




Appendix B. Simulation Environment 193

Figure B.3: Building and running simulation in Omnet++

or round trip times of packets, queue lengths, queueing times, link utilization, the number

of dropped packets. Such files can be automatically processed by an Analysis Tool, namely

the scavetool program, for statistical analysis and visualization of simulation results.

B.1.4 Simulation Kernel

Omnet++ has a modular architecture, which is shown in the Figure B.3 and is composed

of the following components:

• Sim is the simulation kernel and class library that is linked to the simulation program

written by the user;

• Envir is another library which contains all code that is common to all user interfaces,

such as main(): it provides services like ini file handling for specific user interface

implementations and presents itself towards Sim and the executing model via the ev

facade object, hiding all other user interface internals;

• Cmdenv and Tkenv are specific user interface implementations, and a simulation is
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linked with Cmdenv, Tkenv, or both;

• The Model Component Library consists of simple module definitions and their C++

implementations, compound module types, channels, networks, message types and in

general everything that belongs to models and has been linked into the simulation

program made by the user;

• The Executing Model is the model that has been set up for simulation. It contains

objects (modules, channels, etc.) that are all instances of components in the model

component library.

In figure, the arrows show how components interact with each other:

• Executing Model <==> Sim - The simulation kernel manages the future events and

invokes modules in the executing model as events occur. The modules of the executing

model are stored in the main object of Sim, i.e., class cSimulation. In turn, the

executing model calls functions in the simulation kernel and uses classes in the Sim

library.

• Sim <==> Model Component Library - The simulation kernel instantiates simple

modules and other components when the simulation model is set up at the beginning

of the simulation run. It also refers to the component library when dynamic module

creation is used. The machinery for registering and looking up components in the

model component library is implemented as part of Sim.

• Executing Model <==> Envir - The ev object, logically part of Envir, is the facade
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of the user interface towards the executing model. The model uses ev to write debug

logs (ev<<, ev.printf()).

• Sim <==> Envir - Envir is in full command of what happens in the simulation pro-

gram. Envir contains the main() function where execution begins. Envir determines

which models should be set up for simulation, and instructs Sim to do so. Envir con-

tains the main simulation loop (determine-next-event, execute-event sequence) and

invokes the simulation kernel for the necessary functionality (event scheduling and

event execution are implemented in Sim). Envir catches and handles errors and ex-

ceptions that occur in the simulation kernel or in the library classes during execution.

Envir presents a single facade object (ev) that represents the environment (user in-

terface) toward Sim – no Envir internals are visible to Sim or the executing model.

During simulation model setup, Envir supplies parameter values for Sim when Sim

asks for them. Sim writes output vectors via Envir, so one can redefine the output

vector storing mechanism by changing Envir. Sim and its classes use Envir to print

debug information.

• Envir <==> Tkenv/Cmdenv - Tkenv and Cmdenv are concrete user interface im-

plementations. When a simulation program is started, the main() function (which is

part of Envir) determines the appropriate user interface class, creates an instance and

runs it by invoking its run() method. Sim’s or the model’s calls on the ev object are

delegated to the user interface.
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Figure B.4: Overview of the EthernetInterface provided by the INET framework

B.2 INET Framework

The INET Framework4 is an open-source communication networks simulation package

for the OMNeT++/OMNEST simulation environment that contains models for several In-

ternet protocols, e.g., UDP, TCP, SCTP, IP, IPv6, Ethernet, PPP, IEEE 802.11, MPLS,

OSPF, and several other protocols. These modules can be freely combined to form hosts

and other network devices with the NED language (no C++ code and no recompilation

required). Various pre-assembled host, router, switch, access point, etc. models can be

found in the Nodes/ subdirectory (e.g., StandardHost, Router), but you can also create

your own ones for tailored to your particular simulation scenarios. Network interfaces (e.g.,

Ethernet, 802.11, etc) are usually compound modules (i.e., assembled from simple mod-

ules) themselves, and are being composed of a queue, a MAC, and possibly other simple

modules, a practical example, namely EthernetInterface, is illustrated in Figure B.4. Not
4inet.omnetpp.org/
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Figure B.5: Client module of the ARP protocol

all modules implement protocols though, in fact, there are modules which hold data (e.g.,

RoutingTable), facilitate communication of modules (e.g., NotificationBoard), perform au-

toconfiguration of a network (e.g., FlatNetworkConfigurator), move a mobile node around

(e.g., ConstSpeedMobility), and perform housekeeping associated with radio channels in

wireless simulations (e.g., ChannelControl). Protocol headers and packet formats are de-

scribed in message definition files (msg files), which are translated into C++ classes by

OMNeT++’s opp msgc tool, which are subclasses from OMNeT++’s cMessage class.

