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AbstratThis thesis analyses the appliability of a quite novel methodology of experimen-tal testing so�alled Real�Time Dynami Substruturing Test (RTDST) in theassessment of protetion systems for natural hazards mitigation. RTDST allowstesting ritial omponents of the struture at full�sale under realisti extremeloading onditions. Only those omponents where the non�linearity behavior isonentrated are physially tested, whilst the remainder of the struture is sim-ulated numerially. The main drawbak of this tehnique lies in the unavoidabledelays assoiated to the loop feeding bak some experimental measurements tothe numerial model. Suh delays may ause instability during the test.This work is foused on testing passive ontrol systems based on large�salenon linear �uid visous dampers. Throughout a areful expliit stability analysis,we present a omplete set of losed�form expressions to desribe the dynamisof the main omplex delay�indued phenomena exhibited for the delayed sys-tem. This analysis is addressed in the ontext of both lassi stability theoryfor non�linear systems and the qualitative theory of Pieewise Smooth Dynam-ial Systems. The results obtained are also useful for other kind of mehanialsystems where the response of some omponents is arriving with delay and mayause harmful e�ets on system behaviour. Semi�ative ontrol by MR dampersare examples of suh systems.The theoretial results obtained were on�rmed experimentally. When arry-ing out the experimental ampaign, in fat, unexpeted self�sustained osillationswere deteted. This was aused by delays in the feedbak loop, even when theyare very small, unavoidably lead the system to self�sustained osillations at highfrequeny.
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Chapter 1Introdution
Contents1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . 11.2 Outline of this thesis . . . . . . . . . . . . . . . . . . . 31.1 MotivationEarthquake damage has devastating human and eonomi onsequenes. The av-erage worldwide repair ost due to earthquake damage has been estimated to beapproximately $30bn per year. Reduing this �nanial ost is a major engineer-ing hallenge, whih would have signi�ant bene�t in reduing human su�eringduring extreme earthquake events. Suh a redution demands the design of moreresistant, reliable and ost�e�etive both strutures and seismi protetion sys-tems.New design proedures in strutural engineering as well as in strutural on-trol, require better understanding and modelling of nonlinear behavior of stru-tures and omponents. The response of strutural systems under strong dynamiloads, suh as earthquake ground motion, is highly unpreditable and then di�ultto model. It beomes a troublesome problem, when designing omplex infrastru-ture in regions of high seismi ativity. Besides, the appliation of struturalontrol tehnologies for protetion of ivil strutures has been a growing interestover the last four deades, not only to redue the dynami response under extremedynami loads but also to inrease the system reliability and for providing humanomfort during everyday environmental loads. These protetion systems are alsodi�ult to be analysed, due to the strong non�linearities exhibited by the deviesommonly used for seismi mitigation. 1



2 CHAPTER 1. INTRODUCTIONDi�erent laboratory failities and experimental methodologies have been de-veloped for years, seeking for better understanding of mehani and dynamiphenomena in �elds relative to earthquake engineering. However, the vast major-ity of those tehniques su�er from tehnial and physial limitations that restrittheir appliability for assessing real senarios. In fat, large sale engineeringstrutures suh as bridges and buildings, present a partiular problem in termsof experimental testing. Another experimental hallenging issue is onneted tothe hysteresis and rate�dependent phenomena. That turns into meaningful whentesting semiative and passive ontrol systems, where this dynami behaviour isintrodued into the ontrolled system by the dissipation devies.The idea behind this thesis is to evaluate the appliability of a new experimen-tal tehnique whih is radially more e�etive than traditional approahes. To dothis we propose to exploit a state of the art of the dynami testing tehniqueknown as real�time dynami substruturing. Based on the urrent knowledge,we intent to �nd the onditions under whih this tehnique an be employed fortesting real sale seismi protetion system for buildings. We believe that thistehnique will enable the engineers to obtain aurate information of the systemsin nonlinear range, inreasing the understanding of the whole ontrolled systembehaviour, and hene, allowing the improvement of designing strutures withadded ontrol systems. More e�ient ontrol systems imply both ost�e�etiveseismi protetion systems and more resistant struture to earthquake exitation.The result will be safer buildings, less human ost in terms of death and injury,and more sustainable infrastruture with inreased on�dene.Real�time dynami substruturing testing (RTDST) is an e�ient method forthe assessment of dynami and rate�dependent behavior of systems subjeted todynami exitation. This new and exiting tehnique o�ers the prospet of be-ing able to test prototype adaptive strutures in the laboratory under realistiextreme loading onditions, suh as those su�ered during earthquakes. RTDSTprovides the apability to isolate and physially test ritial omponents of a on-trolled struture whilst the remain part of the struture is simulated numerially.These tests an be ondued at real sale and in real time to fully apture anyrate dependeny, while allowing for hundreds of repeatable tests. This approahoveromes signi�ant limitations of traditional testing methods. For instane,depending on the experimental objetives, RTDST may have several advantagesover traditional pseudodynami tests, where unpreditable rate behavior annotapture beause inertia and damping fores are alulated numerially and ap-plied slowly to the test speimen. Likewise, it may also have many advantagesover the dynami shaking table tehnique traditionally used, mainly when testinglarge strutures, not only in terms of sale but also ost, geometry and requiredphysial mass of the strutural model. An additional bene�t is that the mod-



1.2. Outline of this thesis 3els an simulate experiments in advane. This allows the feasibility of a testingregime to be explored. Simulated results an also give an investigator a degree ofon�dene that his test has proeeded as intended or otherwise. The apparatusmodels are omplex and must aount for the dynamis of all the omponents,inluding the ontroller, servo�valve, atuator and physial test speimen.Nonetheless, this testing tehnique su�ers from a ritial drawbak: the delay.Delay in ommand signals is a serious issue for dynami system that needs to atin real time. RTDST requires a strutural numerial model to be fed bak withmeasurements from the omponent physially tested. In turn, this omponent isloaded in the lab aording to the outomes from that numerial model. Thisinformation exhange must take plae in real time with minimum error betweenthe two parts. But due to the intrinsi dynamis of the laboratory faility whihis being used in the test, delay errors in the feedbak signal are unavoidable. Thesuess of real time dynami substruturing testing is then highly dependent onthe performane of the atuators whih provide the fores (or displaements) tothe omponent physially tested. Their imperfet dynamis an introdue bothtiming and amplitude errors into the signal, whih an a�et the auray ofthe performane and may also ause instability. To overome this, time delayompensation shemes are ommonly used to make orretions on the ommandsignal. Even if this ompensation works properly, it beomes impossible to reduesuh delay error to zero.Additionally, some systems ould be partiularly sensitive to the presene ofdelay, and even a small delay may drastially a�et how they behave. Therefore,to make sure that RTDST simulation is aurate and reliable enough, a arefulstability analysis of the whole substrutured system should be done. The aim ofsuh analysis is to determine the ritial delay, beyond whih, the test no longerrepresents the emulated system behaviour, or in other words, to de�ne the on-�dene interval in terms of delay where the RTDST simulation results an beguaranteed.In the next setion, we shall present details of how this thesis was arrangedto fae this interesting and promising issue.1.2 Outline of this thesisAs this thesis ombines two worlds whih have been usually not onneted (stru-tural ontrol and pieewise systems), we onsider very unlikely that the readerknows about both. So that, this doument overs several areas in an attempt tobe omprehensive and easy to read for a wide spetrum of readers. Rather thanovering all the issues in deep, the idea is to familiarize the reader with unknown



4 CHAPTER 1. INTRODUCTIONfundamental de�nitions. Fundamental in the sense of being useful to understandthe work presented here. This thesis is organized as follows.Chapter 2 is devoted to show some basis of strutural ontrol systems. Theaim is not to go deep into spei� tehnial, pratial or mathematial issues butto highlight the importane and impat of several types of protetion systems,the devies employed in eah ase and the main test methods urrently used fortheir assessment. These information may be useful for readers who are not usedto what strutural ontrol tehniques means in ivil engineering.In Chapter 3 we present the main features, advantages and disadvantages ofthe testing tehnique known as real�time dynami substruturing. Our interestis to show who RTDST an e�etively be implemented for testing and designingontrol systems for seismi protetion, and whih irumstanes are partiularyhallenging in order to ahieve reliable simulations of the emulated struture.In Chapter 4 we present an overview of the main fundamentals of the lassialstability theory for the analysis of linear and non linear systems. The idea isto familiarize the reader with fundamental de�nitions and properties exhibitsfor smooths system whih are neessary to understand the analysis arried outthroughout this thesis. If the reader already knows these mathematial formalismsan skip this hapter.In Chapter 5 we present an overview of the qualitative theory of smooth andpieewise smooth dynamial systems. Rather than overing all the issues, thepurpose is to present the fundamental onepts and de�nitions, that aordingto us, are needed in the study. After a brief presentation on smooth dynamialsystems, we introdue nonsmooth dynamial systems, namely we present somede�nitions, invariant sets, stability analysis and numerial analysis emphasizingpartiularly the major di�erenes with the lassial theory of smooth systems.In Chapter 6 we intend to analyse the lose loop behaviour of a RTDSTwhen testing a supplemental energy dissipation system for strutural ontrol. Wepresent a stability analysis to highlight the harmful e�ets aused by delays indynami systems when timing errors are onsidered on the damper's response.Our goal is to assess the onstraints on delays, in suh a way that the stability andreliability of the losed loop simulation an be guaranteed. This study is addressedin the ontext of both lassi stability theory for linear and non�linear systemsand the qualitative theory of Pieewise Smooth Dynamial Systems presented inthe previous hapters.In Chapter 7 we present the desription and experimental set�up of a Real�Time Dynami Substruturing Test of a ivil struture provided with a passiveseismi protetion system. Our interest is to show how this kind of test an beexploited for the assessment and design of urrent and new protetion systems inearthquake engineering. We show that even when a ompensation sheme works



1.2. Outline of this thesis 5properly, the RTDST may beome unstable and behave very di�erent from theemulated system.Finally, Chapter 8 presents the onlusions, remarks and suggested futureworks derived from this thesis.
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Contents2.1 Strutural ontrol strategies . . . . . . . . . . . . . . . 82.1.1 Passive ontrol . . . . . . . . . . . . . . . . . . . . . . . 82.1.2 Ative ontrol . . . . . . . . . . . . . . . . . . . . . . . . 142.1.3 Semi�ative ontrol. . . . . . . . . . . . . . . . . . . . . 152.2 Strutural ontrol algorithms . . . . . . . . . . . . . . 182.3 Testing of seismi protetion system . . . . . . . . . 202.3.1 Shaking table method . . . . . . . . . . . . . . . . . . . 202.3.2 Pseudo�dynami (PsD) method . . . . . . . . . . . . . . 222.3.3 E�etive fore testing (EFT) . . . . . . . . . . . . . . . 232.3.4 PsD with substruturing . . . . . . . . . . . . . . . . . . 242.3.5 Real�time substruture testing . . . . . . . . . . . . . . 24Strutural ontrol had its roots primarily in aerospae industry, prinipally,in �eld onerning to �exible spae strutures. It was rapidly moved into ivilengineering. Over the last four deades, there has been a growing interest inthe appliation of ontrol tehnologies for ivil strutures in order to redue theirdynami response and to inrease the system reliability, not only for protetionagainst dynami extreme loads (earthquakes, blasts, rashes, strong winds, ex-treme waves, et.) but also for providing human omfort during everyday envi-ronmental loads [Housner et al., 1997℄.The �rst real implementations of strutural ontrol, were based on base isola-tion, visoelasti dampers and tuned liquid dampers in the 1970's. Many yearslater the ative ontrol onept appeared and the �rst real implementation was7



8 CHAPTER 2. SOME FUNDAMENTALS ON STRUCTURAL CONTROLmade in the 11-storey Kyobashi Seiwa building in Tokyo�Japan, for reduingthe building vibration under strong winds and moderated seismi exitations[Sakamoto et al., 1994℄. Reently, the tehniques of semiative and hybrid on-trol were proposed for strutural ontrol and their implementations have beenmade suessfully in Japan and USA. Several state�of�the�art reports provide adetailed survey, see e.g. [Spener and Nagarajaiah, 2003℄, [Dyke, 2005℄.This hapter is devoted to present some basis of strutural ontrol systems.The aim is not to go deep into spei� tehnial, pratial or mathematial issuesbut to highlight the importane and impat of various types of protetion systems,the devies employed in eah ase and the main test methods urrently used fortheir assessment.2.1 Strutural ontrol strategiesDi�erent strutural ontrol strategies have been developed. Generally speaking,we have three prinipal groups: (i) passive ontrol, where vibratory energy is dissi-pated by inreasing some strutural parametri values (like sti�ness and damping)without requiring external energy; (ii) ative ontrol, whih adds energy to thestruture in opposite diretion of the seismi fores to ounterat them; and (iii)semi�ative ontrol, whih dissipates energy like passive ontrol, but now devie'sdissipation apaity an be ontrolled on�line, so devie properties suh as sti�nessor damping are hanged by means of hydrauli, magneti or eletri ommands.In what follows, we present a brief desription of eah strategy and give someexamples.2.1.1 Passive ontrolPassive energy dissipation systems enompass a large spetrum of materials anddevies for adding damping to the strutural system (also sti�ness and strengthare usually inreased). They an be used for both natural hazard mitigationand rehabilitation of aging or de�ient strutures. Passive ontrol systems dis-sipate energy using the struture's own motion to produe relative movementwithin the devie and develop loal ontrol fores. Two priniples are used todissipate energy: onversion of kineti energy to heat and transferene of energyamong vibration modes [Skinner et al., 1993℄, [Constantinou and Symans, 1993℄.The devies that pertain to the �rst lass are based on fritional sliding, yieldingof metals, deformation of visoelasti solids or �uids. And those of the seond



2.1. Strutural ontrol strategies 9group are �uid ori�ing and supplemental osillators, whih at as dynami vi-bration absorbers [Cahis et al., 2000℄.The added sti�ness redues the dynami response of the strutures by absorbingand dissipating energy, whih when ombined with the hange in initial frequeny,helps the struture avoid resonane. Sine passive systems involve no externalpower, they are inherently stable. Passive strategies are haraterized by its sta-bility, simpliity, reliability and have a low ost of maintenane and installation.However, its main drawbak rely on the fat that they are built arefully tuned forspei� operating onditions and annot adapt to hanges and unknown distur-banes. Examples of passive systems inlude among others: base isolation, tunedmass dampers (TMD), tuned liquid dampers (TLD), metalli yield dampers, vis-ous �uid dampers and frition dampers.Tuned Mass Dampers. Passive tuned mass damper systems, onsist of anauxiliary mass, a spring and a damper, whih are attahed to a struture in orderto redue its dynami response (Fig. 2.1). The auxiliary mass limits the motion ofthe struture when it is subjeted to a partiular exitation ausing the damper toresonate 180◦ out of phase with the struture motion. The di�erene in the phaseprodues energy dissipation by the TMD inertia fore ating on the struture.TMD

Figure 2.1: Tuned Mass Damper SystemNonetheless, tuned mass dampers are relatively ine�etive during earthquakesdue to their inability to reah a resonant ondition and therefore dissipate energyunder random exitation [Kwok and Samali, 1995℄. In the last years, tuned massdampers have been installed in a number of buildings worldwide to redue buildingvibration, partiularly under wind exitation. A reent example is one of the



10 CHAPTER 2. SOME FUNDAMENTALS ON STRUCTURAL CONTROLworld's tallest buildings, the Taipei 101 in Taiwan (See Figure 2.2), whih hasbeen suessfully equipped with a tuned mass damper to ontrol the exessivesway under large wind. The building hosts a massive pendulum with dampers, an800�ton sphere 18 feet aross swings from the 92nd �oor to ontrol wind�induedosillation.

Figure 2.2: Building Taipei 101 and the 800�ton steel sphere used as TMD.
Base Isolation Systems. A base isolation system onsists of a set of �exiblesupport elements, typially rubber bearings, plaed at the foundation level asshown in Figure 2.3. These support elements are designed in suh a way thatthe natural period of vibration of the isolated struture is muh greater than thedominant period of the expeted exitation. Atually, the whole system behavesas a single degree of freedom system due to, under strong dynami loads, thedisplaements are absorbed by the supports while the relative strutural displae-ment remains negligible [Kelly, 1996℄.Base isolation tehnology o�ers a ost�e�etive and reliable strategy for miti-gating seismi damage to strutures. It is best implemented in loations of highseismiity for reduing lateral design fores or for existing strutures needing tobe upgrade in order to satisfy urrent safety requirements. For ost e�etiveness,base isolation needs to be onsidered in the planning stages of the building projet.
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ւIsolatorsFigure 2.3: Base isolation system and a typial rubber bearing for base isolation.A lot of examples of real implementations an be found in the literature. Figure2.4 shows a worship struture seismially isolated in Sirausa (Italy) and the hys-tereti isolators installed on it, for further information see [Serino et al., 2008℄.Fritional Dampers. Fritional damping dissipates energy due to the heataused by frition between moving bodies1 in ontat. A fritional damper on-sists of the frition surfae (e.g. steel) lamped together by high strength boltswith slotted holes. Frition dampers are designed to slide over eah other duringa strong earthquake, the slip fore is designed large enough so that no sliding isaused by wind fores. The bene�ial approah to passive damping is that beauseenergy is removed, the response annot beome unstable. However, fritionaldamping looses e�etiveness during large seismi exitation [Hanson and Soong, 2001℄.Metalli Yielding Dampers. Metalli Yielding Dampers (MYDs) are prob-ably the most familiar to strutural engineers, sine its onept is the same astypial steel seismi fore resistive elements suh as steel moment frames andbraes. Beam�olumn onnetions yield for steel moment frames to absorb theseismi energy. The braes also bukle to absorb the seismi energy. However,the biggest di�erene between MYDs and typial steel system is the yielding lo-ation for MYDs is not in the gravity load arrying elements (Further details in[Hanson and Soong, 2001℄).1Moving plates speially treated to inrease the frition between them.
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Figure 2.4: Worship struture seismially isolated in Sirausa (Italy) and its hys-tereti isolators.
Bolts Steel Plates

Figure 2.5: Fritional damper system.Fluid Visous Dampers. FVDs have been widely used in aerospae and mil-itary appliations sine the early 1900's. After the end of the old war, its teh-nology beame available for ivilian usage. They onsist of a losed ylinder
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Figure 2.6: Struture equipped with �uid visous dampers in diagonal brae on-�guration and typial FV devie.
ontaining a visous �uid like oil. A piston rod is onneted to a piston head withsmall holes in it. The piston an move in and out of the ylinder. As it doesthis, the ompressible silion oil is fored to �ow through holes in the piston headat high veloity ausing frition and generating heat, whih is in turn, radiatedinto the surrounding air. This hydrodynami proess dissipates seismi energy[Miyamoto and Hanson, 2004℄. A ommon example of visous dampers is a shokabsorber in a ar or the devies mounted on building doors to prevent the doorfrom slamming shut.FVDs add visous damping to the struture and an redue aeleration and dis-plaement for the most of the frequeny range. The dampers are usually installedas part of a building's braing system using single diagonals. They are the mostuseful where engineers desire to redue displaement without inreasing the stru-ture's frequeny [Constantinou and Symans, 1992℄.A real appliation example is the London Millennium Footbridge shown inFigure 2.7, a pedestrian�only steel suspension bridge rossing the River Thamesin London. Unexpeted lateral vibration (resonant strutural response) ausedthe bridge to be losed on June 12 2000. After extensive analysis, the problemwas �xed by the retro�tting of 37 �uid�visous dampers to ontrol horizontalmovement and 52 tuned mass dampers to ontrol vertial movement (Further in-formation in [Dallard et al., 2001℄).
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Figure 2.7: London Millennium Footbridge (UK) and �uid visous damper loa-tion.2.1.2 Ative ontrolAtive ontrol systems supply ontrol fores to the struture in order to redueits own motion. These fores are obtained from an algorithm based on feedbakinformation from sensors that measure the exitation or/and the response of thestruture [Soong et al., 1991℄, [Preumont, 1997℄. Typially, an ative ontrol sys-tem onsists of three main omponents: (i) a monitor, whih is the sensors and thedata aquisition system; (ii) a ontroller, a module that deides on the ourse ofation; and (iii) an atuator, a set of physial devies that exeute the instrutionsfrom the ontroller. Civil strutures require atuator systems (suh as hydraulisystems) whih are apable of generating large fores. The preise appliation ofsuh ontrol fores usually demands large power requirements. This onditionalbeomes partiularly ritial during seismi events when the main power soureto the struture may fail [Soong, 1990℄.The merit of the ative ontrol systems is that they are e�etive for transientvibration and also for a wide frequeny range. Unlike passive systems, ativeontrol is able to adapt to di�erent loading onditions and to ontrol di�erentvibration modes [Spener et al., 1997a℄. However, beause external energy is in-trodued, it may indue instability into the whole strutural system by unex-peted dynamis hanges or erroneous feedbak information. In addition, ostand maintenane of suh systems is signi�antly higher than that of passivedevies. Ative ontrol strategies inlude ative mass damper (AMD), hybridmass dampers (HMD), ative tuned liquid olumn dampers, ative braing, a-tive base isolation, multiple onneted buildings, et., [Soong and Spener, 2002℄,[Nishimura and Shidomaira, 2003℄.



2.1. Strutural ontrol strategies 15Ative mass damper . An auxiliary mass supported by rollers is attahed toa transfer system as shown in Figure 2.8. The idea in that the mass osillates atthe same frequeny of the struture but with a phase shift. The transfer systemusually onsists in a hydrauli atuator or an eletri motor. It is used in orderto provide a ontrol fore to drive the additional mass and ounterat or mitigatethe motion of the struture [Yoshida et al., 1995℄, [Riiardelli et al., 2003℄.AtuatorAMD Sensor
SensorComputer

Figure 2.8: Struture equipped with an ative mass damper (AMD)The Kyobashi Seiwa Building in Japan (1989) was the �rst full�sale applia-tion of ative ontrol tehnology. Two ative mass drivers were installed on thetop �oor to redue the maximum lateral response assoiated with building vibra-tions aused by earthquakes and strong winds [Kobori et al., 1991℄. Several realappliations an be reviewed in [Cao et al., 1998℄ and [Nishitani and Inoue, 2001℄.Besides, Figure 2.9 shows the Herbis Osaka Building in Osaka, Japan. An AMDsystem installed at the 38th �oor level was ompleted in 1997. Two AMD's, whihan move only in one diretion, were installed to ontrol both the lateral and tor-sional diretion of the building (Further details in [Yamamoto et al., 2001℄).2.1.3 Semi�ative ontrol.Semi�ative ontrol strategies arise as a ombination of the positive aspets ofboth passive and ative ontrol systems. They utilize the motion of the stru-ture to develop dissipative ontrol fores but also use feedbak measurements toalter the harateristis of the dissipative mehanism in real�time. Semi�ativeontrol is partiularly promising in protetion of ivil engineering strutures, in
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Figure 2.9: Herbis Osaka Building in Osaka, Japan and a prototype of AMD.the sense that they potentially o�er the reliability of passive devies, maintainingthe versatility and adaptability of fully ative systems at low�power requirements[Casiati et al., 2006℄. In the literature, important studies along with experi-mental results have showed that appropriately implemented semi�ative ontrolperforms signi�antly better than passive ontrol and has the potential to ahievethe major apabilities of fully ative ontrol [Symans and Constantinou, 1999℄,[Jung and Lee, 2002℄. The most ommon semiative ontrol devies are: variable�ori�e �uid dampers, ontrollable frition devies and ontrollable��uid dampers.In [Housner et al., 1997℄ and [Marazzi and Magonette, 2001℄, interesting surveyson semiative ontrol systems an be found.Variable�ori�e �uid dampers. It behaves as linear visous dampers withadjustable damping. Its operation priniple onsists of ontrolling the dampingoe�ient by adjusting the opening of the internal valves hanging the �ow resis-tane of the hydrauli �uid. Thus, large fores an be ahieved with low externalpower [Kamagata and Kobori, 1994℄, [Serino and Ohiuzzi, 2003℄. Several realappliations on high�rise buildings have been aomplished, for instane, thesekind of devies have been implemented on a 5�storey o�e building loated inShizuoka City, Japan [Kurata et al., 2000℄.



2.1. Strutural ontrol strategies 17Variable�Frition Damper. It dissipates energy by fores generated on fri-tion surfaes. These fores an be varied by means of eletrial signals or gas pres-sure, whih vary the frition oe�ient of the devie. In [Dowdell and Cherry, 1994℄the ability of these devies to redue the inter�story of a seismially exited stru-ture was investigated. Also, in [Feng et al., 1993℄, a study of these devies plaedin parallel together with a seismi isolation system is presented.Controllable �uid dampers. In these devies are similar to passive �uid vis-ous dampers, but in them some properties of their internal �uid an be modi�edby means of eletri or magneti �eld, resulting a modi�ation in the quantityof fore absorbed. The prinipal advantage of this type of devies is that thepiston is the only moving part; onsequently, it an hange rapidly from a stateto another (e.g. from visous to a semi�solid in milliseonds) when exposed to aneletri/magneti �eld. Semiative ontrollable �uid dampers an be: (i) Ele-trorheologial (ER), if the smart �uid hanges rheologial properties2 in preseneof an eletri �eld; and (ii) Magnetorheologial (MR), if the smart �uid propertieshange under di�erent magneti �elds. Several ER dampers have been developedand adapted to ivil engineering strutures. Important developments an be re-viewed in [Masri et al., 1994℄, [Gavin, 2001℄ and [Leitmann and Reithmeier, 2002℄among others.MR dampers have beome as an alternative of ER damper. When the exter-nal signal is applied (a magneti �eld), the inside �uid beomes from semisolidto visous state and it exhibits a visoplasti behavior. MR devies typiallyhave very low power requirements with voltage between 12�24V and urrent de-mand of around 1�3 amps3, o�ering highly reliable operation at modest osts[Poynor, 2001℄, [Gravatt, 2003℄. Many numerial simulations and laboratory testshave been aomplished to demonstrate the e�etiveness of MR devies for seis-mi response redution. Some interesting douments are [Dyke et al., 1997a℄,[Dyke et al., 1997b℄ and [Renzi and Serino, 2004℄ among others.Double�ended MR dampers are generally used for semiative ontrol applia-tions in ivil strutures (See Figure 2.10). Due to the presene of nonlinearities,in partiular the hysteresis phenomenon, the modelling of these devies is quitehallenging being lot of literature devoted to this topi [Spener et al., 1997b℄,[Yang et al., 2004℄, [Ikhouane and Rodellar, 2007℄, [Aguirre et al., 2008℄ and more.An example of real appliation is the Dongting Lake Bridge (Fig. 2.11), a able�stayed bridge rossing the Dongting Lake in southern entral China. The world's2Rheology is the study of the �ow of matter, mainly liquids but also soft solids or solidswhih, under partiular onditions, �ow rather than deform elastially.3Note that ommon ar batteries an supply this power.
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3-stage pistonThermal Expansionaumulator Magneti �eldMR �uid

Figure 2.10: Shemati of a full sale MR damper�rst appliation of MR dampers on able�stayed bridge to suppress the rain�wind�indued able vibration. For further details see [Chen et al., 2003℄.

Figure 2.11: Dongting lake bridge in Hunan, China and MR dampers attahed tothe stay ables.
2.2 Strutural ontrol algorithmsDuring the last two deades, various types of strutural ontrol strategies havebeen applied to the ontrol of ivil engineering strutures. High�quality ontrolsystems require the design of the feedbak ontroller with spei� ontrol obje-tives in mind, related to meaningful strutural performane measures, while at



2.2. Strutural ontrol algorithms 19the same time addressing devie (or atuator) and system nonlinearities and theunertainties in the system and exitation models. Depending on the availableinformation for eah ontrolled struture, the mathematial model assoiated,types of measurements, atuators and disturbanes, eah ontrol solution an besuitable only for one spei� type of struture and not for all kinds [Soong, 1990℄.Due to this thesis is not foused in ontrol theory, in what follows we shall limitto mention some strategies ommonly used in ivil engineering �elds.Most of the researh e�orts on ontrol law design for ivil engineering ap-pliations have been done on extending linear ontrol methodologies, primarilysome variant of H2 ontrol [Kuera, 2007℄, to strutural ontrol problems, seefor instane [Spener and Nagarajaiah, 2003℄, [Miyamoto and Hanson, 2004℄ and[Ang et al., 2005℄. At the ontroller design stage, potential nonlinearities regard-ing to the strutural and exitation models are either: (i) negleted, for examplein the ontext of the well known lipped�optimal ontrol design for semi�ativesystems [Dyke et al., 1996℄; or (ii) approximated onsidering linearization teh-niques [Erkus and Johnson, 2006℄. To onsider the nonlinearities arising from thelimitations of the atuators, heuristi feedbak ontroller design tehniques havebeen suggested; methods suh as hystereti, dissipation�based, and energy�basedapproahes, e.g., [Gavin, 2001℄, [Jansen and Dyke, 2000℄.One of the most proli� �eld on literature has been devoted to semiativeontrol. The most relevant works deal with strategies suh as: Lyapunov basedontrol, e.g [Jansen and Dyke, 2000℄; H∞ ontrol, e.g. [Yang et al., 2002℄; slidingmode ontrol, e.g. [Moon et al., 2003℄; QFT ontrol, e.g. [Sanz, 2005℄ and bak-stepping ontrol, e.g. [Zapateiro et al., 2009℄.Note that most aforementioned methodologies primarily fous on the meansquare strutural response and do not expliitly aount for unertainties in thesystem and exitation models. Thus, some researher found that the optimalstrategy in strutural ontrol design with unertainties should be that whih max-imizes the reliability. Theoretial reliability�related ontrol methods, suh as µ�synthesis and the many o�shoots of these, have beome the standard tools in thedesign of feedbak ontrollers that are robust to model unertainty, where a om-pat set of possible models for the system is hosen [Dullerud and Paganini, 1999℄,[Yoshida et al., 1995℄.



