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Introduction

H
andling the still increasing amount of digital traffic is today a large and
important research area. As it is well known, the information capacity

of the conventional single-input single-output (SISO) systems grows in a loga-
rithmic fashion with the signal-to-noise ratio. Since the signal-to-noise ratio is
related to the transmitted power and the ambient noise, one way to answer the
demand of high bit-rate services is to increase the transmitted power. Unfor-
tunately, in the modern multi-user environments, the ambient noise is due to
other users transmitting within the same frequency bands. It follows from this
that the increase in the transmit power does not guarantee a capacity gain be-
cause it implies a proportional increase in the overall disturbance. Moreover,
higher power level implies the cost of a nonlinearity in the power amplifier.
For some years, the single-input multiple-output (SIMO) systems, as well as
the multiple-input single-output (MISO) ones, have represented a possible so-
lution in attempting to increase the signal-to-noise ratio, and consequently the
capacity of the SISO systems. The multiple output (input) character of such
communication systems is usually related to the adoption of receive (transmit)
diversity techniques. For instance, the use of multi element array at the re-
ceiver (transmitter) and one element at the transmitter (receiver), has been ex-
tensively studied. Unfortunately, the capacity achieved by the SIMO systems
increases very slowly with the number of system outputs, whereas the capacity
achieved by the MISO ones rapidly reaches saturation as the number of input
increases. The natural conjunction between SIMO and MISO systems leads to
the more attractive multiple-input multiple-output (MIMO) systems. Foschini
and Telatar showed that a huge capacity gain can be achieved over the SISO,
SIMO, and MISO systems: more specifically, the capacity of a MIMO system
can grow, in principle, linearly with the minimum over the number of inputs
and outputs. For this reason, over the last decade, there has been a growth of
research activity in the area of MIMO systems.

We have used the MIMO system model to describe the multi-carrier sys-

xi



xii INTRODUCTION

tem orthogonal frequency division multiplexing with offset quadrature ampli-
tude modulation (OFDM-OQAM). Such system is considered a promise of
the mobile communications because it overcomes the drawbacks of the widely
adopted OFDM system, first among all the spectral efficiency. We have fo-
cused on the equalization of such systems in a multiple antenna scenario and
we have chosen to employ the decision feedback (DF) MIMO equalizer, in
its widely linear (WL) version in order to exploit the statistical redundancy
exhibited by the system input sequence. In the class of symbol-by-symbol
equalizers, the DF equalizer plays an important role since it performs almost
as well as the optimum equalizer, although it requires a computational com-
plexity only slightly higher than that of the linear equalizer. The WL filtering,
extensively used in this thesis, generalizes the conventional linear filtering by
jointly processing both the real part and the imaginary one of the input sig-
nal, or, equivalently, both the signal itself and its complex conjugate version;
the WL filtering outperforms the linear one in presence of the so called rota-
tionally variant signals, i.e., those signals which exhibit a nonnull correlation
with their complex conjugate version. We have made use of the tool of the
WL filtering in two other scenarios, i.e., both in order to compensate the trans-
mitter and the receiver in-phase and quadrature (IQ) imbalance and in order
to optimize the transmitted constellation on the basis of the state of channel
(assumed known at the receiver) when at the receiver side there is a minimum
mean square error (MMSE) equalizer.

The outline of the thesis is the following:

Chapter 1 presents the general framework. The MIMO system model
is introduced and the basic properties of MIMO receivers as well as MIMO
transceivers are described.

Chapter 2 presents two application scenarios of the WL filtering within
MMSE equalizers. The former concerns the IQ imbalance compensation,
of the transmitter and the receiver; the latter deals with the design of the
constellation to be transmitted over a channel whose state is known at the
receiver.

Chapter 3 presents OFDM-OQAM systems. After having modelled such
system with a MIMO channel, they are equalized by a WL-DF MIMO equal-
izer which, according to the channel characteristics, can operate selectively



INTRODUCTION xiii

achieving so a good trade-off between performance and complexity.





Chapter 1

MIMO model

T
he increasing requirements on data rate and quality of service for wire-
less communications systems call for new techniques to improve spec-

trum efficiency as well as link reliability. In this context, much attention
has been focused on multiple-input multiple-output (MIMO) communication
channel models for various reasons, such as, for instance:

a) the increasing exploitation of multiple antennas both at the transmitter
and at the receiver side to introduce spatial redundancy as well as to
utilize the recent space-time coding techniques;

b) the widespread use of multiplexing and multiple access techniques
which require to resort to a MIMO channel model, since it can describe
the mutual interferences among the different symbol streams. More
specifically, resorting to a MIMO model is mandatory in modern com-
munication systems that utilize code-division multiple-access (CDMA)
techniques such as direct sequence (DS) CDMA, multi carrier (MC)
CDMA and orthogonal frequency division multiplexing (OFDM).

In this chapter, we derive the bandpass equivalent linear-time-invariant
(LTI) finite-impulse-response (FIR) MIMO channel model, whose equaliza-
tion represents the main subject of the thesis. The versatility of the adopted
model is demonstrated by showing that a FIR MIMO model arises in many
communication systems such as multiple antenna systems, OFDM systems,
etc.

Then, both basic MIMO receiver and transceiver architectures are intro-
duced to provide the general frameworks utilized in the next chapters. More
specifically, when the MIMO channel transfer function is known at only the

1



2 MIMO MODEL

receiver side, the linear and the decision-feedback equalizers are considered
rather than the optimum (in the Maximum Likelihood Sense) due to their lower
computational complexity. If the channel state information is available at both
ends of the link, the transmitter and the receiver structures can be jointly de-
signed to improve the system performance.

1.1 Multiple-input multiple-output channel model

The block diagram of the equivalent low-pass continuous-time linear1 MIMO
channel with Ni input signals and No output signals is depicted in Fig. 1.1.
At the transmitter side, s

(�)
k denotes the kth complex-valued symbol to be

transmitted on the �th channel input; Ts the symbol period and ψT (t) the
time-invariant unit-energy impulse response of the transmit filters ([1] and
references therein). The continuous-time linear MIMO channel is charac-
terized by the NoNi impulse responses g(�,k)(t, τ) with � = 1, . . . , No and
k = 1, . . . , Ni; each of them, i.e., given (�, k), describes the linear time-
variant (LTV) subchannel connecting the �th MIMO channel output with the
kth MIMO channel input (let us remind that g(�,k)(t, τ) represents the response
of the subchannel at the time t to a Dirac impulse applied at the time t − τ ).
At the receiver side, v(�)(t) represents some additive noise at the �th output
and ψR(t) the time-invariant unit-energy impulse response of the receive fil-
ters. The �th MIMO channel output y(�)(t) is sampled with a sampling period
Tc � Ts

q , with q ∈ N.
According to such model, the input-output relationship of the MIMO chan-

nel can be written as follows:

y(�)(t) =
∞∑

n=−∞

Ni∑
i=1

s(i)n h(�,i)(t, t− nTs) + n(�)(t) � = 1, . . . , No (1.1)

where

h(�,k)(t, τ) � ψT (τ) ∗ g(�,k)(t, τ) ∗ ψR(τ) (1.2)
n(�)(t) � v(�)(t) ∗ ψR(t) (1.3)

with ∗ denoting the continuous-time convolution operator. In the following,
we will refer to h(�,k)(t, τ) as the impulse response of the subchannel (�, k)

1The modeling of the channel as a linear system agrees with the observed behavior of a large
number of communication channels.
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4 MIMO MODEL

and to the No ×Ni matrix

H(t, τ) �

⎡
⎢⎢⎢⎣

h(1,1)(t, τ) h(1,2)(t, τ) . . . h(1,Ni)(t, τ)

h(2,1)(t, τ) h(2,2)(t, τ) . . . h(2,Ni)(t, τ)
...

... . . . ...
h(No,1)(t, τ) h(No,2)(t, τ) . . . h(No,Ni)(t, τ)

⎤
⎥⎥⎥⎦ (1.4)

as the MIMO channel matrix, whereas the column vector[
h(1,i)(t, τ) h(2,i)(t, τ) . . . h(No,i)(t, τ)

]T is usually referred to as
the signature induced by the ith input across the channel outputs. In the cur-
rent literature, the special cases (Ni = 1, No > 1) and (Ni > 1, No = 1) are
referred to as single-input multiple-output (SIMO) system and multiple-input
single-output (MISO) system, respectively; if Ni = No = 1, then the MIMO
system will degenerate into the conventional single-input single-output (SISO)
system.

The sampled version y
(�)
k with � = 1, . . . , No of the MIMO channel output

y(�)(t) is such that

y
(�)
k = y(�)(kTc)

=
∞∑

n=−∞

Ni∑
i=1

s(i)n h(�,i)(kTc, kTc − qnTc) + n
(�)
k

(1.5)

where n(�)
k � n(�)(kTc) denotes the sampled version of the noise signal n(�)(t).

The discrete-time model in (1.5) is written as a function of two data rates, 1/Ts

and 1/Tc. A suitable model, expressed as a function of one data rate, can be
provided by introducing the symbol sequence x

(�)
k as follows:

x
(�)
k �

{
s
(�)
k/q if k

q is integer
0 otherwise

(1.6)

It is the oversampled (or expanded) version by q of s
(�)
k , i.e., it is obtained

by inserting q − 1 zeros between any two consecutive samples of the signal.
According to (1.6), the input-output relationship in (1.5) becomes

y
(�)
k =

∞∑
n=−∞

Ni∑
i=1

x
(i)
k−nh

(�,i)
k,n + n

(�)
k � = 1, . . . , No (1.7)

where h
(�,i)
k,n � h(�,i)(kTc, nTc). The equation (1.7) provides the Tc-space

sampled discrete-time MIMO channel model; with no loss of generality, in
this thesis we will assume Tc = Ts unless specified.
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1.2 Time-dispersive FIR MIMO channel

In modern communication systems, especially for mobile applications, the in-
creasing demand of high bit-rate transmissions and the need to use stationary
channel models drive to the adoption of a very short symbol period, which
therefore will be usually less than the coherence time of the radio channel. On
the other hand, as the bandwidth of the transmitted signals is usually greater
than the coherence bandwidth of the channel, it will prove frequency selective
or, equivalently, time-dispersive.

Consequently, the MIMO channel input-output relationship in (1.1) and the
corresponding Tc-space sampled version in (1.7) can be rewritten, respectively,
as follows:

y(�)(t) =
∞∑

n=−∞

Ni∑
i=1

s(i)n h(�,i)(t− nTs) + n(�)(t) (1.8)

y
(�)
k =

∞∑
n=−∞

Ni∑
i=1

x
(i)
k−nh

(�,i)
n + n

(�)
k (1.9)

where h
(�,i)
n � h

(�,i)
0,n = h(�,i)(0, nTc).

It is clear that the total number of Tc-space discrete-time channel coeffi-
cients h(�,i)n is determined by the maximum delay spread of the physical fading
channels g(�,i)(t, τ) and the time durations of the transmit and receive filters,
which are usually infinite in theory to maintain limited frequency bandwidth.
Therefore, h(�,i)n is a time-invariant filter with infinite impulse response (IIR).
However, in practice, the time domain tails of the transmit and receive filters
are designed to fall off rapidly, and it is reasonable to assume a finite range for
the values of n over which the amplitudes of the channel coefficients h(�,i)n are
essentially nonzero. Thus, by eliminating the coefficients which do not affect
significantly (owing to their small power) the channel output, the channel im-
pulse response h

(�,i)
n can be truncated to a finite impulse response (FIR). For

such reason, without loss of generality, we will assume:

h(�,i)n �= 0 if n = 0, . . . , ν(�,i)

h(�,i)n = 0 otherwise

with ν(�,i) denoting the memory of the subchannel (�, i). Hence, the input-
output relationship of the MIMO channel in the discrete time domain can be
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written as follows:

y
(�)
k =

ν(�,i)∑
n=0

Ni∑
i=1

x
(i)
k−nh

(�,i)
n + n

(�)
k 1 ≤ � ≤ No (1.10)

By grouping the received samples at the kth instant from all the No channel
outputs into the No × 1 column vector

yk �
[
y
(1)
k y

(2)
k . . . y

(No)
k

]T
(1.11)

one can relate yk to the corresponding input and noise column vectors

xk �
[
x
(1)
k x

(2)
k . . . x

(Ni)
k

]T
(1.12)

nk �
[
n
(1)
k n

(2)
k . . . n

(No)
k

]T
(1.13)

as follows:

yk =
ν∑

n=0

Hnxk−n + nk (1.14)

= Hk � xk + nk

where Hn is the No × Ni matrix whose (�, i)-entry is h
(�,i)
n , ν is the max-

imum length of the NoNi channel impulse responses, i.e., ν = max
(�,i)

ν(�,i),

and � denotes the discrete-time convolution operator. The block diagram of
the obtained MIMO channel model is depicted in Fig. 1.2, where z−1 denotes
the unit-delay block (i.e., the system which responds to the input xk with the
output xk−1).

The time-dispersive MIMO channel model in (1.14), as it will be shown
in next section, arises in many applications, such as multi-antenna systems,
spread-spectrum multiuser communications, multi-carrier systems. Neverthe-
less, although it well describes the linear distortion introduced by the radio
channel, it does not take into account other impairments such as the nonlinear
distortion introduced by the A/D converters, and/or the phase and time jitter
due to imperfect synchronization between the transmit oscillators and the re-
ceive ones. Since the linear distortion represents the most important cause
of performance degradation in communication systems, we will refer to such
model to design the receiver or jointly the transmitter and the receiver in order
to reduce the effect of the frequency selectivity of the communication chan-
nels.



1.3 MIMO COMMUNICATIONS 7
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Figure 1.2: Block diagram of the LTI time-dispersive MIMO channel of order ν.

1.3 MIMO communications

The model in (1.14) describes the input-output relationship of an abstract sys-
tem with several inputs and/or outputs; in fact, its derivation has been carried
out with no assumption regarding the specific application scenario. In the liter-
ature, the MIMO communication systems are usually identified with the ones
that employ multiple antennas both at the transmitter side and the receiver
one. However, we point out that, although it is not always explicit, a “vir-
tual” MIMO model frequently arises in many communication systems. For
example, in many applications, a more exact description of the detection sce-
nario requires to take into account the presence of several signals that, together
with the transmitted one, affect the channel output: according to the conven-
tional SISO schemes, the effects of such signals are modeled as additive noise.
Otherwise, a MIMO model whose inputs include the undesired signals can be
adopted to improve the system performances, provided that some a priori in-
formation about such undesired signals is available. It is clear that this model is
not an actual MIMO one since the MIMO character is generated by an ad hoc
representation of the transmitted signals. In the following, we report just two
examples of MIMO systems, multiple antenna systems and OFDM systems.

Multiple antenna systems

Multiple antenna systems (see Fig. 1.3) have drawn a considerable attention in
the last years for their capability to reject interference and to reduce the effect
of fading and noise. The earliest way of antenna systems for increasing the
performance was antenna diversity, which mitigated the effect of fading. More
recently, smart antenna systems, which attempt to actively mitigate the chan-
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Figure 1.3: Multiantenna system.

nel impairments, have been developed [2]. The communication systems that
employ multiple antennas at the transmitter and at the receiver are popularly
known as MIMO systems. Their structure naturally leads to a MIMO system
model where the signals transmitted by the transmit antennas represent the
channel inputs, while the ones received by the receive antennas represent the
channel outputs. In [1] it is derived the MIMO channel impulse response for a
multiple antenna system described by the physical scattering model known in
literature as one-ring model [3]. Such model is appropriate in the fixed com-
munication context, where the transmitter is elevated and seldom obstructed.
Under some assumptions (the reciprocal communication bandwidth is much
smaller than delay spread, the number of scatterers is sufficiently large, etc.),
one gets that the channel coefficients h(�,i)n can be modelled as Gaussian ran-
dom variables.

OFDM systems

Orthogonal frequency division multiplexing (OFDM) is a digital multi-carrier
transmission technique that distributes the digitally encoded symbols over sev-
eral parallel carriers in order to reduce the symbol rate and to achieve robust-
ness against long echoes in a multipath radio channel. Unlike conventional
frequency division multiplexing, the spectra of the OFDM carriers partially
overlap. Nevertheless, they will exhibit orthogonality on a symbol interval if
they are spaced in frequency exactly of the reciprocal of the symbol interval.
Such a requirement can be fulfilled by using the discrete Fourier transform and
by introducing a guard interval equal or greater than the delay spread of the
channel. In this section, we provide a description of the OFDM communica-
tion systems in terms of MIMO systems.

In an OFDM system, N input symbols (say, OFDM word) are transferred
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by the serial-to-parallel converter (S/P) to the OFDM modulator. Then, each
symbol is modulated by the corresponding subcarrier, it is sampled and D/A
converted. The discrete-time OFDM signal, implemented by an inverse dis-
crete Fourier transform (IDFT), can be expressed as follows:

xkN+p =
1

N

N−1∑
m=0

skN+mej
2πpm

N 0 ≤ p < N −∞ ≤ k ≤ ∞ (1.15)

where skN+m (m = 0, . . . , N − 1) denotes the OFDM word to be transmit-
ted, xkN+p represents the (kN + p)th output sample of the IFFT block. After
pulse shaping and parallel-to-serial (P/S) conversion, the signal is transmitted
over a SISO time-variant multipath fading channel that consists of L propaga-
tion paths with complex-valued channel gains hk,� (the apex (1, 1) is omitted
for brevity). At receiver side, after matched filtering and removing the cyclic
prefix, the received signal can be written as

ykN+p =
L−1∑
�=0

hkN+p,�xkN+p−� + nkN+p (1.16)

where nkN+p denotes the additive noise samples. After S/P conversion of the
received samples, the demodulated signal Y (p)

k is obtained by taking the dis-
crete Fourier transform (DFT) of the vector

[
ykN . . . ykN+N−1

]T , i.e.:

Y
(p)
k =

1

N

N−1∑
i=0

L−1∑
�=0

N−1∑
m=0

skN+mhkN+i,�e
j
2π(i−�)m

N e−j
2πpi
N +

N−1∑
i=0

nkN+ie
−j 2πpi

N

︸ ︷︷ ︸
�N

(p)
k

=

L−1∑
�=0

N−1∑
m=0

skN+m
1

N

N−1∑
i=0

hkN+i,�e
−j 2π(p−m)i

N

︸ ︷︷ ︸
�H

(p−m,�)
k

e−j
2π�m
N +N

(p)
k

=
L−1∑
�=0

N−1∑
m=0

H
(p−m,�)
k skN+me−j

2π�m
N +N

(p)
k (1.17)

The input-output relationship (1.17) can be rewritten in a matrix form as fol-
lows:

Yk = Cksk +Nk (1.18)
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with

sk �

⎡
⎢⎢⎢⎣

skN
skN+1

...
skN+(N−1)

⎤
⎥⎥⎥⎦ Yk �

⎡
⎢⎢⎢⎢⎣

Y
(0)
k

Y
(1)
k
...

Y
(N−1)
k

⎤
⎥⎥⎥⎥⎦ Nk �

⎡
⎢⎢⎢⎢⎣

N
(0)
k

N
(1)
k
...

N
(N−1)
k

⎤
⎥⎥⎥⎥⎦ (1.19)

and where the (m, i)-entry of the N ×N matrix Ck is defined as

C
(m,i)
k � H

(0,m−i)
k +H

(1,m−i)
k e−j

2πi
N + · · ·+H

(L−1,m−i)
k e−j

2π(L−1)i
N (1.20)

From this it follows that the OFDM system is equivalent to a LTV non-
dispersive MIMO system with impulse response Ck.

If the channel impulse response remains constant over the word interval,
one will have H

(p−m,�)
k = 0 for p �= m, implying that Ck degenerates into

a diagonal matrix, and there exists no intercarrier interference (ICI). In such
a case, the received samples Y

(p)
k are affected by only the multiplicative dis-

tortion, which can be easily compensated for by a one-tap frequency-domain
equalizer: in other words, the OFDM effectively converts a frequency selec-
tive fading channel into a set of N flat fading channels. On the other hand, the
variations of the channel impulse response during the word interval, as well
as the existence of a frequency offset2, destroy the orthogonality among the
OFDM subcarriers leading to a non-diagonal matrix Ck, which accounts for
the presence of ICI.

Recently, multiple antenna solutions and OFDM modulation have been
combined to obtain the MIMO-OFDM systems [4]. Also in this case, it is pos-
sible to show that the overall system equation can be represented by a MIMO
model.

1.4 MIMO receiver architectures

In this section, we provide a overview of the main receiving architectures for
MIMO channels, which allow to achieve a multiplexing gain [1]. Let us first
introduce the working framework. At the transmitter side, the data stream to
be transmitted is demultiplexed into Ni streams x

(�)
k (� = 1, . . . , Ni) which,

after coding and modulation, are simultaneously sent over many antennas with
2Frequency offset in communication systems is caused by the mismatches between the os-

cillators at the transmitter and at the receiver, by Doppler shifts, etc.



1.4 MIMO RECEIVER ARCHITECTURES 11

symbol period equal to Ts. At the receiver side, No antennas are employed to
recover as many superpositions of the transmitted signals. The received signals
y(�)(t) are Ts-space sampled3 and then, are processed to separate the different
Ni transmitted sequences x

(�)
k , which are finally remultiplexed to recover the

original data stream. The separation step can be performed according to differ-
ent (optimization) criteria and, clearly, it determines the computational com-
plexity of the receiver: in practical scenarios, the aim to be pursued is repre-
sented by the achievement of an acceptable compromise between performance
and computational complexity. For such a reason, the maximum likelihood
(ML) receiver, that yields the best performance in terms of error rate at the ex-
pense of computational complexity, is often replaced by suboptimal equalizers
that exhibit a sustainable complexity.

In the following, we introduce some of the main receiver architectures for
MIMO systems:

• ML receiver

• minimum mean square error (MMSE) linear receiver

• zero-forcing (ZF) linear receiver

• decision-feedback (DF) based receiver.

The MMSE receiver structures and the DF-based ones are only introduced
here, but they will constitute the main subject of the next chapters.