B.3 Rease Topology Generator

ReaSE5 is a tool developed for creation of as realistic as possible environments for the

discrete event simulator OMNeT++ in combination with the INET framework. It is based
5www.oversim.org/
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on current state of the art solutions and considers multiple aspects: (i) topology generation -

on AS-level as well as on router-level - as presented in subsection B.3.1, (ii) traffic patterns,

as described in subsection B.3.2, and attack traffic, as discusses in subsection B.3.3. In

order to achieve these aspects ReaSE consists of various components [160]:

1. An extension of the INET framework that enables hierarchical addressing and routing

as well as generation of self-similar background traffic, furthermore, additional entities

are integrated into INET, e.g., a DDoSZombie or attack detection systems;

2. ReaSEGUI : A front-end graphical user interface that allows for creation of NED

topology files that emulate realistic connectivity within LANs or WANs;

3. TGM : A C++ implementation that generates the basic hierarchical topologies

4. Some additional perl scripts that are used by ReaSEGUI in order to extend the basic

topology by additional entities.

B.3.1 Topology Generation

The process of AS topology generation is based applying the PFP model described in

subsection4.2.1.1 and takes an XML-based configuration file as input. Based on given

parameters, e.g., the number of ASes to generate or values for some parameters of the PFP

model, ReaSE creates a single NED file that defines the required number of Autonomous

Systems and their interconnections according to the topology generated by the PFP model.

Each transit and stub AS is included into the compound module Internet, which is actually

the root of the hierarchy that formulate the Internet topology, and additionally, each AS
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Figure B.6: Example of AS-level and router-level topology

may contain its own router level topology. The channels between different ASes are assigned

a constant bandwidth that may differ between transit/transit, stub/transit, and stub/stub

interconnections. This means that the delay with ReaSE currently does not depend on a

node’s geographic position.

Based on the NED file created during AS topology generation, in a second step each AS is

filled with independently created HOT router level topologies of varying sizes, as illustrated

in subsection 4.2.1.2. Therefore, each node of the router level topology is realized either by

the module Router or StandardHost of the INET framework. The differentiation between

different node types, e.g., core and gateway routers, is achieved by assigning different link

bandwidths, e.g., to core/core or core/gateway channels.

B.3.2 Traffic Generation

In order to support generation of realistic traffic patterns, ReaSE extended the INET frame-

work of OMNeT++ by additional modules: the HierarchicalNetworkConfigurator, which

creates static routes within each AS as well as between different ASes based on shortest paths
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between source and destination, TrafficProfileManager, which reads all available traffic pro-

files from a XML-based configuration file, and a global as well as local ConnectionManagers

per AS, which register IP address and role of every server module. The assignment of a

traffic profile to a given pair of server and client is performed by the TrafficProfileManager

as follows:

• Random selection of a traffic profile based on the given selection probabilities.

• Choice if the traffic flow takes place between the client and a server within the client’s

AS or beyond the AS boundaries. This decision is taken based on the profile’s WAN

selection probability.

• Notification of the selected traffic profile to the AS-specific ConnectionManager.

Multiple Omnet++ simulations presented in [160] and based on a topology with 90.000

hosts within 30 Autonomous Systems using 8 traffic profiles proved that the traffic generated

with ReaSE really shows self-similar behavior, which is the requirement to satisfy in order

to create realistic traffic patterns.

B.3.3 Attack Traffic

Simulation of Distributed Denial-of-Service (DDoS) attacks has been enabled in ReaSE by

integrating in the context of the Omnet++ simulation environment a real tool for conducting

such attacks: the Tribe Flood Network [197]. In case of worm propagations, ReaSE has

implemented two different alternatives: the first one is based on UDP, the latter on TCP,

both of them based on a rather simple probing mechanism that was, e.g., used with Code

Red I [198].
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Figure B.7: Architecture of Oversim

B.4 Oversim

OverSim6 is an open-source overlay network simulation framework for the OMNeT++/OMNEST

simulation environment. It is characterized by the modular architecture shown in Figure

B.7 that allows the modeling of all components of a P2P network and is composed of three

distinct tiers:

• Underlay Level provides different models for underlay abstraction which differ in com-

plexity and accuracy and are fully transparent to the upper overlay layer: (i) the
6www.oversim.org/
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Simple Underlay is the default underlay model for OverSim, and combines a low com-

putational overhead with high accuracy; (ii) INET is based on the INET framework

where the IP stack is completely modeled and even routers can be part of the simulated

overlay; (iii) the SingleHost Underlay provides real network support for OverSim by

acting as a middleware to support deploying overlay protocols developed for OverSim

on real networks. In Sect. IV, this feature will be discussed in greater detail.

• Overlay Level provides several functions that many overlay protocol implementations

(e.g., Chord, Kademlia, Pastry) have in common: (i) overlay message handling (e.g.,

RPCs), (ii) generic lookup with support for different routing modes, (iii) node failure

discovery and routing table recovery, (iv) common API interface support, (v) boot-

strapping support and (vi) proximity awareness (e.g., Vivaldi, GNP). All of these

features allow for rapid overlay protocol prototyping and make protocol implementa-

tions comparable and less error-prone.

• Application Level consists of business applications that communicate through the un-

derlaying overlay protocol. Additionally OverSim makes use of an XML-RPC inter-

face to provide overlay services (e.g., distributed data storage) to external applications

similar to the interface provided by the OpenDHT service.

• Modeling of churn provides several models for generating churn supporting different

distribution functions (e.g., Weibull, Pareto or Exponential). Alternatively, a scenario

or trace file containing join and leave events can be used to model churn behavior,

which allows to easily generate complex scenarios with heterogeneous node behavior.
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