The efficiency of the GAM system was evaluated 

in terms of capability of cell recruitment (effect of FBS gradient on cell migration), and 

cell  transfection  (expression  of  green  fluorescent  protein  (GFP))  in  relation  to  DNA 

immobilization in the extracellular microenvironment.

4.2 Materials and Methods

4.2.1 Materials

PureCol (3mg/ml, 97% type I collagen in solution) was purchased from Inamed (Fremont, 

CA,  USA).  The  crosslinker  succinimidyl-[(N-maleimidopropionamido)-

dodecaethyleneglycol]  ester  (NHS-PEO12-Maleimide),  the  N-succinimidyl-S-

acetylthiopropionate  (SATP)  and  the  Avidin  (ImmunoPure  Avidin)  for  the  collagen 

molecules modification, were all purchased from PIERCE (Rockford, IL, USA). Bovine 

Serum Albumin (BSA), Lactalbumin and Ovalbumin, three fluorescein conjugates model 

serum  proteins,  were  purchased  from  Molecular  Probes  (Invitrogen;  Eugene,  Oregon, 

USA). Biotinylated linear PEI (JetPEI-Biotin), fluorescein-conjugated linear PEI (JetPEI-

fluoF),  and  tetramethylrhodamine-conjugated  linear  PEI (JetPEI-fluoR)  were purchased 
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from Polyplus-transfection SA (7mM ammine content, Illkirch, France). pshuttle plasmid 

DNA encoding for  green  fluorescent  protein  (GFP) was purified  from bacteria  culture 

using Qiagen (Santa Clara, CA).

4.2.2 Collagen Modification – Conjugation to avidin

To obtain a DNA-activated collagen matrix exploiting biotin/avidin bond we developed a 

conjugation  procedure  between  avidin  and  collagen.  The  procedure  consisted  of  three 

steps: Functionalisation of Avidin, Collagen derivation with hetero-functionalised spacer 

and conjugation of Avidin with Collagen, that are described below.

4.2.2.1 Thiol-Functionalisation of Avidin 

Avidin protein was dissolved in 0.10 M Phosphate  Buffered Saline (PBS) and 0.15 M 

sodium chloride, pH = 7.2-7.5 at a concentration of 0.037 mM. A stock solution of SATP 

was prepared in dimethyl sulphoxide (DMSO) at a concentration of 55 mM. Avidin and 

SATP were reacted in 1: 50 molar proportion for 1 hour at room temperature. The excess 

of SATP was removed from the derivatised mixture by zeba spin desalting column (Pierce 

Biochemical, Rockford, IL, USA). The thioester function of SATP moiety was hydrolyzed, 

just before conjugation to collagen, with NH2OH 0.4M in PBS for 2 h at room temperature, 

releasing free thiol groups on avidin (Fig. 4.1a).

Functionalisation  of  avidin  protein  purity  and  integrity  was  assesed  by  electrospray 

ionization mass spectrometry (ESI-MS).

4.2.2.2 Collagen derivation with hetero-functionalised spacer 

In order to obtained suitable  functionalized-collagen we employed a PEG hetero-cross-

linker (Fig.4.1b).
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N-hydroxysuccinimide  group  of  the  NHS-PEO12-Maleimide  was  reacted  with  primary 

amine groups of collagen type I monomers in 15: 1 molar proportion (Fig. 4.1b). This 

reaction was carried out, under constant stirring, in PBS (pH 6.5) for 24 h at 4°C to prevent 

the  spontaneous  fibrillogenesis  of  collagen  that  can  occur  at  neutral  pH  and  higher 

temperature [36]. The excess of NHS-PEO12-Maleimide was removed from the derivatized 

mixture by dialysis in  PBS (pH 6.0) 0.1 M. The availability of the maleimide group on 

collagen was indirectly confirmed by the conjugation of the derivatised collagen protein 

with a FITC-cysteine containing model peptide (FITC--Ala-Glu-Cys-Gly) in a molar ratio 

equal to 0.036. The efficiency of this reaction was detected by RP-HPLC (Waters2795) 

equipped with a Photodiode Array detector (Waters 2996), utilising a narrow bore 50x2 

mm C18 Biobasic column, 300 Å, 3 µm (ThermoElectron),  and applying a gradient of 

CH3CN, 0.1% TFA (Solvent B) from 5 to 70% , respect to solvent A (H2O, 0.1% TFA) 

over a period of 20 min. 

4.2.2.3 Conjugation of thiol-avidin protein with maleimide-collagen 

The maleimide group of the collagen-PEO12-Maleimide derivative was reacted with the 

sulfhydryl group introduced by SATP on avidin (Fig. 4.1c). This reaction was carried out 

in  PBS (pH 6.0)  for  24  h  at  4°C under  constant  stirring  in  a  large  defect  of  avidin, 

employing a molar ratio of 1:10.
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Figure 4.1. a) Reactions chemistry for the two step thio-functionalisation of avidin. See text for details; 
b) Reaction chemistry for collagen derivation with hetero-functionalised spacer; c) Reaction chemistry 

for the conjugation of thiol-avidin protein with maleimide-collagen.

4.2.3 PEIpDNA Complexes formation and characterisation

DNA (3 µg) diluted in 100 µl of Dulbecco’s Modified Eagle Medium (DMEM, Gibco) 

was complexed with PEI (6 µl = 4 µl of PEI-Biotin + 2 µl of PEI-fluo) diluted in 100 µl of 

DMEM, at  a  nitrogen/phosphate  ratio  (N/P)  of  5.  The  solution  containing  the  cationic 

polymer was added to the DNA solution. All the mixture was incubated for 20 min at room 

temperature.

The  ability  of  PEI  (PEI-Biotin  and  PEI-fluo)  to  condense  DNA  was  verified  by  gel 

electrophoresis.
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The particle  size  of  transfection  complexes  was measured  by dynamic  light  scattering 

(DLS) using an ALV CGS3000 correletor. For particle sizing, complexes were diluted in 

the appropriate buffer (DMEM) to give a final DNA concentration of 15 µg/ml.

4.2.4 Realization of gene activated collagen matrix

Gene activated collagen matrix was realised by immobilising PEIpDNA complexes into 

the matrix. PEIpDNA complexes were mixed with avidinated collagen molecules to induce 

formation of a specific bond between biotin molecules on PEIpDNA complexes and avidin 

molecules.  The  mixture  was  cast  and  incubated  at  37°C and 5% CO2 for  30  min  for 

gelification. Another formulation approach was performed as control by simply mixing the 

PEIpDNA  complexes  with  the  unmodified  collagen  molecules,  and  then  casting  and 

incubating the resulting solution at 37°C and 5% CO2 for 30 min.

4.2.5 3D Cell Migration Assay/Cell Tracking

A 3D chemotactic assay suitable for directly monitoring, through a predesigned time lapse 

procedure, 3D cell  migration in our gene activated collagen matrices,  was designed. In 

such an assay, FBS as chemotactic agent was included. The assay was constructed with the 

design requirements of imposing a FBS gradient and maintaining both cell viability and 

good optical quality over the entire time-length of the experiment. The system was realised 

by using a common cell culture Petri dish, which was filled with a silicon mould. The 

central part of the silicon mould was excavated to generate a container for the gel (Fig. 

4.2).  The  experiments  were  performed  by  confining  the  cells  into  one  portion  of  the 

collagen matrix, and inducing the serum to diffuse within the matrix only in one direction, 
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by putting the acellularised portion of the gel into contact with a chamber, realised with a 

second silicon mould, containing the FBS. 

Figure 4.2. Chemotactic assay (linear dimensions in mm).

In order to detect the time when the FBS reaches the portion of the matrix containing the 

cells,  which  permits  determination  of  when  and  where  to  begin  the  cell  migration 

experiment, timescales of FBS concentration profile in our collagen matrix were defined. 