1.4.1 ML receiver

Let us consider a time non-dispersive LTI MIMO channel with Ni inputs and
No outputs. The input-output relationship corresponding to the �th output can
be specialized as follows:

y
(�)
k =

Ni∑
i=1

x
(i)
k h(�,i) + n

(�)
k � = 1, . . . , No (1.21)

where h(�,i) � h
(�,i)
k (∀k), and where x

(i)
k is drawn from the alphabet A. We

aim at recovering the transmitted symbol x(�)k from the observation y
(�)
k in the

case where the channel impulse response is known at the receiver. By de-
noting with fn(·) the probability density function of the additive noise n

(�)
k ,

3We have assumed Tc = Ts in (1.5).
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the likelihood function of the observation, conditioned by the symbols x
(i)
k

(i = 1, . . . , Ni) is equal to

L
(
y
(�)
k /xk

)
= fn

(
y
(�)
k −

Ni∑
i=1

x
(i)
k h(�,i)

)
(1.22)

The ML symbol decision is given simply by the argument that maximizes
L
(
y
(�)
k /xk

)
over the symbol alphabet

x̂
(�)
k = argmax

x∈ANi

(
L
(
y
(�)
k /xk = x

))
(1.23)

Thus, the ML detection requires an exhaustive search over a total of ANi vec-
tor symbols, rendering the decoding complexity exponential in the number of
channel inputs.

In the more general case of time-dispersive LTI MIMO channel, we should
consider the likelihood function of the observation conditioned by the frame
of symbols x(i)k , x

(i)
k−1, . . . x

(i)
k−ν (∀i). Thus, the exponential complexity of the

ML receiver increases simultaneously with the number of inputs and with the
channel memory, making its implementation costly for MIMO detection on
severe ISI channels, especially as the input signal constellation size increases
to improve spectral efficiency.

1.4.2 MMSE FIR equalizer

Let us consider the time-dispersive LTI MIMO channel model in (1.14). For
a block of Nf received symbols, rewrite the system equation in the following
matrix form:⎡

⎢⎢⎢⎣
yk
yk−1

...
yk−(Nf−1)

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣
H0 H1 . . . Hν 0 · · · 0
0 H0 H1 · · · Hν · · · 0
... . . . . . . ...
0 · · · 0 H0 H1 · · · Hν

⎤
⎥⎥⎥⎦ (1.24)

·

⎡
⎢⎢⎢⎣

xk
xk−1

...
xk−(Nf−1)−ν

⎤
⎥⎥⎥⎦+

⎡
⎢⎢⎢⎣

nk
nk−1

...
nk−(Nf−1)

⎤
⎥⎥⎥⎦

or, more compactly,

y = Hx+ n (1.25)
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yk W� �x̂k−Δ

Q(·)
� Q(x̂k−Δ)

Figure 1.4: Block diagram of a linear receiver.

The vector y is processed by a linear FIR equalizer to provide an estimate
of the transmitted symbol vector; such an estimate is then quantized by the
decision device Q(·) to produce the symbol constellation (see Fig. 1.4). The
output of the equalizer is equal to

x̂k =

Nf−1∑
�=0

W�yk−� (1.26)

=
[
WH

0 WH
1 . . .WH

Nf−1
]

︸ ︷︷ ︸
�W

y

where W� denotes the complex-valued matrix taps of size No × Ni. The
equalizer output x̂k is the estimate of the transmitted symbol vector xk−Δ, with
Δ denoting a processing delay. The value of Δ is related to the capability of
the equalizer in performing causal and anticausal processing: the case Δ = 0
corresponds to a strictly causal filtering, while the case Δ = Nf + ν − 1
corresponds to a strictly anticausal filtering.

The MMSE equalizer W minimizes the trace of the error correlation ma-
trix4

Re � E
[
(x̂k − xk)(x̂k − xk)

H
]

(1.27)
� E

[
eke

H
k

]
By resorting to the orthogonality principle, and accounting for the indepen-
dence of x from n, the optimum W can be written as follows:

WMMSE = R−1y HRxeΔ+1 (1.28)

4Let us note that it would be advisable to design the equalizer to adjust the properties of
Q(x̂k), instead of x̂k, for instance to minimize the error rate. However, controlling the proper-
ties of Q(x̂k) is much more difficult than controlling the properties of x̂k.
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where

Rx � E
[
xxH

]
Rn � E

[
nnH

]
(1.29)

Ry � HRxH+Rn

eΔ+1 �
[
0Ni×NiΔ INi

0Ni×Ni(Nf+ν−Δ−1)
]T

or, in other words, WMMSE is the conventional Wiener filter that processes
the observation vector y in order to estimate the desired vector xk−Δ. Let us
emphasize the importance of optimizing the delay Δ, which greatly affects the
trace of Re: unfortunately, the optimization over Δ can be usually carried out
only by an exhaustive procedure. Moreover, for the sake of completeness, we
point out that, in the MIMO environment, different delays Δ� (� = 1, . . . , Ni)
can be chosen for each one of the symbols x(�)k−Δ�

to be estimated. However,
since the optimization over Δ� is carried out by an exhaustive procedure, the
computational complexity can be unsustainable.

Unfortunately, some channels will still be difficult to be equalized by uti-
lizing only a linear filter. In fact, when the channel exhibits zeros close to
the unit circle, the equalizer would need poles outside the unit circle becom-
ing unstable and, at the same time, amplifying received noise, which leads to
frequent decision errors.

In the following of the thesis, we will refer to the widely linear version of
such equalizer rather than to the linear one [5].

1.4.3 ZF FIR equalizer

Let us rewrite the input-output relationship of the LTI time-dispersive MIMO
channel in (1.14) as follows:

y
(�)
k = h

(�,�)
0 x

(�)
k +

∑
i �=�

x
(i)
k h

(�,i)
0 +

ν(�,i)∑
n=1

x
(i)
k−nh

(�,i)
n︸ ︷︷ ︸

co-channel interference + ISI

+n
(�)
k (1.30)

where the second term at the right-hand-side accounts for the effects of the
remaining Ni − 1 inputs over the �th output at the time instant k, while the
third term accounts for the ISI. The ZF FIR equalizer is the linear filter which
processes the observation vectors yk,yk−1, . . . ,yk−(Nf−1) to minimize the
(co-channel interference + ISI) power measured at the output of the equalizer.
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To this aim, consider the system model (1.25) and assume that x(1)k is the
symbol to be estimated5 on the basis of the observation y, which is rewritten
in the following equivalent form:

y = H(:, 1)x
(1)
k +H(−1)x(−1)︸ ︷︷ ︸

�z

+n (1.31)

where H(:, k) denotes the kth column of H, H(−1) is given by H deprived of
its first column, and x(−1) is given by x deprived of its first row; the vector z
accounts for both the co-channel interference and the ISI. According to (1.26),
the first column of the ZF matrix filter WZF, i.e., the vector filter that provides
the estimate x̂

(1)
k of x(1)k by processing y, is obtained by solving the following

optimization problem:

WZF(:, 1) = argmin
w

∣∣wHz
∣∣2 subject to: wHH(:, 1) = β2 (1.32)

with β ∈ R. As known, the optimum filter is derived by exploiting the La-
grange multiplier method and is given by:

WZF(:, 1) =
β2

H(:, 1)HR−1z H(:, 1)
R−1z H(:, 1) (1.33)

where Rz � E
[
zzH

]
. The same reasonings apply to WZF(:, �) (� =

1, . . . , Ni). For ill-conditioned H, it is known that the ZF equalizer suffers
from the noise enhancement; on the other hand, it is equivalent to the MMSE
equalizer in presence of low noise level.

1.4.4 Decision-feedback FIR equalizers

In the class of the non-linear equalizers, the DF FIR equalizer constitutes an
attractive compromise between complexity and performance. It can perform
almost as well as the ML detector, but it requires a computational complex-
ity only slightly higher than the linear equalizer. Its structure is depicted in
Fig. 1.5. The received signal yk is the input of a linear feedforward FIR fil-
ter, whose output is denoted with zk. The estimate x̂

(�)
k−Δ of the symbol x(�)k−Δ

is obtained by subtracting from zk the output of a linear feedback FIR filter,
which processes the past decisions provided by the decision device on the basis
of the estimated symbols. In such a way, the output of the feedforward filter

5For the sake of clarity, we consider the case Δ = 0.
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Q(·)
yk

x̂k−Δ
Q(x̂k−Δ)

W

B

Figure 1.5: The decision feedback equalizer structure.

can be deprived of the co-channel interference and ISI due to previously trans-
mitted symbols. As long as the decisions are correct, the equalizer provides a
good estimate of the transmitted sequences.

Differently from the conventional SISO environment, three MIMO DF
equalizer structures can be defined:

Scenario 1 The DF equalizer provides the estimate of x(�)k−Δ (� = 1, . . . , Ni)
by resorting to the past decisions Q(x̂

(�)
k−Δ−n) with n > 0 and ∀�. Such

an equalizer represents the MIMO DF counterpart of the conventional
SISO DF equalizer.

Scenario 2 Assume that the channel inputs are ordered so that lower in-
dexed components of xk are detected first; then, the DF equal-
izer utilizes, together with past decisions, the current decisions
Q(x̂

(1)
k−Δ),Q(x̂

(2)
k−Δ), . . . ,Q(x̂

(�−1)
k−Δ ) to estimate the symbol x(�)k−Δ. In

other words, the decisions are taken sequentially starting with the lower
indexed components.

Scenario 3 When all the current decisions
Q(x̂

(1)
k−Δ),Q(x̂

(2)
k−Δ), . . . ,Q(x̂

(Ni)
k−Δ) are available from a previous

detection stage, then they can be processed together with past decisions
to provide the estimate of the symbol of interest x(�)k−Δ. Such a detection
scenario deals with the multistage detection [6].

Accounting for the system model (1.25), the output of the DF FIR equalizer
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yk

xk−Δ

x̂k−Δ

W

B

Figure 1.6: The decision feedback equalizer in absence of error propagation.

can be written as follows:

x̂k−Δ =
[
WH

0 WH
1 . . . WH

Nf−1
]

︸ ︷︷ ︸
� WH

y

−[ BH
0 − Ini

BH
1 . . . BH

Nb

]︸ ︷︷ ︸
� BH − [

INi
0Ni×NiNb

] ·
⎡
⎢⎢⎢⎣

Q(x̂k−Δ)
Q(x̂k−Δ−1)

...
Q(x̂k−Δ−Nb

)

⎤
⎥⎥⎥⎦(1.34)

where Nb is the number of the Ni × Ni matrix taps B� constituting the feed-
back filter B. The three different equalizer structures previously discussed can
be mathematically described by some constraints on the matrix tap B0. Specif-
ically, one has that the constraint B0 = INi

holds in Scenario 1, whereas, in
Scenario 2, the matrix BH

0 is constrained to be monic6 lower triangular. Fi-
nally, in Scenario 3, BH

0 is constrained to be monic.
The feedforward filter W and the feedback one B in (1.34) can be de-

signed according to any chosen optimization criterion. Let us note that any
optimization procedure should take into account the non-linearity of the deci-
sion device. However, also for simple decision mechanism, the derivation of a
closed form for the optimum equalizer is impossible to obtain. For such a rea-
son, in this thesis we adopt the common assumption that the decisions which
affect the current estimate, are correct, i.e., Q(x̂

(�)
k ) = x

(�)
k . According to such

an assumption, the feedback filter can be treated as a feedforward filter which
processes a delayed version of the transmitted symbols, as depicted in Fig. 1.6.
However, it is clear that, in a realistic environment, the error propagation can
not be ignored and the performance loss due to to the feeding-back of incorrect
decisions has to be measured.

6A square matrix with diagonal elements all equal to 1.
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As previously discussed about the linear equalization, in all the three de-
tection scenarios the delay Δ has to be optimized, especially for short feedfor-
ward filters. Moreover, different delays Δ� (� = 1, . . . , Ni) for each one of
the symbols to be estimated can be chosen. However, apart from the computa-
tional complexity in optimizing such parameters, allowing different processing
delays does not make available all the past decisions in Scenario 1, and all the
current ones in Scenario 2 and Scenario 3, leading so to a more complicated
mathematical formulation for the DF-based equalization.

The MMSE DF equalization will be considered in details in Chapter 3.
Moreover, we will refer to the widely linear version of such equalizer [7],
which provides better performance than that got by the conventional linear DF
equalizer.

1.5 Transceiver architectures

Let us consider the MIMO communication system model depicted in Fig. 1.7.
At the transmitter side, the information bit streams are mapped to generate the
information symbol streams. Hence, such streams are processed by a precoder
and transmitted over the MIMO channel. At the receiver side, the channel out-
puts are processed by the decoder which provides an estimate of the precoder
inputs. Finally, the symbol de-mapper allows one to recover the (estimated)
information bit streams. When the channel state information (CSI) is available
at both ends of the link, the precoder and the decoder can be jointly designed,
according to the chosen optimization criterion, to improve the system perfor-
mance.

In Fig. 1.8 we have depicted a transceiver structure employing a linear filter
as precoder and decoder. For simplicity, we assume the time non-dispersive
channel model

yk = Hxk + nk (1.35)

affected by additive spatially and temporally white noise with correlation
matrix Rn = INo . The symbol vector to be transmitted is denoted with
sk � [s

(1)
k , s

(2)
k , . . . , s

(B)
k ]T with s

(�)
k drawn from the constellation A� (� =

1, . . . , B). Moreover, we assume E [sksk−n] = IBδk−n. The precoder
F ∈ C

Ni×B processes sk and provides the channel input vector xk � Fsk
of size Ni. At the receiver side, the equalizer provides the estimate ŝk of sk by
processing the received vector yk. The overall system equation is given by:

ŝk = GHFsk +Gnk (1.36)
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Figure 1.7: The transceiver architecture.
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Figure 1.8: Linear transceiver architecture.

The transceiver can be optimized according to the MMSE criterion as well as
the ZF criterion. In addition, the transmitter and the receiver can be jointly
designed to maximize the mutual information between precoder input and de-
coder output, say I(sk, ŝk): in such a case, it has been shown in [8] that the
precoder maximizing the mutual information is unique, whereas the optimum
decoder is nonunique and the available degrees of freedom can be utilized to
synthesize the receiver according any other optimization criterion.

It can be shown that (see [9, 8]), according to any optimization criterion,
the optimum matrices F and G are given by

F(opt) = VΦ (1.37)
G(opt) = ΓΛ−1VHHH
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where V and Λ are the eigenvector and the eigenvalue matrices, respectively,
ofHHH beingH the channel matrix, and whereΦ and Γ represent a diagonal
matrix with positive entries and an invertible matrix, respectively, that depend
on the chosen optimization criterion.

Let now Γ be a diagonal matrix. It is straightforward to verify that, in such
a special case, the overall MIMO system is described by the diagonal ma-
trix ΦΓ and, hence, the transmission over the MIMO channel H is equivalent
to rank(H) transmissions over rank(H) parallel non-dispersive subchannels
characterized by a transmit gain φi, corresponding to the ith diagonal element
of Φ, and a receive gain γi, corresponding to the ith diagonal element of Γ. It
can be shown that such a model arises when I(sk, ŝk) has to be maximized, as
well as when we adopt the MMSE criterion or the ZF one [1].

Before concluding this section, it is important to underline two interesting
issues recently discussed in [10] about MIMO communication systems:

• According to the transceiver defined in (1.37), let us evaluate the correla-
tion matrix of the estimation error measured at the output of the decoder:

Re � E
[
(ŝk − sk)(ŝk − sk)

H
]

(1.38)
= Γ

(
Φ2 +Λ−1

)
ΓH −ΦΓH + ΓΦ+ IB (1.39)

The choice of a diagonal Γ allows one to obtain uncorrelated estimates
of sk and, hence, uncorrelated estimation errors. This represents an im-
portant advantage provided by such a transceiver structure since the de-
cision device can separately detect the transmitted symbols, requiring so
a lower computational complexity7.

• It can be simply verified that, given a diagonalΓ, the mutual information
I(sk, ŝk) is equal to:

I(sk, ŝk) =
rank(Hk)∑

i=1

log
(
1 + λiφ

2
i

)
(1.40)

i.e., it is equal to the sum of the capacities of rank(H) SISO non-
dispersive channels. However, note that, due to the different values of
the eigenvalues λ�, one has that:

7When Re is not diagonal, the correlation among the different estimates contains useful in-
formation to be exploited by the subsequent decoding; hence, the optimum decoding procedure
becomes more complicated.
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1. since different symbol rates are achieved over each subchan-
nel, different symbol alphabets can be utilized at the transmitter:
specifically, dense constellations can be transmitted over subchan-
nels corresponding to large λ�, while thin constellations has to be
utilized over subchannels corresponding to small λ�. Hence, more
complicated symbol mapper/de-mapper devices are in general re-
quired to achieve the capacity.

2. Different error rates are achieved over each subchannel. Such an
undesirable behavior can be overcome by exploiting non linear
processing techniques which allow us to design the transceiver in
a more flexible manner. For instance, in [11], the precoder is de-
signed to maximize I(sk, ŝk), whereas a DF-based decoder, de-
signed according to the MMSE criterion, is employed8: it can be
shown that such a transceiver structure allows one to reach the
same error rate over all the subchannel. An alternative, but ex-
pensive, solution is to utilize a large number of receiving antennas,
i.e., No ≫ Ni.

In [13], it is considered the joint design of the transmitter and the receiver,
according to MMSE criterion, for MIMO channels by employing WL filters.

8Analogously, in [12], the authors synthesize the decoder according to the ZF criterion.





Chapter 2

Widely linear equalization

C
omplex random vectors and processes are a convenient tool to describe
statistical fluctuation phenomena, including waves. They are thus used

in fields as diverse as optics, quantum mechanics, electro-magnetics, and com-
munications. Although technically a complex vector could always be replaced
by a pair of real vectors, much of the beauty and simplicity of the description
would be lost. Oftentimes, it is subliminally assumed that the theory of com-
plex random vectors is no different than that of real ones, as long as the defini-
tion of the covariance matrix of a random vector x is changed from E

[
xxT

]
in

the real case to E
[
xxH

]
, using the conjugate transpose H . Most of the time,

this assumption is justified. However, it can happen that x and its conjugate
x∗ are correlated. Then, the covariance matrix E

[
xxH

]
no longer completely

describes the second-order behavior of x and another quantity, which is also
known as the complementary covariance or pseudo-covariance E

[
xxT

]
, has

to be taken into account. In the following, we will assume that the statistical
expectations of the involved random signals are null, hence we will deal with
the correlation and pseudo-correlationmatrices; this assumption simplifies the
mathematical processing with no loss of generality.

Vectors which have a vanishing pseudo-covariance are called proper or
circularly symmetric; the others improper or rotationally variant [14, 15, 16,
17, 18, 19]. In the next sections, we will present two results which have been
obtained by taking full advantage of second-order information of rotationally
variant signals by means of widely linear (WL) filtering in the mean square es-
timation. The former result regards the joint transmitter and receiver in-phase
and quadrature (IQ) imbalance compensation by means of a minimum mean
square error (MMSE) WL equalizer; with a limited increase in the computa-

23
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tional complexity of the equalization stage, one gets considerable gains both
in terms of MMSE and symbol error rate (SER) in comparison with a conven-
tional MMSE linear equalizer. The latter result concerns the problem of the
constellation optimization in presence of a WL MMSE equalizer; a scheme
which performs a WL transformation, dependent on the channel state, of the
transmitted symbols has been proposed in order to optimize the receiver perfor-
mance in terms of SER. Optimum and suboptimum procedures have been con-
sidered and their performance analysis has shown that also the simplest subop-
timum procedure provides significant improvements over a fixed-constellation
scheme. The main tool used in both cases to exploit the statistical redundancy
of the improper signals, i.e., the WL mean square estimation, is described in a
preliminary section.

Notation

The following notation is adopted throughout the chapter: the superscripts ∗,
T and H denote the complex-conjugate, transpose and hermitian operators,
respectively; j the imaginary unit; E[·] the statistical expectation; δk the Kro-
necker delta; IN the identity matrix of size N ; ek the vector having 1 as the
(k + 1)th entry and 0 elsewhere; 0 the vector/matrix with all zero entries (the
size is omitted for brevity); �{·} and �{·} the real part and the imaginary
one of their arguments, respectively; ai the ith entry of the vector a; aik the
(i, k) entry of the matrix A; ak the kth column of A; ‖ · ‖p the p-norm with
‖a‖−∞ � min

i
|ai|; H(z) �

∑+∞
k=−∞ hkz

−k the z-transform of hk.

2.1 Widely linear mean square estimation with com-
plex data

Mean square estimation is one of the most fundamental techniques of statis-
tical signal processing. The problem can be stated as follows: let d be a M -
dimensional zero-mean random vector to be estimated (estimandum) in terms
of an observation which is a N -dimensional zero-mean random vector r ∈ C

N .
In (linear mean square estimation) LMSE, the problem is to find an estimation
written as

d̂ =WHr (2.1)

where W is a N × M complex-valued matrix. Let e � d − d̂ be the error
vector whose correlation matrix is denoted with Ree = E

[
eeH

]
. The linear
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filter which minimizes the mean square error (MSE), hence, the trace{Ree},
is called Wiener filter; it is equal to

W(opt) = R−1rr Rrd (2.2)

where Rrr � E
[
rrH

]
and Rrd � E

[
rdH

]
. From this, the error correlation

matrix follows
RL

ee = Rdd −RH
rdR

−1
rr Rrd (2.3)

with Rdd � E
[
ddH

]
.