20 CHAPTER 2. SOME FUNDAMENTALS ON STRUCTURAL CONTROL2.3 Testing of seismi protetion systemIn strutural ontrol, similar to other appliation �elds, the main objetive is to de-velop integrated ontrol methodologies that are robust, e�etive, implementable,reliable and with the minimum ontrol e�ort. However, sometimes it is di�ultdue to some problems suh like nonlinearities, unertainties, dynami ouplingand measurement limitation. To assess strutural resistane and seismi prote-tion system behavior under dynami loads, a test method that emulates the fulldynamis of the system is needed. This setion gives a brief overview of severalwell�established testing methods that are urrently the most widely used testingmethods in seismi engineering researh.2.3.1 Shaking table methodThe most natural experimental tehnique used for earthquake engineering is shak-ing table testing. A speimen representing the struture (usually saled down forpratial reasons) is �xed on top of a rigid platform (table), whih is onnetedto one or more hydrauli atuators that ontrol the movement of the platform inone or more degrees of freedom and vibrates to repliate ground motions.E�etive shaking�table testing of strutural models started to be arried out inthe late 1960's and early 1970's. This ame as a result of the advanes in eletro�hydrauli servo equipment, as well as improvements in omputer hardware andinstrumentation, for ontrol and aquisition of data [Aristizabal and Clark, 1980℄.Suh work was mainly initiated in the US with the set�up of dynami testing faili-ties at the University of Illinois at Urbana�Champaign [Sozen et al., 1969℄ and theUniversity of California at Berkeley [Bouwkamp et al., 1971℄. Sine then, shakingtable testing has been widely adopted in earthquake engineering researh en-tres worldwide. Di�erenes in shaking tables generally relate to the number andtypes of degrees of freedom that an be ontrolled during testing, the mass thatan be supported and the atuators' movement limits. For instane, the shakingtable system in the laboratory of the Department of Strutural Engineering atUniversity of Naples �Federio II� is shown in Figures 2.12 and 2.13. Two squaretables (3m side) an be moved asynhronously in order to reprodue the seismie�ets on strutures with long spans. For eah, the maximum load is 200kN witha frequeny range of 0�50Hz, peak veloity of 1m/se and total displaement of500mm. The hydrauli system has 12 motor pumps groups with a maximum totalapaity of 2500lit/min.Shaking table testing better represents live earthquake experiene inside alaboratory. Even though the shake table test might be onsidered the most ad-
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Figure 2.12: Asynhronous shaking table system at University of Naples �FederioII�.

Figure 2.13: Hydrauli system whih supplies oil pressure to shaking tables atUniversity of Naples �Federio II�.vaned form of seismi testing, it is also the most expensive, as it requires thatseveral skilled personnel and ostly equipment. Note as well that, in shakingtable testing only base vibration is introdued and loads due to wind for exam-



22 CHAPTER 2. SOME FUNDAMENTALS ON STRUCTURAL CONTROLple annot be modelled. Additionally, the limited power of the atuators thatdrive the table imposes the use of redued sale speimens, what in turn, in-trodues di�ulties and unertainty in the interpretation of experimental results[Williams and Blakeborough, 2001℄. Consequently, onsiderable e�ort and fund-ing has been plaed over the past 40 years in the onstrution of ontinuouslylarger and more powerful shaking table failities around the world. As an exam-ple, on July 14 2009, Colorado State University and Simpson Strong�Tie alongwith other partners suessfully led the world's largest earthquake shake table test.A ground motion equivalent to a 2500�year earthquake (similar to a 7.5 Rihtermagnitude) was applied on a seven�story, 40�foot by 60�foot ondominium towerwith 23 living units. The test took plae on the nowadays world's largest shaketable (known as E�Defense) in Miki City, near Kobe, in Japan (Further details inwww.strongtie.om/about/researh/apstone.html).2.3.2 Pseudo�dynami (PsD) methodThe pseudo�dynami test method is a omputer ontrolled testing tehnique thatenables dynami testing of strutures into the non�linear range while using thesame loading equipment that is used for stati or quasi�stati testing4. Thestruture to be analyzed is spatially disretised aording to a lumped mass ap-proximation and atuators are loated at these points to provide the loading.This experimental onept originated in Japan as early as 1969 following failedattempts to realize real�time hybrid tests. [Takanashi and Nakashima, 1987℄ pro-vide general overviews of the method and histori development.The PsD method an be onsidered a hybrid testing method as it ombinesonline omputer simulation of the dynami behaviour of a struture with infor-mation measured diretly from the struture. The test struture is physiallyattahed through the atuators against an very sti� reation wall. A omputeralulates the strutural response by a time�stepping integration method on-sidering the idealised lumped�mass model of the struture subjet to the inputearthquake motion . While the inertial and visous damping fores are modelledanalytially, the solution of the equations of motion provides the displaementsto be applied to the struture at eah time step. These displaements are physi-ally applied by atuators in a quasi�stati manner5 as long as the reating foresare measured experimentally to be used in the equations of motion for the nexttime step [Mahin et al., 1989℄, [Shing et al., 1996a℄. The atual size of the rea-4In quasi�stati testing loads are applied a very slow rate.5Slow loading of the struture is important so as not to exite its inertial and dampingproperties, whih are already aounted.



2.3. Testing of seismi protetion system 23tion wall is also important to aommodate large sale strutures. For instane,Figure 2.14 shows the reation wall at the European Laboratory for StruturalAssessment (ELSA) with 16m high, 20m long and 4m thik [Donea et al., 1996℄.

Figure 2.14: Pseudo�dynami test set�up using the reation wall at the EuropeanLaboratory for Strutural Assessment (ELSA).Positive attributes of the PsD method are that large massive strutures an betested at full sale using simple devies and low hydrauli power. As the onven-tional test is performed relatively slowly, arbitrarily large ground exitations anbe used, and there is good opportunity for detailed observation of the struturalbehaviour and failures throughout the test [Shing et al., 1996b℄. However youannot examine rate�dependent behaviours, e.g., the e�etiveness of �uid visousdampers added to the struture ould not be assess.2.3.3 E�etive fore testing (EFT)EFT is a dynami testing proedure to apply real�time earthquake loads to large�sale strutures that an be simpli�ed as lumped mass systems. The test setupis very similar to that of the PsD method. The test struture is anhored to a�xed base, and dynami fores are applied by hydrauli atuators to the enter ofeah story mass of the struture. The fore to be imposed (e�etive fore) is theprodut of the eah lumped mass and the ground aeleration reord, and thus is



24 CHAPTER 2. SOME FUNDAMENTALS ON STRUCTURAL CONTROLindependent of the strutural properties suh as sti�ness and damping, and theirhanges during the test. Unlike in a PsD test, the loading an be determined inadvane of the test and no numerial integration is needed [Shield et al., 2001℄,[Dimig et al., 1999℄.Motions measured relative to the ground are equivalent to the response thata struture an develop relative to a moving base as in a shake table test or anearthquake event. But, as for PsD testing, the EFT method is is only suitablefor strutures that an be represented as a series of lumped mass systems. Themajor limitation of EFT lies in the inability of hydrauli atuators to produeaurately a fore at the natural frequeny of a lightly damped struture, whihwas attributed to the interation between the atuator piston veloity and theatuator ontrol [Zhao et al., 2003℄.2.3.4 PsD with substruturingA speial set-up proedure for the pseudo-dynami test, known as �sub�struturing�,enables portions of a struture to be tested. The idea is to apply physially quasi�stati loading on a sensitive part of the struture while the remaining part is nu-merially simulated on a host omputer together with the inertial and dampingharateristis of the sensitive part. Sub�struturing method allows relatively in-expensive dynami testing of large multi�degree of freedom (MDOF) struturesand also makes possible fousing on important elements of a struture suh asisolation bearings [Pegon and Pinto, 2000℄.The tehnique generally provides an e�ient way to gain valuable informationon the performane of di�erent parts of a struture. The major advantage is thatonly the part of main interest is physially tested, providing in�nite repeatabilityof the remainder. Despite this, some disadvantages omes: �rst, the failure meh-anism for the struture must be assumed beforehand, and seond, the reation ofthe substruture interfae makes the experiment more di�ult to be implementedand ontrolled [Pinto et al., 2004℄.2.3.5 Real�time substruture testingReal�time substruture testing (RTST) may be onsidered a derivative of sub�strutured pseudo�dynami testing [Nakashima et al., 1992℄. An RTST is a hy-brid method involving a physially tested part and a numerially modelled part;the two substrutures are omplementary to form the omplete emulated stru-



2.3. Testing of seismi protetion system 25ture. During the RTST, the physial substruture interats, by means of a feed-bak loop, with a omputational model of the struture (numerial substruture);both substrutures send and reeive data from eah other, beause they needto know the state of the other part to work out their own. This interationmost take plae in real�time to ahieve reliable results, however, beause of themehanial harateristis of the transfer system in between the numerial andphysial substrutures, the presene of delays is unavoidable [Darby et al., 2002℄,[Wallae et al., 2005a℄.As PsD with substruturing testing, RTST allows one to onentrate on thebehaviour of a spei� part of the struture, while having the rest of the struturemodelled separately with in�nite repeatability. When suh a real�time experi-ment is onduted, the damping and inertial properties of the speimen are nolonger omputed but are fully aounted for through the measured fore feedbak.This method removes the unertainty in modelling omplex strutural parts asthese may be tested physially being espeially onvenient to study the behaviourof strutures that ontain highly non�linear and/or rate�dependent parts withinthem [Sivaselvan et al., 2004℄.Due to this thesis is mainly devoted to the stability analysis of a rate�dependentdevie for seismi protetion whih is suppose to be tested in lab by means of areal�time substruturing test, this testing method shall be widely disussed in thenext hapter.
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Chapter 3Real�Time DynamiSubstruturing Test
Contents3.1 An overview of RTDST . . . . . . . . . . . . . . . . . . 283.2 How RTDST works . . . . . . . . . . . . . . . . . . . . 313.3 Saturation, delay and instability . . . . . . . . . . . . 333.3.1 Delay ompensation . . . . . . . . . . . . . . . . . . . . 343.4 Compensator based on neural networks . . . . . . . . 353.4.1 Forward predition sheme . . . . . . . . . . . . . . . . 363.4.2 Arti�ial neural networks . . . . . . . . . . . . . . . . . 373.4.3 Numerial results. . . . . . . . . . . . . . . . . . . . . . 383.5 Theoretial formulation of RTDST . . . . . . . . . . . 413.6 Integration sheme . . . . . . . . . . . . . . . . . . . . 423.6.1 Central Di�erential Method . . . . . . . . . . . . . . . . 443.6.2 Runge�Kutta Method . . . . . . . . . . . . . . . . . . . 45Rate�dependent e�ets are often signi�ant when testing onrete strutures(to a lesser extent for steel strutures) but of great value when evaluating thebehaviour of energy dissipation devies as part of seismi protetion systems,like visous dampers added to a struture. Throughout the last deades, shak-ing tables have been traditionally used to provide real�time loading, allowingthe engineer to measure and evaluate the dynami behaviour of nonlinear andveloity�dependent strutural systems. However, as it was pointed out before,this testing method presents serious drawbaks onerning size and power limits,what generally imposes the use of redued sale speimens.27



28 CHAPTER 3. REAL�TIME DYNAMIC SUBSTRUCTURING TESTReal�time dynami substruturing test (RTDST) is a promising dynamial test-ing method in earthquake engineering as it allows, theoretially, the assessment ofdynami behavior of strutural systems in nonlinear range under realisti extremeloading onditions, even when onsidering large strutures at full�sale.In this hapter, we present the main features, advantages and disadvantages ofthis method. Our interest is to show how RTDST an e�etively be implementedfor testing and designing ontrol systems for seismi protetion, and whih ir-umstanes are partiulary hallenging in order to ahieve reliable simulations ofthe emulated struture.3.1 An overview of RTDSTReal�time dynami substruturing, also alled real�time hybrid simulation orreal�time pseudodynami testing, is a relatively new method for testing in earth-quake engineering; it has being growing in aeptane as a onsequene of ad-vanes in omputing power, digital signal proessing and hydrauli ontrol. Real�time substruture testing is essentially, a fast version of the substruture approahto PsD testing desribed earlier in �2.3.2. It is useful when testing large sale ivilengineering strutures under dynami loads, beause ritial omponents an betested at full�sale1 even if they exhibit rate�dependent behaviour. As before, thesystem is split up into two prinipal subsetions: the physial (experimental) andnumerial (analytial) substrutures, keeping as the physial substruture thoseomponents of the struture that are ritial due to their omplexity, ontainingtypially, unknown or non�modelled behaviour with strong non�linearities. Thehallenging issue is to ensure that the physial and the numerial substruturestogether behave in the same way as the whole real system [Neild et al., 2005℄, i.e.,the emulated struture.Figure 3.1 shows a oneptual view of real�time substruturing test onsideringa building with a tuned mass damper (TMD) at the top �oor. Two di�erentsettings up are skethed: the �rst one extrating only the TMD from the sys-tem and using reation wall failities for the test; and the seond one, extratingthe upper �oor with the TMD and using shaking tables failities. In a typialdisplaement�ontrolled simulation, the displaements omputed by the numeri-al substruture are applied to the physial speimen, and the resisting fore ismeasured and fed bak into the numerial substruture. Whilst in a PsD test onlythe stati restoring fore is fed bak, in a real�time test the fed bak fore willalso inlude damping and inertia omponents (therefore they do not need to be1This avoids saling e�ets problems for material suh as reinfored onrete [Abrams, 1996℄.



3.1. An overview of RTDST 29inluded in the numerial substruture). For earthquake loads, this means thateah yle through the loop in the �gure, must be ompleted in a time�sale ofa few milliseonds. Consequently, this feedbak loop needs very rapid omputa-tion and e�ient ommuniation between the two substrutures, as well as robustontrol [Gawthrop et al., 2007℄.
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Figure 3.1: Coneptual view of a RTST test. (a) The emulated struture. (b)RTST by using an atuator. () RTST by using a shaking table.RTST has its origins in a kind of omponent testing so�alled hardware�in�the�loop (HIL) whih has been used in a variety of eletroni and mehanialengineering appliations. Originally, the hardware omponent (an eletroni on-trol unit or a real engine) and the software models (whih simulate the behaviour



30 CHAPTER 3. REAL�TIME DYNAMIC SUBSTRUCTURING TESTof the rest of the system) an ommuniate with eah other via eletrial signals[Faithfull et al., 2001℄. In extending the HIL to test mehanial omponent, in-stead of eletrial signals, fores and veloities are required to be transferred tothe speimen (typially by means of a set of atuators), therefore an additionaldynami transfer system must be inluded in the loop [Wagg and Stoten, 2001℄.A extensive review of HIL is given by [Bai, 2006℄.The �rst reported RTST was performed on a visous damper loated at thebase of a multi�storey building [Nakashima et al., 1992℄. In that work, only thedamper was tested physially while the building was modelled as a linear singledegree of freedom (SDOF) system, so that the omputations involved were verysimple. [Darby et al., 1999℄ have also performed real�time tests using a linearSDOF numerial substruture, with the physial test speimen being a sti�ness,damping or inertia element. As it shall be explain later, RTST requires to om-pensate for delay, the signal to be applied on the test speimen. In this diretion,[Horiuhi et al., 1999℄ investigated the use of simple polynomial urve �ts andfound that, by using a third�order funtion, stable and aurate results ouldbe ahieved. As well, [Nakashima and Masaoka, 1999℄ demonstrated the e�e-tiveness of the extrapolation and interpolation proedures, through a series ofreal�time tests applied to a multi degree of freedom (MDOF) struture treatedas SDOF models.The onept of pseudodynami testing was suessfully extended to real�timesales for testing nonlinear strutures as in [Shing et al., 1996b℄; and also ex-tended for testing veloity�dependent omponents as in [Magonette et al., 1998℄and [Jung and Shing, 2006℄. The integration sheme is an important part of aRTST test as it relates the unknown values for a given time step to the knownvalues at one or more previous time steps. [Jung et al., 2006℄ presented the im-plementation details of a real�time PsD test system that adopts an impliit timeintegration sheme along with a theoretial system model whih inorporates thedynamis and nonlinearity of the test struture and also atuator ompensationfor delays.Some test have been also done using shaking table failities as the transfersystem for RTST experiments. For instane, [Neild et al., 2005℄ separated thelarge strutural mass of the single DOF system into two parts and seleted thesmaller one as the experimental substruture and the larger one (with attahedspring and dashpot) as the numerial substruture to ondut a shaking tabletest. Similarly, a RTST for the shaking table test is proposed in [Lee et al., 2007℄where the upper part of a struture is hosen as the experimental substruture



3.2. How RTDST works 31and the lower part is onsidered as the numerial one. The validity and aurayof the proposed tehnique is proven by obtaining good agreement between exper-imental and numerial results. As well, [Ji et al., 2009℄ performed a substrutureshaking table test to reprodue large �oor responses of high�rise buildings at full�sale. Due to various ertain apaity limitations, a rubber�and�mass system wasproposed to amplify the table motion in order to reprodue suh a large responses.Additionally, real�time substruturing test has been reently used for testingsemi�ative ontrol devies, [Christenson et al., 2008℄ ondued a test for threelarge�sale MR �uid dampers simulating the seismi response of a three�storeysteel frame struture and presents a tehnique alled virtual oupling whih is usedto ensure an appropriate tradeo� between performane and stability. Real�timesimulations have been also used in automotive industry for testing novel suspen-sion systems and in relative areas to Mehanial Engineering. For instane, in[Wallae et al., 2007℄ a real�time dynami substruturing test of a heliopter ro-tor blade oupled with a lag damper from the EH101 heliopter is presented; theresults revealed how the inlusion of a real damper produes a more realisti rep-resentation of the dynami harateristis of the overall blade system involvingthe hystereti dynami pro�le due to the nonlinear behaviour of the dampers.3.2 How RTDST worksTo arry out a real�time dynami substruturing test, the omponent of interestis identi�ed as the physial substruture, extrated from the system and �xed intoan experimental rig. Those important parts are tested experimentally while theremainder of the struture is modelled numerially (See Fig. 3.1). To link the testspeimen to the numerial model, a set of systems should be onneted all togetheras shown in Figure 3.2, where through a blok diagram of a substruturing test,the systems omprising eah substruture are skethed.Roughly speaking, we an identify the next main systems. A numerial modelwhih inludes the mathematial model of the struture and the time integrationsheme used to solve it. A ompensator whih allows the signal to be orretedand ompensated for delay errors. A transfer system whih makes possible thephysial transfer of fore and veloity from the numerial model to the speimen;it omprises both hardware (e.g. an atuator) and software (e.g. a ontrol law)omponents. The speimen whih is the physial part of the emulated strutureto be atually tested in the lab. And �nally, a measurement system whih isrequired to get bak information from the speimen response, it omprises trans-
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Figure 3.2: Blok diagram of a substrutured system.duers, signal onditioners, data aquisition system and software (e.g. a digital�lter).Considering the external exitation and the urrent state of the system, thedisplaements along the degrees of freedom of interest are alulated solving thenumerial model by time�stepping integration. The numerial model is oftenassumed to behave linearly in essene, but more omplete models may inludenonlinearities whih must be attended when adopting the numerial time inte-gration tehnique. One alulated, this displaement is passed into the delayompensator. The orreted/ompensated signal is then passed to the atuatorontroller whih in turn, generates the signals to drive the atuator2. Now, thesedisplaement are imposed on the speimen while the fores required to imposethem are measured and passed bak to the numerial model. Thus, the next in-tegration step an be solved by updating the exitation and the system's states.To aurately represent the whole struture, the entire aforementioned proessmust take plae in real�time and both, the physial and numerial substrutures,must operate in parallel with minimal errors at the interfaes between them.Therefore, it is ruial that the error between the displaements alulated fromthe numerial model and those imposed by the atuators on the physial substru-ture are minimized. In what follows this issue shall be disussed omprehensively.2Note that the transfer system is typially a single (eletri or hydrauli) atuator with itsontroller, but it may also be a more omplex test faility like multiple atuators (for multipleDOF ontrol) or shaking table.



3.3. Saturation, delay and instability 333.3 Saturation, delay and instabilityLike for some tehniques in strutural ontrol, real�time substruturing test re-quires performane of all the omputations, appliation of displaements (orfores) and aquisition of the measured responses, within a very small time frame.However, in onsequene of the omplexity in solving the numerial model andmainly due to the mehanial harateristis of the transfer system used, thepresene of delay errors on ommand signals are unavoidable. In real�time test-ing, there is a delay between a ommand signal being sent to an atuator andits moving to the desired position, what beomes more ritial when operatinghydrauli atuators3 where the response time is larger. The fore fed bak fromthe experiment to the numerial model is therefore inorret, sine it is measuredbefore the atuator has reahed its target position.In some ases, this delay error may be small and an be negleted, but it isnormally large enough to a�et the overall dynamis and may ause instability[Wagg and Stoten, 2001℄. For a linear system, [Horiuhi et al., 1999℄ have shownthat this error introdues additional energy into the system, being equivalent tonegative damping. This an distort the simulation results and, if the negativedamping exeeds the inherent strutural damping, ause the test to beome un-stable. As well, [Wallae et al., 2005a℄ showed how if the delay in the transfersystem is less than a ritial delay, the substrutured system is stable; neverthe-less, they also pointed out that typially, the delay of the transfer system is largerthan the ritial one, and then, osillations whih inrease exponentially in ampli-tude are developed in the simulation. As a matter of fat, let us onsider a singledegree of freedom osillator with onstant delay τ in the sti�ness element. Figure3.3 shows the olletion of maximum osillator's displaements in free vibrationvarying τ , the larger the delay the larger the response.Hene, it is essential for the stability, auray and reliability of the simulation,to make orretions and ompensation on the signals being transmitted betweennumerial and experimental substrutures [Wallae et al., 2005b℄, as otherwise,the errors may umulate during the iterations and signi�antly alter the simula-tion outome.To avoid wrong feedbaks when setting up a RTST simulation, some physialsaturation e�ets must be also onsidered, sine the overall auray and realismof the test may derease as realisti loading are no longer ahieved. Four satura-tion e�ets an our within a test onstraining the range of appliation: (i) themaximum imposed displaement is limited on aount of the �nite strokes of the3Hydrauli atuators are required for large strutures when large loads are needed.
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Figure 3.3: Maximum displaement of the osillator ẍ(t) + aẋ(t) + bx(t− τ) = 0when τ is varying; a = 4(0.03)π, b = 4π2 and tmax = 5se.atuator; (ii) the veloity of the atuator is onstrained due to the limited powerof the pumps and the �ow ratings of the ontrolling servo�valves; (iii) frequenyrange is required to be evaluated too, partiulary for the deleterious e�et of oilolumn resonane ommon to shaking tables [Neild et al., 2005℄; and �nally, (iv)the fore that an be applied to an atuator is limited to the available supplypressure. Thus, in assessing the feasibility of a partiular real�time substruturetest, it is essential to onsider saturation e�ets in both test design and atuator'sontrol strategies [Gökçek et al., 2000℄.3.3.1 Delay ompensationAs explained above, the dynamis of the transfer system must be ompensatedin order to impose fast and aurate displaements (or fore and veloity) on thephysial omponent. The development of ompensation algorithms and the studyof their e�et on system performane requires a detailed knowledge of the equip-ment behaviour. Simultaneously, in light of the urrent omputing apabilities,there is a limit on the number of degrees of freedom that an be inluded in thenumerial model, sine a large model will require a long omputation time. There-fore, when seeking for more realisti RTST simulations, longer time to aomplisheah iteration arise from inreasing size and omplexity in both substrutures.With suh a long delay, it beomes inreasingly di�ult to ensure that the RTSTsimulation remains stable.



3.4. Compensator based on neural networks 35The importane of experimental errors, espeially systemati errors suh astime delay, was reognized early on [Shing and Mahin, 1983℄ in the extension ofpseudodynami test to fast and real�time appliation. Many literature on fast hy-brid simulation is devoted to the development of atuator delay ompensation andsignal orretion proedures [Horiuhi et al., 1999, Wallae et al., 2005b℄. Delayompensation is a well known tehnique with the most ommon strategy be-ing delay ompensation by extrapolation [Sivaselvan et al., 2004℄. Polynomialextrapolation has been used extensively due to its simpliity and e�ieny, ituses only a few reent ommand data to predit a ompensated signal in ad-vane [Bonnet et al., 2007℄. However, those extrapolation su�er from signi�-ant limitations whih restrit its usefulness in experimental implementation.[Ahmadizadeh et al., 2008℄ used a di�erent predition algorithm by assuming alinear variation of aeleration, whih also provides a third order displaementvariation, demonstrating the improved auray in the simulations. As well,[Nakata et al., 2006℄ proposed a model�based response predition method whihinorporates known information about the system and the exitation, allowinglarger predition horizons as more aurate predition of the system responseould be ahieved. Several proedures whih take advantage of state equations ofthe system have been also suggested to eliminate the delay e�et in the ontrolsystem as in [Wallae et al., 2005a℄ and [Kyryhko et al., 2007℄. In addition, someadaptive proedures has been developed to ompensate variations of the atuatortime delay along a hybrid simulation (partiularly as the sti�ness of the experi-mental speimen hanges) as presented in [Darby et al., 2002℄. Finally, shemesfor delay ompensation have been also arefully studied by researhers in �eldsrelative to ative and semi-ative ontrol of strutures as in [Rodellar et al., 1987℄and [Serino and Georgakis, 1999℄. For further information, a review of the mostommon ompensation methods is presented by [Bonnet et al., 2007℄.3.4 Compensator based on neural networksIn this thesis, we propose an novel approah for real�time systems in whih timedelay ompensation is implemented using a model based on adaptive predition bymeans of arti�ial neural networks. The aim is arried out a forward preditionof the ommand signal, to ompensate it for time delay and thus enable theexperiments to be run nearby to real�time.It is ommon to approximate the behavior of a delayed system by inludinga onstant time delay between the reeiving a ommand signal. Although this
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(a) (b)Figure 3.4: (a) Delayed system. (b) Compensated system.is not stritly orret sine delays may be altered with the signal frequeny, atthe relatively low frequenies normally enountered in ivil engineering dynamis,this is often onsidered to be a reasonable approximation [Bonnet et al., 2007℄.Thus, in the proposed method, the ompensated ommand signal is preditedforward a time equals to the delay τ . The predition is generated through anarti�ial neural network whih is self�adapted eah time�step by using the avail-able data (See Fig. 3.4). In presene of noisy signals, this method has shown toprovide not only a robust riterion larger than other ommon methods, but also,a smoother signal avoiding the slight disontinuities whih an be found in othershemes.3.4.1 Forward predition shemeDelay ompensation by extrapolation is not a new onept, single time�step pre-dition tehniques have already been proposed as presented before. Here a neuralnetwork is trained on�line to prediting forward at eah iteration the new refer-ene signal to feed the delayed system. We onsider a onstant delay τ4 along allthe predition.
Figure 3.5: Forward predition sheme.For this approah a data bu�er is required. It should be equal to the delay

τ plus the sub�bu�er length neessary5 to ahieve a suitable network's behavior.The predition proedure may be summarized as follow with referene to �g. 3.5.4The delay error must be known and aurate.5Enough points to give su�ient information about the signal to the network.



3.4. Compensator based on neural networks 37At eah time step, the data within the training sub-bu�er SBT are used as thetrain input vetor X to the network and the last point in the main bu�er (A) isused as the desiderated output. This input-output sample is used to adjust thenetwork's parameters. One the network is updated, the predited point (B) isestimated by feeding forward the seond sub-bu�er SBP to the network. Afterthat, the bu�er is updated with the new available data and the proess is appliedagain in the next time step.The above proess enables the neural network for working in on�line predi-tion. For ompleteness, the next setion presents some fundamentals and how theneural networks an be employed.3.4.2 Arti�ial neural networksDuring the 1940's, researhers desiring to dupliate the funtion of the humanbrain, have developed simple hardware models of biologial neurons. MCullohand Pitts [MCulloh and Pitts, 1943℄ published the �rst systemati study of thearti�ial neural network. The primary fators for the reent resurgene of interestin the area of neural networks are the extension of Rosenblatt, Widrow and Ho�'sworks dealing with learning in a omplex [Rosenblatt, 1961℄, multi-layer network,Hop�eld mathematial foundation, as well as muh faster omputers than thoseof 50's and 60's. The general objetive of training the neural network is to modifythe onnetion weights (and bias) to redue the errors between the atual outputvalues and the target output values to a satisfatory level6. This proess is arriedout through the minimization (optimization) of the de�ned error funtion usingan approah usually based on gradient desent methods [Jang et al., 1997℄.Elements of neural networksAn arti�ial neuron is the basi element of a neural network (see �g.3.6(a)). Itonsists of three basi omponents. The weight fators wi are assoiated with eahnode to determine the strength of input row vetor X. The internal threshold θ isthe magnitude o�set that a�ets the ativation of the node output. The ativationfuntion f(.) performs a mathematial operation on the signal output.
a = f (s) = f

(

∑N

i=1
wi · xi + θ

) (3.1)A omprehensive review on ativation funtions, training methods and more6Note that some networks never learn. This ould be beause the input data do not ontainthe spei� information from whih the desired output is derived or the network's arhitetureis not enough suitable (omplexity) to solve the problem.
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Figure 3.6: (a)Arti�ial neuron. (b)Adaptive �lter by adaptive network.topis onerning to neural networks arhitetures an be found in [Looney, 1997℄.Adaptive �ltersAdaptive �lters adjust their own harateristis aording to an optimizing al-gorithm in proportion to the signals enountered, in this way they will mathas losely as possible the response of an unknown system from samples. Adap-tive �ltering is one of its major appliation areas for ADAptive LINear Element(ADALINE). You an reate one by ombining an input delayed layer within aneuron in whih the ativation funtion f(.) is restrited to be linear and by usingan iterative learning proess in whih data are presented to the network one ata time and the weights are adjusted eah time7. Now, the input vetor will beX = [x(t− 1), x(t − 2), . . . , x(t− n)]T and the output will be a , y = x(t).Aepting that the signal is not quikly varying over time, the adaptive �lter pre-sented in �gure 3.6(b) must predit the future values of the desired signal basedon past values.It is just this model of NNEt what we used along this thesis for delay om-pensation.3.4.3 Numerial results.To show the e�ay of the neural networks in predition, we exeute some nu-merial simulation8 onsidering di�erent system ommand signal to be predited.Three di�erent methodologies purposed by other authors has been applied too inorder to ompare and evaluate the network behavior: (1) The exat polynomialextrapolation (EPE), in whih a polynomial is �t to the last few data points ofthe signal; a third�order polynomial has been widely adopted in literature andwill be used here [Bonnet et al., 2007℄. (2) The 4-point sine-�t predition method(SFPM), whih allows to predit the amplitude and frequeny of the half periodsine wave whih best �ts the atual signal segment [Serino and Georgakis, 1999℄.And (3) the least-squares polynomial extrapolation (LSPE), whih takes into a-ount a larger number of points and uses a least-squares approximation rather7Here delta rule is used to train adaptive linear networks.8All numerial tests have been done in PC Pentium(R)D 3.4GHz.



