




Appendix B. Simulation Environment 193

Figure B.3: Building and running simulation in Omnet++

or round trip times of packets, queue lengths, queueing times, link utilization, the number

of dropped packets. Such files can be automatically processed by an Analysis Tool, namely

the scavetool program, for statistical analysis and visualization of simulation results.

B.1.4 Simulation Kernel

Omnet++ has a modular architecture, which is shown in the Figure B.3 and is composed

of the following components:

• Sim is the simulation kernel and class library that is linked to the simulation program

written by the user;

• Envir is another library which contains all code that is common to all user interfaces,

such as main(): it provides services like ini file handling for specific user interface

implementations and presents itself towards Sim and the executing model via the ev

facade object, hiding all other user interface internals;

• Cmdenv and Tkenv are specific user interface implementations, and a simulation is



Appendix B. Simulation Environment 194

linked with Cmdenv, Tkenv, or both;

• The Model Component Library consists of simple module definitions and their C++

implementations, compound module types, channels, networks, message types and in

general everything that belongs to models and has been linked into the simulation

program made by the user;

• The Executing Model is the model that has been set up for simulation. It contains

objects (modules, channels, etc.) that are all instances of components in the model

component library.

In figure, the arrows show how components interact with each other:

• Executing Model <==> Sim - The simulation kernel manages the future events and

invokes modules in the executing model as events occur. The modules of the executing

model are stored in the main object of Sim, i.e., class cSimulation. In turn, the

executing model calls functions in the simulation kernel and uses classes in the Sim

library.

• Sim <==> Model Component Library - The simulation kernel instantiates simple

modules and other components when the simulation model is set up at the beginning

of the simulation run. It also refers to the component library when dynamic module

creation is used. The machinery for registering and looking up components in the

model component library is implemented as part of Sim.

• Executing Model <==> Envir - The ev object, logically part of Envir, is the facade



Appendix B. Simulation Environment 195

of the user interface towards the executing model. The model uses ev to write debug

logs (ev<<, ev.printf()).

• Sim <==> Envir - Envir is in full command of what happens in the simulation pro-

gram. Envir contains the main() function where execution begins. Envir determines

which models should be set up for simulation, and instructs Sim to do so. Envir con-

tains the main simulation loop (determine-next-event, execute-event sequence) and

invokes the simulation kernel for the necessary functionality (event scheduling and

event execution are implemented in Sim). Envir catches and handles errors and ex-

ceptions that occur in the simulation kernel or in the library classes during execution.

Envir presents a single facade object (ev) that represents the environment (user in-

terface) toward Sim – no Envir internals are visible to Sim or the executing model.

During simulation model setup, Envir supplies parameter values for Sim when Sim

asks for them. Sim writes output vectors via Envir, so one can redefine the output

vector storing mechanism by changing Envir. Sim and its classes use Envir to print

debug information.

• Envir <==> Tkenv/Cmdenv - Tkenv and Cmdenv are concrete user interface im-

plementations. When a simulation program is started, the main() function (which is

part of Envir) determines the appropriate user interface class, creates an instance and

runs it by invoking its run() method. Sim’s or the model’s calls on the ev object are

delegated to the user interface.



Appendix B. Simulation Environment 196

Figure B.4: Overview of the EthernetInterface provided by the INET framework

B.2 INET Framework

The INET Framework4 is an open-source communication networks simulation package

for the OMNeT++/OMNEST simulation environment that contains models for several In-

ternet protocols, e.g., UDP, TCP, SCTP, IP, IPv6, Ethernet, PPP, IEEE 802.11, MPLS,

OSPF, and several other protocols. These modules can be freely combined to form hosts

and other network devices with the NED language (no C++ code and no recompilation

required). Various pre-assembled host, router, switch, access point, etc. models can be

found in the Nodes/ subdirectory (e.g., StandardHost, Router), but you can also create

your own ones for tailored to your particular simulation scenarios. Network interfaces (e.g.,

Ethernet, 802.11, etc) are usually compound modules (i.e., assembled from simple mod-

ules) themselves, and are being composed of a queue, a MAC, and possibly other simple

modules, a practical example, namely EthernetInterface, is illustrated in Figure B.4. Not
4inet.omnetpp.org/



Appendix B. Simulation Environment 197

Figure B.5: Client module of the ARP protocol

all modules implement protocols though, in fact, there are modules which hold data (e.g.,

RoutingTable), facilitate communication of modules (e.g., NotificationBoard), perform au-

toconfiguration of a network (e.g., FlatNetworkConfigurator), move a mobile node around

(e.g., ConstSpeedMobility), and perform housekeeping associated with radio channels in

wireless simulations (e.g., ChannelControl). Protocol headers and packet formats are de-

scribed in message definition files (msg files), which are translated into C++ classes by

OMNeT++’s opp msgc tool, which are subclasses from OMNeT++’s cMessage class.

