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ABSTRACT 
 
Molecular alterations of the receptor tyrosin kinase RET are 

involved in the pathogenesis of thyroid cancer. Germline point 
mutations in the extracellular and intracellular domains of the receptor  
are responsible of a group of inherited cancer diseases defined as 
Multiple Endocrine Neplasia type 2 syndromes (MEN2), whose major 
feature is represented by Medullary Thyroid Carcinoma (MTC). 
Somatic point mutations of RET are also found in around 40% of 
sporadic MTC.  

Hsp90 is part of the molecular chaperone machinery involved in 
mediating correct folding and stabilization of client proteins. Hsp90 
chaperone fuctions in concert with the action of a multitude of other 
chaperone and co-chaperone proteins like Hsp70, Aha1 and CDC37; 
its activity depends on ATP and can be hindred by Geldanamycin-like 
compounds. Several kinases implicated in the process of neoplastic 
transformation are clients of Hsp90.  

 In this thesis, we demonstrated that RET is a Hsp90 client 
protein. In RAT1 murine fibroblasts, stably transfected with RET wt or 
RET C634R oncogenic mutant, the Geldanamycin-derived drug 17-
AAG was able to induce a proteasome dependent degradation of the 
receptor.  Treatment with 17-AAG caused dissociation of Hsp90-RET 
complex and stabilized the interaction between RET and Hsp70 
leading to recruitment of the Hsp70 interacting E3-ligase CHIP. 
Polyubiquitination by E3-ligases is commonly a destruction signal that 
mediates recognition of the targetted proteins by proteasome. 
Overexpression of CHIP wt, but not of two different CHIP defective 
mutants, CHIP-TPR and CHIP- U, induced RET polyubiquitination 

and degradation. Interestingly, 17-AAG obstructed RET oncogenic 
signalling, decreasing RET C634R mediated activation of Ras-MAPK 
pathway and blocking transactivation of AP1-responsive and Myc-
gene promoters. We could not observe any changes in sensitivity to 
17-AAG-induced degradation among several RET MTC-associated 
mutants carrying mutations in the intracellular domain of the receptor, 
the region where Hsp90 chaperone has been shown to bind to 
receptor tyrosine kinases. 

In human MTC cells carrying oncogenic RET mutants, Hsp90 
inhibition  by 17-AAG induced receptor degradation and signalling 
hindrance as shown by reduced phosphorylation of Shc and MAPK 
proteins. In such cells, 17-AAG caused a robust growth arrest, 
measured by decreased incorporation of BrdU, but failed to induce 
apoptosis.  

In conclusion we demonstrated that RET is a Hsp90  client 
protein and the chaperone is required for folding and stabilization of 
the receptor.  
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1.BACKGROUND 

   1.1 Thyroid cancer

 
Thyroid cancer is the most common endocrine neoplasia, 

accounting for the majority of the deaths due to endocrine cancers.  
Malignant thyroid carcinoma is classificated after the state of 

differentiation of tumour cells: well-differentiated, poorly differentiated, 
not differentiated and medullary thyroid carcinoma. The group of well-
differentiated carcinoma include various histological subtypes: 
papillary thyroid carcinoma (PTC), follicular-papillary thyroid carcinoma 
and follicular carcinoma (FTC). The category of poorly differentiated 
carcinoma (PDC) has been recently identified and represents a 
histological derivation between the undifferentiated and the 
differentiated tumour. The category of not-differentiated carcinoma 
includes the anaplastic thyroid carcinoma (ATC). All these groups 
derive from follicular cells. Medullary thyroid carcinoma (MTC) derives 
from the calcitonin-secerning parafollicular C cells.  

1.2 Histotypes of thyroid cancer 

1.2.1 Papillary Thyroid carcinoma 

         
         Papillary thyroid carcinoma (PTC) is the most frequent neoplasia 
of the thyroid gland (50-90% of the total malignant thyroid 
differentiated tumours). PTC typically is detected as an irregular, solid 
or cystic mass. PTC can show papillae within a single- or multi-layer 
cubic ephitelium.  Cytologically it displays eosinophilic inclusions in the 
nuclei and cytoplasmatic invaginations. These structures are not 
present in medullary and follicular thyroid carcinoma.  Papillary thyroid 
cancer is highly curable with ten years survival rates estimated at 80-
90%. Cervical metastasis (spread to lymph nodes in the neck) are 
present in 50% of small tumors and in over 75% of the larger thyroid 
cancers.  

Typically, well-differentiated papillary thyroid carcinoma has 
indolent behavior and can be effectively treated by surgery followed by 
radioiodine therapy.  

Some risk factors for PTC have been identified. Ionizing radiation 
exposure of the thyroid gland is the first risk factor known to definitively 
increase the incidence of papillary thyroid cancer. The exposure to 
ionizing radiation causes the tendency to chromosomal breaks and 
rearrangements with activation of oncogenes or loss-of-tumour 
suppressor genes. A frequent molecular alteration of papillary thyroid 
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tumour is characterized by fusion of the kinase domain of the tyrosine 
kinase receptor RET with the N-terminal region of constitutively 
expressed, heterologous genes, such as H4 (RET/PTC1) or NCOA4 
(RET/PTC3). The fusion protein RET/PTC displays a constitutive 
activation of RET kinase function that becomes ligand indipendent 
(Santoro et al. 1994). Other molecular alterations of PTC include point 
mutations in BRaf (45%) and Ras (10%) proteins.  

1.2.2 Follicular Thyroid carcinoma 

 
Follicular thyroid carcinoma (FTC) is a well-differentiated cancer 

developing from thyroid follicular cells. FTC is generally a lonely 
nodule, either capsulated or infiltrating the adjacent compartments. As 
for PTC, therapy for FTC consists in surgery followed by metabolic 
treatment with 131I. Prognosis is very good with a survival rate at 10 
years ranging from 90 to 98%. Most common molecular lesions 
responsible of FTC are mutation on K-, H- and N-Ras (Challeton et al. 
1995). More recently it has been shown that a portion of FTC carries 
the PAX8/PPAR  rerrangement (Nikiforova et al. 2003). PAX8 

encodes a thyroid-specific transcription factor, while PPAR  is a 

nuclear receptor involved in lipid metabolism and tumorigenesis. The 
resulting fusion protein has a dominant negative activity on wild type 
PPAR  protein (Kroll et al.  2000). 

1.2.3 Anaplastic Thyroid carcinoma 

 
Anaplastic Thyroid carcinoma (ATC) represents the 1-5% of the 

total thyroid carcinoma and it occurs around the 6th-7th decade of life. 
The neoplasia is characterized by elevated level of malignancy and it 
causes a rapid invasion of the adjacent structure with frequent 
metastasis. Histologically the tissue of ATC appears wholly or partially 
composed of undifferentiated cells.  

Point mutations in Ras and PI3KCA (catalytic subunit of PI3K) 
oncogenes and in the tumour suppressor p53 have been described in 
anaplastic carcinoma (Garcia-Rostan et al. 2003; Donghi et al. 1993; 
Fagin et al. 1993). BRaf mutations are highly variable in ATC, ranging 
from 0 to 50%. The variability in BRaf mutation detection in ATC is 
probably due, in part, to small sample sizes and different laboratory 
methodologies. When ATCs with a papillary component were 
examined, this mutation was observed in both the differentiated and 
undifferentiated regions (Begum et al. 2004; Soares et al. 2004; 
Takano et al.  2007). 

No effective therapy is known for ATC and prognosis is quite 
negative with a mean survival of less than one year. These tumours, 
given their undifferentiated nature, do not significatively incorporate 
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radioiodine; however, it can be utilized in the treatment protocols if a 
residual ability to incorporate can be ascertained. Only very few 
responses have been reported with combined antracyclines-palliate 
regimens. If the tumour is sensible, radiation therapy of the neck can 
be exploited for a palliative cure. 

1.2.4 Medullary Thyroid carcinoma 

 
Medullary thyroid carcinoma was recognized in the 1950s by 

Hazard et al. as a distinct clinicophatologic entity (Hazard et al. 1959). 
Since the description, sequential pathologic, biochemical and 
molecular genetic studies have progressed to render this one of the 
best characterized solid malignancies of the thyroid (Hazard et al.  
1959). In 1959, Hazard described MTC as a solid thyroid neoplasm 
without follicular histology but with a high degree of lymph node 
metastases that accounted for 3-5% of thyroid cancers. In the 1966, 
Williams suggested that MTC arose from the parafollicular cells 
(Williams, 1966). Parafollicular, or C cells, arise embryologically from 
the neural crest and are located primarily in the upper and middle 
thirds of the thyroid lobes, with a particular posterior concentration; 
these cells produced the Calcitonin hormone, a 32-amino acid peptide 
involved in calcium homeostasis representing an important marker for 
the diagnosis of MTC. The majority of patients with MTC have 
sporadic diseas. Nevertheless, 25% to 30 % of cases are due to 
hereditary forms of MTC (Kouvaraki et al. 2005). Hereditary MTC is 
classified according to three distinct clinical subtypes: MEN2A, 
MEN2B and FMTC. The most common of these subtypes MEN2A, 
accounts for 70% to 80% of individuals with hereditary medullary 
thyroid carcinoma (MTC). MEN2A is characterized by MTC, 
pheochromocytoma and primary hyperparathyroidism, although the 
penetrance is highly incomplete  (Brandi et al. 2001). Two rare 
variants of MEN2A have been identified, one with congenital 
megacolon (Hirshsprung’s disease) and the other with cutaneous 
lichen amyloidosis (Kouvaraki et al.  2005). MEN2B, accounts for only 
5% of hereditary MTC cases. MEN2B is characterized by clinically 
aggressive MTC, pheochromocytoma, Marfanoid body habitus, 
mucosal neuroma and intestinal tumours (Brandi et al. 2001). The 
onset of MTC is generally before 5 years of age. The third inherited 
subtype of MEN2 is familiar MTC (FMTC). This subtype accounts for 
10% to 20 % of hereditary MTC cases and only the thyroid gland is 
affected.  

In the early 1990’s, mutations in the RET proto-oncogenes were 
found to cause MEN2A, MEN2B and FMTC (Donis-Keller et al. 1993; 
Carlson et al. 1994). Activating RET germline mutations have been 
identified as the primary cause of all the hereditary MTC syndromes; 



 

 

 13 

somatic RET mutations account for another quarter to half of all 
sporadic MTC (Eng et al. 1996). 

The specific site of the particular mutated residue within the RET 
protein has been correlated to phenotypic differences among patients 
with inherited MTC. Patients with MEN2A characteristically have 
missense mutations in exon 10 (codons 609, 610, 611, 618, 620) and 
exon 11  (codon 634 that is the most common mutation in patients with 
MEN2A) (Brandi et al. 2001). These are mutations present in the RET 
extracellular domain and affect cysteine residues that can change to 
different aminoacids (Asai et al. 1996). Mutations in these cysteine 
residues lead to receptor homodimerization via the formation of 
disulfide bonds, rendering the receptor activated regardless of the 
presence of ligand. In the case of MEN2B, more than 95% of patients 
have mutation in exon 16 (M918T), in the tyrosine kinase domain of 
the protein. This mutation renders the receptor activated in its 
monomeric state, and leads to increased phosphorylation of 
intracellular tyrosine residues as well as a change in substrate 
specificity (Santoro et al. 1995; Salvatore et al. 2001). Patients with 
FMTC harbor mutations in exons 10, 11, 13 (codon 768), and 14 
(codon 804, 806) (Brandi et al. 2001) (Table 1).  

 
        Table 1: Principal RET point mutations in MEN2 syndromes 

 

MTC is quite resistant to conventional chemotherapy and 
radiotherapy and the only effective cure is still represented by early 
surgery. Therefore this tumour is a suitable candidate for alternative 
therapeutic approaches such as molecular targeted therapy. Clinical 
trials using inibitors of RET tyrosine kinase activity are being used in 
patients with MTC. Various classes of small molecule TKI (Tyrosine 
Kinase Inhibitors) have shown anti-RET activity in preclinical studies, 
including pyrazolopyrimidine inhibitors PP1 and PP2, idolocarbazole 
derivatives CEP-701 and anilinoquinazoline ZD6474 (Cuccuru et al. 
2004; Carlomagno et al. 2002; Carlomagno et al. 2002; Carlomagno et 
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al. 2003). Among this group of compounds, the clinical development of 
ZD6474 (Vandetanib) is the most advanced. Vandetanib is an orally 
available TKI that targets VEGF-dependent tumour angiogenesis 
through inhibition of its receptor KDR as well as EGFR and RET-
dependent tumour cell proliferation. ZD6474 competes with ATP and 
blocks autophosphorylation and signal transduction. Pre-clinical 
studies showed that ZD6474 inhibits RET with a 50% inhibitory 
concentration (IC50) of 100nM (Carlomagno et al. 2002). In addition, 
ZD6474 was shown to inhibit growth of RET-transformed cell 
xenografts (Carlomagno et al. 2002). There are other multikinase 
ihibitors such as: Sorafenib, Sunitinib, Motesanib that share the ability 
of inhibiting RET, VEGFRs, KIT and the receptors for platelet-derived 
growth factor (PDGFR) (Schlumberger et al. 2008). All these 
compounds are being tested in clinical trials for MTC, as well. 

1.2 The RET receptor 

 
RET was first identified by Takahashi et al. in 1985 as a proto-

oncogene able to undergo activation after genetic rearrangements 
during transfection of NIH3T3 cells with human lymphoma-derived 
DNA (Takahashi et al. 1985). The RET proto-oncogene is located on 
chromosome 10q11.2 and includes 21 exons; it encodes several 
protein isoforms that are expressed as a result of alternative splicing of 
mRNA (Ishizaka et al. 1989). The principal isoforms of this receptor 
are RET9 of 1072 aa and RET51 of 1114 aa. RET is highly conserved 
over a broad range of species. 

