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Abstra
tThis thesis analyses the appli
ability of a quite novel methodology of experimen-tal testing so�
alled Real�Time Dynami
 Substru
turing Test (RTDST) in theassessment of prote
tion systems for natural hazards mitigation. RTDST allowstesting 
riti
al 
omponents of the stru
ture at full�s
ale under realisti
 extremeloading 
onditions. Only those 
omponents where the non�linearity behavior is
on
entrated are physi
ally tested, whilst the remainder of the stru
ture is sim-ulated numeri
ally. The main drawba
k of this te
hnique lies in the unavoidabledelays asso
iated to the loop feeding ba
k some experimental measurements tothe numeri
al model. Su
h delays may 
ause instability during the test.This work is fo
used on testing passive 
ontrol systems based on large�s
alenon linear �uid vis
ous dampers. Throughout a 
areful expli
it stability analysis,we present a 
omplete set of 
losed�form expressions to des
ribe the dynami
sof the main 
omplex delay�indu
ed phenomena exhibited for the delayed sys-tem. This analysis is addressed in the 
ontext of both 
lassi
 stability theoryfor non�linear systems and the qualitative theory of Pie
ewise Smooth Dynam-i
al Systems. The results obtained are also useful for other kind of me
hani
alsystems where the response of some 
omponents is arriving with delay and may
ause harmful e�e
ts on system behaviour. Semi�a
tive 
ontrol by MR dampersare examples of su
h systems.The theoreti
al results obtained were 
on�rmed experimentally. When 
arry-ing out the experimental 
ampaign, in fa
t, unexpe
ted self�sustained os
illationswere dete
ted. This was 
aused by delays in the feedba
k loop, even when theyare very small, unavoidably lead the system to self�sustained os
illations at highfrequen
y.
i
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Chapter 1Introdu
tion
Contents1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . 11.2 Outline of this thesis . . . . . . . . . . . . . . . . . . . 31.1 MotivationEarthquake damage has devastating human and e
onomi
 
onsequen
es. The av-erage worldwide repair 
ost due to earthquake damage has been estimated to beapproximately $30bn per year. Redu
ing this �nan
ial 
ost is a major engineer-ing 
hallenge, whi
h would have signi�
ant bene�t in redu
ing human su�eringduring extreme earthquake events. Su
h a redu
tion demands the design of moreresistant, reliable and 
ost�e�e
tive both stru
tures and seismi
 prote
tion sys-tems.New design pro
edures in stru
tural engineering as well as in stru
tural 
on-trol, require better understanding and modelling of nonlinear behavior of stru
-tures and 
omponents. The response of stru
tural systems under strong dynami
loads, su
h as earthquake ground motion, is highly unpredi
table and then di�
ultto model. It be
omes a troublesome problem, when designing 
omplex infrastru
-ture in regions of high seismi
 a
tivity. Besides, the appli
ation of stru
tural
ontrol te
hnologies for prote
tion of 
ivil stru
tures has been a growing interestover the last four de
ades, not only to redu
e the dynami
 response under extremedynami
 loads but also to in
rease the system reliability and for providing human
omfort during everyday environmental loads. These prote
tion systems are alsodi�
ult to be analysed, due to the strong non�linearities exhibited by the devi
es
ommonly used for seismi
 mitigation. 1



2 CHAPTER 1. INTRODUCTIONDi�erent laboratory fa
ilities and experimental methodologies have been de-veloped for years, seeking for better understanding of me
hani
 and dynami
phenomena in �elds relative to earthquake engineering. However, the vast major-ity of those te
hniques su�er from te
hni
al and physi
al limitations that restri
ttheir appli
ability for assessing real s
enarios. In fa
t, large s
ale engineeringstru
tures su
h as bridges and buildings, present a parti
ular problem in termsof experimental testing. Another experimental 
hallenging issue is 
onne
ted tothe hysteresis and rate�dependent phenomena. That turns into meaningful whentesting semia
tive and passive 
ontrol systems, where this dynami
 behaviour isintrodu
ed into the 
ontrolled system by the dissipation devi
es.The idea behind this thesis is to evaluate the appli
ability of a new experimen-tal te
hnique whi
h is radi
ally more e�e
tive than traditional approa
hes. To dothis we propose to exploit a state of the art of the dynami
 testing te
hniqueknown as real�time dynami
 substru
turing. Based on the 
urrent knowledge,we intent to �nd the 
onditions under whi
h this te
hnique 
an be employed fortesting real s
ale seismi
 prote
tion system for buildings. We believe that thiste
hnique will enable the engineers to obtain a

urate information of the systemsin nonlinear range, in
reasing the understanding of the whole 
ontrolled systembehaviour, and hen
e, allowing the improvement of designing stru
tures withadded 
ontrol systems. More e�
ient 
ontrol systems imply both 
ost�e�e
tiveseismi
 prote
tion systems and more resistant stru
ture to earthquake ex
itation.The result will be safer buildings, less human 
ost in terms of death and injury,and more sustainable infrastru
ture with in
reased 
on�den
e.Real�time dynami
 substru
turing testing (RTDST) is an e�
ient method forthe assessment of dynami
 and rate�dependent behavior of systems subje
ted todynami
 ex
itation. This new and ex
iting te
hnique o�ers the prospe
t of be-ing able to test prototype adaptive stru
tures in the laboratory under realisti
extreme loading 
onditions, su
h as those su�ered during earthquakes. RTDSTprovides the 
apability to isolate and physi
ally test 
riti
al 
omponents of a 
on-trolled stru
ture whilst the remain part of the stru
ture is simulated numeri
ally.These tests 
an be 
ondu
ed at real s
ale and in real time to fully 
apture anyrate dependen
y, while allowing for hundreds of repeatable tests. This approa
hover
omes signi�
ant limitations of traditional testing methods. For instan
e,depending on the experimental obje
tives, RTDST may have several advantagesover traditional pseudodynami
 tests, where unpredi
table rate behavior 
annot
apture be
ause inertia and damping for
es are 
al
ulated numeri
ally and ap-plied slowly to the test spe
imen. Likewise, it may also have many advantagesover the dynami
 shaking table te
hnique traditionally used, mainly when testinglarge stru
tures, not only in terms of s
ale but also 
ost, geometry and requiredphysi
al mass of the stru
tural model. An additional bene�t is that the mod-



1.2. Outline of this thesis 3els 
an simulate experiments in advan
e. This allows the feasibility of a testingregime to be explored. Simulated results 
an also give an investigator a degree of
on�den
e that his test has pro
eeded as intended or otherwise. The apparatusmodels are 
omplex and must a

ount for the dynami
s of all the 
omponents,in
luding the 
ontroller, servo�valve, a
tuator and physi
al test spe
imen.Nonetheless, this testing te
hnique su�ers from a 
riti
al drawba
k: the delay.Delay in 
ommand signals is a serious issue for dynami
 system that needs to a
tin real time. RTDST requires a stru
tural numeri
al model to be fed ba
k withmeasurements from the 
omponent physi
ally tested. In turn, this 
omponent isloaded in the lab a

ording to the out
omes from that numeri
al model. Thisinformation ex
hange must take pla
e in real time with minimum error betweenthe two parts. But due to the intrinsi
 dynami
s of the laboratory fa
ility whi
his being used in the test, delay errors in the feedba
k signal are unavoidable. Thesu

ess of real time dynami
 substru
turing testing is then highly dependent onthe performan
e of the a
tuators whi
h provide the for
es (or displa
ements) tothe 
omponent physi
ally tested. Their imperfe
t dynami
s 
an introdu
e bothtiming and amplitude errors into the signal, whi
h 
an a�e
t the a

ura
y ofthe performan
e and may also 
ause instability. To over
ome this, time delay
ompensation s
hemes are 
ommonly used to make 
orre
tions on the 
ommandsignal. Even if this 
ompensation works properly, it be
omes impossible to redu
esu
h delay error to zero.Additionally, some systems 
ould be parti
ularly sensitive to the presen
e ofdelay, and even a small delay may drasti
ally a�e
t how they behave. Therefore,to make sure that RTDST simulation is a

urate and reliable enough, a 
arefulstability analysis of the whole substru
tured system should be done. The aim ofsu
h analysis is to determine the 
riti
al delay, beyond whi
h, the test no longerrepresents the emulated system behaviour, or in other words, to de�ne the 
on-�den
e interval in terms of delay where the RTDST simulation results 
an beguaranteed.In the next se
tion, we shall present details of how this thesis was arrangedto fa
e this interesting and promising issue.1.2 Outline of this thesisAs this thesis 
ombines two worlds whi
h have been usually not 
onne
ted (stru
-tural 
ontrol and pie
ewise systems), we 
onsider very unlikely that the readerknows about both. So that, this do
ument 
overs several areas in an attempt tobe 
omprehensive and easy to read for a wide spe
trum of readers. Rather than
overing all the issues in deep, the idea is to familiarize the reader with unknown



4 CHAPTER 1. INTRODUCTIONfundamental de�nitions. Fundamental in the sense of being useful to understandthe work presented here. This thesis is organized as follows.Chapter 2 is devoted to show some basis of stru
tural 
ontrol systems. Theaim is not to go deep into spe
i�
 te
hni
al, pra
ti
al or mathemati
al issues butto highlight the importan
e and impa
t of several types of prote
tion systems,the devi
es employed in ea
h 
ase and the main test methods 
urrently used fortheir assessment. These information may be useful for readers who are not usedto what stru
tural 
ontrol te
hniques means in 
ivil engineering.In Chapter 3 we present the main features, advantages and disadvantages ofthe testing te
hnique known as real�time dynami
 substru
turing. Our interestis to show who RTDST 
an e�e
tively be implemented for testing and designing
ontrol systems for seismi
 prote
tion, and whi
h 
ir
umstan
es are parti
ulary
hallenging in order to a
hieve reliable simulations of the emulated stru
ture.In Chapter 4 we present an overview of the main fundamentals of the 
lassi
alstability theory for the analysis of linear and non linear systems. The idea isto familiarize the reader with fundamental de�nitions and properties exhibitsfor smooths system whi
h are ne
essary to understand the analysis 
arried outthroughout this thesis. If the reader already knows these mathemati
al formalisms
an skip this 
hapter.In Chapter 5 we present an overview of the qualitative theory of smooth andpie
ewise smooth dynami
al systems. Rather than 
overing all the issues, thepurpose is to present the fundamental 
on
epts and de�nitions, that a

ordingto us, are needed in the study. After a brief presentation on smooth dynami
alsystems, we introdu
e nonsmooth dynami
al systems, namely we present somede�nitions, invariant sets, stability analysis and numeri
al analysis emphasizingparti
ularly the major di�eren
es with the 
lassi
al theory of smooth systems.In Chapter 6 we intend to analyse the 
lose loop behaviour of a RTDSTwhen testing a supplemental energy dissipation system for stru
tural 
ontrol. Wepresent a stability analysis to highlight the harmful e�e
ts 
aused by delays indynami
 systems when timing errors are 
onsidered on the damper's response.Our goal is to assess the 
onstraints on delays, in su
h a way that the stability andreliability of the 
losed loop simulation 
an be guaranteed. This study is addressedin the 
ontext of both 
lassi
 stability theory for linear and non�linear systemsand the qualitative theory of Pie
ewise Smooth Dynami
al Systems presented inthe previous 
hapters.In Chapter 7 we present the des
ription and experimental set�up of a Real�Time Dynami
 Substru
turing Test of a 
ivil stru
ture provided with a passiveseismi
 prote
tion system. Our interest is to show how this kind of test 
an beexploited for the assessment and design of 
urrent and new prote
tion systems inearthquake engineering. We show that even when a 
ompensation s
heme works



1.2. Outline of this thesis 5properly, the RTDST may be
ome unstable and behave very di�erent from theemulated system.Finally, Chapter 8 presents the 
on
lusions, remarks and suggested futureworks derived from this thesis.
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Chapter 2Some Fundamentals onStru
tural Control
Contents2.1 Stru
tural 
ontrol strategies . . . . . . . . . . . . . . . 82.1.1 Passive 
ontrol . . . . . . . . . . . . . . . . . . . . . . . 82.1.2 A
tive 
ontrol . . . . . . . . . . . . . . . . . . . . . . . . 142.1.3 Semi�a
tive 
ontrol. . . . . . . . . . . . . . . . . . . . . 152.2 Stru
tural 
ontrol algorithms . . . . . . . . . . . . . . 182.3 Testing of seismi
 prote
tion system . . . . . . . . . 202.3.1 Shaking table method . . . . . . . . . . . . . . . . . . . 202.3.2 Pseudo�dynami
 (PsD) method . . . . . . . . . . . . . . 222.3.3 E�e
tive for
e testing (EFT) . . . . . . . . . . . . . . . 232.3.4 PsD with substru
turing . . . . . . . . . . . . . . . . . . 242.3.5 Real�time substru
ture testing . . . . . . . . . . . . . . 24Stru
tural 
ontrol had its roots primarily in aerospa
e industry, prin
ipally,in �eld 
on
erning to �exible spa
e stru
tures. It was rapidly moved into 
ivilengineering. Over the last four de
ades, there has been a growing interest inthe appli
ation of 
ontrol te
hnologies for 
ivil stru
tures in order to redu
e theirdynami
 response and to in
rease the system reliability, not only for prote
tionagainst dynami
 extreme loads (earthquakes, blasts, 
rashes, strong winds, ex-treme waves, et
.) but also for providing human 
omfort during everyday envi-ronmental loads [Housner et al., 1997℄.The �rst real implementations of stru
tural 
ontrol, were based on base isola-tion, vis
oelasti
 dampers and tuned liquid dampers in the 1970's. Many yearslater the a
tive 
ontrol 
on
ept appeared and the �rst real implementation was7



8 CHAPTER 2. SOME FUNDAMENTALS ON STRUCTURAL CONTROLmade in the 11-storey Kyobashi Seiwa building in Tokyo�Japan, for redu
ingthe building vibration under strong winds and moderated seismi
 ex
itations[Sakamoto et al., 1994℄. Re
ently, the te
hniques of semia
tive and hybrid 
on-trol were proposed for stru
tural 
ontrol and their implementations have beenmade su

essfully in Japan and USA. Several state�of�the�art reports provide adetailed survey, see e.g. [Spen
er and Nagarajaiah, 2003℄, [Dyke, 2005℄.This 
hapter is devoted to present some basis of stru
tural 
ontrol systems.The aim is not to go deep into spe
i�
 te
hni
al, pra
ti
al or mathemati
al issuesbut to highlight the importan
e and impa
t of various types of prote
tion systems,the devi
es employed in ea
h 
ase and the main test methods 
urrently used fortheir assessment.2.1 Stru
tural 
ontrol strategiesDi�erent stru
tural 
ontrol strategies have been developed. Generally speaking,we have three prin
ipal groups: (i) passive 
ontrol, where vibratory energy is dissi-pated by in
reasing some stru
tural parametri
 values (like sti�ness and damping)without requiring external energy; (ii) a
tive 
ontrol, whi
h adds energy to thestru
ture in opposite dire
tion of the seismi
 for
es to 
ountera
t them; and (iii)semi�a
tive 
ontrol, whi
h dissipates energy like passive 
ontrol, but now devi
e'sdissipation 
apa
ity 
an be 
ontrolled on�line, so devi
e properties su
h as sti�nessor damping are 
hanged by means of hydrauli
, magneti
 or ele
tri
 
ommands.In what follows, we present a brief des
ription of ea
h strategy and give someexamples.2.1.1 Passive 
ontrolPassive energy dissipation systems en
ompass a large spe
trum of materials anddevi
es for adding damping to the stru
tural system (also sti�ness and strengthare usually in
reased). They 
an be used for both natural hazard mitigationand rehabilitation of aging or de�
ient stru
tures. Passive 
ontrol systems dis-sipate energy using the stru
ture's own motion to produ
e relative movementwithin the devi
e and develop lo
al 
ontrol for
es. Two prin
iples are used todissipate energy: 
onversion of kineti
 energy to heat and transferen
e of energyamong vibration modes [Skinner et al., 1993℄, [Constantinou and Symans, 1993℄.The devi
es that pertain to the �rst 
lass are based on fri
tional sliding, yieldingof metals, deformation of vis
oelasti
 solids or �uids. And those of the se
ond



2.1. Stru
tural 
ontrol strategies 9group are �uid ori�
ing and supplemental os
illators, whi
h a
t as dynami
 vi-bration absorbers [Cahis et al., 2000℄.The added sti�ness redu
es the dynami
 response of the stru
tures by absorbingand dissipating energy, whi
h when 
ombined with the 
hange in initial frequen
y,helps the stru
ture avoid resonan
e. Sin
e passive systems involve no externalpower, they are inherently stable. Passive strategies are 
hara
terized by its sta-bility, simpli
ity, reliability and have a low 
ost of maintenan
e and installation.However, its main drawba
k rely on the fa
t that they are built 
arefully tuned forspe
i�
 operating 
onditions and 
annot adapt to 
hanges and unknown distur-ban
es. Examples of passive systems in
lude among others: base isolation, tunedmass dampers (TMD), tuned liquid dampers (TLD), metalli
 yield dampers, vis-
ous �uid dampers and fri
tion dampers.Tuned Mass Dampers. Passive tuned mass damper systems, 
onsist of anauxiliary mass, a spring and a damper, whi
h are atta
hed to a stru
ture in orderto redu
e its dynami
 response (Fig. 2.1). The auxiliary mass limits the motion ofthe stru
ture when it is subje
ted to a parti
ular ex
itation 
ausing the damper toresonate 180◦ out of phase with the stru
ture motion. The di�eren
e in the phaseprodu
es energy dissipation by the TMD inertia for
e a
ting on the stru
ture.TMD

Figure 2.1: Tuned Mass Damper SystemNonetheless, tuned mass dampers are relatively ine�e
tive during earthquakesdue to their inability to rea
h a resonant 
ondition and therefore dissipate energyunder random ex
itation [Kwok and Samali, 1995℄. In the last years, tuned massdampers have been installed in a number of buildings worldwide to redu
e buildingvibration, parti
ularly under wind ex
itation. A re
ent example is one of the



10 CHAPTER 2. SOME FUNDAMENTALS ON STRUCTURAL CONTROLworld's tallest buildings, the Taipei 101 in Taiwan (See Figure 2.2), whi
h hasbeen su

essfully equipped with a tuned mass damper to 
ontrol the ex
essivesway under large wind. The building hosts a massive pendulum with dampers, an800�ton sphere 18 feet a
ross swings from the 92nd �oor to 
ontrol wind�indu
edos
illation.

Figure 2.2: Building Taipei 101 and the 800�ton steel sphere used as TMD.
Base Isolation Systems. A base isolation system 
onsists of a set of �exiblesupport elements, typi
ally rubber bearings, pla
ed at the foundation level asshown in Figure 2.3. These support elements are designed in su
h a way thatthe natural period of vibration of the isolated stru
ture is mu
h greater than thedominant period of the expe
ted ex
itation. A
tually, the whole system behavesas a single degree of freedom system due to, under strong dynami
 loads, thedispla
ements are absorbed by the supports while the relative stru
tural displa
e-ment remains negligible [Kelly, 1996℄.Base isolation te
hnology o�ers a 
ost�e�e
tive and reliable strategy for miti-gating seismi
 damage to stru
tures. It is best implemented in lo
ations of highseismi
ity for redu
ing lateral design for
es or for existing stru
tures needing tobe upgrade in order to satisfy 
urrent safety requirements. For 
ost e�e
tiveness,base isolation needs to be 
onsidered in the planning stages of the building proje
t.



2.1. Stru
tural 
ontrol strategies 11

ւIsolatorsFigure 2.3: Base isolation system and a typi
al rubber bearing for base isolation.A lot of examples of real implementations 
an be found in the literature. Figure2.4 shows a worship stru
ture seismi
ally isolated in Sira
usa (Italy) and the hys-tereti
 isolators installed on it, for further information see [Serino et al., 2008℄.Fri
tional Dampers. Fri
tional damping dissipates energy due to the heat
aused by fri
tion between moving bodies1 in 
onta
t. A fri
tional damper 
on-sists of the fri
tion surfa
e (e.g. steel) 
lamped together by high strength boltswith slotted holes. Fri
tion dampers are designed to slide over ea
h other duringa strong earthquake, the slip for
e is designed large enough so that no sliding is
aused by wind for
es. The bene�
ial approa
h to passive damping is that be
auseenergy is removed, the response 
annot be
ome unstable. However, fri
tionaldamping looses e�e
tiveness during large seismi
 ex
itation [Hanson and Soong, 2001℄.Metalli
 Yielding Dampers. Metalli
 Yielding Dampers (MYDs) are prob-ably the most familiar to stru
tural engineers, sin
e its 
on
ept is the same astypi
al steel seismi
 for
e resistive elements su
h as steel moment frames andbra
es. Beam�
olumn 
onne
tions yield for steel moment frames to absorb theseismi
 energy. The bra
es also bu
kle to absorb the seismi
 energy. However,the biggest di�eren
e between MYDs and typi
al steel system is the yielding lo-
ation for MYDs is not in the gravity load 
arrying elements (Further details in[Hanson and Soong, 2001℄).1Moving plates spe
ially treated to in
rease the fri
tion between them.
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Figure 2.4: Worship stru
ture seismi
ally isolated in Sira
usa (Italy) and its hys-tereti
 isolators.
Bolts Steel Plates

Figure 2.5: Fri
tional damper system.Fluid Vis
ous Dampers. FVDs have been widely used in aerospa
e and mil-itary appli
ations sin
e the early 1900's. After the end of the 
old war, its te
h-nology be
ame available for 
ivilian usage. They 
onsist of a 
losed 
ylinder
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Figure 2.6: Stru
ture equipped with �uid vis
ous dampers in diagonal bra
e 
on-�guration and typi
al FV devi
e.

ontaining a vis
ous �uid like oil. A piston rod is 
onne
ted to a piston head withsmall holes in it. The piston 
an move in and out of the 
ylinder. As it doesthis, the 
ompressible sili
on oil is for
ed to �ow through holes in the piston headat high velo
ity 
ausing fri
tion and generating heat, whi
h is in turn, radiatedinto the surrounding air. This hydrodynami
 pro
ess dissipates seismi
 energy[Miyamoto and Hanson, 2004℄. A 
ommon example of vis
ous dampers is a sho
kabsorber in a 
ar or the devi
es mounted on building doors to prevent the doorfrom slamming shut.FVDs add vis
ous damping to the stru
ture and 
an redu
e a

eleration and dis-pla
ement for the most of the frequen
y range. The dampers are usually installedas part of a building's bra
ing system using single diagonals. They are the mostuseful where engineers desire to redu
e displa
ement without in
reasing the stru
-ture's frequen
y [Constantinou and Symans, 1992℄.A real appli
ation example is the London Millennium Footbridge shown inFigure 2.7, a pedestrian�only steel suspension bridge 
rossing the River Thamesin London. Unexpe
ted lateral vibration (resonant stru
tural response) 
ausedthe bridge to be 
losed on June 12 2000. After extensive analysis, the problemwas �xed by the retro�tting of 37 �uid�vis
ous dampers to 
ontrol horizontalmovement and 52 tuned mass dampers to 
ontrol verti
al movement (Further in-formation in [Dallard et al., 2001℄).
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Figure 2.7: London Millennium Footbridge (UK) and �uid vis
ous damper lo
a-tion.2.1.2 A
tive 
ontrolA
tive 
ontrol systems supply 
ontrol for
es to the stru
ture in order to redu
eits own motion. These for
es are obtained from an algorithm based on feedba
kinformation from sensors that measure the ex
itation or/and the response of thestru
ture [Soong et al., 1991℄, [Preumont, 1997℄. Typi
ally, an a
tive 
ontrol sys-tem 
onsists of three main 
omponents: (i) a monitor, whi
h is the sensors and thedata a
quisition system; (ii) a 
ontroller, a module that de
ides on the 
ourse ofa
tion; and (iii) an a
tuator, a set of physi
al devi
es that exe
ute the instru
tionsfrom the 
ontroller. Civil stru
tures require a
tuator systems (su
h as hydrauli
systems) whi
h are 
apable of generating large for
es. The pre
ise appli
ation ofsu
h 
ontrol for
es usually demands large power requirements. This 
onditionalbe
omes parti
ularly 
riti
al during seismi
 events when the main power sour
eto the stru
ture may fail [Soong, 1990℄.The merit of the a
tive 
ontrol systems is that they are e�e
tive for transientvibration and also for a wide frequen
y range. Unlike passive systems, a
tive
ontrol is able to adapt to di�erent loading 
onditions and to 
ontrol di�erentvibration modes [Spen
er et al., 1997a℄. However, be
ause external energy is in-trodu
ed, it may indu
e instability into the whole stru
tural system by unex-pe
ted dynami
s 
hanges or erroneous feedba
k information. In addition, 
ostand maintenan
e of su
h systems is signi�
antly higher than that of passivedevi
es. A
tive 
ontrol strategies in
lude a
tive mass damper (AMD), hybridmass dampers (HMD), a
tive tuned liquid 
olumn dampers, a
tive bra
ing, a
-tive base isolation, multiple 
onne
ted buildings, et
., [Soong and Spen
er, 2002℄,[Nishimura and Shidomaira, 2003℄.



2.1. Stru
tural 
ontrol strategies 15A
tive mass damper . An auxiliary mass supported by rollers is atta
hed toa transfer system as shown in Figure 2.8. The idea in that the mass os
illates atthe same frequen
y of the stru
ture but with a phase shift. The transfer systemusually 
onsists in a hydrauli
 a
tuator or an ele
tri
 motor. It is used in orderto provide a 
ontrol for
e to drive the additional mass and 
ountera
t or mitigatethe motion of the stru
ture [Yoshida et al., 1995℄, [Ri

iardelli et al., 2003℄.A
tuatorAMD Sensor
SensorComputer

Figure 2.8: Stru
ture equipped with an a
tive mass damper (AMD)The Kyobashi Seiwa Building in Japan (1989) was the �rst full�s
ale appli
a-tion of a
tive 
ontrol te
hnology. Two a
tive mass drivers were installed on thetop �oor to redu
e the maximum lateral response asso
iated with building vibra-tions 
aused by earthquakes and strong winds [Kobori et al., 1991℄. Several realappli
ations 
an be reviewed in [Cao et al., 1998℄ and [Nishitani and Inoue, 2001℄.Besides, Figure 2.9 shows the Herbis Osaka Building in Osaka, Japan. An AMDsystem installed at the 38th �oor level was 
ompleted in 1997. Two AMD's, whi
h
an move only in one dire
tion, were installed to 
ontrol both the lateral and tor-sional dire
tion of the building (Further details in [Yamamoto et al., 2001℄).2.1.3 Semi�a
tive 
ontrol.Semi�a
tive 
ontrol strategies arise as a 
ombination of the positive aspe
ts ofboth passive and a
tive 
ontrol systems. They utilize the motion of the stru
-ture to develop dissipative 
ontrol for
es but also use feedba
k measurements toalter the 
hara
teristi
s of the dissipative me
hanism in real�time. Semi�a
tive
ontrol is parti
ularly promising in prote
tion of 
ivil engineering stru
tures, in
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Figure 2.9: Herbis Osaka Building in Osaka, Japan and a prototype of AMD.the sense that they potentially o�er the reliability of passive devi
es, maintainingthe versatility and adaptability of fully a
tive systems at low�power requirements[Cas
iati et al., 2006℄. In the literature, important studies along with experi-mental results have showed that appropriately implemented semi�a
tive 
ontrolperforms signi�
antly better than passive 
ontrol and has the potential to a
hievethe major 
apabilities of fully a
tive 
ontrol [Symans and Constantinou, 1999℄,[Jung and Lee, 2002℄. The most 
ommon semia
tive 
ontrol devi
es are: variable�ori�
e �uid dampers, 
ontrollable fri
tion devi
es and 
ontrollable��uid dampers.In [Housner et al., 1997℄ and [Marazzi and Magonette, 2001℄, interesting surveyson semia
tive 
ontrol systems 
an be found.Variable�ori�
e �uid dampers. It behaves as linear vis
ous dampers withadjustable damping. Its operation prin
iple 
onsists of 
ontrolling the damping
oe�
ient by adjusting the opening of the internal valves 
hanging the �ow resis-tan
e of the hydrauli
 �uid. Thus, large for
es 
an be a
hieved with low externalpower [Kamagata and Kobori, 1994℄, [Serino and O

hiuzzi, 2003℄. Several realappli
ations on high�rise buildings have been a

omplished, for instan
e, thesekind of devi
es have been implemented on a 5�storey o�
e building lo
ated inShizuoka City, Japan [Kurata et al., 2000℄.



2.1. Stru
tural 
ontrol strategies 17Variable�Fri
tion Damper. It dissipates energy by for
es generated on fri
-tion surfa
es. These for
es 
an be varied by means of ele
tri
al signals or gas pres-sure, whi
h vary the fri
tion 
oe�
ient of the devi
e. In [Dowdell and Cherry, 1994℄the ability of these devi
es to redu
e the inter�story of a seismi
ally ex
ited stru
-ture was investigated. Also, in [Feng et al., 1993℄, a study of these devi
es pla
edin parallel together with a seismi
 isolation system is presented.Controllable �uid dampers. In these devi
es are similar to passive �uid vis-
ous dampers, but in them some properties of their internal �uid 
an be modi�edby means of ele
tri
 or magneti
 �eld, resulting a modi�
ation in the quantityof for
e absorbed. The prin
ipal advantage of this type of devi
es is that thepiston is the only moving part; 
onsequently, it 
an 
hange rapidly from a stateto another (e.g. from vis
ous to a semi�solid in millise
onds) when exposed to anele
tri
/magneti
 �eld. Semia
tive 
ontrollable �uid dampers 
an be: (i) Ele
-trorheologi
al (ER), if the smart �uid 
hanges rheologi
al properties2 in presen
eof an ele
tri
 �eld; and (ii) Magnetorheologi
al (MR), if the smart �uid properties
hange under di�erent magneti
 �elds. Several ER dampers have been developedand adapted to 
ivil engineering stru
tures. Important developments 
an be re-viewed in [Masri et al., 1994℄, [Gavin, 2001℄ and [Leitmann and Reithmeier, 2002℄among others.MR dampers have be
ome as an alternative of ER damper. When the exter-nal signal is applied (a magneti
 �eld), the inside �uid be
omes from semisolidto vis
ous state and it exhibits a vis
oplasti
 behavior. MR devi
es typi
allyhave very low power requirements with voltage between 12�24V and 
urrent de-mand of around 1�3 amps3, o�ering highly reliable operation at modest 
osts[Poynor, 2001℄, [Gravatt, 2003℄. Many numeri
al simulations and laboratory testshave been a

omplished to demonstrate the e�e
tiveness of MR devi
es for seis-mi
 response redu
tion. Some interesting do
uments are [Dyke et al., 1997a℄,[Dyke et al., 1997b℄ and [Renzi and Serino, 2004℄ among others.Double�ended MR dampers are generally used for semia
tive 
ontrol appli
a-tions in 
ivil stru
tures (See Figure 2.10). Due to the presen
e of nonlinearities,in parti
ular the hysteresis phenomenon, the modelling of these devi
es is quite
hallenging being lot of literature devoted to this topi
 [Spen
er et al., 1997b℄,[Yang et al., 2004℄, [Ikhouane and Rodellar, 2007℄, [Aguirre et al., 2008℄ and more.An example of real appli
ation is the Dongting Lake Bridge (Fig. 2.11), a 
able�stayed bridge 
rossing the Dongting Lake in southern 
entral China. The world's2Rheology is the study of the �ow of matter, mainly liquids but also soft solids or solidswhi
h, under parti
ular 
onditions, �ow rather than deform elasti
ally.3Note that 
ommon 
ar batteries 
an supply this power.
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3-stage pistonThermal Expansiona

umulator Magneti
 �eldMR �uid

Figure 2.10: S
hemati
 of a full s
ale MR damper�rst appli
ation of MR dampers on 
able�stayed bridge to suppress the rain�wind�indu
ed 
able vibration. For further details see [Chen et al., 2003℄.