FBS gradient dynamics was obtained through experimental determination of the diffusion 

coefficient  (D)  of  three  fluorescent  serum  model  proteins  (BSA,  Ovalbumin  and 

Lactalbumin)  by  a  home-made  Fluorescent  Recovery  After  Photobleaching  (FRAP) 

apparatus [37]. 

3D migration of NIH3T3 cells within the collagen matrix was monitored by time-lapse 

experiments  performed  using  an  inverted  phase  contrast  microscope  (IX50,  Olympus) 
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equipped with an incubation chamber (37 ºC, humidified, 5% CO2 atmosphere), a x-y-z 

computer-controlled stage (PROSCAN; Prior, USA) and a charge coupled device (CCD) 

coolsnap  camera  (RS  Photometrix,  USA).  Camera  and  computerized  stage  were 

synchronized  by  a  specific  code  to  follow  several  cells  during  the  same  experiment. 

Images, captured every 10 minutes over a 24 h time-interval, were analyzed by using the 

image analysis software Metamorph 5.0. Cells trajectories were reconstructed by tracing 

the centroid of each of them through time, using an automated image analysis algorithm. 

X, Y and Z values of individual cell centroid were stored in a text file. 

Speed and directionality of cell motion were evaluated. Speed was measured according to 

the  persistent  random  walk  model  described  by  Stokes  [38].  The  persistence  of  cell 

movement was assessed by calculating the directionality index, which is the ratio between 

displacement vector and trajectory length of a cell.

Directionality  of  cell  motion  relatively  to  the  gradient  direction  was  determined  by 

evaluating the distribution of angles between cell displacement vector and gradient axis. 

These  angles  were  measured  by  analysing  text  files  with  a  dedicated  MatLab  (The 

Mathworks) routine. 

4.2.6 Complexes release

To verify and evaluate the immobilization of the PEIpDNA complexes in the collagen, 

complexes  loading  efficiency and release  studies  were  performed  on  both  formulation 

matrices (with and without avidin). Samples were immersed in H2O and incubated at 37°C. 

After  scheduled  time  intervals  (0,  4,  24,  48  and  72  h),  water  was  removed,  and  its 

PEIpDNA concentration was detected via a standard curve, by measuring the fluorescence 

at  535  nm in  a  multi-well  plate  spectrofluorimeter  (Perkin-Elmer,  Wallac  1421).  The 

values measured at 0 h were used to determine the complexes loading efficiency, that was 
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expressed  as  the  percent  difference  between  the  total  complexes  amount  and  the  0  h 

measured  amount.  For  each  experimental  time  point,  experiments  were  repeated  in 

triplicate on different samples, and the percentage of PEIpDNA complexes released was 

calculated with respect to the encapsulated amount.

4.2.7 Cell culture and transfection

Transfection experiments were carried out on NIH3T3 mouse embryo fibroblasts cultured 

in both sample (with avidin) and control (without avidin) collagen matrices. 

NIH3T3 cells were grown in DMEM containing 10% (v/v) FBS, 100 U/ml penicillin and 

0.1 mg/ml streptomycin (HyClone, UK) and, in a humidified atmosphere at 37°C and 5% 

CO2.  1.4  *  105 cells  per  ml  were  re-suspended  in  PEIpDNA collagen  solution  before 

collagen  gelification.  After  the  formation  of  the  bio-activated  collagen  matrices,  cell 

culture medium was added above cellular constructs and these were cultured at 37°C and 

5% CO2.

To evaluate and compare transfection efficiency in both formulation samples, qualitative 

and quantitative analyses were carried out. Samples were firstly investigated by confocal 

laser scanning microscope (CLSM) (LSM510, Zeiss) at 24, 48 and 72 h in order to detect 

the distribution of GFP expressing cells. The percentage of transfected cells at 48h was 

then  measured  by  using  Flow-activated  Cell  Sorting (FACS)  analysis  (CellSorter 

FACSCanto II). Samples preparation for FACS analysis included variable steps. 48h after 

transfection, collagen gel matrices were digested by [2.5 mg/ml] Collagenase A solution 

(Roche Diagnostics Corporation)  for 40 min  at  37 °C. The action of this  enzyme was 

blocked by adding FBS and cells were centrifuged twice for 5 min at 1000 rpm to remove 

digested collagen. Cell pellet was resuspended in cold PBS and analysed by FACS. 
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4.3 Results

4.3.1 Collagen modification-Conjugation to avidin

To obtain  a  DNA-activated  collagen  matrix,  exploiting  biotin-avidin  bond,  avidin  was 

conjugated  to  collagen  by  introducing  a  thiol  group  on  avidin  and  using  a  hetero-

bifunctional crosslinker.

Since cysteine residues on avidin protein are engaged in disulphuric bonds, we create a 

chemical  moiety  bearing  free  thiol  groups  by using  SATP.  Firstly  the  N-Succinimidyl 

group of SATP was bound to free amino primary group of avidin and then hydrolization of 

the thioesther group induced the free thiol functions on the protein.

The achievement of SATP derivatised-avidin protein was confirmed by ESI-MS analysis 

in which deconvoluted mass-spectrum indicated the addition of 133 amu deriving from 

peptide bond formation between free amine group and SATP.

The availability of the maleimide group on collagen was assessed by the conjugation of the 

derivatised collagen protein with a FITC-cysteine containing model peptide (FITC--Ala-

Glu-Cys-Gly).  RP-HPLC  analyses  at  443  nm,  that  is  the  emission  wavelength  of 

Fluorescein isothiocyanate,  assessed the conjugation  even at  very low concentration  of 

peptide (Fig. 4.3).

Results showed tripeptide fluoresceinate peak to higher retention times increasing reaction 

time from 0 to 3h. These results are an evidence of the conjugation of free thiol-containing 

peptide to the collagen.
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Figure 4.3.  HPLC analysis at 443 nm of the conjugation reaction between the FITC-Cys-containing 
model peptide and the maleimide-derivatized collagene  at t = 0 h (dashed line) and t = 3 h (solid line). 
The peak indicated by (*) is an impurity.

4.3.2 PEIpDNA complexes characterization

The ability of PEI (PEI-biotin and PEI-fluo, in 2: 1 volume ratio) to complex with DNA at 

N/P=5 in  DMEM was  established  through the  complete  elimination  of  electrophoretic 

mobility  of  the  DNA  during  gel  electrophoresis  indicating  that  the  DNA  was  fully 

condensed (data not shown).

The diameter of PEIpDNA complexes (N/P = 5 in DMEM) evaluated with DLS was equal 

to 309.12 ± 33.42 nm.

4.3.3 3D cell migration

Measured D values of BSA (66 kDa), Ovalbumin (45 kDa) and Lactoalbumin (39 kDa) in 

2.4 mg/ml  collagen gel are 7.91 ± 0.11*10-7,  1.01 ± 0.01*10-6,  1.26 ± 0.01*10-6 cm2/s, 
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respectively.  As BSA is the slowest protein, we have used its D value to determine the 

characteristic time needed for all FBS molecules to rich the cellularised matrix portion. 

The time (τ) for significant diffusion along a distance (L) of 3 mm is, from the formula 

~L2/D, around 30 h. This result allows us to define how to induce a cell sensible FBS 

gradient in our matrices and when to start the time-lapse experiment.

Examples of cell tracks obtained from an assay prepared with our gene activated collagen 

matrices containing FBS gradient, are shown in Figures 4.4a,b. The NIH3T3 cells migrated 

through the  collagen  matrix  preferentially  up the  gradient  describing  well  defined  and 

elongated trajectories.

Figures 4.4. a and b Examples of 3D cell tracks obtained from images analysis of time-lapse 
experiments carried out by using an assay prepared with gene activated collagen matrices containing 

FBS gradient, reported in 2D (a) and in 3D ( with xy projection) (b). Y axis coincides with the gradient 
direction. In Fig. 4 a the starting point of all cell paths has been located in correspondence of  the origin 

of the axis.