B.3 Rease Topology Generator

ReaSE5 is a tool developed for creation of as realistic as possible environments for the

discrete event simulator OMNeT++ in combination with the INET framework. It is based
5www.oversim.org/



Appendix B. Simulation Environment 198

on current state of the art solutions and considers multiple aspects: (i) topology generation -

on AS-level as well as on router-level - as presented in subsection B.3.1, (ii) traffic patterns,

as described in subsection B.3.2, and attack traffic, as discusses in subsection B.3.3. In

order to achieve these aspects ReaSE consists of various components [160]:

1. An extension of the INET framework that enables hierarchical addressing and routing

as well as generation of self-similar background traffic, furthermore, additional entities

are integrated into INET, e.g., a DDoSZombie or attack detection systems;

2. ReaSEGUI : A front-end graphical user interface that allows for creation of NED

topology files that emulate realistic connectivity within LANs or WANs;

3. TGM : A C++ implementation that generates the basic hierarchical topologies

4. Some additional perl scripts that are used by ReaSEGUI in order to extend the basic

topology by additional entities.

B.3.1 Topology Generation

The process of AS topology generation is based applying the PFP model described in

subsection4.2.1.1 and takes an XML-based configuration file as input. Based on given

parameters, e.g., the number of ASes to generate or values for some parameters of the PFP

model, ReaSE creates a single NED file that defines the required number of Autonomous

Systems and their interconnections according to the topology generated by the PFP model.

Each transit and stub AS is included into the compound module Internet, which is actually

the root of the hierarchy that formulate the Internet topology, and additionally, each AS



Appendix B. Simulation Environment 199

Figure B.6: Example of AS-level and router-level topology

may contain its own router level topology. The channels between different ASes are assigned

a constant bandwidth that may differ between transit/transit, stub/transit, and stub/stub

interconnections. This means that the delay with ReaSE currently does not depend on a

node’s geographic position.

Based on the NED file created during AS topology generation, in a second step each AS is

filled with independently created HOT router level topologies of varying sizes, as illustrated

in subsection 4.2.1.2. Therefore, each node of the router level topology is realized either by

the module Router or StandardHost of the INET framework. The differentiation between

different node types, e.g., core and gateway routers, is achieved by assigning different link

bandwidths, e.g., to core/core or core/gateway channels.

B.3.2 Traffic Generation

In order to support generation of realistic traffic patterns, ReaSE extended the INET frame-

work of OMNeT++ by additional modules: the HierarchicalNetworkConfigurator, which

creates static routes within each AS as well as between different ASes based on shortest paths



Appendix B. Simulation Environment 200

between source and destination, TrafficProfileManager, which reads all available traffic pro-

files from a XML-based configuration file, and a global as well as local ConnectionManagers

per AS, which register IP address and role of every server module. The assignment of a

traffic profile to a given pair of server and client is performed by the TrafficProfileManager

as follows:

• Random selection of a traffic profile based on the given selection probabilities.

• Choice if the traffic flow takes place between the client and a server within the client’s

AS or beyond the AS boundaries. This decision is taken based on the profile’s WAN

selection probability.

• Notification of the selected traffic profile to the AS-specific ConnectionManager.

Multiple Omnet++ simulations presented in [160] and based on a topology with 90.000

hosts within 30 Autonomous Systems using 8 traffic profiles proved that the traffic generated

with ReaSE really shows self-similar behavior, which is the requirement to satisfy in order

to create realistic traffic patterns.

B.3.3 Attack Traffic

Simulation of Distributed Denial-of-Service (DDoS) attacks has been enabled in ReaSE by

integrating in the context of the Omnet++ simulation environment a real tool for conducting

such attacks: the Tribe Flood Network [197]. In case of worm propagations, ReaSE has

implemented two different alternatives: the first one is based on UDP, the latter on TCP,

both of them based on a rather simple probing mechanism that was, e.g., used with Code

Red I [198].



Appendix B. Simulation Environment 201

Figure B.7: Architecture of Oversim

B.4 Oversim

OverSim6 is an open-source overlay network simulation framework for the OMNeT++/OMNEST

simulation environment. It is characterized by the modular architecture shown in Figure

B.7 that allows the modeling of all components of a P2P network and is composed of three

distinct tiers:

• Underlay Level provides different models for underlay abstraction which differ in com-

plexity and accuracy and are fully transparent to the upper overlay layer: (i) the
6www.oversim.org/



Appendix B. Simulation Environment 202

Simple Underlay is the default underlay model for OverSim, and combines a low com-

putational overhead with high accuracy; (ii) INET is based on the INET framework

where the IP stack is completely modeled and even routers can be part of the simulated

overlay; (iii) the SingleHost Underlay provides real network support for OverSim by

acting as a middleware to support deploying overlay protocols developed for OverSim

on real networks. In Sect. IV, this feature will be discussed in greater detail.