3.4. Compensator based on neural networks 39than an exat �t [Wallae et al., 2005b℄; a fourth�order polynomial was used herefor LSPE method. Although the last approah onsiders some additional adaptivedelay ompensators, only the extrapolation sheme is onsidered here.Sine sweep testsA sine sweep exitation whih speeds up from 3Hz to 10Hz in 5 se and then bakto 3Hz in 5 se, is onsidered as the signal to be predited forward an amount oftime τ equals to 5ms. As the time step was used 1ms. A training bu�er of 10points was onsidered for both the neural network and LSPE method.

Figure 3.7: Subspae plots for sine sweep test.Method Nnet LSPE EPE SFPMTime (se) 0.587 1.406 0.170 0.185RMS error(%) 0.22 0.15 0.12 0.15Table 3.1: Sine sweep test. Error and sequential time for 9982 steps.Figure 3.7 shows the so�alled subspae plots, in whih the predited signal isplotted versus the atual one. The more dispersion from the line y = x, the lessaurate predition was done. More dispersion means less synhronization.Here the network exhibits the worst behavior, nevertheless, it is interesting tonote the improvement getting by the network as long as the time pass. Table3.1 presents the sequential exeution time employed by eah sheme for doingpredition through 9982 time steps in the simulation. The fastest one is the EPE



40 CHAPTER 3. REAL�TIME DYNAMIC SUBSTRUCTURING TESTmethod while the highest omputational ost was spent for the LSPE method.As statistial measure of the predition, the root mean square of error is inludedin the table too9.Sine sweep with noise added (SNR=50dB)The same sine sweep exitation was onsidered but here a low white gaussiannoise was added to the signal. The signal to noise ratio (SNR) is equal to 50dBand as before ∆T=1ms and τ=5ms. A predition bu�er of 15 points has beenused for both the neural network and the LSPE method.

Figure 3.8: Subspae plots for sine sweep with noise test.Method Nnet LSPE EPE SFPMTime (se) 0.687 1.592 0.187 0.265RMS error(%) 0.63 5.55 61.84 72.50Table 3.2: Sine sweep with noise test. Error and sequential time for 9982 steps.Figure 3.8 shows the subspae plots for eah predition sheme. Similarly,Table 3.2 presents the sequential exeution time employed by eah sheme whenprediting a whole signal through 9982 time steps.Considering both omputational osts and synhronization apabilities, the neu-ral networks presents the best harateristis when signal beomes noisy.9For neural networks, the RMS value doesn't inlude the errors in the �st two seonds of thesimulation.



3.5. Theoretial formulation of RTDST 41Prediting noisy signals, the neural network demonstrates muh more apa-ity and robustness than the other methods, this advantageous behavior is due tothe inherent generalization apaity of neural networks and their high toleraneto noisy data. Besides, neural network provides a smoother signal when movingfrom one time step to the next one, so, slight disontinuities in the predited om-mand signal are avoided. Beause of the adaptive training, the network shownbehavior improvements as long as the simulation time pass.One the training proess beomes well�balaned (about 2se in the examples),this linear network was able to adapt quikly to the hange in the target signal.The sheme is well suitable for being used within systems whose properties do nothange abruptly and is able to smooth out the e�ets from noise when aquiringa signal.Further information an be found in [Londoño and Serino, 2008℄.3.5 Theoretial formulation of RTDSTThe aim of the substruturing proess is to model the dynamial behaviour of theoverall system using a numerial part and an experimental part. The dynamisof the struture (overall system) are governed by a general system of di�erentialequations equations, as:
ẋ(t) = h(x, t) (3.2)where x is the state vetor of the overall system, h(·) denotes an arbitrary funtionand an overdot represents di�erentiation with respet to time t. Typially, wewish to haraterize the dynami response of the overall system subjet to someexitation signal r(t); suh as an earthquake. In general, the form of h(·) is notknown expliitly, but we assume that it an be split into linear and non-linearparts, so that

ẋ(t) = Hx(t) +Gr(t) + ĥ(x, t) (3.3)where G is a gain matrix, H is a matrix representing the linear part of h, and ĥthe non-linear (i.e. the di�ult to model) part. To formulate the substruturedmodel we separate the overall system dynamis, equation (3.3), in suh a waythat the linear dynamis are modelled numerially, and the non�linear dynamisare modelled using a physial test speimen. To separate the two parts of themodel, we divide the oordinates x into a subset assoiated with the physialsubstruture, xc ⊂ x; and those whih represent the numerial model, z where
z ∪ xc = x. Thus xc represents the state of the ritial elements of the system.



42 CHAPTER 3. REAL�TIME DYNAMIC SUBSTRUCTURING TESTNow equation (3.3) an be expressed as [Wagg and Stoten, 2001℄:
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=
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+
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] (3.4)If the dynamis of the numerial model are onsidered to be stritly linear, then
ĥ1(z, xc, t) = 0. The dynamis represented by H2xc map to a series of exper-imental measurements H2xc 7→ Rf(t); where f(t) is a vetor of experimentalmeasurements, and R is a transformation matrix. If the exitation is restritedto the numerial model, we an also assume that G2 is a null matrix. Thus, thenumerial model an now be written as:

ż(t) = H1z(t) +G1r(t) +Rf(t) (3.5)Due to the fat that we are assuming that the non�linearity de�ned by ĥ2 is un-known, the dynamis of xc is not expressed mathematially but are inluded inmodel through the experimental measurements f(t) from the physial substru-ture under the urrent states (z, xc). Thus, equation (3.5) beomes the substru-tured model of the system.3.6 Integration shemeThree fators are essential in the implementation of a real�time substruturingtest: the loading operation of the experimental substruture; the measurement ofthe interfae fore between two substrutures; and the alulation of the numeri-al substruture by using a numerial time integration tehnique, whih solves thetemporally and spatially disretised equations of motion, for the strutural systembeing investigated. It is quite likely that yielding will our in several loationsunder a large earthquake load, being therefore desirable to be able to perform testsin whih nonlinearities are permitted in both the physial and numerial substru-tures. Thus, integration shemes able to solve non�linear di�erential equationsare required. Nevertheless, as with MDOF systems, nonlinear analysis requireslong omputation times so that onsiderable ompensation for delay error may beneessary [Nakashima and Masaoka, 1999℄.RTST simulation generally makes use of expliit numerial integration meth-ods suh as the entral di�erene method (CDM), for whih the omputationsare very simple and quik as well. They are also onditionally stable for timeintegration shemes [Shing, 2006℄ but may beome prone to numerial instabilityas showing in [Pegon, 2001℄. Impliit methods use the equilibrium ondition to



3.6. Integration sheme 43determine the solution for the required time step and have advantages of beingstable irrespetive of the time step used. Although they were traditionally aban-doned due to implementation di�ulties, impliit methods are suessfully beingused in RTS test. A omprehensive valuation of impliit methods an be found in[Bursi and Shing, 1996℄. A more omplex algorithm based on a �rst�order holdapproximation was used in [Darby et al., 1999℄, it appears to o�er improved a-uray and stability. Besides, [Combesure and Pegon, 1997℄ investigated a non�iterative step-by-step impliit time integration sheme named α�operator split-ting (α�OS) for PsD testing. They showed that it provides unonditional stabilityeven when the number of degree of freedom is large while preserving simpliity.In a similar way, [Pinto et al., 2004℄ applied the α�OS tehnique to solve the spa-tially disrete equations of motion and ompared it to the α�Newmark shemewhih is in essene an impliit method. As well, [Magonette et al., 1998℄ havedeveloped a high�speed ontinuous substruturing test method using a staggeredimpliit�expliit integration tehnique, in whih the equations of motion for theexperimental substruture are solved with an expliit sheme, while those for theanalytial substruture with an impliit method; however, this has only partiallyaddressed the stability issue. Additionally, [Bayer et al., 2005℄ have implementedan impliit integration sheme based on the Newmark time domain solution ofthe equation of motion10. The proposed proedure employs sub�stepping insteadof iteration to reah equilibrium within eah time step and was proposed suitablefor real�time performane of the PsD test.Before formalising two expliit methods typially used in RTST simulations,some key onepts shall be presented.Diret step by step integration shemes are general methods that redue di�er-ential equations into an algebrai form using a �nite di�erene approah. In thisway the response quantities at the end of a time step an be related to previouslyknown response quantities. These methods are by far the most widely used meth-ods of solution of non�linear problems [Buther, 2003℄.A general multiple degree of freedom system with substruturing an be repre-sented through a set of di�erential equations of motion:
Mẍ+ Cẋ+Kx = E + F (3.6)where M , C and K are respetively the mass, damping and sti�ness matries;

ẍ, ẋ and x are respetively the vetors of nodal aelerations, veloities and dis-plaements for the degrees of freedom; E is the external exitation and F is thevetors of substruture fores.10The Newmark method is a numerial integration sheme used to solve di�erential equations[Newmark, 1959℄. It is often used in �nite element analysis to model dynami systems.



44 CHAPTER 3. REAL�TIME DYNAMIC SUBSTRUCTURING TESTAs the response of the numerial substruture depends on the physial substru-ture outomes over time (whih is not known inadvane) the problem annot besolved analytially. Instead, time is disretised and the integration of the equa-tion of motion is done numerially, assuming idealised properties over small timesteps. M , C, K and F are known entities at the beginning. Note however that Kand C may hange during the analysis while M is usually regarded as a onstant,assuming mass onservation even during failures. The solution at eah time�step,depending on the sheme onsidered, are obtained through di�erene equationswhih an be written either as:
xn+1 = h (xn, ẋn, ẍn, xn−1, ẋn−1, ẍn−1, . . .) (3.7a)
xn+1 = h (ẋn+1, ẍn+1, xn, ẋn, ẍn, xn−1, ẋn−1, ẍn−1, . . .) (3.7b)where n is the urrent integration time�step. Thus, the numerial shemes anbe lassi�ed as: expliit sheme, if the solution at the time�step (n + 1) an beobtained based exlusively on past values of the system as in equation (3.7a); orimpliit sheme, if the solution at (n + 1) also exhibits dependeny on one orseveral values from step (n + 1) itself, as in equation (3.7b). An impliit shemeinvolves more omplex implementation, omprising often an iterative proess.For simpliity and fastness, expliit numerial integration methods have beenextensively used in RTST simulations, in what follows, two popular sheme shallbe presented.3.6.1 Central Di�erential MethodThe entral di�erene method (CDM) is probably the most popular time integra-tion sheme for PsD and RTST testing [Nakashima et al., 1992, Shing et al., 1996a,Horiuhi et al., 1999, Nakashima and Masaoka, 1999℄. It an be mathematiallydesribed as in equations (3.8) where η is the integration time step hosen.

Mẍn + Cẋn +Kxn = En + Fn

ẍn =
1

η2
(xn+1 − 2xn + xn−1) (3.8)

ẋn =
1

2η
(xn+1 − xn−1)The CDM is an expliit method. By substituting the aeleration and veloityterms from the di�erene equations into the equation of motion, the next stepdisplaement vetor xn+1 an be isolated and expressed as a funtion of termsknown from the two previous time steps.This sheme allows the easy introdution of a non�linear sti�ness. Indeed, withthe displaement being worked out from previous steps only, the sti�ness matrix



3.6. Integration sheme 45an be updated aordingly for the next alulation to take the non�linearity intoaount. Non�linear damping an also be introdued, but beause the veloity isonly determined with a one step delay, only a fairly simple non�linear dampingbehaviour ould be aommodated without an iterative proess. Although CDMgenerates no amplitude error, it produes a periodiity error (period shortening)inreasing with the time step. This method is only onditionally stable, the re-quired time step for a stable solution might not be realized in the experimentdepending on the fundamental frequenies of the speimen. Spei�ally, for astruture with a maximum natural frequeny ωmax, the time step η must satisfythe ondition: ηωmax < 2, [Bathe and Wilson, 1976℄.
3.6.2 Runge�Kutta MethodThe methods most ommonly employed by sientists to integrate ordinary dif-ferential equations (ODEs) were �rst developed by the German mathematiiansC.D.T. Runge and M.W. Kutta in the latter half of the nineteenth entury[Press et al., 1992℄. They are an important family of impliit and expliit itera-tive methods for the numerial approximation of solutions for ODEs. The basireasoning behind the so�alled Runge�Kutta (RK) methods is the use of Taylor'sexpansion of a smooth funtion11 and the use of trial steps at the midpoint ofeah interval to anel out lower-order error terms. The power of this method isthat there are di�erent orders aording to the Taylor's expansion length taken.An arbitrarily large�ordered RK method an be derived, attaining an arbitrarilyerror.The most often used method of the Runge�Kutta family is the Fourth�Orderone. It uses a sampling of slopes through an interval and takes a weighted aver-age to determine the right end point. A fourth�order Runge�Kutta integrationmethod (RK4) represents an appropriate ompromise between the ompeting re-quirements of both a low trunation error and a low omputational ost per step,being one of the most powerful preditor�orretor algorithms. Thus, most om-puter pakages designed to �nd numerial solutions for ODEs use it by default.The standard RK4 method approximates the solution of an initial value problemof the form (3.2) assuming h(x, 0) = x0. Here we use the �rst four terms of theTaylor series to desribe the behavior of h(x, t) near the midpoint (xn+1/2, tn+1/2).It requires four gradient or k terms to alulate xn+1 as follow, where η indiates11Derivatives exist and are ontinuous up to ertain desired order.



46 CHAPTER 3. REAL�TIME DYNAMIC SUBSTRUCTURING TESTthe integration step:
k1 = ηh(xn, tn)
k2 = ηh(xn + η/2, tn + k1/2)
k3 = ηh(xn + η/2, tn + k2/2)
k4 = ηh(xn + η, tn + k3)

xn+1 = xn + η
6 (k1 + 2k2 + 2k3 + k4) +O

(

η5
)

(3.9)Thus, the next value xn+1 is determined by the present value xn plus the produtof the size of the interval η and an estimated slope (a weighted average). Theerror per step of RK4 methods is on the order of η5, while the total aumulatederror has order η4.Several variation have been introdued, adaptive RK methods were designed toprodue an estimation of the loal trunation error of a single Runge�Kutta step,as well, impliit versions have been developed due to they are more general thanthe expliit ones and due to their high (possibly unonditional) stability.⋄Finally, onsidering the time�integration shemes for non�linear substrutur-ing, expliit shemes are suitable when a small number of DOFs is involved,whereas impliit shemes depend strongly on the loal nature of the problemand ould result in signi�ant loal deviations from the medium time�step du-ration [Pinto et al., 2004℄. In other words, an expliit sheme will need a timestep short enough to ensure the stability of the sheme, while the stability of animpliit sheme will not depend on the time step hosen beause it is partiallybased on a term from the end of the step onsidered.



Chapter 4Stability Analysis Theory
Contents4.1 Stability of linear systems . . . . . . . . . . . . . . . . 484.1.1 The Hurwitz stability riterion . . . . . . . . . . . . . . 504.1.2 Routh's stability riterion . . . . . . . . . . . . . . . . . 524.2 Phase Plane Analysis . . . . . . . . . . . . . . . . . . . 534.2.1 Key de�nitions . . . . . . . . . . . . . . . . . . . . . . . 544.2.2 Phase portraits of linear systems . . . . . . . . . . . . . 554.2.3 Nonlinear systems . . . . . . . . . . . . . . . . . . . . . 564.3 Existene of periodi orbits . . . . . . . . . . . . . . . 584.4 Lyapunov stability . . . . . . . . . . . . . . . . . . . . . 604.4.1 Lyapunov's diret method . . . . . . . . . . . . . . . . . 614.4.2 Invariant Set Theorems . . . . . . . . . . . . . . . . . . 63Stability is the main goal in ontrol engineering. For linear systems, the on-ept of stability is very well�de�ned and there exist many easy�to�use riteria foraddressing its analysis. On the other hand, the stability analysis for nonlinearsystems an beome quite involved sine not only there exists several de�nitionsof stability, but also most of the known riteria provide su�ient but not ne-essary onditions when determining stability. In this hapter, we present somefundamentals and important de�nitions in stability analysis �elds. Our aim isto supply a omprehensive bakground to failitate later disussions on stabilityissues. First, the most important stability riteria using the harateristi poly-nomial for linear systems are introdued. Then, a graphial method for studyingthe qualitative behaviour of seond�order systems is presented. We also examinethe salient results of Lyapunov's stability theory; it is attrative for mehanial47



48 CHAPTER 4. STABILITY ANALYSIS THEORYsystems, beause of its exeptional physial meaning and its wide ranging appli-ability, speially for the analysis of nonlinear systems.The following material shall be restrited to time�invariant systems (autonomoussystems), but most of the onepts an be extended to time�varying systems.Most of the onepts are stated without a rigorous mathematial demonstrationand foussed on vibrating mehanial systems; however, a deeper disussion ofthem an be found in the ited referenes within.4.1 Stability of linear systemsA system is alled linear if the priniple of superposition applies. The priniple ofsuperposition states that the response produed by the simultaneous appliationof two di�erent foring funtions is the sum of the two individual responses. A sys-tem is alled linear time�invariant systems (or linear onstant�oe�ient) if theoe�ients of the di�erential equation of the system are onstants or funtionsonly of the independent variable. Systems that are represented by di�erentialequations whose oe�ients are funtions of time are alled linear time�varyingsystems. An example of a time�varying ontrol system is a airraft ontrol system(The mass of a airraft hanges due to fuel onsumption).De�nition 4.1. A system is said to be externally stable if every Bounded Inputprodues a Bounded Output. This is also alled BIBO stability.Let us onsider the seond�order linear time�invariant system desribed by:
ẍ+ aẋ+ bx = 0 (4.1)These equations an be solved in the frequeny domain by using Laplae trans-forms for ontinuous time systems and Z�transforms for disrete time systems.This approah is limited to linear systems. Sine we are eventually interestedin nonlinear systems, we will perform the analysis in the time domain solvingfor the time history. A ommon proedure is to assume a solution of the form

x(t) = keλt. By substituting the supposed solution, the harateristi equation of(4.1) an be written as:
λ2 + aλ+ b = 0 (4.2)We an then �nd the roots of the harateristi equation as:
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4.1. Stability of linear systems 49Thus, the solution of the system an be expressed by formula (4.3) where k1 and
k2 depends on the initial onditions x0 = (x(0), ẋ(0)).

x(t) = k1e
λ1t + k2e

λ2t (4.3)De�nition 4.2. For any linear time�invariant system:
• The system is alled asymptotially stable, if for all x0 we have

lim
t→∞

x(t) → 0

• The system is (ritially) stable if for all x0 there exists C suh that
‖x(t)‖ ≤ C ∀tIn this statement, ‖ · ‖ stands for a norm, measuring the distane to theorigin; the Eulidian norm is de�ned as ‖x‖ = (xTx)1/2.

• The system is unstable if it is neither stable nor asymptotially stable.To failitate later disussions, let us transform the salar seond�order di�er-ential equation in (4.1) into an equivalent system of two �rst�order di�erentialequations by substituting x1 = x and x2 = ẋ. Now, the system an be desribedin terms of the equations of state as follows, where x1 and x2 are the so�alledstate variables of the system.
ẋ1 = x2 (4.4a)
ẋ2 = −bx1 − ax2 (4.4b)The state variables of a dynami system are the variables making up the smallestset of variables xi that, for any time, ompletely desribe the behavior of thesystem (whih is also alled state of the system). The n�dimensional spae whoseoordinate axes onsist of the x1�axis, x2�axis, . . ., xn�axis is alled the statespae. Any state an be represented by a point in the state spae.We an also rewrite the equation (4.4) in vetorial form as:

ẋ = Ax (4.5)where x = (x1, x2) and
A =

[

0 1
−b −a

]



50 CHAPTER 4. STABILITY ANALYSIS THEORYFinally, the solution of the system an be also written as in formula (4.6), where
x0 represents the initial onditions.

x(t) = eAtx0 (4.6)It is worth to note that the roots of the harateristi equation in (4.2) areexatly the same as the eigenvalues of the matrix A in the state spae model.Depending on the roots of the harateristi equation, the following neessaryand su�ient stability onditions an be formulated.Lemma 4.1.
• A linear system is asymptotially stable, if all the roots of its harateristiequation (or eigenvalues) satisfy ℜ{λi} < 0, ∀i

• A linear system is (ritially) stable, if all the roots of its harateristiequation (or eigenvalues) satisfy ℜ{λi} ≤ 0, ∀i and if at least one root λisatisfy ℜ{λi} = 0.
• A linear system is unstable, if at least one root λi of its harateristi equa-tion (or eigenvalue) lies in the right�half of the omplex plane (ℜ{λi} > 0).Hene, if it an be asertained that a linear system has none of the roots ofthe harateristi equation (or eigenvalues) lying on the right�half of the omplexplane, the BIBO stability is assured (i.e. when the system is stable or asymptot-ially stable) [Vidyasagar, 1992℄. That is why, most of the tehniques for deter-mination of stability for linear systems essentially try to �nd the loation of λi.Note that for stability sope, there is often no need to know these root with highpreision but fundamentally its sign.In what follows, we present two algebrai stability riteria based on the har-ateristi equation. They ontain algebrai onditions whih are only valid if allof the roots lie in the left�half omplex plane. More sophistiated methods tobe applied in the stability analysis of linear systems suh as: root�lous method,Bode diagrams, Nyquist stability riterion and frequeny response analysis, anbe examined in [Ogata, 1990℄ where they are widely desribed.4.1.1 The Hurwitz stability riterionLet us onsider the polynomial:

P (λ) = anλ
n + · · · + a1λ+ a0 (4.7)



4.1. Stability of linear systems 51
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Figure 4.1: Stability of linear systems aording to the root lous in the omplexplaneFor the polynomial to have all roots with negative real parts it is neessary that
sign(a0) = sign(a1) = . . . = sign(an) (4.8)Formula (4.8) is the so-alled Stodola riterion [Slotine and Li, 1991℄. These on-ditions are also su�ient for n = 1 and n = 2 as an be easily veri�ed by alu-lating the roots. However, for n ≥ 3 this is no longer the ase.A polynomial for whih all roots λi have negative real parts is alled Hurwitzian.A polynomial P (λ) is Hurwitzian, if and only if for an > 0 all determinants
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(4.9)
Therefore, aording to the stability onditions introdued in de�nition 4.1,a linear system is only asymptotially stable if its harateristi polynomial isHurwitzian.



52 CHAPTER 4. STABILITY ANALYSIS THEORY4.1.2 Routh's stability riterionRouth's stability riterion enables us to determine whether or not there are un-stable roots1 in a polynomial equation without atually solving for them. Toapply the Routh riterion, you need to form the so�alled Routh Array from thepolynomial oe�ients in (4.7). Then, after some omputations, the riteriumdetermines the number of harateristi roots within the right�half planeThe Routh array ontains n+ 1 rows:
n an an−2 an−4 an−6 · · · 0

n− 1 an−1 an−3 an−5 an−7 · · · 0
n− 2 bn−1 bn−2 bn−3 bn−4 · · · 0
n− 2 cn−1 cn−2 cn−3 cn−4 · · · 0... ... ...
3 dn−1 dn−2 0 · · ·
2 en−1 en−2 0 · · ·
1 fn−1 · · ·
0 gn−1

(4.10)
The oe�ients b in the third row are the results from ross multipliation the�rst two rows aording to:

bn−1 =
an−1an−2 − anan−3

an−1

bn−2 =
an−1an−4 − anan−5

an−1
(4.11)

bn−3 =
an−1an−6 − anan−7

an−1...The alulation of these oe�ients must be ontinued until all remaining elementsbeome zero. The alulation of the oe�ients c are performed aordingly fromthe two rows above as follows:
cn−1 =

bn−1an−3 − an−1bn−2

bn−1

cn−2 =
bn−1an−5 − an−1bn−3

bn−1
(4.12)

cn−3 =
bn−1an−7 − an−1bn−4

bn−1...1Roots that lie in the right�half omplex plane.



