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Chapter 1

Introduction

The automatic recognition of objegddttern recognitioly, and their description,
classification and aggregationlstering are very important fields for a large
variety of problems both in the engineering and in the sdieritelds.

Watanabe defines a pattern “as opposite of chaos; it is aty,erdguely de-
fined, that could be given a name.” For example a pattern doelld fingerprint
image, a handwritten cursive word, a human face, or a speégeal $/5]|40].

Pattern recognition methods offer technological backgdofor a variety of
applications in a modern information society. In some casesy are however
undermined by several kinds of “adversarial” misuses like and web spam,
attacks to computer networks, etc. A classical exampledf Sadversarial’ envi-
ronments are various evasion techniques used in geneddtspam emails. Sim-
ilar problems arise in web search (web spam) and malwargsiadbbfuscation
and polymorphism).

The underlying problem is that pattern recognition, as wslldata analysis
techniques in general, have not been designed to work inrsaval environ-
ments.

These considerations give rise with the necessity to deémemethodologies
to overcome this type of problems, either they are producgihg the training
phase Adversarial Learning or they are obtained during the classification phase
(Adversarial Classification

To this aim, recently in the area of machine learning the ephof combining



classifiers is proposed as a new direction for the improvéwighe performance
of individual classifiers. These classifiers could be based wariety of classifi-
cation methodologies, and they could achieve differemt oatorrectly classified
samples. The goal of classification result integration r@lgms is to generate
more accurate system results but a classification more rauosise.

We found in the Multi Classification System theory also a gsagdport to
design and train a classification systenaaversarial environments\Ve studied
this problem focus on some interesting case studies sucthascleaning of a
noisy/contaminated training set, the spam recognitioe,ltibernet traffic flows
detection.

More in general, we tackle the two main challenges direatlkdd to the gen-
eral problem ofadversarial environmentghat is: i) adversarial learning, in
which the labels of training pattern were corruptedat)ersarial classification
in which a malicious user try to camouflage the patterns whertlassifier oper-
ates on the field.

In particular, in theadversarial learnindield, we have defined a novel Multi-
ple Classifier System approach designed to clean the norggiminated training
set. This system, after an iterative evolution, returnsearméd training set ob-
tained changing the labels assigned to the samples anddeoing the training
set cleaned when these changes become stable.

The second challenge was tadversarial classificationin this case the ma-
licious users try detect the vulnerability of a securityteys to bypass it. In this
context we considered two case studies, in which we propas@e original sys-
tems based on a MCS:ti)e spam recognitignn which the spammer are always
looking for some vulnerabilities to brake down the userspdim policies and ii)
the Internet traffic identificationin which malicious users try to bypass the secu-
rity policies of an Internet network, using, for examplemsallowed protocols
to make something different.
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1.1 Thesis Outline

After briefly introducing the main context of this thesis,this section we will
give a synthetic outline of the rest of the work. In chajiller & will introduce
the general problem of thi&dversarial Environmerdnd we will describe the two
challenges directly linked to it, i.Adversarial LearningandAdversarial Classi-
fication

In chaptefB we will provide some notions about the clasgifioeheory, and,
after a general introduction of the Multiple Classifiers teyss (MCS), we will
give some possible taxonomies.

In chaptefl we will tackle the problem of thelversarial Learningin partic-
ular for the noisy/contaminated label into the training $etthis chapter we will
introduce a methodology to clean a training set, and we walkena comparison
between aimpleclassifier trained with theleaneddataset obtained with the pro-
posed approach, and the accuracy obtained with some Mutiissifier System
presented in the literature.

In chaptefb we will present a typicAblversarial Classificatioproblem in the
context of the identification of the Internet traffic flows.ts chapter, the traffic
problem will be dealt with a statistical approach impleneehby a Hierarchical
Multiple Classifier System.

In Chapteb we will approach another problemAafversarial Classification
I.e. the spam recognition. In this chapter we will descrilmeaaular architecture
to adapt the system to new and smarter spammer’s attacks.

Finally, in ChapteEl7 some conclusions are drawn. Our doution is pointed
out, referring to the previously described work, and someatiions and proposals
for future works are proposed.



Chapter 2

Adversarial Environments

Machine learning techniques are often used in environmeghtse adversaries
can consciously act to limit or prevent accurate perforreank classical exam-
ple is spam filtering where spammers tailor messages to dkieignost recent
spam detection techniques. Further examples of advdrsav@onments arise in
the field of computer security where there is an escalatimgpatition between
detection and evasion techniques for various types of nralwbn general, one
can expect that whenever machine learning is used to prqurigkection from
some illegal activity, adversaries will deliberately atig to circumvent these ap-
proaches.

Pattern recognition systems, and in particular multipéessifier systems, are
currently used in several security applications like bitmedentity recognition
[B][B3][BY], intrusion detection in computer networks [E1][49][62] and spam
filtering [O][LI][22][31][68], in which the task is to disgninate attack samples
(e.g., a spam e-mail) from legitimate samples (e.g., legite e-mails).

An interesting paper in the context wfachine learning securitig the one by
Barreno et al[[6] where the authors try to give an answer tdfdbe following

questions:

e Can the adversary manipulate a learning system to perméeafgpattack?
For example, can an attacker leverage knowledge about thkingglearn-
ing system used by a spam e-mail filtering system to bypad#téreng?

e Can an adversary degrade the performance of a learningrsystae extent

4



Integrity | Availability

Causative  Targeted Permit a specific intrusion Create a sufficient errors to
make system unusable for
one person or service
Indiscriminate | Permit at least one intru- Create sufficient errors to
sion make learner unusable
Exploratory Targeted Find a permitted intrusion Find a set of points mis-
from a small set of possi- classified by the learner
bilities

Indiscriminate | Find a permitted intrusion

Table 2.1: An Attack Model

that system administrators are forced to disable the ID$@¥ample, could
the attacker confuse the system and cause valid e-mail ejdeted?

e What defences exist against adversaries manipulatinaclatiy) learning
systems?

e More generally, what is the potential impact from a secustgndpoint of
using machine learning on a system? Can an attacker expigepies of
the machine learning technique to disrupt the system?

More in general they made a general taxonomy of the possitdeks to a
machine learning system, talplel2.1.

For Berreno at al, in theausativeattacks the adversary has some measure
of control over the training of the learner, from the classifioint of view these
kinds of attacks are considered as a problerAafersarial Learning

In the Exploratory attackghe adversary do not attempt to influence learning:
they instead attempt to discover information about theestthe learner, that is
the attackers seek to find intrusions that are not recogriyetie learner. From
the classifier point of view these attacks can be considey@dieersarial Classi-
ficationproblems.

In this thesis we will analyse the two challenges directhkdéd to theAd-
versarial Environmenproblem, that isAdversarial Learning and Adversarial
Classificationfrom the Multiple Classifier Systems (MCS) point of view.
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It is experimentally demonstrated that the combination oferclassifiers can
achieve better classification accuracy in respect of asiclgksifier[[15][[417].

Only recently, there are few works that are analysing howMI&Ss can be
robust in arAdversarial EnvironmeriL0].

2.1 Challenges

The main difference betweédktdversarial LearningandAdversarial Classification
Is in how and where the malicious users try to camouflage thierpa.

While in the first one the attacker contaminates the traipiatjern to make
more difficult the classification problem (from thearner point of view), in the
second case the attacker changes the patters when thdielagserates on the
field to overcome the security system, i.e make more diffitidtproblem from
thepredictor point of view.

2.1.1 Adversarial Learning

Systems using machine learning have been successfullpydpifor fighting
spam, fraud, and other malicious activities. These systgpisally consist of
a classifier that flags certain instances as malicious basedfixed set of fea-
tures. For example, spam filters classify each incoming lem@ssage as spam
or legitimate email by using a set of features such as whictdsvare present.
Unfortunately, as classifiers become more widely deplotreljncentive for de-
feating them increases. In some domains, there is amplemwdhat adversaries
are actively modifying their behaviour to avoid detectiéor instance, senders of
junk email often disguise their messages by adding unikilateds, sentences, or
even paragraphs more indicative of legitimate email thamsb1].

The earliest theoretical work we know of that approachesieg in the pres-
ence of an adversary was done by Kearns and LLi [45]. They wiarktéhe context
of Valiants Probably Approximately Correct (PAC) learniingmework [35, 36],
extending it to prove bounds for maliciously chosen errarghe training data.
Specifically, they proved that if the learner is to perfornnreotly, in general the
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fraction of training points controlled by the adversary mios less thanlez,
wheree is the desired bound on classification errors by the leathes,[30].

Results from game theory may be relevant to adversarialilegsystems. In
particular, deception games involve players that havagbamformation and in-
fluence the information seen by other players. Some of thaseg involve con-
tinuous variables generated by various probability distions [7], while others
apply to scenarios with discrete states|[37]. The game yhaod the adversar-
ial learning both ask many of the same questions, and théydututress the same
underlying issues. Integration of game theoretic conceptdd be a promising
direction for work in adversarial learning area.

Dalvi et al. examine the learn-adapt-relearn cycle fromragrgheoretic point
of view [18]. In their model, the learner has a cost for megueach feature of
the data and the adversary has a cost for changing eachdeatattack points.
If the adversary and learner have complete information abach other and we
accept some other assumptions, they find an optimal stréteghe learner to
defend against the adversary’s adaptations.

Research has also begun to examine the vulnerability oféesarto reverse
engineering. Lowd and Meek introduce a novel learning pobfor adversar-
ial classifier reverse engineering in which an adversanduaots an attack that
minimizes a cost functior [51]. Under their framework, Loadd Meek con-
struct algorithms for reverse engineering linear clagsifidoreover, they build
an attack to reverse engineer spam filters [52].

2.1.2 Adversarial Classification

Wittel and Wu [7T] discuss the possibility of crafting attaaesigned to take ad-
vantage of the statistical nature of such spam filters, agylithplement a simple
attack. John Graham-Cumming[35] describes implementmgttack he calls
Bayes vs. Bayes, in which the adversary trains a secondtstatispam filter
based on feedback from the filter under attack and then usesettond filter to
find words that make spam messages undetectable by theabfiger.

A recent work of Biggio et all[10] analyses the effectivenesthe Multiple
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Classifiers Systems in improving the hardness of evasiothiSaim they develop
analytical models of adversarial classification problengapply them to analyse
some strategies currently used to implement MCSs in seapications. They
define the hardness of evasion as:

For a given feature set, the hardness of evasion is definedeasx-
pected value of the minimum number of features which have to b
modified to evade the classifier.

Very interesting is the figue_d.1 taken from their work angpreposed here
in which is reported an example of the two measures which|dhoe used to
evaluate the performance of a classifier in a security systém classification
accuracy against a given strategy used by the adversamgéeied by training
instances), and the hardness of evasion against a new Kiattacks.

A

Accuracy

High accuracy,
low hardness of
evasion

Hardness of evasion

Figure 2.1: Hardness of Evasion vs Accuracy (from [10]

2.2 Applications

We have worked on the two challenges presented before, gadtioular we have
proposed different methodology to make the system morestabuhis kind of
environments. In particular we can distinguish three tasks
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e Adversarial Learning
— Noisy/Contaminated Training Set
e Adversarial Classification

— Spam e-mail

— Internet traffic flows identification

2.2.1 Adversarial Learning: Noisy/Contaminated Training Set

There is not much literature on how noise label should be flextiand dealt with
an MCS approach.

AdaBoost [30] has shown to often improve the base learnarracg. Since
its introduction, it has been successfully applied to mamplems. Furthermore,
the AdaBoost idea has been extended to other sort of problattieough it has
wide-spread success, it is susceptible to the over-fittnofplpm as pointed out
by Dietterich [21]. Ozal[61] proposed an approach calledBa@st2 to smooth
noise. This approach can be seen as a relaxed version of AdaBtihen training
examples are noisy and therefore difficult to fit, AdaBoodtriewn to increase
the weights of those examples to excess and over-fit thenubecaany consec-
utive base models may not learn them properly. AveBoost2saging does not
allow the weights of noisy examples to increase rapidlyregbg mitigating the
overfitting problem.

Thiel [73] made a comparison between the single classifiéraammensemble.
In his paper the attention is focused on which impact a davésie softlabels has
on a noisy training set.

Melville and Mooney [[5F7] introduced a new kind of multipleaskifier sys-
tem to take into account the noise label problem; they catlé@ECORATE.
DECORATE, (Diverse Ensemble Creation by Oppositional Bellang of Ar-
tificial Training Examples) uses an existing "strong” learrfone that provides
high accuracy on the training data) to build an effectiveethe committee in a
fairly simple, straightforward manner. This is accompdidhby adding different
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randomly constructed examples to the training set whemimgiinew committee
members. These artificially constructed examples are giagggory labels that
disagree with the current decision of the committee, theessily and directly
increasing diversity when a new classifier is trained on tgnegented data and
added to the committee.

2.2.2 Adversarial Classification: SPAM

Itis a well-known story that e-mail has grown from a tool ubgdew universities
and scientists to a ubiquitous communication tool, evgy¥imom simple plain text
into a powerful multimedia message. At the same time, falowthe growth of
e-mail production and diffusion, spam has changed fromtle Bnd sometimes
bothering problem into a multi-billion dollar problem. Theesence of spam, in
fact, can seriously compromise normal user activitiegifgy to navigate through
mailboxes to find the - relatively few - interesting e-mass, wasting time and
bandwidth and occupying huge storage space.

The types of those messages vary: some of them containstisdueents,
other e-mails provides winning notifications, and somesime get messages with
executable files, which finally emerge as malicious codesh &1$ viruses and
Trojan horses. In addition, spam e-mails may often haveitaida content (as
a pornographic material advertising) that is illegal anchemes dangerous for
non adult users.

The recognition of spam content is not a trivial problemréere some factors
that are related with human perception, economic behaviegal context, that
are hardly measurable or summarized in adequate featuhessdme definition
of spam e-mailsequires a common agreement that is not easy to find.

In our opinion,all kind of spam e-mails have several common characteristics,
such as:) they are unsolicitedj) they have a commercial content, even though
the content itself is continuously evolving, trying to autst the classical coun-
termeasures adopted by anti-spam filters.

This kind of task belong to thadversarial classificationproblems, since
there is an intelligent, adaptive adversary who tries toaa#iage patterns (spam
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e-mails) to evade the security system.

Consequently, a great variety of technical methodologgeen implemented
in current anti-spam systenis [11]. The common technicaitssls propose fil-
tering strategies based on sender address and/or bodyhtohtte focused our
attention on that measures related to e-mail contents,rircpiar bothtexts and
images rather then on networking and identity strategies$ [68i¢siour goal is to
develop a personal antispam system.

2.2.3 Adversarial Classification: Traffic Identification

In the last years, networking research has started facingladem not foreseen
when the firsinternetprotocols were originally designed: network traffic classi
fication, that is, associating traffic flows to the applicaidhat generated them
[56]. Originally each network application used known pumits and transport-
level ports that easily allowed their identification. Sirec&w years back, this is
not true any more. [4Z, 59]. The number of network applicaiosing proprietary
undisclosed protocols has grown at an incredible rate (§KyRP-IPTV); the typ-
ical association application/port is often forged; in sarases traffic is encrypted,
whereas sometimes it is encapsulated into traditionabpoi$. Beyond the need
to understand which kind of traffic is carried on Internek$inthe identification of
traffic hidden in flows using well-known ports represents alleimging task. For
these reasons, new approaches to traffic identificationesgéad. By traffic iden-
tification here we mean identification of a particular (or algy of) applications
of interest.

This is a typical case of study for thdversarial Classificatioproblem. In
this case some malicious users try to overcame the classificeystem in differ-
ent ways. A possibility is to spoof a protocol into another.



Chapter 3

Classifier Ensembles

Recently in the area of machine learning the concept of coimdpiclassifiers has
been proposed as a new direction for the improvement of tHferpgance of in-
dividual classifiers. These classifiers could be based omietyaf classification
methodologies, and they could achieve different rates okcdy classified indi-
viduals. The goal of classification result integration aitons is to generate more
certain, precise and accurate system results. Dietteé?hgrovides an accessi-
ble and informal reasoning, from statistical, computadicemd representational
viewpoints, on why ensembles can improve results.

The combination of multiple classifiers can be considerel@aneric pattern
recognition problem in which the input consists of the resof the individual
classifiers, and the output is the combined decidioh [72].

Organization of the Chapter

After a general presentation of the pattern recognitiorbl@m, we will discuss
a general taxonomy of base classifiers; after that we wiltidies Multiple Clas-
sifier Systems, hereinaftéfCSand we will consider th@rosandconsof some
common topologies. We will describe the combination apghes, giving, in
the last section, some theoretical details on the Dem@tafer combination ap-
proach, and on why this approach could be important to oveecsome limits of
the bayesian one. Finally we will make some practical caersitons.

12
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3.1 Pattern Recognition

Watanabe defines a pattern “as opposite of chaos; it is aly,ersguely defined,
that could be given a name.” For example a pattern could begarfanint image,
a handwritten cursive word, a human face, or a speech sigeH#0].

Given a pattern, its recognition/classification may cdreisne of the follow-
ing two tasks:

1. Supervised Classification the input pattern is identified as a member of a
predefined class

2. Unsupervised Classification the input pattern is assigned to a hitherto
unknown class.

Generally speaking, the design of a pattern recognitiotesygssentially in-
volves the following three aspects:

1. data acquisition and preprocessing
2. data representation

3. decision making

The most popular approaches could be divided into: 1) Tet@phatching, 2)
Statistical classification, 3) Syntactic or structural ohatg, 4) Neural networks.

Template matchingis one of the simplest the earliest developed approaches.
Matching is a generic operation in pattern recognition Wwhscused to determine
the similarity between two entities of the same type. In gahea template or
a prototype is always available. Often, the template itselearned from the
training set.