• Overlay Level provides several functions that many overlay protocol implementations

(e.g., Chord, Kademlia, Pastry) have in common: (i) overlay message handling (e.g.,

RPCs), (ii) generic lookup with support for different routing modes, (iii) node failure

discovery and routing table recovery, (iv) common API interface support, (v) boot-

strapping support and (vi) proximity awareness (e.g., Vivaldi, GNP). All of these

features allow for rapid overlay protocol prototyping and make protocol implementa-

tions comparable and less error-prone.

• Application Level consists of business applications that communicate through the un-

derlaying overlay protocol. Additionally OverSim makes use of an XML-RPC inter-

face to provide overlay services (e.g., distributed data storage) to external applications

similar to the interface provided by the OpenDHT service.

• Modeling of churn provides several models for generating churn supporting different

distribution functions (e.g., Weibull, Pareto or Exponential). Alternatively, a scenario

or trace file containing join and leave events can be used to model churn behavior,

which allows to easily generate complex scenarios with heterogeneous node behavior.



Bibliography

[1] D. Bailey and E. Wright. Practical SCADA for industries. Newnes, 2003.

[2] S. Bologna, C. Balducelli, G. Dipoppa, and G. Vicoli. Dependability and Survivability of
Large Complex Critical Infrastructures. Computer Safety, Reliability, and Security, Lecture
Notes in Computer Science, 2788:342–353, September 2003.

[3] L. Northrop et al. Ultra-large-scale Systems, The Software Challenge of the Future. Software
Engineering Institute, Carnegie Mellon University, http://www.sei.cmu.edu/uls/, 2006.

[4] Sun Microsystems. Java Message Service, v1.1. SUN Specification, 2002.

[5] Object Management Group. Data Distribution Service (DDS) for Real-Time Systems, v1.2.
OMG Document, 2007.

[6] D.G. Andersen, H. Balakrishnan, M.F. Kaashoek, and R. Morris. Resilient Overlay Networks.
ACM Operating Systems Review (SIGOPS), 35(5):131–145, December 2001.

[7] N. Feamster, D.G. Andersen, H. Balakrishnan, and M.F. Kaashoek. Measuring the Effects
of Internet Path Faults on Reactive Routing. ACM SIGMETRICS Performance Evaluation
Review, 31(1):126–137, June 2003.

[8] A. Markopoulou, F. Tobagi, and M. Karam. Loss and Delay Measurements of Internet Back-
bones. Computer Communications, 29(10):1590–1604, September 2003.

[9] F. Wang, Z.M. Mao, J. Wang, L. Gao, and R. Bush. A measurement study on the im-
pact of routing events on end-to-end internet path performance. Computer Communications,
36(4):375–386, October 2006.

[10] K. M. Chandy, M. Charpentier, and A. Capponi. Towards a theory of events. Proceedings
of the Inaugural International Conference on Distributed Event-Based Systems (DEBS 07),
pages 180–187, June 2007.

[11] I. Gupta, K. P. Birman, and R. van Renesse. Fighting Fire with Fire: Using Randomized
Gossip to Combat Stochastic Scalability Limits. Special number of Quality and Reliability
of Computer Network Systems, Journal of Quality and Reliability Engineering International,
18(3):165–184, May/June 2002.

[12] P.Th. Eugster, P.A. Felber, R. Guerraoui, and A.-M. Kermarrec. The many Faces of Pub-
lish/subscribe. ACM Computing Surveys (CSUR), 35(2):114–131, June 2003.

[13] Thales. TACTICOS - A data-centric Combat Management System. OMG Real-time Workshop,
2005.

203



Bibliography 204

[14] M.A. Jaeger, G. Muhl, M. Werner, H. Parzyjegla, and H.-U. Heiss. Algorithms for Reconfig-
uring Self-Stabilizing Publish/Subscribe Systems. Autonomous Systems - Self-Organization,
Management, and Control, Springer, pages 135–147, September 2008.

[15] G. Cugola and G.P. Picco. REDS: a reconfigurable dispatching system. Proceedings of the
6th international workshop on Software Engineering and Middleware (SEM 06), pages 9–16,
November 2006.

[16] P. Costa, M. Migliavacca, G.P. Picco, and G. Cugola. Epidemic Algorithms for Reliable
Content-Based Publish-Subscribe: An Evaluation. Proceeding of the 24th IEEE International
Conference on Distributed Computing Systems (ICDCS 04), pages 552–561, March 2000.

[17] R. Chand and P. Felber. XNET: a Reliable Content-based Publish/Subscribe System. Pro-
ceedings of the 23rd IEEE International Symposium on Reliable Distributed Systems (SRDS
04), pages 264– 273, October 2004.

[18] L. Rizzo and L. Vicisano. RMDP: an FEC-based reliable multicast protocol for wireless
environments. ACM SIGMOBILE Mobile Computing and Communications Review (MC2R
98), 2(2):23–31, April 1998.

[19] V. Venkataraman, K. Yoshida, and P. Francis. Chunkyspread: Heterogeneous Unstructured
Tree-Based Peer-to-Peer Multicast. Proceedings of the 2006 14th IEEE International Confer-
ence on Network Protocols (ICNP 06), pages 2–11, November 2006.