4.2. Phase Plane Analysis 53From these new rows further rows will be built in the same way. Finally, the lasttwo rows are:
fn−1 =

en−1dn−2 − dn−1en−2

en−1
(4.13)

gn−1 = en−2Now, the Routh riterion establishes that a polynomial P (λ) is Hurwitzian, if andonly if the following onditions are valid:
• All oe�ients a1 are positive.
• All oe�ients bn−1, cn−1, · · · in the �rst olumn of the Routh array arepositive.An interesting property of the Routh array is that the number of roots with pos-itive real parts is equal to the number of hanges of sign of the values in the �rstolumn.Some limitations of Routh�Hurwitz riterions are: (i) it gives only informa-tion about absolute stability of the system, i.e., the degree of stability (ritial,asymptoti, exponential, et) of a stable system annot be obtained. (ii) The ri-terion an be applied only if the harateristi equation has onstant oe�ientsand annot be applied if they are not real or ontain exponential terms as in thease of systems with dead time.4.2 Phase Plane AnalysisPhase plane analysis is a graphial method for studying the qualitative behaviourof seond�order systems (linear or not), whih was introdued well before the turnof the entury by mathematiians suh as Henri Poinare. Its basi idea is to solvea seond�order di�erential equation graphially, instead of seeking an analytialsolution. Essentially, the method generates a family of system motion trajetoriesorresponding to various initial onditions on a two-dimensional plane and thenexamines the qualitative features of these trajetories. In that way, informationonerning to stability and other motion patterns of the system an be obtained.Phase plane analysis has a number of important advantages. First, as a graphialmethod, it allows us to visualize what goes on in a system, even if it is nonlinear,starting from various initial onditions, it is frequently used to provide intuitiveinsights about nonlinear e�ets. Seond, it is not restrited to small or smoothnonlinearities, but applies equally well to strong nonlinearities and to hard non-linearities. Finally, some pratial mehanial systems an indeed be adequately



54 CHAPTER 4. STABILITY ANALYSIS THEORYapproximated as seond�order systems, and the phase plane method an be usedeasily for their analysis. Conversely, of ourse the fundamental disadvantage ofthe method is that it is restrited to systems whih an be well approximated bya seond-order dynamis, beause the graphial study of higher-order systems isomputationally and geometrially omplex.4.2.1 Key de�nitionsA seond�order time invariant system an be represented by two salar di�erentialequations:
ẋ1 = f1(x1, x2) (4.14a)
ẋ2 = f2(x1, x2) (4.14b)where x1 and x2 are the states of the system and, f1 and f2, are nonlinear funtionsof the states. Geometrially, the state spae of this system is a plane having x1and x2 as oordinates. This plane (x1�x2) is alled the phase plane.Let x(t) = (x1(t), x2(t)) be the solution of (4.14) given a set of initial onditions

x(0) = x0 = (x10, x20). The lous in the plane (x1�x2) of x(t) for all t ≥ 0represents geometrially a urve that passes through the point x0. Suh a urveis alled a trajetory or orbit. A family of trajetories orresponding to variousinitial onditions is alled the phase portrait of the system (See Figure 4.2(b)).The right-hand side of the system in (4.14) expresses the tangent vetor ẋ(t) tothe urve.
ẋ = f(x) (4.15)where ẋ(t) = (ẋ1(t), ẋ2(t)) and f(x) is a vetor �eld (f1(x), f2(x)) on the stateplane, whih means that to eah point x in the plane, we assign a vetor f(x)(See Figure 4.2(a)).Singular pointsA singular point or equilibrium point in the phase plane is de�ned as a point wherethe system states an stay forever, this implies that ẋ = 0, that is:

f1(x1, x2) = f2(x1, x2) = 0 (4.16)Singular points are very important features in the phase plane. Examination ofthe singular points an reveal a great deal of information about the propertiesof a system. In fat, the stability of linear systems is uniquely haraterized bythe nature of their singular points. There is usually only one singular point (or a
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Figure 4.2: Examples of (a) vetor �eld and (b) phase portraitontinuous set of singular points) for linear systems. However, a nonlinear systemoften has more than one isolated singular point, additionally there may be moreomplex features, suh as limit yles and haos. The stability of an equilibriumpoint is related to the behaviour of the trajetories in its viinity. For instane,we an always de�ne a domain D ontaining an equilibrium point. If we an�nd trajetories starting within this domain whih remain arbitrary lose to thepoint, this equilibrium point is said to be stable; if any trajetory starting in thedomain eventually onverge towards the point, the equilibrium point is said to beasymptotially stable. These de�nitions will be formalized later.4.2.2 Phase portraits of linear systemsTo illustrate the above onepts, let us onsider a seond�order linear systemwith the harateristi equation in (4.2). Di�erent behaviours an be observed inaord with the root lous as follows.Stable or unstable node. When λ1 and λ2 are both real and have the samesign, the origin orresponds to a node. If the roots are negative, the originis alled a stable node beause both ẋ(t) and x(t) onverge to zero exponen-tially as t → ∞. If both roots are positive, the point is alled an unstablenode, beause both ẋ(t) and x(t) diverge from zero exponentially. Sine theeigenvalues are real, there is no osillation in the trajetories. See Figure4.3(a)�(b).Saddle point. When λ1 and λ2 are both real and have opposite signs, the originorresponds to a saddle point. Beause of the unstable root (the positiveone), almost all of the system trajetories diverge to in�nity. There exist a



56 CHAPTER 4. STABILITY ANALYSIS THEORYonverging straight line orresponds to initial onditions whih make equalzero the oe�ient ki assoiated with the negative root. See Figure 4.3(f).Stable or unstable fous. When λ1 and λ2 are omplex onjugate with non-zero real parts, the origin orresponds to a fous. A stable fous ourswhen the real part of the roots is negative, whih implies that ẋ(t) and x(t)onverge to zero as t→ ∞. The trajetories enirle the origin one or moretimes before onverging to it, unlike the situation for a stable node. If thereal part of the roots is positive, then ẋ(t) and x(t) both diverge to in�nity,and the point is alled an unstable fous. See Figure 4.3()�(d).Center point. When λ1 and λ2 are are omplex onjugates with real parts equalto zero, the origin orresponds to a enter point. The name omes from thefat that all trajetories are ellipses and the origin is the enter of theseellipses. See Figure 4.3(e).a) ℜ{λi} < 0 ∧ ℑ{λi} = 0 ) ℜ{λi} < 0 ∧ ℑ{λi} 6= 0 e) ℜ{λi} = 0 ∧ ℑ{λi} 6= 0
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b) ℜ{λi} > 0 ∧ ℑ{λi} = 0 d) ℜ{λi} > 0 ∧ ℑ{λi} 6= 0 f) ℜ{λi} 6= 0 ∧ ℑ{λi} = 0
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Figure 4.3: Phase portraits of linear systems4.2.3 Nonlinear systemsThe dynami of nonlinear systems are muh riher than the dynamis of linearsystems, there are essentially nonlinear phenomena that an take plae only in



4.2. Phase Plane Analysis 57presene of nonlinearities and annot be desribed by a linear model. Thus,let us disuss some ommon nonlinear system phenomena in order to provide auseful bakground for our study in the rest of this doument. A wider and moreomplete disussion on these and others nonlinear behaviour an be reviewed in[Slotine and Li, 1991℄.Multiple equilibrium points. Nonlinear systems frequently have more thatone isolated equilibrium point. The state may onverge to one of severalsteady�state points, depending on the initial state of the system. See Figure4.4(a).Limit yles. Nonlinear systems an display osillations of �xed amplitude and�xed period without external exitation. These osillations are alled limityles, or self�exited osillations. Of ourse, sustained osillations an alsobe found in linear systems (enter point) or in the response to sinusoidalinputs. However, limit yles in nonlinear systems are di�erent. First, theamplitude of the self�sustained exitation is independent of the initial on-dition, as seen in Figure 4.4(b). Seond, the of self-sustained osillationsin linear systems are very sensitive to hanges in system parameters, whilelimit yles are not easily a�eted by parameter hanges. Limit yles repre-sent an important phenomenon in nonlinear systems. They an be found inmany areas of engineering and nature. Airraft wing �uttering, a limit yleaused by the interation of aerodynami fores and strutural vibrations,is frequently enountered and is sometimes dangerous. Limit yles an beundesirable in some ases, but desirable in other ases.Bifurations. As the parameters of nonlinear dynami systems are hanged, thestability of the equilibrium point an hange (as it does in linear systems)and also the number of equilibrium points. Values of these parameters atwhih the qualitative nature of the system's motion hanges are known asritial or bifuration values. The phenomenon of bifuration ours whenquantitative hange of parameters leading to qualitative hange of systemproperties. A very interesting ase of bifuration involves the emergeneof limit yles as parameters are hanged. In this ase, a pair of omplexonjugate eigenvalues ross from the left�half plane into the right�half plane,and the response of the unstable system diverges to a limit yle. This typeof bifuration is alled a Hopf bifuration.Chaos. For stable linear systems, small di�erenes in initial onditions an onlyause small di�erenes in output. In nonlinear systems however, the systemoutput is extremely sensitive to initial onditions. The essential feature of



58 CHAPTER 4. STABILITY ANALYSIS THEORYhaos is the unpreditability of the system output. Chaos must be distin-guished from random motion. In random motion, the system model or inputontain unertainty and, as a result, the time variation of the output an-not be predited exatly (only statistial measures are available). In haotimotion, on the other hand, the involved problem is deterministi, and thereis little unertainty in system model, input, or initial onditions. Some me-hanial and eletrial systems known to exhibit haoti vibrations inludebukled elasti strutures, mehanial systems with play or baklash, sys-tems with aeroelasti dynamis, wheelrail dynamis in railway systems andfeedbak ontrol devies.Other behaviors. Other interesting types of behavior, suh as jump resonane,subharmoni generation, asynhronous quenhing, and frequeny�amplitudedependene of free vibrations, an also our and beome important in somepartiular system.
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Figure 4.4: Examples of (a) multiple equilibrium points (tunnel�diodo iruit)and (b) Stable limit yle for the system: ẋ1 = x1(0.1+x
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2) + x14.3 Existene of periodi orbitsIn this setion, we present three simple lassial theorems to predit the existeneof limit yles for seond�order systems. Sine all of the proofs are mathemati-ally omplex (atually, a family of suh proofs led to the development of algebraitopology) they were omitted beause fall outside the sope of this thesis. Nev-ertheless, the demonstrations and some interesting appliation examples an be



4.3. Existene of periodi orbits 59studied in [Khalil, 2000℄ and [Vidyasagar, 1992℄.The �rst theorem reveals a simple relationship between the existene of a limityle and the number of singular points that it enloses. This theorem is some-times alled the index theorem. In this statement, N represents the number ofnodes, enters, and foi enlosed by a limit yle, and S the number of enlosedsaddle points.Theorem 4.1 (Poinare). If a limit yle exists in the seond�order autonomoussystem (4.14), then N = S + 1.The seond theorem is onerned with the asymptoti properties of the tra-jetories of seond�order systems. It establish that bounded trajetories in theplane shall have to approah periodi orbits or equilibrium points as time tendsto in�nity.Theorem 4.2 (Poinare�Bendixson). If a trajetory of the seond�order au-tonomous system (4.14) remains in a �nite region M, then one of the followingis true:
• The trajetory goes to an equilibrium point.
• The trajetory tends to an asymptotially stable limit yle.
• The trajetory is itself a limit yle.The third theorem provides a su�ient ondition for the non�existene of limityles. This theorem is sometimes alled the Bendixson Criterion.Theorem 4.3 (Bendixson). For the nonlinear system (4.14), no limit yle anexist in a region M of the phase plane in whih ∂f1/∂x1 + ∂f2/∂x2 does notvanish and does not hange sign.The above theorems are easy to understand and apply. Even if they representvery powerful results, have no equivalent in higher�order systems where exotiasymptoti behaviors (other than equilibrium points and limit yles) an our.



60 CHAPTER 4. STABILITY ANALYSIS THEORY4.4 Lyapunov stabilityIn 1892, the Russian mathematiian Alexander Mikhailovith Lyapunov intro-dued his famous stability theory for nonlinear and linear systems. A ompleteEnglish translation of Lyapunov's dotoral dissertation was published in 1992 forits entenary [Lyapunov, 1992℄.Basi Lyapunov theory omprises two methods, the indiret and the diret method.The indiret method, or linearization method, states that the stability propertiesof a nonlinear system in the lose viinity of an equilibrium point are essentiallythe same as those of its linearized approximation. The diret method is a powerfultool for nonlinear system analysis, and therefore the so�alled Lyapunov analysisoften atually refers to the diret method. The diret method is a generalizationof the energy onepts assoiated with a mehanial system: the motion of amehanial system is stable if its total mehanial energy dereases all the time.Lyapunov stability theorems give su�ient onditions for stability, asymptotistability and so on, but they do not say whether the given ondition are alsoneessary. The power of this method omes from its generality; it is appliableto all kinds of ontrol systems, be they time�varying or time�invariant, �nite di-mensional or in�nite dimensional. Conversely, the limitation of the method liesin the fat that it is often di�ult to �nd a Lyapunov funtion for a given systemas it shall be shown.Seeking for ompleteness, some de�nitions of stability whih are neessary forlater theorems are inluded here. For all de�nitions and theorems from now on,let us onsider a time�invariant system, linear o not, as the one shown in formula(4.15) suh that f(0) = 0, i.e. x = 0 (the origin) is an equilibrium state.De�nition 4.3. The equilibrium state x = 0 is (loally) stable in the sense oflyapunov if, for every ε > 0 there exist some δ > 0 (depending on ε) suh that, if
‖x(0)‖ < δ, then ‖x(t)‖ < ε for all t > t0.De�nition 4.4. The equilibrium state x = 0 is asymptotially stable in the senseof Lyapunov if it is (loally) stable in the sense of Lyapunov and if, there existsome δ > 0 suh that, if ‖x(0)‖ < δ, then x(t) → 0 as t→ ∞.Thus, the asymptoti stability is more restritive than the de�nition 4.3 as de�-nition 4.4 imposes that the trajetories onverge to the equilibrium state. Notethat for a mehanial system, asymptoti stability implies some damping, unlike



4.4. Lyapunov stability 61Lyapunov stability. Besides, for a linear time�invariant system asymptoti stabil-ity is always global, while nonlinear systems exhibit more ompliated behaviour.De�nition 4.5. The equilibrium state x = 0 is (loally) exponentially stable inthe sense of Lyapunov if, there exist positive onstants α, β and δ suh that, if
‖x(0)‖ < δ, then ‖x(t)‖ ≤ α‖x(0)‖e−βt for all t > t0.State whih are not stable in the sense of Lyapunov are unstable. Besides, expo-nentially stability implies asymptotially stability, but the opposite is not true.Stability, as it was de�ned before, is a loal property sine ε and δ an be hosenarbitrarily small. But if stability is independent of the size of the initial pertur-bation x(0), i.e., if x(0) an be hosen on a domain D, suh that D ∈ R

n, thestability is said to be global.
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Figure 4.5: Conepts of stability4.4.1 Lyapunov's diret methodThe basi philosophy of Lyapunov's diret method is the mathematial extensionof a fundamental physial observation: if the total energy of a mehanial (oreletrial) system is ontinuously dissipated, then the system, whether linear ornonlinear, must eventually settle down to an equilibrium point.De�nition 4.6. A salar ontinuous funtion V (x) : Rn → R is said to be loallypositive de�nite if:
V (0) = 0 and V (x) > 0, ∀x ∈ D − {0} (4.17)



62 CHAPTER 4. STABILITY ANALYSIS THEORYwhere D is a ertain domain ontaining the origin. If the above property holdsover the whole state spae, i.e. D ∈ R
n, then V (x) is said to be globally positivede�nite.Other few related onepts an be de�ned similarly, as in loal as in global sense.A funtion V (x) is negative de�nite if −V (x) is positive de�nite; V (x) is positivesemi�de�nite if V (0) = 0 and V (x) ≥ 0 for x 6= 0; V (x) is negative semi�de�niteif −V (x) is positive semi�de�nite. The pre�x �semi� is used to re�et the possi-bility of V being equal to zero for x 6= 0.De�nition 4.7. If, in a ertain domain D ontaining the origin, the funtion

V (x) : Rn → R is positive de�nite and has ontinuous partial derivatives, and ifits time derivative along any state trajetory of system (4.15) is negative semi�de�nite, i.e.,
V̇ (x) =

dV (x)

dt
=
∂V

∂x
ẋ =

∂V

∂x
f(x) ≤ 0 (4.18)then V (x) is said to be a Lyapunov funtion for the system (4.15).A omplete desription of the geometrial meaning of positive de�nite funtionsand the graphial interpretation of the above onepts, inluding several exam-ples, an be studied in [Slotine and Li, 1991℄ and [Preumont, 1997℄.In using the diret method to analyze the stability of a nonlinear system, theidea is to onstrut a salar energy�like funtion (a Lyapunov funtion) for thesystem, and to see whether it dereases. The relations between Lyapunov fun-tions and the stability of systems are made preise in a number of theorems inLyapunov's diret method.Theorem 4.4 (Loal Stability). Consider the system in (4.15), the equilibriumpoint x = 0 is stable, if in a ertain domain D ontaining the origin, there exists asalar funtion V (x) : Rn → R with ontinuous �rst partial derivatives suh that:

• V (x) is positive de�nite (loally in D)
• V̇ (x) is negative semi�de�nite (loally in D)If, atually, the derivative V̇ (x) is loally negative de�nite in D, then the stabilityis asymptoti.



4.4. Lyapunov stability 63In applying the above theorem for analysis of a nonlinear system, one goes throughthe two steps: hoosing a positive de�nite funtion, and then determining itsderivative along the path of the nonlinear systems.In order to assert global asymptoti stability of a system, one might naturallyexpet that the domain D in the above loal theorem has to be expanded to bethe whole state spae. Nevertheless, an additional ondition on the Lyapunovfuntion has to be satis�ed: V (x) must be radially unbounded, i.e., x an tend toin�nity in any diretion. The reason of that is to assure that the ontour urvesof V (x) = vα orrespond to losed urves (See Figure 4.6). If the ontour urvesare not losed, the trajetories might drift away from the equilibrium point. Now,the following powerful result, known as Barbashin�Krasovskii theorem, an beestablished.Theorem 4.5 (Global Stability). Consider the system in (4.15), the equilibriumat the origin is globally asymptotially stable, if there exists a salar funtion
V (x) : Rn → R with ontinuous �rst order derivatives suh that:

• V (x) is positive de�nite
• V̇ (x) is negative de�nite
• V (x) → ∞ as ‖x‖ → ∞The above theorems provide su�ient onditions (but not neessary) to deter-mine the stability of a system; the fat that no Lyapunov funtion an be foundto satisfy theorems 4.4 and 4.5 does not mean that the system is not stable; justone annot draw any onlusions on the stability or instability of the system. A-tually, this is the main weakness of the Lyapunov's method, as there is no generalproedure for onstruting Lyapunov funtion for a given system. However, thereare some methods for partiular systems whih provided Lyapunov funtion an-didates to be tested. Most of them require solving partial di�erential equationsor trial and error proedures as the Variable Gradient method and Krasovskii'smethod [Krasovskii, 1959℄. Further general information and examples on this sub-jet an be found in the literature e.g. [Khalil, 2000℄ and [Slotine and Li, 1991℄.4.4.2 Invariant Set TheoremsLyapunov's stability theorems studied above are often di�ult to apply to estab-lish asymptoti stability, as it often happens that V̇ is only negative semi�de�nite.



64 CHAPTER 4. STABILITY ANALYSIS THEORYEven in this situation, with the help of the invariant set theorems, it is still pos-sible to draw onlusions on asymptoti stability. The entral onept in thesetheorems is the generalization of the idea of equilibrium point to the invariant set.De�nition 4.8. A set M is an invariant set for the dynami system in (4.15) ifevery trajetory x(t) whih starts from a point in M remains in M for all time(future and past), i.e.,
x(0) ∈ M ⇒ x(t) ∈ M, ∀t ∈ R (4.19)De�nition 4.9. A set M is an positively invariant set for the dynami systemin (4.15) if every trajetory x(t) whih starts from a point in M remains in Mfor all future time, i.e.,
x(0) ∈ M ⇒ x(t) ∈ M, ∀t ≥ 0 (4.20)Thus, any equilibrium point is an invariant set, but the domain of attration ofan equilibrium point is also an invariant set.Theorem 4.6 (Loal invariant set theorem). Consider an autonomous system ofthe form (4.15), with f ontinuous and let V (x) : Rn → R be a salar funtionwith ontinuous �rst partial derivatives. Assume that

• for some l > 0, the set Ωl de�ned by V (x) ≤ l is bounded.
• V̇ (x) ≤ 0 for all x in Ωl.Let R be the set of all points within Ωl where V̇ (x) = 0 and M be the largestinvariant set in R. Then, every solution x(t) originating in Ωl tends to M as

t→ ∞.In the above theorem, �largest� is understood in the sense of set theory, so M isthe union of all invariant sets within R. The geometrial meaning of the theoremis illustrated in Figure 4.6, where a trajetory starting from within the boundedregion Ωl, is seen to onverge to the largest invariant set M.The loal invariant set theorem an be simply extended to a global result,by requiring the radial unboundedness of the salar funtion V rather than theexistene of a bounded Ωl.
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Figure 4.6: Convergene to the largest invariant set M. Adapted from[Slotine and Li, 1991℄.Theorem 4.7 (Global invariant set theorem). Consider an autonomous systemof the form (4.15), with f ontinuous and let V (x) : Rn → R be a salar funtionwith ontinuous �rst partial derivatives. Assume that
• V (x) → ∞ as ‖x‖ → ∞..
• V̇ (x) ≤ 0 for all x in R

n.Let R be the set of all points where V̇ (x) = 0 and M be the largest invariant setin R. Then, all solutions onverge to M as t→ ∞.No only the foregoing theorems relax the negative de�niteness requirement ofLyapunov's theorem, but also extends it in two di�erent diretions: (i) the abovetheorems an be used when the system has an equilibrium set (e.g.a limit yle)rather than an isolated equilibrium point; (ii) the funtion V (x) does no have tobe positive de�nite although often still referred to as a Lyapunov funtion.When our interest is to showing that x(0) → 0 as t→ ∞, we need to establishthe the largest invariant set in R is the origin. This is doing by showing that nosolution an be stay in R, other than the trivial solution x(t) ≡ 0. Speializing



66 CHAPTER 4. STABILITY ANALYSIS THEORYtheorem 4.6. to this ase and taking V (x) positive de�nite, we obtain the follow-ing theorem whih is attributed to LaSalle.Theorem 4.8 (LaSalle). Let V (x) : Rn → R be a salar funtion with ontinuous�rst partial derivatives suh that on Ωl = {x ∈ R
n : V (x) ≤ l} we have V̇ (x) ≤ 0.De�ne R = {x ∈ R

n : V̇ (x) = 0}. Then, if R ontains no other trajetories otherthan the trivial solution x(t) ≡ 0, then the origin is asymptotially stable.The proofs of the above theorems are omitted here due to they involve a numberof onepts in topology and real analysis whih are outside of the topis of thisthesis, however if the reader is interested, they are addressed (or at least skethed)in [Khalil, 2000℄ and [Vidyasagar, 1992℄.



Chapter 5Pieewise Smooth DynamialSystems
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68 CHAPTER 5. PIECEWISE SMOOTH DYNAMICAL SYSTEMSperiodi orbits, stable and unstable manifolds. Most of the material presentedin this hapter is inspired from [Osorio, 2007℄ and [di Bernardo et al., 2007℄ andsome referenes therein.5.1 Smooth dynamial systemsA smooth dynamial systems or simply a dynamial system is a rule for the timeevolution of a set of possible states. The time t takes values in an index set T whihwe usually onsider to be either disrete (the set of integers Z), or ontinuous (theset of real numbers R). The possible states belonging to state spaeX, is a disreteor ontinuous olletion of oordinates that gives a omplete desription of thesystem. Given the urrent state of the system x0 ∈ X, the evolution rule or �ow
ϕ, predits the state or vetor x(t) as:

ϕ : X × T → X (5.1)assuming x(t) , ϕ(x0, t), with x(0) = x0.We say that (5.1), together with X and T , de�nes a dynamial system if followingonditions are satis�ed:
ϕ(x, 0) = x, for all x ∈ X, (Identity) (5.2a)

ϕ(x, t+ s) = ϕ(ϕ(x, t), s), for all x ∈ X, andt, s ∈ T . (Group) (5.2b)The identity ondition in (5.2a) basially implies that the state does not hangespontaneously, and the group property in (5.2b) means that the evolution opera-tor of the system does not hange in time (i.e. The system is autonomous).5.1.1 Disrete maps and iterated mapsA disrete map or simply a map, is an evolution rule de�ned in disrete time andin a ontinuous state spae. A map π : Rn × Z → R
n de�nes a dynamial systemwhere t ∈ Z.The time evolution an be de�ned in an iterative form as:

P : Rn → R
n, where x 7→ P (x) (5.3)with x ∈ R

n. The iterative operator in (5.3) is often written as xn+1 = P (xn)with n ∈ Z. Notie that given an initial ondition x(0) = x0, a generi elementat time t = n an be obtained from:
x(n) = P (n)(x0) (5.4)where P (n) , P ◦ P ◦ · · · ◦ P , n�times.



5.1. Smooth dynamial systems 69Example 5.1. The logisti map is an instane of how a very simple nonlinearsystem an present very ompliated behavior. It is a disrete model used todesribe demographi evolution, and mathematially is written:
xn+1 = µxn(1− xn), µ ∈ [0, 1]. (5.5)where µ is the growth onstant of the population (For further details see [May, 1976℄).

�5.1.2 Continuous �ows and ODEsA dynamial system an also be de�ned by an initial value problem, through aOrdinary Di�erential Equation (ODE) of the type:
ẋ = F (x) (5.6)In (5.1) X ≡ R

n, T ≡ R and the �ow is de�ned by φ ≡ ϕ. The state of thesystem will be given by:
x(t) = φ(x0, t) (5.7)where φ : Rn ×R → R

n and x(0) = x0. The evolution rule φ satis�es (5.6) in thesense that:
d

dt
(φ(x, t))

∣

∣

∣

∣

t=γ

= F (φ(x, γ)) (5.8)Example 5.2. A periodially fored, damped harmoni osillator satis�es theseond order di�erential equation:
q̈ + 2ζq̇ + κq = a cosωt,where ζ and κ are damping and spring onstants respetively, and ω is the angularveloity of the periodi foring. We an de�ne the state variables x1 = q, x2 = q̇and x3 = ωt suh that (5.2) an be written as a set of ordinary di�erentialequations:

ẋ1 = x2,

ẋ2 = κx1 − 2ζx2 + a cos x3,

ẋ3 = ω.

�



70 CHAPTER 5. PIECEWISE SMOOTH DYNAMICAL SYSTEMS5.2 Qualitative dynamisGiven a generi dynamial system of the form (5.1), onsider an invariant set1 Λof the dynamial system in X (i.e. Λ ⊂ X).De�nition 5.1. A losed and bounded invariant set is alled an attrator if:
• for any su�iently small neighborhood U ⊂ X of Λ, there exists a neigh-borhood W of Λ suh that φ(x, t) ∈ U for all x ∈W and all t > 0, and
• for all x ∈ U , φ(x, t) → Λ as t→ ∞A dynamial system may have many ompeting attrators, with their relativeimportane being indiated by the set of initial onditions that they attrat, thatis, their domain of attration.De�nition 5.2. The domain of attration of an invariant set Λ (also known asthe basin of attration or simply the basin), is the maximal set of initial onditions

x for whih φ(x, t) → Λ as t→ ∞.The qualitative desription of a dynamial system is given by the desriptionof the invariant sets that ompose its phase portrait. The more ommon types ofinvariant sets are:Equilibria. The simplest form of invariant set is an equilibrium solution x∗ whihsatis�es φ(x∗, t) = x∗ for all t.Periodi orbits. The most omplex kind of invariant set is a periodi orbit; itforms losed urves in phase spae and satis�es, for an initial ondition xp,that ϕ(xp, T ) = xp where T indiates the period (The smallest time T > 0for whih the ondition held). A periodi orbit that is isolated is termed alimit yle.Homolini and heterolini orbits . Another important lass of invariantsets are onneting orbits whih tend to other invariant sets as time goesasymptotially to +∞ and to −∞. Consider for example orbits whih on-net equilibria. A homolini orbit is a trajetory x(t) that onnets anequilibrium x∗ to itself; x(t) → x∗ as t→ ±∞. A heterolini orbit onnetstwo di�erent equilibria x∗1 and x∗2 ; x(t) → x∗1 as t → −∞ and x(t) → x∗21See de�nition of invariant set in �4.4.2



5.3. Stability and strutural stability on smooth systems 71as t → +∞. Homolini and heterolini orbits play an important role inseparating the basins of attration of other invariant sets.Other invariant sets. It is quite possible for dynamial systems to ontain er-tain simple geometri subsets of phase spae where trajetories must remainfor all time one they enter. The dynamis on this invariant sets ould on-tain equilibria, periodi orbits and other attrators. Similarly, �ows anontain invariant tori, invariant spheres, ylinders et. Invariant sets thatare everywhere loally smoothly desribed by an m�dimensional set of o-ordinates are alled invariant manifolds.5.3 Stability and strutural stability on smooth sys-temsThe stability of an orbit of a dynamial system haraterizes whether nearby (i.e.,perturbed) orbits will remain in a neighborhood of that orbit or be repelled awayfrom it. Asymptoti stability additionally haraterizes attration of nearby orbitsto this orbit in the long�time limit. The distint onept of strutural stabilityonerns qualitative hanges in the family of all solutions due to perturbations tothe funtions de�ning the dynamial system.5.3.1 Stability on smooth systemsAn important notion of stability in autonomous dynamial systems in that ofeither Lyapunov or asymptoti stability of an invariant set (See �4.4). In general,the former means stability in the weak sense that trajetories starting nearby tothe invariant set remain lose to it for all time, whereas the latter is more re-stritive. Both refer to stability of invariant sets with respet to perturbations ofinitial onditions, at �xed parameter values.Limit yles and Poinaré maps. One of the main building bloks of thedynamis in a set of ODEs is the topology analysis of its periodi solutions (orlimit yles). Limit yles provide a natural way to transform between �owsand maps. Consider a limit yle solution x(t) = p(t) of period T > 0, thatis p(t + T ) = p(t). To study the dynamis near suh a yle, we an hoose aPoinaré setion, whih is an (n− 1)�dimensional surfae Π that ontains a point
xp = p(tp) on the limit yle and whih is transverse to the �ow at xp. We anuse the �ow φ to de�ne a map P from Π to Π, alled the Poinaré map, whih is



72 CHAPTER 5. PIECEWISE SMOOTH DYNAMICAL SYSTEMSde�ned for x su�iently lose to xp as:
P(x) = φ(x, γ(x)) (5.9)where γ(x) is de�ned impliitly as the time losest to T for whih φ(x, γ(x)) ∈ Π.We an study the stability of the periodi solution by studying the spetrum ofthe Jaobian matrix of the Poinaré map at xp (i.e. eig{Px(xp)}).

xp = P(xp)

x P (x)P 2(x)

Π

πx

p(t)

φ(x, T )Figure 5.1: Poinaré map de�nition.In general, a onsequene of using Poinaré maps rather than �ows in thestability analysis of invariant sets is that they redue their dimension of the setswe need to onsider. Thus, limit yles of �ows orrespond to isolated �xed pointsof Poinaré maps; invariant tori orrespond to losed urves of the map; and ahaoti invariant sets derease their fratal dimension by one.5.3.2 Strutural stability on smooth systemsStruturally stable systems are ones for whih all nearby systems have qualita-tively equivalent dynamis. Thus we need a preise notion of nearby and also ofequivalene.Nearby refers to any possible perturbation of the system itself (the funtion F (x)for ODE), inluding for example variation of the system's parameters. We alltwo systems equivalent if their phase spaes have the same dimension, the samenumber and type of invariant sets, in the same general position with respet toeah other. To ahieve suh a de�nition, we use mathematial topology.De�nition 5.3. We say that two phase portraits are topologially equivalent ifthere is a smooth transformation that strethes, twists, rotates, but not folds one



5.4. Pieewise smooth dynamial systems 73phase portrait into the other. Suh transformations are alled homeomorphisms,whih are ontinuous funtions de�ned over the entire phase spae whose inversesare also ontinuous.Two dynamial systems de�ned by operators ϕ,ψ : X × T → X are topologiallyequivalent if there is a homeomorphism h that maps the orbits of the �rst systemonto orbits of the seond one, preserving the diretion of time.De�nition 5.4 (Hyperboliity in Flows). Consider an equilibrium x∗ of a �ow φde�ned by a system of ODEs ẋ = F (x). We refer to the eigenvalues of an equilib-rium x∗, to mean the eigenvalues of the assoiated Jaobian matrix Fx(x
∗). Anequilibrium is said to be hyperboli if none of its eigenvalues lie on the imaginaryaxis.De�nition 5.5 (Hyperboliity in Maps). Consider a �xed point x∗ of a map πde�ned by the iterated equation xn+1 = P (xn). We refer to the multipliers µiof a �xed point x∗, to mean the eigenvalues of the assoiated Jaobian matrix

Px(x
∗). A �xed point is said to be hyperboli if none of the multipliers lie on theunit irle.One of the key appliations of topologial equivalene is to show that under hy-perboliity ondition, linearization of the dynamial systems about the neighbor-hood of an invariant set are loally topologially equivalent. In addition, it anbe proved that the �ow loal to any two hyperboli equilibria of n�dimensionalsystems whih have the same number of eigenvalues with negative real part aretopologially equivalent to eah other.5.4 Pieewise smooth dynamial systemsA pieewise smooth (PWS) dynamial system is a set of smooth dynamial sys-tems (i.e. with elements of the form Di = {Xi,Ti, ϕi(x, t)}2); plus a set of rulesfor onatenation in time for some dynamial system Di to another Dj , suhthat identity and group onditions are satis�ed. In general the set of rules foronatenation an be expressed through zero level sets of salar funtions, say

σij : Rn → R, to ommute at time γ from Di to Dj ; suh that the �nal state
xσ , x(γ) = ϕi(x0, γ) beomes an initial state as x(γ) ≡ ϕj(xσ, 0). This is equiv-alent to say that the state x at ommutation time γ an be expressed as funtion2See de�nition of smooth dynamial system in �5.1



74 CHAPTER 5. PIECEWISE SMOOTH DYNAMICAL SYSTEMSof both evolution operators.In [di Bernardo et al., 2007℄ and [Osorio, 2007℄ an extensive study of PWSdynamial system an be found. Here, we present some fundamental de�nitionsand properties whih will be useful for later analysis in this thesis.5.4.1 Pieewise smooth mapsA pieewise�smooth map is desribed by a �nite set of smooth maps as:
x 7→ Pi(x, µ), for x ∈ Si (5.10)where ∪iSi = D ⊂ R

n and eah Si has a non�empty interior. The intersetion
Σij between the losure (set plus its boundary) of the sets Si and Sj (that is,
Σij , Si ∩ Sj) is either an R

(n−1)�dimensional manifold inluded in the bound-aries ∂Sj and ∂Si, or is the empty set. Eah funtion Pi is smooth in both thestate x and parameter µ for any open subset U of Si.5.4.2 Pieewise smooth �ows (ODEs)A pieewise�smooth �ow is given by a �nite set of ODEs as:
ẋ = Fi(x, µ), for x ∈ Si (5.11)where ∪iSi = D ⊂ R

n and eah Si has a non�empty interior. The intersetion
Σij , Si ∩ Sj is either an R

(n−1)�dimensional manifold inluded in the bound-aries ∂Sj and ∂Si, or is the empty set. Eah vetor �eld Fi is smooth in both thestate x and parameter µ and de�nes a smooth �ow φi(x, t) within any open set
U ∈ Si. In partiular, eah �ow φi is well�de�ned on both sides of the boundary
Sj .Example 5.3. The bilinear osillator, an be written as the �rst�order systemby setting x1 = q, x2 = q̇ and x3 = t so that

ẋ1 = x2,

ẋ2 = −2ζx2 − κix1 + a cos(x3),

ẋ3 = 1,where the value of κi depends on region Si, with S1 = {x1 < 0}, S2 = {x1 > 0}.
�



5.5. Stability of PWS 75a) S1 S2
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+Figure 5.2: Trajetories of (a) a pieewise�smooth �ow, and (b) a pieewise�smooth map5.4.3 Filippov systemsConsider a general pieewise�smooth ontinuous system with a single boundary

Σ, suh that:
ẋ =

{

F1(x), if H(x) > 0,

F2(x), if H(x) < 0,
(5.12)where Σ is de�ned by the zero set of a smooth funtion H and F1(x) 6= F2(x) if

H(x) = 0. This lass of systems must be treated with great are sine we haveto allow the possibility of sliding motion. In order to de�ne sliding, it is useful tothink of system (5.12) loal to the disontinuity boundary between two regionsde�ned by the zero set of the smooth funtion H(x) = 0.The sliding region of the disontinuity set of a system of the form (5.12) isgiven by that portion of the boundary of H(x) for whih (HxF1) · (HxF2) < 0.That is, HxF1 (the omponent of F1 normal to H) has the opposite sign to HxF2.Thus the boundary is simultaneously attrating (or repelling) from both sides[Piiroinen and Kuznetsov, 2008℄.5.5 Stability of PWSThe extension of well�established onepts for smooth systems to the ase ofnon�smooth systems is still an open researh area. Next, we show a pragmatiapproah for studying the asymptoti stability of a lassial pieewise�smoothlinear system presented in [di Bernardo et al., 2007℄.