1.2.1 RET structure and function 

 
RET is a single-pass transmembrane protein. The basic structure 

of RET is similar to other RTKs with extracellular, transmembrane and  
intracellular domains (Fig.1). The extracellular domain of RET has no 
homology with other receptor tyrosine kinases (Takahashi et al. 1988). 
It contains a cleavable signal sequence of 28 aa, as well as a 
conserved cysteine-rich region close to the cell membrane. Molecular 
modeling studies have determined the presence of four cadherin–like 
domains in the NH2-ter sequence of the extracellular region. The 
extracellular domains binds to the four RET ligands (GFLs) which are 
neurotrophins belonging to the superfamily of TGF  growth factor and 

are secreted in a dimeric structure. In particular, GFLs are Glial-
derived Neurotrophic Factor (GDNF), Neurturin (NRTN), Artemin 
(ARTN) and Persephin (PSPN). GFLs signal through a multisubunit 
complex comprising RET and one of the four glycosyl 
phosphatidylinositol (GPI)-linked proteins known as GDNF family 
receptors  (GFR -1 to 4). GFR  is localized in a zone rich of 
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sphingolipids and cholesterol (lipid rafts) where the receptor RET is 
recruited after being activated by GDNF. 

The intracellular domain (IC) contains the Juxta-membrane 
region (JMR) and the tyrosin kinase domain divided into two domains 
spaced out by 27 amino acids. This domain is responsible of the RET 
signalling activation and consequent signal transduction. 

 

                     
 
Figure 1. RET structure: the extracellular domain is composed by a 

Cadherin-like domain (Cad), indicated in green, and a Cystein-rich domain (Cys), 
indicated in light blue; transmembrane domain is indicated in blu; the intracellular 
compartment (yellow) displays the Tyrosine Kinase domain divided in two 
subdomains (TK1 and TK2) by 27 aa. 

1.2.2 RET signalling 

 
Upon activation by ligands, RET dimerizes and 

autophosphorylates on specific tyrosine residues in the IC domain. As 
for all Receptor Tyrosine Kinases, phosphorylated tyrosines serve as 
docking sites for adaptor signalling molecules containg SH2 (Src 
homology 2) or PTB (Phospho Tyrosine Binding) domains. The 
recruitment of these adaptors to the receptor switches on signalling 
pathways controlling cell proliferation, survival, motility, differentiation 
and neoplastic transformation. Interactions of RET with a variety of 
downstream targets have been identified (Simons et al. 1997; Ikonen 
et al. 1998). Thus, the intracellular domain of RET contains at least 12 
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autophosphorylation sites (Liu et al. 1996; Salvatore et al. 2000; 
Coulpier et al. 2002; Kawamoto et al. 2004). Sites Tyr1090 and 
Tyr1096 are present only in the RET51 isoform. Phosphorylated 
tyrosine residues Tyr905, Tyr981, Tyr1015, and Tyr1096 have been 
identified as docking sites for Grb7/Grb10, Src, Phospholipase C-  
(PLC- ), and Grb2, respectively (Pandey et al. 1995; Pandev et al. 
1996; Encinas et al. 2004; Borrello et al. 1996; Alberti et al. 1998). 
Phosphorylation of Tyr905, located in the activation loop, stabilizes the 
active conformation of the kinase and facilitates the 
autophosphorylation of other tyrosine residues (Iwashita et al. 1996). 
Tyr1062 acts as a docking site for many adaptor or effector proteins: 
Shc, ShcC, FRS2, IRS1/2, Dok1, Dok4/5, Dok6, Enigma, and 
indirectly for PKC  (Asai et al. 1996; Durick et al. 1996; Arighi et al. 
1997; Lorenzo et al. 1997; Ohiwa et al. 1997; Hennige et al. 2000, 
Kurokawa et al. 2001, Melillo et al. 2001a; Melillo et al. 2001b, Grimm 
et al. 2001, Murakami et al. 2002; Pelicci et al. 2002; Andreozzi et al. 
2003; Crowder et al. 2004). Upon ligand stimulation, at least two 
distinct protein complexes assemble on phosphorylated Tyr1062 via 
Shc, one leading to activation of the Ras/ERK pathway through 
recruitment of Grb2/Sos and another to the PI3K/Akt pathway through 
recruitment of Grb2/GAB1/2. This latter complex can also assemble 
directly onto phosphorylated Tyr1096, offering an alternative route to 
PI3K activation by GDNF (Besset et al. 2000; Hayashi et al., 2000) 
(Fig.2).                           

                          
     

 
        
         Figure 2: Signaling pathways activated by RET  
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Beyond Ras/ERK and PI3K/AKT, RET activates several 

pathways typical of Receptor Tyrosine Kinase signalling such as: 1) 
Jun NH2-terminal protein kinase (JNK) (Chiariello et al. 1998), 2) 
p38MAPK (Kurokawa et al. 2003), 3) ERK5 (Hayashi et al. 2001) and 
4) PLC-  (Borrello et al. 1996).  

 

1.3 The Chaperonins 

 
The primary amino acid sequence of a polypeptide chain already 

contains sufficient information to direct its folding to the native state. 
Under cellular conditions, which feature both higher temperature and 
higher macromolecular solute concentration than those typically 
employed in vitro, misfolding is a common occurrence. Misfolding 
usually results in the exposure of hydrophobic surfaces that should 
have been buried in the interior of a protein in its native state. These 
hydrophobic surfaces can associate with those from other proteins to 
produce multimolecular aggregation. Molecular chaperones are a 
group of specialized proteins that bind such exposed surfaces through 
their own exposed hydrophobic binding sites carrying out the 
remarkable activity of mediating ATP-dependent protein folding to the 
native state. Their role is to provide kinetic assistance, utilizing the 
energy of ATP for the folding process and thus to prevent or reverse 
misfolding that can lead to irreversible protein aggregation. There are 
many types of molecular chaperones in various organisms such as in 
chloroplast, bacterial cytosol, archea and eukaryotic. The major 
chaperone systems in the eukaryotic cytosol, including Hsp70, CCT 
(chaperonin containing TCP1) and Hsp90 are essential for viability. 

1.3.1 Hsp90 

 
The 90-KDa heat shock proteins (Hsp90) are a widespread 

family of molecular chaperones found in bacteria and all eukaryotes. 
Many eukaryotes possess multiple Hsp90 homologues, including 
endoplasmic reticulum, mitochondrial and chloroplast-specific 
isoforms. 

1.3.1.1 Structure and conformation 

 
Crystallization of full-length Hsp90 was first reported nearly 10 

years ago (Prodromou et al. 1996). 
The protein Hsp90 is divided into tree domains: N-terminal, 

middle segment and C-terminal domain (Fig.3). 
The N-terminal portion forms a 25 KDa domain and 
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crystallography revealed a two layers /  sandwich structure in which 

the helixes delimit a pocket extending from the surface to the buried 
face of highly twisted antiparallel sheet. In the human structure, this 

pocket was found to be the binding site for ATP and for the 
macrocyclic antitumour agent geldanamycin, whose binding to Hsp90 
had been shown to disrupt productive complexes of Hsp90 with client 
protein such as kinases and steroid hormone receptors (Whitesell et 
al. 1994; Chavany et al. 1996).     

 The middle domain consists of a large  (  helix-  sheet-

 helix) domain at the N-terminus connecting to a small  (  helix-

 sheet-  helix)  domain at the C-terminus via series of short helixes 

in a tight coil. The middle segment is the major site for client protein 
interactions, with a conserved hydrophobic patch centred on Trp 300 
and an unusual amphipatic protrusion formed by residues 327-340. 
The middle segment also contributed a key catalytic lysine residue that 
would interact with the phosphate of an ATP molecule bound in the 

N-terminal domain (Meyer et al. 2003). 
The C-terminal domain is essential for Hsp90 dimerization. The 

dimer interface is formed by a pair of helixes at the C-terminal end of 
the domain packing together to create a four-helix bundle. The C-
terminal domain presents the MEEVD motif implicated in binding to 
cochaperones with tetratricopeptide repeat (TRP) domains (Young et 
al. 1998). 

 

    
 
Figure 3: Structure of the Hsp90 dimer. The numbering 1–732 indicates the 

approximate positions in the amino acid sequence of the human protein that define 
its functional domains. ‘CR’ refers to a charged region which serves as a flexible 
linker between the N-terminal and middle domains. The locations where ATP and 
inhibitors (small molecules) bind Hsp90 (heat-shock protein of 90 kDa) and modulate 
its function are indicated. 17AAG, 17-allylaminogeldanamycin; GA, geldanamycin. 
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1.3.1.2 Hsp90 function 

  
Hsp90 is a chaperone protein. As already explained, chaperones 

constitute a functionally related collection of highly conserved and 
ubiquitous proteins that specifically recognize non-native proteins. 
Thus, chaperones prevent unwanted inter- and intra-molecular 
interactions and influence the partitioning between productive and 
unproductive folding steps but do not form part of the final structure of 
the folded protein. Several in vitro assays demonstrate that Hsp90 
acts as a molecular chaperone: it suppresses the aggregation of non-
native proteins and promotes their refolding, sometimes in cooperation 
with the Hsp70 system.  

1.3.1.3 ATP cycle 

 
The ATP molecule is essential for the function of Hsp90; 

conformational changes of Hsp90 in presence of ATP had been 
previously observed, and they have been interpreted in terms of a 
structural transition from an open hydrophobic state to a more closed 
conformation due dimerization of the N-terminal domain (Csermely  et 
al. 1993; Grenert et al. 1997; Sullivan et al. 1997).  

               
 

Figure 4. Current model for the gross conformational changes that accompany 

binding and hydrolysis of ATP by Hsp90. The N-,middle, and C-terminal regions in the 

Hsp90 dimer (colored cyan, yellow, and red, respectively) are shown; a client protein (green) 

is able to bind in the absence of ATP and undergoes changes of folding state when bound to 

the “tense” ATP-bound chaperone. Inhibition of ATP binding by drugs, such as 

geldanamycin, blocks client protein correct folding 

 

In this conformation the chaperone is able to interact more stably 
with the client protein and mediates its correct folding. On the other 
hand interaction with the substrate activates Hsp90 ATPase activity 
inducing the transition to the open conformation and release of the 
client protein. 
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1.3.1.4 Hsp90 client proteins 

 
Hsp90 is an important chaperone for a vast array of client 

proteins. Hsp90-associated proteins can be categorized into two 
general groups: protein kinases and transcription factor. To the aim of 
this thesis we will focus on the former class of proteins.    

Many RTKs are Hsp90 client proteins such as Ron, Kit, Her-2, 
and TrkA (Germano et al. 2006, Fumo et al. 2004, Citri et al. 2002, 
Farina et al. 2009, Grovic et al. 2006).  

Her-2 (p185erbB2) is a receptor tyrosine kinase overexpressed 
in a significant proportion of malignancies, including breast, ovarian 
prostate and gastric cancers, and is associated with a poor prognosis 
(Slamon et al. 1987; Miller et al. 1994). Her-2 binds to Hsp90 and its 
endoplasmic reticulum homolog, Grp94 (heat shock protein 90kDa 
beta) (Xu et al. 2002). Treatment with benzoquinone ansamycins (BA) 
like Geldanamycin leads to disruption of these complexes, resulting in 
rapid polyubiquitination of the transmembrane protein followed by its 
proteasome-dependent degradation (Hartmann et al. 1997).  

   The proto-oncogene c-Kit encodes the receptor for stem cell 
factor (SCF) and it is required for normal hematopoiesis. Mutations in 
Kit result in ligand-independent tyrosine kinase activity, 
autophosphorylation and uncontrolled cell proliferation (Moriyama et 
al. 1996). Recent studies report that the Hsp90 inhibitor 17-allylamide-
17-demethoxygeldanamycin induces apoptosis and differentiation of 
Kasumi-1 cells harboring the Asn822Lys Kit mutation and down-
regulates KIT protein level (Yu et al. 2006). 

  The IKK complex, containing two catalytic subunits IKKalpha 
and IKKbeta and a regulatory subunit NEMO, plays central roles in 
signal dependent activation of NF-kappaB. Cdc37 and Hsp90 are two 
additional components of the IKK complex. IKKalpha/IKKbeta/NEMO 
and Cdc37/Hsp90 form an approximately 900 kDa heterocomplex, 
which is assembled via direct interactions of Cdc37 with Hsp90 and 
with the kinase domain of IKKalpha/IKKbeta (Chen et al. 2002). 

   Cdk4/cyclin D complexes play an essential role during 
progression through the G1 phase of the cell cycle by phosphorylation 
of the retinoblastoma protein (Magnuson et al. 1994). The mammalian 
homolog of the yeast cell cycle control protein Cdc37, p50Cdc37, 
assembles with Cdk4 in high molecular weight complexes that also 
contain Hsp90 (Stepanova et al. 1996). Pharmacological disruption of 
Hsp90 with Geldanamycin results in loss of association of Cdc37 with 
Cdk4 and half-life of newly synthesized Cdk4 (Stepanova et al. 1996).  

Raf-1 is part of a conserved signal transduction pathway that 
transmits signals from cytosolic and transmembrane tyrosine kinases 
to mitogen activated protein kinases (Magnuson et al. 1994). Raf-1 
kinase associates with the Hsp90 chaperone complex containing 
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p50Cdc37, leading to Raf-1 stabilization and inhibiting its proteasome-
dependent degradation. Disruption of Hsp90 function also inhibits Raf-
1 signaling, in part by preventing newly synthesized Raf protein from 
reaching the plasma membrane (Schulte et al. 1996).  