[20] J. Han and F. Jahanian. Impact of Path Diversity on Multi-homed and Overlay Networks.
Proceedings of the International Conference on Dependable Systems and Networks (DSN 04),
pages 29–40, July 2004.

[21] C. Esposito, D. Cotroneo, and A. Gokhale. Reliable Publish/Subscribe Middleware for Time-
sensitive Internet-scale Applications. Proceedings of the 3rd ACM International Conference
on Distributed Event-Based Systems (DEBS 09), July 2009.

[22] R. Ahlswede, S.-Y.R. Ning Cai Li, and R.W. Yeung. Network Information Flow. IEEE
Transactions on Information Theory (TIT), 46(4):298–313, July 2000.

[23] P. Marwedel. Embedded System Design. Springer, 2006.

[24] I. Koren and C. Mani Krishna. Fault-Tolerant Systems. Morgan Kaufmann, 2007.

[25] D. C. Schmidt. Middleware for Real-time and Embedded Systems. Communications of the
ACM, 45(6):43–48, June 2002.

[26] T. C. Yang. Networked Control System: a Brief Survey. IEEE Proceedings on Control Theory
and Applications, 153(1):403–412, July 2006.

[27] E. A. Lee. What’s Ahead for Embedded Software? IEEE Computer, 33(9):18–26, September
2000.

[28] G. J. Pottie and W. J. Kaiser. Principles of Embedded Networked Systems Design. Cambridge
University Press, 2008.

[29] F. F. Wu, K. Moslehi, and A. Bose. Power System Control Centers: Past, Present and Future.
Proceedings of the IEEE, 93(11):1890–1908, November 2005.

[30] F.-L. Lian, J. Moyne, and D. Tilbury. Network Design Considerations for Distributed Control
Systems. IEEE Transactions on Control Systems Technology, 10(2):297–307, March 2002.



Bibliography 205

[31] Terna. Dati Statistici sull’energia elettrica in Italia, Dati Generali.
http://www.terna.it/LinkClick.aspx?fileticket=OnkycVUaLqs%3d&tabid=418&mid=2501,
2007.

[32] EuroControl. EATMS Operational Concept Document, ver. 1.1. EuroControl ODT Library,
1998.

[33] EuroCONTROL. The ATM Deployment Sequence. SESAR Project Milestone Deliverable D4,
February 2008.

[34] A. Markopoulou, G. Iannaccone, S. Bhattacharyya, C.-N. Chuah, Y. Ganjali, and Christophe
Diot. Characterization of Failures in an Operational IP Backbone Network. IEEE/ACM
Transactions on Networking (TON), 16(4):749–762, August 2008.

[35] D.C. Sharp. Reducing Avionics Software Cost Through Component Based Product Line
Development. Proceedings of the 10th Annual Software Technology Conference, 1998.

[36] Q. H. Mahmoud. Middleware for Communications. Wiley, 2004.

[37] A. Birrell and B. Nelson. Implementing Remote Procedure Calls. ACM Transactions on
Computer Systems, 2(1):39–59, February 1984.

[38] M. Stal. Web Services: Beyond Component-based Computing. Communications of the ACM,
45(10):71–76, October 2002.

[39] G. Muhl, L. Fiege, and P. Pietzuch. Distributed Event-Based Systems. Springer, 2006.

[40] T. Faison. Event-Based Programming - Taking Events to the Limit. Apress, 2006.

[41] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns. Addison-Wesley, 1995.

[42] D. Riehle. The Event Notification Pattern - Integrating Implicit Invocation with Object-
orientation. Theory and Practice of Object Systems, 2(1):43–52, 1996.

[43] D. Garlan ad D. Notkin. Formalizing Design Spaces: Implicit Invocation Mechanisms. Lecture
Notes in Computer Science: VDM’91 Formal Software Development Methods, 551/1991:31–44,
1991.

[44] D. Schmidt, M. Stal, H. Rohnert, and F. Buschmann. Pattern-Oriented Software Architecture:
Patterns for Concurrent and Networked Objects. Wiley, 2000.

[45] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal. Pattern-Oriented Soft-
ware Architecture: A System of Patterns. Wiley, 1996.

[46] Object Management Group (OMG). CORBA Event Service Specification, ver. 1.0. OMG
Document formal/2000-06-15, 2000.

[47] B. Oki, M. Pfluegl, A. Siegel, and D. Skeen. The Information Bus: an Architecture for Exten-
sible Distributed Systems. ACM SIGOPS Operating Systems Review, 27(5):58–68, December
1993.

[48] D. Rosenblum and A. Wolf. A Design Framework for Internet-scale Event Observation and
Notification. ACM SIGSOFT Software Engineering Notes, 22(6):344–360, November 1997.

[49] P.Th. Eugster. Type-based publish/subscribe: Concepts and experiences. ACM Transactions
on Programming Languages and Systems (TOPLAS), 29(1):1–50, January 2007.