76 CHAPTER 5. PIECEWISE SMOOTH DYNAMICAL SYSTEMS
b)a)Figure 5.3: Slading region. Bold and dashed regions represent (a) attrating and(b) repelling sliding motion. Dotted lines indiate three individual trajetorysegments.5.5.1 Asymptoti stabilityIt is a partiularly umbersome task to provide neessary and su�ient onditionsthat guarantee the asymptoti stability of a desired invariant set of a pieewise�smooth system. Even the problem of assessing the asymptoti stability of anequilibrium that rests on a disontinuity boundary is an open problem in general.Let us fous on the problem for the speial ase of pieewise�linear systems, whihwill be of relevane to later disussions in Chapter 6.Consider the pieewise�linear system:

ẋ =

{

A−x, if CTx ≤ 0,

A+x, if CTx ≥ 0
(5.13)where A± ∈ R

n×n and c ∈ R
n. We assume that the overall vetor �eld is on-tinuous aross the hyperplane {x : CTx = 0}, but the degree of smoothness isuniformly one. This means that
A− −A+ = ECT (5.14)for some E ∈ R

n . For the planar ase, i.e., n = 2, a omplete theory is possibleand it an be shown that the equilibrium point x = 0 of (5.13) is asymptotiallystable under ertain strit onditions, provided the system obeys the property ofobservability often used in ontrol theory.De�nition 5.6. Two matries A ∈ R
n×n and CT ∈ R

p×n are said to be observable



5.6. Numerial methods 77if the observability matrix O, de�ned as:
O =











CT

CTA...
CTAn−1











(5.15)has full rank. Equivalently, for single�output systems, observability implies det(O) 6=
0.Theorem 5.1. Consider the system (5.13) with n = 2. Assume that the pair
(CT , A−) is observable. Then:

• The origin is asymptotially stable if and only if1. neither A− nor A+ has a real non�negative eigenvalue, and2. if both A− and A+ have non�real eigenvalues, then σ−/ω−+σ+/ω+ <
0, where σ± ± ω± (ω± > 0) are the eigenvalues of A±

• The system (5.13) has a non�onstant periodi solution if and only if both
A− and A+ have non�real eigenvalues and σ−/ω− + σ+/ω+ = 0, where
σ± ± ω± (ω± > 0) are the eigenvalues of A±. Moreover, if there is oneperiodi solution, then all other solutions are also periodi. Moreover anysuh periodi solution has period equal to π/ω− + π/ω+.In higher dimensions, the problem beomes onsiderably more di�ult.In the ontrol theory literature, a more general tool has been proposed forthe stability analysis of pieewise�smooth dynamial systems. Take, for exam-ple, the problem of establishing whether an equilibrium point in a disontinuityboundary of a pieewise�smooth dynamial system is asymptotially stable. Onetehnique for proving suh stability is to �nd a ommon Lyapunov funtion, thatis, a funtion V (x) that is Lyapunov for eah of the vetor �elds de�ning the sys-tem dynamis in eah of the phase spae regions. However, �nding suh funtionsin pratie is at best di�ult.5.6 Numerial methodsIn general we referred to numerial analysis tools for di�erential equations. Forsmooth �ows, there are broadly speaking two lasses of numerial methods for



78 CHAPTER 5. PIECEWISE SMOOTH DYNAMICAL SYSTEMSinvestigating the possible dynamis for a range of parameter values namely; di-ret numerial simulation, and path�following [Kuznetsov, 2004℄. This lassi�a-tion also applies to pieewise�smooth systems, The rigorous numerial analysis ofnonsmooth dynamial systems remains a theory that is far from omplete.5.6.1 Diret numerial simulationWhen omputing solutions to pieewise�smooth systems it is usually not possibleto use general purpose software diretly, as they typially use numerial inte-gration routines that assume a high degree of smoothness of the solution. Allnumerial omputations must make speial allowane for the nonsmooth eventswhih our when a disontinuity boundary is reahed. Simulation methods fornonsmooth systems fall broadly into two ategories; time�stepping and event�driven. The former is most often used in many�partile rigid body dynamiswritten in omplementarity form for whih there an be a big number of on-straints. For suh problems, to aurately solve for events when one of the ev-ery one of the onstraint funtions beomes zero within eah time�step and tosubsequently re�initiate the dynamis would be prohibitively omputationally ex-pensive. In ontrast, the basi idea of time�stepping is to only hek onstraintsat �xed times. There are adaptations to standard methods for integrating ODEfor omplementarity systems, some of whih are based on linear omplementarityproblem solvers that have been developed in optimization theory and that an bediretly used on simulation of pieewise smooth dynamial systems. Clearly thereare errors introdued by not aurately deteting the transition times, and there-fore time�stepping shemes are often of low�order auray. In this thesis we areonerned with low�dimensional systems with just a disontinuity boundary. Inthis ontext, expliit event driven shemes are feasible, fast and aurate. In thesemethods, trajetories far from boundaries are solved using standard numerial in-tegration algorithms for smooth dynamial systems (e.g. Runge�Kutta, impliitsolvers, et.), then times at whih a disontinuity boundary is hit are auratelysolved. Here it is neessary to onsider the apability of simulating sliding �owby de�ning a sliding vetor �elds.



Chapter 6Stability analysis of RTS testingon non�linear dampers
Contents6.1 SDOF osillator with a delayed damper . . . . . . . . 806.2 Osillator with added linear damper . . . . . . . . . . 816.2.1 Expliit stability analysis . . . . . . . . . . . . . . . . . 816.2.2 Numerial stability analysis . . . . . . . . . . . . . . . . 856.3 Osillator with added non�linear damper . . . . . . . 906.3.1 Numerial stability analysis . . . . . . . . . . . . . . . . 916.3.2 Expliit stability analysis . . . . . . . . . . . . . . . . . 98As it was pointed out before in hapter 3, the suess of real�time substru-turing tests is highly dependent on the ontrol of the signal delays. We intendto analyse the lose loop behaviour of a model when testing a supplemental en-ergy dissipation system for strutural ontrol. In the seismi protetion systemonsidered, the most non�linear and omplex-to-model omponent is a passivenon�linear �uid visous damper added to the struture. In the next hapter, anextensive desription of this system is presented. In aord with the fundamentalson RTST, the damper (the ritial element) must be extrated from the systemand tested physially in the lab, while the remaining part of the struture ismodelled mathematially and beomes the numerial substruture. In our tests,the displaements omputed form the numerial substruture are applied throughan atuator to the damper, and in turn, the resisting fore is measured and feedbak into the numerial substruture. Although soures of delay are the eletronimeasuring and atuator assemblage, the delay omes mostly from the atuatordynamis. It is worthy notiing that, the pratial e�et of this on our system, is79



80 CHAPTER 6. STABILITY ANALYSIS OF RTST ON NONLINEARDAMPERSa lag time on the e�etive damper fore applied to the struture.In this hapter, we present a stability analysis to highlight the harmful e�etsaused by delays in dynami systems when timing errors are onsidered on thedamper's response. Our goal is to assess the onstraints on delays, in suh a waythat the stability and reliability of the losed loop simulation an be guaranteed.The present study will be addressed in the ontext of both lassi stability theoryfor linear/non�linear systems (See Chapter 4) and the qualitative theory of Piee-wise Smooth Dynamial Systems (See Chapter 5) aording to the partiular asewhih is disussed throughout eah setion.
6.1 SDOF osillator with a delayed damperLet us suppose a simple osillator ompounded of a single�degree of freedom sys-tem (SDOF) with an energy dissipation devie, as shown in Figure 6.1. Withoutloss of generality, the damper is onsidered plaed atop of a hevron�type braeand attahed to the frame in horizontal position. Thus, by assuming a very sti�brae (muh more than the frame), the relative displaement between the ends ofthe damper an be onsidered equal to the relative inter�storey drift. Then, we

x

Fd

c

k

m
−mẍg

x

mDamper
ẍgFigure 6.1: SDOF osillator with an added damper.an write a mathematial expression to desribe the dynamis of this system asin equation (6.1).

mẍ(t) + cẋ(t) + kx(t) + Fd(t, τ, cd, α, ẋ) = −mẍg(t) (6.1)



6.2. Osillator with added linear damper 81where:
m : is the mass of the system;
c : is the intrinsial damping oe�ient of the system;
k : is the sti�ness of the system;
t : is time;

Fd : is the fore in the damper;
τ : is the signal delay;
cd : is the damping oe�ient of the damper;
α : is the veloity exponent of the damper; 0<α<1;
ẍg : is the base exitation;

ẍ, ẋ, x : are respetively the system aeleration, veloity and displaements.Note that the damper fore is depending not only on time, damper oe�ientand veloity but also on the delay onsidered on the damper response (assumedas onstant). In what follows, we shall examine this system in light of di�erentsituations in aord with the behaviour of the damper. We shall over both linearand non�linear ases.6.2 Osillator with added linear damperFist of all, let us onsider the osillator with a linear damper. Equation (6.1) anbe then rewritten as:
mẍ(t) + cẋ(t) + kx(t) + cdlẋ(t− τ) = −mẍg(t) (6.2)where cdl is the oe�ient of the linear damper.This kind of di�erential equation,in whih the derivative of the unknown funtion at a ertain time is given interms of the values of the funtion at previous times, is alled a Delay Di�erentialEquation (DDE). We shall desribe both the analytial and numerial solutionsfor x, onsidering the ritial delay value τcr for whih the system may beomeunstable.6.2.1 Expliit stability analysisLet us assume zero external exitation and arbitrary initial onditions. By meansof proper substitutions, the system in (6.2) an be rewritten with non�dimensionalisedparameters as:

x′′(t̂) + 2ζx′(t̂) + x(t̂) + px′
(

t̂− τ̂
)

= 0 (6.3)where x′ and x′′ indiate the �rst and seond�order derivative of x with respetto t̂ instead of t; and also:
wn =

√

k

m
; ζ =

c

2
√
mk

; t̂ = wnt ; τ̂ = wnτ ; p =
cdl
mwn



82 CHAPTER 6. STABILITY ANALYSIS OF RTST ON NONLINEARDAMPERS
An aepted and quite ommon strategy to solve di�erential equations, is toassume solution of the exponential form, x = Aeλt̂. The harateristi equationof the system an be then written as:

λ2 + 2ζλ+ 1 + λpe−λτ̂ = 0 (6.4)If we assume that τ̂ is small, instead of e−λτ̂ we an use the �rst�order ap-proximation (1 − λτ̂) from the series expansion of this exponential funtion. Bysubstituting this approximation and reordering the parameters, equation (6.4)beomes:
(1− pτ̂)λ2 + (2ζ + p)λ+ 1 = 0 (6.5)The real part of the system eigenvalues determines the stability of the linearsystem (See Lemma 4.1). Solving the last equation for λ we have:

λ1,2 =
1

2(1 − pτ̂)

(

−(2ζ + p)±
√

(2ζ + p)2 − 4(1 − pτ̂)
) (6.6)First, suppose that there is no delay in the damper response. So if τ̂ = 0 thesystem eigenvalues beome:

λ1,2 = −1
2

[

(2ζ + p)±
√

(2ζ + p)2 − 4
] (6.7)Sine ζ, p are positive quantities (they depend on stritly positive physial har-ateristis) and (2ζ + p) >

√

(2ζ + p)2 − 4, the real part of the omplex roots λiwill be always negative, so that, the system is globally asymptotially stable as itwas expeted for a system with an additional linear damper.Going bak to the ase when τ̂ is small, we note that by satisfying the rela-tionship (1−pτ̂) > 0, the quantity (2ζ+p) is greater than √

(2ζ + p)2 − 4(1 − pτ̂)being the real part of the omplex roots λi always negative, what implies globaland asymptoti stability. On the other hand, if (1 − pτ̂) < 0 at least one of theroots λi will have real part positive and the system will beome unstable. There-fore, the system will remain stable if and only if the delay in the damper responsesatis�es τ̂ < 1/p, whih onverted bak to the original parameters an be writtenas:
wnτ = τ̂ <

mwn

cdl
⇒ τ <

m

cdl
(6.8)This expression highlights that strutures with strong added dampers will be moresuseptible to beome unstable due to small delays in the damper response, and



6.2. Osillator with added linear damper 83onsequently, it will be more di�ult to maintain stability when running a real�time substruturing test on it. A system whih ful�lls the restrition presented in(6.8) has harateristi roots loated in the left half omplex plane and is alwaysglobal asymptotially stable. Inreasing the value of the bifuration parameter presults in harateristi roots swarming out from the left to the right half part inthe omplex plane1 (i.e. towards the instability).Although some researhers have demonstrated before, how delay an be under-stood as negative damping [Horiuhi et al., 1999, Wallae et al., 2005a℄, equation(6.5) shows how, onsidering delays in the damping fores, it an manifest itselfas negative mass too. In this ontext delay should be understood like anti-inertialfore, a sort of negative mass (in fat, it an be expressed by mneg = −cdlτ) whihadds energy into the system. By equaling both sides in the inequality (6.8), it ispossible to �nd the delay τ for whih the overall mass in the system is anelled,as a matter of fat, equation (6.6) is not de�nite for this value (massless system).Furthermore, do not ful�ll inequality (6.8) leads to instability in onsequene ofthe e�etive negative overall mass operating in the system.On the other hand, a di�erent approah for determining the stability bound-aries of the system, is to searh a set of point in the parameters spae wherethe harateristi equation has one pair of pure imaginary roots, that is, just gothrough a Hopf bifuration [Kalmár-Nagy et al., 2001℄. To �nd this urve, wesubstitute into the trial solution previously proposed for equation (6.3), λ = iŵ,for w > 0 and ŵ = w/wn.This analysis is valid for any time delay, even if τ is not small (see [Gilsinn, 2002℄).After applying the aforementioned substitution and some algebra, equation (6.4)beomes:
−ŵ2 + 2iζŵ + 1 + ipŵe−iŵτ̂ = 0 (6.9)Applying the Euler's formula from omplex analysis and splitting up into real andimaginary parts, we get two real equations:
− ŵ2 + pŵ sin(ŵτ̂) + 1 = 0 (6.10a)

2ζ + p cos(ŵτ̂) = 0 (6.10b)Assuming ζ as known, we an use the last pair of equations to express the pa-rameters τ̂ and p as funtion of ŵ.Dividing equation (6.10a) by (6.10b) and onsidering periodiity we have:
ŵ2 − 1

−2ζŵ
= tan(ŵτ̂) (6.11)1Bifuration and other phenomena are introdued in �4.2.3
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τ̂ =

1

ŵ
arctan

(

1− ŵ2

2ζŵ

)

+
nπ

ŵ
; n = 1, 2, 3 . . . (6.12)where n orresponds to the n-th lobe (parameterized by ŵ) from the right in thestability diagrams in Figure 6.2 (n must be greater than 0, beause τ̂ > 0).The trigonometri terms in Equations (6.10a) and (6.10b) an be eliminated bysquaring and adding them to yield:

p =
1

ŵ

√

(ŵ2 − 1)2 + (2ζŵ)2 (6.13)In Figure 6.2(a), we present the boundaries obtained for τ̂ and p by �xing ζat 0.03. These urves are parameterized by ŵ running from 0 to ∞ and n from1 to 5. Along these urves the system has a pair of purely imaginary eigenval-ues delimiting the parameters spae where the system is expeted to be stable.Along the line τ̂ = 0 the system is stable, onsequently, its surrounding area upto the losest boundary is the region of stability (shadow area). The approximateboundary de�ned by equaling the inequality (6.8) is plotted too (dashed line).The approximation tends to underestimate the ritial delay and only holds forvery small values of τ̂ . The urve with τ̂ for n = 1 is the pratie stability bound-ary beause enloses the others theoretial boundaries into the unstable region.In addition, we an rearrange equations (6.10a) and (6.13) assuming p asknown, so as to obtain the ritial delay τ̂ and ζ as parametri urves in ŵ asfollows:
ζ =

1

2ŵ

√

(pŵ)2 − (ŵ2 − 1)2 (6.14)
τ̂1 =

1

ŵ
arcsin

(

ŵ2 − 1

pŵ

)

+
2πn

ŵ
(6.15)where ŵ runs from 1

2(−p +
√

p2 + 4) to 1
2(p +

√

p2 + 4), and n is any positiveinteger greater than zero. Seeking for ompleteness, we have to onsider theperiodiity of sine funtion and the range over the arcsin funtion is de�ned;thus, the boundary in equation (6.15) should be rounded o� with:
τ̂2 = − 1

ŵ

[

arcsin

(

ŵ2 − 1

pŵ

)

+ π

]

+
2πn

ŵ
(6.16)Figure 6.2(b) shows the stability region for �xed p = 2 using the urves de�nedparametrially by equations (6.14), (6.15) and (6.16). Again, the approximate
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Figure 6.2: Non�dimensionalized omplex root solutions: a) Varying addeddamper apaity, and b) Varying strutural damping.boundary de�ned by inequality (6.8) is inlude in dashed line. This approxima-tion is a onstant value for any ζ and strongly underestimates the ritial delay.Considering the lightly damped systems ommonly studied in ivil engineeringappliations (ζ < 0.1), the urve for τ̂2 with n = 1 an be used as the pratialstability boundary in the (ŵ, ζ)�plane.6.2.2 Numerial stability analysisFor more omplex Delay Di�erential Equations (DDEs) than equation (6.2) it maybeome impossible to �nd stability regions, as before, by analytial alulations.We therefore move to a numerial approah for �nding the stability regions. Firstof all, we shall fae the linear ase, and afterwards, extend the analysis to moregeneral ases taking into aount non�linear substrutured systems.We use a graphial method for studying the qualitative behavior of our seond�order linear dynami system. The phase plane method is onerned with thegraphial study of seond�order systems desribed in terms of the equations ofstate (For further details, see �4.2). Thus, equation (6.3) an be rewritten bymeans of the simple hange of variables x1 = x and x2 = x′ as:
x′1(t̂) = x2(t̂) (6.17a)
x′2(t̂) = −2ζx2(t̂)− x1(t̂)− px2(t̂− τ̂) (6.17b)where x1 and x2 are the state variables of the system, that is, relative displae-



86 CHAPTER 6. STABILITY ANALYSIS OF RTST ON NONLINEARDAMPERSment and veloity. In other words, the systems is entirely desribed by x and x′at any time, that is why the phase plane gives omplete information about thesystem behaviour (See pag. 49).Firstly, we want to point out how the inreasing of the damper oe�ient ana�et the behaviour of the system and how this irumstanes an be distinguishedin this kind of plots. To do that, we onsidered no delay in the equation above(τ̂ = 0) and utilized a very easy�to�use program alled pplane2. This program isdesigned for phase plane analysis of di�erential equations and allows the user toplot the vetor �eld3 for the system and also the solution urves. Figure 6.3 showsthe vetor �elds and some solution trajetories for the system in equations (6.17)onsidering no delay, a strutural damping ratio ζ = 0.03 and di�erent apaitiesfor the added damper.The �rst two ases with p = 0.3 and p = 1.0 orrespond to a stable fous4 (Figs.6.3(a) and (b)). This means that the real part of the eigenvalues in formula (6.7)are negative while the imaginary part are di�erent from zero, whih implies that
x(t̂) and x′(t̂) both goes to zero as t̂→ ∞. Note that the trajetories enirle theequilibrium point one or more times before onverging to it.The other two ases with p = 2.0 and p = 4.0 orrespond to a stable node. Now,the eigenvalues are real and negatives, whih implies that both x(t̂) and x′(t̂)onverge to zero exponentially, as shown in Figures 6.3() and (d). It is worthnotiing that no osillation are presented in the trajetories, moreover, the ve-loity tends to zero faster than the displaement. As the trajetories approahthe origin, they beome tangent to the line whose slope orresponds to the sloweigenvalue (the smallest). If the damper apaity if large enough to ause aneigenvalue lose to zero, this line will be almost horizontal and will beome losean equilibrium subspae, being all trajetories almost normal to it. That wouldimply that the veloity will derease very rapidly while the displaement will notdo it. The physial meaning of this limit behavior is that the system will remainbloked in a position di�erent from zero.From now on, let us onsider τ̂ not null. Due to there is no a software ableto draw the phase plane for delay di�erential equations, we deided to onstrutthe vetor �eld from some solution trajetories of the system in (6.17). A popularapproah for solving DDEs is to extend one of the methods used to solve OrdinaryDi�erential Equations (ODEs), most of the odes are based on expliit Runge�Kutta methods (See �3.6.2). In this setion, we use a program developed on2pplane is opyrighted in the name of John C. Polking, Department of Mathematis, RieUniversity.3See key de�nitions in �4.2.14For a omprehensive desription of this behaviour, see �4.2.2
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) d)

Figure 6.3: Vetor �elds and trajetories for τ̂ = 0 (no delay) varying the addeddamper apaity for the linear ase: a) and b) Stable fous; ) and d) Stable node.MATLAB5 alled dde23 whih extends the method of the MATLAB ODE solverode23 and allows the user to solve DDEs with onstant delays inluding alsoproblems with disontinuities. The program was written by L. Shampine and S.Thompson, a detailed disussion of the numerial methods used by dde23 an befound in [Shampine and Thompson, 2001℄.Figure 6.4 shows the vetor �elds and some solution trajetories for the sys-tem in (6.17) onsidering ζ = 0.03, p = 2 and di�erent delays in the damper'sresponse. For small delays, the system stability does not hange, to on�rm that,it is su�ient to ompare Figure 6.3() with Figure 6.4(a), we still have a stablenode. Nevertheless, inreasing the delay just before the stability limit, the systemsbehaves as a stable fous, that is, the trajetories enirle the equilibrium point5MATLAB is a registered trademark of The MathWorks, In. www.mathworks.om
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) d)

Figure 6.4: Vetor �elds for ζ = 0.03; p = 2.0 and di�erent delays in the feedbakloop: a) Stable node; b) Stable fous; ) Center; d) Unstable fous.several times before onverging to it (See Fig. 6.4(b)). On the other side, takinginto onsideration a delay larger than the stability boundary, the system behavesas an unstable fous, although the trajetories enirle the equilibrium point,both x and x′ tend to in�nity as t̂→ ∞ as shown in Figure 6.4(d). Additionally,just on the stability boundary, the system neither onverges to the equilibriumpoint nor diverges from it, but goes to periodial losed trajetories in phasespae whih are neighbored by other losed trajetories. This ase orrespondsto a enter point as shown in Figure 6.4(). The name omes from the fat thatall trajetories are ellipses and the equilibrium point is the enter of these ellipses.In order to �nd the region of stability for the linear substrutured system un-



6.2. Osillator with added linear damper 89der disussion, we use the onditions explained above to de�ne the ritial timelag τ̂cr as the delay in the damper's response that auses the system to behaveas a entral point, that is, when it desribes sustained losed orbits. We wanteda simple and robust searh method for τ̂cr (in the sense that it always onvergesto the solution), so we seleted and implemented the bisetion searh method.Although it is relatively slow, it is always reliable.Roughly speaking, the searh proess an be illustrated as follows. For a ζ and
p known and an arbitrary small value of τ̂ the DDE in formula (6.17) is solved.The initial delay τ̂0 is hosen small enough suh that the systems is stable. Then,the delay is inreased of a predetermined quantity ∆τ̂ and the DDE is solvedagain. The delay is ontinuously inreased until the system beame unstable,without loss of generality, let us all that delay as τ̂n. In the absene of anyother information, the best estimate for the loation of the solution (τ̂cr) is themidpoint of the range between the last two values of τ̂ found. Let us all this�rst estimation as τ̂cr0 . Subsequently, the estimate for the ritial delay is used tosolve de DDE and either: (i) the system behaves stable, in suh a ase the intervalto be biseted for the next estimate of the ritial delay (let us all it τ̂cr1) is theright�side interval between τ̂cr0 and τ̂n; (ii) the system behaves unstable, in suha ase the interval to be biseted for the next estimation of the ritial delay,is the left�side interval between τ̂n−1 and τ̂cr0 . Now, the new estimation of theritial delay is used to solve de DDE and the proess is iteratively applied untilthe system behaves losely as a entral point. The last estimate for the ritialdelay an be seleted as the stability boundary for the system de�ned by ζ and p.The above iterative proedure was implemented in a Matlab routine. It al-lowed us to obtain numerially the regions of stability presented in what follows.Figure 6.5(a) presents the boundaries obtained for τ̂ and p �xing ζ at 0.03. Weuse red rosses for the numerial solution. We also ompare this limit against thetheoretial stability boundaries, both exat and approximate, already shown inFigure 6.2(a). As before, the region of stability is emphasized as a shadow area.Additionally, Figure 6.5(b) shows the stability region for τ̂ and ζ �xing p = 2.0.Again, the approximate and exat theoretial boundaries are inluded. Overall,the numerial results in this subsetion agree with the expliit stability analysispresented before in �6.2.1. This makes evident the potential of the numerialstability analysis, with the added advantage that it works also for muh moreomplex and non�linear systems.
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Figure 6.5: Stability region for numerial solution (Linear ase): a) Varying addeddamper apaity, and b) Varying strutural damping.6.3 Osillator with added non�linear damperNow, let us onsider a non�linear added damper with onstant delay in the singledegree of freedom system shown in Figure 6.1. The delay di�erential equation in(6.2) an be now rewritten as:
mẍ+ cẋ+ kx+ cd|ẋ(t− τ)|α · sign(ẋ(t− τ)) = −mẍg (6.18)where:

m : is the mass of the system;
c : is the intrinsial damping oe�ient of the system;
k : is the sti�ness of the system;

t, τ : are respetively time and the signal delay;
cd : is the damping oe�ient of the damper;
α : is the non�linear exponent of the damper; 0<α<1;

| · | : represent the absolute value of · ;
ẍg : is the base exitation; and

ẍ, ẋ, x : are respetively the system aeleration, veloity and displaements.The same as before, let us onsider on equation (6.18) zero external exi-tation, arbitrary initial onditions and some appropriate substitutions to get anon�dimensionalised formulation in terms of dimensionless parameters. Thus,after some algebra we have:
z′′(t̂) + 2ζz′(t̂) + z(t̂) + pn|z′(t̂− τ̂ )|α · sign