Statistical classificationis based on a representation in termsideatures
or characteristics. In this case each pattern is seen asip@ d-dimensional
space. Given a set of training patterns from each class,ljeetove is to estab-
lish decision boundaries in the feature space which seppedterns belonging to
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REAL WORLD
APPLICATIONS

Data Collection

—

test . Feature . .
pattern IR | gy Measurement > Classiiication
Classification *
Training l l
- Feature
tm_» Preprocessing Extraction/ Learning
pattern !
Selection

T

T

Figure 3.1: General Statistical Pattern Recognition Model

different classes. In this case the recognition system éatpd in two modes:

training (learning) and classification (testing) as showfigure[3.1..

In most of the recognition problems involving complex patt it is more

appropriate to adopt a hierarchical perspective wheretarpat viewed as being

composed of simple sub-patterns. Sgntactical pattern recognition, a formal

analogy is drawn between the structure of patterns and titexspf the language.

Neural networks can be viewed as massively parallel computing systems con-

sisting of an extremely large number of simple processaits many interconnec-

tions. The main characteristics of neural networks aretttegt have the ability to

learn complex non linear input-output relationship, usgusatial training proce-

dures, and adapt themselves to the data.
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Approach Representation | Recognition Function | Typical Criterion
Samples, Correlation,
Template matching pixels, distance, Classification errof
curves measure
Statistical Features Discriminant function | Classification errof
Syntactic
or Primitives Rules, grammar Acceptance error
Structural
Samples, Mean
Neural networks pixels, Network function square
features error

Table 3.1: Pattern Recognition Models

3.1.1 Feature selection and extraction

Such a representation requires the definition of the passéikbgories which have
to be recognized, and also the description of the entitietasssify in terms of a
certain number of parameters. Such parameters are usefgtyad to as features
[51]. Features are usually represented in arrays, and cdistaeguished accord-
ing to the type of value they can assume. They are usuallypgainto two sets,
as depicted in figue—3.2: quantitative features and qui@ktéeatures.

The conceptual boundary between feature extraction asdititation is some-
what arbitrary: an ideal feature extractor would yield arespgntation that makes
the job of the classifier trivial; conversely, an omnipotelassifier would not need
the help of a sophisticated feature extractor. The distngs forced for practical,
rather than theoretical reasons. Generally speakingastedf feature extraction
is much more problem and domain dependent than classificatial thus requires
knowledge of the domain.
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Continuous

(length, pressure, ...)
Quantitative

Discrete

(numerical)
< (basketball score, ...)
Feature types
Ordinal
Qualitative < (Education degree, ...)
(categorical) Nominal

(Make of a car, ...)
Figure 3.2: Types of Features

3.1.2 Error Evaluation and Classification Accuracy

An important role in classification theory is played by eresaluation. Given a
labelled dataset, the most straightforward strategy faluating the performance
of a classification system is just counting the number of catedherrors. Often,
the relative amount of errors is given, with respect to thal toumber of analysed
samples. Assume that a labelled data%ebdf size V,, is available for testing the
accuracy of our classifief). An estimation of the error is obtained by runnifg
on all the objects i, and find the proportion of misclassified objects

Nerror
Nis

To find out how the errors are distributed across the clasgesonstruct a
confusion matrix using the testing data s&ft,. The entrye,; of such a matrix
denotes the number of elements frdfn whose true class i§;, and which are
assigned byD to class@j. In table[32 a general confusion matrix fof classes
classification is shown.

In the case of one class classification, the problem of ¢leagon is simply
reduced to recognize whether a specific sample belongs tootidered class.

error(D) =
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Predicted Class
TrueClass| ¢; Cy ... Cuy
Ch €11 €12 ... 1M
Cy €21 €22 ... €an
Ch €M1 €p2 ... EMM

Table 3.2: Confusion matrix fa¥/ classes classification

If this is not the case, the sample is simply not assigneddaliss of interest.
The problem can be formally represented by naming two plessibssification
outcomes, namely Paositive and Negative, representingrityetwo possible op-
tions taken into account. In fact, in such a case, the occoeref a particular
class is searched for. Anything outside such a class is taggdNegative. The
corresponding confusion matrix is represented by fable 3.3

Assigned Class
True Class| P N
P TP FN
N FP TN

Table 3.3: Confusion matrix for one class classification

In such a case, the elements of the confusion matrix are namsukctively,
True Positives (TP), False Negatives (FN), False Posi{(iW€3 and True Nega-
tives (TN). Such quantities can also be expressed as relatihe total amount of
patterns or samples belonging to either the class of irtteresot belonging to it.

3.1.3 Results Evaluation Methodologies

Suppose that we have a data geof size IV, containing n-dimensional feature
vectors describing N objects. We would like to use as much datpossible to
build the classifier (training), and also as much unseenakataossible to test its
performance more thoroughly (testing). However, if we uséata for training
and the same data for testing, we might over-train the ¢lassp that it perfectly
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learns to classify the available data and fails on unseem dehat is why it is
important to have a separate data set on which to examinentlegpfioduct. The
main alternatives for making the best useéZofan be summarized as follows:

e Resubstitution (R-methad)esign classifieD on Z and test it onz.

e Hold-out (H-method) Traditionally, split Z into halves, use one half for
training, and the other half for calculatiti,. Py is pessimistically biased.
Splits in other proportions are also used. We can swap thesteets, get
another estimaté, and average the two. A version of this method is the
data shuffle where we dorandom splits of7 into training and testing parts
and average all estimates of’, calculated on the respective testing parts.

e Cross-validation (called also the rotation method or p-hoet) We choose
an integerK (preferably a factor ofV) and randomly divideZ into K sub-
sets of sizeV = K. Then we use one subset to test the performande of
trained on the union of the remainigz1 subsets. This procedure is re-
peatedK times, choosing a different part for testing each time. Totlge
final value ofPD we average thé estimates. Whek = N, the method
is called thdeave-one-out (or U-method)

e Bootstrap This method is designed to correct the optimistic bias efRRh
method. This is done by randomly generatingets of cardinalityV from
the original setZ, with replacement. Then we assess and average the error
rate of the classifiers built on these sets.

3.1.4 Base Classifiers Taxonomy

Statistical Patter Recognition provides a variety of dfesmodels. A possible
taxonomy is shown in figufe-3.3.

One solution is to try to estimat®(w;) and p(x|C;),7 = 1,...,¢, from
Z and substitute the estimaté¥(;) and j(x|C;) in the discriminant functions
9:(x) = P(C;)p(x|C;),i =1,...,c. Thisis called thelug-inapproach to classi-
fier design. Approximating(x|C;) as a function ok divides classifier methods



3.1. PATTERN RECOGNITION

19

Figure 3.3: A Taxonomy of methods for classifier design
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into two big groupsparametricandnon parametric On the other side of the di-
agram there are classifier design methods that are not ddsywapproximating
the pdfsbut rather by devising decision boundaries or discrimifianttions em-
pirically. The distinction between the groups is not cleat- For exampleadial
basis functio(RBF) network from the group of structural approximationtioé
discriminant functions can be moved to the group of fun@lapproximation,
or even to the group of semi-parametpidf modelling. Similarly, the k-nearest
neighbour g-nn) method, although theoretically linked with nonpar&meepdf
estimation, produces a direct estimate of the discrimifiamttions and can be
put under the heading of structural designs for approximgatine discriminant
functions. There is no consensus on a single taxonomy, ar aveut the defi-
nition of parametric and nonparametric classifiers. Lippmbsts five types of
classifiers:

e probabilistic (LDC, QDC, Parzen);
e global (multilayer perceptron (MLP));
¢ |ocal (radial basis function neural networks (RBF));

e nearest-neighbour typé-n, learning vector quantization neural networks

(LvQ));
¢ rule-forming (binary decision trees, rule-based systems)
Holmstrom et al. consider another grouping:
e classifiers based on density estimation:

— parametric (LDC, QDC);

— nonparametrick-nn, kernel methods, finite mixtures, RBF).
e classifiers based on regression:

— parametric (linear regression, logistic regression, MLP)

— nonparametric (projection pursuit, additive models).
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e other classifiers (e.g., prototype-based: L\Vi@n for small k)

Some authors distinguish between neural and nonneuraifedas, local and
global classifiers, and so on.

3.2 Categorization of Combination Methods

Combination of multiple classifiers is a fascinating praobléhat can be consid-
ered from many prospectives, and combination techniquedeagrouped and
analysed in different ways. In terms of implementation, i@garization of com-
bination methods can be made by considering the combintpmogies or struc-
tures employed, as described(inl[65]. We could have diftav®S depending on

[46]:
o Types of classifier outputs

— Type 1 The classifier produces only a label without any informatio
about the classification accuracy.

— Type 2 The classifier gives an ensemble of possible classes ranked
order of importance.

— Type 3 The classifier gives a vector of scores associated to each po
sible class.

e Trainable or not-Trainable combiners.

e Topology.

Lu [53] categorizes1CStopologies into three categories: Cascading , Parallel
and Hierarchical.

In a cascading classifierthe classification result generated by a classifier is
used as an input to the next classifier. The results obtaimedgh each classifier
are similarly passed onto the next classifier until a resuttatained through the
final classifier in the chain. The main disadvantage of theofifes methodology
is the inability of later classifiers to correct mistakes mag earlier classifiers.
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Parallel classifiersintegrate the results of all classifiers in a singular laati
The main design decision that has to be made in the implet@mtaf such a
configuration is the selection of a representative comlmnahethodology. If the
decision process is well designed, the system can reachpeettkmance. Some
of the more popular and successful combinatorial methodsde majority vot-
ing, belief integration and the “stacking until convergehmethod. However, the
improper selection of a combinatorial strategy could atgse the influence of
poorly performing classifiers, which could eventually acedy affect the overall
performance.

Hierarchical classifiers combine both parallel and cascading classifier con-
figurations to obtain optimal performance. The use of suchethadology can
compensate the disadvantages encountered through theausaszading integra-
tion. Hierarchical systems could also be used to introduae ehecking, which
would nullify the influence of poorly performing classifiers

A more comprehensive and topical categaorization of muiétssifier topolo-
gies is presented i [48]. This categorization divides togies into conditional,
hierarchical, hybrid and multiple-parallel topologies.

3.2.1 Conditional Topology

This strategy first selects one classifier to perform the ¢dslkassification. If this
classifier fails to correctly identify the presented datepthaer classifier is selected,
as shown in the figure_3.4. Most implementations include mary classifier,
which is usually selected as the first classifier to be sedecliéhe selection of
the next classifier can either be a static decision or maybedan the values
obtained through the use of the primary classifier. Examplethods for dynamic
selection include decision trees. This process can canfonas long as there are
classifiers available or the pattern is correctly classifiéthe primary classifier
is an efficient one, the process is computationally effici€ht queue of selected
classifiers could be organized in order for the computatiphaavy classifiers to
be only selected at the end of the classifier queue. One diffispect of such an
implementation is the selection of a process by which tHerieé and successes of
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a classifier can be evaluated. This method can become owmriplcated when
the number of available classifiers increases.

Output
Input —|  Classifier 1

Rejected

Qutput
Classifier 2 d oo

Figure 3.4: Conditional Topology Example

3.2.2 Hierarchical (Serial) Topology

This topology employs a method where classifiers are appliedccession. Each
classifier applied to the data is used to reduce the numbeossilge classes to
which such input data belongs to. As the data passes thriwgtidssifiers, the
decision becomes more and more focused. The common striatethe design
of the classifier queue is to insert classifiers ordered datgito decreasing error
values. That is to say the classifier with the highest errasesl first, whereas the
classifier with the lowest error is used last. Of course dlstould be safeguards
to ensure that the classes selected by each classifier alm@yde the correct
class. If not, the next classifier will not have the option elesting the correct
output class.

In the figure[3b we show an example of hierarchical topolodpene each
base classifier is a binary one, that can distinguish betwestrue class and all
the rest.

3.2.3 Multiple (Parallel) Topology

This is the most common implementation of a multi-classiégstem. All the
classifiers first operate in parallel on the input and thelresue then pooled to
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Class A
e
Input —  Classifier 1
Other
Class B
Classifier2 »
| Other
Class Z
- (Classifiern ———#

Figure 3.5: Hierarchical Topology Example

obtain a consensus result. This methodology does incurasizas it is computa-

tionally heavy, with each classifier having to be executddreethe final result is

obtained.

Parallel combinations can be implemented using differgategyies, and the

combination method depends on the types of informationyred by the base

classifiers.

Classifier 1

Classifier 1

Input

Combiner

—— Qutput

Classifier 1

Figure 3.6: Parallel Topology Example
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3.2.4 Hybrid Topology

A hybrid topology based system incorporates a mechanisthéoselection of the
best classifier for a given input. It is obvious that certdassifiers perform better
than others on certain data. Thus, the selection of an appteglassifier would
streamline the entire classification process.

This topology could be considered a trade off between pid serial topol-
ogy, a possible example is shown in 1ig.13.7. The major disaidge of this ar-
chitecture is its complexity, even if we reach better pemfance with respect to

Classifier 1
Classifier 2 l

_|—> Classifier M —— Output

the others topologies.

Input

Classifier M-1

Figure 3.7: Hybrid Topology Example

Hierarchical and multiple topologies are also knowrsakection-base@nd
fusion-basedrespectively. The classification presented [by [48] is ntopecal
and relevant than the one presented[by [53] due to the coasioe of hybrid
systems. Hybrid systems are rapidly gaining popularity mgne@searchers due to
the limitations of each system.

3.3 The Combiners

The type of combiners that we can use depends on the bas#ietassutput. If
the base classifiers output is Bfpe 1 we can have different kind of combiners
as, for example:
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e Majority Voting
e Weighted Majority Voting
e Behaviour Knowledge Space

e Dempster-Shafer

3.3.1 Majority Voting

Dictatorship and majority vote are perhaps the two oldesateggies for decision
making. Their roots can be traced back to the era of ancieeelGeity states
and the Roman Senate. The majority criterion became esttiggoliin 1356 for the
election of German kings, by 1450 was adopted for electiornise British House
of Commons, and by 1500 as a rule to be followed in the Hous#.its

This combiner is based on @gemocraticmethod, even used in democratic
countries: the Vote. Each classifier gives its own evalwmatice final result will be
given from the class with more votes. In this case the conltias to count only
the occurrences of each class, and evaluate which claskégesiatest number of
votes.

If we want to formalize this concept, we can assume that thputsi of the
classifier will be denoted with a binary vector of si¥€ [d; 1, . .., d;.]" € {0,1}M i =
{1,... B}, whereB is the number of classifiers involved into the ensembles
the number of the possible classes, and whigre= 1 if the " classifier votes
the clasC; for the actual sample, whilé; ; = 0 otherwise. So the system will
decide for the clas§), if :

B B
M
3.1 dij = d;

That is to say if the number of votes obtained by ¢heclass is the maximum
of the evaluation obtained from all the possible classes.
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3.3.2 Weighted Majority Voting

A variation of the previously described technique iswesghted majority voting
In this case, for each classifier, we have also a weight. @islydahis weight will
be defined before the classification process. If we want tmdtize this method,
we can consider the outputs of each classifier as in the previethod. In this
case we have to consider an other coefficient vegidhat represents the weights
associated to th&”" classifier. In this cas€), will be given as output class if:

B B
M
3.2 bd; . = bid; ;
(3.2) ;1 AERBK ;1 J

It's worth noting that if the weight$; are all the sameweighted majority
votingis exactly the same as majority voting.
A good way to choose the weights could be the following onégasonstrated

in [44].

If we consider an ensemble af independent classifiers, each of
them with an his own accuracy;, in which their accuracy will be
combined through the weighted majority voting. The accyi@idhe
combination is maximized put the votes in accord with thiedohg
method:

Di

(3.3) b; o log N

3.3.3 Bayesian Combination

The Bayesian Combination rule is based ondhmosterioriprobability. In fact,
to an input patter it will assign the class that maximizes such probabilityvéf
denote it as;(x), for the sake of simplicity, hereinafter thewill be ignored, the
output of theM classifiers involved into the ensemble, and withthe generic
class. The combiner has to choose the class that maximizpitdity:
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(3.4) p(wk|517 S92y, SM)

This is the best combination method that we can use to rediecertor prob-
ability. The problem regards the knowledge of all the candal probabilities for
the available classes. This information is often unknowmoVercome this prob-
lem, it's possible to use some decision rules directly aetifrom the bayesian
formalism, that are an approximation of €q.3.4

The principal combination rules are:

e Product Rule
e Sum rule

e Max rule

e Min rule

e Median rule

Product Rule

If we use the Bayes Rule it's possible to rewrite[eql 3.4 as:

p(’wk)p(sb §2y 00y SM’wk)
p(817 52,0 ny SM)

(35) p(wk‘817827"'7SM) T

It's possible to rewrite the denominator as:

N
(3.6) p(s1, 82, .., 8m) = ZP(Sl, $2,- - Smr|wi)p(wy)

=1
where N is the number of the possible classes. Now, if we assumelikat t

outputs of all the classifiers amnditionally independent we can rewrite the
conditional probability as:
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M
(3.7) p(517 S92, 0y SM\wk) = Hp(Si\wk)
i=1

consequently ef._3.5 becomes:

plwg) M Hf\il p(wi|s;)

N M
Zl:l Hi:1 p(5i|wl)p(wk)

To maximize ed 318, it's necessary to maximize its numenatith respect to
k, that is:

(3.8) p(wils1, s2,.. ., sm) =

M
(3.9) mgx{p(wk)7M+l Hp(wk|5i)}

Eq.[39 represents the product rule. In fact we try to mayenttie product of
the conditional probability of each classifier, with redptecall the classes. One
of the major problems of this technique is that it's linkedhe possibility that one
or more classifiers give a result close to zero. In this caseptoduct will give us
a value close to zero , and the combiner will fail.

Sum rule

To define the sum rule we have to make the hypothesis thatea! phiori proba-
bilities and thea posterioriprobabilities are very close each other:

(3.10) plwilsi) = plw)(1+6;5)  with 065 <<1

After this we can substitute €q.-3110 into Eql 3.9, and we taaii:

M

(3.11) p(w MHHp wy|s;) = (1+0;,)

=1
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After that if we expand the second member product and we don'sider the
second order terms, we obtain:

M

(3.12) max{(1 — M)p(wy) + Zp(wk|3i)}

i=1
Eq[3I2 represents tlseim rule The limit are in the initial hypothesis which
Is very restrictive. That is true only in a very few cases.