Figure 2.11: Dongting lake bridge in Hunan, China and MR dampers atta
hed tothe stay 
ables.
2.2 Stru
tural 
ontrol algorithmsDuring the last two de
ades, various types of stru
tural 
ontrol strategies havebeen applied to the 
ontrol of 
ivil engineering stru
tures. High�quality 
ontrolsystems require the design of the feedba
k 
ontroller with spe
i�
 
ontrol obje
-tives in mind, related to meaningful stru
tural performan
e measures, while at



2.2. Stru
tural 
ontrol algorithms 19the same time addressing devi
e (or a
tuator) and system nonlinearities and theun
ertainties in the system and ex
itation models. Depending on the availableinformation for ea
h 
ontrolled stru
ture, the mathemati
al model asso
iated,types of measurements, a
tuators and disturban
es, ea
h 
ontrol solution 
an besuitable only for one spe
i�
 type of stru
ture and not for all kinds [Soong, 1990℄.Due to this thesis is not fo
used in 
ontrol theory, in what follows we shall limitto mention some strategies 
ommonly used in 
ivil engineering �elds.Most of the resear
h e�orts on 
ontrol law design for 
ivil engineering ap-pli
ations have been done on extending linear 
ontrol methodologies, primarilysome variant of H2 
ontrol [Ku
era, 2007℄, to stru
tural 
ontrol problems, seefor instan
e [Spen
er and Nagarajaiah, 2003℄, [Miyamoto and Hanson, 2004℄ and[Ang et al., 2005℄. At the 
ontroller design stage, potential nonlinearities regard-ing to the stru
tural and ex
itation models are either: (i) negle
ted, for examplein the 
ontext of the well known 
lipped�optimal 
ontrol design for semi�a
tivesystems [Dyke et al., 1996℄; or (ii) approximated 
onsidering linearization te
h-niques [Erkus and Johnson, 2006℄. To 
onsider the nonlinearities arising from thelimitations of the a
tuators, heuristi
 feedba
k 
ontroller design te
hniques havebeen suggested; methods su
h as hystereti
, dissipation�based, and energy�basedapproa
hes, e.g., [Gavin, 2001℄, [Jansen and Dyke, 2000℄.One of the most proli�
 �eld on literature has been devoted to semia
tive
ontrol. The most relevant works deal with strategies su
h as: Lyapunov based
ontrol, e.g [Jansen and Dyke, 2000℄; H∞ 
ontrol, e.g. [Yang et al., 2002℄; slidingmode 
ontrol, e.g. [Moon et al., 2003℄; QFT 
ontrol, e.g. [Sanz, 2005℄ and ba
k-stepping 
ontrol, e.g. [Zapateiro et al., 2009℄.Note that most aforementioned methodologies primarily fo
us on the meansquare stru
tural response and do not expli
itly a

ount for un
ertainties in thesystem and ex
itation models. Thus, some resear
her found that the optimalstrategy in stru
tural 
ontrol design with un
ertainties should be that whi
h max-imizes the reliability. Theoreti
al reliability�related 
ontrol methods, su
h as µ�synthesis and the many o�shoots of these, have be
ome the standard tools in thedesign of feedba
k 
ontrollers that are robust to model un
ertainty, where a 
om-pa
t set of possible models for the system is 
hosen [Dullerud and Paganini, 1999℄,[Yoshida et al., 1995℄.
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 prote
tion systemIn stru
tural 
ontrol, similar to other appli
ation �elds, the main obje
tive is to de-velop integrated 
ontrol methodologies that are robust, e�e
tive, implementable,reliable and with the minimum 
ontrol e�ort. However, sometimes it is di�
ultdue to some problems su
h like nonlinearities, un
ertainties, dynami
 
ouplingand measurement limitation. To assess stru
tural resistan
e and seismi
 prote
-tion system behavior under dynami
 loads, a test method that emulates the fulldynami
s of the system is needed. This se
tion gives a brief overview of severalwell�established testing methods that are 
urrently the most widely used testingmethods in seismi
 engineering resear
h.2.3.1 Shaking table methodThe most natural experimental te
hnique used for earthquake engineering is shak-ing table testing. A spe
imen representing the stru
ture (usually s
aled down forpra
ti
al reasons) is �xed on top of a rigid platform (table), whi
h is 
onne
tedto one or more hydrauli
 a
tuators that 
ontrol the movement of the platform inone or more degrees of freedom and vibrates to repli
ate ground motions.E�e
tive shaking�table testing of stru
tural models started to be 
arried out inthe late 1960's and early 1970's. This 
ame as a result of the advan
es in ele
tro�hydrauli
 servo equipment, as well as improvements in 
omputer hardware andinstrumentation, for 
ontrol and a
quisition of data [Aristizabal and Clark, 1980℄.Su
h work was mainly initiated in the US with the set�up of dynami
 testing fa
ili-ties at the University of Illinois at Urbana�Champaign [Sozen et al., 1969℄ and theUniversity of California at Berkeley [Bouwkamp et al., 1971℄. Sin
e then, shakingtable testing has been widely adopted in earthquake engineering resear
h 
en-tres worldwide. Di�eren
es in shaking tables generally relate to the number andtypes of degrees of freedom that 
an be 
ontrolled during testing, the mass that
an be supported and the a
tuators' movement limits. For instan
e, the shakingtable system in the laboratory of the Department of Stru
tural Engineering atUniversity of Naples �Federi
o II� is shown in Figures 2.12 and 2.13. Two squaretables (3m side) 
an be moved asyn
hronously in order to reprodu
e the seismi
e�e
ts on stru
tures with long spans. For ea
h, the maximum load is 200kN witha frequen
y range of 0�50Hz, peak velo
ity of 1m/se
 and total displa
ement of500mm. The hydrauli
 system has 12 motor pumps groups with a maximum total
apa
ity of 2500lit/min.Shaking table testing better represents live earthquake experien
e inside alaboratory. Even though the shake table test might be 
onsidered the most ad-
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Figure 2.12: Asyn
hronous shaking table system at University of Naples �Federi
oII�.

Figure 2.13: Hydrauli
 system whi
h supplies oil pressure to shaking tables atUniversity of Naples �Federi
o II�.van
ed form of seismi
 testing, it is also the most expensive, as it requires thatseveral skilled personnel and 
ostly equipment. Note as well that, in shakingtable testing only base vibration is introdu
ed and loads due to wind for exam-
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annot be modelled. Additionally, the limited power of the a
tuators thatdrive the table imposes the use of redu
ed s
ale spe
imens, what in turn, in-trodu
es di�
ulties and un
ertainty in the interpretation of experimental results[Williams and Blakeborough, 2001℄. Consequently, 
onsiderable e�ort and fund-ing has been pla
ed over the past 40 years in the 
onstru
tion of 
ontinuouslylarger and more powerful shaking table fa
ilities around the world. As an exam-ple, on July 14 2009, Colorado State University and Simpson Strong�Tie alongwith other partners su

essfully led the world's largest earthquake shake table test.A ground motion equivalent to a 2500�year earthquake (similar to a 7.5 Ri
htermagnitude) was applied on a seven�story, 40�foot by 60�foot 
ondominium towerwith 23 living units. The test took pla
e on the nowadays world's largest shaketable (known as E�Defense) in Miki City, near Kobe, in Japan (Further details inwww.strongtie.
om/about/resear
h/
apstone.html).2.3.2 Pseudo�dynami
 (PsD) methodThe pseudo�dynami
 test method is a 
omputer 
ontrolled testing te
hnique thatenables dynami
 testing of stru
tures into the non�linear range while using thesame loading equipment that is used for stati
 or quasi�stati
 testing4. Thestru
ture to be analyzed is spatially dis
retised a

ording to a lumped mass ap-proximation and a
tuators are lo
ated at these points to provide the loading.This experimental 
on
ept originated in Japan as early as 1969 following failedattempts to realize real�time hybrid tests. [Takanashi and Nakashima, 1987℄ pro-vide general overviews of the method and histori
 development.The PsD method 
an be 
onsidered a hybrid testing method as it 
ombinesonline 
omputer simulation of the dynami
 behaviour of a stru
ture with infor-mation measured dire
tly from the stru
ture. The test stru
ture is physi
allyatta
hed through the a
tuators against an very sti� rea
tion wall. A 
omputer
al
ulates the stru
tural response by a time�stepping integration method 
on-sidering the idealised lumped�mass model of the stru
ture subje
t to the inputearthquake motion . While the inertial and vis
ous damping for
es are modelledanalyti
ally, the solution of the equations of motion provides the displa
ementsto be applied to the stru
ture at ea
h time step. These displa
ements are physi-
ally applied by a
tuators in a quasi�stati
 manner5 as long as the rea
ting for
esare measured experimentally to be used in the equations of motion for the nexttime step [Mahin et al., 1989℄, [Shing et al., 1996a℄. The a
tual size of the rea
-4In quasi�stati
 testing loads are applied a very slow rate.5Slow loading of the stru
ture is important so as not to ex
ite its inertial and dampingproperties, whi
h are already a

ounted.
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ommodate large s
ale stru
tures. For instan
e,Figure 2.14 shows the rea
tion wall at the European Laboratory for Stru
turalAssessment (ELSA) with 16m high, 20m long and 4m thi
k [Donea et al., 1996℄.

Figure 2.14: Pseudo�dynami
 test set�up using the rea
tion wall at the EuropeanLaboratory for Stru
tural Assessment (ELSA).Positive attributes of the PsD method are that large massive stru
tures 
an betested at full s
ale using simple devi
es and low hydrauli
 power. As the 
onven-tional test is performed relatively slowly, arbitrarily large ground ex
itations 
anbe used, and there is good opportunity for detailed observation of the stru
turalbehaviour and failures throughout the test [Shing et al., 1996b℄. However you
annot examine rate�dependent behaviours, e.g., the e�e
tiveness of �uid vis
ousdampers added to the stru
ture 
ould not be assess.2.3.3 E�e
tive for
e testing (EFT)EFT is a dynami
 testing pro
edure to apply real�time earthquake loads to large�s
ale stru
tures that 
an be simpli�ed as lumped mass systems. The test setupis very similar to that of the PsD method. The test stru
ture is an
hored to a�xed base, and dynami
 for
es are applied by hydrauli
 a
tuators to the 
enter ofea
h story mass of the stru
ture. The for
e to be imposed (e�e
tive for
e) is theprodu
t of the ea
h lumped mass and the ground a

eleration re
ord, and thus is
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tural properties su
h as sti�ness and damping, and their
hanges during the test. Unlike in a PsD test, the loading 
an be determined inadvan
e of the test and no numeri
al integration is needed [Shield et al., 2001℄,[Dimig et al., 1999℄.Motions measured relative to the ground are equivalent to the response thata stru
ture 
an develop relative to a moving base as in a shake table test or anearthquake event. But, as for PsD testing, the EFT method is is only suitablefor stru
tures that 
an be represented as a series of lumped mass systems. Themajor limitation of EFT lies in the inability of hydrauli
 a
tuators to produ
ea

urately a for
e at the natural frequen
y of a lightly damped stru
ture, whi
hwas attributed to the intera
tion between the a
tuator piston velo
ity and thea
tuator 
ontrol [Zhao et al., 2003℄.2.3.4 PsD with substru
turingA spe
ial set-up pro
edure for the pseudo-dynami
 test, known as �sub�stru
turing�,enables portions of a stru
ture to be tested. The idea is to apply physi
ally quasi�stati
 loading on a sensitive part of the stru
ture while the remaining part is nu-meri
ally simulated on a host 
omputer together with the inertial and damping
hara
teristi
s of the sensitive part. Sub�stru
turing method allows relatively in-expensive dynami
 testing of large multi�degree of freedom (MDOF) stru
turesand also makes possible fo
using on important elements of a stru
ture su
h asisolation bearings [Pegon and Pinto, 2000℄.The te
hnique generally provides an e�
ient way to gain valuable informationon the performan
e of di�erent parts of a stru
ture. The major advantage is thatonly the part of main interest is physi
ally tested, providing in�nite repeatabilityof the remainder. Despite this, some disadvantages 
omes: �rst, the failure me
h-anism for the stru
ture must be assumed beforehand, and se
ond, the 
reation ofthe substru
ture interfa
e makes the experiment more di�
ult to be implementedand 
ontrolled [Pinto et al., 2004℄.2.3.5 Real�time substru
ture testingReal�time substru
ture testing (RTST) may be 
onsidered a derivative of sub�stru
tured pseudo�dynami
 testing [Nakashima et al., 1992℄. An RTST is a hy-brid method involving a physi
ally tested part and a numeri
ally modelled part;the two substru
tures are 
omplementary to form the 
omplete emulated stru
-
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tion system 25ture. During the RTST, the physi
al substru
ture intera
ts, by means of a feed-ba
k loop, with a 
omputational model of the stru
ture (numeri
al substru
ture);both substru
tures send and re
eive data from ea
h other, be
ause they needto know the state of the other part to work out their own. This intera
tionmost take pla
e in real�time to a
hieve reliable results, however, be
ause of theme
hani
al 
hara
teristi
s of the transfer system in between the numeri
al andphysi
al substru
tures, the presen
e of delays is unavoidable [Darby et al., 2002℄,[Walla
e et al., 2005a℄.As PsD with substru
turing testing, RTST allows one to 
on
entrate on thebehaviour of a spe
i�
 part of the stru
ture, while having the rest of the stru
turemodelled separately with in�nite repeatability. When su
h a real�time experi-ment is 
ondu
ted, the damping and inertial properties of the spe
imen are nolonger 
omputed but are fully a

ounted for through the measured for
e feedba
k.This method removes the un
ertainty in modelling 
omplex stru
tural parts asthese may be tested physi
ally being espe
ially 
onvenient to study the behaviourof stru
tures that 
ontain highly non�linear and/or rate�dependent parts withinthem [Sivaselvan et al., 2004℄.Due to this thesis is mainly devoted to the stability analysis of a rate�dependentdevi
e for seismi
 prote
tion whi
h is suppose to be tested in lab by means of areal�time substru
turing test, this testing method shall be widely dis
ussed in thenext 
hapter.
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Chapter 3Real�Time Dynami
Substru
turing Test
Contents3.1 An overview of RTDST . . . . . . . . . . . . . . . . . . 283.2 How RTDST works . . . . . . . . . . . . . . . . . . . . 313.3 Saturation, delay and instability . . . . . . . . . . . . 333.3.1 Delay 
ompensation . . . . . . . . . . . . . . . . . . . . 343.4 Compensator based on neural networks . . . . . . . . 353.4.1 Forward predi
tion s
heme . . . . . . . . . . . . . . . . 363.4.2 Arti�
ial neural networks . . . . . . . . . . . . . . . . . 373.4.3 Numeri
al results. . . . . . . . . . . . . . . . . . . . . . 383.5 Theoreti
al formulation of RTDST . . . . . . . . . . . 413.6 Integration s
heme . . . . . . . . . . . . . . . . . . . . 423.6.1 Central Di�erential Method . . . . . . . . . . . . . . . . 443.6.2 Runge�Kutta Method . . . . . . . . . . . . . . . . . . . 45Rate�dependent e�e
ts are often signi�
ant when testing 
on
rete stru
tures(to a lesser extent for steel stru
tures) but of great value when evaluating thebehaviour of energy dissipation devi
es as part of seismi
 prote
tion systems,like vis
ous dampers added to a stru
ture. Throughout the last de
ades, shak-ing tables have been traditionally used to provide real�time loading, allowingthe engineer to measure and evaluate the dynami
 behaviour of nonlinear andvelo
ity�dependent stru
tural systems. However, as it was pointed out before,this testing method presents serious drawba
ks 
on
erning size and power limits,what generally imposes the use of redu
ed s
ale spe
imens.27



28 CHAPTER 3. REAL�TIME DYNAMIC SUBSTRUCTURING TESTReal�time dynami
 substru
turing test (RTDST) is a promising dynami
al test-ing method in earthquake engineering as it allows, theoreti
ally, the assessment ofdynami
 behavior of stru
tural systems in nonlinear range under realisti
 extremeloading 
onditions, even when 
onsidering large stru
tures at full�s
ale.In this 
hapter, we present the main features, advantages and disadvantages ofthis method. Our interest is to show how RTDST 
an e�e
tively be implementedfor testing and designing 
ontrol systems for seismi
 prote
tion, and whi
h 
ir-
umstan
es are parti
ulary 
hallenging in order to a
hieve reliable simulations ofthe emulated stru
ture.3.1 An overview of RTDSTReal�time dynami
 substru
turing, also 
alled real�time hybrid simulation orreal�time pseudodynami
 testing, is a relatively new method for testing in earth-quake engineering; it has being growing in a

eptan
e as a 
onsequen
e of ad-van
es in 
omputing power, digital signal pro
essing and hydrauli
 
ontrol. Real�time substru
ture testing is essentially, a fast version of the substru
ture approa
hto PsD testing des
ribed earlier in �2.3.2. It is useful when testing large s
ale 
ivilengineering stru
tures under dynami
 loads, be
ause 
riti
al 
omponents 
an betested at full�s
ale1 even if they exhibit rate�dependent behaviour. As before, thesystem is split up into two prin
ipal subse
tions: the physi
al (experimental) andnumeri
al (analyti
al) substru
tures, keeping as the physi
al substru
ture those
omponents of the stru
ture that are 
riti
al due to their 
omplexity, 
ontainingtypi
ally, unknown or non�modelled behaviour with strong non�linearities. The
hallenging issue is to ensure that the physi
al and the numeri
al substru
turestogether behave in the same way as the whole real system [Neild et al., 2005℄, i.e.,the emulated stru
ture.Figure 3.1 shows a 
on
eptual view of real�time substru
turing test 
onsideringa building with a tuned mass damper (TMD) at the top �oor. Two di�erentsettings up are sket
hed: the �rst one extra
ting only the TMD from the sys-tem and using rea
tion wall fa
ilities for the test; and the se
ond one, extra
tingthe upper �oor with the TMD and using shaking tables fa
ilities. In a typi
aldispla
ement�
ontrolled simulation, the displa
ements 
omputed by the numeri-
al substru
ture are applied to the physi
al spe
imen, and the resisting for
e ismeasured and fed ba
k into the numeri
al substru
ture. Whilst in a PsD test onlythe stati
 restoring for
e is fed ba
k, in a real�time test the fed ba
k for
e willalso in
lude damping and inertia 
omponents (therefore they do not need to be1This avoids s
aling e�e
ts problems for material su
h as reinfor
ed 
on
rete [Abrams, 1996℄.
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luded in the numeri
al substru
ture). For earthquake loads, this means thatea
h 
y
le through the loop in the �gure, must be 
ompleted in a time�s
ale ofa few millise
onds. Consequently, this feedba
k loop needs very rapid 
omputa-tion and e�
ient 
ommuni
ation between the two substru
tures, as well as robust
ontrol [Gawthrop et al., 2007℄.
TMDa)

TMD
)
Control signalFeedba
k Shaking Tablesignal Stru
tural model

Spe
imenTransfersys.Numeri
al Substru
ture

TMD
b) Control signalFeedba
k Stru
t. modelsignal

Spe
imen Transfer Numeri
al substr.system Rea
tion wall

Figure 3.1: Con
eptual view of a RTST test. (a) The emulated stru
ture. (b)RTST by using an a
tuator. (
) RTST by using a shaking table.RTST has its origins in a kind of 
omponent testing so�
alled hardware�in�the�loop (HIL) whi
h has been used in a variety of ele
troni
 and me
hani
alengineering appli
ations. Originally, the hardware 
omponent (an ele
troni
 
on-trol unit or a real engine) and the software models (whi
h simulate the behaviour
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an 
ommuni
ate with ea
h other via ele
tri
al signals[Faithfull et al., 2001℄. In extending the HIL to test me
hani
al 
omponent, in-stead of ele
tri
al signals, for
es and velo
ities are required to be transferred tothe spe
imen (typi
ally by means of a set of a
tuators), therefore an additionaldynami
 transfer system must be in
luded in the loop [Wagg and Stoten, 2001℄.A extensive review of HIL is given by [Ba
i
, 2006℄.The �rst reported RTST was performed on a vis
ous damper lo
ated at thebase of a multi�storey building [Nakashima et al., 1992℄. In that work, only thedamper was tested physi
ally while the building was modelled as a linear singledegree of freedom (SDOF) system, so that the 
omputations involved were verysimple. [Darby et al., 1999℄ have also performed real�time tests using a linearSDOF numeri
al substru
ture, with the physi
al test spe
imen being a sti�ness,damping or inertia element. As it shall be explain later, RTST requires to 
om-pensate for delay, the signal to be applied on the test spe
imen. In this dire
tion,[Horiu
hi et al., 1999℄ investigated the use of simple polynomial 
urve �ts andfound that, by using a third�order fun
tion, stable and a

urate results 
ouldbe a
hieved. As well, [Nakashima and Masaoka, 1999℄ demonstrated the e�e
-tiveness of the extrapolation and interpolation pro
edures, through a series ofreal�time tests applied to a multi degree of freedom (MDOF) stru
ture treatedas SDOF models.The 
on
ept of pseudodynami
 testing was su

essfully extended to real�times
ales for testing nonlinear stru
tures as in [Shing et al., 1996b℄; and also ex-tended for testing velo
ity�dependent 
omponents as in [Magonette et al., 1998℄and [Jung and Shing, 2006℄. The integration s
heme is an important part of aRTST test as it relates the unknown values for a given time step to the knownvalues at one or more previous time steps. [Jung et al., 2006℄ presented the im-plementation details of a real�time PsD test system that adopts an impli
it timeintegration s
heme along with a theoreti
al system model whi
h in
orporates thedynami
s and nonlinearity of the test stru
ture and also a
tuator 
ompensationfor delays.Some test have been also done using shaking table fa
ilities as the transfersystem for RTST experiments. For instan
e, [Neild et al., 2005℄ separated thelarge stru
tural mass of the single DOF system into two parts and sele
ted thesmaller one as the experimental substru
ture and the larger one (with atta
hedspring and dashpot) as the numeri
al substru
ture to 
ondu
t a shaking tabletest. Similarly, a RTST for the shaking table test is proposed in [Lee et al., 2007℄where the upper part of a stru
ture is 
hosen as the experimental substru
ture



3.2. How RTDST works 31and the lower part is 
onsidered as the numeri
al one. The validity and a

ura
yof the proposed te
hnique is proven by obtaining good agreement between exper-imental and numeri
al results. As well, [Ji et al., 2009℄ performed a substru
tureshaking table test to reprodu
e large �oor responses of high�rise buildings at full�s
ale. Due to various 
ertain 
apa
ity limitations, a rubber�and�mass system wasproposed to amplify the table motion in order to reprodu
e su
h a large responses.Additionally, real�time substru
turing test has been re
ently used for testingsemi�a
tive 
ontrol devi
es, [Christenson et al., 2008℄ 
ondu
ed a test for threelarge�s
ale MR �uid dampers simulating the seismi
 response of a three�storeysteel frame stru
ture and presents a te
hnique 
alled virtual 
oupling whi
h is usedto ensure an appropriate tradeo� between performan
e and stability. Real�timesimulations have been also used in automotive industry for testing novel suspen-sion systems and in relative areas to Me
hani
al Engineering. For instan
e, in[Walla
e et al., 2007℄ a real�time dynami
 substru
turing test of a heli
opter ro-tor blade 
oupled with a lag damper from the EH101 heli
opter is presented; theresults revealed how the in
lusion of a real damper produ
es a more realisti
 rep-resentation of the dynami
 
hara
teristi
s of the overall blade system involvingthe hystereti
 dynami
 pro�le due to the nonlinear behaviour of the dampers.3.2 How RTDST worksTo 
arry out a real�time dynami
 substru
turing test, the 
omponent of interestis identi�ed as the physi
al substru
ture, extra
ted from the system and �xed intoan experimental rig. Those important parts are tested experimentally while theremainder of the stru
ture is modelled numeri
ally (See Fig. 3.1). To link the testspe
imen to the numeri
al model, a set of systems should be 
onne
ted all togetheras shown in Figure 3.2, where through a blo
k diagram of a substru
turing test,the systems 
omprising ea
h substru
ture are sket
hed.Roughly speaking, we 
an identify the next main systems. A numeri
al modelwhi
h in
ludes the mathemati
al model of the stru
ture and the time integrations
heme used to solve it. A 
ompensator whi
h allows the signal to be 
orre
tedand 
ompensated for delay errors. A transfer system whi
h makes possible thephysi
al transfer of for
e and velo
ity from the numeri
al model to the spe
imen;it 
omprises both hardware (e.g. an a
tuator) and software (e.g. a 
ontrol law)
omponents. The spe
imen whi
h is the physi
al part of the emulated stru
tureto be a
tually tested in the lab. And �nally, a measurement system whi
h isrequired to get ba
k information from the spe
imen response, it 
omprises trans-
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Figure 3.2: Blo
k diagram of a substru
tured system.du
ers, signal 
onditioners, data a
quisition system and software (e.g. a digital�lter).Considering the external ex
itation and the 
urrent state of the system, thedispla
ements along the degrees of freedom of interest are 
al
ulated solving thenumeri
al model by time�stepping integration. The numeri
al model is oftenassumed to behave linearly in essen
e, but more 
omplete models may in
ludenonlinearities whi
h must be attended when adopting the numeri
al time inte-gration te
hnique. On
e 
al
ulated, this displa
ement is passed into the delay
ompensator. The 
orre
ted/
ompensated signal is then passed to the a
tuator
ontroller whi
h in turn, generates the signals to drive the a
tuator2. Now, thesedispla
ement are imposed on the spe
imen while the for
es required to imposethem are measured and passed ba
k to the numeri
al model. Thus, the next in-tegration step 
an be solved by updating the ex
itation and the system's states.To a

urately represent the whole stru
ture, the entire aforementioned pro
essmust take pla
e in real�time and both, the physi
al and numeri
al substru
tures,must operate in parallel with minimal errors at the interfa
es between them.Therefore, it is 
ru
ial that the error between the displa
ements 
al
ulated fromthe numeri
al model and those imposed by the a
tuators on the physi
al substru
-ture are minimized. In what follows this issue shall be dis
ussed 
omprehensively.2Note that the transfer system is typi
ally a single (ele
tri
 or hydrauli
) a
tuator with its
ontroller, but it may also be a more 
omplex test fa
ility like multiple a
tuators (for multipleDOF 
ontrol) or shaking table.



3.3. Saturation, delay and instability 333.3 Saturation, delay and instabilityLike for some te
hniques in stru
tural 
ontrol, real�time substru
turing test re-quires performan
e of all the 
omputations, appli
ation of displa
ements (orfor
es) and a
quisition of the measured responses, within a very small time frame.However, in 
onsequen
e of the 
omplexity in solving the numeri
al model andmainly due to the me
hani
al 
hara
teristi
s of the transfer system used, thepresen
e of delay errors on 
ommand signals are unavoidable. In real�time test-ing, there is a delay between a 
ommand signal being sent to an a
tuator andits moving to the desired position, what be
omes more 
riti
al when operatinghydrauli
 a
tuators3 where the response time is larger. The for
e fed ba
k fromthe experiment to the numeri
al model is therefore in
orre
t, sin
e it is measuredbefore the a
tuator has rea
hed its target position.In some 
ases, this delay error may be small and 
an be negle
ted, but it isnormally large enough to a�e
t the overall dynami
s and may 
ause instability[Wagg and Stoten, 2001℄. For a linear system, [Horiu
hi et al., 1999℄ have shownthat this error introdu
es additional energy into the system, being equivalent tonegative damping. This 
an distort the simulation results and, if the negativedamping ex
eeds the inherent stru
tural damping, 
ause the test to be
ome un-stable. As well, [Walla
e et al., 2005a℄ showed how if the delay in the transfersystem is less than a 
riti
al delay, the substru
tured system is stable; neverthe-less, they also pointed out that typi
ally, the delay of the transfer system is largerthan the 
riti
al one, and then, os
illations whi
h in
rease exponentially in ampli-tude are developed in the simulation. As a matter of fa
t, let us 
onsider a singledegree of freedom os
illator with 
onstant delay τ in the sti�ness element. Figure3.3 shows the 
olle
tion of maximum os
illator's displa
ements in free vibrationvarying τ , the larger the delay the larger the response.Hen
e, it is essential for the stability, a

ura
y and reliability of the simulation,to make 
orre
tions and 
ompensation on the signals being transmitted betweennumeri
al and experimental substru
tures [Walla
e et al., 2005b℄, as otherwise,the errors may 
umulate during the iterations and signi�
antly alter the simula-tion out
ome.To avoid wrong feedba
ks when setting up a RTST simulation, some physi
alsaturation e�e
ts must be also 
onsidered, sin
e the overall a

ura
y and realismof the test may de
rease as realisti
 loading are no longer a
hieved. Four satura-tion e�e
ts 
an o

ur within a test 
onstraining the range of appli
ation: (i) themaximum imposed displa
ement is limited on a

ount of the �nite strokes of the3Hydrauli
 a
tuators are required for large stru
tures when large loads are needed.
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ement of the os
illator ẍ(t) + aẋ(t) + bx(t− τ) = 0when τ is varying; a = 4(0.03)π, b = 4π2 and tmax = 5se
.a
tuator; (ii) the velo
ity of the a
tuator is 
onstrained due to the limited powerof the pumps and the �ow ratings of the 
ontrolling servo�valves; (iii) frequen
yrange is required to be evaluated too, parti
ulary for the deleterious e�e
t of oil
olumn resonan
e 
ommon to shaking tables [Neild et al., 2005℄; and �nally, (iv)the for
e that 
an be applied to an a
tuator is limited to the available supplypressure. Thus, in assessing the feasibility of a parti
ular real�time substru
turetest, it is essential to 
onsider saturation e�e
ts in both test design and a
tuator's
ontrol strategies [Gökçek et al., 2000℄.3.3.1 Delay 
ompensationAs explained above, the dynami
s of the transfer system must be 
ompensatedin order to impose fast and a

urate displa
ements (or for
e and velo
ity) on thephysi
al 
omponent. The development of 
ompensation algorithms and the studyof their e�e
t on system performan
e requires a detailed knowledge of the equip-ment behaviour. Simultaneously, in light of the 
urrent 
omputing 
apabilities,there is a limit on the number of degrees of freedom that 
an be in
luded in thenumeri
al model, sin
e a large model will require a long 
omputation time. There-fore, when seeking for more realisti
 RTST simulations, longer time to a

omplishea
h iteration arise from in
reasing size and 
omplexity in both substru
tures.With su
h a long delay, it be
omes in
reasingly di�
ult to ensure that the RTSTsimulation remains stable.



3.4. Compensator based on neural networks 35The importan
e of experimental errors, espe
ially systemati
 errors su
h astime delay, was re
ognized early on [Shing and Mahin, 1983℄ in the extension ofpseudodynami
 test to fast and real�time appli
ation. Many literature on fast hy-brid simulation is devoted to the development of a
tuator delay 
ompensation andsignal 
orre
tion pro
edures [Horiu
hi et al., 1999, Walla
e et al., 2005b℄. Delay
ompensation is a well known te
hnique with the most 
ommon strategy be-ing delay 
ompensation by extrapolation [Sivaselvan et al., 2004℄. Polynomialextrapolation has been used extensively due to its simpli
ity and e�
ien
y, ituses only a few re
ent 
ommand data to predi
t a 
ompensated signal in ad-van
e [Bonnet et al., 2007℄. However, those extrapolation su�er from signi�-
ant limitations whi
h restri
t its usefulness in experimental implementation.[Ahmadizadeh et al., 2008℄ used a di�erent predi
tion algorithm by assuming alinear variation of a

eleration, whi
h also provides a third order displa
ementvariation, demonstrating the improved a

ura
y in the simulations. As well,[Nakata et al., 2006℄ proposed a model�based response predi
tion method whi
hin
orporates known information about the system and the ex
itation, allowinglarger predi
tion horizons as more a

urate predi
tion of the system response
ould be a
hieved. Several pro
edures whi
h take advantage of state equations ofthe system have been also suggested to eliminate the delay e�e
t in the 
ontrolsystem as in [Walla
e et al., 2005a℄ and [Kyry
hko et al., 2007℄. In addition, someadaptive pro
edures has been developed to 
ompensate variations of the a
tuatortime delay along a hybrid simulation (parti
ularly as the sti�ness of the experi-mental spe
imen 
hanges) as presented in [Darby et al., 2002℄. Finally, s
hemesfor delay 
ompensation have been also 
arefully studied by resear
hers in �eldsrelative to a
tive and semi-a
tive 
ontrol of stru
tures as in [Rodellar et al., 1987℄and [Serino and Georgakis, 1999℄. For further information, a review of the most
ommon 
ompensation methods is presented by [Bonnet et al., 2007℄.3.4 Compensator based on neural networksIn this thesis, we propose an novel approa
h for real�time systems in whi
h timedelay 
ompensation is implemented using a model based on adaptive predi
tion bymeans of arti�
ial neural networks. The aim is 
arried out a forward predi
tionof the 
ommand signal, to 
ompensate it for time delay and thus enable theexperiments to be run nearby to real�time.It is 
ommon to approximate the behavior of a delayed system by in
ludinga 
onstant time delay between the re
eiving a 
ommand signal. Although this
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(a) (b)Figure 3.4: (a) Delayed system. (b) Compensated system.is not stri
tly 
orre
t sin
e delays may be altered with the signal frequen
y, atthe relatively low frequen
ies normally en
ountered in 
ivil engineering dynami
s,this is often 
onsidered to be a reasonable approximation [Bonnet et al., 2007℄.Thus, in the proposed method, the 
ompensated 
ommand signal is predi
tedforward a time equals to the delay τ . The predi
tion is generated through anarti�
ial neural network whi
h is self�adapted ea
h time�step by using the avail-able data (See Fig. 3.4). In presen
e of noisy signals, this method has shown toprovide not only a robust 
riterion larger than other 
ommon methods, but also,a smoother signal avoiding the slight dis
ontinuities whi
h 
an be found in others
hemes.3.4.1 Forward predi
tion s
hemeDelay 
ompensation by extrapolation is not a new 
on
ept, single time�step pre-di
tion te
hniques have already been proposed as presented before. Here a neuralnetwork is trained on�line to predi
ting forward at ea
h iteration the new refer-en
e signal to feed the delayed system. We 
onsider a 
onstant delay τ4 along allthe predi
tion.
Figure 3.5: Forward predi
tion s
heme.For this approa
h a data bu�er is required. It should be equal to the delay

τ plus the sub�bu�er length ne
essary5 to a
hieve a suitable network's behavior.The predi
tion pro
edure may be summarized as follow with referen
e to �g. 3.5.4The delay error must be known and a

urate.5Enough points to give su�
ient information about the signal to the network.