Migratory characteristics were assessed using three parameters: cells speed, directionality 

index and average angle of cells displacement with respect to the gradient direction. The 

evaluated values for these parameters are 0.19 ± 0.02 µm/min, 0.89 ± 0.03 and 25.3 ± 6.3°, 

respectively.
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4.3.4 Complexes loading efficiency

Complexes loading efficiency tests revealed that the percentage of PEIpDNA complexes 

encapsulated  in  samples  with avidin was higher  than in  samples  without  avidin.  More 

specific, complexes loading efficiency was about 70% in samples realised with avidinated 

collagen,  while  about  40% in  samples  obtained  using  unmodified  collagen.  PEIpDNA 

complexes release tests in water showed that during the experimental time period (4 up to 

72 h), no complexes were released from samples of both formulations.

4.3.5 Transfection analysis

In  order  to  follow  the  fate  of  PEIpDNA  complexes,  we  use  both  biotinilated  and 

rhodaminated PEI. CLSM analyses showed the presence of PEIpDNA complexes inside 

the cells after 24 h of culture in avidinated collagen matrices (Fig. 5a). Additionally, after 

24,  48  and  72  h  of  culture  NIH3T3 cells  into  the  matrix  were  found  to  express  the 

transgene (GFP) (Fig.  4.5b). To quantify number of GFP expressing cells, we performed 

FACS analysis (Figures 4.6a, b). Results showed that the percentage of GFP expressing 

cells increased from 1.3 ± 0.5 in control samples without avidin up to 2.8 ± 0.4 in samples 

with avidin.
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Figures 4.5 a and b. CLSM picture of PEIpDNA complexes inside the cells after 24 h of culture in 
bound collagen matrices(a), and CLSM picture of NIH3T3 inside the matrix after 24 h of culture 

expressing GFP (b). Both pictures were realised by merging  transmission and fluorescence images of 
the same areas.

Figures 4.6 a, b. FACS analysis results for avidin free (a) and with avidin (b) samples that show the 
percent of transfected (GFP+) cells.
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4.4 Discussion

Assessment of the fundamental relationships among gene delivery, transgene expression, 

and tissue formation remains a significant challenge in the design of tissue engineering 

scaffolds.  Gene  delivery  can  stimulate  local  protein  production  capable  of  activating 

processes  that  may  play  important  roles  in  tissue  development  and  physiology  [39]. 

Engineering of mature and functional tissues may depend on the ability to direct cells into 

spatially complex arrangements on length scales ranging from micrometers to centimetres 

and guide dynamic organization, maturation, and remodelling of cells [40].

Combination of the ability to recruit and guide the migration of cells with the capacity to 

influence  cell  fate  by  gene  transfer,  has  the  potential  to  enhance  tissue  engineering 

challenge. To this aim we developed a 3D DNA bioactivated collagen matrix by PEI/DNA 

complexes immobilization in a collagen matrix through biotin/avidin bond. In particular 

we developed a conjugation procedure between avidin and collagen in order to immobilise 

biotinilated  PEI/DNA complexes  within  the  collagen  matrix.  Moreover,  we  realised  a 

serum based  chemotactic  gradient  within  the  scaffold  in  order  to  directionally  attract 

NIH3T3 cells.

Our results show that spatial constraints of FBS components diffusion through our collagen 

modified gel using our assay and consequent maintenance of a concentration gradient over 

72 h, enables significant chemotactic migration of cells. In our system chemotactic cell 

migration occurs over a significant distance. This requires that a concentration gradient of 

FBS exists  over  many  hours.  In  particular  our  results  show that  FBS gradient  in  our 

systems influenced also cell migration path. Cell trajectories result from randomly oriented 

steps in the presence of a uniform FBS concentration (data not shown), while from cell 

steps  preferentially  along  the  gradient  direction  under  a  FBS  gradient.  To  accurately 
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analyse cell migration in the case of FBS gradient we estimated from single cell trajectory 

the value of several migration parameters: cell speed (0.19 µm/min), directionality index 

(0.89) and average angle of cell displacement with respect to the gradient direction (25°).

It has been shown that a typical speed for cells in collagen and fibrin gels is less than one 

cell diameter per hour [31]. The value of the NIH3T3 speed detected in our collagen matrix 

(0.19 µm/min→11,4 µm/h) is an indicator of the good performance of the chemotactic 

assay.  As  well  as  the  values  of  both  directionality  index  and  average  angle  of  cell 

displacement  show  that  our  assay  allows  a  considerable  directional  guidance  for  cell 

migration: cells move in the direction of the gradient, and their trajectory is fairly linear 

and form an average angle with the gradient direction of 25°.

Cell density is a very important factor in setting the experimental conditions because of the 

poor specificity of the FBS as NIH3T3 chemotactic agent. Furthermore low cell density 

also  avoids  any  significant  gel  compaction  during  the  observation  period.  Restricting 

measurements to regions of the gel deeper than 1mm has mitigated any surface induced 

alignment effect. Lack of any contact guidance due to these possibilities was supported by 

the random and slower cell migration results obtained from uniform FBS concentrations, 

data not shown [41].

Although the chemotactic responses represented here cannot be directly compared to those 

found in the literature due to unmatched experimental conditions, this simple approach can 

be use to develop studies that combine migratory response with gene transfer.

Once tested the ability of our collagen matrix to guide cell migration, we have focused our 

attention upon the evaluation of the effectiveness of the immobilisation of DNA complexes 

into the matrix and, than, to the transfection efficiency of this matrix. Complexes loading 

efficiency study indicates that the percentage of PEIpDNA complexes encapsulated in the 

matrices was about 70% and 40% in samples with avidin and without avidin, respectively. 
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Moreover release study of complexes in water points out that no complexes were released 

from both kind of samples for all throughout the entire experiment. Therefore within the 

cellular microenvironment there is a complexes bioavailability in the samples with avidin 

higher than within avidin free samples. These different values may result from chemical 

modification induced on the collagen molecules of avidinated samples. Segura et al. [42] 

have suggested that binding of biotinylated complexes to avidinated substrate results from 

a combination of specific and non-specific interactions, with the former depending upon 

bounding of biotin residues attached to the cationic polymers, to avidin molecules on the 

substrate. According in our avidin free samples all the complexes had to be free or non-

specifically bound to the unmodified collagen. In light of this consideration, and taking 

into  account  that  our  samples  with  and  without  avidin  restrain  70% and  40% of  the 

complexes,  respectively,  it  derives  that  in  our  samples  with  avidin  at  least  30%  of 

complexes is specifically bound.

Interestingly, substrate immobilization of PEI/DNA complexes inhibits their aggregation, 

which  can  occur  rapidly  both  in  vivo  and  in  vitro  and  reduces  the  activity  of  DNA 

complexes [43].

Internalization  of  DNA  complexes  from  the  substrate  can  occur  either  by  release  of 

complexes from the substrate, or by direct internalization of the immobilized complexes 

[42]. Complexes release may be mediated by dissociation of biotin- avidin interaction, or 

by enzymatic  degradation of collagen or avidin. The collagen molecules and the avidin 

proteins may be digested by cell-releasing protease. This consideration find a support in 

the increasing trend of complex release in cell conditioned medium (data not shown). The 

second hypothesis involves internalization of the DNA directly from the substrate, likely 

through a process of vector unpacking. This process implies DNA dissociation from the 

cationic  polymer  and has to occur intracellularly in order to facilitate  DNA expression 
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[44].  However,  a  partial  unpacking  process  may  occur  extracellularly,  in  which  DNA 

complexes dissociate from the collagen-bound cationic polymer to enable DNA cellular 

internalization. 