1.3.2 Hsp70 and cochaperones 

 
Hsp70 is a conserved molecular chaperone that can prevent 

protein aggregation. In particular Hsp70 molecular chaperones play 
diverse roles in cells, including chaperoning nascent protein chains, 
assisting in importing of proteins into organelles, enabling survival 
under stress conditions such as heat shock, and dissociation of 
macromolecular complexes and aggregates (Bukau et al. 2006; 
Whitesel et al. 2005). All such functions are mediated by interaction of 
extended, hydrophobic regions of substrate proteins with the Hsp70 C-
terminal substrate-binding domain (SBD). The Hsp70 molecule is 
composed of an N-terminal 40-kDa ATP-binding domain and a C-
terminal 30-kDa substrate-binding domain composed of a -helical lid 

topped by a sheet base. The dynamic closing and reopening of the 

base onto the lid is regulated by ATP hydrolysis in the nucleotide-
binding domain (Mayer et al. 2005; Popp et al. 2005). In the 
mammalian system, the molecular chaperones Hsp70 and Hsp90 are 
involved in the folding and maturation of key regulatory proteins, like 
steroid hormone receptors, transcription factors, and kinases, some of 
which are involved in cancer progression. Hsp70 and Hsp90 form a 
multichaperone complex, in which both proteins are connected by a 
third one called Hop.  

Many proteins function as cochaperones of Hsp90. Aha1 is 
involved in client protein activation of the Hsp90 sytstem, interacting 
directly with Hsp90 and activating the basal ATPase activity of Hsp90 
(Lotz et al. 2003). Another cochaperone Cdc37 is found associated 
with a wide range of Hsp90-dependent protein kinases and acts as a 
specific adaptor or scaffold protein, binding the client protein kinases 
via its N-terminal region and Hsp90 via its central and C-terminal 
domains (Silverstein et al. 1998; Shao et al. 2003). The largest 
definable class of cochaperones and the first to be identified are those 
that possess one or more TPR domains, a helical coil structure (Das et 
al. 1998), which binds to an MEEVD motif at the extreme C terminus 
of Hsp90 (Chen et al. 1998; Young et al. 1998; Radanyi et al. 1994; 
Owens-Grillo et al. 1996; Carrello et al. 1999; Ratajczak et al.  1996). 
A closely related IEEVD motif occurs at the C terminus of some Hsp70 
chaperone family members and several TPR-domain cochaperones 
are able to bind to either Hsp90 or Hsp70. Some TPR-domain 
cochaperones incorporate additional enzymatic functionality: the 
immunophilin Cyp40 (Smith et al. 1993), the Ser/Thr protein 
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phosphatase PP5 (Silverstein et al. 1997) and the E3 ubiquitin ligase 
CHIP (Jiang et al. 2001). CHIP has a single TRP domain that 
facilitates exclusive binding of either Hsp90 or Hsp70 (Ballinger et al. 
1999; Connell et al. 2001). Structural studies of CHIP bound to a C-
terminal Hsp70 peptide (Zhang et al. 2005) show an interaction 
between the TPR domain and the common EEDV motif. 

1.3.4 CHIP E3-ligase  

 
Most cellular proteins in eukaryotic cells are targeted for 

degradation by the 26S proteasome, a eukaryotic ATP-dependent 
protease, usually after they have been covalently attached to a 
ubiquitin molecules in the form of a polyubiquitin chain with linkages 
involving lysine 48 (K48-linked polyubiquitin chain). Polyubiquitination, 
functions as a degradation signal (Glickman and Ciechanover 2002). 
Ubiquitynation reaction is catalyzed by a cascade system, consisting 
of activating (E1), conjugating (E2), and ligating (E3) enzymes. Of 
these ubiquitilating enzymes, E3s are believed to exist as molecules 
with a large diversity, presumably in hundreds of species, and play a 
critical role in the selection of substrate for degradation. The ubiquitin–
proteasome system is considered to play a key role in protein 
homeostasis by catalyzing the immediate destruction of misfolded or 
impaired (i.e. abnormal) cellular proteins (Bercovich et al. 1997; 
Jungmann et al. 1993; Lee, 1996). Such protein tend to have exposed 
hydrophobic regions, which are then recognized by molecular 
chaperones such as Hsp70 and Hsp90. Molecular chaperones try to 
prevent these abnormal proteins from irreversible aggregation, and 
assist in their conversion to a properly folded and functional state. 
However, when these chaperones fail to refold the abnormal proteins, 
the ubiquitin–protease system disposes of unfolded, non-functional 
proteins. CHIP (carboxyl-terminus of Hsp70 interacting protein) was 
identified as a 35-kDa protein interacting with Hsp70 protein and as a 
candidate ubiquitin ligase. Thus CHIP is associated with the carboxyl-
terminus of Hsp70, Hsc70, and Hsp90 through its TRP and adjacent 
charged domain (Ballinger et al. 1999; Connell et al. 2001; Meacham 
et al. 2001).  

The other important and unique domain that is not found in other 
TPR containing proteins is the U-box domain at the carboxyl-terminal 
region, which resembles the tertiary structure RING-finger domain 
responsible for E3 activities of many ubiquitin ligases such as c-Cbl, 
mdm2, Parkin (Aravind and Koonin 2000).  
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Figure 5. Association of CHIP with molecular chaperones. CHIP 

associates with the carboxyl terminus of Hsp90 and Hsc70 through its TPR motif at 
the N-terminus. The U-box domain mediates CHIP interaction with the E2 enzyme 
bound to Ubiquitin. 

 

As a matter of fact, CHIP is the major E3 ligase associated with 
the Hsp90-Hsp70 chaperon complexes and responsible for 
polyubiquitination of misfolded proteins (Fig.5). 

1.4 Hsp90 inibitors 

 
Because many of its client proteins are involved in cell signalling, 

proliferation and survival, Hsp90 is a potential target of anticancer 
therapy.  

 

 
 
Figure 6. Hsp90-binding drugs 

 
Many classes of natural inhibitors of Hsp 90 have been 

discovered and some of them have been exploited in clinical trials for 
different types of tumours (Fig.6). 
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1.4.1 Geldanamycin and derivatives 

 
Geldanamycin (GA) is a benzoquinone ansamycin that was first 

isolated as an antibiotic in 1970 from Streptomyces hygroscopicus 
(DeBoer et al. 1970). It was identified along with the ansamycin 
herbimycin as an agent that was able to revert the phenotype of v-src 
oncogenes transformed cells and had potent broad based and 
selective anti-cancer activity against a panel of human tumor cell lines 
as well as in tumor xengrafts (Whitesell et al. 1992). The co-crystal 
structure of GA with yeast Hsp90 shows that it binds tightly to the ATP 
pocket of the N-terminal domain (Roe et al. 1999). The benzoquinone 
ring is found near the entrance of the binding pocket and the ansa ring 
is directed towards the bottom of the pocket. When bound to Hsp90, 
GA adopts a C-shaped conformation similar to that of ADP. GA is a 
potent cytotoxic agent, but its clinical translation has thus far been 
precluded by a number of factors (Supko et al. 1995; Neckers et al. 
1999). First, it exhibits severe hepatotoxicity, which has been 
associated with the benzoquinone ring and imposes strict dosing 
limitations. Secondly, it is metabolically and chemically unstable. Also, 
it has very low solubility in aqueous media resulting in formulations 
requiring DMSO. As a result, a substantial effort has been made in 
modifying its structure to improve safety, stability, potency and water 
solubility. Much effort has been made at modifying the quinone ring, 
especially at the 17-position but also at the 19-position (Schnur et al. 
1995; Tian et al. 2004). The derivative 17-allylamino-17-desmethoxy-
geldanamycin (17-AAG) has potent in vivo activity and is less toxic 
than GA (Solit et al.  2002; de Candia et al. 2003) (Fig.7). 17-AAG 
entered clinical trials in cancer patients in the US and UK (Sausville et 
al. 2003; Goetz et al. 2005). Although initial trials were disappointing, 
development of an improved formulation of 17-AAG by Kosan 
Pharmaceuticals resulted in KOS-953 (Tanespimycin), a clinical agent 
with promising activities. Under the new formulation, encouraging 
clinical results were noted in trastuzumab-refractory HER2-positive 
breast cancer and in multiple myeloma, especially in bortezomib-
refractory patients (Solit et al. 2008).    
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Figure 7.  Chemical structures of Geldanamicin and its derivates 

 
Despite its promising activity in clinical studies, 17-AAG has 

several limitations that restrict its optimal clinical development. A lack 
or reduced activity of this agent in certain cells has been observed due 
to drug efflux by multidrug resistance elements or metabolic 
inactivation of these agents by nucleophiles, such as glutathione. In 
addition, 17-AAG has a liability with respect to metabolism by the 
polymorphic cytochrome P450. Finally, the compound is also 
reductively metabolized by the polymorphic oxidoreductase NQO1 or 
DT-diaphorase to a more potent hydroquinone inhibitor, which 
introduces another source of pharmacological variability and potential 
for drug resistance (Solit et al. 2008). 

1.4.2 Radicicol 

 
Radicicol (RD) is a macrocyclic lactone antibiotic first isolated 

from the fungus Monosporium bonorden (Delmotte et al. 1953). It can 
reverse the transformed phenotype of v-src transformed fibroblasts 
(Kwon et al. 1992) and suppress transformation by the Ras oncogenes 
(Zhao et al. 1995). It specifically binds to the N-terminal domain of 
Hsp90 and depletes SKBr3 cells of the receptor tyrosine kinase Her2, 
Raf-1 and mutant p53 (Schulte et al. 1998; Sharma et al. 1998). It also 
inhibits Ras-dependent phosphorylation of MAPK in K-Ras 
transformed rat epithelial cell lines by destabilization of Raf-1 protein 
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(Soga et al. 1998). 
                                                    

                                        
 
 
Figure 8. Chemical structure of Radicicol 
 

The co-crystal structure of RD with yeast Hsp90 shows that it 
binds tightly to the N-terminal ATP-pocket in a C-shaped conformation 
similar to ADP (Roe et al. 1999). Occupancy of this pocket by RD 
disrupts chaperone function resulting in an inactive Hsp90-protein 
complex. It has cellular effects similar to ansamycins but lacks 
hepatotoxicity (Soga et al. 2003). RD is not stable in serum and thus 
has no activity in vivo (Soga et al. 1999)(Fig.8). 

1.4.3 Novobiocin 

 
Novobiocin, a cumarin-type antibiotic, antagonizes Hsp90 

function in vitro and in vivo in a manner similar to GA and radicicol that 
have a binding site in the N-terminal domain of Hsp90. On the 
contrary, the binding site of novobiocin is the C-terminal domain of 
Hsp90 and the cells expose to novobiocin demonstrate rapid 
destabilization of various Hsp90 client proteins, including Raf-1, 
mutated p53, p60 (v-Src), and p185 (Her2). 

The structural requirements for novobiocin binding to Hsp90 are 
unique. Analysis of progressively smaller C-terminal Hsp90 peptides 
revealed the novobiocin-binding site to be contained within amino 
acids 538-728 (Marcu et al. 2000). 

 
                            

                      
 
 
Figure 9. Chemical structure of Novobiocin 
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Within this region, the removal of amino acids 657-677 severely 
compromised novobiocin binding and synthetic peptide composed of 
amino acids 663-676 efficiently competed the binding of Hsp90 to 
immobilized novobiocin (Marcu et al. 2000). These data localize the 
novobiocin-binding site to a region in Hsp90 known to be important 
both for its dimerization and association of other co-chaperones 
(Marcu et al. 2000)(Fig.9). 
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2. AIMS OF STUDY 
 

The RET receptor tyrosine kinase might represent a key target in 
the treatment of RET-dependent Medullary Thyroid Carcinoma (MTC). 
Several small molecular weight kinase inhibitors were shown to inhibit 
constitutively active RET tyrosine kinase. Recently a Phase II clinical 
study to evaluate the efficacy and tolerability of ZD6474 in patients 
with advanced or metastatic hereditary MTC has been launched by 
AstraZeneca.  

Alternatively to enzymatic inhibiton, oncogenic kinases can be 
targeted by altering protein stability through blockade of the Hsp90 
chaperone function with Geldanamycin-derived compounds. 

A previous report showed that RET/PTC1 (the H4-RET fusion 
product) was degraded upon treatment with the Geldanamycin (GA) 
derivative 17-Allylammino-17-Demethoxygeldanamycin (17-AAG) 
(Marsee et al. 2004). In addiction, Cohen and coworkers reported that  
17-AAG was able to block RET C634W phosphorylation in MTC-
derived cells without affecting total RET protein levels. 

Here we investigated the molecular pathway responsible for 
degradation of the receptor tyrosine kinase RET upon inhibition of 
Heat Shock Protein 90 (Hsp90) by 17-Allyl-Ammino-17-
demethoxygeldanamycin (17-AAG) and the biological effects of such 
compound in MTC-derived cell lines.  

 
In particular:  
 
- We verified 17-AAG-mediated dose and time dependent 

degradation of wt RET protein and MEN2-associated RET mutants 
exogenously expressed in RAT1 murine fibroblasts. 

 
- We identified the molecular pathway responsible for 17-AAG-

induced proteasome-dependent degradation of RET  
 
- We analyzed the molecular and cellular effects of 17-AAG on 

human MTC cell lines endogenously expressing MEN2-associated 
RET oncogenic mutants 
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3.MATERIALS AND METHODS 
 
3.1 Compounds  
 
17-allylamino-17-demethoxygeladamycin and radicicol were 

purchased at Calbiochem. Stock solutions (1.7 mM) were made in 
100% DMSO and diluted with culture media before use. Culture media 
containing an equivalent DMSO concentration served as vehicle 
controls.  