3.4. Compensator based on neural networks 37At ea
h time step, the data within the training sub-bu�er SBT are used as thetrain input ve
tor X to the network and the last point in the main bu�er (A) isused as the desiderated output. This input-output sample is used to adjust thenetwork's parameters. On
e the network is updated, the predi
ted point (B) isestimated by feeding forward the se
ond sub-bu�er SBP to the network. Afterthat, the bu�er is updated with the new available data and the pro
ess is appliedagain in the next time step.The above pro
ess enables the neural network for working in on�line predi
-tion. For 
ompleteness, the next se
tion presents some fundamentals and how theneural networks 
an be employed.3.4.2 Arti�
ial neural networksDuring the 1940's, resear
hers desiring to dupli
ate the fun
tion of the humanbrain, have developed simple hardware models of biologi
al neurons. M
Cullo
hand Pitts [M
Cullo
h and Pitts, 1943℄ published the �rst systemati
 study of thearti�
ial neural network. The primary fa
tors for the re
ent resurgen
e of interestin the area of neural networks are the extension of Rosenblatt, Widrow and Ho�'sworks dealing with learning in a 
omplex [Rosenblatt, 1961℄, multi-layer network,Hop�eld mathemati
al foundation, as well as mu
h faster 
omputers than thoseof 50's and 60's. The general obje
tive of training the neural network is to modifythe 
onne
tion weights (and bias) to redu
e the errors between the a
tual outputvalues and the target output values to a satisfa
tory level6. This pro
ess is 
arriedout through the minimization (optimization) of the de�ned error fun
tion usingan approa
h usually based on gradient des
ent methods [Jang et al., 1997℄.Elements of neural networksAn arti�
ial neuron is the basi
 element of a neural network (see �g.3.6(a)). It
onsists of three basi
 
omponents. The weight fa
tors wi are asso
iated with ea
hnode to determine the strength of input row ve
tor X. The internal threshold θ isthe magnitude o�set that a�e
ts the a
tivation of the node output. The a
tivationfun
tion f(.) performs a mathemati
al operation on the signal output.
a = f (s) = f

(

∑N

i=1
wi · xi + θ

) (3.1)A 
omprehensive review on a
tivation fun
tions, training methods and more6Note that some networks never learn. This 
ould be be
ause the input data do not 
ontainthe spe
i�
 information from whi
h the desired output is derived or the network's ar
hite
tureis not enough suitable (
omplexity) to solve the problem.
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Figure 3.6: (a)Arti�
ial neuron. (b)Adaptive �lter by adaptive network.topi
s 
on
erning to neural networks ar
hite
tures 
an be found in [Looney, 1997℄.Adaptive �ltersAdaptive �lters adjust their own 
hara
teristi
s a

ording to an optimizing al-gorithm in proportion to the signals en
ountered, in this way they will mat
has 
losely as possible the response of an unknown system from samples. Adap-tive �ltering is one of its major appli
ation areas for ADAptive LINear Element(ADALINE). You 
an 
reate one by 
ombining an input delayed layer within aneuron in whi
h the a
tivation fun
tion f(.) is restri
ted to be linear and by usingan iterative learning pro
ess in whi
h data are presented to the network one ata time and the weights are adjusted ea
h time7. Now, the input ve
tor will beX = [x(t− 1), x(t − 2), . . . , x(t− n)]T and the output will be a , y = x(t).A

epting that the signal is not qui
kly varying over time, the adaptive �lter pre-sented in �gure 3.6(b) must predi
t the future values of the desired signal basedon past values.It is just this model of NNEt what we used along this thesis for delay 
om-pensation.3.4.3 Numeri
al results.To show the e�
a
y of the neural networks in predi
tion, we exe
ute some nu-meri
al simulation8 
onsidering di�erent system 
ommand signal to be predi
ted.Three di�erent methodologies purposed by other authors has been applied too inorder to 
ompare and evaluate the network behavior: (1) The exa
t polynomialextrapolation (EPE), in whi
h a polynomial is �t to the last few data points ofthe signal; a third�order polynomial has been widely adopted in literature andwill be used here [Bonnet et al., 2007℄. (2) The 4-point sine-�t predi
tion method(SFPM), whi
h allows to predi
t the amplitude and frequen
y of the half periodsine wave whi
h best �ts the a
tual signal segment [Serino and Georgakis, 1999℄.And (3) the least-squares polynomial extrapolation (LSPE), whi
h takes into a
-
ount a larger number of points and uses a least-squares approximation rather7Here delta rule is used to train adaptive linear networks.8All numeri
al tests have been done in PC Pentium(R)D 3.4GHz.



3.4. Compensator based on neural networks 39than an exa
t �t [Walla
e et al., 2005b℄; a fourth�order polynomial was used herefor LSPE method. Although the last approa
h 
onsiders some additional adaptivedelay 
ompensators, only the extrapolation s
heme is 
onsidered here.Sine sweep testsA sine sweep ex
itation whi
h speeds up from 3Hz to 10Hz in 5 se
 and then ba
kto 3Hz in 5 se
, is 
onsidered as the signal to be predi
ted forward an amount oftime τ equals to 5ms. As the time step was used 1ms. A training bu�er of 10points was 
onsidered for both the neural network and LSPE method.

Figure 3.7: Subspa
e plots for sine sweep test.Method Nnet LSPE EPE SFPMTime (se
) 0.587 1.406 0.170 0.185RMS error(%) 0.22 0.15 0.12 0.15Table 3.1: Sine sweep test. Error and sequential time for 9982 steps.Figure 3.7 shows the so�
alled subspa
e plots, in whi
h the predi
ted signal isplotted versus the a
tual one. The more dispersion from the line y = x, the lessa

urate predi
tion was done. More dispersion means less syn
hronization.Here the network exhibits the worst behavior, nevertheless, it is interesting tonote the improvement getting by the network as long as the time pass. Table3.1 presents the sequential exe
ution time employed by ea
h s
heme for doingpredi
tion through 9982 time steps in the simulation. The fastest one is the EPE
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omputational 
ost was spent for the LSPE method.As statisti
al measure of the predi
tion, the root mean square of error is in
ludedin the table too9.Sine sweep with noise added (SNR=50dB)The same sine sweep ex
itation was 
onsidered but here a low white gaussiannoise was added to the signal. The signal to noise ratio (SNR) is equal to 50dBand as before ∆T=1ms and τ=5ms. A predi
tion bu�er of 15 points has beenused for both the neural network and the LSPE method.

Figure 3.8: Subspa
e plots for sine sweep with noise test.Method Nnet LSPE EPE SFPMTime (se
) 0.687 1.592 0.187 0.265RMS error(%) 0.63 5.55 61.84 72.50Table 3.2: Sine sweep with noise test. Error and sequential time for 9982 steps.Figure 3.8 shows the subspa
e plots for ea
h predi
tion s
heme. Similarly,Table 3.2 presents the sequential exe
ution time employed by ea
h s
heme whenpredi
ting a whole signal through 9982 time steps.Considering both 
omputational 
osts and syn
hronization 
apabilities, the neu-ral networks presents the best 
hara
teristi
s when signal be
omes noisy.9For neural networks, the RMS value doesn't in
lude the errors in the �st two se
onds of thesimulation.



3.5. Theoreti
al formulation of RTDST 41Predi
ting noisy signals, the neural network demonstrates mu
h more 
apa
-ity and robustness than the other methods, this advantageous behavior is due tothe inherent generalization 
apa
ity of neural networks and their high toleran
eto noisy data. Besides, neural network provides a smoother signal when movingfrom one time step to the next one, so, slight dis
ontinuities in the predi
ted 
om-mand signal are avoided. Be
ause of the adaptive training, the network shownbehavior improvements as long as the simulation time pass.On
e the training pro
ess be
omes well�balan
ed (about 2se
 in the examples),this linear network was able to adapt qui
kly to the 
hange in the target signal.The s
heme is well suitable for being used within systems whose properties do not
hange abruptly and is able to smooth out the e�e
ts from noise when a
quiringa signal.Further information 
an be found in [Londoño and Serino, 2008℄.3.5 Theoreti
al formulation of RTDSTThe aim of the substru
turing pro
ess is to model the dynami
al behaviour of theoverall system using a numeri
al part and an experimental part. The dynami
sof the stru
ture (overall system) are governed by a general system of di�erentialequations equations, as:
ẋ(t) = h(x, t) (3.2)where x is the state ve
tor of the overall system, h(·) denotes an arbitrary fun
tionand an overdot represents di�erentiation with respe
t to time t. Typi
ally, wewish to 
hara
terize the dynami
 response of the overall system subje
t to someex
itation signal r(t); su
h as an earthquake. In general, the form of h(·) is notknown expli
itly, but we assume that it 
an be split into linear and non-linearparts, so that

ẋ(t) = Hx(t) +Gr(t) + ĥ(x, t) (3.3)where G is a gain matrix, H is a matrix representing the linear part of h, and ĥthe non-linear (i.e. the di�
ult to model) part. To formulate the substru
turedmodel we separate the overall system dynami
s, equation (3.3), in su
h a waythat the linear dynami
s are modelled numeri
ally, and the non�linear dynami
sare modelled using a physi
al test spe
imen. To separate the two parts of themodel, we divide the 
oordinates x into a subset asso
iated with the physi
alsubstru
ture, xc ⊂ x; and those whi
h represent the numeri
al model, z where
z ∪ xc = x. Thus xc represents the state of the 
riti
al elements of the system.
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an be expressed as [Wagg and Stoten, 2001℄:
[

ż
ẋc

]

=

[

H1 H2

H3 H4

] [

z
xc

]

+

[

G1

G2

]

r(t) +

[

ĥ1(z, xc, t)

ĥ2(z, xc, t)

] (3.4)If the dynami
s of the numeri
al model are 
onsidered to be stri
tly linear, then
ĥ1(z, xc, t) = 0. The dynami
s represented by H2xc map to a series of exper-imental measurements H2xc 7→ Rf(t); where f(t) is a ve
tor of experimentalmeasurements, and R is a transformation matrix. If the ex
itation is restri
tedto the numeri
al model, we 
an also assume that G2 is a null matrix. Thus, thenumeri
al model 
an now be written as:

ż(t) = H1z(t) +G1r(t) +Rf(t) (3.5)Due to the fa
t that we are assuming that the non�linearity de�ned by ĥ2 is un-known, the dynami
s of xc is not expressed mathemati
ally but are in
luded inmodel through the experimental measurements f(t) from the physi
al substru
-ture under the 
urrent states (z, xc). Thus, equation (3.5) be
omes the substru
-tured model of the system.3.6 Integration s
hemeThree fa
tors are essential in the implementation of a real�time substru
turingtest: the loading operation of the experimental substru
ture; the measurement ofthe interfa
e for
e between two substru
tures; and the 
al
ulation of the numeri-
al substru
ture by using a numeri
al time integration te
hnique, whi
h solves thetemporally and spatially dis
retised equations of motion, for the stru
tural systembeing investigated. It is quite likely that yielding will o

ur in several lo
ationsunder a large earthquake load, being therefore desirable to be able to perform testsin whi
h nonlinearities are permitted in both the physi
al and numeri
al substru
-tures. Thus, integration s
hemes able to solve non�linear di�erential equationsare required. Nevertheless, as with MDOF systems, nonlinear analysis requireslong 
omputation times so that 
onsiderable 
ompensation for delay error may bene
essary [Nakashima and Masaoka, 1999℄.RTST simulation generally makes use of expli
it numeri
al integration meth-ods su
h as the 
entral di�eren
e method (CDM), for whi
h the 
omputationsare very simple and qui
k as well. They are also 
onditionally stable for timeintegration s
hemes [Shing, 2006℄ but may be
ome prone to numeri
al instabilityas showing in [Pegon, 2001℄. Impli
it methods use the equilibrium 
ondition to



3.6. Integration s
heme 43determine the solution for the required time step and have advantages of beingstable irrespe
tive of the time step used. Although they were traditionally aban-doned due to implementation di�
ulties, impli
it methods are su

essfully beingused in RTS test. A 
omprehensive valuation of impli
it methods 
an be found in[Bursi and Shing, 1996℄. A more 
omplex algorithm based on a �rst�order holdapproximation was used in [Darby et al., 1999℄, it appears to o�er improved a
-
ura
y and stability. Besides, [Combes
ure and Pegon, 1997℄ investigated a non�iterative step-by-step impli
it time integration s
heme named α�operator split-ting (α�OS) for PsD testing. They showed that it provides un
onditional stabilityeven when the number of degree of freedom is large while preserving simpli
ity.In a similar way, [Pinto et al., 2004℄ applied the α�OS te
hnique to solve the spa-tially dis
rete equations of motion and 
ompared it to the α�Newmark s
hemewhi
h is in essen
e an impli
it method. As well, [Magonette et al., 1998℄ havedeveloped a high�speed 
ontinuous substru
turing test method using a staggeredimpli
it�expli
it integration te
hnique, in whi
h the equations of motion for theexperimental substru
ture are solved with an expli
it s
heme, while those for theanalyti
al substru
ture with an impli
it method; however, this has only partiallyaddressed the stability issue. Additionally, [Bayer et al., 2005℄ have implementedan impli
it integration s
heme based on the Newmark time domain solution ofthe equation of motion10. The proposed pro
edure employs sub�stepping insteadof iteration to rea
h equilibrium within ea
h time step and was proposed suitablefor real�time performan
e of the PsD test.Before formalising two expli
it methods typi
ally used in RTST simulations,some key 
on
epts shall be presented.Dire
t step by step integration s
hemes are general methods that redu
e di�er-ential equations into an algebrai
 form using a �nite di�eren
e approa
h. In thisway the response quantities at the end of a time step 
an be related to previouslyknown response quantities. These methods are by far the most widely used meth-ods of solution of non�linear problems [But
her, 2003℄.A general multiple degree of freedom system with substru
turing 
an be repre-sented through a set of di�erential equations of motion:
Mẍ+ Cẋ+Kx = E + F (3.6)where M , C and K are respe
tively the mass, damping and sti�ness matri
es;

ẍ, ẋ and x are respe
tively the ve
tors of nodal a

elerations, velo
ities and dis-pla
ements for the degrees of freedom; E is the external ex
itation and F is theve
tors of substru
ture for
es.10The Newmark method is a numeri
al integration s
heme used to solve di�erential equations[Newmark, 1959℄. It is often used in �nite element analysis to model dynami
 systems.



44 CHAPTER 3. REAL�TIME DYNAMIC SUBSTRUCTURING TESTAs the response of the numeri
al substru
ture depends on the physi
al substru
-ture out
omes over time (whi
h is not known inadvan
e) the problem 
annot besolved analyti
ally. Instead, time is dis
retised and the integration of the equa-tion of motion is done numeri
ally, assuming idealised properties over small timesteps. M , C, K and F are known entities at the beginning. Note however that Kand C may 
hange during the analysis while M is usually regarded as a 
onstant,assuming mass 
onservation even during failures. The solution at ea
h time�step,depending on the s
heme 
onsidered, are obtained through di�eren
e equationswhi
h 
an be written either as:
xn+1 = h (xn, ẋn, ẍn, xn−1, ẋn−1, ẍn−1, . . .) (3.7a)
xn+1 = h (ẋn+1, ẍn+1, xn, ẋn, ẍn, xn−1, ẋn−1, ẍn−1, . . .) (3.7b)where n is the 
urrent integration time�step. Thus, the numeri
al s
hemes 
anbe 
lassi�ed as: expli
it s
heme, if the solution at the time�step (n + 1) 
an beobtained based ex
lusively on past values of the system as in equation (3.7a); orimpli
it s
heme, if the solution at (n + 1) also exhibits dependen
y on one orseveral values from step (n + 1) itself, as in equation (3.7b). An impli
it s
hemeinvolves more 
omplex implementation, 
omprising often an iterative pro
ess.For simpli
ity and fastness, expli
it numeri
al integration methods have beenextensively used in RTST simulations, in what follows, two popular s
heme shallbe presented.3.6.1 Central Di�erential MethodThe 
entral di�eren
e method (CDM) is probably the most popular time integra-tion s
heme for PsD and RTST testing [Nakashima et al., 1992, Shing et al., 1996a,Horiu
hi et al., 1999, Nakashima and Masaoka, 1999℄. It 
an be mathemati
allydes
ribed as in equations (3.8) where η is the integration time step 
hosen.

Mẍn + Cẋn +Kxn = En + Fn

ẍn =
1

η2
(xn+1 − 2xn + xn−1) (3.8)

ẋn =
1

2η
(xn+1 − xn−1)The CDM is an expli
it method. By substituting the a

eleration and velo
ityterms from the di�eren
e equations into the equation of motion, the next stepdispla
ement ve
tor xn+1 
an be isolated and expressed as a fun
tion of termsknown from the two previous time steps.This s
heme allows the easy introdu
tion of a non�linear sti�ness. Indeed, withthe displa
ement being worked out from previous steps only, the sti�ness matrix
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an be updated a

ordingly for the next 
al
ulation to take the non�linearity intoa

ount. Non�linear damping 
an also be introdu
ed, but be
ause the velo
ity isonly determined with a one step delay, only a fairly simple non�linear dampingbehaviour 
ould be a

ommodated without an iterative pro
ess. Although CDMgenerates no amplitude error, it produ
es a periodi
ity error (period shortening)in
reasing with the time step. This method is only 
onditionally stable, the re-quired time step for a stable solution might not be realized in the experimentdepending on the fundamental frequen
ies of the spe
imen. Spe
i�
ally, for astru
ture with a maximum natural frequen
y ωmax, the time step η must satisfythe 
ondition: ηωmax < 2, [Bathe and Wilson, 1976℄.
3.6.2 Runge�Kutta MethodThe methods most 
ommonly employed by s
ientists to integrate ordinary dif-ferential equations (ODEs) were �rst developed by the German mathemati
iansC.D.T. Runge and M.W. Kutta in the latter half of the nineteenth 
entury[Press et al., 1992℄. They are an important family of impli
it and expli
it itera-tive methods for the numeri
al approximation of solutions for ODEs. The basi
reasoning behind the so�
alled Runge�Kutta (RK) methods is the use of Taylor'sexpansion of a smooth fun
tion11 and the use of trial steps at the midpoint ofea
h interval to 
an
el out lower-order error terms. The power of this method isthat there are di�erent orders a

ording to the Taylor's expansion length taken.An arbitrarily large�ordered RK method 
an be derived, attaining an arbitrarilyerror.The most often used method of the Runge�Kutta family is the Fourth�Orderone. It uses a sampling of slopes through an interval and takes a weighted aver-age to determine the right end point. A fourth�order Runge�Kutta integrationmethod (RK4) represents an appropriate 
ompromise between the 
ompeting re-quirements of both a low trun
ation error and a low 
omputational 
ost per step,being one of the most powerful predi
tor�
orre
tor algorithms. Thus, most 
om-puter pa
kages designed to �nd numeri
al solutions for ODEs use it by default.The standard RK4 method approximates the solution of an initial value problemof the form (3.2) assuming h(x, 0) = x0. Here we use the �rst four terms of theTaylor series to des
ribe the behavior of h(x, t) near the midpoint (xn+1/2, tn+1/2).It requires four gradient or k terms to 
al
ulate xn+1 as follow, where η indi
ates11Derivatives exist and are 
ontinuous up to 
ertain desired order.
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k1 = ηh(xn, tn)
k2 = ηh(xn + η/2, tn + k1/2)
k3 = ηh(xn + η/2, tn + k2/2)
k4 = ηh(xn + η, tn + k3)

xn+1 = xn + η
6 (k1 + 2k2 + 2k3 + k4) +O

(

η5
)

(3.9)Thus, the next value xn+1 is determined by the present value xn plus the produ
tof the size of the interval η and an estimated slope (a weighted average). Theerror per step of RK4 methods is on the order of η5, while the total a

umulatederror has order η4.Several variation have been introdu
ed, adaptive RK methods were designed toprodu
e an estimation of the lo
al trun
ation error of a single Runge�Kutta step,as well, impli
it versions have been developed due to they are more general thanthe expli
it ones and due to their high (possibly un
onditional) stability.⋄Finally, 
onsidering the time�integration s
hemes for non�linear substru
tur-ing, expli
it s
hemes are suitable when a small number of DOFs is involved,whereas impli
it s
hemes depend strongly on the lo
al nature of the problemand 
ould result in signi�
ant lo
al deviations from the medium time�step du-ration [Pinto et al., 2004℄. In other words, an expli
it s
heme will need a timestep short enough to ensure the stability of the s
heme, while the stability of animpli
it s
heme will not depend on the time step 
hosen be
ause it is partiallybased on a term from the end of the step 
onsidered.
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t method . . . . . . . . . . . . . . . . . 614.4.2 Invariant Set Theorems . . . . . . . . . . . . . . . . . . 63Stability is the main goal in 
ontrol engineering. For linear systems, the 
on-
ept of stability is very well�de�ned and there exist many easy�to�use 
riteria foraddressing its analysis. On the other hand, the stability analysis for nonlinearsystems 
an be
ome quite involved sin
e not only there exists several de�nitionsof stability, but also most of the known 
riteria provide su�
ient but not ne
-essary 
onditions when determining stability. In this 
hapter, we present somefundamentals and important de�nitions in stability analysis �elds. Our aim isto supply a 
omprehensive ba
kground to fa
ilitate later dis
ussions on stabilityissues. First, the most important stability 
riteria using the 
hara
teristi
 poly-nomial for linear systems are introdu
ed. Then, a graphi
al method for studyingthe qualitative behaviour of se
ond�order systems is presented. We also examinethe salient results of Lyapunov's stability theory; it is attra
tive for me
hani
al47



48 CHAPTER 4. STABILITY ANALYSIS THEORYsystems, be
ause of its ex
eptional physi
al meaning and its wide ranging appli-
ability, spe
ially for the analysis of nonlinear systems.The following material shall be restri
ted to time�invariant systems (autonomoussystems), but most of the 
on
epts 
an be extended to time�varying systems.Most of the 
on
epts are stated without a rigorous mathemati
al demonstrationand fo
ussed on vibrating me
hani
al systems; however, a deeper dis
ussion ofthem 
an be found in the 
ited referen
es within.4.1 Stability of linear systemsA system is 
alled linear if the prin
iple of superposition applies. The prin
iple ofsuperposition states that the response produ
ed by the simultaneous appli
ationof two di�erent for
ing fun
tions is the sum of the two individual responses. A sys-tem is 
alled linear time�invariant systems (or linear 
onstant�
oe�
ient) if the
oe�
ients of the di�erential equation of the system are 
onstants or fun
tionsonly of the independent variable. Systems that are represented by di�erentialequations whose 
oe�
ients are fun
tions of time are 
alled linear time�varyingsystems. An example of a time�varying 
ontrol system is a air
raft 
ontrol system(The mass of a air
raft 
hanges due to fuel 
onsumption).De�nition 4.1. A system is said to be externally stable if every Bounded Inputprodu
es a Bounded Output. This is also 
alled BIBO stability.Let us 
onsider the se
ond�order linear time�invariant system des
ribed by:
ẍ+ aẋ+ bx = 0 (4.1)These equations 
an be solved in the frequen
y domain by using Lapla
e trans-forms for 
ontinuous time systems and Z�transforms for dis
rete time systems.This approa
h is limited to linear systems. Sin
e we are eventually interestedin nonlinear systems, we will perform the analysis in the time domain solvingfor the time history. A 
ommon pro
edure is to assume a solution of the form

x(t) = keλt. By substituting the supposed solution, the 
hara
teristi
 equation of(4.1) 
an be written as:
λ2 + aλ+ b = 0 (4.2)We 
an then �nd the roots of the 
hara
teristi
 equation as:

λ1 =
1

2

(

−a+
√

a2 − 4b
)

; λ2 =
1

2

(

−a−
√

a2 − 4b
)



4.1. Stability of linear systems 49Thus, the solution of the system 
an be expressed by formula (4.3) where k1 and
k2 depends on the initial 
onditions x0 = (x(0), ẋ(0)).

x(t) = k1e
λ1t + k2e

λ2t (4.3)De�nition 4.2. For any linear time�invariant system:
• The system is 
alled asymptoti
ally stable, if for all x0 we have

lim
t→∞

x(t) → 0

• The system is (
riti
ally) stable if for all x0 there exists C su
h that
‖x(t)‖ ≤ C ∀tIn this statement, ‖ · ‖ stands for a norm, measuring the distan
e to theorigin; the Eu
lidian norm is de�ned as ‖x‖ = (xTx)1/2.

• The system is unstable if it is neither stable nor asymptoti
ally stable.To fa
ilitate later dis
ussions, let us transform the s
alar se
ond�order di�er-ential equation in (4.1) into an equivalent system of two �rst�order di�erentialequations by substituting x1 = x and x2 = ẋ. Now, the system 
an be des
ribedin terms of the equations of state as follows, where x1 and x2 are the so�
alledstate variables of the system.
ẋ1 = x2 (4.4a)
ẋ2 = −bx1 − ax2 (4.4b)The state variables of a dynami
 system are the variables making up the smallestset of variables xi that, for any time, 
ompletely des
ribe the behavior of thesystem (whi
h is also 
alled state of the system). The n�dimensional spa
e whose
oordinate axes 
onsist of the x1�axis, x2�axis, . . ., xn�axis is 
alled the statespa
e. Any state 
an be represented by a point in the state spa
e.We 
an also rewrite the equation (4.4) in ve
torial form as:

ẋ = Ax (4.5)where x = (x1, x2) and
A =

[

0 1
−b −a

]



50 CHAPTER 4. STABILITY ANALYSIS THEORYFinally, the solution of the system 
an be also written as in formula (4.6), where
x0 represents the initial 
onditions.

x(t) = eAtx0 (4.6)It is worth to note that the roots of the 
hara
teristi
 equation in (4.2) areexa
tly the same as the eigenvalues of the matrix A in the state spa
e model.Depending on the roots of the 
hara
teristi
 equation, the following ne
essaryand su�
ient stability 
onditions 
an be formulated.Lemma 4.1.
• A linear system is asymptoti
ally stable, if all the roots of its 
hara
teristi
equation (or eigenvalues) satisfy ℜ{λi} < 0, ∀i

• A linear system is (
riti
ally) stable, if all the roots of its 
hara
teristi
equation (or eigenvalues) satisfy ℜ{λi} ≤ 0, ∀i and if at least one root λisatisfy ℜ{λi} = 0.
• A linear system is unstable, if at least one root λi of its 
hara
teristi
 equa-tion (or eigenvalue) lies in the right�half of the 
omplex plane (ℜ{λi} > 0).Hen
e, if it 
an be as
ertained that a linear system has none of the roots ofthe 
hara
teristi
 equation (or eigenvalues) lying on the right�half of the 
omplexplane, the BIBO stability is assured (i.e. when the system is stable or asymptot-i
ally stable) [Vidyasagar, 1992℄. That is why, most of the te
hniques for deter-mination of stability for linear systems essentially try to �nd the lo
ation of λi.Note that for stability s
ope, there is often no need to know these root with highpre
ision but fundamentally its sign.In what follows, we present two algebrai
 stability 
riteria based on the 
har-a
teristi
 equation. They 
ontain algebrai
 
onditions whi
h are only valid if allof the roots lie in the left�half 
omplex plane. More sophisti
ated methods tobe applied in the stability analysis of linear systems su
h as: root�lo
us method,Bode diagrams, Nyquist stability 
riterion and frequen
y response analysis, 
anbe examined in [Ogata, 1990℄ where they are widely des
ribed.4.1.1 The Hurwitz stability 
riterionLet us 
onsider the polynomial:

P (λ) = anλ
n + · · · + a1λ+ a0 (4.7)
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asymptoti
ally stable 
riti
ally stable unstable ℜ{λi}

ℑ{λi}

ℜ{λi}
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ℑ{λi}

Figure 4.1: Stability of linear systems a

ording to the root lo
us in the 
omplexplaneFor the polynomial to have all roots with negative real parts it is ne
essary that
sign(a0) = sign(a1) = . . . = sign(an) (4.8)Formula (4.8) is the so-
alled Stodola 
riterion [Slotine and Li, 1991℄. These 
on-ditions are also su�
ient for n = 1 and n = 2 as 
an be easily veri�ed by 
al
u-lating the roots. However, for n ≥ 3 this is no longer the 
ase.A polynomial for whi
h all roots λi have negative real parts is 
alled Hurwitzian.A polynomial P (λ) is Hurwitzian, if and only if for an > 0 all determinants

D1,D2, . . . ,Dn are positive, where:
D1 = an−1

D2 =

∣

∣

∣

∣

an−1 an
an−3 an−2

∣

∣

∣

∣

Dn−1 =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

an−1 an · · · 0
an−3 an−2 · · · ·
· · · · · ·
· · · · · ·
0 0 · · · an−1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Dn = a0Dn−1

(4.9)
Therefore, a

ording to the stability 
onditions introdu
ed in de�nition 4.1,a linear system is only asymptoti
ally stable if its 
hara
teristi
 polynomial isHurwitzian.



52 CHAPTER 4. STABILITY ANALYSIS THEORY4.1.2 Routh's stability 
riterionRouth's stability 
riterion enables us to determine whether or not there are un-stable roots1 in a polynomial equation without a
tually solving for them. Toapply the Routh 
riterion, you need to form the so�
alled Routh Array from thepolynomial 
oe�
ients in (4.7). Then, after some 
omputations, the 
riteriumdetermines the number of 
hara
teristi
 roots within the right�half planeThe Routh array 
ontains n+ 1 rows:
n an an−2 an−4 an−6 · · · 0

n− 1 an−1 an−3 an−5 an−7 · · · 0
n− 2 bn−1 bn−2 bn−3 bn−4 · · · 0
n− 2 cn−1 cn−2 cn−3 cn−4 · · · 0... ... ...
3 dn−1 dn−2 0 · · ·
2 en−1 en−2 0 · · ·
1 fn−1 · · ·
0 gn−1

(4.10)
The 
oe�
ients b in the third row are the results from 
ross multipli
ation the�rst two rows a

ording to:

bn−1 =
an−1an−2 − anan−3

an−1

bn−2 =
an−1an−4 − anan−5

an−1
(4.11)

bn−3 =
an−1an−6 − anan−7

an−1...The 
al
ulation of these 
oe�
ients must be 
ontinued until all remaining elementsbe
ome zero. The 
al
ulation of the 
oe�
ients c are performed a

ordingly fromthe two rows above as follows:
cn−1 =

bn−1an−3 − an−1bn−2

bn−1

cn−2 =
bn−1an−5 − an−1bn−3

bn−1
(4.12)

cn−3 =
bn−1an−7 − an−1bn−4

bn−1...1Roots that lie in the right�half 
omplex plane.