The  results  obtained  through  our  transfection  efficiency  tests  show  that  complexes 

immobilization in the matrix provides an higher efficiency of transfection, relative to their 

simple  dispersion.  Based  upon  the  results  of  our  loading  efficiency  and  release 

experiments,  the  enhanced  transfection  efficiency  is  here  related  to  the  higher 

bioavailability in the cellular microenvironment of PEIpDNA complexes in the samples 

with avidin than in the free avidin ones. The specific  binding of the complexes in the 

samples with avidin has generated two-fold increase in transfection efficiency, according 

to complexes concentration within the matrices during the experiments.

Manipulating  complex  properties  for  substrate-mediated  delivery  can  be  employed  to 

regulate the transfection profile (number of transfected cells, transgene expression) [22].

Biomaterial scaffolds that support cell adhesion, guide cell migration and are also capable 

of efficient gene delivery, can provide a fundamental tool for localized transfection, which 

can stimulate and direct cellular processes that lead to tissue formation. Several strategies 

employ  biomaterials  to  provide  a  sustained  release  of  DNA or  DNA complexes  [13]; 

however,  DNA  complexes  can  also  be  immobilized  to  concentrate  the  DNA  at  the 

biomaterials surface and prevent distribution to non-target tissue. Through our study we 

have set up a strategy to immobilize DNA into collagen hydrogels for transfect recruited 

cells, in order to increase the transfection efficiency and prevent the distribution of DNA to 

non-target tissue. 

The ability to guide cell migration and spatially control gene transfer in the scaffold can be 

employed to create spatial gradients in the expression of various tissue inductive factors 

(e.g. growth factors, matrix molecules), that are characteristic of many developing tissues. 
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This spatial control of cell attachment and transfection can be a powerful tool with broad 

applicability to tissue engineering.

4.5 Conclusions 

This study demonstrates that a forced migration through the matrix may be achieved by 

imposing a FBS concentration gradient, and that transfection efficiency may be enhanced 

by  immobilising  DNA  complexes  in  the  cellular  microenvironment.  This  combined 

approach  offers  the  possibility  to  realise  matrices  that  not  only  provide  a  mechanical 

support to neo-tissue growth, but also guide this process by both directing cellular motion 

and transferring DNA.
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Chapter 5

Design of novel 3-D gene activated PEG scaffolds with 

ordered pore structure

This  chapter  is  extracted  from  the  article  “Design  of  novel  3-D  gene  activated  PEG 

scaffolds with ordered pore structure” by Silvia Orsi, Daniela Guarnieri and Paolo A. Netti, 

submitted  for  publication  to  Journal  for  Material  Science  Materials  in  Medicine,  and 

presently under revision.
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5.1 Introduction

Tissue engineering aims to promote the healing of diseased or injured tissues trough the 

use of a scaffold that supports cellular infiltration, contains bioactive signals, and is able to 

guide invading cells through tissue formation [1, 2]. The success of any tissue engineering 

approach mainly relies on the delicate and dynamic interplay among extracellular matrix 

(ECM) proteins, cytokines, growth factors, cell-cell contacts and mechanical stimuli that, 

when sapiently integrated and orchestrated within the scaffold, results in tissue or organ 

formation [3]. Therefore, biomaterial scaffolds have to provide mechanical and structural, 

as well as biological signals able to guide and direct cell functions. To provide mechanical 

and  structural  signals,  they  need  to  have  a  structure  of  interconnecting  pores,  and  to 

combine  tissue-like  elasticity  with  enhanced  pathways  for  mass  transport  and  cell 

migration  [4].  In  detail  the  scaffold-assisted  regeneration  of  specific  tissues  has  been 

shown to be strongly dependent on scaffold’s surface/volume ratio, as well as on pore size 

and interconnectivity. Indeed, these microarchitectural features significantly influence cell 

morphology, binding and phenotypic expression, as well as extent and nature of nutrient 

diffusion and tissue ingrowth [5-8]. It has also been suggested that the pore dimension may 

directly affect some biological events and, consequently different tissues require optimal 

pore  size  for  their  regeneration  [5-7].  Therefore,  scaffolds  with  significantly  different 

micron-scale porosities are needed for regeneration of highly structured biological tissues. 

Furthermore,  soluble  macromolecules  (e.g.  growth  factors,  chemokines,  cytokines)  or 

insoluble factors (e.g. ECM proteins, glycosaminoglycans, and proteoglycans) have to be 

absorbed or covalently  bound to scaffolds  to  allow them to provide biological  signals. 

Although peptides and growth factors are generally used as the bioactive signals in tissue 

engineering,  the  employment  of  DNA is  an alternative  or  complementary  approach to 
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introduce bioactive signals into scaffolds [9-14]. This approach provides the potential for 

long-term bio-availability of bio-active signals as cells  themselves produce the proteins 

needed  for  the  regenerative  process.  Scaffolds  realised  following  this  approach,  were 

developed few decades ago and called Gene Activated Matrices (GAMs) [15-18]. They 

have been later implemented and successfully used in the field of bone, cartilage and skin 

tissue  engineering  [19-21].  More  recently  these  scaffolds  have  been  employed  to 

implement the methodology of incorporation and release of nucleic acid within the matrix 

through formation of DNA complexes with cationic  polymers [22] or by encapsulating 

plasmid in nanoparticle release systems [23]. 

In  this  article  we present  and  discuss  the  results  of  a  study aimed  at  preparing  DNA 

bioactive  Poly(ethylene  glycol)  (PEG) porous  hydrogel  scaffold for  tissue  engineering. 

PEG hydrogels  with  finely  controlled  porous  architectures  were  prepared  via  gelatine 

particles  templating  and  then  functionalised  by  poly(ethylene  imine)  (PEI)/DNA 

complexes adsorbtion. Furthermore, by controlling the gelatine microparticles spatial size 

distribution, the particle templating technique [24] was implemented in order to create and 

tailor porosity and pore size gradients within the porous architecture of the hydrogels. The 

ability of templated bioactive hydrogels to support cell attachment and migration through 

the interconnected structure, was evaluated, using fluorescently marked cells, by confocal 

laser microscopy and time-lapse videomicroscopy, respectively.  Moreover the efficiency 

of  these  novel  gene  activated  hydrogels  was  detected  in  terms  of  cell  transfection 

(expression of  green  fluorescent  protein  (GFP))  in  relation  to  DNA availability  in  the 

extracellular microenvironment.
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5.2 Materials and Methods 

5.2.1 Gelatine microparticles preparation

Gelatine type B (Sigma-Aldrich, Mw = 176 KDa) with an isoelectric point (IEP) of 5.0, 

was used for microparticle fabrication. In particular, 5 g of gelatine were dissolved in 45ml 

ddH2O by mixing and heating (60°C). This aqueous gelatine solution was added dropwise 

to  250  ml  of  oil  (Cotton  Seed  Oil  Sigma-Aldrich)  while  stirring  at  500  rpm.  The 

temperature of the emulsion was then lowered to around 15°C with constant stirring. After 

30 min, 100 ml of chilled acetone (4°C) was added to the emulsion. After 1 h, the resulting 

microparticles were collected by filtration, washed with acetone to remove residual oil, and 

mechanically sieved for size separation.

5.2.2 Hydrogels preparation

To generate  porous  hydrogels,  we  introduced  50% (v/v)  of  home-made  uncrosslinked 

gelatine microparticles of specific diameter size into steel gaskets adhered to a glass slide. 

Then we poured a PBS solution containing 20-40% (w/v) of PEG diacrylate (PEGDA) 

(Sigma-Aldrich,  Mw = 700 Da) and 3% of a UV light-sensitive radical  (Irgacure 2959 

Ciba,  Switzerland)  around  the  microparticles.  This  mixture  was  exposed  to  long-

wavelength ultraviolet (UV) light (365 nm, 10 mW/cm2) for 5 min in order to polymerize 

the  diacrylate.  After  polymerization,  the  gelatine  beads  were  leached  away  from  the 

hydrogels using water at 37°C over 24 h. To obtain hydrogels with different pore size, 

templating  particles  of variable  diameter  size range (53-75; 75-150; 150-210;  210-300; 

300-500 µm)  were  used.  Moreover,  two types  of  pore  size  distribution  structure  were 

realised: one with a stepwise porosity size gradient, characterised by two areas, each with a 

specific pore size, and another with a continuous gradient. In the first case, a partition was 

78



Chapter 5

inserted in the middle of the gasket and then each of the two areas were filled with 75-150 

and 300-500 µm diameter microparticles. In the second case, the gasket was filled with 

microparticles sized 75-150, 150-212, and 212-300 µm from bottom upwards.

