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Abstract

This thesis analyses the applicability of a quite novel methodology of experimen-
tal testing so—called Real-Time Dynamic Substructuring Test (RTDST) in the
assessment of protection systems for natural hazards mitigation. RTDST allows
testing critical components of the structure at full-scale under realistic extreme
loading conditions. Only those components where the non-linearity behavior is
concentrated are physically tested, whilst the remainder of the structure is sim-
ulated numerically. The main drawback of this technique lies in the unavoidable
delays associated to the loop feeding back some experimental measurements to
the numerical model. Such delays may cause instability during the test.

This work is focused on testing passive control systems based on large—scale
non linear fluid viscous dampers. Throughout a careful explicit stability analysis,
we present a complete set of closed—form expressions to describe the dynamics
of the main complex delay—induced phenomena exhibited for the delayed sys-
tem. This analysis is addressed in the context of both classic stability theory
for non-linear systems and the qualitative theory of Piecewise Smooth Dynam-
ical Systems. The results obtained are also useful for other kind of mechanical
systems where the response of some components is arriving with delay and may
cause harmful effects on system behaviour. Semi-active control by MR dampers
are examples of such systems.

The theoretical results obtained were confirmed experimentally. When carry-
ing out the experimental campaign, in fact, unexpected self-sustained oscillations
were detected. This was caused by delays in the feedback loop, even when they
are very small, unavoidably lead the system to self-sustained oscillations at high
frequency.
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Chapter 1

Introduction

Contents
1.1 Motivation . . v v v v v v v v v e e b e e e e e e e 1
1.2 Outline of thisthesis . ... ... .. ... ...... 3

1.1 Motivation

Earthquake damage has devastating human and economic consequences. The av-
erage worldwide repair cost due to earthquake damage has been estimated to be
approximately $30bn per year. Reducing this financial cost is a major engineer-
ing challenge, which would have significant benefit in reducing human suffering
during extreme earthquake events. Such a reduction demands the design of more
resistant, reliable and cost—effective both structures and seismic protection sys-
tems.

New design procedures in structural engineering as well as in structural con-
trol, require better understanding and modelling of nonlinear behavior of struc-
tures and components. The response of structural systems under strong dynamic
loads, such as earthquake ground motion, is highly unpredictable and then difficult
to model. It becomes a troublesome problem, when designing complex infrastruc-
ture in regions of high seismic activity. Besides, the application of structural
control technologies for protection of civil structures has been a growing interest
over the last four decades, not only to reduce the dynamic response under extreme
dynamic loads but also to increase the system reliability and for providing human
comfort during everyday environmental loads. These protection systems are also
difficult to be analysed, due to the strong non-linearities exhibited by the devices
commonly used for seismic mitigation.
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Different laboratory facilities and experimental methodologies have been de-
veloped for years, seeking for better understanding of mechanic and dynamic
phenomena in fields relative to earthquake engineering. However, the vast major-
ity of those techniques suffer from technical and physical limitations that restrict
their applicability for assessing real scenarios. In fact, large scale engineering
structures such as bridges and buildings, present a particular problem in terms
of experimental testing. Another experimental challenging issue is connected to
the hysteresis and rate—dependent phenomena. That turns into meaningful when
testing semiactive and passive control systems, where this dynamic behaviour is
introduced into the controlled system by the dissipation devices.

The idea behind this thesis is to evaluate the applicability of a new experimen-
tal technique which is radically more effective than traditional approaches. To do
this we propose to exploit a state of the art of the dynamic testing technique
known as real-time dynamic substructuring. Based on the current knowledge,
we intent to find the conditions under which this technique can be employed for
testing real scale seismic protection system for buildings. We believe that this
technique will enable the engineers to obtain accurate information of the systems
in nonlinear range, increasing the understanding of the whole controlled system
behaviour, and hence, allowing the improvement of designing structures with
added control systems. More efficient control systems imply both cost—effective
seismic protection systems and more resistant structure to earthquake excitation.
The result will be safer buildings, less human cost in terms of death and injury,
and more sustainable infrastructure with increased confidence.

Real-time dynamic substructuring testing (RTDST) is an efficient method for
the assessment of dynamic and rate-dependent behavior of systems subjected to
dynamic excitation. This new and exciting technique offers the prospect of be-
ing able to test prototype adaptive structures in the laboratory under realistic
extreme loading conditions, such as those suffered during earthquakes. RTDST
provides the capability to isolate and physically test critical components of a con-
trolled structure whilst the remain part of the structure is simulated numerically.
These tests can be conduced at real scale and in real time to fully capture any
rate dependency, while allowing for hundreds of repeatable tests. This approach
overcomes significant limitations of traditional testing methods. For instance,
depending on the experimental objectives, RI'DST may have several advantages
over traditional pseudodynamic tests, where unpredictable rate behavior cannot
capture because inertia and damping forces are calculated numerically and ap-
plied slowly to the test specimen. Likewise, it may also have many advantages
over the dynamic shaking table technique traditionally used, mainly when testing
large structures, not only in terms of scale but also cost, geometry and required
physical mass of the structural model. An additional benefit is that the mod-
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els can simulate experiments in advance. This allows the feasibility of a testing
regime to be explored. Simulated results can also give an investigator a degree of
confidence that his test has proceeded as intended or otherwise. The apparatus
models are complex and must account for the dynamics of all the components,
including the controller, servo—valve, actuator and physical test specimen.

Nounetheless, this testing technique suffers from a critical drawback: the delay.
Delay in command signals is a serious issue for dynamic system that needs to act
in real time. RTDST requires a structural numerical model to be fed back with
measurements from the component physically tested. In turn, this component is
loaded in the lab according to the outcomes from that numerical model. This
information exchange must take place in real time with minimum error between
the two parts. But due to the intrinsic dynamics of the laboratory facility which
is being used in the test, delay errors in the feedback signal are unavoidable. The
success of real time dynamic substructuring testing is then highly dependent on
the performance of the actuators which provide the forces (or displacements) to
the component physically tested. Their imperfect dynamics can introduce both
timing and amplitude errors into the signal, which can affect the accuracy of
the performance and may also cause instability. To overcome this, time delay
compensation schemes are commonly used to make corrections on the command
signal. Even if this compensation works properly, it becomes impossible to reduce
such delay error to zero.

Additionally, some systems could be particularly sensitive to the presence of
delay, and even a small delay may drastically affect how they behave. Therefore,
to make sure that RI'DST simulation is accurate and reliable enough, a careful
stability analysis of the whole substructured system should be done. The aim of
such analysis is to determine the critical delay, beyond which, the test no longer
represents the emulated system behaviour, or in other words, to define the con-
fidence interval in terms of delay where the RTDST simulation results can be
guaranteed.

In the next section, we shall present details of how this thesis was arranged
to face this interesting and promising issue.

1.2 Outline of this thesis

As this thesis combines two worlds which have been usually not connected (struc-
tural control and piecewise systems), we consider very unlikely that the reader
knows about both. So that, this document covers several areas in an attempt to
be comprehensive and easy to read for a wide spectrum of readers. Rather than
covering all the issues in deep, the idea is to familiarize the reader with unknown
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fundamental definitions. Fundamental in the sense of being useful to understand
the work presented here. This thesis is organized as follows.

Chapter 2 is devoted to show some basis of structural control systems. The
aim is not to go deep into specific technical, practical or mathematical issues but
to highlight the importance and impact of several types of protection systems,
the devices employed in each case and the main test methods currently used for
their assessment. These information may be useful for readers who are not used
to what structural control techniques means in civil engineering.

In Chapter 3 we present the main features, advantages and disadvantages of
the testing technique known as real-time dynamic substructuring. Our interest
is to show who RTDST can effectively be implemented for testing and designing
control systems for seismic protection, and which circumstances are particulary
challenging in order to achieve reliable simulations of the emulated structure.

In Chapter 4 we present an overview of the main fundamentals of the classical
stability theory for the analysis of linear and non linear systems. The idea is
to familiarize the reader with fundamental definitions and properties exhibits
for smooths system which are necessary to understand the analysis carried out
throughout this thesis. If the reader already knows these mathematical formalisms
can skip this chapter.

In Chapter 5 we present an overview of the qualitative theory of smooth and
piecewise smooth dynamical systems. Rather than covering all the issues, the
purpose is to present the fundamental concepts and definitions, that according
to us, are needed in the study. After a brief presentation on smooth dynamical
systems, we introduce nonsmooth dynamical systems, namely we present some
definitions, invariant sets, stability analysis and numerical analysis emphasizing
particularly the major differences with the classical theory of smooth systems.

In Chapter 6 we intend to analyse the close loop behaviour of a RTDST
when testing a supplemental energy dissipation system for structural control. We
present a stability analysis to highlight the harmful effects caused by delays in
dynamic systems when timing errors are considered on the damper’s respounse.
Our goal is to assess the constraints on delays, in such a way that the stability and
reliability of the closed loop simulation can be guaranteed. This study is addressed
in the context of both classic stability theory for linear and non-linear systems
and the qualitative theory of Piecewise Smooth Dynamical Systems presented in
the previous chapters.

In Chapter 7 we present the description and experimental set—up of a Real-
Time Dynamic Substructuring Test of a civil structure provided with a passive
seismic protection system. Our interest is to show how this kind of test can be
exploited for the assessment and design of current and new protection systems in
earthquake engineering. We show that even when a compensation scheme works
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properly, the RTDST may become unstable and behave very different from the

emulated system.
Finally, Chapter 8 presents the conclusions, remarks and suggested future

works derived from this thesis.
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Chapter 2

Some Fundamentals on
Structural Control

Contents
2.1 Structural control strategies . . . . . .. ... .. ... 8
2.1.1 Passivecontrol . . . . . .. .. ... L. 8
2.1.2 Activecontrol . . . . ... oo 14
2.1.3 Semi-active control. . . . ... ... 15
2.2 Structural control algorithms .. ............ 18
2.3 Testing of seismic protection system ... ...... 20
2.3.1 Shaking table method . . . . ... ... .. ... ... 20
2.3.2  Pseudo—dynamic (PsD) method . . . . . ... ... ... 22
2.3.3 Effective force testing (EFT) . . ... ... ... .... 23
2.3.4 PsD with substructuring . . . . ... ... ... 0L 24
2.3.5 Real-time substructure testing . . . ... ... ... .. 24

Structural control had its roots primarily in aerospace industry, principally,
in field concerning to flexible space structures. It was rapidly moved into civil
engineering. Over the last four decades, there has been a growing interest in
the application of control technologies for civil structures in order to reduce their
dynamic response and to increase the system reliability, not only for protection
against dynamic extreme loads (earthquakes, blasts, crashes, strong winds, ex-
treme waves, etc.) but also for providing human comfort during everyday envi-
ronmental loads [Housner et al., 1997].

The first real implementations of structural control, were based on base isola-
tion, viscoelastic dampers and tuned liquid dampers in the 1970’s. Many years
later the active control concept appeared and the first real implementation was

7
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made in the 1l-storey Kyobashi Seiwa building in Tokyo—Japan, for reducing
the building vibration under strong winds and moderated seismic excitations
[Sakamoto et al., 1994]. Recently, the techniques of semiactive and hybrid con-
trol were proposed for structural control and their implementations have been
made successfully in Japan and USA. Several state—of-the—art reports provide a
detailed survey, see e.g. [Spencer and Nagarajaiah, 2003], [Dyke, 2005].

This chapter is devoted to present some basis of structural control systems.
The aim is not to go deep into specific technical, practical or mathematical issues
but to highlight the importance and impact of various types of protection systems,
the devices employed in each case and the main test methods currently used for
their assessment.

2.1 Structural control strategies

Different structural control strategies have been developed. Generally speaking,
we have three principal groups: (i) passive control, where vibratory energy is dissi-
pated by increasing some structural parametric values (like stiffness and damping)
without requiring external energy; (ii) active control, which adds energy to the
structure in opposite direction of the seismic forces to counteract them; and (iii)
semi—active control, which dissipates energy like passive control, but now device’s
dissipation capacity can be controlled on—line, so device properties such as stiffness
or damping are changed by means of hydraulic, magnetic or electric commands.
In what follows, we present a brief description of each strategy and give some
examples.

2.1.1 Passive control

Passive energy dissipation systems encompass a large spectrum of materials and
devices for adding damping to the structural system (also stiffness and strength
are usually increased). They can be used for both natural hazard mitigation
and rehabilitation of aging or deficient structures. Passive control systems dis-
sipate energy using the structure’s own motion to produce relative movement
within the device and develop local control forces. Two principles are used to
dissipate energy: conversion of kinetic energy to heat and transference of energy
among vibration modes |Skinner et al., 1993|, |Constantinou and Symans, 1993|.
The devices that pertain to the first class are based on frictional sliding, yielding
of metals, deformation of viscoelastic solids or fluids. And those of the second
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group are fluid orificing and supplemental oscillators, which act as dynamic vi-
bration absorbers |Cahis et al., 2000].

The added stiffness reduces the dynamic response of the structures by absorbing
and dissipating energy, which when combined with the change in initial frequency,
helps the structure avoid resonance. Since passive systems involve no external
power, they are inherently stable. Passive strategies are characterized by its sta-
bility, simplicity, reliability and have a low cost of maintenance and installation.
However, its main drawback rely on the fact that they are built carefully tuned for
specific operating conditions and cannot adapt to changes and unknown distur-
bances. Examples of passive systems include among others: base isolation, tuned
mass dampers (TMD), tuned liquid dampers (TLD), metallic yield dampers, vis-
cous fluid dampers and friction dampers.

Tuned Mass Dampers. Passive tuned mass damper systems, consist of an
auxiliary mass, a spring and a damper, which are attached to a structure in order
to reduce its dynamic response (Fig. 2.1). The auxiliary mass limits the motion of
the structure when it is subjected to a particular excitation causing the damper to
resonate 180° out of phase with the structure motion. The difference in the phase
produces energy dissipation by the TMD inertia force acting on the structure.

3
QO

Figure 2.1: Tuned Mass Damper System

Nonetheless, tuned mass dampers are relatively ineffective during earthquakes
due to their inability to reach a resonant condition and therefore dissipate energy
under random excitation [Kwok and Samali, 1995|. In the last years, tuned mass
dampers have been installed in a number of buildings worldwide to reduce building
vibration, particularly under wind excitation. A recent example is one of the
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world’s tallest buildings, the Taipei 101 in Taiwan (See Figure 2.2), which has
been successfully equipped with a tuned mass damper to control the excessive
sway under large wind. The building hosts a massive pendulum with dampers, an
800-ton sphere 18 feet across swings from the 92" floor to control wind-induced
oscillation.

Figure 2.2: Building Taipei 101 and the 800—ton steel sphere used as TMD.

Base Isolation Systems. A base isolation system consists of a set of flexible
support elements, typically rubber bearings, placed at the foundation level as
shown in Figure 2.3. These support elements are designed in such a way that
the natural period of vibration of the isolated structure is much greater than the
dominant period of the expected excitation. Actually, the whole system behaves
as a single degree of freedom system due to, under strong dynamic loads, the
displacements are absorbed by the supports while the relative structural displace-
ment remains negligible [Kelly, 1996].

Base isolation technology offers a cost—effective and reliable strategy for miti-
gating seismic damage to structures. It is best implemented in locations of high
seismicity for reducing lateral design forces or for existing structures needing to
be upgrade in order to satisfy current safety requirements. For cost effectiveness,
base isolation needs to be considered in the planning stages of the building project.
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Figure 2.3: Base isolation system and a typical rubber bearing for base isolation.

A lot of examples of real implementations can be found in the literature. Figure
2.4 shows a worship structure seismically isolated in Siracusa (Italy) and the hys-
teretic isolators installed on it, for further information see [Serino et al., 2008].

Frictional Dampers. Frictional damping dissipates energy due to the heat
caused by friction between moving bodies! in contact. A frictional damper con-
sists of the friction surface (e.g. steel) clamped together by high strength bolts
with slotted holes. Friction dampers are designed to slide over each other during
a strong earthquake, the slip force is designed large enough so that no sliding is
caused by wind forces. The beneficial approach to passive damping is that because
energy is removed, the response cannot become unstable. However, frictional
damping looses effectiveness during large seismic excitation [Hanson and Soong, 2001].

Metallic Yielding Dampers. Metallic Yielding Dampers (MYDs) are prob-
ably the most familiar to structural engineers, since its concept is the same as
typical steel seismic force resistive elements such as steel moment frames and
braces. Beam—column connections yield for steel moment frames to absorb the
seismic energy. The braces also buckle to absorb the seismic energy. However,
the biggest difference between MYDs and typical steel system is the yielding lo-
cation for MYDs is not in the gravity load carrying elements (Further details in
|Hanson and Soong, 2001]).

!Moving plates specially treated to increase the friction between them.
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Figure 2.4: Worship structure seismically isolated in Siracusa (Italy) and its hys-
teretic isolators.
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Figure 2.5: Frictional damper system.

Fluid Viscous Dampers. FVDs have been widely used in aerospace and mil-
itary applications since the early 1900’s. After the end of the cold war, its tech-
nology became available for civilian usage. They counsist of a closed cylinder
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Figure 2.6: Structure equipped with fluid viscous dampers in diagonal brace con-
figuration and typical FV device.

containing a viscous fluid like oil. A piston rod is connected to a piston head with
small holes in it. The piston can move in and out of the cylinder. As it does
this, the compressible silicon oil is forced to flow through holes in the piston head
at high velocity causing friction and generating heat, which is in turn, radiated
into the surrounding air. This hydrodynamic process dissipates seismic energy
[Miyamoto and Hanson, 2004]. A common example of viscous dampers is a shock
absorber in a car or the devices mounted on building doors to prevent the door
from slamming shut.

FVDs add viscous damping to the structure and can reduce acceleration and dis-
placement for the most of the frequency range. The dampers are usually installed
as part of a building’s bracing system using single diagonals. They are the most
useful where engineers desire to reduce displacement without increasing the struc-
ture’s frequency |Constantinou and Symans, 1992].

A real application example is the London Millennium Footbridge shown in
Figure 2.7, a pedestrian—only steel suspension bridge crossing the River Thames
in London. Unexpected lateral vibration (resonant structural response) caused
the bridge to be closed on June 12 2000. After extensive analysis, the problem
was fixed by the retrofitting of 37 fluid—viscous dampers to control horizontal
movement and 52 tuned mass dampers to control vertical movement (Further in-
formation in [Dallard et al., 2001]).
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Figure 2.7: London Millennium Footbridge (UK) and fluid viscous damper loca-
tion.

2.1.2 Active control

Active control systems supply control forces to the structure in order to reduce
its own motion. These forces are obtained from an algorithm based on feedback
information from sensors that measure the excitation or/and the response of the
structure [Soong et al., 1991], [Preumont, 1997|. Typically, an active control sys-
tem consists of three main components: (i) a monitor, which is the sensors and the
data acquisition system; (ii) a controller, a module that decides on the course of
action; and (iii) an actuator, a set of physical devices that execute the instructions
from the controller. Civil structures require actuator systems (such as hydraulic
systems) which are capable of generating large forces. The precise application of
such control forces usually demands large power requirements. This conditional
becomes particularly critical during seismic events when the main power source
to the structure may fail [Soong, 1990].

The merit of the active control systems is that they are effective for transient
vibration and also for a wide frequency range. Unlike passive systems, active
control is able to adapt to different loading conditions and to control different
vibration modes [Spencer et al., 1997a]. However, because external energy is in-
troduced, it may induce instability into the whole structural system by unex-
pected dynamics changes or erroneous feedback information. In addition, cost
and maintenance of such systems is significantly higher than that of passive
devices. Active control strategies include active mass damper (AMD), hybrid
mass dampers (HMD), active tuned liquid column dampers, active bracing, ac-
tive base isolation, multiple connected buildings, etc., [Soong and Spencer, 2002],
[Nishimura and Shidomaira, 2003].
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Active mass damper . An auxiliary mass supported by rollers is attached to
a transfer system as shown in Figure 2.8. The idea in that the mass oscillates at
the same frequency of the structure but with a phase shift. The transfer system
usually consists in a hydraulic actuator or an electric motor. It is used in order
to provide a control force to drive the additional mass and counteract or mitigate
the motion of the structure [Yoshida et al., 1995], [Ricciardelli et al., 2003].

Actuator

o - Sensor

—=LJA
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Computer

Sensor
]

Figure 2.8: Structure equipped with an active mass damper (AMD)

The Kyobashi Seiwa Building in Japan (1989) was the first full-scale applica-
tion of active control technology. Two active mass drivers were installed on the
top floor to reduce the maximum lateral response associated with building vibra-
tions caused by earthquakes and strong winds [Kobori et al., 1991]. Several real
applications can be reviewed in [Cao et al., 1998] and [Nishitani and Inoue, 2001].
Besides, Figure 2.9 shows the Herbis Osaka Building in Osaka, Japan. An AMD
system installed at the 38th floor level was completed in 1997. Two AMD’s, which
can move only in one direction, were installed to control both the lateral and tor-
sional direction of the building (Further details in |Yamamoto et al., 2001]).

2.1.3 Semi—active control.

Semi-active control strategies arise as a combination of the positive aspects of
both passive and active control systems. They utilize the motion of the struc-
ture to develop dissipative control forces but also use feedback measurements to
alter the characteristics of the dissipative mechanism in real-time. Semi-active
control is particularly promising in protection of civil engineering structures, in
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Figure 2.9: Herbis Osaka Building in Osaka, Japan and a prototype of AMD.

the sense that they potentially offer the reliability of passive devices, maintaining
the versatility and adaptability of fully active systems at low—power requirements
[Casciati et al., 2006]. In the literature, important studies along with experi-
mental results have showed that appropriately implemented semi—active control
performs significantly better than passive control and has the potential to achieve
the major capabilities of fully active control [Symans and Constantinou, 1999,
|[Jung and Lee, 2002|. The most common semiactive control devices are: variable—
orifice fluid dampers, controllable friction devices and controllable—fluid dampers.
In [Housner et al., 1997] and [Marazzi and Magonette, 2001], interesting surveys
on semiactive control systems can be found.

Variable—orifice fluid dampers. It behaves as linear viscous dampers with
adjustable damping. Its operation principle consists of controlling the damping
coefficient by adjusting the opening of the internal valves changing the flow resis-
tance of the hydraulic fluid. Thus, large forces can be achieved with low external
power |[Kamagata and Kobori, 1994], [Serino and Occhiuzzi, 2003]. Several real
applications on high-rise buildings have been accomplished, for instance, these
kind of devices have been implemented on a 5—storey office building located in
Shizuoka City, Japan [Kurata et al., 2000].
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Variable—Friction Damper. It dissipates energy by forces generated on fric-
tion surfaces. These forces can be varied by means of electrical signals or gas pres-
sure, which vary the friction coefficient of the device. In [Dowdell and Cherry, 1994]
the ability of these devices to reduce the inter—story of a seismically excited struc-
ture was investigated. Also, in [Feng et al., 1993], a study of these devices placed
in parallel together with a seismic isolation system is presented.

Controllable fluid dampers. In these devices are similar to passive fluid vis-
cous dampers, but in them some properties of their internal fluid can be modified
by means of electric or magnetic field, resulting a modification in the quantity
of force absorbed. The principal advantage of this type of devices is that the
piston is the only moving part; consequently, it can change rapidly from a state
to another (e.g. from viscous to a semi-solid in milliseconds) when exposed to an
electric/magnetic field. Semiactive controllable fluid dampers can be: (i) Elec-
trorheological (ER), if the smart fluid changes rheological properties? in presence
of an electric field; and (ii) Magnetorheological (MR), if the smart fluid properties
change under different magnetic fields. Several ER dampers have been developed
and adapted to civil engineering structures. Important developments can be re-
viewed in [Masri et al., 1994], [Gavin, 2001] and [Leitmann and Reithmeier, 2002]
among others.

MR dampers have become as an alternative of ER damper. When the exter-
nal signal is applied (a magnetic field), the inside fluid becomes from semisolid
to viscous state and it exhibits a viscoplastic behavior. MR devices typically
have very low power requirements with voltage between 12-24V and current de-
mand of around 1-3 amps®, offering highly reliable operation at modest costs
[Poynor, 2001], [Gravatt, 2003]. Many numerical simulations and laboratory tests
have been accomplished to demounstrate the effectiveness of MR devices for seis-
mic response reduction. Some interesting documents are [Dyke et al., 1997a,
[Dyke et al., 1997b| and [Renzi and Serino, 2004| among others.

Double-ended MR dampers are generally used for semiactive control applica-
tions in civil structures (See Figure 2.10). Due to the presence of nonlinearities,
in particular the hysteresis phenomenon, the modelling of these devices is quite
challenging being lot of literature devoted to this topic [Spencer et al., 1997b|,
|Yang et al., 2004], [Ikhouane and Rodellar, 2007, [Aguirre et al., 2008] and more.
An example of real application is the Dongting Lake Bridge (Fig. 2.11), a cable—-
stayed bridge crossing the Dongting Lake in southern central China. The world’s

2Rheology is the study of the flow of matter, mainly liquids but also soft solids or solids
which, under particular conditions, flow rather than deform elastically.
3Note that common car batteries can supply this power.
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Figure 2.10: Schematic of a full scale MR damper

first application of MR dampers on cable—stayed bridge to suppress the rain—
wind-induced cable vibration. For further details see [Chen et al., 2003].

Figure 2.11: Dongting lake bridge in Hunan, China and MR dampers attached to
the stay cables.

2.2 Structural control algorithms

During the last two decades, various types of structural control strategies have
been applied to the control of civil engineering structures. High—quality control
systems require the design of the feedback controller with specific control objec-
tives in mind, related to meaningful structural performance measures, while at
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the same time addressing device (or actuator) and system nonlinearities and the
uncertainties in the system and excitation models. Depending on the available
information for each controlled structure, the mathematical model associated,
types of measurements, actuators and disturbances, each control solution can be
suitable only for one specific type of structure and not for all kinds [Soong, 1990].
Due to this thesis is not focused in control theory, in what follows we shall limit
to mention some strategies commonly used in civil engineering fields.

Most of the research efforts on control law design for civil engineering ap-
plications have been done on extending linear control methodologies, primarily
some variant of Hy control |[Kucera, 2007]|, to structural control problems, see
for instance [Spencer and Nagarajaiah, 2003|, [Miyamoto and Hanson, 2004| and
[Ang et al., 2005]. At the controller design stage, potential nonlinearities regard-
ing to the structural and excitation models are either: (i) neglected, for example
in the context of the well known clipped—optimal control design for semi-active
systems [Dyke et al., 1996]; or (ii) approximated considering linearization tech-
niques |Erkus and Johnson, 2006|. To consider the nonlinearities arising from the
limitations of the actuators, heuristic feedback controller design techniques have
been suggested; methods such as hysteretic, dissipation—based, and energy—based
approaches, e.g., |Gavin, 2001|, [Jansen and Dyke, 2000].

