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Chapter 1

Introduction

The automatic recognition of object (pattern recognition), and their description,

classification and aggregation (clustering) are very important fields for a large

variety of problems both in the engineering and in the scientific fields.

Watanabe defines a pattern “as opposite of chaos; it is an entity, vaguely de-

fined, that could be given a name.” For example a pattern couldbe a fingerprint

image, a handwritten cursive word, a human face, or a speech signal [75][40].

Pattern recognition methods offer technological background for a variety of

applications in a modern information society. In some cases, they are however

undermined by several kinds of “adversarial” misuses like email and web spam,

attacks to computer networks, etc. A classical example of such “adversarial” envi-

ronments are various evasion techniques used in generationof spam emails. Sim-

ilar problems arise in web search (web spam) and malware analysis (obfuscation

and polymorphism).

The underlying problem is that pattern recognition, as wellas data analysis

techniques in general, have not been designed to work in adversarial environ-

ments.

These considerations give rise with the necessity to define new methodologies

to overcome this type of problems, either they are produced during the training

phase (Adversarial Learning), or they are obtained during the classification phase

(Adversarial Classification).

To this aim, recently in the area of machine learning the concept of combining

1
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classifiers is proposed as a new direction for the improvement of the performance

of individual classifiers. These classifiers could be based on a variety of classifi-

cation methodologies, and they could achieve different rate of correctly classified

samples. The goal of classification result integration algorithms is to generate

more accurate system results but a classification more robust to noise.

We found in the Multi Classification System theory also a goodsupport to

design and train a classification system inadversarial environments. We studied

this problem focus on some interesting case studies such as:the cleaning of a

noisy/contaminated training set, the spam recognition, the Internet traffic flows

detection.

More in general, we tackle the two main challenges directly linked to the gen-

eral problem ofadversarial environments, that is: i) adversarial learning, in

which the labels of training pattern were corrupted; ii)adversarial classification

in which a malicious user try to camouflage the patterns when the classifier oper-

ates on the field.

In particular, in theadversarial learningfield, we have defined a novel Multi-

ple Classifier System approach designed to clean the noisy/contaminated training

set. This system, after an iterative evolution, returns a cleaned training set ob-

tained changing the labels assigned to the samples and considering the training

set cleaned when these changes become stable.

The second challenge was theadversarial classification. In this case the ma-

licious users try detect the vulnerability of a security system to bypass it. In this

context we considered two case studies, in which we proposedsome original sys-

tems based on a MCS: i)the spam recognition, in which the spammer are always

looking for some vulnerabilities to brake down the user antispam policies and ii)

the Internet traffic identification, in which malicious users try to bypass the secu-

rity policies of an Internet network, using, for example, some allowed protocols

to make something different.
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1.1 Thesis Outline

After briefly introducing the main context of this thesis, inthis section we will

give a synthetic outline of the rest of the work. In chapter 2 we will introduce

the general problem of theAdversarial Environmentand we will describe the two

challenges directly linked to it, i.e.Adversarial LearningandAdversarial Classi-

fication.

In chapter 3 we will provide some notions about the classification theory, and,

after a general introduction of the Multiple Classifiers Systems (MCS), we will

give some possible taxonomies.

In chapter 4 we will tackle the problem of theAdversarial Learning, in partic-

ular for the noisy/contaminated label into the training set. In this chapter we will

introduce a methodology to clean a training set, and we will make a comparison

between asimpleclassifier trained with thecleaneddataset obtained with the pro-

posed approach, and the accuracy obtained with some Multiple Classifier System

presented in the literature.

In chapter 5 we will present a typicalAdversarial Classificationproblem in the

context of the identification of the Internet traffic flows. Inthis chapter, the traffic

problem will be dealt with a statistical approach implemented by a Hierarchical

Multiple Classifier System.

In Chapter 6 we will approach another problem ofAdversarial Classification,

i.e. the spam recognition. In this chapter we will describe amodular architecture

to adapt the system to new and smarter spammer’s attacks.

Finally, in Chapter 7 some conclusions are drawn. Our contribution is pointed

out, referring to the previously described work, and some directions and proposals

for future works are proposed.



Chapter 2

Adversarial Environments

Machine learning techniques are often used in environmentswhere adversaries

can consciously act to limit or prevent accurate performance. A classical exam-

ple is spam filtering where spammers tailor messages to avoidthe most recent

spam detection techniques. Further examples of adversarial environments arise in

the field of computer security where there is an escalating competition between

detection and evasion techniques for various types of malware. In general, one

can expect that whenever machine learning is used to provideprotection from

some illegal activity, adversaries will deliberately attempt to circumvent these ap-

proaches.

Pattern recognition systems, and in particular multiple classifier systems, are

currently used in several security applications like biometric identity recognition

[5][63][55], intrusion detection in computer networks [33][34][49][62] and spam

filtering [9][11][22][31][68], in which the task is to discriminate attack samples

(e.g., a spam e-mail) from legitimate samples (e.g., legitimate e-mails).

An interesting paper in the context ofmachine learning securityis the one by

Barreno et al [6] where the authors try to give an answer to thefour following

questions:

• Can the adversary manipulate a learning system to permit a specific attack?

For example, can an attacker leverage knowledge about the machine learn-

ing system used by a spam e-mail filtering system to bypass thefiltering?

• Can an adversary degrade the performance of a learning system to the extent

4
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Integrity Availability

Causative Targeted Permit a specific intrusion Create a sufficient errors to
make system unusable for
one person or service

Indiscriminate Permit at least one intru-
sion

Create sufficient errors to
make learner unusable

Exploratory Targeted Find a permitted intrusion
from a small set of possi-
bilities

Find a set of points mis-
classified by the learner

Indiscriminate Find a permitted intrusion

Table 2.1: An Attack Model

that system administrators are forced to disable the IDS? For example, could

the attacker confuse the system and cause valid e-mail to be rejected?

• What defences exist against adversaries manipulating (attacking) learning

systems?

• More generally, what is the potential impact from a securitystandpoint of

using machine learning on a system? Can an attacker exploit properties of

the machine learning technique to disrupt the system?

More in general they made a general taxonomy of the possible attacks to a

machine learning system, table 2.1.

For Berreno at al, in thecausativeattacks the adversary has some measure

of control over the training of the learner, from the classifier point of view these

kinds of attacks are considered as a problem ofAdversarial Learning.

In theExploratory attacksthe adversary do not attempt to influence learning:

they instead attempt to discover information about the state of the learner, that is

the attackers seek to find intrusions that are not recognizedby the learner. From

the classifier point of view these attacks can be considered as Adversarial Classi-

ficationproblems.

In this thesis we will analyse the two challenges directly linked to theAd-

versarial Environmentproblem, that isAdversarial Learning andAdversarial

Classificationfrom the Multiple Classifier Systems (MCS) point of view.
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It is experimentally demonstrated that the combination of more classifiers can

achieve better classification accuracy in respect of a single classifier [15][47].

Only recently, there are few works that are analysing how theMCSs can be

robust in anAdversarial Environment[10].

2.1 Challenges

The main difference betweenAdversarial LearningandAdversarial Classification

is in how and where the malicious users try to camouflage the patterns.

While in the first one the attacker contaminates the trainingpattern to make

more difficult the classification problem (from thelearner point of view), in the

second case the attacker changes the patters when the classifier operates on the

field to overcome the security system, i.e make more difficultthe problem from

thepredictorpoint of view.

2.1.1 Adversarial Learning

Systems using machine learning have been successfully deployed for fighting

spam, fraud, and other malicious activities. These systemstypically consist of

a classifier that flags certain instances as malicious based on a fixed set of fea-

tures. For example, spam filters classify each incoming email message as spam

or legitimate email by using a set of features such as which words are present.

Unfortunately, as classifiers become more widely deployed,the incentive for de-

feating them increases. In some domains, there is ample evidence that adversaries

are actively modifying their behaviour to avoid detection.For instance, senders of

junk email often disguise their messages by adding unrelated words, sentences, or

even paragraphs more indicative of legitimate email than spam [51].

The earliest theoretical work we know of that approaches learning in the pres-

ence of an adversary was done by Kearns and Li [45]. They worked in the context

of Valiants Probably Approximately Correct (PAC) learningframework [35, 36],

extending it to prove bounds for maliciously chosen errors in the training data.

Specifically, they proved that if the learner is to perform correctly, in general the
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fraction of training points controlled by the adversary must be less than
ǫ

1 + ǫ
,

whereǫ is the desired bound on classification errors by the learner [4, 6, 30].

Results from game theory may be relevant to adversarial learning systems. In

particular, deception games involve players that have partial information and in-

fluence the information seen by other players. Some of these games involve con-

tinuous variables generated by various probability distributions [7], while others

apply to scenarios with discrete states [37]. The game theory and the adversar-

ial learning both ask many of the same questions, and they both address the same

underlying issues. Integration of game theoretic conceptscould be a promising

direction for work in adversarial learning area.

Dalvi et al. examine the learn-adapt-relearn cycle from a game-theoretic point

of view [18]. In their model, the learner has a cost for measuring each feature of

the data and the adversary has a cost for changing each feature in attack points.

If the adversary and learner have complete information about each other and we

accept some other assumptions, they find an optimal strategyfor the learner to

defend against the adversary’s adaptations.

Research has also begun to examine the vulnerability of learners to reverse

engineering. Lowd and Meek introduce a novel learning problem for adversar-

ial classifier reverse engineering in which an adversary conducts an attack that

minimizes a cost function [51]. Under their framework, Lowdand Meek con-

struct algorithms for reverse engineering linear classifiers. Moreover, they build

an attack to reverse engineer spam filters [52].

2.1.2 Adversarial Classification

Wittel and Wu [77] discuss the possibility of crafting attacks designed to take ad-

vantage of the statistical nature of such spam filters, and they implement a simple

attack. John Graham-Cumming [35] describes implementing an attack he calls

Bayes vs. Bayes, in which the adversary trains a second statistical spam filter

based on feedback from the filter under attack and then uses the second filter to

find words that make spam messages undetectable by the original filter.

A recent work of Biggio et al [10] analyses the effectivenessof the Multiple
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Classifiers Systems in improving the hardness of evasion. Tothis aim they develop

analytical models of adversarial classification problems and apply them to analyse

some strategies currently used to implement MCSs in severalapplications. They

define the hardness of evasion as:

For a given feature set, the hardness of evasion is defined as the ex-

pected value of the minimum number of features which have to be

modified to evade the classifier.

Very interesting is the figure 2.1 taken from their work and re-proposed here

in which is reported an example of the two measures which should be used to

evaluate the performance of a classifier in a security system: the classification

accuracy against a given strategy used by the adversary (represented by training

instances), and the hardness of evasion against a new kinds of attacks.

Figure 2.1: Hardness of Evasion vs Accuracy (from [10]

2.2 Applications

We have worked on the two challenges presented before, and inparticular we have

proposed different methodology to make the system more robust in this kind of

environments. In particular we can distinguish three tasks:
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• Adversarial Learning

– Noisy/Contaminated Training Set

• Adversarial Classification

– Spam e-mail

– Internet traffic flows identification

2.2.1 Adversarial Learning: Noisy/Contaminated TrainingSet

There is not much literature on how noise label should be modelled and dealt with

an MCS approach.

AdaBoost [30] has shown to often improve the base learner accuracy. Since

its introduction, it has been successfully applied to many problems. Furthermore,

the AdaBoost idea has been extended to other sort of problems. Although it has

wide-spread success, it is susceptible to the over-fitting problem as pointed out

by Dietterich [21]. Oza [61] proposed an approach called AveBoost2 to smooth

noise. This approach can be seen as a relaxed version of AdaBoost. When training

examples are noisy and therefore difficult to fit, AdaBoost isknown to increase

the weights of those examples to excess and over-fit them because many consec-

utive base models may not learn them properly. AveBoost2s averaging does not

allow the weights of noisy examples to increase rapidly, thereby mitigating the

overfitting problem.

Thiel [73] made a comparison between the single classifier and an ensemble.

In his paper the attention is focused on which impact a dataset with soft labels has

on a noisy training set.

Melville and Mooney [57] introduced a new kind of multiple classifier sys-

tem to take into account the noise label problem; they calledit DECORATE.

DECORATE, (Diverse Ensemble Creation by Oppositional Relabelling of Ar-

tificial Training Examples) uses an existing ”strong” learner (one that provides

high accuracy on the training data) to build an effective diverse committee in a

fairly simple, straightforward manner. This is accomplished by adding different
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randomly constructed examples to the training set when building new committee

members. These artificially constructed examples are givencategory labels that

disagree with the current decision of the committee, thereby easily and directly

increasing diversity when a new classifier is trained on the augmented data and

added to the committee.

2.2.2 Adversarial Classification: SPAM

It is a well-known story that e-mail has grown from a tool usedby few universities

and scientists to a ubiquitous communication tool, evolving from simple plain text

into a powerful multimedia message. At the same time, following the growth of

e-mail production and diffusion, spam has changed from a little and sometimes

bothering problem into a multi-billion dollar problem. Thepresence of spam, in

fact, can seriously compromise normal user activities, forcing to navigate through

mailboxes to find the - relatively few - interesting e-mails,so wasting time and

bandwidth and occupying huge storage space.

The types of those messages vary: some of them contains advertisements,

other e-mails provides winning notifications, and sometimes we get messages with

executable files, which finally emerge as malicious codes, such as viruses and

Trojan horses. In addition, spam e-mails may often have unsuitable content (as

a pornographic material advertising) that is illegal and sometimes dangerous for

non adult users.

The recognition of spam content is not a trivial problem: there are some factors

that are related with human perception, economic behaviour, legal context, that

are hardly measurable or summarized in adequate features. The same definition

of spam e-mailsrequires a common agreement that is not easy to find.

In our opinion,all kind of spam e-mails have several common characteristics,

such as:i) they are unsolicited,ii ) they have a commercial content, even though

the content itself is continuously evolving, trying to outsmart the classical coun-

termeasures adopted by anti-spam filters.

This kind of task belong to theadversarial classificationproblems, since

there is an intelligent, adaptive adversary who tries to camouflage patterns (spam
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e-mails) to evade the security system.

Consequently, a great variety of technical methodology have been implemented

in current anti-spam systems [11]. The common technical solutions propose fil-

tering strategies based on sender address and/or body content. We focused our

attention on that measures related to e-mail contents, in particular bothtexts and

images, rather then on networking and identity strategies [68], since our goal is to

develop a personal antispam system.

2.2.3 Adversarial Classification: Traffic Identification

In the last years, networking research has started facing a problem not foreseen

when the firstInternetprotocols were originally designed: network traffic classi-

fication, that is, associating traffic flows to the applications that generated them

[56]. Originally each network application used known protocols and transport-

level ports that easily allowed their identification. Sincea few years back, this is

not true any more [42, 59]. The number of network applications using proprietary

undisclosed protocols has grown at an incredible rate (Skype, P2P-IPTV); the typ-

ical association application/port is often forged; in somecases traffic is encrypted,

whereas sometimes it is encapsulated into traditional protocols. Beyond the need

to understand which kind of traffic is carried on Internet links, the identification of

traffic hidden in flows using well-known ports represents a challenging task. For

these reasons, new approaches to traffic identification are needed. By traffic iden-

tification here we mean identification of a particular (or a group of) applications

of interest.

This is a typical case of study for theAdversarial Classificationproblem. In

this case some malicious users try to overcame the classification system in differ-

ent ways. A possibility is to spoof a protocol into another.



Chapter 3

Classifier Ensembles

Recently in the area of machine learning the concept of combining classifiers has

been proposed as a new direction for the improvement of the performance of in-

dividual classifiers. These classifiers could be based on a variety of classification

methodologies, and they could achieve different rates of correctly classified indi-

viduals. The goal of classification result integration algorithms is to generate more

certain, precise and accurate system results. Dietterich [21] provides an accessi-

ble and informal reasoning, from statistical, computational and representational

viewpoints, on why ensembles can improve results.

The combination of multiple classifiers can be considered asa generic pattern

recognition problem in which the input consists of the results of the individual

classifiers, and the output is the combined decision [72].

Organization of the Chapter

After a general presentation of the pattern recognition problem, we will discuss

a general taxonomy of base classifiers; after that we will describe Multiple Clas-

sifier Systems, hereinafterMCSand we will consider theprosandconsof some

common topologies. We will describe the combination approaches, giving, in

the last section, some theoretical details on the Dempster-Shafer combination ap-

proach, and on why this approach could be important to overcome some limits of

the bayesian one. Finally we will make some practical considerations.

12



3.1. PATTERN RECOGNITION 13

3.1 Pattern Recognition

Watanabe defines a pattern “as opposite of chaos; it is an entity, vaguely defined,

that could be given a name.” For example a pattern could be a fingerprint image,

a handwritten cursive word, a human face, or a speech signal [75][40].

Given a pattern, its recognition/classification may consist of one of the follow-

ing two tasks:

1. Supervised Classification: the input pattern is identified as a member of a

predefined class

2. Unsupervised Classification: the input pattern is assigned to a hitherto

unknown class.

Generally speaking, the design of a pattern recognition system essentially in-

volves the following three aspects:

1. data acquisition and preprocessing

2. data representation

3. decision making

The most popular approaches could be divided into: 1) Template matching, 2)

Statistical classification, 3) Syntactic or structural matching, 4) Neural networks.

Template matching is one of the simplest the earliest developed approaches.

Matching is a generic operation in pattern recognition which is used to determine

the similarity between two entities of the same type. In general, a template or

a prototype is always available. Often, the template itselfis learned from the

training set.

Statistical classificationis based on a representation in terms ofd features

or characteristics. In this case each pattern is seen as a point in ad-dimensional

space. Given a set of training patterns from each class, the objective is to estab-

lish decision boundaries in the feature space which separate patterns belonging to
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Figure 3.1: General Statistical Pattern Recognition Model

different classes. In this case the recognition system is operated in two modes:

training (learning) and classification (testing) as shown in figure 3.1.

In most of the recognition problems involving complex patterns, it is more

appropriate to adopt a hierarchical perspective where a pattern is viewed as being

composed of simple sub-patterns. InSyntactical pattern recognition, a formal

analogy is drawn between the structure of patterns and the syntax of the language.