Max rule

This rule is obtained directly from the sum rule, in fact gistained as an approx-
imation of the sum with the maximum into the €q.3.12

(3.13) maxc{(1 = M)p(wy) + M miax p(uws)}

Min rule

This rule is obtained starting from €g.13.9 with an approxioraof the product
with the minimum.

(3.14) ma {p(ii) " mtin pluoy )}

Median rule

Finally, the median rule is obtained starting from Eq. Busing the median in-
stead of the minimum:

(3.15) max{p(wg) " med;Z, p(wy|s:)}

Obviously to use this rule it's necessary that the hypothdwsit thea priori
probabilities are the same is satisfied.
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3.3.4 The Dempster-Shafer approach

The theory of Dempster and Shafer (D-S theory) has beendretyuapplied to
deal with uncertainty management and incomplete reasoning

In many applications, information is collected using saVgrdependent sources
and it is needed to integrate such pieces of informationdeioto improve the re-
liability of the decision making process. TBempster-Shafer theory of evidence
is a framework for such purpose that has found applicatiomsverse areas such
as expert systems, accounting, robotics, medical imagiogymental retrieval,
computer vision, pattern matching. and automatic targetgeition.

Differently from the classical Bayesian theory, D-S thecam explicitly model
the absence of information, while in case of absence ofim&bion a Bayesian ap-
proach attributes the same probability to all the possipémts.

The DempsterShafer theory could narrow down a hypothesiwiie the accu-

mulation of evidence and it allows for a representation efigmorancedue to

the uncertainty in the evidence. When the ignorance reatteegalue zero, the
DempsterShafer model reduces to the standard Bayesiarl.iibde, the Demp-
sterShafer theory could be considered as a generalizatitwe cheory of proba-
bility.

Some theoretical issues

Let 0 be a finite, non-empty set consisting of all the possibleeslof a certain
attribute. The set serves as our universal set, and it is calledithme of discern-
ment A mass functionalso calledbasic probability assignmenis a mappingn
from the set of all subsets éfinto the closed intervdD, 1] such that

(3.16) m(@) =0 > m(A) =1

AC29
The function valuen(A) measures the degree of evidence that is assigned to
the subset and (1) reflects that the total evidence is onesiif@est mass func-
tion corresponds to the case when there is no available resedat all (i.etotal
ignorancg, in this case we set () = 1 andm(A) = 0 for all other subsets df.
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When assigning &pa, there are some requirements which have to be met.
They descend from the fact that thpais still a probability function, hence has
to respect the constraints for mass probability functioBachbpais such that
m : 2° — [0,1], wheref indicates the so callettame of discernmentUsu-
ally, the frame of discernmentconsists of\/ mutually exclusive and exhaustive
hypotheses;, i = 1,..., M. A subset{4;,..., A;} C 6 represents a new hy-
pothesis. As the number of possible subset8 isf2?, the generic hypothesis is
an element of’.

For example, if we only consider two hypotheses (classes)atyPositiveP)
andNegativéN); hence, the frame of discernmentlis= {{P}, {N}} and2? =
{{P}, {N},{P, N}}, whereas in the Bayesian case only the evéfis}, {N}}
would be considered.

{P} and {N} are referred to asimple event®r singletons while {P, N} is
referred to agomposite eventurthermore, also the following properties have to
hold:
m(@) =0 > m(4) =1
AC20
The aim of assigning bpais to describe the reliability of a particular classifier in
reporting a specific event. Such a representation is saifablcombination, but
as we want to deal with combined results in the same way, weialpose the
constraint that the combination of sevebglaby means of the D-S rule still has
to be abpa The uncertainty in the final decision will be inversely poojonal
to the extent to which the base classifiers agree. If we habase classifiers, the
combination rule is such that:
=K Z Hmi(A
N A=A =1
where:

K'=1- Z Hml

N, A= 1=1

- Y I

Niey Ai#@ =1
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It is worth observing that the normalizing factér is independent from any
specific value ofd. The valueKk™ can therefore be considered a constant, once the
bpas are fixed.

3.4 Well Known MCS Approaches

There is no definitive taxonomy. Jain, Duin and Mao (200Q)dighteen classi-
fier combination schemes; Witten and Frank (2000) detall foethods of com-
bining multiple models: bagging, boosting, stacking an@recorrecting output
codes whilst Alpaydin (2004) covers seven methods of com@imultiple learn-
ers: voting, error-correcting output codes, bagging, bogsmixtures of experts,
stacked generalization and cascading. Here, the literatugeneral is reviewed,
with, where possible, an emphasis on both theoretical aactipal advices, then
the taxonomy from Jain, Duin and Mao (2000) is provided, amallfy four ensem-
ble methods are focussed on: bagging, boosting (includidgBdost), stacked
generalization and the random subspace method.

Table[3.4 provides a taxonomy of ensemble methods which akantfrom
Jain, Duin and Mao (2000).

3.4.1 Boosting

Boosting was inspired by an on-line learning algorithmexdtedge(3). This
algorithm allocates weights to a set of strategies usedddigtrthe outcome of a
certain event.The weight of strategy if properly scaled, can be interpreted as
the probability that; is the best (most accurate) predicting strategy in the group
The distribution is updated on-line after each outcomeat&gries with the correct
prediction receive more weight while the weights of thetstyees with incorrect
predictions are reduced.

Boosting is related to the general problem of producing & aecurate pre-
diction rule by combining rough and moderately inaccuraiegs-of-thumb.The
general boosting idea is to develop the classifier tdammcrementally, adding
one classifier at a time. The classifier that joins the ensembstep: is trained
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Scheme Architecture | Trainable | Adaptive Info-level Comments

\oting Parallel No No Abstract Assumes indepen
dent classifiers

Sum, Parallel No No Confidence| Robust; Assumes

mean, independent  confi

median dence estimators

Product, Parallel No No Confidence| Assumes indepen

min, max dent features

Generalized Parallel Yes No Confidence| Considers error cor

ensemble relation

Adaptive Parallel Yes Yes Confidence| Explores local exper

weighting tise

Stacking Parallel Yes No confidence | Good utilization of
training data

Borda Parallel Yes No Rank Converts ranks intg

count confidences

Logistic re- | Parallel Yes No Rank confi-| Converts ranks intqg

gression dence confidences

Class set| Parallel cas- Yes/No No Rank confi-| Efficient

reduction | cading dence

Dempster- | Parallel Yes No Confidence| Fuses non-

Shafer probabilistic  confi-
dences

Fuzzy inte-| Parallel Yes No confidence | Fuses non -

grals probabilistic  confi-
dences

Mixture Gated paral{ Yes Yes Confidence| Explores local exper

of local | lel tise; joint optimiza-

experts tion

(MLE)

Hierarchical Gated paral{ Yes Yes Confidence| Same as MLE; hier-

MLE lel hierarchi- archical

cal

Associative | Parallel Yes Yes Abstract Same as MLE, bu

switch non joint optimiza-
tion

Bagging Parallel Yes No confidence | Needs many compa
rable classifiers

Boosting Parallel hier-| Yes No Abstract Improves  margins

archical unlikely to over-

train , sensitive to
mislabels; needs
many  comparablg
classifiers

Random Parallel Yes No Confidence| Needs many compa

subspace rable classifiers

Neural Hierarchical | Yes No confidence | Handles large numt

trees bers of classes
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on a data set selectively sampled from the training dat& s@te sampling dis-
tribution starts from uniform, and progresses towardsdasing the likelihood of
“difficult” data points. Thus the distribution is updateceaich step, increasing the
likelihood of the objects misclassified at step- 1.

The classifiers inD are the trials or events, and the data pointiare the
strategies whose probability distribution we update ahesiep. The algorithm
is called AdaBoostwhich comes from ADAptative BOOSTing. There are two
implementation of AdaBoost: witteweightingand withresampling

AdaBoost

AdaBoost is one of the best-known and best-performing ebhkeatassifier learn-
ing algorithms. It constructs a sequence of base modelspmdaeh model is con-
structed based on the performance of the previous modeletrdiming set. In
particular, AdaBoost calls the base model learning algoritvith a training set
weighted by a distribution. After the base model is createts tested on the
training set to see how well it learned.

The figure[3: 411 shows AdaBoost’s pseudocode. AdaBoostreets a se-
quence of base models fort € {1,2,...,T}, where each model is constructed
based on the performance of the previous base model on thmmgyaet. In par-
ticular, AdaBoost maintains a distribution over thetraining examples. The
distributiond; used in creating the first base model gives equal weight to @ac
ample ¢, ; = 1/mVYi € {1,2,...,m}). AdaBoost now enters the loop, where the
base model learning algorithiy, is called with the training set andl, . The re-
turned modeh;, is then tested on the training set to see how well it learnda T
total weight of the misclassified examplgs) is calculated. The weights of the
correctly-classified examples are multiplieddy(1¢;) so that they have the same
total weight as the misclassified examples. The weightsldhalexamples are
then normalized so that they sum to 1 insteadeef AdaBoost assumes thaf is
aweak learner, i.e¢; < 1/2 with high probability. Under this assumption, the to-
tal weight of the misclassified examples< 1/2 is increased td /2 and the total
weight of the correctly classified examples > 1/2 is decreased td/2. This is
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AdaBoost((x1,y1), - (Tm, Ym), Ly, T')

Initialize  dy; =+ Vie{l,2,...m}.

for t=1,2,...,T,
he = Lo({(21.9), - (T, 9}, o)
Calculate the error of; : ;. = >, ()44,
if (¢, > 1/2) then,

setT =t — 1 and abort this loop.

B = 1=

Calculate distributio; , ;:

dy.i

1, otherwise

o AL {ﬁt, i ho(a) =3

dp v d L
bl Ztil w;

return the final hypothesis:
hpin(T) = argmazyey Y .4, (x)=y log i

Figure 3.8: AdaBoost algorithm

done so that, by the weak learning assumption, the next ntedelwill classify

at least some of the previously misclassified examples cibyrdReturning to the
algorithm, the loop continues, creating thdase models in the ensemble. The fi-
nal ensemble returns, for a new example, the one class iretlut classed” that
gets the highest weighted vote from the base models. Eaehrbadels vote is
proportional to its accuracy on the weighted training setus train it.

3.4.2 Bagging

Baggingis introduced by (Breiman 1996) as an acronym Baotstrap AGGre-
gatING. The idea of bagging is simple and appealing: the ensembieade of
classifiers built on bootstrap replicates of the training Jée classifier outputs
are combined by the plurality vote. The meta-algorithm,clihs a special case of
model averaging, was originally designed for classificatiad is usually applied
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to decision tree models, but it can be used with any type ofehfud classifica-
tion or regression. The method uses multiple versions cdiaitrg set by using
the bootstrap, i.e. sampling with replacement. Each ofetliega sets is used to
train a different model. The outputs of the models are coetbioy averaging (in
the case of regression) or voting (in the case of classificato create a single
output.

Bagging is only effective when using unstable (i.e. a smhadnge in the
training set can cause a significant change in the modeljinear models.

3.4.3 Stacked Generalization

Stacked generalization (or stacking) (Wolpert 1992) isféeint way of com-
bining multiple models, that introduces the concept of aanhedirner. Although
an attractive idea, it is less widely used than bagging amdtioay. Unlike bag-
ging and boosting, stacking may be (and normally is) use@mabine models of
different types. The procedure is as follows:

1. Split the training set into two disjoint sets.
2. Train several base learners on the first part.
3. Test the base learners on the second part.

4. Using the predictions from 3) as the inputs, and the coresponses as the
outputs, train a higher level learner.

Note that steps 1) to 3) are the same as cross-validatiomsiead of using a
winner-takes-all approach, the base learners are comlposdibly non-linearly.

3.4.4 Random Subspace Method

The random subspace method (RSM) (Ho 1998) is a relativalgntemethod
of combining models. Learning machines are trained on naalylehosen sub-
spaces of the original input space (i.e. the training seamsmed in the feature
space). The outputs of the models are then combined, uswyadlgimple majority
vote.
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3.5 Some Considerations

In conclusion, real-life situations are not as simple amdightforward. Most
data sets are not of good quality and contain a substantaitiqy of noise. Such
erroneous data can mislead the training paradigm which eaah to wrong ap-
proximations. Secondly, most training paradigms have elgr-cut limitations
on their operation. For example, the rule of thumb for theppraraining of a
neural network is that the paradigm should be presentedawittast 10 times as
much data as there are connections within the network. Latssahn lead to the
neural network reaching global minimums in its trainingoermnd consequently,
returning bad approximations on the function. A small sizedral network with
2-3 hidden layers and 10 inputs will have at least 50 conoestiwhich in turn
leads to a requirement of at least 500 training samples fogpgartraining. Most
of the complex data sets currently being used are often ohrhigher dimen-
sions and consequently require large networks for propproapmations. This
in turn leads to the requirement of needing large data sdigghwis often left
unfulfilled. Due to the limitations mentioned above, it hasb experimentally
observed that the construction of a perfect classifier fgrgawven task is often im-
possible. Therefore, the best that system designers havertowith are classi-
fiers and paradigms which provide near approximations oftthetions expected.
Of course, when different paradigms are used to approxithatsame function,
the approximations generated can vary due to differentprégations of the data
and noise being made. This diversity among different lemymmaradigms had
lead to the development of the Multi-Classifier System (M@8)ich attempts to
combine the approximations of different training paradsgim obtain better re-
sults. Such systems are analogous to a company board ofalgewhere the
board is usually constituted of people who have varyingl&ewé qualifications
and expertise. For example, a board is usually constitutad economist, an ac-
countant, a management consultant and a marketing conslutta very rare that
a board will have one person who is specialized in all the$dsfiaf expertise, and
are therefore compelled to make decisions in consensusalitine members of
the board. A decision making process of this sort, where itz fiecision is gen-
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erated by combining the opinions of all the members of thedizeexactly how a
MCS works. Of course, there can be many variations to thiméevhere differ-
ent members of the board could be given extra decision malapgbilities based
on the type of decision to be made. Intuitively, it makes sghat a combination
classifiers or experts provides better results than a sangleicision maker. How-
ever, this is dependent on how independent and diverse diadoal classifiers
are. If all the classifiers provide similar and correlateslits, the aggregated re-
sult will not provide any improvement to the recognition gees. Accordingly,
the diversity among the selected classifiers has been resabas one of the key
design features within a successful multi-classifier.



Chapter 4

Self-Organizing Classifier ensemble
for Adversarial Learning

In supervised classification we cannot work without lableét tan be associated
with our training data. Obtaining labels, hard or soft, isragess prone to er-
rors. That means that a classification algorithm can hasgelfalabelled data in
its training set, and this, in extreme cases, might rendeseless. Sometimes
the mislabelling samples could be forced by a training setaraination made by
some malicious useré\fversarial Learning This kind of training set contami-
nation is also known aBoisoning Attaci].

In this chapter we deal with to find out what is the impact obeecontaminations
on the labels, and how it is possible to clean a training sét ayMCS approach.
We will describe this kind of approach, named SOCIAL, and wadeseveral
experiments to verify the robustness to the noise and todh&amination gmart
noise) of a classifier trained withceanedtraining set.

We will show that the performance obtained by a simple d&sgrained with
the cleaned training set and by some “state-of-the-art” NM@&ed on the original
dataset, are comparable and sometimes the simple classéien better in terms
of accuracy.

We will demonstrate that our system can move the computatmomplexity
from the classification system to the training sktaning systerngiving advan-
tages in terms of computational complexity, interpretatod the problem (for
example through a set of rules) robustness in casaleérsarial learningprob-

40
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lems.

4.1 Some MCS approach for Label Noise

There is not much literature on how noise label should be flextiand dealt with
an MCS approach.

AdaBoost [30] has shown to often improve the base learnarracg. Since
its introduction, it has been successfully applied to mamplems. Furthermore,
the AdaBoost idea has been extended to other sort of problattieough it has
wide-spread success, it is susceptible to the over-fittnofplpm as pointed out
by Dietterich [21]. Ozal[61] proposed an approach calledBa@st2 to smooth
noise. This approach can be seen as a relaxed version of AdaB&hen training
examples are noisy and therefore difficult to fit, AdaBoodtriswn to increase
the weights of those examples to excess and over-fit themubecaany consec-
utive base models may not learn them properly. AveBoost2saging does not
allow the weights of noisy examples to increase rapidlyreghg mitigating the
overfitting problem.

Thiel [7Z3] made a comparison between the single classifidraamensemble.
In his paper the attention is focused on which impact a davagie softlabels has
on a noisy training set.

Melville and Mooney [[57] introduced a new kind of multipleaskifier sys-
tem to take into account the noise label problem; they catlédECORATE.
DECORATE, (Diverse Ensemble Creation by Oppositional Bellang of Ar-
tificial Training Examples) uses an existing "strong” learrfone that provides
high accuracy on the training data) to build an effectiveethe committee in a
fairly simple, straightforward manner. This is accompdidhby adding different
randomly constructed examples to the training set whemimgjinew committee
members. These artificially constructed examples are giagggory labels that
disagree with the current decision of the committee, theessily and directly
increasing diversity when a new classifier is trained on tngnzented data and
added to the committee.
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4.2 The SOCIAL Approach

SOCIAL is the acronym o$elf-OrganizingClasd fier ensemble foAdversarial
Learningand is a Multiple Classifier Systems with a parallel topol¢esd3.2.B)
where a statistical characterization of each base classdieynamically updated
by looking at the ensemble of these classifiers.

This system, after an iterative evolution, returns a cldan&ning set. This
result is obtained changing the labels assigned to the gsmapd considering the
training set cleaned when these changes become stable.

SOCIAL is specifically designed to approach with trainingsseith noisy
labels, i.e. for amadversarial leaningoroblem. The principle behind is that a
community through a democratic approach can remove mogsaiwn initial
mistakes and so it can improve itself.