5.2.3 Microstructural Analysis

Hydrogel morphologies were investigated by Scanning Electron Microscopy (SEM) and 

image (imageJ®) analyses. Samples were serially dehydrated (50, 75, 85, 95% ethanol at 30 

min each; 100% overnight), cross-sectioned, gold-sputtered, and analysed by SEM (S440, 

LEICA) at an accelerating voltage of 20 kV, and variable magnifications. The porosity was 

analysed in terms of pore size, shape and spatial distribution. In particular the mean pore 

diameter and the normalized pore size distribution were estimated by 2D image analysis 

procedures, tracing not less than 100 pores for each sample and correcting the software 

value, calculated with the hypothesis of spherical shape, with the factor 4/π, according to 

the ASTM D3576.

5.2.4 Protein residual quantification

To verify if the radical-based polymerization mechanism leads to non specific covalent 

gelatine incorporation, a BCA protein assay (Micro BCATM Pierce, Rockford, Illinois) on 

the final hydrogels was performed according to manufacture procedure.

5.2.5 Cell seeding and culture 

NIH3T3 cells were cultured at 37°C and 5% CO2 in DMEM (Invitrogen, Gaithersburg, 

MD) supplemented with 10% (v/v) FBS, 100U/ml penicillin and 0.1mg/ml streptomycin 

(HyClone,  UK),  in  a  humidified  atmosphere  at  37°C and 5% CO2.  Scaffolds  for  cell-

culture experiments (d = 15mm and h = 2mm) were pre-treated by incubation in DMEM 
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supplemented with 10% (v/v) FBS for 24 h. Before seeding, NIH3T3 cells were stained 

with green Cell Tracker (Molecular Probes) according to manufacturer’s  procedures, in 

order  to  improve  cell  detection  within  scaffolds,  and  then  trypsinized,  harvested  and 

centrifuged.  105 cells,  resuspended  in  200  µl  of  medium,  were  statically  seeded  onto 

samples  representative  of  scaffolds  with  different  pore  dimension.  After  seeding,  the 

scaffolds  were  incubated  for  2  h  in  a  humified  atmosphere  (37°C,  5%CO2),  and 

subsequently, 1.5 ml of cell-culture medium was added to each sample. The samples were 

analysed by confocal laser scanning microscope (CLSM) (LSM510, Zeiss) after 24, 48 and 

72 h of culture to investigate cell adhesion and penetration. Images were acquired by using 

a 20x objective, HeNe laser (λ = 543 nm) and z-stack function. Qualitative analyses of cell 

movement into the scaffold were also performed by time-lapse videomicroscopy using a 

fluorescence  microscope  and 10x objective,  in  order  to  evaluate  cell  behaviour  in  3D 

porous structure. Images were acquired every 10 min over 6 h. Long term viability of cells 

in hydrogels from 24h to 21days was analyzed as a function of pore dimension by Alamar 

Blue assay (Invitrogen). 105 cells were statically seeded onto 3 different pore dimensions 

samples  (templating  gelatine  microparticles  diameter  of  53-75,  75-150,  150-300  µm). 

Experiments were repeated in triplicate foe each pore dimension.

5.2.6 Complexes formation

Plasmid DNA encoding for green fluorescent protein (GFP), purified from bacteria culture 

using Qiagen extraction kit (Santa Clara, CA), was complexed with PEI (Linear PEI 7mM 

ammine content, Polyplus-transfection, Illkirch, France) at a nitrogen/phosphate ratio (N/P) 

of 5. Both plasmid DNA and PEI were diluted with NaCl (150 mM) and than mixed by 

adding PEI solution to DNA solution. 
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5.2.7 3D cell transfection 

Scaffolds preparation and cell seeding for cell-transfection experiments were performed 

using the previously described procedures,  but incubating  the scaffolds  with 200 µl  of 

complexes (N/P = 5) solution for 24 h in order to induce complexes adsorption, and using 

unstained  cells  (without  cell-tracker).  Before  cells  seeding,  complexes  solution  was 

completely  removed  and  then  the  scaffolds  were  washed  to  remove  non-adsorbed 

complexes.  Retained  complexes  were  quantified  as  a  function  of  the  pore  size  via  a 

standard curve, by measuring the fluorescence at 535nm of the washed water in a multi-

well  plate  spectrofluorimeter.  For this  analysis,  DNA was complexed with fluorescein-

conjugated linear PEI, JetPEI-fluoF (Polylus-transfection, Illkirch, France). The detected 

values were used to determine the complexes retaining efficiency, that was expressed as 

the  percent  difference  between  the  amount  of  total  and  non  absorbed  complexes. 

Experiments were repeated in triplicate for each pore dimension.

The  efficiency  of  gene  transfer  by  the  DNA  activated  matrix  was  detected  through 

fluorescence microscopy. Samples were investigated by CLSM at 24, 48, 72 and 96 h of 

culture in order to detect the distribution of GFP expressing cells.

5.3 Results and Discussion

Assessment  of  the  fundamental  relationships  among  gene  delivery,  structural  scaffold 

features,  and  tissue  formation,  remains  a  challenge  in  designing  tissue  engineering 

scaffolds. Gene delivery can stimulate local protein production able to activate processes 

that may play important roles in tissue development and physiology [25]. Furthermore 3D 
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structural  properties  of  a  scaffold  can  influence  cellular  organization  and  distribution; 

therefore the functionality of the engineered tissue [26-29].

Combination of the ability to tailor and control scaffolds structure with the capacity of 

influencing  cell  fate  by  gene  transfer,  has  the  potential  to  enhance  tissue  engineering 

challenge.  To this  aim we developed  3D DNA bioactivated  PEG hydrogels  with well 

defined  pore  structure.  A  preliminary  evaluation  of  the  morphological  features  of 

hydrogels was assessed by SEM analysis of both samples surfaces and cross sections. All 

samples  are  characterised  by an extremely interconnected  internal  porous structure and 

well–defined porous external surfaces (Fig. 5.1).

Figure 5.1. SEM micrographs of a) cross section and b) surface of PEG hydrogel obtained using 
templating particles in the size range 75-150 µm.

Image  analysis  investigation  has  shown a  porosity  of  about  80%.  The  results  of  such 

investigation are affected by the intrinsic error of the used procedure that entails loss of 

small fundamental details resulting from the use of 2D images to represent solid objects. 

However,  this  procedure  has  proved  a  valid  tool  for  the  description  of  additional 

morphological parameters such as pore size and distribution. Pore size coherently varies 
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with  particles  diameter,  given  that  scaffolds  uniformly  shrank  by  ~  40%,  upon 

dehydratation (Tab. 5.1).

Table 5.1. Templeted PEG hydrogel pore size.

Moreover  SEM analyses  of  samples  obtained  with  different  particles  dimensions  have 

shown hydrogels with pore dimension gradients (Figures 5.2 and 5.3). This is an evidence 

that the proposed procedure permits to create and tailor porosity and pore size gradients 

into the matrix. In particular, as expected from the preparation procedure, hydrogels with 

both two pore dimensions (Fig. 5.2) and a continuous pore dimension gradient (Fig. 5.3) 

have been obtained. Pore size for the former hydrogels has a bimodal distribution with two 

modes  clustering around 80 and 280 µm (Fig.  5.4).  The ability to generate  3D porous 

matrices  with  well-controlled  anisotropic  architectures  is  highly  desirable  in  designing 

tissue engineering scaffolds. 
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Figure 5.2. SEM micrograph of stepwise pore size gradient hydrogel prepared with 75-150 µm and 
300-500 µm templating particles.