Let us consider now the problem of widely linear mean square estimation
(WLMSE) which consists of finding the matrices F and G in such a way that

d̂ = FHr+GHr∗ (2.4)

gives the MMSE, hence, the minimum of the trace{Ree} according to
(2.4) [16]. It is clear that d̂ is no more a linear function of r as in (2.1).
However, the moment of order k of d̂ is completely defined from the moments
of order k of r and r∗, which characterizes a form of linearity. This is why
(2.4) is called a wide sense linear filter or system. The optimum filters are

F(opt) =
[
Rrr −Rrr∗R

−∗
rr R

∗
rr∗

]−1 · [Rrd −Rrr∗R
−∗
rr R

∗
rd∗

]
(2.5)

G(opt) =
[
Rrr −Rrr∗R

−∗
rr R

∗
rr∗

]−∗ · [Rrd∗ −Rrr∗R
−∗
rr R

∗
rd

]∗ (2.6)

where Rrr∗ � E
[
rrT

]
is also called pseudo-correlation matrix and Rrd∗ �

E
[
rdT

]
; we assume that the involved inverse matrices exist, too. The error

correlation matrix follows

RWL
ee = Rdd −

(
F(opt)HRrd +G(opt)HR∗rd∗

)
(2.7)

The advantage of the WLMSE procedure over the strictly linear one is charac-
terized by the matrix Δee � RL

ee −RWL
ee , which can be expressed as

Δee =
[
Rrd∗Rrr∗R

−∗
rr Rrd

]H [
Rrr −Rrr∗R

−∗
rr R

∗
rr∗

]−1
· [Rrd∗Rrr∗R

−∗
rr Rrd

]
(2.8)

As the matrix [Rrr −Rrr∗R
−∗
rr R

∗
rr∗ ] is positive definite, the LMSE cannot

outperform the WL one.
Let us note that, if r is circularly symmetric, i.e.,Rrr∗ = 0 and, moreover,

r and d are cross-circularly symmetric, i.e., Rrd∗ = 0, then F(opt) = W(opt)
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and G(opt) = 0, hence Δee = 0: this means that the WL MMSE estimator
will degenerate into the linear one, providing so the same performance. A
special case is represented by the estimation of a real-valued random vector
d : d = �{d} from a complex-valued observation vector. BeingRrd = Rrd∗ ,
one has (see (2.5)-(2.6))

F = G∗ ⇒ d̂ = 2�{FHr} (2.9)

Therefore, the WL filtering leads to a real-valued estimation unlike the linear
filtering which provides a complex-valued estimation of a real-valued estiman-
dum. Finally, if data were real, i.e., r = �{r}, the WLMSE would degenerate
into the linear one: in fact, it would be redundant to process jointly r and r∗.

To conclude, one can state that, if the observation vector and/or the one to
be estimated are rotationally variant, i.e., their pseudo-correlation matrices are
nonnull, then the employment of a linear filter can not be an optimum choice
in an MMSE estimation because it doesn’t exploit the statistical redundancy
exhibited by the signals which the WL filtering provides for.

2.2 MMSE equalization in presence of transmitter and
receiver IQ imbalance

In the last years, the mass production of the modern communication systems
has favoured the wide spread of low-cost fabrication technologies (e.g., the
CMOS technology) giving rise to some unpredictable imperfections associated
with the transmitting and receiving architectures. Since such imperfections can
greatly affect the system performances, proper countermeasures have to be
adopted. In this context, it is well known [20] that the analog stage which per-
forms the frequency conversion suffers from the imbalance between the two
periodic signals in the in-phase (I) and quadrature (Q) branches of the con-
verter: |cI1| �= |cQ1 | and/or arg{cI1} �= arg{cQ1 }+ 90o, where we have denoted
with cI1 and cQ1 the first Fourier coefficient of the periodic signal employed in
the I and Q branches, respectively.

The receiver design in presence of both transmitter IQ (Tx-IQ) imbalance,
i.e., the one at the up-conversion stage, and receiver IQ (Rx-IQ) imbalance,
i.e., the one at the down-conversion stage, has been already addressed [21]
with reference to an orthogonal frequency division multiplexing (OFDM) sys-
tem. However, at the best of our knowledge, this problem has not yet been
addressed with reference to a single-carrier scheme operating over a single-
input single-output linear time-dispersive channel. For such a reason, in the
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paper [22], we address the design of the MMSE feedforward-based finite im-
pulse response (FIR) equalizer in the presence of both Tx-IQ and Rx-IQ im-
balance. We first note that the IQ impairments render the received signal ro-
tationally variant (i.e., its pseudo-correlation is nonnull). Then, we resort to
the WL equalizer [16, 5], i.e., the one which processes both the received signal
and its conjugate version, to estimate the transmitted signal. In fact, it is well
known that the WL filtering allows one to improve the performances of the
conventional linear (L) equalizer by exploiting the statistical redundancy ex-
hibited by the signal to be processed. However, while the Rx-IQ imbalance can
be completely compensated by resorting [21, 23, 24] to a time non-dispersive
WL equalizer, we show that the Tx-IQ imbalance can not be compensated at
the receiver side, with the exception of the very special case where the channel
is non-dispersive and the noise is absent. Finally, the performance loss due to
the IQ impairments are evaluated in terms of MMSE and symbol error rate, for
both the WL MMSE equalizer and L one.

2.2.1 System model

In this section, we introduce the SISO linear time-invariant and time-dispersive
noisy channel affected by both the Tx-IQ and the Rx-IQ imbalance.

Let us denote with sk the zero-mean unit-power circularly symmetric
wide-sense-stationary (WSS) sequence to be transmitted. By accounting for
the Tx-IQ imbalance, one has that the channel input is given by

xk =
1√

|μTx|2 + |υTx|2
· (μTxsk + υTxs

∗
k) (2.10)

where

μTx � cos(θTx/2) + jαTx sin(θTx/2) (2.11)
υTx � αTx cos(θTx/2)− j sin(θTx/2) (2.12)

with αTx and θTx denoting the up-converter amplitude and the phase imbal-
ance, respectively. From (2.10)-(2.12) one has that

E[xkx
∗
k−�] = δ� (2.13)

E[xkxk−�] =
2μTxυTx

|μTx|2 + |υTx|2 · δ� (2.14)

i.e., the channel input exhibits a nonnull pseudo-correlation and, hence, it is
rotationally variant. By assuming that the down-converter at the receiver side
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is affected by the amplitude imbalance αTx and the phase one θTx, the received
signal can be written as follows:

zk = μRxyk + υRxy
∗
k (2.15)

where

yk =
L∑

�=0

h�xk−� + nk (2.16)

denotes the output of the linear time-dispersive channel with FIR h�(
 =
0, . . . , L), nk the WSS additive noise assumed circularly symmetric and in-
dependent of the useful signal, and μRx and υRx are defined accordingly to
(2.11) and (2.12). Let us note that, in our model, the Tx-IQ and the RX-
IQ imbalances are defined according to each other, with the exception of the
transmit-power normalization at the transmitter side. Such a choice follows
from the fact that the while the Rx-IQ imbalance affects both the useful signal
and the noise (letting the signal-to-noise unchanged), the Tx-IQ imbalance af-
fects the only useful signal and, without the proper normalization, can increase
the signal-to-noise ratio measured at the receiver side.

With reference to a block of Nf received samples, the overall system equa-
tion can be expressed in matrix notation as follows:

zk �

⎡
⎢⎢⎢⎣

zk
zk−1

...
zk−(Nf−1)

⎤
⎥⎥⎥⎦ = μRxyk + υRxy

∗
k (2.17)

where

yk �

⎡
⎢⎢⎢⎣

h0 h1 . . . hL 0 . . . 0
0 h0 h1 . . . hL 0 . . .
... . . . . . . ...
0 0 0 h0 h1 . . . hL

⎤
⎥⎥⎥⎦xk + nk

= Hxk + nk (2.18)

xk �
[
xk xk−1 . . . xk−Nf+L−1

]T with entries given by (2.10), and
nk ∈ C

Nf×1 defined according to zk.
It is easy verified that the correlation and the pseudo-correlation matrices

Rzz � E[zkz
H
k ] and Rzz∗ � E[zkz

T
k ], respectively, are given by:

Rzz = |μRx|2Ryy + 2�{μRxυ
∗
RxRyy∗}+ |υRx|2R∗yy (2.19)

Rzz∗ = μ2
RxRyy∗ + 2μRxυRx�{Ryy}+ υ2RxR

∗
yy∗ (2.20)
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where Ryy � E[yky
H
k ] and Ryy∗ � E[yky

T
k ] are equal to

Ryy = HHH +Rn (2.21)

Ryy∗ =
2μTxυTx

|μTx|2 + |υTx|2HH
T (2.22)

and Rn is the noise correlation matrix. From (2.19)-(2.22), it follows that the
received signal is rotationally variant when the Tx-IQ or/and Rx-IQ imbalance
is/are present.

2.2.2 MMSE receiver for joint Tx-IQ and Rx-IQ imbalance com-
pensation

In this section, the joint compensation of the Tx-IQ and Rx-IQ imbalances is
addressed by resorting to an MMSE feedforward-based FIR equalizer. More
specifically, we derive the widely linear equalizer structure in the presence of
Tx-IQ and Rx-IQ imbalance and its performances.

The WL MMSE equalizer is constituted by two FIR filters w �
[w0 w1 . . . wNf−1]

T and g � [g0 g1 . . . gNf−1]
T that process the down-

converter output zk and its conjugate version z∗k, respectively. The optimum
filtersw(opt) and g(opt) minimizing the mean square error E[|sk−Δ−wHzk −
gHz∗k|2] are given by [25, 5]:[

w(opt)

g(opt)

]
=

[
Rzz Rzz∗

R∗zz∗ R∗zz

]−1 [
pzs

p∗zs∗

]
(2.23)

where pzs � E[zs∗k−Δ], pzs∗ � E[zsk−Δ], and with the integer Δ denoting
the decision delay to be chosen according to the MMSE criterion. From (2.23),
by utilizing the matrix inversion lemma and after some matrix manipulations,
it can be shown that the equalizer is constituted by the cascade of the zero-
memory WL filter which completely compensates the Rx-IQ imbalance [23,
26, 24], and the WL MMSE equalizer that provides the estimate of sk−Δ by
processing the yk; more specifically, one has:[

w(opt)

g(opt)

]
=

[
μ∗RxI υRxI

υ∗RxI μRxI

]−1 [
w

(opt)
0

g
(opt)
0

]
(2.24)

where

w
(opt)
0 �

1√
|μTx|2 + |υTx|2

[Ryy −Ryy∗R
−∗
yyR

∗
yy∗ ]

−1 (2.25)

× [
μTxH− υ∗TxRyy∗R

−∗
yyH

∗] eΔ
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g
(opt)
0 �

1√
|μTx|2 + |υTx|2

[Ryy −Ryy∗R
−∗
yyR

∗
yy∗ ]

−∗ (2.26)

× [
υTxH− υ∗TxRyy∗R

−∗
yyH

∗]∗ eΔ
are the two filters which process yk and y∗k, respectively, or, equivalently,
are the WL MMSE equalizer filters in the absence of Rx-IQ imbalance. It
is straightforwardly verified that a) in the absence of both Tx-IQ and Rx-IQ
imbalances, the MMSE equalizer is the linear MMSE equalizer, i.e., the WL
MMSE equalizer degenerates into the linear one; b) in the presence of only Rx-
IQ imbalance, the MMSE equalizer is WL, but the equalization is achieved by
means of the WL zero-memory compensator followed by a linear filter, i.e.,
g
(opt)
0 = 0; c) in the presence of only Tx-IQ imbalance, the MMSE equalizer

is WL.
The MMSE achieved by the WL receiver, say εWL(μTx, υTx), does not

depend on the Rx-IQ imbalance level and is equal to

εWL(μTx, υTx) = 1− eHΔH
HQ−1HeΔ +

4 |μTx|2 |υTx|2
|μTx|2 + |υTx|2

·�{
eHΔH

HQ−1HHTRyy
−∗H∗eΔ

}
(2.27)

withQ � Ryy−Ryy∗R
−∗
yyR

∗
yy∗ . Let us point out that the Tx-IQ imbalance, in

general, can not be compensated for the following reasons: i) the useful signal
and the noise suffer from different IQ impairments; ii) the presence of the
time-dispersive channel. In fact, rewrite, up to the factor (|μTx|2+|υTx|2)−1/2,
the input-output relation (2.18) as follows1:[

yk
y∗k

]
=

[
H 0

0 H∗

] [
μTxINf+L υTxINf+L

υ∗TxINf+L μ∗TxINf+L

] [
sk
s∗k

]
+

[
nk

n∗k

]
(2.28)

It is straightforwardly verified that unless the channel is non-dispersive, i.e.,H
is invertible (or, equivalently, diagonal with entries h0), and the noise is absent,
the Tx-IQ imbalance can not be completely compensated at the receiver side.
It follows that unless the Tx-IQ imbalance is compensated at the transmitter
side (by resorting to the WL zero-memory compensator), its effects can not be
removed at the receiver side.

Linear MMSE equalizer

Our focus on the WL-filtering based equalizer has been motivated by non-
circularity properties of the received signal zk. In order to assess the perfor-

1Assume that the Rx-IQ imbalance has been compensated.
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mance advantages provided by the WL MMSE equalizer in the presence of
both Tx-IQ and Rx-IQ imbalances, let us derive the conventional linear (L)
MMSE equalizer, which does not exploits the statistical redundancy exhibited
by zk. By accounting for (2.18)-(2.22), one has that the optimum linear equal-
izer is given by

f
(opt)
L = R−1zz (μRxμTxHeΔ + υRxυ

∗
TxHeΔ)

1√
|μTx|2 + |υTx|2

(2.29)

and the corresponding MMSE is equal to

εL(μTx, υTx, μRx, υRx) = 1− 1

|μTx|2 + |υTx|2 (2.30)

· (|μTx|2|μRx|2eHΔR−1zz HeΔ + |υTx|2|υRx|2eTΔR−1zz H
∗eΔ

+2�{μTxυTxμRxυ
∗
Txe

H
ΔH

TR−1zz HeΔ}
)

i.e., it depends on both the Tx-IQ and Rx-IQ imbalances. Since the Rx-
IQ imbalance can be compensated at the receiver side, let us consider the
special case where the only Tx-IQ imbalance is present. It can be easily
verified that also when the channel is non-dispersive and the noise is ab-
sent, the L MMSE receiver can not compensate the Tx-IQ imbalance, in fact,
εL(μTx, υTx, 1, 0) = 1 − |μTx|2

|μTx|2+|υTx|2 , which is null only for μTx = 1 and
υTx = 0.

2.2.3 Numerical results

Our numerical results are aimed at evaluating the performance degradations
exhibited by the L MMSE equalizer and the WL one in the presence of the
Tx-IQ and Rx-IQ imbalance. More specifically, in the first set of experiments,
the performances have been evaluated in terms of the MMSE loss defined as

MSE Loss =
ε(μTx, υTx, μRx, υRx)

ε(1, 0, 1, 0)
(2.31)

where ε(1, 0, 1, 0) is the MMSE in absence of IQ impairments2 and
ε(μTx, υTx, μRx, υRx) is the MMSE achieved by the L MMSE equalizer
(given by (2.30)) or by the WL one (given by (2.27)). Afterwards, the per-
formance are evaluated in terms of the symbol error rate (SER) at the output
of the decision device.

2Note that, according to the assumption considered here, ε(1, 0, 1, 0) = εWL(1, 0, 1, 0) =
εL(1, 0, 1, 0).
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The performances have been averaged over 100 independent trials. In each
trial, the channel taps hk (k = 0, . . . , L), with L = 3, are randomly generated
according to a complex-valued circularly symmetric zero-mean white Gaus-
sian process with variance 1/L (i.e., E

[
(�{hk})2

]
= E

[
(�{hk})2

]
= 1

2L and
E [�{hk}�{hk}] = 0) and are uncorrelated with each other. The noise is mod-
eled as a complex-valued white WSS Gaussian process with zero-mean and
variance σ2

n; accordingly, we define the signal-to-noise ratio as SNR = 1/σ2
n.

Finally, we assume that the FIR equalizers have Nf = 20 taps and the opti-
mum delay Δ is chosen to optimize the performances. In Fig. 2.1 and 2.2,
the MMSE loss (in dB) of the L MMSE equalizer and of the WL one, respec-
tively, are plotted versus the amplitude and phase imbalances3 αTx and θTx

for SNR = 25dB. Although the performances of both the equalizers decrease
when the Tx-IQ imbalance is present, the L MMSE is much more sensitive
than the WL one to the IQ impairments. Since the WL equalizer completely
compensates the Rx-IQ imbalance, in Fig. 2.3, only the performance loss of
the L MMSE equalizer is plotted versus the amplitude and phase imbalances
αRx and θRx. By comparing Fig. 2.1 and Fig. 2.3, it follows that the Tx-IQ
imbalance and the Rx-IQ one determine, in practice, the same performance
loss in terms of MMSE.

Finally, we compare the considered equalizers in terms of SER when the
transmitted symbols are drawn from the 16-QAM alphabet, the Rx-IQ imbal-
ance is absent, αTx = 0.2 and θTx = π/18. In Fig. 2.4, the SERs achieved by
the L MMSE equalizer and the WL one are plotted together with the SER of
the optimum equalizer in absence of IQ impairments. The results show that the
adoption of the WL equalizer structure allows one to greatly reduce the SER
loss in the presence of Tx-IQ imbalance.

Conclusion

In the paper [22], we have addressed the design of the MMSE equalizer in
the presence of both Tx-IQ and Rx-IQ imbalance. More specifically, since the
IQ impairments render the received signal rotationally variant, a widely-linear
equalizer has been employed. The MMSE equalizer structure has been derived
by assuming the perfect knowledge of the channel impulse response, the noise
statistics, and the imbalance parameters. It has been shown that, unlike the
Rx-IQ imbalance, the Tx-IQ imbalance can not be completely compensated at
the receiver side due to the channel in-between and the noise presence. The

3The amplitude and the phase imbalance are sampled with a step size of 0.05.



2.2 MMSE EQUALIZATION IN PRESENCE OF TRANSMITTER AND
RECEIVER IQ IMBALANCE 33

0 °

10°
20°

30°

0
0.1

0.2
0.3

0.4

12

10

8

6

4

2

0

θTx
αTx

M
S

E
 L

os
s 

(d
B

)

Figure 2.1: MSE Loss of the MMSE L equalizer versus the Tx-IQ imbalance.
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Figure 2.2: MSE Loss of the MMSE WL equalizer versus the Tx-IQ imbalance.
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Figure 2.3: MSE Loss of the MMSE L equalizer versus the Rx-IQ imbalance.

Figure 2.4: SERs of the MMSE WL equalizer and the L one versus the SNR, for
16-QAM transmissions.
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Figure 2.5: System model.

performances of the widely-linear MMSE equalizer have been compared with
those of the linear MMSE equalizer in terms of MMSE loss and SER. The
results of the simulations have shown that the adoption of the widely-linear
receiver allows one to limit the performance losses due to the IQ impairments.

2.3 Constellation design in widely linear transceivers

The recent demand of high bit-rate services has tuned the attention on new
transmit and receive processing techniques aimed at achieving both reliable
data transmissions and high data-rate. To this aim, in early works (see, for
example, [27, 28]), the optimization of the two-dimensional constellation to
minimize the symbol error rate (SER) was first addressed. More precisely,
consider the communication system model in Fig. 2.5. The purpose of the
bit interleaver is to separate adjacent information bits in time destroying the
correlation among them. Then, each block of log2(K) bits of the interleaved
sequence is mapped by the symbol-mapper into the points of the chosen sig-
nal constellation and the resulting symbol sequence xk is transmitted over the
channel affected by additive noise: the equivalent channel is the cascade of the
transmit filter, the channel and the receive filter. The estimate x̂k of xk is fed
to the symbol de-mapper and then to the de-interleaver to provide the estimate
of the transmitted bit sequence. In [27, 28], with reference to the transmission
over a nondispersive channel affected by additive noise, the optimization of
the symbol-mapper to minimize the SER at the output of the decision device
has been addressed, i.e., the authors focused on the boxed section shown in
Fig. 2.5, which is referred as the uncoded system part. For the sake of clar-
ity, let us point out that the overall system performance depends on both the
uncoded system part and the coded part (encoder/decoder and interleaver/de-
interleaver). However, it is customary and convenient to consider such parts
independently in order to simplify the design and the analysis [29].

With reference to the uncoded system, the advantage provided by the
constellations with two degrees of freedom (such as quadrature amplitude
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modulation (QAM)) over the ones with one degree of freedom (such as
phase-shift-keying (PSK) and pulse amplitude modulation (PAM)) has been
shown [27] and a proper mapping (based on a gradient-descent procedure) of
the log2K information bits into K points of a two-dimensional constellation
was proposed [28]. However, the adoption of an additive-noise nondisper-
sive channel model allows one to consider the constellation mapping indepen-
dently of the equivalent channel. On the other hand, an amount of literature
(e.g., [30, 31, 32, 11, 33]) refers to the optimization of the transmitter and/or
the receiver without including the choice of the constellation in the optimiza-
tion procedure. In fact, most of the transmit and receive processing is opti-
mized (according to a chosen criterion) by only exploiting the knowledge of
the statistics of the information symbol sequence. The problem of the con-
stellation choice has been addressed in [34] and in [29] with reference to the
discrete multi-tone (DMT) transceiver and to multiple-input multiple-output
transceiver, respectively.

The paper we have submitted for the publication on EURASIP Journal on
Advances in Signal Processing [35] addresses the constellation design in an
uncoded system under the assumption that the transmitter is fixed (i.e., by con-
sidering an equivalent channel representing the transmitter and the channel)
and a widely linear (WL) minimum mean square error (MMSE) equalizer is
employed at the receiver side [17, 16, 36, 37, 38]. The WL filtering generalizes
the conventional linear filtering and allows one to achieve a performance gain
by exploiting the statistical redundancy possibly exhibited by a rotationally
variant transmitted (and/or received) signal. For such a reason, the adoption
of the WL equalization has frequently been confined to the transmission of
one-dimensional constellations (see, for example, [39, 25, 40] and references
therein) since most of the two-dimensional signaling schemes are circularly
symmetric. It should be noted, however, that the two-dimensional constella-
tions (especially high-order ones) are often preferred to the one-dimensional
constellations in order to maximize the minimum distance between the con-
stellation points [27]. Since the performance of the WL MMSE equalizer is
sensitive to the second-order statistics of the received signal, and more specif-
ically to its pseudo-correlation, we address the constellation design under the
assumption that the channel state information (CSI) is available and we pro-
pose a CSI-dependent symbol mapping that optimizes the performance of the
WL MMSE receiver. Symbol mapping is adapted by using a feedback channel
(between the receiver and the transmitter) carrying information about the op-
timum constellation. Moreover, suboptimum strategies are proposed in order
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to reduce both the amount of information to be transmitted on the feedback
channel and the computational complexity of the optimization procedure.