4.2.1 System Evolution and Terminal Condition

The main parameter used here is hegree of Truth hereinafterDoTEl. This
value is defined in the rand@, 1] and it represents the probability that the labels
assigned to the sample are corrects.

The DoT distribution requires to be initialized. Making the assuimp that
the noise distribution is unknown, a possible criteria i$signl to the DoT
for each sample. This means that we trust the labels asstgrteé training set
samples.

Another important parameter is tiidassifier Reliability hereinaftelR. This
parameter is associated to all the base classifiers andetsents a degree of belief
on the correctness of the classifier with respect to the elnleetiecisions.

The last important parameter égz, that is the value used for the terminal
condition. This value is calculated as the ratio (in degibetween the number of
the samples that change their labels across two consecteps.

1The concept 0DoT is often used in the context @izzy theory6Y], in this case, statements
are described in terms of membership functions, that aréregyus and have a rand@ 1]. For
example, given the measured value of a parameter, the mehipéunction gives thelegree of
truth that the parameter is “high” or “low”.
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The system behaviour is characterized by:

1. a bootstrap step, in which SOCIAL put th®T = 1 for each sample and

5dB = +OO

2. an iterative evolution, in which the associated to each base classifier is
upgraded and the base classifiers are combined to redefinthand the
label for each sample.

3. aterminal condition, in which there is a comparison betweand a suit-
able threshold«).

In figure[4] the system evolution is represented. After thet&trap phase, the
system, iteratively, makes a base classifier statisticatagdterization and then
combines all the classifiers’ outputs weighted by their ganance estimation
in order to evaluate if the label of samples must change. lligirtae terminal
condition is checked and, if it is matched, the system retarttleaned” training
set as well as thR for each classifier.

Bootstrap Phase Evolution

* DoT = 1 for each Base
: R Base DoT Label
Input sample Classifiers > Classifiers —+  Changes
Statistical Combination Evaluation
*5 =+ Characterization
Y 5,
Noisy
Training
Set
Step i

“Cleaned”

|

|

|
>

|

|

|

|

|

|

|

|

|

1 Dataset

|

Figure 4.1: SOCIAL: Flow Diagram
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4.2.2 Base Classifiers Statistical Characterization

All the information about the performance of a classifierhwigéspect to a spe-
cific training set are given by th@onfusion Matrixsed:3.1P). It represents how
the errors are distributed across the classes. Startingtfis matrix we have in-
troduced a new type of matrix, that takes into account alegtibability that a
training pattern really belongs to a specific class. We dalés matrixWeighted
Confusion Matrix hereinafteMWCM .

Predicted Class
TrueClass| C;, Cy ... Cy
& €11 €12 ... €1
02 €21 €929 e €oM
Cu €pm1 €an2 - EMM

Table 4.1: Confusion Matrix (CM) fonM -classes classification

In table[41 a general Confusion Matrix for an M-classes fgnmokis shown.

Let us define the training set d$z1,v1), ..., (zn,yn)}, Where the generic
xy IS the k-th sample ang, is its label. N; represents the number of samples in
whichy = C;, andN,; represents the number of samples in whjck C; and
y = C;, wherey is the predicted label.

The difference between ti@onfusion Matrixand the weighted versioWCM
lies on how the elements; are calculated. While in th€onfusion Matrixhe en-
try e;; denotes the percentage of training set samples whose as®isl’;, and
which are assigned by the classifier to clégs(eq.@:l), in the Weighted Confu-
sion Matrix the same entry denotes the percentage of th@rigaset whose true
class isC;, and which are assigned by the classifier to c(éﬁsmeighted by the
DoT associated to each sample (eql 4.2).

N
Nij Zk:l:yk:Ci and g, =C 1

(4.1) CM €ij = N, )

=z
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| Sample | True Class | DoT || Predicted Class|

X P 0.8 N
i) P 0.6 P
I3 P 0.9 P
Xq N 0.2 N
xIs N 0.5 P
T4 P 0.7 P
T7 N 0.4 N
10 N 0.2 P

Table 4.2: Training Set Classification Example with7" value

N
e Crand g, DOT (k)
(42) WCM € = Zkayk,fcl ]C\l[yk—C] \

For example, we can consider the binary classification prolh the tablgZ]2.

In this case the samples can belong to the claBsstive(P) orNegative(N)
and the entry;; are evaluated as shown in the telbld 4.3. It is worth notintttiea
sum of the elements of ea8WCM row is always less than one, while in the case
of CM it is always one. This is due to theoT' associated to each sample.

For the sake of brevity, in the following we explicitly evale only the entry
ego Of the matrix, that is, when th&rue Classs P and theAssigned Class P.

4
(43) CM €oo = g =0.8
0.6+09+4+0.740.3
(4.4) WCM g — —0 P02 0IH05 4 46

)
Starting from theWCM, SOCIAL evaluates th€lassifier ReliabilityR as-
sociated to each base classifier.

(4.5) r: WCM — R



4.2. THE SOCIAL APPROACH 46

CM Predicted Clas§ WCM Predicted Class
True Class| P N True Class| P N
P 0.80 0.20 P 0.46 0.16
N 0.40 0.60 N 0.14 0.30

Table 4.3: Comparison betwe€fiM andWCM on the example in tab 4.2

It is possible to make a comparison betweenRhebability Theoryand this
problem. TheWCM could be considered aspaobability density functiofipdf)
while the R could be considered as a synthetic information extracteah fihe
pdf , as for examples the meam)(or the standard deviation).

The information that SOCIAL has to extract from tN€CM depends on
which type of fusion it uses. For example, if the fusion blaska Weighted
Majority Voting (sed:3:312) then thR will be a vector of “weights” associated
to each class, where the single valg”;) is evaluated as shown in dg.14.6.

Another examples of function() will be described in the appendX A where
the Dempster-Shafer (sEc_313.4) combination rule is uséaisamn block, and in
the appendikB, where the Bayesian Combing rule is congidere

In figure[4.2 it is shown how the system evaluates the WCMistaftom the
training set. Itis worth nothing that in the bootstrap phhgaNeighted Confusion
Matrix is the normal Confusion Matrix, because theT value are put td for
each sample.

Another important consideration is that the name SOCIAledly derives
from the DoT values that are evaluated from the ensemble in the previeps s
that's why the classifier characterization is made with eespo the others classi-
fiers.
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| Classifier
Reliability
Sample| | Label | DoT Evaluator
% Y DoT,
X, ¥a DoT,
! . . Classifier > WCM
X, i Do, *

Figure 4.2: Statistical Classifier Characterization Schem

4.2.3 Base Classifiers Combination

After the system has characterized the base classifieras itdhcombine them to
obtain the newabel and the newDoT for each sample as shown in the figlrd 4.3.

|—> Classifier 1 l
Sample l
ot Sample| | Label | DoT
¥~ Classifier 2 |—> Eusion x,p ¥, DoT,
x:N Block % = D‘?Tf
. ’ T X, Y DoT,,
—p Classifier B

Figure 4.3: Base Classifiers Combination

The Fusion Block implements a functigit) defined as:

(4.7) f(@RY),.... (9" R")) — (y, DoT)

Where in eqZ417)’ represents the output of the- th classifier by means of a
suitable combining rule.
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For example, in the case of using t&ighted Majority Votindgsed3.3.P) as
combining rule,f() becomes:

B i (50
= argmax Zizviiec; 10D
Yy =arg J B

(4.8) f—
Zle:gizcl. RZ(yNL)
Dol = mar; ———F5——
Other examples of () will be discussed into the Appendd A and in the Ap-
pendixB.

4.2.4 Label Changes Evaluation and Terminal Condition

SOCIAL stops its iterations when the ratigg between the samples that change
their labels in the step— 1 and that ones that change them in the stepless
than a threshold (eq.[4.ID) and it will give theleaneddataset.

L ifylt—1) # yilt)

0, otherwise

N
(4.9) changes(t) = Z A, o 2 {

f=1
(4.10) o {+OO’

10 * log;, %, Otherwise

We have experimentally proved that a good valuerfas 1dB. It is worth

noting that during the first step= +oc and so the system can stop its iterations
only starting from the second step.

4.2.5 The SOCIAL Algorithm

In this section we will describe the SOCIAL algorithm usiing tWeighted Ma-
jority Voting as fusion block.

Fig. 225 shows the pseudocode of the algorithm. SOCIAL dsm#put
the training sefzq, (1), ..., (zn,yn(1)), the base models learning algorithms
Ly, ..., Lg and athreshold valuefor the terminal condition.
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This algorithm, for each stefy maintains a distributio®oT'(¢), where each
elementDoT;(t) is associated to the sampte This distribution gives the prob-
ability that the sampler; really belongs to the clasg. During the bootstrap
phase,(DoT;(1) =1 Vi € 1,2,...,N) for the motivations illustrated previ-
ously (se€4.Z]11).

As first operation, SOCIAL evaluates through a K-Fold Croadétion ap-
proach, a function’(¢) that associates for each samplefor each base classifier
b and for each step a predicted clasg’(?). Starting fromg?(¢), SOCIAL evalu-
ates theWCM (sec[4.ZPR), where each entry is calculated as:

N
2 Zk:l:yk(t):Ci and g (t)=C; DoTj(t)

(4.11) el (1) 0

[}

Consequently, it evaluates the Classifier Reliabiitfi{¢) for each base classi-
fier b and for each iteration The valuesk®(C;, t) are evaluated for each possible
classC; starting from the weighted confusion matrix and calculgtimeweighted
accuracyfor each class:

(4.12) R*(Ci, t) = €(1)

After the weights evaluation, it applies tN€ MV to each sample and updates
the labely;(t) into the training set and thBoT'(¢) distribution:

gt e, R ()
yi(t + 1) = argmaz; k=1:35 (1) ;

Zszhgf(t):cj Rk(@f(t))
X
B
At this point SOCIAL evaluates the number of samples thahgkdheir labels

in the step:

DoT;(t+ 1) = ma
J

Loify(t —1) # yi(t)

0, otherwise

N
(4.13) changes(t) = Z A, A; = {
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At the end, it evaluates the terminal condition, i.e. if the

changes(t — 1)
10 %1 <
* 20810 change(t) ’

SOCIAL returns theleanedtraining setz;, y; (1)), . .., (zn, yn(%)).

4.3 Experimental Results

To figure out how the system perform, we will show the resuttamed for two
kinds of problems, the first one produced with some synthdistributions in
which noise is added as described in the sefionl4.3.1, astiemwith some real
scenarios in which the noise is added ismartmanner, i.e. imitating a possible
malicious user that try to overcame the security systemaroimating the training
set. In all the tests we will make a comparison among the acguobtained
through the worst base classifier trained with the traingtgleanedoy SOCIAL
and the accuracy obtained by all the base classifiers andebgtétte of the art
Multiple Classifier Systems on tleiginal training set.

4.3.1 Noise Model

To experimentally determine the impact of label noise ossifecation accuracy,
we need to artificially add noise according to a certain madaed two-class case,
a given portion of the training data would get randomly sielé@nd the associated
label flipped to the opposite class. This method can be egtetaithe multi-class
case, with the label being changed to one of the other classasndom manner.

4.3.2 Results with Synthetic Data

The first type of experiments are on three synthetic datasptsted in tablg414.
We have considered three base classifiers:

e Decision Tree(DT): The algorithms that are used for constructing deaisio
trees work by choosing a variable at each step that is thebesttvariable
to use in splitting the set of item8estis defined by how well the variable
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SOCIAL((z1,y:(1)),...,(zn,yn(1)),Ls,...,Lp,T)

> N is the number of sampleg is the number of base classifiers,
> 7 is terminal condition threshold\/ is the number of the classes.

Initialize DoT;(1) =1 Vie1,2,...N.
Initialize t=0
Initialize ¢ = +o0

do
t=t+1
for b=12,...,B,
> Classifier evaluation through a K-fold Cross Validation Aggch:
hP(t) = Lo((@1,91(8)); -+, (@ar, ym (2)))
for i=1,2,..., M,
for j7=1,2,...,M,
> WCM entries evaluation
b lecvzlzyk(t)zci and g8 (t)=0; DoTi(t)
eij(t) 3 N;
> Classifier Reliability calculation:
R*(Ci, t) = €}i(2)
for i=1,2,...,N,
> Labely; updating in the training set:
Zf:l:g’.“(t)zc,- RE @ (1)
yi(t + 1) = argmaz; 5
> DoT updating for each sample:
et {5 0)
DoT;(t + 1) = max; kil‘yf(t)chj
> Label changes evaluation:
1, ifyi(t—1) =yt
Chang@s(t) — Zi\il AZ', AZ — Y ny’t( . ) yl( )
0, otherwise
> Terminal condition evaluation:
if ¢t >1,
h t—1
6 =10 * logy CCZZiZi(s(t) :
while § > 7
return Thecleanedtraining set(z;, y; (t)),. .., (zx, yn(t)).

Figure 4.4: The SOCIAL Algorithm
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Training
Set
Noiseless

—» Noise Generator

Figure 4.5: The noise generator algorithm.

| Distribution | Training Set Samples | Test Set Sampleg Classes |
Gaussian 4000 1000 2
Mixture of Gaussians 4000 1000 2
Rotated Check Boar@5°) | 4000 1000 2

Table 4.4: Synthetic Datasets Description

splits the set into subsets that have the same value of thet teariable.
Different algorithms use different formulae for measurlest We used
theC'4.5 Algorithm, in particular the/48 implementation of Weke [28]

¢ Probabilistic Neural Network (PNN): The Probabilistic Neural Network
was introduced in 1990 by Specht[70] and puts the stati&@rael estima-
tor into the framework of radial basis function networks.NE\have gained
interest because they offer a way to interpret the netwotlcsire in the
form of a probability density function.

e K Nearest Neighbourhood(KNN) with £ = 3: The k-nearest neighbour
algorithm is amongst the simplest of all machine learnirgpathms: an
object is classified by a majority vote of its neighbours,wtihe object
being assigned to the class most common amongktitsarest neighbours
(k is a positive integer, typically small). If k = 1, then thbkject is simply
assigned to the class of its nearest neighbour.

We choose these classifiers because they are conceptutdheni and they
can increase théiversityamong them. It is experimentally demonstrate that for a
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Multiple Classifier Systems the diversity of the base cfassiis very important
to increase the overall performancel[46].

In order to compare, we choose four well known MCS approa¢has3h);
in particular:

e DECORATE:DiverseEnsembleCreation byOppositionalRelabelling of
Artificial Training Examples which uses an existing "strong” learner (one
that provides high accuracy on the training data) to buildféective diverse
committee in a fairly simple, straightforward manner.

e ADABOOST: ADAptive BOOSTing, a machine learning algorithm, for-
mulated by Yoav Freund and Robert Schapire. It is a metadiéhgo, and
can be used in conjunction with many other learning algorgho improve
their performance. AdaBoost is adaptive in the sense thsesuent classi-
fiers built are tweaked in favour of those instances misiladdy previous
classifiers. AdaBoost is sensitive to noisy data and ostliefowever it is
less susceptible to the over-fitting problem than most iegralgorithms.

e MULTIBOOST: MULTI class adBOOST, that is an efficient implemen-
tation of the ADABOOST, with the possibility to consider rtitglass prob-
lems.

e BAGGING: BootstrapAGGregatNG, a machine learning ensemble meta-
algorithm to improve classification and regression modeisiims of stabil-
ity and classification accuracy. It also reduces variancehatps to avoid
over-fitting. Although it is usually applied to decisionérmodels, it can be
used with any type of model.

General system evaluation with30% of noise label

The first test is made using the three different synthetiritdigions adding 80%
of uniformly distributed noise to them.

In table[4b, the first four rows represent the accuracy nbthwith the Mul-
tiple Classifier System trained with the original trainireg sorrupted by &0%
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| Gaussian| Mixture of Gaussians | Rotated Check Board
Multi Classifiers System

ADABoOoOst 95,70% 80, 60% 74,10%

MultiBoost 95,70% 78,60% 72,30%

Decorate 96, 60% 82,00% 84, 20%

Bagging 96, 40% 79, 60% 89, 40%

Base Classifiers

Decision Tree | 80,40% 68, 40% 70,00%

KNN 86, 30% 71,00% 71,00%

PNN 92, 60% 75, 80% 75,80%
Decision Tree trained with the obtaineanDataset

Decision Tree* | 97,10% | 82, 40% | 91,00%

Table 4.5: Synthetic results witld% of label noise on the training set

of label noise, the successive three rows represent thesagcobtained with the
three base classifiers trained on the original traininglSeglly, the last row rep-
resents the accuracy obtained with the worst base classifittis case the DT,
trained with the training set cleaned by SOCIAL.

It is worth noting that SOCIAL makes the classification peshlsimpler than
the original one, and even the worst classifier trained widtleanedraining set
becomes better, in terms of accuracy, than all the MCSs appes used and as
well as all the base classifiers.

In the figure$ 212,413 aid 4114 is shown how SOCIAL modifiegraining
set, and how thé parameter changes, for the three considered datasets.

In particular in each one of them, the first picture represémt accuracy be-
haviour across the steps. It is worth noting that the behavgalways the same
for each of the three datasets, i.e. there is a first momenhiohathe accuracy
improves, and it corresponds to effiectivecleaning of the training set, and a sec-
ond moment, in which the accuracy decreases; it corresporasmoothing of
the original distribution and a loosing of some informatemmtained in.

Itis possible to find the same information in the second pécituwhich differ-
ent values ob,z are represented across the steps. In this case we are nrapitor
the variation between two consecutive steps. The valued®inso that if there
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isn’t any variations between two consecutive steps, we aaatue equal t6. We
experimentally noticed that if we did not want to comprornitse initial distribu-
tion, and want to preserve most of the information containeit, a good value
for the thresholdr is 1dB. In this picture the violet dot-line represent an inter-
polation among three consecutive points of thg line, i.e the blue one, this is
due to the fact that sometimes the original line, especvaillly low level of noise,
becomes unstable, and it is difficult to find the correct ougbep.

The other ten pictures represent a scatterplot of the loigtan in each step.
The output step is indicated in bold, i.e. the scatterpldhetleanedtraining set.