Figure 5.3. SEM micrograph of front and bottom surfaces of a continuous pore size gradient hydrogel 
prepared using microparticles sized 75-150, 150-212, 212-300 µm from bottom upwards.
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Figure 5.4. Pore-size frequency distribution of stepwise gradient PEG hydrogel.

Porous  scaffolds  characterized  by  pore  size  gradients  offer  the  great  advantage  of 

reproducing the spatial organization of cells and extracellular matrix of highly complex 3D 

tissues, such as bone and cartilage [30-33].

Quantification of gelatine non specific covalent incorporation in the porous hydrogels has 

shown that  independently  from the templating  microparticles  diameter,  690±170 µg of 

gelatine are retained in each hydrogels, this quantity rapresents less then 0.5% of the whole 

gelatine used to prepare the hydrogels.

The results of CLSM analyses have shown a strong effect of pore dimension on both cell 

morphology and infiltration. In particular the number of cells able to deeply penetrate the 

matrices after 72 h of culture increase with pore dimension (Fig. 5.5). Moreover at the 

same  time  point  of  culture  cells  appear  better  spread  as  the  pore  dimension  increase, 

indicating a better interaction with the matrix. 
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Figure 5.5. CLSM images of  cells within 3D matrices. Images a through d refer to the cell seeding 
surface, while a1 through d1 to the opposite surface. From top to bottom the image couples are related 
to matrices obtained using as templating agent gelatine microparticle with diameter of 53-75, 75-150, 

150-300 and 300-500 µm, respectively.
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This last result has been corroborated from z-stack analysis (Fig. 5.6), yz projections have 

shown that cells are located at variable focus planes along the z-axis and preferentially 

distributed within matrix pores (Fig. 5.6b).

Figure 5.6. CLSM z sectioning images of cells within 3D porous matrices obtained using gelatine 
microparticles of 150-300 µm in diameter: a) xy and b) yz projection of 30 overlapped consecutive z-

slices

Additionally, NIH3T3 cells moved inside the 3D scaffold following its micro-architecture 

(Fig.  5.7),  likely because of  combination  of  serum protein  adsorption  to  PEG and 3D 

porous structure properties.

Figure 5.7. Time-lapse video microscopy clips spanning 6h of 3D cell migration into a PEG porous 
scaffold obtained using gelatine microparticles of 150-300 µm in diameter. Magnification 10x
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The Alamar Blue assay has provided that after 22 days of static culture, cells are still vital 

in all samples. However the rate and trend of cell proliferation are different in the scaffolds 

with different pore dimension (Fig.  5.8). In particular results shown that in the samples 

with smallest and largest pore size, the proliferation trends reach a peak after 16 days of 

culture,  while  in  the  sample  with  intermediate  pore  size  cell  proliferation  increases 

throughout the entire experiment. Based upon the results of CLSM analysis, these trends 

can be explained as  dependent  on the ability  of  cells  to  colonize  the scaffolds.  In  the 

sample with the smaller pore dimension, cells colonize prevalently the surface that after 16 

days of culture is completely cellularized. In the samples with the largest pore dimension, 

cells completely colonize the scaffold and after 16 days are confluently. On the contrary in 

the sample with intermediate pore dimension, cells slowly and continuously penetrate the 

scaffold.

Figure 5.8. % of Alamar Blue reduced during 22 days of culture in samples relized with gelatine 
templating microparticles with diameter of  53-75 (yellow), 75-150 (blue), and 150-300 (pink) µm.

In order to follow the fate of PEIpDNA complexes adsorbed into the PEG scaffolds, both 

fluoresceinated  and rhodaminated  PEI  were  used.  Complexes  retention  efficiency  tests 

have revealed that the percentage of PEIpDNA complexes adsorbed is 79,1±1, 78,9±3, 

75,5±1 and 73,8±2 in hydrogels obtained by using gelatine microparticles of diameters in 
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the 53-75, 75-150, 150-300 and 300-500 µm ranges, respectively. As expected, pore size 

and  number  of  complexes  entrapped  in  the  scaffold,  are  inversely  correlated.  CLSM 

analyses have shown the presence of PEIpDNA complexes inside the cells seeded into the 

PEG scaffold after 24 h of culture (data not shown). After 48 h of culture, NIH3T3 cells 

into the matrix were found to express the transgene (GFP) (Fig.5.9). Additionally, during 

the  course  of  the  experiment  (up  to  96  h  of  culture)  the  number  of  GFP transfected 

NIH3T3 cells increased (data not shown). 

Figure 5.9. GFP expressing cells after 96h of culture into DNA bioactive 3D PEG porous scaffold 
obtained using gelatine microparticles of 150-300 µm in diameter. xy projection of 30 overlapped 

consecutive z-slices

5.4 Conclusions

The  major  result  of  the  research  carried  out  is  the  production  of  a  novel  method  for 

preparing gene activated scaffolds with ordered and highly interconnected macroporosity. 
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Using this method, the attractive features of hydrogels (i.e. biochemical versatility, tissue-

mimetic mechanical properties, and hydrophilicity),  may be combined with the benefits 

resulting from their induced both ability of influencing cell fate (affecting their processes 

by DNA incorporation),  and interconnected  macroporous  structure (including improved 

nutrient transport, and space for cell migration). Furthermore, the elaborated method is a 

step forward in the production of gene activated matrices with ad hoc microarchitectural 

features and under very mild physical-chemical conditions.
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Chapter 6

Gene activated PEG matrices designed to direct cell 

migration

This Chapter is a draft manuscript of the article “Gene activated PEG matrices designed to 

direct cell migration” by Silvia Orsi, Daniele Guarnieri, Antonia De Capua and Paolo A. 

Netti, in preparation to be submitted for publication to Acta Biomateralia.
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6.1 Introduction

Non-viral gene transfer is a promising technology that can be applied in many therapeutic 

and research fields such as gene therapy, tissue engineering, and functional genomics. The 

success  of  this  technology  is  limited  by  barriers  such  as  extracellular  stability  and 

transport, cellular association and internalization, endosomal escape, cytoplasmic transport 

and stability, and nuclear localization [1]. Matrix-mediate gene transfer can protect gene 

vectors against  extracellular  barriers  that  reduce their  efficacy by both defending them 

from attack by immune response and limiting degradation by serum nuclease or protease 

[2]. Moreover, matrix-based transfer has the potential to maintain the effective levels of the 

vector  for  prolonged  times,  extending  the  opportunity  for  cellular  internalization  and 

increasing the likelihood of gene transfer. In addition gene transfer from matrices enables 

localized  expression,  as  the  matrix  can  enhance  gene  transfer  relative  to  traditional 

delivery system (e.g. injection) [3], improving the use of gene transfer in many biomedical 

applications. In traditional gene delivery, the gene vectors locate the target cells, while in 

matrix-mediate gene transfer the cells locate the vector following their migration into the 

matrix. Directing cell migration towards plasmid complexes within a matrix, could be a 

useful  tool for improving cell  transfection,  because movement  through the matrix  may 

facilitate cells to find complexes. To control and guide cell migration, current approaches 

imply the formation of time/space controlled gradients of signals [4-6]. In this context, 

researchers  are  seeking  for  the  identification  of  techniques  to  prepare  matrices  with 

controlled gradients of biomacromolecular  signals  able to guide cell  migration into the 

matrices [4-10]. Recent studies have demonstrated the importance of signal gradients in 

affecting cell migration, in terms of speed and directionality of cell motion, highlighting 

the possibility to control cell fate [11-14]. 
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The  potency  of  PEG  gene  activated  matrix  able  to  recruit  and  transfect  specific  cell 

populations has been investigated, starting from the idea that once recruited, cells migrate 

through the matrix, where they find pDNA complexes bound to the matrix, and get out 

transfected.  The  matrix  has  been  functionalised  by  immobilising  poly(ethylene  imine) 

(PEI)/DNA complexes through the modification of PEI molecules with acrylated PEG. In 

order to attract the cells within, and guide them through the matrix, an appropriate gradient 

of the adhesive RGD peptides has been realized. The efficiency of this system is under 

evaluation respect to its of cell recruitment (effect of RGD gradient on cell migration), and 

cell transfection (expression of green fluorescent protein (GFP)) capability in relation to 

DNA immobilization in the matrices.