Neural networks can be viewed as massively parallel computing systems con-

sisting of an extremely large number of simple processors with many interconnec-

tions. The main characteristics of neural networks are thatthey have the ability to

learn complex non linear input-output relationship, use sequential training proce-

dures, and adapt themselves to the data.
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Approach Representation Recognition Function Typical Criterion

Samples, Correlation,
Template matching pixels, distance, Classification error

curves measure

Statistical Features Discriminant function Classification error

Syntactic
or Primitives Rules, grammar Acceptance error

Structural
Samples, Mean

Neural networks pixels, Network function square
features error

Table 3.1: Pattern Recognition Models

3.1.1 Feature selection and extraction

Such a representation requires the definition of the possible categories which have

to be recognized, and also the description of the entities toclassify in terms of a

certain number of parameters. Such parameters are usually referred to as features

[51]. Features are usually represented in arrays, and can bedistinguished accord-

ing to the type of value they can assume. They are usually grouped into two sets,

as depicted in figure 3.2: quantitative features and qualitative features.

The conceptual boundary between feature extraction and classification is some-

what arbitrary: an ideal feature extractor would yield a representation that makes

the job of the classifier trivial; conversely, an omnipotentclassifier would not need

the help of a sophisticated feature extractor. The distinction is forced for practical,

rather than theoretical reasons. Generally speaking, the task of feature extraction

is much more problem and domain dependent than classification, and thus requires

knowledge of the domain.
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Figure 3.2: Types of Features

3.1.2 Error Evaluation and Classification Accuracy

An important role in classification theory is played by errorevaluation. Given a

labelled dataset, the most straightforward strategy for evaluating the performance

of a classification system is just counting the number of committed errors. Often,

the relative amount of errors is given, with respect to the total number of analysed

samples. Assume that a labelled data setZts of sizeNts is available for testing the

accuracy of our classifier,D. An estimation of the error is obtained by runningD

on all the objects inZts and find the proportion of misclassified objects

error(D) =
Nerror

Nts

To find out how the errors are distributed across the classes we construct a

confusion matrix using the testing data set,Zts. The entryeij of such a matrix

denotes the number of elements fromZts whose true class isCi, and which are

assigned byD to classĈj . In table 3.2 a general confusion matrix forM classes

classification is shown.

In the case of one class classification, the problem of classification is simply

reduced to recognize whether a specific sample belongs to theconsidered class.
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Predicted Class
True Class Ĉ1 Ĉ2 . . . ĈM

C1 e11 e12 . . . e1M

C2 e21 e22 . . . e2M

...
...

...
. . .

...
Cn eM1 en2 . . . eMM

Table 3.2: Confusion matrix forM classes classification

If this is not the case, the sample is simply not assigned to the class of interest.

The problem can be formally represented by naming two possible classification

outcomes, namely Positive and Negative, representing the only two possible op-

tions taken into account. In fact, in such a case, the occurrence of a particular

class is searched for. Anything outside such a class is tagged as Negative. The

corresponding confusion matrix is represented by table 3.3

Assigned Class
True Class P̂ N̂

P TP FN
N FP TN

Table 3.3: Confusion matrix for one class classification

In such a case, the elements of the confusion matrix are named, respectively,

True Positives (TP), False Negatives (FN), False Positives(FP) and True Nega-

tives (TN). Such quantities can also be expressed as relative to the total amount of

patterns or samples belonging to either the class of interest, or not belonging to it.

3.1.3 Results Evaluation Methodologies

Suppose that we have a data setZ of sizeN , containing n-dimensional feature

vectors describing N objects. We would like to use as much data as possible to

build the classifier (training), and also as much unseen dataas possible to test its

performance more thoroughly (testing). However, if we use all data for training

and the same data for testing, we might over-train the classifier so that it perfectly
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learns to classify the available data and fails on unseen data. That is why it is

important to have a separate data set on which to examine the final product. The

main alternatives for making the best use ofZ can be summarized as follows:

• Resubstitution (R-method). Design classifierD onZ and test it onZ.

• Hold-out (H-method). Traditionally, split Z into halves, use one half for

training, and the other half for calculatinĝPD. P̂D is pessimistically biased.

Splits in other proportions are also used. We can swap the twosubsets, get

another estimatêPD and average the two. A version of this method is the

data shuffle where we doL random splits ofZ into training and testing parts

and average allL estimates of̂PD calculated on the respective testing parts.

• Cross-validation (called also the rotation method or p-method). We choose

an integerK (preferably a factor ofN) and randomly divideZ into K sub-

sets of sizeN = K. Then we use one subset to test the performance ofD

trained on the union of the remainingKx1 subsets. This procedure is re-

peatedK times, choosing a different part for testing each time. To get the

final value ofP̂D we average theK estimates. WhenK = N , the method

is called theleave-one-out (or U-method).

• Bootstrap. This method is designed to correct the optimistic bias of the R-

method. This is done by randomly generatingL sets of cardinalityN from

the original setZ, with replacement. Then we assess and average the error

rate of the classifiers built on these sets.

3.1.4 Base Classifiers Taxonomy

Statistical Patter Recognition provides a variety of classifier models. A possible

taxonomy is shown in figure 3.3.

One solution is to try to estimateP (wi) and p(x|Ci), i = 1, . . . , c, from

Z and substitute the estimateŝP (Ci) and p̂(x|Ci) in the discriminant functions

gi(x) = P (Ci)p(x|Ci), i = 1, . . . , c. This is called theplug-inapproach to classi-

fier design. Approximatingp(x|Ci) as a function ofx divides classifier methods
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Figure 3.3: A Taxonomy of methods for classifier design
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into two big groups:parametricandnon parametric. On the other side of the di-

agram there are classifier design methods that are not derived by approximating

thepdfsbut rather by devising decision boundaries or discriminantfunctions em-

pirically. The distinction between the groups is not clear-cut. For example,radial

basis function(RBF) network from the group of structural approximation ofthe

discriminant functions can be moved to the group of functional approximation,

or even to the group of semi-parametricpdf modelling. Similarly, the k-nearest

neighbour (k-nn) method, although theoretically linked with nonparametric pdf

estimation, produces a direct estimate of the discriminantfunctions and can be

put under the heading of structural designs for approximating the discriminant

functions. There is no consensus on a single taxonomy, or even about the defi-

nition of parametric and nonparametric classifiers. Lippmann lists five types of

classifiers:

• probabilistic (LDC, QDC, Parzen);

• global (multilayer perceptron (MLP));

• local (radial basis function neural networks (RBF));

• nearest-neighbour type (k-nn, learning vector quantization neural networks

(LVQ));

• rule-forming (binary decision trees, rule-based systems).

Holmstrom et al. consider another grouping:

• classifiers based on density estimation:

– parametric (LDC, QDC);

– nonparametric (k-nn, kernel methods, finite mixtures, RBF).

• classifiers based on regression:

– parametric (linear regression, logistic regression, MLP);

– nonparametric (projection pursuit, additive models).
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• other classifiers (e.g., prototype-based: LVQ,k-nn for small k)

Some authors distinguish between neural and nonneural classifiers, local and

global classifiers, and so on.

3.2 Categorization of Combination Methods

Combination of multiple classifiers is a fascinating problem that can be consid-

ered from many prospectives, and combination techniques can be grouped and

analysed in different ways. In terms of implementation, a categorization of com-

bination methods can be made by considering the combinationtopologies or struc-

tures employed, as described in [65]. We could have different MCS depending on

[46]:

• Types of classifier outputs

– Type 1: The classifier produces only a label without any information

about the classification accuracy.

– Type 2: The classifier gives an ensemble of possible classes rankedin

order of importance.

– Type 3: The classifier gives a vector of scores associated to each pos-

sible class.

• Trainable or not-Trainable combiners.

• Topology.

Lu [53] categorizesMCStopologies into three categories: Cascading , Parallel

and Hierarchical.

In a cascading classifier, the classification result generated by a classifier is

used as an input to the next classifier. The results obtained through each classifier

are similarly passed onto the next classifier until a result is obtained through the

final classifier in the chain. The main disadvantage of the useof this methodology

is the inability of later classifiers to correct mistakes made by earlier classifiers.
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Parallel classifiersintegrate the results of all classifiers in a singular location.

The main design decision that has to be made in the implementation of such a

configuration is the selection of a representative combination methodology. If the

decision process is well designed, the system can reach peakperformance. Some

of the more popular and successful combinatorial methods include majority vot-

ing, belief integration and the “stacking until convergence” method. However, the

improper selection of a combinatorial strategy could accentuate the influence of

poorly performing classifiers, which could eventually adversely affect the overall

performance.

Hierarchical classifiers combine both parallel and cascading classifier con-

figurations to obtain optimal performance. The use of such a methodology can

compensate the disadvantages encountered through the use of a cascading integra-

tion. Hierarchical systems could also be used to introduce error checking, which

would nullify the influence of poorly performing classifiers.

A more comprehensive and topical categorization of multi-classifier topolo-

gies is presented in [48]. This categorization divides topologies into conditional,

hierarchical, hybrid and multiple-parallel topologies.

3.2.1 Conditional Topology

This strategy first selects one classifier to perform the taskof classification. If this

classifier fails to correctly identify the presented data, another classifier is selected,

as shown in the figure 3.4. Most implementations include a primary classifier,

which is usually selected as the first classifier to be selected. The selection of

the next classifier can either be a static decision or maybe based on the values

obtained through the use of the primary classifier. Examplesmethods for dynamic

selection include decision trees. This process can continue for as long as there are

classifiers available or the pattern is correctly classified. If the primary classifier

is an efficient one, the process is computationally efficient. The queue of selected

classifiers could be organized in order for the computationally heavy classifiers to

be only selected at the end of the classifier queue. One difficult aspect of such an

implementation is the selection of a process by which the failures and successes of
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a classifier can be evaluated. This method can become overly complicated when

the number of available classifiers increases.

Figure 3.4: Conditional Topology Example

3.2.2 Hierarchical (Serial) Topology

This topology employs a method where classifiers are appliedin succession. Each

classifier applied to the data is used to reduce the number of possible classes to

which such input data belongs to. As the data passes through the classifiers, the

decision becomes more and more focused. The common strategyfor the design

of the classifier queue is to insert classifiers ordered according to decreasing error

values. That is to say the classifier with the highest error isused first, whereas the

classifier with the lowest error is used last. Of course, there should be safeguards

to ensure that the classes selected by each classifier alwaysinclude the correct

class. If not, the next classifier will not have the option of selecting the correct

output class.

In the figure 3.5 we show an example of hierarchical topology where each

base classifier is a binary one, that can distinguish betweenthe true class and all

the rest.

3.2.3 Multiple (Parallel) Topology

This is the most common implementation of a multi-classifiersystem. All the

classifiers first operate in parallel on the input and the results are then pooled to
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Figure 3.5: Hierarchical Topology Example

obtain a consensus result. This methodology does incur in a cost as it is computa-

tionally heavy, with each classifier having to be executed before the final result is

obtained.

Parallel combinations can be implemented using different strategies, and the

combination method depends on the types of information produced by the base

classifiers.

Figure 3.6: Parallel Topology Example
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3.2.4 Hybrid Topology

A hybrid topology based system incorporates a mechanism forthe selection of the

best classifier for a given input. It is obvious that certain classifiers perform better

than others on certain data. Thus, the selection of an appropriate classifier would

streamline the entire classification process.

This topology could be considered a trade off between parallel and serial topol-

ogy, a possible example is shown in fig. 3.7. The major disadvantage of this ar-

chitecture is its complexity, even if we reach better performance with respect to

the others topologies.

Figure 3.7: Hybrid Topology Example

Hierarchical and multiple topologies are also known asselection-basedand

fusion-based, respectively. The classification presented by [48] is moretopical

and relevant than the one presented by [53] due to the consideration of hybrid

systems. Hybrid systems are rapidly gaining popularity among researchers due to

the limitations of each system.

3.3 The Combiners

The type of combiners that we can use depends on the base classifiers output. If

the base classifiers output is ofType 1, we can have different kind of combiners

as, for example:
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• Majority Voting

• Weighted Majority Voting

• Behaviour Knowledge Space

• Dempster-Shafer

3.3.1 Majority Voting

Dictatorship and majority vote are perhaps the two oldest strategies for decision

making. Their roots can be traced back to the era of ancient Greek city states

and the Roman Senate. The majority criterion became established in 1356 for the

election of German kings, by 1450 was adopted for elections to the British House

of Commons, and by 1500 as a rule to be followed in the House itself.

This combiner is based on ademocraticmethod, even used in democratic

countries: the Vote. Each classifier gives its own evaluation; the final result will be

given from the class with more votes. In this case the combiner has to count only

the occurrences of each class, and evaluate which class has the greatest number of

votes.

If we want to formalize this concept, we can assume that the outputs of the

classifier will be denoted with a binary vector of sizeM , [di,1, . . . , di,c]
T ∈ {0, 1}M , i =

{1, . . . B}, whereB is the number of classifiers involved into the ensemble,M is

the number of the possible classes, and wheredi,j = 1 if the ith classifier votes

the classCj for the actual sample, whiledi,j = 0 otherwise. So the system will

decide for the classCk if :

B
∑

i=1

di,k =
M

max
j=1

B
∑

i=1

di,j(3.1)

That is to say if the number of votes obtained by theCk class is the maximum

of the evaluation obtained from all the possible classes.
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3.3.2 Weighted Majority Voting

A variation of the previously described technique is theweighted majority voting.

In this case, for each classifier, we have also a weight. Obviously this weight will

be defined before the classification process. If we want to formalize this method,

we can consider the outputs of each classifier as in the previous method. In this

case we have to consider an other coefficient vectorbi, that represents the weights

associated to theith classifier. In this caseCk will be given as output class if:

B
∑

i=1

bidi,k =
M

max
j=1

B
∑

i=1

bidi,j(3.2)

It’s worth noting that if the weightsbi are all the same,weighted majority

voting is exactly the same as majority voting.

A good way to choose the weights could be the following one, asdemonstrated

in [46].

If we consider an ensemble ofM independent classifiers, each of

them with an his own accuracy,pi, in which their accuracy will be

combined through the weighted majority voting. The accuracy of the

combination is maximized put the votes in accord with the following

method:

bi ∝ log
pi

1 − pi

(3.3)

3.3.3 Bayesian Combination

The Bayesian Combination rule is based on thea posterioriprobability. In fact,

to an input patternx it will assign the class that maximizes such probability. Ifwe

denote it assi(x), for the sake of simplicity, hereinafter thex will be ignored, the

output of theM classifiers involved into the ensemble, and withwk the generic

class. The combiner has to choose the class that maximize thequantity:
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p(wk|s1, s2, . . . , sM)(3.4)

This is the best combination method that we can use to reduce the error prob-

ability. The problem regards the knowledge of all the conditional probabilities for

the available classes. This information is often unknown. To overcome this prob-

lem, it’s possible to use some decision rules directly derived from the bayesian

formalism, that are an approximation of eq. 3.4

The principal combination rules are:

• Product Rule

• Sum rule

• Max rule

• Min rule

• Median rule

Product Rule

If we use the Bayes Rule it’s possible to rewrite eq. 3.4 as:

p(wk|s1, s2, . . . , sM) =
p(wk)p(s1, s2, . . . , sM |wk)

p(s1, s2, . . . , sM)
(3.5)

It’s possible to rewrite the denominator as:

p(s1, s2, . . . , sM) =
N

∑

l=1

p(s1, s2, . . . , sM |wl)p(wk)(3.6)

whereN is the number of the possible classes. Now, if we assume that the

outputs of all the classifiers areconditionally independent, we can rewrite the

conditional probability as:
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p(s1, s2, . . . , sM |wk) =

M
∏

i=1

p(si|wk)(3.7)

consequently eq. 3.5 becomes:

p(wk|s1, s2, . . . , sM) =
p(wk)

−M+1
∏M

i=1 p(wk|si)
∑N

l=1

∏M

i=1 p(si|wl)p(wk)
(3.8)

To maximize eq. 3.8, it’s necessary to maximize its numerator with respect to

k, that is:

max
k

{p(wk)
−M+1

M
∏

i=1

p(wk|si)}(3.9)

Eq. 3.9 represents the product rule. In fact we try to maximize the product of

the conditional probability of each classifier, with respect to all the classes. One

of the major problems of this technique is that it’s linked tothe possibility that one

or more classifiers give a result close to zero. In this case, the product will give us

a value close to zero , and the combiner will fail.

Sum rule

To define the sum rule we have to make the hypothesis that all thea priori proba-

bilities and thea posterioriprobabilities are very close each other:

p(wk|si) = p(wk)(1 + δi,j) with δi,j << 1(3.10)

After this we can substitute eq. 3.10 into eq. 3.9, and we can obtain:

p(wk)
−M+1

M
∏

i=1

p(wk|si) = p(wk) = p(wk)
M
∏

i=1

(1 + δi,j)(3.11)
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After that if we expand the second member product and we don’tconsider the

second order terms, we obtain:

max
k

{(1 − M)p(wk) +

M
∑

i=1

p(wk|si)}(3.12)

Eq.3.12 represents thesum rule. The limit are in the initial hypothesis which

is very restrictive. That is true only in a very few cases.

Max rule

This rule is obtained directly from the sum rule, in fact it’sobtained as an approx-

imation of the sum with the maximum into the eq. 3.12

max
k

{(1 − M)p(wk) + M
M

max
i=1

p(wk|si)}(3.13)

Min rule

This rule is obtained starting from eq. 3.9 with an approximation of the product

with the minimum.

max
k

{p(wk)
−M+1

M

min
i=1

p(wk|si)}(3.14)

Median rule

Finally, the median rule is obtained starting from eq. 3.14,using the median in-

stead of the minimum:

max
k

{p(wk)
−M+1medM

i=1p(wk|si)}(3.15)

Obviously to use this rule it’s necessary that the hypothesis that thea priori

probabilities are the same is satisfied.
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3.3.4 The Dempster-Shafer approach

The theory of Dempster and Shafer (D-S theory) has been frequently applied to

deal with uncertainty management and incomplete reasoning.