 
3.2 Cell culture and plasmids 
 
 Mutations C634R, M918T, A883F, E768D, L790F, Y791F, 

V804L, V804M and S891A were introduced in RET-9 cDNA, encoding 
the short isoform of RET protein, cloned in the pBABE expression 
vector and stably transfected in RAT1 cells (Pasini et al. 1997). 
Parental RAT1 cells and RAT1 transfected with RET wt and RET 
mutants were cultured in DMEM supplemented with 10% fetal calf 
serum, 2 mM L-glutamine and 100 units/ml penicillin-streptomycin 
(GIBCO). HEK293 and HeLa cells were from American Type Culture 
Collection (ATCC, Manassas, VA) and were grown in Dulbecco’s 
Modified Eagle Medium (DMEM) supplemented with 10% fetal calf 
serum (GIBCO, Paisley, PA). PCDNA 3.1 CHIP-myc, CHIP- U-myc 

(H260Q) and CHIP-TPR-myc (K30A) vectors were a kind gift by Len 
Neckers (Xu et al. 2002). PCDNA-HA-Ubiquitin vector was a kind gift 
by S. Giordano. Transient transfections were carried out with the 
lipofectamine reagent according to manufacturer's instructions 

(GIBCO). Cells were seeded at a density of 1.5x10
6
/dish the day 

before transfection, transfected with 5 μg of DNA and harvested 48 

hours later. The TT and the MZCRC1cell lines, derived from a MTC 
harboring the RET/C634W and RET/M918T mutations, respectively 
(Carlomagno et al. 1995), were cultured in RPMI with 20% fetal calf 
serum, 2 mM L-glutamine and 100 units/mL penicillin-streptomycin 
(GIBCO). 

 
3.3 Immunoblotting 
 
Protein lysates were prepared according to standard procedures. 

Cells were lysed in a buffer containing 50 mM N-2-
hydroxyethylpiperazine-N'-2-ethanesulfonic acid (HEPES; pH 7.5), 1% 
(vol/vol) Triton X-100, 150 mM NaCl, 5 mM EGTA, 50 mM NaF, 20 
mM sodium pyrophosphate, 1 mM sodium vanadate, 2 mM 
phenylmethylsulphonyl fluoride (PMSF), and 1 μg/ml aprotinin. 

Lysates were clarified by centrifugation at 10,000 x g for 15 min. 
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Lysates containing comparable amounts of proteins, estimated by a 
modified Bradford assay (Bio-Rad, Munchen, Germany), were 
subjected to western blot. Immunocomplexes were detected with the 
enhanced chemiluminescence kit (Amersham Pharmacia Biotech, 
Little Chalfort, UK). Anti- Hsp90 (#SPA-835) and anti-Hsp70 (#SPA-
810) were purchased from Stressgen biotechnologies, Victoria, BC, 
Canada. Anti-phospho-SHC (Y317) (#07-206) was from Upstate 
Biotechnology, Lake Placid, NY, USA. Anti -MAPK (#9101) and anti-
phospho-MAPK (#9102) were from New England Biolabs (Beverley, 
MA). Anti-MYC (sc-40) and anti-HA (sc-7392) antibodies were from 
Santa Cruz Biotechnology (Palo Alto, CA). Anti-poly(ADP-ribose) 
polymerase (anti-PARP) monoclonal antibody, which detects full-
length PARP and the large fragment (89 kDa) produced by caspase 
cleavage, was from BD Biosciences (#556494). Anti-RET is a 
polyclonal antibody raised against the tyrosine kinase protein fragment 
of human RET (Santoro et al. 1994). Anti-phosphoRET are affinity-
purified polyclonal antibodies raised against RET peptides containing 
phosphorylated Y905 (Iwashita et al. 1996; Carlomagno et al. 2003). 
Secondary antibodies coupled to horseradish peroxidase were from 
Biorad, Munchen, Germany. 

 
3.4 Luciferase activity  
 
Transient transfections were carried out with the lipofectamine 

reagent according to manufacturer's instructions (GIBCO). 1x106 HeLa 
cells were transiently transfected with vector expressing RET/C634R 
or with the empty vector. We used two reporter vectors: the AP1-Luc 
vector (Stratagene, Garden Grove, CA) containing six AP1 binding 
sites upstream from the Firefly luciferase cDNA or the MYC-Luc vector 
containing the MYC gene promoter sequence. MYC-Luc vector was 
kindly provided by S. J. Gutkind. Twenty-four hours after transfection, 
cells were serum-starved. Ten ng of pRL-null (a plasmid expressing 
the enzyme Renilla luciferase from Renilla reniformis) was used as an 
internal control of transfection efficiency. Firefly and Renilla luciferase 
activities were assayed using the Dual-Luciferase Reporter System 
(Promega Corporation, Madison, WI). Light emission was quantitated 
using a Berthold Technologies luminometer (Centro LB 960) and 
expressed as ratio of Firefly and Renilla luciferase activities . The 
ANOVA Post-Hoc Tukey-Kramer multiple comparison test was used to 
assess statistical significance of luciferase assay. InStat3 GraphPad 
Software was used.  

 
3.5 BrdU incorporation and TUNEL assay  
 
For BrDU incorporation analysis, cells were seeded on glass 
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coverslips. The day after cells were treated with 100 or 500 nM 17-
AAG or vehicle for 24 or 48 hours. Bromodeoxyuridine (BrdU; Sigma 
Chemical Co.) was added to the cell culture media at a final 
concentration of 100μg/ml for two hours before harvest. Cells were 

fixed with paraformaldehyde (4%) and permeabilized with Triton X-100 
(0.2%) prior to staining. Coverslips were incubated with anti-BrdU 
mouse monoclonal antibody and then with a Texas red-conjugated 
anti-mouse antibody (Boehringer Mannheim, Germany). All coverslips 
were counterstained in PBS containing Hoechst 33258 (final 
concentration, 1μg/ml; Sigma Chemical Co.), rinsed in PBS and 

mounted in Moviol on glass slides. The fluorescent signal was 
visualized with an epifluorescent microscope (Axiovert 2, Zeiss) 
interfaced with the image analyzer software KS300 (Zeiss).  

For terminal desoxynucleotidyl transferase-mediated 
desoxyuridine triphosphate nick end-labeling (TUNEL), cells were 
seeded on glass coverslips. The day after cells were treated with 100 
or 500 nM 17-AAG or vehicle for 24 or 48 hours. Then, cells were fixed 
in 4% (w/v) paraformaldehyde and permeabilized by the addition of 
0.1% Triton X-100/0.1% sodium citrate. Slides were rinsed twice with 
PBS, air-dried and subjected to the TUNEL reaction (Roche). All 
coverslips were counterstained in PBS containing Hoechst 33258, 
rinsed in water and mounted in Moviol on glass slides. The fluorescent 
signal was visualized with an epifluorescent microscope (Axiovert 2, 
Zeiss) (equipped with a 100X objective) interfaced with the image 
analyzer software KS300 (Zeiss).  
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4. RESULTS 
 
4.1 17-AAG induced degradation of wt RET and C634R 

oncogenic mutant.  
 
We first explored whether inhibition of Hsp90 by 17-AAG could 

induce degradation of RET wt and RET C634R proteins, stably 
transfected in RAT1 murine fibroblasts. RET protein abundance was 
measured by Western blotting. Anti-RET antibody recognized two 
molecular species of 150 and 170 kDa, that corresponded to the high 
mannose immature form of the receptor (150kDa) and the plasma 
membrane-associated mature form of RET (170 kDa), respectively 
(Carlomagno, 1996). As shown in Fig. 10A and B, upon treatment with 
17-AAG, both wt RET and C634R mutant were degraded with a similar 
kinetics in a time and dose dependent fashion. After 8 hours of 
treatment, 20 nM dose was able to induce partial degradation of both 
proteins; 50 nM 17-AAG reduced protein levels to less than 50%. Both 
150 and 170 kDa isoforms decreased upon 17-AAG treatment, 
althought the 170 kDa one, being less abundant, almost disappeared. 
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Figure 10. RET wt and RET C634R mutant degradation by 17-AAG 

treatment– RAT1 cells stably transfected with RET wt or RET/C634R expressing 
vectors were treated for the indicated time points with the indicated concentration of 
Hsp90 inhibitor 17-AAG. Equivalent amounts of protein lysates were subjected to 
Western blotting with RET or with Tubulin for normalization. The 150 and 170 kDa 

RET forms are indicated. 
 
 

We also tested if Radicicol, a different Hsp90 inhibitor 
(Workmann et al. 2007), was able to induce degradation of RET wt 
and C634R mutant. As shown in Fig 11 both RET wt and C634R were 
sensitive to Radicicol-induced degradation in a dose dependent 
manner. Once again both RET 150 and 170 KDa isoforms were 
sensitive to the compound induced degradation with an IC50 dose 
between 20 and 50 nM. 
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Figure 11. RET wt and RET C634R mutant degradation by Radicicol 

treatment – RAT1 cells stably transfected with RET wt or RET/C634R expressing 
vectors were treated for 8 hrs with the indicated concentration of Radicicol. 

Equivalent amounts of protein lysates were subjected to Western blotting with RET 

or with Tubulin for normalization. The 150 and 170 kDa RET forms are indicated. 

 

4.2 17-AAG induced degradation of MEN2-associated RET 
tyrosine kinase domain mutants 

 

In order to verify if 17-AAG was able to induce degradation of 
RET intracellular mutants associated to MEN2 syndromes, we 
performed a time course experiment using the RAT1 cells stably 
transfected with RET E768D, L790F, Y791F, V804M, A883F, F891A 
and M918T mutants.  As shown in figure 12A, all RET isoforms 
displayed a degradation kinetic similar to RET wt and C634R mutant. 
Besides, we tested the degradation of RET V804M and RET M918T 
proteins in a dose response experiment. RET V804M mutation has 
been reported to be associated to sporadic and familial cases of MTC 
and corresponds to RET gatekeeper site mediating resistance to small 
molecular weight kinase inhibitors, such as PP1, PP2 and ZD6474 
(Carlomagno et al. 2004). M918T is RET most frequent mutation in 
sporadic MTC and, in familial cases, is associated to the very 
aggressive MEN2B phenotype (Ponder 1999). RET V804M and RET 
M918T proteins showed a degradation profile identical to wild type and 
C634R (Fig. 12B). 
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Figure 12. Sensitivity of RET kinase domain mutants to 17-AAG –RAT1 

cells stably transfected with RET E768D, L790F, Y791F, V804M, A883F, F891A and 
M918T expressing vectors were treated for the indicated time  with the indicated 
concentration of 17-AAG. Protein lysates were subjected to Western blotting. 
Average densitometric analysis of three independent experiments were reported 
(also from Fig 12A and B). SD are indicated. Values represent the % of signal 
compared to non-treated cells.  

 
4.3 Analysis of molecular pathway mediating RET 

degradation upon 17-AAG treatment 
 
We decided to characterize the molecular pathway responsible 

for RET degradation after treatment with 17-AAG.  17-AAG induced 
degradation of RET C634R in RAT1 cells was mediated by 26S 
protaesome since it could be hindered by the proteasome inhibitor 
MG132 (Fig.13A). Overexposure of the Western Blot filter of RAT1 
C634R cells treated with MG132 displayed an accumulation of high 
molecular weigh bands recognized by the anti-RET antibody. Most 
likely those bands corresponded to polyubiquitinated forms of the 
receptor saved from degradation by the proteasome inhibition. These 
species increased in the presence of 17-AAG indicating that 17-AAG 
induced proteosomal degradation through polyubiquitination of the 
receptor (Fig.13B) and therefore Hsp90 was required for the correct 
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folding and stabilization of the RET protein.  
      
 

 
 
Figure 13. 17-AAG-mediated degradation of RET/C634R depends on 

proteasome –RAT1 cells transfected with RET/C634R were treated for 4 hours with 

vehicle or 40 μM MG132 and/or 0.5 μM 17-AAG. Equivalent amounts of proteins 

were subjected to Western blotting with the indicated antibodies. In B, the position of 
protein species that migrate above the 200 kDa marker is indicated (> 200 kDa).  

 
We performed co-immunoprecipitation experiment to verify 

interaction between stably transfected RET C634R mutant and 
endogenous Hsp90 and Hsp70 proteins in RAT1 cells. As shown in 
figure 14, RET interacted with Hsp90 at the steady state and this 
interaction was decreased by treatment with 17-AAG. Oppositely, RET 
interaction with Hsp70 was stabilized in the presence of 17-AAG. In 
summary, these data clearly indicated that RET was a Hsp90 client 
protein whose inhibition by 17-AAG mediated polyubiquitination of 
RET and degradation by proteasome. 

 
            

                
 

Figure 14. RET/C634R interaction with the Hsp90/Hsp70 chaperone 
complex –RAT1 cells stably transfected with RET/C634R were treated for 4 hours 

with vehicle or with 0.5 μM 17-AAG. Equivalent amounts of RET proteins were 

subjected to immunoprecipitation with preimmune (IgG) or RET sera followed by 

Western blotting with the indicated antibodies. 
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We ought to test whether RET, as many Hsp90 client proteins, 

represented a CHIP E3 ligase substrate. Therefore, we transfected 
RET C634R and myc-tagged wt-CHIP-E3 ligase or two defective myc-
tagged CHIP mutants (CHIP-TPR and CHIP- U) in HEK293 cells in 

order to 1) verify RET protein stability upon overexpression of CHIP 
and 2) its interaction with the E3 ligase by co-immunoprecipitation 
experiment. As already discussed, CHIP interacts with Hsp70 via the 
tetratricopeptide repeat (TPR) present in the N-terminal domain of the 
protein while the enzymatic activity depends on the U-box motif 
present in C-terminal domain that is necessary to interact with 
ubiquitin and E2 enzyme. CHIP proteins deprived of TPR (CHIP-TPR) 
or the U-box motif ( U) function as defective mutants, being unable to 

interact with the Hsp90/70 chaperone complex or with ubiquitin-bound 
E2 protein, respectively (Xu et al.  2002). As shown in Fig 15A and 
15B, overexpression of CHIP wt, but not of its defective mutants, 
induced a decrease of total amount of RET C634R protein. In addition, 
CHIP wt protein was co-immunoprecipitated by the anti-RET antibody, 
indicating interaction between the two proteins (Fig.15B). 