(

z′(t̂− τ̂)
)

= 0 (6.19)
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ζ =

c

2
√
mk

; t̂ = wnt ; τ̂ = wnτ ; wn =

√

k

m

x = x0z; pn =
cd
m
wα−2
n |x0|α−1The di�erentiating operator ′ indiates the derivative with respet to t̂, and x0stands for an arbitrary initial ondition.Due to the fat that for non�linear delay di�erential equations there is nota suitable method to perform expliit stability analysis, at �rst we arried outsome numerial investigations in order to understand, identify and haraterizequalitatively the behavior of the system.6.3.1 Numerial stability analysisAgain, we will take advantage of the phase plane analysis to obtain qualitativeinformation about the system behaviour. The qualitative desription of a dy-namial system is given by the desription of the invariant sets that omposeits phase portrait. As before, the system is represented in terms of the equa-tions of state, where the system's relative displaement and veloity are the statevariables, named respetively x1 = z and x2 = z′.

x′1(t̂) = x2(t̂) (6.20a)
x′2(t̂) = −2ζx2(t̂)− x1(t̂)− pn|x2(t̂− τ̂)|α · sign

(

x2(t̂− τ̂)
) (6.20b)Seeking for better understanding of the system behaviour, �rst of all we shallperform a parametri analysis. Our interest is to determine the relationship ofthe multiple variables in (6.20) and see their e�et on overall system performane.By simulations we shall try to identify whih parameters ould drastially hangethe system dynamis.Let us start with the strutural damping ration ζ. Note that the vast majorityof strutures, espeially in the ivil engineering �eld, are lightly damped, typiallyoperating between 0.5% and 7%. Figure 6.6 shows vetor �elds for the systemin (6.20) assuming, without loss of generality, onstant parameters pn = 1.0;

α = 0.15 and τ̂ = 0.8. Damping ratio is varying from 0.1% to 10%. From thosegraphis and onsidering ivil engineering strutures, it is worth notiing that thesystem dynamis is not prone to be a�eted by hanges of the damping ration ζ,so that we an disregard its e�ets.
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Figure 6.6: Vetor �elds of system in (6.19) for pn = 1.0; α = 0.15; τ̂ = 0.8 anddi�erent damping ratio: a) ζ = 0.01; b) ζ = 0.03; ) ζ = 0.06; d) ζ = 0.10.The next parameter to be evaluated is pn. The vetor �elds of the systemin (6.20) for pn equals to 0.5, 1.0, 2.0 and 4.0 are presented in Figure 6.7. Theother parameters are onsidered to be onstant as: ζ = 0.03, α = 0.15 and
τ̂ = 0.8. Although the graphs may initially seem di�erent, by plotting them atproper sales, the dynami equivalene among those systems an be evidened.Note that for a partiular struture (represented by m and wn), the parameter pninreases by either inreasing the damper oe�ient cd or reduing the arbitraryinitial ondition x0. Thus, from simulations we an say that even an importantinrease in the damper's strongness will not hange signi�antly the qualitativedesription of the dynamis, as it would just imply a hange in the sale overwhih the system should be evaluated. Even more, although the hanges in thebehaviour are ertainly not proportional to pn, a hange of the sale on the statevariables whih is proportional to the hange of pn, will be enough to ath the
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Figure 6.7: Vetor �elds of system in (6.19) for ζ = 0.03; α = 0.15; τ̂ = 0.8 anddi�erent values of pn: a) pn = 0.5; b) pn = 1.0; ) pn = 2.0; d) pn = 4.0.Next, let us skip to the veloity exponent of the damper. A value of α=1means linear damping (veloity�proportional response). The hysteresis loop for alinear damper is a pure ellipse as shown in Figure 6.8. Nonlinear damping withlow exponent (0<α<1) shows a hysteresis urve muh more retangular, whatimplies more energy dissipation apaity. That is why nonlinear �uid devies arevery appreiated for real appliations in strutural engineering, as they providesigni�antly higher fores at lower veloities ompared to linear dampers. Any αabove 1.0 produes very poor performane. Figure 6.9 shows the vetor �elds forthe system in (6.20) onsidering several values of α.Aording with our numerial simulation, systems equipped with nonlinear damperat low damper's veloity exponents, let say α ≤ 0.20, exhibit substantially the
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Figure 6.8: Hysteresis loops for a linear (α = 1.0) and a nonlinear visous �uiddamper (e.g. α = 0.1)
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Figure 6.9: Vetor �elds of system in (6.19) for ζ = 0.03; pn = 1.0; τ̂ = 0.8 anddi�erent values of α: a) α = 0.01; b) α = 0.1; ) α = 0.15; d) α = 0.3; e) α = 0.5;and f) α = 0.75.same dynamis. Hene, when analysing stability of systems with added nonlin-ear dampers with low α, we an onsider a dynamially equivalent model6 �xing
α = 0; that is a model whih uses dry frition (Coulomb Frition) instead ofvisous nonlinear damping. This will not ompromise the general result of thestability analysis. The idea is to use a simpler mathematial model for the damper,having qualitatively equivalent dynamis, in suh a way that the expliit stability6A de�nition of Equivalent Dynamis an be found in �5.3.2



6.3. Osillator with added non�linear damper 95analysis an be ahieved in a losed�form.The former observation is fundamental in this study, as it allowed us to trans-form a ontinuous nonlinear dynamial system into a pieewise smooth dynamialsystem omprised of two linear systems as it shall be explained later.Finally, let us onsider the e�ets of the delay τ̂ . Figure 6.10 shows the vetor�elds of the system in (6.20) varying τ̂ and onsidering the onstant parameters
ζ = 0.03; pn = 1.0 and α = 0.15. Even when the delay is very small, this resultsin self�sustaining osillations of the system's response. The larger the delay, thelonger the limit yle extension (See Fig. 6.10f). This limit yle is haraterizedfor a high frequeny, muh higher than the natural frequeny of the system. Thesmaller the delay, the higher the frequeny of the limit yle.In addition, for small delays (in the sense that will be de�ned later), there exists aregion in the neighborhood of the limit yle, where the system behaviour hangesdrastially. When the system state gets into this area (See dark spots in Figs.6.10a to 6.10d), it hanges suddenly the amplitude and frequeny of osillation.The frequeny is inreased strongly. These osillations tend to math the limityle; however, if the delay is very small, suh onvergene to the limit yle isvery slow in terms of the displaement. In other words, whilst in terms of theveloity (z′), the osillations are very lose to those exhibit for the limit yle,in terms of the displaement, the osillations onverge very slowly to those inthe limit yle. This high frequeny region only ours for small delays. When
τ̂ beomes larger, the system goes rapidly to the limit yle without any otherphenomenon in between.An equivalent systemHeneforth, we shall assume systems provided with added nonlinear damper withlow veloity exponent. Based on the previous parametri analysis, in plae ofstudying the system in (6.19), we shall onsiderer a dynamially equivalent systemwhih inludes dry frition. Suh a system an be expressed as:

z′′(t̂) + 2ζz′(t̂) + z(t̂) + pssign
(

z′(t̂− τ̂)
)

= 0 (6.21)where the damper fore Fd is represented by pssign(z′(t̂− τ̂)); ps = cd/(mx0w
2
n)and the other parameters the same as in pages 90 and 91. Again, the system isrepresented in terms of the equations of state as in equation (6.22), where x1 = zand x2 = z′.

x′1(t̂) = x2(t̂) (6.22a)
x′2(t̂) = −2ζx2(t̂)− x1(t̂)− pssign

(

x2(t̂− τ̂)
) (6.22b)
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Figure 6.10: Vetor �elds of system in (6.19) for ζ = 0.03; pn = 1.0; α = 0.15 anddi�erent delays: a) τ̂ = 0.01; b) τ̂ = 0.05; ) τ̂ = 0.1; d) τ̂ = 0.2; e) τ̂ = 0.4; andf) τ̂ = 0.8.
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Figure 6.11: Vetor �elds of system in (6.21) for ζ = 0.03; ps = 1.0; and di�erentdelays: a) τ̂ = 0.01; b) τ̂ = 0.05; ) τ̂ = 0.1; d) τ̂ = 0.2; e) τ̂ = 0.4; and f) τ̂ = 0.8.For ompleteness, Figure 6.11 shows the vetor �elds of the equivalent system in(6.21) varying τ̂ and onsidering the onstant parameters ζ = 0.03 and ps = 1.0.The equivalent system behaviour an be desribed in the same way than the orig-inal one, i.e., any delay auses self�sustaining osillations, and large delays imply



98 CHAPTER 6. STABILITY ANALYSIS OF RTST ON NONLINEARDAMPERSlarge osillations and low frequeny in the resultant limit yle. Nevertheless,two main di�erenes ould be pointed out. (i) For small τ̂ , the self�sustainingosillations in the equivalent system (6.21) are larger than those exhibited for theoriginal system in (6.19); this is due to the fat that the simpli�ed model (6.21)involves the same damper fore Fd even for very small veloities whilst in (6.19)
Fd is strongly lessened as veloities tend to zero. And (ii), for small delays theequivalent system (6.21) annot reprodue the sliding motion7 in (6.19) just be-fore the self�sustaining osillations start.6.3.2 Expliit stability analysisWe intend to investigate analytially the stability of the system in equation (6.19).For starting and just in the seek of the ompleteness of this thesis, we will demon-strate the system's stability when no delay is onsidered in the feedbak loop.Suh stability is expeted from a physial point of view, as the nonlinear damperis a passive devie whih dissipates energy from the system.Let us onsiderer the system (6.20) and assume τ̂ = 0, the dynamis may berewritten as:

x′1(t̂) = x2(t̂) (6.23a)
x′2(t̂) = −2ζx2(t̂)− x1(t̂)− pn|x2(t̂)|α · sign

(

x2(t̂)
) (6.23b)By using the lassi stability theory for non�linear systems8, we an assert thatthe system in (6.23) is a time�invariant system (autonomous system) with onlyone singular or equilibrium point at the origin, i.e., at (x1, x2) = (0, 0).Let V (x) : R2 → R be the Lyapunov andidate funtion suh as:

V (x) =
1

2
x21 +

1

2
x22 (6.24)Note that V (x) is globally positive de�nite, has ontinuous partial derivativesand is radially unbounded in domain R

2. Now, we will �nd the time derivative of
V (x) along the state trajetories of system (6.23) as follows:

V ′(x) = x1x
′
1 + x2x

′
2

= x1x2 + x2 (−2ζx2 − x1 − pn|x2|α · sign(x2))
= x1x2 +−2ζx22 − x1x2 − pnx2|x2|α · sign(x2)
= −2ζx22 − pn|x2|α+1

(6.25)7See phenomena on Filippov systems in �5.4.38See the main onepts of this theory in �4.4



6.3. Osillator with added non�linear damper 99where the property |x| = x · sign(x) was used.Due to the fat that ζ, pn and α are all stritly positive parameters, the �nalexpression for V ′(x) is negative for all x2 6= 0. Nonetheless, in onsequene of x1does not appear in that expression, the derivative of V (x) is said to be negativesemi�de�nite. Based on Theorem 4.4, we an onlude that the system is stable;even so, the demonstration is still unompleted beause we annot draw onlu-sions on asymptoti stability.So, in what follows we will apply a powerful tool for system analysis known as in-variant set theorems9, partiularly, the Theorem 4.8 known as LaSalle's Theorem.Let R be the set of all points where V ′(x) = 0. Notie that V ′(x) is equalto zero only for x2 = 0. Now, by substituting x2 = 0 in (6.23), just a singletrajetory10 an be settled, that is x1 = 0, therefore, no solution an be stay in
R other than the trivial solution x(t̂) = 0. Thus, given that the largest invariantset R for the system in (6.23) is the origin, and invoking Theorem 4.8, we anonlude that the system with no delay in the damper response is asymptotiallystable, what implies that x(t̂) → 0 as t̂→ ∞.In a similar manner, we an also verify the stability onditions for the dynam-ially equivalent system (using dry frition) with no delay. Let us onsiderer now,the system (6.22) and assume τ̂ = 0, the dynamis may be rewritten as:

x′1(t̂) = x2(t̂) (6.26a)
x′2(t̂) = −2ζx2(t̂)− x1(t̂)− pssign

(

x2(t̂)
) (6.26b)As before, it is about a time�invariant system but now the equilibrium is not longera point but a set of points (ontinuum). To see that, onsider the dynamis of(6.26). When x2 goes near to zero from the positive domain, i.e, x2 → 0+, thevetor �eld omponent x′1 → 0 while the omponent x′+2 → −x1 − ps. On theother side, when x2 → 0− then x′1 → 0 while x′−2 → −x1 + ps.Note that for all x1 suh that −ps ≤ x1 ≤ ps, the vetors (x′1, x′−2 ) and (x′1, x′+2 )are normal to x1�axis and opposite, both pointing towards x2 = 0, what impliesthat the dynamis from both sides lose to the boundary x2 = 0, in the regionalready indiated, will anel eah other. In other words, that set of point is anattrator of the system. We an formalise the former observation as:

x′ = 0, ∀x ∈ H where H := {x ∈ R
2 : x2 = 0,−ps ≤ x1 ≤ ps} (6.27)Again, let us assume the Lyapunov andidate funtion in (6.24) and �nd the time9A brief desription is presented in �4.4.210Solution for null dynamis (x′ = 0)



100 CHAPTER 6. STABILITY ANALYSIS OF RTST ON NONLINEARDAMPERSderivative of V (x) along the state trajetories of system (6.26), as follows:
V ′(x) = x1x

′
1 + x2x

′
2

= x1x2 + x2 (−2ζx2 − x1 − pssign(x2))
= x1x2 +−2ζx22 − x1x2 − psx2sign(x2)
= −2ζx22 − ps|x2|

(6.28)Sine all parameters in (6.28) are stritly positives, V ′(x) is negative for all x2 6= 0.As it was previously, in onsequene of x1 does not appear in the derivative of
V (x), it is a negative semi�de�nite funtion and we annot onluded asymptotistability yet.Newly, Let R be the set of all points where V ′(x) = 0, that is, x2 = 0. Nonethe-less, in the light of ondition (6.27), the largest invariant set R for the systemin (6.26) is H. Thus, by means of the Theorem 4.8 (LaSalle's Theorem), we anassert that the system is asymptotially stable respet to the invariant setH, whatimplies that x(t̂) → H as t̂ → ∞. In addition, due to V (x) is globally positivede�nite and radially unbounded in R

2, this stability is global.Pieewise linear dynamial systemAs it was pointed out earlier from the numerial analysis, we shall onsiderer thesimpli�ed system in (6.22) whih preserves dynami equivalene with our originalsystem in equation (6.20). The advantage of this exhange lies in the fat thatsuh a system an be modelled by a pieewise linear set of ODEs of the form:
Ψτ̂ : x′ = Ax+Bu (6.29)where x ∈ R

2 is the two�dimensional state vetor; A and B are the systemmatries in ontrollable anonial form as presented in (6.30), and the swithingparameter u obeys the swithing rule in equation (6.31).
A =

[

0 1
−1 −2ζ

]

; B =

[

0
−ps

] (6.30)
u =

{

1.0, if x2(t̂− τ̂) > 0,

−1.0, if x2(t̂− τ̂) < 0,
(6.31)In what follows, we will term F1(x) the system vetor �eld of Ψτ̂ when u = 1.0,

F2(x) the vetor �eld of Ψτ̂ when u = −1.0. In addition, we will label as φi(x0, t)the �ow generated by Fi (i = 1, 2) as explained in �5.1.2, suh that:
d

dt
(φi(x, t̂)) = Fi(φi(x, t̂)); φi(x0, 0) = x0 (6.32)



6.3. Osillator with added non�linear damper 101Finally, note that the system's evolution in time is uniquely determined one wehave de�ned the values of x1, x2, and u. Thus, in the three�dimensional spae
(x1, x2, u), we an visualise the state spae as two parallel half�planes, partiallyoverlapping wherever u an have two di�erent values for the same pair (x1, x2).To get a better understanding about how a pieewise system an be inter-preted, let us onsiderer �rstly the system with no delay, as written in equation(6.33), together with the orresponding swithing rule in (6.34).

Ψ0 : x
′ = Ax+Bu (6.33)

u =

{

1.0, if x2(t̂) > 0,

−1.0, if x2(t̂) < 0,
(6.34)The system vetor �elds F1 and F2 of the system in (6.33) for ζ = 0.03 and

ps = 1.0 are shown in Figure 6.12, notie that both equilibrium points are stablefoi (loated at (0,-psu)).
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Figure 6.12: Vetor �elds F1 and F2 of the system in (6.33) for ζ = 0.03, ps = 1.0:a) For u = 1.0 and b) for u = −1.0 .Note however that for the system Ψ0, the vetor �eld F1 is valid only when theswithing rule (6.34) is satis�ed, that is, for all x2 > 0; in the same way that
F2 is valid only when x2 < 0. Thus, the omplete vetor �eld of the pieewiselinear system Ψ0 is made of the ombination of F1 and F2, in their respetivevalid domains.The system phase plane an be partitioned into the following two regions, being
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Si the valid domain for Fi (i = 1, 2):

S1 := {x ∈ R
2 : x2 > 0}

S2 := {x ∈ R
2 : x2 < 0} (6.35)Also, we label the boundaries between the regions above as:

Σ+
12 := {x ∈ R

2 : x1 > −ps, x2 = 0}
Σ−

12 := {x ∈ R
2 : x1 < ps, x2 = 0} (6.36)Note that Σ+

12 is the subset where the swithing ondition (6.34) is satis�ed forhanging from F1 to F2, whilst Σ−

12 is the subset where (6.34) is satis�ed for goingbak from F2 to F1. Heneforth, they will be referred as swithing sets.
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Figure 6.13: Vetor �elds of the pieewise linear system Ψ0 for ζ = 0.03, ps = 1.0:a) (x1, x2)�plane; b) three�dimensional spae (x1, x2, u).Figure 6.13 presents the vetor �eld of systemΨ0. On the left, the (x1, x2)�planeshows that the invariant set (the equilibrium) of the system. The attrator is nolonger a fous point (as it was for F1 and F2), but the invariant set H as de-�ned before in formula (6.27). This set also orresponds to the region where theswithing sets overlap eah other, i.e., the set Σ+
12 ∩ Σ−

12. This implies that anytrajetory of (6.33) lying on this intersetion will stay there for all future time.From a physial point of view this indiates that, when an osillation reahes itsmaximum displaement, and therefore zero veloity, but this displaement is suhthat the distane from the origin is less than the parameter ps, the system willremain bloked at that position (di�erent from zero). It is due to the system



6.3. Osillator with added non�linear damper 103internal fores annot overome the stati frition inside the damper, and so, thesystem annot be reentered by itself.It is worthy of note that ps grows as cd does, so larger nonlinear dampers willhave a longer �dead zone� where the system may remain bloked.Similarly, Figure 6.13b shows the three�dimensional spae (x1, x2, u). From amathematial point of view, when the system's state hits the swithing sets in-tersetion Σ+
12∩Σ−

12 (shadowed plane in the �gure), the system keep trapped intothis plane and remains ontinuously swithing between F1 and F2.Flows of the pieewise linear systemThe �ows φ1 and φ2 are well�de�ned on eah orresponding region S1 and S2. To�nd the mathematial expression of these �ows generated by the system vetor�elds F1 and F2, we have to solve eah ODE in the set of equations (6.29). Letus onsider a general expression for the linear model Ψτ̂ as:
x′1 = x2 (6.37a)
x′2 = −2ζx2 − x1 − psu (6.37b)where u is equals to 1.0 for F1 and equals to −1.0 for F2. To make things easier, letus rewrite the system in (6.37) through a new set of state variables by substituting

y1 = x1 + psu and y2 = x2. Thus, we have:
y′1 = y2 (6.38a)
y′2 = −2ζy2 − y1 (6.38b)This system an be expressed in matrix notation as y′ = Ay, where A is the samematrix presented in formula (6.30). For this ODE, the solution is of the form in(6.39) being λ1,2 the eigenvalues of matrix A, and C1,2 two arbitrary onstantsdepending on the initial onditions y1(0) = y10 and y′1(0) = y2(0) = y20.

y1(t̂) = C1e
λ1 t̂ + C2e

λ2 t̂ (6.39)where
λ1 = −ζ +

√

ζ2 − 1

λ2 = −ζ −
√

ζ2 − 1
(6.40)taking the �rst derivative of y1 respet to t̂, we get:

y′1(t̂) = C1λ1e
λ1 t̂ + C2λ2e

λ2 t̂ (6.41)



104 CHAPTER 6. STABILITY ANALYSIS OF RTST ON NONLINEARDAMPERSBy equaling equations (6.39) and (6.41) at t̂=0 with the respetive initial ondi-tions, the set of equations for Ci an be found as:
C1 + C2 = y10

C1λ1 + C2λ2 = y20
(6.42)solving for C1 and C2 we get:

C1 = Cλ(y20 − y10λ2)
C2 = Cλ(−y20 + y10λ1)
Cλ = 1

λ1−λ2

(6.43)replaing these onstants in (6.39) and (6.41), onverting bak to the original pa-rameters and taking into aount that x1(0) = x10 = y10−psu and x2(0) = x20 = y20,we an write the solution for x1 and x2 as:
x1(t̂) = Cλ

(

(x20 − (x10 + psu)λ2)e
λ1 t̂ + (−x20 + (x10 + psu)λ1)e

λ2 t̂
)

− psu

x2(t̂) = Cλ

(

(x20 − (x10 + psu)λ2)λ1e
λ1 t̂ + (−x20 + (x10 + psu)λ1)λ2e

λ2 t̂
)(6.44)Thus, the �ows φ1 and φ2 an be obtained from (6.44) by substituting u aordingto the respetive vetorial �eld F1 and F2 as follows:

φ1(x0, t̂) =

[

a11e
λ1 t̂ + a12e

λ2 t̂ − ps
a11λ1e

λ1 t̂ + a12λ2e
λ2 t̂

] (6.45a)
φ2(x0, t̂) =

[

a21e
λ1 t̂ + a22e

λ2 t̂ + ps
a21λ1e

λ1 t̂ + a22λ2e
λ2 t̂

] (6.45b)where x0 = (x10, x20) and
a11 = Cλ (x20 − (x10 + ps)λ2) a12 = Cλ (−x20 + (x10 + ps)λ1)
a21 = Cλ (x20 − (x10 − ps)λ2) a22 = Cλ (−x20 + (x10 − ps)λ1)

(6.46)The above expliit expressions for the �ows allows us to get any trajetory inthe (x1, x2)�plane from any initial ondition.Delay by hanging the swithing ruleThe main idea behind the use of pieewise smooth dynamial systems for thepresent stability analysis, is to reap the bene�ts of inluding, in a very easy way,



6.3. Osillator with added non�linear damper 105the e�ets of the delay in the system dynamis. Thus, after some proper transfor-mations, we an study the stability of an equivalent non�delayed system, ratherthan fousing on a omplex delayed system. All this without ompromising theintegrity of the stability analysis results.Consider the dynamis of system (6.29), note that the delay τ̂ is only expliitin the swithing rule. The system phase plane an be partitioned into the tworegions as follows:
S1 := {x ∈ R

2 : x2(t̂− τ̂) > 0}
S2 := {x ∈ R

2 : x2(t̂− τ̂) < 0} (6.47)To introdue the e�ets of the delay in the system dynamis, observe that if atrajetory rosses one of the swithing sets Σ+
12 or Σ−

12, beause of the delay, theatual swithing from one system on�guration to the other will our after sometime de�ned by τ̂ . Indeed, swithings our on the delayed swithing sets Στ̂+
12and Στ̂−

12 whih are images of Σ+
12 and Σ−

12 under the system �ow φi for some timedelay. Spei�ally we have,
Στ̂+
12 := {φ1(x, τ̂ ), x ∈ Σ+

12}
Στ̂−
12 := {φ2(x, τ̂ ), x ∈ Σ−

12}
(6.48)

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2PSfrag replaements
x1

x
2

Vetor �eld for Ψτ̂
a)

S1

S2

−ps

+ps

t
=

τ̂

�

O2 O1PSfrag replaementsVetor �eld for

b)
x2 x1

u

Στ̂+
12

Στ̂−
12

S1

S2?6

�

W
t = τ̂

O2

O1

Figure 6.14: Vetor �elds of the pieewise linear system Ψτ̂ in (6.29) for τ̂ = 0.4,
ζ = 0.03, ps = 1.0: a) (x1, x2)�plane; b) three�dimensional spae (x1, x2, u).Thus, the original swithing sets rotate lokwise around the orrespondingpoint (0,-psu) as shown in Figure 6.14. The position of Στ̂+

12 in the (x1, x2)�plane



106 CHAPTER 6. STABILITY ANALYSIS OF RTST ON NONLINEARDAMPERSan be easily determined by omputing φ1 for any initial ondition falling on Σ+
12and t = τ̂ . Similar proedure an be done for Στ̂−

12 by onsidering φ2 and Σ−

12.Therefore, instead of analysing a delayed model, we an replae the system in(6.29) by a non�delayed system whih inludes the dynami e�ets of the delay bymoving the original swithing sets towards the orresponding position as it wasexplained before. Thus, we an rewrite the delayed system (6.29) as follows:
Ψ0 : x

′ = Ax+Bu (6.49)
u 7→

{

1.0, if x ∈ Στ̂−
12 ,

−1.0, if x ∈ Στ̂+
12 ,

(6.50)where the above swithing rule establishes that, parameter u swith to 1.0 (or
−1.0) only when the respetive ondition in (6.50) is satis�ed, that is to say,when the trajetory hits Στ̂−

12 (or Στ̂−
12 ), and will remain �xed at this value untila new ondition in (6.50) is satis�ed. In other words, the swithing parameter uhanges if and only if a delayed swithing set (6.48) is reahed for the non�delayedsystem states.This e�et of the delay on the swithing rule, was �rstly envisaged when study-ing the dynamis of a delayed hystereti relay feedbak system [Colombo et al., 2007℄.In that work, the authors demonstrated that the dynamis of the delayed systemremain qualitatively the same as those of a system with properly onstrutedswithing sets. In other words, all the dynamis observed in a non�delayed sys-tem with swithing sets seleted as (6.50) an be found in an equivalent delayedsystem with properly swithing set as (6.31).The prior statement is true for all τ̂ ≤ π. For larger delays, those researhersidenti�ed a new bifuration phenomenon, so�alled event ollision, where the de-layed swithing manifold Στ̂+

12 intersets the swithing set Σ−

12 (or equivalently,
Στ̂−
12 intersets Σ+

12). In suh a ase, the dynamis beome muh more ompli-ated, whereby it will not be onsidered here, sine aording to us, the ase isoutside the ore to researh of this thesis. Further details an be found in thereferene ited above and some referenes within.Existene of limit yleWe now investigate the existene of limit yles indued by the delay in thedamper's response. Let us note O the limit yle generated by (6.49). We anthen partition the limit set O in two di�erent segments {O1,O2} that orresponds



6.3. Osillator with added non�linear damper 107to the disrete values of u as shown in Figure 6.14. Let us de�ne x∗ the point onthe (x1, x2)�plane where the limit yle hits the swithing set Στ̂−
12 and x∗∗ theanalogous point where O hits Στ̂+

12 .The part O1 belongs to the vetor �eld F1 and orresponds to the trajetory underthe system �ow φ1 whih starts on x∗ and ends on x∗∗ after some time named t̂∗.Similarly, the part O2 belongs to the vetor �eld F2 and orresponds to the tra-jetory under the system �ow φ2 whih starts on x∗∗ and ends on x∗ after sometime named t̂∗∗. We an formally de�ne them as:
O1 =

{

x : x(t̂) = φ1(x
∗, t̂), ∀t̂ ∈ [0, t̂∗]

}

, (6.51)
O2 =

{

x : x(t̂) = φ2(x
∗∗, t̂), ∀t̂ ∈ [0, t̂∗∗]

}

, (6.52)Geometri arguments an be used to establish the topology of the yles thatwe an expet from the system. We will show that, if the limit yle exists, it issymmetri and unimodal, i.e., haraterised by only two swithing events.First, note that the equilibria of both linear systems in equation (6.49) arefoi (See Fig 6.12), even more, sine both systems share the same matrix A, theyhave the same eigenvetors, and then, the vetor �elds F1 and F2 are exatly thesame but onverging to di�erent points; in other words, if the vetor �eld F1 isdisplaed through the (x1, x2)�plane from (�ps,0) to (ps,0), it will perfetly maththe vetor �eld F2.In addition, both delayed swithing sets are images of a portion of the x1�axisunder the respetive �ow φi. Due to F1 and F2 have the same dynamis hara-teristis (the same eigenvalues), the �ows φ1 and φ2 are equivalents, and so, theangles overed for both �ows on (x1, x2)�plane throughout a time equals to τ̂ willbe the same. This implies that both delayed swithing sets Στ̂+
12 and Στ̂−

12 havethe same slope. Putting together the above partiularities, we an say that thesystem's dynamis in the phase plane are symmetrial with respet to the origin.That means, every point on the right�hand side in the plane (x1, x2)�plane isre�eted through the origin.Beause of this symmetry, the part of the limit yle O1 whih orresponds to thetrajetory under the �ow φ1 starting in a point x∗ on Στ̂−
12 should hit the otherdelayed swithing set Στ̂−

12 just in the symmetrial point with respet to the origin,what suggests that, the aforementioned point x∗∗ annot be other than −x∗. Fur-thermore, in onsequene of the symmetry and the orrelation between the �ows
φ1 and φ2 pointed out before, the evolution time for ompleting the trajetoryof the limit yle O1, is exatly the same as the evolution time orresponding to
O2. This implies that t̂∗∗ = t̂∗, and that the period for a omplete limit yle Ois T̂ ∗ = 2t̂∗.