6.2 Materials and Methods 

6.2.1 Gelatine microparticles preparation

Gelatine type B (Sigma-Aldrich, Mw = 176 KDa) with an isoelectric point (IEP) of 5.0 

was used for microparticle fabrication. In particular, 5 g of gelatine were dissolved in 45ml 

ddH2O by mixing and heating (60°C). This aqueous gelatine solution was added dropwise 

to  250  ml  of  oil  (Cotton  Seed  Oil  Sigma-Aldrich)  while  stirring  at  500  rpm.  The 

temperature of the emulsion was then lowered to around 15°C with constant stirring. After 

30 min, 100 ml of chilled acetone (4°C) was added to the emulsion,  and after 1 h, the 

resulting  microparticles  were  collected  by  filtration,  washed  with  acetone  to  remove 

residual oil, and mechanically sieved for size separation.
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6.2.2 Synthesis of acryloyl-PEG-RGD

The peptide sequence Gly-Arg-Gly-Asp-Ser (RGD) was synthesized by the solid-phase 

method using standard 9-fluorenylmethoxycarboxyl (Fmoc) chemistry protocols on Rink-

amide MBHA resin (scale of 2.0 mmol), using standard Fmoc protection for amino acids 

sidechains,

on  a  scale  of  2.0  mmol.  The  peptide  was  conjugated  to  acryloyl-PEG-N-

hydroxysuccinimide (acryloyl-PEG-NHS, 3400 Da, >95% pure; Nektar Therapeutics, San 

Carlos, CA). Conjugation was carried out in solution by mixing the NHS-activated PEG 

with the peptide in Phosphate Buffered Saline (pH 7.0, 50 mM) at 1:1 molar ratio, over 

night.  The  conjugated  acryloyl-PEG-peptide  was  dialyzed  and  lyophilized  before  use. 

Conjugation of RGD to acryloyl-PEG was confirmed by MALDI-TOF analysis, performed 

with a Voyager PerSeptive BioSystem.

6.2.3 Hydrogels preparation

To generate  porous  hydrogels,  we  introduced  50% (v/v)  of  home-made  uncrosslinked 

gelatine microparticles (d = 150-300µm) into steel gaskets adhered to a glass slide. Then 

we poured a PBS solution containing 40% (w/v) of PEG diacrylate  (PEGDA) (Sigma-

Aldrich,  Mw = 700  Da),  1mM  of  PEG-RGD and  3% of  a  UV light-sensitive  radical 

(Irgacure 2959 Ciba, Switzerland) around the microparticles. This mixture was exposed to 

long-wavelength  ultraviolet  (UV)  light  (365  nm,  10  mW/cm2) for  5  min  in  order  to 

polymerize the diacrylate.  After  polymerization,  the  gelatine  beads  were  leached away 

from the hydrogels using water at 37°C over 24 h. 

In order to generate an RGD gradient within the matrix, a partition was inserted in the 

central  part  of  the  gasket.  After  introduction  of  microparticles  two  PBS  solutions, 
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containing the same percentage of PEGDA (40% (w/v)), and Irgacure (3%), but different 

amount of PEG-RGD (0,5mM and 2,5mM), were poured each in one of the two areas.

6.2.4 Synthesis of PEG-PEI conjugate

A solution of PEI HCl (25000 Da, Sigma-Aldrich) 0.7 mol dissolved in 1 mL of 20 mM 

HEPES, at pH 7.1, was reacted with 50 equiv of acryloyl-PEG-NHS dissolved in 0.7 mL 

of  DMSO.  After  1  h  incubation,  PEI  conjugates  were  isolated  by  a  cation-exchange 

column and then dialyzed. The characteristics of the obtained product were investigated by 

NMR spectroscopy.

6.2.5 Complexes formation

Plasmid DNA encoding for green fluorescent protein (GFP), purified from bacteria culture 

using Qiagen extraction kit (Santa Clara, CA), was complexed with PEI (Linear PEI 7mM 

ammine  content,  Polyplus-transfection,  Illkirch,  France)  and  PEI-PEG  at  a  final 

nitrogen/phosphate ratio (N/P) of 5. Both plasmid DNA and PEI (PEI and PEI-PEG) were 

diluted with NaCl (150 mM) and than mixed by adding PEI solution to DNA solution. The 

bioactivity of PEI-PEG/DNA complexes was verified performing 2D transfection analysis 

on  NIH3T3  cells  cultured  in  Petri  culture  dishes  at  37°C  and  5%  CO2 in  DMEM 

(Invitrogen, Gaithersburg, MD) supplemented with 10% (v/v) FBS, 100U/ml penicillin and 

0.1mg/ml streptomycin (HyClone, UK), in a humidified atmosphere at 37°C and 5% CO2. 

Samples were investigated by CLSM at 24, 48 and 72h of culture, in order to detect the 

distribution of GFP expressing cells.
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6.2.6 Realization of gene activated PEG matrix

Gene activated PEG matrix was realised by immobilising PEIpDNA complexes into the 

matrix.  PEIpDNA complexes were mixed with PEGDA, PEG-RGD molecules and UV 

light-sensitive radical and then poured around the gelatine microparticles. The mixture was 

then exposed to the UV light for polymerization. After polymerization, the gelatine beads 

were leached from the hydrogels using water at 37°C over 24 h. 

6.2.7 Microstructural Analysis

Hydrogel morphologies were investigated by Scanning Electron Microscopy (SEM) and 

image (imageJ®) analyses. Samples were serially dehydrated (50, 75, 85, 95% ethanol at 30 

min each; 100% overnight), cross-sectioned, gold-sputtered, and analysed by SEM (S440, 

LEICA) at an accelerating voltage of 20 kV, and variable magnifications. The porosity was 

analysed in terms of pore size, shape and spatial distribution. In particular the mean pore 

diameter was estimated by 2D image analysis procedures, tracing not less than 100 pores 

for  each  image  and  correcting  the  software  value,  calculated  with  the  hypothesis  of 

spherical shape, with the factor 4/π, according to the ASTM D3576.

6.2.8 Cell seeding and culture 

NIH3T3 cells were cultured at 37°C and 5% CO2 in DMEM (Invitrogen, Gaithersburg, 

MD) supplemented with 10% (v/v) FBS, 100U/ml penicillin and 0.1mg/ml streptomycin 

(HyClone, UK), in a humidified atmosphere at 37°C and 5% CO2. Before seeding NIH3T3 

cells were stained with green Cell Tracker (Molecular Probes) according to manufacturer 

procedures, in order to improve cell detection within matrices. Then cells were trypsinized, 

harvested and centrifuged.  105 cells,  resuspended in 200 µl of medium, were statically 

seeded onto matrices. After seeding, the matrices were incubated for 2 h in a humified 
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atmosphere (37°C, 5%CO2). Subsequently,  1.5 ml of cell-culture medium was added to 

each  sample.  After  24  and  48  h  of  culture,  samples  were  analysed  by  confocal  laser 

scanning  microscopy  (CLSM)  (LSM510,  Zeiss)  to  investigate  cell  adhesion  and 

penetration as well as RGD gradient effect on cell migration within the matrices. Images 

were acquired by using a 20x objective, HeNe laser (λ = 543 nm) and z-stack function. 