4.2. Phase Plane Analysis 53From these new rows further rows will be built in the same way. Finally, the lasttwo rows are:
fn−1 =

en−1dn−2 − dn−1en−2

en−1
(4.13)

gn−1 = en−2Now, the Routh 
riterion establishes that a polynomial P (λ) is Hurwitzian, if andonly if the following 
onditions are valid:
• All 
oe�
ients a1 are positive.
• All 
oe�
ients bn−1, cn−1, · · · in the �rst 
olumn of the Routh array arepositive.An interesting property of the Routh array is that the number of roots with pos-itive real parts is equal to the number of 
hanges of sign of the values in the �rst
olumn.Some limitations of Routh�Hurwitz 
riterions are: (i) it gives only informa-tion about absolute stability of the system, i.e., the degree of stability (
riti
al,asymptoti
, exponential, et
) of a stable system 
annot be obtained. (ii) The 
ri-terion 
an be applied only if the 
hara
teristi
 equation has 
onstant 
oe�
ientsand 
annot be applied if they are not real or 
ontain exponential terms as in the
ase of systems with dead time.4.2 Phase Plane AnalysisPhase plane analysis is a graphi
al method for studying the qualitative behaviourof se
ond�order systems (linear or not), whi
h was introdu
ed well before the turnof the 
entury by mathemati
ians su
h as Henri Poin
are. Its basi
 idea is to solvea se
ond�order di�erential equation graphi
ally, instead of seeking an analyti
alsolution. Essentially, the method generates a family of system motion traje
tories
orresponding to various initial 
onditions on a two-dimensional plane and thenexamines the qualitative features of these traje
tories. In that way, information
on
erning to stability and other motion patterns of the system 
an be obtained.Phase plane analysis has a number of important advantages. First, as a graphi
almethod, it allows us to visualize what goes on in a system, even if it is nonlinear,starting from various initial 
onditions, it is frequently used to provide intuitiveinsights about nonlinear e�e
ts. Se
ond, it is not restri
ted to small or smoothnonlinearities, but applies equally well to strong nonlinearities and to hard non-linearities. Finally, some pra
ti
al me
hani
al systems 
an indeed be adequately



54 CHAPTER 4. STABILITY ANALYSIS THEORYapproximated as se
ond�order systems, and the phase plane method 
an be usedeasily for their analysis. Conversely, of 
ourse the fundamental disadvantage ofthe method is that it is restri
ted to systems whi
h 
an be well approximated bya se
ond-order dynami
s, be
ause the graphi
al study of higher-order systems is
omputationally and geometri
ally 
omplex.4.2.1 Key de�nitionsA se
ond�order time invariant system 
an be represented by two s
alar di�erentialequations:
ẋ1 = f1(x1, x2) (4.14a)
ẋ2 = f2(x1, x2) (4.14b)where x1 and x2 are the states of the system and, f1 and f2, are nonlinear fun
tionsof the states. Geometri
ally, the state spa
e of this system is a plane having x1and x2 as 
oordinates. This plane (x1�x2) is 
alled the phase plane.Let x(t) = (x1(t), x2(t)) be the solution of (4.14) given a set of initial 
onditions

x(0) = x0 = (x10, x20). The lo
us in the plane (x1�x2) of x(t) for all t ≥ 0represents geometri
ally a 
urve that passes through the point x0. Su
h a 
urveis 
alled a traje
tory or orbit. A family of traje
tories 
orresponding to variousinitial 
onditions is 
alled the phase portrait of the system (See Figure 4.2(b)).The right-hand side of the system in (4.14) expresses the tangent ve
tor ẋ(t) tothe 
urve.
ẋ = f(x) (4.15)where ẋ(t) = (ẋ1(t), ẋ2(t)) and f(x) is a ve
tor �eld (f1(x), f2(x)) on the stateplane, whi
h means that to ea
h point x in the plane, we assign a ve
tor f(x)(See Figure 4.2(a)).Singular pointsA singular point or equilibrium point in the phase plane is de�ned as a point wherethe system states 
an stay forever, this implies that ẋ = 0, that is:

f1(x1, x2) = f2(x1, x2) = 0 (4.16)Singular points are very important features in the phase plane. Examination ofthe singular points 
an reveal a great deal of information about the propertiesof a system. In fa
t, the stability of linear systems is uniquely 
hara
terized bythe nature of their singular points. There is usually only one singular point (or a
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x1
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x
2

x1

b)

x
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Figure 4.2: Examples of (a) ve
tor �eld and (b) phase portrait
ontinuous set of singular points) for linear systems. However, a nonlinear systemoften has more than one isolated singular point, additionally there may be more
omplex features, su
h as limit 
y
les and 
haos. The stability of an equilibriumpoint is related to the behaviour of the traje
tories in its vi
inity. For instan
e,we 
an always de�ne a domain D 
ontaining an equilibrium point. If we 
an�nd traje
tories starting within this domain whi
h remain arbitrary 
lose to thepoint, this equilibrium point is said to be stable; if any traje
tory starting in thedomain eventually 
onverge towards the point, the equilibrium point is said to beasymptoti
ally stable. These de�nitions will be formalized later.4.2.2 Phase portraits of linear systemsTo illustrate the above 
on
epts, let us 
onsider a se
ond�order linear systemwith the 
hara
teristi
 equation in (4.2). Di�erent behaviours 
an be observed ina

ord with the root lo
us as follows.Stable or unstable node. When λ1 and λ2 are both real and have the samesign, the origin 
orresponds to a node. If the roots are negative, the originis 
alled a stable node be
ause both ẋ(t) and x(t) 
onverge to zero exponen-tially as t → ∞. If both roots are positive, the point is 
alled an unstablenode, be
ause both ẋ(t) and x(t) diverge from zero exponentially. Sin
e theeigenvalues are real, there is no os
illation in the traje
tories. See Figure4.3(a)�(b).Saddle point. When λ1 and λ2 are both real and have opposite signs, the origin
orresponds to a saddle point. Be
ause of the unstable root (the positiveone), almost all of the system traje
tories diverge to in�nity. There exist a
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onverging straight line 
orresponds to initial 
onditions whi
h make equalzero the 
oe�
ient ki asso
iated with the negative root. See Figure 4.3(f).Stable or unstable fo
us. When λ1 and λ2 are 
omplex 
onjugate with non-zero real parts, the origin 
orresponds to a fo
us. A stable fo
us o

urswhen the real part of the roots is negative, whi
h implies that ẋ(t) and x(t)
onverge to zero as t→ ∞. The traje
tories en
ir
le the origin one or moretimes before 
onverging to it, unlike the situation for a stable node. If thereal part of the roots is positive, then ẋ(t) and x(t) both diverge to in�nity,and the point is 
alled an unstable fo
us. See Figure 4.3(
)�(d).Center point. When λ1 and λ2 are are 
omplex 
onjugates with real parts equalto zero, the origin 
orresponds to a 
enter point. The name 
omes from thefa
t that all traje
tories are ellipses and the origin is the 
enter of theseellipses. See Figure 4.3(e).a) ℜ{λi} < 0 ∧ ℑ{λi} = 0 
) ℜ{λi} < 0 ∧ ℑ{λi} 6= 0 e) ℜ{λi} = 0 ∧ ℑ{λi} 6= 0
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b) ℜ{λi} > 0 ∧ ℑ{λi} = 0 d) ℜ{λi} > 0 ∧ ℑ{λi} 6= 0 f) ℜ{λi} 6= 0 ∧ ℑ{λi} = 0
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Figure 4.3: Phase portraits of linear systems4.2.3 Nonlinear systemsThe dynami
 of nonlinear systems are mu
h ri
her than the dynami
s of linearsystems, there are essentially nonlinear phenomena that 
an take pla
e only in



4.2. Phase Plane Analysis 57presen
e of nonlinearities and 
annot be des
ribed by a linear model. Thus,let us dis
uss some 
ommon nonlinear system phenomena in order to provide auseful ba
kground for our study in the rest of this do
ument. A wider and more
omplete dis
ussion on these and others nonlinear behaviour 
an be reviewed in[Slotine and Li, 1991℄.Multiple equilibrium points. Nonlinear systems frequently have more thatone isolated equilibrium point. The state may 
onverge to one of severalsteady�state points, depending on the initial state of the system. See Figure4.4(a).Limit 
y
les. Nonlinear systems 
an display os
illations of �xed amplitude and�xed period without external ex
itation. These os
illations are 
alled limit
y
les, or self�ex
ited os
illations. Of 
ourse, sustained os
illations 
an alsobe found in linear systems (
enter point) or in the response to sinusoidalinputs. However, limit 
y
les in nonlinear systems are di�erent. First, theamplitude of the self�sustained ex
itation is independent of the initial 
on-dition, as seen in Figure 4.4(b). Se
ond, the of self-sustained os
illationsin linear systems are very sensitive to 
hanges in system parameters, whilelimit 
y
les are not easily a�e
ted by parameter 
hanges. Limit 
y
les repre-sent an important phenomenon in nonlinear systems. They 
an be found inmany areas of engineering and nature. Air
raft wing �uttering, a limit 
y
le
aused by the intera
tion of aerodynami
 for
es and stru
tural vibrations,is frequently en
ountered and is sometimes dangerous. Limit 
y
les 
an beundesirable in some 
ases, but desirable in other 
ases.Bifur
ations. As the parameters of nonlinear dynami
 systems are 
hanged, thestability of the equilibrium point 
an 
hange (as it does in linear systems)and also the number of equilibrium points. Values of these parameters atwhi
h the qualitative nature of the system's motion 
hanges are known as
riti
al or bifur
ation values. The phenomenon of bifur
ation o

urs whenquantitative 
hange of parameters leading to qualitative 
hange of systemproperties. A very interesting 
ase of bifur
ation involves the emergen
eof limit 
y
les as parameters are 
hanged. In this 
ase, a pair of 
omplex
onjugate eigenvalues 
ross from the left�half plane into the right�half plane,and the response of the unstable system diverges to a limit 
y
le. This typeof bifur
ation is 
alled a Hopf bifur
ation.Chaos. For stable linear systems, small di�eren
es in initial 
onditions 
an only
ause small di�eren
es in output. In nonlinear systems however, the systemoutput is extremely sensitive to initial 
onditions. The essential feature of
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haos is the unpredi
tability of the system output. Chaos must be distin-guished from random motion. In random motion, the system model or input
ontain un
ertainty and, as a result, the time variation of the output 
an-not be predi
ted exa
tly (only statisti
al measures are available). In 
haoti
motion, on the other hand, the involved problem is deterministi
, and thereis little un
ertainty in system model, input, or initial 
onditions. Some me-
hani
al and ele
tri
al systems known to exhibit 
haoti
 vibrations in
ludebu
kled elasti
 stru
tures, me
hani
al systems with play or ba
klash, sys-tems with aeroelasti
 dynami
s, wheelrail dynami
s in railway systems andfeedba
k 
ontrol devi
es.Other behaviors. Other interesting types of behavior, su
h as jump resonan
e,subharmoni
 generation, asyn
hronous quen
hing, and frequen
y�amplitudedependen
e of free vibrations, 
an also o

ur and be
ome important in someparti
ular system.

x1

a)

x
2

x1

b)
x
2

Figure 4.4: Examples of (a) multiple equilibrium points (tunnel�diodo 
ir
uit)and (b) Stable limit 
y
le for the system: ẋ1 = x1(0.1+x
2
1+x

2
2−(x21+x

2
2)

2)−x2;
ẋ2 = x2(0.1 + x21 + x22 − (x21 + x22)

2) + x14.3 Existen
e of periodi
 orbitsIn this se
tion, we present three simple 
lassi
al theorems to predi
t the existen
eof limit 
y
les for se
ond�order systems. Sin
e all of the proofs are mathemati-
ally 
omplex (a
tually, a family of su
h proofs led to the development of algebrai
topology) they were omitted be
ause fall outside the s
ope of this thesis. Nev-ertheless, the demonstrations and some interesting appli
ation examples 
an be



4.3. Existen
e of periodi
 orbits 59studied in [Khalil, 2000℄ and [Vidyasagar, 1992℄.The �rst theorem reveals a simple relationship between the existen
e of a limit
y
le and the number of singular points that it en
loses. This theorem is some-times 
alled the index theorem. In this statement, N represents the number ofnodes, 
enters, and fo
i en
losed by a limit 
y
le, and S the number of en
losedsaddle points.Theorem 4.1 (Poin
are). If a limit 
y
le exists in the se
ond�order autonomoussystem (4.14), then N = S + 1.The se
ond theorem is 
on
erned with the asymptoti
 properties of the tra-je
tories of se
ond�order systems. It establish that bounded traje
tories in theplane shall have to approa
h periodi
 orbits or equilibrium points as time tendsto in�nity.Theorem 4.2 (Poin
are�Bendixson). If a traje
tory of the se
ond�order au-tonomous system (4.14) remains in a �nite region M, then one of the followingis true:
• The traje
tory goes to an equilibrium point.
• The traje
tory tends to an asymptoti
ally stable limit 
y
le.
• The traje
tory is itself a limit 
y
le.The third theorem provides a su�
ient 
ondition for the non�existen
e of limit
y
les. This theorem is sometimes 
alled the Bendixson Criterion.Theorem 4.3 (Bendixson). For the nonlinear system (4.14), no limit 
y
le 
anexist in a region M of the phase plane in whi
h ∂f1/∂x1 + ∂f2/∂x2 does notvanish and does not 
hange sign.The above theorems are easy to understand and apply. Even if they representvery powerful results, have no equivalent in higher�order systems where exoti
asymptoti
 behaviors (other than equilibrium points and limit 
y
les) 
an o

ur.



60 CHAPTER 4. STABILITY ANALYSIS THEORY4.4 Lyapunov stabilityIn 1892, the Russian mathemati
ian Alexander Mikhailovit
h Lyapunov intro-du
ed his famous stability theory for nonlinear and linear systems. A 
ompleteEnglish translation of Lyapunov's do
toral dissertation was published in 1992 forits 
entenary [Lyapunov, 1992℄.Basi
 Lyapunov theory 
omprises two methods, the indire
t and the dire
t method.The indire
t method, or linearization method, states that the stability propertiesof a nonlinear system in the 
lose vi
inity of an equilibrium point are essentiallythe same as those of its linearized approximation. The dire
t method is a powerfultool for nonlinear system analysis, and therefore the so�
alled Lyapunov analysisoften a
tually refers to the dire
t method. The dire
t method is a generalizationof the energy 
on
epts asso
iated with a me
hani
al system: the motion of ame
hani
al system is stable if its total me
hani
al energy de
reases all the time.Lyapunov stability theorems give su�
ient 
onditions for stability, asymptoti
stability and so on, but they do not say whether the given 
ondition are alsone
essary. The power of this method 
omes from its generality; it is appli
ableto all kinds of 
ontrol systems, be they time�varying or time�invariant, �nite di-mensional or in�nite dimensional. Conversely, the limitation of the method liesin the fa
t that it is often di�
ult to �nd a Lyapunov fun
tion for a given systemas it shall be shown.Seeking for 
ompleteness, some de�nitions of stability whi
h are ne
essary forlater theorems are in
luded here. For all de�nitions and theorems from now on,let us 
onsider a time�invariant system, linear o not, as the one shown in formula(4.15) su
h that f(0) = 0, i.e. x = 0 (the origin) is an equilibrium state.De�nition 4.3. The equilibrium state x = 0 is (lo
ally) stable in the sense oflyapunov if, for every ε > 0 there exist some δ > 0 (depending on ε) su
h that, if
‖x(0)‖ < δ, then ‖x(t)‖ < ε for all t > t0.De�nition 4.4. The equilibrium state x = 0 is asymptoti
ally stable in the senseof Lyapunov if it is (lo
ally) stable in the sense of Lyapunov and if, there existsome δ > 0 su
h that, if ‖x(0)‖ < δ, then x(t) → 0 as t→ ∞.Thus, the asymptoti
 stability is more restri
tive than the de�nition 4.3 as de�-nition 4.4 imposes that the traje
tories 
onverge to the equilibrium state. Notethat for a me
hani
al system, asymptoti
 stability implies some damping, unlike



4.4. Lyapunov stability 61Lyapunov stability. Besides, for a linear time�invariant system asymptoti
 stabil-ity is always global, while nonlinear systems exhibit more 
ompli
ated behaviour.De�nition 4.5. The equilibrium state x = 0 is (lo
ally) exponentially stable inthe sense of Lyapunov if, there exist positive 
onstants α, β and δ su
h that, if
‖x(0)‖ < δ, then ‖x(t)‖ ≤ α‖x(0)‖e−βt for all t > t0.State whi
h are not stable in the sense of Lyapunov are unstable. Besides, expo-nentially stability implies asymptoti
ally stability, but the opposite is not true.Stability, as it was de�ned before, is a lo
al property sin
e ε and δ 
an be 
hosenarbitrarily small. But if stability is independent of the size of the initial pertur-bation x(0), i.e., if x(0) 
an be 
hosen on a domain D, su
h that D ∈ R

n, thestability is said to be global.
x1

x2

ε
δ

Stabilityx0 x1

x2

ε
δ

Asymptoti
 stabilityx0 x1

x2

ε
δ

Instabilityx0

Figure 4.5: Con
epts of stability4.4.1 Lyapunov's dire
t methodThe basi
 philosophy of Lyapunov's dire
t method is the mathemati
al extensionof a fundamental physi
al observation: if the total energy of a me
hani
al (orele
tri
al) system is 
ontinuously dissipated, then the system, whether linear ornonlinear, must eventually settle down to an equilibrium point.De�nition 4.6. A s
alar 
ontinuous fun
tion V (x) : Rn → R is said to be lo
allypositive de�nite if:
V (0) = 0 and V (x) > 0, ∀x ∈ D − {0} (4.17)



62 CHAPTER 4. STABILITY ANALYSIS THEORYwhere D is a 
ertain domain 
ontaining the origin. If the above property holdsover the whole state spa
e, i.e. D ∈ R
n, then V (x) is said to be globally positivede�nite.Other few related 
on
epts 
an be de�ned similarly, as in lo
al as in global sense.A fun
tion V (x) is negative de�nite if −V (x) is positive de�nite; V (x) is positivesemi�de�nite if V (0) = 0 and V (x) ≥ 0 for x 6= 0; V (x) is negative semi�de�niteif −V (x) is positive semi�de�nite. The pre�x �semi� is used to re�e
t the possi-bility of V being equal to zero for x 6= 0.De�nition 4.7. If, in a 
ertain domain D 
ontaining the origin, the fun
tion

V (x) : Rn → R is positive de�nite and has 
ontinuous partial derivatives, and ifits time derivative along any state traje
tory of system (4.15) is negative semi�de�nite, i.e.,
V̇ (x) =

dV (x)

dt
=
∂V

∂x
ẋ =

∂V

∂x
f(x) ≤ 0 (4.18)then V (x) is said to be a Lyapunov fun
tion for the system (4.15).A 
omplete des
ription of the geometri
al meaning of positive de�nite fun
tionsand the graphi
al interpretation of the above 
on
epts, in
luding several exam-ples, 
an be studied in [Slotine and Li, 1991℄ and [Preumont, 1997℄.In using the dire
t method to analyze the stability of a nonlinear system, theidea is to 
onstru
t a s
alar energy�like fun
tion (a Lyapunov fun
tion) for thesystem, and to see whether it de
reases. The relations between Lyapunov fun
-tions and the stability of systems are made pre
ise in a number of theorems inLyapunov's dire
t method.Theorem 4.4 (Lo
al Stability). Consider the system in (4.15), the equilibriumpoint x = 0 is stable, if in a 
ertain domain D 
ontaining the origin, there exists as
alar fun
tion V (x) : Rn → R with 
ontinuous �rst partial derivatives su
h that:

• V (x) is positive de�nite (lo
ally in D)
• V̇ (x) is negative semi�de�nite (lo
ally in D)If, a
tually, the derivative V̇ (x) is lo
ally negative de�nite in D, then the stabilityis asymptoti
.



4.4. Lyapunov stability 63In applying the above theorem for analysis of a nonlinear system, one goes throughthe two steps: 
hoosing a positive de�nite fun
tion, and then determining itsderivative along the path of the nonlinear systems.In order to assert global asymptoti
 stability of a system, one might naturallyexpe
t that the domain D in the above lo
al theorem has to be expanded to bethe whole state spa
e. Nevertheless, an additional 
ondition on the Lyapunovfun
tion has to be satis�ed: V (x) must be radially unbounded, i.e., x 
an tend toin�nity in any dire
tion. The reason of that is to assure that the 
ontour 
urvesof V (x) = vα 
orrespond to 
losed 
urves (See Figure 4.6). If the 
ontour 
urvesare not 
losed, the traje
tories might drift away from the equilibrium point. Now,the following powerful result, known as Barbashin�Krasovskii theorem, 
an beestablished.Theorem 4.5 (Global Stability). Consider the system in (4.15), the equilibriumat the origin is globally asymptoti
ally stable, if there exists a s
alar fun
tion
V (x) : Rn → R with 
ontinuous �rst order derivatives su
h that:

• V (x) is positive de�nite
• V̇ (x) is negative de�nite
• V (x) → ∞ as ‖x‖ → ∞The above theorems provide su�
ient 
onditions (but not ne
essary) to deter-mine the stability of a system; the fa
t that no Lyapunov fun
tion 
an be foundto satisfy theorems 4.4 and 4.5 does not mean that the system is not stable; justone 
annot draw any 
on
lusions on the stability or instability of the system. A
-tually, this is the main weakness of the Lyapunov's method, as there is no generalpro
edure for 
onstru
ting Lyapunov fun
tion for a given system. However, thereare some methods for parti
ular systems whi
h provided Lyapunov fun
tion 
an-didates to be tested. Most of them require solving partial di�erential equationsor trial and error pro
edures as the Variable Gradient method and Krasovskii'smethod [Krasovskii, 1959℄. Further general information and examples on this sub-je
t 
an be found in the literature e.g. [Khalil, 2000℄ and [Slotine and Li, 1991℄.4.4.2 Invariant Set TheoremsLyapunov's stability theorems studied above are often di�
ult to apply to estab-lish asymptoti
 stability, as it often happens that V̇ is only negative semi�de�nite.



64 CHAPTER 4. STABILITY ANALYSIS THEORYEven in this situation, with the help of the invariant set theorems, it is still pos-sible to draw 
on
lusions on asymptoti
 stability. The 
entral 
on
ept in thesetheorems is the generalization of the idea of equilibrium point to the invariant set.De�nition 4.8. A set M is an invariant set for the dynami
 system in (4.15) ifevery traje
tory x(t) whi
h starts from a point in M remains in M for all time(future and past), i.e.,
x(0) ∈ M ⇒ x(t) ∈ M, ∀t ∈ R (4.19)De�nition 4.9. A set M is an positively invariant set for the dynami
 systemin (4.15) if every traje
tory x(t) whi
h starts from a point in M remains in Mfor all future time, i.e.,
x(0) ∈ M ⇒ x(t) ∈ M, ∀t ≥ 0 (4.20)Thus, any equilibrium point is an invariant set, but the domain of attra
tion ofan equilibrium point is also an invariant set.Theorem 4.6 (Lo
al invariant set theorem). Consider an autonomous system ofthe form (4.15), with f 
ontinuous and let V (x) : Rn → R be a s
alar fun
tionwith 
ontinuous �rst partial derivatives. Assume that

• for some l > 0, the set Ωl de�ned by V (x) ≤ l is bounded.
• V̇ (x) ≤ 0 for all x in Ωl.Let R be the set of all points within Ωl where V̇ (x) = 0 and M be the largestinvariant set in R. Then, every solution x(t) originating in Ωl tends to M as

t→ ∞.In the above theorem, �largest� is understood in the sense of set theory, so M isthe union of all invariant sets within R. The geometri
al meaning of the theoremis illustrated in Figure 4.6, where a traje
tory starting from within the boundedregion Ωl, is seen to 
onverge to the largest invariant set M.The lo
al invariant set theorem 
an be simply extended to a global result,by requiring the radial unboundedness of the s
alar fun
tion V rather than theexisten
e of a bounded Ωl.



4.4. Lyapunov stability 65

x1
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V = l

V = vα

R
Ωl

M

Figure 4.6: Convergen
e to the largest invariant set M. Adapted from[Slotine and Li, 1991℄.Theorem 4.7 (Global invariant set theorem). Consider an autonomous systemof the form (4.15), with f 
ontinuous and let V (x) : Rn → R be a s
alar fun
tionwith 
ontinuous �rst partial derivatives. Assume that
• V (x) → ∞ as ‖x‖ → ∞..
• V̇ (x) ≤ 0 for all x in R

n.Let R be the set of all points where V̇ (x) = 0 and M be the largest invariant setin R. Then, all solutions 
onverge to M as t→ ∞.No only the foregoing theorems relax the negative de�niteness requirement ofLyapunov's theorem, but also extends it in two di�erent dire
tions: (i) the abovetheorems 
an be used when the system has an equilibrium set (e.g.a limit 
y
le)rather than an isolated equilibrium point; (ii) the fun
tion V (x) does no have tobe positive de�nite although often still referred to as a Lyapunov fun
tion.When our interest is to showing that x(0) → 0 as t→ ∞, we need to establishthe the largest invariant set in R is the origin. This is doing by showing that nosolution 
an be stay in R, other than the trivial solution x(t) ≡ 0. Spe
ializing



66 CHAPTER 4. STABILITY ANALYSIS THEORYtheorem 4.6. to this 
ase and taking V (x) positive de�nite, we obtain the follow-ing theorem whi
h is attributed to LaSalle.Theorem 4.8 (LaSalle). Let V (x) : Rn → R be a s
alar fun
tion with 
ontinuous�rst partial derivatives su
h that on Ωl = {x ∈ R
n : V (x) ≤ l} we have V̇ (x) ≤ 0.De�ne R = {x ∈ R

n : V̇ (x) = 0}. Then, if R 
ontains no other traje
tories otherthan the trivial solution x(t) ≡ 0, then the origin is asymptoti
ally stable.The proofs of the above theorems are omitted here due to they involve a numberof 
on
epts in topology and real analysis whi
h are outside of the topi
s of thisthesis, however if the reader is interested, they are addressed (or at least sket
hed)in [Khalil, 2000℄ and [Vidyasagar, 1992℄.



Chapter 5Pie
ewise Smooth Dynami
alSystems
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tural stability on smooth systems . . . . . . . . . . 725.4 Pie
ewise smooth dynami
al systems . . . . . . . . . 735.4.1 Pie
ewise smooth maps . . . . . . . . . . . . . . . . . . 745.4.2 Pie
ewise smooth �ows (ODEs) . . . . . . . . . . . . . . 745.4.3 Filippov systems . . . . . . . . . . . . . . . . . . . . . . 755.5 Stability of PWS . . . . . . . . . . . . . . . . . . . . . . 755.5.1 Asymptoti
 stability . . . . . . . . . . . . . . . . . . . . 765.6 Numeri
al methods . . . . . . . . . . . . . . . . . . . . 775.6.1 Dire
t numeri
al simulation . . . . . . . . . . . . . . . . 78The aim of this 
hapter is to present an overview of the qualitative theory ofpie
ewise smooth dynami
al systems. Rather than 
overing all the issues, we willfo
us on basi
 de�nitions and fundamental 
on
epts that, a

ording to us, areneeded through this thesis. Qualitative theory of dynami
al systems 
omprisesmethods for analyzing di�erential equations and iterated mappings. Spe
i�
ally,nonlinear dynami
s is 
on
erned with the study of the stability of �xed points and67



68 CHAPTER 5. PIECEWISE SMOOTH DYNAMICAL SYSTEMSperiodi
 orbits, stable and unstable manifolds. Most of the material presentedin this 
hapter is inspired from [Osorio, 2007℄ and [di Bernardo et al., 2007℄ andsome referen
es therein.5.1 Smooth dynami
al systemsA smooth dynami
al systems or simply a dynami
al system is a rule for the timeevolution of a set of possible states. The time t takes values in an index set T whi
hwe usually 
onsider to be either dis
rete (the set of integers Z), or 
ontinuous (theset of real numbers R). The possible states belonging to state spa
eX, is a dis
reteor 
ontinuous 
olle
tion of 
oordinates that gives a 
omplete des
ription of thesystem. Given the 
urrent state of the system x0 ∈ X, the evolution rule or �ow
ϕ, predi
ts the state or ve
tor x(t) as:

ϕ : X × T → X (5.1)assuming x(t) , ϕ(x0, t), with x(0) = x0.We say that (5.1), together with X and T , de�nes a dynami
al system if following
onditions are satis�ed:
ϕ(x, 0) = x, for all x ∈ X, (Identity) (5.2a)

ϕ(x, t+ s) = ϕ(ϕ(x, t), s), for all x ∈ X, andt, s ∈ T . (Group) (5.2b)The identity 
ondition in (5.2a) basi
ally implies that the state does not 
hangespontaneously, and the group property in (5.2b) means that the evolution opera-tor of the system does not 
hange in time (i.e. The system is autonomous).5.1.1 Dis
rete maps and iterated mapsA dis
rete map or simply a map, is an evolution rule de�ned in dis
rete time andin a 
ontinuous state spa
e. A map π : Rn × Z → R
n de�nes a dynami
al systemwhere t ∈ Z.The time evolution 
an be de�ned in an iterative form as:

P : Rn → R
n, where x 7→ P (x) (5.3)with x ∈ R

n. The iterative operator in (5.3) is often written as xn+1 = P (xn)with n ∈ Z. Noti
e that given an initial 
ondition x(0) = x0, a generi
 elementat time t = n 
an be obtained from:
x(n) = P (n)(x0) (5.4)where P (n) , P ◦ P ◦ · · · ◦ P , n�times.



5.1. Smooth dynami
al systems 69Example 5.1. The logisti
 map is an instan
e of how a very simple nonlinearsystem 
an present very 
ompli
ated behavior. It is a dis
rete model used todes
ribe demographi
 evolution, and mathemati
ally is written:
xn+1 = µxn(1− xn), µ ∈ [0, 1]. (5.5)where µ is the growth 
onstant of the population (For further details see [May, 1976℄).

�5.1.2 Continuous �ows and ODEsA dynami
al system 
an also be de�ned by an initial value problem, through aOrdinary Di�erential Equation (ODE) of the type:
ẋ = F (x) (5.6)In (5.1) X ≡ R

n, T ≡ R and the �ow is de�ned by φ ≡ ϕ. The state of thesystem will be given by:
x(t) = φ(x0, t) (5.7)where φ : Rn ×R → R

n and x(0) = x0. The evolution rule φ satis�es (5.6) in thesense that:
d

dt
(φ(x, t))

∣

∣

∣

∣

t=γ

= F (φ(x, γ)) (5.8)Example 5.2. A periodi
ally for
ed, damped harmoni
 os
illator satis�es these
ond order di�erential equation:
q̈ + 2ζq̇ + κq = a cosωt,where ζ and κ are damping and spring 
onstants respe
tively, and ω is the angularvelo
ity of the periodi
 for
ing. We 
an de�ne the state variables x1 = q, x2 = q̇and x3 = ωt su
h that (5.2) 
an be written as a set of ordinary di�erentialequations:

ẋ1 = x2,

ẋ2 = κx1 − 2ζx2 + a cos x3,

ẋ3 = ω.