       

 
 
Figure 15. RET C634R interaction with CHIP – A, B) HEK293 cells were 

transiently transfected with RET/C634R in association with CHIP-myc, CHIP- U-myc 

or CHIP-TPR-myc or with the empty vector. Equivalent amounts of protein lysates 
were subjected to (A) direct Western blotting with the indicated antibodies or (B) 

immunoprecipitation with preimmune (IgG) or RET sera followed by Western 
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blotting with the indicated antibodies. C) HEK293 cells were transiently transfected 
with PCDNA-Ubiquitin-HA and the expressing vectors for RET/C634R, together with 

CHIP-myc, CHIP- U-myc or CHIP-TPR-myc. Equivalent amounts of protein lysates 

were subjected to immunoprecipitation with anti-RET antibody and then subjected to 

western blotting with HA and RET antibodies, as indicated. The position of protein 

species that migrate above the 200 kDa marker is indicated (> 200 kDa). 
 
 

CHIP TRP lost the capacity to interact with RET while CHIP U 

was still found in association with it, as expected (Fig.15B). Finally, to 
verify if CHIP wt induced an accumulation of polyubiquitinated species 
of RET, we transfected HEK293 cells with HA tagged ubiquitin, RET 
C634R, wt-CHIP-E3 ligase or the two defective myc-tagged CHIP 
mutants (CHIP-TPR and CHIP- U) and we performed an 

immunoprecipitation experiment with anti-RET antibody followed by 
western blotting with anti-HA antibody or anti-RET antibody as a 
control. As shown in Fig. 15C CHIP wt was able to induce an accrual 
of polyubiquitinated species of RET protein, differently from the two 
defective mutants that indeed displayed a dominant negative effect on 
RET endogenous polyubiquitination. 

 

 
4.4 Blockade of RET C634R signalling by 17-AAG 
 
MEN 2 mutations cause ligand-independent hyper-activation of 

RET switching on different oncogenic signaling cascades. As an 
example, murine fibroblasts transformed by RET C634R oncogenic 
mutant display constitutive RET-mediated phosphorylation of SHC 
protein that in turn activates the Ras/MAPK pathway (Ohiwa et al. 
1997). We tested if 17-AAG was able to induce a block of RET-
dependent activation of this pathway. We performed western blotting 
experiments using total and phospho-specific antibodies to analyze 
protein extracts from RAT1 cells treated with increasing concentration 
of 17-AAG. As expected, decrease of RET protein was accompanied 
to a proportional decrease of RET phosphorylation in these cells 
(Fig.16) (Fujita et al. 2002). Phosphorylation levels of SHC and of the 
MAPK ERK1/2 were decreased as well, without any effect on total 
protein stability (Fig.16). Thus SHC and ERK1/2 have never been 
described as Hsp90 client proteins and their phosphorylation reduction 
is a direct effect of RET signaling drop.         
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 Figure 16. 17-AAG-mediated block of RET/C634R signalling – RAT1 cells 

stably transfected with RET C634R were treated for 4 hours with the indicated 
concentration of 17-AAG. Protein lysates were subjected to Western blotting with the 
indicated antibodies. 

 

To confirm the inhibitory action of the 17-AAG on RET signaling 
pathway we performed luciferase assay in which we detected the 
activation of promoters known to be responsive to Receptor Tyrosine 
Kinases (RTK). We transfected Hela cells with an AP1-responsive and 
the Myc gene promoters, fused to the luciferase reporter, along with 
RET C634R expressing vector or the vector alone as a control. As 
shown in Fig. 17A and 17B RET C634R was able to activate 
expression of the reporter gene of 5-10 fold. 17-AAG reduced RET 
C634R activity to less than 50% at 50 nM and completely abolished 
promoter  
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Figure 17. 17-AAG-mediated block of RET/C634R activation of Myc and 

AP1 promoters –1x10
6
 HeLa cells were transiently transfected with RET/C634R 

together with the AP1-Luc or the Myc-Luc reporters. pRL-null served as an internal 

control. Average results of three independent assays ± SD are indicated. The 

ANOVA Post-Hoc Tukey-Kramer multiple comparison test was used to assess 
statistical significance (P< 0.01). 

 
activation at 100 nM, in agreement with reduction of RET protein 
levels and downstream signalling. No effect was observed in control 
cells, transfected with the empty vector. 

Finally, we tested the capability of 17-AAG to induce degradation 
and block of signalling of RET endogenous protein. We used two 
human medullary thyroid carcinoma-derived cell lines, TT and 
MZCRC1, which endogenously express RET C634W and RET 
M918T, respectively (Carlomagno et al. 1994). As shown in Fig. 18A 
and 18B, in MTC cells 17-AAG induced degradation of RET protein 
with a sligthly lower efficiency compared to the exogenous protein 
expressed in RAT1 cells. As expected, also RET phosphorylation and 
RET-dependent activation of Ras/MAPK pathway, measured as SHC 
and MAPK phosphorylation, were decreased.  

We also analyzed the cellular effects of 17-AAG treatment in 
MTC cells. After 24 and 48 hours of treatment, the compound caused, 
in both cell lines, a decrease of DNA synthesis, measured by 
incorporation of BrdU (Fig.19A). Growth arrest was not mediated by 
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induction of programmed cell death as shown by TUNEL assay after 
72 hours of cell treatment with 17-AAG (0.1 μM and 0.5 μM) (Fig.19A). 

Absence of apoptosis was also confirmed by Western blotting 
experiment in which we used anti-poly(ADP-ribose) polymerase (anti-
PARP) monoclonal antibody, which detects full-length PARP and the 
large fragment (89 kDa) produced by caspase cleavage  (Fig.19B) 

 
 
 
Figure 18. 17-AAG-mediated RET degradation and blockade of signaling 

in MTC cells –MZCRC-1 and TT cells were treated for 16 hours with 17-AAG. 
Protein lysates were subjected to Western blotting with the indicated antibodies.  
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Figure 19. 17-AAG-mediated growth arrest in MTC cells –A) Cells were 

treated with 17-AAG, incubated with BrdU and then subjected to 
immunofluorenscence with anti-BrdU antibody. B) TT and MZCRC1 cells were 
treated for 72 hours with 17-AAG and then subjected to TUNEL assay or to Western 
blotting with anti-PARP antibody.  



 

 

 43 

 

 
5. Conclusions 
 
In this paper we showed that protein stability of the receptor 

tyrosine kinase RET and its C634R mutant required Hsp90 chaperone 
function. Thus, 17-Allyl-Ammino-17-demethoxygeldanamycin (17-
AAG), a benzoquinoid ansamycin antibiotic, structurally related to 
Geldanamycin, and functioning as a specific inhibitor of the Heat 
Shock Protein 90 (Hsp90), reduced protein stability of both wt RET 
and C634R mutant in RAT1 cells. 17-AAG induced proteasome 
dependent degradation of RET C634R oncogenic protein mutant, 
interfering with Hsp90/RET interaction and stabilizing Hsp70/RET 
complex. We also demonstrated that RET C634R was 
polyubiquitinated by the E3 ligase CHIP wt but not by its defective 
mutants CHIP- U and CHIP-TPR. 17-AAG was able to interfere with 

RET C634R dependent activation of specific signalling pathways, 
resulting in hindrance of AP1-responsive and Myc gene promoters 
activation by oncogenic RET. Interestingly, none of the most common 
MEN2-associated mutations in the tyrosine kinase domain of RET 
affected the receptor sensitivity to 17-AAG induced degradation. 
Finally, we observed that in MTC-derived cells, TT and MZCRC1, 17-
AAG treatment induced degradation of endogenously expressed RET 
C634W and M918T oncogenic mutants. We also observed a complete 
reduction of BrdU incorporation while induction of apoptotis was 
almost absent. Being 17-AAG a multi-targeted drug, we believe that 
block of proliferation was due to a pleiotropic effect of 17-AAG on 
several Hsp90 client proteins’ stability, rather than on RET alone.  

Inhibition of Hsp90 by ansanamycin-derived antibiotics affects 
several receptor tyrosine kinases protein stability such as HER family 
members, KIT, RON and PDGFRalpha (Citri et al. 2004a; Fumo et al. 
2004; Germano et al. 2006; Matei et al. 2007). Moreover, mutational 
activation of some of them, like EGFR, was shown to be associated to 
increased dependence on Hsp90 function compared to wt protein, 
probably due a conformational effect on receptor structure 
(Shimamura et al. 2005). On the contrary, here we showed that RET 
oncogenic mutants, carrying mutations in the IC or EC domains, 
displayed a kinetic of degradation basically identically to the RET wt 
protein. Therefore, it might be envisaged that such mutations do not 
influence normal folding and stability of the protein and do not change 
RET sensitivity to Hsp90 inhibitors. This is also true for the chimeric 
RET/PTC oncoproteins, which could be suspected to be more prone to 
alteration in folding, resulting from the fusion of two different proteins. 
As matter of fact, in murine fibroblasts RET/PTC3 protein stability was 
equally affected by 17-AAG treatment as wt RET and RET C634R 
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mutant (data not shown).  
Hsp90 protein has been shown to recognize a common surface 

in the amino-terminal lobe of client kinases from diverse families. In 
particular, the C- 4 loops surface electrostatics determines the 

interaction with Hsp90 chaperone complex, and therefore protein 
sensitivity to its inhibition (Citri et al. 2006; Xu et al. 2005; Tikhomirov 
et al. 2003). A neutral/positive surface charge is characteristic of 
Hsp90 client kinases while non-Hsp90 dependent kinases display a 
negative surface charge (Citri et al. 2006). Mutations in this region 
might alter interaction with the chaperone and mediate evasion from 
the Hsp90/70 control, resulting in hyperactivation  (Citri et al. 2004b; 
Shigematsu et al. 2005). RET L790 and Y791 are localized in the C-

4 loops which overall display a neutral/positive surface charge in 

RET. Nevertheless, MEN2 L790F and Y791F changes are not 
associated to altered sensitivity to 17-AAG, suggesting that these 
mutations do not activate RET by increasing its stability.  

Beside understanding the physiological mechanisms that 
regulate stability of RET protein, our findings provides a rationale for 
targeting RET by geldanamycin-like compounds in MTC patients. 
Efficacy of RET targeting as a therapeutic tool for this tumour has 
been proven in several preclinical settings (Drosten et al. 2004; Vidal 
et al. 2005; Carlomagno et al. 2006).  In addition, phase II clinical trials 
with RET kinase inhibitors are active for patients affected by familial or 
sporadic Medullary Thyroid Carcinoma (Santoro et al. 2006; 
Schlumberger et al. 2008; Wells et al. 2006). Beside enzymatic 
inhibition, an additional targeting strategy for RET in MTC patients 
might be represented by induction of protein degradation by Hsp90 
inhibitors.  
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Abstract 

Here we show that NCOA4 protein, coded for by a gene frequently rearranged in 

thyroid cancer, binds the mini-chromosome maintenance 7 (MCM7) protein required 

for DNA replication. In Xenopus laevis egg extracts, exogenously added recombinant 

NCOA4 inhibited DNA replication by obstructing MCM2-7 helicase activity, whereas 

immunodepletion of endogenous XNCOA4 protein augmented DNA synthesis by 

increasing DNA unwinding. In HeLa cells, NCOA4 bound canonical DNA replication 

origins. RNAi-mediated depletion of NCOA4 accelerated the onset of DNA replication, 

whereas adoptive NCOA4 overexpression decreased DNA synthesis. Our findings 

indicate that NCOA4 is a novel negative regulator of DNA replication. 
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Introduction 

Recurrent chromosomal rearrangements are common in cancer cells (Futreal et al. 

2004). Intrachromosomal inversions involving the long arm of chromosome 10 occur 

frequently in thyroid carcinomas, particularly those induced by radiation (Nikiforova et 

al. 2000). These events join the DNA sequence encoding the tyrosine kinase (TK) 

domain of RET to the 5’-terminal portion of heterologous genes to form RET/PTC 

oncogenes (Grieco et al. 1990). RET/PTC3 is a common chimeric oncogene constituted 

by exons 1-5 (encoding amino acids 1-238) of the nuclear receptor coactivator 4 

(NCOA4, also known as RFG/ELE1/ARA70) gene and RET exons 12-21 (encoding the 

TK domain) (Bongarzone et al. 1994; Santoro et al. 1994). The NCOA4 gene encodes a 

70-kDa protein containing a coiled-coil domain (amino acids 17-125) that mediates 

protein oligomerization (Fig. S1) (Monaco et al. 2001). One functional consequence of 

the RET/PTC3 rearrangement is NCOA4-mediated homodimerization of the RET TK 

followed by ligand-independent RET activation and gain of transforming activity 

(Monaco et al. 2001). 

The MCM2-7 complex is an evolutionarily conserved hexameric protein complex 

constituted by six closely related proteins: MCM2 through MCM7 (Bell and Dutta, 

2002; Takahashi et al. 2005; Maiorano et al. 2006). MCM2-7 is essential for DNA 

synthesis. In Xenopus laevis egg extracts, inactivation of the MCM2-7 complex 

immediately arrests DNA replication (Takahashi et al. 2005). MCM2-7 proteins are 

recruited to the DNA replication origins by two factors, Cdc6 and Cdt1, which, in turn, 

are bound to the origin recognition complex (ORC) (Bell and Dutta, 2002; Takahashi et 

al. 2005; Maiorano et al. 2006). MCM2-7, Cdc6, Cdt1 and ORC proteins constitute the 

pre-Replicative Complex (pre-RC), essential for the DNA replication origins licensing. 