In the tabld’4b are shown the results obtained. It's worthing that the De-
cision Tree trained with theleanedraining set by SOCIAL, always increases the
performance of the base classifiers, and,dleanedtraining set shows a classi-
fication problem simpler than the original one, as demoteddray the fact that
the worst base classifier (DT) obtains an high level of acyutsing thecleaned
training set.

Some Considerations

For the sake of brevity we presented only some tests orothéed check board
dataset to make some considerations that seems to be vgkdaral.

The first test arise with the evaluation of the SOCIAL robessito the noise.
In this case we added a different percentage of noise to én@rtg set, and we
evaluate the accuracy of the DT and the other MCS approadaier test (fig-
ure[4®).

In the figurd 4l it is shown a comparison among the base fitassiccuracy
and the accuracy obtained a Decision Tree trained with gendraining set. Also
in this case it’s clear that the system is more robust to tlgenasith respect to the
single classifiers.

Another important result is that the system reaches to razedf the training
set is noisy or not. In the figufe4.8 is shown the percentagkeofamples that
change their labels in the first iteration with respect tortheber of training set
samples. This percentage is linear dependent to the pageeaf added noise.
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Figure 4.7: Accuracy Comparison with base Classifiers ftfexdint % of noise
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Figure 4.8: % Class changes in thié step for different % of noise

4.3.3 Results with real data

We made also two case studies with real data, in particuléng first one we used
some internet packets traces, where the classesattaxkor normal this dataset
was extracted by a larger one presented in the paper [71].

| | Attack | Normal |

Training Set | 1540 2400
Test Set 386 600

Table 4.6: Traffic Dataset Description

In this case we added smart noise, simulating that a mabaiser put some
new attacks in the network, or make a poisoning trainingtsatls, contaminating
the training set with some samples that are consideredyaisemal packets.

A dataset description is made in the tdbld 4.6.

Also in this case the system recognize the presence of nuise¢hie training
set. We can monitor this situation giving a look to the petaga of class changes
in the first step as it is possible to see in figrd 4.9.

We tested SOCIAL with this new data; by giving a look to a congzan with
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the other MCS approaches, in this case SOCIAL's performaneeomparable
with the other ones (figufe“4110). But it's worth nothing, ttaéso the Decision
Tree, trained with the theleantraining set reaches the same performance of SO-
CIAL, sometimes it is better than it. The point is that theteys can reach the
same performance with very simple classifier, and so wittwet@omputational
complexity. An other advantage is the possibility to easitglerstand thenain
rules behind the classification problem by using a rule geapne@fter the dataset
cleaning up.

As an example, we will show how SOCIAL cleans the trainingisé¢he case
of 30% of contaminationfigure[ZT1

In the chaptef]5 will be shown another example for the traffwfidentifica-
tion.

4.3.4 Key Findings

We find out a methodology that try teana training set from the noise by us-
ing a MCS approach. This system is designed to work in an advial learning
context, in which a malicious user try to camouflage the ingjpattern to over-
come the classification system. We noticed that SOCIAL reaehgood level of
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robustness to this kind of noise, and it gives a clean datiagetould be also used
in a faster and easier classification system. In this waypbssible to overcame
the computational complexity linked to the SOCIAL architee.

SOCIAL gives rise to a simple classification problem. Thescofthis is, that
if the system is not stopped in time, the sample distributiomd be modified, so
damagingthe dataset and the possible performance of the classifier.

As regard to the convergence, the system could also be seena@s linear
dynamic system, and it could be of interest to analyse soai®lisy issues of its
behaviour.
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Chapter 5

Network Protocol Verification by a
Classifier Selection Ensemble

In the last years, networking research has started facingldgm not foreseen
when the firsinternetprotocols were originally designed: network traffic classi
fication, that is, associating traffic flows to the applicaidhat generated them
[56]. Originally each network application used known pamts and transport-
level ports that easily allowed their identification. Sirecéew years back, this is
not true any more [42, %59]. The number of network applicaiosing proprietary
undisclosed protocols has grown at an incredible rate (§KRP-IPTV); the typ-
ical association application/port is often forged; in sarases traffic is encrypted,
whereas sometimes it is encapsulated into traditionabpod$. Beyond the need
to understand which kind of traffic is carried on Internekinthe identification of
traffic hidden in flows using well-known ports represents alleimging task. For
these reasons, new approaches to traffic identificationeseéad. By traffic iden-
tification here we mean identification of a particular (or awgr of) applications
of interest.

This is a typical case study for titeversarial Classificatioproblem. In this
case some malicious users try to overcame the classificeyistem in different
ways.

In this chapter we propose a novel identification technicaseld on packet-
level information aiming at exploiting behavioural chaeacstics of different ap-
plications. Specifically, we will describe a method that asboth thesign pat-

64
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ternand thesizesof the first four packets of each flow to label the flow as acagpte
(identified) or rejected. The accepted class is the protagplication convention-
ally associated with the respective port number. The regectass is related to
applications that try to hide their presence typically witle purpose to circum-
vent network usage/security policies. The proposed apprsaaimed at a high
accuracy of identification, being at the same fast and usaleiFirst, it uses the
direction signs and the sizes of only the first four packeteawh flow (targeted
to work online), and second, it does not need to access tHeguhygf the packets
(does not affect privacy and works with encrypted packets).

The chapter is organized as follows. Secfion 5.1 discusseffylour motiva-
tion. Sectiod 5P provides details about the techniqueseabése of our identifi-
cation approach. Sectidn®b.3 describes the dataset andehsunement approach
used in the experimental validation. We show results oftifieation of “port 80”
traffic in Sectiodf 5.M. At the very end, we try to apply SOCIAhe algorithm
presented in ChaptEl 4, to clean the training sets and weavritpare it with the
proposed approach.

5.1 Motivation and Related Work

Even if commonly considered unreliable, the classificdit@ntification approach
known asport-baseds still used today for online monitoring. Its advantages ar
simplicity and speed, as it checks only a single packetérefeld. Besides, in
some real-world situations there are no effective altérast An immediate al-
ternative proposed in the literature (and promptly adoptethe industry) are the
payload-basedpproaches based on the inspection of the transport-lex&ep
payload (the data produced by the application). These igebga usually compare
packet contents against known signatures of applicageetiprotocols. Such
technigues were initially considered very reliable, andemgsed to build refer-
ence data in the evaluation of novel classification appresa¢B2,43]. Today,
however, their reliability and applicability are undermthby a number of fac-
tors. First, there are continuously arising undisclosexppetary protocols and
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techniques of protocol obfuscation (e.g., eMule/eDonk&g@cond, several new-
generation applications (e.g., instant messaging, filersilamake use of tradi-
tional protocols (e.g. HTTP) to encapsulate their traffibjck deceivepayload-
basedclassifiers into erroneously associating the traffic to titmpsulating proto-
col. Third, new-generation applications (e.g., Skype)pmeket-payload encryp-
tion techniques. In addition, network-level (e.g., IPSE@Q application-level
(e.g., ssh) encryption tunnels are being increasingly urséde Internet. Even
when they are feasiblgayload-basedpproaches face further difficulties: (i)
payload inspection requires accessing all user-transadiata, which may breach
privacy laws in some countries; (ii) the computational teses required to in-
spect the entire content of the packets is usually quite, mgking it difficult to
deploy such techniques when the traffic volume is large. Bszaf the growing
problems with thgpayload-base@pproaches, nestatistical-basedlassification
approaches have been proposed that do not need access¢b @atlent. These
approaches use flow characteristics as features to trasifdais from the state-
of-the-art machine learning. The explosion of high-qyaditientific literature in
this field [60,125/ 8111 14,18, 26, 44| B,182,176] 67| 44, 17] testithe great inter-
est in researching novel and accurate techniques for tidéfgsification. It has
been demonstrated that teatistical-basedpproaches can achieve high accu-
racy, and that they appear to be the most promising appredolface problems
like protocol obfuscation, encapsulation, and encrypfii&h(€].

In this chapter we propose a technique for the identificadioiidden traffic
flows using non-intrusive features and based on machineifepdrawing upon a
recent study by Gargiulet al. [B2]. We carry out an extensive experiment with
an ensemble of Decision Trees where the input features arsizbs of the first
four packets with payload, and the ensemble member thatsrtakedecision is
chosen by the combination of signs of these packets.
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5.2 The Identification Approach

The requirement for operational speed brings in the idetagEdier selection en-
semble where only one of a set of experts has to make a de{@&pd/]. The
ensemble consists of member classifiergperty and anoracle that authorises
one of the classifiers to pass its decision as the ensembisiatec Generally
speaking, the oracle may have pre-defined regions of compefer the classi-
fiers [66] or dynamically allocated regioris [78]. Gargiebal. [32] propose to
use the port number as the oracle determining the regionsnopetence. The di-
rections and sizes of the first four packets of the TCP flow laea used as the
features in a further 2-stage classifier (Figlird 5.1). Théufes and the modu-
lar architecture were chosen so that the classification tis fast and accurate,
and new modules can be trained and added to the system wrdwraining any
already trained part.

5.2.1 The Features

Following |4],]24] and [29], we propose to use only the firstf packets and to
use the following features (see Section 3.3.2 for detailfeature extraction):

e 1, the port number;

e 11, 19, 13, T4, the directions of the first four packets, € {0, 1}, where) means
that the packet is transferred from server to client, arfdom client to server;

® 51, 89, 83, S4, the payload sizes of the first four packets, wherare positive

integers. As in[[2l7], we do not consider packets without pagilbecause they are
related to connections state information.

5.2.2 Stage 1: Sign Pattern Filter

To illustrate the system we use a data set consisting of mkttxaffic traces at
the University of Brescia (Italy)[27]. The known protocatsthe training data
are: POP3, SMTP, HTTP, msn, FTP and BitTorrent. Tableb.Bdvs a sum-
mary of the training data as distributed across the 16 plespéitterns of signs
[x1, o, T3, 4], from 0000 to 1111.
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Classifier Selector  The Selected Classifier

————————————————————

| 4 Signs 4 Sizes | |
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| filter classifier | 1
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Rejected Rejected

(Signs) (Payload sizes)

Figure 5.1: The generic classifier ensemble architecture.

Signs Protocol and port number

POP3 FTP SMTP msn BitTorr HTTP
1234 110 21 25 1863 6881 80
0000 0O 138 16 0 0 3
0001 1 75 55 0 0 0
0010 21 216 543 0 0 0
0011 0 0 4 0 1 0
0100 749 21 604 1 0 0
0101 18823 5845 18186 0 1 0
0110 17 1 18 0 1 0
0111 0 0 1 0 0 0
1000 0 0 0 328 23 5348
1001 0 0 0 30 520 240
1010 0 0 0 660 3609 826
1011 0 0 0 4 753 12
1100 0 0 0 1 8 427
1101 0 0 0 0 87 76
1110 0 0 0 0 9 108
1111 0 0 0 0 45 23

Table 5.1: Summary of the Brescia network traffic data (tregh
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The table shows that groups of protocols can be distingdislyethe sign
patterns. For example, protocols msn (1863), BitTorreB88(1§ and HTTP (80)
hardly ever begin with a packet from sever to client & 0). The table suggests
that the sign patterns can be used to filter out very quickilydlthat do not match
the pattern of the class they are supposed to be a part of.glmdfb.1, this is
labelled as thesign pattern filter In this paper we focus on the TCP traffic on
port 80, so flows with patterns beginning with = 0 will be rejected by the filter.
Next, using the training data, we can choose a rejectiostiold, of say, 2%, and
filter out all sign patterns where the number of flows is beloe/threshold. With
this filter in place, the “allowed” combinations of signs fine HTTP protocol
(80) are1000, 1001, 1010, and1100. All other protocols will be rejected by the
sign pattern filter.

5.2.3 Stage 2: Decision Tree classifier using payload sizes

A separate classifier is then trained for each sign comhindtiat passes through
the sign filter. Here, each classifier has to solve a two-@asislem: match ver-

sus mismatch of the protocol/application conventionafigaxiated with the re-

spective port number. We chose ecision Tred24] classifier, since its classifi-
cation speed makes it very effective for an online impleragon [/6] and it does

not assume any type of probability distribution of the d&z] [

The decision process of a Decision Tree classifier is inelitsince it can
be traced as a sequence of simple decisions. The first ded¢ssimade at the
root; depending on the answer, a branch is selected and ildenclde is visited.
Another decision is made at this node, and so on, until a kEaéached. The
leaf contains a single class label, which is assigned to ltipecbbeing classified.
In our case the C4.5 algorithm was employed for construdtiegdecision Tree
classifiers. We used the Weka implementation, caIIeH.J48

The choice of a Decision Tree classifier can be justified byfahewing ex-
ample. Figur€h]2 shows the scatter-plot of a dataset ditttedices taken from the

Weka is an open source collection of data-mining tools arickiy available at the website
http://www.cs.waikato.ac.nz/ml/weka.
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University of Brescia, Italy (UNIBS, see Sectibn5]3.1 foe dataset description).
The data is filtered so that only flows with sign pattéern z», x3, x4] = 1010 are
displayed. Thez,y) coordinate axes are the first two size featurgsand ss,
respectively. The figure shows three protocol classes:oB#nt (3609 flows),
HTTP (826) and msn (660). Two classification regions — HT TREhesother two
classes — can be clearly distinguished. Class HTTP seenmseteminant class
in Figure[2.2, however, this is not the case. Classes Biéhvrand msn are ex-
tremely dense, and are located towards the bottom left cofrtbe scatter-plot.
Figurelo.B displays an approximation of the 2-D densitighethree classes. The
well delineated classification regions of high density sgjghat a Decision Tree
classifier would be the most suitable choice.

UNIBS
x BitTorr
° [ §
s * http

..
Y . .'I L]
¢ e ®
1250( O T T msn

1050 1450 s1

Figure 5.2: Scatter-plot of the UNIBS training data, firsotsize features.

N =

(@ HTTP (b) msn (c) BitTorrent

Figure 5.3: 2D density of the UNIBS training data with sigrtpen 1010.
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5.3 Dataset and Feature Extraction

5.3.1 Dataset

To validate the proposed approach we used training datasetsthree differ-
ent institutions:University of Brescia in Italy (UNIBS)Lawrence Berkeley Na-
tional Laboratory (LBNL)andCooperative Association for Internet Data Analysis
(CAIDA). A summary of the content of the three data sets used to ttaisystem

is given in TabldhR. As testing set we used traces ftdmversity of Napoli in
Italy (UNINA). From this network we collected and used traffic traces edl&b
two different time periods, 2004 (hereinafter denotedJA8NA2004 and 2009
(hereinafter denoted d$NINA2009. Details about the flows composing these
traces are reported in Taljle 513.1.

Table 5.2: Number of flows in the three training data sets.
UNIBS CAIDA LBNL
Protocol Port
POP3 110 19611 9591 1172
SMTP 25 19427 11831 20825
HTTP 80 7063 5930 81984
FTP 21 6296 1652 -
BitTorrent 6881 5057 - -
msn 1863 1024 - -

netbios-ssn 139 - 4575 -
HTTPS 443 — 25427 18013
oms 4662 — — 1716
IMAP4 993 - — 7677

UNINA2004 UNINA2009
Protocol Port
HTTP 80 506795 144042
non-HTTP 80 2245 803

Table 5.3: Number of flows in the UNINA data sets used for tegti

Evaluating machine learning algorithms for automated petvapplication
identification. As explained in the next Section, in this lware focus our exper-
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iments on the identification of HTTP traffic flowing throughrp®CP 80. Thus,

during the training phase, for each sign pattern we trainctireesponding pay-
load size classifier (a Decision Tree) assigning all the HTldRs to one class
(the one corresponding to traffic to be accepted), and adtier flows (e.g. from

msn, BitTorrent, etc.) that match the considered sign patis the other class
(traffic to be rejected). For example, in the case of the 1@tBkination for the

UNIBS dataset we train the classifier with HTTP against mghBitiTorrent (see

Table[5.ZP).

5.3.2 Feature Extraction

To extract the nine features we usedt (Traffic Identification Engine) [L6], an
open-source multi-classifier system whose architectusbasvn in Figuréhl4.

Figure 5.4: Overall Architecture of TIE.

For this work we used TIE for (i) processing and filtering fiatraces, (ii)
aggregating packets into sessions, and (iii) extractiagufes. The features pro-
duced by TIE have been fed to a prototype implementation @idbntification
approach described in Sectibnl5.2. Moreover, we used TIE avitlassification
plugin based on a payload-inspection technique in ordesttbéish the “ground-
truth” of the given traces. This allowed us to label each flowt o evaluate the
accuracy of our approach (see Secfion 5.4). We looked ataylegqd content us-
ing theTIE-L7 plugin module, which implements the Linux L7-filter class#iion
techniqukg.

In the experiments presented we focused on traffic on TCRBPohePacket
CaptureTIE module filters out all traffic not pertaining to the porthereas the
TIE module named&ession Builders responsible for aggregating the remaining

2|7-filter is an application layer packet classifier for linamd is freely available at the website
http://17-tilter.sourceforge.net.
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packets into bidirectional flowdiflows. That is, we consider the common defi-
nition of flow tuple while taking into account traffic in bothrections: upstream
and downstream. The upstream direction is the one of theptahet observed.
Moreover, because we are examining TCP traffic, instead iofieout value we
use simple heuristics based on SYN, FIN, RST flags in TCP hesanteorder to
approximate TCP connections (as describef1h [16]).

TheFeature Extractiormodule is responsible for extracting classification fea-
tures from each biflow. In order to take into account only grbps related to
the application, we record the sizes of the transport-lpagload, excluding pure
TCP packets that do not carry application-level data (empty ACK packets).
The payload sizes are stored in the order they are observetyrAs added de-
pending on the packet direction, plus for upstream and miouslownstream.
Each biflow is assigned a sessiimh) which can later be used to manually exam-
ine the biflow, or to process again the same traffic trace uBiEgclassifiers and
checking the results (as in Sectionl5.4).