�



70 CHAPTER 5. PIECEWISE SMOOTH DYNAMICAL SYSTEMS5.2 Qualitative dynami
sGiven a generi
 dynami
al system of the form (5.1), 
onsider an invariant set1 Λof the dynami
al system in X (i.e. Λ ⊂ X).De�nition 5.1. A 
losed and bounded invariant set is 
alled an attra
tor if:
• for any su�
iently small neighborhood U ⊂ X of Λ, there exists a neigh-borhood W of Λ su
h that φ(x, t) ∈ U for all x ∈W and all t > 0, and
• for all x ∈ U , φ(x, t) → Λ as t→ ∞A dynami
al system may have many 
ompeting attra
tors, with their relativeimportan
e being indi
ated by the set of initial 
onditions that they attra
t, thatis, their domain of attra
tion.De�nition 5.2. The domain of attra
tion of an invariant set Λ (also known asthe basin of attra
tion or simply the basin), is the maximal set of initial 
onditions

x for whi
h φ(x, t) → Λ as t→ ∞.The qualitative des
ription of a dynami
al system is given by the des
riptionof the invariant sets that 
ompose its phase portrait. The more 
ommon types ofinvariant sets are:Equilibria. The simplest form of invariant set is an equilibrium solution x∗ whi
hsatis�es φ(x∗, t) = x∗ for all t.Periodi
 orbits. The most 
omplex kind of invariant set is a periodi
 orbit; itforms 
losed 
urves in phase spa
e and satis�es, for an initial 
ondition xp,that ϕ(xp, T ) = xp where T indi
ates the period (The smallest time T > 0for whi
h the 
ondition held). A periodi
 orbit that is isolated is termed alimit 
y
le.Homo
lini
 and hetero
lini
 orbits . Another important 
lass of invariantsets are 
onne
ting orbits whi
h tend to other invariant sets as time goesasymptoti
ally to +∞ and to −∞. Consider for example orbits whi
h 
on-ne
t equilibria. A homo
lini
 orbit is a traje
tory x(t) that 
onne
ts anequilibrium x∗ to itself; x(t) → x∗ as t→ ±∞. A hetero
lini
 orbit 
onne
tstwo di�erent equilibria x∗1 and x∗2 ; x(t) → x∗1 as t → −∞ and x(t) → x∗21See de�nition of invariant set in �4.4.2



5.3. Stability and stru
tural stability on smooth systems 71as t → +∞. Homo
lini
 and hetero
lini
 orbits play an important role inseparating the basins of attra
tion of other invariant sets.Other invariant sets. It is quite possible for dynami
al systems to 
ontain 
er-tain simple geometri
 subsets of phase spa
e where traje
tories must remainfor all time on
e they enter. The dynami
s on this invariant sets 
ould 
on-tain equilibria, periodi
 orbits and other attra
tors. Similarly, �ows 
an
ontain invariant tori, invariant spheres, 
ylinders et
. Invariant sets thatare everywhere lo
ally smoothly des
ribed by an m�dimensional set of 
o-ordinates are 
alled invariant manifolds.5.3 Stability and stru
tural stability on smooth sys-temsThe stability of an orbit of a dynami
al system 
hara
terizes whether nearby (i.e.,perturbed) orbits will remain in a neighborhood of that orbit or be repelled awayfrom it. Asymptoti
 stability additionally 
hara
terizes attra
tion of nearby orbitsto this orbit in the long�time limit. The distin
t 
on
ept of stru
tural stability
on
erns qualitative 
hanges in the family of all solutions due to perturbations tothe fun
tions de�ning the dynami
al system.5.3.1 Stability on smooth systemsAn important notion of stability in autonomous dynami
al systems in that ofeither Lyapunov or asymptoti
 stability of an invariant set (See �4.4). In general,the former means stability in the weak sense that traje
tories starting nearby tothe invariant set remain 
lose to it for all time, whereas the latter is more re-stri
tive. Both refer to stability of invariant sets with respe
t to perturbations ofinitial 
onditions, at �xed parameter values.Limit 
y
les and Poin
aré maps. One of the main building blo
ks of thedynami
s in a set of ODEs is the topology analysis of its periodi
 solutions (orlimit 
y
les). Limit 
y
les provide a natural way to transform between �owsand maps. Consider a limit 
y
le solution x(t) = p(t) of period T > 0, thatis p(t + T ) = p(t). To study the dynami
s near su
h a 
y
le, we 
an 
hoose aPoin
aré se
tion, whi
h is an (n− 1)�dimensional surfa
e Π that 
ontains a point
xp = p(tp) on the limit 
y
le and whi
h is transverse to the �ow at xp. We 
anuse the �ow φ to de�ne a map P from Π to Π, 
alled the Poin
aré map, whi
h is
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iently 
lose to xp as:
P(x) = φ(x, γ(x)) (5.9)where γ(x) is de�ned impli
itly as the time 
losest to T for whi
h φ(x, γ(x)) ∈ Π.We 
an study the stability of the periodi
 solution by studying the spe
trum ofthe Ja
obian matrix of the Poin
aré map at xp (i.e. eig{Px(xp)}).

xp = P(xp)

x P (x)P 2(x)

Π

πx

p(t)

φ(x, T )Figure 5.1: Poin
aré map de�nition.In general, a 
onsequen
e of using Poin
aré maps rather than �ows in thestability analysis of invariant sets is that they redu
e their dimension of the setswe need to 
onsider. Thus, limit 
y
les of �ows 
orrespond to isolated �xed pointsof Poin
aré maps; invariant tori 
orrespond to 
losed 
urves of the map; and a
haoti
 invariant sets de
rease their fra
tal dimension by one.5.3.2 Stru
tural stability on smooth systemsStru
turally stable systems are ones for whi
h all nearby systems have qualita-tively equivalent dynami
s. Thus we need a pre
ise notion of nearby and also ofequivalen
e.Nearby refers to any possible perturbation of the system itself (the fun
tion F (x)for ODE), in
luding for example variation of the system's parameters. We 
alltwo systems equivalent if their phase spa
es have the same dimension, the samenumber and type of invariant sets, in the same general position with respe
t toea
h other. To a
hieve su
h a de�nition, we use mathemati
al topology.De�nition 5.3. We say that two phase portraits are topologi
ally equivalent ifthere is a smooth transformation that stret
hes, twists, rotates, but not folds one



5.4. Pie
ewise smooth dynami
al systems 73phase portrait into the other. Su
h transformations are 
alled homeomorphisms,whi
h are 
ontinuous fun
tions de�ned over the entire phase spa
e whose inversesare also 
ontinuous.Two dynami
al systems de�ned by operators ϕ,ψ : X × T → X are topologi
allyequivalent if there is a homeomorphism h that maps the orbits of the �rst systemonto orbits of the se
ond one, preserving the dire
tion of time.De�nition 5.4 (Hyperboli
ity in Flows). Consider an equilibrium x∗ of a �ow φde�ned by a system of ODEs ẋ = F (x). We refer to the eigenvalues of an equilib-rium x∗, to mean the eigenvalues of the asso
iated Ja
obian matrix Fx(x
∗). Anequilibrium is said to be hyperboli
 if none of its eigenvalues lie on the imaginaryaxis.De�nition 5.5 (Hyperboli
ity in Maps). Consider a �xed point x∗ of a map πde�ned by the iterated equation xn+1 = P (xn). We refer to the multipliers µiof a �xed point x∗, to mean the eigenvalues of the asso
iated Ja
obian matrix

Px(x
∗). A �xed point is said to be hyperboli
 if none of the multipliers lie on theunit 
ir
le.One of the key appli
ations of topologi
al equivalen
e is to show that under hy-perboli
ity 
ondition, linearization of the dynami
al systems about the neighbor-hood of an invariant set are lo
ally topologi
ally equivalent. In addition, it 
anbe proved that the �ow lo
al to any two hyperboli
 equilibria of n�dimensionalsystems whi
h have the same number of eigenvalues with negative real part aretopologi
ally equivalent to ea
h other.5.4 Pie
ewise smooth dynami
al systemsA pie
ewise smooth (PWS) dynami
al system is a set of smooth dynami
al sys-tems (i.e. with elements of the form Di = {Xi,Ti, ϕi(x, t)}2); plus a set of rulesfor 
on
atenation in time for some dynami
al system Di to another Dj , su
hthat identity and group 
onditions are satis�ed. In general the set of rules for
on
atenation 
an be expressed through zero level sets of s
alar fun
tions, say

σij : Rn → R, to 
ommute at time γ from Di to Dj ; su
h that the �nal state
xσ , x(γ) = ϕi(x0, γ) be
omes an initial state as x(γ) ≡ ϕj(xσ, 0). This is equiv-alent to say that the state x at 
ommutation time γ 
an be expressed as fun
tion2See de�nition of smooth dynami
al system in �5.1



74 CHAPTER 5. PIECEWISE SMOOTH DYNAMICAL SYSTEMSof both evolution operators.In [di Bernardo et al., 2007℄ and [Osorio, 2007℄ an extensive study of PWSdynami
al system 
an be found. Here, we present some fundamental de�nitionsand properties whi
h will be useful for later analysis in this thesis.5.4.1 Pie
ewise smooth mapsA pie
ewise�smooth map is des
ribed by a �nite set of smooth maps as:
x 7→ Pi(x, µ), for x ∈ Si (5.10)where ∪iSi = D ⊂ R

n and ea
h Si has a non�empty interior. The interse
tion
Σij between the 
losure (set plus its boundary) of the sets Si and Sj (that is,
Σij , Si ∩ Sj) is either an R

(n−1)�dimensional manifold in
luded in the bound-aries ∂Sj and ∂Si, or is the empty set. Ea
h fun
tion Pi is smooth in both thestate x and parameter µ for any open subset U of Si.5.4.2 Pie
ewise smooth �ows (ODEs)A pie
ewise�smooth �ow is given by a �nite set of ODEs as:
ẋ = Fi(x, µ), for x ∈ Si (5.11)where ∪iSi = D ⊂ R

n and ea
h Si has a non�empty interior. The interse
tion
Σij , Si ∩ Sj is either an R

(n−1)�dimensional manifold in
luded in the bound-aries ∂Sj and ∂Si, or is the empty set. Ea
h ve
tor �eld Fi is smooth in both thestate x and parameter µ and de�nes a smooth �ow φi(x, t) within any open set
U ∈ Si. In parti
ular, ea
h �ow φi is well�de�ned on both sides of the boundary
Sj .Example 5.3. The bilinear os
illator, 
an be written as the �rst�order systemby setting x1 = q, x2 = q̇ and x3 = t so that

ẋ1 = x2,

ẋ2 = −2ζx2 − κix1 + a cos(x3),

ẋ3 = 1,where the value of κi depends on region Si, with S1 = {x1 < 0}, S2 = {x1 > 0}.
�
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Σij

b) S1 S2

Σij

s

s

s

s

s

s

~

U
+Figure 5.2: Traje
tories of (a) a pie
ewise�smooth �ow, and (b) a pie
ewise�smooth map5.4.3 Filippov systemsConsider a general pie
ewise�smooth 
ontinuous system with a single boundary

Σ, su
h that:
ẋ =

{

F1(x), if H(x) > 0,

F2(x), if H(x) < 0,
(5.12)where Σ is de�ned by the zero set of a smooth fun
tion H and F1(x) 6= F2(x) if

H(x) = 0. This 
lass of systems must be treated with great 
are sin
e we haveto allow the possibility of sliding motion. In order to de�ne sliding, it is useful tothink of system (5.12) lo
al to the dis
ontinuity boundary between two regionsde�ned by the zero set of the smooth fun
tion H(x) = 0.The sliding region of the dis
ontinuity set of a system of the form (5.12) isgiven by that portion of the boundary of H(x) for whi
h (HxF1) · (HxF2) < 0.That is, HxF1 (the 
omponent of F1 normal to H) has the opposite sign to HxF2.Thus the boundary is simultaneously attra
ting (or repelling) from both sides[Piiroinen and Kuznetsov, 2008℄.5.5 Stability of PWSThe extension of well�established 
on
epts for smooth systems to the 
ase ofnon�smooth systems is still an open resear
h area. Next, we show a pragmati
approa
h for studying the asymptoti
 stability of a 
lassi
al pie
ewise�smoothlinear system presented in [di Bernardo et al., 2007℄.



76 CHAPTER 5. PIECEWISE SMOOTH DYNAMICAL SYSTEMS
b)a)Figure 5.3: Slading region. Bold and dashed regions represent (a) attra
ting and(b) repelling sliding motion. Dotted lines indi
ate three individual traje
torysegments.5.5.1 Asymptoti
 stabilityIt is a parti
ularly 
umbersome task to provide ne
essary and su�
ient 
onditionsthat guarantee the asymptoti
 stability of a desired invariant set of a pie
ewise�smooth system. Even the problem of assessing the asymptoti
 stability of anequilibrium that rests on a dis
ontinuity boundary is an open problem in general.Let us fo
us on the problem for the spe
ial 
ase of pie
ewise�linear systems, whi
hwill be of relevan
e to later dis
ussions in Chapter 6.Consider the pie
ewise�linear system:

ẋ =

{

A−x, if CTx ≤ 0,

A+x, if CTx ≥ 0
(5.13)where A± ∈ R

n×n and c ∈ R
n. We assume that the overall ve
tor �eld is 
on-tinuous a
ross the hyperplane {x : CTx = 0}, but the degree of smoothness isuniformly one. This means that
A− −A+ = ECT (5.14)for some E ∈ R

n . For the planar 
ase, i.e., n = 2, a 
omplete theory is possibleand it 
an be shown that the equilibrium point x = 0 of (5.13) is asymptoti
allystable under 
ertain stri
t 
onditions, provided the system obeys the property ofobservability often used in 
ontrol theory.De�nition 5.6. Two matri
es A ∈ R
n×n and CT ∈ R

p×n are said to be observable



5.6. Numeri
al methods 77if the observability matrix O, de�ned as:
O =











CT

CTA...
CTAn−1











(5.15)has full rank. Equivalently, for single�output systems, observability implies det(O) 6=
0.Theorem 5.1. Consider the system (5.13) with n = 2. Assume that the pair
(CT , A−) is observable. Then:

• The origin is asymptoti
ally stable if and only if1. neither A− nor A+ has a real non�negative eigenvalue, and2. if both A− and A+ have non�real eigenvalues, then σ−/ω−+σ+/ω+ <
0, where σ± ± ω± (ω± > 0) are the eigenvalues of A±

• The system (5.13) has a non�
onstant periodi
 solution if and only if both
A− and A+ have non�real eigenvalues and σ−/ω− + σ+/ω+ = 0, where
σ± ± ω± (ω± > 0) are the eigenvalues of A±. Moreover, if there is oneperiodi
 solution, then all other solutions are also periodi
. Moreover anysu
h periodi
 solution has period equal to π/ω− + π/ω+.In higher dimensions, the problem be
omes 
onsiderably more di�
ult.In the 
ontrol theory literature, a more general tool has been proposed forthe stability analysis of pie
ewise�smooth dynami
al systems. Take, for exam-ple, the problem of establishing whether an equilibrium point in a dis
ontinuityboundary of a pie
ewise�smooth dynami
al system is asymptoti
ally stable. Onete
hnique for proving su
h stability is to �nd a 
ommon Lyapunov fun
tion, thatis, a fun
tion V (x) that is Lyapunov for ea
h of the ve
tor �elds de�ning the sys-tem dynami
s in ea
h of the phase spa
e regions. However, �nding su
h fun
tionsin pra
ti
e is at best di�
ult.5.6 Numeri
al methodsIn general we referred to numeri
al analysis tools for di�erential equations. Forsmooth �ows, there are broadly speaking two 
lasses of numeri
al methods for



78 CHAPTER 5. PIECEWISE SMOOTH DYNAMICAL SYSTEMSinvestigating the possible dynami
s for a range of parameter values namely; di-re
t numeri
al simulation, and path�following [Kuznetsov, 2004℄. This 
lassi�
a-tion also applies to pie
ewise�smooth systems, The rigorous numeri
al analysis ofnonsmooth dynami
al systems remains a theory that is far from 
omplete.5.6.1 Dire
t numeri
al simulationWhen 
omputing solutions to pie
ewise�smooth systems it is usually not possibleto use general purpose software dire
tly, as they typi
ally use numeri
al inte-gration routines that assume a high degree of smoothness of the solution. Allnumeri
al 
omputations must make spe
ial allowan
e for the nonsmooth eventswhi
h o

ur when a dis
ontinuity boundary is rea
hed. Simulation methods fornonsmooth systems fall broadly into two 
ategories; time�stepping and event�driven. The former is most often used in many�parti
le rigid body dynami
swritten in 
omplementarity form for whi
h there 
an be a big number of 
on-straints. For su
h problems, to a

urately solve for events when one of the ev-ery one of the 
onstraint fun
tions be
omes zero within ea
h time�step and tosubsequently re�initiate the dynami
s would be prohibitively 
omputationally ex-pensive. In 
ontrast, the basi
 idea of time�stepping is to only 
he
k 
onstraintsat �xed times. There are adaptations to standard methods for integrating ODEfor 
omplementarity systems, some of whi
h are based on linear 
omplementarityproblem solvers that have been developed in optimization theory and that 
an bedire
tly used on simulation of pie
ewise smooth dynami
al systems. Clearly thereare errors introdu
ed by not a

urately dete
ting the transition times, and there-fore time�stepping s
hemes are often of low�order a

ura
y. In this thesis we are
on
erned with low�dimensional systems with just a dis
ontinuity boundary. Inthis 
ontext, expli
it event driven s
hemes are feasible, fast and a

urate. In thesemethods, traje
tories far from boundaries are solved using standard numeri
al in-tegration algorithms for smooth dynami
al systems (e.g. Runge�Kutta, impli
itsolvers, et
.), then times at whi
h a dis
ontinuity boundary is hit are a

uratelysolved. Here it is ne
essary to 
onsider the 
apability of simulating sliding �owby de�ning a sliding ve
tor �elds.



Chapter 6Stability analysis of RTS testingon non�linear dampers
Contents6.1 SDOF os
illator with a delayed damper . . . . . . . . 806.2 Os
illator with added linear damper . . . . . . . . . . 816.2.1 Expli
it stability analysis . . . . . . . . . . . . . . . . . 816.2.2 Numeri
al stability analysis . . . . . . . . . . . . . . . . 856.3 Os
illator with added non�linear damper . . . . . . . 906.3.1 Numeri
al stability analysis . . . . . . . . . . . . . . . . 916.3.2 Expli
it stability analysis . . . . . . . . . . . . . . . . . 98As it was pointed out before in 
hapter 3, the su

ess of real�time substru
-turing tests is highly dependent on the 
ontrol of the signal delays. We intendto analyse the 
lose loop behaviour of a model when testing a supplemental en-ergy dissipation system for stru
tural 
ontrol. In the seismi
 prote
tion system
onsidered, the most non�linear and 
omplex-to-model 
omponent is a passivenon�linear �uid vis
ous damper added to the stru
ture. In the next 
hapter, anextensive des
ription of this system is presented. In a

ord with the fundamentalson RTST, the damper (the 
riti
al element) must be extra
ted from the systemand tested physi
ally in the lab, while the remaining part of the stru
ture ismodelled mathemati
ally and be
omes the numeri
al substru
ture. In our tests,the displa
ements 
omputed form the numeri
al substru
ture are applied throughan a
tuator to the damper, and in turn, the resisting for
e is measured and feedba
k into the numeri
al substru
ture. Although sour
es of delay are the ele
troni
measuring and a
tuator assemblage, the delay 
omes mostly from the a
tuatordynami
s. It is worthy noti
ing that, the pra
ti
al e�e
t of this on our system, is79



80 CHAPTER 6. STABILITY ANALYSIS OF RTST ON NONLINEARDAMPERSa lag time on the e�e
tive damper for
e applied to the stru
ture.In this 
hapter, we present a stability analysis to highlight the harmful e�e
ts
aused by delays in dynami
 systems when timing errors are 
onsidered on thedamper's response. Our goal is to assess the 
onstraints on delays, in su
h a waythat the stability and reliability of the 
losed loop simulation 
an be guaranteed.The present study will be addressed in the 
ontext of both 
lassi
 stability theoryfor linear/non�linear systems (See Chapter 4) and the qualitative theory of Pie
e-wise Smooth Dynami
al Systems (See Chapter 5) a

ording to the parti
ular 
asewhi
h is dis
ussed throughout ea
h se
tion.
6.1 SDOF os
illator with a delayed damperLet us suppose a simple os
illator 
ompounded of a single�degree of freedom sys-tem (SDOF) with an energy dissipation devi
e, as shown in Figure 6.1. Withoutloss of generality, the damper is 
onsidered pla
ed atop of a 
hevron�type bra
eand atta
hed to the frame in horizontal position. Thus, by assuming a very sti�bra
e (mu
h more than the frame), the relative displa
ement between the ends ofthe damper 
an be 
onsidered equal to the relative inter�storey drift. Then, we

x

Fd

c

k

m
−mẍg

x

mDamper
ẍgFigure 6.1: SDOF os
illator with an added damper.
an write a mathemati
al expression to des
ribe the dynami
s of this system asin equation (6.1).

mẍ(t) + cẋ(t) + kx(t) + Fd(t, τ, cd, α, ẋ) = −mẍg(t) (6.1)



6.2. Os
illator with added linear damper 81where:
m : is the mass of the system;
c : is the intrinsi
al damping 
oe�
ient of the system;
k : is the sti�ness of the system;
t : is time;

Fd : is the for
e in the damper;
τ : is the signal delay;
cd : is the damping 
oe�
ient of the damper;
α : is the velo
ity exponent of the damper; 0<α<1;
ẍg : is the base ex
itation;

ẍ, ẋ, x : are respe
tively the system a

eleration, velo
ity and displa
ements.Note that the damper for
e is depending not only on time, damper 
oe�
ientand velo
ity but also on the delay 
onsidered on the damper response (assumedas 
onstant). In what follows, we shall examine this system in light of di�erentsituations in a

ord with the behaviour of the damper. We shall 
over both linearand non�linear 
ases.6.2 Os
illator with added linear damperFist of all, let us 
onsider the os
illator with a linear damper. Equation (6.1) 
anbe then rewritten as:
mẍ(t) + cẋ(t) + kx(t) + cdlẋ(t− τ) = −mẍg(t) (6.2)where cdl is the 
oe�
ient of the linear damper.This kind of di�erential equation,in whi
h the derivative of the unknown fun
tion at a 
ertain time is given interms of the values of the fun
tion at previous times, is 
alled a Delay Di�erentialEquation (DDE). We shall des
ribe both the analyti
al and numeri
al solutionsfor x, 
onsidering the 
riti
al delay value τcr for whi
h the system may be
omeunstable.6.2.1 Expli
it stability analysisLet us assume zero external ex
itation and arbitrary initial 
onditions. By meansof proper substitutions, the system in (6.2) 
an be rewritten with non�dimensionalisedparameters as:

x′′(t̂) + 2ζx′(t̂) + x(t̂) + px′
(

t̂− τ̂
)

= 0 (6.3)where x′ and x′′ indi
ate the �rst and se
ond�order derivative of x with respe
tto t̂ instead of t; and also:
wn =

√

k

m
; ζ =

c

2
√
mk

; t̂ = wnt ; τ̂ = wnτ ; p =
cdl
mwn
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An a

epted and quite 
ommon strategy to solve di�erential equations, is toassume solution of the exponential form, x = Aeλt̂. The 
hara
teristi
 equationof the system 
an be then written as:

λ2 + 2ζλ+ 1 + λpe−λτ̂ = 0 (6.4)If we assume that τ̂ is small, instead of e−λτ̂ we 
an use the �rst�order ap-proximation (1 − λτ̂) from the series expansion of this exponential fun
tion. Bysubstituting this approximation and reordering the parameters, equation (6.4)be
omes:
(1− pτ̂)λ2 + (2ζ + p)λ+ 1 = 0 (6.5)The real part of the system eigenvalues determines the stability of the linearsystem (See Lemma 4.1). Solving the last equation for λ we have:

λ1,2 =
1

2(1 − pτ̂)

(

−(2ζ + p)±
√

(2ζ + p)2 − 4(1 − pτ̂)
) (6.6)First, suppose that there is no delay in the damper response. So if τ̂ = 0 thesystem eigenvalues be
ome:

λ1,2 = −1
2

[

(2ζ + p)±
√

(2ζ + p)2 − 4
] (6.7)Sin
e ζ, p are positive quantities (they depend on stri
tly positive physi
al 
har-a
teristi
s) and (2ζ + p) >

√

(2ζ + p)2 − 4, the real part of the 
omplex roots λiwill be always negative, so that, the system is globally asymptoti
ally stable as itwas expe
ted for a system with an additional linear damper.Going ba
k to the 
ase when τ̂ is small, we note that by satisfying the rela-tionship (1−pτ̂) > 0, the quantity (2ζ+p) is greater than √

(2ζ + p)2 − 4(1 − pτ̂)being the real part of the 
omplex roots λi always negative, what implies globaland asymptoti
 stability. On the other hand, if (1 − pτ̂) < 0 at least one of theroots λi will have real part positive and the system will be
ome unstable. There-fore, the system will remain stable if and only if the delay in the damper responsesatis�es τ̂ < 1/p, whi
h 
onverted ba
k to the original parameters 
an be writtenas:
wnτ = τ̂ <

mwn

cdl
⇒ τ <

m

cdl
(6.8)This expression highlights that stru
tures with strong added dampers will be moresus
eptible to be
ome unstable due to small delays in the damper response, and



6.2. Os
illator with added linear damper 83
onsequently, it will be more di�
ult to maintain stability when running a real�time substru
turing test on it. A system whi
h ful�lls the restri
tion presented in(6.8) has 
hara
teristi
 roots lo
ated in the left half 
omplex plane and is alwaysglobal asymptoti
ally stable. In
reasing the value of the bifur
ation parameter presults in 
hara
teristi
 roots swarming out from the left to the right half part inthe 
omplex plane1 (i.e. towards the instability).Although some resear
hers have demonstrated before, how delay 
an be under-stood as negative damping [Horiu
hi et al., 1999, Walla
e et al., 2005a℄, equation(6.5) shows how, 
onsidering delays in the damping for
es, it 
an manifest itselfas negative mass too. In this 
ontext delay should be understood like anti-inertialfor
e, a sort of negative mass (in fa
t, it 
an be expressed by mneg = −cdlτ) whi
hadds energy into the system. By equaling both sides in the inequality (6.8), it ispossible to �nd the delay τ for whi
h the overall mass in the system is 
an
elled,as a matter of fa
t, equation (6.6) is not de�nite for this value (massless system).Furthermore, do not ful�ll inequality (6.8) leads to instability in 
onsequen
e ofthe e�e
tive negative overall mass operating in the system.On the other hand, a di�erent approa
h for determining the stability bound-aries of the system, is to sear
h a set of point in the parameters spa
e wherethe 
hara
teristi
 equation has one pair of pure imaginary roots, that is, just gothrough a Hopf bifur
ation [Kalmár-Nagy et al., 2001℄. To �nd this 
urve, wesubstitute into the trial solution previously proposed for equation (6.3), λ = iŵ,for w > 0 and ŵ = w/wn.This analysis is valid for any time delay, even if τ is not small (see [Gilsinn, 2002℄).After applying the aforementioned substitution and some algebra, equation (6.4)be
omes:
−ŵ2 + 2iζŵ + 1 + ipŵe−iŵτ̂ = 0 (6.9)Applying the Euler's formula from 
omplex analysis and splitting up into real andimaginary parts, we get two real equations:
− ŵ2 + pŵ sin(ŵτ̂) + 1 = 0 (6.10a)

2ζ + p cos(ŵτ̂) = 0 (6.10b)Assuming ζ as known, we 
an use the last pair of equations to express the pa-rameters τ̂ and p as fun
tion of ŵ.Dividing equation (6.10a) by (6.10b) and 
onsidering periodi
ity we have:
ŵ2 − 1

−2ζŵ
= tan(ŵτ̂) (6.11)1Bifur
ation and other phenomena are introdu
ed in �4.2.3
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τ̂ =

1

ŵ
arctan

(

1− ŵ2

2ζŵ

)

+
nπ

ŵ
; n = 1, 2, 3 . . . (6.12)where n 
orresponds to the n-th lobe (parameterized by ŵ) from the right in thestability diagrams in Figure 6.2 (n must be greater than 0, be
ause τ̂ > 0).The trigonometri
 terms in Equations (6.10a) and (6.10b) 
an be eliminated bysquaring and adding them to yield:

p =
1

ŵ

√

(ŵ2 − 1)2 + (2ζŵ)2 (6.13)In Figure 6.2(a), we present the boundaries obtained for τ̂ and p by �xing ζat 0.03. These 
urves are parameterized by ŵ running from 0 to ∞ and n from1 to 5. Along these 
urves the system has a pair of purely imaginary eigenval-ues delimiting the parameters spa
e where the system is expe
ted to be stable.Along the line τ̂ = 0 the system is stable, 
onsequently, its surrounding area upto the 
losest boundary is the region of stability (shadow area). The approximateboundary de�ned by equaling the inequality (6.8) is plotted too (dashed line).The approximation tends to underestimate the 
riti
al delay and only holds forvery small values of τ̂ . The 
urve with τ̂ for n = 1 is the pra
ti
e stability bound-ary be
ause en
loses the others theoreti
al boundaries into the unstable region.In addition, we 
an rearrange equations (6.10a) and (6.13) assuming p asknown, so as to obtain the 
riti
al delay τ̂ and ζ as parametri
 
urves in ŵ asfollows:
ζ =

1

2ŵ

√

(pŵ)2 − (ŵ2 − 1)2 (6.14)
τ̂1 =

1

ŵ
arcsin

(

ŵ2 − 1

pŵ

)

+
2πn

ŵ
(6.15)where ŵ runs from 1

2(−p +
√

p2 + 4) to 1
2(p +

√

p2 + 4), and n is any positiveinteger greater than zero. Seeking for 
ompleteness, we have to 
onsider theperiodi
ity of sine fun
tion and the range over the arcsin fun
tion is de�ned;thus, the boundary in equation (6.15) should be rounded o� with:
τ̂2 = − 1

ŵ

[

arcsin

(

ŵ2 − 1

pŵ

)

+ π

]

+
2πn

ŵ
(6.16)Figure 6.2(b) shows the stability region for �xed p = 2 using the 
urves de�nedparametri
ally by equations (6.14), (6.15) and (6.16). Again, the approximate
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Figure 6.2: Non�dimensionalized 
omplex root solutions: a) Varying addeddamper 
apa
ity, and b) Varying stru
tural damping.boundary de�ned by inequality (6.8) is in
lude in dashed line. This approxima-tion is a 
onstant value for any ζ and strongly underestimates the 
riti
al delay.Considering the lightly damped systems 
ommonly studied in 
ivil engineeringappli
ations (ζ < 0.1), the 
urve for τ̂2 with n = 1 
an be used as the pra
ti
alstability boundary in the (ŵ, ζ)�plane.6.2.2 Numeri
al stability analysisFor more 
omplex Delay Di�erential Equations (DDEs) than equation (6.2) it maybe
ome impossible to �nd stability regions, as before, by analyti
al 
al
ulations.We therefore move to a numeri
al approa
h for �nding the stability regions. Firstof all, we shall fa
e the linear 
ase, and afterwards, extend the analysis to moregeneral 
ases taking into a

ount non�linear substru
tured systems.We use a graphi
al method for studying the qualitative behavior of our se
ond�order linear dynami
 system. The phase plane method is 
on
erned with thegraphi
al study of se
ond�order systems des
ribed in terms of the equations ofstate (For further details, see �4.2). Thus, equation (6.3) 
an be rewritten bymeans of the simple 
hange of variables x1 = x and x2 = x′ as:
x′1(t̂) = x2(t̂) (6.17a)
x′2(t̂) = −2ζx2(t̂)− x1(t̂)− px2(t̂− τ̂) (6.17b)where x1 and x2 are the state variables of the system, that is, relative displa
e-
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ity. In other words, the systems is entirely des
ribed by x and x′at any time, that is why the phase plane gives 
omplete information about thesystem behaviour (See pag. 49).Firstly, we want to point out how the in
reasing of the damper 
oe�
ient 
ana�e
t the behaviour of the system and how this 
ir
umstan
es 
an be distinguishedin this kind of plots. To do that, we 
onsidered no delay in the equation above(τ̂ = 0) and utilized a very easy�to�use program 
alled pplane2. This program isdesigned for phase plane analysis of di�erential equations and allows the user toplot the ve
tor �eld3 for the system and also the solution 
urves. Figure 6.3 showsthe ve
tor �elds and some solution traje
tories for the system in equations (6.17)
onsidering no delay, a stru
tural damping ratio ζ = 0.03 and di�erent 
apa
itiesfor the added damper.The �rst two 
ases with p = 0.3 and p = 1.0 
orrespond to a stable fo
us4 (Figs.6.3(a) and (b)). This means that the real part of the eigenvalues in formula (6.7)are negative while the imaginary part are di�erent from zero, whi
h implies that
x(t̂) and x′(t̂) both goes to zero as t̂→ ∞. Note that the traje
tories en
ir
le theequilibrium point one or more times before 
onverging to it.The other two 
ases with p = 2.0 and p = 4.0 
orrespond to a stable node. Now,the eigenvalues are real and negatives, whi
h implies that both x(t̂) and x′(t̂)
onverge to zero exponentially, as shown in Figures 6.3(
) and (d). It is worthnoti
ing that no os
illation are presented in the traje
tories, moreover, the ve-lo
ity tends to zero faster than the displa
ement. As the traje
tories approa
hthe origin, they be
ome tangent to the line whose slope 
orresponds to the sloweigenvalue (the smallest). If the damper 
apa
ity if large enough to 
ause aneigenvalue 
lose to zero, this line will be almost horizontal and will be
ome 
losean equilibrium subspa
e, being all traje
tories almost normal to it. That wouldimply that the velo
ity will de
rease very rapidly while the displa
ement will notdo it. The physi
al meaning of this limit behavior is that the system will remainblo
ked in a position di�erent from zero.From now on, let us 
onsider τ̂ not null. Due to there is no a software ableto draw the phase plane for delay di�erential equations, we de
ided to 
onstru
tthe ve
tor �eld from some solution traje
tories of the system in (6.17). A popularapproa
h for solving DDEs is to extend one of the methods used to solve OrdinaryDi�erential Equations (ODEs), most of the 
odes are based on expli
it Runge�Kutta methods (See �3.6.2). In this se
tion, we use a program developed on2pplane is 
opyrighted in the name of John C. Polking, Department of Mathemati
s, Ri
eUniversity.3See key de�nitions in �4.2.14For a 
omprehensive des
ription of this behaviour, see �4.2.2
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Figure 6.3: Ve
tor �elds and traje
tories for τ̂ = 0 (no delay) varying the addeddamper 
apa
ity for the linear 
ase: a) and b) Stable fo
us; 
) and d) Stable node.MATLAB5 
alled dde23 whi
h extends the method of the MATLAB ODE solverode23 and allows the user to solve DDEs with 
onstant delays in
luding alsoproblems with dis
ontinuities. The program was written by L. Shampine and S.Thompson, a detailed dis
ussion of the numeri
al methods used by dde23 
an befound in [Shampine and Thompson, 2001℄.Figure 6.4 shows the ve
tor �elds and some solution traje
tories for the sys-tem in (6.17) 
onsidering ζ = 0.03, p = 2 and di�erent delays in the damper'sresponse. For small delays, the system stability does not 
hange, to 
on�rm that,it is su�
ient to 
ompare Figure 6.3(
) with Figure 6.4(a), we still have a stablenode. Nevertheless, in
reasing the delay just before the stability limit, the systemsbehaves as a stable fo
us, that is, the traje
tories en
ir
le the equilibrium point5MATLAB is a registered trademark of The MathWorks, In
. www.mathworks.
om
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) d)

Figure 6.4: Ve
tor �elds for ζ = 0.03; p = 2.0 and di�erent delays in the feedba
kloop: a) Stable node; b) Stable fo
us; 
) Center; d) Unstable fo
us.several times before 
onverging to it (See Fig. 6.4(b)). On the other side, takinginto 
onsideration a delay larger than the stability boundary, the system behavesas an unstable fo
us, although the traje
tories en
ir
le the equilibrium point,both x and x′ tend to in�nity as t̂→ ∞ as shown in Figure 6.4(d). Additionally,just on the stability boundary, the system neither 
onverges to the equilibriumpoint nor diverges from it, but goes to periodi
al 
losed traje
tories in phasespa
e whi
h are neighbored by other 
losed traje
tories. This 
ase 
orrespondsto a 
enter point as shown in Figure 6.4(
). The name 
omes from the fa
t thatall traje
tories are ellipses and the equilibrium point is the 
enter of these ellipses.In order to �nd the region of stability for the linear substru
tured system un-