[50] Object Management Group (OMG). CORBA Notification Service Specification, ver. 1.1. OMG
Document formal/2004-10-11, 2004.



Bibliography 206

[51] H.-A. Jacobsen, A. Cheung, G. Li, B. Maniymaran, V. Muthusamy, and R. S. Kazemzadeh.
The PADRES Publish/Subscribe System. Book chapter of Handbook of Research on Advanced
Distributed Event-Based Systems, Publish/Subscribe and Message Filtering Technologies, a
book edited by A. Hinze and A. Buchmann and scheduled to be published by IGI Global, 2009.

[52] P. Veŕıssimo and L. Rodrigues. Distributed Systems for System Architects. Kluwer Academic
Publishers, 2004.

[53] T. Schlossnagle. Scalable Internet Architectures. Sams, 2006.

[54] R. Meier and V. Cahill. Taxonomy of Distributed Event-Based Programming Systems. The
Computer Journal, 48(4):602–626, June 2005.

[55] S. Deering and D. Cheriton. Multicast Routing in Datagram Internetworks and Extended
LANs. ACM Transactions on Computer Systems (TCS), 8(2):85–100, May 1990.

[56] J. F. Buford, H. Yu, and E. K. Lua. P2P Networking and Applications. Morgan Kaufmann,
2008.

[57] C. O’Ryan, D. L. Levine, D. C. Schmidt, and J. R. Noseworthy. Applying a Scalable CORBA
Event Service to Large-Scale Distributed Interactive Simulations. Proceedings of the Fifth
International Workshop on Object-Oriented Real-Time Dependable Systems (WORDS), pages
67–74, 1999.

[58] A. Carzaniga, D.S. Rosenblum, and A.L. Wolf. Design and Evaluation of a Wide-Area Event
Notification Service. ACM Transactions on Computer Systems (TOCS), 19(3):332–383, Au-
gust 2001.

[59] G. V. Chockler, I. Keidar, and R. Vitenberg. Group Communication Specifications: A Com-
prehensive Study. ACM Computing Surveys (CSUR), 33(4):427–469, December 2001.

[60] T. K. Moon. Error Correction Coding - Mathematical Methods and Algorithms. Wiley, 2006.

[61] J. Zhang, L. Liu, L. Ramaswamy, and C. Pu. PeerCast: Churn-resilient End System Mul-
ticast on Heterogeneous Overlay Networks. Journal of Network and Computer Applications,
31(4):821–850, November 2008.

[62] B. N. Levine and J. J. Garcia-Luna-Aceves. A comparison of reliable multicast protocols.
Multimedia Systems, 6(5):334–348, September 1998.

[63] X. Jin, W. P. Ken Yiu, and S. H. Gary Chan. Loss Recovery in Application-Layer Multicast.
IEEE MultiMedia, 15(1):18–27, January 2008.

[64] A. Popescu, D. Constantinescu, D. Erman, and D. Ilie. A survey of reliable multicast commu-
nication. Proceedings of the 3rd EuroNGI Conference on Next Generation Internet Networks,
pages 111–118, May 2007.

[65] K. Obraczka. Multicast transport protocols: A survey and taxonomy. IEEE Communications
Magazine, 36(1):94–102, January 1998.

[66] C. K. Yeo, B. S. Lee, and M. H. Er. A survey of application level multicast techniques.
Computer Communications, 27(15):1547–1568, September 2004.

[67] M. Hosseini, D. Tanvir, S. Shimohammadi, and N. D. Georganas. A survey of application-layer
multicast protocols. IEEE Communications Surveys & Tutorials, 9(3):58–74, Third Quarter
2007.



Bibliography 207

[68] Y. Chu, S. G. Rao, S. Seshan, and H. Zhang. A Case for End System Multicast. IEEE Journal
on Selected Areas in Communications (JSAC), 20(8):1456–1471, October 2002.

[69] S. Deering, D. Estrin, D. Farinacci, V. Jacobson, C. Liu, and L. Wei. The PIM Architecture for
Wide-Area Multicast Routing. IEEE/ACM Transactions on Networking (TON), 4(2):784–803,
December 1997.

[70] C. Diot, B.N. Levine, B. Lyles, H. Kassan, and D. Balendiefen. Deployment numbers for
the IP Multicast services and architecture. IEEE Networks - Special number Multicasting,
14(1):78–88, 2000.

[71] M. Balakrishnan, S. Pleisch, and K. P. Birman. Slingshot: Time-critical Multicast for Clus-
tered Applications. Proceedings of the 4th IEEE International Symposium on Network Com-
puting and Applications (NCA 05), pages 205–214, July 2005.

[72] Y. Chawathe, S. McCanne, and E. A. Brewer. RMX: Reliable Multicast for Heterogeneous
Networks. Proceedings of the 19th Conference on Computer Communications (INFOCOM 00),
pages 795–804, March 2000.