In many applications, information is collected using several independent sources

and it is needed to integrate such pieces of information in order to improve the re-

liability of the decision making process. TheDempster-Shafer theory of evidence,

is a framework for such purpose that has found applications in diverse areas such

as expert systems, accounting, robotics, medical imaging,documental retrieval,

computer vision, pattern matching. and automatic target recognition.

Differently from the classical Bayesian theory, D-S theorycan explicitly model

the absence of information, while in case of absence of information a Bayesian ap-

proach attributes the same probability to all the possible events.

The DempsterShafer theory could narrow down a hypothesis set with the accu-

mulation of evidence and it allows for a representation of the ignorancedue to

the uncertainty in the evidence. When the ignorance reachesthe value zero, the

DempsterShafer model reduces to the standard Bayesian model. Thus, the Demp-

sterShafer theory could be considered as a generalization of the theory of proba-

bility.

Some theoretical issues

Let θ be a finite, non-empty set consisting of all the possible values of a certain

attribute. The setθ serves as our universal set, and it is called theframe of discern-

ment. A mass function, also calledbasic probability assignment, is a mappingm

from the set of all subsets ofθ into the closed interval[0, 1] such that

m(∅) = 0
∑

A⊆2θ

m(A) = 1(3.16)

The function valuem(A) measures the degree of evidence that is assigned to

the subset and (1) reflects that the total evidence is one. Thesimplest mass func-

tion corresponds to the case when there is no available evidence at all (i.e.,total

ignorance), in this case we setm(θ) = 1 andm(A) = 0 for all other subsets ofθ.
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When assigning abpa, there are some requirements which have to be met.

They descend from the fact that thebpa is still a probability function, hence has

to respect the constraints for mass probability functions.Eachbpa is such that

m : 2θ → [0, 1], whereθ indicates the so calledframe of discernment. Usu-

ally, the frame of discernmentθ consists ofM mutually exclusive and exhaustive

hypothesesAi, i = 1, . . . , M . A subset{Ai, . . . , Aj} ⊆ θ represents a new hy-

pothesis. As the number of possible subsets ofθ is 2θ, the generic hypothesis is

an element of2θ.

For example, if we only consider two hypotheses (classes), namelyPositive(P)

andNegative(N); hence, the frame of discernment isθ = {{P}, {N}} and2θ =

{{P}, {N}, {P, N}}, whereas in the Bayesian case only the events{{P}, {N}}
would be considered.

{P} and {N} are referred to assimple eventsor singletons, while {P , N} is

referred to ascomposite event. Furthermore, also the following properties have to

hold:

m(∅) = 0
∑

A⊆2θ

m(A) = 1

The aim of assigning abpais to describe the reliability of a particular classifier in

reporting a specific event. Such a representation is suitable for combination, but

as we want to deal with combined results in the same way, we also impose the

constraint that the combination of severalbpaby means of the D-S rule still has

to be abpa. The uncertainty in the final decision will be inversely proportional

to the extent to which the base classifiers agree. If we haven base classifiers, the

combination rule is such that:

m(A) = K
∑

Tn
i=1 Ai=A

n
∏

i=1

mi(Ai)

where:

K−1 = 1 −
∑

Tn
i=1 Ai=∅

n
∏

i=1

mi(Ai)

=
∑

Tn
i=1 Ai 6=∅

n
∏

i=1

mi(Ai)
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It is worth observing that the normalizing factorK is independent from any

specific value ofA. The valueK can therefore be considered a constant, once the

bpas are fixed.

3.4 Well Known MCS Approaches

There is no definitive taxonomy. Jain, Duin and Mao (2000) list eighteen classi-

fier combination schemes; Witten and Frank (2000) detail four methods of com-

bining multiple models: bagging, boosting, stacking and error-correcting output

codes whilst Alpaydin (2004) covers seven methods of combining multiple learn-

ers: voting, error-correcting output codes, bagging, boosting, mixtures of experts,

stacked generalization and cascading. Here, the literature in general is reviewed,

with, where possible, an emphasis on both theoretical and practical advices, then

the taxonomy from Jain, Duin and Mao (2000) is provided, and finally four ensem-

ble methods are focussed on: bagging, boosting (including AdaBoost), stacked

generalization and the random subspace method.

Table 3.4 provides a taxonomy of ensemble methods which was taken from

Jain, Duin and Mao (2000).

3.4.1 Boosting

Boosting was inspired by an on-line learning algorithm called Hedge(β). This

algorithm allocates weights to a set of strategies used to predict the outcome of a

certain event.The weight of strategysi, if properly scaled, can be interpreted as

the probability thatsi is the best (most accurate) predicting strategy in the group.

The distribution is updated on-line after each outcome. Strategies with the correct

prediction receive more weight while the weights of the strategies with incorrect

predictions are reduced.

Boosting is related to the general problem of producing a very accurate pre-

diction rule by combining rough and moderately inaccurate rules-of-thumb.The

general boosting idea is to develop the classifier teamD incrementally, adding

one classifier at a time. The classifier that joins the ensemble at stepk is trained
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Scheme Architecture Trainable Adaptive Info-level Comments
Voting Parallel No No Abstract Assumes indepen-

dent classifiers
Sum,
mean,
median

Parallel No No Confidence Robust; Assumes
independent confi-
dence estimators

Product,
min, max

Parallel No No Confidence Assumes indepen-
dent features

Generalized
ensemble

Parallel Yes No Confidence Considers error cor-
relation

Adaptive
weighting

Parallel Yes Yes Confidence Explores local exper-
tise

Stacking Parallel Yes No confidence Good utilization of
training data

Borda
count

Parallel Yes No Rank Converts ranks into
confidences

Logistic re-
gression

Parallel Yes No Rank confi-
dence

Converts ranks into
confidences

Class set
reduction

Parallel cas-
cading

Yes/No No Rank confi-
dence

Efficient

Dempster-
Shafer

Parallel Yes No Confidence Fuses non-
probabilistic confi-
dences

Fuzzy inte-
grals

Parallel Yes No confidence Fuses non -
probabilistic confi-
dences

Mixture
of local
experts
(MLE)

Gated paral-
lel

Yes Yes Confidence Explores local exper-
tise; joint optimiza-
tion

Hierarchical
MLE

Gated paral-
lel hierarchi-
cal

Yes Yes Confidence Same as MLE; hier-
archical

Associative
switch

Parallel Yes Yes Abstract Same as MLE, but
non joint optimiza-
tion

Bagging Parallel Yes No confidence Needs many compa-
rable classifiers

Boosting Parallel hier-
archical

Yes No Abstract Improves margins;
unlikely to over-
train , sensitive to
mislabels; needs
many comparable
classifiers

Random
subspace

Parallel Yes No Confidence Needs many compa-
rable classifiers

Neural
trees

Hierarchical Yes No confidence Handles large num-
bers of classes

Table 3.4: Ensemble Methods
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on a data set selectively sampled from the training data setZ. The sampling dis-

tribution starts from uniform, and progresses towards increasing the likelihood of

“difficult” data points. Thus the distribution is updated ateach step, increasing the

likelihood of the objects misclassified at stepk − 1.

The classifiers inD are the trials or events, and the data points inZ are the

strategies whose probability distribution we update at each step. The algorithm

is calledAdaBoostwhich comes from ADAptative BOOSTing. There are two

implementation of AdaBoost: withreweightingand withresampling.

AdaBoost

AdaBoost is one of the best-known and best-performing ensemble classifier learn-

ing algorithms. It constructs a sequence of base models, where each model is con-

structed based on the performance of the previous model on the training set. In

particular, AdaBoost calls the base model learning algorithm with a training set

weighted by a distribution. After the base model is created,it is tested on the

training set to see how well it learned.

The figure 3.4.1 shows AdaBoost’s pseudocode. AdaBoost constructs a se-

quence of base modelsht for t ∈ {1, 2, . . . , T}, where each model is constructed

based on the performance of the previous base model on the training set. In par-

ticular, AdaBoost maintains a distribution over them training examples. The

distributiond1 used in creating the first base model gives equal weight to each ex-

ample (d1,i = 1/m ∀i ∈ {1, 2, . . . , m}). AdaBoost now enters the loop, where the

base model learning algorithmLb is called with the training set andd1 . The re-

turned modelh1 is then tested on the training set to see how well it learned. The

total weight of the misclassified examples(ǫ1) is calculated. The weights of the

correctly-classified examples are multiplied byǫ1/(1ǫ1) so that they have the same

total weight as the misclassified examples. The weights of all the examples are

then normalized so that they sum to 1 instead of2ǫ1. AdaBoost assumes thatLb is

a weak learner, i.e.,ǫt < 1/2 with high probability. Under this assumption, the to-

tal weight of the misclassified examplesǫt < 1/2 is increased to1/2 and the total

weight of the correctly classified examples1ǫt > 1/2 is decreased to1/2. This is
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AdaBoost((x1 , y1 ), . . . , (xm , ym),Lb , T )

Initialize d1,i = 1
m

∀i ∈ {1, 2, . . .m}.
for t = 1, 2, . . . , T ,

ht = Lb({(x1, y1), . . . , (xm, ym)},dt)
Calculate the error ofht : ǫt =

∑

i:ht(xi)6=yi
dt,i

if (ǫt ≥ 1/2) then,
setT = t − 1 and abort this loop.

βt = ǫt

1−ǫt

Calculate distributiondt+1:

wi = dt,i ×
{

βt, ifht(xi) = yi

1, otherwise

dt+1,i = wi
Pm

i=1 wi

return the final hypothesis:
hfin(x) = argmaxy∈Y

∑

t:ht(x)=y log 1
βt

Figure 3.8: AdaBoost algorithm

done so that, by the weak learning assumption, the next modelht+1 will classify

at least some of the previously misclassified examples correctly. Returning to the

algorithm, the loop continues, creating theT base models in the ensemble. The fi-

nal ensemble returns, for a new example, the one class in the set of classesY that

gets the highest weighted vote from the base models. Each base models vote is

proportional to its accuracy on the weighted training set used to train it.

3.4.2 Bagging

Baggingis introduced by (Breiman 1996) as an acronym forBootstrap AGGre-

gatING. The idea of bagging is simple and appealing: the ensemble ismade of

classifiers built on bootstrap replicates of the training set. The classifier outputs

are combined by the plurality vote. The meta-algorithm, which is a special case of

model averaging, was originally designed for classification and is usually applied
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to decision tree models, but it can be used with any type of model for classifica-

tion or regression. The method uses multiple versions of a training set by using

the bootstrap, i.e. sampling with replacement. Each of these data sets is used to

train a different model. The outputs of the models are combined by averaging (in

the case of regression) or voting (in the case of classification) to create a single

output.

Bagging is only effective when using unstable (i.e. a small change in the

training set can cause a significant change in the model) non-linear models.

3.4.3 Stacked Generalization

Stacked generalization (or stacking) (Wolpert 1992) is a different way of com-

bining multiple models, that introduces the concept of a meta learner. Although

an attractive idea, it is less widely used than bagging and boosting. Unlike bag-

ging and boosting, stacking may be (and normally is) used to combine models of

different types. The procedure is as follows:

1. Split the training set into two disjoint sets.

2. Train several base learners on the first part.

3. Test the base learners on the second part.

4. Using the predictions from 3) as the inputs, and the correct responses as the

outputs, train a higher level learner.

Note that steps 1) to 3) are the same as cross-validation, butinstead of using a

winner-takes-all approach, the base learners are combined, possibly non-linearly.

3.4.4 Random Subspace Method

The random subspace method (RSM) (Ho 1998) is a relatively recent method

of combining models. Learning machines are trained on randomly chosen sub-

spaces of the original input space (i.e. the training set is sampled in the feature

space). The outputs of the models are then combined, usuallyby a simple majority

vote.
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3.5 Some Considerations

In conclusion, real-life situations are not as simple and straightforward. Most

data sets are not of good quality and contain a substantial quantity of noise. Such

erroneous data can mislead the training paradigm which can lead to wrong ap-

proximations. Secondly, most training paradigms have veryclear-cut limitations

on their operation. For example, the rule of thumb for the proper training of a

neural network is that the paradigm should be presented withat least 10 times as

much data as there are connections within the network. Less data can lead to the

neural network reaching global minimums in its training error and consequently,

returning bad approximations on the function. A small sizedneural network with

2-3 hidden layers and 10 inputs will have at least 50 connections, which in turn

leads to a requirement of at least 500 training samples for proper training. Most

of the complex data sets currently being used are often of much higher dimen-

sions and consequently require large networks for proper approximations. This

in turn leads to the requirement of needing large data sets, which is often left

unfulfilled. Due to the limitations mentioned above, it has been experimentally

observed that the construction of a perfect classifier for any given task is often im-

possible. Therefore, the best that system designers have towork with are classi-

fiers and paradigms which provide near approximations of thefunctions expected.

Of course, when different paradigms are used to approximatethe same function,

the approximations generated can vary due to different interpretations of the data

and noise being made. This diversity among different learning paradigms had

lead to the development of the Multi-Classifier System (MCS), which attempts to

combine the approximations of different training paradigms to obtain better re-

sults. Such systems are analogous to a company board of directors, where the

board is usually constituted of people who have varying levels of qualifications

and expertise. For example, a board is usually constituted of an economist, an ac-

countant, a management consultant and a marketing consultant. It is very rare that

a board will have one person who is specialized in all these fields of expertise, and

are therefore compelled to make decisions in consensus withall the members of

the board. A decision making process of this sort, where the final decision is gen-
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erated by combining the opinions of all the members of the board is exactly how a

MCS works. Of course, there can be many variations to this theme, where differ-

ent members of the board could be given extra decision makingcapabilities based

on the type of decision to be made. Intuitively, it makes sense that a combination

classifiers or experts provides better results than a singular decision maker. How-

ever, this is dependent on how independent and diverse the individual classifiers

are. If all the classifiers provide similar and correlated results, the aggregated re-

sult will not provide any improvement to the recognition process. Accordingly,

the diversity among the selected classifiers has been recognized as one of the key

design features within a successful multi-classifier.



Chapter 4

Self-Organizing Classifier ensemble
for Adversarial Learning

In supervised classification we cannot work without labels that can be associated

with our training data. Obtaining labels, hard or soft, is a process prone to er-

rors. That means that a classification algorithm can have falsely labelled data in

its training set, and this, in extreme cases, might render ituseless. Sometimes

the mislabelling samples could be forced by a training set contamination made by

some malicious users (Adversarial Learning). This kind of training set contami-

nation is also known asPoisoning Attack[1].

In this chapter we deal with to find out what is the impact of noise-contaminations

on the labels, and how it is possible to clean a training set with a MCS approach.

We will describe this kind of approach, named SOCIAL, and we made several

experiments to verify the robustness to the noise and to the contamination (smart-

noise) of a classifier trained with acleanedtraining set.

We will show that the performance obtained by a simple classifier trained with

the cleaned training set and by some “state-of-the-art” MCStrained on the original

dataset, are comparable and sometimes the simple classifieris even better in terms

of accuracy.

We will demonstrate that our system can move the computational complexity

from the classification system to the training setcleaning system, giving advan-

tages in terms of computational complexity, interpretation of the problem (for

example through a set of rules) robustness in case ofadversarial learningprob-

40
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lems.

4.1 Some MCS approach for Label Noise

There is not much literature on how noise label should be modelled and dealt with

an MCS approach.

AdaBoost [30] has shown to often improve the base learner accuracy. Since

its introduction, it has been successfully applied to many problems. Furthermore,

the AdaBoost idea has been extended to other sort of problems. Although it has

wide-spread success, it is susceptible to the over-fitting problem as pointed out

by Dietterich [21]. Oza [61] proposed an approach called AveBoost2 to smooth

noise. This approach can be seen as a relaxed version of AdaBoost. When training

examples are noisy and therefore difficult to fit, AdaBoost isknown to increase

the weights of those examples to excess and over-fit them because many consec-

utive base models may not learn them properly. AveBoost2s averaging does not

allow the weights of noisy examples to increase rapidly, thereby mitigating the

overfitting problem.

Thiel [73] made a comparison between the single classifier and an ensemble.

In his paper the attention is focused on which impact a dataset with soft labels has

on a noisy training set.

Melville and Mooney [57] introduced a new kind of multiple classifier sys-

tem to take into account the noise label problem; they calledit DECORATE.

DECORATE, (Diverse Ensemble Creation by Oppositional Relabelling of Ar-

tificial Training Examples) uses an existing ”strong” learner (one that provides

high accuracy on the training data) to build an effective diverse committee in a

fairly simple, straightforward manner. This is accomplished by adding different

randomly constructed examples to the training set when building new committee

members. These artificially constructed examples are givencategory labels that

disagree with the current decision of the committee, thereby easily and directly

increasing diversity when a new classifier is trained on the augmented data and

added to the committee.
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4.2 The SOCIAL Approach

SOCIAL is the acronym ofSelf-OrganizingClassIfier ensemble forAdversarial

Learningand is a Multiple Classifier Systems with a parallel topology(sec 3.2.3)

where a statistical characterization of each base classifiers is dynamically updated

by looking at the ensemble of these classifiers.

This system, after an iterative evolution, returns a cleaned training set. This

result is obtained changing the labels assigned to the samples and considering the

training set cleaned when these changes become stable.

SOCIAL is specifically designed to approach with training sets with noisy

labels, i.e. for anadversarial leaningproblem. The principle behind is that a

community through a democratic approach can remove most of its own initial

mistakes and so it can improve itself.

4.2.1 System Evolution and Terminal Condition

The main parameter used here is theDegree of Truth, hereinafterDoT1. This

value is defined in the range[0, 1] and it represents the probability that the labels

assigned to the sample are corrects.

TheDoT distribution requires to be initialized. Making the assumption that

the noise distribution is unknown, a possible criteria is toassign1 to theDoT

for each sample. This means that we trust the labels assignedto the training set

samples.

Another important parameter is theClassifier Reliability, hereinafterR. This

parameter is associated to all the base classifiers and it represents a degree of belief

on the correctness of the classifier with respect to the ensemble decisions.