6.2. Os
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ussion, we use the 
onditions explained above to de�ne the 
riti
al timelag τ̂cr as the delay in the damper's response that 
auses the system to behaveas a 
entral point, that is, when it des
ribes sustained 
losed orbits. We wanteda simple and robust sear
h method for τ̂cr (in the sense that it always 
onvergesto the solution), so we sele
ted and implemented the bise
tion sear
h method.Although it is relatively slow, it is always reliable.Roughly speaking, the sear
h pro
ess 
an be illustrated as follows. For a ζ and
p known and an arbitrary small value of τ̂ the DDE in formula (6.17) is solved.The initial delay τ̂0 is 
hosen small enough su
h that the systems is stable. Then,the delay is in
reased of a predetermined quantity ∆τ̂ and the DDE is solvedagain. The delay is 
ontinuously in
reased until the system be
ame unstable,without loss of generality, let us 
all that delay as τ̂n. In the absen
e of anyother information, the best estimate for the lo
ation of the solution (τ̂cr) is themidpoint of the range between the last two values of τ̂ found. Let us 
all this�rst estimation as τ̂cr0 . Subsequently, the estimate for the 
riti
al delay is used tosolve de DDE and either: (i) the system behaves stable, in su
h a 
ase the intervalto be bise
ted for the next estimate of the 
riti
al delay (let us 
all it τ̂cr1) is theright�side interval between τ̂cr0 and τ̂n; (ii) the system behaves unstable, in su
ha 
ase the interval to be bise
ted for the next estimation of the 
riti
al delay,is the left�side interval between τ̂n−1 and τ̂cr0 . Now, the new estimation of the
riti
al delay is used to solve de DDE and the pro
ess is iteratively applied untilthe system behaves 
losely as a 
entral point. The last estimate for the 
riti
aldelay 
an be sele
ted as the stability boundary for the system de�ned by ζ and p.The above iterative pro
edure was implemented in a Matlab routine. It al-lowed us to obtain numeri
ally the regions of stability presented in what follows.Figure 6.5(a) presents the boundaries obtained for τ̂ and p �xing ζ at 0.03. Weuse red 
rosses for the numeri
al solution. We also 
ompare this limit against thetheoreti
al stability boundaries, both exa
t and approximate, already shown inFigure 6.2(a). As before, the region of stability is emphasized as a shadow area.Additionally, Figure 6.5(b) shows the stability region for τ̂ and ζ �xing p = 2.0.Again, the approximate and exa
t theoreti
al boundaries are in
luded. Overall,the numeri
al results in this subse
tion agree with the expli
it stability analysispresented before in �6.2.1. This makes evident the potential of the numeri
alstability analysis, with the added advantage that it works also for mu
h more
omplex and non�linear systems.
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Figure 6.5: Stability region for numeri
al solution (Linear 
ase): a) Varying addeddamper 
apa
ity, and b) Varying stru
tural damping.6.3 Os
illator with added non�linear damperNow, let us 
onsider a non�linear added damper with 
onstant delay in the singledegree of freedom system shown in Figure 6.1. The delay di�erential equation in(6.2) 
an be now rewritten as:
mẍ+ cẋ+ kx+ cd|ẋ(t− τ)|α · sign(ẋ(t− τ)) = −mẍg (6.18)where:

m : is the mass of the system;
c : is the intrinsi
al damping 
oe�
ient of the system;
k : is the sti�ness of the system;

t, τ : are respe
tively time and the signal delay;
cd : is the damping 
oe�
ient of the damper;
α : is the non�linear exponent of the damper; 0<α<1;

| · | : represent the absolute value of · ;
ẍg : is the base ex
itation; and

ẍ, ẋ, x : are respe
tively the system a

eleration, velo
ity and displa
ements.The same as before, let us 
onsider on equation (6.18) zero external ex
i-tation, arbitrary initial 
onditions and some appropriate substitutions to get anon�dimensionalised formulation in terms of dimensionless parameters. Thus,after some algebra we have:
z′′(t̂) + 2ζz′(t̂) + z(t̂) + pn|z′(t̂− τ̂ )|α · sign

(

z′(t̂− τ̂)
)

= 0 (6.19)
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ζ =

c

2
√
mk

; t̂ = wnt ; τ̂ = wnτ ; wn =

√

k

m

x = x0z; pn =
cd
m
wα−2
n |x0|α−1The di�erentiating operator ′ indi
ates the derivative with respe
t to t̂, and x0stands for an arbitrary initial 
ondition.Due to the fa
t that for non�linear delay di�erential equations there is nota suitable method to perform expli
it stability analysis, at �rst we 
arried outsome numeri
al investigations in order to understand, identify and 
hara
terizequalitatively the behavior of the system.6.3.1 Numeri
al stability analysisAgain, we will take advantage of the phase plane analysis to obtain qualitativeinformation about the system behaviour. The qualitative des
ription of a dy-nami
al system is given by the des
ription of the invariant sets that 
omposeits phase portrait. As before, the system is represented in terms of the equa-tions of state, where the system's relative displa
ement and velo
ity are the statevariables, named respe
tively x1 = z and x2 = z′.

x′1(t̂) = x2(t̂) (6.20a)
x′2(t̂) = −2ζx2(t̂)− x1(t̂)− pn|x2(t̂− τ̂)|α · sign

(

x2(t̂− τ̂)
) (6.20b)Seeking for better understanding of the system behaviour, �rst of all we shallperform a parametri
 analysis. Our interest is to determine the relationship ofthe multiple variables in (6.20) and see their e�e
t on overall system performan
e.By simulations we shall try to identify whi
h parameters 
ould drasti
ally 
hangethe system dynami
s.Let us start with the stru
tural damping ration ζ. Note that the vast majorityof stru
tures, espe
ially in the 
ivil engineering �eld, are lightly damped, typi
allyoperating between 0.5% and 7%. Figure 6.6 shows ve
tor �elds for the systemin (6.20) assuming, without loss of generality, 
onstant parameters pn = 1.0;

α = 0.15 and τ̂ = 0.8. Damping ratio is varying from 0.1% to 10%. From thosegraphi
s and 
onsidering 
ivil engineering stru
tures, it is worth noti
ing that thesystem dynami
s is not prone to be a�e
ted by 
hanges of the damping ration ζ,so that we 
an disregard its e�e
ts.
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Figure 6.6: Ve
tor �elds of system in (6.19) for pn = 1.0; α = 0.15; τ̂ = 0.8 anddi�erent damping ratio: a) ζ = 0.01; b) ζ = 0.03; 
) ζ = 0.06; d) ζ = 0.10.The next parameter to be evaluated is pn. The ve
tor �elds of the systemin (6.20) for pn equals to 0.5, 1.0, 2.0 and 4.0 are presented in Figure 6.7. Theother parameters are 
onsidered to be 
onstant as: ζ = 0.03, α = 0.15 and
τ̂ = 0.8. Although the graphs may initially seem di�erent, by plotting them atproper s
ales, the dynami
 equivalen
e among those systems 
an be eviden
ed.Note that for a parti
ular stru
ture (represented by m and wn), the parameter pnin
reases by either in
reasing the damper 
oe�
ient cd or redu
ing the arbitraryinitial 
ondition x0. Thus, from simulations we 
an say that even an importantin
rease in the damper's strongness will not 
hange signi�
antly the qualitativedes
ription of the dynami
s, as it would just imply a 
hange in the s
ale overwhi
h the system should be evaluated. Even more, although the 
hanges in thebehaviour are 
ertainly not proportional to pn, a 
hange of the s
ale on the statevariables whi
h is proportional to the 
hange of pn, will be enough to 
at
h the
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Figure 6.7: Ve
tor �elds of system in (6.19) for ζ = 0.03; α = 0.15; τ̂ = 0.8 anddi�erent values of pn: a) pn = 0.5; b) pn = 1.0; 
) pn = 2.0; d) pn = 4.0.Next, let us skip to the velo
ity exponent of the damper. A value of α=1means linear damping (velo
ity�proportional response). The hysteresis loop for alinear damper is a pure ellipse as shown in Figure 6.8. Nonlinear damping withlow exponent (0<α<1) shows a hysteresis 
urve mu
h more re
tangular, whatimplies more energy dissipation 
apa
ity. That is why nonlinear �uid devi
es arevery appre
iated for real appli
ations in stru
tural engineering, as they providesigni�
antly higher for
es at lower velo
ities 
ompared to linear dampers. Any αabove 1.0 produ
es very poor performan
e. Figure 6.9 shows the ve
tor �elds forthe system in (6.20) 
onsidering several values of α.A

ording with our numeri
al simulation, systems equipped with nonlinear damperat low damper's velo
ity exponents, let say α ≤ 0.20, exhibit substantially the
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Figure 6.8: Hysteresis loops for a linear (α = 1.0) and a nonlinear vis
ous �uiddamper (e.g. α = 0.1)
−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3PSfrag repla
ements
z

z
′

α = 0.01a)
−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3PSfrag repla
ements
z

z
′

α = 0.10b)
−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3PSfrag repla
ements
z

z
′

α = 0.15
)

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3PSfrag repla
ements
z

z
′

α = 0.30d)
−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

PSfrag repla
ements
z

z
′

α = 0.50e)
−1.5 −1 −0.5 0 0.5 1 1.5

−1.5

−1

−0.5

0

0.5

1

1.5

PSfrag repla
ements
z

z
′

α = 0.75f)
Figure 6.9: Ve
tor �elds of system in (6.19) for ζ = 0.03; pn = 1.0; τ̂ = 0.8 anddi�erent values of α: a) α = 0.01; b) α = 0.1; 
) α = 0.15; d) α = 0.3; e) α = 0.5;and f) α = 0.75.same dynami
s. Hen
e, when analysing stability of systems with added nonlin-ear dampers with low α, we 
an 
onsider a dynami
ally equivalent model6 �xing
α = 0; that is a model whi
h uses dry fri
tion (Coulomb Fri
tion) instead ofvis
ous nonlinear damping. This will not 
ompromise the general result of thestability analysis. The idea is to use a simpler mathemati
al model for the damper,having qualitatively equivalent dynami
s, in su
h a way that the expli
it stability6A de�nition of Equivalent Dynami
s 
an be found in �5.3.2
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an be a
hieved in a 
losed�form.The former observation is fundamental in this study, as it allowed us to trans-form a 
ontinuous nonlinear dynami
al system into a pie
ewise smooth dynami
alsystem 
omprised of two linear systems as it shall be explained later.Finally, let us 
onsider the e�e
ts of the delay τ̂ . Figure 6.10 shows the ve
tor�elds of the system in (6.20) varying τ̂ and 
onsidering the 
onstant parameters
ζ = 0.03; pn = 1.0 and α = 0.15. Even when the delay is very small, this resultsin self�sustaining os
illations of the system's response. The larger the delay, thelonger the limit 
y
le extension (See Fig. 6.10f). This limit 
y
le is 
hara
terizedfor a high frequen
y, mu
h higher than the natural frequen
y of the system. Thesmaller the delay, the higher the frequen
y of the limit 
y
le.In addition, for small delays (in the sense that will be de�ned later), there exists aregion in the neighborhood of the limit 
y
le, where the system behaviour 
hangesdrasti
ally. When the system state gets into this area (See dark spots in Figs.6.10a to 6.10d), it 
hanges suddenly the amplitude and frequen
y of os
illation.The frequen
y is in
reased strongly. These os
illations tend to mat
h the limit
y
le; however, if the delay is very small, su
h 
onvergen
e to the limit 
y
le isvery slow in terms of the displa
ement. In other words, whilst in terms of thevelo
ity (z′), the os
illations are very 
lose to those exhibit for the limit 
y
le,in terms of the displa
ement, the os
illations 
onverge very slowly to those inthe limit 
y
le. This high frequen
y region only o

urs for small delays. When
τ̂ be
omes larger, the system goes rapidly to the limit 
y
le without any otherphenomenon in between.An equivalent systemHen
eforth, we shall assume systems provided with added nonlinear damper withlow velo
ity exponent. Based on the previous parametri
 analysis, in pla
e ofstudying the system in (6.19), we shall 
onsiderer a dynami
ally equivalent systemwhi
h in
ludes dry fri
tion. Su
h a system 
an be expressed as:

z′′(t̂) + 2ζz′(t̂) + z(t̂) + pssign
(

z′(t̂− τ̂)
)

= 0 (6.21)where the damper for
e Fd is represented by pssign(z′(t̂− τ̂)); ps = cd/(mx0w
2
n)and the other parameters the same as in pages 90 and 91. Again, the system isrepresented in terms of the equations of state as in equation (6.22), where x1 = zand x2 = z′.

x′1(t̂) = x2(t̂) (6.22a)
x′2(t̂) = −2ζx2(t̂)− x1(t̂)− pssign

(

x2(t̂− τ̂)
) (6.22b)
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Figure 6.10: Ve
tor �elds of system in (6.19) for ζ = 0.03; pn = 1.0; α = 0.15 anddi�erent delays: a) τ̂ = 0.01; b) τ̂ = 0.05; 
) τ̂ = 0.1; d) τ̂ = 0.2; e) τ̂ = 0.4; andf) τ̂ = 0.8.
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Figure 6.11: Ve
tor �elds of system in (6.21) for ζ = 0.03; ps = 1.0; and di�erentdelays: a) τ̂ = 0.01; b) τ̂ = 0.05; 
) τ̂ = 0.1; d) τ̂ = 0.2; e) τ̂ = 0.4; and f) τ̂ = 0.8.For 
ompleteness, Figure 6.11 shows the ve
tor �elds of the equivalent system in(6.21) varying τ̂ and 
onsidering the 
onstant parameters ζ = 0.03 and ps = 1.0.The equivalent system behaviour 
an be des
ribed in the same way than the orig-inal one, i.e., any delay 
auses self�sustaining os
illations, and large delays imply
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illations and low frequen
y in the resultant limit 
y
le. Nevertheless,two main di�eren
es 
ould be pointed out. (i) For small τ̂ , the self�sustainingos
illations in the equivalent system (6.21) are larger than those exhibited for theoriginal system in (6.19); this is due to the fa
t that the simpli�ed model (6.21)involves the same damper for
e Fd even for very small velo
ities whilst in (6.19)
Fd is strongly lessened as velo
ities tend to zero. And (ii), for small delays theequivalent system (6.21) 
annot reprodu
e the sliding motion7 in (6.19) just be-fore the self�sustaining os
illations start.6.3.2 Expli
it stability analysisWe intend to investigate analyti
ally the stability of the system in equation (6.19).For starting and just in the seek of the 
ompleteness of this thesis, we will demon-strate the system's stability when no delay is 
onsidered in the feedba
k loop.Su
h stability is expe
ted from a physi
al point of view, as the nonlinear damperis a passive devi
e whi
h dissipates energy from the system.Let us 
onsiderer the system (6.20) and assume τ̂ = 0, the dynami
s may berewritten as:

x′1(t̂) = x2(t̂) (6.23a)
x′2(t̂) = −2ζx2(t̂)− x1(t̂)− pn|x2(t̂)|α · sign

(

x2(t̂)
) (6.23b)By using the 
lassi
 stability theory for non�linear systems8, we 
an assert thatthe system in (6.23) is a time�invariant system (autonomous system) with onlyone singular or equilibrium point at the origin, i.e., at (x1, x2) = (0, 0).Let V (x) : R2 → R be the Lyapunov 
andidate fun
tion su
h as:

V (x) =
1

2
x21 +

1

2
x22 (6.24)Note that V (x) is globally positive de�nite, has 
ontinuous partial derivativesand is radially unbounded in domain R

2. Now, we will �nd the time derivative of
V (x) along the state traje
tories of system (6.23) as follows:

V ′(x) = x1x
′
1 + x2x

′
2

= x1x2 + x2 (−2ζx2 − x1 − pn|x2|α · sign(x2))
= x1x2 +−2ζx22 − x1x2 − pnx2|x2|α · sign(x2)
= −2ζx22 − pn|x2|α+1

(6.25)7See phenomena on Filippov systems in �5.4.38See the main 
on
epts of this theory in �4.4



6.3. Os
illator with added non�linear damper 99where the property |x| = x · sign(x) was used.Due to the fa
t that ζ, pn and α are all stri
tly positive parameters, the �nalexpression for V ′(x) is negative for all x2 6= 0. Nonetheless, in 
onsequen
e of x1does not appear in that expression, the derivative of V (x) is said to be negativesemi�de�nite. Based on Theorem 4.4, we 
an 
on
lude that the system is stable;even so, the demonstration is still un
ompleted be
ause we 
annot draw 
on
lu-sions on asymptoti
 stability.So, in what follows we will apply a powerful tool for system analysis known as in-variant set theorems9, parti
ularly, the Theorem 4.8 known as LaSalle's Theorem.Let R be the set of all points where V ′(x) = 0. Noti
e that V ′(x) is equalto zero only for x2 = 0. Now, by substituting x2 = 0 in (6.23), just a singletraje
tory10 
an be settled, that is x1 = 0, therefore, no solution 
an be stay in
R other than the trivial solution x(t̂) = 0. Thus, given that the largest invariantset R for the system in (6.23) is the origin, and invoking Theorem 4.8, we 
an
on
lude that the system with no delay in the damper response is asymptoti
allystable, what implies that x(t̂) → 0 as t̂→ ∞.In a similar manner, we 
an also verify the stability 
onditions for the dynam-i
ally equivalent system (using dry fri
tion) with no delay. Let us 
onsiderer now,the system (6.22) and assume τ̂ = 0, the dynami
s may be rewritten as:

x′1(t̂) = x2(t̂) (6.26a)
x′2(t̂) = −2ζx2(t̂)− x1(t̂)− pssign

(

x2(t̂)
) (6.26b)As before, it is about a time�invariant system but now the equilibrium is not longera point but a set of points (
ontinuum). To see that, 
onsider the dynami
s of(6.26). When x2 goes near to zero from the positive domain, i.e, x2 → 0+, theve
tor �eld 
omponent x′1 → 0 while the 
omponent x′+2 → −x1 − ps. On theother side, when x2 → 0− then x′1 → 0 while x′−2 → −x1 + ps.Note that for all x1 su
h that −ps ≤ x1 ≤ ps, the ve
tors (x′1, x′−2 ) and (x′1, x′+2 )are normal to x1�axis and opposite, both pointing towards x2 = 0, what impliesthat the dynami
s from both sides 
lose to the boundary x2 = 0, in the regionalready indi
ated, will 
an
el ea
h other. In other words, that set of point is anattra
tor of the system. We 
an formalise the former observation as:

x′ = 0, ∀x ∈ H where H := {x ∈ R
2 : x2 = 0,−ps ≤ x1 ≤ ps} (6.27)Again, let us assume the Lyapunov 
andidate fun
tion in (6.24) and �nd the time9A brief des
ription is presented in �4.4.210Solution for null dynami
s (x′ = 0)
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tories of system (6.26), as follows:
V ′(x) = x1x

′
1 + x2x

′
2

= x1x2 + x2 (−2ζx2 − x1 − pssign(x2))
= x1x2 +−2ζx22 − x1x2 − psx2sign(x2)
= −2ζx22 − ps|x2|

(6.28)Sin
e all parameters in (6.28) are stri
tly positives, V ′(x) is negative for all x2 6= 0.As it was previously, in 
onsequen
e of x1 does not appear in the derivative of
V (x), it is a negative semi�de�nite fun
tion and we 
annot 
on
luded asymptoti
stability yet.Newly, Let R be the set of all points where V ′(x) = 0, that is, x2 = 0. Nonethe-less, in the light of 
ondition (6.27), the largest invariant set R for the systemin (6.26) is H. Thus, by means of the Theorem 4.8 (LaSalle's Theorem), we 
anassert that the system is asymptoti
ally stable respe
t to the invariant setH, whatimplies that x(t̂) → H as t̂ → ∞. In addition, due to V (x) is globally positivede�nite and radially unbounded in R

2, this stability is global.Pie
ewise linear dynami
al systemAs it was pointed out earlier from the numeri
al analysis, we shall 
onsiderer thesimpli�ed system in (6.22) whi
h preserves dynami
 equivalen
e with our originalsystem in equation (6.20). The advantage of this ex
hange lies in the fa
t thatsu
h a system 
an be modelled by a pie
ewise linear set of ODEs of the form:
Ψτ̂ : x′ = Ax+Bu (6.29)where x ∈ R

2 is the two�dimensional state ve
tor; A and B are the systemmatri
es in 
ontrollable 
anoni
al form as presented in (6.30), and the swit
hingparameter u obeys the swit
hing rule in equation (6.31).
A =

[

0 1
−1 −2ζ

]

; B =

[

0
−ps

] (6.30)
u =

{

1.0, if x2(t̂− τ̂) > 0,

−1.0, if x2(t̂− τ̂) < 0,
(6.31)In what follows, we will term F1(x) the system ve
tor �eld of Ψτ̂ when u = 1.0,

F2(x) the ve
tor �eld of Ψτ̂ when u = −1.0. In addition, we will label as φi(x0, t)the �ow generated by Fi (i = 1, 2) as explained in �5.1.2, su
h that:
d

dt
(φi(x, t̂)) = Fi(φi(x, t̂)); φi(x0, 0) = x0 (6.32)
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illator with added non�linear damper 101Finally, note that the system's evolution in time is uniquely determined on
e wehave de�ned the values of x1, x2, and u. Thus, in the three�dimensional spa
e
(x1, x2, u), we 
an visualise the state spa
e as two parallel half�planes, partiallyoverlapping wherever u 
an have two di�erent values for the same pair (x1, x2).To get a better understanding about how a pie
ewise system 
an be inter-preted, let us 
onsiderer �rstly the system with no delay, as written in equation(6.33), together with the 
orresponding swit
hing rule in (6.34).

Ψ0 : x
′ = Ax+Bu (6.33)

u =

{

1.0, if x2(t̂) > 0,

−1.0, if x2(t̂) < 0,
(6.34)The system ve
tor �elds F1 and F2 of the system in (6.33) for ζ = 0.03 and

ps = 1.0 are shown in Figure 6.12, noti
e that both equilibrium points are stablefo
i (lo
ated at (0,-psu)).
 
 

 
 

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

PSfrag repla
ements
x1

x
2

F1a)  
 

 
 

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

PSfrag repla
ements
x1

x
2

F2b)

Figure 6.12: Ve
tor �elds F1 and F2 of the system in (6.33) for ζ = 0.03, ps = 1.0:a) For u = 1.0 and b) for u = −1.0 .Note however that for the system Ψ0, the ve
tor �eld F1 is valid only when theswit
hing rule (6.34) is satis�ed, that is, for all x2 > 0; in the same way that
F2 is valid only when x2 < 0. Thus, the 
omplete ve
tor �eld of the pie
ewiselinear system Ψ0 is made of the 
ombination of F1 and F2, in their respe
tivevalid domains.The system phase plane 
an be partitioned into the following two regions, being
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Si the valid domain for Fi (i = 1, 2):

S1 := {x ∈ R
2 : x2 > 0}

S2 := {x ∈ R
2 : x2 < 0} (6.35)Also, we label the boundaries between the regions above as:

Σ+
12 := {x ∈ R

2 : x1 > −ps, x2 = 0}
Σ−

12 := {x ∈ R
2 : x1 < ps, x2 = 0} (6.36)Note that Σ+

12 is the subset where the swit
hing 
ondition (6.34) is satis�ed for
hanging from F1 to F2, whilst Σ−

12 is the subset where (6.34) is satis�ed for goingba
k from F2 to F1. Hen
eforth, they will be referred as swit
hing sets.
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Figure 6.13: Ve
tor �elds of the pie
ewise linear system Ψ0 for ζ = 0.03, ps = 1.0:a) (x1, x2)�plane; b) three�dimensional spa
e (x1, x2, u).Figure 6.13 presents the ve
tor �eld of systemΨ0. On the left, the (x1, x2)�planeshows that the invariant set (the equilibrium) of the system. The attra
tor is nolonger a fo
us point (as it was for F1 and F2), but the invariant set H as de-�ned before in formula (6.27). This set also 
orresponds to the region where theswit
hing sets overlap ea
h other, i.e., the set Σ+
12 ∩ Σ−

12. This implies that anytraje
tory of (6.33) lying on this interse
tion will stay there for all future time.From a physi
al point of view this indi
ates that, when an os
illation rea
hes itsmaximum displa
ement, and therefore zero velo
ity, but this displa
ement is su
hthat the distan
e from the origin is less than the parameter ps, the system willremain blo
ked at that position (di�erent from zero). It is due to the system
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es 
annot over
ome the stati
 fri
tion inside the damper, and so, thesystem 
annot be re
entered by itself.It is worthy of note that ps grows as cd does, so larger nonlinear dampers willhave a longer �dead zone� where the system may remain blo
ked.Similarly, Figure 6.13b shows the three�dimensional spa
e (x1, x2, u). From amathemati
al point of view, when the system's state hits the swit
hing sets in-terse
tion Σ+
12∩Σ−

12 (shadowed plane in the �gure), the system keep trapped intothis plane and remains 
ontinuously swit
hing between F1 and F2.Flows of the pie
ewise linear systemThe �ows φ1 and φ2 are well�de�ned on ea
h 
orresponding region S1 and S2. To�nd the mathemati
al expression of these �ows generated by the system ve
tor�elds F1 and F2, we have to solve ea
h ODE in the set of equations (6.29). Letus 
onsider a general expression for the linear model Ψτ̂ as:
x′1 = x2 (6.37a)
x′2 = −2ζx2 − x1 − psu (6.37b)where u is equals to 1.0 for F1 and equals to −1.0 for F2. To make things easier, letus rewrite the system in (6.37) through a new set of state variables by substituting

y1 = x1 + psu and y2 = x2. Thus, we have:
y′1 = y2 (6.38a)
y′2 = −2ζy2 − y1 (6.38b)This system 
an be expressed in matrix notation as y′ = Ay, where A is the samematrix presented in formula (6.30). For this ODE, the solution is of the form in(6.39) being λ1,2 the eigenvalues of matrix A, and C1,2 two arbitrary 
onstantsdepending on the initial 
onditions y1(0) = y10 and y′1(0) = y2(0) = y20.

y1(t̂) = C1e
λ1 t̂ + C2e

λ2 t̂ (6.39)where
λ1 = −ζ +

√

ζ2 − 1

λ2 = −ζ −
√

ζ2 − 1
(6.40)taking the �rst derivative of y1 respe
t to t̂, we get:

y′1(t̂) = C1λ1e
λ1 t̂ + C2λ2e

λ2 t̂ (6.41)



104 CHAPTER 6. STABILITY ANALYSIS OF RTST ON NONLINEARDAMPERSBy equaling equations (6.39) and (6.41) at t̂=0 with the respe
tive initial 
ondi-tions, the set of equations for Ci 
an be found as:
C1 + C2 = y10

C1λ1 + C2λ2 = y20
(6.42)solving for C1 and C2 we get:

C1 = Cλ(y20 − y10λ2)
C2 = Cλ(−y20 + y10λ1)
Cλ = 1

λ1−λ2

(6.43)repla
ing these 
onstants in (6.39) and (6.41), 
onverting ba
k to the original pa-rameters and taking into a

ount that x1(0) = x10 = y10−psu and x2(0) = x20 = y20,we 
an write the solution for x1 and x2 as:
x1(t̂) = Cλ

(

(x20 − (x10 + psu)λ2)e
λ1 t̂ + (−x20 + (x10 + psu)λ1)e

λ2 t̂
)

− psu

x2(t̂) = Cλ

(

(x20 − (x10 + psu)λ2)λ1e
λ1 t̂ + (−x20 + (x10 + psu)λ1)λ2e

λ2 t̂
)(6.44)Thus, the �ows φ1 and φ2 
an be obtained from (6.44) by substituting u a

ordingto the respe
tive ve
torial �eld F1 and F2 as follows:

φ1(x0, t̂) =

[

a11e
λ1 t̂ + a12e

λ2 t̂ − ps
a11λ1e

λ1 t̂ + a12λ2e
λ2 t̂

] (6.45a)
φ2(x0, t̂) =

[

a21e
λ1 t̂ + a22e

λ2 t̂ + ps
a21λ1e

λ1 t̂ + a22λ2e
λ2 t̂

] (6.45b)where x0 = (x10, x20) and
a11 = Cλ (x20 − (x10 + ps)λ2) a12 = Cλ (−x20 + (x10 + ps)λ1)
a21 = Cλ (x20 − (x10 − ps)λ2) a22 = Cλ (−x20 + (x10 − ps)λ1)

(6.46)The above expli
it expressions for the �ows allows us to get any traje
tory inthe (x1, x2)�plane from any initial 
ondition.Delay by 
hanging the swit
hing ruleThe main idea behind the use of pie
ewise smooth dynami
al systems for thepresent stability analysis, is to reap the bene�ts of in
luding, in a very easy way,
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ts of the delay in the system dynami
s. Thus, after some proper transfor-mations, we 
an study the stability of an equivalent non�delayed system, ratherthan fo
using on a 
omplex delayed system. All this without 
ompromising theintegrity of the stability analysis results.Consider the dynami
s of system (6.29), note that the delay τ̂ is only expli
itin the swit
hing rule. The system phase plane 
an be partitioned into the tworegions as follows:
S1 := {x ∈ R

2 : x2(t̂− τ̂) > 0}
S2 := {x ∈ R

2 : x2(t̂− τ̂) < 0} (6.47)To introdu
e the e�e
ts of the delay in the system dynami
s, observe that if atraje
tory 
rosses one of the swit
hing sets Σ+
12 or Σ−

12, be
ause of the delay, thea
tual swit
hing from one system 
on�guration to the other will o

ur after sometime de�ned by τ̂ . Indeed, swit
hings o

ur on the delayed swit
hing sets Στ̂+
12and Στ̂−

12 whi
h are images of Σ+
12 and Σ−

12 under the system �ow φi for some timedelay. Spe
i�
ally we have,
Στ̂+
12 := {φ1(x, τ̂ ), x ∈ Σ+

12}
Στ̂−
12 := {φ2(x, τ̂ ), x ∈ Σ−

12}
(6.48)
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Figure 6.14: Ve
tor �elds of the pie
ewise linear system Ψτ̂ in (6.29) for τ̂ = 0.4,
ζ = 0.03, ps = 1.0: a) (x1, x2)�plane; b) three�dimensional spa
e (x1, x2, u).Thus, the original swit
hing sets rotate 
lo
kwise around the 
orrespondingpoint (0,-psu) as shown in Figure 6.14. The position of Στ̂+

12 in the (x1, x2)�plane
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an be easily determined by 
omputing φ1 for any initial 
ondition falling on Σ+
12and t = τ̂ . Similar pro
edure 
an be done for Στ̂−

12 by 
onsidering φ2 and Σ−

12.Therefore, instead of analysing a delayed model, we 
an repla
e the system in(6.29) by a non�delayed system whi
h in
ludes the dynami
 e�e
ts of the delay bymoving the original swit
hing sets towards the 
orresponding position as it wasexplained before. Thus, we 
an rewrite the delayed system (6.29) as follows:
Ψ0 : x

′ = Ax+Bu (6.49)
u 7→

{

1.0, if x ∈ Στ̂−
12 ,

−1.0, if x ∈ Στ̂+
12 ,

(6.50)where the above swit
hing rule establishes that, parameter u swit
h to 1.0 (or
−1.0) only when the respe
tive 
ondition in (6.50) is satis�ed, that is to say,when the traje
tory hits Στ̂−

12 (or Στ̂−
12 ), and will remain �xed at this value untila new 
ondition in (6.50) is satis�ed. In other words, the swit
hing parameter u
hanges if and only if a delayed swit
hing set (6.48) is rea
hed for the non�delayedsystem states.This e�e
t of the delay on the swit
hing rule, was �rstly envisaged when study-ing the dynami
s of a delayed hystereti
 relay feedba
k system [Colombo et al., 2007℄.In that work, the authors demonstrated that the dynami
s of the delayed systemremain qualitatively the same as those of a system with properly 
onstru
tedswit
hing sets. In other words, all the dynami
s observed in a non�delayed sys-tem with swit
hing sets sele
ted as (6.50) 
an be found in an equivalent delayedsystem with properly swit
hing set as (6.31).The prior statement is true for all τ̂ ≤ π. For larger delays, those resear
hersidenti�ed a new bifur
ation phenomenon, so�
alled event 
ollision, where the de-layed swit
hing manifold Στ̂+

12 interse
ts the swit
hing set Σ−

12 (or equivalently,
Στ̂−
12 interse
ts Σ+

12). In su
h a 
ase, the dynami
s be
ome mu
h more 
ompli-
ated, whereby it will not be 
onsidered here, sin
e a

ording to us, the 
ase isoutside the 
ore to resear
h of this thesis. Further details 
an be found in thereferen
e 
ited above and some referen
es within.Existen
e of limit 
y
leWe now investigate the existen
e of limit 
y
les indu
ed by the delay in thedamper's response. Let us note O the limit 
y
le generated by (6.49). We 
anthen partition the limit set O in two di�erent segments {O1,O2} that 
orresponds
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rete values of u as shown in Figure 6.14. Let us de�ne x∗ the point onthe (x1, x2)�plane where the limit 
y
le hits the swit
hing set Στ̂−
12 and x∗∗ theanalogous point where O hits Στ̂+

12 .The part O1 belongs to the ve
tor �eld F1 and 
orresponds to the traje
tory underthe system �ow φ1 whi
h starts on x∗ and ends on x∗∗ after some time named t̂∗.Similarly, the part O2 belongs to the ve
tor �eld F2 and 
orresponds to the tra-je
tory under the system �ow φ2 whi
h starts on x∗∗ and ends on x∗ after sometime named t̂∗∗. We 
an formally de�ne them as:
O1 =

{

x : x(t̂) = φ1(x
∗, t̂), ∀t̂ ∈ [0, t̂∗]

}

, (6.51)
O2 =

{

x : x(t̂) = φ2(x
∗∗, t̂), ∀t̂ ∈ [0, t̂∗∗]

}

, (6.52)Geometri
 arguments 
an be used to establish the topology of the 
y
les thatwe 
an expe
t from the system. We will show that, if the limit 
y
le exists, it issymmetri
 and unimodal, i.e., 
hara
terised by only two swit
hing events.First, note that the equilibria of both linear systems in equation (6.49) arefo
i (See Fig 6.12), even more, sin
e both systems share the same matrix A, theyhave the same eigenve
tors, and then, the ve
tor �elds F1 and F2 are exa
tly thesame but 
onverging to di�erent points; in other words, if the ve
tor �eld F1 isdispla
ed through the (x1, x2)�plane from (�ps,0) to (ps,0), it will perfe
tly mat
hthe ve
tor �eld F2.In addition, both delayed swit
hing sets are images of a portion of the x1�axisunder the respe
tive �ow φi. Due to F1 and F2 have the same dynami
s 
hara
-teristi
s (the same eigenvalues), the �ows φ1 and φ2 are equivalents, and so, theangles 
overed for both �ows on (x1, x2)�plane throughout a time equals to τ̂ willbe the same. This implies that both delayed swit
hing sets Στ̂+
12 and Στ̂−