[73] F. Baccelli, A. Chaintreau, Z. Liu, A. Riabov, and S. Sahu. Scalability of Reliable Group
Communication Using Overlays. Proceedings of the 23th Annual Joint Conference of the IEEE
Computer and Communications Societies (INFOCOM 04), pages 419–430, March 2004.

[74] M.S. Borella, D. Swider, S. Uludag, and G.B. Brewster. Internet Packet Loss: Measurement
and Implications for End-to-End QoS. Proceedings of the International Conference on Parallel
Processing Workshops (ICPPW 98), pages 3–13, 1998.

[75] D. Loguinov and H. Radha. Measurement Study of Low-Bitrate Internet Video Streaming.
Proceedings of the 1st ACM SIGCOMM Workshop on Internet Measurement (IMW 01), pages
281–293, 2001.

[76] J. C. Lin and S. Paul. RMTP: A Reliable Multicast Transport Protocol. Proceedings of the
Fifteenth Annual Joint Conference of the IEEE Computer Societies (INFOCOM 96), pages
1414–1424, March 1996.

[77] S. Floyd, V. Jacobson, C.-G. Liu, S. McCanne, and L. Zhang. A Reliable Multicast Frame-
work for Lightweight Sessions and Application-Level Framing. IEEE/ACM Transactions on
Networking (TON), 5(6):784–803, December 1997.

[78] D. Towsley, J. Kurose, and S. Pingali. A Comparison of Sender-Initiated and Receiver-Initiated
Reliable Multicast Protocols. IEEE Journal on Selected Areas in Communications (JSAC),
15(3):398–406, April 1997.

[79] H. W. Holbrook, S. K. Singhal, and D. R. Cheriton. Log-Based Receiver-Reliable Multicast
for Distributed Interactive Simulation. ACM SIGCOMM Computer Communication Review
(CCR), 25(4):328–341, October 1995.

[80] M. S. Lacher, J. Nonnenmacher, and E. W. Biersack. Performance Comparison of Central-
ized versus Distributed Error Recovery for Reliable Multicast. IEEE/ACM Transactions on
Networking (TON), 8(2):224–238, April 2000.

[81] M. Balakrishnan, K. P. Birman, A. Phanishayee, and S. Pleisch. Ricochet: Lateral Error Cor-
rection for Time-Critical Multicast. Proceedings of the 4th USENIX Symposium on Networked
System Design & Implementation (NSDI 07), pages 73–86, April 2007.



Bibliography 208

[82] K. P. Birman, M. Hayden, O. Ozkasap, Z. Xiao, M. Budiu, and Y. Minsky. Bimodal Multicast.
ACM Transactions on Computer Systems (TCS), 17(2):41–88, May 1999.

[83] Q. Sun and D. C. Sturman. A Gossip-based Reliable Multicast for Large-scale High-throught
Applications. Proceedings of the 30th International Conference on Dependable Systems and
Networks (formely FTCS-30 and DCCA-8, now DSN 00), pages 347–458, June 2000.

[84] J. Nonnenmacher, E. W. Biersack, and D. Towsley. Parity-Based Loss Recovery for Reliable
Multicast Trasmission. IEEE/ACM Transactions on Networking (TON), 6(4):349–361, August
1998.

[85] C. Huitema. The Case for Packet Level FEC. Proceeding of the IFIP 5th International
Workshop on Protocols for High Speed Networks (PfHSN 96), pages 110–120, October 1996.

[86] N. Magharei, R. Rejaie, and Y. Guo. Mesh or Multiple-Tree: A Comparative Study of Live P2P
Streaming Approaches. Proceedings of the 26th IEEE International Conference on Computer
Communications (INFOCOM 07), pages 1424–1432, May 2007.

[87] A.-M. Kermarrec, L-Massoulié, and A. J. Ganesh. Probabilistic Reliable Dissemination
in Large-Scale Systems. IEEE Transactions on Parallel and Distributed Systems (TPDS),
14(2):1–11, February 2003.

[88] F. Wang, Y. Xiong, and J. Liu. mTreebone: A Hybrid Tree/Mesh Overlay for Application-
Layer Live Video Multicast. Proceedings of the 27th International Conference on Distributed
Computing Systems (ICDCS 07), pages 49–57, June 2007.

[89] P. Radoslavov, C. Papadopoulos, R. Govindan, and D. Estrin. A Comparison of Application-
Level and Router-Assisted Hierarchical Schemes for Reliable Multicast. IEEE/ACM Transac-
tions on Networking (TON), 7(3):375–386, June 1999.

[90] X. R. Xu, A. C. Myers, H. Zhang, and R. Yavatkar. Resilient Multicast Support for Continuous-
Media Applications. Proceedings of the IEEE 7th International Workshop on Network and
Operating System Support for Digital Audio and Video (NOSSDAV 97), pages 183–194, May
1997.