5.4 Experimental Results

In this section we show the results obtained with the progpadentification ar-
chitecture. In particular, we want to demonstrate that iftiaen the system with
traffic traces taken from different sites (spatial invac@nand in a different time
(temporal invariance) we can correctly accept HTTP traffid eeject non-HTTP
traffic.

To show the results we choose the following metrics:

e Overall Accuracy: The percentage of correctly classified flows.

e HTTP Accuracy: The percentage of the correctly classified HTTP flows
out of all true HTTP flows (sensitivity).

e non-HTTP Accuracy: The percentage of the correctly classified non-HTTP
flows out of all non-HTTP flows (specificity).
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For assessing the effectiveness of the proposed approaidifeirent time pe-
riods (temporal invariance), we carried out cross-testisigg UNINA2004 and
UNINA2009 traces. In order to verify the spatial invariaradehe approach, we
train the system with LBNL, CAIDA and UNIBS traces, and theastithe system
with both UNINA2004 and UNINA2009 traces.

Table[5.# is obtained by training and testing the system liyygus 10-fold
cross validation protocol. That is, the whole dataset igléid into 10 folds; 9 of
them are used to train the classifiers and the last fold is fese@sting. This is
carried out for all 10 folds and results are reported as gemacuracies. The table
shows high accuracy for UNINA2004, and hints about the @rgiof non-HTTP
traces that might have caused the low specificity for UNIN®20

Table 5.4: Results obtained using UNINA2004 and UNINA20@g&adets
Overall HTTP  non-HTTP

Accuracy Accuracy Accuracy

UNINA2004 | 99.97%  99.99% 96.08%

UNINA2009 | 99.97%  99.99% 86.23%

Tables [5b and—5.6 report the results obtained by trainiegsifstem with
LBNL, CAIDA and UNIBS traces, and testing it with the otherawraces. Both
tables indicate that the recognition rate of the non-HTTétquol depends on
the training set. The worst results in rejecting non-HTTRvllcare obtained
when LBNL traces are used for training and the system isdestd JNINA2009
(85.45%). This is due to the fact that class non-HTTP is noy veell repre-
sented in the LBNL data. Figuke.5 shows a scatter-plot@ftNINA2009 data
for the four “allowed” sign patterns for port 80. The non-HA protocols are
marked with green triangles. The misclassified protocadscacled. The figure
demonstrates a degree of mismatch between the training (). BNd the testing
(UNINA2009) data. It should be noted however, that the regnéation in the fig-
ure may be misleading because it does not reflect the derfsihealata. The
plot for sign0100, (a), for example, contain 47616 traces, of which 11 non-ATT
There is only one mistake in the non-HTTP class (acceptingraHiT TP pro-
tocol), which amounts to 91% specificity. The highlightedstakes are only a
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fraction of the true HTTP class that were wrongly rejectegb(biflows in subplot
(a), equivalent to 0.39%).
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Figure 5.5: Scatterplot of the UNINA2009 using LBNL traigidata.

As with Table[5H, there is a decline in the correct recognitiate of non-
HTTP traffic from 2004 to 2009. Again, this may be explainethvihe hypoth-
esis that some of the new non-HTTP traffic biflows are morelamtd normal
HTTP compared to the ones in the 2004 data. This notwithstgnthe obtained
results remain very good since in the worst case over 85%mHDTP flows are
rejected. In order to improve the performance the Decisi@e Tlassifiers may
be re-trained with new counterexamples. An advantage aftibeen architecture
is that it allows us to do that for any of the classifiers withclhianging the rest of
them.

In order to better assess the approach here presented anther investigate
the results obtained, we analysed traffic flowing through P&P 80 that was la-
belled by our identification system as ‘rejected’. Firsthe added a feature in
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Table 5.5: Results obtained by testing the system with UNIBI24.
Training Overall HTTP  non-HTTP
Dataset | Accuracy Accuracy Accuracy
LBNL 99.69%  99.73% 88.96%
CAIDA 99.25%  99.25% 97.84%
BRESCIA | 96.45%  96.44% 99.64%

Table 5.6: Results obtained by testing the system with UNIBIZO.
Training Overall HTTP  non-HTTP
Dataset | Accuracy Accuracy Accuracy
LBNL 99.26%  99.28% 85.45%
CAIDA 98.82% 98.83% 92.73%
BRESCIA | 99.21%  99.22% 94.55%

TIE to examine the first few bytes of payload carrying TCP pagl exchanged
in each biflow. This allowed us to perform a preliminary auédea examination
of all the biflows and to verify the results of the identificatiby easily checking
application-level packet content. In addition, we manuedspected the biflows,
mainly focusing on what was recognized as non-HTTP by thesdiar. First of
all, such analysis confirmed that all the correctly accepiéidws were actually
related to HTTP traffic. For example we observed that almé%t 8f the biflows
in UNINA2004 started with a standard HTTP GET request, 4%\&iPOST re-
quest, etc. On the other side, we discovered that sevejatteel’ biflows we
generated by peer-to-peer application-level protocolxmnkey, Bittorrent, and
WinMX. Some of them started with a byte not correspondingrcafphabetic
character. Inside this category, most of them started vghltlyte Oxe3. As re-
ported by Karagianniet al. in [43], this is the first byte exchanged by peers open-
ing a communication session based on the eDonkey2000 pidiezed by the
eDonkey and eMule file-sharing applications). Moreoverhath UNINA2004
and UNINA2009 traces, up to 50% of the non-HTTP biflows coubd lne as-
cribed to a specific application using either automated aruabpayload inspec-
tion. However, we manually verified that these biflows did eaethange any
HTTP traffic; we therefore conclude that such traffic is gatest by applications
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using undisclosed proprietary protocols.

The whole analysis described here confirms that the ideatiific approach
proposed in this work is very effective in correctly discmating real HTTP traf-
fic using the well-known port TCP 80. Finally, we observe tlmathe traces
the non-HTTP traffic represents a not negligible portiontaf taptured traffic.
Indeed, after filtering our traces by removing biflows redate non-HTTP traf-
fic, about 5% of the packets were discarded (both in the UNIDg¥2and UN-
INA2009 trace). Moreover, it must be observed that on theNANhetwork there
were no rules enforced to prevent traffic on non-standartspdrmerefore most
of the connections masquerading as HTTP were probably dihe wonfiguration
of external peers located in networks where port-basefictfdfering was strictly
enforced. It is reasonable to hypothesize that if this was tile case of the UN-
INA network, then such masquerading traffic would have cest@m even higher
percentage.

5.4.1 Results obtained with the training set cleaned by SO-
CIAL

Finally, we tried to apply SOCIAL, the algorithm presentaddhaptef}, to clean
the training sets described so far.

Originals Cleaned by SOCIAL
Training Overall HTTP non-HTTP Training Overall HTTP non-HTTP
Dataset Accuracy  Accuracy  Accuracy Dataset Accuracy  Accuracy  Accuracy
LBNL 99.65% 98.32% 93.65% LBNL 99.78% 99.78% 99.34%
CAIDA 99.17% 99.17% 99.56% CAIDA 99.17% 99.17% 99.56%
BRESCIA | 98.38% 98.38% 99.56% BRESCIA | 98.86% 98.86% 99.67%

Table 5.7: Results obtained by using UNINA2004 “cleaned'SQCIAL.

To this aim we trained a decision tree classifier with therwelbdatasets and
we tested it with UNINA2004 and UNINAZ2009.

In table[R.Y the results obtained to distinguish betwegndritnot-http on UN-
INA2004 dataset are shown. The table on the right contamsedbults obtained
on the datasatleanedoy SOCIAL, while the table on the left contains the results
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obtained with the original dataset. The same thing is pregas the tabl€%18 for
the UNINA2009 dataset.

Originals Cleaned by SOCIAL
Training Overall HTTP non-HTTP Training Overall HTTP non-HTTP
Dataset Accuracy Accuracy  Accuracy Dataset Accuracy  Accuracy  Accuracy
LBNL 99.17% 99.26% 51.45% LBNL 99.50% 99.52% 87.68%
CAIDA 98.94% left  98.96% 51.45% CAIDA 98.98% 99.00% 89.13%
BRESCIA 98.55% 98.57% 88.40% BRESCIA | 98.40% 98.41% 89.13%

Table 5.8: Results obtained by using UNINA2009 “cleaned'S@QCIAL.

The results shown that the system performs always bettarttieaDecision
Tree trained on the original dataset. Another importantltes figured out com-
paring this results with the ones proposed into the tableabin the tabl€hl6,
where the results obtained with the hierarchical MCS pred@se described, also
in this case a simple decision tree is comparable in termsafracy with a more
sophisticated architecture as the one proposed in thigehap

It is worth noting that the three training set are quite dét's why they reach
better values of accuracy on the UNINA2004, while testirepion UNINA2009
the results are not brilliant. Even making this considersgj using SOCIAL to
clean the training sets, we reached a good level of accuramywith the newer
training set.

It is possible to see the temporal traffic variation in perfaealogy to the
mutation inducted by a malicious user. That's why the resshiown in this tables
demonstrate a adversarial classification robustness afaimeng sets cleaned by
SOCIAL.

5.5 Key Findings

We examined the ability of a classifier ensemble system totifyetraffic flows

that do not belong to their declared class. The system takegitection signs of
the first four packets carrying payload and filters out thetrmoprobable flows.
The remaining flows have “acceptable” sign patterns. A decisee classifier is
trained for each sign pattern. Here we focused on TCP on Potty8ng to sepa-
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rate true HTTP traffic from non-HTTP traffic flowing througheteame port (e.g.
in order to circumvent network policies). We imposed foucegatable sign pat-
terns: 1000, 1001, 1010 and 1100. A Decision Tree class#igesigned for each
of them. We found that the system is very accurate when tland tested on data
coming from the same distribution (tested through crodska@on on traces from
the University of Napoli - UNINA2004 and UNINA2009). Furttmore, the sys-
tem exhibits very high accuracy in cross-testing, i.eingd on one network and
tested on another. We verified this by training the systemhogetdifferent data
sets (LBNL, CAIDA and BRESCIA) and testing it with UNINA2002hd UN-
INA2009. We looked in more detail in the worst case (accu@eyt5%) where
the system was trained on LBNL and tested on UNINA2009. Ihsethat the
LBNL data did not have a sufficiently representative non-Iclass in order to
train the system properly. The high overall accuracieséctioss-testing demon-
strate what we call the “spatial invariance” of the systemadldition, the system
shows “time invariance” in that the accuracy did not dropaéically from 2004
to 2009 even though some decline was observed. Finally,aite design and to
the use of Decision Trees, the system is very fast, and it earséd online.

This approach is based on a multi-stage architecture madéapensemble
of Decision Trees, each one devoted to verify if the flow uridstbelongs or not
to the protocol whose port number refers to. Each Decisiee 13 activated by a
specific combination of the signs of the first four packetdefitow and performs
the verification process by considering the payload sizésesie four packets. We
showed results in the case of traffic flows hidden behind “Bortbased flows.
Using real traffic traces from four different networks wesied the high accuracy
of the proposed approach, that also demonstrates:

e spatial invariance, since it was able to reject non-HTTP traffic captured in
a network different from the ones considered during theningi phase;

e temporal invariance, since it worked well with traffic traces captured in
very different temporal periods (over a range of five years);

e on-line capability, since only the first four packets are needed for carried
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out the verification process;

e adversarial classification robustnesssince it was robust to different ty-
pology of traffic not seen in the training phase.

Another advantage of a classifier based on Decision Trelatigttcan be seen as
a set of simple decision rules that can be easily interprieyea domain expert.
A further research direction will be a deeper analysis ohsdecision rules in
order to understand better the behaviour of the proposé#ut tigentification sys-
tem. We are also planning to apply the proposed approachur otell-known
protocols.



Chapter 6

An Anti-Spam System based on a
Behaviour-Knowledge Space

Itis a well-known story that e-mail has grown from a tool ubgdew universities
and scientists to a ubiquitous communication tool, evgyv¥rmom simple plain text
into a powerful multimedia message. At the same time, falgwhe growth of
e-mail production and diffusion, spam has changed fromtle Bnd sometimes
bothering problem into a multi-billion dollar problem. Theesence of spam, in
fact, can seriously compromise normal user activitiegifgy to navigate through
mailboxes to find the - relatively few - interesting e-mass, wasting time and
bandwidth and occupying huge storage space.

The types of those messages vary: some of them containstisdueents,
other e-mails provides winning notifications, and somesime get messages with
executable files, which finally emerge as malicious codesh s1$ viruses and
Trojan horses. In addition, spam e-mails may often haveitaida content (as
a pornographic material advertising) that is illegal anchebmes dangerous for
non adult users.

The recognition of spam content is not a trivial problemréere some factors
that are related with human perception, economic behaviegal context, that
are hardly measurable or summarized in adequate featuhessdme definition
of spam e-mailsequires a common agreement that is not easy to find.

In our opinion,all kind of spam e-mails have several common characteristics,
such as:) they are unsolicitedj) they have a commercial content, even though

81
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the content itself is continuously evolving, trying to autst the classical coun-
termeasures adopted by anti-spam filters.

This kind of task belong to thadversarial classification problems since
there is an intelligent, adaptive adversary who tries toa#fage patterns (spam
e-mails) to evade the security system.

Consequently, a great variety of technical methodologgieen implemented
in current anti-spam systenis [11]. The common technicaitssls propose fil-
tering strategies based on sender address and/or bodyhtohte focused our
attention on that measures related to e-mail contents,rircpkar bothtexts and
images rather then on networking and identity strategies$ [68i¢siour goal is to
develop a personal antispam system.

In this chapter we combine the visual clues with the semanfarmation
related to the e-mail body, to determine whether a messagpais. In order
to address the problem of combining a non-constant numberoafules, since
it is not possible taa priori known if there is one or more images attached to
the e-mail and/or there are textual information to be preedswe propose the
use of aBehaviour Knowledge Spaf®J] approach. This also allows us to easily
include new modules in our architecture that could be regufior addressing new
spammers’ tricks.

Organization of the Chapter

The chapter is organized as follows: the Sedfioh 6.1 dessaba glance the main
component of the proposed system; in Sectlonk 6.2amd 6.&8&ibde text and
image features respectively, while in Sectiod 6.4 we show ttocombine them.
In Section[&.b several experiments are discussed, andyfimaection[6.6 we
report some considerations.

6.1 System Architecture

As shown in figuré€l1, we design a system that integrateserbaged and text-
based analysis, the dashed line, in the figure, represemt®@R output that is
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filled into the Text Analyser. The mails, initially, are padsby a Multi-purpose
Internet Mail Extensions (MIME) parser, that can retriekie tifferent parts of
the e-mails: the text parts, the attached images or text fiesemail subject
and the headers. The text is thus processed TsxaAnalyzemodule according
to the methodology described in the secfiod 6.2 and its duspa classification
result obtained using the feature vector of text part of irguail. The images
are forwarded to thémage Analysemodule which gives another classification
results for the features vector that is extracted with tlocbn@ues described in
section&.B for the image part of the email. We note that th&@@Gtput of the
Image Analysecould be used also bjext Analysein order to build its feature
vector. TheFusion blockhas the role to combine the previous output furnishing
the final classification of each e-mail using the strateggudised starting from
the sectiol 6l4.

Spam/Ham

Figure 6.1: The proposed system architecture.

Both the Text and the Image analyser can be implemented byswéaliffer-
ent classifiers, each one using different features. In th@dong, we will describe
in details the different feature sets used and the combimatiocess.

6.2 Textual Features

Textual filtering methods are widely deployed; they vamethe inspected content
and the proposed methodology. Some filters consider onlgghder or the body
of an e-mail, while other ones take both. These approacheslitferent mod-



6.2. TEXTUAL FEATURES 84

els, considering word-tokens, their frequencies and ttminbinations. Inrule
based-filterd3] the users define some rules related to the headers oothes)
considering particular words aggnof spam content; anyway, this simple solution
is strongly dependent on how the words used by spammers eaigeh

Differently, Signature-basedethods do not really deal with whole messages
or specific tokens, transforming the message insgyaature Clearly, the meth-
ods effectiveness is related to the robustness of the signatnction. Note that
a signature database must be distributed and kept up to dgtérequently, due
to the rapid variation of spam e-mails. To this regard, sonop@sals are based
on collaborative solutionsin particular on Peer-to-Peer (P2P) networks for sig-
nature distribution[83,-19]. These approaches are notswuitied for developing
a personal antispam system.

Other approaches consider spam detectionlaisay classification problem
and several algorithms from the learning theory researth tii@ve been used. In
these solutions, e-mails are mapped into multidimensigpate, each dimension
representing the words in the e-mail content; several measue proposed such
as the terms-frequencyf() or the product between the documents-frequen£ty (
and terms-frequency, as in_J23ptatistical filtersbased on the the Bayes theory
have been also investigatéd 2] 58].

One of the drawback of these last methods is that they tyipidal not con-
sider specific countermeasures for taking into account mamser tricks, so a
complete retraining of the system is needed when thes&kataise.

We propose a strategy based on text processing and analgsdeir to process
both semanticand syntacticalfeatures. Generally speaking, our main idea is to
characterize how e-mails belonging to the same cla@sr span) do have the
same meanings, using a set of semantic features in additibriive detection of
special characters (syntactical features) that are tifpiesed into spam context.

In particular, at the semantic level we analyze the wholeilernatent taking
into account the word localization in a given context thussuging the weight of
a single word in the document. In this way, we relate the eswaihtent to certain
topic by looking at commonly shared words. A topic is dessdilby a region of
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Spam Topics
Investment/Business
Health/Medicine
Games,
Software
Leisure/Travel
Adult
Finance
Product/Service.

Table 6.1: The list of contents in spam mails

multidimensional space shared from the vectors of wordsfterdnt e-mails. In
the spam context, example of e-mail topics are reportedble@2. In section
B2, we will describe the model used to discover the semeontent of e-mails.

The use of syntactical features is suitable to detect gramama@malies in the
texts. Typically, the ham e-mails do not have particularuoeEnces of special
characters: these one can be thus used as signs of low trtlstvess of the
received e-mail;the related developed methodology wiltbscribed in section
B22.