12 havethe same slope. Putting together the above parti
ularities, we 
an say that thesystem's dynami
s in the phase plane are symmetri
al with respe
t to the origin.That means, every point on the right�hand side in the plane (x1, x2)�plane isre�e
ted through the origin.Be
ause of this symmetry, the part of the limit 
y
le O1 whi
h 
orresponds to thetraje
tory under the �ow φ1 starting in a point x∗ on Στ̂−
12 should hit the otherdelayed swit
hing set Στ̂−

12 just in the symmetri
al point with respe
t to the origin,what suggests that, the aforementioned point x∗∗ 
annot be other than −x∗. Fur-thermore, in 
onsequen
e of the symmetry and the 
orrelation between the �ows
φ1 and φ2 pointed out before, the evolution time for 
ompleting the traje
toryof the limit 
y
le O1, is exa
tly the same as the evolution time 
orresponding to
O2. This implies that t̂∗∗ = t̂∗, and that the period for a 
omplete limit 
y
le Ois T̂ ∗ = 2t̂∗.
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y
le exits and is symmetri
, the following 
onditions must besatis�ed.
• No interse
tion must exist between the delayed swit
hing sets, i.e.,

Στ̂+
12 ∩ Στ̂−

12 = ∅ (6.53)
• The limit 
y
le must hit the delayed swit
hing sets in symmetri
al pointswith respe
t to the origin, i.e.,

φ1(x
∗, t̂) = −x∗ for some x∗ ∈ Στ̂−

12 ∧ t̂ = t̂∗ (6.54)
φ2(−x∗, t̂) = x∗ for some − x∗ ∈ Στ̂+

12 ∧ t̂ = t̂∗ (6.55)Due to the fa
t that even a small delay 
auses no interse
tion between theswit
hing sets Στ̂+
12 and Στ̂−

12 , we 
an assert that the presen
e of delay implies theexisten
e of the limit 
y
le.In what follows, we will �nd some 
losed�form expressions for des
ribing themain 
hara
teristi
s of su
h a limit 
y
le, namely, amplitude and period of os
il-lation.Firstly, we will write two new equations for the swit
hing sets in order to makeeasier this mathemati
al development.
Στ̂+
12 := {x ∈ R

2 : x2 = m
Σ
x1 − b

Σ
, x2 > 0}

Στ̂−
12 := {x ∈ R

2 : x2 = mΣx1 + bΣ , x2 < 0} (6.56)Without loss of generality, we will fo
us our attention on traje
tories generatedby the ve
tor �eld F1 along its valid domain S1. We 
an de�ne the slope andthe x2�inter
ept of the swit
hing sets on the (x1, x2)�plane, by 
al
ulating the�nal states under the �ow φ1, for an initial 
ondition xps = (ps, 0) ∈ Σ+
12 and anevolution time equals to the delay τ̂ , as:

m
Σ
=

φ12(xps , τ̂ )

φ11(xps , τ̂ ) + ps
; b

Σ
= −psmΣ

(6.57)where the se
ond�order subs
ript indi
ates the element position in the ve
tor φ1.Now, we are interested in �nding the 
onditions for whi
h the expression(6.54) is satis�ed. Let x∗ = (x∗1, x
∗
2) be the initial 
ondition on the plane Στ̂−

12 fora traje
tory under the �ow φ1. Be
ause of this point falls just on the swit
hing set,
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illator with added non�linear damper 109by using equation (6.56) we 
an express x∗2 as fun
tion of x∗1 as x∗2 = m
Σ
x∗1 + b

Σ
.Then, the traje
tory under φ1 
an be written as:

x(t̂) = φ1(x
∗, t̂) = φ1((x

∗
1, x

∗
2), t̂) = φ1((x

∗
1,mΣx

∗
1 + bΣ), t̂) (6.58)If it is about a limit 
y
le, in a

ord with (6.54), there must exist an evolutiontime t̂ = t̂∗ su
h that,

φ1((x
∗
1,mΣ

x∗1 + b
Σ
), t̂∗) = −x∗ = (−x∗1,−mΣ

x∗1 − b
Σ
) (6.59)By using de�nition in (6.45a), we 
an write expli
it expressions for the �ow inequation (6.59) as:

φ11((x
∗
1, x

∗
2), t̂

∗) =

Cλ

(

(x∗2 − (x∗1 + ps)λ2)e
λ1 t̂∗ + (−x∗2 + (x∗1 + ps)λ1)e

λ2 t̂∗
)

− ps = −x∗1
(6.60)and

φ12((x
∗
1, x

∗
2), t̂

∗) =

Cλ

(

(x∗2 − (x∗1 + ps)λ2)λ1e
λ1 t̂∗ + (−x∗2 + (x∗1 + ps)λ1)λ2e

λ2 t̂∗
)

= −x∗2
(6.61)We have to derive two new expression in order to solve the above �ow for t̂∗ and

x∗. Multiplying formula (6.60) by λ1, subtra
ting (6.61) from this produ
t, andafter some known substitutions and rearrangement, we get:
eλ2 t̂∗ (−x∗1(mΣ

− λ1)− b
Σ
+ psλ1) = x∗1(mΣ

− λ1) + b
Σ
+ psλ1 (6.62)In a similar manner, we 
an multiply formula (6.60) by λ2 and subtra
t (6.61)from this produ
t for getting:

eλ1 t̂∗ (−x∗1(mΣ − λ2)− bΣ + psλ2) = x∗1(mΣ − λ2) + bΣ + psλ2 (6.63)Now, we 
an solve for t̂∗ from either (6.62) or (6.63). By 
onsidering equation(6.63), we 
an write an expli
it expression for 
al
ulating the evolution time forthe half�part of the limite 
y
le O1 as:
t̂∗ =

1

λ1
ln

(

x∗1(mΣ − λ2) + bΣ + psλ2
−x∗1(mΣ − λ2)− bΣ + psλ2

) (6.64)In 
onsequen
e of the symmetry, the period for the whole limit 
y
le O, is
T̂ ∗ = 2t̂∗ (6.65)



110 CHAPTER 6. STABILITY ANALYSIS OF RTST ON NONLINEARDAMPERSFurthermore , the evolution time in (6.64) may be substituted into formula (6.62),and then, some logarithmi
 identities may be applied to yield:
x∗1(mΣ

− λ1) + b
Σ
+ psλ1

−x∗1(mΣ
− λ1)− b

Σ
+ psλ1

=

(

x∗1(mΣ
− λ2) + b

Σ
+ psλ2

−x∗1(mΣ
− λ2)− b

Σ
+ psλ2

)

λ2
λ1 (6.66)The former equation is an impli
it fun
tion of x∗1 and 
an be solved numeri
ally.It is worthy noti
ing that all the other variables in formula (6.66) are known andeasily derivable from the problem parameters through the 
losed�form expressionpresented before.In this manner, also the maximum velo
ity developed under the limit 
y
le 
anbe easily 
al
ulated from x∗2 = m

Σ
x∗1 + b

Σ
.
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Figure 6.15: Names of the 
hara
teristi
s in the limit 
y
le.The other important 
hara
teristi
 of the limit 
y
le is the maximum displa
e-ment rea
hed for the os
illations. To �nd it, it is enough to determine the pointwhere the velo
ity under the �ow φ1(x
∗, t̂) vanishes, i.e, the se
ond 
omponent of

φ1(x
∗, t̂) must be for
ed to be equal to zero. Thus, from formula (6.61) we 
anwrite:

φ12((x
∗
1, x

∗
2), t̂) = 0

(x∗2 − (x∗1 + ps)λ2)λ1e
λ1 t̂ + (−x∗2 + (x∗1 + ps)λ1)λ2e

λ2 t̂ = 0
(6.67)We 
an solve equation (6.67) for t̂. Let us name this time as t̂∗0, whi
h representsthe needed evolution time for a traje
tory starting from x∗ under the �ow φ1 to
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ement, and therefore, null velo
ity. Applying logarithmi
properties we 
an rearrange (6.67) to yield:
t̂∗0 =

1

λ1 − λ2
ln

(

(x∗2 − (x∗1 + ps)λ1)λ2
(x∗2 − (x∗1 + ps)λ2)λ1

) (6.68)Hen
e, we 
an 
al
ulate the maximum displa
ement 
aused in the limit 
y
leby evaluating the �rst 
omponent of the �ow φ1(x
∗, t̂∗0) for the evolution timepreviously found.

x∗1max
= Cλ

(

(x∗2 − (x∗1 + ps)λ2)e
λ1 t̂∗0 + (−x∗2 + (x∗1 + ps)λ1)e

λ2 t̂∗0

)

− ps (6.69)The above formulas 
omprise the 
losed�form solution for de�ning the limit
y
le of SDOF systems whi
h in
lude a delayed dry fri
tion element. In 
on-sequen
e of the dynami
 equivalen
e pointed out in the numeri
al parametri
analysis in �6.3.1, we 
an assert that these expression are also valid for SDOFsystems with delayed nonlinear vis
ous dampers whi
h exhibit a damping expo-nent α lower than 0.2.In what follows, we show a numeri
 example to 
larify how these set of for-mulas 
an be applied.Example 6.1 (Finding the limit 
y
le).Let us assume a SDOF system with the next properties: mass m = 1000Kg, sti�-ness k = 1×105N/m and damping ratio ζ = 5%. Also, let us suppose a nonlinearvis
ous damper added to the system with exponent α = 0.1 and a nonlinear 
o-e�
ient cd = 50kN(se
/m)0.1. We are interested in 
hara
terizing the limit 
y
leof the system, if a 
onstant delay of 0.03se
 is 
onsidered in the damper response.To solve this problem, the �st step is to �nd a dimensionless expression of theform (6.21) by using the proper parameters de�ned in page 91. Without loss ofgenerality, let us assume an arbitrary initial 
ondition x0 = 5
m.
wn =

√

k

m
= 10rad/sec; ps =

cd
mw2

nx0
= 10; τ̂ = wnτ = 0.3and z = y/x0, where we have named y the displa
ement of the SDOF system inmeters.The eigenvalues of the system 
an be obtained from the matrix A in (6.30) as:

eig(A) = λ1,2 = −ζ ±
√

ζ2 − 1 = −0.05± 0.9987i;
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al
ulate the slope and the x2�inter
ept of the swit
hing sets onthe (x1, x2)�plane in a

ord with formula (6.57) by using the de�nition in (6.45a).
φ11((ps, 0), τ̂ ) = φ11((10, 0), 0.3)

= Cλ

(

(x20 − (x10 + ps)λ2)e
λ1τ̂ + (−x20 + (x10 + ps)λ1)e

λ2τ̂
)

− ps
= (−0.5006i)

(

(0− 20 · (−0.05 − 0.9987i))e0.3(−0.05+0.9987i) · · ·
+(0 + (20)(−0.05 + 0.9987i))e0.3(−0.05−0.9987i)

)

− 10
= 9.1156

φ12((ps, 0), τ̂ ) = φ12((10, 0), 0.3)
= Cλ

(

(x20 − (x10 + ps)λ2)λ1e
λ1 τ̂ + (−x20 + (x10 + ps)λ1)λ2e

λ2τ̂
)

= −5.8226therefore,
mΣ =

φ12 (xps ,τ̂)

φ11 (xps ,τ̂)+ps
= −5.8226

9.1156+10 = −0.3046

b
Σ
= −psmΣ

= −10(−0.3046) = 3.046So that, we are now able to 
al
ulate the point where the limit 
y
le impa
ts theswit
hing sets by solving formula (6.66), as follows:
x∗
1(−0.3046−(−0.05+0.9987i))+3.046+10(−0.05+0.9987i)

−x∗
1(−0.3046−(−0.05+0.9987i))−3.046+10(−0.05+0.9987i) = · · ·

(

x∗
1(−0.3046−(−0.05−0.9987i))+3.046+10(−0.05−0.9987i)

−x∗
1(−0.3046−(−0.05−0.9987i))−3.046+10(−0.05−0.9987i)

)
−0.05−0.9987i
−0.05+0.9987i ⇒

x∗
1(−0.2546−0.9987i)+2.546+9.9875i
x∗
1(0.2546+0.9987i)−3.546+9.9875i =

(

x∗
1(−0.2546+0.9987i)+2.546−9.9875i
x∗
1(0.2546−0.9987i)−3.546−9.9875i

)−0.995+0.099iSolving the previous formula, we get x∗1 = 0.0092. (hint: you 
an separate realand imaginary part and solve numeri
ally for one of them.). So, we 
an alreadyknow the peak velo
ity of the limit 
y
le by 
al
ulating x∗2 = m
Σ
x∗1+bΣ = 3.0432.On
e the point where the limit 
y
le hits the swit
hing sets is found, we just needto substitute the known parameters into equation (6.64) to obtain the evolutiontime for the traje
tory O1 between the delayed swit
hing sets.

t̂∗ = 1
−0.05+0.9987i ln

(

0.0092(−0.3046−(−0.05−0.9987i))+3.046+10(−0.05−0.9987i)
−0.0092(−0.3046−(−0.05−0.9987i))−3.046+10(−0.05−0.9987i)

)

= 0.591Thus, the period for the limit 
y
le 
an be obtained as T̂ ∗ = 2t̂∗ = 1.182.
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illator with added non�linear damper 113Finally, the evolution time for the maximum displa
ement under the limit 
y
le
an be 
al
ulated from (6.68) as:
t̂∗0 =

1
1.9975i ln

(

(3.0432−(10.0092)(−0.05+0.9987i))(−0.05−0.9987i)
(3.0432−(10.0092)(−0.05−0.9987i))(−0.05+0.9987i)

)

= 0.291and the 
orresponding maximum amplitude from (6.69):
x∗1max

= 1
1.9975i

(

(3.0432 − (10.0092)λ2)e
0.291λ1 · · ·

+(−3.0432 + (10.0092)λ1)e
0.291λ2

)
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Figure 6.16: Traje
tory going to the limit 
y
le of the system in example 6.1.The task is almost �nished, after 
onverting ba
k the solutions to the originalparameters we will get the 
omplete dynami
 
hara
terization of the limit 
y
le.Figure 6.16 shows a numeri
al solution whi
h 
on�rms the features listed below.Peak limit 
y
le displa
ement, y∗max = x∗1max
x0 = 0.453(0.05)m = 22.65mm.Peak limit 
y
le velo
ity, ẏ∗ = x∗2x0wn = 3.0432(0.05)m(10)1/se
 = 1.52m/se
.Period of os
illation, T ∗ = T̂ ∗/wn = 0.118se
 ∴ f∗ = 8.46Hz.

�Existen
e of high frequen
y region.At the end of se
tion 6.3.1, we showed through numeri
al simulation how, for arange of small delay τ̂ , the system exhibits a harmful phenomenon whi
h is 
har-a
terized by os
illations at high frequen
y. In this se
tion we intend to de�ne the
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onditions under whi
h that high frequen
y region takes pla
e.We identi�ed a system state, named x⋆ = (x⋆1, x
⋆
2), whi
h 
orresponds to thepoint where the ve
torial �eld F1 is tangent to the swit
hing set Στ̂−

12 . Similarlyand by symmetry, we 
an also named −x⋆ the point where the ve
torial �eld F2is tangent to the swit
hing set Στ̂+
12 (See Fig. 6.17).
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Figure 6.17: Parameter names when delimiting the high frequen
y zoneWe found that, any traje
tory under F2 whi
h hits the swit
hing set Στ̂−
12in between the segment from (x⋆1, x

⋆
2) to (ps, 0) (or equivalently, under F1 theswit
hing set Στ̂−

12 in between the segment from (−ps, 0) to (−x⋆1,−x⋆2)), will re-main trapped in middle of both swit
hing sets, 
ommuting 
onstantly. This 
ausesthe system to in
rease the frequen
y of os
illation suddenly. In what follows, wewill derive an analyti
al expression for �nding the point x⋆ whi
h allows us toset boundaries of these harmful zone of self�sustained high�frequen
y os
illations.As before, without loss of generality, let us 
on
entrate on the �ow generatedby the system ve
tor �eld F1. We will use the 
on
ept of iso
lines. An iso
line isa line that 
onne
ts all the points in a ve
tor �eld whi
h have the same gradient(slope). We are interested in �nding where the ve
tor �eld is tangent to theswit
hing sets, so that, the target is to �nd an iso
line whose gradient is equalsto the swit
hing set slope.Let us 
onsider the set of equations (6.37) and substitute u = 1 for the ve
tor
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illator with added non�linear damper 115�eld F1. The target iso
line 
an be written as:
f(x, t) =

x′2
x′1

=
−2ζx2 − x1 − ps

x2
= m

Σ
(6.70)Solving formula (6.70) for x2 and equaling the resultant expression with the equa-tion in the (x1, x2)�plane for Στ̂−

12 , we 
an get the interse
tion point between both
urves (iso
line and swit
hing set).
x2 =

−x1 − ps
m

Σ
+ 2ζ

= m
Σ
x1 + b

Σ
(6.71)Thus, the point where F1 is tangent to Στ̂−

12 , is easily obtained by solving theright�hand�side equation in (6.71) for x1:
x⋆1 =

−b
Σ
(m

Σ
+ 2ζ)− ps

m
Σ
(m

Σ
+ 2ζ) + 1

(6.72)Substituting the former value into the most right�hand part of (6.71), we get theother 
omponent as:
x⋆2 = m

Σ
x⋆1 + b

Σ
(6.73)Besides, if the so-
alled high frequen
y zone exits, the following 
ondition mustbe satis�ed. Otherwise, the system just goes rapidly to the limit 
y
le de�nedabove without any other phenomenon arising.

• Let Γτ̂−
12 be the segment of the swit
hing set Στ̂−

12 between x∗ and (ps, 0).The point x⋆ must not fall on Γτ̂−
12 , i.e.,

x⋆ /∈ Γτ̂−
12

where Γτ̂−
12 := {x ∈ Στ̂−

12 : 0 ≥ x2 ≥ x∗2}
(6.74)Example 6.2 (Delimiting the high frequen
y zone).Let us assume the SDOF system studied before in example 6.1, and suppose thatwe are now interested in �nding the region where the system would develop highfrequen
y os
illation.It is really simple. Again the �rst step is to rewrite the problem in dimensionlessterms and �nd the slope and x2�interse
t of the swit
hing sets. We will use someparameter already 
al
ulated in the past in the referen
e example.So that, substituting the known parameters into equations (6.72) and (6.73) is
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Figure 6.18: Traje
tory starting just in the limit of the high frequen
y zone x⋆for the system in example 6.1.enough to de�ne the target region.From equation (6.72), we have:
x⋆1 =

−3.046(−0.3046 + 2 · 0.05) − 10

−0.3046(−0.3046 + 2 · 0.05) + 1
= −8.827Substituting this and the others known values into (6.73) yields to:

x⋆2 = −0.3046(−8.827) + 3.046 = 5.735Sin
e both x⋆ and x∗ fall on Στ̂−
12 and x⋆2 is greater than x∗2, we 
an assert thatthis high frequen
y region exists and is delimited by the swit
hing sets between

x⋆ and −x⋆.For 
on
luding, Figure 6.18 shows a traje
tory of the system in example 6.1 whi
hstarts just in the limit of the high frequen
y zone. We may 
onvert ba
k to theoriginal parameters to get:Limit in terms of displa
ement, y⋆ = x⋆1x0 = −8.827(0.05)m = −441.3mm.Limit in terms of velo
ity, ẏ⋆ = x⋆2x0wn = 5.735(0.05)(10)m = 2.87m/se
.
�In the next 
hapter, we shall present experimental result from a 
ampaignon Real Time dynami
 substru
turing testing 
onsidering a full�s
ale passive�
ontrolled stru
ture whi
h in
ludes a large�s
ale non�linear vis
ous �uid damper.Those results exhibit the dynami
 phenomena 
omprehensively des
ribed through-out this 
hapter.



Chapter 7Case Study
Contents7.1 Des
ription of the 
ontrolled stru
ture . . . . . . . . 1187.1.1 Damper des
ription . . . . . . . . . . . . . . . . . . . . 1217.2 Numeri
al simulations . . . . . . . . . . . . . . . . . . 1217.3 Experimental a
tivities . . . . . . . . . . . . . . . . . . 1247.3.1 Damper 
hara
terization test . . . . . . . . . . . . . . . 1247.3.2 Predi
tion s
heme . . . . . . . . . . . . . . . . . . . . . 1317.3.3 Real�time substru
turing test results . . . . . . . . . . . 138In this 
hapter we present the des
ription, analysis and experimental set�upof a Real�Time Dynami
 Substru
turing Test of a 
ivil stru
ture provided witha passive seismi
 prote
tion system. Parti
ulary, we 
onsidered a building withtwo nonlinear vis
ous dampers atta
hed at the �rst �oor to 
ontrol the vibrationsindu
ed by seismi
 ex
itations. Our interest is to show how this kind of test 
anbe exploited for the assessment and design of 
urrent and new prote
tion systemsin earthquake engineering. We believe that this method is very suitable when ana

urate mathemati
al model of the prote
tion devi
e is not yet available.To evaluate the advantages of real�time dynami
 substru
turing simulation ontesting large�s
ale energy dissipation devi
es, an experimental 
ampaign was a
-
omplished in the Earthquake and Large Stru
tures Laboratory at University ofBristol (UK). This experimental a
tivities were 
arried out in 
losed 
ollaborationwith professors David Wagg and Simon Neild from the Department of Me
hani
alEngineering of that University. 117



118 CHAPTER 7. CASE STUDY7.1 Des
ription of the 
ontrolled stru
tureFluid vis
ous dampers (FVDs) are a type of supplemental damping devi
es ableto redu
e vibrations in stru
tures. Linear �uid vis
ous dampers have been widelyinvestigated, either experimentally or numeri
ally, be
ause they 
an be simplymodelled through a linear for
e�velo
ity 
onstitutive law. However, they 
andevelop ex
essive damper for
es when large stru
tural velo
ities o

ur. More re-
ently, both resear
hers and professional engineers have fo
used their attentionon non�linear FVDs not only to limit the damper for
es at large stru
tural velo
-ities but also be
ause of their ability to dissipate more energy at lower velo
ities[Lee and Taylor, 2001℄.This thesis deals with a passive 
ontrol system installed on a symmetri
 3�storeyone�bay steel framed building with reinfor
ed 
on
rete slabs. The system is 
om-posed by 
hevron�type bra
es and non�linear passive vis
ous �uid dampers (inhorizontal position) linking the bra
e to the hosting stru
ture. As shown in Figure7.1, two of this bra
es are pla
ed at the �rst �oor on opposite building's sides. Weonly 
onsidered one�dire
tional base ex
itation along the axis where the dampersare pla
ed.

ẍg

DamperBra
e
Figure 7.1: Sket
h of the passive 
ontrolled system analysed.A supplemental energy dissipation system is optimally designed to absorbvibration energy from the hosting system, thereby redu
ing energy dissipation



7.1. Des
ription of the 
ontrolled stru
ture 119demand on the stru
ture. And so, a typi
ally and widely a

epted approa
hwhen designing passive 
ontrol systems is to 
onsider that the stru
ture remainsin the linear range. In addition, if the non�linearity and 
omplex behaviour ofthe vis
ous dampers are 
onsidered, those devi
es may be easily identi�ed as the
riti
al 
omponent of the whole stru
tural system.Thus, in order to set up the RTDST test, the system is split up into two subsys-tems, keeping the dampers as the physi
al substru
ture while the remains of thestru
ture is modelled numeri
ally. Also, in 
onsequen
e of the symmetry fromboth the stru
tural 
on�guration and load, the stru
tural response was expe
tedto be symmetri
al. So that, despite the original passive 
ontrolled stru
ture hasa
tually two dampers, a RTDST whi
h takes into a

ount just one damper isenough to emulate properly the system, as long as due 
ares were taken in thesubsystems' intera
tion interfa
e. Namely, the for
e fed ba
k to the numeri
alsubstru
ture was twi
e the measured for
e from the physi
al substru
ture.This symmetry�based simpli�
ation is supported not only on several exhaus-tive numeri
al simulations but also through a large number of experimental dataobtained form an experimental 
ampaign 
arried out in Italy under the RE-LUIS proje
t1, where resear
hers tested a symmetri
 and passive 
ontrolled stru
-ture under earthquake base ex
itations by using an one�dire
tional shaking ta-ble (See e.g. [Ponzo et al., 2008, Sora
e and Terenzi, 2008℄ and some referen
estherein). Most of those results exhibit the symmetri
al stru
tural behaviour as-sumed throughout this thesis.
m1

m2

m3 Non�lineardampers
Figure 7.2: Simpli�ed numeri
al model of the stru
tural system.A

ording to this, a simpli�ed lumped�mass model of the whole stru
ture hasbeen employed as the numeri
al substru
ture. At the beginning we 
onsider su
h1See more information of this proje
t in www.reluis.it



120 CHAPTER 7. CASE STUDYa simple model be
ause it is the fastest numeri
al substru
ture we 
an get. On
ethe delay issues are over
ome, we 
an try more 
omplete, 
omplex and of 
ourseslower to be 
al
ulated numeri
al models. The dampers are in
luded as a singleexternal for
e (see Figure 7.2), whi
h will be updated in a

ord with the measure-ments taken from the damper during the simulation.The 
lassi
al expression for des
ribing this model is given by the ordinary di�er-ential equation (ODE) in formula (7.1) where: M, K, C represent the stru
turalmass, sti�ness and damping matri
es; ẍg(t) indi
ates the base ex
itation; U(t)is twi
e the for
e in the damper and X, Ẋ and Ẍ are the stru
tural responsesnamely: displa
ement, velo
ity and a

eleration, respe
tively. The 
oe�
ients ofthe damping matrix C have been derived from those of M and K imposing amass and sti�ness proportional damping (Rayleigh damping) with modal damp-ing ration equal to 3%.
MẌ(t) +CẊ(t) +KX(t) = −Mẍg(t) + LU(t) (7.1)being:

L =





0 0
−1 0
0 −1



 , M =





5430.2 0 0
0 5430.2 0
0 0 5430.2



 (Kg)

C =





9.817 −2.878 −0.625
−2.878 9.192 −3.508
−0.625 −3.504 6.313



× 103 (N sec

m
)

K =





12.091 −6.046 0
−6.046 12.091 −6.046

0 −6.046 6.046



× 106 (N
m
)

Figure 7.3: Stru
tural mode shapes.



7.2. Numeri
al simulations 1217.1.1 Damper des
riptionThe dampers used in these tests were provided by FIP�Industriale2. They are
hara
terized by a suitably designed hydrauli
 
ir
uit whi
h 
ontrols the passageof the vis
ous �uid from one 
hamber to the other, therefore the energy dissipationis 
aused by the relative movement between the two damper ends when the �uidis for
ed to move through the hydrauli
 
ir
uit. Both ends of the dampers areusually provided with two spheri
al hinges assuring perfe
t alignment betweenpiston and 
ylinder, in spite of possible mounting ina

ura
ies during installation.In 
onsequen
e of the non�linear 
onstitutive law in these dampers, an almost
onstant for
e is developed over an important range of velo
ities.
Figure 7.4: Non�linear vis
ous damper used in the tests.Figure 7.4 shows a pi
ture of one of the four vis
ous dampers available for thetests. They are 
hara
terized by a peak for
e up to 50KN, stroke ±25mm andpeak velo
ity about 0,3m/se
. Additionally, their non�linear 
onstitutive for
e�velo
ity law may be des
ribed by means of equation (7.2) where ẋd representsthe relative velo
ity between the ends of the damper in meters per se
ond; cαis the nonlinear damping 
oe�
ient equal to 60kN( secm )0.15 and α is the velo
ityexponent equals to3 0.15.

FD = cα |ẋd|α sign(ẋd) (kN) (7.2)As it will be shown later, the last relationship was veri�ed through several experi-mental 
hara
terization tests performed at the Stru
tural Engineering Laboratoryof the University of Naples Federi
o II (See �7.3.1).7.2 Numeri
al simulationsFirst of all, we 
ompleted several numeri
al simulations of the substru
turedsystem des
ribed above. We build a full numeri
al substru
tured systems in
©simulink4. In this model the physi
al substru
ture is repla
ed by a numeri
alapproximation of the damper response as shown in Figure 7.5. As well, a 
onstant2Italian 
ompany spe
ialized in design and manufa
ture of te
hni
al produ
ts and seismi
prote
tion devi
es for the large-s
ale 
onstru
tion (See: www.�p-group.it)3Model provided by manufa
turer.4Simulink is a registered trademark of The MathWorks, In
. www.mathworks.
om



122 CHAPTER 7. CASE STUDYdelay transport is added to the damper for
e whi
h is fed ba
k to the numeri
alsubstru
ture. This to take into a

ount the a
tuator dynami
s, as explained inthe former 
hapters.

Figure 7.5: Simulink model of the full numeri
al substru
tured system.We 
onsider small delays (between 1 and 4 millise
onds) and run this full�numeri
al substru
tured model under both periodi
 and seismi
 loads. All thesimulations exhibited delay�indu
ed self�sustained os
illations, as des
ribed inChapter 6 for the 
ase of non�linear systems.In what follows, we present some pi
tures of the system response under earthquakeloads 
onsidering a delay equals to 3mse
. Figure 7.6 shows the displa
ement andvelo
ity time histories of the �rst �oor of the stru
ture in (7.1), along with thenumeri
al approximation of the damper for
e and the phase plane plot.
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Figure 7.6: Substru
tured system out
omes for the full numeri
al substru
turingtest 
onsidering the earthquake 0187.As explained in previous Chapters, by 
onsidering a delay in the feedba
k loop,



7.2. Numeri
al simulations 123the equilibrium of the system (0,0) be
omes unstable and even a small perturba-tion 
auses the system to go away from it. The plots eviden
e how the systemgoes to the limit 
y
le (self�sustained os
illations) just before a the earthquakestarts (at 2se
 in the simulation). Note that even a very tiny displa
ement at earlystages of the system response 
ause suddenly the limit 
y
le, and then, very highfor
es in the damper swit
hing between ± the maximum for
e. Figure 7.7 showsa zoom�window for the �rst se
ond just before the external ex
itation starts. Inthe other hand, Figure 7.8 presents the steady�state system response from theanalyti
al expressions given along Se
tion 6.3, where the dimensionless parameterwere obtained as explain in Example 6.1.
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Figure 7.7: One�se
ond zoom window of the substru
tured system out
omes forthe full numeri
al substru
turing test 
onsidering the earthquake 0187.
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124 CHAPTER 7. CASE STUDYThe last �gures 
learly shows an good agreement between the numeri
al simula-tions and the analyti
al results. In spite of some di�eren
es 
an be found betweenthe displa
ement time histories, they 
an be negle
ted as Figure 7.8 does not 
on-sider any external ex
itation, but just a not null initial 
ondition. That is whythese di�eren
es arise. From the analyti
al expressions 
omes a limit 
y
le (os
illa-tions as time tends to in�nite) with the next 
hara
teristi
s: Frequen
y=83.44Hz;Peak velo
ity=±0.013m/se
; Peak damper for
e=±33kN.7.3 Experimental a
tivities7.3.1 Damper 
hara
terization testThe non�linear vis
ous �uid dampers were �rst 
hara
terized through a detailedexperimental 
ampaign performed at the Stru
tural Engineering Laboratory ofthe University of Naples Federi
o II, these experimental tasks were 
arried out in
ollaboration with Dr. Maria
ristina Spizzuo
o from the Department of Stru
-tural Engineering in this university. A self�equilibrated testing apparatus wasdesigned and assembled ad�ho
 for these tests, it is equipped with a dynami
 a
-tuator having a stroke of 250mm and a dynami
 horizontal load of up to 1200kNin tension and 440kN in 
ompression within a frequen
y range from 0 to 5Hz.The external 
ylinder of the a
tuator is �rmly 
onne
ted to a main rigid steelplate through four steel bars with a diameter of 24mm ea
h; one damper's endis 
onne
ted to the a
tuator through the interposition of a 100kN load 
ell whilethe other end is �rmly 
onne
ted to an se
ondary smaller rigid steel plate whi
his jointed to the main plate by four rigid steel tubes having an external diameterof 114.3mm and a thi
kness of 8mm (see Figure 7.9).The hydrauli
 a
tuator applies the load to the devi
e along its longitudi-nal axis. Table 7.1 lists the 
hannels a
quired during the experimental testswhereas Figure 7.10 shows the position of the transdu
ers: a 100kN load 
ell(F1) measures the for
e a
ting on the damper; a horizontal displa
ement trans-du
er (D2) measures the displa
ement of the a
tuator's piston and is used forits displa
ement�based 
ontroller; an additional horizontal displa
ement trans-du
er (D3) with 50mm stroke was mounted to measure the relative displa
ementof the damper; and �nally, two temperature transdu
ers were installed on theouter surfa
e of damper's body by lo
king two sensible stainless steel small plates(25mm×25mm) able to house the thin rods of the transdu
ers.The experiments aiming at 
hara
terizing the non-linear vis
ous dampers hasbeen planned a

ording to both the European Standard prEN 15129 [Eur, 2007℄and to the se
tion 11.9.6 (Fluid vis
ous devi
es) of the new Italian Te
hni
al Reg-ulations for Constru
tions [Ita, 2008℄. A

ording to the normative, two di�erent
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Figure 7.9: Vis
ous �uid damper mounted in the testing equipment.Channel Transdu
erF1 Load 
ellD2 LVDTD3 LVDTT4 TemperatureT5 TemperatureTable 7.1: A
quisition 
hannels and transdu
ers in detailed.