2.3.1 System model

Let us consider the following finite-impulse-response (FIR) baseband-
equivalent noisy communication channel

yk =
ν∑

�=0

h�xk−� + nk (2.32)

where the transmitted symbols xk are independent identically distributed
(i.i.d.) zero-mean random variables drawn from the complex-valued constel-
lation c ∈ C

K whose (finite) order K determines the bit rate (log2K bits
per symbol) of the uncoded system part. With no loss of generality, we as-
sume that E[xkx∗k−�] = δ� and E[xkxk−�] = βδ�, i.e., the transmitted avail-
able power is unit, and that xk exhibits a possibly nonnull pseudo-correlation
β = E[�{xk}2] − E[�{xk}2] + 2jE[�{xk}�{xk}] ∈ C, such that4 |β| ≤ 1;
note that the non circularity of xk consists in the difference between the power
of the in-phase component and the quadrature one and in the correlation be-
tween them. Such assumption allows one to consider both the conventional
circularly symmetric constellations (β = 0), such as M -PSK and square M -
QAM with M > 2, and the rotationally variant constellations, such as the
well-known PAM (β = 1) and its rotated version (for which it exists θ such
that xke−jθ is real-valued and, consequently, β = ej2θ), non-square QAM
(with β = �(β) �= 0 since a different power is allocated to the in-phase and
quadrature components). The time-invariant FIR channel impulse response hk
of memory ν is assumed to be known at the receiver side. Finally, the additive
noise nk, whose power σ2

n is assumed known at the receiver, is modeled as
zero-mean complex-valued wide-sense stationary time-uncorrelated and inde-
pendent of the useful signal.

At the receiver side, the feedforward-based equalization is per-
formed by processing the block of Nf received samples yk �
[ yk yk−1 . . . yk−Nf+1 ]T which, in a matrix notation, can be written as

4If |β| ≤ 1, then the correlation matrix of the 2 × 1 random vector [ xk x∗k ]T will be
positive semi-definite.



38 WIDELY LINEAR EQUALIZATION

follows:

yk =

⎡
⎢⎢⎢⎣

h0 h1 . . . hν 0 . . . 0
0 h0 h1 . . . hν 0 . . .
... . . . . . . ...
0 . . . 0 h0 h1 . . . hν

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣

xk
xk−1

...
xk−ν−Nf+1

⎤
⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎣

nk

nk−1
...

nk−Nf+1

⎤
⎥⎥⎥⎦ = Hxk + nk (2.33)

According to the previous assumptions, the following correlation and pseudo-
correlation matrices can be written as:

Rxx � E[xkx
H
k ] = INf+ν Rxx∗ � E[xkx

T
k ] = βINf+ν (2.34)

Ryy � E[yky
H
k ] = HHH + σ2

nINf
Ryy∗ � E[yky

T
k ] = βHHT + γINf

(2.35)

where γ � E[n2
k] is the (possibly) nonnull noise pseudo-correlation (if γ = 0,

then the noise is circularly symmetric).

2.3.2 Feedforward-based MMSE equalizer

Since the transmitted sequence xk and consequently the received one yk in
(2.32) can be rotationally variant, we adopt a widely-linear receiver in order
to exploit the statistical redundancy exhibited by the received signal. Note
that such a choice improves the performance since the linear equalizers are a
subset of the WL equalizers; their performances coincide only in the presence
of circularly symmetric signals [16]. Therefore, we resort to the two FIR fil-
ters w � [ w0 w1 . . . wNf−1 ]T and g � [ g0 g1 . . . gNf−1 ]T that
process the received vector yk and its complex conjugate version y∗k, respec-
tively. The optimum filtersw(opt) and g(opt) minimizing the mean square error
E[|xk−Δ −wHyk − gHy∗k|2] are given by [25, 5]

w(opt) = [Ryy −Ryy∗R
−∗
yyR

∗
yy∗ ]

−1[hΔ+1 −Ryy∗R
−∗
yy h

∗
Δ+1β

∗] (2.36)

g(opt) = [Ryy −Ryy∗R
−∗
yyR

∗
yy∗ ]

−∗[hΔ+1β −Ryy∗R
−∗
yy h

∗
Δ+1]

∗ (2.37)

where the processing delay 0 ≤ Δ ≤ Nf + ν − 1 has to be chosen in order to
optimize the performance. For notational simplicity, in (2.36)-(2.37) we have
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omitted the dependence of w(opt) and g(opt) on β. Let us point out that when
β = 0, i.e., the transmitted symbols are drawn from a circularly symmetric
constellation, g(opt) = 0 and, therefore, the WL MMSE equalizer degener-
ates into the conventional linear MMSE equalizer. Another special case is
represented by the scenario where a real-valued constellation is adopted: in
fact, since β = 1, g(opt) = w(opt)∗ and the WL MMSE equalizer becomes
�{2w(opt)Hyk}, i.e., it is implemented by extracting the in-phase component
of the linear equalizer w(opt), which does not coincide, however, with the lin-
ear MMSE equalizer.

Since the optimum equalizer and, hence, its performance depends on the
pseudo-correlation β of the transmitted signal, let us analyze the dependence
on β of the MMSE. To this end, denote with e(β,Δ) � xk−Δ −w(opt)Hyk −
g(opt)

H
y∗k the error measured at the output of the WL MMSE equalizer for

given values of β and Δ. It can be easily shown that

σe(β,Δ)2 � E[|e(β,Δ)|2]
= 1−w(opt)HhΔ+1 − g(opt)

H

h∗Δ+1β
∗ (2.38)

ζ(β,Δ) � σe(0,Δ)2 − σe(β,Δ)2

= [hΔ+1β −Ryy∗R
−∗
yy h

∗
Δ+1]

T [Ryy −Ryy∗R
−∗
yyR

∗
yy∗ ]

−∗

[hΔ+1β −Ryy∗R
−∗
yy h

∗
Δ+1]

∗ (2.39)

Since σe(0,Δ)2 is the MMSE at the outputs of both the WL MMSE equalizer
and the linear MMSE equalizer in the presence of a circularly symmetric con-
stellation, ζ(β,Δ) represents the MMSE gain achieved by properly choosing
the pseudo-correlation β of the transmitted constellation. When γ = 0, i.e.,
the noise is circularly symmetric, the (first) derivative5 of ζ(β,Δ) with respect
to |β| can be written as

∂ζ(β,Δ)

∂|β| =
2

|β| [hΔ+1β −Ryy∗R
−∗
yy h

∗
Δ+1]

T [Ryy −Ryy∗R
−∗
yyR

∗
yy∗ ]

−∗

×R∗yy[Ryy −Ryy∗R
−∗
yyR

∗
yy∗ ]

−∗[hΔ+1β −Ryy∗R
−∗
yy h

∗
Δ+1]

∗ (2.40)

Since [Ryy − Ryy∗R
−∗
yyR

∗
yy∗ ]

−∗ and Ryy are positive semidefinite, one has
∂ζ(β,Δ)
∂|β| ≥ 0 and, hence, increasing the degree of non-circularity of the trans-

mitted signal improves the MMSE. For such a reason, the use of a real-valued
5Note that in such a scenario ζ(β,Δ) depends on |β| instead of β.
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transmitted sequence together with a WL MMSE equalizer corresponds to the
optimum choice as far as the MMSE is adopted as the performance measure.
As a consequence, in the literature, many works on WL processing focuses of
real-valued transmissions.

On the other hand, when γ �= 0, the variations of ζ(β,Δ) with respect to
β depend on the specific values of the channel impulse response and the noise
statistics and, consequently, a general rule for setting β appears difficult to be
found. However, in order to understand the basic effects of non circular noise
on the value of β minimizing the MMSE, let us consider the transmission over
the non-dispersive channel hk = h0δk with h0 = ejθh . In such a scenario,
(2.39) can be rewritten as follows:

ζ(β) =
(1 + σ2

n)
2|β|2 − 2(1 + σ2

n)(|β|2 + |β||γ| cos(θdiff)) + |β|2 + |γ|2
(1 + σ2

n)[(1 + σ2
n)

2 − |β|2 − |γ|2 − 2|β||γ| cos(θdiff)]
+

2|β||γ| cos(θdiff)
(1 + σ2

n)[(1 + σ2
n)

2 − |β|2 − |γ|2 − 2|β||γ| cos(θdiff)] (2.41)

where we omit the dependence on Δ = 0 and where θdiff � 2θh + θβ − θγ ,
with θβ and θγ such that β � |β|ejθβ and γ � |γ|ejθγ , respectively. We have
verified by numerical computation of (2.41) that the behavior of ζ(β) depends
on the specific value of σ2

n and γ and that, in general, it does not increase with
|β|. As very special case, assume nk = n

′

ke
j
θγ
2 with n

′

k real-valued and such
that E[|n′k|2] = σ2

n, i.e., |γ| = σ2
n: the numerical analysis shows that ζ(β) is

maximum when |β| = 1 and θdiff = π. Let us briefly discuss such result. If
xk is a rotated version with angle θβ

2 of a real-valued signal (|β| = 1), then
ζ(β) is maximum when θβ is chosen so that the channel output zk � hoxk is
equal to zk = |xk|ej(

θγ
2
+π

2
): in other words, the useful signal and the noise are

one-dimensional signals along orthogonal directions in the complex plane and,
in practice, the transmission in not affected by noise. On the other hand, ζ(β)
is null when θdiff = 0, i.e., when the useful signal zk = |xk|ej

θγ
2 and the noise

are one dimensional signals along the same directions in the complex plane.

2.3.3 Constellation design

In this section, we address the design of the K-order constellation with K fixed
under the assumption that the WL MMSE equalizer is used. More precisely,
the results in the previous section allow one to state that, by using a real-valued
constellation (β = 1) instead of a complex-valued non-redundant (β = 0) one,
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a performance gain can be achieved in terms of the MMSE at the equalizer out-
put. On the other hand, not always an MSE gain provided by the WL equalizer
leads to a SER gain [41]. In fact, for a fixed expended average energy per bit,
the reduction of the minimum distance between the constellation points, due
to the adoption of one-dimensional constellations rather than two-dimensional
ones (for example, when we adopt the K-PAM rather than the K-QAM), leads
to a potential increase in the SER. Therefore, we address the constellation de-
sign minimizing the SER at the WL MMSE equalizer output by accounting for
its rotationally variant properties.

In the literature (e.g., [28, 42]), most of the constellations employed by
the transmission stage are circularly symmetric (β = 0), while statistically
redundant constellations are confined to the real-valued ones. Moreover,
in [28], with reference to the transmission over a time non-dispersive chan-
nel (hk = δk) affected by circularly symmetric noise, a procedure for con-
stellation optimization has been proposed, showing also that, for large signal-
to-noise ratios (SNR), the performance of the conventional QAM maximum-
likelihood (ML) receiver is invariant with respect to rhombic transformations
of the complex-plane. However, it is important to point out that a rhombic
transformation of a circular constellation makes it rotationally variant and, for
some values of K (e.g. K = 8), the procedure in [28] provides a rotationally
variant constellation. On the other hand, the WL equalizer is equivalent to the
linear equalizer over the nondispersive channel considered in [28] and, there-
fore, optimizing the circularity degree of the constellation does not provide any
performance advantage. On the other hand, when a time-dispersive channel is
considered, the WL MMSE equalizer is sensitive to the rotationally variant
properties of the transmitted signal and, therefore, we propose a transceiver
structure (see Fig. 2.6) where: i) the transmitter can switch between the avail-
able constellations of order K; ii) the WL MMSE receiver accounts for the
CSI and informs the transmitter, by means of a feedback channel, about which
constellation has to be adopted to minimize the SER.

Constellation optimization in the presence of Gaussian rotationally vari-
ant noise

With no loss of generality, assume that Δ = 0 and rewrite the output of the
FIR equalizer as follows

zk(β) = w(opt)Hyk + g(opt)
H

y∗k (2.42)
= xk(β) + ek(β)
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β = 1

β = 0

β �= 0

xk hk

nk

yk x̂k−ΔWL MMSE
receiver
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Feedback channel Constellation
optimization

Adaptive
decision
device

c
(opt)
k

Figure 2.6: Transceiver structure.

where xk(β) is the transmitted symbol drawn from the complex-valued con-
stellation c � [ c1 c2 . . . cK ]T with E[|xk(β)|2] = 1 and E[xk(β)

2] =
β, and ek(β) is the residual disturbance that includes the intersymbol inter-
ference and the noise terms after the WL equalizer filtering. The circularly
symmetric model for the additive disturbance is inadequate since the out-
put of a WL filter is, in general, rotationally variant. Therefore, we model
ek(β) as rotationally variant, i.e., E[�{ek(β)}2] � σe,R(β)

2, E[�{ek(β)}2] �
σe,I(β)

2 = σe(β)
2 − σe,R(β)

2, and E[�{ek(β)}�{ek(β)}] = σe,RI(β).
Moreover, in order to make the constellation design analytically tractable, we
approximate ek(β) as Gaussian. For the sake of clarity, let us note that, if sym-
bols xk(β) and noise are circularly symmetric (β = γ = 0), then the additive
disturbance ek(0) and the equalizer output zk(0) will be circularly symmetric
too; on the other hand, if xk(β) is rotationally variant, then zk(β) will be ro-
tationally variant too, but nothing can be stated about the circularity properties
of ek(β) also when γ = 0.

The sample zk(β) is the input of the decision device which performs the
symbol-by-symbol ML detection of the transmitted symbol. By defining the
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following eigenvalue decomposition6:

[
σe,R(β)

2 σe,RI(β)
σe,RI(β) σe,I(β)

2

]
�

[
v11 v12
v12 v22

]
︸ ︷︷ ︸

V

[
s1 0
0 s2

]
︸ ︷︷ ︸

S

[
v11 v12
v12 v22

]T
︸ ︷︷ ︸

VT

(s1 ≥ s2 ≥ 0) (2.43)

with V being the eigenvector matrix and S having on the diagonal the eigen-
values, it can be verified that the pair-wise error probability P (ci → c�) [42],
i.e., the probability of transmitting ci and deciding (at the receiver) in favor of
c� when the transmission system uses only ci and c�, is given by:

P (ci → c�;β) =
1

2
erfc

(
1

2
√
2√

(ci,R − c�,R)2

ψR(β)
+

(ci,I − c�,I)2

ψI(β)
+ ψRI(ci,R − c�,R)(ci,I − c�,I)

)
(2.44)

where ck,R � �{ck} and ck,I � �{ck}, and, for s1 �= 0 and s2 �= 0,

ψR(β) �

(
v211
s1

+
v212
s2

)−1
(2.45)

ψI(β) �

(
v212
s1

+
v222
s2

)−1
(2.46)

ψRI(β) � 2

(
v11
s1

+
v22
s2

)
v12 (2.47)

When s2 = 0, ψR(β) �
s1
v211

and analogously for ψI(β) and ψRI(β). By uti-
lizing (2.44), assuming that the symbols ck are equally probable, and resorting
to both the union bound and Chernoff bound techniques, the SER P

(true)
e (c)

is upper-bounded as follows

P (true)
e (c) ≤ Pe (c;β) �

1

K

K∑
i=1

∑
��=i

exp

{
−1

8

[
(ci,R − c�,R)

2

ψR(β)

+
(ci,I − c�,I)

2

ψI(β)
+ ψRI(ci,R − c�,R)(ci,I − c�,I)

]}
(2.48)

6The dependence on β at the right-hand-side is omitted for simplicity.
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and, therefore, the optimum constellation can be approximated with the solu-
tion c(opt) of the following problem:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
c(opt) = arg min

c∈CK ,β∈C
Pe (c;β)

1
K

∑K
i=1 |ci|2 = 1

1
K

∑K
i=1 c

2
i = β

|β| ≤ 1

(2.49)

Unfortunately, it is difficult to find the closed-form expression of the solution
of such an optimization problem. For such a reason, we propose to find a local
solution by means of numerical algorithms based on the constrained gradient
method. To this aim, we can exploit the gradient of Pe (c;β) with respect to c,
while we resort to numerical approximation of the gradient with respect to β
since it is difficult to obtain its analytical expression.

Before proceeding, let us discuss the property of the locally optimum con-
stellation for a fixed β. The kth component of the gradient of Pe(c;β) is given
by7:

∂Pe(c;β)

∂ck
= − 1

2K

∑
��=k

exp

{
−1

8

[
(ck,R − c�,R)

2

ψR(β)
+

(ck,I − c�,I)
2

ψI(β)

+ψRI(β)(ck,R − c�,R)(ck,I − c�,I)

]}
×
[
ck,R − c�,R
ψR(β)

+ j
ck,I − c�,I
ψI(β)

+j
ψRI(β)

2
((ck,R − c�,R)− j(ck,I − c�,I))

]
(2.50)

By zeroing the gradient of the Lagrangian

F (c, β, λ1, λ2, λ3) � Pe(c;β) + λ1

(
1

K

K∑
k=1

|ck|2 − 1

)

+ λ2

(
1

K

K∑
k=1

(c2k,R − c2k,I)−�{β}
)

+ λ3

(
1

K

K∑
k=1

ck,Rck,I −�{β}
)

(2.51)

7 ∂f(c)
∂ck

= ∂f(c)
∂ck,R

+ j
∂f(c)
∂ck,I

.
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one has that the locally optimum c satisfies the following equation:

1

2

∑
��=k

ξ(k, 
)

[
ck,R − c�,R
ψR(β)

+ j
ck,I − c�,I
ψI(β)

+ j
ψRI(β)

2
((ck,R − c�,R)

−j(ck,I − c�,I))

]
= 2λ1ck + 2(λ2 + jλ3)c

∗
k k = 1, . . . ,K (2.52)

with

ξ(k, 
) � exp

{
−1

8

[
(ck,R − c�,R)

2

ψR(β)
+

(ck,I − c�,I)
2

ψI(β)

+ψRI(β)(ck,R − c�,R)(ck,I − c�,I)

]}
(2.53)

The condition (2.52) generalizes the result of [28] to the case of ek rotationally
variant (i.e., σe,R(β)2 �= σe,I(β)

2 or σe,RI(β) �= 0) and with a constrained
pseudo-correlation. In fact, (2.52) with λ2 = λ3 = 0 (i.e., no constraint
is imposed on the pseudo-correlation) requires that ck is proportional to the
weighted sum (with weights ξ(k,�)

ψR(β) ) of ck − c�, ∀
 �= k, as found in [28]. For
the sake of clarity, let us note that the procedure proposed in [28] does not
allow one to exploit the potential advantage of a rotationally variant constella-
tion when the WL MMSE receiver is employed. For example, when a linear
MMSE equalizer is employed for K = 4 in high signal-to-noise ratio, the
minimum of the SER is equivalently achieved [28] by both the conventional
4-QAM constellation and the rhombic constellations with the same perimeter,
i.e., the perimeter of the largest convex polygon consisting of the lines ck − c�
(see [27] for further details). On the other hand, when a WL MMSE equal-
izer is employed, a rhombic constellation, which is rotationally variant, is not
equivalent to the conventional 4-QAM since the achieved MMSE is dependent
on β as shown in (2.40).

A suboptimum procedure based on rhombic transformations

In this section, we propose a suboptimum constellation-design procedure for
the WL MMSE equalizer. The method is based on the exploitation of a rhom-
bic transformation that operates on a circularly symmetric constellation mak-
ing it rotationally variant. Such a transformation depends on two parameters
and allows one to control the pseudo-correlation β of the obtained constella-
tion; consequently, the optimization procedure is simplified since the SER in
(2.48) is a function of only two parameters, instead of K parameters.
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Assume that c = [c1 c2 . . . cK ]T is a unit-power circularly-symmetric
complex-valued constellation and define the complex-valued constellation c̃ =
[c̃1 c̃2 . . . c̃K ]T as follows:[ �{c̃k}

�{c̃k}
]
=

1√
1 + α2

[
(1 + α) cos(θ/2) −(1 + α) sin(θ/2)
−(1− α) sin(θ/2) (1− α) cos(θ/2)

]
[ �{ck}
�{ck}

]
(2.54)

or, more compactly8,

c̃k =
1√

1 + α2
[cos(θ/2) + jα sin(θ/2)]︸ ︷︷ ︸

�μ(α,θ)

ck

+
1√

1 + α2
[α cos(θ/2)− j sin(θ/2)]︸ ︷︷ ︸

�κ(α,θ)

c∗k (2.55)

with −1 ≤ α ≤ 1 and −π
2 ≤ θ ≤ π

2 . When α > 0 (α < 0), c̃k is stretched
along the in-phase (quadrature) component and it becomes one-dimensional
for α = ±1; when θ �= 0, a correlation between �{c̃k} and �{c̃k} is intro-
duced and for θ = ±π

2 , even if it is two-dimensional, c̃k can be reduced to a
one-dimensional constellation by a simple rotation. For symmetry, in the fol-
lowing we consider only the positive values of α and θ. It is easily verified
that, if xk is drawn from c̃, then

E[|xk|2] = 1 β = 2μ(α, θ)κ(α, θ) (2.56)

The method proposed here assumes that the information-bearing symbol
sequence, say sk, is drawn from a fixed constellation c (for example, the op-
timum constellation provided by [28]), whereas the possibly rotationally vari-
ant channel input xk is obtained by resorting to the zero-memory precoding
defined by the rhombic transformation (2.54). Clearly, such a strategy is sub-
optimum since it assumes that the channel input can be drawn from only those
constellations c̃ resulting from a rhombic transformation of the chosen c. How-
ever, the main advantages of such a method in comparison with the optimum
one are:

8The compact expression is introduced for notation simplicity, whereas the matrix form is
utilized to understand the physical meaning.
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• the huge reduction of the computational complexity of the constellation
optimization procedure when K >> 1; in fact, the SER becomes a
function of only two variables (α and θ), regardless of the constellation
order K;

• the reduced implementation complexity of the transmitter stage; in fact,
the symbol-mapping is implemented by means of the linear transforma-
tion (2.54);

• the decrease of the information amount to be transmitted on the feedback
channel; in fact, only the values of two parameters (instead of K) have
to be sent to the transmitter.