One of the most prolific field on literature has been devoted to semiactive
control. The most relevant works deal with strategies such as: Lyapunov based
control, e.g [Jansen and Dyke, 2000|; Ho control, e.g. [Yang et al., 2002]; sliding
mode control, e.g. [Moon et al., 2003]; QFT control, e.g. [Sanz, 2005] and back-
stepping control, e.g. |Zapateiro et al., 2009].

Note that most aforementioned methodologies primarily focus on the mean
square structural response and do not explicitly account for uncertainties in the
system and excitation models. Thus, some researcher found that the optimal
strategy in structural control design with uncertainties should be that which max-
imizes the reliability. Theoretical reliability—related control methods, such as p—
synthesis and the many offshoots of these, have become the standard tools in the
design of feedback controllers that are robust to model uncertainty, where a com-
pact set of possible models for the system is chosen [Dullerud and Paganini, 1999],
[Yoshida et al., 1995].
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2.3 Testing of seismic protection system

In structural control, similar to other application fields, the main objective is to de-
velop integrated control methodologies that are robust, effective, implementable,
reliable and with the minimum control effort. However, sometimes it is difficult
due to some problems such like nonlinearities, uncertainties, dynamic coupling
and measurement limitation. To assess structural resistance and seismic protec-
tion system behavior under dynamic loads, a test method that emulates the full
dynamics of the system is needed. This section gives a brief overview of several
well-established testing methods that are currently the most widely used testing
methods in seismic engineering research.

2.3.1 Shaking table method

The most natural experimental technique used for earthquake engineering is shak-
ing table testing. A specimen representing the structure (usually scaled down for
practical reasons) is fixed on top of a rigid platform (table), which is connected
to one or more hydraulic actuators that control the movement of the platform in
one or more degrees of freedom and vibrates to replicate ground motions.
Effective shaking-table testing of structural models started to be carried out in
the late 1960’s and early 1970’s. This came as a result of the advances in electro—
hydraulic servo equipment, as well as improvements in computer hardware and
instrumentation, for control and acquisition of data [Aristizabal and Clark, 1980].
Such work was mainly initiated in the US with the set—up of dynamic testing facili-
ties at the University of Illinois at Urbana—Champaign [Sozen et al., 1969] and the
University of California at Berkeley |Bouwkamp et al., 1971|. Since then, shaking
table testing has been widely adopted in earthquake engineering research cen-
tres worldwide. Differences in shaking tables generally relate to the number and
types of degrees of freedom that can be controlled during testing, the mass that
can be supported and the actuators’ movement limits. For instance, the shaking
table system in the laboratory of the Department of Structural Engineering at
University of Naples “Federico II” is shown in Figures 2.12 and 2.13. Two square
tables (3m side) can be moved asynchronously in order to reproduce the seismic
effects on structures with long spans. For each, the maximum load is 200kN with
a frequency range of 0-50Hz, peak velocity of lm/sec and total displacement of
500mm. The hydraulic system has 12 motor pumps groups with a maximum total
capacity of 2500lit/min.

Shaking table testing better represents live earthquake experience inside a
laboratory. Even though the shake table test might be considered the most ad-
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Figure 2.12: Asynchronous shaking table system at University of Naples “Federico
.

Figure 2.13: Hydraulic system which supplies oil pressure to shaking tables at
University of Naples “Federico I1”.

vanced form of seismic testing, it is also the most expensive, as it requires that
several skilled personnel and costly equipment. Note as well that, in shaking
table testing only base vibration is introduced and loads due to wind for exam-
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ple cannot be modelled. Additionally, the limited power of the actuators that
drive the table imposes the use of reduced scale specimens, what in turn, in-
troduces difficulties and uncertainty in the interpretation of experimental results
|[Williams and Blakeborough, 2001|. Consequently, considerable effort and fund-
ing has been placed over the past 40 years in the construction of continuously
larger and more powerful shaking table facilities around the world. As an exam-
ple, on July 14 2009, Colorado State University and Simpson Strong-Tie along
with other partners successfully led the world’s largest earthquake shake table test.
A ground motion equivalent to a 2500—year earthquake (similar to a 7.5 Richter
magnitude) was applied on a seven-story, 40-foot by 60-foot condominium tower
with 23 living units. The test took place on the nowadays world’s largest shake
table (known as E-Defense) in Miki City, near Kobe, in Japan (Further details in
www.strongtie.com/about /research /capstone.html).

2.3.2 Pseudo—dynamic (PsD) method

The pseudo—dynamic test method is a computer controlled testing technique that
enables dynamic testing of structures into the non-linear range while using the
same loading equipment that is used for static or quasi-static testing*. The
structure to be analyzed is spatially discretised according to a lumped mass ap-
proximation and actuators are located at these points to provide the loading.
This experimental concept originated in Japan as early as 1969 following failed
attempts to realize real-time hybrid tests. [Takanashi and Nakashima, 1987| pro-
vide general overviews of the method and historic development.

The PsD method can be considered a hybrid testing method as it combines
online computer simulation of the dynamic behaviour of a structure with infor-
mation measured directly from the structure. The test structure is physically
attached through the actuators against an very stiff reaction wall. A computer
calculates the structural response by a time-stepping integration method con-
sidering the idealised lumped—mass model of the structure subject to the input
earthquake motion . While the inertial and viscous damping forces are modelled
analytically, the solution of the equations of motion provides the displacements
to be applied to the structure at each time step. These displacements are physi-
cally applied by actuators in a quasi-static manner® as long as the reacting forces
are measured experimentally to be used in the equations of motion for the next
time step [Mahin et al., 1989], [Shing et al., 1996a]. The actual size of the reac-

*In quasi-static testing loads are applied a very slow rate.
Slow loading of the structure is important so as not to excite its inertial and damping
properties, which are already accounted.
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tion wall is also important to accommodate large scale structures. For instance,
Figure 2.14 shows the reaction wall at the European Laboratory for Structural
Assessment (ELSA) with 16m high, 20m long and 4m thick [Donea et al., 1996].

Figure 2.14: Pseudo-dynamic test set—up using the reaction wall at the European
Laboratory for Structural Assessment (ELSA).

Positive attributes of the PsD method are that large massive structures can be
tested at full scale using simple devices and low hydraulic power. As the conven-
tional test is performed relatively slowly, arbitrarily large ground excitations can
be used, and there is good opportunity for detailed observation of the structural
behaviour and failures throughout the test [Shing et al., 1996b]. However you
cannot examine rate-dependent behaviours, e.g., the effectiveness of fluid viscous
dampers added to the structure could not be assess.

2.3.3 Effective force testing (EFT)

EFT is a dynamic testing procedure to apply real-time earthquake loads to large—
scale structures that can be simplified as lumped mass systems. The test setup
is very similar to that of the PsD method. The test structure is anchored to a
fixed base, and dynamic forces are applied by hydraulic actuators to the center of
each story mass of the structure. The force to be imposed (effective force) is the
product of the each lumped mass and the ground acceleration record, and thus is
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independent of the structural properties such as stiffness and damping, and their
changes during the test. Unlike in a PsD test, the loading can be determined in
advance of the test and no numerical integration is needed [Shield et al., 2001],
|Dimig et al., 1999].

Motions measured relative to the ground are equivalent to the response that
a structure can develop relative to a moving base as in a shake table test or an
earthquake event. But, as for PsD testing, the EFT method is is only suitable
for structures that can be represented as a series of lumped mass systems. The
major limitation of EFT lies in the inability of hydraulic actuators to produce
accurately a force at the natural frequency of a lightly damped structure, which
was attributed to the interaction between the actuator piston velocity and the
actuator control [Zhao et al., 2003].

2.3.4 PsD with substructuring

A special set-up procedure for the pseudo-dynamic test, known as “sub—structuring”,
enables portions of a structure to be tested. The idea is to apply physically quasi—
static loading on a sensitive part of the structure while the remaining part is nu-
merically simulated on a host computer together with the inertial and damping
characteristics of the sensitive part. Sub—structuring method allows relatively in-
expensive dynamic testing of large multi-degree of freedom (MDOF) structures
and also makes possible focusing on important elements of a structure such as
isolation bearings [Pegon and Pinto, 2000].

The technique generally provides an efficient way to gain valuable information
on the performance of different parts of a structure. The major advantage is that
only the part of main interest is physically tested, providing infinite repeatability
of the remainder. Despite this, some disadvantages comes: first, the failure mech-
anism for the structure must be assumed beforehand, and second, the creation of
the substructure interface makes the experiment more difficult to be implemented
and controlled [Pinto et al., 2004].

2.3.5 Real-time substructure testing

Real-time substructure testing (RTST) may be considered a derivative of sub—
structured pseudo—dynamic testing |[Nakashima et al., 1992]. An RTST is a hy-
brid method involving a physically tested part and a numerically modelled part;
the two substructures are complementary to form the complete emulated struc-




2.3. Testing of seismic protection system 25

ture. During the RTST, the physical substructure interacts, by means of a feed-
back loop, with a computational model of the structure (numerical substructure);
both substructures send and receive data from each other, because they need
to know the state of the other part to work out their own. This interaction
most take place in real-time to achieve reliable results, however, because of the
mechanical characteristics of the transfer system in between the numerical and
physical substructures, the presence of delays is unavoidable |Darby et al., 2002],
[Wallace et al., 2005a].

As PsD with substructuring testing, RTST allows one to concentrate on the
behaviour of a specific part of the structure, while having the rest of the structure
modelled separately with infinite repeatability. When such a real-time experi-
ment is conducted, the damping and inertial properties of the specimen are no
longer computed but are fully accounted for through the measured force feedback.
This method removes the uncertainty in modelling complex structural parts as
these may be tested physically being especially convenient to study the behaviour
of structures that contain highly non-linear and/or rate-dependent parts within
them [Sivaselvan et al., 2004].

Due to this thesis is mainly devoted to the stability analysis of a rate—dependent
device for seismic protection which is suppose to be tested in lab by means of a
real-time substructuring test, this testing method shall be widely discussed in the
next chapter.
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Rate—dependent effects are often significant when testing concrete structures
(to a lesser extent for steel structures) but of great value when evaluating the
behaviour of energy dissipation devices as part of seismic protection systems,
like viscous dampers added to a structure. Throughout the last decades, shak-
ing tables have been traditionally used to provide real-time loading, allowing
the engineer to measure and evaluate the dynamic behaviour of nonlinear and
velocity—dependent structural systems. However, as it was pointed out before,
this testing method presents serious drawbacks concerning size and power limits,

what generally imposes the use of reduced scale specimens.

27



28 CHAPTER 3. REAL-TIME DYNAMIC SUBSTRUCTURING TEST

Real-time dynamic substructuring test (RTDST) is a promising dynamical test-
ing method in earthquake engineering as it allows, theoretically, the assessment of
dynamic behavior of structural systems in nonlinear range under realistic extreme
loading conditions, even when considering large structures at full-scale.

In this chapter, we present the main features, advantages and disadvantages of
this method. Our interest is to show how RTDST can effectively be implemented
for testing and designing control systems for seismic protection, and which cir-
cumstances are particulary challenging in order to achieve reliable simulations of
the emulated structure.

3.1 An overview of RTDST

Real-time dynamic substructuring, also called real-time hybrid simulation or
real-time pseudodynamic testing, is a relatively new method for testing in earth-
quake engineering; it has being growing in acceptance as a consequence of ad-
vances in computing power, digital signal processing and hydraulic control. Real-
time substructure testing is essentially, a fast version of the substructure approach
to PsD testing described earlier in §2.3.2. It is useful when testing large scale civil
engineering structures under dynamic loads, because critical components can be
tested at full-scale! even if they exhibit rate-dependent behaviour. As before, the
system is split up into two principal subsections: the physical (experimental) and
numerical (analytical) substructures, keeping as the physical substructure those
components of the structure that are critical due to their complexity, containing
typically, unknown or non—-modelled behaviour with strong non-linearities. The
challenging issue is to ensure that the physical and the numerical substructures
together behave in the same way as the whole real system [Neild et al., 2005], i.e.,
the emulated structure.

Figure 3.1 shows a conceptual view of real-time substructuring test considering
a building with a tuned mass damper (TMD) at the top floor. Two different
settings up are sketched: the first one extracting only the TMD from the sys-
tem and using reaction wall facilities for the test; and the second one, extracting
the upper floor with the TMD and using shaking tables facilities. In a typical
displacement—controlled simulation, the displacements computed by the numeri-
cal substructure are applied to the physical specimen, and the resisting force is
measured and fed back into the numerical substructure. Whilst in a PsD test only
the static restoring force is fed back, in a real-time test the fed back force will
also include damping and inertia components (therefore they do not need to be

! This avoids scaling effects problems for material such as reinforced concrete [Abrams, 1996
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included in the numerical substructure). For earthquake loads, this means that
each cycle through the loop in the figure, must be completed in a time-scale of
a few milliseconds. Consequently, this feedback loop needs very rapid computa-
tion and efficient communication between the two substructures, as well as robust
control [Gawthrop et al., 2007].
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Figure 3.1: Conceptual view of a RTST test. (a) The emulated structure. (b)
RTST by using an actuator. (¢c) RI'ST by using a shaking table.

RTST has its origins in a kind of component testing so—called hardware—in—
the—loop (HIL) which has been used in a variety of electronic and mechanical
engineering applications. Originally, the hardware component (an electronic con-
trol unit or a real engine) and the software models (which simulate the behaviour
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of the rest of the system) can communicate with each other via electrical signals
|Faithfull et al., 2001]. In extending the HIL to test mechanical component, in-
stead of electrical signals, forces and velocities are required to be transferred to
the specimen (typically by means of a set of actuators), therefore an additional
dynamic transfer system must be included in the loop [Wagg and Stoten, 2001].
A extensive review of HIL is given by [Bacic, 2006].

The first reported RTST was performed on a viscous damper located at the
base of a multi-storey building [Nakashima et al., 1992]. In that work, only the
damper was tested physically while the building was modelled as a linear single
degree of freedom (SDOF) system, so that the computations involved were very
simple. [Darby et al., 1999] have also performed real-time tests using a linear
SDOF numerical substructure, with the physical test specimen being a stiffness,
damping or inertia element. As it shall be explain later, RI'ST requires to com-
pensate for delay, the signal to be applied on the test specimen. In this direction,
|Horiuchi et al., 1999] investigated the use of simple polynomial curve fits and
found that, by using a third—order function, stable and accurate results could
be achieved. As well, [Nakashima and Masaoka, 1999| demonstrated the effec-
tiveness of the extrapolation and interpolation procedures, through a series of
real-time tests applied to a multi degree of freedom (MDOF) structure treated
as SDOF models.

The concept of pseudodynamic testing was successfully extended to real-time
scales for testing nonlinear structures as in [Shing et al., 1996b|; and also ex-
tended for testing velocity—dependent components as in [Magonette et al., 1998]
and [Jung and Shing, 2006]. The integration scheme is an important part of a
RTST test as it relates the unknown values for a given time step to the known
values at one or more previous time steps. |[Jung et al., 2006| presented the im-
plementation details of a real-time PsD test system that adopts an implicit time
integration scheme along with a theoretical system model which incorporates the
dynamics and nonlinearity of the test structure and also actuator compensation
for delays.

Some test have been also done using shaking table facilities as the transfer
system for RTST experiments. For instance, [Neild et al., 2005] separated the
large structural mass of the single DOF system into two parts and selected the
smaller one as the experimental substructure and the larger one (with attached
spring and dashpot) as the numerical substructure to conduct a shaking table
test. Similarly, a RTST for the shaking table test is proposed in [Lee et al., 2007]
where the upper part of a structure is chosen as the experimental substructure
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and the lower part is considered as the numerical one. The validity and accuracy
of the proposed technique is proven by obtaining good agreement between exper-
imental and numerical results. As well, [Ji et al., 2009] performed a substructure
shaking table test to reproduce large floor responses of high-rise buildings at full-
scale. Due to various certain capacity limitations, a rubber-and—mass system was
proposed to amplify the table motion in order to reproduce such a large responses.

Additionally, real-time substructuring test has been recently used for testing
semi-active control devices, |Christenson et al., 2008| conduced a test for three
large—scale MR fluid dampers simulating the seismic response of a three—storey
steel frame structure and presents a technique called virtual coupling which is used
to ensure an appropriate tradeoff between performance and stability. Real-time
simulations have been also used in automotive industry for testing novel suspen-
sion systems and in relative areas to Mechanical Engineering. For instance, in
[Wallace et al., 2007] a real-time dynamic substructuring test of a helicopter ro-
tor blade coupled with a lag damper from the EH101 helicopter is presented; the
results revealed how the inclusion of a real damper produces a more realistic rep-
resentation of the dynamic characteristics of the overall blade system involving
the hysteretic dynamic profile due to the nonlinear behaviour of the dampers.

3.2 How RTDST works

To carry out a real-time dynamic substructuring test, the component of interest
is identified as the physical substructure, extracted from the system and fixed into
an experimental rig. Those important parts are tested experimentally while the
remainder of the structure is modelled numerically (See Fig. 3.1). To link the test
specimen to the numerical model, a set of systems should be connected all together
as shown in Figure 3.2, where through a block diagram of a substructuring test,
the systems comprising each substructure are sketched.

Roughly speaking, we can identify the next main systems. A numerical model
which includes the mathematical model of the structure and the time integration
scheme used to solve it. A compensator which allows the signal to be corrected
and compensated for delay errors. A transfer system which makes possible the
physical transfer of force and velocity from the numerical model to the specimen;
it comprises both hardware (e.g. an actuator) and software (e.g. a control law)
components. The specimen which is the physical part of the emulated structure
to be actually tested in the lab. And finally, a measurement system which is
required to get back information from the specimen response, it comprises trans-




32 CHAPTER 3. REAL-TIME DYNAMIC SUBSTRUCTURING TEST

- NUMERICAL|- - - - - - - B EECREEEEES PHYSICAL} - - - - - - - - - - - ]
I [} I
: Correction / . Actuator | Servo-valve :
! Compensation 17| controller T Actuator :
| 1 x |
| i Y |
i merca |y | Vesswenent |, cpoomen |
| mode [} |
| [} |
| I !

Figure 3.2: Block diagram of a substructured system.

ducers, signal conditioners, data acquisition system and software (e.g. a digital
filter).

Considering the external excitation and the current state of the system, the
displacements along the degrees of freedom of interest are calculated solving the
numerical model by time-stepping integration. The numerical model is often
assumed to behave linearly in essence, but more complete models may include
nounlinearities which must be attended when adopting the numerical time inte-
gration technique. Once calculated, this displacement is passed into the delay
compensator. The corrected/compensated signal is then passed to the actuator
controller which in turn, generates the signals to drive the actuator?. Now, these
displacement are imposed on the specimen while the forces required to impose
them are measured and passed back to the numerical model. Thus, the next in-
tegration step can be solved by updating the excitation and the system’s states.

To accurately represent the whole structure, the entire aforementioned process
must take place in real-time and both, the physical and numerical substructures,
must operate in parallel with minimal errors at the interfaces between them.
Therefore, it is crucial that the error between the displacements calculated from
the numerical model and those imposed by the actuators on the physical substruc-
ture are minimized. In what follows this issue shall be discussed comprehensively.

*Note that the transfer system is typically a single (electric or hydraulic) actuator with its
controller, but it may also be a more complex test facility like multiple actuators (for multiple
DOF control) or shaking table.
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3.3 Saturation, delay and instability

Like for some techniques in structural control, real-time substructuring test re-
quires performance of all the computations, application of displacements (or
forces) and acquisition of the measured responses, within a very small time frame.
However, in consequence of the complexity in solving the numerical model and
mainly due to the mechanical characteristics of the transfer system used, the
presence of delay errors on command signals are unavoidable. In real-time test-
ing, there is a delay between a command signal being sent to an actuator and
its moving to the desired position, what becomes more critical when operating
hydraulic actuators® where the response time is larger. The force fed back from
the experiment to the numerical model is therefore incorrect, since it is measured
before the actuator has reached its target position.

In some cases, this delay error may be small and can be neglected, but it is
normally large enough to affect the overall dynamics and may cause instability
|[Wagg and Stoten, 2001|. For a linear system, |[Horiuchi et al., 1999| have shown
that this error introduces additional energy into the system, being equivalent to
negative damping. This can distort the simulation results and, if the negative
damping exceeds the inherent structural damping, cause the test to become un-
stable. As well, [Wallace et al., 2005a] showed how if the delay in the transfer
system is less than a critical delay, the substructured system is stable; neverthe-
less, they also pointed out that typically, the delay of the transfer system is larger
than the critical one, and then, oscillations which increase exponentially in ampli-
tude are developed in the simulation. As a matter of fact, let us consider a single
degree of freedom oscillator with constant delay 7 in the stiffness element. Figure
3.3 shows the collection of maximum oscillator’s displacements in free vibration
varying 7, the larger the delay the larger the response.

Hence, it is essential for the stability, accuracy and reliability of the simulation,
to make corrections and compensation on the signals being transmitted between
numerical and experimental substructures |Wallace et al., 2005b], as otherwise,
the errors may cumulate during the iterations and significantly alter the simula-
tion outcome.

To avoid wrong feedbacks when setting up a RTST simulation, some physical
saturation effects must be also considered, since the overall accuracy and realism
of the test may decrease as realistic loading are no longer achieved. Four satura-
tion effects can occur within a test constraining the range of application: (i) the
maximum imposed displacement is limited on account of the finite strokes of the

3Hydraulic actuators are required for large structures when large loads are needed.
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Figure 3.3: Maximum displacement of the oscillator Z(t) 4+ az(t) + bx(t — 7) = 0
when 7 is varying; a = 4(0.03)7, b = 472 and t,4. = 5sec.

actuator; (ii) the velocity of the actuator is constrained due to the limited power
of the pumps and the flow ratings of the controlling servo—valves; (iii) frequency
range is required to be evaluated too, particulary for the deleterious effect of oil
column resonance common to shaking tables [Neild et al., 2005|; and finally, (iv)
the force that can be applied to an actuator is limited to the available supply
pressure. Thus, in assessing the feasibility of a particular real-time substructure
test, it is essential to consider saturation effects in both test design and actuator’s
control strategies [Gokeek et al., 2000].

3.3.1 Delay compensation

As explained above, the dynamics of the transfer system must be compensated
in order to impose fast and accurate displacements (or force and velocity) on the
physical component. The development of compensation algorithms and the study
of their effect on system performance requires a detailed knowledge of the equip-
ment behaviour. Simultaneously, in light of the current computing capabilities,
there is a limit on the number of degrees of freedom that can be included in the
numerical model, since a large model will require a long computation time. There-
fore, when seeking for more realistic RT'ST simulations, longer time to accomplish
each iteration arise from increasing size and complexity in both substructures.
With such a long delay, it becomes increasingly difficult to ensure that the RTST
simulation remains stable.
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The importance of experimental errors, especially systematic errors such as
time delay, was recognized early on [Shing and Mahin, 1983| in the extension of
pseudodynamic test to fast and real-time application. Many literature on fast hy-
brid simulation is devoted to the development of actuator delay compensation and
signal correction procedures [Horiuchi et al., 1999, Wallace et al., 2005b]. Delay
compensation is a well known technique with the most common strategy be-
ing delay compensation by extrapolation [Sivaselvan et al., 2004]. Polynomial
extrapolation has been used extensively due to its simplicity and efficiency, it
uses only a few recent command data to predict a compensated signal in ad-
vance [Bonnet et al., 2007|. However, those extrapolation suffer from signifi-
cant limitations which restrict its usefulness in experimental implementation.
[Ahmadizadeh et al., 2008] used a different prediction algorithm by assuming a
linear variation of acceleration, which also provides a third order displacement
variation, demonstrating the improved accuracy in the simulations. As well,
[Nakata et al., 2006] proposed a model-based response prediction method which
incorporates known information about the system and the excitation, allowing
larger prediction horizons as more accurate prediction of the system response
could be achieved. Several procedures which take advantage of state equations of
the system have been also suggested to eliminate the delay effect in the control
system as in [Wallace et al., 2005a] and [Kyrychko et al., 2007|. In addition, some
adaptive procedures has been developed to compensate variations of the actuator
time delay along a hybrid simulation (particularly as the stiffness of the experi-
mental specimen changes) as presented in [Darby et al., 2002|. Finally, schemes
for delay compensation have been also carefully studied by researchers in fields
relative to active and semi-active control of structures as in [Rodellar et al., 1987]
and [Serino and Georgakis, 1999|. For further information, a review of the most
common compensation methods is presented by [Bonnet et al., 2007].

3.4 Compensator based on neural networks

In this thesis, we propose an novel approach for real-time systems in which time
delay compensation is implemented using a model based on adaptive prediction by
means of artificial neural networks. The aim is carried out a forward prediction
of the command signal, to compensate it for time delay and thus enable the
experiments to be run nearby to real-time.

It is common to approximate the behavior of a delayed system by including
a constant time delay between the receiving a command signal. Although this
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Figure 3.4: (a) Delayed system. (b) Compensated system.

is not strictly correct since delays may be altered with the signal frequency, at
the relatively low frequencies normally encountered in civil engineering dynamics,
this is often considered to be a reasonable approximation |[Bonnet et al., 2007].
Thus, in the proposed method, the compensated command signal is predicted
forward a time equals to the delay 7. The prediction is generated through an
artificial neural network which is self-adapted each time—step by using the avail-
able data (See Fig. 3.4). In presence of noisy signals, this method has shown to
provide not only a robust criterion larger than other common methods, but also,
a smoother signal avoiding the slight discontinuities which can be found in other
schemes.

3.4.1 Forward prediction scheme

Delay compensation by extrapolation is not a new concept, single time—step pre-
diction techniques have already been proposed as presented before. Here a neural
network is trained on-line to predicting forward at each iteration the new refer-
ence signal to feed the delayed system. We consider a constant delay 7# along all
the prediction.
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Figure 3.5: Forward prediction scheme.

For this approach a data buffer is required. It should be equal to the delay
7 plus the sub-buffer length necessary® to achieve a suitable network’s behavior.
The prediction procedure may be summarized as follow with reference to fig. 3.5.

“The delay error must be known and accurate.
®Enough points to give sufficient information about the signal to the network.
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At each time step, the data within the training sub-buffer SBt are used as the
train input vector X to the network and the last point in the main buffer (A) is
used as the desiderated output. This input-output sample is used to adjust the
network’s parameters. Once the network is updated, the predicted point (B) is
estimated by feeding forward the second sub-buffer SBp to the network. After
that, the buffer is updated with the new available data and the process is applied
again in the next time step.

The above process enables the neural network for working in on-line predic-
tion. For completeness, the next section presents some fundamentals and how the
neural networks can be employed.