At the G1/S transition, activation of S-phase kinases, such as CDK2-Cyclin E and 

CDC7-DBF4, induces phosphorylation of pre-RC components and recruitment of 

replication factors such as CDC45 and GINS, converting the pre-RC in the pre-

Initiation Complex (pre-IC). Upon formation of pre-IC, the replicative DNA helicase 
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becomes active and unwinds the DNA replication origin forming the replication bubble 

(Pacek et al. 2006). Thus, generation of single strand DNA allows binding of 

Primase/DNA pol  complex that synthesizes the RNA/DNA primer. This induces the 

sequential loading of the RFC complex and then of the proliferating cell nuclear antigen 

(PCNA), the co-factor of primary replicative DNA polymerases such as DNA pol  and 

DNA pol . Once replicative polymerases are recruited, bidirectional DNA replication 

starts with a semi-conservative modality (Bell and Dutta, 2002; Takahashi et al. 2005; 

Maiorano et al. 2006; Pacek et al. 2006). The MCM2-7 complex is thought to be the 

major DNA helicase (Takahashi et al. 2005; Labib et al. 2000; Pacek and Walter, 2004). 

Here we show that NCOA4 is a novel negative controller of DNA replication that 

interacts with MCM2-7 complex and obstructs DNA unwinding.   
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Results and Discussion 

To try to identify functions of the NCOA4 protein that might be disrupted by the thyroid 

cancer-associated gene rearrangement, we looked for proteins that interacted with 

NCOA4. To this aim we screened a HeLa cell cDNA library with a bait containing 

NCOA4 amino acids 2-238 [GAL4-NCOA4(N)] in a yeast two-hybrid system (Fig. S1). 

NCOA4(N) contains the coiled-coil domain. We isolated 10 different NCOA4-encoding 

clones, which confirmed that NCOA4 is able to form oligomers (Monaco et al. 2001), 

and two cDNA clones encoding the COOH-terminal portion (amino acids 576-719) of 

the mini-chromosome maintenance 7 (MCM7) protein (Fig. S1). To confirm interaction 

between NCOA4 and MCM7 we performed an in-vitro pull-down assay using two 

NCOA4-derived recombinant proteins constituted by NUS tag (NUS) fused to either 

full length NCOA4 (NUS-NCOA4) or to its NH2-terminal fragment (amino acids 1-

238) [NUS-NCOA4(N)] (Fig. 1A). Both NUS-NCOA4 and NUS-NCOA4(N), but not 

NUS moiety alone or empty beads, pulled-down MCM7 protein from HeLa cells 

protein extracts (Fig. 1A). Also another subunit of the MCM2-7 complex, the MCM3 

protein, was detected in the precipitate suggesting that NCOA4 recombinant proteins 

were pulling-down, via MCM7, the entire MCM2-7 complex.  

To verify NCOA4-MCM7 interaction in vivo, we evaluated whether the proteins 

co-localized and formed a complex in HeLa cells. In sub-cellular fractionation 

experiments, NCOA4 and MCM7 were detected in both the cytoplasmic and nuclear 

compartments (Fig. 1B). Like MCM7 (Bell et al. 2002), NCOA4 was present, in part, in 

the Triton X-100 (0.5%) insoluble fraction, and DNAse treatment was able to solubilize 

both NCOA4 and MCM7, indicating that NCOA4 was bound to chromatin like the 

MCM2-7 complex (Fig. 1C). Moreover, NCOA4 co-immunoprecipitated with MCM7, 

indicating interaction of the two proteins at the endogenous level (Fig. 1D). MCM6 and 

MCM5 proteins were also present in the complex, enforcing the hypothesis that 

NCOA4 bound MCM7 in the contex of the entire MCM2-7 complex (Fig. 1D). In HeLa 
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sub-cellular fractions, NCOA4-MCM7 interaction was confined to the nucleus and 

occurred preferentially on chromatin (Fig. 1E). 

Cell-free systems derived from Xenopus laevis (Xenopus l.) eggs represent the 

classical model for studies of cell cycle events (Murray 1991). We used this system to 

determine the functional consequences of the interaction between NCOA4 and the 

MCM2-7 complex on DNA replication. The recombinant NUS-NCOA4 protein (full-

length human NCOA4 fused to the NUS tag) was found to bind to the endogenous 

Xenopus l. MCM7 (Fig. 2A). We incubated Xenopus l. egg extracts with 

demembranated Xenopus l. sperm nuclei and different concentrations of NUS-NCOA4. 

As shown in Fig. 2B, NUS-NCOA4, but neither heat-inactivated NUS-NCOA4 nor the 

NUS tag alone, inhibited DNA replication in a concentration-dependent manner. NUS-

NCOA4 did not affect the formation of the nuclear envelope in egg extracts (Fig. S2A); 

kinetics of DNA replication showed that 150 nM NUS-NCOA4 protein was able to 

reduce replication to less than 10% throughout the entire reaction (Fig. S2B). Only the 

full-length NCOA4 protein, but neither the isolated NCOA4 NH2-terminal [NUS-

NCOA4(N)] (amino acids 1-238) nor the COOH-terminal [NUS-NCOA4(C)] (amino 

acids 239-614) fragments, blocked DNA replication (Fig. 2C).  

To determine whether the effect exerted by NCOA4 on DNA synthesis was 

mediated by its interaction with MCM7, we used the COOH-terminal portion of MCM7 

[MCM7(C)] to obstruct the interaction between NCOA4 and endogenous MCM7 in the 

extract. MCM7(C) (amino acids 576-719) corresponded to the protein segment isolated 

in the two-hybrid screening, and therefore it contained the NCOA4-binding site (Fig. S1 

and 2D). MCM7(C) per se did not affect DNA replication (Fig. 2D). However, a 3-6 

fold molar excess of MCM7(C) blunted the NCOA4-mediated inhibition of DNA 

replication (Fig. 2E), suggesting that such blockade resulted from the interaction of 

NCOA4 with MCM7.  

To investigate the mechanism underlying the NCOA4-mediated hindrance of 

DNA replication, we tested whether NUS-NCOA4 altered the loading of replication 
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factors on DNA by chromatin pull-down experiments. As expected, NUS-NCOA4 

protein was bound to chromatin (Fig. 3A). Geminin, which inhibits MCM2-7 binding to 

DNA (Wohlschlegel et al. 2000), did not reduce NUS-NCOA4 loading (Fig. S3), 

indicating that the interaction of NUS-NCOA4 with DNA occurred irrespective of 

binding to the MCM2-7 complex. NUS-NCOA4 did not affect loading of the pre-RC 

components Cdc6 and MCM7, or pre-IC component CDC45, whereas it greatly reduced 

the binding of PCNA, which occurs beyond the synthesis of the DNA/RNA primer (Fig. 

3A). PCNA loading was restored by competing NUS-NCOA4 with the MCM7(C) 

peptide (Fig. 3B). These data indicated that NUS-NCOA4 was acting after both 

licensing and activation of origins had occurred.  

One possibility was that NUS-NCOA4 inhibited DNA unwinding, a step 

secondary to pre-IC formation and preceding primer synthesis, PCNA loading and DNA 

elongation (Bell et al. 2002; Pacek et al. 2006; Labib et al. 2000; Takayama et al. 2003). 

To address this possibility, we measured aphidicolin-induced hyperloading of 

replication protein A (RPA) in the presence of NCOA4. Aphidicolin is a DNA 

polymerase inhibitor that uncouples DNA unwinding from DNA polymerization, 

thereby generating long stretches of single-strand DNA that is rapidly covered by the 

single-strand binding protein RPA. Therefore, aphidicolin-induced hyperloading of 

RPA is a bona fide measurement of replicative DNA helicase activity. NUS-NCOA4 

inhibited aphidicolin-induced RPA hyperloading (Fig. 3C), which indicated that it was 

blocking DNA unwinding. Again, NCOA4 did not affect MCM7 binding to DNA (Fig. 

3C). The MCM7(C) peptide, which reduced the NCOA4-induced inhibition of DNA 

replication (Fig. 2E) and restored PCNA loading (Fig. 3B), also blunted the NCOA4-

dependent block of RPA hyperloading, showing that hindrance of unwinding was 

mediated by NUS-NCOA4 interaction with MCM7 (Fig. 3D). No changes in MCM7 

and CDC45 binding to chromatin were detected, indicating that origins licensing and 

firing were not affected by MCM7(C) obstruction of NUS-NCOA4 action (Fig. 3D). 

Consistently, association of Primase/DNApol  to chromatin, which is strictly 
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dependent on origin unwinding (Walter and Newport 2000), was greatly decreased by 

150 nM NUS-NCOA4 (Fig. 3E). Interference with DNApol  binding explained 

reduction of PCNA loading observed in the presence of NUS-NCOA4 (Fig. 2A and B). 

Finally, NCOA4 did not affect the replication of a circular single-strand DNA template 

derived from the M13 bacteriophage (Fig. 3F) – a process that occurs independently of 

replicative DNA helicase (Cox and Leno 1990; Jenkins et al. 1992). 

We investigated the function of endogenous Xenopus l. NCOA4 protein with 

respect to DNA replication. Two cDNA species (XNCOA4  and XNCOA4 ) 

homologous to human NCOA4 are present in the GenBank (BC071152 and 

NM_001095769, respectively). The predicted XNCOA4  and XNCOA4  proteins are 

90% identical; moreover, they are 50% identical to human NCOA4 (Fig. S4). 

XNCOA4  and XNCOA4  cDNAs were cloned and used to generate an affinity-

purified antibody. The anti-XNCOA4 was able to immunoprecipitate in vitro-

transcribed/translated XNCOA4  and XNCOA4  (Fig. S4), as well a protein species 

from egg extracts with the same molecular weight as in vitro-transcribed/translated 

XNCOA4  and XNCOA4  (Fig 4A). Given the high similarity between XNCOA4  

and XNCOA4 , hereafter we will refer to both proteins as "XNCOA4".  

Initially, we observed that the endogenous XNCOA4 bound to chromatin during 

initial phases of DNA replication and formed a complex with MCM7 protein (Fig 4B 

and C). Subsequently, we evaluated the effects of XNCOA4 depletion with respect to 

DNA replication monitoring DNA synthesis at different time points (Fig. 4D). Extracts 

immunodepleted of endogenous XNCOA4 displayed a 2-3 fold increase of DNA 

replication from the onset (Fig. 4D). In parallel, PCNA chromatin binding was 

enhanced whereas MCM7 loading remained unchanged (Fig. 4E). Complementation of 

immunodepleted extracts with exogenous NUS-NCOA4 (30 nM) restored normal DNA 

replication and PCNA loading (Fig. 4E). Upon XNCOA4 depletion, CDC45 protein 

binding to chromatin remained unchanged, while RPA loading resulted visibly 
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increased (Fig. 4F), in accordance with a role for XNCOA4 in controlling DNA 

unwinding rather than origin firing. 

We sought to investigate NCOA4 role in mammalian cells. We first checked 

whether in HeLa cells the protein was located at canonical DNA replication origins 

using chromatin immunoprecipitation (ChIP) (Dominiguez–Sola et al. 2007). NCOA4 

was present at both c-Myc and Lamin B2 origins. Cdc6 protein was detected at the same 

origins while neither proteins binding occured on control regions (Fig 5A and B). HeLa 

cells were transiently transfected with three different NCOA4 small inhibitory duplex 

RNAs (NCOA4 1i, 2i and 3i) and DNA synthesis was measured by BrdU incorporation. 

NCOA4 siRNAs, but not the scrambled control, increased the DNA synthesis rate at 

both 48 and 72 hours. This effect was more pronounced with NCOA4 2i, than with 

NCOA4 1i and 3i, which is in line with its stronger capacity to knock down NCOA4 

protein levels (Fig. 5C and Fig. S5). Moreover, in a G1/S synchronized cell population 

(double-thymidine block), NCOA4 2i siRNA increased DNA synthesis rate by 

accelerating entry in S phase (Fig. 5D). Indeed, after 20 minutes from block release, 

percentage of NCOAi cells in S phase increased from 27% to 44%, while control cells 

(scrambled RNAi) have not started entering S phase. Consistent with our findings in the 

Xenopus l. system, also in HeLa cells, increased DNA synthesis was paralleled by 

augmented recruitment of PCNA to chromatin whereas the chromatin-bound fraction of 

MCM7 remained unchanged (Fig. 5E).  

Lastly, we investigated the effects of adoptive NCOA4 overexpression. HeLa 

cells were engineered to express NCOA4 under the control of a doxycycline-inducible 

promoter. Induction of NCOA4 protein decreased cell growth and incorporation of 

BrdU. It also caused cells to accumulate in S phase probably consequent to a reduced 

rate of DNA synthesis (Fig. S6). In fact, DNA replication origins licensing was not 
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affected by increased levels of NCOA4 protein, as shown by the unchanged loading of 

MCM7 on DNA (Fig. S7). Nevertheless, as observed in Xenopus l. egg extracts, PCNA 

binding on chromatin and formation of replication foci was greatly reduced in cells 

overexpressing NCOA4 (data not shown). 

In summary, our study reveals a novel protein network involving NCOA4 and 

MCM7. By binding to the MCM2-7 complex, NCOA4 inhibits DNA replication and 

prevents DNA unwinding in Xenopus l. egg extracts, thereby acting as a bona fide 

MCM complex regulator. Thus, NCOA4 would function like the 1-400 p110Rb protein 

fragment, which, by binding to the same MCM7 region where also NCOA4 binds, 

blocks MCM2-7 helicase activity (Pacek et al. 2004; Sterner et al. 1998). Accordingly, 

NCOA4 negatively regulated DNA replication in HeLa cells.  

NCOA4 functions as a co-activator of several nuclear receptors, namely the 

androgen and estrogen receptors, peroxisome-proliferator activated receptor  and the 

thyroid hormone receptor (Yeh et al. 1996; Heinlein et al. 1999; Moore et al. 2004; 

Lanzino et al. 2005). Thus, NCOA4 may represent a functional link between steroid 

hormone receptors and DNA replication control.  