The last important parameter isδdB, that is the value used for the terminal

condition. This value is calculated as the ratio (in decibel) between the number of

the samples that change their labels across two consecutivesteps.

1The concept ofDoT is often used in the context offuzzy theory[69], in this case, statements
are described in terms of membership functions, that are continuous and have a range[0, 1]. For
example, given the measured value of a parameter, the membership function gives thedegree of
truth that the parameter is “high” or “low”.
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The system behaviour is characterized by:

1. a bootstrap step, in which SOCIAL put theDoT = 1 for each sample and

δdB = +∞

2. an iterative evolution, in which theR associated to each base classifier is

upgraded and the base classifiers are combined to redefine theDoT and the

label for each sample.

3. a terminal condition, in which there is a comparison betweenδ and a suit-

able threshold (τ ).

In figure 4.1 the system evolution is represented. After the bootstrap phase, the

system, iteratively, makes a base classifier statistical characterization and then

combines all the classifiers’ outputs weighted by their performance estimation

in order to evaluate if the label of samples must change. Finally, the terminal

condition is checked and, if it is matched, the system returns a “cleaned” training

set as well as theR for each classifier.

Figure 4.1: SOCIAL: Flow Diagram
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4.2.2 Base Classifiers Statistical Characterization

All the information about the performance of a classifier with respect to a spe-

cific training set are given by theConfusion Matrix(sec 3.1.2). It represents how

the errors are distributed across the classes. Starting from this matrix we have in-

troduced a new type of matrix, that takes into account also the probability that a

training pattern really belongs to a specific class. We called this matrixWeighted

Confusion Matrix, hereinafterWCM .

Predicted Class
True Class Ĉ1 Ĉ2 . . . ĈM

C1 e11 e12 . . . e1M

C2 e21 e22 . . . e2M

...
...

...
. . .

...
CM eM1 eM2 . . . eMM

Table 4.1: Confusion Matrix (CM) forM-classes classification

In table 4.1 a general Confusion Matrix for an M-classes problem is shown.

Let us define the training set as{(x1, y1), . . . , (xN , yN)}, where the generic

xk is the k-th sample andyk is its label.Ni represents the number of samples in

which y = Ci, andNij represents the number of samples in whichy = Ci and

ŷ = Cj, whereŷ is the predicted label.

The difference between theConfusion Matrixand the weighted versionWCM

lies on how the elementseij are calculated. While in theConfusion Matrixthe en-

try eij denotes the percentage of training set samples whose true class isCi, and

which are assigned by the classifier to classĈj, (eq. 4.1), in the Weighted Confu-

sion Matrix the same entry denotes the percentage of the training set whose true

class isCi, and which are assigned by the classifier to classĈj, weighted by the

DoT associated to each sample (eq. 4.2).

CM eij =
Nij

Ni

=

∑N

k=1:yk=Ci and ŷk=Ĉj
1

Ni

,(4.1)
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Sample True Class DoT Predicted Class

x1 P 0.8 N

x2 P 0.6 P

x3 P 0.9 P

x4 N 0.2 N

x5 N 0.5 P

x6 P 0.7 P

x7 N 0.4 N

x8 N 0.9 N

x9 P 0.3 P

x10 N 0.2 P

Table 4.2: Training Set Classification Example withDoT value

WCM eij =

∑N

k=1:yk=Ci and ŷk=Ĉj
DoT (k)

Ni

,(4.2)

For example, we can consider the binary classification problem in the table 4.2.

In this case the samples can belong to the classesPositive(P) orNegative(N)

and the entryeij are evaluated as shown in the table 4.3. It is worth noting that the

sum of the elements of eachWCM row is always less than one, while in the case

of CM it is always one. This is due to theDoT associated to each sample.

For the sake of brevity, in the following we explicitly evaluate only the entry

e00 of the matrix, that is, when theTrue Classis P and theAssigned Classis P̂ .

CM e00 =
4

5
= 0.8(4.3)

WCM e00 =
0.6 + 0.9 + 0.7 + 0.3

5
= 0.46(4.4)

Starting from theWCM, SOCIAL evaluates theClassifier ReliabilityR as-

sociated to each base classifier.

r : WCM −→ R(4.5)
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CM Predicted Class
True Class P̂ N̂

P 0.80 0.20
N 0.40 0.60

WCM Predicted Class
True Class P̂ N̂

P 0.46 0.16
N 0.14 0.30

Table 4.3: Comparison betweenCM andWCM on the example in tab 4.2

It is possible to make a comparison between theProbability Theoryand this

problem. TheWCM could be considered as aprobability density function(pdf )

while theR could be considered as a synthetic information extracted from the

pdf , as for examples the mean (µ) or the standard deviation (σ).

The information that SOCIAL has to extract from theWCM depends on

which type of fusion it uses. For example, if the fusion blockis a Weighted

Majority Voting (sec 3.3.2) then theR will be a vector of “weights” associated

to each class, where the single valueR(Ci) is evaluated as shown in eq. 4.6.

R(Ci) = eii, ∀i = 1, 2, . . . , M(4.6)

Another examples of functionr() will be described in the appendix A where

the Dempster-Shafer (sec 3.3.4) combination rule is used asfusion block, and in

the appendix B, where the Bayesian Combing rule is considered.

In figure 4.2 it is shown how the system evaluates the WCM starting from the

training set. It is worth nothing that in the bootstrap phasethe Weighted Confusion

Matrix is the normal Confusion Matrix, because theDoT value are put to1 for

each sample.

Another important consideration is that the name SOCIAL directly derives

from theDoT values that are evaluated from the ensemble in the previous step,

that’s why the classifier characterization is made with respect to the others classi-

fiers.
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Figure 4.2: Statistical Classifier Characterization Schema

4.2.3 Base Classifiers Combination

After the system has characterized the base classifiers, it has to combine them to

obtain the newlabel and the newDoT for each sample as shown in the figure 4.3.

Figure 4.3: Base Classifiers Combination

The Fusion Block implements a functionf() defined as:

f : ((ŷ1, R1), . . . , (ŷB, RB)) −→ (y, DoT )(4.7)

Where in eq. 4.7̂yi represents the output of thei− th classifier by means of a

suitable combining rule.
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For example, in the case of using theWeighted Majority Voting(sec 3.3.2) as

combining rule,f() becomes:

f −→



















y = argmax j

PB

i=1:ŷi=Cj
Ri(ŷi)

B

DoT = max j

PB

i=1:ŷi=Cj
Ri(ŷi)

B

(4.8)

Other examples off() will be discussed into the Appendix A and in the Ap-

pendix B.

4.2.4 Label Changes Evaluation and Terminal Condition

SOCIAL stops its iterations when the ratioδdB between the samples that change

their labels in the stept − 1 and that ones that change them in the stept is less

than a thresholdτ (eq. 4.10) and it will give thecleaneddataset.

changes(t) =

N
∑

i=1

∆i, ∆i =

{

1, if yi(t − 1) 6= yi(t)

0, otherwise
(4.9)

δdB =

{

+∞, t = 1

10 ∗ log10
changes(t−1)

change(t)
, Otherwise

(4.10)

We have experimentally proved that a good value forτ is 1dB. It is worth

noting that during the first stepδ = +∞ and so the system can stop its iterations

only starting from the second step.

4.2.5 The SOCIAL Algorithm

In this section we will describe the SOCIAL algorithm using the Weighted Ma-

jority Voting as fusion block.

Fig. 4.2.5 shows the pseudocode of the algorithm. SOCIAL hasas input

the training set(x1, y1(1), . . . , (xN , yN(1)), the base models learning algorithms

L1, . . . , LB and a threshold valueτ for the terminal condition.
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This algorithm, for each stept, maintains a distributionDoT (t), where each

elementDoTi(t) is associated to the samplexi. This distribution gives the prob-

ability that the samplexi really belongs to the classyi. During the bootstrap

phase,(DoTi(1) = 1 ∀i ∈ 1, 2, . . . , N) for the motivations illustrated previ-

ously (sec 4.2.1).

As first operation, SOCIAL evaluates through a K-Fold Cross Validation ap-

proach, a functionhb(t) that associates for each samplexi, for each base classifier

b and for each stept, a predicted clasŝyb
i (t). Starting fromŷb

i (t), SOCIAL evalu-

ates theWCM (sec. 4.2.2), where each entry is calculated as:

eb
ij(t) =

∑N

k=1:yk(t)=Ci and ŷb
k
(t)=Cj

DoTk(t)

Ni

(4.11)

Consequently, it evaluates the Classifier ReliabilityR
b(t) for each base classi-

fier b and for each iterationt. The valuesRb(Ci, t) are evaluated for each possible

classCi starting from the weighted confusion matrix and calculating theweighted

accuracyfor each class:

Rb(Ci, t) = eb
ii(t)(4.12)

After the weights evaluation, it applies theWMV to each sample and updates

the labelyi(t) into the training set and theDoT (t) distribution:

yi(t + 1) = argmax j

∑B

k=1:ŷk
i (t)=Cj

Rk(ŷk
i (t))

B

DoTi(t + 1) = max
j

∑B

k=1:ŷk
i (t)=Cj

Rk(ŷk
i (t))

B

At this point SOCIAL evaluates the number of samples that change their labels

in the stept:

changes(t) =

N
∑

i=1

∆i, ∆i =

{

1, if yi(t − 1) 6= yi(t)

0, otherwise
(4.13)
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At the end, it evaluates the terminal condition, i.e. if the

10 ∗ log10

changes(t − 1)

change(t)
< τ

SOCIAL returns thecleanedtraining set(x1 , y1 (t)), . . . , (xN , yN (t)).

4.3 Experimental Results

To figure out how the system perform, we will show the results obtained for two

kinds of problems, the first one produced with some syntheticdistributions in

which noise is added as described in the section 4.3.1, and another with some real

scenarios in which the noise is added in asmartmanner, i.e. imitating a possible

malicious user that try to overcame the security system contaminating the training

set. In all the tests we will make a comparison among the accuracy obtained

through the worst base classifier trained with the training setcleanedby SOCIAL

and the accuracy obtained by all the base classifiers and by the state of the art

Multiple Classifier Systems on theoriginal training set.

4.3.1 Noise Model

To experimentally determine the impact of label noise on classification accuracy,

we need to artificially add noise according to a certain model. In a two-class case,

a given portion of the training data would get randomly selected and the associated

label flipped to the opposite class. This method can be extended to the multi-class

case, with the label being changed to one of the other classesin a random manner.

4.3.2 Results with Synthetic Data

The first type of experiments are on three synthetic datasetsreported in table 4.4.

We have considered three base classifiers:

• Decision Tree(DT): The algorithms that are used for constructing decision

trees work by choosing a variable at each step that is the nextbest variable

to use in splitting the set of items.Bestis defined by how well the variable
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SOCIAL((x1 , y1 (1 )), . . . , (xN , yN (1 )),L1 , . . . ,LB , τ)

� N is the number of samples,B is the number of base classifiers,
� τ is terminal condition threshold,M is the number of the classes.

Initialize DoTi(1) = 1 ∀i ∈ 1, 2, . . . N .
Initialize t = 0
Initialize δ = +∞

do
t = t + 1
for b = 1, 2, . . . , B,

� Classifier evaluation through a K-fold Cross Validation Approach:
h

b(t) = Lb((x1, y1(t)), . . . , (xM , yM (t)))
for i = 1, 2, . . . ,M ,

for j = 1, 2, . . . ,M ,
� WCM entries evaluation

eb
ij(t) =

PN

k=1:yk(t)=Ci and ŷb
k
(t)=Cj

DoTk(t)

Ni

� Classifier Reliability calculation:
Rb(Ci, t) = eb

ii(t)
for i = 1, 2, . . . , N ,

� Labelyi updating in the training set:

yi(t + 1) = argmax j

PB

k=1:ŷk
i
(t)=Cj

Rk(ŷk
i (t))

B

� DoT updating for each sample:

DoTi(t + 1) = maxj

PB

k=1:ŷk
i
(t)=Cj

Rk(ŷk
i (t))

B

� Label changes evaluation:

changes(t) =
∑N

i=1 ∆i, ∆i =

{

1, if yi(t − 1) = yi(t)

0, otherwise

� Terminal condition evaluation:
if t > 1,

δ = 10 ∗ log10
changes(t−1)

changes(t)

while δ > τ

return Thecleanedtraining set(x1 , y1 (t)), . . . , (xN , yN (t)).

Figure 4.4: The SOCIAL Algorithm
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Figure 4.5: The noise generator algorithm.

Distribution Training Set Samples Test Set Samples Classes

Gaussian 4000 1000 2
Mixture of Gaussians 4000 1000 2
Rotated Check Board(45◦) 4000 1000 2

Table 4.4: Synthetic Datasets Description

splits the set into subsets that have the same value of the target variable.

Different algorithms use different formulae for measuringbest. We used

theC4.5 Algorithm, in particular theJ48 implementation of Weka [28]

• Probabilistic Neural Network (PNN): The Probabilistic Neural Network

was introduced in 1990 by Specht [70] and puts the statistical kernel estima-

tor into the framework of radial basis function networks. PNNs have gained

interest because they offer a way to interpret the network structure in the

form of a probability density function.

• K Nearest Neighbourhood(KNN) with k = 3: The k-nearest neighbour

algorithm is amongst the simplest of all machine learning algorithms: an

object is classified by a majority vote of its neighbours, with the object

being assigned to the class most common amongst itsk nearest neighbours

(k is a positive integer, typically small). If k = 1, then the object is simply

assigned to the class of its nearest neighbour.

We choose these classifiers because they are conceptually different and they

can increase thediversityamong them. It is experimentally demonstrate that for a
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Multiple Classifier Systems the diversity of the base classifiers is very important

to increase the overall performance [46].

In order to compare, we choose four well known MCS approaches(sec 3.4);

in particular:

• DECORATE:DiverseEnsembleCreation byOppositionalRelabelling of

Artificial TrainingExamples which uses an existing ”strong” learner (one

that provides high accuracy on the training data) to build aneffective diverse

committee in a fairly simple, straightforward manner.

• ADABOOST: ADAptive BOOSTing, a machine learning algorithm, for-

mulated by Yoav Freund and Robert Schapire. It is a meta-algorithm, and

can be used in conjunction with many other learning algorithms to improve

their performance. AdaBoost is adaptive in the sense that subsequent classi-

fiers built are tweaked in favour of those instances misclassified by previous

classifiers. AdaBoost is sensitive to noisy data and outliers. However it is

less susceptible to the over-fitting problem than most learning algorithms.

• MULTIBOOST: MULTI class adaBOOST, that is an efficient implemen-

tation of the ADABOOST, with the possibility to consider multi-class prob-

lems.

• BAGGING: BootstrapAGGregatING , a machine learning ensemble meta-

algorithm to improve classification and regression models in terms of stabil-

ity and classification accuracy. It also reduces variance and helps to avoid

over-fitting. Although it is usually applied to decision tree models, it can be

used with any type of model.

General system evaluation with30% of noise label

The first test is made using the three different synthetic distributions adding a30%

of uniformly distributed noise to them.

In table 4.5, the first four rows represent the accuracy obtained with the Mul-

tiple Classifier System trained with the original training set corrupted by a30%
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Gaussian Mixture of Gaussians Rotated Check Board
Multi Classifiers System

ADABoost 95, 70% 80, 60% 74, 10%
MultiBoost 95, 70% 78, 60% 72, 30%
Decorate 96, 60% 82, 00% 84, 20%
Bagging 96, 40% 79, 60% 89, 40%

Base Classifiers
Decision Tree 80, 40% 68, 40% 70, 00%

KNN 86, 30% 71, 00% 71, 00%
PNN 92, 60% 75, 80% 75, 80%

Decision Tree trained with the obtainedcleanDataset
Decision Tree* 97, 10% 82, 40% 91, 00%

Table 4.5: Synthetic results with30% of label noise on the training set

of label noise, the successive three rows represent the accuracy obtained with the

three base classifiers trained on the original training set.Finally, the last row rep-

resents the accuracy obtained with the worst base classifier, in this case the DT,

trained with the training set cleaned by SOCIAL.

It is worth noting that SOCIAL makes the classification problem simpler than

the original one, and even the worst classifier trained with thecleanedtraining set

becomes better, in terms of accuracy, than all the MCSs approaches used and as

well as all the base classifiers.

In the figures 4.12, 4.13 and 4.14 is shown how SOCIAL modifies the training

set, and how theδ parameter changes, for the three considered datasets.

In particular in each one of them, the first picture represents the accuracy be-

haviour across the steps. It is worth noting that the behaviour is always the same

for each of the three datasets, i.e. there is a first moment in which the accuracy

improves, and it corresponds to aneffectivecleaning of the training set, and a sec-

ond moment, in which the accuracy decreases; it correspondsto a smoothing of

the original distribution and a loosing of some informationcontained in.

It is possible to find the same information in the second picture in which differ-

ent values ofδdB are represented across the steps. In this case we are monitoring

the variation between two consecutive steps. The value is indB, so that if there



4.3. EXPERIMENTAL RESULTS 55

isn’t any variations between two consecutive steps, we havea value equal to0. We

experimentally noticed that if we did not want to compromisethe initial distribu-

tion, and want to preserve most of the information containedin it, a good value

for the thresholdτ is 1dB. In this picture the violet dot-line represent an inter-

polation among three consecutive points of theδdB line, i.e the blue one, this is

due to the fact that sometimes the original line, especiallywith low level of noise,

becomes unstable, and it is difficult to find the correct output step.

The other ten pictures represent a scatterplot of the distribution in each step.

The output step is indicated in bold, i.e. the scatterplot ofthecleanedtraining set.

In the table 4.5 are shown the results obtained. It’s worth nothing that the De-

cision Tree trained with thecleanedtraining set by SOCIAL, always increases the

performance of the base classifiers, and, thecleanedtraining set shows a classi-

fication problem simpler than the original one, as demonstrated by the fact that

the worst base classifier (DT) obtains an high level of accuracy using thecleaned

training set.

Some Considerations

For the sake of brevity we presented only some tests on therotated check board

dataset to make some considerations that seems to be valid ingeneral.

The first test arise with the evaluation of the SOCIAL robustness to the noise.