3.4.2 Artificial neural networks

During the 1940’s, researchers desiring to duplicate the function of the human
brain, have developed simple hardware models of biological neurons. McCulloch
and Pitts [McCulloch and Pitts, 1943| published the first systematic study of the
artificial neural network. The primary factors for the recent resurgence of interest
in the area of neural networks are the extension of Rosenblatt, Widrow and Hoff’s
works dealing with learning in a complex [Rosenblatt, 1961], multi-layer network,
Hopfield mathematical foundation, as well as much faster computers than those
of 50’s and 60’s. The general objective of training the neural network is to modify
the connection weights (and bias) to reduce the errors between the actual output
values and the target output values to a satisfactory level®. This process is carried
out through the minimization (optimization) of the defined error function using
an approach usually based on gradient descent methods [Jang et al., 1997].

Elements of neural networks

An artificial neuron is the basic element of a neural network (see fig.3.6(a)). It
consists of three basic components. The weight factors w; are associated with each
node to determine the strength of input row vector X. The internal threshold 6 is
the magnitude offset that affects the activation of the node output. The activation
function f(.) performs a mathematical operation on the signal output.

a=f(s)=f (ZL wi'ﬂci+0> (3.1)

A comprehensive review on activation functions, training methods and more

5Note that some networks never learn. This could be because the input data do not contain
the specific information from which the desired output is derived or the network’s architecture
is not enough suitable (complexity) to solve the problem.
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Figure 3.6: (a)Artificial neuron. (b)Adaptive filter by adaptive network.

topics concerning to neural networks architectures can be found in [Looney, 1997].

Adaptive filters

Adaptive filters adjust their own characteristics according to an optimizing al-
gorithm in proportion to the signals encountered, in this way they will match
as closely as possible the response of an unknown system from samples. Adap-
tive filtering is one of its major application areas for ADAptive LINear Element
(ADALINE). You can create one by combining an input delayed layer within a
neuron in which the activation function f(.) is restricted to be linear and by using
an iterative learning process in which data are presented to the network one at
a time and the weights are adjusted each time’. Now, the input vector will be
X =[z(t—1),2(t —2),...,2(t —n)]T and the output will be a £ y = z(t).
Accepting that the signal is not quickly varying over time, the adaptive filter pre-
sented in figure 3.6(b) must predict the future values of the desired signal based
on past values.

It is just this model of NNEt what we used along this thesis for delay com-
pensation.

3.4.3 Numerical results.

To show the efficacy of the neural networks in prediction, we execute some nu-
merical simulation® considering different system command signal to be predicted.
Three different methodologies purposed by other authors has been applied too in
order to compare and evaluate the network behavior: (1) The exact polynomial
extrapolation (EPE), in which a polynomial is fit to the last few data points of
the signal; a third—order polynomial has been widely adopted in literature and
will be used here [Bonnet et al., 2007]. (2) The 4-point sine-fit prediction method
(SEPM), which allows to predict the amplitude and frequency of the half period
sine wave which best fits the actual signal segment [Serino and Georgakis, 1999].
And (3) the least-squares polynomial extrapolation (LSPE), which takes into ac-
count a larger number of points and uses a least-squares approximation rather

"Here delta rule is used to train adaptive linear networks.
8 All numerical tests have been done in PC Pentium(R)D 3.4GHz.
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than an exact fit [Wallace et al., 2005b]; a fourth-order polynomial was used here
for LSPE method. Although the last approach considers some additional adaptive
delay compensators, only the extrapolation scheme is considered here.

Sine sweep tests

A sine sweep excitation which speeds up from 3Hz to 10Hz in 5 sec and then back
to 3Hz in 5 sec, is considered as the signal to be predicted forward an amount of
time 7 equals to bms. As the time step was used lms. A training buffer of 10
points was considered for both the neural network and LSPE method.
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Figure 3.7: Subspace plots for sine sweep test.

Method Nnet | LSPE | EPE | SFPM
Time (sec) | 0.587 | 1.406 | 0.170 | 0.185
RMS error(%) | 022 | 0.15 | 0.12 | 0.15

Table 3.1: Sine sweep test. Error and sequential time for 9982 steps.

Figure 3.7 shows the so—called subspace plots, in which the predicted signal is
plotted versus the actual one. The more dispersion from the line y = z, the less
accurate prediction was done. More dispersion means less synchronization.

Here the network exhibits the worst behavior, nevertheless, it is interesting to
note the improvement getting by the network as long as the time pass. Table
3.1 presents the sequential execution time employed by each scheme for doing
prediction through 9982 time steps in the simulation. The fastest one is the EPE
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method while the highest computational cost was spent for the LSPE method.
As statistical measure of the prediction, the root mean square of error is included
in the table too”.

Sine sweep with noise added (SNR=50dB)

The same sine sweep excitation was considered but here a low white gaussian
noise was added to the signal. The signal to noise ratio (SNR) is equal to 50dB
and as before AT=1ms and 7=5ms. A prediction buffer of 15 points has been
used for both the neural network and the LSPE method.
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Figure 3.8: Subspace plots for sine sweep with noise test.

Method Nnet | LSPE | EPE | SFPM
Time (sec) 0.687 | 1.592 | 0.187 | 0.265
RMS error(%) | 0.63 5.55 61.84 | 72.50

Table 3.2: Sine sweep with noise test. Error and sequential time for 9982 steps.

Figure 3.8 shows the subspace plots for each prediction scheme. Similarly,
Table 3.2 presents the sequential execution time employed by each scheme when
predicting a whole signal through 9982 time steps.

Counsidering both computational costs and synchronization capabilities, the neu-
ral networks presents the best characteristics when signal becomes noisy.

For neural networks, the RMS value doesn’t include the errors in the fist two seconds of the
simulation.
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Predicting noisy signals, the neural network demonstrates much more capac-

ity and robustness than the other methods, this advantageous behavior is due to
the inherent generalization capacity of neural networks and their high tolerance
to noisy data. Besides, neural network provides a smoother signal when moving
from one time step to the next one, so, slight discontinuities in the predicted com-
mand signal are avoided. Because of the adaptive training, the network shown
behavior improvements as long as the simulation time pass.
Once the training process becomes well-balanced (about 2sec in the examples),
this linear network was able to adapt quickly to the change in the target signal.
The scheme is well suitable for being used within systems whose properties do not
change abruptly and is able to smooth out the effects from noise when acquiring
a signal.

Further information can be found in [Londono and Serino, 2008|.

3.5 Theoretical formulation of RTDST

The aim of the substructuring process is to model the dynamical behaviour of the
overall system using a numerical part and an experimental part. The dynamics
of the structure (overall system) are governed by a general system of differential
equations equations, as:

(t) = h(z,t) (3.2)

where z is the state vector of the overall system, h(-) denotes an arbitrary function
and an overdot represents differentiation with respect to time t. Typically, we
wish to characterize the dynamic response of the overall system subject to some
excitation signal r(t); such as an earthquake. In general, the form of h(-) is not
known explicitly, but we assume that it can be split into linear and non-linear
parts, so that

@(t) = Hx(t) + Gr(t) + h(z,t) (3.3)

where G is a gain matrix, H is a matrix representing the linear part of h, and h
the non-linear (i.e. the difficult to model) part. To formulate the substructured
model we separate the overall system dynamics, equation (3.3), in such a way
that the linear dynamics are modelled numerically, and the non—linear dynamics
are modelled using a physical test specimen. To separate the two parts of the
model, we divide the coordinates x into a subset associated with the physical
substructure, z. C x; and those which represent the numerical model, z where
zUz. = x. Thus x, represents the state of the critical elements of the system.
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Now equation (3.3) can be expressed as [Wagg and Stoten, 2001]:

A R b o o R v B
Le Hs Hy Le Go hQ(Z,$C,t)

If the dynamics of the numerical model are considered to be strictly linear, then
ﬁl(z,ajc,t) = 0. The dynamics represented by Hox. map to a series of exper-
imental measurements Hox. — Rf(t); where f(t) is a vector of experimental
measurements, and R is a transformation matrix. If the excitation is restricted

to the numerical model, we can also assume that G2 is a null matrix. Thus, the
numerical model can now be written as:

A(t) = Hyz(t) + Gir(t) + Rf(¢) (3.5)

Due to the fact that we are assuming that the non-linearity defined by hy is un-
known, the dynamics of z. is not expressed mathematically but are included in
model through the experimental measurements f(t) from the physical substruc-
ture under the current states (z,z.). Thus, equation (3.5) becomes the substruc-
tured model of the system.

3.6 Integration scheme

Three factors are essential in the implementation of a real-time substructuring
test: the loading operation of the experimental substructure; the measurement of
the interface force between two substructures; and the calculation of the numeri-
cal substructure by using a numerical time integration technique, which solves the
temporally and spatially discretised equations of motion, for the structural system
being investigated. It is quite likely that yielding will occur in several locations
under a large earthquake load, being therefore desirable to be able to perform tests
in which nonlinearities are permitted in both the physical and numerical substruc-
tures. Thus, integration schemes able to solve non-linear differential equations
are required. Nevertheless, as with MDOF systems, nonlinear analysis requires
long computation times so that considerable compensation for delay error may be
necessary |Nakashima and Masaoka, 1999].

RTST simulation generally makes use of explicit numerical integration meth-
ods such as the central difference method (CDM), for which the computations
are very simple and quick as well. They are also conditionally stable for time
integration schemes [Shing, 2006] but may become prone to numerical instability
as showing in [Pegon, 2001]. Implicit methods use the equilibrium condition to
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determine the solution for the required time step and have advantages of being
stable irrespective of the time step used. Although they were traditionally aban-
doned due to implementation difficulties, implicit methods are successfully being
used in RT'S test. A comprehensive valuation of implicit methods can be found in
[Bursi and Shing, 1996]. A more complex algorithm based on a first—order hold
approximation was used in [Darby et al., 1999], it appears to offer improved ac-
curacy and stability. Besides, [Combescure and Pegon, 1997| investigated a non—
iterative step-by-step implicit time integration scheme named a—operator split-
ting (a—0S) for PsD testing. They showed that it provides unconditional stability
even when the number of degree of freedom is large while preserving simplicity.
In a similar way, |Pinto et al., 2004] applied the a—OS technique to solve the spa-
tially discrete equations of motion and compared it to the a—Newmark scheme
which is in essence an implicit method. As well, [Magonette et al., 1998] have
developed a high-speed continuous substructuring test method using a staggered
implicit—explicit integration technique, in which the equations of motion for the
experimental substructure are solved with an explicit scheme, while those for the
analytical substructure with an implicit method; however, this has only partially
addressed the stability issue. Additionally, [Bayer et al., 2005] have implemented
an implicit integration scheme based on the Newmark time domain solution of
the equation of motion'®. The proposed procedure employs sub-stepping instead
of iteration to reach equilibrium within each time step and was proposed suitable
for real-time performance of the PsD test.

Before formalising two explicit methods typically used in RTST simulations,
some key concepts shall be presented.
Direct step by step integration schemes are general methods that reduce differ-
ential equations into an algebraic form using a finite difference approach. In this
way the response quantities at the end of a time step can be related to previously
known response quantities. These methods are by far the most widely used meth-
ods of solution of non-linear problems |Butcher, 2003|.
A general multiple degree of freedom system with substructuring can be repre-
sented through a set of differential equations of motion:

Mi+Ci+Ke=E+F (3.6)

where M, C' and K are respectively the mass, damping and stiffness matrices;
Z, ¢ and x are respectively the vectors of nodal accelerations, velocities and dis-
placements for the degrees of freedom; FE is the external excitation and F' is the
vectors of substructure forces.

¥The Newmark method is a numerical integration scheme used to solve differential equations
[Newmark, 1959]. It is often used in finite element analysis to model dynamic systems.
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As the response of the numerical substructure depends on the physical substruc-
ture outcomes over time (which is not known inadvance) the problem cannot be
solved analytically. Instead, time is discretised and the integration of the equa-
tion of motion is done numerically, assuming idealised properties over small time
steps. M, C', K and F are known entities at the beginning. Note however that K
and C' may change during the analysis while M is usually regarded as a constant,
assuming mass conservation even during failures. The solution at each time-step,
depending on the scheme considered, are obtained through difference equations
which can be written either as:

Tp+1 = h(xnainainyxn—lain—lain—ly---) (37&)

Tn+l = h (j:n—f—la in-{—la Tn, ,’1':”7 i’na Tn—1, j:n—ly j}n—la .- ) (37b)

where n is the current integration time—step. Thus, the numerical schemes can
be classified as: explicit scheme, if the solution at the time—step (n + 1) can be
obtained based exclusively on past values of the system as in equation (3.7a); or
implicit scheme, if the solution at (n + 1) also exhibits dependency on one or
several values from step (n + 1) itself, as in equation (3.7b). An implicit scheme
involves more complex implementation, comprising often an iterative process.
For simplicity and fastness, explicit numerical integration methods have been
extensively used in RTST simulations, in what follows, two popular scheme shall
be presented.

3.6.1 Central Differential Method

The central difference method (CDM) is probably the most popular time integra-
tion scheme for PsD and RTST testing |[Nakashima et al., 1992, Shing et al., 1996a,
Horiuchi et al., 1999, Nakashima and Masaoka, 1999]. It can be mathematically
described as in equations (3.8) where 7 is the integration time step chosen.

Mi, +Ct, + Kz, = E,+F,
1

.’i’n = ﬁ ($n+1 — 2$n + xn_l) (38)
. 1
ITn = % (xn—i—l - xn—l)

The CDM is an explicit method. By substituting the acceleration and velocity
terms from the difference equations into the equation of motion, the next step
displacement vector x,11 can be isolated and expressed as a function of terms
known from the two previous time steps.

This scheme allows the easy introduction of a non-linear stiffness. Indeed, with
the displacement being worked out from previous steps only, the stiffness matrix
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can be updated accordingly for the next calculation to take the non-linearity into
account. Non-linear damping can also be introduced, but because the velocity is
only determined with a one step delay, only a fairly simple non-linear damping
behaviour could be accommodated without an iterative process. Although CDM
generates no amplitude error, it produces a periodicity error (period shortening)
increasing with the time step. This method is only conditionally stable, the re-
quired time step for a stable solution might not be realized in the experiment
depending on the fundamental frequencies of the specimen. Specifically, for a
structure with a maximum natural frequency wy,q., the time step n must satisfy
the condition: nwme, < 2, [Bathe and Wilson, 1976].

3.6.2 Runge-Kutta Method

The methods most commonly employed by scientists to integrate ordinary dif-
ferential equations (ODEs) were first developed by the German mathematicians
C.D.T. Runge and M.W. Kutta in the latter half of the nineteenth century
[Press et al., 1992|. They are an important family of implicit and explicit itera-
tive methods for the numerical approximation of solutions for ODEs. The basic
reasoning behind the so-called Runge-Kutta (RK) methods is the use of Taylor’s
expansion of a smooth function'' and the use of trial steps at the midpoint of
each interval to cancel out lower-order error terms. The power of this method is
that there are different orders according to the Taylor’s expansion length taken.
An arbitrarily large—ordered RK method can be derived, attaining an arbitrarily
error.

The most often used method of the Runge-Kutta family is the Fourth—Order
one. It uses a sampling of slopes through an interval and takes a weighted aver-
age to determine the right end point. A fourth-order Runge-Kutta integration
method (RK4) represents an appropriate compromise between the competing re-
quirements of both a low truncation error and a low computational cost per step,
being one of the most powerful predictor—corrector algorithms. Thus, most com-
puter packages designed to find numerical solutions for ODEs use it by default.
The standard RK4 method approximates the solution of an initial value problem
of the form (3.2) assuming h(z,0) = xo. Here we use the first four terms of the
Taylor series to describe the behavior of h(z, ) near the midpoint (2,11 /2, tn11/2)-
It requires four gradient or k terms to calculate z,11 as follow, where 7 indicates

UDerivatives exist and are continuous up to certain desired order.
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the integration step:

k1 = nh(xp,ty)

ky = nh(x, +n/2,t, + k1/2)

ks = nh(zn +1/2,tn + ka/2) (3.9)
k4 = nh(‘rn + 1,10+ k3)

Tptl1 = Ty + g (k1 + 2ko + 2ks + k) + O (775)

Thus, the next value x,,1 is determined by the present value x,, plus the product
of the size of the interval n and an estimated slope (a weighted average). The
error per step of RK4 methods is on the order of 1°, while the total accumulated
error has order n?.

Several variation have been introduced, adaptive RK methods were designed to
produce an estimation of the local truncation error of a single Runge-Kutta step,
as well, implicit versions have been developed due to they are more general than
the explicit ones and due to their high (possibly unconditional) stability.c

Finally, considering the time—integration schemes for non-linear substructur-
ing, explicit schemes are suitable when a small number of DOFs is involved,
whereas implicit schemes depend strongly on the local nature of the problem
and could result in significant local deviations from the medium time-step du-
ration [Pinto et al., 2004]. In other words, an explicit scheme will need a time
step short enough to ensure the stability of the scheme, while the stability of an
implicit scheme will not depend on the time step chosen because it is partially
based on a term from the end of the step considered.
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Stability is the main goal in control engineering. For linear systems, the con-
cept of stability is very well-defined and there exist many easy—to—use criteria for
addressing its analysis. On the other hand, the stability analysis for nonlinear
systems can become quite involved since not only there exists several definitions
of stability, but also most of the known criteria provide sufficient but not nec-
essary conditions when determining stability. In this chapter, we present some
fundamentals and important definitions in stability analysis fields. Our aim is
to supply a comprehensive background to facilitate later discussions on stability
issues. First, the most important stability criteria using the characteristic poly-
nomial for linear systems are introduced. Then, a graphical method for studying
the qualitative behaviour of second—order systems is presented. We also examine
the salient results of Lyapunov’s stability theory; it is attractive for mechanical
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systems, because of its exceptional physical meaning and its wide ranging appli-
cability, specially for the analysis of nonlinear systems.

The following material shall be restricted to time-invariant systems (autonomous
systems), but most of the concepts can be extended to time—varying systems.
Most of the concepts are stated without a rigorous mathematical demonstration
and focussed on vibrating mechanical systems; however, a deeper discussion of
them can be found in the cited references within.

4.1 Stability of linear systems

A system is called linear if the principle of superposition applies. The principle of
superposition states that the response produced by the simultaneous application
of two different forcing functions is the sum of the two individual responses. A sys-
tem is called linear time—invariant systems (or linear constant—coefficient) if the
coefficients of the differential equation of the system are constants or functions
only of the independent variable. Systems that are represented by differential
equations whose coefficients are functions of time are called linear time-varying
systems. An example of a time—varying control system is a aircraft control system
(The mass of a aircraft changes due to fuel consumption).

Definition 4.1. A system is said to be externally stable if every Bounded Input
produces a Bounded Output. This is also called BIBO stability.

Let us consider the second—order linear time-invariant system described by:
Z4+at+br=0 (4.1)

These equations can be solved in the frequency domain by using Laplace trans-
forms for continuous time systems and Z-transforms for discrete time systems.
This approach is limited to linear systems. Since we are eventually interested
in nonlinear systems, we will perform the analysis in the time domain solving
for the time history. A common procedure is to assume a solution of the form
x(t) = ke . By substituting the supposed solution, the characteristic equation of
(4.1) can be written as:

M 4ad+b=0 (4.2)

We can then find the roots of the characteristic equation as:

)\1:%<—a+\/a2—4b); )\2:1(—&— a2—4b)

2
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Thus, the solution of the system can be expressed by formula (4.3) where k1 and
k2 depends on the initial conditions xg = (z(0), (0)).

z(t) = kMt + kpet?! (4.3)

Definition 4.2. For any linear time—invariant system:

e The system is called asymptotically stable, if for all xy we have

tlggo z(t) =0

e The system is (critically) stable if for all x¢ there exists C' such that

lz@ <C i
In this statement, || - || stands for a norm, measuring the distance to the
origin; the Euclidian norm is defined as ||z|| = (z7z)Y/2.

e The system is unstable if it is neither stable nor asymptotically stable.

To facilitate later discussions, let us transform the scalar second—order differ-
ential equation in (4.1) into an equivalent system of two first-order differential
equations by substituting 1 = x and x9 = . Now, the system can be described
in terms of the equations of state as follows, where x1 and z9 are the so—called
state variables of the system.

il = X2 (4.4&)
ig = —ba:l — axry (4.4b)
The state variables of a dynamic system are the variables making up the smallest
set of variables x; that, for any time, completely describe the behavior of the
system (which is also called state of the system). The n—dimensional space whose

coordinate axes consist of the xi—axis, xo—axis, ..., z,—axis is called the state
space. Any state can be represented by a point in the state space.

We can also rewrite the equation (4.4) in vectorial form as:
x = Ax (4.5)

where x = (21, z2) and
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Finally, the solution of the system can be also written as in formula (4.6), where
X represents the initial conditions.

z(t) = ePlxg (4.6)

It is worth to note that the roots of the characteristic equation in (4.2) are
exactly the same as the eigenvalues of the matrix A in the state space model.
Depending on the roots of the characteristic equation, the following necessary
and sufficient stability conditions can be formulated.

Lemma 4.1.

e A linear system is asymptotically stable, if all the roots of its characteristic
equation (or eigenvalues) satisfy R{\;} < 0, Vi

e A linear system is (critically) stable, if all the roots of its characteristic
equation (or eigenvalues) satisfy R{\;} < 0, Vi and if at least one root \;
satisfy ®{\;} = 0.

e A linear system is unstable, if at least one root A; of its characteristic equa-
tion (or eigenvalue) lies in the right-half of the complex plane (®{\;} > 0).

Hence, if it can be ascertained that a linear system has none of the roots of
the characteristic equation (or eigenvalues) lying on the right—half of the complex
plane, the BIBO stability is assured (i.e. when the system is stable or asymptot-
ically stable) |Vidyasagar, 1992|. That is why, most of the techniques for deter-
mination of stability for linear systems essentially try to find the location of A;.
Note that for stability scope, there is often no need to know these root with high
precision but fundamentally its sign.

In what follows, we present two algebraic stability criteria based on the char-
acteristic equation. They contain algebraic conditions which are only valid if all
of the roots lie in the left-half complex plane. More sophisticated methods to
be applied in the stability analysis of linear systems such as: root—locus method,
Bode diagrams, Nyquist stability criterion and frequency response analysis, can
be examined in [Ogata, 1990] where they are widely described.

4.1.1 The Hurwitz stability criterion
Let us consider the polynomial:

PA\) =ap A"+ -+ a1+ ap (4.7)
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Figure 4.1: Stability of linear systems according to the root locus in the complex
plane

For the polynomial to have all roots with negative real parts it is necessary that

sign(ag) = sign(a;) = ... = sign(a,) (4.8)

Formula (4.8) is the so-called Stodola criterion [Slotine and Li, 1991|. These con-
ditions are also sufficient for n = 1 and n = 2 as can be easily verified by calcu-
lating the roots. However, for n > 3 this is no longer the case.

A polynomial for which all roots A; have negative real parts is called Hurwitzian.
A polynomial P()\) is Hurwitzian, if and only if for a, > 0 all determinants
Dy, Ds, ..., D, are positive, where:

Dy = ap—1

Ay — a
D2 _ n—1 n

Gp—3 0anpn-—2

Ap—1 an, 0

Ap—3 QAp—9 - ** . (4.9)
Dn—l =

0 0 c ap

Dn = CLODn—l

Therefore, according to the stability conditions introduced in definition 4.1,
a linear system is only asymptotically stable if its characteristic polynomial is
Hurwitzian.
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4.1.2 Routh’s stability criterion

Routh’s stability criterion enables us to determine whether or not there are un-
stable roots' in a polynomial equation without actually solving for them. To
apply the Routh criterion, you need to form the so—called Routh Array from the
polynomial coefficients in (4.7). Then, after some computations, the criterium
determines the number of characteristic roots within the right-half plane

The Routh array contains n + 1 rows:

n p  Gp—2 Ap—4 Gp_¢ 0
n—1 1| a1 ap-3 an-5 anp-7 0
n—2 bn—l bn—2 bn—3 bn—4 0
n—2 Cn—1 Cpn—2 Cp—3 Cp—4 0
: : (4.10)
3 dn—l dn—2 0
2 €n—1 €En—2 0
1 fn—l
0 In—1

The coefficients b in the third row are the results from cross multiplication the
first two rows according to:

Up—10n—2 — Apdn—3

bn—l -
an—1
Ap—10p—4 — ApQp_5
bpo = —" i (4.11)
Ap—1
b _ Gpn—-10p—6 — Anldn-7
n—3 —
an—1

The calculation of these coefficients must be continued until all remaining elements
become zero. The calculation of the coefficients ¢ are performed accordingly from
the two rows above as follows:

bp—1ap—3 — an—1bn—2

Cn—1 = by 1
—
bn_1an_5 — ap_1bp_
Chy = n—10n Z Gp—10n—-3 (412)
n—1
bn—lan—7 - an—lbn—4
Cn—3 = by 1
=

'Roots that lie in the right-half complex plane.
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From these new rows further rows will be built in the same way. Finally, the last
two rows are:

fn—l _ en—1dpn—2 — dp_1€p—2 (413)

€n—1

In—-1 = €En—2

Now, the Routh criterion establishes that a polynomial P(\) is Hurwitzian, if and
only if the following conditions are valid:

e All coefficients aq are positive.

e All coefficients b,_1,¢n—1,--- in the first column of the Routh array are
positive.

An interesting property of the Routh array is that the number of roots with pos-
itive real parts is equal to the number of changes of sign of the values in the first
column.

Some limitations of Routh—-Hurwitz criterions are: (i) it gives only informa-
tion about absolute stability of the system, i.e., the degree of stability (critical,
asymptotic, exponential, etc) of a stable system cannot be obtained. (ii) The cri-
terion can be applied only if the characteristic equation has constant coefficients
and cannot be applied if they are not real or contain exponential terms as in the
case of systems with dead time.

4.2 Phase Plane Analysis

Phase plane analysis is a graphical method for studying the qualitative behaviour
of second-order systems (linear or not), which was introduced well before the turn
of the century by mathematicians such as Henri Poincare. Its basic idea is to solve
a second-order differential equation graphically, instead of seeking an analytical
solution. Essentially, the method generates a family of system motion trajectories
corresponding to various initial conditions on a two-dimensional plane and then
examines the qualitative features of these trajectories. In that way, information
concerning to stability and other motion patterns of the system can be obtained.
Phase plane analysis has a number of important advantages. First, as a graphical
method, it allows us to visualize what goes on in a system, even if it is nonlinear,
starting from various initial conditions, it is frequently used to provide intuitive
insights about nonlinear effects. Second, it is not restricted to small or smooth
nonlinearities, but applies equally well to strong nonlinearities and to hard non-
linearities. Finally, some practical mechanical systems can indeed be adequately
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approximated as second—order systems, and the phase plane method can be used
easily for their analysis. Conversely, of course the fundamental disadvantage of
the method is that it is restricted to systems which can be well approximated by
a second-order dynamics, because the graphical study of higher-order systems is
computationally and geometrically complex.

4.2.1 Key definitions

A second-order time invariant system can be represented by two scalar differential
equations:

T = filwy, ) (4.14a)
Ty = fo(wy, ) (4.14b)

where z1 and x5 are the states of the system and, f1 and fs, are nonlinear functions
of the states. Geometrically, the state space of this system is a plane having x;
and x9 as coordinates. This plane (x1—z2) is called the phase plane.