According to such a choice, the constellation optimization is carried out by
solving the minimization problem

(α(opt), θ(opt)) = argmin
α,θ

Pe(α, θ) (2.57)

with

Pe(α, θ) =
1

K

K∑
i=1

∑
��=i

exp

{
− 1

8(1 + α2)

[
(1 + α)2

ψR(α, θ)
(cos(θ/2)(ci,R − c�,R)

− sin(θ/2)(ci,I − c�,I))
2 +

(1− α)2

ψI(α, θ)
(sin(θ/2)(ci,R − c�,R)− cos(θ/2)

(ci,I − c�,I))
2 − ψRI(α, θ)

1− α2

1 + α2

(
1

2
sin(θ)

(
(ci,R − c�,R)

2 + (ci,I − c�,I)
2
)

− (ci,R − c�,R)(ci,I − c�,I)

)]}
(2.58)

where (2.58) follows from (2.48) and (2.54), and the dependence of the distur-
bance parameters on β has been replaced by the dependence on α and θ. Since
finding the closed-form expression of α(opt) and θ(opt) is a difficult problem,
here we propose to approximate Pe(α, θ) with a function, say P

(low)
e (α, θ),

whose minimization can be carried out by evaluating it only over a very lim-
ited set of points. In the sequel, such an approximation is derived for a 4-QAM
constellation ck = 1√

2
(±1 ± j), though it can be analogously determined for

denser constellations.
First, we approximate the cost function (2.58) by assuming that the com-

ponents of the residual disturbance are uncorrelated, i.e., ψRI(α, θ) = 0. By
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means of some tedious but simple algebra operations, it can be shown that
Pe(α, θ) is lower bounded by

Pe(α, θ) � P (low)
e (α, θ) � exp

{
−1

4
‖Σ(α, θ)‖−∞ · dmin(α, θ)

}
(2.59)

where

Σ(α, θ) �

⎡
⎣ ψR(α, θ)

−1

ψI(α, θ)
−1

⎤
⎦ (2.60)

dmin(α, θ) � min
�∈{0,±1}

‖d�(α, θ)‖1 (2.61)

d�(α, β) �
1

1 + α2

[
(1 + α)2 [(δ� + δ�−1) cos(θ/2)− (δ� + δ�+1) sin(θ/2)]

2

(1− α)2 [(δ� + δ�−1) sin(θ/2)− (δ� + δ�+1) cos(θ/2)]
2

]
(2.62)

Since the right-hand-side of (2.59) is minimized by large values of dmin(ᾱ, θ),
we propose to approximate the solution of (2.57) with the following one:{

(α̂(opt), θ̂(opt)) = arg min
(α,θ)∈X

P (low)
e (α, θ)

X � {(α, θ) : 2 sin(θ)− 2α
1+α2 cos(θ) = 1}

(2.63)

where X is the (α, θ)-curve corresponding to the maximum value of
dmin(ᾱ, θ) for a fixed α = ᾱ (or, equivalently, to the maximum value of
dmin(α, θ̄) for a fixed θ = θ̄). Of course, the restriction to X leads to a
significant decrease in the computational complexity. Let us point out that,
interestingly, such a restricted optimization procedure accounts for the possi-
ble transmission of the conventional 4-PAM: in fact, it can be easily verified
that when (αPAM , θPAM ) � (1, tan−1(43)) ∈ X , c̃k = {± 1√

5
,± 3√

5
}.

This also suggests an extreme simplification obtained by choosing just be-
tween the 4-PAM and 4-QAM constellation (two-choice procedure), i.e., one
can resort to an architecture that switches between the 4-QAM and the 4-PAM
constellations according to the following rule:

P (low)
e (αPAM , θPAM )

QAM
≷

PAM
P (low)
e (0, 0) (2.64)

Three remarks about the suboptimum procedure (2.63) follow.
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Figure 2.7: Optimum constellations for K = 4 and K = 8: (a) QPSK, (b) Rhom-
bic QPSK, (c) 4-PAM, (d) Foschini&All 8-QAM, (e) “1-7” 8-QAM, (f) 8-PAM, (g)
Rectangular 8-QAM, (h) Non-circular 8-QAM, (i) Non-uniform 8-QAM.

Remark 1: The results carried out here with reference to the 4-QAM con-
stellation can be easily generalized to higher-order constellations. More specif-
ically, the SER-bound approximations (analogous to the one in (2.59)) can be
obtained by assuming that the inner summation in (2.58) is restricted to those
constellation points closest to the kth one. Moreover, it can be shown that
the conventional square K-QAM constellations (with K = 16, 64, 128) can
be transformed by (2.54) into the conventional uniform K-PAM. Note, how-
ever, that such a property is not satisfied by the constellations of any order:
for example, as also shown in the next section, when using the rectangular 8-
QAM (see Fig. 2.7 (g)) the rhombic transformation allows one to obtain the
non uniform 8-PAM reported in Fig. 2.7 (i).
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Remark 2: The optimum transmission strategy proposed here requires that
the receiver sends on the feedback channel the whole optimum constellation.
If the suboptimum procedure is used, the transmitter architecture can be sim-
plified: in fact, a unique symbol mapper for the alphabet c is needed and the
constellation is adapted by adjusting the zero-memory WL filter (2.54). Un-
fortunately, the main disadvantage in terms of the computational complexity
of the receiver remains the adaptation of the decision mechanism for the con-
stellation c̃.
Remark 3: When the proposed suboptimum strategy is used, the chan-

nel input xk is obtained by performing a zero-memory WL filtering of the
information-bearing sequence sk. For such a reason, it is reasonable to con-
sider an alternative receiver structure that performs the WL MMSE equaliza-
tion of the received signal in order to estimate sk−Δ, instead of xk−Δ. After
some matrix manipulations, it can be verified that such WL MMSE equalizer
is the cascade of the WL MMSE equalizer in (2.36)-(2.37) and the WL zero-
memory filter performing the inverse9 of the transformation (2.54). This allows
one to use a unique symbol de-mapper and the standard decision mechanism
for the constellation c. The MMSE achieved by such a structure is:

E[|es|2] � E[|sk−Δ −w(opt)H

s yk − g(opt)
H

s y∗k|2]
= 1 +

1

|μ|2 − |κ|2
[(
σe(β)

2 − 1
)
+ 4|μ|2|κ|2 −�{

β∗E[e(β)2]
}]

(2.65)

It can be easily shown that (a) if σe(β)
2 → 0, then E[|es|2] → 0, unless

|μ|2 = |κ|2, and (b) E[|es|2] ≥ σe(β)
2 since |μ|2−|κ|2 ≤ 1. Such results show

that the minimum-distance decision based on the WL MMSE estimation of
xk−Δ outperforms the (computationally simpler) minimum-distance decision
based on the WL MMSE estimation of sk−Δ.

2.3.4 Numerical results

In this section, we present the results of simulation experiments aimed
at assessing the performance improvements achievable by the proposed
constellation-optimization procedures. In all the experiments, we assume that:
1) the noise sequence at the output of the channel is zero-mean white Gaussian

9Note that (2.54) is not invertible for every value of α and θ, e.g., when a real-valued con-
stellation is adopted (α = 1). In such a case, however, an ad hoc inverse transformation can be
easily defined.
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complex-valued circularly symmetric with variance σ2
n, i.e., E

[
nkn

∗
k−�

]
=

σ2
nδk−� ∀k, 
; 2) the decision delay Δ is optimized; 3) the SER has been esti-

mated by stopping the simulation after 100 errors occur.

Fixed channel

In this section, we compare the performances of the constellation design pro-
cedures (2.63) and (2.49) in terms of SER. In our simulations, we solve (2.63)
by means of an exhaustive search over α = n · 0.05 and θ = π

2 · n · 0.05: note
that in our search we consider (α, θ) ∈ X , so we consider a finite number of
points. On the other hand, we resort to the constrained gradient-based algo-
rithm for solving (2.49). Since the cost function (2.48) exhibits local minima,
1000 starting points have been randomly generated according to a uniform dis-
tribution. Due to the amount of time required by the computer simulations to
determine the solution of (2.49), we consider, as in [25], the transmission over
a two-tap channel H(z) � 1+ρejφz−1 affected by an additive circularly sym-
metric white Gaussian noise with variance σ2

n. In our experiments, we have
addressed the optimization of the constellation when K = 4 and K = 8 for
different values of ρ, φ and Nf .

Let us first plot in Fig. 2.7 some of the optimum constellations obtained
during our simulations when solving the optimization problem (2.49) over the
considered channel model; moreover, we plot the suboptimum constellation
utilized to implement our suboptimum strategy and the 8-PAM constellation
obtained by applying to it the rhombic transformation. As in [28], we have
found many local optima: some of them were rotated version of the constel-
lations of Fig. 2.7 while others appeared as their rhombic transformation. For
K = 4 the locally optimum constellation set includes the conventional 4-QAM
(β = 0) and 4-PAM (β = 1), as well as the 4-QAM subject to a rhombic
transformation (β = −0.4 + 0.3j); note such constellations can be obtained
by means of a rhombic transformation of the conventional 4-QAM, which has
been utilized to implement our suboptimum strategy when K = 4. For K = 8,
the optimum constellation set includes the non-circular 8-QAM found by Fos-
chini et al. (β = 0.12 − 0.22j), one of the conventional 8-QAM scheme
(β = 0) called “1-7” 8-QAM [28], the 8-PAM (β = 1) and the non-circular
8-QAM scheme that we call non-circular 8-QAM. In the following, in order to
implement the rhombic-transformation-based constellation-optimization strat-
egy, we resort to the rectangular 8-QAM: we remember that, unlike 4-QAM,
such a scheme can not be transformed into the conventional uniform 8-PAM,
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Figure 2.8: Constellation optimization for K = 4 over fixed channel (ρ = 0.9); for
each point, the letter specifies the constellation (of those in Fig. 2.7) typically obtained.

but in the non-optimum non-uniform 8-PAM.10

In Fig. 2.8, with reference to the case K = 4, we have set SNR � 1
σ2
n
=

15dB and we have plotted the SERs achieved by both the suboptimum strategy
(2.63) and the optimum strategy (2.49) versus φ, for ρ = 0.9 and for different
values of Nf (Nf = 4, 6); moreover, for each point of Fig. 2.8, the constel-
lation typically obtained by the optimum procedure is specified by the letter
used to denote it in Fig. 2.7. The results show that the two strategies have
the same performance: more specifically, both strategies switch to the 4-PAM
when φ > π

12 and outperform the conventional non-adaptive transceiver em-
ploying the QPSK modulation jointly with the linear MMSE receiver. Note
also that as φ → π

2 , the chosen value of Nf does not affect the performance.
In the next experiments we have addressed the constellation optimization

when K = 8: more specifically, in Figs. 2.9 and 2.10 we have considered the
transmission over H(z) when ρ = 0.9 and ρ = 0.6, respectively. Fig. 2.9

10The optimality of uniform PAM over additive white Gaussian noise has been shown in [43].
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Figure 2.9: Constellation optimization for K = 8 over fixed channel (ρ = 0.9); for
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Figure 2.10: Constellation optimization for K = 8 over fixed channel (ρ = 0.6); for
each point, the letter specifies the constellation (of those in Fig. 2.7) typically obtained.
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reports the SER achieved by both the suboptimum strategy and the optimum
strategy versus φ for SNR = 18dB and Nf = 15. The optimum strategy pro-
vides performance gain over the non-adaptive transceiver employing the con-
ventional rectangular 8-QAM by using the “1-7” 8-QAM and the non-circular
8-QAM for smaller values of φ, and, as φ > π

6 , by using the 8-PAM. In such
a case, the performance difference between the suboptimum strategy and the
optimum one is important, especially for large values of φ, since the subopti-
mum one employs the non-uniform 8-PAM. Such a result was expected since,
when K increases, the optimum strategy can exploit a number of degrees of
freedom significantly larger than the suboptimum strategy.

Finally, we observe that, when K = 4, an architecture switching between
the 4-QAM and the 4-PAM can provide a good trade-off between performance
and complexity. Instead, when K = 8, the transceiver should switch among
the Foschini&All, the non-circular 8-QAM and the 8-PAM.

Random channel

In the following simulations, we assume that: i) the channel has memory
ν = 3 and its taps hk are randomly generated according to a complex-valued
circularly-symmetric zero-mean white Gaussian process with unit variance
(i.e., E

[
(�{hk})2

]
= E

[
(�{hk})2

]
= 1

2 and E [�{hk}�{hk}] = 0); ii)
the WL MMSE equalizer has Nf = 12 taps; iii) the results have been av-
eraged over 500 independent channel realizations. We compare the perfor-
mances achieved by four architectures: I) the OPTimum-based architecture
(OPT-based) that selects α and θ in order to minimize the symbol error rate11

(i.e., P (true)
e (α, θ), instead of P (low)

e (α, θ)); II) the QAM-based architecture
adopting the conventional circularly symmetric 4-QAM constellation; III) the
PAM-based architecture utilizing the conventional rotationally variant 4-PAM
(|β| = 1 which corresponds to the maximum WL gain); IV) the two-choice-
based architecture that switches between the 4-QAM and the 4-PAM constel-
lations according to (2.64). The OPT-based and the two-choice-based architec-
tures, unlike the QAM-based and the PAM-based ones, require the existence of
a feedback channel between the receiver and the transmitter for constellation
adaptation; however, the two-choice-based architecture only needs to transmit
a binary information on such feedback channel.

11For clarity, we point out that the solution of (2.63) loses about 0.3dB in comparison with
the OPT-based one; we consider the OPT-based architecture in order to provide a lower bound
to the SER.
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Figure 2.11: SERs of the considered architectures versus SNR.

In Fig. 2.11, the SERs of the considered architectures are plotted versus
the SNR (in dB). The OPT-based architecture outperforms all the others and
provides an SNR-gain over the non-optimized architectures of almost 3dB for
a SER = 10−3. Interestingly, the two-choice-based architecture performs well
loosing only 0.8dB in comparison with the OPT-based one. Let us also note
that the PAM-based architecture performs poorly for low SNR, but, as the SNR
increases, it outperforms the QAM-based one.

In the next experiment, we compare the considered architectures by evalu-
ating their capability to guarantee the required quality of service (QoS). More
specifically, in Table 2.1, we report the percentages of the channels over which
the SNR required to achieve the target SER (assumed to be 10−2, 10−3, 10−4)
is not larger than 21dB. Moreover, Fig. 2.12 reports the probability, say Pε,
that each architecture loses εdB in comparison with the OPT-based one for a
given target SER under the condition that the SNR is not larger than 21dB.

The results show that:

• The PAM-based architecture is robust with respect to the communication
environment since it often achieves the target SER. This is mainly due
to the improved capabilities of the WL equalizer when the transmitted
and the received signals are rotationally variant. However, it requires a
larger SNR in comparison with the OPT-based architecture to compen-
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Table 2.1: Percentage of channels over which the target SER is achieved.

Target SER OPT-based QAM-based PAM-based two-choice-based

10−2 100 97 98 99
10−3 97 83 95 96
10−4 94 63 89 92
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Figure 2.12: Loss in dB of the PAM-based, QAM-based and two-choice-based archi-
tectures with respect to the OPT-based one for several target SER.
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sate for the reduction of the dimension of the signal space. Note also
that such an SNR loss, which is uniformly distributed between 0dB and
4dB when the target SER is 10−2 and 10−3, assumes often two specific
values (0dB and 3dB) for a target SER equal to 10−4: in practice, the
PAM architecture achieves optimum performance on 50% of the chan-
nels where the linear equalizer performs unsatisfactorily and the WL
processing gain, specific to rotationally variant constellations, compen-
sates for the smaller minimum-distance of the PAM constellation.

• The QAM-based architecture is not robust with respect to the communi-
cation environment. When it is able to achieve the target SER, it requires
a limited amount of excess SNR over the OPT-based architecture; nev-
ertheless, it is unable to achieve the target SER of 10−4 on 37% of the
channels. This is due to the circular symmetry of the constellation that
does not allow one to improve by means of the WL processing the un-
satisfactory performance of the linear equalizer.

• The two-choice-based architecture is particularly simple and robust
since it combines the advantages of both PAM and QAM constellations.

Conclusion

In our paper [35], we have addressed the problem of the constellation optimiza-
tion for the WL MMSE equalizer. By modeling the residual disturbance at the
output of the WL equalizer as a white Gaussian (possibly rotationally variant)
process, we have singled out constellation-design methods which minimize an
upper bound of the symbol error rate. The first method exploits all the degrees
of freedom (2K) associated to the K-order constellation exhibiting, therefore,
an unaffordable computational complexity for high order constellation scenar-
ios. To overcome such a problem, a second design method based on a rhombic
transformation of a fixed alphabet of order K is proposed. It performs the
optimization of only two parameters (instead of 2K) leading to a huge reduc-
tion of the computational complexity in high order K scenario. For low-order
constellations the two techniques are practically equivalent in terms of symbol
error rate. The results have shown that a WL MMSE transceiver with constel-
lation adaptation is clearly superior to the same equalizer with fixed constel-
lation. Finally, for K = 4, it has been shown that the method that switches
between a real-valued and a complex-valued constellation exhibits a limited
performance loss versus the optimum adaptation scheme, while it achieves a
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strong reduction of the computational complexity and it requires to feed back
to the transmitter only a binary information.



Chapter 3

Equalization for
OFDM-OQAM systems

O
rthogonal frequency division multiplexing (OFDM) [44] has become
a widely accepted technique for the realization of broadband air-

interfaces in high data rate wireless access systems. Indeed, due to its inher-
ent robustness to multipath propagation, OFDM has become the modulation
choice for both wireless local area network (WLAN) and terrestrial digital
broadcasting (digital audio broadcasting [DAB] and digital video broadcasting
[DVB]) standards. Furthermore, multicarrier transmission schemes are gen-
erally considered candidates for the future “beyond 3 G” mobile communica-
tions.

Current multicarrier systems are based on the conventional cyclic prefix
OFDM modulation scheme. In such systems, very simple equalization — one
complex coefficient per subcarrier — is made possible by converting the broad-
band frequency selective channel into a set of parallel flat-fading subchannels.
This is achieved using the inverse fast Fourier transform (IFFT) processing and
by inserting a time domain guard interval, in the form of a cyclic prefix (CP),
to the OFDM symbols at the transmitter. By dimensioning the CP longer than
the maximum delay spread of the radio channel, interference from the previous
OFDM symbol, referred to as inter-symbol-interference (ISI), will only affect
the guard interval. At the receiver, the guard interval is discarded to elegantly
avoid ISI prior to transforming the signal back to frequency domain using the
fast Fourier transform (FFT).

While enabling a very efficient and simple way to combat multipath ef-
fects, the CP is pure redundancy, which decreases the spectral efficiency.

59
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Moreover, there are other drawbacks in using CP-OFDM such as a higher
level of out-of-band radiation, since the subcarriers pulse shaping is trivial
being the rectangular one; a higher sensibility to narrowband interferers, be-
cause the low attenuation of the sidelobes implies an undesired overlap of the
subchannels; and a higher sensitivity to frequency offsets due to the transmis-
sion channel and to the receiver. As a consequence, there has recently been a
growing interest towards alternative multicarrier schemes, which could provide
the same robustness without suffering from all these weaknesses. Pulse shap-
ing in multicarrier transmission dates back to the early work of Chang [45] and
Saltzberg [46] in the sixties. Since then, various multicarrier concepts based on
the Nyquist pulse shaping idea with overlapping symbols and bandlimited sub-
carrier signals have been developed ( [47] and references therein, [48, 49, 50]).
One central ingredient in the later developments is the theory of efficiently im-
plementable, modulation-based uniform filter banks. In this context, the filter
banks are used in a transmultiplexer configuration.

We refer to the general concept as filter bank based multicarrier (FBMC)
modulation. In FBMC, the subcarrier signals cannot be assumed flat-fading
unless the number of subcarriers is very high. One approach to deal with
the fading frequency selective channel is to use waveforms which are well
localized, that is, the pulse energy both in time and frequency domains is
well contained to limit the effect on consecutive symbols and neighboring
subchannels. In this context, a basic subcarrier equalizer structure of a sin-
gle complex coefficient per subcarrier is usually considered. Another ap-
proach uses finite impulse response (FIR) filters as subcarrier equalizers with
cross-connections between the adjacent subchannels to cancel the inter-carrier-
interference (ICI) [51, 52, 53, 54, 55]. A third line of studies applies a receiver
filter bank structure providing oversampled subcarrier signals and performs
persubcarrier equalization using FIR filters ([47] and references therein,[56]).

Among FBMC systems, we have focused on the OFDM with offset quadra-
ture amplitude modulation (OQAM, OFDM-OQAM), where the modulation
used for each subcarrier is a staggered offset QAM [57, 58, 59, 60]. Instead of
using a rectangular window for shaping the pulses, a finite impulse response
(FIR) prototype filter which has longer impulse response than the symbol pe-
riod, i.e., the number of filter coefficients is higher than the number of sub-
channels M , is modulated and employed in each subchannel. The design of
prototype filter has been based on frequency sampling technique, according
to [61]. It is known from filter banks and communications theory [57] that the
real and imaginary parts of the inputs of such a system have to be staggered,
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resulting in OQAM signals.
The equalization problem in FBMC systems is still an area of active re-

search. From communications theory it is known that the optimal receiver for
a frequency selective (band limited) channel with band limited transmit sig-
nal and additive white Gaussian noise (AWGN) is composed by a (analog)
matched filter (MF), a sampling device (at symbol rate) and a maximum likeli-
hood sequence estimator (MLSE). But the latter is usually impractical in terms
of complexity. Two practical sub-optimum solutions with lower computational
burden are the linear equalizer and the decision feedback one which work at
symbol rate.

We have considered the solution of the decision feedback (DF) multiple-
input multiple-output (MIMO) equalizer and of it we have employed the
widely linear (WL) version because the input sequence of the OFDM-OQAM
system is real. Before this, we have derived the MIMO channel model de-
scribing the system, together with the noise correlation matrix. Afterwards,
we have generalized the MIMO model to a multiple antenna scenario and on
the obtained model we have designed the WL-DF MIMO equalizer, accord-
ing to the minimum mean square error (MMSE) optimization criterion, which
makes use of the conjugate gradient method for solving linear systems; such
equalizer exhibits minimum storage requirements and a reduced complexity.