In this case we added a different percentage of noise to the training set, and we

evaluate the accuracy of the DT and the other MCS approaches under test (fig-

ure 4.6).

In the figure 4.7 it is shown a comparison among the base classifiers accuracy

and the accuracy obtained a Decision Tree trained with the clean training set. Also

in this case it’s clear that the system is more robust to the noise with respect to the

single classifiers.

Another important result is that the system reaches to recognize if the training

set is noisy or not. In the figure 4.8 is shown the percentage ofthe samples that

change their labels in the first iteration with respect to thenumber of training set

samples. This percentage is linear dependent to the percentage of added noise.
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Figure 4.6: Accuracy Comparison with MCS for different % of noise

Figure 4.7: Accuracy Comparison with base Classifiers for different % of noise



4.3. EXPERIMENTAL RESULTS 57

Figure 4.8: % Class changes in the1st step for different % of noise

4.3.3 Results with real data

We made also two case studies with real data, in particular, in the first one we used

some internet packets traces, where the classes wereattackor normal, this dataset

was extracted by a larger one presented in the paper [71].

Attack Normal
Training Set 1540 2400

Test Set 386 600

Table 4.6: Traffic Dataset Description

In this case we added smart noise, simulating that a malicious user put some

new attacks in the network, or make a poisoning training set attack, contaminating

the training set with some samples that are considered falsely normalpackets.

A dataset description is made in the table 4.6.

Also in this case the system recognize the presence of noise into the training

set. We can monitor this situation giving a look to the percentage of class changes

in the first step as it is possible to see in figure 4.9.

We tested SOCIAL with this new data; by giving a look to a comparison with
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Figure 4.9: % Class changes in the1st step for different % of noise

the other MCS approaches, in this case SOCIAL’s performanceare comparable

with the other ones (figure 4.10). But it’s worth nothing, that also the Decision

Tree, trained with the thecleantraining set reaches the same performance of SO-

CIAL, sometimes it is better than it. The point is that the system can reach the

same performance with very simple classifier, and so with a lower computational

complexity. An other advantage is the possibility to easilyunderstand themain

rules behind the classification problem by using a rule generator after the dataset

cleaning up.

As an example, we will show how SOCIAL cleans the training setin the case

of 30% of contamination, figure 4.11

In the chapter 5 will be shown another example for the traffic flow identifica-

tion.

4.3.4 Key Findings

We find out a methodology that try tocleana training set from the noise by us-

ing a MCS approach. This system is designed to work in an adversarial learning

context, in which a malicious user try to camouflage the training pattern to over-

come the classification system. We noticed that SOCIAL reaches a good level of
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Figure 4.10: Accuracy Comparison for different % of Smart-noise

Figure 4.11: Traffic Intrusion Evolution: SOCIAL and DT
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robustness to this kind of noise, and it gives a clean datasetthat could be also used

in a faster and easier classification system. In this way it ispossible to overcame

the computational complexity linked to the SOCIAL architecture.

SOCIAL gives rise to a simple classification problem. The cons of this is, that

if the system is not stopped in time, the sample distributioncould be modified, so

damagingthe dataset and the possible performance of the classifier.

As regard to the convergence, the system could also be seen asa non linear

dynamic system, and it could be of interest to analyse some stability issues of its

behaviour.
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Classification Accuracy δdB

Noiseless Noisy 1st Step

2nd Step 3th Step 4th Step

5
th Step – Output 6th Step 7th Step

8th Step 9th Step 10th Step

Figure 4.12: Gaussian Distribution starting from30% of Noise



4.3. EXPERIMENTAL RESULTS 62

Classification Accuracy δdB

Noiseless Noisy 1st Step

2nd Step 3th Step 4th Step

5th Step 6
th Step – Output 7th Step

8th Step 9th Step 10th Step

Figure 4.13: Mixture Of Gaussian starting from30% of Noise
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Classification Accuracy δdB

Noiseless Noisy 1st Step

2nd Step 3th Step 4th Step

5
th Step – Output 6th Step 7th Step

8th Step 9th Step 10th Step

Figure 4.14: Rotated Check Board (45◦) starting from30% of Noise



Chapter 5

Network Protocol Verification by a
Classifier Selection Ensemble

In the last years, networking research has started facing a problem not foreseen

when the firstInternetprotocols were originally designed: network traffic classi-

fication, that is, associating traffic flows to the applications that generated them

[56]. Originally each network application used known protocols and transport-

level ports that easily allowed their identification. Sincea few years back, this is

not true any more [42, 59]. The number of network applications using proprietary

undisclosed protocols has grown at an incredible rate (Skype, P2P-IPTV); the typ-

ical association application/port is often forged; in somecases traffic is encrypted,

whereas sometimes it is encapsulated into traditional protocols. Beyond the need

to understand which kind of traffic is carried on Internet links, the identification of

traffic hidden in flows using well-known ports represents a challenging task. For

these reasons, new approaches to traffic identification are needed. By traffic iden-

tification here we mean identification of a particular (or a group of) applications

of interest.

This is a typical case study for theAdversarial Classificationproblem. In this

case some malicious users try to overcame the classificationsystem in different

ways.

In this chapter we propose a novel identification technique based on packet-

level information aiming at exploiting behavioural characteristics of different ap-

plications. Specifically, we will describe a method that useof both thesign pat-

64
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ternand thesizesof the first four packets of each flow to label the flow as accepted

(identified) or rejected. The accepted class is the protocol/application convention-

ally associated with the respective port number. The rejected class is related to

applications that try to hide their presence typically withthe purpose to circum-

vent network usage/security policies. The proposed approach is aimed at a high

accuracy of identification, being at the same fast and universal. First, it uses the

direction signs and the sizes of only the first four packets ofeach flow (targeted

to work online), and second, it does not need to access the payload of the packets

(does not affect privacy and works with encrypted packets).

The chapter is organized as follows. Section 5.1 discusses briefly our motiva-

tion. Section 5.2 provides details about the techniques at the base of our identifi-

cation approach. Section 5.3 describes the dataset and the measurement approach

used in the experimental validation. We show results of identification of “port 80”

traffic in Section 5.4. At the very end, we try to apply SOCIAL,the algorithm

presented in Chapter 4, to clean the training sets and we willcompare it with the

proposed approach.

5.1 Motivation and Related Work

Even if commonly considered unreliable, the classification/identification approach

known asport-basedis still used today for online monitoring. Its advantages are

simplicity and speed, as it checks only a single packet-header field. Besides, in

some real-world situations there are no effective alternatives. An immediate al-

ternative proposed in the literature (and promptly adoptedby the industry) are the

payload-basedapproaches based on the inspection of the transport-level packet

payload (the data produced by the application). These techniques usually compare

packet contents against known signatures of application-level protocols. Such

techniques were initially considered very reliable, and were used to build refer-

ence data in the evaluation of novel classification approaches [62, 43]. Today,

however, their reliability and applicability are undermined by a number of fac-

tors. First, there are continuously arising undisclosed proprietary protocols and
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techniques of protocol obfuscation (e.g., eMule/eDonkey). Second, several new-

generation applications (e.g., instant messaging, file sharing) make use of tradi-

tional protocols (e.g. HTTP) to encapsulate their traffic, which deceivespayload-

basedclassifiers into erroneously associating the traffic to the encapsulating proto-

col. Third, new-generation applications (e.g., Skype) usepacket-payload encryp-

tion techniques. In addition, network-level (e.g., IPSEC)and application-level

(e.g., ssh) encryption tunnels are being increasingly usedin the Internet. Even

when they are feasible,payload-basedapproaches face further difficulties: (i)

payload inspection requires accessing all user-transmitted data, which may breach

privacy laws in some countries; (ii) the computational resources required to in-

spect the entire content of the packets is usually quite high, making it difficult to

deploy such techniques when the traffic volume is large. Because of the growing

problems with thepayload-basedapproaches, newstatistical-basedclassification

approaches have been proposed that do not need access to packet content. These

approaches use flow characteristics as features to train classifiers from the state-

of-the-art machine learning. The explosion of high-quality scientific literature in

this field [60, 25, 81, 4, 8, 26, 44, 8, 82, 76, 67, 44, 17] testifies the great inter-

est in researching novel and accurate techniques for trafficclassification. It has

been demonstrated that thestatistical-basedapproaches can achieve high accu-

racy, and that they appear to be the most promising approaches to face problems

like protocol obfuscation, encapsulation, and encryption[79, 8].

In this chapter we propose a technique for the identificationof hidden traffic

flows using non-intrusive features and based on machine learning drawing upon a

recent study by Gargiuloet al. [32]. We carry out an extensive experiment with

an ensemble of Decision Trees where the input features are the sizes of the first

four packets with payload, and the ensemble member that makes the decision is

chosen by the combination of signs of these packets.
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5.2 The Identification Approach

The requirement for operational speed brings in the idea of classifier selection en-

semble where only one of a set of experts has to make a decision[32, 47]. The

ensemble consists of member classifiers (experts) and anoracle that authorises

one of the classifiers to pass its decision as the ensemble decision. Generally

speaking, the oracle may have pre-defined regions of competence for the classi-

fiers [66] or dynamically allocated regions [78]. Gargiuloet al. [32] propose to

use the port number as the oracle determining the regions of competence. The di-

rections and sizes of the first four packets of the TCP flow are then used as the

features in a further 2-stage classifier (Figure 5.1). The features and the modu-

lar architecture were chosen so that the classification is both fast and accurate,

and new modules can be trained and added to the system withoutre-training any

already trained part.

5.2.1 The Features

Following [4],[27] and [29], we propose to use only the first four packets and to

use the following features (see Section 5.3.2 for details onfeature extraction):

• x0, the port number;

• x1, x2, x3, x4, the directions of the first four packets,xi ∈ {0, 1}, where0 means

that the packet is transferred from server to client, and1, from client to server;

• s1, s2, s3, s4, the payload sizes of the first four packets, wheresi are positive

integers. As in [27], we do not consider packets without payload because they are

related to connections state information.

5.2.2 Stage 1: Sign Pattern Filter

To illustrate the system we use a data set consisting of network traffic traces at

the University of Brescia (Italy) [27]. The known protocolsin the training data

are: POP3, SMTP, HTTP, msn, FTP and BitTorrent. Table 5.2.2 shows a sum-

mary of the training data as distributed across the 16 possible patterns of signs

[x1, x2, x3, x4], from 0000 to 1111.
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Figure 5.1: The generic classifier ensemble architecture.

Signs Protocol and port number
POP3 FTP SMTP msn BitTorr HTTP

123 4 110 21 25 1863 6881 80
000 0 0 138 16 0 0 3
000 1 1 75 55 0 0 0
001 0 21 216 543 0 0 0
001 1 0 0 4 0 1 0
010 0 749 21 604 1 0 0
010 1 18823 5845 18186 0 1 0
011 0 17 1 18 0 1 0
011 1 0 0 1 0 0 0
100 0 0 0 0 328 23 5348
100 1 0 0 0 30 520 240
101 0 0 0 0 660 3609 826
101 1 0 0 0 4 753 12
110 0 0 0 0 1 8 427
110 1 0 0 0 0 87 76
111 0 0 0 0 0 9 108
111 1 0 0 0 0 45 23

Table 5.1: Summary of the Brescia network traffic data (training).
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The table shows that groups of protocols can be distinguished by the sign

patterns. For example, protocols msn (1863), BitTorrent (6881) and HTTP (80)

hardly ever begin with a packet from sever to client (x1 = 0). The table suggests

that the sign patterns can be used to filter out very quickly flows that do not match

the pattern of the class they are supposed to be a part of. In Figure 5.1, this is

labelled as thesign pattern filter. In this paper we focus on the TCP traffic on

port 80, so flows with patterns beginning withx1 = 0 will be rejected by the filter.

Next, using the training data, we can choose a rejection threshold, of say, 2%, and

filter out all sign patterns where the number of flows is below the threshold. With

this filter in place, the “allowed” combinations of signs forthe HTTP protocol

(80) are1000, 1001, 1010, and1100. All other protocols will be rejected by the

sign pattern filter.

5.2.3 Stage 2: Decision Tree classifier using payload sizes

A separate classifier is then trained for each sign combination that passes through

the sign filter. Here, each classifier has to solve a two-classproblem: match ver-

sus mismatch of the protocol/application conventionally associated with the re-

spective port number. We chose theDecision Tree[24] classifier, since its classifi-

cation speed makes it very effective for an online implementation [76] and it does

not assume any type of probability distribution of the data [32].

The decision process of a Decision Tree classifier is intuitive, since it can

be traced as a sequence of simple decisions. The first decision is made at the

root; depending on the answer, a branch is selected and the child node is visited.

Another decision is made at this node, and so on, until a leaf is reached. The

leaf contains a single class label, which is assigned to the object being classified.

In our case the C4.5 algorithm was employed for constructingthe Decision Tree

classifiers. We used the Weka implementation, called J481.

The choice of a Decision Tree classifier can be justified by thefollowing ex-

ample. Figure 5.2 shows the scatter-plot of a dataset of traffic traces taken from the

1Weka is an open source collection of data-mining tools and isfreely available at the website
http://www.cs.waikato.ac.nz/ml/weka.
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University of Brescia, Italy (UNIBS, see Section 5.3.1 for the dataset description).

The data is filtered so that only flows with sign pattern[x1, x2, x3, x4] = 1010 are

displayed. The(x, y) coordinate axes are the first two size features,s1 ands2,

respectively. The figure shows three protocol classes: BitTorrent (3609 flows),

HTTP (826) and msn (660). Two classification regions – HTTP vsthe other two

classes – can be clearly distinguished. Class HTTP seems thepredominant class

in Figure 5.2, however, this is not the case. Classes BitTorrent and msn are ex-

tremely dense, and are located towards the bottom left corner of the scatter-plot.

Figure 5.3 displays an approximation of the 2-D densities ofthe three classes. The

well delineated classification regions of high density suggest that a Decision Tree

classifier would be the most suitable choice.

Figure 5.2: Scatter-plot of the UNIBS training data, first two size features.

(a) HTTP (b) msn (c) BitTorrent

Figure 5.3: 2D density of the UNIBS training data with sign pattern 1010.
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5.3 Dataset and Feature Extraction

5.3.1 Dataset

To validate the proposed approach we used training datasetsfrom three differ-

ent institutions:University of Brescia in Italy (UNIBS), Lawrence Berkeley Na-

tional Laboratory (LBNL)andCooperative Association for Internet Data Analysis

(CAIDA). A summary of the content of the three data sets used to train our system

is given in Table 5.2. As testing set we used traces fromUniversity of Napoli in

Italy (UNINA). From this network we collected and used traffic traces related to

two different time periods, 2004 (hereinafter denoted asUNINA2004) and 2009

(hereinafter denoted asUNINA2009). Details about the flows composing these

traces are reported in Table 5.3.1.

Table 5.2: Number of flows in the three training data sets.
UNIBS CAIDA LBNL

Protocol Port
POP3 110 19611 9591 1172
SMTP 25 19427 11831 20825
HTTP 80 7063 5930 81984

FTP 21 6296 1652 –
BitTorrent 6881 5057 – –

msn 1863 1024 – –
netbios-ssn 139 – 4575 –

HTTPS 443 – 25427 18013
oms 4662 – – 1716

IMAP4 993 – – 7677

UNINA2004 UNINA2009
Protocol Port

HTTP 80 506795 144042
non-HTTP 80 2245 803

Table 5.3: Number of flows in the UNINA data sets used for testing.

Evaluating machine learning algorithms for automated network application

identification. As explained in the next Section, in this work we focus our exper-
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iments on the identification of HTTP traffic flowing through port TCP 80. Thus,

during the training phase, for each sign pattern we train thecorresponding pay-

load size classifier (a Decision Tree) assigning all the HTTPflows to one class

(the one corresponding to traffic to be accepted), and all theother flows (e.g. from

msn, BitTorrent, etc.) that match the considered sign pattern as the other class

(traffic to be rejected). For example, in the case of the 1010 combination for the

UNIBS dataset we train the classifier with HTTP against msn and BitTorrent (see

Table 5.2.2).

5.3.2 Feature Extraction

To extract the nine features we usedTIE (Traffic Identification Engine) [16], an

open-source multi-classifier system whose architecture isshown in Figure 5.4.

Figure 5.4: Overall Architecture of TIE.

For this work we used TIE for (i) processing and filtering traffic traces, (ii)

aggregating packets into sessions, and (iii) extracting features. The features pro-

duced by TIE have been fed to a prototype implementation of the identification

approach described in Section 5.2. Moreover, we used TIE with a classification

plugin based on a payload-inspection technique in order to establish the “ground-

truth” of the given traces. This allowed us to label each flow and to evaluate the

accuracy of our approach (see Section 5.4). We looked at the payload content us-

ing theTIE-L7plugin module, which implements the Linux L7-filter classification

technique2.

In the experiments presented we focused on traffic on TCP port80. ThePacket

CaptureTIE module filters out all traffic not pertaining to the port, whereas the

TIE module namedSession Builderis responsible for aggregating the remaining

2L7-filter is an application layer packet classifier for linuxand is freely available at the website
http://l7-filter.sourceforge.net.

http://l7-filter.sourceforge.net.
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packets into bidirectional flows (biflows). That is, we consider the common defi-

nition of flow tuple while taking into account traffic in both directions: upstream

and downstream. The upstream direction is the one of the firstpacket observed.

Moreover, because we are examining TCP traffic, instead of a time-out value we

use simple heuristics based on SYN, FIN, RST flags in TCP headers, in order to

approximate TCP connections (as described in [16]).

TheFeature Extractionmodule is responsible for extracting classification fea-

tures from each biflow. In order to take into account only properties related to

the application, we record the sizes of the transport-levelpayload, excluding pure

TCP packets that do not carry application-level data (e.g.,empty ACK packets).

The payload sizes are stored in the order they are observed. Asign is added de-

pending on the packet direction, plus for upstream and minusfor downstream.

Each biflow is assigned a sessionid, which can later be used to manually exam-

ine the biflow, or to process again the same traffic trace usingTIE classifiers and

checking the results (as in Section 5.4).