Let x(t) = (x1(t),z2(t)) be the solution of (4.14) given a set of initial conditions
x(0) = x9 = (x10,220). The locus in the plane (z1—x2) of x(t) for all ¢ > 0
represents geometrically a curve that passes through the point xg. Such a curve
is called a trajectory or orbit. A family of trajectories corresponding to various
initial conditions is called the phase portrait of the system (See Figure 4.2(b)).
The right-hand side of the system in (4.14) expresses the tangent vector x(t) to
the curve.

x = f(x) (4.15)

where x(t) = (21(t),22(t)) and f(x) is a vector field (f1(x), f2(x)) on the state
plane, which means that to each point x in the plane, we assign a vector f(x)
(See Figure 4.2(a)).

Singular points

A singular point or equilibrium point in the phase plane is defined as a point where
the system states can stay forever, this implies that £ = 0, that is:

fi(x1,22) = fa(x1,22) =0 (4.16)

Singular points are very important features in the phase plane. Examination of
the singular points can reveal a great deal of information about the properties
of a system. In fact, the stability of linear systems is uniquely characterized by
the nature of their singular points. There is usually only one singular point (or a
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Figure 4.2: Examples of (a) vector field and (b) phase portrait

continuous set of singular points) for linear systems. However, a nonlinear system
often has more than one isolated singular point, additionally there may be more
complex features, such as limit cycles and chaos. The stability of an equilibrium
point is related to the behaviour of the trajectories in its vicinity. For instance,
we can always define a domain D containing an equilibrium point. If we can
find trajectories starting within this domain which remain arbitrary close to the
point, this equilibrium point is said to be stable; if any trajectory starting in the
domain eventually converge towards the point, the equilibrium point is said to be
asymptotically stable. These definitions will be formalized later.

4.2.2 Phase portraits of linear systems

To illustrate the above concepts, let us consider a second—order linear system
with the characteristic equation in (4.2). Different behaviours can be observed in

accord with the root locus as follows.

Stable or unstable node. When \; and Ay are both real and have the same
sign, the origin corresponds to a node. If the roots are negative, the origin
is called a stable node because both 4(t) and x(t) converge to zero exponen-
tially as t — oo. If both roots are positive, the point is called an unstable
node, because both 4(¢) and x(t) diverge from zero exponentially. Since the
eigenvalues are real, there is no oscillation in the trajectories. See Figure

4.3(a)(b).

Saddle point. When A; and Ay are both real and have opposite signs, the origin
corresponds to a saddle point. Because of the unstable root (the positive
one), almost all of the system trajectories diverge to infinity. There exist a




56 CHAPTER 4. STABILITY ANALYSIS THEORY

converging straight line corresponds to initial conditions which make equal
zero the coefficient k; associated with the negative root. See Figure 4.3(f).

Stable or unstable focus. When A\; and Ay are complex conjugate with non-
zero real parts, the origin corresponds to a focus. A stable focus occurs
when the real part of the roots is negative, which implies that @(t) and z(t)
converge to zero as t — oo. The trajectories encircle the origin one or more
times before converging to it, unlike the situation for a stable node. If the
real part of the roots is positive, then #(¢) and z(t) both diverge to infinity,
and the point is called an unstable focus. See Figure 4.3(c)—(d).

Center point. When A\; and \g are are complex conjugates with real parts equal
to zero, the origin corresponds to a center point. The name comes from the
fact that all trajectories are ellipses and the origin is the center of these
ellipses. See Figure 4.3(e).
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Figure 4.3: Phase portraits of linear systems

4.2.3 Nonlinear systems

The dynamic of nonlinear systems are much richer than the dynamics of linear
systems, there are essentially nonlinear phenomena that can take place only in
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presence of nonlinearities and cannot be described by a linear model. Thus,
let us discuss some common nonlinear system phenomena in order to provide a
useful background for our study in the rest of this document. A wider and more
complete discussion on these and others nonlinear behaviour can be reviewed in
[Slotine and Li, 1991].

Multiple equilibrium points. Nonlinear systems frequently have more that
one isolated equilibrium point. The state may converge to one of several
steady-state points, depending on the initial state of the system. See Figure
4.4(a).

Limit cycles. Nonlinear systems can display oscillations of fixed amplitude and
fixed period without external excitation. These oscillations are called limit
cycles, or self-excited oscillations. Of course, sustained oscillations can also
be found in linear systems (center point) or in the response to sinusoidal
inputs. However, limit cycles in nonlinear systems are different. First, the
amplitude of the self-sustained excitation is independent of the initial con-
dition, as seen in Figure 4.4(b). Second, the of self-sustained oscillations
in linear systems are very sensitive to changes in system parameters, while
limit cycles are not easily affected by parameter changes. Limit cycles repre-
sent an important phenomenon in nonlinear systems. They can be found in
many areas of engineering and nature. Aircraft wing fluttering, a limit cycle
caused by the interaction of aerodynamic forces and structural vibrations,
is frequently encountered and is sometimes dangerous. Limit cycles can be
undesirable in some cases, but desirable in other cases.

Bifurcations. As the parameters of nonlinear dynamic systems are changed, the
stability of the equilibrium point can change (as it does in linear systems)
and also the number of equilibrium points. Values of these parameters at
which the qualitative nature of the system’s motion changes are known as
critical or bifurcation values. The phenomenon of bifurcation occurs when
quantitative change of parameters leading to qualitative change of system
properties. A very interesting case of bifurcation involves the emergence
of limit cycles as parameters are changed. In this case, a pair of complex
conjugate eigenvalues cross from the left—half plane into the right—half plane,
and the response of the unstable system diverges to a limit cycle. This type
of bifurcation is called a Hopf bifurcation.

Chaos. For stable linear systems, small differences in initial conditions can only
cause small differences in output. In nonlinear systems however, the system
output is extremely sensitive to initial conditions. The essential feature of
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chaos is the unpredictability of the system output. Chaos must be distin-
guished from random motion. In random motion, the system model or input
contain uncertainty and, as a result, the time variation of the output can-
not be predicted exactly (only statistical measures are available). In chaotic
motion, on the other hand, the involved problem is deterministic, and there
is little uncertainty in system model, input, or initial conditions. Some me-
chanical and electrical systems known to exhibit chaotic vibrations include
buckled elastic structures, mechanical systems with play or backlash, sys-
tems with aeroelastic dynamics, wheelrail dynamics in railway systems and
feedback control devices.

Other behaviors. Other interesting types of behavior, such as jump resonance,
subharmonic generation, asynchronous quenching, and frequency—amplitude
dependence of free vibrations, can also occur and become important in some
particular system.

Figure 4.4: Examples of (a) multiple equilibrium points (tunnel-diodo circuit)
and (b) Stable limit cycle for the system: @1 = z1(0.1+23 + 23 — (23 +23)?) — 22;
iy = 22(0.1 + 2% + 22 — (22 + 23)%) + 14

4.3 Existence of periodic orbits

In this section, we present three simple classical theorems to predict the existence
of limit cycles for second—order systems. Since all of the proofs are mathemati-
cally complex (actually, a family of such proofs led to the development of algebraic
topology) they were omitted because fall outside the scope of this thesis. Nev-
ertheless, the demonstrations and some interesting application examples can be
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studied in [Khalil, 2000] and [Vidyasagar, 1992].

The first theorem reveals a simple relationship between the existence of a limit
cycle and the number of singular points that it encloses. This theorem is some-
times called the index theorem. In this statement, N represents the number of
nodes, centers, and foci enclosed by a limit cycle, and S the number of enclosed
saddle points.

Theorem 4.1 (Poincare). If a limit cycle exists in the second-order autonomous
system (4.14), then N = S + 1.

The second theorem is concerned with the asymptotic properties of the tra-
jectories of second—order systems. It establish that bounded trajectories in the
plane shall have to approach periodic orbits or equilibrium points as time tends
to infinity.

Theorem 4.2 (Poincare-Bendixson). If a trajectory of the second-order au-
tonomous system (4.14) remains in a finite region M, then one of the following
15 true:

o The trajectory goes to an equilibrium point.
o The trajectory tends to an asymptotically stable limit cycle.

e The trajectory is itself a limit cycle.

The third theorem provides a sufficient condition for the non—existence of limit
cycles. This theorem is sometimes called the Bendizson Criterion.

Theorem 4.3 (Bendixson). For the nonlinear system (4.14), no limit cycle can
exist in a region M of the phase plane in which Of1/0x1 + 0fa/0xs does not
vanish and does not change sign.

The above theorems are easy to understand and apply. Even if they represent
very powerful results, have no equivalent in higher—order systems where exotic
asymptotic behaviors (other than equilibrium points and limit cycles) can occur.
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4.4 Lyapunov stability

In 1892, the Russian mathematician Alexander Mikhailovitch Lyapunov intro-
duced his famous stability theory for nonlinear and linear systems. A complete
English translation of Lyapunov’s doctoral dissertation was published in 1992 for
its centenary |Lyapunov, 1992].

Basic Lyapunov theory comprises two methods, the indirect and the direct method.
The indirect method, or linearization method, states that the stability properties
of a nonlinear system in the close vicinity of an equilibrium point are essentially
the same as those of its linearized approximation. The direct method is a powerful
tool for nonlinear system analysis, and therefore the so—called Lyapunov analysis
often actually refers to the direct method. The direct method is a generalization
of the energy concepts associated with a mechanical system: the motion of a
mechanical system is stable if its total mechanical energy decreases all the time.
Lyapunov stability theorems give sufficient conditions for stability, asymptotic
stability and so on, but they do not say whether the given condition are also
necessary. The power of this method comes from its generality; it is applicable
to all kinds of control systems, be they time—varying or time—invariant, finite di-
mensional or infinite dimensional. Conversely, the limitation of the method lies
in the fact that it is often difficult to find a Lyapunov function for a given system
as it shall be shown.

Seeking for completeness, some definitions of stability which are necessary for
later theorems are included here. For all definitions and theorems from now on,
let us consider a time—invariant system, linear o not, as the one shown in formula
(4.15) such that f(0) = 0, i.e. x =0 (the origin) is an equilibrium state.

Definition 4.3. The equilibrium state x = 0 is (locally) stable in the sense of
lyapunov if, for every € > 0 there exist some 6 > 0 (depending on ¢) such that, if
|x(0)]] < d, then ||x(t)|| < e for all ¢ > t.

Definition 4.4. The equilibrium state x = 0 is asymptotically stable in the sense
of Lyapunov if it is (locally) stable in the sense of Lyapunov and if, there exist
some ¢ > 0 such that, if ||x(0)|| < J, then x(¢) — 0 as t — oo.

Thus, the asymptotic stability is more restrictive than the definition 4.3 as defi-
nition 4.4 imposes that the trajectories converge to the equilibrium state. Note
that for a mechanical system, asymptotic stability implies some damping, unlike
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Lyapunov stability. Besides, for a linear time-invariant system asymptotic stabil-
ity is always global, while nonlinear systems exhibit more complicated behaviour.

Definition 4.5. The equilibrium state x = 0 is (locally) ezponentially stable in
the sense of Lyapunov if, there exist positive constants «, § and J such that, if
|x(0)|| < 8, then ||x(t)]| < a||x(0)||e™?* for all t > t,.

State which are not stable in the sense of Lyapunov are unstable. Besides, expo-
nentially stability implies asymptotically stability, but the opposite is not true.
Stability, as it was defined before, is a local property since ¢ and d can be chosen
arbitrarily small. But if stability is independent of the size of the initial pertur-
bation x(0), i.e., if x(0) can be chosen on a domain D, such that D € R", the
stability is said to be global.

Stability Asymptotic stability Instability

Figure 4.5: Concepts of stability

4.4.1 Lyapunov’s direct method

The basic philosophy of Lyapunov’s direct method is the mathematical extension
of a fundamental physical observation: if the total energy of a mechanical (or
electrical) system is continuously dissipated, then the system, whether linear or
nonlinear, must eventually settle down to an equilibrium point.

Definition 4.6. A scalar continuous function V(x) : R" — R is said to be locally
positive definite if:

V(0)=0 and V(x)>0, VxeD-{0} (4.17)
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where D is a certain domain containing the origin. If the above property holds
over the whole state space, i.e. D € R", then V(x) is said to be globally positive
definite.

Other few related concepts can be defined similarly, as in local as in global sense.
A function V' (x) is negative definite if —V(x) is positive definite; V(x) is positive
semi—definite if V' (0) = 0 and V(x) > 0 for x # 0; V(x) is negative semi—definite
if —V(x) is positive semi-definite. The prefix “semi” is used to reflect the possi-
bility of V' being equal to zero for x # 0.

Definition 4.7. If, in a certain domain D containing the origin, the function
V(x) : R™ — R is positive definite and has continuous partial derivatives, and if
its time derivative along any state trajectory of system (4.15) is negative semi—
definite, i.e.,

_dV(x) oV

V(x) = o X" Ef(x) <0 (4.18)

then V(x) is said to be a Lyapunov function for the system (4.15).

A complete description of the geometrical meaning of positive definite functions
and the graphical interpretation of the above concepts, including several exam-
ples, can be studied in [Slotine and Li, 1991| and [Preumont, 1997].

In using the direct method to analyze the stability of a nonlinear system, the
idea is to construct a scalar energy-like function (a Lyapunov function) for the
system, and to see whether it decreases. The relations between Lyapunov func-
tions and the stability of systems are made precise in a number of theorems in
Lyapunov’s direct method.

Theorem 4.4 (Local Stability). Consider the system in (4.15), the equilibrium
point x = 0 is stable, if in a certain domain D containing the origin, there exists a
scalar function V(x) : R™ — R with continuous first partial derivatives such that:

o V(x) is positive definite (locally in D)
o V(x) is negative semi-definite (locally in D)

If, actually, the derivative V(x) 18 locally negative definite in D, then the stability
15 asymptotic.
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In applying the above theorem for analysis of a nonlinear system, one goes through
the two steps: choosing a positive definite function, and then determining its
derivative along the path of the nonlinear systems.

In order to assert global asymptotic stability of a system, one might naturally
expect that the domain D in the above local theorem has to be expanded to be
the whole state space. Nevertheless, an additional condition on the Lyapunov
function has to be satisfied: V(x) must be radially unbounded, i.e., x can tend to
infinity in any direction. The reason of that is to assure that the contour curves
of V(x) = v, correspond to closed curves (See Figure 4.6). If the contour curves
are not closed, the trajectories might drift away from the equilibrium point. Now,
the following powerful result, known as Barbashin-Krasovskii theorem, can be
established.

Theorem 4.5 (Global Stability). Consider the system in (4.15), the equilibrium
at the origin is globally asymptotically stable, if there exists a scalar function
V(x) : R — R with continuous first order derivatives such that:

e V(x) is positive definite
o V(x) is negative definite

o V(x) — 00 as x| — o

The above theorems provide sufficient conditions (but not necessary) to deter-
mine the stability of a system; the fact that no Lyapunov function can be found
to satisfy theorems 4.4 and 4.5 does not mean that the system is not stable; just
one cannot draw any conclusions on the stability or instability of the system. Ac-
tually, this is the main weakness of the Lyapunov’s method, as there is no general
procedure for constructing Lyapunov function for a given system. However, there
are some methods for particular systems which provided Lyapunov function can-
didates to be tested. Most of them require solving partial differential equations
or trial and error procedures as the Variable Gradient method and Krasovskii’s
method [Krasovskii, 1959]. Further general information and examples on this sub-
ject can be found in the literature e.g. [Khalil, 2000| and [Slotine and Li, 1991].

4.4.2 Invariant Set Theorems

Lyapunov’s stability theorems studied above are often difficult to apply to estab-
lish asymptotic stability, as it often happens that V' is only negative semi-definite.
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Even in this situation, with the help of the invariant set theorems, it is still pos-
sible to draw conclusions on asymptotic stability. The central concept in these
theorems is the generalization of the idea of equilibrium point to the invariant set.

Definition 4.8. A set M is an invariant set for the dynamic system in (4.15) if
every trajectory x(t) which starts from a point in M remains in M for all time
(future and past), i.e.,

z(0) e M= z(t) e M, Vte R (4.19)

Definition 4.9. A set M is an positively invariant set for the dynamic system
in (4.15) if every trajectory z(t) which starts from a point in M remains in M
for all future time, i.e.,

z(0)eM=zt)e M, Vt>0 (4.20)

Thus, any equilibrium point is an invariant set, but the domain of attraction of
an equilibrium point is also an invariant set.

Theorem 4.6 (Local invariant set theorem). Consider an autonomous system of
the form (4.15), with £ continuous and let V(x) : R™ — R be a scalar function
with continuous first partial derivatives. Assume that

e for some | >0, the set Q; defined by V(x) <1 is bounded.
o V(x) <0 for all x in Q.

Let R be the set of all points within Q where V(x) = 0 and M be the largest
invariant set in R. Then, every solution x(t) originating in £ tends to M as
t — 0.

In the above theorem, “largest” is understood in the sense of set theory, so M is
the union of all invariant sets within R. The geometrical meaning of the theorem
is illustrated in Figure 4.6, where a trajectory starting from within the bounded
region {1, is seen to converge to the largest invariant set M.

The local invariant set theorem can be simply extended to a global result,
by requiring the radial unboundedness of the scalar function V' rather than the
existence of a bounded ();.
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Figure 4.6: Convergence to the largest invariant set M. Adapted from
[Slotine and Li, 1991].

Theorem 4.7 (Global invariant set theorem). Consider an autonomous system
of the form (4.15), with £ continuous and let V(x) : R™ — R be a scalar function
with continuous first partial derivatives. Assume that

o V(x) — 00 as ||x]| = oo..
e V(x) <0 for all x in R™.

Let R be the set of all points where V(x) =0 and M be the largest invariant set
in R. Then, all solutions converge to M as t — oc.

No only the foregoing theorems relax the negative definiteness requirement of
Lyapunov’s theorem, but also extends it in two different directions: (7) the above
theorems can be used when the system has an equilibrium set (e.g.a limit cycle)
rather than an isolated equilibrium point; (#7) the function V(x) does no have to
be positive definite although often still referred to as a Lyapunov function.

When our interest is to showing that x(0) — 0 as t — 0o, we need to establish
the the largest invariant set in R is the origin. This is doing by showing that no
solution can be stay in R, other than the trivial solution x(¢) = 0. Specializing
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theorem 4.6. to this case and taking V' (x) positive definite, we obtain the follow-
ing theorem which is attributed to LaSalle.

Theorem 4.8 (LaSalle). Let V(x) : R™ — R be a scalar function with continuous
first partial derivatives such that on Q = {x € R" : V(x) < I} we have V(x) < 0.
Define R = {x € R" : V(x) = 0}. Then, if R contains no other trajectories other
than the trivial solution x(t) = 0, then the origin is asymptotically stable.

The proofs of the above theorems are omitted here due to they involve a number
of concepts in topology and real analysis which are outside of the topics of this
thesis, however if the reader is interested, they are addressed (or at least sketched)
in [Khalil, 2000| and [Vidyasagar, 1992|.
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The aim of this chapter is to present an overview of the qualitative theory of
piecewise smooth dynamical systems. Rather than covering all the issues, we will
focus on basic definitions and fundamental concepts that, according to us, are
needed through this thesis. Qualitative theory of dynamical systems comprises
methods for analyzing differential equations and iterated mappings. Specifically,
nonlinear dynamics is concerned with the study of the stability of fixed points and

67
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periodic orbits, stable and unstable manifolds. Most of the material presented
in this chapter is inspired from |Osorio, 2007| and |di Bernardo et al., 2007] and
some references therein.

5.1 Smooth dynamical systems

A smooth dynamical systems or simply a dynamical system is a rule for the time
evolution of a set of possible states. The time ¢ takes values in an index set 7 which
we usually consider to be either discrete (the set of integers Z), or continuous (the
set of real numbers R). The possible states belonging to state space X, is a discrete
or continuous collection of coordinates that gives a complete description of the
system. Given the current state of the system xg € X, the evolution rule or flow
¢, predicts the state or vector x(t) as:

p: X xT—=>X (5.1)

assuming z(t) £ ¢(z9,t), with 2(0) = .
We say that (5.1), together with X and 7, defines a dynamical system if following
conditions are satisfied:

o(x,0) =z, for all x € X, (Identity) (5.2a)
o(x,t+s) = (p(x,t),s), forallz e X,andt,s € T. (Group) (5.2b)
The identity condition in (5.2a) basically implies that the state does not change

spontaneously, and the group property in (5.2b) means that the evolution opera-
tor of the system does not change in time (i.e. The system is autonomous).

5.1.1 Discrete maps and iterated maps

A discrete map or simply a map, is an evolution rule defined in discrete time and
in a continuous state space. A map 7 : R” x Z — R" defines a dynamical system
where t € Z.

The time evolution can be defined in an iterative form as:

P :R" - R", where z — P(x) (5.3)

with © € R™. The iterative operator in (5.3) is often written as x,+1 = P(zy,)
with n € Z. Notice that given an initial condition z(0) = z, a generic element
at time ¢ = n can be obtained from:

z(n) = P™ () (5.4)

where P(n) 2 Po Po---o P, n-times.
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Example 5.1. The logistic map is an instance of how a very simple nonlinear
system can present very complicated behavior. It is a discrete model used to
describe demographic evolution, and mathematically is written:

Tn1 = prp(l —x5), p€[0,1]. (5.5)
where 1 is the growth constant of the population (For further details see [May, 1976]).

5.1.2 Continuous flows and ODEs

A dynamical system can also be defined by an initial value problem, through a
Ordinary Differential Equation (ODE) of the type:

&= F(x) (5.6)

In (5.1) X = R", T = R and the flow is defined by ¢ = ¢. The state of the
system will be given by:

z(t) = ¢(z0,1) (5.7)

where ¢ : R” x R — R" and z(0) = x¢. The evolution rule ¢ satisfies (5.6) in the
sense that:

Lo = F((,) 69

t="y

Example 5.2. A periodically forced, damped harmonic oscillator satisfies the
second order differential equation:

G+ 204+ kg = acoswt,

where ¢ and x are damping and spring constants respectively, and w is the angular
velocity of the periodic forcing. We can define the state variables 1 = ¢, o = ¢

and x3 = wt such that (5.2) can be written as a set of ordinary differential
equations:

T = x2,

Tog = kKx1 — 2(xo + acosxs,

Li’g = Ww.
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5.2 Qualitative dynamics

Given a generic dynamical system of the form (5.1), consider an invariant set! A
of the dynamical system in X (i.e. A C X).

Definition 5.1. A closed and bounded invariant set is called an attractor if:

e for any sufficiently small neighborhood U C X of A, there exists a neigh-
borhood W of A such that ¢(x,t) € U for all x € W and all ¢ > 0, and

o forall z € U, ¢(x,t) > Aast — oo

A dynamical system may have many competing attractors, with their relative
importance being indicated by the set of initial conditions that they attract, that
is, their domain of attraction.

Definition 5.2. The domain of attraction of an invariant set A (also known as
the basin of attraction or simply the basin), is the maximal set of initial conditions
x for which ¢(x,t) — A as t — oo.

The qualitative description of a dynamical system is given by the description
of the invariant sets that compose its phase portrait. The more common types of
invariant sets are:

Equilibria. The simplest form of invariant set is an equilibrium solution x* which
satisfies ¢(z*,t) = z* for all ¢.

Periodic orbits. The most complex kind of invariant set is a periodic orbit; it
forms closed curves in phase space and satisfies, for an initial condition x,,
that ¢(xp,T) = z;, where T indicates the period (The smallest time 7" > 0
for which the condition held). A periodic orbit that is isolated is termed a
limit cycle.

Homoclinic and heteroclinic orbits . Another important class of invariant
sets are connecting orbits which tend to other invariant sets as time goes
asymptotically to 400 and to —oo. Consider for example orbits which con-
nect equilibria. A homoclinic orbit is a trajectory x(t) that connects an
equilibrium z* to itself; z(t) — x* as t — +o0. A heteroclinic orbit connects
two different equilibria 7 and 3 ; z(t) — 27 as t - —oo and z(t) — 3

!See definition of invariant set in §4.4.2
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as t — 400. Homoclinic and heteroclinic orbits play an important role in
separating the basins of attraction of other invariant sets.

Other invariant sets. It is quite possible for dynamical systems to contain cer-
tain simple geometric subsets of phase space where trajectories must remain
for all time once they enter. The dynamics on this invariant sets could con-
tain equilibria, periodic orbits and other attractors. Similarly, flows can
contain invariant tori, invariant spheres, cylinders etc. Invariant sets that
are everywhere locally smoothly described by an m—dimensional set of co-
ordinates are called invariant manifolds.

5.3 Stability and structural stability on smooth sys-
tems

The stability of an orbit of a dynamical system characterizes whether nearby (i.e.,
perturbed) orbits will remain in a neighborhood of that orbit or be repelled away
from it. Asymptotic stability additionally characterizes attraction of nearby orbits
to this orbit in the long—time limit. The distinct concept of structural stability
concerns qualitative changes in the family of all solutions due to perturbations to
the functions defining the dynamical system.

5.3.1 Stability on smooth systems

An important notion of stability in autonomous dynamical systems in that of
either Lyapunov or asymptotic stability of an invariant set (See §4.4). In general,
the former means stability in the weak sense that trajectories starting nearby to
the invariant set remain close to it for all time, whereas the latter is more re-
strictive. Both refer to stability of invariant sets with respect to perturbations of
initial conditions, at fixed parameter values.

Limit cycles and Poincaré maps. One of the main building blocks of the
dynamics in a set of ODEs is the topology analysis of its periodic solutions (or
limit cycles). Limit cycles provide a natural way to transform between flows
and maps. Consider a limit cycle solution z(t) = p(t) of period T" > 0, that
is p(t +T) = p(t). To study the dynamics near such a cycle, we can choose a
Poincaré section, which is an (n — 1)—dimensional surface II that contains a point
xp = p(tp) on the limit cycle and which is transverse to the flow at z,. We can
use the flow ¢ to define a map P from II to II, called the Poincaré map, which is
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defined for x sufficiently close to x,, as:

P(x) = o(x,v(x)) (5.9)

where ~y(z) is defined implicitly as the time closest to T" for which ¢(z,v(x)) € IL
We can study the stability of the periodic solution by studying the spectrum of
the Jacobian matrix of the Poincaré map at x, (i.e. eig{P.(zp)}).

Figure 5.1: Poincaré map definition.

In general, a consequence of using Poincaré maps rather than flows in the
stability analysis of invariant sets is that they reduce their dimension of the sets
we need to consider. Thus, limit cycles of flows correspond to isolated fixed points
of Poincaré maps; invariant tori correspond to closed curves of the map; and a
chaotic invariant sets decrease their fractal dimension by one.

5.3.2 Structural stability on smooth systems

Structurally stable systems are ones for which all nearby systems have qualita-
tively equivalent dynamics. Thus we need a precise notion of nearby and also of
equivalence.