Notation

We will use the following notation in this chapter: the superscripts ∗ and T
denote the complex-conjugate operator and the transpose one, respectively; j
the imaginary unit; E[·] the statistical expectation; ‖·‖ and trace{·} the norm
and the trace of their arguments; 〈·〉 the time-average; In the n × n identity
matrix; ⊗ the MIMO discrete-time linear convolution operator.

3.1 OFDM-OQAMMIMO model

The OFDM-OQAM discrete-time equivalent system model can be schema-
tized as in Figure 3.1 [57, 61, 62, 47, 63], where the transmitter is usually called
the synthesis filter bank (SFB) and the receiver the analysis filter bank (AFB).
The filter bank is composed of a transform section which comprises the IFFT
(FFT) block, implementing the modulation (demodulation), and some multi-
pliers dependent on the subcarrier index and the time one whose role will be
explained later; a polyphase filter section whose coefficients are determined by



62
E
Q
U
A
L
IZ
A
T
IO
N
F
O
R
O
F
D
M
-O
Q
A
M

SY
ST
E
M
S

Figure
3.1:O

FD
M

-O
Q

A
M

system
m

odel.



3.1 OFDM-OQAM MIMO MODEL 63

the prototype filter design through the polyphase decomposition; a conversion
section both of the sampling rate, by expanders (decimators), and the signal
format, by a delay chain and additioners only at the transmitter side; as well
as a OQAM staggering section which splits the QAM symbol into its real and
imaginary parts to be transmitted alternately in the time: given the time, they
are alternating on the subchannels, too. Let us note that the synthesized wide-
band signal has a M -times higher sampling rate than the one of the subchannel
signals at the SFB input.

We show how the MIMO channel model describing the OFDM-OQAM
transceiver has been derived. The effects of the channel noise, nH(n)
(Fig. 3.1), are not dealt with in this section and will be considered separately:
this is possible because the MIMO channel output is linearly dependent on
the MIMO channel input and the MIMO channel noise. The first transceiver
block we have modelled is represented by the cascade of the delay chain at the
transmitter side, the communication channel and the delay chain at the receiver
side; it is obviously a MIMO linear time invariant (LTI) system with transfer
function:

C(z) � H(z)Z(z) (3.1)

where

H(z) �
P−1∑
k=0

h(k)z−k (3.2)

is the Z-transform of the discrete-time equivalent transmission channel and
the M × M matrix Z(z) �

[
Z0(z) Z1(z) . . . ZM−1(z)

]
. The first col-

umn Z0(z) describes the delay encountered by the first MIMO channel in-
put over all the other MIMO channel outputs and it is equal by definition
to

[
z−M z−(M−1) . . . z−1

]T ; analogously, Zi(z) � z−iZ0(z) for i =
0, 1, . . . ,M − 1, since each MIMO channel subsequent input has one delay
more on its path toward the MIMO channel outputs.

The cascade of the M expanders at the transmitter side, the MIMO LTI
channel with transfer function C(z) and the M decimators at the receiver side
can be shown to provide the MIMO LTI system with the following transfer
function:

CM
2
(z) �

K0+3∑
k=1

cM
2
(k)z−k (3.3)

with
cM

2
(k) � Toeplitz(χk, φk) (3.4)



64 EQUALIZATION FOR OFDM-OQAM SYSTEMS

where

χk �

[
h

(
(k− 2)

M

2

)
h

(
(k− 2)

M

2
+1

)
. . . h

(
(k− 2)

M

2
+ (M − 1)

)]T
(3.5)

φk �

[
h

(
(k − 2)

M

2

)
h

(
(k − 2)

M

2
− 1

)
. . . h

(
(k − 2)

M

2
− (M − 1)

)]
(3.6)

K0 is the superior integer (i.e., the smallest integer larger than or equal to) of
(P−1)

M
2

and Toeplitz(u,v) denotes the Toeplitz matrix with u as first column
and v as first row. Therefore, apart from the channel noise, nH(n), the se-
quence of the three innermost stages in the OFDM-OQAM transceiver scheme
in Figure 3.1, the P/S conversion at the transmitter side, the communication
channel and the S/P conversion at the receiver side can be described by a
MIMO LTI channel with transfer function CM

2
(z).

Proof. See Appendix A.

It is now simple to derive the MIMO channel impulse response which in-
cludes the polyphase filter networks, the IFFT and FFT blocks and the phase
coefficients βk. The length of the M polyphase filters is equal to 2γ, where γ is
usually called the overlapping factor in the prototype filter design; the length of
the prototype filter — whose M polyphase components are the polyphase filter
impulse responses compressed by 2 — is equal to Mγ. Since the polyphase
networks act as diagonal MIMO systems both at the transmitter and the re-
ceiver side, we can define their transfer functions as:

G(z) � diag
[
G0(z

2) G1(z
2) . . . GM−1(z2)

]
=

2γ−1∑
�=0

g(
)z−� (3.7)

F(z) � diag
[
F0(z

2) F1(z
2) . . . FM−1(z2)

]
=

2γ−1∑
�=0

f(
)z−� (3.8)

where Gi(z) �
γ−1∑
k=0

gi(k)z
−k represents the Z-transform of the ith polyphase

component of the prototype filter and Fi(z) �
γ−1∑
k=0

fi(k)z
−k its adapted filter,

for i = 0, 1, . . . ,M − 1. Let it be WM the unitary discrete Fourier transfom
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(DFT) matrix whose (i, k)-entry is equal by definition to 1√
M

exp
(
−jik 2π

M

)
with (i, k) ∈ {0, 1, . . . ,M − 1}2. The transfer function of the MIMO channel
we have considered is:

Ceq(z) �
K0+4γ+1∑

�=1

βH
MWMcPF(
)W

H
MβMz−� =

K0+4γ+1∑
�=1

ceq(
)z
−� (3.9)

with
ceq(n) � βH

MWMcPF(n)W
H
MβM (3.10)

cPF(n) � g(n)⊗ cM
2
(n)⊗ f(n) (3.11)

being βM a diagonal matrix with 
-entry (
 = 0, 1, . . . ,M − 1) equal by
definition to exp

(
−j
(Mγ − 1) π

M

)
.

But our modelling hasn’t finished yet because there are some addi-
tional multipliers (Fig. 3.1): at the transmitter side, θk(n) � jk+n (k =
0, 1, . . . ,M − 1) switches the input real-valued symbols over the real axis
and the imaginary one, alternately; at the receiver side, we have introduced
a multiplication stage by j−n in order to preserve the system time-invariance.
Therefore, the input-output relationship of the overall MIMO system including
the transform, filtering and conversion blocks is:

r(n) =

K0+4γ+1∑
�=1

ceq(
)j
−�J0x(n− 
) = ceq,J(n)⊗ x(n) (3.12)

where ceq,J(n) = ceq(n)j
−nJ0 and J0 is a diagonal matrix with k-entry (k =

0, 1, . . . ,M − 1) equal by definition to jk. The input sequence-vector x(n),
the OQAM modulator output, is composed by iid symbols belonging to the set
{−1, 1}.

Finally, we have obtained that the OQAM demodulator input is related
to the OQAM modulator output, which is a real-valued symbol sequence —
hence a stationary sequence — by a M × M MIMO LTI channel with im-
pulse response ceq,J(n). We have plotted in Figure 3.2 the energy graph of all
the components of the MIMO channel matrix in (3.12) according to the Inter-
national Telecommunication Union (ITU) Vehicular-A transmission channel
model. Let us note that the MIMO channel impulse response exhibits a diago-
nally dominant structure: it will be exploited for the equalizer design, together
with the non-circularity property of the input sequence x(n).
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Figure 3.2: Subchannel energy according to the ITU Vehicular-A channel model
(M = 64).

3.1.1 Noise correlation matrix

Let it be rnH(m) the correlation function of the noise present at the output
of the discrete-time equivalent transmission channel (see Fig. 3.1) and let us
assume that the noise is circularly symmetric: E

[
nH(n)nH(n−m)

]
= 0. The

noise at the output of the S/P conversion stage is such that

nk(n) � nH

(
n
M

2
−M − k

)
k ∈ {0, 1, . . . ,M − 1} (3.13)

Therefore, its correlation matrix is:

RnSP(m)|p,q � E
[
np(n)n

∗
q(n−m)

]
= rnH

(
m
M

2
+ p− q

)
(3.14)

After the polyphase filtering, it becomes:

RnPF(m) � f(m)⊗RnSP(m)⊗ f(−m)H (3.15)

which can also be written as

RnPF(m) �
2γ−1∑
�1=0

2γ−1∑
�2=0

f(
1)RnSP(m+ 
2 − 
1)f(
2)
H (3.16)
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Figure 3.3: Multiple antenna scenario scheme.

After the last stage, the transform block, the noise correlation matrix will be:

Rn(m) � j−mβH
MWMRnPF(m)WH

MβM (3.17)

Moreover, the noise has remained circularly simmetric: E
[
n(n)nT (n−m)

]
=

0.

3.2 Multiple antenna OFDM-OQAMMIMO model

Till now, we have interested ourselves in modelling the OFDM-OQAM
transceiver in a single antenna scenario, i.e., a scenario which there are only
two antennas in: the former transmitting and the latter receiving; in this sec-
tion, we will derive the MIMO system model for OFDM-OQAM systems in
a multiple antenna scenario. Let us assume to have nt transmitting antennas
and nr receiving ones and denote with c(i,j)eq,J (n) the equivalent MIMO channel,
analogous to the one in Equation (3.12), between the ith receiving antenna and
the jth transmitting one; then, we have used the same notation as the previ-
ous sections unless to specify at the superscript the transmitting or receiving
antenna index. In Figure 3.3, you can see a illustrative stylized drawing of a
multiple antenna scenario, with the right notation.

By a straightforward generalization of the derivation in Section 3.1, we
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have got the following input-output relationship:

r(n) �

⎡
⎢⎢⎢⎣
r(1)(n)

r(2)(n)
...

r(nr)(n)

⎤
⎥⎥⎥⎦ �

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

nt∑
j=1

r(1,j)(n)

nt∑
j=1

r(2,j)(n)

...
nt∑
j=1

r(nr,j)(n)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�
K0+4γ+1∑

�=1

⎡
⎢⎢⎢⎢⎣
c
(1,1)
eq,J (
) c

(1,2)
eq,J (
) . . . c

(1,nt)
eq,J (
)

c
(2,1)
eq,J (
) c

(2,2)
eq,J (
) . . . c

(2,nt)
eq,J (
)

...
... . . . ...

c
(nr,1)
eq,J (
) c

(nr,2)
eq,J (
) . . . c

(nr,nt)
eq,J (
)

⎤
⎥⎥⎥⎥⎦

︸ ︷︷ ︸
Ceq,J(�)

⎡
⎢⎢⎢⎣
x(1)(n− 
)

x(2)(n− 
)
...

x(nt)(n− 
)

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
x(n−�)

+

⎡
⎢⎢⎢⎣
n(1)(n)

n(2)(n)
...

n(nr)(n)

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
n(n)

(3.18)

where all the ntnr OFDM-OQAM transceivers are assumed to have the same
parameters as well as all the ntnr transmission channels between each couple
of antennas the same length.

Finally, we can express Equation (3.18) more closely in a matrix form, as
follows:

r(n) � Ceq,J(n)⊗ x(n) + n(n) (3.19)
Therefore, also in a multiple antenna scenario, of course, the discrete-time
equivalent MIMO channel describing OFDM-OQAM systems is LTI; the
channel matrix, Ceq,J(n), whose size is Mnr × Mnt, exhibits a block diag-
onally dominant structure.

3.2.1 Ad hoc equalizers

If, for any couple of antennas, the M subchannels of the OFDM-OQAM sys-
tem are orthogonal, then the matrices c(i,j)eq,J ∀i = 1, . . . , nr and j = 1, . . . , nt
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(see Equation (3.18)) will be diagonal. This implies that the system model in
Equation (3.19) degenerates into M parallel nr ×nt MIMO channels and, con-
sequently, the equalization is performed per-subchannel, i.e. the M channels
are equalized separately.

But in practice, as the prototype filter is FIR — hence ICI cause — the ma-
trices c(i,j)eq,J ∀i = 1, . . . , nr and j = 1, . . . , nt are diagonally dominant; there-
fore, the equalization per-subchannel can no longer be the optimum choice
because it does not take all the interference terms into account. A solution
which exploits the diagonally dominant structure of the matrices c(i,j)eq,J is such
as to perform a selective MIMO equalization for each subchannel, i.e., given
the subchannel k ∈ {1, . . . ,M} to be equalized, to extract from the complete
matrix c(i,j)eq,J , given i and j, a submatrix which contains only the most signif-
icant interference terms, for instance those related to k1 adjacent subchannels
at the transmitter and k2 ones at the receiver: this will be the MIMO channel
matrix related to the kth subchannel to be equalized. The parameters k1 and
k2 are the result of a trade-off between performance and complexity.

Therefore, as the MIMO channel impulse response which describes the
OFDM-OQAM system, c(i,j)eq,J |i,j , is diagonally dominant, we expect ad hoc
equalizers to be able to operate with reduced complexity compared with stan-
dard equalizers. More specifically, we have considered the WL-DF MIMO
equalizer which has proved to be very useful for the equalization of OFDM-
OQAM systems, as we will see in the next section.

3.3 Synthesis of the MMSE WL-DF MIMO equalizer
with minimum storage requirements

Decision feedback equalizers draw considerable attention in modern commu-
nication scenarios since they greatly outperform the linear equalizers and, at
the same time, they keep a limited implementation complexity compared with
the maximum likelihood receiver whose computational complexity grows ex-
ponentially with the channel memory and the order of the feedforward filter.
We have studied the problem of the synthesis of the MMSE WL-DF equalizer
for MIMO dispersive channels [7, 64, 65]. Methods present in the literature
are mainly based on displacement structure theory (see, for example, [66]) and
on fast recursive least squares (RLS) [67, 68]. We have followed the method
in [67] in order to show that the synthesis of the feedforward filter is equiv-
alent to a least-square equalization problem. Moreover, we have derived an
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algorithm for the equalizer synthesis — expecially suitable for the case where
the number of taps of the feedforward filter, Nf , is very large — which re-
quires a minimum memory amount and a reduced number of floating point
operations per second (flops).

In [67], the authors show that the optimum feedforward filter can also be
obtained by solving a least square problem and a fast RLS method is proposed
to do it with O(N2) flops; then, the feedback filter is calculated by convolving
the channel impulse response with the optimum feedforward filter by the FFT.

However, the computational complexity of the available methods signif-
icantly increases because they exhibit a quadratic dependence on Nf . The
average number of flops needed to execute the synthesis and the implementa-
tion procedures for each temporal block affects the overall receiver behavior
(burden of the receiver processor, energy consumption, etc.).

Unlike the existing algorithms, the proposed approach can be clearly fol-
lowed and easily implemented since it relies on the basic matrix algebra and
no complex matrix theory, such as the displacement structure theory [66] and
the fast RLS filtering [67], is needed.

Finally, unlike the method in [66], the assumption of the white additive
noise is not introduced; unlike the method in [67], the presence of coloured
noise does not introduce any sophistication in the derivation of the procedure
and in its implementation, hence, it does not imply a significant increase of the
computational complexity.

3.3.1 Problem setting

Let us consider a FIR baseband equivalent noisy MIMO communication chan-
nel with ni jointly wide-sense stationary (WSS) transmitted signals and no re-
ceived signals. The output r(k) ∈ R

no×1 of the MIMO channel can be written
as

r(k) =

M∑
m=0

H(m)x(k −m) + n(k) (3.20)

where x(k) ∈ R
ni×1 is the information-bearing symbol sequence, n(k) ∈

R
no×1 is the background noise, H(m) ∈ R

no×ni (H(m) = 0 for m < 0 and
m > M) is the M -order channel matrix — which in our simulations coincides
with Ceq,J(n) in Equation (3.18) — whose (i, j)-entry represents the channel
impulse response between the jth input and the ith output.

In the following we assume that:
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Figure 3.4: DF MIMO equalizer scheme.

a0. The MIMO channel impulse response is perfectly known at the receiver
side: one can have operated in conjunction with blind or training-based
identification algorithms.

a1. The coloured additive noise n(k) is independent of the input se-
quence x(k): actually, it is sufficient that they are uncorrelated, i.e.,〈
E
[
x(k1)n

T (k2)
]〉

= 0 ∀k1, k2; moreover, the noise autocorrelation
matrixR(m) �

〈
E
[
n(k)nT (k−m)

]〉
is assumed known at the receiver

side.

a2. The power spectral density (PSD) of the input sequence is assumed flat,
i.e., E

[
x(k)xT (k − m)

]
= Iniδ(m); such an assumption is common

since the scrambling sequence often compensates the effects of a possi-
ble channel coding.

According to the DF equalization, at the receiver side, the received signal
r(k) is processed jointly with the equalizer output, i.e., the signal at the output
of the decision device, in order to provide an estimate of the transmitted signal
x(k). More specifically, the equalizer is constituted of the following ni × no
feedforward filter F(z), which processes the channel output, and the ni × ni
feedback one B(z), which processes the output of the decision device:

F(z) �
N∑

n=0

F(n)z−n B(z) �
Nb∑
m=0

B(m)z−m (3.21)

of order N and Nb, respectively.
In Figure 3.4, you can see the DF MIMO equalizer scheme. In MIMO

equalization scenario, the constraint on the feedback filter concerns the matrix-
tap B(0), as we will see later.
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With reference to the DF equalization stage, we assume that:

b0. The order Nb of the feedback filter is such as to optimize the perfor-
mance of the equalizer. Let us note that feedback-filter implementation
requires a smaller computational complexity than feedforward-filter one
since its inputs belong to a finite set.

b1. Filter design assumes that previous decisions are correct: this is a com-
mon assumption in filter synthesis.

b2. In order to account for a possible anticausal feedforward filter, the sig-
nal at the equalizer output will be x(k−Δ) where Δ is a decision delay
which affects the equalizer performance and, hence, needs to be opti-
mized.

According to (3.20) and (3.21), the output rf (k) of the feedforward filter
can be written as

rf (k) �
M+N∑
�=0

G(
)x(k − 
) +
N∑
�=0

F(
)n(k − 
) (3.22)

where the sequence G(·) is defined as the MIMO discrete-time convolution of
H(k) and F(k), i.e.,

G(k) � H(k)⊗F(k) =
min(M,k)∑

m=max(0,k−N)

H(m)F(k−m) k = 0, 1, . . . ,M+N

(3.23)
Assuming that Δ ∈ {0, 1, . . . ,M + N} and by the assumption b1., the

equalizer output z(k) (see Figure 3.4) can be written as

z(k) � rf (k)−
Nb∑
�=0

B(
)x(k −Δ− 
)

=
Δ−1∑
�=0

G(
)x(k − 
) +
M+N∑
�=Δ

(G(
)−B(
−Δ))x(k − 
)

−
Nb∑

�=M+N−Δ+1

B(
)x(k −Δ− 
) +

N∑
�=0

F(
)n(k − 
)

(3.24)
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hence, the error sequence ek � z(k)− x(k −Δ) is given by

e(k) =
Δ−1∑
�=0

G(
)x(k − 
) + (G(Δ)−B(0)− I)x(k −Δ)

+
M+N∑
�=Δ+1

(G(
)−B(
−Δ))x(k − 
)

−
Nb∑

�=M+N−Δ+1

B(
)x(k −Δ− 
) +
N∑
�=0

F(
)n(k − 
)

(3.25)

By the assumptions a1. and a2.1, one gets the following MSE:

MSE �
〈
E
[‖e(k)‖2]〉

=
Δ−1∑
�=0

E
[‖G(
)x(k − 
)‖2]+ E

[‖(G(Δ)−B(0)− I)x(k −Δ)‖2]

+
M+N∑
�=Δ+1

E
[‖(G(
)−B(
−Δ))x(k − 
)‖2]

+

Nb∑
�=M+N−Δ+1

E
[‖B(
)x(k −Δ− 
)‖2]

+

〈
E

[∥∥∥∥ N∑
�=0

F(
)n(k − 
)

∥∥∥∥2
]〉

(3.26)

1The property ‖x‖2 = trace{xxT } has been used, too.
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which can also be written as

MSE =
Δ−1∑
�=0

trace{G(
)GT (
)}

+ trace{(G(Δ)−B(0)− I)(G(Δ)−B(0)− I)T }

+
M+N∑
�=Δ+1

trace{(G(
)−B(
−Δ))(G(
)−B(
−Δ))T }

+

Nb∑
�=M+N−Δ+1

trace{B(
)BT (
)}

+
N∑

�1=0

N∑
�2=0

trace{F(
1)R(
2 − 
1)F
T (
2)}

(3.27)

from which it follows that the optimum order of the feedback filter is Nb =
M +N −Δ, i.e., B(
) = 0 at the optimum for 
 > M +N −Δ; moreover,
the optimum feedback filter is

B(
−Δ) = G(
) 
 = Δ+ 1,Δ+ 2, . . . ,M +N (3.28)

Therefore, unlike the approach in [65], the optimum feedback filter, except for
the matrix-tap B(0), is calculated after the optimum feedforward filter since
G(k) depends on F(k).

The problem is then reduced to compute the matrix-taps {F(k)}k=0,...,N

which minimize

MSE =
Δ−1∑
�=0

trace{G(
)GT (
)}+ trace{(G(Δ)−D)(G(Δ)−D)T }

+
N∑

�1=0

N∑
�2=0

trace{F(
1)R(
2 − 
1)F
T (
2)}

= trace{(G−B)(G−B)T }+ trace{FRFT }
(3.29)

where D � I+B(0), G �
[
G(Δ)G(Δ− 1) . . . G(0)

]
, B �

[
D 0 . . . 0

]
,
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F �
[
F(N) F(N − 1) . . . F(0)

]
,

R �

⎡
⎢⎢⎢⎣
R(0) RT (1) . . . RT (N)
R(1) R(0) . . . RT (N − 1)

...
... . . . ...