108 CHAPTER 6. STABILITY ANALYSIS OF RTST ON NONLINEARDAMPERSThus, if the limit yle exits and is symmetri, the following onditions must besatis�ed.
• No intersetion must exist between the delayed swithing sets, i.e.,

Στ̂+
12 ∩ Στ̂−

12 = ∅ (6.53)
• The limit yle must hit the delayed swithing sets in symmetrial pointswith respet to the origin, i.e.,

φ1(x
∗, t̂) = −x∗ for some x∗ ∈ Στ̂−

12 ∧ t̂ = t̂∗ (6.54)
φ2(−x∗, t̂) = x∗ for some − x∗ ∈ Στ̂+

12 ∧ t̂ = t̂∗ (6.55)Due to the fat that even a small delay auses no intersetion between theswithing sets Στ̂+
12 and Στ̂−

12 , we an assert that the presene of delay implies theexistene of the limit yle.In what follows, we will �nd some losed�form expressions for desribing themain harateristis of suh a limit yle, namely, amplitude and period of osil-lation.Firstly, we will write two new equations for the swithing sets in order to makeeasier this mathematial development.
Στ̂+
12 := {x ∈ R

2 : x2 = m
Σ
x1 − b

Σ
, x2 > 0}

Στ̂−
12 := {x ∈ R

2 : x2 = mΣx1 + bΣ , x2 < 0} (6.56)Without loss of generality, we will fous our attention on trajetories generatedby the vetor �eld F1 along its valid domain S1. We an de�ne the slope andthe x2�interept of the swithing sets on the (x1, x2)�plane, by alulating the�nal states under the �ow φ1, for an initial ondition xps = (ps, 0) ∈ Σ+
12 and anevolution time equals to the delay τ̂ , as:

m
Σ
=

φ12(xps , τ̂ )

φ11(xps , τ̂ ) + ps
; b

Σ
= −psmΣ

(6.57)where the seond�order subsript indiates the element position in the vetor φ1.Now, we are interested in �nding the onditions for whih the expression(6.54) is satis�ed. Let x∗ = (x∗1, x
∗
2) be the initial ondition on the plane Στ̂−

12 fora trajetory under the �ow φ1. Beause of this point falls just on the swithing set,



6.3. Osillator with added non�linear damper 109by using equation (6.56) we an express x∗2 as funtion of x∗1 as x∗2 = m
Σ
x∗1 + b

Σ
.Then, the trajetory under φ1 an be written as:

x(t̂) = φ1(x
∗, t̂) = φ1((x

∗
1, x

∗
2), t̂) = φ1((x

∗
1,mΣx

∗
1 + bΣ), t̂) (6.58)If it is about a limit yle, in aord with (6.54), there must exist an evolutiontime t̂ = t̂∗ suh that,

φ1((x
∗
1,mΣ

x∗1 + b
Σ
), t̂∗) = −x∗ = (−x∗1,−mΣ

x∗1 − b
Σ
) (6.59)By using de�nition in (6.45a), we an write expliit expressions for the �ow inequation (6.59) as:

φ11((x
∗
1, x

∗
2), t̂

∗) =

Cλ

(

(x∗2 − (x∗1 + ps)λ2)e
λ1 t̂∗ + (−x∗2 + (x∗1 + ps)λ1)e

λ2 t̂∗
)

− ps = −x∗1
(6.60)and

φ12((x
∗
1, x

∗
2), t̂

∗) =

Cλ

(

(x∗2 − (x∗1 + ps)λ2)λ1e
λ1 t̂∗ + (−x∗2 + (x∗1 + ps)λ1)λ2e

λ2 t̂∗
)

= −x∗2
(6.61)We have to derive two new expression in order to solve the above �ow for t̂∗ and

x∗. Multiplying formula (6.60) by λ1, subtrating (6.61) from this produt, andafter some known substitutions and rearrangement, we get:
eλ2 t̂∗ (−x∗1(mΣ

− λ1)− b
Σ
+ psλ1) = x∗1(mΣ

− λ1) + b
Σ
+ psλ1 (6.62)In a similar manner, we an multiply formula (6.60) by λ2 and subtrat (6.61)from this produt for getting:

eλ1 t̂∗ (−x∗1(mΣ − λ2)− bΣ + psλ2) = x∗1(mΣ − λ2) + bΣ + psλ2 (6.63)Now, we an solve for t̂∗ from either (6.62) or (6.63). By onsidering equation(6.63), we an write an expliit expression for alulating the evolution time forthe half�part of the limite yle O1 as:
t̂∗ =

1

λ1
ln

(

x∗1(mΣ − λ2) + bΣ + psλ2
−x∗1(mΣ − λ2)− bΣ + psλ2

) (6.64)In onsequene of the symmetry, the period for the whole limit yle O, is
T̂ ∗ = 2t̂∗ (6.65)



110 CHAPTER 6. STABILITY ANALYSIS OF RTST ON NONLINEARDAMPERSFurthermore , the evolution time in (6.64) may be substituted into formula (6.62),and then, some logarithmi identities may be applied to yield:
x∗1(mΣ

− λ1) + b
Σ
+ psλ1

−x∗1(mΣ
− λ1)− b

Σ
+ psλ1

=

(

x∗1(mΣ
− λ2) + b

Σ
+ psλ2

−x∗1(mΣ
− λ2)− b

Σ
+ psλ2

)

λ2
λ1 (6.66)The former equation is an impliit funtion of x∗1 and an be solved numerially.It is worthy notiing that all the other variables in formula (6.66) are known andeasily derivable from the problem parameters through the losed�form expressionpresented before.In this manner, also the maximum veloity developed under the limit yle anbe easily alulated from x∗2 = m

Σ
x∗1 + b

Σ
.
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Figure 6.15: Names of the harateristis in the limit yle.The other important harateristi of the limit yle is the maximum displae-ment reahed for the osillations. To �nd it, it is enough to determine the pointwhere the veloity under the �ow φ1(x
∗, t̂) vanishes, i.e, the seond omponent of

φ1(x
∗, t̂) must be fored to be equal to zero. Thus, from formula (6.61) we anwrite:

φ12((x
∗
1, x

∗
2), t̂) = 0

(x∗2 − (x∗1 + ps)λ2)λ1e
λ1 t̂ + (−x∗2 + (x∗1 + ps)λ1)λ2e

λ2 t̂ = 0
(6.67)We an solve equation (6.67) for t̂. Let us name this time as t̂∗0, whih representsthe needed evolution time for a trajetory starting from x∗ under the �ow φ1 to



6.3. Osillator with added non�linear damper 111get the maximum displaement, and therefore, null veloity. Applying logarithmiproperties we an rearrange (6.67) to yield:
t̂∗0 =

1

λ1 − λ2
ln

(

(x∗2 − (x∗1 + ps)λ1)λ2
(x∗2 − (x∗1 + ps)λ2)λ1

) (6.68)Hene, we an alulate the maximum displaement aused in the limit yleby evaluating the �rst omponent of the �ow φ1(x
∗, t̂∗0) for the evolution timepreviously found.

x∗1max
= Cλ

(

(x∗2 − (x∗1 + ps)λ2)e
λ1 t̂∗0 + (−x∗2 + (x∗1 + ps)λ1)e

λ2 t̂∗0

)

− ps (6.69)The above formulas omprise the losed�form solution for de�ning the limityle of SDOF systems whih inlude a delayed dry frition element. In on-sequene of the dynami equivalene pointed out in the numerial parametrianalysis in �6.3.1, we an assert that these expression are also valid for SDOFsystems with delayed nonlinear visous dampers whih exhibit a damping expo-nent α lower than 0.2.In what follows, we show a numeri example to larify how these set of for-mulas an be applied.Example 6.1 (Finding the limit yle).Let us assume a SDOF system with the next properties: mass m = 1000Kg, sti�-ness k = 1×105N/m and damping ratio ζ = 5%. Also, let us suppose a nonlinearvisous damper added to the system with exponent α = 0.1 and a nonlinear o-e�ient cd = 50kN(se/m)0.1. We are interested in haraterizing the limit yleof the system, if a onstant delay of 0.03se is onsidered in the damper response.To solve this problem, the �st step is to �nd a dimensionless expression of theform (6.21) by using the proper parameters de�ned in page 91. Without loss ofgenerality, let us assume an arbitrary initial ondition x0 = 5m.
wn =

√

k

m
= 10rad/sec; ps =

cd
mw2

nx0
= 10; τ̂ = wnτ = 0.3and z = y/x0, where we have named y the displaement of the SDOF system inmeters.The eigenvalues of the system an be obtained from the matrix A in (6.30) as:

eig(A) = λ1,2 = −ζ ±
√

ζ2 − 1 = −0.05± 0.9987i;



112 CHAPTER 6. STABILITY ANALYSIS OF RTST ON NONLINEARDAMPERSThen, we have to alulate the slope and the x2�interept of the swithing sets onthe (x1, x2)�plane in aord with formula (6.57) by using the de�nition in (6.45a).
φ11((ps, 0), τ̂ ) = φ11((10, 0), 0.3)

= Cλ

(

(x20 − (x10 + ps)λ2)e
λ1τ̂ + (−x20 + (x10 + ps)λ1)e

λ2τ̂
)

− ps
= (−0.5006i)

(

(0− 20 · (−0.05 − 0.9987i))e0.3(−0.05+0.9987i) · · ·
+(0 + (20)(−0.05 + 0.9987i))e0.3(−0.05−0.9987i)

)

− 10
= 9.1156

φ12((ps, 0), τ̂ ) = φ12((10, 0), 0.3)
= Cλ

(

(x20 − (x10 + ps)λ2)λ1e
λ1 τ̂ + (−x20 + (x10 + ps)λ1)λ2e

λ2τ̂
)

= −5.8226therefore,
mΣ =

φ12 (xps ,τ̂)

φ11 (xps ,τ̂)+ps
= −5.8226

9.1156+10 = −0.3046

b
Σ
= −psmΣ

= −10(−0.3046) = 3.046So that, we are now able to alulate the point where the limit yle impats theswithing sets by solving formula (6.66), as follows:
x∗
1(−0.3046−(−0.05+0.9987i))+3.046+10(−0.05+0.9987i)

−x∗
1(−0.3046−(−0.05+0.9987i))−3.046+10(−0.05+0.9987i) = · · ·

(

x∗
1(−0.3046−(−0.05−0.9987i))+3.046+10(−0.05−0.9987i)

−x∗
1(−0.3046−(−0.05−0.9987i))−3.046+10(−0.05−0.9987i)

)
−0.05−0.9987i
−0.05+0.9987i ⇒

x∗
1(−0.2546−0.9987i)+2.546+9.9875i
x∗
1(0.2546+0.9987i)−3.546+9.9875i =

(

x∗
1(−0.2546+0.9987i)+2.546−9.9875i
x∗
1(0.2546−0.9987i)−3.546−9.9875i

)−0.995+0.099iSolving the previous formula, we get x∗1 = 0.0092. (hint: you an separate realand imaginary part and solve numerially for one of them.). So, we an alreadyknow the peak veloity of the limit yle by alulating x∗2 = m
Σ
x∗1+bΣ = 3.0432.One the point where the limit yle hits the swithing sets is found, we just needto substitute the known parameters into equation (6.64) to obtain the evolutiontime for the trajetory O1 between the delayed swithing sets.

t̂∗ = 1
−0.05+0.9987i ln

(

0.0092(−0.3046−(−0.05−0.9987i))+3.046+10(−0.05−0.9987i)
−0.0092(−0.3046−(−0.05−0.9987i))−3.046+10(−0.05−0.9987i)

)

= 0.591Thus, the period for the limit yle an be obtained as T̂ ∗ = 2t̂∗ = 1.182.



6.3. Osillator with added non�linear damper 113Finally, the evolution time for the maximum displaement under the limit ylean be alulated from (6.68) as:
t̂∗0 =

1
1.9975i ln

(

(3.0432−(10.0092)(−0.05+0.9987i))(−0.05−0.9987i)
(3.0432−(10.0092)(−0.05−0.9987i))(−0.05+0.9987i)

)

= 0.291and the orresponding maximum amplitude from (6.69):
x∗1max

= 1
1.9975i

(

(3.0432 − (10.0092)λ2)e
0.291λ1 · · ·

+(−3.0432 + (10.0092)λ1)e
0.291λ2

)

− 10 = 0.453
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Figure 6.16: Trajetory going to the limit yle of the system in example 6.1.The task is almost �nished, after onverting bak the solutions to the originalparameters we will get the omplete dynami haraterization of the limit yle.Figure 6.16 shows a numerial solution whih on�rms the features listed below.Peak limit yle displaement, y∗max = x∗1max
x0 = 0.453(0.05)m = 22.65mm.Peak limit yle veloity, ẏ∗ = x∗2x0wn = 3.0432(0.05)m(10)1/se = 1.52m/se.Period of osillation, T ∗ = T̂ ∗/wn = 0.118se ∴ f∗ = 8.46Hz.

�Existene of high frequeny region.At the end of setion 6.3.1, we showed through numerial simulation how, for arange of small delay τ̂ , the system exhibits a harmful phenomenon whih is har-aterized by osillations at high frequeny. In this setion we intend to de�ne the



114 CHAPTER 6. STABILITY ANALYSIS OF RTST ON NONLINEARDAMPERSonditions under whih that high frequeny region takes plae.We identi�ed a system state, named x⋆ = (x⋆1, x
⋆
2), whih orresponds to thepoint where the vetorial �eld F1 is tangent to the swithing set Στ̂−

12 . Similarlyand by symmetry, we an also named −x⋆ the point where the vetorial �eld F2is tangent to the swithing set Στ̂+
12 (See Fig. 6.17).
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Figure 6.17: Parameter names when delimiting the high frequeny zoneWe found that, any trajetory under F2 whih hits the swithing set Στ̂−
12in between the segment from (x⋆1, x

⋆
2) to (ps, 0) (or equivalently, under F1 theswithing set Στ̂−

12 in between the segment from (−ps, 0) to (−x⋆1,−x⋆2)), will re-main trapped in middle of both swithing sets, ommuting onstantly. This ausesthe system to inrease the frequeny of osillation suddenly. In what follows, wewill derive an analytial expression for �nding the point x⋆ whih allows us toset boundaries of these harmful zone of self�sustained high�frequeny osillations.As before, without loss of generality, let us onentrate on the �ow generatedby the system vetor �eld F1. We will use the onept of isolines. An isoline isa line that onnets all the points in a vetor �eld whih have the same gradient(slope). We are interested in �nding where the vetor �eld is tangent to theswithing sets, so that, the target is to �nd an isoline whose gradient is equalsto the swithing set slope.Let us onsider the set of equations (6.37) and substitute u = 1 for the vetor



6.3. Osillator with added non�linear damper 115�eld F1. The target isoline an be written as:
f(x, t) =

x′2
x′1

=
−2ζx2 − x1 − ps

x2
= m

Σ
(6.70)Solving formula (6.70) for x2 and equaling the resultant expression with the equa-tion in the (x1, x2)�plane for Στ̂−

12 , we an get the intersetion point between bothurves (isoline and swithing set).
x2 =

−x1 − ps
m

Σ
+ 2ζ

= m
Σ
x1 + b

Σ
(6.71)Thus, the point where F1 is tangent to Στ̂−

12 , is easily obtained by solving theright�hand�side equation in (6.71) for x1:
x⋆1 =

−b
Σ
(m

Σ
+ 2ζ)− ps

m
Σ
(m

Σ
+ 2ζ) + 1

(6.72)Substituting the former value into the most right�hand part of (6.71), we get theother omponent as:
x⋆2 = m

Σ
x⋆1 + b

Σ
(6.73)Besides, if the so-alled high frequeny zone exits, the following ondition mustbe satis�ed. Otherwise, the system just goes rapidly to the limit yle de�nedabove without any other phenomenon arising.

• Let Γτ̂−
12 be the segment of the swithing set Στ̂−

12 between x∗ and (ps, 0).The point x⋆ must not fall on Γτ̂−
12 , i.e.,

x⋆ /∈ Γτ̂−
12

where Γτ̂−
12 := {x ∈ Στ̂−

12 : 0 ≥ x2 ≥ x∗2}
(6.74)Example 6.2 (Delimiting the high frequeny zone).Let us assume the SDOF system studied before in example 6.1, and suppose thatwe are now interested in �nding the region where the system would develop highfrequeny osillation.It is really simple. Again the �rst step is to rewrite the problem in dimensionlessterms and �nd the slope and x2�interset of the swithing sets. We will use someparameter already alulated in the past in the referene example.So that, substituting the known parameters into equations (6.72) and (6.73) is
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Figure 6.18: Trajetory starting just in the limit of the high frequeny zone x⋆for the system in example 6.1.enough to de�ne the target region.From equation (6.72), we have:
x⋆1 =

−3.046(−0.3046 + 2 · 0.05) − 10

−0.3046(−0.3046 + 2 · 0.05) + 1
= −8.827Substituting this and the others known values into (6.73) yields to:

x⋆2 = −0.3046(−8.827) + 3.046 = 5.735Sine both x⋆ and x∗ fall on Στ̂−
12 and x⋆2 is greater than x∗2, we an assert thatthis high frequeny region exists and is delimited by the swithing sets between

x⋆ and −x⋆.For onluding, Figure 6.18 shows a trajetory of the system in example 6.1 whihstarts just in the limit of the high frequeny zone. We may onvert bak to theoriginal parameters to get:Limit in terms of displaement, y⋆ = x⋆1x0 = −8.827(0.05)m = −441.3mm.Limit in terms of veloity, ẏ⋆ = x⋆2x0wn = 5.735(0.05)(10)m = 2.87m/se.
�In the next hapter, we shall present experimental result from a ampaignon Real Time dynami substruturing testing onsidering a full�sale passive�ontrolled struture whih inludes a large�sale non�linear visous �uid damper.Those results exhibit the dynami phenomena omprehensively desribed through-out this hapter.



Chapter 7Case Study
Contents7.1 Desription of the ontrolled struture . . . . . . . . 1187.1.1 Damper desription . . . . . . . . . . . . . . . . . . . . 1217.2 Numerial simulations . . . . . . . . . . . . . . . . . . 1217.3 Experimental ativities . . . . . . . . . . . . . . . . . . 1247.3.1 Damper haraterization test . . . . . . . . . . . . . . . 1247.3.2 Predition sheme . . . . . . . . . . . . . . . . . . . . . 1317.3.3 Real�time substruturing test results . . . . . . . . . . . 138In this hapter we present the desription, analysis and experimental set�upof a Real�Time Dynami Substruturing Test of a ivil struture provided witha passive seismi protetion system. Partiulary, we onsidered a building withtwo nonlinear visous dampers attahed at the �rst �oor to ontrol the vibrationsindued by seismi exitations. Our interest is to show how this kind of test anbe exploited for the assessment and design of urrent and new protetion systemsin earthquake engineering. We believe that this method is very suitable when anaurate mathematial model of the protetion devie is not yet available.To evaluate the advantages of real�time dynami substruturing simulation ontesting large�sale energy dissipation devies, an experimental ampaign was a-omplished in the Earthquake and Large Strutures Laboratory at University ofBristol (UK). This experimental ativities were arried out in losed ollaborationwith professors David Wagg and Simon Neild from the Department of MehanialEngineering of that University. 117



118 CHAPTER 7. CASE STUDY7.1 Desription of the ontrolled strutureFluid visous dampers (FVDs) are a type of supplemental damping devies ableto redue vibrations in strutures. Linear �uid visous dampers have been widelyinvestigated, either experimentally or numerially, beause they an be simplymodelled through a linear fore�veloity onstitutive law. However, they andevelop exessive damper fores when large strutural veloities our. More re-ently, both researhers and professional engineers have foused their attentionon non�linear FVDs not only to limit the damper fores at large strutural velo-ities but also beause of their ability to dissipate more energy at lower veloities[Lee and Taylor, 2001℄.This thesis deals with a passive ontrol system installed on a symmetri 3�storeyone�bay steel framed building with reinfored onrete slabs. The system is om-posed by hevron�type braes and non�linear passive visous �uid dampers (inhorizontal position) linking the brae to the hosting struture. As shown in Figure7.1, two of this braes are plaed at the �rst �oor on opposite building's sides. Weonly onsidered one�diretional base exitation along the axis where the dampersare plaed.

ẍg

DamperBrae
Figure 7.1: Sketh of the passive ontrolled system analysed.A supplemental energy dissipation system is optimally designed to absorbvibration energy from the hosting system, thereby reduing energy dissipation



7.1. Desription of the ontrolled struture 119demand on the struture. And so, a typially and widely aepted approahwhen designing passive ontrol systems is to onsider that the struture remainsin the linear range. In addition, if the non�linearity and omplex behaviour ofthe visous dampers are onsidered, those devies may be easily identi�ed as theritial omponent of the whole strutural system.Thus, in order to set up the RTDST test, the system is split up into two subsys-tems, keeping the dampers as the physial substruture while the remains of thestruture is modelled numerially. Also, in onsequene of the symmetry fromboth the strutural on�guration and load, the strutural response was expetedto be symmetrial. So that, despite the original passive ontrolled struture hasatually two dampers, a RTDST whih takes into aount just one damper isenough to emulate properly the system, as long as due ares were taken in thesubsystems' interation interfae. Namely, the fore fed bak to the numerialsubstruture was twie the measured fore from the physial substruture.This symmetry�based simpli�ation is supported not only on several exhaus-tive numerial simulations but also through a large number of experimental dataobtained form an experimental ampaign arried out in Italy under the RE-LUIS projet1, where researhers tested a symmetri and passive ontrolled stru-ture under earthquake base exitations by using an one�diretional shaking ta-ble (See e.g. [Ponzo et al., 2008, Sorae and Terenzi, 2008℄ and some referenestherein). Most of those results exhibit the symmetrial strutural behaviour as-sumed throughout this thesis.
m1

m2

m3 Non�lineardampers
Figure 7.2: Simpli�ed numerial model of the strutural system.Aording to this, a simpli�ed lumped�mass model of the whole struture hasbeen employed as the numerial substruture. At the beginning we onsider suh1See more information of this projet in www.reluis.it



120 CHAPTER 7. CASE STUDYa simple model beause it is the fastest numerial substruture we an get. Onethe delay issues are overome, we an try more omplete, omplex and of ourseslower to be alulated numerial models. The dampers are inluded as a singleexternal fore (see Figure 7.2), whih will be updated in aord with the measure-ments taken from the damper during the simulation.The lassial expression for desribing this model is given by the ordinary di�er-ential equation (ODE) in formula (7.1) where: M, K, C represent the struturalmass, sti�ness and damping matries; ẍg(t) indiates the base exitation; U(t)is twie the fore in the damper and X, Ẋ and Ẍ are the strutural responsesnamely: displaement, veloity and aeleration, respetively. The oe�ients ofthe damping matrix C have been derived from those of M and K imposing amass and sti�ness proportional damping (Rayleigh damping) with modal damp-ing ration equal to 3%.
MẌ(t) +CẊ(t) +KX(t) = −Mẍg(t) + LU(t) (7.1)being:

L =





0 0
−1 0
0 −1



 , M =





5430.2 0 0
0 5430.2 0
0 0 5430.2



 (Kg)

C =





9.817 −2.878 −0.625
−2.878 9.192 −3.508
−0.625 −3.504 6.313



× 103 (N sec

m
)

K =





12.091 −6.046 0
−6.046 12.091 −6.046

0 −6.046 6.046



× 106 (N
m
)

Figure 7.3: Strutural mode shapes.



7.2. Numerial simulations 1217.1.1 Damper desriptionThe dampers used in these tests were provided by FIP�Industriale2. They areharaterized by a suitably designed hydrauli iruit whih ontrols the passageof the visous �uid from one hamber to the other, therefore the energy dissipationis aused by the relative movement between the two damper ends when the �uidis fored to move through the hydrauli iruit. Both ends of the dampers areusually provided with two spherial hinges assuring perfet alignment betweenpiston and ylinder, in spite of possible mounting inauraies during installation.In onsequene of the non�linear onstitutive law in these dampers, an almostonstant fore is developed over an important range of veloities.
Figure 7.4: Non�linear visous damper used in the tests.Figure 7.4 shows a piture of one of the four visous dampers available for thetests. They are haraterized by a peak fore up to 50KN, stroke ±25mm andpeak veloity about 0,3m/se. Additionally, their non�linear onstitutive fore�veloity law may be desribed by means of equation (7.2) where ẋd representsthe relative veloity between the ends of the damper in meters per seond; cαis the nonlinear damping oe�ient equal to 60kN( secm )0.15 and α is the veloityexponent equals to3 0.15.

FD = cα |ẋd|α sign(ẋd) (kN) (7.2)As it will be shown later, the last relationship was veri�ed through several experi-mental haraterization tests performed at the Strutural Engineering Laboratoryof the University of Naples Federio II (See �7.3.1).7.2 Numerial simulationsFirst of all, we ompleted several numerial simulations of the substruturedsystem desribed above. We build a full numerial substrutured systems in©simulink4. In this model the physial substruture is replaed by a numerialapproximation of the damper response as shown in Figure 7.5. As well, a onstant2Italian ompany speialized in design and manufature of tehnial produts and seismiprotetion devies for the large-sale onstrution (See: www.�p-group.it)3Model provided by manufaturer.4Simulink is a registered trademark of The MathWorks, In. www.mathworks.om



122 CHAPTER 7. CASE STUDYdelay transport is added to the damper fore whih is fed bak to the numerialsubstruture. This to take into aount the atuator dynamis, as explained inthe former hapters.

Figure 7.5: Simulink model of the full numerial substrutured system.We onsider small delays (between 1 and 4 milliseonds) and run this full�numerial substrutured model under both periodi and seismi loads. All thesimulations exhibited delay�indued self�sustained osillations, as desribed inChapter 6 for the ase of non�linear systems.In what follows, we present some pitures of the system response under earthquakeloads onsidering a delay equals to 3mse. Figure 7.6 shows the displaement andveloity time histories of the �rst �oor of the struture in (7.1), along with thenumerial approximation of the damper fore and the phase plane plot.
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Figure 7.6: Substrutured system outomes for the full numerial substruturingtest onsidering the earthquake 0187.As explained in previous Chapters, by onsidering a delay in the feedbak loop,



7.2. Numerial simulations 123the equilibrium of the system (0,0) beomes unstable and even a small perturba-tion auses the system to go away from it. The plots evidene how the systemgoes to the limit yle (self�sustained osillations) just before a the earthquakestarts (at 2se in the simulation). Note that even a very tiny displaement at earlystages of the system response ause suddenly the limit yle, and then, very highfores in the damper swithing between ± the maximum fore. Figure 7.7 showsa zoom�window for the �rst seond just before the external exitation starts. Inthe other hand, Figure 7.8 presents the steady�state system response from theanalytial expressions given along Setion 6.3, where the dimensionless parameterwere obtained as explain in Example 6.1.
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Figure 7.7: One�seond zoom window of the substrutured system outomes forthe full numerial substruturing test onsidering the earthquake 0187.
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Figure 7.8: Analytial steady�state substrutured system responses for the fullnumerial substruturing test onsidering the earthquake 0187.



124 CHAPTER 7. CASE STUDYThe last �gures learly shows an good agreement between the numerial simula-tions and the analytial results. In spite of some di�erenes an be found betweenthe displaement time histories, they an be negleted as Figure 7.8 does not on-sider any external exitation, but just a not null initial ondition. That is whythese di�erenes arise. From the analytial expressions omes a limit yle (osilla-tions as time tends to in�nite) with the next harateristis: Frequeny=83.44Hz;Peak veloity=±0.013m/se; Peak damper fore=±33kN.7.3 Experimental ativities7.3.1 Damper haraterization testThe non�linear visous �uid dampers were �rst haraterized through a detailedexperimental ampaign performed at the Strutural Engineering Laboratory ofthe University of Naples Federio II, these experimental tasks were arried out inollaboration with Dr. Mariaristina Spizzuoo from the Department of Stru-tural Engineering in this university. A self�equilibrated testing apparatus wasdesigned and assembled ad�ho for these tests, it is equipped with a dynami a-tuator having a stroke of 250mm and a dynami horizontal load of up to 1200kNin tension and 440kN in ompression within a frequeny range from 0 to 5Hz.The external ylinder of the atuator is �rmly onneted to a main rigid steelplate through four steel bars with a diameter of 24mm eah; one damper's endis onneted to the atuator through the interposition of a 100kN load ell whilethe other end is �rmly onneted to an seondary smaller rigid steel plate whihis jointed to the main plate by four rigid steel tubes having an external diameterof 114.3mm and a thikness of 8mm (see Figure 7.9).The hydrauli atuator applies the load to the devie along its longitudi-nal axis. Table 7.1 lists the hannels aquired during the experimental testswhereas Figure 7.10 shows the position of the transduers: a 100kN load ell(F1) measures the fore ating on the damper; a horizontal displaement trans-duer (D2) measures the displaement of the atuator's piston and is used forits displaement�based ontroller; an additional horizontal displaement trans-duer (D3) with 50mm stroke was mounted to measure the relative displaementof the damper; and �nally, two temperature transduers were installed on theouter surfae of damper's body by loking two sensible stainless steel small plates(25mm×25mm) able to house the thin rods of the transduers.The experiments aiming at haraterizing the non-linear visous dampers hasbeen planned aording to both the European Standard prEN 15129 [Eur, 2007℄and to the setion 11.9.6 (Fluid visous devies) of the new Italian Tehnial Reg-ulations for Construtions [Ita, 2008℄. Aording to the normative, two di�erent



7.3. Experimental ativities 125

Figure 7.9: Visous �uid damper mounted in the testing equipment.Channel TransduerF1 Load ellD2 LVDTD3 LVDTT4 TemperatureT5 TemperatureTable 7.1: Aquisition hannels and transduers in detailed.