Nearby refers to any possible perturbation of the system itself (the function F(z)
for ODE), including for example variation of the system’s parameters. We call
two systems equivalent if their phase spaces have the same dimension, the same
number and type of invariant sets, in the same general position with respect to
each other. To achieve such a definition, we use mathematical topology.

Definition 5.3. We say that two phase portraits are topologically equivalent if
there is a smooth transformation that stretches, twists, rotates, but not folds one
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phase portrait into the other. Such transformations are called homeomorphisms,
which are continuous functions defined over the entire phase space whose inverses
are also continuous.

Two dynamical systems defined by operators ¢,1 : X x T — X are topologically
equivalent if there is a homeomorphism h that maps the orbits of the first system
onto orbits of the second one, preserving the direction of time.

Definition 5.4 (Hyperbolicity in Flows). Consider an equilibrium z* of a flow ¢
defined by a system of ODEs & = F'(x). We refer to the eigenvalues of an equilib-
rium x*, to mean the eigenvalues of the associated Jacobian matrix F,(z*). An
equilibrium is said to be hyperbolic if none of its eigenvalues lie on the imaginary
axis.

Definition 5.5 (Hyperbolicity in Maps). Consider a fixed point z* of a map 7
defined by the iterated equation z,41 = P(z,). We refer to the multipliers u;
of a fixed point z*, to mean the eigenvalues of the associated Jacobian matrix
P,(x*). A fixed point is said to be hyperbolic if none of the multipliers lie on the
unit circle.

One of the key applications of topological equivalence is to show that under hy-
perbolicity condition, linearization of the dynamical systems about the neighbor-
hood of an invariant set are locally topologically equivalent. In addition, it can
be proved that the flow local to any two hyperbolic equilibria of n—dimensional
systems which have the same number of eigenvalues with negative real part are
topologically equivalent to each other.

5.4 Piecewise smooth dynamical systems

A piecewise smooth (PWS) dynamical system is a set of smooth dynamical sys-
tems (i.e. with elements of the form D; = {X;, T;, v:(z,1)}?); plus a set of rules
for concatenation in time for some dynamical system D; to another D;, such
that identity and group conditions are satisfied. In general the set of rules for
concatenation can be expressed through zero level sets of scalar functions, say
o;; : R® = R, to commute at time v from D; to Dj; such that the final state
Ty = () = i(z0,7) becomes an initial state as 2(y) = ¢;(2,,0). This is equiv-
alent to say that the state x at commutation time v can be expressed as function

ZSee definition of smooth dynamical system in §5.1
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of both evolution operators.

In [di Bernardo et al., 2007] and [Osorio, 2007] an extensive study of PWS
dynamical system can be found. Here, we present some fundamental definitions
and properties which will be useful for later analysis in this thesis.

5.4.1 Piecewise smooth maps

A piecewise—smooth map is described by a finite set of smooth maps as:
x> Pi(z,p), for x € S; (5.10)

where U;S; = D C R™ and each S; has a non—empty interior. The intersection
Y;; between the closure (set plus its boundary) of the sets S; and S; (that is,
2ij 28N S;) is either an R(™=1_dimensional manifold included in the bound-
aries 0S; and 05;, or is the empty set. Each function P; is smooth in both the
state z and parameter p for any open subset U of .S;.

5.4.2 Piecewise smooth flows (ODEs)

A piecewise—smooth flow is given by a finite set of ODEs as:
& = Fi(z,p), forx € 5; (5.11)

where U;S; = D C R™ and each S; has a non—empty interior. The intersection
2ij £ 5N S; is either an R(™=1_dimensional manifold included in the bound-
aries 05; and 95;, or is the empty set. Each vector field F; is smooth in both the
state  and parameter p and defines a smooth flow ¢;(x,t) within any open set
U € S;. In particular, each flow ¢; is well-defined on both sides of the boundary
S;.

Example 5.3. The bilinear oscillator, can be written as the first—order system
by setting 1 = q, x2 = ¢ and x3 =t so that

T = T,
o = —2(xy — Kix1 + acos(zrs),
iy = 1,

where the value of x; depends on region S;, with S; = {1 < 0}, S = {z1 > 0}.
|
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a) Sl 52

Figure 5.2: Trajectories of (a) a piecewise-smooth flow, and (b) a piecewise-
smooth map

5.4.3 Filippov systems

Consider a general piecewise—smooth continuous system with a single boundary
>, such that:

_ (5.12)
Fy(x), if H(x) <0,

o {Fl(:n), if H(z) >0,
where ¥ is defined by the zero set of a smooth function H and F(z) # Fa(x) if
H(xz) = 0. This class of systems must be treated with great care since we have
to allow the possibility of sliding motion. In order to define sliding, it is useful to
think of system (5.12) local to the discontinuity boundary between two regions
defined by the zero set of the smooth function H(x) = 0.

The sliding region of the discontinuity set of a system of the form (5.12) is
given by that portion of the boundary of H(x) for which (H,F}) - (HyFz) < 0.
That is, H, F; (the component of F} normal to H) has the opposite sign to H, Fb.
Thus the boundary is simultaneously attracting (or repelling) from both sides
|Piiroinen and Kuznetsov, 2008.

5.5 Stability of PWS

The extension of well-established concepts for smooth systems to the case of
non—smooth systems is still an open research area. Next, we show a pragmatic
approach for studying the asymptotic stability of a classical piecewise-smooth
linear system presented in [di Bernardo et al., 2007].
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Figure 5.3: Slading region. Bold and dashed regions represent (a) attracting and
(b) repelling sliding motion. Dotted lines indicate three individual trajectory
segments.

5.5.1 Asymptotic stability

It is a particularly cumbersome task to provide necessary and sufficient conditions
that guarantee the asymptotic stability of a desired invariant set of a piecewise—
smooth system. Even the problem of assessing the asymptotic stability of an
equilibrium that rests on a discontinuity boundary is an open problem in general.
Let us focus on the problem for the special case of piecewise—linear systems, which
will be of relevance to later discussions in Chapter 6.

Consider the piecewise-linear system:

5.13
Atz, ifCTz >0 (5.13)

, {A‘x, if Tz <0,
€Tr =
where AT € R™™ and ¢ € R™. We assume that the overall vector field is con-

tinuous across the hyperplane {z : CT2 = 0}, but the degree of smoothness is
uniformly one. This means that

A™ — AT = ECT (5.14)

for some E € R™ . For the planar case, i.e., n = 2, a complete theory is possible
and it can be shown that the equilibrium point z = 0 of (5.13) is asymptotically
stable under certain strict conditions, provided the system obeys the property of
observability often used in control theory.

Definition 5.6. Two matrices A € R™"*" and CT € RP*" are said to be observable
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if the observability matrix O, defined as:

CT
CcTA
0= , (5.15)
CTAn—l

has full rank. Equivalently, for single-output systems, observability implies det(Q) #
0.

Theorem 5.1. Consider the system (5.13) with n = 2. Assume that the pair
(CT, A7) is observable. Then:

e The origin is asymptotically stable if and only if

1. neither A~ nor A" has a real non-negative eigenvalue, and

2. if both A~ and At have non-real eigenvalues, then o~ /w™ +ot /wT <
0, where 0 £ w* (w* > 0) are the eigenvalues of AT

e The system (5.13) has a non—constant periodic solution if and only if both
A~ and AT have non-real eigenvalues and o~ Jw™ + oT JwT = 0, where
ot +wt (W* > 0) are the eigenvalues of AT. Moreover, if there is one
periodic solution, then all other solutions are also peritodic. Moreover any
such periodic solution has period equal to m/w™ + 7/w™.

In higher dimensions, the problem becomes considerably more difficult.

In the control theory literature, a more general tool has been proposed for
the stability analysis of piecewise-smooth dynamical systems. Take, for exam-
ple, the problem of establishing whether an equilibrium point in a discontinuity
boundary of a piecewise-smooth dynamical system is asymptotically stable. One
technique for proving such stability is to find a common Lyapunov function, that
is, a function V' (x) that is Lyapunov for each of the vector fields defining the sys-
tem dynamics in each of the phase space regions. However, finding such functions
in practice is at best difficult.

5.6 Numerical methods

In general we referred to numerical analysis tools for differential equations. For
smooth flows, there are broadly speaking two classes of numerical methods for
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investigating the possible dynamics for a range of parameter values namely; di-
rect numerical simulation, and path—following |Kuznetsov, 2004]. This classifica-
tion also applies to piecewise—smooth systems, The rigorous numerical analysis of
nonsmooth dynamical systems remains a theory that is far from complete.

5.6.1 Direct numerical simulation

When computing solutions to piecewise-smooth systems it is usually not possible
to use general purpose software directly, as they typically use numerical inte-
gration routines that assume a high degree of smoothness of the solution. All
numerical computations must make special allowance for the nonsmooth events
which occur when a discontinuity boundary is reached. Simulation methods for
nonsmooth systems fall broadly into two categories; time—stepping and event—
driven. The former is most often used in many—particle rigid body dynamics
written in complementarity form for which there can be a big number of con-
straints. For such problems, to accurately solve for events when one of the ev-
ery one of the constraint functions becomes zero within each time-step and to
subsequently re—initiate the dynamics would be prohibitively computationally ex-
pensive. In contrast, the basic idea of time—stepping is to only check constraints
at fixed times. There are adaptations to standard methods for integrating ODE
for complementarity systems, some of which are based on linear complementarity
problem solvers that have been developed in optimization theory and that can be
directly used on simulation of piecewise smooth dynamical systems. Clearly there
are errors introduced by not accurately detecting the transition times, and there-
fore time—stepping schemes are often of low—order accuracy. In this thesis we are
concerned with low—dimensional systems with just a discontinuity boundary. In
this context, explicit event driven schemes are feasible, fast and accurate. In these
methods, trajectories far from boundaries are solved using standard numerical in-
tegration algorithms for smooth dynamical systems (e.g. Runge-Kutta, implicit
solvers, etc.), then times at which a discontinuity boundary is hit are accurately
solved. Here it is necessary to consider the capability of simulating sliding flow
by defining a sliding vector fields.
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As it was pointed out before in chapter 3, the success of real-time substruc-
turing tests is highly dependent on the control of the signal delays. We intend
to analyse the close loop behaviour of a model when testing a supplemental en-
ergy dissipation system for structural control. In the seismic protection system
considered, the most non-linear and complex-to-model component is a passive
non-linear fluid viscous damper added to the structure. In the next chapter, an
extensive description of this system is presented. In accord with the fundamentals
on RTST, the damper (the critical element) must be extracted from the system
and tested physically in the lab, while the remaining part of the structure is
modelled mathematically and becomes the numerical substructure. In our tests,
the displacements computed form the numerical substructure are applied through
an actuator to the damper, and in turn, the resisting force is measured and feed
back into the numerical substructure. Although sources of delay are the electronic
measuring and actuator assemblage, the delay comes mostly from the actuator
dynamics. It is worthy noticing that, the practical effect of this on our system, is

79
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a lag time on the effective damper force applied to the structure.

In this chapter, we present a stability analysis to highlight the harmful effects
caused by delays in dynamic systems when timing errors are considered on the
damper’s response. Our goal is to assess the constraints on delays, in such a way
that the stability and reliability of the closed loop simulation can be guaranteed.
The present study will be addressed in the context of both classic stability theory
for linear /non-linear systems (See Chapter 4) and the qualitative theory of Piece-
wise Smooth Dynamical Systems (See Chapter 5) according to the particular case
which is discussed throughout each section.

6.1 SDOF oscillator with a delayed damper

Let us suppose a simple oscillator compounded of a single-degree of freedom sys-
tem (SDOF) with an energy dissipation device, as shown in Figure 6.1. Without
loss of generality, the damper is considered placed atop of a chevron—type brace
and attached to the frame in horizontal position. Thus, by assuming a very stiff
brace (much more than the frame), the relative displacement between the ends of
the damper can be considered equal to the relative inter—storey drift. Then, we

T
m ) .
Damper —!WW\f_ .
 — ¢ o .
—1
Iy p—
N @] )]
’ 7
-« i,

Figure 6.1: SDOF oscillator with an added damper.

can write a mathematical expression to describe the dynamics of this system as
in equation (6.1).

mi(t) + ci(t) + kx(t) + Fy(t, 7, cq, a, &) = —md4(t) (6.1)
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where:
is the mass of the system;

is the intrinsical damping coefficient of the system;
is the stiffness of the system;
is time;
Fy; : is the force in the damper;
T : is the signal delay;
cq - 1s the damping coefficient of the damper;
« : is the velocity exponent of the damper; 0<a<1;
Zg : is the base excitation;
T, T,x : are respectively the system acceleration, velocity and displacements.

H—??‘QS

Note that the damper force is depending not only on time, damper coefficient
and velocity but also on the delay considered on the damper response (assumed
as constant). In what follows, we shall examine this system in light of different
situations in accord with the behaviour of the damper. We shall cover both linear
and non-linear cases.

6.2 Oscillator with added linear damper

Fist of all, let us consider the oscillator with a linear damper. Equation (6.1) can
be then rewritten as:

mi(t) + ci(t) + kx(t) + caqd(t — 1) = —miy(t) (6.2)

where cg; is the coefficient of the linear damper.This kind of differential equation,
in which the derivative of the unknown function at a certain time is given in
terms of the values of the function at previous times, is called a Delay Differential
Equation (DDE). We shall describe both the analytical and numerical solutions
for z, considering the critical delay value 7., for which the system may become
unstable.

6.2.1 Explicit stability analysis

Let us assume zero external excitation and arbitrary initial conditions. By means
of proper substitutions, the system in (6.2) can be rewritten with non—-dimensionalised
parameters as:
2’ (1) + 2¢a' (t) + x(f) + pa’ (t—7) =0 (6.3)
where 2’ and z” indicate the first and second—order derivative of x with respect
to ¢ instead of ¢; and also:
k c - . Cdl
Wy =4[ —5 (= ;o t=wat; T=waTi p=

m 20/mk muwy,
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An accepted and quite common strategy to solve differential equations, is to
assume solution of the exponential form, z = Ae*. The characteristic equation
of the system can be then written as:

A 200+ 14+ Ape™ =0 (6.4)
If we assume that 7 is small, instead of e " we can use the first-order ap-
proximation (1 — A7) from the series expansion of this exponential function. By
substituting this approximation and reordering the parameters, equation (6.4)
becomes:

(1—pA)A2+ (2 +p)A+1=0 (6.5)

The real part of the system eigenvalues determines the stability of the linear
system (See Lemma 4.1). Solving the last equation for A\ we have:

1
A1,2

2= 21— p7) (—(ZC +p)£/(2¢ +p)? —4(1 —p%)) (6.6)

First, suppose that there is no delay in the damper response. So if 7 = 0 the
system eigenvalues become:

M= =} |(2¢+p) = VRCHpP 4] (6.7

Since (, p are positive quantities (they depend on strictly positive physical char-
acteristics) and (2¢ + p) > /(2¢ + p)? — 4, the real part of the complex roots \;
will be always negative, so that, the system is globally asymptotically stable as it
was expected for a system with an additional linear damper.

Going back to the case when 7 is small, we note that by satisfying the rela-
tionship (1—p7) > 0, the quantity (2¢+p) is greater than \/(2¢ + p)2 — 4(1 — p7)
being the real part of the complex roots \; always negative, what implies global
and asymptotic stability. On the other hand, if (1 — p7) < 0 at least one of the
roots \; will have real part positive and the system will become unstable. There-
fore, the system will remain stable if and only if the delay in the damper response
satisfies 7 < 1/p, which converted back to the original parameters can be written
as:

= < (6.8)
Cdi Cdl

w,T =7 <

This expression highlights that structures with strong added dampers will be more
susceptible to become unstable due to small delays in the damper response, and
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consequently, it will be more difficult to maintain stability when running a real-
time substructuring test on it. A system which fulfills the restriction presented in
(6.8) has characteristic roots located in the left half complex plane and is always
global asymptotically stable. Increasing the value of the bifurcation parameter p
results in characteristic roots swarming out from the left to the right half part in
the complex plane! (i.e. towards the instability).

Although some researchers have demonstrated before, how delay can be under-
stood as negative damping [Horiuchi et al., 1999, Wallace et al., 2005a], equation
(6.5) shows how, considering delays in the damping forces, it can manifest itself
as negative mass too. In this context delay should be understood like anti-inertial
force, a sort of negative mass (in fact, it can be expressed by myeq = —cq7) which
adds energy into the system. By equaling both sides in the inequality (6.8), it is
possible to find the delay 7 for which the overall mass in the system is cancelled,
as a matter of fact, equation (6.6) is not definite for this value (massless system).
Furthermore, do not fulfill inequality (6.8) leads to instability in consequence of
the effective negative overall mass operating in the systerm.

On the other hand, a different approach for determining the stability bound-
aries of the system, is to search a set of point in the parameters space where
the characteristic equation has one pair of pure imaginary roots, that is, just go
through a Hopf bifurcation |Kalmar-Nagy et al., 2001]. To find this curve, we
substitute into the trial solution previously proposed for equation (6.3), A\ = iw,
for w > 0 and W = w/wy,.

This analysis is valid for any time delay, even if 7 is not small (see [Gilsinn, 2002]).
After applying the aforementioned substitution and some algebra, equation (6.4)
becomes:

—? 4 2i¢ + 1 + ipwe T =0 (6.9)
Applying the Euler’s formula from complex analysis and splitting up into real and
imaginary parts, we get two real equations:

—@? 4+ psin(it)+1 = 0 (6.10a)
2¢ +pcos(wt) = 0 (6.10b)

Assuming ¢ as known, we can use the last pair of equations to express the pa-
rameters 7 and p as function of w.
Dividing equation (6.10a) by (6.10b) and considering periodicity we have:

A2

W 1 L
—och tan(wr) (6.11)

! Bifurcation and other phenomena are introduced in §4.2.3
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1 1 —w? nmw
T = — arct ; =1,2,3... 6.12
T warcan<2<w>+w, n ) 4 ( )
where n corresponds to the n-th lobe (parameterized by w) from the right in the
stability diagrams in Figure 6.2 (n must be greater than 0, because 7 > 0).
The trigonometric terms in Equations (6.10a) and (6.10b) can be eliminated by
squaring and adding them to yield:

p= %\/(uﬁ —1)2 + (2¢w)2 (6.13)

In Figure 6.2(a), we present the boundaries obtained for 7 and p by fixing ¢
at 0.03. These curves are parameterized by w running from 0 to co and n from
1 to 5. Along these curves the system has a pair of purely imaginary eigenval-
ues delimiting the parameters space where the system is expected to be stable.
Along the line 7 = 0 the system is stable, consequently, its surrounding area up
to the closest boundary is the region of stability (shadow area). The approximate
boundary defined by equaling the inequality (6.8) is plotted too (dashed line).
The approximation tends to underestimate the critical delay and only holds for
very small values of 7. The curve with 7 for n = 1 is the practice stability bound-
ary because encloses the others theoretical boundaries into the unstable region.

In addition, we can rearrange equations (6.10a) and (6.13) assuming p as
known, so as to obtain the critical delay 7 and ( as parametric curves in w as

follows: )
=5V ()’ = (0 = 1)° (6.14)
1 -1 2
71 = — arcsin (w - > + Tn (6.15)
W PW W

where @ runs from 3(—p + /p2 +4) to 2(p + \/p2 +4), and n is any positive
integer greater than zero. Seeking for completeness, we have to consider the
periodicity of sine function and the range over the arcsin function is defined;
thus, the boundary in equation (6.15) should be rounded off with:

1 -1 2
Ty = —— [arcsin <w _ ) +7r] + Tn (6.16)

w PW w

Figure 6.2(b) shows the stability region for fixed p = 2 using the curves defined
parametrically by equations (6.14), (6.15) and (6.16). Again, the approximate
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Figure 6.2: Non-dimensionalized complex root solutions: a) Varying added
damper capacity, and b) Varying structural damping.

boundary defined by inequality (6.8) is include in dashed line. This approxima-
tion is a constant value for any ( and strongly underestimates the critical delay.
Counsidering the lightly damped systems commonly studied in civil engineering
applications (¢ < 0.1), the curve for 79 with n = 1 can be used as the practical
stability boundary in the (w, ()—plane.

6.2.2 Numerical stability analysis

For more complex Delay Differential Equations (DDEs) than equation (6.2) it may
become impossible to find stability regions, as before, by analytical calculations.
We therefore move to a numerical approach for finding the stability regions. First
of all, we shall face the linear case, and afterwards, extend the analysis to more
general cases taking into account non-linear substructured systems.

We use a graphical method for studying the qualitative behavior of our second-
order linear dynamic system. The phase plane method is concerned with the
graphical study of second-order systems described in terms of the equations of
state (For further details, see §4.2). Thus, equation (6.3) can be rewritten by
means of the simple change of variables x1 = x and 2o = 2’ as:

a;'l(t:) = mo(t) (6.17a)

(i) = —2aa(l) - a1(0) - paa(i —7) (6.17b)

where x1 and xo are the state variables of the system, that is, relative displace-
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ment and velocity. In other words, the systems is entirely described by x and 2’
at any time, that is why the phase plane gives complete information about the
system behaviour (See pag. 49).

Firstly, we want to point out how the increasing of the damper coefficient can
affect the behaviour of the system and how this circumstances can be distinguished
in this kind of plots. To do that, we considered no delay in the equation above
(7 = 0) and utilized a very easy-to—use program called pplane?. This program is
designed for phase plane analysis of differential equations and allows the user to
plot the vector field® for the system and also the solution curves. Figure 6.3 shows
the vector fields and some solution trajectories for the system in equations (6.17)
considering no delay, a structural damping ratio ¢ = 0.03 and different capacities
for the added damper.

The first two cases with p = 0.3 and p = 1.0 correspond to a stable focus* (Figs.
6.3(a) and (b)). This means that the real part of the eigenvalues in formula (6.7)
are negative while the imaginary part are different from zero, which implies that
x(t) and 2/(t) both goes to zero as £ — co. Note that the trajectories encircle the
equilibrium point one or more times before converging to it.

The other two cases with p = 2.0 and p = 4.0 correspond to a stable node. Now,
the eigenvalues are real and negatives, which implies that both z(f) and /()
converge to zero exponentially, as shown in Figures 6.3(c) and (d). It is worth
noticing that no oscillation are presented in the trajectories, moreover, the ve-
locity tends to zero faster than the displacement. As the trajectories approach
the origin, they become tangent to the line whose slope corresponds to the slow
eigenvalue (the smallest). If the damper capacity if large enough to cause an
eigenvalue close to zero, this line will be almost horizontal and will become close
an equilibrium subspace, being all trajectories almost normal to it. That would
imply that the velocity will decrease very rapidly while the displacement will not
do it. The physical meaning of this limit behavior is that the system will remain
blocked in a position different from zero.

From now on, let us consider 7 not null. Due to there is no a software able
to draw the phase plane for delay differential equations, we decided to construct
the vector field from some solution trajectories of the system in (6.17). A popular
approach for solving DDEs is to extend one of the methods used to solve Ordinary
Differential Equations (ODEs), most of the codes are based on explicit Runge—
Kutta methods (See §3.6.2). In this section, we use a program developed on

*pplane is copyrighted in the name of John C. Polking, Department of Mathematics, Rice
University.

3See key definitions in §4.2.1

“For a comprehensive description of this behaviour, see §4.2.2




6.2. Oscillator with added linear damper 87

Figure 6.3: Vector fields and trajectories for 7 = 0 (no delay) varying the added
damper capacity for the linear case: a) and b) Stable focus; ¢) and d) Stable node.

MATLABS called dde23 which extends the method of the MATLAB ODE solver
ode23 and allows the user to solve DDEs with constant delays including also
problems with discontinuities. The program was written by L. Shampine and S.
Thompson, a detailed discussion of the numerical methods used by dde23 can be
found in [Shampine and Thompson, 2001].

Figure 6.4 shows the vector fields and some solution trajectories for the sys-
tem in (6.17) considering ¢ = 0.03, p = 2 and different delays in the damper’s
response. For small delays, the system stability does not change, to confirm that,
it is sufficient to compare Figure 6.3(c) with Figure 6.4(a), we still have a stable
node. Nevertheless, increasing the delay just before the stability limit, the systems
behaves as a stable focus, that is, the trajectories encircle the equilibrium point

SMATLAB is a registered trademark of The MathWorks, Inc. www.mathworks.com
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Figure 6.4: Vector fields for ( = 0.03; p = 2.0 and different delays in the feedback
loop: a) Stable node; b) Stable focus; ¢) Center; d) Unstable focus.

several times before converging to it (See Fig. 6.4(b)). On the other side, taking
into consideration a delay larger than the stability boundary, the system behaves
as an unstable focus, although the trajectories encircle the equilibrium point,
both z and 2’ tend to infinity as { — oo as shown in Figure 6.4(d). Additionally,
just on the stability boundary, the system neither converges to the equilibrium
point nor diverges from it, but goes to periodical closed trajectories in phase
space which are neighbored by other closed trajectories. This case corresponds
to a center point as shown in Figure 6.4(c). The name comes from the fact that
all trajectories are ellipses and the equilibrium point is the center of these ellipses.

In order to find the region of stability for the linear substructured system un-
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der discussion, we use the conditions explained above to define the critical time
lag 7. as the delay in the damper’s response that causes the system to behave
as a central point, that is, when it describes sustained closed orbits. We wanted
a simple and robust search method for 7., (in the sense that it always converges
to the solution), so we selected and implemented the bisection search method.
Although it is relatively slow, it is always reliable.

Roughly speaking, the search process can be illustrated as follows. For a ¢ and
p known and an arbitrary small value of 7 the DDE in formula (6.17) is solved.
The initial delay 7y is chosen small enough such that the systems is stable. Then,
the delay is increased of a predetermined quantity A7 and the DDE is solved
again. The delay is continuously increased until the system became unstable,
without loss of generality, let us call that delay as 7,. In the absence of any
other information, the best estimate for the location of the solution (7,) is the
midpoint of the range between the last two values of 7 found. Let us call this
first estimation as 7.,,. Subsequently, the estimate for the critical delay is used to
solve de DDE and either: (i) the system behaves stable, in such a case the interval
to be bisected for the next estimate of the critical delay (let us call it 7,,) is the
right-side interval between 7.,, and 7,; (ii) the system behaves unstable, in such
a case the interval to be bisected for the next estimation of the critical delay,
is the left-side interval between 7,,_1 and 7.,,. Now, the new estimation of the
critical delay is used to solve de DDE and the process is iteratively applied until
the system behaves closely as a central point. The last estimate for the critical
delay can be selected as the stability boundary for the system defined by ¢ and p.