5.4 Experimental Results

In this section we show the results obtained with the proposed identification ar-

chitecture. In particular, we want to demonstrate that if wetrain the system with

traffic traces taken from different sites (spatial invariance) and in a different time

(temporal invariance) we can correctly accept HTTP traffic and reject non-HTTP

traffic.

To show the results we choose the following metrics:

• Overall Accuracy: The percentage of correctly classified flows.

• HTTP Accuracy: The percentage of the correctly classified HTTP flows

out of all true HTTP flows (sensitivity).

• non-HTTP Accuracy: The percentage of the correctly classified non-HTTP

flows out of all non-HTTP flows (specificity).
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For assessing the effectiveness of the proposed approach indifferent time pe-

riods (temporal invariance), we carried out cross-testingusing UNINA2004 and

UNINA2009 traces. In order to verify the spatial invarianceof the approach, we

train the system with LBNL, CAIDA and UNIBS traces, and then test the system

with both UNINA2004 and UNINA2009 traces.

Table 5.4 is obtained by training and testing the system by using a 10-fold

cross validation protocol. That is, the whole dataset is divided into 10 folds; 9 of

them are used to train the classifiers and the last fold is usedfor testing. This is

carried out for all 10 folds and results are reported as average accuracies. The table

shows high accuracy for UNINA2004, and hints about the diversity of non-HTTP

traces that might have caused the low specificity for UNINA2009.

Table 5.4: Results obtained using UNINA2004 and UNINA2009 datasets
Overall HTTP non-HTTP

Accuracy Accuracy Accuracy
UNINA2004 99.97% 99.99% 96.08%
UNINA2009 99.97% 99.99% 86.23%

Tables 5.5 and 5.6 report the results obtained by training the system with

LBNL, CAIDA and UNIBS traces, and testing it with the other two traces. Both

tables indicate that the recognition rate of the non-HTTP protocol depends on

the training set. The worst results in rejecting non-HTTP flows are obtained

when LBNL traces are used for training and the system is tested on UNINA2009

(85.45%). This is due to the fact that class non-HTTP is not very well repre-

sented in the LBNL data. Figure 5.5 shows a scatter-plot of the UNINA2009 data

for the four “allowed” sign patterns for port 80. The non-HTTP protocols are

marked with green triangles. The misclassified protocols are circled. The figure

demonstrates a degree of mismatch between the training (LBNL) and the testing

(UNINA2009) data. It should be noted however, that the representation in the fig-

ure may be misleading because it does not reflect the density of the data. The

plot for sign0100, (a), for example, contain 47616 traces, of which 11 non-HTTP.

There is only one mistake in the non-HTTP class (accepting a non-HTTP pro-

tocol), which amounts to 91% specificity. The highlighted mistakes are only a
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fraction of the true HTTP class that were wrongly rejected (185 biflows in subplot

(a), equivalent to 0.39%).

(a) 1000 (b) 1001

(c) 1010 (d) 1100

Figure 5.5: Scatterplot of the UNINA2009 using LBNL training data.

As with Table 5.4, there is a decline in the correct recognition rate of non-

HTTP traffic from 2004 to 2009. Again, this may be explained with the hypoth-

esis that some of the new non-HTTP traffic biflows are more similar to normal

HTTP compared to the ones in the 2004 data. This notwithstanding, the obtained

results remain very good since in the worst case over 85% of non-HTTP flows are

rejected. In order to improve the performance the Decision Tree classifiers may

be re-trained with new counterexamples. An advantage of thechosen architecture

is that it allows us to do that for any of the classifiers without changing the rest of

them.

In order to better assess the approach here presented and to further investigate

the results obtained, we analysed traffic flowing through port TCP 80 that was la-

belled by our identification system as ‘rejected’. Firstly,we added a feature in
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Table 5.5: Results obtained by testing the system with UNINA2004.
Training Overall HTTP non-HTTP
Dataset Accuracy Accuracy Accuracy
LBNL 99.69% 99.73% 88.96%
CAIDA 99.25% 99.25% 97.84%

BRESCIA 96.45% 96.44% 99.64%

Table 5.6: Results obtained by testing the system with UNINA2009.
Training Overall HTTP non-HTTP
Dataset Accuracy Accuracy Accuracy
LBNL 99.26% 99.28% 85.45%
CAIDA 98.82% 98.83% 92.73%

BRESCIA 99.21% 99.22% 94.55%

TIE to examine the first few bytes of payload carrying TCP payload exchanged

in each biflow. This allowed us to perform a preliminary automated examination

of all the biflows and to verify the results of the identification by easily checking

application-level packet content. In addition, we manually inspected the biflows,

mainly focusing on what was recognized as non-HTTP by the classifier. First of

all, such analysis confirmed that all the correctly acceptedbiflows were actually

related to HTTP traffic. For example we observed that almost 94% of the biflows

in UNINA2004 started with a standard HTTP GET request, 4% with a POST re-

quest, etc. On the other side, we discovered that several ’rejected’ biflows we

generated by peer-to-peer application-level protocols aseDonkey, Bittorrent, and

WinMX. Some of them started with a byte not corresponding to an alphabetic

character. Inside this category, most of them started with the byte 0xe3. As re-

ported by Karagianniset al. in [43], this is the first byte exchanged by peers open-

ing a communication session based on the eDonkey2000 protocol (used by the

eDonkey and eMule file-sharing applications). Moreover, inboth UNINA2004

and UNINA2009 traces, up to 50% of the non-HTTP biflows could not be as-

cribed to a specific application using either automated or manual payload inspec-

tion. However, we manually verified that these biflows did notexchange any

HTTP traffic; we therefore conclude that such traffic is generated by applications
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using undisclosed proprietary protocols.

The whole analysis described here confirms that the identification approach

proposed in this work is very effective in correctly discriminating real HTTP traf-

fic using the well-known port TCP 80. Finally, we observe thatin the traces

the non-HTTP traffic represents a not negligible portion of the captured traffic.

Indeed, after filtering our traces by removing biflows related to non-HTTP traf-

fic, about 5% of the packets were discarded (both in the UNINA2004 and UN-

INA2009 trace). Moreover, it must be observed that on the UNINA network there

were no rules enforced to prevent traffic on non-standard ports. Therefore most

of the connections masquerading as HTTP were probably due tothe configuration

of external peers located in networks where port-based traffic filtering was strictly

enforced. It is reasonable to hypothesize that if this was also the case of the UN-

INA network, then such masquerading traffic would have covered an even higher

percentage.

5.4.1 Results obtained with the training set cleaned by SO-
CIAL

Finally, we tried to apply SOCIAL, the algorithm presented in Chapter 4, to clean

the training sets described so far.

Originals Cleaned by SOCIAL
Training Overall HTTP non-HTTP
Dataset Accuracy Accuracy Accuracy
LBNL 99.65% 98.32% 93.65%
CAIDA 99.17% 99.17% 99.56%

BRESCIA 98.38% 98.38% 99.56%

Training Overall HTTP non-HTTP
Dataset Accuracy Accuracy Accuracy
LBNL 99.78% 99.78% 99.34%
CAIDA 99.17% 99.17% 99.56%

BRESCIA 98.86% 98.86% 99.67%

Table 5.7: Results obtained by using UNINA2004 “cleaned” bySOCIAL.

To this aim we trained a decision tree classifier with the cleaned datasets and

we tested it with UNINA2004 and UNINA2009.

In table 5.7 the results obtained to distinguish between http on not-http on UN-

INA2004 dataset are shown. The table on the right contains the results obtained

on the datasetcleanedby SOCIAL, while the table on the left contains the results
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obtained with the original dataset. The same thing is proposed in the table 5.8 for

the UNINA2009 dataset.

Originals Cleaned by SOCIAL
Training Overall HTTP non-HTTP
Dataset Accuracy Accuracy Accuracy
LBNL 99.17% 99.26% 51.45%
CAIDA 98.94% left 98.96% 51.45%

BRESCIA 98.55% 98.57% 88.40%

Training Overall HTTP non-HTTP
Dataset Accuracy Accuracy Accuracy
LBNL 99.50% 99.52% 87.68%
CAIDA 98.98% 99.00% 89.13%

BRESCIA 98.40% 98.41% 89.13%

Table 5.8: Results obtained by using UNINA2009 “cleaned” bySOCIAL.

The results shown that the system performs always better than the Decision

Tree trained on the original dataset. Another important result is figured out com-

paring this results with the ones proposed into the table 5.7and in the table 5.6,

where the results obtained with the hierarchical MCS proposed are described, also

in this case a simple decision tree is comparable in terms of accuracy with a more

sophisticated architecture as the one proposed in this chapter.

It is worth noting that the three training set are quite old, that’s why they reach

better values of accuracy on the UNINA2004, while testing them on UNINA2009

the results are not brilliant. Even making this considerations, using SOCIAL to

clean the training sets, we reached a good level of accuracy even with the newer

training set.

It is possible to see the temporal traffic variation in perfect analogy to the

mutation inducted by a malicious user. That’s why the results shown in this tables

demonstrate a adversarial classification robustness of thetraining sets cleaned by

SOCIAL.

5.5 Key Findings

We examined the ability of a classifier ensemble system to identify traffic flows

that do not belong to their declared class. The system takes the direction signs of

the first four packets carrying payload and filters out the most improbable flows.

The remaining flows have “acceptable” sign patterns. A decision tree classifier is

trained for each sign pattern. Here we focused on TCP on port 80, trying to sepa-
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rate true HTTP traffic from non-HTTP traffic flowing through the same port (e.g.

in order to circumvent network policies). We imposed four acceptable sign pat-

terns: 1000, 1001, 1010 and 1100. A Decision Tree classifier is designed for each

of them. We found that the system is very accurate when trained and tested on data

coming from the same distribution (tested through cross-validation on traces from

the University of Napoli - UNINA2004 and UNINA2009). Furthermore, the sys-

tem exhibits very high accuracy in cross-testing, i.e., trained on one network and

tested on another. We verified this by training the system on three different data

sets (LBNL, CAIDA and BRESCIA) and testing it with UNINA2004and UN-

INA2009. We looked in more detail in the worst case (accuracy85.45%) where

the system was trained on LBNL and tested on UNINA2009. It seems that the

LBNL data did not have a sufficiently representative non-HTTP class in order to

train the system properly. The high overall accuracies in the cross-testing demon-

strate what we call the “spatial invariance” of the system. In addition, the system

shows “time invariance” in that the accuracy did not drop dramatically from 2004

to 2009 even though some decline was observed. Finally, due to its design and to

the use of Decision Trees, the system is very fast, and it can be used online.

This approach is based on a multi-stage architecture made upof an ensemble

of Decision Trees, each one devoted to verify if the flow undertest belongs or not

to the protocol whose port number refers to. Each Decision Tree is activated by a

specific combination of the signs of the first four packets of the flow and performs

the verification process by considering the payload sizes ofthese four packets. We

showed results in the case of traffic flows hidden behind “port80”-based flows.

Using real traffic traces from four different networks we showed the high accuracy

of the proposed approach, that also demonstrates:

• spatial invariance, since it was able to reject non-HTTP traffic captured in

a network different from the ones considered during the training phase;

• temporal invariance, since it worked well with traffic traces captured in

very different temporal periods (over a range of five years);

• on-line capability, since only the first four packets are needed for carried
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out the verification process;

• adversarial classification robustness, since it was robust to different ty-

pology of traffic not seen in the training phase.

Another advantage of a classifier based on Decision Trees is that it can be seen as

a set of simple decision rules that can be easily interpretedby a domain expert.

A further research direction will be a deeper analysis of such decision rules in

order to understand better the behaviour of the proposed traffic identification sys-

tem. We are also planning to apply the proposed approach to other well-known

protocols.



Chapter 6

An Anti-Spam System based on a
Behaviour-Knowledge Space

It is a well-known story that e-mail has grown from a tool usedby few universities

and scientists to a ubiquitous communication tool, evolving from simple plain text

into a powerful multimedia message. At the same time, following the growth of

e-mail production and diffusion, spam has changed from a little and sometimes

bothering problem into a multi-billion dollar problem. Thepresence of spam, in

fact, can seriously compromise normal user activities, forcing to navigate through

mailboxes to find the - relatively few - interesting e-mails,so wasting time and

bandwidth and occupying huge storage space.

The types of those messages vary: some of them contains advertisements,

other e-mails provides winning notifications, and sometimes we get messages with

executable files, which finally emerge as malicious codes, such as viruses and

Trojan horses. In addition, spam e-mails may often have unsuitable content (as

a pornographic material advertising) that is illegal and sometimes dangerous for

non adult users.

The recognition of spam content is not a trivial problem: there are some factors

that are related with human perception, economic behaviour, legal context, that

are hardly measurable or summarized in adequate features. The same definition

of spam e-mailsrequires a common agreement that is not easy to find.

In our opinion,all kind of spam e-mails have several common characteristics,

such as:i) they are unsolicited,ii ) they have a commercial content, even though

81
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the content itself is continuously evolving, trying to outsmart the classical coun-

termeasures adopted by anti-spam filters.

This kind of task belong to theadversarial classification problems, since

there is an intelligent, adaptive adversary who tries to camouflage patterns (spam

e-mails) to evade the security system.

Consequently, a great variety of technical methodology have been implemented

in current anti-spam systems [11]. The common technical solutions propose fil-

tering strategies based on sender address and/or body content. We focused our

attention on that measures related to e-mail contents, in particular bothtexts and

images, rather then on networking and identity strategies [68], since our goal is to

develop a personal antispam system.

In this chapter we combine the visual clues with the semanticinformation

related to the e-mail body, to determine whether a message isspam. In order

to address the problem of combining a non-constant number ofmodules, since

it is not possible toa priori known if there is one or more images attached to

the e-mail and/or there are textual information to be processed, we propose the

use of aBehaviour Knowledge Space[39] approach. This also allows us to easily

include new modules in our architecture that could be required for addressing new

spammers’ tricks.

Organization of the Chapter

The chapter is organized as follows: the Section 6.1 describes at a glance the main

component of the proposed system; in Sections 6.2 and 6.3 we describe text and

image features respectively, while in Section 6.4 we show how to combine them.

In Section 6.5 several experiments are discussed, and finally in Section 6.6 we

report some considerations.

6.1 System Architecture

As shown in figure 6.1, we design a system that integrates image-based and text-

based analysis, the dashed line, in the figure, represents the OCR output that is
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filled into the Text Analyser. The mails, initially, are parsed by a Multi-purpose

Internet Mail Extensions (MIME) parser, that can retrieve the different parts of

the e-mails: the text parts, the attached images or text files, the email subject

and the headers. The text is thus processed by aText Analyzermodule according

to the methodology described in the section 6.2 and its output is a classification

result obtained using the feature vector of text part of input email. The images

are forwarded to theImage Analysermodule which gives another classification

results for the features vector that is extracted with the techniques described in

section 6.3 for the image part of the email. We note that the OCR output of the

Image Analysercould be used also byText Analyserin order to build its feature

vector. TheFusion blockhas the role to combine the previous output furnishing

the final classification of each e-mail using the strategy discussed starting from

the section 6.4.

Figure 6.1: The proposed system architecture.

Both the Text and the Image analyser can be implemented by means of differ-

ent classifiers, each one using different features. In the following, we will describe

in details the different feature sets used and the combination process.

6.2 Textual Features

Textual filtering methods are widely deployed; they varies in the inspected content

and the proposed methodology. Some filters consider only theheader or the body

of an e-mail, while other ones take both. These approaches use different mod-
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els, considering word-tokens, their frequencies and theircombinations. In rule

based-filters[13] the users define some rules related to the headers or the bodies,

considering particular words assignof spam content; anyway, this simple solution

is strongly dependent on how the words used by spammers can change.

Differently, Signature-basedmethods do not really deal with whole messages

or specific tokens, transforming the message into asignature. Clearly, the meth-

ods effectiveness is related to the robustness of the signature function. Note that

a signature database must be distributed and kept up to date very frequently, due

to the rapid variation of spam e-mails. To this regard, some proposals are based

on collaborative solutions, in particular on Peer-to-Peer (P2P) networks for sig-

nature distribution [83, 19]. These approaches are not wellsuited for developing

a personal antispam system.

Other approaches consider spam detection as abinary classification problem

and several algorithms from the learning theory research field have been used. In

these solutions, e-mails are mapped into multidimensionalspace, each dimension

representing the words in the e-mail content; several measures are proposed such

as the terms-frequency (tf ) or the product between the documents-frequency (df )

and terms-frequency, as in [23].Statistical filtersbased on the the Bayes theory

have been also investigated [2, 58].

One of the drawback of these last methods is that they typically do not con-

sider specific countermeasures for taking into account new spammer tricks, so a

complete retraining of the system is needed when these attacks arise.

We propose a strategy based on text processing and analysis in order to process

both semanticandsyntacticalfeatures. Generally speaking, our main idea is to

characterize how e-mails belonging to the same class (hamor spam) do have the

same meanings, using a set of semantic features in addition with the detection of

special characters (syntactical features) that are typically used into spam context.

In particular, at the semantic level we analyze the whole email content taking

into account the word localization in a given context thus measuring the weight of

a single word in the document. In this way, we relate the emails content to certain

topic by looking at commonly shared words. A topic is described by a region of
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Spam Topics
Investment/Business

Health/Medicine
Games,

Software
Leisure/Travel

Adult
Finance

Product/Service.

Table 6.1: The list of contents in spam mails

multidimensional space shared from the vectors of words of different e-mails. In

the spam context, example of e-mail topics are reported in table 6.2. In section

6.2.1, we will describe the model used to discover the semantic content of e-mails.

The use of syntactical features is suitable to detect grammar anomalies in the

texts. Typically, the ham e-mails do not have particular occurrences of special

characters: these one can be thus used as signs of low trustworthiness of the

received e-mail;the related developed methodology will bedescribed in section

6.2.2.