MCMs are overexpressed in many types of human cancer (Gonzalez et al. 2005). 

A gain of the 7q chromosomal region that includes MCM7 has been observed in 

prostate (Ren et al. 2006) and hypopharyngeal (Cromer et al. 2004) carcinomas. 

Targeted MCM7 expression to the basal layer of the epidermis in transgenic mice 

significantly increased the incidence of tumor development after two-stage chemical 

carcinogenesis (Honeycutt et al. 2006). Thus, MCM proteins are believed to act as 

important players in the process leading to autonomous growth of neoplastic cells 

(Gonzalez et al. 2005). Based on our findings, we postulate that chromosomal 

rearrangements that target the NCOA4 gene in thyroid cancer might release MCM7 

mitogenic activity from the negative control exerted by NCOA4. In this context, the 

NCOA4 rearrangement might represent a novel paradigm of a cancer-associated 

chromosome rearrangement that directly targets a gene that controls DNA synthesis. 
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MATERIALS AND METHODS 

Yeast Two-Hybrid Screening. The N-terminal portion of the human NCOA4 protein 

(amino acids 2-238) was fused in frame to the GAL4 DNA binding domain in the 

pGBKT7 vector (Clontech, Mountain View, CA) to generate the GAL4-NCOA4(N) 

bait. GAL4-NCOA4(N) was used to screen a MATCHMAKER pre-transformed HeLa 

cell cDNA library (Clontech). Two-hybrid screening procedure is described in the 

supplementary information. 

 

Recombinant Proteins. Recombinant proteins cloning is described in the 

supplementary information. The GST-Geminin protein was kindly donated by J. Gautier 

(Shechter et al. 2004). 

 

Generation of XNCOA4 antibody. A polyclonal anti-XNCOA4 antibody was 

generated by immunizing rabbits with the GST-XNCOA4  fusion protein. The serum 

was affinity-purified by sequential chromatography steps through GST and GST- 

XNCOA4  columns (AminoLink, Pierce, Rockford, IL) and was used at 1μg/ml for 

immunoprecipitation and at 0.1 μg/ml for Western blotting. Cloning of XNCOA4  and 

XNCOA4  cDNAs is described in the supplementary information.  

 

Protein studies. Proteins were extracted according to standard procedures. Details are 

described in the supplementary information.  

 

Antibodies. Anti-MCM6 (H-300; sc-22781), -MCM3 (N-19; sc-9850), -MCM7 (141.2; 

sc-9966), -Cdc6 (180.2; sc-9964), -RPA (H-100; sc-28709), -geminin (FL-209; sc-

13015) and -lamin (636; sc-7292) were from Santa Cruz Biotechnology (Santa Cruz, 
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CA). Anti-Tubulin (DM1A; T9026) was from Sigma Chemical Co (St. Louis, MO). 

Anti-MCM5 (MCA, 1860) was from Serotec (Raleigh, NC). Anti-PCNA (PC10) was 

from Chemicon International, Inc. (Temecula, CA). Anti-NCOA4 is an affinity-purified 

rabbit polyclonal antibody raised against the C-terminal protein fragment of human 

NCOA4 (amino acids 239-614) (Monaco et al, 2001). Anti-CDC45 and anti-RPA for 

Xenopus l. proteins were donated by J. C. Walter (Pacek and Walter, 2004). Anti-DNA 

polymerase  was donated by S. Waga (Waga et al, 2001). Secondary antibodies 

coupled to horseradish peroxidase were from Santa Cruz Biotechnology.  

 

DNA replication and chromatin binding assays. Cytostatic factor (CSF)-arrested 

Xenopus l. egg extracts were freshly prepared according to Murray (Murray, 1991). 

Chromosomal templates for DNA replication were prepared from demembranated 

Xenopus l. sperm nuclei as reported by Murray (Murray, 1991). Nuclei formation was 

monitored by immunofluorescence after 60 minutes from addition of sperm 

demembranated nuclei to egg extract. Procedures are described in the supplementary 

information.  

 

Cell culture methods, immunofluorescence and cytofluorimeter analysis. HeLa 

cells were grown in Dulbecco’s modified Eagle’s medium (DMEM) supplemented with 

10% fetal calf serum (Invitrogen Groningen, The Netherlands). Anti-NCOA4 siRNAs 

sequences are reported in the supplementary information. Transfection was performed 

using 150nM final concentration of siRNA using the oligofectamine reagent 

(Invitrogen). The human NCOA4 full-length cDNA was cloned in pcDNA/TO/myc-

HIS (Invitrogen) and stably transfected in HeLa T-Rex cells containing the Tet 

repressor under the control of the CMV promoter (Invitrogen). Marker-selected cell 

clones were isolated and characterized for NCOA4 expression by immunoblot. Two 

clones (clone 23 and 24) were selected for further studies. Methods for cell 
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synchronization, DNA synthesis measurement and immunofluorescence are reported in 

the supplementary information. 

 

Chromatin Immunoprecipitation. Chromatin immunoprecipitation was performed 

from exponentially growing HeLa cells using preimmune serum, or purified anti-

NCOA4 and anti-Cdc6 antibodies. Sequence of PCR primers are reported in the 

supplementary information. 
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Figure Legends  

Figure 1. NCOA4 interacts with the MCM2-7 complex.  

(A) HeLa cell protein extract was subjected to an in vitro pull-down assay with the 

NUS, NUS-NCOA4 or NUS-NCOA4(N) recombinant proteins. Bound proteins were 

immunoblotted with anti-MCM7 and MCM3 antibodies. (B) Total, cytosolic and 

nuclear proteins, deriving from comparable number of HeLa cells, were immunoblotted 

with anti-NCOA4 and anti-MCM7 antibodies. Anti-SP1 (nuclear) and anti-SHC 

(cytosolic) antibodies served to verify the purity of the fractions. (C) Cells were lysed 

with 0.5% Triton and subjected to low-speed centrifugation to obtain “soluble 1” 

fraction and “pellet 1” fraction, containing chromatin and chromatin-bound proteins. 

Chromatin-bound proteins were solubilized from pellet 1 upon treatment with DNAse 

followed by low-speed centrifugation to obtain soluble 2 fraction. For each fraction, 

protein amounts deriving from comparable number of cells, were immunoblotted with 

anti-MCM7 and anti-NCOA4 antibodies. (D, E) HeLa cell protein total (D) or 

fractionated (E) extract was immunoprecipitated with anti-NCOA4 or with preimmune 

serum. Immunocomplexes were blotted with the indicated antibodies. Lysis buffer alone 

(-) was immunoprecipitated as a control. The results in panels A-E are representative of 

several independent experiments. 

 

Figure 2. NCOA4 inhibits DNA replication in Xenopus l. egg extracts.  

(A) Xenopus l. egg extracts, supplemented or not with the NUS-NCOA4 recombinant 

protein, were immunoprecipitated with anti-NCOA4 and immunoblotted with anti-

NCOA4 or anti-MCM7 antibodies. (B) Upper: Agarose gel electrophoresis of DNA 

synthesized in Xenopus l. egg extracts using the indicated concentrations of NUS-

NCOA4, heat inactivated NUS-NCOA4, or NUS moiety alone. Lower: percentage of 

synthesized DNA in each lane measured by phosphor imaging (average results ± SD of 

three independent determinations). (C) Upper: Agarose gel electrophoresis of DNA 

synthesized in Xenopus l. egg extracts using 150 nM of NUS-NCOA4, NUS-
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NCOA4(N), or NUS-NCOA4(C). Lower: percentage of synthesized DNA in each lane 

measured by phosphor imaging (average results ± SD of three independent 

determinations). (D) Upper: Schematic representation of MCM7 protein and MCM7(C) 

fragment isolated by the two-hybrid screening. Lower: Agarose gel electrophoresis of 

DNA synthesized in Xenopus l. egg extracts in the presence or absence of 300 nM 

MCM7(C) recombinant protein. (E) Upper: Agarose gel electrophoresis of DNA 

synthesized in Xenopus l. egg extracts using the indicated concentrations of NUS-

NCOA4 alone or with 300 nM MCM7(C). Lower: percentage of synthesized DNA in 

each lane measured by phosphor imaging (average results ± S.D. of three independent 

determinations).  

 

Figure 3. NCOA4 inhibits DNA unwinding in Xenopus l. egg extracts. 

(A) Loading of replication factors on chromatin measured after 120 min incubation with 

or without NUS-NCOA4. Time point 0 min, when no protein loading onto chromatin 

should be detected, was used as control. Proteins were isolated by centrifugation in 

sucrose gradient, and subjected to Western blotting with the indicated antibodies. (B) 

Upper and middle: Loading of PCNA and MCM7 on chromatin after incubation for 120 

min with buffer, 100nM NUS-NCOA4 or 100 nM NUS-NCOA4 + 300 nM MCM7(C). 

Chromatin-bound proteins were isolated by centrifugation on sucrose gradient and 

analyzed by immunoblot with the indicated antibodies. Lower: Agarose gel 

electrophoresis of DNA synthesized in Xenopus l. egg extracts using buffer, 100 nM 

NUS-NCOA4 or 100 nM NUS-NCOA4 + 300 nM MCM7(C). Bar graphs represent the 

percentage of synthesized DNA measured by phosphor imaging (average results ± S.D. 

of three independent determinations). (C) Upper: loading of RPA and MCM7 on 

chromatin in the presence of buffer, 150 nM NUS-NCOA4, 150 nM NUS-NCOA4 + 

aphidicolin (10 μM), and aphidicolin (10 μM) alone. Lower: DNA synthesis of each 

sample was monitored by agarose gel electrophoresis. (D) Upper: Loading of RPA, 
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MCM7 and CDC45 on chromatin in the presence of buffer or aphidicolin (10 μM) + 

buffer, 100 nM NUS-NCOA4 or 100 nM NUS-NCOA4 + 300 nM MCM7(C). Lower: 

DNA synthesis of each sample was monitored by agarose gel electrophoresis. (E) 

Loading of DNA polymerase  (pol ) and MCM7 on chromatin in the presence or 

absence of NUS-NCOA4 (150 nM) after 0, 40, and 80 min from replication onset. (F) 

M13 (upper) and sperm nuclei (lower) DNA was replicated in the presence of 300 nM 

NUS-NCOA4 and 10 μM aphidicolin, as indicated. DNA synthesis was monitored by 

agarose gel electrophoresis. These results are representative of three independent 

experiments. 

 

Figure 4. Immunodepletion of XNCOA4 from Xenopus l. egg extracts increases DNA 

synthesis.  

(A) Xenopus l. egg extracts were immunoprecipitated with anti-XNCOA4 or preimmune 

serum and immunoblotted with anti-XNCOA4 antibody. The antibody alone (no 

extract) served as control. (B) Loading of XNCOA4, MCM7 and PCNA on chromatin 

measured after 0, 30, 60 and 120 min of incubation of eggs extracts. Proteins were 

isolated by centrifugation in sucrose gradient, and subjected to Western blotting with 

the indicated antibodies. The bar graphs represent the percentage of synthesized DNA in 

each lane, measured by Cerenkov counting (average results ± S.D. of three independent 

determinations). (C) Activated Xenopus l. egg extracts were supplemented with sperm 

chromatin. After 20 min of incubation, extracts were immunoprecipitated with anti-

XNCOA4 or preimmune serum and immunoblotted with anti-XNCOA4 or anti-MCM7 

antibodies. The antibody alone (no extract) served as control. (D) Left: Western blot of 

Xenopus l. egg extracts that had been mock- (preimmune serum) or NCOA4-

immunodepleted (anti-XNCOA4 antibody). Anti-XNCOA4 antibody alone (no extract) 

was used as control. Right: Xenopus l. egg extracts that have been mock-depleted or 

XNCOA4-depleted were harvested at the indicated time points and DNA replication  
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measured by Cerenkov counting (average results ± S.D. of three independent 

determinations). (E) Agarose gel electrophoresis of DNA synthesized at the indicated 

time points (upper) and loading of replication factors MCM7 and PCNA on chromatin 

(middle and lower) in Xenopus l.  egg extracts that had been mock-depleted or NCOA4-

immunodepleted. Extracts that were NCOA4-immunodepleted and then supplemented 

with 30 nM of NUS-NCOA4 recombinant protein were used as control. Proteins were 

isolated by centrifugation in sucrose gradient, and subjected to Western blotting with 

the indicated antibodies. The bar graphs represent the percentage of synthesized DNA in 

each lane, measured by phosphor imaging (average results ± S.D. of three independent 

determinations). (F) Loading of MCM7, CDC45 and RPA on chromatin measured after 

60 min and 120 min of incubation of eggs extracts that had been mock-depleted or 

NCOA4-immunodepleted. Extracts that were NCOA4-immunodepleted and then 

supplemented with 30 nM NUS-NCOA4 were used as control. Proteins were isolated by 

centrifugation in sucrose gradient, and subjected to Western blotting with the indicated 

antibodies. The bar graphs represent the percentage of synthesized DNA in each lane, 

measured by phosphor imaging (average results ± S.D. of three independent 

determinations). 

 

Figure 5. NCOA4 protein binds to DNA replication origins and influences cell growth 

and DNA synthesis rate in HeLa cells.  

(A, B) Chromatin immunoprecipitation of human Lamin B2 (LB2) (A) and c-Myc (B) 

DNA replication origins, performed using preimmune serum or anti-NCOA4 and anti- 

Cdc6 antibodies. Upper panels: maps depicting the location of relevant regions of the 

two loci. PCR fragments at origins and control regions are indicated. Lower panels: 

ethidium bromide staining of PCR products. (C) HeLa cells were mock-transfected (-) 

or transfected with NCOA4 2i or NCOA4 3i siRNAs or scrambled siRNA. After 48 

hours, NCOA4 protein levels were measured by immunobloting. Anti-lamin antibody 

was used for normalization (left). DNA synthesis was measured by anti-BrdU 
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immunofluorescence (right). The average results ± SD of three independent 

experiments made in duplicate are reported. *P< 0.02 (two-side paired Student’s t-test).  