The above iterative procedure was implemented in a Matlab routine. It al-
lowed us to obtain numerically the regions of stability presented in what follows.
Figure 6.5(a) presents the boundaries obtained for 7 and p fixing ¢ at 0.03. We
use red crosses for the numerical solution. We also compare this limit against the
theoretical stability boundaries, both exact and approximate, already shown in
Figure 6.2(a). As before, the region of stability is emphasized as a shadow area.
Additionally, Figure 6.5(b) shows the stability region for 7 and ¢ fixing p = 2.0.
Again, the approximate and exact theoretical boundaries are included. Overall,
the numerical results in this subsection agree with the explicit stability analysis
presented before in §6.2.1. This makes evident the potential of the numerical
stability analysis, with the added advantage that it works also for much more
complex and non-linear systems.
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Figure 6.5: Stability region for numerical solution (Linear case): a) Varying added
damper capacity, and b) Varying structural damping.

6.3 Oscillator with added non-linear damper

Now, let us consider a non-linear added damper with constant delay in the single
degree of freedom system shown in Figure 6.1. The delay differential equation in
(6.2) can be now rewritten as:

mi + ci + kx + cql(t — )| - sign(@(t — 7)) = —mi, (6.18)

m : is the mass of the system;

c: is the intrinsical damping coefficient of the system;

k : is the stiffness of the system;

T : are respectively time and the signal delay;
cq : 1s the damping coefficient of the damper;

« : is the non-linear exponent of the damper; 0<a<1;
| : represent the absolute value of -;
Zg : s the base excitation; and

T, T,x : are respectively the system acceleration, velocity and displacements.

The same as before, let us consider on equation (6.18) zero external exci-
tation, arbitrary initial conditions and some appropriate substitutions to get a
non—dimensionalised formulation in terms of dimensionless parameters. Thus,
after some algebra we have:

~

2"(1) 4 2¢2' (1) + 2(f) + pal2'(E — 7)|* - sign (2 (= 7)) =0 (6.19)
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where:

Cd  a-2 —1
T =202, Ppp=—wy “|xe|*
m

The differentiating operator / indicates the derivative with respect to #, and x
stands for an arbitrary initial condition.

Due to the fact that for non—linear delay differential equations there is not
a suitable method to perform explicit stability analysis, at first we carried out
some numerical investigations in order to understand, identify and characterize
qualitatively the behavior of the system.

6.3.1 Numerical stability analysis

Again, we will take advantage of the phase plane analysis to obtain qualitative
information about the system behaviour. The qualitative description of a dy-
namical system is given by the description of the invariant sets that compose
its phase portrait. As before, the system is represented in terms of the equa-
tions of state, where the system’s relative displacement and velocity are the state
variables, named respectively x; = z and xo = 2.

() = xo(f) (6.20a)
zh(t) = —2Cxo(t) — 21(t) — pulaa(t — 7)™ - sign (z2(t — 7)) (6.20b)

Seeking for better understanding of the system behaviour, first of all we shall
perform a parametric analysis. Our interest is to determine the relationship of
the multiple variables in (6.20) and see their effect on overall system performance.
By simulations we shall try to identify which parameters could drastically change
the system dynamics.

Let us start with the structural damping ration (. Note that the vast majority
of structures, especially in the civil engineering field, are lightly damped, typically
operating between 0.5% and 7%. Figure 6.6 shows vector fields for the system
in (6.20) assuming, without loss of generality, constant parameters p, = 1.0;
a = 0.15 and 7 = 0.8. Damping ratio is varying from 0.1% to 10%. From those
graphics and considering civil engineering structures, it is worth noticing that the
system dynamics is not prone to be affected by changes of the damping ration ¢,
so that we can disregard its effects.
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Figure 6.6: Vector fields of system in (6.19) for p, = 1.0; o = 0.15; 7 = 0.8 and
different damping ratio: a) ¢ = 0.01; b) ¢ = 0.03; ¢) ¢ = 0.06; d) ¢ = 0.10.

The next parameter to be evaluated is p,. The vector fields of the system
in (6.20) for p, equals to 0.5, 1.0, 2.0 and 4.0 are presented in Figure 6.7. The
other parameters are considered to be constant as: ¢ = 0.03, @ = 0.15 and
7 = 0.8. Although the graphs may initially seem different, by plotting them at
proper scales, the dynamic equivalence among those systems can be evidenced.
Note that for a particular structure (represented by m and w,,), the parameter p,
increases by either increasing the damper coefficient ¢y or reducing the arbitrary
initial condition xg. Thus, from simulations we can say that even an important
increase in the damper’s strongness will not change significantly the qualitative
description of the dynamics, as it would just imply a change in the scale over
which the system should be evaluated. Even more, although the changes in the
behaviour are certainly not proportional to p,, a change of the scale on the state
variables which is proportional to the change of p,, will be enough to catch the
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dynamics of the new system.

a)

Figure 6.7: Vector fields of system in (6.19) for ¢ = 0.03; o = 0.15; 7 = 0.8 and
different values of p,: a) p, = 0.5; b) p, = 1.0; ¢) p, = 2.0; d) p, = 4.0.

Next, let us skip to the velocity exponent of the damper. A value of a=1
means linear damping (velocity—proportional response). The hysteresis loop for a
linear damper is a pure ellipse as shown in Figure 6.8. Nonlinear damping with
low exponent (0<a<1) shows a hysteresis curve much more rectangular, what
implies more energy dissipation capacity. That is why nonlinear fluid devices are
very appreciated for real applications in structural engineering, as they provide
significantly higher forces at lower velocities compared to linear dampers. Any «
above 1.0 produces very poor performance. Figure 6.9 shows the vector fields for
the system in (6.20) considering several values of a.

According with our numerical simulation, systems equipped with nonlinear damper
at low damper’s velocity exponents, let say o < 0.20, exhibit substantially the
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.

Figure 6.8: Hysteresis loops for a linear (a« = 1.0) and a nonlinear viscous fluid
damper (e.g. a =0.1)

Figure 6.9: Vector fields of system in (6.19) for ¢ = 0.03; p,, = 1.0; 7 = 0.8 and
different values of a: a) @ = 0.01; b) a =0.1;¢) a =0.15; d) @« = 0.3; ¢) a = 0.5;
and f) a = 0.75.

same dynamics. Hence, when analysing stability of systems with added nonlin-
ear dampers with low o, we can consider a dynamically equivalent model® fixing
a = 0; that is a model which uses dry friction (Coulomb Friction) instead of
viscous nonlinear damping. This will not compromise the general result of the
stability analysis. The idea is to use a simpler mathematical model for the damper,
having qualitatively equivalent dynamics, in such a way that the explicit stability

A definition of Equivalent Dynamics can be found in §5.3.2
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analysis can be achieved in a closed—form.

The former observation is fundamental in this study, as it allowed us to trans-
form a continuous nonlinear dynamical system into a piecewise smooth dynamical
system comprised of two linear systems as it shall be explained later.

Finally, let us consider the effects of the delay 7. Figure 6.10 shows the vector

fields of the system in (6.20) varying 7 and considering the constant parameters
¢ =0.03; p, = 1.0 and a = 0.15. Even when the delay is very small, this results
in self-sustaining oscillations of the system’s response. The larger the delay, the
longer the limit cycle extension (See Fig. 6.10f). This limit cycle is characterized
for a high frequency, much higher than the natural frequency of the system. The
smaller the delay, the higher the frequency of the limit cycle.
In addition, for small delays (in the sense that will be defined later), there exists a
region in the neighborhood of the limit cycle, where the system behaviour changes
drastically. When the system state gets into this area (See dark spots in Figs.
6.10a to 6.10d), it changes suddenly the amplitude and frequency of oscillation.
The frequency is increased strongly. These oscillations tend to match the limit
cycle; however, if the delay is very small, such convergence to the limit cycle is
very slow in terms of the displacement. In other words, whilst in terms of the
velocity (2'), the oscillations are very close to those exhibit for the limit cycle,
in terms of the displacement, the oscillations converge very slowly to those in
the limit cycle. This high frequency region only occurs for small delays. When
7 becomes larger, the system goes rapidly to the limit cycle without any other
phenomenon in between.

An equivalent system

Henceforth, we shall assume systems provided with added nonlinear damper with
low velocity exponent. Based on the previous parametric analysis, in place of
studying the system in (6.19), we shall considerer a dynamically equivalent system
which includes dry friction. Such a system can be expressed as:

2"(t) 4+ 2¢2' (1) + 2(f) + pssign (2'(t — 7)) = 0 (6.21)

where the damper force F; is represented by pgsign(2/(t — 7)); ps = cq/(mazow?)
and the other parameters the same as in pages 90 and 91. Again, the system is
represented in terms of the equations of state as in equation (6.22), where z; = 2
and zy = 2.

t) = xo(f) (6.22a)

~

f) = —2Cx2(f) — xl(f) — pesign (xg(t — %)) (6.22b)
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Figure 6.10: Vector fields of system in (6.19) for ¢ = 0.03; p, = 1.0; & = 0.15 and
different delays: a) 7 = 0.01; b) 7 =0.05; ¢) 7 =0.1; d) 7 = 0.2; ) 7 = 0.4; and

f) #=0.8.
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Figure 6.11: Vector fields of system in (6.21) for ¢ = 0.03; ps = 1.0; and different
delays: a) 7 =0.01; b) 7 =0.05;¢) 7 =0.1;d) 7 =0.2;¢) 7 = 0.4; and f) 7 = 0.8.

For completeness, Figure 6.11 shows the vector fields of the equivalent system in
(6.21) varying 7 and considering the constant parameters ¢ = 0.03 and ps; = 1.0.
The equivalent system behaviour can be described in the same way than the orig-
inal one, i.e., any delay causes self-sustaining oscillations, and large delays imply
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large oscillations and low frequency in the resultant limit cycle. Nevertheless,
two main differences could be pointed out. (i) For small 7, the self-sustaining
oscillations in the equivalent system (6.21) are larger than those exhibited for the
original system in (6.19); this is due to the fact that the simplified model (6.21)
involves the same damper force Fy even for very small velocities whilst in (6.19)
F, is strongly lessened as velocities tend to zero. And (ii), for small delays the
equivalent system (6.21) cannot reproduce the sliding motion” in (6.19) just be-
fore the self-sustaining oscillations start.

6.3.2 Explicit stability analysis

We intend to investigate analytically the stability of the system in equation (6.19).
For starting and just in the seek of the completeness of this thesis, we will demon-
strate the system’s stability when no delay is considered in the feedback loop.
Such stability is expected from a physical point of view, as the nonlinear damper
is a passive device which dissipates energy from the system.

Let us considerer the system (6.20) and assume 7 = 0, the dynamics may be
rewritten as:

>

(i) = (i) (6.23a)
(f) = —2Cxa(t) — 21(f) — palwa(t)|* - sign (z2()) (6.23b)

xT

NS =~

xT

By using the classic stability theory for non-linear systems®, we can assert that

the system in (6.23) is a time-invariant system (autonomous system) with only
one singular or equilibrium point at the origin, i.e., at (z1,z2) = (0,0).
Let V(x) : R? — R be the Lyapunov candidate function such as:

1 1
V(x) = —a3 + ~x3 (6.24)
2 2
Note that V(x) is globally positive definite, has continuous partial derivatives
and is radially unbounded in domain R%. Now, we will find the time derivative of
V(x) along the state trajectories of system (6.23) as follows:

V/(x) = a2 + xoa

129 + 22 (—2(x2 — 1 — ppla2|® - sign(zs))
T1T9 + —2C23 — 1129 — puTa|m2|® - sign(zs)
= _2<$% - pn|x2|a+1

(6.25)

"See phenomena on Filippov systems in §5.4.3
8See the main concepts of this theory in §4.4
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where the property |z| = x - sign(z) was used.

Due to the fact that {, p, and « are all strictly positive parameters, the final
expression for V’(x) is negative for all xo # 0. Nonetheless, in consequence of 1
does not appear in that expression, the derivative of V(x) is said to be negative
semi—definite. Based on Theorem 4.4, we can conclude that the system is stable;
even so, the demonstration is still uncompleted because we cannot draw conclu-
sions on asymptotic stability.

So, in what follows we will apply a powerful tool for system analysis known as in-
variant set theorems?, particularly, the Theorem 4.8 known as LaSalle’s Theorem.

Let R be the set of all points where V’/(x) = 0. Notice that V/(x) is equal
to zero only for zo = 0. Now, by substituting xo = 0 in (6.23), just a single
trajectory'® can be settled, that is 21 = 0, therefore, no solution can be stay in
R other than the trivial solution x(f) = 0. Thus, given that the largest invariant
set R for the system in (6.23) is the origin, and invoking Theorem 4.8, we can
conclude that the system with no delay in the damper response is asymptotically
stable, what implies that x(f) — 0 as £ — oo.

In a similar manner, we can also verify the stability conditions for the dynam-
ically equivalent system (using dry friction) with no delay. Let us considerer now,
the system (6.22) and assume 7 = 0, the dynamics may be rewritten as:

oh(t) = zo(f) ) (6.26a)

zh(t) = —2Cxo(t) — 21 (f) — pssign (z2(t)) (6.26b)

As before, it is about a time—invariant system but now the equilibrium is not longer
a point but a set of points (continuum). To see that, consider the dynamics of
(6.26). When xo goes near to zero from the positive domain, i.e, o — 07, the
vector field component zj — 0 while the component x/2+ — —x1 — ps. On the
other side, when o — 0~ then 2 — 0 while :17'2_ — —x1 + ps.

Note that for all #1 such that —ps < z1 < ps, the vectors (2,25 ) and (2, z5")
are normal to z;—axis and opposite, both pointing towards xo = 0, what implies
that the dynamics from both sides close to the boundary xy = 0, in the region
already indicated, will cancel each other. In other words, that set of point is an
attractor of the system. We can formalise the former observation as:

x' =0, VxeM where H:={xeR?:25=0,—ps <z <ps} (6.27)

Again, let us assume the Lyapunov candidate function in (6.24) and find the time

9A brief description is presented in §4.4.2
'9Solution for null dynamics (x’ = 0)
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derivative of V' (x) along the state trajectories of system (6.26), as follows:

V/(x) =z + za2)

X129 + T (—2Cxe — 1 — pgsign(zs))
2129 + —2Ca3 — T 122 — psTosign(z2)
= —ZCLL‘% _ps|x2|

(6.28)

Since all parameters in (6.28) are strictly positives, V’(x) is negative for all 25 # 0.
As it was previously, in consequence of z; does not appear in the derivative of
V(x), it is a negative semi—definite function and we cannot concluded asymptotic
stability yet.

Newly, Let R be the set of all points where V'(x) = 0, that is, xo = 0. Nonethe-
less, in the light of condition (6.27), the largest invariant set R for the system
in (6.26) is H. Thus, by means of the Theorem 4.8 (LaSalle’s Theorem), we can
assert that the system is asymptotically stable respect to the invariant set H, what
implies that x(f) — H as t — oo. In addition, due to V(x) is globally positive
definite and radially unbounded in R?, this stability is global.

Piecewise linear dynamical system

As it was pointed out earlier from the numerical analysis, we shall considerer the
simplified system in (6.22) which preserves dynamic equivalence with our original
system in equation (6.20). The advantage of this exchange lies in the fact that
such a system can be modelled by a piecewise linear set of ODEs of the form:

V. :x' = Ax + Bu (6.29)

where x € R? is the two-dimensional state vector; A and B are the system
matrices in controllable canonical form as presented in (6.30), and the switching
parameter u obeys the switching rule in equation (6.31).

A:[_Ol _12<]; B:[_(;J (6.30)

1.0 if 29(f —7) >0

—1.0, if xe(t—17) <0,
In what follows, we will term Fj(x) the system vector field of ¥; when u = 1.0,
F5(x) the vector field of U; when v = —1.0. In addition, we will label as ¢;(xq,t)

the flow generated by F; (i = 1,2) as explained in §5.1.2, such that:

d

a(@'(X’ £)) = Fi(¢i(x,1));  ¢i(x0,0) = %o (6.32)
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Finally, note that the system’s evolution in time is uniquely determined once we
have defined the values of x1, 2, and w. Thus, in the three—dimensional space
(z1,x2,u), we can visualise the state space as two parallel half-planes, partially
overlapping wherever u can have two different values for the same pair (z1, z2).

To get a better understanding about how a piecewise system can be inter-
preted, let us considerer firstly the system with no delay, as written in equation

(6.33), together with the corresponding switching rule in (6.34).

Uy :x' = Ax + Bu (6.33)
1.0, if zo(t) >0,

u= i (1) (6.34)
—1.0, if :Eg(t) <0,

The system vector fields F} and Fh of the system in (6.33) for ( = 0.03 and
ps = 1.0 are shown in Figure 6.12, notice that both equilibrium points are stable

foci (located at (0,-psu)).
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Figure 6.12: Vector fields F} and F; of the system in (6.33) for ¢ = 0.03, ps = 1.0:
a) For u=1.0 and b) for u = —1.0 .

Note however that for the system g, the vector field Fj is valid only when the
switching rule (6.34) is satisfied, that is, for all 5 > 0; in the same way that
F5 is valid only when zo < 0. Thus, the complete vector field of the piecewise
linear system Wq is made of the combination of F; and Fb, in their respective

valid domains.
The system phase plane can be partitioned into the following two regions, being
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S; the valid domain for F; (i = 1,2):
Sy = {x€R?:29 >0}
Sy = {X € R2: To < 0} (6'35)
Also, we label the boundaries between the regions above as:
EE = {xcR%:2; > —p,, 20 =0} (6.36)

Y= {xeR?:x <ps, 19 =0}

Note that 7, is the subset where the switching condition (6.34) is satisfied for
changing from Fj to Fy, whilst X7, is the subset where (6.34) is satisfied for going
back from F5 to Fi. Henceforth, they will be referred as switching sets.

a
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Figure 6.13: Vector fields of the piecewise linear system Wq for ¢ = 0.03, ps = 1.0:
a) (x1,z2)-plane; b) three-dimensional space (z1,x2,u).

Figure 6.13 presents the vector field of system Wy. On the left, the (1, x9)—plane
shows that the invariant set (the equilibrium) of the system. The attractor is no
longer a focus point (as it was for F} and F5), but the invariant set H as de-
fined before in formula (6.27). This set also corresponds to the region where the
switching sets overlap each other, i.e., the set EE M X5. This implies that any
trajectory of (6.33) lying on this intersection will stay there for all future time.
From a physical point of view this indicates that, when an oscillation reaches its
maximum displacement, and therefore zero velocity, but this displacement is such
that the distance from the origin is less than the parameter pg, the system will
remain blocked at that position (different from zero). It is due to the system
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internal forces cannot overcome the static friction inside the damper, and so, the
system cannot be recentered by itself.

It is worthy of note that ps grows as cg does, so larger nonlinear dampers will
have a longer “dead zone” where the system may remain blocked.

Similarly, Figure 6.13b shows the three-dimensional space (x1,z92,u). From a
mathematical point of view, when the system’s state hits the switching sets in-
tersection EE N X}, (shadowed plane in the figure), the system keep trapped into
this plane and remains continuously switching between F7 and Fj.

Flows of the piecewise linear system

The flows ¢; and ¢ are well-defined on each corresponding region S; and Ss. To
find the mathematical expression of these flows generated by the system vector
fields F} and F5, we have to solve each ODE in the set of equations (6.29). Let
us consider a general expression for the linear model ¥ as:

Ty = x9 (6.37a)
rh = —2(z9 — 1 — psu (6.37b)
where u is equals to 1.0 for F7 and equals to —1.0 for F,. To make things easier, let

us rewrite the system in (6.37) through a new set of state variables by substituting
y1 = o1 + psu and yo = x9. Thus, we have:

Y= (6.382)
ys = —20y2—m (6.38D)

This system can be expressed in matrix notation as 'y’ = Ay, where A is the same
matrix presented in formula (6.30). For this ODE, the solution is of the form in
(6.39) being Aq 2 the eigenvalues of matrix A, and C;2 two arbitrary constants
depending on the initial conditions y;(0) = y10 and v} (0) = y2(0) = yao.

yi(f) = CreMt 4 Opee! (6.39)

where

M= (4T -
S N 040

taking the first derivative of 3 respect to £, we get:

¥, () = CiheM! + Cydge (6.41)
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By equaling equations (6.39) and (6.41) at £—0 with the respective initial condi-
tions, the set of equations for C; can be found as:

Ci+Cy= wo

6.42
CiA1 + Oy = yop (642)
solving for C7 and Cy we get:

Cr = Cx(y20 — y10A2)

Cy = C',\l(—y2o + y10A1) (6.43)

Oy = XXz

replacing these constants in (6.39) and (6.41), converting back to the original pa-
rameters and taking into account that z1(0) = z19 = y10—psu and z2(0) = x99 = Y20,
we can write the solution for x1 and x9 as:

10 = Cx (@20 = (@10 + psu)A2)eM + (—aa0 + (w10 + pw))e!) = pu

22(f) = Cx (@20 = (@10 + Pou)A2)MeM T + (=30 + (210 + Pw)Ar) Aoe )
(6.44)
Thus, the flows ¢;1 and ¢9 can be obtained from (6.44) by substituting u according
to the respective vectorial field F} and F5 as follows:

Mt Aot
- ajre”™t” + ajppe™? — ps
Xg,t) = - p 6.45a
$1(x0,1) anAeMt 4+ ajphget??t ] ( )
At Aot
~ asie “+ agoe + Ps
X0, %) = i s 6.45b
¢2(x0,1) [ am A1 eMt 4 aghget?? ( )
where xg = (710, z20) and
ajr = Oy (x20 — (z10 + ps)A2) a2 = O\ (—x20 + (10 + ps) A1) (6.46)

az1 = Oy (220 — (10 — ps)A2) a2 = O\ (—x20 + (10 — Ps) A1)

The above explicit expressions for the flows allows us to get any trajectory in
the (z1,z2)-plane from any initial condition.

Delay by changing the switching rule

The main idea behind the use of piecewise smooth dynamical systems for the
present stability analysis, is to reap the benefits of including, in a very easy way,
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the effects of the delay in the system dynamics. Thus, after some proper transfor-
mations, we can study the stability of an equivalent non—delayed system, rather
than focusing on a complex delayed system. All this without compromising the
integrity of the stability analysis results.

Consider the dynamics of system (6.29), note that the delay 7 is only explicit
in the switching rule. The system phase plane can be partitioned into the two
regions as follows:

S = {xcR?:

zo(t —7) > 0}
Sy = {xcR?:mxy(t (6.47)

(t—7) <0}

To introduce the effects of the delay in the system dynamics, observe that if a
trajectory crosses one of the switching sets EE or X5, because of the delay, the
actual switching from one system configuration to the other will occur after some
time defined by 7. Indeed, switchings occur on the delayed switching sets EI;
and EE_ which are images of EE and X, under the system flow ¢; for some time
delay. Specifically we have,

Sl = {si(x,7), x € T (6.48)
Yip = Ad2(x,7), x € Xy}
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Figure 6.14: Vector fields of the piecewise linear system W in (6.29) for 7 = 0.4,
¢ =0.03, ps = 1.0: a) (x1,x2)-plane; b) three-dimensional space (z1, z2, u).

Thus, the original switching sets rotate clockwise around the corresponding
point (0,-psu) as shown in Figure 6.14. The position of %75 in the (x1,z2)-plane
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can be easily determined by computing ¢ for any initial condition falling on EE
and ¢ = 7. Similar procedure can be done for 37, by considering ¢ and 37,.

Therefore, instead of analysing a delayed model, we can replace the system in
(6.29) by a non—delayed system which includes the dynamic effects of the delay by
moving the original switching sets towards the corresponding position as it was
explained before. Thus, we can rewrite the delayed system (6.29) as follows:

Uy :x' = Ax + Bu (6.49)
1.0, if xeXl;,

u s BoEE S (6.50)
—-1.0, if xe X,

where the above switching rule establishes that, parameter u switch to 1.0 (or
—1.0) only when the respective condition in (6.50) is satisfied, that is to say,
when the trajectory hits EE (or EE‘ ), and will remain fixed at this value until
a new condition in (6.50) is satisfied. In other words, the switching parameter u
changes if and only if a delayed switching set (6.48) is reached for the non—delayed
system states.

This effect of the delay on the switching rule, was firstly envisaged when study-

ing the dynamics of a delayed hysteretic relay feedback system |Colombo et al., 2007].
In that work, the authors demonstrated that the dynamics of the delayed system
remain qualitatively the same as those of a system with properly constructed
switching sets. In other words, all the dynamics observed in a non—delayed sys-
tem with switching sets selected as (6.50) can be found in an equivalent delayed
system with properly switching set as (6.31).
The prior statement is true for all 7 < w. For larger delays, those researchers
identified a new bifurcation phenomenon, so—called event collision, where the de-
layed switching manifold EI; intersects the switching set 37, (or equivalently,
EE‘ intersects EB). In such a case, the dynamics become much more compli-
cated, whereby it will not be considered here, since according to us, the case is
outside the core to research of this thesis. Further details can be found in the
reference cited above and some references within.

Existence of limit cycle

We now investigate the existence of limit cycles induced by the delay in the
damper’s response. Let us note O the limit cycle generated by (6.49). We can
then partition the limit set O in two different segments {O;, O2} that corresponds
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to the discrete values of u as shown in Figure 6.14. Let us define x* the point on
the (z1,z2)-plane where the limit cycle hits the switching set EE and x** the
analogous point where O hits ZBF .

The part O7 belongs to the vector field F; and corresponds to the trajectory under
the system flow ¢ which starts on x* and ends on x** after some time named £*.
Similarly, the part O belongs to the vector field F5 and corresponds to the tra-
jectory under the system flow ¢ which starts on x** and ends on x* after some
time named #**. We can formally define them as:

O; = {x:x(f) =¢1(x*,1), Vi €[0,1*]}, (6.51)
Oy = {x:x(f) = ¢o(x™,1), Vi € [0,£]}, (6.52)

Geometric arguments can be used to establish the topology of the cycles that
we can expect from the system. We will show that, if the limit cycle exists, it is
symmetric and unimodal, i.e., characterised by only two switching events.

First, note that the equilibria of both linear systems in equation (6.49) are
foci (See Fig 6.12), even more, since both systems share the same matrix A, they
have the same eigenvectors, and then, the vector fields F} and F5 are exactly the
same but converging to different points; in other words, if the vector field F} is
displaced through the (1, z2)-plane from (—ps,0) to (ps,0), it will perfectly match
the vector field F5.

In addition, both delayed switching sets are images of a portion of the x;—axis
under the respective flow ¢;. Due to F} and F5 have the same dynamics charac-
teristics (the same eigenvalues), the flows ¢; and ¢y are equivalents, and so, the
angles covered for both flows on (x1,x2)-plane throughout a time equals to 7 will
be the same. This implies that both delayed switching sets EBF and ETQ_ have
the same slope. Putting together the above particularities, we can say that the
system’s dynamics in the phase plane are symmetrical with respect to the origin.
That means, every point on the right-hand side in the plane (z1,z3)-plane is
reflected through the origin.