6.2.1 Semantic Features

We propose to use a feature set based on a modified version of Vector Space

Model (VSM) [54]. This model is based on the representation of documents as

vector in multidimensional space. The representation of e-mail textual content

in the vector space model has a number of advantages, including the uniform

treatment of queries and documents as vectors and the ability to differently weight

the different terms; anyway, it suffers from its inability to cope with two classic

problems arising in natural languages [41], i.e. synonymy and polysemy. We

briefly recall thatsynonymyrefers to a case where two different words (say ”pupil“

and ”scholar“) have the same meaning, andpolysemyrefers to the case where a

term such as ”play” has multiple meanings according to different contexts. In

fact as worst case of the influence of synonymy in similarity measure, we could

have two orthogonal vectors with0 as result of cosine similarity even if there are
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two different words that have the same meaning inside those two vectors. The

semantic correlation or disambiguation of the these terms can be made looking

at the context in which they are placed, for example the terms“scholar” can be

correlated to “pupil” if the documents, in which they are, also contains terms like

“school”, “book”, “pen” and so on. In that way the shared terms can increase the

value of similarity measures. The idea of looking at the whole email document can

be seen also as an overcoming of the independence hypothesisused in a bayesian

filter technique known as bag-of-words model that is one mostused approach

for anti-spam filer. In that model the relationships among set of words (joint

distribution) are simply factorized. In order to overcome the fault of vector space

model to capture thesynonymyandpolysemyrelationships, we choose a modified

version of VSM, the Latent Semantic Analysis or LSA [54]. Despite LSA is a

traditional and well accepted technique used to stick out the semantic contents in

text-process community, there are few application in the spam framework. LSA

is an application of Singular Value Decomposition (SVD) to document-by-term

N × M matricesA. In particular, SVD provides a suitable matrix decomposition

as described in the following:

A = TSDT

beingS=diag(σ1, . . . , σr) aM ×N matrix, withσi =
√

λi andλi ≥ λi+1 with

1 ≤ i ≤ r; theλ1, ..., λr be the eigenvalues ofAAT , r being the rank ofA. Note

thatAT A has the same eigenvalues ofAAT .

The valuesσi are also denoted as thesingular valuesof A. In the LSA tech-

nique, it is used a reduced version ofA, Ak = TkSkD
T
k that isM ×N matrix and

k being a positive integer that is the maximum rank ofAk. After that decompo-

sition we can have a representation of documents and terms inthe singular value

space, in fact we have a term matrixLt = TkSk, called matrix of singular load-

ings for terms andLd = SkD
T
k that is called the matrix of singular loadings for

documents. We note that this operation applied on the SVD decomposition has

two main properties described as following:
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• We have a dimensional reduction of the initial problems, in fact we can

represent the documents as features vectors of dimensionk using the matrix

of singular loadings for documentsLd.

• We obtain a reduction that is representative of the nature ofthe documents.

In fact theSk matrix have in the diagonal the decreasing order of the singular

values, this can use to correlate the document vector that shared common

terms using only a subset of their values.

The obtained approximation is computed taking into accountthe distance between

the two matricesX = A-Ak that is minimal according to a Frobenius norm [54].

In other words, we have a reduced space in which the words thathave similar

co-occurrence patterns are projected (or collapsed) into the same dimension, and

in the indexing phase the technique projects the documents into the new gener-

ated space with latent semantic dimensions. The choice ofk has been derived

empirically, with80 to 100 dimensions being sometimes the optimal choice for

collections of about5, 000 terms by1, 000 documents [20]. In order to derive the

features to learn a classifier during the training phase, we adopt as text features

the projection of the document in the space obtained byLd = Sk × DT
k , Sk and

Dk being the matrices after the SVD reduction. In the testing phase we use also

this matrix productT T
k Q in order to compute the text features thanks to the SVD

equation:

(6.1) T T
k Q = SkD

T
k

(∗)k being the matrices obtained after the reduction process andQ being theN×1

matrix representing the input document.

There are different steps used to process the email text until the generation of

text feature both int the training phase and test phase. The different phases are

depicted in figure 6.2 and they are described as following:

• ThePreprocessingmodule used a set of intelligent filters that we apply to

the email documents with or without the OCR recognized set ofwords.

These filters are:
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– The classical stop word list filter, that is used to delete thewords that

have no particular meaning, although increasing the term vector di-

mension and thus degrading both performance and results of the sys-

tem. Typical example of stop word list are adverbs are pronouns.

– We also propose an intelligent filter that is able to detect and reject the

words that are nothuman-understandable, e.g. sequences like “fsdrx”,

“jkdld”. This solution is based on an SVM classifier trained on several

features derived from bigrams and trigrams composition of English

words. We also build a feature vector containing the ratio between the

correct bigrams (trigrams) and all the bigrams (trigrams) for a set of

170000 common English words. Note that the use of this kind of filter

has also the aim of enhancing the recognition of the semanticcontent

that can be used in particular spammer attacks, such as the ones which

use to put random words into e-mail texts, thus trying to reduce the

effectiveness of current antispam algorithms. This filter can also be

used to reject the words that are bad recognized by OCR algorithms.

– A Part of Speech filter (POS) module that is able to detects nouns,

verbs and adjective; it is used to reject adjectives that typically do not

give further additional information.

• The Stemmingmodule implementing the well known Porter Stemmer al-

gorithms [64] that is used to remove the common morphological and in-

flexional endings from words in English. Here in after, the stemming and

preprocessing module will be called Text Processing (TP).

• The LSI module that implements the functionality of the model abovede-

scribed; it takes as input theLSAmodel produced during the training phase.

We compute the “terms by documents matrix” used in those techniques us-

ing the following measures:

– Term-Frequency (TF)
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TFij =
nij

P

r nij

nij being the number of occurrences of the term in documentdj, and

the denominator being the sum of number of occurrences of allterms

in documentdj.

– Inverse Document Frequency*Term-Frequency (IDF*TF)

IDTFij = TFij ∗ DFi = TFij ∗ log( ND

N
Ti
D

)

ND being the number of total documents in the corpus andNTi

D the

number of documents in the corpus in which compare the termTi.

– Entropy Weight (WE)[50]:

WEij = TFij ∗ (1 +
∑

j

pij∗log2(pij)

log2(ND)
)

pij =
TFij

TF D
i

being the probability to get documentj given the termi

andTF D
i being the term frequency of termi on the whole document

collection.

6.2.2 Syntactical Features

We propose to use some syntactic features that can be extracted from mail texts,

in order to estimate usual and suspected mail formats.

Spammers, in fact, usually try to obfuscate the textual partof an e-mail’s body

by substituting some characters in order to bypass the effectiveness of antispam

filters.

So, we defined another set of features for obtaining a characterization of this

kind of obfuscated text. The features we have investigated on are mainly based on

the presence ofspecialcharacters, i.e. those characters that should not frequently

occur in a legitimate text. The whole set we considered is made up of the following

characters:{ !, ” , #, $, % , & , ’ , (, ), * , +, ,, -, . . ., /, @}. Starting from this set we

defined sixsyntactical features:

• text length: the number of characters of the whole text
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Figure 6.2: The different phases of the Text Analyzer
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• words number: the number of words in the text

• ambiguity: the ratio between the number of special and normal characters

• correctness: the ratio between the number of words that do not contain

special characters and the number of words that contain special characters

• special length: the maximum length of a continuous sequence of special

characters

• special distance: the maximum distance between two special characters

belonging to the above considered set.

6.3 Image Features

Image spam has been extensively studied using several techniques primarily de-

veloped from the Image Processing and Computer Vision community, using fea-

tures related to color distribution [3] or textual areas [3,80]. A classifier is usually

trained on such features, trying to discriminate spam images from legitimate ones.

In [22], the authors present features that are focused on simple properties of the

image, making classification very fast. In this chapter, however, the authors com-

pletely disregard the textual part of the emails.

Other approaches basically try the detect textual areas in images following the

idea that images which contain texts are likely to be spam. In[74] the authors

propose an algorithm for text localization. They constructa corner detection al-

gorithm based on a circular template to predict the corner points of the text in

an image, which is crucial for text localization. The same idea is presented in

[12]. The method proposed there extracts edge features of a binarized image by

using higher-order local autocorrelation, and then passesthese features to a Sup-

port Vector Machine (SVM) for classification. In [38] the authors try instead to

extract connected components from the image in order to detect the presence of

an embedded text.

A quite different approach is followed in Fumera et al. [31],where the authors

propose to process each image by using an OCR system for extracting embedded
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texts.

All these approaches, however, cannot be effectively used when text within

images is voluntarily distorted and/or obfuscated. As it was noted in [9], in fact,

now spammers try to make OCR and text detection techniques ineffective without

compromising human readability, by placing text on non-uniform background,

or by using techniques like the ones exploited in CAPTCHAs1 (programs that

generate and grade tests that humans can pass but current computer programs

cannot).

We propose an approach for the detection of the image spam in which two

different image processing techniques are used [33]. The first one is devoted to

directly extract some global features from each image attached to the e-mails.

Such features should also be able to detect if images were adulterated or not, by

considering the complexity of the image itself as it is perceived from an human

being. The second processing is carried out by means of two steps: first, there

is a preprocessing phase with the use of an OCR, then a featureextraction pro-

cess starting from the OCR output try to characterize it in order to detect if the

embedded text has been voluntarily obfuscated and/or distorted.

6.3.1 Visual Features

The first set of features, that we calledvisual features, are directly obtained from

the image attached to the mails. In order to give an image characterization that

should be able to discriminate between normal and adulterated images, we con-

sidered features that describe the image texture from a statistic point of view. As

said before, in fact, spammers typically now try to bypass filters that use an OCR

for detecting texts within an image by obfuscating such texts with the addition of

some noise or by superimposing a texture (see also Figure 6.3in which it is used

gocr2 as Optical Character Recognition tool). So, texture detection can help in in-

1The term CAPTCHA (Completely Automated Turing Test To Tell Computers and Humans
Apart) was coined in 2000 by Luis von Ahn, Manuel Blum, Nicholas Hopper and John Langford
of Carnegie Mellon University. At that time, they developedthe first CAPTCHA to be used by
Yahoo – http://www.captcha.net/

2gocr is available at http://jocr.sourceforge.net
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Figure 6.3: Outputs obtained by applyinggocr to some spam images

dividuating images that contain spam messages. For the sakeof simplicity, in the

following we will present the considered features in case ofgray-level images, but

the same operators can be applied to color images too.

We will use{I (x, y) , 0 ≤ x ≤ N − 1, 0 ≤ y ≤ M − 1} to denote aN × M

image withG gray levels. All the considered statistical texture measures are based

on the co-occurrence matrices. Spatial gray level co-occurrence estimates image

properties related to second-order statistics. TheG × G gray level co-occurrence

matrixPd for a displacement vectord = (dx, dy) is defined as follows. The entry

(i, j) of Pd is the number of occurrences of the pair of gray levelsi andj which

are a distanced apart. Formally, it is given as:

Pd(i, j) = | {((r, s), (t, v)) : I(r, s) = i, I(t, v) = j} |

where(r, s), (t, v) ∈ N×M , (t, v) = (r+dx, s+dy) , and|.| is the cardinality

of a set.
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As regards the choice of the displacement vectord, we considered the four

direct neighbors of each pixel, i.e. we used four pairs as values ofdx anddy

for calculating the number of co-occurrences, namely(0, 1), (1, 0), (−1, 0) and

(0,−1). We do not perform a normalization ofPd in order to preserve the depen-

dence of the considered features on the image size.

As suggested in [36], from the co-occurrence matrix it is possible to extract

features that can be used for detecting a texture within an image. In particular, we

considered the following five features:

• Contrast
∑

i

∑

j

(i − j)2Pd(i, j)

is the difference in terms of visual properties that makes anobject (or its

representation within an image) distinguishable from other objects and the

background. In the visual perception of real world, contrast is determined

by the difference in the color and brightness of the object and other objects

within the same field of view. In practice, it is the ratio between the bright-

est and the darkest value of the image. In the case of a B/W image, note that

the increase of the contrast is equal to erase gray values.

• Entropy:

−
∑

i

∑

j

Pd(i, j)logPd(i, j)

is an index of the brightness variation among the pixel in an image. More

the values of brightness are different each others, more theentropy will be

higher.

• Energy:
∑

i

∑

j

P 2
d (i, j)

is the spectral content of an image
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• Correlation:
∑

i

∑

j(i − µx)(j − µy)Pd(i, j)

σxσy

is an index of the correlation degree among the pixel. Hereµx andµy are

the means andσx andσy are the standard deviations ofPd(x) andPd(y) re-

spectively, wherePd(x) =
∑

j Pd(x, j) andPd(y) =
∑

i Pd(i, y)

• Homogeneity:
∑

i

∑

j

Pd(i, j)

1 + |i − j|

is a measure of the brightness variation within the image. Ifthe image is

completely black or white, its homogeneity value will be themaximum. On

the contrary, if the image contains several brightness variations, this value

will be very low.

Another category of features that can be used for characterizing images from

a global point of view is based on the complexity of an image for a human reader.

We have chosen to consider a feature also proposed in [9]:

• Perimetric Complexity: is defined as the squared length of the boundary

between black and white pixels (the perimeter) in the whole image, divided

by the black area.

Note that, differently from [9], we evaluate the perimetriccomplexity on the

whole image, after performing a binarization with a fixed threshold.

6.3.2 OCR-based Features

Here we propose to use the same features considered in Section 6.2.2. In this

case, however, special characters are extracted from the output of an OCR that

has received an attached image as input.

We have noticed, in fact, that characters embedded into an image are oppor-

tunely distorted and/or obfuscated in spam e-mails. Thus, most of the words can-

not be correctly detected, as we can see in Figure 6.3. Furthermore, several special
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characters that typically are not present in commonly used words can appear in the

OCR output.

6.4 Combining Text-based and Image-based Classi-
fiers

It has been experimentally shown that the combination of an ensemble of clas-

sifiers can be of great benefit in many practical pattern recognition applications.

Through the appropriate choice of a combination rule, it is possible to dampen the

overall effect of theindependenterrors in each observation domain, thus reaching

performance better than those of a single classifier.

The combination of classifiers is then an important part of our architecture.

Anyway, there are some problems that must be taken into account in this case:

• It is necessary to define a method for combining a non-constant number

of classifiers, since it is not possible toa priori known if there is one or

more images attached to the e-mail and/or there are textual information to

be processed.

• It should be avoidedpadding-attacksfrom spammers. That is, the possi-

bility that an attacker puts a spam message within anormal context, for

example by attaching an image containing an embedded spam message to

an e-mail that containsnormal images.

As shown in Figure 6.4 we used a two-stage approach for combining text-

based and image-based classifiers. In the figure, “TP” standsfor Text Processing;

it is described in section 6.2.1.

The first stage (denoted asClassificationin Figure 6.4) consists in a simple

3-statelogical OR, whose behavior is described in Figure 6.4. In this way we

also consider the case in which a classifier cannot be activated. It happens, for

example, when there are no images within the e-mail, or when there are no words

to be processed by the semantic analysis. In this situations, we assume that the

output of the classifier isundefined. Note that through this approach we try to
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Figure 6.4: The proposed combination approach

address the problem ofpadding attacks, too. Just one correctly classified spam

image, in fact, is sufficient so that the block of the visual classifiers declares the

email as spam.

Then, at the second stage we adopt aBehaviour Knowledge Space(BKS) com-

bining rule [39]. The idea behind this rule is to avoid makingunjustified assump-

tion on the classifier ensemble such as classifier independence. In Figure 6.4 an

example of how it works is shown.

A BKS is a K-dimensional space where each dimension corresponds to the

decision of a classifier. Given an e-mail to be assigned to oneof 2 possible classes,

the ensemble ofK classifiers can in theory provide2K different decisions.

We must also consider the case in which the output of the 3-state logical OR is

undefined. In other words, each set of classifiers can attribute a mail to one out of

three possible classes, i.e.{Spam, Ham, Undefined} and the number of different

decisions becomes3K .

Each one of these decisions constitutes one unit of the BKS. In the learning
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Figure 6.5: The 3-state logical OR

Figure 6.6: The Behaviour Knowledge Space for combining classifiers.
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phase each BKS unit can record2 different valuesei (say,eham andespam), by

considering that the actual classes are onlyhamandspam. Given a suitably chosen

training set, each samplex of this set is classified by all the classifiers and the unit

that corresponds to the particular classifiers’ decision isactivated. It records the

actual class ofx, sayCj , by adding one to the value ofej . At the end of this phase,

each unit can calculate the best representative class associated to it, defined as the

class that exhibits the highest value ofei. This class corresponds to the most likely

class, given a classifiers’ decision that activates that unit.

In the operating mode, for each e-mail to be classified, theK decisions of the

classifiers are collected and the corresponding unit is selected. Then the e-mail is

assigned to the best representative class associated to that unit. Since we consider

all the possible combinations of classifiers outputs as the number of available

classifiers varies, we are implicitly handling the fact thatthe number of available

classifiers can be different for each e-mail.

It is worth noting that the proposed combining scheme could be also easily

extended using different feature sets, and then other classifiers. This could be

required, for example, for addressing new spammers’ tricks. In this case the prob-

lem is that the number of BKS unit grows exponentially and so awider training

set is needed in order to achieve good classification results. However, as it will

be shown in the following Section, only a subset of all the possible units are typ-

ically activated in practice, since some configuration of the classifiers’ decisions

are not allowed.

6.5 Experimental Results

In the following we will first present the database used for assessing the effective-

ness of the proposed approach, then evaluate if the use of both visual and textual

features can improve the performance of the system with respect to the use of

a single set of features. Finally, we make a comparison of ourapproach with a

state-of-the-art anti-spam filter, i.e.SpamAssassinequipped with two different

spam image plug-ins.
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Total # of e-mails e-mails with Images
Spam Ham Spam Ham
9173 2479 1802 151

Table 6.2: The dataset used in our tests.

As regards the dataset, whose details are given in Table 6.2,it is composed by

11652 e-mails, 9173 of which contains spam messages. e-mails were collected

from the mailboxes of some users of thestudenti.unina.itmailserver in a

period of about three years (2005-2007). This mailserver hosts the mailboxes of

all the students of the University of Naples Federico II. Among those e-mails, 151

containhamimages and 1802 containspamimages.

As regards the first stage of our architecture (theClassificationone), we chose

a Decision Treefor implementing each classifier. In particular, a C4.5 (J48) com-

ing from the open source toolWeka3 was selected.