R(N) R(N − 1) . . . R(0)

⎤
⎥⎥⎥⎦ (3.30)

Moreover, by Equation (3.23), it can be shown that GT = HeF
T where

He �

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

HT (Δ−N) . . . . . . HT (Δ)
HT (Δ−N − 1) . . . . . . HT (Δ− 1)

... . . . . . . ...
HT (0) . . . . . . HT (N)
0 . . . . . . HT (N − 1)
... . . . . . . ...
0 . . . HT (0) HT (1)
0 . . . 0 HT (0)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.31)

Let us denote with gi and fi (i ∈ {1, . . . , ni}) the ith column of GT and
FT , respectively:

GT �
[
g1 g2 . . . gni

]
FT �

[
f1 f2 . . . fni

]
(3.32)

hence, it follows that
gi = Hefi (3.33)

and the MSE can be written as

MSE =

ni∑
i=1

(‖gi − bi‖2 + fTi Rfi
)

=

ni∑
i=1

(‖Hefi − bi‖2 + fTi Rfi
) (3.34)

where bi is defined according to gi and fi, i.e.,

BT �
[
b1 b2 . . . bni

]
(3.35)
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3.3.2 Scenario 1

Only previous decisions are available at the present time in Scenario 1; it im-
poses the constraint B(0) = 0. It follows from this that D = I, hence bi = ei
where ei is the vector with all null entries but the ith one which is equal to one.
Therefore, by putting equal to zero the gradient of the cost function (3.34), the
optimum vector fi will satisfy the following normal equation:

(HT
e He +R)fi = HT

e ei � hi (3.36)

where HT
e �

[
h1 h2 . . . hni(Δ+1)

]
. Let us note that the optimization proce-

dure over {fi}i=1,...,ni can be carried out separately over each fi (i = 1, . . . , ni)
because the cost function (3.34) is a linear combination whose terms are af-
fected by one fi at a time.

Normal Equation (3.36) has a size noNf with Nf � N +1, but the matrix
A � HT

e He +R can be stored with much less memory locations than n2
oN

2
f

ones since it possesses a structure which can be described by the (Δ + 1) taps
of size no × ni of the channel impulse response H(n) for n ∈ {0, 1, . . . ,Δ}
and by the Nf taps of size no × no of the noise autocorrelation matrix R(m)
for m ∈ {0, 1, . . . , N}. To conclude, there are ni linear systems which need
to be solved in (3.36) and, in a field programmable gate array (FPGA) imple-
mentation, they can be solved with a parallel processing.

3.3.3 Unsorted Scenario 2

Unsorted Scenario 2 is defined as the scenario where the components of x(·)
are not sorted and the order of the decisions coincides with the order of the
components in the vector x(·); when one decides about the ith component of
x(n), the already taken decisions about the first (i − 1) components of x(n)
are fed back for improving the estimation of the ith component of x(n). Such
scenario imposes the condition that B(0) is strictly lower triangular, i.e., it is
lower triangular and null along the diagonal. Therefore, the vectorB(0)x̂(n−
Δ), where x̂(n−Δ) represents the vector with the decisions about x(n−Δ)
being Δ the decision delay, is subtracted from rf (n) (see Equation (3.24)) in
order to suppress the effect of the interferences.

Calculating f1

By the condition that B(0) is strictly lower triangular it follows that the first
row of B(0) is null, and therefore the first column of BT (0) is null, too. Con-
sequently, the optimum vector f1 in unsorted Scenario 2 is the same as the one
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in the Scenario 1, i.e., it is the solution of the following normal equation:

(HT
e He +R)f1 = h1 (3.37)

Calculating fi

The constraint over B(0) imposes that only the first (i − 1) components of
the ith row of B(0) are different from zero; let us denote them with λi,j (j ∈
{1, . . . , i− 1}) and let us note that they are free parameters whose values can
be chosen for the optimization. Therefore, the ith column of BT (0) can be
written as

∑i−1
j=1 λi,je

(s)
j where the ni × 1 vector e(s)j is the “small” version

of ej , i.e., ej is obtained from e
(s)
j by zero padding. Consequently, the ith

column b(s)
i , defined according to e(s)j , of DT � I + BT (0) can be written

as b(s)
i = e

(s)
i +

∑i−1
j=1 λi,je

(s)
j ; hence, bi = ei +

∑i−1
j=1 λi,jej . The term in

Equation (3.34) dependent on fi to be optimized is the following:

‖Hefi − bi‖2 + fTi Rfi =

∥∥∥∥Hefi − ei −
i−1∑
j=1

λi,jej

∥∥∥∥2 + fTi Rfi (3.38)

The coefficients {λi,j}j=1,...,i−1 can be chosen in order to minimize the norm
without affecting the second term, in particular, λi,j , which multiplies ej , can
be exploited to minimize the jth component of the vector within the norm
‖·‖2. Since the vector ei has its first (i− 1) components null, the first (i− 1)
components ofHefi can be deleted by the coefficients λi,j for j = 1, . . . , i−1.
Consequently, the optimization problem

min
λi,1,...,λi,i−1

fi

∥∥∥∥Hefi − ei −
i−1∑
j=1

λi,jej

∥∥∥∥2 + fTi Rfi (3.39)
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can be rewritten as ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
fi

∥∥H(i−1)
e fi − e

(i−1)
i

∥∥2 + fTi Rfi

λi,j = hT
j fi j = 1, . . . , i− 1

He �

⎡
⎢⎢⎢⎣

hT
1
...

hT
i−1

H
(i−1)
e

⎤
⎥⎥⎥⎦

ei �

⎡
⎢⎢⎢⎣

0
...
0

e
(i−1)
i

⎤
⎥⎥⎥⎦

(3.40)

where we have noted that hT
j is the jth row of He for j = 1, . . . , i − 1; we

have also denoted with H(i−1)
e the remaining rows of He and with e(i−1)i the

vector e1 without the last (i − 1) rows or, equivalently, the vector ei without
the first (i− 1) rows.

Consequently, the optimization problem becomes:{(
H

(i−1)T
e H

(i−1)
e +R

)
fi = H

(i−1)T
e e

(i−1)
i = hi

λi,j = hT
j fi j = 1, . . . , i− 1

(3.41)

To conclude, while in Scenario 1 the optimum vector fi is obtained by solving
the following system: (

R+

ni(Δ+1)∑
j=1

hjh
T
j

)
fi = hi (3.42)

in unsorted Scenario 2 it is obtained by solving the following one:(
R+

ni(Δ+1)∑
j=i

hjh
T
j

)
fi = hi (3.43)

3.3.4 Sorted Scenario 2

In sorted Scenario 2 the columns of B(0) can be re-ordered arbitrarly; the
constraint imposed by the scenario requires that B(0) after the re-ordering is
stricly lower triangular.
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Therefore, sorted Scenario 2 is equivalent to unsorted Scenario 2 provided
that also the matrices H(m) and R(m) are coherently re-ordered. However,
a first approach to sorted Scenario 2 can be described as a sequence of three
stages:

1. an ordering algorithm is first applied; it takes in input the matricesH(m)
and Rx(m), autocorrelation matrix of x(n), as well as the noise auto-
correlation matrix R(m), and it provides as output the new order of the
components. Different algorithms can be used at this stage, therefore
potentially obtaining a different order. The obtained order can be de-
scribed by the sequence of values p(i) for i = 1, . . . , ni with p(i) which
assumes all the elements of the set {1, . . . , ni}. Equivalently, the or-
dering can be described by means of the permutation matrix P whose
(i, j)-entry is equal to δ(j−p(i)), i.e., it is such that its ith row is null but
for the (i, p(i))-entry which is equal to one. Such a matrix can be used
to relate the original vector x(n) with its re-ordered version x(o)(n):

x(o)(n) = Px(n) (3.44)

2. Let us denote with H(o)(m) the matrix defined as the result of the re-
ordering of the columns of H(m) and with R(o)

x (m) the matrix defined
as the result of the re-ordering of both the rows and the columns of
Rx(m). It can be shown that the new matrices H(o)(m) and R(o)

x (m)
are related to H(m) and Rx(m) as follows:

H(o)(m) = H(m)PT R
(o)
x (m) = PRx(m)PT (3.45)

where R(o)
x (m) is also the autocorrelation matrix of the re-ordered ver-

sion x(o)(n) of the vector x(n).

Therefore, this stage of the procedure consists in determining the new
matricesH(o)(m) andR(o)

x (m). Moreover, if the trasmitted symbols are
assumed uncorrelated both temporally and spatially, i.e., Rx(m) = I,
then R(o)

x (m) = I, too.2

3. Let us apply unsorted Scenario 2 to the sorted channel H(o)(m) with
input autocorrelation matrixR(o)

x (m) in order to obtain an estimation of
the ordered channel input x(o)(n).

2This result can be shown thanks to the fact that P is orthogonal, i.e., P−1 = P
T .
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The channel model (see Equation (3.20)), after the re-ordering, can be
written as

r(k) =
M∑

m=0

H(m)PTPx(k −m) + n(k)

=
M∑

m=0

H(o)(m)x(o)(k −m) + n(k)

(3.46)

where Equations (3.44) and (3.45) have been used together with the or-
thogonality property of P. Let us note that the noise n(k) and, conse-
quently, its autocorrelation matrix R(k) remain unchanged.

Applying an equalization method to the original channel (3.20) or to its
sorted counterpart (3.46) usually provides the same performance; in other
terms, the performance obtained at stage 3 is usually independent of the permu-
tation matrix P obtained at stage 1. In such cases, consequently, the simplest
method consists in settingP = I at stage 1, so, the first two stages are skipped
and only the third stage is performed, without any performance loss. However,
for some equalization algorithms, the order of the components of the input
vector x(n) determined at stage 1, affects the performance, as it happens for
the DF equalizer in Scenario 2; therefore, if one used the simplest method set-
ting P = I at stage 1, one would get a performance loss at stage 3, while one
could improve the performance of the equalizer if one chose the most suitable
ordering at stage 1.

It can be shown that the only method for achieving the optimum perfor-
mance at stage 3 requires to exhaustively evaluate the equalizer performance
for each of the ni! different permutation matrices. Since the optimum method
is NP-hard and the simplest method (P = I) can provide a poor performance,
a suboptimum method is usually employed at stage 1. Moreover, after that the
first output of the ordering algorithm p(1) is available, stage 3 can be started
using the known part ofH(o)(m); then, the method at stage 1 is continued pro-
viding the second output p(2) and stage 3 is continued, too, and so on. Let us
note that, when p(1) is known, the first row ofP is available, and therefore, the
first column ofPT is available, too; consequently, according to (3.45), the first
column of H(o)(m) is available. In some cases, such a ping-pong procedure
between stages 1 and 3 exhibits a computational complexity not so larger than
the one of the algorithm at stage 3 when, using P = I, the first two stages are
bypassed; however, it provides significant performance advantages. We intro-
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duce such ping-pong procedure with reference to the DF equalizer in sorted
Scenario 2 which is dependent on the permutation matrix P.

The DF equalizer in sorted Scenario 2 is represented as follows:

z(k) � PTz(o)(k)

=
N∑
�=0

PTF(o)(
)r(k − 
)−
Nb∑
�=0

PTB(o)(
)x̂(o)(k −Δ− 
)

=
N∑
�=0

F(
)r(k − 
)−
Nb∑
�=0

PTB(o)(
)Px̂(k −Δ− 
)

=
N∑
�=0

F(
)r(k − 
)−
Nb∑
�=0

B(
)x̂(k −Δ− 
)

(3.47)

where F(
) � PTF(o)(
), B(
) � PTB(o)(
)P and Equations (3.20) and
(3.44) together with the orthogonality of P have been used. Let us remember
that the constraint imposed by the scenario is that B(o)(0) is strictly lower-
triangular.

Let us note that B(o)(
) = PB(
)PT , therefore, using the result in (3.45),
it is obtained from B(
) by re-ordering its rows and columns; analogously,
B(
) is obtained from B(o)(
) by imposing the reverse order on both the rows
and the columns. Consequently, the first row of B(o)(0), which is null since
B(o)(0) is constrained to be strictly lower-triangular, becomes the p(1)th row
of B(0) after the re-ordering of the rows and remains unchanged by the re-
ordering of the columns because it is null. Therefore, the p(1)th row of B(0)
is null. Moreover, the second row of B(o)(0), which is nonnull only in its
first component, becomes the p(2)th row of B(0) after the re-ordering of the
rows and becomes different from zero only in its p(1)th component after the
re-ordering of the columns.

In order to calculate the ith component of z(k), we need the ith row of
F(
), or, equivalently, the ith column fi of FT in (3.32). Since F(o)(
) =
PF(
), the matrix F(o)(
) is obtained by re-ordering the rows of F(
). Conse-
quently, in order to calculate the p(1)th component of z(k), we need the p(1)th
row of F(
) (i.e., the p(1)th column fp(1) of FT in (3.32)) or, equivalently, the
first row of F(o)(
); moreover, only fp(1) is needed because the p(1)th compo-
nent of the second term in (3.47) is null being null the p(1)th row of B(0), as
previously shown. After having calculated the p(1)th component of z(k) and,
therefore, the p(1)th component of x̂(k −Δ), in order to calculate the p(2)th
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component of z(k), we need the p(2)th row of F(
) (i.e., the p(2)th column
fp(2) of FT in (3.32)) or, equivalently, the second row of F(o)(
); moreover,
only the p(1)th component of x̂(k −Δ) is needed since only the p(1)th com-
ponent of the p(2)th row of B(0) is different from zero. The same line of
reasoning can be followed for each of fp(i) with i = 1, . . . , ni.

Calculating fp(1)

Applying the DF equalizer in unsorted Scenario 2 to the sorted channel, we get
that the optimum vector f (o)1 � fp(1) is the solution of the following system:

(H
(o)T
e H

(o)
e +R)f

(o)
1 = h

(o)
1 (3.48)

where H(o)
e is related to H(o)(m) according to He to H(m) (see Equation

(3.31)). The re-ordering of the columns of H(m) is equivalent to the re-
ordering of the rows of HT (m) and, therefore, is equivalent to the re-ordering
of the rows of He. From this it follows that blocks of ni rows of He are sorted
according to the re-ordering algorithm dictated by P, i.e.,

h
(o)
j+i = hj+p(i) i = 1, 2, . . . , ni j = kni k = 0, 1, . . . ,Δ

(3.49)
where h(o)

j+i is the (j + i)th row of H(o)
e . From this one gets that H(o)T

e H
(o)
e =

HT
e He and, consequently, the relation (3.48) becomes

(HT
e He +R)f

(o)
1 = h

(o)
1 (3.50)

The choice of p(1) has to take into account the quality of the estimation
of the p(1)th component of x(k); suboptimum ordering algorithms, where the
first decision is taken on the component of x(k) which can be better estimated
(better in the sense of the MSE or of the probability of error), are usually
derived. The advantage of using the MSE to set p(1) lies in the smaller com-
putational complexity of the procedure which determines the value of p(1) in
comparison with alternative procedures. Therefore, optimizing the MSE, the
following algorithm can be derived:

p(1) = arg min
i∈{1,2,...,ni}

min
f

‖Hef − ei‖2 + fTRf (3.51)

Three approaches can be followed for determining the value of p(1):
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1. defining a simple ordering algorithm and treating the three stages sep-
arately; in such case, the complexity increase with respect to unsorted
Scenario 2 is maintained reduced by the simplicity of the ordering al-
gorithm. Unless the ordering algorithm uses specific statistical charac-
teristics of the channel matrix to be equalized, the disadvantage of such
approach lies in the limited performance improvement with respect to
unsorted Scenario 2.

2. Using an algorithm which is able to determine (or, more generally, to
estimate) the error residue for each value of i with a complexity much
smaller than the one required to solve a single linear system and, conse-
quently, choosing a value of i which guarantees significant performance
improvements in comparison with unsorted Scenario 2 with a marginal
increase of the computational complexity.
An important example of such approach is the so-called BLAST algo-
rithm: it determines the input ordering with a ping-pong procedure based
on its ability to exactly calculate (or, more precisely, to calculate within
the machine precision) the MSE of ni linear systems and to exactly solve
a single linear system with a complexity practically equivalent to that re-
quired to exactly solve a single linear system.

3. Solving ni times the system in Equation (3.50) for each possible value
of p(1) and evaluate the best choice for p(1) in terms of its consequence
on the error probability of the decision about xp(1)(k).
Let us note that deciding about xp(1)(k) is more difficult than deciding
about xp(i)(k) for i > 1 since such decision cannot make use of no
component of x̂(k); therefore, the probability of error in the decision
about xp(1)(k) has a high chance to be the largest probability of error
among those on the components of the vector x(k); consequently, it is
one of the most important parameters in evaluating the quality of the DF
equalizer in sorted Scenario 2, in fact, many synthetical performance
parameters are significantly influenced by it.

Calculating fp(i)

The constraint on B(o)(0) imposes that only the first (i− 1) components of its
ith row are different from zero; let us denote them with λ

(o)
i,j (j ∈ {1, . . . , i −

1}). With the same line of reasoning followed for calculating fi in unsorted
Scenario 2, we get the same optimization problem (see Equation (3.41)) unless
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He and fi are replaced by their ordered versions. Therefore, in sorted Scenario
2, the optimum vector f (o)i is obtained by solving the following system:

(
R+

ni(Δ+1)∑
j=i

h
(o)
j h

(o)T
j

)
f
(o)
i = h

(o)
i (3.52)

which, using Equation (3.49), can be rewritten as

(
R+

ni(Δ+1)∑
j=1,j �=p(1),...,j �=p(i−1)

hjh
T
j

)
f
(o)
i = hp(i) (3.53)

Finally, the BLAST algorithm can be described as follows:⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

p(i) = arg min
j∈{1,...,ni}−{p(1),...,p(i−1)}

min
f

∥∥H(i−1,p)
e f − ej

∥∥2 + fTRf(
R+

ni(Δ+1)∑
j=1,j �=p(1),...,j �=p(i−1)

hjh
T
j

)
f
(o)
i = hp(i)

λ
(o)
i,j = h

(o)T
j f

(o)
i

(3.54)
where H(i−1,p)

e represents the matrix He with the jth row made null for any
j ∈ {p(1), p(2), . . . , p(i− 1)}.

The BLAST algorithm is able to determine the MMSEs of (ni − (i − 1))
linear systems (and consequently to determine p(i)) and to solve a single linear
system in (3.54) with a complexity practically equivalent to that required to
solve the single linear system. This is based on the fact that the data matrix

R+

ni(Δ+1)∑
j=1,j �=p(1),...,j �=p(i−1)

hjh
T
j depends on {p(1), p(2), . . . , p(i− 1)}, which

are known, but not on p(i) (unknown). Only its right-hand side depends on the
unknown value of p(i).

3.3.5 Scenario 3

Finally, we specialize the general method to Scenario 3, defined as the scenario
where, for the decision about the ith component of x(k), one disposes of the
decisions about all the other components of x(k) as they come from a previous
detection stage.
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Calculating fi

The costraint imposed by the scenario on B(0) is that it is null on the diag-
onal. Consequently, D � I + B(0) is monic, i.e., it is unit on the diago-
nal. Therefore, the ith row of B(0) with i = 1, . . . ,ni can be described as[
λi,1 . . . λi,i−1 0 λi,i+1 . . . λi,ni

]
and, accordingly, the ith column of BT (0)

follows

λi,1e
(s)
1 + · · ·+ λi,i−1e

(s)
i−1 + λi,i+1e

(s)
i+1 + · · ·+ λi,nie

(s)
ni

=

ni∑
j=1,j �=i

λi,je
(s)
j

(3.55)
hence, the ith column of DT will be

b
(s)
i = e

(s)
i +

ni∑
j=1,j �=i

λi,je
(s)
j (3.56)

as well as the ith column of BT

bi = ei +

ni∑
j=1,j �=i

λi,jej (3.57)

The optimum vector fi in Scenario 3 is obtained by minimizing the ith term
in Equation (3.34), i.e.,

‖Hefi − bi‖2 + fTi Rfi (3.58)

which can be written as

∥∥∥∥Hefi − ei −
ni∑

j=1,j �=i

λi,jej

∥∥∥∥2 + fTi Rfi (3.59)

With the same line of reasoning followed for calculating fi in unsorted Sce-
nario 2, we get the following optimization problem which is like the one in
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Equation (3.41):

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
fi

∥∥H(i,r)
e fi − e

∥∥2 + fTi Rfi

λi,j = hT
j fi j = 1, . . . , i− 1, i+ 1, . . . , ni

He �

⎡
⎢⎢⎢⎣
hT
1
...
hT
ni

H
(r)
e

⎤
⎥⎥⎥⎦

H
(i,r)
e �

[
hT
i

H
(r)
e

]

e �

[
1

0niΔ

]

(3.60)

where we have separated the first ni rows of He from the remaining ones,
denoted with H(r)

e , to which we have added hT
i to form H

(i,r)
e ; we have also

denoted with 0niΔ the niΔ × 1 vector with all null entries, to which we have
added the first entry equal to 1 to form e. Therefore, in this scenario, the
optimum vector fi is obtained by solving the following system:

(
R+ hih

T
i +

ni(Δ+1)∑
j=ni+1

hjh
T
j

)
fi = hi (3.61)

3.3.6 The conjugate gradient method for solving the linear system

The conjugate gradient method [69] is the preferite choice among the efficient
iterative procedures for solving the linear system Af = b. The algorithm is
initialized setting r = b and k = 0; each iteration step is described by the
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following procedure:
k ← k + 1
if k = 1 then
p← r

else
γ ← rT r

β ← γ

γold
γold ← γ
p← r+ βp

endif
v = Ap

α ← γ

pTv
f ← f + αp
r← r− αv

Let us note that the most complex operation is provided by the calcula-
tion v = Ap; since the data matrix, R + HT

e He, exhibits a special struc-
ture, we will show how the computational complexity of the conjugate gradi-
ent algorithm, dominated by the calculation v = Ap, can be made smaller
than the one required for a general nt × nt data matrix, which is given by
nt(2nt − 1) � 2n2

t flops where nt � noNf . The number of flops required
to construct the data matrix, R + HT

e He, from H(m) and R(m) is equal
to (2niΔ − 1)n2

oN
2
f � 2nin

2
oΔN2

f . Therefore, the overall number of flops
required to solve the linear system with the conjugate gradient method is prac-
tically equal to

2n2
oN

2
fNs + 2nin

2
oΔN2

f = 2n2
oN

2
f (Ns + niΔ) (3.62)

where Ns represents the number of steps required for the algorithm conver-
gence. Moreover, since in Scenario 1 it is necessary to solve ni linear systems
with the same data matrix — which will have to be constructed only once —
the complexity becomes

2nin
2
oN

2
fNs + 2nin

2
oΔN2

f = 2nin
2
oN

2
f (Ns +Δ) (3.63)

It is possible to calculate the complexity of the operation v = Ap when
v = Rp+HT

e g where g = Hep. Then, the number of flops at each step of the
algorithm is equal to nt(2nt − 1) � 2n2

t for calculating Rp, ni(Δ+1)(2nt −
1) � 2ntniΔ for calculating Hep, and nt(2ni(Δ + 1) − 1) � 2ntniΔ for
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calculating HT
e g; moreover, n2

t flops are required for the addition. Therefore,
at each step the number of flops follows

2n2
t + 2ntniΔ+ 2ntniΔ+ n2

t = nt(3nt + 4niΔ) (3.64)

The overall number of flops required to solve a single linear system is practi-
cally equal to

Nsnt(3nt + 4niΔ) (3.65)

and the one required to solve the ni linear systems in Scenario 1 is equal to

niNsnt(3nt + 4niΔ) � NsninoN
2
f (3no + 4ni) (3.66)

where the approximation Δ � Nf has been used. The comparison between
Equations (3.63) and (3.66) is given by

2nin
2
oN

2
f (Ns +Δ) < NsninoN

2
f (3no + 4ni) (3.67)

hence,
2no(Ns +Δ) < Ns(3no + 4ni) (3.68)

Exemplifing: if we assume no � ni, the result of the comparison will become

2(Ns +Δ) < 7Ns ⇔ Ns >
2

5
Δ (3.69)

if we assume no � 2ni, the result of the comparison will become

2(Ns +Δ) < 5Ns ⇔ Ns >
2

3
Δ (3.70)

To conclude, in Scenario 1, the construction at step 0 of the one data matrix,
R+HT

e He, is useful for the reduction of the computational complexity when
Ns > αΔ where α depends on the ratio no

ni
and increases with it.