Because of this symmetry, the part of the limit cycle O which corresponds to the
trajectory under the flow ¢ starting in a point x* on Efz_ should hit the other
delayed switching set EE‘ just in the symmetrical point with respect to the origin,
what suggests that, the aforementioned point x** cannot be other than —x*. Fur-
thermore, in consequence of the symmetry and the correlation between the flows
¢1 and ¢9 pointed out before, the evolution time for completing the trajectory
of the limit cycle Oy, is exactly the same as the evolution time corresponding to
Oy. This implies that t** = ¢*, and that the period for a complete limit cycle O
is T* = 2t*.
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Thus, if the limit cycle exits and is symmetric, the following conditions must be
satisfied.

e No intersection must exist between the delayed switching sets, i.e.,
S NE = (6.53)
o The limit cycle must hit the delayed switching sets in symmetrical points

with respect to the origin, i.e.,

o1(x*, 1) = —x* forsome x*€ XN, A f=¢t* (6.54)
Bo(—x*, 1) x* for some —x* € XS A {=1¢" (6.55)

Due to the fact that even a small delay causes no intersection between the
switching sets EBF and X7, , we can assert that the presence of delay implies the
existence of the limit cycle.

In what follows, we will find some closed—form expressions for describing the
main characteristics of such a limit cycle, namely, amplitude and period of oscil-
lation.

Firstly, we will write two new equations for the switching sets in order to make
easier this mathematical development.

EI; = {x€R?:29 =mox1 — by, 12 >0}

2 9 (6.56)
Y = {xeR°:azy=myx; + by, x2 <0}
Without loss of generality, we will focus our attention on trajectories generated
by the vector field F along its valid domain S;. We can define the slope and
the xo—intercept of the switching sets on the (z1,x2)-plane, by calculating the
final states under the flow ¢1, for an initial condition x,, = (ps,0) € X{, and an
evolution time equals to the delay 7, as:

— ¢12 (Xps Y 72)
g ¢11 (XpsﬂA—) +p8’

m by, = —psmy, (6.57)

where the second—order subscript indicates the element position in the vector ¢q.

Now, we are interested in finding the conditions for which the expression
(6.54) is satisfied. Let x* = («7, z3) be the initial condition on the plane X7, for
a trajectory under the flow ¢1. Because of this point falls just on the switching set,
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by using equation (6.56) we can express x5 as function of ] as x5 = myx] + by,.
Then, the trajectory under ¢; can be written as:

X(tA) = (ﬁl(X*vtA) - ¢1((£>{,x§),5) - ¢1((‘T>{7m2x>{ + b2)7£) (658)

If it is about a limit cycle, in accord with (6.54), there must exist an evolution
time ¢ = ¢* such that,

$1((af, myua] +by), %) = —x" = (—af, —mya] — by) (6.59)

By using definition in (6.45a), we can write explicit expressions for the flow in
equation (6.59) as:

@11((1‘1(,1‘2),2?*) = ) (6 60)
Cx (‘/EQ - (:E){ +ps))‘2)e)\1t + (—1‘5 + (331( +ps))\1)e)‘2t*) —Pps = —x’{ .
and
Qb $*7$ 7A* =
12(( 1* 2) ) ) A B " y Ao B . (661)
C)\ (($2 - (‘/El +ps))\2))\1€ ! + (—$2 + (3:1 +ps))\1))\26 2 ) = —x5

We have to derive two new expression in order to solve the above flow for £* and
x*. Multiplying formula (6.60) by Aj, subtracting (6.61) from this product, and
after some known substitutions and rearrangement, we get:

M (—ai(my — M) = by + padi) = 2 (my — A1) + by +pad (6.62)

In a similar manner, we can multiply formula (6.60) by Ay and subtract (6.61)
from this product for getting:

Mt (—zi(mg — A2) = by + psh2) = 27 (my — A2) + by + psha (6.63)

Now, we can solve for t* from either (6.62) or (6.63). By considering equation
(6.63), we can write an explicit expression for calculating the evolution time for
the half—part of the limite cycle Oy as:

t* = iln < x’{(mz — )‘2) +bz + psA2 >
A1 —JJ){(mE - )‘2) - bz: + PsAo

In consequence of the symmetry, the period for the whole limit cycle O, is

A

(6.64)

T* = 2 (6.65)
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Furthermore , the evolution time in (6.64) may be substituted into formula (6.62),
and then, some logarithmic identities may be applied to yield:

A

xT(mz - )\1) + bz +ps)‘1 o < xT(mz - )\2) + bz; +ps)\2 )ﬁ
= (6.66)

_f{(mz - )\1) - bz; + psA1 _xf(mz - )\2) - bz; + psA2
The former equation is an implicit function of 7 and can be solved numerically.
It is worthy noticing that all the other variables in formula (6.66) are known and
easily derivable from the problem parameters through the closed—form expression
presented before.
In this manner, also the maximum velocity developed under the limit cycle can
be easily calculated from x5 = mgz] + b,,.

Limit cycle characteristics

Figure 6.15: Names of the characteristics in the limit cycle.

The other important characteristic of the limit cycle is the maximum displace-
ment reached for the oscillations. To find it, it is enough to determine the point
where the velocity under the flow ¢1(x*,#) vanishes, i.e, the second component of
#1(x*, %) must be forced to be equal to zero. Thus, from formula (6.61) we can
write:

b1, (27, 3), tA) =0

3 ; 6.67
(@3 — (2] + ps) M) MieM + (=5 + (2] +ps) M) Ao = 0 (6.67)

We can solve equation (6.67) for £. Let us name this time as £}, which represents
the needed evolution time for a trajectory starting from x* under the flow ¢; to
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get the maximum displacement, and therefore, null velocity. Applying logarithmic
properties we can rearrange (6.67) to yield:

. 1 (z3 — (27 +Ps))\1)>\2>
th = In 6.68
LDV ((1’3 — (@] + ps)A2) M1 (6.68)

Hence, we can calculate the maximum displacement caused in the limit cycle
by evaluating the first component of the flow ¢1(x*,#}) for the evolution time
previously found.

$>{max = C)\ ((':U; - (':UT +p8))\2)6)\1£6 + (_l; + (l‘){ +ps)>‘1)6)\2£6) _ps (669)

The above formulas comprise the closed—form solution for defining the limit
cycle of SDOF systems which include a delayed dry friction element. In con-
sequence of the dynamic equivalence pointed out in the numerical parametric
analysis in §6.3.1, we can assert that these expression are also valid for SDOF
systems with delayed nonlinear viscous dampers which exhibit a damping expo-
nent a lower than 0.2.

In what follows, we show a numeric example to clarify how these set of for-
mulas can be applied.

Example 6.1 (Finding the limit cycle).

Let us assume a SDOF system with the next properties: mass m = 1000Kg, stiff-
ness k = 1 x 10°N/m and damping ratio ¢ = 5%. Also, let us suppose a nonlinear
viscous damper added to the system with exponent a = 0.1 and a nonlinear co-
efficient cg = 50kN(sec/m)%!. We are interested in characterizing the limit cycle
of the system, if a constant delay of 0.03sec is considered in the damper respounse.

To solve this problem, the fist step is to find a dimensionless expression of the
form (6.21) by using the proper parameters defined in page 91. Without loss of
generality, let us assume an arbitrary initial condition zg = 5cm.

k
wy, = 1/ — = 10rad/sec; Ps = G _ 10; T =w,7 =03
m

mw2xg

and z = y/xg, where we have named y the displacement of the SDOF system in
meters.
The eigenvalues of the system can be obtained from the matrix A in (6.30) as:

eig(A) = Ao = —C £ /2 — 1 = —0.05 & 0.9987i;
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Then, we have to calculate the slope and the xo—intercept of the switching sets on
the (x1,z2)-plane in accord with formula (6.57) by using the definition in (6.45a).

¢11((ps,0),f) = ¢11((10’0)’0'3)
C,\ (w20 — (w10 + ps)Az)e’\ﬁ + (=20 + (210 + Ps)A1)eMT) — ps
= (—0.50067) ((0 — 20 - (—0.05 — 0.99874))e0-3(~0-05+0.99873) ..
(0 + (20)(—0.05 + 0 99871))el-3(~0-05-0-99870)) _ 10
= 9.1156
¢12((ps,0),f) = ¢12((10’0)’0'3)
= Ch ((z20 — (210 + ps) M) MM + (=229 + (210 + Ps) A1) A2e™27)

= —5.8226
therefore,
_ o P1(xps ) 58226
DR ¢11(ip:f)+ps ~ 9.1156+10 — —0.3046
by, = —psmy = —10(—0.3046) = 3.046

So that, we are now able to calculate the point where the limit cycle impacts the
switching sets by solving formula (6.66), as follows:

2% (—0.3046—(—0.05+0.99874))43.046+10(—0.05+0.9987i)
—2%(—0.3046—(—0.05-+0.99874))—3.046+10(—0.05+0.99875)
—0.05—0.998717

27 (—0.3046—(—0.05—0.99877))+3.046+10(—0.05—0.99874) | —0.05+0.9987¢
—2%(—0.3046—(—0.05—0.99877))—3.046+ 10(—0.05—0.99877)

% (—0.2546—0.9987i)+2.546+9.9875i [ 2}(—0.2546+0.9987i)+2.546—9.9875i \ ~0-995+0.099
2% (0.2546+0.99877)—3.546+9.9875; \ 7% (0.2546—0.99877)—3.546—9.9875i

Solving the previous formula, we get 27 = 0.0092. (hint: you can separate real
and imaginary part and solve numerically for one of them.). So, we can already
know the peak velocity of the limit cycle by calculating x5 = myx] +b, = 3.0432.

Once the point where the limit cycle hits the switching sets is found, we just need
to substitute the known parameters into equation (6.64) to obtain the evolution

time for the trajectory O between the delayed switching sets.

tA*

_ 1 1 ((-0:0092(~0.3046—(~0.05-0.9987))+3.046+10(~0.05—-0.9987i)
~ ~0.0510.9987; —0.0092(—0.3046—(—0.05—0.99877))—3.046+10(—0.05—0.99877)

= 0.591

Thus, the period for the limit cycle can be obtained as T+ = 2f* = 1.182.
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Finally, the evolution time for the maximum displacement under the limit cycle
can be calculated from (6.68) as:

P 1 ((3.0432-(10.0092)(-0.05+0.9987i))(~0.05-0.9987i) \ _ () 997
0 = T.0075 (3.0432—(10.0092)(—0.05—0.99871))(—0.05+0.99877) ) ~ °°

and the corresponding maximum amplitude from (6.69):

2} = i ((3.0432 — (10.0092)\g)el- 211 ..
+(—3.0432 + (10.0092) \; )e*291A2) — 10 = 0.453

Limit cycle phase plane
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Figure 6.16: Trajectory going to the limit cycle of the system in example 6.1.

The task is almost finished, after converting back the solutions to the original
parameters we will get the complete dynamic characterization of the limit cycle.
Figure 6.16 shows a numerical solution which confirms the features listed below.
Peak limit cycle displacement, yj., = 7 __ 2o = 0.453(0.05)m = 22.65mm.

Peak limit cycle velocity, §* = z5zow, = 3.0432(0.05)m(10)1/sec = 1.52m/sec.
Period of oscillation, T* = T*/wn =0.118sec .. f* = 8.46Hz.

Existence of high frequency region.

At the end of section 6.3.1, we showed through numerical simulation how, for a
range of small delay 7, the system exhibits a harmful phenomenon which is char-
acterized by oscillations at high frequency. In this section we intend to define the
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conditions under which that high frequency region takes place.

We identified a system state, named x* = (7, z%), which corresponds to the
point where the vectorial field F is tangent to the switching set X5 . Similarly
and by symmetry, we can also named —x* the point where the vectorial field F5

is tangent to the switching set X75 (See Fig. 6.17).
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Figure 6.17: Parameter names when delimiting the high frequency zone

We found that, any trajectory under F5 which hits the switching set ETQ_
in between the segment from (x},x3) to (ps,0) (or equivalently, under F the
switching set X7, in between the segment from (—ps,0) to (—a%, —a%)), will re-
main trapped in middle of both switching sets, commuting constantly. This causes
the system to increase the frequency of oscillation suddenly. In what follows, we
will derive an analytical expression for finding the point x* which allows us to
set boundaries of these harmful zone of self-sustained high—frequency oscillations.

As before, without loss of generality, let us concentrate on the flow generated
by the system vector field F;. We will use the concept of isoclines. An isocline is
a line that connects all the points in a vector field which have the same gradient
(slope). We are interested in finding where the vector field is tangent to the
switching sets, so that, the target is to find an isocline whose gradient is equals

to the switching set slope.
Let us consider the set of equations (6.37) and substitute w = 1 for the vector
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field Fj. The target isocline can be written as:

xh  —2(xe — x1 — ps
flx,t) =22 = E— = my, (6.70)

Solving formula (6.70) for x2 and equaling the resultant expression with the equa-
tion in the (x, z2)-plane for ¥, , we can get the intersection point between both
curves (isocline and switching set).

—T1 — Ps

= b 71
m2+2C Mmgx1 + by (67)

To =

7

Thus, the point where F7 is tangent to X5, is easily obtained by solving the
right-hand-side equation in (6.71) for x;:

* _bz(mz + 20 — Ps
T g (my, 120 + 1 (6:72)

Substituting the former value into the most right—hand part of (6.71), we get the
other component as:

x5 = myx] + by (6.73)

Besides, if the so-called high frequency zone exits, the following condition must
be satisfied. Otherwise, the system just goes rapidly to the limit cycle defined
above without any other phenomenon arising.

e Let 7, be the segment of the switching set ¥75 between x* and (ps,0).
The point x* must not fall on I'T5, i.e.,

* T—

Xi——¢ L1z o (6.74)
where Iy :={xeX]; :0>xzy> a3}

Example 6.2 (Delimiting the high frequency zone).
Let us assume the SDOF system studied before in example 6.1, and suppose that
we are now interested in finding the region where the system would develop high
frequency oscillation.
It is really simple. Again the first step is to rewrite the problem in dimensionless
terms and find the slope and xo—intersect of the switching sets. We will use some
parameter already calculated in the past in the reference example.
So that, substituting the known parameters into equations (6.72) and (6.73) is
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Limit cycle phase plane
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Figure 6.18: Trajectory starting just in the limit of the high frequency zone x*
for the system in example 6.1.

enough to define the target region.
From equation (6.72), we have:

. —3.046(—0.3046 + 2 - 0.05) — 10
ot = = —8.827
—0.3046(—0.3046 + 2 - 0.05) + 1

Substituting this and the others known values into (6.73) yields to:
x5 = —0.3046(—8.827) + 3.046 = 5.735

Since both x* and x* fall on X7, and z% is greater than 3, we can assert that
this high frequency region exists and is delimited by the switching sets between
x* and —x*.

For concluding, Figure 6.18 shows a trajectory of the system in example 6.1 which
starts just in the limit of the high frequency zone. We may convert back to the
original parameters to get:

Limit in terms of displacement, y* = 27zg = —8.827(0.05)m = —441.3mm.
Limit in terms of velocity, y* = z5zow, = 5.735(0.05)(10)m = 2.87m/sec.

In the next chapter, we shall present experimental result from a campaign
on Real Time dynamic substructuring testing considering a full-scale passive-
controlled structure which includes a large—scale non-linear viscous fluid damper.
Those results exhibit the dynamic phenomena comprehensively described through-
out this chapter.
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In this chapter we present the description, analysis and experimental set—up

of a Real-Time Dynamic Substructuring Test of a civil structure provided with
a passive seismic protection system. Particulary, we considered a building with
two nonlinear viscous dampers attached at the first floor to control the vibrations
induced by seismic excitations. Our interest is to show how this kind of test can
be exploited for the assessment and design of current and new protection systems
in earthquake engineering. We believe that this method is very suitable when an
accurate mathematical model of the protection device is not yet available.
To evaluate the advantages of real-time dynamic substructuring simulation on
testing large—scale energy dissipation devices, an experimental campaign was ac-
complished in the Earthquake and Large Structures Laboratory at University of
Bristol (UK). This experimental activities were carried out in closed collaboration
with professors David Wagg and Simon Neild from the Department of Mechanical
Engineering of that University.

117
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7.1 Description of the controlled structure

Fluid viscous dampers (FVDs) are a type of supplemental damping devices able
to reduce vibrations in structures. Linear fluid viscous dampers have been widely
investigated, either experimentally or numerically, because they can be simply
modelled through a linear force—velocity constitutive law. However, they can
develop excessive damper forces when large structural velocities occur. More re-
cently, both researchers and professional engineers have focused their attention
on non-linear F'VDs not only to limit the damper forces at large structural veloc-
ities but also because of their ability to dissipate more energy at lower velocities
|Lee and Taylor, 2001].

This thesis deals with a passive control system installed on a symmetric 3—storey
one—bay steel framed building with reinforced concrete slabs. The system is com-
posed by chevron—type braces and non-linear passive viscous fluid dampers (in
horizontal position) linking the brace to the hosting structure. As shown in Figure
7.1, two of this braces are placed at the first floor on opposite building’s sides. We
only considered one—directional base excitation along the axis where the dampers

are placed.

—

Figure 7.1: Sketch of the passive controlled system analysed.

A supplemental energy dissipation system is optimally designed to absorb
vibration energy from the hosting system, thereby reducing energy dissipation
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demand on the structure. And so, a typically and widely accepted approach
when designing passive control systems is to consider that the structure remains
in the linear range. In addition, if the non-linearity and complex behaviour of
the viscous dampers are considered, those devices may be easily identified as the
critical component of the whole structural system.

Thus, in order to set up the RIDST test, the system is split up into two subsys-
tems, keeping the dampers as the physical substructure while the remains of the
structure is modelled numerically. Also, in consequence of the symmetry from
both the structural configuration and load, the structural response was expected
to be symmetrical. So that, despite the original passive controlled structure has
actually two dampers, a RIDST which takes into account just one damper is
enough to emulate properly the system, as long as due cares were taken in the
subsystems’ interaction interface. Namely, the force fed back to the numerical
substructure was twice the measured force from the physical substructure.

This symmetry—based simplification is supported not only on several exhaus-
tive numerical simulations but also through a large number of experimental data
obtained form an experimental campaign carried out in Italy under the RE-
LUIS project!, where researchers tested a symmetric and passive controlled struc-
ture under earthquake base excitations by using an one-directional shaking ta-
ble (See e.g. [Ponzo et al., 2008, Sorace and Terenzi, 2008] and some references
therein). Most of those results exhibit the symmetrical structural behaviour as-
sumed throughout this thesis.

mg.

m: @
Non-linear
dampers

mi ‘—ﬂj—@\

Figure 7.2: Simplified numerical model of the structural system.

According to this, a simplified lumped-mass model of the whole structure has
been employed as the numerical substructure. At the beginning we consider such

!See more information of this project in www.reluis.it
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a simple model because it is the fastest numerical substructure we can get. Once
the delay issues are overcome, we can try more complete, complex and of course
slower to be calculated numerical models. The dampers are included as a single
external force (see Figure 7.2), which will be updated in accord with the measure-
ments taken from the damper during the simulation.

The classical expression for describing this model is given by the ordinary differ-
ential equation (ODE) in formula (7.1) where: M, K, C represent the structural
mass, stiffness and damping matrices; #4(¢) indicates the base excitation; U(t)
is twice the force in the damper and X, X and X are the structural responses
namely: displacement, velocity and acceleration, respectively. The coefficients of
the damping matrix C have been derived from those of M and K imposing a
mass and stiffness proportional damping (Rayleigh damping) with modal damp-
ing ration equal to 3%.

MX (1) + CX(t) + KX (t) = —Mi,(t) + LU(t) (7.1)
being:
0 0 5430.2 0 0
L=| -1 0 |, M= 0 54302 0 (Kg)
0 -1 0 0 54302

9817 —2.878 —0.625
C=| —2878 9192 —3508 | x 10% (N)
—0.625 —3.504 6.313

12.091 —6.046 0
K= | —6.046 12.091 —6.046 | x 10° (%)
0 —6.046  6.046

Mode 1 T=0356(s) Mode 2 T=0127(s) Mode 3 T=0.088(s)
YER | 154 3 498

258 25 258

2 8018 2 44564 2 1.247

0.4 05 0.4

Figure 7.3: Structural mode shapes.
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7.1.1 Damper description

The dampers used in these tests were provided by FIP-Industriale?’. They are
characterized by a suitably designed hydraulic circuit which controls the passage
of the viscous fluid from one chamber to the other, therefore the energy dissipation
is caused by the relative movement between the two damper ends when the fluid
is forced to move through the hydraulic circuit. Both ends of the dampers are
usually provided with two spherical hinges assuring perfect alignment between
piston and cylinder, in spite of possible mounting inaccuracies during installation.
In consequence of the non-linear constitutive law in these dampers, an almost
constant force is developed over an important range of velocities.

Figure 7.4: Non-linear viscous damper used in the tests.

Figure 7.4 shows a picture of one of the four viscous dampers available for the
tests. They are characterized by a peak force up to 50KN, stroke £25mm and
peak velocity about 0,3m/sec. Additionally, their non-linear constitutive force—
velocity law may be described by means of equation (7.2) where &4 represents
the relative velocity between the ends of the damper in meters per second; c,

is the nonlinear damping coefficient equal to GOkN(%)O'K’ and « is the velocity
exponent equals to® 0.15.
Fp = cq |24]|% sign(zg) (kN) (7.2)

As it will be shown later, the last relationship was verified through several experi-
mental characterization tests performed at the Structural Engineering Laboratory
of the University of Naples Federico II (See §7.3.1).

7.2 Numerical simulations

First of all, we completed several numerical simulations of the substructured
system described above. We build a full numerical substructured systems in
©simulink*. In this model the physical substructure is replaced by a numerical
approximation of the damper response as shown in Figure 7.5. As well, a constant

Italian company specialized in design and manufacture of technical products and seismic
protection devices for the large-scale construction (See: www.fip-group.it)

3Model provided by manufacturer.

*Simulink is a registered trademark of The MathWorks, Inc. www.mathworks.com
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delay transport is added to the damper force which is fed back to the numerical
substructure. This to take into account the actuator dynamics, as explained in
the former chapters.
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Figure 7.5: Simulink model of the full numerical substructured system.

We consider small delays (between 1 and 4 milliseconds) and run this full-

numerical substructured model under both periodic and seismic loads. All the
simulations exhibited delay—induced self—sustained oscillations, as described in
Chapter 6 for the case of non-linear systems.
In what follows, we present some pictures of the system response under earthquake
loads considering a delay equals to 3msec. Figure 7.6 shows the displacement and
velocity time histories of the first floor of the structure in (7.1), along with the
numerical approximation of the damper force and the phase plane plot.

Trajectory on the phase plane
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Figure 7.6: Substructured system outcomes for the full numerical substructuring
test considering the earthquake 0187.

As explained in previous Chapters, by considering a delay in the feedback loop,
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the equilibrium of the system (0,0) becomes unstable and even a small perturba-
tion causes the system to go away from it. The plots evidence how the system
goes to the limit cycle (self-sustained oscillations) just before a the earthquake
starts (at 2sec in the simulation). Note that even a very tiny displacement at early
stages of the system response cause suddenly the limit cycle, and then, very high
forces in the damper switching between £ the maximum force. Figure 7.7 shows
a zoom—window for the first second just before the external excitation starts. In
the other hand, Figure 7.8 presents the steady-state system response from the

analytical expressions given along Section 6.3, where the dimensionless parameter
were obtained as explain in Example 6.1.
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Figure 7.7: One-second zoom window of the substructured system outcomes for
the full numerical substructuring test considering the earthquake 0187.
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Figure 7.8: Analytical steady—state substructured system responses for the full
numerical substructuring test considering the earthquake 0187.
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The last figures clearly shows an good agreement between the numerical simula-
tions and the analytical results. In spite of some differences can be found between
the displacement time histories, they can be neglected as Figure 7.8 does not con-
sider any external excitation, but just a not null initial condition. That is why
these differences arise. From the analytical expressions comes a limit cycle (oscilla-
tions as time tends to infinite) with the next characteristics: Frequency==83.44Hz;
Peak velocity—=+0.013m/sec; Peak damper force—=+33kN.

7.3 Experimental activities

7.3.1 Damper characterization test

The non—linear viscous fluid dampers were first characterized through a detailed
experimental campaign performed at the Structural Engineering Laboratory of
the University of Naples Federico II, these experimental tasks were carried out in
collaboration with Dr. Mariacristina Spizzuoco from the Department of Struc-
tural Engineering in this university. A self-equilibrated testing apparatus was
designed and assembled ad—hoc for these tests, it is equipped with a dynamic ac-
tuator having a stroke of 250mm and a dynamic horizontal load of up to 1200kN
in tension and 440kN in compression within a frequency range from 0 to 5Hz.
The external cylinder of the actuator is firmly connected to a main rigid steel
plate through four steel bars with a diameter of 24mm each; one damper’s end
is connected to the actuator through the interposition of a 100kN load cell while
the other end is firmly connected to an secondary smaller rigid steel plate which
is jointed to the main plate by four rigid steel tubes having an external diameter
of 114.3mm and a thickness of 8mm (see Figure 7.9).

The hydraulic actuator applies the load to the device along its longitudi-
nal axis. Table 7.1 lists the channels acquired during the experimental tests
whereas Figure 7.10 shows the position of the transducers: a 100kN load cell
(F1) measures the force acting on the damper; a horizontal displacement trans-
ducer (D2) measures the displacement of the actuator’s piston and is used for
its displacement—based controller; an additional horizontal displacement trans-
ducer (D3) with 50mm stroke was mounted to measure the relative displacement
of the damper; and finally, two temperature transducers were installed on the
outer surface of damper’s body by locking two sensible stainless steel small plates
(25mmx25mm) able to house the thin rods of the transducers.

The experiments aiming at characterizing the non-linear viscous dampers has
been planned according to both the European Standard prEN 15129 [Eur, 2007]
and to the section 11.9.6 (Fluid viscous devices) of the new Italian Technical Reg-
ulations for Constructions [Ita, 2008]. According to the normative, two different
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f ‘Main plate
o "

Figure 7.9: Viscous fluid damper mounted in the testing equipment.

Channel  Transducer

F1 Load cell
D2 LVDT
D3 LVDT

T4 Temperature
TH Temperature

Table 7.1: Acquisition channels and transducers in detailed.

Figure 7.10: Transducers and recording channels.
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types of dynamic tests were planned to be imposed on the dampers: dynamic
constitutive law tests and dynamic damping efficiency tests. Damper tempera-
ture also had to be monitored, we recorded it for three tests at two locations on
the main body of the device, considering a period from 5min before until 15min
after each test.

In constitutive law tests, cycles with a constant velocity displacement are to be
imposed (see table 7.2). Thus, four constant—amplitude triangular displacement
cycles are applied to the damper considering five different constant velocities (3,
75, 150, 225 and 300mm/s) and two different displacement amplitudes (10 and
20mm), for a total of 10 dynamic tests. In damping efficiency tests, harmonic
displacement cycles are to be imposed (see table 7.3). Five constant—amplitude
sinusoidal displacement cycles (z(t) = Asin(27ft)) are imposed to the specimen
assuming five different frequencies f (0.5, 1.5, 2.0, 3.0 and 4.0Hz) and three dif-
ferent displacement amplitudes A (10, 15 and 20mm), for a total number of tests
equal to 10.