Figure 7.10: Transdu
ers and re
ording 
hannels.



126 CHAPTER 7. CASE STUDYtypes of dynami
 tests were planned to be imposed on the dampers: dynami

onstitutive law tests and dynami
 damping e�
ien
y tests. Damper tempera-ture also had to be monitored, we re
orded it for three tests at two lo
ations onthe main body of the devi
e, 
onsidering a period from 5min before until 15minafter ea
h test.In 
onstitutive law tests, 
y
les with a 
onstant velo
ity displa
ement are to beimposed (see table 7.2). Thus, four 
onstant�amplitude triangular displa
ement
y
les are applied to the damper 
onsidering �ve di�erent 
onstant velo
ities (3,75, 150, 225 and 300mm/s) and two di�erent displa
ement amplitudes (10 and20mm), for a total of 10 dynami
 tests. In damping e�
ien
y tests, harmoni
displa
ement 
y
les are to be imposed (see table 7.3). Five 
onstant�amplitudesinusoidal displa
ement 
y
les (x(t) = A sin(2πft)) are imposed to the spe
imenassuming �ve di�erent frequen
ies f (0.5, 1.5, 2.0, 3.0 and 4.0Hz) and three dif-ferent displa
ement amplitudes A (10, 15 and 20mm), for a total number of testsequal to 10.It is worth to note that tests at higher velo
ities and frequen
ies and larger dis-pla
ement amplitude are not 
onsidered be
ause of the intrinsi
 limits of thea
tuator. Furthermore, 20 tests were 
onsidered su�
ient to 
hara
terize the me-
hani
al behaviour of the vis
ous dampers. More details about who the test weresele
ted in a

ord with the normative 
an be found in [Spizzuo
o et al., 2008℄.Test Amplitude Velo
ity Number(mm) (mm/se
) of 
y
les
ConstantVelo

ityTests 1 10 3 42 10 75 43 10 150 44 10 225 45 10 300 46 20 3 47 20 75 48 20 150 49 20 225 410 20 300 4Table 7.2: Dynami
 
onstitutive law tests.Tests resultsThe e�e
tive for
e vs. displa
ement 
y
les obtained during some of the imposed
onstant velo
ity tests are given in Figure 7.11. Besides, in Figure 7.12 the tem-perature re
orded in the damper at two lo
ations of the main body, one towardsthe moving end of the devi
e and the other one towards the �xed end, is plottedfor 1200se
, i.e. approximately 5min before and 15min after the imposed 
onstant
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tivities 127Test Amplitude Frequen
y Number(mm) (Hz) of 
y
les
Harmoni
Velo

ityTests 11 10 0.5 512 10 1.5 513 10 2.0 514 10 3.0 515 10 4.0 516 15 0.5 517 15 1.5 518 15 2.0 519 20 0.5 520 20 1.5 5Table 7.3: Dynami
 damping e�
ient tests.

Figure 7.11: For
e�displa
ement 
y
les from 
onstant velo
ity tests at 10mmamplitude on the left, 20mm amplitude on the right.velo
ity test at 75mm/se
 and 20mm amplitude. Figure 7.13 presents the e�e
-tive for
e vs. displa
ement 
y
les relative to the imposed harmoni
 displa
ementtests: the shape of the loops are those typi
al of a nearly�fri
tion for
e�velo
ityvis
ous damper 
onstitutive equation.Now, in order to 
hara
terize the damper from the tests data, we looked forthe 
oe�
ients whi
h satisfy equation (7.2). The experimental values of cα and
α have been derived through a simple pro
edure using the maximum for
e andvelo
ity a
hieved during all the tests. Figure 7.14 shows on a logarithmi
 diagram,the maximum experimental for
es Fmax developed during the imposed 
onstantvelo
ity tests as fun
tion of the 
onstant velo
ities v. The red experimental points
orrespond to the tests at 10mm amplitude while the brown points represent thetests at 20mm amplitude. The linear regression 
urve of the above experimental
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Figure 7.12: Re
orded temperatures from 
onstant velo
ity test at 20mm ampli-tude and 75 mm/s.

Figure 7.13: For
e�displa
ement 
y
les from harmoni
 displa
ement tests at10mm amplitude on the left, 15mm amplitude on the right.points is drawn in bla
k line and has the following expression:
log(Fmax) = 1.2645 + 0.190 log(v) (7.3)As well, Figure 7.14 shows on a se
ond logarithmi
 diagram the maximum experi-mental for
es Fmax developed during the imposed harmoni
 displa
ement tests asfun
tion of the maximum velo
ities (vmax = 2πfA), the red experimental points
orrespond to the tests at 10mm amplitude while the pink and brown points repre-sent the tests at 15mm and 20mm amplitude, respe
tively. The linear regression
urve of the these experimental points is drawn in bla
k line on the respe
tivepi
ture and 
an be written as:
log(Fmax) = 1.4171 + 0.118 log(v) (7.4)



7.3. Experimental a
tivities 129A mean linear regression 
urve, shown in both sides of Figures 7.14 in blue 
olor,
Figure 7.14: Constitutive law of the vis
ous damper from 
onstant velo
ity testson the left and harmoni
 displa
ement on the right.
an be obtained by taking mean values of the slopes and interse
tions point fromthe linear regression 
urves derived above. This mean 
urve is given in equation7.5:

log(Fmax) = 1.3475 + 0.154 log(v) (7.5)The mean slope represents the mean value for the exponent in expression 7.2being α=0.154, while the mean value of the interse
tion with the ordinate�axisprovides a mean value of the damping 
oe�
ient of the damper: cα = 101.3475 =
22.3kN/( sec

mm )0.154 = 62.7kN/(secm )0.154.

Figure 7.15: Experimental vs. numeri
al for
e�displa
ement 
y
les from harmoni
displa
ement test at 1.5Hz×15mm.Therefore, the experimental values 
losely mat
h those de
lared by the man-
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turer, that is, the mean linear regression 
urve pra
ti
ally 
orresponds to thedesign 
onstitutive law provided by the manufa
turer. Su
h experimental 
oe�-
ients have been assumed to obtain the numeri
al for
e vs. displa
ement 
y
lesable to nearly �t the experimental data as shown in Figure 7.15 for the harmoni
displa
ement test at 1.5Hz×15mm. Finally, Figure 7.14 also shows that all theexperimental points are in
luded between two blue dashed lines representing thetoleran
e limits de�ned by the Codes, that is the di�eren
es between the experi-mental values of the maximum output for
e Fmax and the design values (that isto say the 
onstitutive law) are less than the toleran
e limit of ±15%.In this manner, the tested devi
es demonstrate to satisfy both the EuropeanStandard and the new Italian Te
hni
al Regulations for Constru
tions, for all thetypes of experimental tests required by them.Non�linear vis
ous damper numeri
al model.In order to get a more realisti
 numeri
al model of the non�linear vis
ous damperin terms of velo
ity�for
e behaviour, we 
hange the model in (7.2) provided bythe damper's manufa
turer into the Dahl model in formula (7.6), whi
h is able to
apture the a
tual velo
ity�for
e dependen
e more a

urately.
F (t) = κxẋ(t) + κww(t)

ẇ(t) = ρ (ẋ(t)− |ẋ(t)|w(t)) (7.6)where:
F (t): is the damper for
e;
ẋ(t): is the relative damper velo
ity;
w(t): is the hystereti
 variable;
κx: is the vis
ous 
oe�
ient = 128098.06 (N s

m);
κw: is the fri
tion 
oe�
ient = 27900.5 (N); and
ρ: is the parametri
 
onstant = 811.99 ( 1

m).The parameters κx, κw and ρ were tuned a

ording to the methodology presentedin [Aguirre et al., 2008℄ in su
h a way that the model mat
hes 
losely the damperbehaviour re
orded for the sinusoidal tests. To evaluate the 
orre
tness of theseparameters and the e�e
tiveness of this model, Figure 7.16 shows some timehistories and for
e velo
ity 
y
les 
omparing the measured response against boththe old and new numeri
al models.In spite of the tuned Dahl model behaves better than the model in (7.2), morea

urateness was not possible due to the strong perturbation in the for
e�velo
ity
y
les 
aused by the ba
klash phenomenon, i.e, the loose in both damper endswhen linking it with the transfer system.
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Figure 7.16: Damper's Dahl model approximation.7.3.2 Predi
tion s
hemeKeeping real�time behaviour is one of the prin
ipal issues to be managed while areal�time substru
turing test is being 
arried out. It is essential to take 
are ofthe 
ommand signals' delays to prevent the overall instability 
aused by them.Delay estimation.On
e the experimental rig was set up (see �gure 7.25), several tests were a

om-plished to measure the delay by 
onsidering di�erent kind of signals. The delaybetween the a
tual 
ommand signal (target displa
ement to be follow for the a
tu-ator) and the 
urrent displa
ement signal (measured displa
ement) was estimatedby using two di�erent methodologies. Namely, zero 
rossing, in whi
h the a
tingdelay is estimated by taking the median over all the instantaneous delays mea-sured along the whole signal when traje
tory 
rosses zero; and 
ross 
orrelationfun
tion whi
h is a measure of similarity between two signals as a fun
tion ofa time�lag applied to one of them, so it provides a overall delay estimation atthe time�lag where the two signals are maximally 
orrelated. Figure 7.17 showsthe test time history, the syn
hronization plot and the for
e�displa
ement 
y
leswhen the 
ommand signal is a 2Hz sine wave with amplitude equals to 15mm.The delays estimated for all sinusoidal tests are presented in table 7.4.
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Figure 7.17: Sine wave test 2Hz at ±15mm: time history, syn
hronization plotand for
e-displa
ement 
y
les.
0 2 4 6 8 10 12 14

−15

−10

−5

0

5

10

15

Time (sec)

Sine sweep − Delay = −0.0159; xcorr: −0.016

 

 
Actual Displ (mm)
Measured Displ (mm)

−10 −5 0 5 10
−10

−5

0

5

10

Actual Displ (mm)

M
ea

su
re

d 
D

is
pl

 (
m

m
)

−15 −10 −5 0 5 10 15
−50

0

50

Measured Displ (mm)

M
ea

su
re

d 
F

or
ce

 (
K

N
)

Figure 7.18: Sine sweep test from 0.5Hz to 4.0Hz at ±10mm: time history, syn-
hronization plot and for
e-displa
ement 
y
les.In light of the frequen
y range evaluated, the delays were estimated en
ir
ling15∼16mse
. Some sinusoidal sweep test were evaluated too. A wave at ±10mmwhi
h speeds from 0.5Hz up to 4.0Hz in 5se
 and goes ba
k to 0.5Hz in 5se
more, was 
onsidered too. Figures 7.18 and 7.19 show the test time history,
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tivities 133Amplitude Frequen
y Measured delay (mse
)(mm) (Hz) (X�
orr) (zero�X)1.0 -14 -18.905.0 -16 -15.2710.0 0.5 -15 -13.7615.0 -16 -16.8320.0 -13 -14.191.0 -16 -15.025.0 -15 -15.0110.0 1.0 -15 -14.5215.0 -15 -14.9120.0 -15 -15.231.0 -16 -14.015.0 -15 -14.4910.0 2.0 -15 -14.9915.0 -16 -15.9820.0 -18 -19.635.0 -16 -15.7510.0 3.0 -16 -16.3215.0 -20 -20.47(X-
orr) Cross 
orrelation fun
tion ; (zero-X) Zero 
rossingTable 7.4: Delays estimated for sinusoidal wave form tests.
the syn
hronization plot, the for
e�displa
ement 
y
les, the zero 
rossing delaymeasurements and its 
orresponding histogram. As it was expe
ted, the higherfrequen
y the larger delay, furthermore, it is worthy noti
ing that there existdi�erent delays for the load and unload bran
hes (whi
h is more evident for higherfrequen
ies), it may be due to the 
onne
tion loose (ba
klash behaviour) whi
hin
orporates an additional damper rea
tion delay.Additionally, several tests were performed predi
ting the displa
ement of the�rst �oor in the stru
tural model des
ribed in §7.1 under seismi
 load. Figure7.20 shows time history and 
oheren
e plot for the whole system tra
king a dis-pla
ement signal, the pi
ture in
ludes measurement of the a
tuator displa
ementas well as the damper ends' relative displa
ement. Here is mu
h 
learer the delaye�e
t in the damper's response 
aused by the 
onne
tion loose. The zero 
rossingdelay measurements and its 
orresponding histogram are shown in �gure 7.21.
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Figure 7.19: Delay estimation by zero 
rossing of the sinusoidal sweep test.

Figure 7.20: Test of tra
king the �rst �oor displa
ements of the stru
tural modeldes
ribed in §7.1 under seismi
 load.
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Figure 7.21: Delay estimation by zero 
rossing of the stru
tural response of modelin §7.1 under seismi
 load.Evaluation of predi
tion s
heme.In order to test the time delay 
ompensation s
heme based on NNET, a predi
torto estimate the 
ommand signal 16ms forward has been trained. Seeking for
ompleteness, some noise was added to the 
ommand signals to be predi
ted.The SNR ratio was sele
ted as 30dB for all the 
ases. Figure 7.22 
ontains theresults from a tests run on the experimental rig at University of Bristol after usingthe time delay 
ompensation s
heme proposed. The 
oheren
e plot shows gooddelay 
ompensation even when noise is added. As by numeri
al simulations wasshown before in �3.4.3, the methodology based on NNETs is more a

urate andfaster than other 
ommon methodologies when working with noisy signals.Considering 
onstant delay, the predi
tion s
heme looks pretty good. Besides,Figure 7.23 shows the results from the sine sweep test after using the predi
tions
heme based on NNET. In spite of the delay is no longer 
onstant along the signal,a neural network whi
h predi
t forward a 
onstant delay (by using a averagedelay) works very well. All predi
tion tests were 
arried out 
onsidering twodi�erent approa
hes, one as it was proposed originally by using a purely forwardpredi
tion and another whi
h adds to the predi
ted value an supplemental termproportional to the 
urrent instantaneous error by way of proportional 
ontrol(P�
ontrol) [Ogata, 1990℄. After an exhaustive sear
h the value 0.7 was found asthe best proportional 
onstant (kp) for this basi
 s
heme. From the experimental
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Figure 7.22: Sine wave test 2Hz at ±15mm after using time delay 
ompensationbased on NNET: time history and syn
hronization plot.
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Figure 7.23: Sine sweep test after using time delay 
ompensation.test, kp=0.7 gives better results than the original s
heme5. From now on, whenwe refer the time delay 
ompensation s
heme base on neural networks, we mean5The original s
heme is equivalent to kp=0
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tivities 137the s
heme whi
h adds the supplemental term (−kp×error) with kp = 0.7.Some problems predi
ting signals, 
omparison among 
ommon strate-gies. Without ba
klash. With ba
klash.

Figure 7.24: Predi
ting the �rst �oor displa
ement of the model in 7.1 underperiodi
 load. Comparison among polynomial 2nd�order, 3th�order and neuralnetworks s
heme.From purely numeri
al simulation, it is possible to identify some troublesomeissues asso
iated with the la
k of a

ura
y in predi
tion. Figure 7.24 exhibitssome signals predi
ted by di�erent methodologies against the original one. Two
ases has been evaluated: (i) 
onsidering a perfe
t 
onne
tion (no loose) betweendamper's ends and its supports, and (ii) a more realisti
 situation in whi
h theba
klash e�e
t is in
luded. From these simulations some fa
ts 
ome out. Consider-ing our parti
ular 
ase where we are 
ompensating signal for a RTDST simulation,we 
an assert that.
• No signi�
ant noise is present in the signal to be predi
ted, as this signal is
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ome of the numeri
al substru
ture, in parti
ular the displa
ementof the �rst �oor6. Therefore, there is not great advantage in utilizing theneural network methodology be
ause it requires additional attendan
e and
ould also present la
k of training o

asionally.
• The presen
e of su
h a strong damper in a stru
tural system together withthe delays, generate a sudden 
hange of slope in the stru
ture response.It 
omes just after the system velo
ity 
rosses zero (See detailed plots inFigure 7.24).
• In 
onsequen
e of the 
onne
tion loose, an additional delay in the damperresponse o

urs. It intensi�es the aforementioned 
hange of slope somewhatafter the peak of the signal and 
an 
ause even a reversing in this wave form.
• All predi
tion s
hemes exhibit serious problems when attempting to predi
tthe signal in these 
riti
al zones where the system 
hanges its behaviour.Sin
e without noise there are not signi�
ant bene�ts in utilizing a neural net-works methodology, a se
ond�order polynomial approximation was 
hosen as thepredi
tor s
heme. This also be
ause polynomial�based methods have an addi-tional advantage, the possibility of 
hanging on�line the time forward you wantto predi
t.7.3.3 Real�time substru
turing test resultsFor these experiments both the software and the experimental rig, were 
arefullyset up to emulate the stru
tural system presented in �7.1. The tests were set upas a typi
al displa
ement�
ontrolled real�time substru
turing simulation. Thatmeans, the displa
ements 
omputed by the numeri
al substru
ture are appliedthrough an a
tuator to the physi
al spe
imen (the damper), and in turn, theresisting for
e is measured and fed ba
k into the numeri
al substru
ture.A 
©Matlab/simulink model of the whole substru
tured system was built. Figure7.26 shows the model's outside loop in whi
h the measured damper's for
e is fedba
k into the equations of state of the numeri
al substru
ture (representing the
ontrolled stru
ture).A Dspa
e DS1104 board was used as platform on whi
h the simulink�builtmodel runs in real�time. Additionally, to 
ontrol, manage and monitor the ex-periments, an user�interfa
e able to download appli
ations to the DS1104 boardwas developed in ControlDesk7 (See Figure 7.27).6In some way, the stru
tural system works like a �lter, 
utting o� the highest frequen
iesfrom the input signal.7ControlDesk is an experiment software for developing working environment with Dspa
e 
©boards (http://www.dspa
e.
om/)
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Figure 7.25: Experimental rig set�up of substru
tured model.

Figure 7.26: 
©Simulink model of the substru
tured system.As known, the instability in RTDST 
omes form the presen
e of delay in thefeedba
k signal. So, an usual strategy to keep under 
ontrol the simulation isto start with a full numeri
al substru
turing test (i.e., where the physi
al sub-stru
ture is repla
ed by a numeri
al approximation) and 
hange progressively toa full hybrid simulation. Thus, attempting to prevent unforeseen and dangerous
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Figure 7.27: User�interfa
e for managing and monitoring the experiments in real�time.system behaviour be
ause of the feedba
k of the delayed damper's for
e, somefull numeri
al tests were 
ompleted before a realtime hybrid test were performed.The �rst test was a

omplished feeding ba
k the numeri
al approximation of thedamper's for
e, in a

ord with the model presented in §7.3.1. Figure 7.28 showsresults from this test in
luding a zoom of the time history, the syn
hronizationplot and the estimation of the delay. Therein and from now on, the parameterso�
alled substru
turing ratio will indi
ate how mu
h of the a
tual measured for
eis used to feedba
k the numeri
al substru
ture, in a

ord with formula (7.7).
Ffeedback = (1− SR) · Fn + SR · Fm (7.7)where: SR is the substru
turing ration; Ffeedback is the e�e
tive feedba
k for
e,

Fn is the damper for
e numeri
al approximation and Fm is the measured damperfor
e. Thus e.g., SR = 1 means that the simulation is running in full hybrids
heme, or that, 100% of the measured damper for
e is used in the feedba
k loop.Feeding ba
k the numeri
al approximation of the damper for
e and 
onsideringa periodi
al load ex
iting the numeri
al substru
ture, the full�numeri
al RTDSTsimulation looks stable and the predi
tion s
heme appears able to 
ompensate thedelay in the a
tuator's 
ommand signal. Besides, Figure 7.29 presents resultsfrom a real�time substru
turing test whi
h takes into a

ount a periodi
al loadapplied to the numeri
al substru
ture. This test was started by 
onsidering full
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Figure 7.28: Full numeri
al substru
turing test 
onsidering periodi
 load.

Figure 7.29: Real�time substru
turing test 
onsidering periodi
 load.
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Figure 7.30: Zero 
rossing delay estimation for the substru
turing test 
onsideringperiodi
 load.numeri
al feedba
k as before, but now, the substru
turing ratio was graduallyin
reased until a
hieving the whole measured damper's for
e on the feedba
k loop(above 17 se
onds in the �gure).As well, Figure 7.30 shows the delay estimation by zero�
rossing over the segment
orresponding to the substru
turing ratio equals to 100%.The stability is a
hieved even when working with the a
tual measured for
e,nonetheless and despite the ba
klash phenomenon was 
onsidered in the numeri
aldamper model, the delay seems to be in
reased when passing from the numeri
alto the full real�time substru
turing test. It is worthy to note that, an importantdi�eren
e between the delay measured on the load and unload bran
hes still holds.By using earthquake loadIn the following tests, properly s
aled seismi
 a

elerations were applied to thenumeri
al substru
ture as the external ex
itation. The same as before, the �sttests were 
arried out by 
onsidering a full�numeri
al feedba
k of the damper for
einto the numeri
al substru
ture. Figures 7.31 and 7.32 shows the results by feedingba
k 100% and 50% of the damper's for
e numeri
al approximation respe
tively.In both 
ases the syn
hronization plots show a good delay 
ompensation be
auseof the predi
tion and the experiments show to be stable.
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tivities 143However, when running the full real�time substru
turing test, that is, when all themeasured damper for
e is being fed ba
k, the instability arises sin
e very earlierstages. (See Figure 7.33).

Figure 7.31: Full numeri
al substru
turing test with earthquake 0187.Several tests were a

omplished by trying ex
itations with di�erent frequen
y�band 
ontents, all of them getting more or less the same results. Figures 7.34 and7.35 show the out
omes under di�erent earthquakes. As before, after swit
hingfrom partial to full hybrid real�time substru
turing test, the experiment be
ameinstable due to the propagation of the delay error through the external feedba
kloop.Figure 7.36 shows what happens in terms of for
e when the simulation be
omesina

urate in 
onsequen
e of the self�sustained os
illations. Even when thoseos
illations are small, the sudden 
hange of velo
ity 
auses a stronger variation interms of for
e. It is large enough to produ
e the stru
tural response rises. Thoseos
illations together with the 
hara
teristi
s of su
h a sti� nonlinear damper,
ause a 
ontinuous swit
hing between the extreme maximum loads for the damper(both of opposite signs), a sort of 
hain rea
tion whi
h leads the simulation toinstability. As well, as it was found from the stability analysis in �6.3, the self�sustained os
illations 
ome at small displa
ements under a 
ertain velo
ity range.For some tests, the simulation be
ame unstable even when the external load werevanished, that is, when the system was supposed to be arrested as 
onsequen
eof non external load being applied to the system.
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Figure 7.32: Partial real�time substru
turing test with earthquake 0187.

Figure 7.33: Real�time substru
turing test with earthquake 0187.
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Figure 7.34: Full numeri
al substru
turing test with earthquake 0535.

Figure 7.35: Real�time substru
turing test with earthquake 0535.
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Figure 7.36: Real�time substru
turing test with earthquake 0535. For
e 
ompar-isonA main pra
ti
al issue 
on
erning to stability was the ba
klash phenomenon.Unfortunately, It was not possible to get perfe
t 
onne
tion between the trans-fer system and the spe
imen tested. This lost motion due to 
learan
e whenmovement is reversed and 
onta
t is re�established, in
reased the delay e�e
t.Ba
klash may severely a�e
t the stability 
onditions in a Real Time Dynami
Substru
turing simulation when testing systems whi
h are ex
eptionally sensibleto delay. So that, ba
klash be
ame a 
ru
ial disappointment in this simulation.We understood the phenomenon whi
h generates self�sustained os
illationsand veri�ed their existen
e experimentally. However, we are still not able todesign a 
omplementary system whi
h prevents su
h high frequen
y os
illations.We need to in
lude a subsystem in the RTDST�
hain to 
ountera
t and take awaythem. Thus, our 
urrent e�ort is being mainly fo
used on thinking up in a virtualsystem able to absorb su
h high frequen
y os
illation, keeping the system freefrom the harmful e�e
ts of delay in the feedba
k loop in RTDST.



Chapter 8Con
lusions and �nal remarks
Contents8.1 Main 
ontributions . . . . . . . . . . . . . . . . . . . . 1478.2 Final remarks . . . . . . . . . . . . . . . . . . . . . . . . 1488.1 Main 
ontributionsThe 
ontributions of this thesis have been 
on
erned with several aspe
ts. Thework explores the use of a new testing methodology for earthquake engineeringin
orporating time delay 
ompensation s
hemes and stability analysis. Both ofthem open problems that are 
urrently matter of resear
h in the 
ommunity study-ing nonlinear dynami
al systems. The work have been fo
used on the de�nitionof 
onditions to guarantee reliable results when running experimental testing ofnonlinear systems for stru
tural 
ontrol at real s
ale.The following summarize the main 
ontributions of this thesis:1. Development of numeri
al routines.

• Neural network training for on�line time series predi
tion with appli-
ation to time delay 
ompensation.
• Numeri
al stability analysis of linear and nonlinear delayed systems.
• Numeri
al approximation of ve
tor �eld for nonlinear delayed systems.2. Analyti
al investigations.
• Stability analysis of linear delayed systems.
• Expli
it stability analysis of systems with non�linear delayed dampers.147
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• Existen
e analysis of limite 
y
les in systems with delayed dry fri
tiondampers.3. Experimental testing on RTDST for large�s
ale non�linear dampers.
• Simulink model of substru
tured systems able to run in real�time.
• User�interfa
e able to run and 
ontrol experiments in real�time.8.2 Final remarksMore realisti
 tests of seismi
 prote
tion devi
es allow better understanding ofthe overall 
ontrolled system dynami
s and enable the engineer to improve itsperforman
e. Real�Time Dynami
 Substru
turing Test (RTDST) have enormouspotential in assessing prote
tion systems for earthquake engineering, as it allowstesting 
omponents of the stru
ture at full�s
ale under realisti
 extreme loading
onditions. So, we 
an separate just the stru
tural 
ontrol devi
e from the system,bring it to the lab and test it physi
ally, taking into a

ount its dynami
 inter-a
tion with the hosting stru
ture. Moreover, the versatility of the RTDST was
ertainly eviden
ed by the possibility of performing repeatable tests. We 
ouldnot only assess the response of the 
ontrol devi
e under di�erent load 
ondition,but also it is possible to 
hange the hosting stru
ture itself and evaluate, for in-stan
e, the most well�behaved stru
tural 
on�guration for a parti
ular seismi
prote
tion devi
e. So, several stru
tural systems 
ould be evaluated under a widerange of load 
onditions by using the same experimental rig set up.However, as it was shown along this thesis, to guarantee the su

ess of aRTDST simulation, a very e�
ient time delay 
ompensation s
heme is not enough.A 
omplete stability analysis is also required to determine how sensible the sub-stru
tured system may be under small delays.This work is fo
used on testing a passive 
ontrol system provided with large�s
ale non linear �uid vis
ous dampers. We proposed, implemented and testeda new time delay 
ompensation s
heme for RTDST based on Neural Networks.Even if this 
ompensation worked properly, it be
ame impossible to redu
e thedelay error in the feedba
k signal to zero. When 
arrying out the experimen-tal 
ampaign on the 
ase study system, unexpe
ted self�sustained os
illationswere dete
ted. This was 
aused by very small delays in the feedba
k loop, whi
hunavoidably lead the system to os
illations at high frequen
y. We 
ompleted aexpli
it stability analysis and a
hieved a 
omprehensive dynami
 
hara
terizationof the non�linear phenomena in the system. In this thesis we presented a 
om-plete set of 
losed�form expression to des
ribe the dynami
s of the main 
omplexdelay�indu
ed behaviours exhibited for the delayed system. We 
ould identifyboth the region where self�sustained high frequen
y os
illations arise and the
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y
le indu
ed by the delay.Regarding to the predi
tion methodology, neural network s
heme demon-strates mu
h more 
apa
ity and robustness than the other methods when pre-di
ting noisy signals. This advantageous behaviour is due to the inherent gen-eralization 
apa
ity of neural networks and their high toleran
e to noisy data.Besides, unlike other methodologies, neural network provides a smoother signalwhen moving from one time step to the other, so that, slight dis
ontinuities in thepredi
ted 
ommand signal are avoided. Be
ause of the adaptive training, the net-work shows behavior improvements as long as the simulation time passes. On
ethe training pro
ess be
omes well�balan
ed, the proposed 
ompensator was ableto adapt qui
kly to the 
hange in the target signal. The s
heme is well suitablefor being used within systems whose properties do not 
hange very rapidly and isable to smooth out the e�e
ts of noise and experimental errors.Although more 
omplex than used networks are expe
ted to have higher 
a-pa
ity in predi
tion, due to the dimensional and 
omplexity in
rement in thenetwork's weight spa
e, the optimization of the error fun
tion be
omes moreexpensive 
omputationally. As a result, the network be
omes very slow whentraining and is no longer suitable for predi
tion in real�time.Nevertheless, for RTDST appli
ations this 
ompensation s
heme may not besuitable all the times. In our parti
ular 
ase for instan
e, due to the signal to bepredi
ted was the out
ome of a numeri
al model (namely the displa
ement of the�rst �oor), no substantial noise is present on this signal. So that, there is notgreat advantages in utilizing the neural network methodology be
ause it requiresadditional attendan
e and 
ould also present la
k of training o

asionally.An additional 
are should be taken with relation to the predi
tion s
heme.Note that if delay is 
onsidered to be equivalent to adding negative damping inthe system, then over 
ompensating (predi
ting too far forward in time) will havethe opposite e�e
t of in
reasing the damping. Both 
ases may redu
e the a

u-ra
y of the simulation results. Note that delay might 
hange along the RTDSTsimulation, so, to avoid wrong time delay 
ompensations, it should be done baseon an a

urate on�line estimation of the 
urrent delay in the system.The 
ase studied in this thesis is mainly 
hara
terized for having a strongnonlinearity (by way of dis
ontinuity) when the velo
ity in the dissipation devi
e
hanges of sign. Many others dissipation devi
es for seismi
 hazard mitigationpresent a similar for
e�velo
ity dependen
e. Our results 
an be easily extendedto di�erent systems in engineering whi
h are provided with devi
es exhibitingsu
h a behaviour. Additionally, the a
hieved results are also useful for other kindof me
hani
al systems di�erent from RTDST appli
ations. Systems where the



150 CHAPTER 8. CONCLUSIONS AND FINAL REMARKSresponse of some 
omponents is arriving with delay and may 
ause a harmful ef-fe
ts on the system behaviour. Semi�a
tive 
ontrol by MR dampers are examplesof su
h a systems. In fa
t, it is a work derived from this thesis whi
h is alreadybeing 
arried out. Large�s
ale MR dampers also su�er from me
hani
al delayedresponse. That is why, we are studying the redu
tion on the semi�a
tive 
ontrolsystem e�
a
y 
aused by delays in the MR dampers response.In order to get the 
lose�form expressions for des
ribing the delayed system dy-nami
s, a mathemati
al tri
k was used in this thesis. We substituted the originalnon�linear system by one dynami
ally equivalent. When passing to the equiva-lent system, that one whi
h uses dry fri
tion instead of vis
ous damping, some
omplex phenomena exhibit in the original system 
an not be represented anymore. From numeri
al simulations, we identi�ed a sliding phenomenon just be-fore the high frequen
y os
illations (indu
ed by delay) arise. Su
h phenomenondo not 
ause any important problem in terms of dynami
 stability, but its analysismay be very interesting from a mathemati
al point of view. Readers interestedin 
at
hing su
h phenomenon 
ould try a pie
ewise dynami
al system by using aFillipov's systems approa
h, whi
h 
an reprodu
e su
h a behaviour.Another pra
ti
al issue to take 
are about when setting up the experimental rigfor RTDST, is the ba
klash phenomenon. When perfe
t 
onne
tion between thetransfer system and the spe
imen is not assured, this lost motion due to 
learan
ewhen movement is reversed and 
onta
t is re�established, 
an in
rease even morethe delay e�e
t. In spite of the fa
t that su
h phenomenon may be present in theemulated system without any signi�
ant drawba
k, ba
klash may severely a�e
tthe stability 
onditions in a Real Time Dynami
 Substru
turing simulation whentesting systems whi
h are ex
eptionally sensible to delay. So that, if the systemproves to be highly sensitive to delay, ba
klash be
omes 
ru
ial in the simulation.Finally, although we got a 
omplete mathemati
al des
ription of systems withdelayed non�linear dampers and we 
ould assert that any small delay 
auses self�sustained os
illations, the problem is still far from solved. We have understoodthe phenomenon, unexplained before, whi
h generates self�sustained os
illations.But to 
arry out reliable and a

urate RTDST simulations on the large�s
alenonlinear dampers, we still have to �nd a 
omplementary system whi
h preventssu
h high frequen
y os
illations. We need to in
lude a subsystem in the RTDST�
hain to 
ountera
t and take away them. Our guess is that a system whi
h istuned a

ording to the frequen
y of the undesirable os
illations 
an be useful. Asort of virtual tuned mass damper able to absorb the high frequen
y os
illation,keeping the system free from the harmful delay e�e
ts.
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