[91] W.-P. K. Yiu, K.-F. S. Wong, S.-H. G. Chan, W.-C. Wong, Q. Zhang, W.-W. Zhu, and
Y.-Q. Zhang. Lateral Error Correction for Media Streaming in Application-Level Multicast.
IEEE/ACM Transactions on Multimedia (T-MM), 8(2):219–232, April 2006.

[92] G. Tan, S. A. Jarvis, and D. P. Spooner. Improving the Fault Resilience of Overlay Multi-
cast for Media Streaming. IEEE Transactions on Parallel and Distributed Systems (TPDS),
18(6):721–734, June 2007.

[93] P. T. Eugster, R. Guerraoui, A.-M. Kermarrec, and L. Massoulié. Epidemic Information
Dissemination in Distributed Systems. IEEE Computer, 37(5):60–67, May 2004.

[94] Alan Demers et al. Epidemic Algorithms for Replicated Database Maintenance. ACM SIGOPS
Operating Systems Review (SIGOPS), 22(1):8–32, June 1998.

[95] M. Jelasity, S. Voulgaris, R. Guerraoui, A.-M. Kermarrec, and M. van Steen. Gossip-based
peer sampling. ACM Transactions on Computer Systems (TOCS), 25(3):8–36, August 2007.

[96] J. Leitao, J. Pereira, and L. Rodrigues. Epidemic Broadcast Trees. Proceedings of the 26rd
IEEE International Symposium on Reliable Distributed Systems (SRDS 07), pages 301–310,
October 2007.



Bibliography 209

[97] I. Gupta, A.-M. Kermarrec, and A. J. Ganesh. Efficient and Adaptive Epidemic-Style Protocols
for Reliable and Scalable Multicast. IEEE Transactions on Parallel and Distributed Systems
(TPDS), 17(7):593–605, July 2006.

[98] K. Hopkinson, K. Jenkins, K. Birman, J. Thorp, G. Toussaint, and M.Parashar. Adaptive
Gravitational Gossip: A Gossip-Based Communication Protocol with User-Selectable Rates.
IEEE Transactions on Parallel and Distributed Systems (TPDS), 20(12):1830–1843, December
2009.

[99] J. W. Byers, M. Luby, and M. Mitzenmacher. A Digital Fountain Approach to Asynchronous
Reliable Multicast. IEEE Journal on Selected Areas in Communications (JSAC), 20(8):1528–
1540, October 2002.

[100] M. Ghaderi, D. Towsley, and J. Kurose. Reliability Gain of Network Coding in Lossy Wireless
Networks. Proceedings of the 27th Conference on Computer Communications (INFOCOM 08),
pages 2171–2179, April 2008.

[101] M. Wu, S. S. Karande, and H. Radha. Network-embedded FEC for Optimum Throughput of
Multicast Packet Video. Journal on Signal Processing: Image Communication, 20(8):728–742,
September 2005.

[102] J. Han, D. Watson, and F. Jahanian. An Experimental Study of Internet Path Diversity. IEEE
Transactions on Dependable and Secure Computing (TDSC), 3(4):273–288, October 2006.

[103] R. Teixiera, K. Marzullo, S. Savage, and G. M. Voelker. In Search of Path Diversity in ISP
Networks. Proceedings of the 3rd ACM SIGCOMM Conference on Internet Measurement (IMC
03), pages 313–318, October 2003.

[104] N. Spring, R. Mahajan, D. Wetherall, and T. Anderson. Measuring ISP Topologies with
Rocketfuel. IEEE/ACM Transactions on Networking (TON), 12(1):2–16, February 2004.

[105] C. Tang and P.K. McKinley. Improving Multipath Reliability in Topology-Aware Overlay
Networks. Proceedings of the 25th IEEE International Conference on Distributed Computing
Systems Workshops (ICDCSW 05), pages 82–88, June 2005.

[106] D.A.M. Villela and O.C.M.B. Duarte. Improving Scalability on Reliable Multicast Communi-
cation. Computer Communications, 24(5-6):548–562, March 2001.

[107] M. Castro, P. Druschel, A.-M. Kermarrec, A. Nandi, A. Rowstron, and A. Singh. SplitStream:
High-Bandwidth Multicast in Cooperative Environments. Proceedings of the nineteenth ACM
Symposium on Operating Systems Principles (SOSP 03), pages 298–313, October 2003.

[108] T. Nguyen and A. Zakhor. Path Diversity with Forward Error Correction (PDF) System for
Packet Switched Networks. Proceedings of the 22nd Annual Joint Conference of the IEEE
Computer and Communications (ISORC 03), pages 663–672, April 2003.

[109] A.E. Kamal and A. Ramamoorthy. Overlay Protection Against Link Failures Using Network
Coding. Proceedings of the 42nd Annual Conference on Information Sciences and Systems
(CISS 08), pages 527–533, March 2008.

[110] A.C. Snoeren, K. Conley, and D.K. Gifford. Mesh-based Content Routing using XML. ACM
Operating Systems (SIGOPS), 35(5):160–173, December 2001.