6.2.1 Semantic Features

We propose to use a feature set based on a modified versionctdr\@pace
Model (VSM) [54]. This model is based on the representatibdazuments as
vector in multidimensional space. The representation ofad-textual content
in the vector space model has a number of advantages, inglide uniform
treatment of queries and documents as vectors and theyabititfferently weight
the different terms; anyway, it suffers from its inability tope with two classic
problems arising in natural languagési[41], i.e. synonymg polysemy. We
briefly recall thasynonymyefers to a case where two different words (say "pupil®
and "scholar”) have the same meaning, aodysemyrefers to the case where a
term such as “"play” has multiple meanings according to dbffié contexts. In
fact as worst case of the influence of synonymy in similarigasure, we could

have two orthogonal vectors withas result of cosine similarity even if there are
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two different words that have the same meaning inside thweevectors. The
semantic correlation or disambiguation of the these teramsbe made looking
at the context in which they are placed, for example the tésunisolar’ can be
correlated to “pupil” if the documents, in which they ares@atontains terms like
“school”, “book”, “pen” and so on. In that way the shared teroan increase the
value of similarity measures. The idea of looking at the wetevhail document can
be seen also as an overcoming of the independence hypatisesisn a bayesian
filter technique known as bag-of-words model that is one misstl approach
for anti-spam filer. In that model the relationships amongadevords (joint
distribution) are simply factorized. In order to overcorhe fault of vector space
model to capture theynonymyandpolysemyelationships, we choose a modified
version of VSM, the Latent Semantic Analysis or LSAI[54]. Piés LSA is a
traditional and well accepted technique used to stick aeistmantic contents in
text-process community, there are few application in trensframework. LSA
is an application of Singular Value Decomposition (SVD) tacdment-by-term
N x M matricesA. In particular, SVD provides a suitable matrix decompositi
as described in the following:

A=TSDT

beingS=diagoy,...,0,) aM x N matrix, witho; = /\; and)\; > \;,; with
1 <i<r;the), ..., \, be the eigenvalues of A”, r being the rank ofd. Note
that A” A has the same eigenvaluesAf”.

The valuess; are also denoted as tengular valuesof A. In the LSA tech-
nique, it is used a reduced version4f A, = T;.5; D} thatisM x N matrix and
k being a positive integer that is the maximum rank4gf After that decompo-
sition we can have a representation of documents and terths singular value
space, in fact we have a term matiix = 7}.5;, called matrix of singular load-
ings for terms and., = S, D} that is called the matrix of singular loadings for
documents. We note that this operation applied on the SVDrdposition has
two main properties described as following:
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e We have a dimensional reduction of the initial problems,dotfwe can
represent the documents as features vectors of dimehsisimg the matrix
of singular loadings for documents;.

e \We obtain a reduction that is representative of the natuteeoflocuments.
In fact theS; matrix have in the diagonal the decreasing order of the $angu
values, this can use to correlate the document vector tlRaedlcommon
terms using only a subset of their values.

The obtained approximation is computed taking into accthetlistance between
the two matricesX = A-A, that is minimal according to a Frobenius noiml[54].
In other words, we have a reduced space in which the wordshehag similar
co-occurrence patterns are projected (or collapsed) hg@@ame dimension, and
in the indexing phase the technique projects the documetdghe new gener-
ated space with latent semantic dimensions. The choicdel@s been derived
empirically, with 80 to 100 dimensions being sometimes the optimal choice for
collections of abous, 000 terms by1, 000 documents[[20]. In order to derive the
features to learn a classifier during the training phase, doptaas text features
the projection of the document in the space obtained by= S; x D}, S, and

D, being the matrices after the SVD reduction. In the testingsphwe use also
this matrix producf;’ @ in order to compute the text features thanks to the SVD
equation:

(6.1) T, Q = SpDf

(x), being the matrices obtained after the reduction proces§draing theN x 1
matrix representing the input document.

There are different steps used to process the email textthetigeneration of
text feature both int the training phase and test phase. iffezemt phases are
depicted in figur€6l2 and they are described as following:

e ThePreprocessingnodule used a set of intelligent filters that we apply to
the email documents with or without the OCR recognized sewvafds.
These filters are:
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— The classical stop word list filter, that is used to deletevibeds that
have no particular meaning, although increasing the terotoveli-
mension and thus degrading both performance and resulte cyis-
tem. Typical example of stop word list are adverbs are prosou

— We also propose an intelligent filter that is able to detedtrafect the
words that are ndiuman-understandahle.g. sequences like “fsdrx”,
“jkdld”. This solution is based on an SVM classifier trainedseveral
features derived from bigrams and trigrams composition raglish
words. We also build a feature vector containing the ratiavben the
correct bigrams (trigrams) and all the bigrams (trigranas)d set of
170000 common English words. Note that the use of this kind of filter
has also the aim of enhancing the recognition of the semeaotitent
that can be used in particular spammer attacks, such asdserdnch
use to put random words into e-mail texts, thus trying to cedilne
effectiveness of current antispam algorithms. This fili@n a@lso be
used to reject the words that are bad recognized by OCR Higmsi

— A Part of Speech filter (POS) module that is able to detectsisiou
verbs and adjective; it is used to reject adjectives thatijly do not
give further additional information.

e The Stemmingmodule implementing the well known Porter Stemmer al-
gorithms [64] that is used to remove the common morpholdgiod in-
flexional endings from words in English. Here in after, thensining and
preprocessing module will be called Text Processing (TP).

e TheLSI module that implements the functionality of the model abdee
scribed; it takes as input theSAmodel produced during the training phase.
We compute the “terms by documents matrix” used in thosenigales us-
ing the following measures:

— Term-Frequency (TF)
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TF,, = 4
Y g

n;; being the number of occurrences of the term in docurdgrand

the denominator being the sum of number of occurrences tératls
in documentd;.

— Inverse Document Frequency*Term-Frequency (IDF*TF)

)

D

Np being the number of total documents in the corpus Afjd the
number of documents in the corpus in which compare the ferm

— Entropy Weight (WEJI5D]:

IDTF,; =TF,;« DF, =TF; x log( e

WEZ_] i TE] * (1 + Z ng*l092(p13 )

log2(Np)
Dot gg being the probability to get documeptgiven the termi
andT F” being the term frequency of teriron the whole document

collection.

6.2.2 Syntactical Features

We propose to use some syntactic features that can be extfactn mail texts,
in order to estimate usual and suspected mail formats.

Spammers, in fact, usually try to obfuscate the textualgfaah e-mail’s body
by substituting some characters in order to bypass theteteess of antispam
filters.

So, we defined another set of features for obtaining a cleraation of this
kind of obfuscated text. The features we have investigatezt® mainly based on
the presence ddpecialcharacters, i.e. those characters that should not frelguent
occur in a legitimate text. The whole set we considered isangubf the following
characters{!,”,#,$,%,&,",(,), *, +, ., - ..., /, @}. Starting from this set we
defined sixsyntactical features

¢ text_length: the number of characters of the whole text
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Figure 6.2: The different phases of the Text Analyzer
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words_number: the number of words in the text

e ambiguity: the ratio between the number of special and normal chasacter

e correctness: the ratio between the number of words that do not contain
special characters and the number of words that containasdpbaracters

e speciallength: the maximum length of a continuous sequence of special
characters

e specialdistance: the maximum distance between two special characters
belonging to the above considered set.

6.3 Image Features

Image spam has been extensively studied using severaligeesnprimarily de-
veloped from the Image Processing and Computer Vision camitgwsing fea-
tures related to color distributionl[3] or textual ard2<g0]. A classifier is usually
trained on such features, trying to discriminate spam irné&gen legitimate ones.
In [22], the authors present features that are focused oplsiproperties of the
image, making classification very fast. In this chapter, &osv, the authors com-
pletely disregard the textual part of the emails.

Other approaches basically try the detect textual areasages following the
idea that images which contain texts are likely to be spam[/4h the authors
propose an algorithm for text localization. They constacirner detection al-
gorithm based on a circular template to predict the cornémtpmf the text in
an image, which is crucial for text localization. The sameaids presented in
[12]. The method proposed there extracts edge features iosized image by
using higher-order local autocorrelation, and then patsese features to a Sup-
port Vector Machine (SVM) for classification. I0]38] the haots try instead to
extract connected components from the image in order tact#te presence of
an embedded text.

A quite different approach is followed in Fumera et ALl[34here the authors
propose to process each image by using an OCR system foctax¢yambedded
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texts.

All these approaches, however, cannot be effectively ugeehwext within
images is voluntarily distorted and/or obfuscated. As iswated in[[9], in fact,
now spammers try to make OCR and text detection technigeéeative without
compromising human readability, by placing text on norfarmn background,
or by using techniques like the ones exploited in CAPTCH-IﬂHogramS that
generate and grade tests that humans can pass but curreptiteorprograms
cannot).

We propose an approach for the detection of the image spanhichwiwo
different image processing techniques are used [33]. Thedire is devoted to
directly extract some global features from each image la¢ihdo the e-mails.
Such features should also be able to detect if images weleeeated or not, by
considering the complexity of the image itself as it is pereg from an human
being. The second processing is carried out by means of wyssfirst, there
Is a preprocessing phase with the use of an OCR, then a feattrection pro-
cess starting from the OCR output try to characterize it oleotto detect if the
embedded text has been voluntarily obfuscated and/ontisto

6.3.1 Visual Features

The first set of features, that we calleidual featuresare directly obtained from
the image attached to the mails. In order to give an imageackenization that
should be able to discriminate between normal and adutigriatages, we con-
sidered features that describe the image texture from igtgtgioint of view. As
said before, in fact, spammers typically now try to bypaserithat use an OCR
for detecting texts within an image by obfuscating suchstexth the addition of
some noise or by superimposing a texture (see also Higuie @8ich it is used
gocH as Optical Character Recognition tool). So, texture detectan help in in-

1The term CAPTCHA (Completely Automated Turing Test To Tetin@puters and Humans
Apart) was coined in 2000 by Luis von Ahn, Manuel Blum, Nicd®Hopper and John Langford
of Carnegie Mellon University. At that time, they developbe first CAPTCHA to be used by
Yahoo - http://www.captcha.net/

2gocris available at http://jocr.sourceforge.net
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Figure 6.3: Outputs obtained by applyiggcr to some spam images

dividuating images that contain spam messages. For theo$akaplicity, in the
following we will present the considered features in casgraf-level images, but
the same operators can be applied to color images too.

We will use{7 (z,y),0 <z < N—-1,0<y <M — 1} to denote av x M
image withG gray levels. All the considered statistical texture measare based
on the co-occurrence matrices. Spatial gray level co-oenge estimates image
properties related to second-order statistics. (fthe G gray level co-occurrence
matrix Py for a displacement vectar = (dz, dy) is defined as follows. The entry
(1,7) of Py is the number of occurrences of the pair of gray levedad;j which
are a distancd apart. Formally, it is given as:

B, ) = [{((r,8), (t,0)) = I(r;8) = i, 1(t,0) = j} |

where(r, s), (t,v) € NxM, (t,v) = (r+dz, s+dy) , and|.| is the cardinality
of a set.
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As regards the choice of the displacement vedtowe considered the four
direct neighbors of each pixel, i.e. we used four pairs asesmbfdxr anddy
for calculating the number of co-occurrences, nantély), (1,0), (—1,0) and
(0, —1). We do not perform a normalization &f in order to preserve the depen-
dence of the considered features on the image size.

As suggested il [36], from the co-occurrence matrix it issilae to extract
features that can be used for detecting a texture within agénin particular, we
considered the following five features:

e Contrast
> > (i =)’ Pali, 5)
i

is the difference in terms of visual properties that makeslgpct (or its

representation within an image) distinguishable from otiigects and the
background. In the visual perception of real world, contragletermined
by the difference in the color and brightness of the objedt@her objects
within the same field of view. In practice, it is the ratio beem the bright-
est and the darkest value of the image. In the case of a B/\Wenmage that
the increase of the contrast is equal to erase gray values.

e Entropy:
3

is an index of the brightness variation among the pixel inmage. More
the values of brightness are different each others, morertrepy will be
higher.

e Energy:
> > Pili.g)
i

is the spectral content of an image
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e Correlation:
> i 22— pa) (G — py) Pa(is )

050y

is an index of the correlation degree among the pixel. Herand, are
the means and, ando, are the standard deviations 8f(x) and Py(y) re-
spectively, where’(z) = >, Fua(x, j) and Fu(y) = >_; Fu(i, y)

e Homogeneity:
Ayt sy
1 i
is a measure of the brightness variation within the imagehdfimage is
completely black or white, its homogeneity value will be thaximum. On

the contrary, if the image contains several brightnesatians, this value
will be very low.

Another category of features that can be used for charastgrimages from
a global point of view is based on the complexity of an imageafauman reader.
We have chosen to consider a feature also proposéd in [9]:

e Perimetric Complexity: is defined as the squared length of the boundary
between black and white pixels (the perimeter) in the wholage, divided
by the black area.

Note that, differently from[[9], we evaluate the perimetmmplexity on the
whole image, after performing a binarization with a fixedegtrold.

6.3.2 OCR-based Features

Here we propose to use the same features considered in r88cA@. In this
case, however, special characters are extracted from tipaitoaf an OCR that
has received an attached image as input.

We have noticed, in fact, that characters embedded into agemare oppor-
tunely distorted and/or obfuscated in spam e-mails. Thostof the words can-
not be correctly detected, as we can see in Figuie 6.3. Fartire, several special
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characters that typically are not present in commonly usadswcan appear in the
OCR output.

6.4 Combining Text-based and Image-based Classi-
fiers

It has been experimentally shown that the combination ofresemble of clas-
sifiers can be of great benefit in many practical pattern neitiog applications.
Through the appropriate choice of a combination rule, ibisgible to dampen the
overall effect of thendependeneérrors in each observation domain, thus reaching
performance better than those of a single classifier.

The combination of classifiers is then an important part af achitecture.
Anyway, there are some problems that must be taken into ataothis case:

e It is necessary to define a method for combining a non-conhstamber
of classifiers, since it is not possible #opriori known if there is one or
more images attached to the e-mail and/or there are textioamation to
be processed.

e It should be avoideghadding-attackgrom spammers. That is, the possi-
bility that an attacker puts a spam message withimoemal context, for
example by attaching an image containing an embedded spasageto
an e-mail that containsormalimages.

As shown in Figurd_6l4 we used a two-stage approach for cangpiext-
based and image-based classifiers. In the figure, “TP” standext Processing
it is described in sectidn 6.2.1.

The first stage (denoted &assificationin Figure[6.4) consists in a simple
3-statelogical OR whose behavior is described in Figlirel6.4. In this way we
also consider the case in which a classifier cannot be agtivdt happens, for
example, when there are no images within the e-mail, or wheretare no words
to be processed by the semantic analysis. In this situatiwasssume that the
output of the classifier isindefined Note that through this approach we try to
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Figure 6.4: The proposed combination approach

address the problem @adding attackstoo. Just one correctly classified spam
image, in fact, is sufficient so that the block of the visualssifiers declares the
email as spam.

Then, at the second stage we adoBehaaviour Knowledge Spa®KS) com-
bining rule [39]. The idea behind this rule is to avoid makunrgustified assump-
tion on the classifier ensemble such as classifier indeperdén Figurd &4 an
example of how it works is shown.

A BKS is a K-dimensional space where each dimension corresponds to the
decision of a classifier. Given an e-mail to be assigned tmbAgossible classes,
the ensemble ok’ classifiers can in theory providé® different decisions.

We must also consider the case in which the output of thet8-ktgical OR is
undefinedIn other words, each set of classifiers can attribute a maihe out of
three possible classes, i£SpamHam, Undefined and the number of different
decisions becomes®.

Each one of these decisions constitutes one unit of the BiK&d learning
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Classifier 1

Classifier 2

“Spam” : If at least one of the inputs is “spam”

J “Ham": If all the inputs are “ham”

Classifier n-1 “Undefined”: If there are no inputs

Classifier n

i

Figure 6.5: The 3-state logical OR

Visual { Spam, Ham, Undefined }
Block
— ™| BKSunit R
©spam ©ham
- { Spam, Ham, Undefined } {S,S.5,5} 42 0
{S,S.H,S} 92 0
- { Spam, Ham, Undefined} |  {U,U,H,H} 7 240
™| {[uuuUy 0 0
Syntactic
Block { Spam, Ham, Undefined }

Figure 6.6: The Behaviour Knowledge Space for combiningsifeers.
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phase each BKS unit can recatdlifferent valuese; (say, enam andegpen), by
considering that the actual classes are tialpnandspam Given a suitably chosen
training set, each sampleof this set is classified by all the classifiers and the unit
that corresponds to the particular classifiers’ decisiaactszated. It records the
actual class af, sayC};, by adding one to the value ef. At the end of this phase,
each unit can calculate the best representative classiaiezbio it, defined as the
class that exhibits the highest valuecaf This class corresponds to the most likely
class, given a classifiers’ decision that activates thdt uni

In the operating mode, for each e-mail to be classified /fheecisions of the
classifiers are collected and the corresponding unit istle Then the e-mail is
assigned to the best representative class associated tmthéSince we consider
all the possible combinations of classifiers outputs as timaber of available
classifiers varies, we are implicitly handling the fact ttieg number of available
classifiers can be different for each e-mail.

It is worth noting that the proposed combining scheme coelalso easily
extended using different feature sets, and then otheriftbass This could be
required, for example, for addressing new spammers’ trickghis case the prob-
lem is that the number of BKS unit grows exponentially and sader training
set is needed in order to achieve good classification resHltsvever, as it will
be shown in the following Section, only a subset of all thegtlale units are typ-
ically activated in practice, since some configuration @f thassifiers’ decisions
are not allowed.

6.5 Experimental Results

In the following we will first present the database used f@easing the effective-
ness of the proposed approach, then evaluate if the uselo¥isoal and textual
features can improve the performance of the system witherddp the use of
a single set of features. Finally, we make a comparison ofapproach with a
state-of-the-art anti-spam filter, i.&SpamAssassiaquipped with two different
spam image plug-ins.
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Total # of e-mails e-mails with Images
Spam| Ham || Spam Ham

9173 | 2479 | 1802 151

Table 6.2: The dataset used in our tests.