3.3.7 Specializing the iterative solutionmethod to the given system
of equations

Since in the kth iteration step Ap(k) = Rp(k) +HT
e g

(k) with g(k) � Hep
(k),

three matrix multiplications can replace the direct calculation of Ap(k):
Rp(k), g(k) � Hep

(k) and HT
e g

(k). Using such an approach, the storage
requirements are strongly reduced as the number of entries which describe the
matrix R is equal to n2

oNf ; the one of the matrix He is equal to noni(Δ + 1),
having to store the matrices H(n) for n = 0, 1, . . . ,Δ. Therefore, unless
ni � no, the memory required is roughly reduced from n2

oN
2
f to n2

oNf , show-
ing an advantage when a long feedforward filter is employed.
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CalculatingRp(k)

Let us first define two vectors x �
[
x(0) x(1) . . . x(noNf − 1)

]T and

y �

⎡
⎢⎢⎢⎢⎣

[
y1(noNf − 1) . . . yno(noNf − 1)

]T[
y1(no(Nf + 1)− 1) . . . yno(no(Nf + 1)− 1)

]T
...[

y1(no(2Nf − 1)− 1) . . . yno(no(2Nf − 1)− 1)
]T

⎤
⎥⎥⎥⎥⎦ (3.71)

such that y = Rx. Equivalently, the following relation holds:

yi(n) = r̄i(n)⊗ x(n) i = 1, . . . , no (3.72)

where
r̄i(n) � ri(Nt − 1− n) n = 0, . . . , Nt − 1 (3.73)

with Nt � no(2Nf − 1) and

ri(n) � R(Nf − 1)|i,n+1 n = 0, . . . , no − 1 (3.74)

with R(Nf − 1)|i,n denoting the (i, n)-entry of R(Nf − 1);

ri(n+ no) � R(Nf − 2)|i,n+1 n = 0, . . . , no − 1 (3.75)

ri(n+ jno) � R(Nf − 1− j)|i,n+1 j ∈ {0, 1, . . . , Nf − 1} (3.76)

moreover,

ri(n+ (Nf − 1)no) � R(0)T |i,n+1 (3.77)

ri(n+ (Nf − 1)no + no) � R(1)T |i,n+1 (3.78)

ri(n+ (Nf − 1)no + jno) � R(j)T |i,n+1 (3.79)

Let us observe that the length of the sequence x(n) is Lx = noNf and the
one of the sequence yi(n) is Ly = no(2Nf − 1); moreover, the desired values
of the convolution are those between Ma = noNf − 1 and Mb = no(2Nf −
1) − 1. Therefore, the minimum number of DFT-points which can be used is
NFFT ≥ max(Mb+1, Lx+Ly−Ma−1) = max(no(2Nf−1), no(2Nf−1)) =
no(2Nf − 1).

Finally, the number of flops needed to the calculation Rp(k) is given by
the one required for two FFTs over no(2Nf − 1) points plus no(2Nf − 1)
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multiplications in the frequency domain; all this has to be calculated for no
times. Therefore, the complexity of the operation Rp(k) follows

no
[
no(2Nf − 1) + 2no(2Nf − 1) log2(no(2Nf − 1))

] �
2n2

oNf

[
1 + 2 log2(2noNf )

]
(3.80)

where we have neglected no with respect to noNf ; let us note that the com-
plexity is practically linear with Nf log2(Nf ).

CalculatingHep
(k)

Analogously to the previous section, let us first define the vectors x �[
x(0) x(1) . . . x(noNf − 1)

]T and

y �

⎡
⎢⎢⎢⎢⎣

[
y1(noNf − 1) . . . yni(noNf − 1)

]T[
y1(no(Nf + 1)− 1) . . . yni(no(Nf + 1)− 1)

]T
...[

y1(no(Nf +Δ)− 1) . . . yni(no(Nf +Δ)− 1)
]T

⎤
⎥⎥⎥⎥⎦ (3.81)

such that y = Hex. Equivalently, the following relation holds:

yi(n) = r̄i(n)⊗ x(n) i = 1, . . . , ni (3.82)

where
r̄i(n) � ri(Nt − 1− n) n = 0, . . . , Nt − 1 (3.83)

with Nt � (Δ + 1)no and

ri(n) � HT (0)|i,n+1 n = 0, . . . , no − 1 (3.84)

with HT (0)|i,n denoting the (i, n)-entry of HT (0);

ri(n+ no) � HT (1)|i,n+1 n = 0, . . . , no − 1 (3.85)

ri(n+ jno) � HT (j)|i,n+1 j ∈ {0, 1, . . . ,Δ} (3.86)

Let us observe that the length of the sequence x(n) is Lx = noNf and the
one of the sequence yi(n) is Ly = no(Nf+Δ); moreover, the desired values of
the convolution are those between Ma = noNf−1 and Mb = no(Nf+Δ)−1.
Therefore, the minimum number of DFT-points which can be used is NFFT ≥
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max(Mb + 1, Lx + Ly − Ma − 1) = max(no(Nf + Δ), no(Nf + Δ)) =
no(Nf +Δ).

Finally, the number of flops needed to the calculation Hep
(k) is given by

the one required for two FFTs over no(Nf + Δ) points plus no(Nf + Δ)
multiplications in the frequency domain; all this has to be calculated for ni
times. Therefore, the complexity of the operation Hep

(k) follows

ni
[
no(Nf +Δ) + 2no(Nf +Δ) log2(no(Nf +Δ))

] �
nino2Nf

[
1 + 2 log2(2noNf )

]
(3.87)

where we have approximated Δ with Nf ; let us note that the complexity is
practically linear with Nf log2(Nf ).

CalculatingHT
e g

(k)

Analogously to the previous section, let us first define the vectors x �[
x(0) x(1) . . . x(ni(Δ + 1)− 1)

]T and

y �

⎡
⎢⎢⎢⎢⎣
[
y1(ni(Δ−N + 1)− 1) . . . yno(ni(Δ−N + 1)− 1)

]T[
y1(ni(Δ−N + 2)− 1) . . . yno(ni(Δ−N + 2)− 1)

]T
...[

y1(ni(Δ + 1)− 1) . . . yno(ni(Δ + 1)− 1)
]T

⎤
⎥⎥⎥⎥⎦ (3.88)

such that y = HT
e x. Equivalently, the following relation holds:

yi(n) = ri(n)⊗ x(n) i = 1, . . . , no (3.89)

where
ri(n) � H(0)|i,ni−n n = 0, . . . , ni − 1 (3.90)

with H(0)|i,n denoting the (i, n)-entry of H(0);

ri(n+ ni) � H(1)|i,ni−n n = 0, . . . , ni − 1 (3.91)

ri(n+ jni) � H(j)|i,ni−n j ∈ {0, 1, . . . ,Δ} (3.92)

With passages like the ones of the previous section, we have found out that
the minimum number of DFT-points which can be used is NFFT ≥ (ni(Nf +
Δ) and the complexity of the operation will be nino2Nf

[
1 + 2 log2(2niNf )

]
where, as in the previous section, we have approximated Δ with Nf ; let us
note that the complexity is practically linear with Nf log2(Nf ).
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3.3.8 Implementation complexity and numerical results

Let Cm be the number of real-valued multiplications required by the considered
equalizer; it can be written as3

Cm = 2nfNf (3.93)

where nf is the overall number of feedforward filters composing the equalizer
(let us remind that the filters are widely linear, so they process both the signal
itself and its complex conjugate version, or, equivalently, the real part of the
signal and the imaginary one). It is equal to M for the per-subcarrier equalizer,
to M2 for the complete equalizer and to (2k1 + 1)M for the proposed ad hoc
equalizer (see Section 3.2.1). Analogous considerations can be done for the
feedback filters; however, they perform only additions whose overall number
increases linearly with the number of the feedback filters and with the one of
their taps Nb. It is useful to note that the per-subcarrier equalizer performs well
only if the diagonal dominance of the equivalent MIMO channel is significant:
this implies the need of a large value of M .

The number of multiplications required by the equalizer for each equalized
symbol is equal to Cma =

Cm
M ; if nf = M , i.e., in presence of the per-subcarrier

equalizer, then Cma = 2Nf � Cs; in presence of the complete equalizer,
hence, for nf = M2, one will have that Cma = MCs and, finally, in presence
of the ad hoc equalizer, Cma = (2k1 + 1)Cs being nf = (2k1 + 1)M .

It is useful to note that the number of taps needed for the feedforward
filter of the equalizer is proportional to the length of the discrete-time MIMO
channel. Let us denote with kf such proportionality factor, i.e., kf : Nf =

kf (K0 + 4γ + 1) where K0 �

⌈
P−1
M
2

⌉
and P can be written as ΔτB

1+β where

Δτ is the delay spread of the channel, B its bandwith, β the roll-off factor in
the conversion from the discrete-time to the continuous-time. Therefore, for
a difference of 1 km between the longest and the shortest path, we obtain an
upper bound to Δτ of 4 μs and, for a bandwidth of 20 MHz, a value of P about
64, too: consequently, Nf ∝ 2·64

M +4γ+1. All things considered, a large value
of M would allow the equalizer to operate per-subcarrier by a feedforward
filter which has almost its minimum length (� 4γ + 1): this minimizes the
computational complexity of the equalizer.

More specifically, with a very large number of subcarriers (e.g., 1024), it is
possible to operate using a diagonal WL-DF equalizer. This provides the max-
imum reduction of the equalizer complexity; however, such a simplification

3The feedforward filters have been implemented in direct form.
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is obtained thanks to the use of a large number of subcarriers, which creates
important problems to the system, e.g., it increases the delay of the equalizer
and we may determine a symbol period, which is proportional to M , too long
with respect to the horizon of stationarity of the communication channel.

We have first considered a discrete-time equivalent transmission channel
with 10 taps and unit energy. We have used the equalizer in Scenario 1 and the
following other parameters: M = 4, SNR = 20 dB, Nf = 15, Δ = Nf − 1,
Nb = 12. To obtain acceptable performance we have needed a single WL
feedforward filter for each subcarrier and a feedback filter which accounts for
the adjacent subcarriers. Let us note that in such a condition the per-subcarrier
WL-DF equalizer performs poorly. When we move to 8 subcarriers, we note
that the WL feedforward filter has to account for a single adjacent subcarrier
and the feedback filter has to account for two adjacent subcarriers. We have
also verified that, in presence of an estimation noise on channel response coef-
ficients, we can correctly equalize the channel provided that the standard devi-
ation of the estimation noise is equal to the average value of the modules of the
channel coefficients. Moreover, we have verified that the propagation of the
error introduces important performance degradations. Therefore, the system
needs to work with correct previous decisions in order to provide acceptable
performance, i.e., the probability of error must be maintained sufficiently low
in each transmitted packet, which is formed also by a known preamble repre-
senting the training symbols.

This means that the computational complexity can be maintained limited
even with a limited number of subcarriers; but this does not mean that the com-
putational complexity of the equalizer can be made practically equivalent to its
smaller value, Cs, which is attained thanks to the use of a large number of sub-
carriers, but that the factor (2k1+1) which describes its increase with respect to
Cs can be marginal. If it is really marginal, however, it will depend on the gen-
eral conditions, e.g., on how long the discrete-time equivalent MIMO channel
is, i.e., how large the bandwidth is and how long the delay spread is, how fast
it is time-variant, how efficient the techniques for managing a large number
of subcarriers are, and so on. We have dealt with in the simulation experi-
ments an equalizer which is able to combat the interferences present when the
number of the subcarriers is not so large to allow per-subcarrier equalization.
We have proposed important modifications to the classical WL-DF scheme in
order to reduce the computational complexity both in the design stage of the
WL-DF equalizer and in the implementation stage by using a simplified struc-
ture for the overall MIMO equalizer which contains only a minimal number of
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feedforward and feedback WL single-input single-output (SISO) filters.
In the following, we report some numerical results which support our eval-

uations. In Figure 3.5, the probability of error is represented versus the signal-
to-noise ratio with the number of iteration steps of the conjugate gradient algo-
rithm, Ns, increasing from 1 to 15 till the algorithm converges. More precisely,
this result is obtained by exactly calculating the probabilities of error of one
component of the channel input at each iteration step and then averaging them
over 50 different channels of unit energy and length 10; each channel tap is de-
scribed by a complex Gaussian random variable normalized according to the
unit-energy constraint. Moreover, we have set: M = 4, γ = 4, Nf = 30,
Δ = 29, Nb = 12, k1 = 0, k2 = 1 in Scenario 1. In Figure 3.6, it is rep-
resented the probability of error versus the iteration steps with reference to
the four input symbols of a specific channel. We have set SNR = 25 dB,
besides all the other parameters as in the previous figure. In Figure 3.7, the
same quantities as Figure 3.6 are represented but, with respect to it, the chan-
nel is changed among the 50 channels used for Figure 3.5. All the parameters
coincide with those of Figure 3.6. Let us note how there can be a strong dif-
ference in the convergence speed among the components of the feedforward
filter related to the various subcarriers. In Figure 3.8, the same quantities as
Figures 3.6 and 3.7, with the same parameters, are represented, but now they
are averaged over the 4 input symbols and over the 50 different channels used
for Figure 3.5. Finally, in Figure 3.9, it is represented the the symbol error
probability in two different scenarios, i.e., in presence of the per-subcarrier
equalizer and the ad hoc one (with k1 = 0 and k2 = 1 as in the other figures).
We have set: Nf = 15, Δ = 14, besides all the other parameters as in the pre-
vious figures. This result confirms our evaluations about the estimation noise
on channel response coefficients and about the propagation of the error. In the
same conditions as Figure 3.9 and for SNR = 25 dB, we have found out, for
different choices of k1 and k2, the values of the error probability which are
reported in Table 3.1.
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Figure 3.5: Error probability versus SNR with the number of iterations varying.
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Figure 3.6: Error probability versus the number of iterations for each input symbol to
a specific channel.
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Figure 3.7: Error probability versus the number of iterations for each input symbol to
another specific channel.
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Figure 3.8: Error probability versus the number of iterations averaged over the input
symbols and the channels.
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Figure 3.9: Symbol error probability in two different scenarios: per-subcarrier equal-
ization and ad hoc one.

Table 3.1: Error probability for some different choices of k1 and k2.

(k1, k2) Pr

(0, 1) 0.0239
(0, 2) 0.0239
(0, 3) 0.0239
(0, 0) 0.3847
(1, 0) 0.4003
(1, 1) ≈ 10−8





Conclusion

In this thesis, the main subject has been the equalization, with a particular
reference to OFDM-OQAM systems.

In Chapter 1, we have introduced the MIMO system model, which has
been widely employed throughout the thesis as a starting point to design the
equalization techniques.

We have first focused on WL filtering which, generalizing the linear one,
allows one to get performance improvements in presence of rotationally vari-
ant signals. In Chapter 2, in fact, there are two results deriving by the employ-
ment of the WL filtering: the former concerns the transmitter and the receiver
IQ imbalance compensation by the WL MMSE equalizer; the latter deals with
the problem of the constellation optimization in presence of the WL MMSE
equalizer: a scheme which performs a WL transformation of the transmitted
signals dependent on the state of channel has been proposed, in order to opti-
mize the receiver performance in terms of SER.

In Chapter 3, we have considered OFDM-OQAM systems, modelling them
as a MIMO channel, both in a single antenna and multiple antenna scenario.
We have observed the diagonally dominant structure of the channel impulse
response which has allowed us to conceive some ad hoc structures for the
equalizer, i.e., structures where, according to the size of the interference terms,
only some adjacent subcarriers to that to be equalized are selected for the
MIMO equalization. More specifically, we have employed the MMSE WL-
DF MIMO equalizer, proposing a synthesis algorithm with minimum storage
requirements. Such equalizer provides a good trade-off between performance
and complexity.
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Appendix A

A.1 Proof of Lemma 3.3

Let us remind of C(z) � H(z)Z(z) where Z(z) is a Toeplitz M ×M matrix,
i.e. a matrix in which each descending diagonal from left to right is constant;
H(z) �

∑P−1
k=0 h(k)z−k and we assume h(k) = 0 for k /∈ {0, 1, . . . , P − 1}.

Let us develop the passages:

C(z) � h(0)

⎡
⎢⎢⎢⎢⎣

z−M z−(M+1) . . . z−(2M−1)

z−(M−1)
. . . . . . ...

... . . . . . . z−(M+1)

z−1 . . . z−(M−1) z−M

⎤
⎥⎥⎥⎥⎦

+ h(1)

⎡
⎢⎢⎢⎢⎣

z−M z−(M+1) . . . z−(2M−1)

z−(M−1)
. . . . . . ...

... . . . . . . z−(M+1)

z−1 . . . z−(M−1) z−M

⎤
⎥⎥⎥⎥⎦ z−1 + . . .

+ h(P − 1)

⎡
⎢⎢⎢⎢⎣

z−M z−(M+1) . . . z−(2M−1)

z−(M−1)
. . . . . . ...

... . . . . . . z−(M+1)

z−1 . . . z−(M−1) z−M

⎤
⎥⎥⎥⎥⎦ z−(P−1)

(A.1)

If we place M expanders by M
2 before the channelC(z) and M decimators

by M
2 after it, such channel will be characterized by the following transfer
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function:1

CM
2
(z) � h(0)

⎡
⎢⎢⎢⎢⎢⎣
z−2 0 z−3 0

0
. . . . . . ...

z−1
. . . . . . ...

0 . . . . . .
...

⎤
⎥⎥⎥⎥⎥⎦

+ h(1)

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0 z−3 0 z−4

z−2
. . . . . . . . . ...

0
. . . . . . . . . ...

z−1
. . . . . . . . . ...

0 . . . . . . . . .
...

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
+ . . .

+ h

(
M

2
− 1

)
⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 z−3 0 z−4 0

0
. . . . . . . . . ...

z−2
. . . . . . . . . ...

0
. . . . . . . . . ...

z−1 . . . . . . . . .
...

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
+ . . .

(A.2)

Let us note that, while the time index (k) increases, each descending diagonal
from left to right shifts towards left and on the extreme right a new component
appears.

1The matrices are all Toeplitz ones.
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Equation (A.2) can also be written as

CM
2
(z) �

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0

h(0)
. . . . . . . . . ...

h(1)
. . . . . . . . . ...

... . . . . . . . . . ...

h
(
M
2 − 1

)
. . . . . . . . .

...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
z−1

+

⎡
⎢⎢⎢⎢⎢⎣

h(0) 0 0 0

h(1)
. . . . . . ...

... . . . . . . ...

h(M − 1) . . . . . .
...

⎤
⎥⎥⎥⎥⎥⎦ z−2

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

h
(
M
2

)
h
(
M
2 − 1

)
. . . h(0) 0 0

h
(
M
2 + 1

) . . . . . . . . . . . . ...
... . . . . . . . . . . . . ...

h(M + 1)
. . . . . . . . . . . . ...

... . . . . . . . . . . . . ...

h
(
3M

2 − 1
)

. . . . . . . . . . . .
...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
z−3

+

⎡
⎢⎢⎢⎢⎢⎣

h(M) h(M − 1) . . . h(1)

h(M + 1)
. . . . . . ...

... . . . . . . ...

h(2M − 1) . . . . . .
...

⎤
⎥⎥⎥⎥⎥⎦ z−4 + . . .

(A.3)

Therefore, we obtain

CM
2
(z) �

K0+3∑
k=1

cM
2
(k)z−k (A.4)

with

cM
2
(k) � Toeplitz(χk, φk) (A.5)
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where

χk �

[
h

(
(k− 2)

M

2

)
h

(
(k− 2)

M

2
+1

)
. . . h

(
(k− 2)

M

2
+ (M − 1)

)]T
(A.6)

φk �

[
h

(
(k − 2)

M

2

)
h

(
(k − 2)

M

2
− 1

)
. . . h

(
(k − 2)

M

2
− (M − 1)

)]
(A.7)

K0 �

⌈
P−1
M
2

⌉
and Toeplitz(u,v) denotes the Toeplitz matrix with u as first

column and v as first row.
The values k can assume have been calculated by the following equations:

(k − 2)
M

2
− (M − 1) ≤ P − 1 (A.8)

(k − 2)
M

2
+ (M − 1) ≥ 0 (A.9)

from which one gets that 1 ≤ k ≤ K0 + 3.
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