6.2.9 3D cell migration 

Qualitative evaluation of cell migration within the matrices characterized by RGD gradient 

was  performed through CLSM analyses. To carry out these analyses cells were accurately 

seeded only in the area containing 0.5mM RGD. Occurrence of cells in the higher RGD 

concentration area (2.5mM) was investigated at specific time points.

6.2.10 3D cell transfection 

In  order  to  verify  the  bioactivity  of  the  PEI-PEG/DNA complexes  bound to  the  PEG 

matrices, a 2D transfection analysis was performed on NIH3T3 cells cultured on PEG gene 

activated non porous matrices (obtained without using gelatine templating microparticles). 

To  verify  the  bioactivity  as  well  as  the  bioavailability  of  PEI-PEG/DNA  complexes 

immobilised into the PEG porous matrices, a 3D cell transfection analysis was performed 

on NIH3T3 cells cultured in PEG porous gene activated matrices. In both cases samples 

were investigated  by CLSM at  24,  48,  72  and 96  h  of  culture,  in  order  to  detect  the 

distribution of GFP expressing cells.

101



Chapter 6

6.3 Results and Discussion

This report investigates the efficacy of gene transfer from bioactive biomaterials able to 

recruit  and  guide  cells  and  influence  their  fate  by  DNA incorporation.  To pursue  the 

research aim PEG matrices with modulated structural features have been produced. In this 

matrices have been introduced a spatial presentation of adhesive RGD peptides, as well as 

gene vectors through their immobilization them to the matrix. This process has been based 

on the idea that, once recruited, cells migrate through the matrix and get out transfected.

A preliminary evaluation of the structural  features  of hydrogels  was assessed by SEM 

analyses  of  samples  cross  sections.  Samples  are  characterised  by  an  extremely 

interconnected internal porous structure (Fig. 6.1). Image analysis investigation has shown 

a  porosity  of  about  80%.  This  result  is  affected  by  the  intrinsic  error  of  the  applied 

procedure  that  entails  loss  of  small  fundamental  details  resulting  from the  use  of  2D 

images to represent solid objects. This procedure has also been used to determine pore size, 

obtaining a mean value of 140 ± 20 µm. This result is coherent with templating particles 

dimension, given that matrices uniformly shrank by ~ 40% upon dehydratation.

102



Chapter 6

Figure 6.1. SEM micrograph of PEG hydrogel cross section obtained using templating particles in the 
size range 150-300 µm.

Moreover  z-stack  projections  have  indicated  that  a  considerable  number  of  NIH3T3 

fibroblasts  was  able  to  colonize  our  3D porous  RGD functionalized  PEG matrices.  In 

particular cells are well spread suggesting a good interaction with the matrix (Fig. 6.2). 

Figure 6.2. CLSM image of cells within 3D porous RGD functionalized PEG matrix after 24 h of 
culture.
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The preliminary results of CLSM analyses carried out on samples with RGD gradient, have 

shown that  cells  are  able  to  move inside the matrices  following the RGD gradient.  In 

particular NIH3T3 cells have been found in the higher RGD concentration area (2.5 mM) 

of the samples after 96h of culture.

Before investigating the ability of complexes bound to the matrix to transfect cells,  the 

bioactivity  of  PEI-PEG/DNA  complexes  was  testified  by  the  occurrence  of  GFP 

expressing cells in 2D cell transfection tests performed in cell culture Petri dishes (Fig. 

6.3). This result is here taken as an evidence that occurrence of PEGAC molecules on the 

complexes does not exclude the bioactivity of the complexes. 

Figure 6.3. a: CLSM pictures of NIH3T3 cells after 48 h of culture in Petri dish expressing GFP. b: 
image realized by merging transmission and fluorescence images of the same area.

The use of PEG conjugated polycations  instead of only polycations,  to condense DNA 

offers  some  advantages,  including  improvement  in  water  solubility,  resistance  against 

DNAse,  and  reduced  cytotoxicity,  and  allows  the  conjugation  of  biomacromulecular 

signals for specific targeting [15, 16].

The bioactivity of PEI-PEG/DNA complexes bound to the PEG through the acrylate end of 

the PEG molecules on the complexes and the acrylate ends of the PEGDA used for the 

matrix, was first testified by the presence of GFP expressing cells after 48h of culture in 

a b

104



Chapter 6

2D  transfection  experiments.  These  experiments  were  performed  on  NIH3T3  cells, 

cultured on gene activated non porous matrices (Fig. 6.4). This result points out that the 

defined  immobilization  procedure  we  have  does  not  invalidate  the  bioactivity  of  the 

complexes. 

Figure 6.4. a: CLSM images of NIH3T3 cells after 48 h of culture on PEG with PEIPEGpDNA 
complexes bound matrix expressing GFP. b: image realized by merging transmission and fluorescence 

images of the same area.

The bioactivity and bioavailability of PEI-PEG/DNA complexes bound to the PEG in the 

porous matrices were then checked monitoring GFP expressing cells in 3D transfection 

experiments carried out on NIH3T3 cells cultured inside the matrices after 72h of culture 

(Fig. 6.5).

Figure 6.5. CLSM pictures of NIH3T3 cells after 72h of culture in PEG gene activated porous matrices 
(PEIPEGpDNA complexes bound matrix) expressing GFP

a b
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6.4 Conclusions

The preliminary  results  of  the  performed  experiments  show that  we are  setting  up  an 

innovative  method  for  preparing  gene  activated  matrices  with  a  spatial  predefined 

presentation of adhesive peptides and immobilised DNA complexes. This approach has the 

potential to be a step forward in the production of gene activated matrices under very mild 

physical-chemical  conditions.  However,  the  very  preliminary  character  of  the  obtained 

results imposes caution in their interpretation.
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Conclusions

The PhD research project was aimed at designing and realizing biomaterials bioactivated 

with DNA, suitable for biomedical applications (i.e. gene therapy, tissue engineering and 

functional genomics). The potency of these materials, named gene activated biomaterials, 

was investigated. In particular, the possibilities for their implementation was verified in 

order to achieve both a controlled gene expression, through DNA immobilization instead 

of  its  simple  dispersion,  and  a  specific  cell  recruitment.  Such  an  implementation  was 

finalised  at  obtaining  systems  in  which  the  external  cells  are  recruited  and  forced  to 

migrate into the material, where they find the bounded DNA and are transfected. To reach 

the  aim  of  the  research  project,  different  solutions  have  been  proposed  and  variable 

experiments have been performed. In particular, one research line of the entire project has 

been devoted at designing and realizing 3D gene activated collagen matrices. The results of 

the activities carried out in the framework of this research line have demonstrated that a 

forced migration through the matrix may be achieved by imposing a FBS concentration 

gradient,  and  that  transfection  efficiency  may  be  enhanced  by  immobilising  DNA 

complexes in the cellular microenvironment. A second research line of the project has been 

devoted at producing 3D gene activated PEG matrices with ordered, highly interconnected 

macroporosity  using a  templating  microparticles  process and with adsorbed DNA. The 

result obtained within this research line have highlighted that these systems can combine 

the  benefits  of  influencing  cell  fate,  by  both  DNA  adsorbed  to  the  matrix  and 

interconnected  porous  structure,  with  the  attractive  properties  of  hydrogels  (i.e. 

biochemical  versatility,  tissue-mimetic  mechanical  properties,  and  hydrophylicity).  The 

third research line has been devoted to the realization of 3D DNA bioactivated PEG porous 
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matrices  with  immobilised  DNA,  and  an  appropriate  RGD  gradient.  Despite  their 

preliminary  character,  the  obtained  results  stress  that  the  realized  systems  have  the 

potential to attract cells and guide their migration within the matrix, as well as to locally 

transfect them.

On the whole, the results of the activities carried out in the framework of the PhD research 

project  show  that  engineered  gene  activated  (both  biologically  derived  or  synthetic 

biomaterials  based)  matrices  are  able  to  recruit  external  cells  and  transfect  them once 

internalized, therefore they can help in many biomedical applications.
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