As regards the dataset, whose details are given in Tablé &2omposed by
11652 e-mails, 9173 of which contains spam messages. s-meik collected
from the mailboxes of some users of gieudent i . uni na. i t mailserverin a
period of about three years (2005-2007). This mailservstsite mailboxes of
all the students of the University of Naples Federico Il. Algdhose e-mails, 151
containhamimages and 1802 contagpamimages.

As regards the first stage of our architecture @essificationrone), we chose
a Decision Tredor implementing each classifier. In particular, a C4.5 jJt8n-
ing from the open source toWekE was selected.

Each single classifier was trained on a set of 1,000 mails {&0€ach class)
different from those belonging to the dataset reportediteff.2. In order to train
the BKS rule, the dataset was split into two sets. Then, typegrments have been
made, by using a set for training and the other one for tesRagults are finally
obtained as the average value of the accuracy reportedse th® tests.

In Figure[&5 the performance of the single classifiers anthefproposed
systems are reported. Note that the last two single classHithird and fourth
rows - processed only e-mails with attached images.

It can be noted that the use of the BKS significantly improliegaerformance
of the single classifiers. It must be remarked, in fact, thatviisual-based classi-
fier operates on a subset of the whole dataset (only 1953 maitsf 11652). It is
also interesting to note that the number of BKS units thareadly activated on
the whole dataset is only 18, while their total numbetisi.e. 81. This confirms
the considerations made in the previous Section.

Finally, in the Figurd_6]5 we report a comparison of the rssabtained by
our system with those obtainable wiBpamAssassim its standard configura-
tion and equipped with two plug-ins devised for filtering geaspam, namely

Shttp://www.cs.waikato.ac.nz/ml/weka/
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Proposed System (BKS Fusion)
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Figure 6.9: The accuracy of the single classifiers and of thpgsed system.

Bayes-OC& and Fuzzy-OCRIt clearly appears that our approach significantly
outperforms botiBayes-OCRandFuzzy-OCRby reaching a significantly higher
accuracy. Finally, note the time needed for processing thelewdataset by our
system are practically the same needed by SpamAssassifuady-OCRwhile

is significantly faster thaBpamAssassequipped witrBayes-OCR

Cur Systam

Bayes-OCR

Fuzzy-OCR

7800° BOO0:  B200P: 84000 BE0D%: BEOCR: S000%: 92000 94,007

Figure 6.10: Comparison between the proposed systerSpachAssassin

4This plug-in is available for download at the URL:
http://prag.diee.unica.it/n3ws1t0/?q=node/107



6.6. KEY FINDINGS 103

6.6 Key findings

In this chapter we presented an approach for addressinganes-mail problems,
which takes into account some of the recent evolutions o$pla@nmers’ tricks as
well as the limits of previous methodologies. We proposesbtabine visual clues
with the semantic information related to the e-mail body bing the Behaviour
Knowledge Space rule. This approach allowed us to easilydiecnew modules
in our architecture that could be required for addressivg sgammers’ tricks.

This system can prevent the evasion probleadsersarial classificationrmon-
itoring the spam and the folders, and adding or updating smm@ules to the
architecture if new kinds of spam are bypassing the antisgeuarity system.

Tests on a dataset of e-mails containing attached imagésmed the effec-
tiveness of the approach and its applicability with respeadther widely used
opensource tool such &amAssassin

Since the proposed approach has been mainly designed flaydepa per-
sonal antispam system, in the future we want to investigateihis possible to
further improve its performance by customizing it with refiece to a specific user.
This could be done by developing a specific module for takimg account spam
images received by the usArthat are considered as ham by the UBesuch as,
for example, those related to a phishing attack versus tieAus



Chapter 7

Conclusions

We demonstrated that Multiple Classifier Systems are a gbotte for imple-
menting a pattern recognition system that have to operaa@ iAdversarial En-
vironment. They provide a good means for tackling the twdlehges afforded
during this thesisAdversarial LearningandAdversarial Classification

In this chapter we will provide a brief summary of the work lmehthis thesis,
and will draw some general conclusions, by illustratingkig findings.

7.1 Our Contribution

The contribution of this thesis is to find out how an MCS apploeould be the
better choice in th&dversarial Environmenproblem. We have designed several
MCS approaches for different tasks such as the cleaning miirarng set (noisy
or contaminate), the definition of an antispam system anddéetification of
Internet traffic flows.

In particular, we have defined a methodology to clean a tigisiet through
a MCS approach, named SOCIAL. This system changes the labstgiated to
the training set samples in accord with a dynamical adayptadf the degree of
belief associated to each base classifier. We presentedesqpaemental results
in which the goodness of the approach is confirmed. In pdaticwe made a
comparison betweensimpleclassifier trained with theleaneddataset obtained
with the proposed approach, and the accuracy obtained witle $/ultiple Clas-

104
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sifier System presented in the literature. The results stidina a simple classi-
fier trained with the training set cleaned by SOCIAL, perferbetter than some
“state-of-the-art” MCS approaches.

Further examples of adversarial learning arise in the fietmputer security
where there is an escalating competition between deteatidevasion techniques
for various types of malware. In general, one can expectwhanever machine
learning is used to provide protection from some illegaivityt adversaries will
deliberately attempt to circumvent these approaches.

Due to the above considerations we have considered sonrestitgy case
studies, and we find out what was the impact of an MCS appraachis field. In
particular, we have proposed a modular anti-spam appraedéal with the spam
transmitted througtextandimages The modular architecture was designed to be
updated with new modules in order to efficiently cope with rigpes of spam.

We proposed also an hierarchical MCS approach for the letéraffic iden-
tification problem, that try to distinguish among the diéfet flows. In this case
the real-time feature was really important, and the systasa@esigned to be fast
and accurate.

7.2 Key Findings

The core of this thesis consists in the study of the MultiplesSifier Systems to
address the problem @éfdversarial Environments/Ne demonstrate that this kind
of systems are more robust to the noise and/or contaminafitre training set
label.

We noticed that there are two possibility for an MCS, to fotice diversity
among the classifiers in order to improve the accuracy orrttefthe convergence
of the decision. In this last case we are trying to obtain autbmal but more
robust classification.

We pointed out that an MCS has a significant similarity with titon-linear
dynamic system, and with other physics phenomena.

Moreover, there are important similarities with the humahdwiour too. In
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fact, if we want a stable society where the optimum is nevachied in favour to
a stability issue, we are trying to a make a SOCIAL approaicivelwant instead
to force the finding of an optimum it is more useful the comipeti instead of
the stability. This choice can reach an optimum forcing tiverdity of the single
component (base-classifier).

Everything the human being has done that works properlgstakspiration
from the nature. Even in this case there is a deep link witm#taral evolution,
and we are really interested to focus our attention on tlpe@sthat is less sci-
entific but more philosophical. We really believe that a mpldt classifier system
could simulate some human behaviours and it could be usedexssion support
system for real life events.



Appendix A

Dempster-Shafer Combination Rule

In this section we will apply the general methodology ddsexliin the chaptdd 4
using the Dempster-Shafer theory. This theory will be usetktelop thd-usion
Blockand for the base classifiers statistical characterizafibat is for theR def-
inition we choose to use tHgasic Probability Assignmeniereinaftebpa.
The theory of Dempster and Shafer (D-S theory) has beendretyuapplied to
deal with uncertainty management and incomplete reasoriifjerently from
the classical Bayesian theory, D-S theory can explicithdeidhe absence of in-
formation, while in case of absence of information a Bayeaigproach attributes
the same probability to all the possible events.
According to the D-S theory, we used Bsthe bpa. It describes the subjective
degree of confidence attributed to it. What is modelled, tieenot the analysed
phenomenon, but the belief in the base classifiers repotitato
When assigning &pa, there are some requirements which have to be met. They
descend from the fact that thiga is still a probability function, hence has to
respect the constraints for mass probability functions.chBaa is such that
m : 2° — [0,1], wheref indicates the so callettame of discernmentUsu-
ally, the frame of discernmentconsists ofV mutually exclusive and exhaustive
hypothesesi;, i = 1,..., N. Asubset{4,,...,A;} C ¢ represents a new hy-
pothesis. As the number of possible subset8 isf2?, the generic hypothesis is
an element of’.

For example, if we only consider two hypotheses (classes)gtyPositivgP)
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andNegativéN); hence, the frame of discernmentlis= {{P}, {N}} and2? =
{{P},{N},{P,N}}, whereas in the Bayesian case only the evéfs}, {N}}
would be considered.

{P} and{N} are referred to asimple event®r singletons while {P, N} is
referred to asomposite eventurthermore, also the following properties have to
hold:

m(2) = 0 > m(A) =1

AC20

A.1 Classifier Statistical Characterization

Starting from the sam#&\Veighted Confusion Matrigtab.[A) described in the
sectionf4.ZPR, if we use as fusion block the Dempster-Shafarbination rule,
than theR will be a vector ofbtpa where each element will be composed by:

(A1) R(Cy) = bpa(C;)

bpa(C;) = [m({C1}) = e,
m({Cs}) = e,
(A.2) 5

m({C1, Cay o, Cir}) = (L= 351 €35)]

Assigned Class
TrueClass| ¢; Cy ... Cy
Cl €11 €12 e €1n
02 €21 €929 e €on
Cu €mM1 €Epm2  -.. EMM

Table A.1: Weighted Confusion Matrix (WCM) fa¥/ classes classification
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It is worth noting that in this case we use more informatiocharacterize a
single classifier, and so we are making a more accurate bassfars statistical
characterization than using th¢eighted Majority Voting

An open issue is to find another functiof) that use more information about
theWCM. In this case we are not still using all the combined hypathes

A.2 Class andDoT Estimation

In this section we will describe how the system combineRhevaluated withr(),
and how it's possible to obtainRoT.

The aim of assigning &pa is to describe the reliability of a particular classifier
in reporting a specific event. Such a representation isldeifar combination,
but as we want to deal with combined results in the same waglsezeimpose the
constraint that the combination of sevebah by means of the D-S rule still has
to be abpa. The uncertainty in the final decision will be inversely poojonal to
the extent to which the base classifiers agree. If we Hawase classifiers, the
combination rule is such that:

where:

N, Ao =1

It is worth observing that the normalizing factér is independent from any
specific value ofA. The valueK can therefore be considered a constant, once the
bpas are fixed.
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A.2.1 The two classes case

Now, we want to illustrate how it is possible to evaluate thed/ass and DoT
described in the secti@n4.P.3 starting frolpa values, that in our case represents
R. We remember that@a is a vector of real numbers.

In the simple case of two classes problefhand N, we have defined this

value as:
. m({P}) —m({N})
p,oif > 0
(A.3) Class = 1+m({P,N})
N, Otherwise
_ m({P}) = m({N})
(A.4) DoT = abs ( TP )

The value% is defined in such a way that, if its value-id, there
is the highest reliability on the hypothes$isif itis —1, it is quite sure that we are
observing a N hypothesis; if it i8, there’s the maximum uncertainty, hence the
sample should be rejected.

In the first case, in factn({P}) = 0 while m({N}) = 1L andm({N, P}) =

0. In the second case, the opposite scenario is verified;(d4’}) = 0 while
m({N}) = 1 andm({N,P}) = 0. In the latter case insteadh({N}) = 0,

m({P}) =0andm({N,P}) = 1.

A.2.2 The M-Classes Case

We have tried to define different strategies to evaluate/th& defined for aM-
Classegroblem. For the sake of completeness we report both thiegies. The
first one is more linked to the Dempster theory, whereas thergseone use a
transformation in a polar coordination. Both this stratbgye their pro and cons,
that will be discussed in the respective system sections.
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General Case — Theoretical Method

This first formulation is based on the Hypothesis that we warndiscriminate
between a clas® and several of variations of fake Hypothesis. Let us calfrthe
for exampleNy,Ns, ... ,N,.

The general function which allows us to transform bpain a detection re-
sult descends from observation of the relations betwisref Plausibility and
Uncertainty Let A, B € 6; hence:

(A.5) Bel(By= Y m(A) ; Pls(B)= Y m(A)

ACB ANB#()
(A.6) Une(B) = Pls(B) — Bel(B)
In the two-event case, we observe that
Bel({N}) =m({N})
Pls({N}) =m({N}) + m({N, P})

Bel({P}) =m({P})
Pls({P}) =m({P}) + m({N, P})

Hence,
Unc({N}) =Unc({P} =
= m({N, P})

Then for all the simple and compound hypotheges= 2¢ in which is not
present the” Hypothesis we have defined the following parameter:

__ m({H})
(A7) Yu= 17 Unc({H})

Obviously also for theP class we have the same thing:

__ m({Pr})
(A.8) Yr=17 Unc({P})

Important considerations:
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1.0<Yy<l1

2. eYy=0=m(H)=0
e Yy=1=m(H)=1andUnc(H) =0
em(H)=1=Yy=1

3. ifdH : Yy = 1 = Yy and all the other parameters are zero

4.0< Yy <1

5. from the 3) and 4) it is clear that if a genelig; — 1 then all the other
parameters tend to O.

Starting from the parameters defined in equaliod A.7 andtemquA.8, we
can evaluate for each of thé simple Hypothesig’; the following index:

(A.9) S N

n
HNE;#0 A

Whereny is the number of simple classes belongtoThe same for the class

P.
(A.10) I(T) =Yy
With these indexes we have defined ngand the newDoT as:
(A.11)
P, if max{I(F;)}—I(T)<0
y =
N, if max{I(F)}—1I(T)<0 | argmax;{I(F;)} —I1(T)
(A.12) DoT = max{I(F;)} — I(T)

It is important to notice that this final equation in the caben@ hypotheses
become the equatidnA.4.
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A.2.3 General Case — Polar Coordinate Transformation Methd

This method want to overcame the limitation of the previons.oln this case

all the classes are equally important. The starting pomtlae equatioi”Al7 and
equatiof/AB described in the previous section. With théparameters we trans-
form the bpa space in a polar coordinate system. To obtain this, we dithde

space intoy angular sectors. The amplitude of each sector is:

2
(A.13) Amplitude = a
n

In this way we can draw a vector in the middle of each anguleiose The
module of these vectors is equalitpvalues. These vectors represent the belief in
each class.

We define a vector that pass exactly in the middle of the angeletor and
have a module equal to Y value. In this way for each angulatoseee will
correspond a class and we can define a funatighthat maps each class into an
angular sector, that is, taken in input an anglgive the the class corresponding
to the angular sector in which the angle is in:

(A.14) Class = m(0)

Starting from this considerations, theo7T” and they are calculated starting
from the resultant vectdr, = |Y;| x ¢/ as:

(A.15) y =m(«a)

(A.16) DoT = |Y,| * h(c, Amplitude)

Theh function is needed to give a weight to the position of the @ertto the
angular sector. If the vector is exactly in the middle, wd s more certain that
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the true class was the one defined for that space, instedekd @n the borderline
between two angular sectors, our degree of belief is lows flinction is defined
as:

Amplitude
r T 9
Amplitude
2

(A.17) h(co, Amplitude) = — +1

We have chosen the triangular function, but also the Gaugsiraction could
be a good choice.

For example, considering the case in which we have 4-classés,, Cs, Cy,
as shown in the figuleZA.1.

90°

180°

270°

Figure A.1: A graphical example of thé evaluation

In this case, the resultwill be C; and theDoT will be the module of the red
arrow (Y;.) weighted by thé() function.
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The cons of this approach is that the'T" depend on the coordinate system,
and on the position of the Hypotheses on the axis. If we chémgposition of an
hypothesis the value of theoT" will change.

Also in this case, as the previous one, if we consider onlylypotheses we
return at the equatidn'A.4.



Appendix B

Bayesian Combining Rule

In this section we will apply the general methodology ddsexliin the chaptdd 4
using the Bayesian Combining Rule14], as also describsédtior3.313.

This rule will be used to develop thaision Blockand for the classifiers char-
acterization. That is, for defininR we choose to use a vector of probability
estimation calculated staring from the Weighted Confusiiarix.

B.1 Classifiers Statistical Characterization

Starting from the sam& CM (tab.[B:1) described in the sectibn412.2, if we use
as fusion block th®&ayesian Combining Ruléhan theR will be:

Assigned Class
TrueClass| ¢, Cy ... Cuy
Ch €11 €12 ... €1in
C12 €21 €99 i €on
Cu €mM1 €Epm2 .. EMM

Table B.1: Weighted Confusion Matrix (WCM) fai/ classes classification

(B.1) R(Cy) =
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The equatiol Bl expresses th@osterioriprobability that a classifier gives
the correct answer.

As in this case of Dempster-Shafer Combing Rule (Appehndliwéuse more
information to characterize a single classifier, and so wayaaking a more accu-
rate base classifiers statistical characterization tharguke Weighted Majority

Voting

For example, if we consider the WCM in tallle B.2

Assigned Class
TrueClass| A B C

A 0.7 0.1 0.1
B 0.2 05 0.1
C 0.3 0 06

Table B.2: Possible Weighted Confusion Matrix for a thresssés problem

0.7

R(A) = = 0.58
(4) 0.7+02+0.3 ¥
0.5
R(BY)= ——"  _ =10.83
(B) 014+05+0 q
0.6
R(C) = 0.1+0.14+0.6 N3

B.2 Class andDOT Estimation

In this section we will describe how the system combineRlezaluated with the
r() function, and how it is possible to obtain theT'.

In particular, if we indicate witl{g* = C;) the event that thé — ¢/ classifier
assigns the input samplesto the clasg”;, the output clasg will be:

(B.2) y = argmaz; P(z; € G|y} = C, 97 = Cj, ..., 90 = C))
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If the classifiers can be assumed independent among eachauttidhea
priori probability is the same for all the classes, it can be shownttie eq[BR2
can be written as:

M
(B.3) C = argmax; l_IP(:zcZ € CiloF = Cy)

k=1

And the DoT will be calculated as:

M
(B.4) DoT = maz; || P(x; € C;l9f = C))

k=1
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