It is worth to note that tests at higher velocities and frequencies and larger dis-
placement amplitude are not considered because of the intrinsic limits of the
actuator. Furthermore, 20 tests were considered sufficient to characterize the me-
chanical behaviour of the viscous dampers. More details about who the test were
selected in accord with the normative can be found in [Spizzuoco et al., 2008|.

Test  Amplitude  Velocity Number

(mm) (mm/sec) of cycles
0 1 10 3 4
2| 2 10 75 4
Tl s 10 150 4
g 4 10 225 4
% 5 10 300 4
~ | 6 20 3 4
g7 20 75 4
‘g 8 20 150 4
8 9 20 225 4
10 20 300 4

Table 7.2: Dynamic constitutive law tests.

Tests results

The effective force vs. displacement cycles obtained during some of the imposed
constant velocity tests are given in Figure 7.11. Besides, in Figure 7.12 the tem-
perature recorded in the damper at two locations of the main body, one towards
the moving end of the device and the other one towards the fixed end, is plotted
for 1200sec, i.e. approximately 5min before and 15min after the imposed constant
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Test Amplitude Frequency Number

(mm) (Hz) of cycles
o | 11 10 0.5 5
é 12 10 1.5 5
.| 13 10 2.0 5
= 14 10 3.0 5
=1 15 10 4.0 5
i 16 15 0.5 5
2] 17 15 1.5 5
2| 18 15 2.0 5
2] 19 20 0.5 5
T 20 20 15 5

Table 7.3: Dynamic damping efficient tests.
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Figure 7.11: Force—displacement cycles from constant velocity tests at 10mm
amplitude on the left, 20mm amplitude on the right.

velocity test at 75mm /sec and 20mm amplitude. Figure 7.13 presents the effec-
tive force vs. displacement cycles relative to the imposed harmonic displacement
tests: the shape of the loops are those typical of a nearly—friction force—velocity
viscous damper constitutive equation.

Now, in order to characterize the damper from the tests data, we looked for
the coefficients which satisfy equation (7.2). The experimental values of ¢, and
a have been derived through a simple procedure using the maximum force and
velocity achieved during all the tests. Figure 7.14 shows on a logarithmic diagram,
the maximum experimental forces Fy,.x developed during the imposed constant
velocity tests as function of the constant velocities v. The red experimental points
correspond to the tests at 10mm amplitude while the brown points represent the
tests at 20mm amplitude. The linear regression curve of the above experimental
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Figure 7.12: Recorded temperatures from constant velocity test at 20mm ampli-
tude and 75 mm/s.
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Figure 7.13: Force—displacement cycles from harmonic displacement tests at
10mm amplitude on the left, 15mm amplitude on the right.

points is drawn in black line and has the following expression:
log(Finaz) = 1.2645 4+ 0.190 log(v) (7.3)

As well, Figure 7.14 shows on a second logarithmic diagram the maximum experi-
mental forces Fryax developed during the imposed harmonic displacement tests as
function of the maximum velocities (vyae = 27 fA), the red experimental points
correspond to the tests at 10mm amplitude while the pink and brown points repre-
sent the tests at 15mm and 20mm amplitude, respectively. The linear regression
curve of the these experimental points is drawn in black line on the respective
picture and can be written as:

log(Finaz) = 1.4171 + 0.118 log(v) (7.4)
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A mean linear regression curve, shown in both sides of Figures 7.14 in blue color,

i
5% H5%
-13% Rt

% v ® 10 o amplitde g v « 10mm amplitude

ﬁ_? # 20 tam amplitude 5] * 15 mm amplitude
—y=0190%+log(154) « 20 mm amplitude
—y=0154x+leg2zd) — = 0115 %+ log(26.1)

—y=0154x+10g(22.3

1 10 100 1000

¥ (mm/sec) v (mm/sec)
Figure 7.14: Coustitutive law of the viscous damper from constant velocity tests
on the left and harmonic displacement on the right.

can be obtained by taking mean values of the slopes and intersections point from
the linear regression curves derived above. This mean curve is given in equation

7.5:
log(Finaz) = 1.3475 + 0.154 log (v) (7.5)

The mean slope represents the mean value for the exponent in expression 7.2
being a=0.154, while the mean value of the intersection with the ordinate—axis
provides a mean value of the damping coefficient of the damper: ¢, = 1013475 =
22.3kN /(222 )0-154 = 62.7Tk N/ (2¢)0-154,

— Experimental
— Mumerical

sec
mm

FORCE (k1)

20 15 -10 -5 o H 10 15 20
DISPLACEMENT (ram)

Figure 7.15: Experimental vs. numerical force-displacement cycles from harmonic
displacement test at 1.5Hzx15mm.

Therefore, the experimental values closely match those declared by the man-
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ufacturer, that is, the mean linear regression curve practically corresponds to the
design counstitutive law provided by the manufacturer. Such experimental coeffi-
cients have been assumed to obtain the numerical force vs. displacement cycles
able to nearly fit the experimental data as shown in Figure 7.15 for the harmonic
displacement test at 1.5Hzx15mm. Finally, Figure 7.14 also shows that all the
experimental points are included between two blue dashed lines representing the
tolerance limits defined by the Codes, that is the differences between the experi-
mental values of the maximum output force Fyax and the design values (that is
to say the constitutive law) are less than the tolerance limit of +15%.

In this manner, the tested devices demonstrate to satisfy both the European
Standard and the new Italian Technical Regulations for Constructions, for all the
types of experimental tests required by them.

Non-linear viscous damper numerical model.

In order to get a more realistic numerical model of the non-linear viscous damper
in terms of velocity—force behaviour, we change the model in (7.2) provided by
the damper’s manufacturer into the Dahl model in formula (7.6), which is able to
capture the actual velocity—force dependence more accurately.

F(t) = r5e@(t) + ruw(t) (7.6)

w(t) = p () — |&(t)| w(t))
where:
F(t): is the damper force;
z(t): is the relative damper velocity;
w(t): is the hysteretic variable;

Kke: is the viscous coefficient = 128098.06 (N=-);
Kw: is the friction coefficient = 27900.5 (N); and
p: is the parametric constant = 811.99 (1).

The parameters x,, K and p were tuned according to the methodology presented
in [Aguirre et al., 2008] in such a way that the model matches closely the damper
behaviour recorded for the sinusoidal tests. To evaluate the correctness of these
parameters and the effectiveness of this model, Figure 7.16 shows some time
histories and force velocity cycles comparing the measured response against both
the old and new numerical models.

In spite of the tuned Dahl model behaves better than the model in (7.2), more
accurateness was not possible due to the strong perturbation in the force—velocity
cycles caused by the backlash phenomenon, i.e, the loose in both damper ends
when linking it with the transfer system.
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Figure 7.16: Damper’s Dahl model approximation.

7.3.2 Prediction scheme

Keeping real-time behaviour is one of the principal issues to be managed while a
real-time substructuring test is being carried out. It is essential to take care of
the command signals’ delays to prevent the overall instability caused by them.

Delay estimation.

Once the experimental rig was set up (see figure 7.25), several tests were accom-
plished to measure the delay by considering different kind of signals. The delay
between the actual command signal (target displacement to be follow for the actu-
ator) and the current displacement signal (measured displacement) was estimated
by using two different methodologies. Namely, zero crossing, in which the acting
delay is estimated by taking the median over all the instantaneous delays mea-
sured along the whole signal when trajectory crosses zero; and cross correlation
function which is a measure of similarity between two signals as a function of
a time-lag applied to one of them, so it provides a overall delay estimation at
the time-lag where the two signals are maximally correlated. Figure 7.17 shows
the test time history, the synchronization plot and the force—displacement cycles
when the command signal is a 2Hz sine wave with amplitude equals to 15mm.
The delays estimated for all sinusoidal tests are presented in table 7.4.
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Figure 7.17: Sine wave test 2Hz at £15mm: time history, synchronization plot
and force-displacement cycles.
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Figure 7.18: Sine sweep test from 0.5Hz to 4.0Hz at =10mm: time history, syn-
chronization plot and force-displacement cycles.

In light of the frequency range evaluated, the delays were estimated encircling
15~16msec. Some sinusoidal sweep test were evaluated too. A wave at £10mm
which speeds from 0.5Hz up to 4.0Hz in 5sec and goes back to 0.5Hz in 5sec
more, was considered too. Figures 7.18 and 7.19 show the test time history,
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Amplitude | Frequency | Measured delay (msec)
(mm) (Hz) (X—corr) | (zero-X)
1.0 -14 -18.90
5.0 -16 -15.27
10.0 0.5 -15 -13.76
15.0 -16 -16.83
20.0 -13 -14.19
1.0 -16 -15.02
5.0 -15 -15.01
10.0 1.0 -15 -14.52
15.0 -15 -14.91
20.0 -15 -15.23
1.0 -16 -14.01
5.0 -15 -14.49
10.0 2.0 -15 -14.99
15.0 -16 -15.98
20.0 -18 -19.63
5.0 -16 -15.75
10.0 3.0 -16 -16.32
15.0 -20 -20.47

(X-corr) Cross correlation function ; (zero-X) Zero crossing

Table 7.4: Delays estimated for sinusoidal wave form tests.

the synchronization plot, the force-displacement cycles, the zero crossing delay
measurements and its corresponding histogram. As it was expected, the higher
frequency the larger delay, furthermore, it is worthy noticing that there exist
different delays for the load and unload branches (which is more evident for higher
frequencies), it may be due to the connection loose (backlash behaviour) which
incorporates an additional damper reaction delay.

Additionally, several tests were performed predicting the displacement of the
first floor in the structural model described in §7.1 under seismic load. Figure
7.20 shows time history and coherence plot for the whole system tracking a dis-
placement signal, the picture includes measurement of the actuator displacement
as well as the damper ends’ relative displacement. Here is much clearer the delay
effect in the damper’s response caused by the connection loose. The zero crossing
delay measurements and its corresponding histogram are shown in figure 7.21.
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Figure 7.19: Delay estimation by zero crossing of the sinusoidal sweep test.
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Figure 7.20: Test of tracking the first floor displacements of the structural model
described in §7.1 under seismic load.
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Figure 7.21: Delay estimation by zero crossing of the structural response of model
in §7.1 under seismic load.

Evaluation of prediction scheme.

In order to test the time delay compensation scheme based on NNET, a predictor
to estimate the command signal 16ms forward has been trained. Seeking for
completeness, some noise was added to the command signals to be predicted.
The SNR ratio was selected as 30dB for all the cases. Figure 7.22 contains the
results from a tests run on the experimental rig at University of Bristol after using
the time delay compensation scheme proposed. The coherence plot shows good
delay compensation even when noise is added. As by numerical simulations was
shown before in §3.4.3, the methodology based on NNETSs is more accurate and
faster than other common methodologies when working with noisy signals.
Considering constant delay, the prediction scheme looks pretty good. Besides,
Figure 7.23 shows the results from the sine sweep test after using the prediction
scheme based on NNET. In spite of the delay is no longer constant along the signal,
a neural network which predict forward a constant delay (by using a average
delay) works very well. All prediction tests were carried out considering two
different approaches, one as it was proposed originally by using a purely forward
prediction and another which adds to the predicted value an supplemental term
proportional to the current instantaneous error by way of proportional control
(P—control) [Ogata, 1990]. After an exhaustive search the value 0.7 was found as
the best proportional constant (kp) for this basic scheme. From the experimental
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Figure 7.22: Sine wave test 2Hz at £15mm after using time delay compensation
based on NNET: time history and synchronization plot.
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Figure 7.23: Sine sweep test after using time delay compensation.

test, kp=0.7 gives better results than the original scheme®. From now on, when
we refer the time delay compensation scheme base on neural networks, we mean

5The original scheme is equivalent to kp=0
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the scheme which adds the supplemental term (—kpxerror) with kp = 0.7.

Some problems predicting signals, comparison among common strate-
gies.

Without backlash. With backlash.
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Figure 7.24: Predicting the first floor displacement of the model in 7.1 under
periodic load. Comparison among polynomial 2nd-order, 3th—order and neural
networks scheme.

From purely numerical simulation, it is possible to identify some troublesome
issues associated with the lack of accuracy in prediction. Figure 7.24 exhibits
some signals predicted by different methodologies against the original one. Two
cases has been evaluated: (i) considering a perfect connection (no loose) between
damper’s ends and its supports, and (ii) a more realistic situation in which the
backlash effect is included. From these simulations some facts come out. Consider-
ing our particular case where we are compensating signal for a RIDS'T simulation,
we can assert that.

e No significant noise is present in the signal to be predicted, as this signal is




138 CHAPTER 7. CASE STUDY

the outcome of the numerical substructure, in particular the displacement
of the first floorS. Therefore, there is not great advantage in utilizing the
neural network methodology because it requires additional attendance and
could also present lack of training occasionally.

e The presence of such a strong damper in a structural system together with
the delays, generate a sudden change of slope in the structure response.
It comes just after the system velocity crosses zero (See detailed plots in
Figure 7.24).

e In consequence of the connection loose, an additional delay in the damper
response occurs. It intensifies the aforementioned change of slope somewhat
after the peak of the signal and can cause even a reversing in this wave form.

e All prediction schemes exhibit serious problems when attempting to predict
the signal in these critical zones where the system changes its behaviour.

Since without noise there are not significant benefits in utilizing a neural net-
works methodology, a second—order polynomial approximation was chosen as the
predictor scheme. This also because polynomial-based methods have an addi-
tional advantage, the possibility of changing on—line the time forward you want
to predict.

7.3.3 Real-time substructuring test results

For these experiments both the software and the experimental rig, were carefully
set up to emulate the structural system presented in §7.1. The tests were set up
as a typical displacement—controlled real-time substructuring simulation. That
means, the displacements computed by the numerical substructure are applied
through an actuator to the physical specimen (the damper), and in turn, the
resisting force is measured and fed back into the numerical substructure.

A ©DMatlab/simulink model of the whole substructured system was built. Figure
7.26 shows the model’s outside loop in which the measured damper’s force is fed
back into the equations of state of the numerical substructure (representing the
controlled structure).

A Dspace DS1104 board was used as platform on which the simulink-built
model runs in real-time. Additionally, to control, manage and monitor the ex-
periments, an user—interface able to download applications to the DS1104 board
was developed in ControlDesk” (See Figure 7.27).

In some way, the structural system works like a filter, cutting off the highest frequencies
from the input signal.

"ControlDesk is an experiment software for developing working environment with Dspace®©
boards (http://www.dspace.com/)
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Figure 7.25: Experimental rig set—up of substructured model.
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Figure 7.26: (©Simulink model of the substructured system.

As known, the instability in RTDST comes form the presence of delay in the
feedback signal. So, an usual strategy to keep under control the simulation is
to start with a full numerical substructuring test (i.e., where the physical sub-
structure is replaced by a numerical approximation) and change progressively to
a full hybrid simulation. Thus, attempting to prevent unforeseen and dangerous
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Figure 7.27: User-interface for managing and monitoring the experiments in real—-
time.

system behaviour because of the feedback of the delayed damper’s force, some
full numerical tests were completed before a realtime hybrid test were performed.
The first test was accomplished feeding back the numerical approximation of the
damper’s force, in accord with the model presented in §7.3.1. Figure 7.28 shows
results from this test including a zoom of the time history, the synchronization
plot and the estimation of the delay. Therein and from now on, the parameter
so—called substructuring ratio will indicate how much of the actual measured force
is used to feedback the numerical substructure, in accord with formula (7.7).

Ffeedback = (1 - SR) - Fp + SR - Fy (77)

where: SR is the substructuring ration; Feedpack 15 the effective feedback force,
F,, is the damper force numerical approximation and Fj, is the measured damper
force. Thus e.g., SR = 1 means that the simulation is running in full hybrid
scheme, or that, 100% of the measured damper force is used in the feedback loop.

Feeding back the numerical approximation of the damper force and considering
a periodical load exciting the numerical substructure, the full-numerical RTDST
simulation looks stable and the prediction scheme appears able to compensate the
delay in the actuator’s command signal. Besides, Figure 7.29 presents results
from a real-time substructuring test which takes into account a periodical load
applied to the numerical substructure. This test was started by considering full
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Figure 7.28: Full numerical substructuring test considering periodic load.
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Figure 7.29: Real-time substructuring test considering periodic load.
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Figure 7.30: Zero crossing delay estimation for the substructuring test considering
periodic load.

numerical feedback as before, but now, the substructuring ratio was gradually
increased until achieving the whole measured damper’s force on the feedback loop
(above 17 seconds in the figure).

As well, Figure 7.30 shows the delay estimation by zero—crossing over the segment
corresponding to the substructuring ratio equals to 100%.

The stability is achieved even when working with the actual measured force,
nonetheless and despite the backlash phenomenon was considered in the numerical
damper model, the delay seems to be increased when passing from the numerical
to the full real-time substructuring test. It is worthy to note that, an important
difference between the delay measured on the load and unload branches still holds.

By using earthquake load

In the following tests, properly scaled seismic accelerations were applied to the
numerical substructure as the external excitation. The same as before, the fist
tests were carried out by considering a full-numerical feedback of the damper force
into the numerical substructure. Figures 7.31 and 7.32 shows the results by feeding
back 100% and 50% of the damper’s force numerical approximation respectively.
In both cases the synchronization plots show a good delay compensation because
of the prediction and the experiments show to be stable.
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However, when running the full real-time substructuring test, that is, when all the
measured damper force is being fed back, the instability arises since very earlier
stages. (See Figure 7.33).
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Figure 7.31: Full numerical substructuring test with earthquake 0187.

Several tests were accomplished by trying excitations with different frequency—

band contents, all of them getting more or less the same results. Figures 7.34 and
7.35 show the outcomes under different earthquakes. As before, after switching
from partial to full hybrid real-time substructuring test, the experiment became
instable due to the propagation of the delay error through the external feedback
loop.
Figure 7.36 shows what happens in terms of force when the simulation becomes
inaccurate in consequence of the self-sustained oscillations. Even when those
oscillations are small, the sudden change of velocity causes a stronger variation in
terms of force. It is large enough to produce the structural response rises. Those
oscillations together with the characteristics of such a stiff nonlinear damper,
cause a continuous switching between the extreme maximum loads for the damper
(both of opposite signs), a sort of chain reaction which leads the simulation to
instability. As well, as it was found from the stability analysis in §6.3, the self-
sustained oscillations come at small displacements under a certain velocity range.
For some tests, the simulation became unstable even when the external load were
vanished, that is, when the system was supposed to be arrested as consequence
of non external load being applied to the system.
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Figure 7.33: Real-time substructuring test with earthquake 0187.
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Figure 7.34: Full numerical substructuring test with earthquake 0535.
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Figure 7.36: Real-time substructuring test with earthquake 0535. Force compar-
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A main practical issue concerning to stability was the backlash phenomenon.
Unfortunately, It was not possible to get perfect connection between the trans-
fer system and the specimen tested. This lost motion due to clearance when
movement is reversed and contact is re—established, increased the delay effect.
Backlash may severely affect the stability conditions in a Real Time Dynamic
Substructuring simulation when testing systems which are exceptionally sensible
to delay. So that, backlash became a crucial disappointment in this simulation.

We understood the phenomenon which generates self-sustained oscillations
and verified their existence experimentally. However, we are still not able to
design a complementary system which prevents such high frequency oscillations.
We need to include a subsystem in the RI'DST—chain to counteract and take away
them. Thus, our current effort is being mainly focused on thinking up in a virtual
system able to absorb such high frequency oscillation, keeping the system free
from the harmful effects of delay in the feedback loop in RTDST.
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8.1 Main contributions

The contributions of this thesis have been concerned with several aspects. The
work explores the use of a new testing methodology for earthquake engineering
incorporating time delay compensation schemes and stability analysis. Both of
them open problems that are currently matter of research in the community study-
ing nonlinear dynamical systems. The work have been focused on the definition
of conditions to guarantee reliable results when running experimental testing of
nonlinear systems for structural control at real scale.

The following summarize the main contributions of this thesis:
1. Development of numerical routines.

e Neural network training for on-line time series prediction with appli-
cation to time delay compensation.

e Numerical stability analysis of linear and nonlinear delayed systems.

e Numerical approximation of vector field for nonlinear delayed systems.
2. Analytical investigations.
e Stability analysis of linear delayed systems.

e Explicit stability analysis of systems with non-linear delayed dampers.

147
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e Existence analysis of limite cycles in systems with delayed dry friction
dampers.

3. Experimental testing on RTDST for large—scale non-linear dampers.

e Simulink model of substructured systems able to run in real-time.

e User—interface able to run and control experiments in real-time.

8.2 Final remarks

More realistic tests of seismic protection devices allow better understanding of
the overall controlled system dynamics and enable the engineer to improve its
performance. Real-Time Dynamic Substructuring Test (RTDST) have enormous
potential in assessing protection systems for earthquake engineering, as it allows
testing components of the structure at full-scale under realistic extreme loading
conditions. So, we can separate just the structural control device from the system,
bring it to the lab and test it physically, taking into account its dynamic inter-
action with the hosting structure. Moreover, the versatility of the RTDST was
certainly evidenced by the possibility of performing repeatable tests. We could
not only assess the response of the control device under different load condition,
but also it is possible to change the hosting structure itself and evaluate, for in-
stance, the most well-behaved structural configuration for a particular seismic
protection device. So, several structural systems could be evaluated under a wide
range of load conditions by using the same experimental rig set up.

However, as it was shown along this thesis, to guarantee the success of a
RTDST simulation, a very efficient time delay compensation scheme is not enough.
A complete stability analysis is also required to determine how sensible the sub-
structured system may be under small delays.

This work is focused on testing a passive control system provided with large—
scale non linear fluid viscous dampers. We proposed, implemented and tested
a new time delay compensation scheme for RTDST based on Neural Networks.
Even if this compensation worked properly, it became impossible to reduce the
delay error in the feedback signal to zero. When carrying out the experimen-
tal campaign on the case study system, unexpected self-sustained oscillations
were detected. This was caused by very small delays in the feedback loop, which
unavoidably lead the system to oscillations at high frequency. We completed a
explicit stability analysis and achieved a comprehensive dynamic characterization
of the non-linear phenomena in the system. In this thesis we presented a com-
plete set of closed—form expression to describe the dynamics of the main complex
delay—induced behaviours exhibited for the delayed system. We could identify
both the region where self-sustained high frequency oscillations arise and the
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limit cycle induced by the delay.

Regarding to the prediction methodology, neural network scheme demon-
strates much more capacity and robustness than the other methods when pre-
dicting noisy signals. This advantageous behaviour is due to the inherent gen-
eralization capacity of neural networks and their high tolerance to noisy data.
Besides, unlike other methodologies, neural network provides a smoother signal
when moving from one time step to the other, so that, slight discontinuities in the
predicted command signal are avoided. Because of the adaptive training, the net-
work shows behavior improvements as long as the simulation time passes. Once
the training process becomes well-balanced, the proposed compensator was able
to adapt quickly to the change in the target signal. The scheme is well suitable
for being used within systems whose properties do not change very rapidly and is
able to smooth out the effects of noise and experimental errors.

Although more complex than used networks are expected to have higher ca-
pacity in prediction, due to the dimensional and complexity increment in the
network’s weight space, the optimization of the error function becomes more
expensive computationally. As a result, the network becomes very slow when
training and is no longer suitable for prediction in real-time.

Nevertheless, for RI'DST applications this compensation scheme may not be
suitable all the times. In our particular case for instance, due to the signal to be
predicted was the outcome of a numerical model (namely the displacement of the
first floor), no substantial noise is present on this signal. So that, there is not
great advantages in utilizing the neural network methodology because it requires
additional attendance and could also present lack of training occasionally.

An additional care should be taken with relation to the prediction scheme.
Note that if delay is considered to be equivalent to adding negative damping in
the system, then over compensating (predicting too far forward in time) will have
the opposite effect of increasing the damping. Both cases may reduce the accu-
racy of the simulation results. Note that delay might change along the RTDST
simulation, so, to avoid wrong time delay compensations, it should be done base
on an accurate on—line estimation of the current delay in the system.

The case studied in this thesis is mainly characterized for having a strong
nonlinearity (by way of discontinuity) when the velocity in the dissipation device
changes of sign. Many others dissipation devices for seismic hazard mitigation
present a similar force—velocity dependence. Our results can be easily extended
to different systems in engineering which are provided with devices exhibiting
such a behaviour. Additionally, the achieved results are also useful for other kind
of mechanical systems different from RTDST applications. Systems where the
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response of some components is arriving with delay and may cause a harmful ef-
fects on the system behaviour. Semi-active control by MR dampers are examples
of such a systems. In fact, it is a work derived from this thesis which is already
being carried out. Large-scale MR dampers also suffer from mechanical delayed
response. That is why, we are studying the reduction on the semi-active control
system efficacy caused by delays in the MR dampers respounse.

In order to get the close—form expressions for describing the delayed system dy-
namics, a mathematical trick was used in this thesis. We substituted the original
non-linear system by one dynamically equivalent. When passing to the equiva-
lent system, that one which uses dry friction instead of viscous damping, some
complex phenomena exhibit in the original system can not be represented any
more. From numerical simulations, we identified a sliding phenomenon just be-
fore the high frequency oscillations (induced by delay) arise. Such phenomenon
do not cause any important problem in terms of dynamic stability, but its analysis
may be very interesting from a mathematical point of view. Readers interested
in catching such phenomenon could try a piecewise dynamical system by using a
Fillipov’s systems approach, which can reproduce such a behaviour.

Another practical issue to take care about when setting up the experimental rig
for RTDST, is the backlash phenomenon. When perfect connection between the
transfer system and the specimen is not assured, this lost motion due to clearance
when movement is reversed and contact is re—established, can increase even more
the delay effect. In spite of the fact that such phenomenon may be present in the
emulated system without any significant drawback, backlash may severely affect
the stability conditions in a Real Time Dynamic Substructuring simulation when
testing systems which are exceptionally sensible to delay. So that, if the system
proves to be highly sensitive to delay, backlash becomes crucial in the simulation.

Finally, although we got a complete mathematical description of systems with
delayed non-linear dampers and we could assert that any small delay causes self—
sustained oscillations, the problem is still far from solved. We have understood
the phenomenon, unexplained before, which generates self-sustained oscillations.
But to carry out reliable and accurate RTDST simulations on the large-scale
nonlinear dampers, we still have to find a complementary system which prevents
such high frequency oscillations. We need to include a subsystem in the RTDST—
chain to counteract and take away them. Our guess is that a system which is
tuned according to the frequency of the undesirable oscillations can be useful. A
sort of virtual tuned mass damper able to absorb the high frequency oscillation,
keeping the system free from the harmful delay effects.
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