Each single classifier was trained on a set of 1,000 mails (500for each class)

different from those belonging to the dataset reported in table 6.2. In order to train

the BKS rule, the dataset was split into two sets. Then, two experiments have been

made, by using a set for training and the other one for testing. Results are finally

obtained as the average value of the accuracy reported in these two tests.

In Figure 6.5 the performance of the single classifiers and ofthe proposed

systems are reported. Note that the last two single classifiers - third and fourth

rows - processed only e-mails with attached images.

It can be noted that the use of the BKS significantly improves the performance

of the single classifiers. It must be remarked, in fact, that the visual-based classi-

fier operates on a subset of the whole dataset (only 1953 mailsout of 11652). It is

also interesting to note that the number of BKS units that arereally activated on

the whole dataset is only 18, while their total number is34, i.e. 81. This confirms

the considerations made in the previous Section.

Finally, in the Figure 6.5 we report a comparison of the results obtained by

our system with those obtainable withSpamAssassinin its standard configura-

tion and equipped with two plug-ins devised for filtering image spam, namely

3http://www.cs.waikato.ac.nz/ml/weka/
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Figure 6.7: Some examples ofhamimages

Figure 6.8: Some examples ofspamimages
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Figure 6.9: The accuracy of the single classifiers and of the proposed system.

Bayes-OCR4 andFuzzy-OCR. It clearly appears that our approach significantly

outperforms bothBayes-OCRandFuzzy-OCR, by reaching a significantly higher

accuracy. Finally, note the time needed for processing the whole dataset by our

system are practically the same needed by SpamAssassin withFuzzy-OCR, while

is significantly faster thanSpamAssassinequipped withBayes-OCR.

Figure 6.10: Comparison between the proposed system andSpamAssassin

4This plug-in is available for download at the URL:
http://prag.diee.unica.it/n3ws1t0/?q=node/107
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6.6 Key findings

In this chapter we presented an approach for addressing the spam e-mail problems,

which takes into account some of the recent evolutions of thespammers’ tricks as

well as the limits of previous methodologies. We proposed tocombine visual clues

with the semantic information related to the e-mail body by using the Behaviour

Knowledge Space rule. This approach allowed us to easily include new modules

in our architecture that could be required for addressing new spammers’ tricks.

This system can prevent the evasion problems,adversarial classification, mon-

itoring the spam and the folders, and adding or updating somemodules to the

architecture if new kinds of spam are bypassing the antispamsecurity system.

Tests on a dataset of e-mails containing attached images confirmed the effec-

tiveness of the approach and its applicability with respectto other widely used

opensource tool such asSpamAssassin.

Since the proposed approach has been mainly designed for deploying a per-

sonal antispam system, in the future we want to investigate how it is possible to

further improve its performance by customizing it with reference to a specific user.

This could be done by developing a specific module for taking into account spam

images received by the userA that are considered as ham by the userB, such as,

for example, those related to a phishing attack versus the userA.



Chapter 7

Conclusions

We demonstrated that Multiple Classifier Systems are a good choice for imple-

menting a pattern recognition system that have to operate inan Adversarial En-

vironment. They provide a good means for tackling the two challenges afforded

during this thesis:Adversarial LearningandAdversarial Classification.

In this chapter we will provide a brief summary of the work behind this thesis,

and will draw some general conclusions, by illustrating thekey findings.

7.1 Our Contribution

The contribution of this thesis is to find out how an MCS approach could be the

better choice in theAdversarial Environmentproblem. We have designed several

MCS approaches for different tasks such as the cleaning of a training set (noisy

or contaminate), the definition of an antispam system and theidentification of

Internet traffic flows.

In particular, we have defined a methodology to clean a training set through

a MCS approach, named SOCIAL. This system changes the labelsassociated to

the training set samples in accord with a dynamical adaptation of the degree of

belief associated to each base classifier. We presented someexperimental results

in which the goodness of the approach is confirmed. In particular, we made a

comparison between asimpleclassifier trained with thecleaneddataset obtained

with the proposed approach, and the accuracy obtained with some Multiple Clas-

104
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sifier System presented in the literature. The results showed that a simple classi-

fier trained with the training set cleaned by SOCIAL, performs better than some

“state-of-the-art” MCS approaches.

Further examples of adversarial learning arise in the field of computer security

where there is an escalating competition between detectionand evasion techniques

for various types of malware. In general, one can expect thatwhenever machine

learning is used to provide protection from some illegal activity, adversaries will

deliberately attempt to circumvent these approaches.

Due to the above considerations we have considered some interesting case

studies, and we find out what was the impact of an MCS approach for this field. In

particular, we have proposed a modular anti-spam approach to deal with the spam

transmitted throughtextandimages. The modular architecture was designed to be

updated with new modules in order to efficiently cope with newtypes of spam.

We proposed also an hierarchical MCS approach for the Internet traffic iden-

tification problem, that try to distinguish among the different flows. In this case

the real-time feature was really important, and the system was designed to be fast

and accurate.

7.2 Key Findings

The core of this thesis consists in the study of the Multiple Classifier Systems to

address the problem ofAdversarial Environments. We demonstrate that this kind

of systems are more robust to the noise and/or contaminationof the training set

label.

We noticed that there are two possibility for an MCS, to forcethe diversity

among the classifiers in order to improve the accuracy or to force the convergence

of the decision. In this last case we are trying to obtain a sub-optimal but more

robust classification.

We pointed out that an MCS has a significant similarity with the non-linear

dynamic system, and with other physics phenomena.

Moreover, there are important similarities with the human behaviour too. In
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fact, if we want a stable society where the optimum is never reached in favour to

a stability issue, we are trying to a make a SOCIAL approach. If we want instead

to force the finding of an optimum it is more useful the competition instead of

the stability. This choice can reach an optimum forcing the diversity of the single

component (base-classifier).

Everything the human being has done that works properly, takes inspiration

from the nature. Even in this case there is a deep link with thenatural evolution,

and we are really interested to focus our attention on this aspect, that is less sci-

entific but more philosophical. We really believe that a multiple classifier system

could simulate some human behaviours and it could be used as adecision support

system for real life events.



Appendix A

Dempster-Shafer Combination Rule

In this section we will apply the general methodology described in the chapter 4

using the Dempster-Shafer theory. This theory will be used to develop theFusion

Blockand for the base classifiers statistical characterization.That is for theR def-

inition we choose to use theBasic Probability Assignment, hereinafterbpa.

The theory of Dempster and Shafer (D-S theory) has been frequently applied to

deal with uncertainty management and incomplete reasoning. Differently from

the classical Bayesian theory, D-S theory can explicitly model the absence of in-

formation, while in case of absence of information a Bayesian approach attributes

the same probability to all the possible events.

According to the D-S theory, we used asR the bpa. It describes the subjective

degree of confidence attributed to it. What is modelled, then, is not the analysed

phenomenon, but the belief in the base classifiers report about it.

When assigning abpa, there are some requirements which have to be met. They

descend from the fact that thebpa is still a probability function, hence has to

respect the constraints for mass probability functions. Each bpa is such that

m : 2θ → [0, 1], whereθ indicates the so calledframe of discernment. Usu-

ally, the frame of discernmentθ consists ofN mutually exclusive and exhaustive

hypothesesAi, i = 1, . . . , N . A subset{Ai, . . . , Aj} ⊆ θ represents a new hy-

pothesis. As the number of possible subsets ofθ is 2θ, the generic hypothesis is

an element of2θ.

For example, if we only consider two hypotheses (classes), namelyPositive(P)
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andNegative(N); hence, the frame of discernment isθ = {{P}, {N}} and2θ =

{{P}, {N}, {P, N}}, whereas in the Bayesian case only the events{{P}, {N}}
would be considered.

{P} and {N} are referred to assimple eventsor singletons, while {P , N} is

referred to ascomposite event. Furthermore, also the following properties have to

hold:

m(∅) = 0
∑

A⊆2θ

m(A) = 1

A.1 Classifier Statistical Characterization

Starting from the sameWeighted Confusion Matrix(tab. A.1) described in the

section 4.2.2, if we use as fusion block the Dempster-Shafercombination rule,

than theR will be a vector ofbpa where each element will be composed by:

R(Ci) = bpa(Ci)(A.1)

bpa(Ci) = [m({C1}) = ei1,
m({C2}) = ei2,

...
m({Cn}) = eiM ,

m({C1, C2, . . . , CM}) = (1 −
∑M

j=1 eij)]

(A.2)

Assigned Class
True Class Ĉ1 Ĉ2 . . . ĈM

C1 e11 e12 . . . e1n

C2 e21 e22 . . . e2n

...
...

...
. . .

...
CM eM1 eM2 . . . eMM

Table A.1: Weighted Confusion Matrix (WCM) forM classes classification
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It is worth noting that in this case we use more information tocharacterize a

single classifier, and so we are making a more accurate base classifiers statistical

characterization than using theWeighted Majority Voting.

An open issue is to find another functionr() that use more information about

theWCM . In this case we are not still using all the combined hypothesis.

A.2 Class andDoT Estimation

In this section we will describe how the system combine theR evaluated withr(),

and how it’s possible to obtain aDoT .

The aim of assigning abpa is to describe the reliability of a particular classifier

in reporting a specific event. Such a representation is suitable for combination,

but as we want to deal with combined results in the same way, wealso impose the

constraint that the combination of severalbpa by means of the D-S rule still has

to be abpa. The uncertainty in the final decision will be inversely proportional to

the extent to which the base classifiers agree. If we haveB base classifiers, the

combination rule is such that:

m(A) = K
∑

TB
i=1 Ai=A

B
∏

i=1

mi(Ai)

where:

K−1 = 1 −
∑

TB
i=1 Ai=∅

B
∏

i=1

mi(Ai)

=
∑

TB
i=1 Ai 6=∅

B
∏

i=1

mi(Ai)

It is worth observing that the normalizing factorK is independent from any

specific value ofA. The valueK can therefore be considered a constant, once the

bpas are fixed.
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A.2.1 The two classes case

Now, we want to illustrate how it is possible to evaluate the theClass andDoT

described in the section 4.2.3 starting from abpa values, that in our case represents

R. We remember that abpa is a vector of real numbers.

In the simple case of two classes problem,P andN , we have defined this

value as:

Class =



















P, if
m({P}) − m({N})

1 + m({P, N}) > 0

N, Otherwise

(A.3)

DoT = abs

(

m({P}) − m({N})
1 + m({P, N})

)

(A.4)

The valuem({P})−m({N})
1+m({P,N})

is defined in such a way that, if its value is+1, there

is the highest reliability on the hypothesisP; if it is −1, it is quite sure that we are

observing a N hypothesis; if it is0, there’s the maximum uncertainty, hence the

sample should be rejected.

In the first case, in fact,m({P}) = 0 while m({N}) = 1 andm({N, P}) =

0. In the second case, the opposite scenario is verified, asm({P}) = 0 while

m({N}) = 1 andm({N, P}) = 0. In the latter case instead,m({N}) = 0,

m({P}) = 0 andm({N, P}) = 1.

A.2.2 The M-Classes Case

We have tried to define different strategies to evaluate theDoT defined for aM-

Classesproblem. For the sake of completeness we report both the strategies. The

first one is more linked to the Dempster theory, whereas the second one use a

transformation in a polar coordination. Both this strategyhave their pro and cons,

that will be discussed in the respective system sections.
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General Case – Theoretical Method

This first formulation is based on the Hypothesis that we wantto discriminate

between a classP and several of variations of fake Hypothesis. Let us call them

for exampleN1,N2, . . . ,Nn.

The general function which allows us to transform thebpa in a detection re-

sult descends from observation of the relations betweenBelief, Plausibility and

Uncertainty. Let A, B ∈ θ; hence:

Bel(B) =
∑

A⊂B

m(A) ; P ls(B) =
∑

A∩B 6=∅

m(A)(A.5)

Unc(B) = P ls(B) − Bel(B)(A.6)

In the two-event case, we observe that

Bel({N}) =m({N})
P ls({N}) =m({N}) + m({N, P})

Bel({P}) =m({P})
P ls({P}) =m({P}) + m({N, P})

Hence,

Unc({N}) = Unc({P} =

= m({N, P})

Then for all the simple and compound hypothesesH ∈ 2θ in which is not

present theP Hypothesis we have defined the following parameter:

YH =
m({H})

1 + Unc({H})(A.7)

Obviously also for theP class we have the same thing:

YP =
m({P})

1 + Unc({P})(A.8)

Important considerations:
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1. 0 ≤ YH ≤ 1

2. • YH = 0 =⇒ m(H) = 0

• YH = 1 =⇒ m(H) = 1 andUnc(H) = 0

• m(H) = 1 =⇒ YH = 1

3. if ∃H : YH = 1 =⇒ YN and all the other parameters are zero

4. 0 ≤
∑

YH ≤ 1

5. from the 3) and 4) it is clear that if a genericYH → 1 then all the other

parameters tend to 0.

Starting from the parameters defined in equation A.7 and equation A.8, we

can evaluate for each of theN simple HypothesisFi the following index:

I(Fi) =
∑

H∩Fi 6=∅

YH

nH

(A.9)

WherenH is the number of simple classes belong toH. The same for the class

P .

I(T ) = YT(A.10)

With these indexes we have defined newy and the newDoT as:

y =











P, if maxi{I(Fi)} − I(T ) < 0

Ni, if maxi{I(Fi)} − I(T ) < 0 | argmaxi{I(Fi)} − I(T )

(A.11)

DoT = max{I(Fi)} − I(T )(A.12)

It is important to notice that this final equation in the case of two hypotheses

become the equation A.4.
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A.2.3 General Case – Polar Coordinate Transformation Method

This method want to overcame the limitation of the previous one. In this case

all the classes are equally important. The starting point are the equation A.7 and

equation A.8 described in the previous section. With theseY parameters we trans-

form thebpa space in a polar coordinate system. To obtain this, we dividethe

space inton angular sectors. The amplitude of each sector is:

Amplitude =
2π

n
(A.13)

In this way we can draw a vector in the middle of each angular sector. The

module of these vectors is equal toYi values. These vectors represent the belief in

each class.

We define a vector that pass exactly in the middle of the angular sector and

have a module equal to Y value. In this way for each angular sector we will

correspond a class and we can define a functionm() that maps each class into an

angular sector, that is, taken in input an angleθ, give the the class corresponding

to the angular sector in which the angle is in:

Class = m(θ)(A.14)

Starting from this considerations, theDoT and they are calculated starting

from the resultant vectorYr = |Yr| ∗ ejα as:

y = m(α)(A.15)

DoT = |Yr| ∗ h(α, Amplitude)(A.16)

Theh function is needed to give a weight to the position of the vector into the

angular sector. If the vector is exactly in the middle, we will be more certain that
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the true class was the one defined for that space, instead if itlies on the borderline

between two angular sectors, our degree of belief is lower. This function is defined

as:

h(α, Amplitude) = −
∣

∣

∣

∣

∣

αr − Amplitude

2
Amplitude

2

∣

∣

∣

∣

∣

+ 1(A.17)

We have chosen the triangular function, but also the Gaussian function could

be a good choice.

For example, considering the case in which we have 4-classesC1, C2, C3, C4,

as shown in the figure A.1.

Figure A.1: A graphical example of theYr evaluation

In this case, the resulty will be C1 and theDoT will be the module of the red

arrow(Yr) weighted by theh() function.
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The cons of this approach is that theDoT depend on the coordinate system,

and on the position of the Hypotheses on the axis. If we changethe position of an

hypothesis the value of theDoT will change.

Also in this case, as the previous one, if we consider only twoHypotheses we

return at the equation A.4.



Appendix B

Bayesian Combining Rule

In this section we will apply the general methodology described in the chapter 4

using the Bayesian Combining Rule [14], as also described insection 3.3.3.

This rule will be used to develop theFusion Blockand for the classifiers char-

acterization. That is, for definingR we choose to use a vector of probability

estimation calculated staring from the Weighted ConfusionMatrix.

B.1 Classifiers Statistical Characterization

Starting from the sameWCM (tab. B.1) described in the section 4.2.2, if we use

as fusion block theBayesian Combining Rule, than theR will be:

Assigned Class
True Class Ĉ1 Ĉ2 . . . ĈM

C1 e11 e12 . . . e1n

C2 e21 e22 . . . e2n

...
...

...
. . .

...
CM eM1 eM2 . . . eMM

Table B.1: Weighted Confusion Matrix (WCM) forM classes classification

R(Ci) =
eii

∑n

j=1 eji

, ∀i = 1, 2, . . . , N(B.1)

116
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The equation B.1 expresses thea posterioriprobability that a classifier gives

the correct answer.

As in this case of Dempster-Shafer Combing Rule (Appendix A)we use more

information to characterize a single classifier, and so we are making a more accu-

rate base classifiers statistical characterization than using theWeighted Majority

Voting.

For example, if we consider the WCM in table B.2

Assigned Class
True Class Â B̂ Ĉ

A 0.7 0.1 0.1
B 0.2 0.5 0.1
C 0.3 0 0.6

Table B.2: Possible Weighted Confusion Matrix for a three classes problem

R(A) =
0.7

0.7 + 0.2 + 0.3
= 0.58

R(B) =
0.5

0.1 + 0.5 + 0
= 0.83

R(C) =
0.6

0.1 + 0.1 + 0.6
= 0.75

B.2 Class andDOT Estimation

In this section we will describe how the system combines theR evaluated with the

r() function, and how it is possible to obtain theDoT .

In particular, if we indicate with(ŷk
i = Cj) the event that thek − th classifier

assigns the input samplesxi to the classCj, the output classy will be:

y = argmaxj P (xi ∈ Cj|ŷ1
i = Cj, ŷ

2
i = Cj, . . . , ŷ

M
i = Cj)(B.2)
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If the classifiers can be assumed independent among each other and thea

priori probability is the same for all the classes, it can be shown that the eq. B.2

can be written as:

C = argmaxj

M
∏

k=1

P (xi ∈ Cj |ŷk
i = Cj)(B.3)

And theDoT will be calculated as:

DoT = maxj

M
∏

k=1

P (xi ∈ Cj |ŷk
i = Cj)(B.4)
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