[111] N. Magharei and R. Rejaie. PRIME: Peer-to-Peer Receiver-driven Mesh-based Streaming.
Proceedings of the 26th IEEE International Conference on Computer Communications (IN-
FOCOM 07), pages 1415–1423, May 2007.



Bibliography 210

[112] S. Birrer and F.E. Bustamante. A Comparison of Resilient Overlay Multicast Approaches.
IEEE Journal on Selected Areas in Communications (JSAC), 25(9):1695–1705, December
2007.

[113] Y. Hongyun, H. Ruiming, C. Jun, and C. Xuhui. A Review of Resilient Approaches to Peer-to-
Peer Overlay Multicast of Media Streaming. Proceedings of the 4th International Conference
on Wireless Communications, Networking and Mobile Computing (WiCOM 08), pages 1–4,
October 2008.

[114] S. Banerjee, S. Lee, B. Bhattacharjee, and A. Srinivasan. Resilient Multicast Using Overlays.
IEEE/ACM Transactions on Networking (TON), 14(2):237–248, April 2006.

[115] S. Birrer and F.E. Bustamante. Resilient Peer-to-Peer Multicast without the Cost. Proceedings
of the 12th Annual Multimedia Computing and Networking Conference (MMCN 05), January
2005.

[116] J. Seibert, D. Zage, S. Fahmy, and C. Nita-Rotaru. Experimental Comparison of Peer-to-Peer
Streaming Overlays: An Application Perspective. Proceedings of the the 33rd IEEE Conference
on Local Computer Networks (LCN 08), pages 20–27, October 2008.

[117] R. Chand and P. Felber. Scalable Distribution of XML Content with XNET. IEEE Transac-
tions on Parallel and Distributed Systems (TPDS), 19(4):447– 461, April 2008.

[118] J. Hoffert, D.C. Schmidt, and A. Gokhale. Evaluating Transport Protocols for Real-Time
Event Stream Processing Middleware and Applications. Proceedings of the 11th International
Symposium on Distributed Objects, Middleware, and Applications (DOA’09), November 2009.

[119] E.W. Zegura, K.L. Calvert, and S. Bhattacharjee. How to Model an Internetwork. Proceedings
of the 15th Annual Joint Conference of the IEEE Computer Societies (INFOCOM 96), 2:594–
602, 1996.

[120] W. Zhao, D. Olshefski, and Henning Schulzrinne. Internet Quality of Service: An Overview.
Columbia University Research Report CUCS-003-00, 2000.

[121] K.C. Almeroth. The Evolution of Multicast: from the MBone to Interdomain Multicast to
Internet2 Deployment. IEEE Network, 14(1):10–20, January/February 2000.

[122] J.F. Kurose and K.W. Ross. Computer Networking: A Top-Down Approach (5th edition).
Addison Wesley, 2009.

[123] L. Garcs-Erice, E.W. Biersack, P.A. Felber, K.W. Ross, and G. Urvoy-Keller. Hierarchical
Peer-to-Peer Systems. Parallel Processing Letters (PPL), 13(4):643–657, December 2003.

[124] L. Lao, J.-H. Cui, M. Gerla, and S. Cheng. A scalable overlay multicast architecture for large-
scale applications. IEEE Transactions on Parallel and Distributed Systems, 18(4):449–459,
April 2007.

[125] C.G. Plaxton, R. Rajaraman, and A.W. Richa. Accessing Nearby Copies of Replicated Objects
in a Distributed Environment. Theory of Computing Systems, 32(3):241280, February 1999.

[126] A. Rowstrom and P. Drushel. Pastry: Scalable, Decentralized Object Localization and Routing
for Large-scale Peer-to-Peer Systems. Proceedings of the IFIP/ACM International Conference
on Distributed Systems Platforms (Middleware 2001), Lecture Notes in Computer Science,
2218:329–351, November 2001.



Bibliography 215

[193] A. Shokrollahi. Raptor Codes. IEEE Transactions on Information Theory, 52(6):2551–2567,
June 2006.

[194] A. Varga. The OMNET++ Discrete Event Simulation System. Proceedings of the European
Simulation Multiconference (ESM 01), pages 319–324, June 2001.

[195] A. Varga and R. Hornig. An Overview of the OMNeT++ Simulation Environment. Proceedings
of the 1st International Conference on Simulation Tools and Techniques for Communications,
Networks and Systems & Workshops, March 2008.

[196] B. Zeigler. Object-oriented Simulation with Hierarchical, Modular Models. Academic Press,
1990.

[197] D. Dittrich. The ”Tribe Flood Network” Distributed Denial of Service Attack Tool.
staff.washington.edu/dittrich/misc/tfn.analysis, October 1999.

[198] C. Zou, W. Gong, and D. Towsley. Code Red Worm Propagation Modeling and Analysis.
Proceedings of the 9th ACM Conference on Computer and Communications Security, pages
138–147, November 2002.