Figure 7.10: Transduers and reording hannels.



126 CHAPTER 7. CASE STUDYtypes of dynami tests were planned to be imposed on the dampers: dynamionstitutive law tests and dynami damping e�ieny tests. Damper tempera-ture also had to be monitored, we reorded it for three tests at two loations onthe main body of the devie, onsidering a period from 5min before until 15minafter eah test.In onstitutive law tests, yles with a onstant veloity displaement are to beimposed (see table 7.2). Thus, four onstant�amplitude triangular displaementyles are applied to the damper onsidering �ve di�erent onstant veloities (3,75, 150, 225 and 300mm/s) and two di�erent displaement amplitudes (10 and20mm), for a total of 10 dynami tests. In damping e�ieny tests, harmonidisplaement yles are to be imposed (see table 7.3). Five onstant�amplitudesinusoidal displaement yles (x(t) = A sin(2πft)) are imposed to the speimenassuming �ve di�erent frequenies f (0.5, 1.5, 2.0, 3.0 and 4.0Hz) and three dif-ferent displaement amplitudes A (10, 15 and 20mm), for a total number of testsequal to 10.It is worth to note that tests at higher veloities and frequenies and larger dis-plaement amplitude are not onsidered beause of the intrinsi limits of theatuator. Furthermore, 20 tests were onsidered su�ient to haraterize the me-hanial behaviour of the visous dampers. More details about who the test wereseleted in aord with the normative an be found in [Spizzuoo et al., 2008℄.Test Amplitude Veloity Number(mm) (mm/se) of yles
ConstantVelo
ityTests 1 10 3 42 10 75 43 10 150 44 10 225 45 10 300 46 20 3 47 20 75 48 20 150 49 20 225 410 20 300 4Table 7.2: Dynami onstitutive law tests.Tests resultsThe e�etive fore vs. displaement yles obtained during some of the imposedonstant veloity tests are given in Figure 7.11. Besides, in Figure 7.12 the tem-perature reorded in the damper at two loations of the main body, one towardsthe moving end of the devie and the other one towards the �xed end, is plottedfor 1200se, i.e. approximately 5min before and 15min after the imposed onstant



7.3. Experimental ativities 127Test Amplitude Frequeny Number(mm) (Hz) of yles
HarmoniVelo
ityTests 11 10 0.5 512 10 1.5 513 10 2.0 514 10 3.0 515 10 4.0 516 15 0.5 517 15 1.5 518 15 2.0 519 20 0.5 520 20 1.5 5Table 7.3: Dynami damping e�ient tests.

Figure 7.11: Fore�displaement yles from onstant veloity tests at 10mmamplitude on the left, 20mm amplitude on the right.veloity test at 75mm/se and 20mm amplitude. Figure 7.13 presents the e�e-tive fore vs. displaement yles relative to the imposed harmoni displaementtests: the shape of the loops are those typial of a nearly�frition fore�veloityvisous damper onstitutive equation.Now, in order to haraterize the damper from the tests data, we looked forthe oe�ients whih satisfy equation (7.2). The experimental values of cα and
α have been derived through a simple proedure using the maximum fore andveloity ahieved during all the tests. Figure 7.14 shows on a logarithmi diagram,the maximum experimental fores Fmax developed during the imposed onstantveloity tests as funtion of the onstant veloities v. The red experimental pointsorrespond to the tests at 10mm amplitude while the brown points represent thetests at 20mm amplitude. The linear regression urve of the above experimental
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Figure 7.12: Reorded temperatures from onstant veloity test at 20mm ampli-tude and 75 mm/s.

Figure 7.13: Fore�displaement yles from harmoni displaement tests at10mm amplitude on the left, 15mm amplitude on the right.points is drawn in blak line and has the following expression:
log(Fmax) = 1.2645 + 0.190 log(v) (7.3)As well, Figure 7.14 shows on a seond logarithmi diagram the maximum experi-mental fores Fmax developed during the imposed harmoni displaement tests asfuntion of the maximum veloities (vmax = 2πfA), the red experimental pointsorrespond to the tests at 10mm amplitude while the pink and brown points repre-sent the tests at 15mm and 20mm amplitude, respetively. The linear regressionurve of the these experimental points is drawn in blak line on the respetivepiture and an be written as:
log(Fmax) = 1.4171 + 0.118 log(v) (7.4)



7.3. Experimental ativities 129A mean linear regression urve, shown in both sides of Figures 7.14 in blue olor,
Figure 7.14: Constitutive law of the visous damper from onstant veloity testson the left and harmoni displaement on the right.an be obtained by taking mean values of the slopes and intersetions point fromthe linear regression urves derived above. This mean urve is given in equation7.5:

log(Fmax) = 1.3475 + 0.154 log(v) (7.5)The mean slope represents the mean value for the exponent in expression 7.2being α=0.154, while the mean value of the intersetion with the ordinate�axisprovides a mean value of the damping oe�ient of the damper: cα = 101.3475 =
22.3kN/( sec

mm )0.154 = 62.7kN/(secm )0.154.

Figure 7.15: Experimental vs. numerial fore�displaement yles from harmonidisplaement test at 1.5Hz×15mm.Therefore, the experimental values losely math those delared by the man-



130 CHAPTER 7. CASE STUDYufaturer, that is, the mean linear regression urve pratially orresponds to thedesign onstitutive law provided by the manufaturer. Suh experimental oe�-ients have been assumed to obtain the numerial fore vs. displaement ylesable to nearly �t the experimental data as shown in Figure 7.15 for the harmonidisplaement test at 1.5Hz×15mm. Finally, Figure 7.14 also shows that all theexperimental points are inluded between two blue dashed lines representing thetolerane limits de�ned by the Codes, that is the di�erenes between the experi-mental values of the maximum output fore Fmax and the design values (that isto say the onstitutive law) are less than the tolerane limit of ±15%.In this manner, the tested devies demonstrate to satisfy both the EuropeanStandard and the new Italian Tehnial Regulations for Construtions, for all thetypes of experimental tests required by them.Non�linear visous damper numerial model.In order to get a more realisti numerial model of the non�linear visous damperin terms of veloity�fore behaviour, we hange the model in (7.2) provided bythe damper's manufaturer into the Dahl model in formula (7.6), whih is able toapture the atual veloity�fore dependene more aurately.
F (t) = κxẋ(t) + κww(t)

ẇ(t) = ρ (ẋ(t)− |ẋ(t)|w(t)) (7.6)where:
F (t): is the damper fore;
ẋ(t): is the relative damper veloity;
w(t): is the hystereti variable;
κx: is the visous oe�ient = 128098.06 (N s

m);
κw: is the frition oe�ient = 27900.5 (N); and
ρ: is the parametri onstant = 811.99 ( 1

m).The parameters κx, κw and ρ were tuned aording to the methodology presentedin [Aguirre et al., 2008℄ in suh a way that the model mathes losely the damperbehaviour reorded for the sinusoidal tests. To evaluate the orretness of theseparameters and the e�etiveness of this model, Figure 7.16 shows some timehistories and fore veloity yles omparing the measured response against boththe old and new numerial models.In spite of the tuned Dahl model behaves better than the model in (7.2), moreaurateness was not possible due to the strong perturbation in the fore�veloityyles aused by the baklash phenomenon, i.e, the loose in both damper endswhen linking it with the transfer system.
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Figure 7.16: Damper's Dahl model approximation.7.3.2 Predition shemeKeeping real�time behaviour is one of the prinipal issues to be managed while areal�time substruturing test is being arried out. It is essential to take are ofthe ommand signals' delays to prevent the overall instability aused by them.Delay estimation.One the experimental rig was set up (see �gure 7.25), several tests were aom-plished to measure the delay by onsidering di�erent kind of signals. The delaybetween the atual ommand signal (target displaement to be follow for the atu-ator) and the urrent displaement signal (measured displaement) was estimatedby using two di�erent methodologies. Namely, zero rossing, in whih the atingdelay is estimated by taking the median over all the instantaneous delays mea-sured along the whole signal when trajetory rosses zero; and ross orrelationfuntion whih is a measure of similarity between two signals as a funtion ofa time�lag applied to one of them, so it provides a overall delay estimation atthe time�lag where the two signals are maximally orrelated. Figure 7.17 showsthe test time history, the synhronization plot and the fore�displaement yleswhen the ommand signal is a 2Hz sine wave with amplitude equals to 15mm.The delays estimated for all sinusoidal tests are presented in table 7.4.
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Figure 7.17: Sine wave test 2Hz at ±15mm: time history, synhronization plotand fore-displaement yles.
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Figure 7.18: Sine sweep test from 0.5Hz to 4.0Hz at ±10mm: time history, syn-hronization plot and fore-displaement yles.In light of the frequeny range evaluated, the delays were estimated enirling15∼16mse. Some sinusoidal sweep test were evaluated too. A wave at ±10mmwhih speeds from 0.5Hz up to 4.0Hz in 5se and goes bak to 0.5Hz in 5semore, was onsidered too. Figures 7.18 and 7.19 show the test time history,



7.3. Experimental ativities 133Amplitude Frequeny Measured delay (mse)(mm) (Hz) (X�orr) (zero�X)1.0 -14 -18.905.0 -16 -15.2710.0 0.5 -15 -13.7615.0 -16 -16.8320.0 -13 -14.191.0 -16 -15.025.0 -15 -15.0110.0 1.0 -15 -14.5215.0 -15 -14.9120.0 -15 -15.231.0 -16 -14.015.0 -15 -14.4910.0 2.0 -15 -14.9915.0 -16 -15.9820.0 -18 -19.635.0 -16 -15.7510.0 3.0 -16 -16.3215.0 -20 -20.47(X-orr) Cross orrelation funtion ; (zero-X) Zero rossingTable 7.4: Delays estimated for sinusoidal wave form tests.
the synhronization plot, the fore�displaement yles, the zero rossing delaymeasurements and its orresponding histogram. As it was expeted, the higherfrequeny the larger delay, furthermore, it is worthy notiing that there existdi�erent delays for the load and unload branhes (whih is more evident for higherfrequenies), it may be due to the onnetion loose (baklash behaviour) whihinorporates an additional damper reation delay.Additionally, several tests were performed prediting the displaement of the�rst �oor in the strutural model desribed in §7.1 under seismi load. Figure7.20 shows time history and oherene plot for the whole system traking a dis-plaement signal, the piture inludes measurement of the atuator displaementas well as the damper ends' relative displaement. Here is muh learer the delaye�et in the damper's response aused by the onnetion loose. The zero rossingdelay measurements and its orresponding histogram are shown in �gure 7.21.
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Figure 7.19: Delay estimation by zero rossing of the sinusoidal sweep test.

Figure 7.20: Test of traking the �rst �oor displaements of the strutural modeldesribed in §7.1 under seismi load.
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Figure 7.21: Delay estimation by zero rossing of the strutural response of modelin §7.1 under seismi load.Evaluation of predition sheme.In order to test the time delay ompensation sheme based on NNET, a preditorto estimate the ommand signal 16ms forward has been trained. Seeking forompleteness, some noise was added to the ommand signals to be predited.The SNR ratio was seleted as 30dB for all the ases. Figure 7.22 ontains theresults from a tests run on the experimental rig at University of Bristol after usingthe time delay ompensation sheme proposed. The oherene plot shows gooddelay ompensation even when noise is added. As by numerial simulations wasshown before in �3.4.3, the methodology based on NNETs is more aurate andfaster than other ommon methodologies when working with noisy signals.Considering onstant delay, the predition sheme looks pretty good. Besides,Figure 7.23 shows the results from the sine sweep test after using the preditionsheme based on NNET. In spite of the delay is no longer onstant along the signal,a neural network whih predit forward a onstant delay (by using a averagedelay) works very well. All predition tests were arried out onsidering twodi�erent approahes, one as it was proposed originally by using a purely forwardpredition and another whih adds to the predited value an supplemental termproportional to the urrent instantaneous error by way of proportional ontrol(P�ontrol) [Ogata, 1990℄. After an exhaustive searh the value 0.7 was found asthe best proportional onstant (kp) for this basi sheme. From the experimental
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Figure 7.22: Sine wave test 2Hz at ±15mm after using time delay ompensationbased on NNET: time history and synhronization plot.
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Figure 7.23: Sine sweep test after using time delay ompensation.test, kp=0.7 gives better results than the original sheme5. From now on, whenwe refer the time delay ompensation sheme base on neural networks, we mean5The original sheme is equivalent to kp=0



7.3. Experimental ativities 137the sheme whih adds the supplemental term (−kp×error) with kp = 0.7.Some problems prediting signals, omparison among ommon strate-gies. Without baklash. With baklash.

Figure 7.24: Prediting the �rst �oor displaement of the model in 7.1 underperiodi load. Comparison among polynomial 2nd�order, 3th�order and neuralnetworks sheme.From purely numerial simulation, it is possible to identify some troublesomeissues assoiated with the lak of auray in predition. Figure 7.24 exhibitssome signals predited by di�erent methodologies against the original one. Twoases has been evaluated: (i) onsidering a perfet onnetion (no loose) betweendamper's ends and its supports, and (ii) a more realisti situation in whih thebaklash e�et is inluded. From these simulations some fats ome out. Consider-ing our partiular ase where we are ompensating signal for a RTDST simulation,we an assert that.
• No signi�ant noise is present in the signal to be predited, as this signal is



138 CHAPTER 7. CASE STUDYthe outome of the numerial substruture, in partiular the displaementof the �rst �oor6. Therefore, there is not great advantage in utilizing theneural network methodology beause it requires additional attendane andould also present lak of training oasionally.
• The presene of suh a strong damper in a strutural system together withthe delays, generate a sudden hange of slope in the struture response.It omes just after the system veloity rosses zero (See detailed plots inFigure 7.24).
• In onsequene of the onnetion loose, an additional delay in the damperresponse ours. It intensi�es the aforementioned hange of slope somewhatafter the peak of the signal and an ause even a reversing in this wave form.
• All predition shemes exhibit serious problems when attempting to preditthe signal in these ritial zones where the system hanges its behaviour.Sine without noise there are not signi�ant bene�ts in utilizing a neural net-works methodology, a seond�order polynomial approximation was hosen as thepreditor sheme. This also beause polynomial�based methods have an addi-tional advantage, the possibility of hanging on�line the time forward you wantto predit.7.3.3 Real�time substruturing test resultsFor these experiments both the software and the experimental rig, were arefullyset up to emulate the strutural system presented in �7.1. The tests were set upas a typial displaement�ontrolled real�time substruturing simulation. Thatmeans, the displaements omputed by the numerial substruture are appliedthrough an atuator to the physial speimen (the damper), and in turn, theresisting fore is measured and fed bak into the numerial substruture.A ©Matlab/simulink model of the whole substrutured system was built. Figure7.26 shows the model's outside loop in whih the measured damper's fore is fedbak into the equations of state of the numerial substruture (representing theontrolled struture).A Dspae DS1104 board was used as platform on whih the simulink�builtmodel runs in real�time. Additionally, to ontrol, manage and monitor the ex-periments, an user�interfae able to download appliations to the DS1104 boardwas developed in ControlDesk7 (See Figure 7.27).6In some way, the strutural system works like a �lter, utting o� the highest frequeniesfrom the input signal.7ControlDesk is an experiment software for developing working environment with Dspae ©boards (http://www.dspae.om/)
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Figure 7.25: Experimental rig set�up of substrutured model.

Figure 7.26: ©Simulink model of the substrutured system.As known, the instability in RTDST omes form the presene of delay in thefeedbak signal. So, an usual strategy to keep under ontrol the simulation isto start with a full numerial substruturing test (i.e., where the physial sub-struture is replaed by a numerial approximation) and hange progressively toa full hybrid simulation. Thus, attempting to prevent unforeseen and dangerous
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Figure 7.27: User�interfae for managing and monitoring the experiments in real�time.system behaviour beause of the feedbak of the delayed damper's fore, somefull numerial tests were ompleted before a realtime hybrid test were performed.The �rst test was aomplished feeding bak the numerial approximation of thedamper's fore, in aord with the model presented in §7.3.1. Figure 7.28 showsresults from this test inluding a zoom of the time history, the synhronizationplot and the estimation of the delay. Therein and from now on, the parameterso�alled substruturing ratio will indiate how muh of the atual measured foreis used to feedbak the numerial substruture, in aord with formula (7.7).
Ffeedback = (1− SR) · Fn + SR · Fm (7.7)where: SR is the substruturing ration; Ffeedback is the e�etive feedbak fore,

Fn is the damper fore numerial approximation and Fm is the measured damperfore. Thus e.g., SR = 1 means that the simulation is running in full hybridsheme, or that, 100% of the measured damper fore is used in the feedbak loop.Feeding bak the numerial approximation of the damper fore and onsideringa periodial load exiting the numerial substruture, the full�numerial RTDSTsimulation looks stable and the predition sheme appears able to ompensate thedelay in the atuator's ommand signal. Besides, Figure 7.29 presents resultsfrom a real�time substruturing test whih takes into aount a periodial loadapplied to the numerial substruture. This test was started by onsidering full



7.3. Experimental ativities 141

Figure 7.28: Full numerial substruturing test onsidering periodi load.

Figure 7.29: Real�time substruturing test onsidering periodi load.
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Figure 7.30: Zero rossing delay estimation for the substruturing test onsideringperiodi load.numerial feedbak as before, but now, the substruturing ratio was graduallyinreased until ahieving the whole measured damper's fore on the feedbak loop(above 17 seonds in the �gure).As well, Figure 7.30 shows the delay estimation by zero�rossing over the segmentorresponding to the substruturing ratio equals to 100%.The stability is ahieved even when working with the atual measured fore,nonetheless and despite the baklash phenomenon was onsidered in the numerialdamper model, the delay seems to be inreased when passing from the numerialto the full real�time substruturing test. It is worthy to note that, an importantdi�erene between the delay measured on the load and unload branhes still holds.By using earthquake loadIn the following tests, properly saled seismi aelerations were applied to thenumerial substruture as the external exitation. The same as before, the �sttests were arried out by onsidering a full�numerial feedbak of the damper foreinto the numerial substruture. Figures 7.31 and 7.32 shows the results by feedingbak 100% and 50% of the damper's fore numerial approximation respetively.In both ases the synhronization plots show a good delay ompensation beauseof the predition and the experiments show to be stable.



7.3. Experimental ativities 143However, when running the full real�time substruturing test, that is, when all themeasured damper fore is being fed bak, the instability arises sine very earlierstages. (See Figure 7.33).

Figure 7.31: Full numerial substruturing test with earthquake 0187.Several tests were aomplished by trying exitations with di�erent frequeny�band ontents, all of them getting more or less the same results. Figures 7.34 and7.35 show the outomes under di�erent earthquakes. As before, after swithingfrom partial to full hybrid real�time substruturing test, the experiment beameinstable due to the propagation of the delay error through the external feedbakloop.Figure 7.36 shows what happens in terms of fore when the simulation beomesinaurate in onsequene of the self�sustained osillations. Even when thoseosillations are small, the sudden hange of veloity auses a stronger variation interms of fore. It is large enough to produe the strutural response rises. Thoseosillations together with the harateristis of suh a sti� nonlinear damper,ause a ontinuous swithing between the extreme maximum loads for the damper(both of opposite signs), a sort of hain reation whih leads the simulation toinstability. As well, as it was found from the stability analysis in �6.3, the self�sustained osillations ome at small displaements under a ertain veloity range.For some tests, the simulation beame unstable even when the external load werevanished, that is, when the system was supposed to be arrested as onsequeneof non external load being applied to the system.
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Figure 7.32: Partial real�time substruturing test with earthquake 0187.

Figure 7.33: Real�time substruturing test with earthquake 0187.
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Figure 7.34: Full numerial substruturing test with earthquake 0535.

Figure 7.35: Real�time substruturing test with earthquake 0535.



146 CHAPTER 7. CASE STUDY

Figure 7.36: Real�time substruturing test with earthquake 0535. Fore ompar-isonA main pratial issue onerning to stability was the baklash phenomenon.Unfortunately, It was not possible to get perfet onnetion between the trans-fer system and the speimen tested. This lost motion due to learane whenmovement is reversed and ontat is re�established, inreased the delay e�et.Baklash may severely a�et the stability onditions in a Real Time DynamiSubstruturing simulation when testing systems whih are exeptionally sensibleto delay. So that, baklash beame a ruial disappointment in this simulation.We understood the phenomenon whih generates self�sustained osillationsand veri�ed their existene experimentally. However, we are still not able todesign a omplementary system whih prevents suh high frequeny osillations.We need to inlude a subsystem in the RTDST�hain to ounterat and take awaythem. Thus, our urrent e�ort is being mainly foused on thinking up in a virtualsystem able to absorb suh high frequeny osillation, keeping the system freefrom the harmful e�ets of delay in the feedbak loop in RTDST.



Chapter 8Conlusions and �nal remarks
Contents8.1 Main ontributions . . . . . . . . . . . . . . . . . . . . 1478.2 Final remarks . . . . . . . . . . . . . . . . . . . . . . . . 1488.1 Main ontributionsThe ontributions of this thesis have been onerned with several aspets. Thework explores the use of a new testing methodology for earthquake engineeringinorporating time delay ompensation shemes and stability analysis. Both ofthem open problems that are urrently matter of researh in the ommunity study-ing nonlinear dynamial systems. The work have been foused on the de�nitionof onditions to guarantee reliable results when running experimental testing ofnonlinear systems for strutural ontrol at real sale.The following summarize the main ontributions of this thesis:1. Development of numerial routines.

• Neural network training for on�line time series predition with appli-ation to time delay ompensation.
• Numerial stability analysis of linear and nonlinear delayed systems.
• Numerial approximation of vetor �eld for nonlinear delayed systems.2. Analytial investigations.
• Stability analysis of linear delayed systems.
• Expliit stability analysis of systems with non�linear delayed dampers.147
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• Existene analysis of limite yles in systems with delayed dry fritiondampers.3. Experimental testing on RTDST for large�sale non�linear dampers.
• Simulink model of substrutured systems able to run in real�time.
• User�interfae able to run and ontrol experiments in real�time.8.2 Final remarksMore realisti tests of seismi protetion devies allow better understanding ofthe overall ontrolled system dynamis and enable the engineer to improve itsperformane. Real�Time Dynami Substruturing Test (RTDST) have enormouspotential in assessing protetion systems for earthquake engineering, as it allowstesting omponents of the struture at full�sale under realisti extreme loadingonditions. So, we an separate just the strutural ontrol devie from the system,bring it to the lab and test it physially, taking into aount its dynami inter-ation with the hosting struture. Moreover, the versatility of the RTDST wasertainly evidened by the possibility of performing repeatable tests. We ouldnot only assess the response of the ontrol devie under di�erent load ondition,but also it is possible to hange the hosting struture itself and evaluate, for in-stane, the most well�behaved strutural on�guration for a partiular seismiprotetion devie. So, several strutural systems ould be evaluated under a widerange of load onditions by using the same experimental rig set up.However, as it was shown along this thesis, to guarantee the suess of aRTDST simulation, a very e�ient time delay ompensation sheme is not enough.A omplete stability analysis is also required to determine how sensible the sub-strutured system may be under small delays.This work is foused on testing a passive ontrol system provided with large�sale non linear �uid visous dampers. We proposed, implemented and testeda new time delay ompensation sheme for RTDST based on Neural Networks.Even if this ompensation worked properly, it beame impossible to redue thedelay error in the feedbak signal to zero. When arrying out the experimen-tal ampaign on the ase study system, unexpeted self�sustained osillationswere deteted. This was aused by very small delays in the feedbak loop, whihunavoidably lead the system to osillations at high frequeny. We ompleted aexpliit stability analysis and ahieved a omprehensive dynami haraterizationof the non�linear phenomena in the system. In this thesis we presented a om-plete set of losed�form expression to desribe the dynamis of the main omplexdelay�indued behaviours exhibited for the delayed system. We ould identifyboth the region where self�sustained high frequeny osillations arise and the



8.2. Final remarks 149limit yle indued by the delay.Regarding to the predition methodology, neural network sheme demon-strates muh more apaity and robustness than the other methods when pre-diting noisy signals. This advantageous behaviour is due to the inherent gen-eralization apaity of neural networks and their high tolerane to noisy data.Besides, unlike other methodologies, neural network provides a smoother signalwhen moving from one time step to the other, so that, slight disontinuities in thepredited ommand signal are avoided. Beause of the adaptive training, the net-work shows behavior improvements as long as the simulation time passes. Onethe training proess beomes well�balaned, the proposed ompensator was ableto adapt quikly to the hange in the target signal. The sheme is well suitablefor being used within systems whose properties do not hange very rapidly and isable to smooth out the e�ets of noise and experimental errors.Although more omplex than used networks are expeted to have higher a-paity in predition, due to the dimensional and omplexity inrement in thenetwork's weight spae, the optimization of the error funtion beomes moreexpensive omputationally. As a result, the network beomes very slow whentraining and is no longer suitable for predition in real�time.Nevertheless, for RTDST appliations this ompensation sheme may not besuitable all the times. In our partiular ase for instane, due to the signal to bepredited was the outome of a numerial model (namely the displaement of the�rst �oor), no substantial noise is present on this signal. So that, there is notgreat advantages in utilizing the neural network methodology beause it requiresadditional attendane and ould also present lak of training oasionally.An additional are should be taken with relation to the predition sheme.Note that if delay is onsidered to be equivalent to adding negative damping inthe system, then over ompensating (prediting too far forward in time) will havethe opposite e�et of inreasing the damping. Both ases may redue the au-ray of the simulation results. Note that delay might hange along the RTDSTsimulation, so, to avoid wrong time delay ompensations, it should be done baseon an aurate on�line estimation of the urrent delay in the system.The ase studied in this thesis is mainly haraterized for having a strongnonlinearity (by way of disontinuity) when the veloity in the dissipation deviehanges of sign. Many others dissipation devies for seismi hazard mitigationpresent a similar fore�veloity dependene. Our results an be easily extendedto di�erent systems in engineering whih are provided with devies exhibitingsuh a behaviour. Additionally, the ahieved results are also useful for other kindof mehanial systems di�erent from RTDST appliations. Systems where the



150 CHAPTER 8. CONCLUSIONS AND FINAL REMARKSresponse of some omponents is arriving with delay and may ause a harmful ef-fets on the system behaviour. Semi�ative ontrol by MR dampers are examplesof suh a systems. In fat, it is a work derived from this thesis whih is alreadybeing arried out. Large�sale MR dampers also su�er from mehanial delayedresponse. That is why, we are studying the redution on the semi�ative ontrolsystem e�ay aused by delays in the MR dampers response.In order to get the lose�form expressions for desribing the delayed system dy-namis, a mathematial trik was used in this thesis. We substituted the originalnon�linear system by one dynamially equivalent. When passing to the equiva-lent system, that one whih uses dry frition instead of visous damping, someomplex phenomena exhibit in the original system an not be represented anymore. From numerial simulations, we identi�ed a sliding phenomenon just be-fore the high frequeny osillations (indued by delay) arise. Suh phenomenondo not ause any important problem in terms of dynami stability, but its analysismay be very interesting from a mathematial point of view. Readers interestedin athing suh phenomenon ould try a pieewise dynamial system by using aFillipov's systems approah, whih an reprodue suh a behaviour.Another pratial issue to take are about when setting up the experimental rigfor RTDST, is the baklash phenomenon. When perfet onnetion between thetransfer system and the speimen is not assured, this lost motion due to learanewhen movement is reversed and ontat is re�established, an inrease even morethe delay e�et. In spite of the fat that suh phenomenon may be present in theemulated system without any signi�ant drawbak, baklash may severely a�etthe stability onditions in a Real Time Dynami Substruturing simulation whentesting systems whih are exeptionally sensible to delay. So that, if the systemproves to be highly sensitive to delay, baklash beomes ruial in the simulation.Finally, although we got a omplete mathematial desription of systems withdelayed non�linear dampers and we ould assert that any small delay auses self�sustained osillations, the problem is still far from solved. We have understoodthe phenomenon, unexplained before, whih generates self�sustained osillations.But to arry out reliable and aurate RTDST simulations on the large�salenonlinear dampers, we still have to �nd a omplementary system whih preventssuh high frequeny osillations. We need to inlude a subsystem in the RTDST�hain to ounterat and take away them. Our guess is that a system whih istuned aording to the frequeny of the undesirable osillations an be useful. Asort of virtual tuned mass damper able to absorb the high frequeny osillation,keeping the system free from the harmful delay e�ets.
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