(D) Scrambled or NCOA4 2i transfected cells were released from double-thymidine 

block at the indicated time points and subjected to flow cytometry. Percentage of cells 

in G1, S and G2 phases is indicated. (E) Cells were lysed with 0.5% Triton and 

subjected to low-speed centrifugation to obtain “soluble 1” fraction and “pellet 1” 

fraction, containing chromatin and chromatin-bound proteins. Chromatin-bound 

proteins were solubilized from pellet 1 upon treatment with DNAse followed by low-

speed centrifugation to obtain soluble 2 fraction. For each fraction, protein amounts 

deriving from comparable number of scrambled RNAi or NCOA4 2i transfected cells 

were immunoblotted with anti-MCM7 and anti-PCNA antibodies. 
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Supplementary material  

Materials and Methods 

Yeast Two-Hybrid Screening. Molecular cloning of the human NCOA4 cDNA 

(GenBank accession NM_005437) is reported elsewhere (Santoro et al, 1994). The N-

terminal portion of the human NCOA4 protein (amino acids 2-238) was fused in frame 

to the GAL4 DNA binding domain in the pGBKT7 vector (Clontech, Mountain View, 

CA) carrying the TRP1 selection, to generate the GAL4-NCOA4(N) bait. The plasmid 

was controlled by DNA sequencing. 106 transformants of the MATCHMAKER HeLa 

cell cDNA library (Clontech) cloned in the pGADT7 vector, carrying the LEU2 

selection, were screened with the GAL4-NCOA4(N) bait. Twelve HIS synthase- and 

ADE synthase-positive cDNA clones were isolated in HTLA 

(histidine/threonine/leucine/adenine-deprived) medium and confirmed by retro-

transformation in the yeast strain AH109; the backbone GAL4 and the empty vector 

served as negative controls. All the isolated cDNA clones were DNA sequenced and 

aligned to the GenBank (National Center for Biotechnology Information) by using the 

Basic Alignment Search Tool (BLAST) software. 

 

Recombinant Proteins. NUS-NCOA4, NUS-NCOA4(N) and NUS-NCOA4(C) were 

generated by PCR amplification of the entire NCOA4 open reading frame or its 5’-

terminal (amino acids 2-238) or 3’-terminal (amino acids 239-614) portions, 

respectively. Fragments were then fused in-frame to the solubility tag NUS in the pET 

vector (Davis et al. 1999). MCM7(C) was generated by PCR amplification of the C-

terminal portion of the human MCM7 cDNA (amino acids 576-719). The PCR product 

was fused in-frame to NUS tag in the pET vector. The plasmids were controlled by 

DNA sequencing. Recombinant proteins were produced in Escherichia coli by using 

standard protocols.  
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Cloning of XNCOA4  and XNCOA4  cDNA. We identified two different cDNA 

species coding for XNCOA4  and XNCOA4  by blasting the GenBank against the 

human NCOA4 protein sequence. PCR primers were then designed to amplify both 

XNCOA4  and XNCOA4  cDNAs using Accuprime-Pfx taq polymerase (Invitrogen 

Groningen, The Netherlands). Primer sequences were as follows: 

XNCOA4  Forward: 5’-ATGAATTTGCACCAAGATCATGAATTT-3’ 

XNCOA4  Reverse: 5’-CATCTGCAAGGGAGACTGGTATAG-3’ 

XNCOA4  Forward: 5’-ATGAATTTGCACCAAGATCATCAATTCAGC-3’ 

XNCOA4   Reverse: 5’-CATCTGCAAGGGAGACTGGTATAG-3’ 

cDNAs were subcloned in PCR2.1 TA cloning vector (Invitrogen), controlled by double 

strand DNA sequencing and then subjected to in vitro transcription/translation using T7 

polymerase and rabbit reticulocyte extracts (Promega, Madison, Wisconsin).  GST-

XNCOA4 recombinant protein was generated by PCR amplification of the 3’-terminal 

(amino acids 278-625) of XNCOA4  coding region; the PCR products were fused in-

frame to the GST moiety in the pGEX2T vector (Amersham Pharmacia Biotech, Little 

Chalfort, UK). Recombinant proteins were produced in Escherichia coli by using 

standard protocols.  

 

Protein studies. Cells were lysed in a buffer containing 50 mM N-2-

hydroxyethylpiperazine-N'-2-ethanesulfonic acid (HEPES; pH 7.5), 1% (vol/vol) Triton 

X-100, 150 mM NaCl, 5 mM EGTA, 50 mM NaF, 20 mM sodium pyrophosphate, 1 

mM sodium vanadate, 2 mM phenylmethylsulphonyl fluoride (PMSF) and 1 μg/ml 

aprotinin. Lysates were clarified by centrifugation at 10,000 x g for 15 min. Lysates 

containing comparable amounts of proteins, estimated by a modified Bradford assay 

(Bio-Rad, Munchen, Germany), were immunoprecipitated with the required antibody or 

subjected to direct Western blot. Immune complexes were detected with the enhanced 

chemiluminescence kit (Amersham Pharmacia Biotech). Immunoblotting was carried 
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out with specific antibodies. For binding assay (pull-down), HeLa cells lysates were 

incubated with 5 μg of immobilized fusion proteins. Bound proteins were detected by 

immunoblot analysis. 

 

Cell fractionation and analysis of nuclear fractions. For subcellular fractionation, 

cells in the mid-exponential phase of growth were collected by scraping from the 

culture dish after two washings with 20 ml ice-cold 1X phosphate-buffered saline 

(PBS). Subcellular fractions were prepared using the NE-PER nuclear and cytoplasmic 

extraction kit (Pierce Biotechnology, Rockford, Il). Triton X-100-extracted nuclei were 

prepared as follows. Cells cultured in 100-mm dishes were washed three times with ice-

cold phosphate-buffered saline and divided in two aliquots. One aliquot was lysed with 

standard buffer (total). The other aliquot was incubated for 10 min on ice with 200 μl of 

ice-cold CSK buffer (10 mM PIPES, pH 6.8, 100mM NaCl, 300 mM sucrose, 1mM 

MgCl2, 1 mM EGTA, 1 mM DTT, 1 mM phenylmethylsufonyl fluoride, 10 μg/ml 

aprotinin) containing 0.5% Triton X-100 (Pierce Biotechnology). Chromatin-bound 

proteins (pellet 1) were separated from unbound proteins (soluble 1) by low speed 

centrifugation (3,000 rpm, 3 min at 4°C). Pellet 1 was divided in two aliquots, one of 

which was further digested with 1,000 units/ml DNase I (pellet 1 +DNAse) (10 units/μl, 

RNase-free, Boehringer Mannheim, Germany) in 100 μl of 0.1%Triton X-100 

containing CSK supplemented with 1mM ATP at 25° C for 30 min to solubilize 

chromatin-bound proteins and then subjected to low-speed centrifugation (3,000 rpm, 3 

min at 4°C) to generate soluble 2 (supernatant) and pellet 2 fractions. For each fraction, 

protein amounts deriving from comparable number of cells were analysed by SDS-

PAGE and Western blotting. 

 

DNA replication and chromatin binding assays.  Xenopus l. egg extracts were 

supplemented with 100 μg/μL cycloheximide and energy mix (7.5 mM creatine 
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phosphate, 1 mM ATP, 0.1 mM EGTA, pH 7.7, 1 mM MgCl2) and released in 

interphase with 0.4 mM CaCl2. DNA was synthesized by adding 6.000/μL sperm nuclei 

(unless differently specified) and 1μCi [ -32P] dATP and incubating the reaction for 120 

min at 23°C followed by agarose gel electrophoresis. Gels were exposed for 

autoradiography and quantified using the PhosphorImager (Typhoon 8600, Amersham 

Pharmacia Biotech) interfaced with the ImageQuant software. Alternatively, reactions  

were spotted on GF/C glass microfiber filters, washed with 1% orthophosphoric acid 

and read at the -counter using Cerenkov method. Nuclei were visualized by fluorescent 

microscopy after fixing in paraformaldehyde (4%) and staining with Hoechst 33258 

(final concentration 1 μg/ml; Sigma Chemicals Co, St. Louis, MO). For chromatin 

binding assays, replication reactions were assembled as above. After incubation, each 

reaction was re-suspended in chromatin isolation buffer (100 mM KCl, 40 mM Hepes 

pH 7.8, 10 mM MgCl2) supplemented with 0.1% Triton X-100 and overlaid on the same 

buffer containing 30% sucrose. The chromatin was pelleted at 6,000g for 20 min at 4°C. 

The pellet was re-suspended in 1X Laemmli buffer, run on a 10% SDS-PAGE and 

analysed by Western blotting with specific antibodies. For immunodepletion, prior to 

CaCl2 activation, egg extracts were incubated with 5 μg of anti-XNCOA4 antibody or 

preimmune serum, pre-absorbed on 20 μl of protein G-Sepharose slurry (Roche 

Diagnostics S.p.A, Monza, Italy), for 45 min rocking at 4°C. 

 

Cell culture methods, immunofluorescence and cytofluorimeter analysis.  

Anti-NCOA4 siRNAs were designed with a program available online 

(http://jura.wi.mit.edu/siRNAext) and synthesized by Proligo (Boulder, CO).  SiRNA 

sense strand sequences were as follows: 

NCOA4 1i: 5’-UAUCUCCAUGCCAGAGCAGAA-3’ 

NCOA4 2i: 5’-AAGAUUCAACUGUCCUGCUCUUU-3’ 

NCOA4 3i: 5’- GGCCCAGGAAGUAUUACUU-3’ 
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Scrambled: 5’-ACCGUCGAUUUCACCCGGUU-3’ 

For the double-thymidine block, cells were treated for 12-14 h with complete medium 

containing 4 mM thymidine, released in 24 μM cytidine for 12 hours and treated again 

with 4 mM thymidine for additional 12-14 h. Upon thymidine wash-out, cells were 

harvested at different time points and processed for flow cytometry. For DNA synthesis 

measurements, cells were seeded on glass coverslips. Bromodeoxyuridine (BrdU; 

Sigma Chemical Co.) was added to the cell culture medium at a final concentration of 

100 μg/ml for 2 h before harvest. Cells were fixed with paraformaldehyde (4%) and 

permeabilized with Triton X-100 (0.2%) before staining. Coverslips were incubated 

with anti-BrdU mouse monoclonal antibody and then with a Texas red-conjugated anti-

mouse antibody (Boehringer Mannheim, Germany). All coverslips were counterstained 

in PBS containing Hoechst 33258 (final concentration, 1μg/ml; Sigma Chemical Co.), 

rinsed in PBS and mounted in Moviol on glass slides. The fluorescent signal was 

visualized with an epifluorescent microscope (Axiovert 2, Carl Zeiss) interfaced with 

the image analyzer software KS300 (Carl Zeiss). For cytofluorimetric analysis, cells 

were harvested and then fixed in cold 70% ethanol in phosphate-buffered saline. 

Propidium iodide (25 μg/ml) was added and samples were analyzed with a FACScan 

flow cytometer (Becton Dickinson, San Jose, CA) interfaced with a Hewlett Packard 

computer (Palo Alto, CA). 

 

Chromatin Immunoprecipitation. Primers for PCR were as follows: 

Lamin B2 origin: 

Forward 5’-GGCTGGCATGGACTTTCATTTCAG-3’ 

Reverse 5’-GTGGAGGGATCTTTCTTAGACATC-3’ 

Control region:  

Forward 5’-CTGCCGCAGTCATAGAACCT-3’ 

Reverse 5’-ATGGTCCCCAGGATACACAA-3’ 



NCOA4 in DNA replication 
 

 28 

 

c-Myc origin:  

Forward 5’-TATCTACACTAACATCCCACGCTCTG-3’ 

Reverse 5’-CATCCTTGTCCTGTGAGTATAAATCATCG-3’ 

Control region:  

Forward 5’-TTCTCAACCTCAGCACTGGTGACA-3’ 

Reverse 5’-GACTTTGCTGTTTGCTGTCAGGCT-3’ 
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Supplementary material figure legends  

Figure S1. NCOA4 and MCM7 interact in a yeast two hybrid system.  

Upper: Schematic representation of NCOA4 and MCM7 proteins, the NCOA4(N) bait 

used for the yeast 2-hybrid screen and the MCM7(C) prey isolated in the screening. 

NCOA4(C) fragment is also indicated. Protein domains able to fold into coiled-coils are 

indicated. The breakpoint position of NCOA4 in the RET/PTC3 rearrangement is 

shown. Lower: Growth of yeast cells transfected with the indicated plasmids in HTLA 

(histidine/threonine/leucine/adenine-deprived) selective medium. 
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Figure S2. NUS-NCOA4 inhibits DNA replication in Xenopus l. egg extracts.  

(A) Nuclei envelope formation in egg estracts supplemented or not with 150 nM NUS-

NCOA4. (B) Xenopus l. egg extracts supplemented or not with 150 nM NUS-NCOA4 

were harvested at the indicated time points and DNA replication monitored by spotting 

the reaction on glass microfiber filters and measured by Cerenkov counting (average 

results ± S.D. of three independent determinations).  

 

Figure S3. NCOA4 binding to chromatin is independent on the MCM complex.  

Upper: Loading of NUS-NCOA4 and MCM7 on chromatin was monitored after 

incubation for 120 min with or without the recombinant GST-Geminin. Time point 0 

min served as loading control. Chromatin-bound proteins were isolated by 

centrifugation in sucrose gradient and analyzed by immunoblot with the indicated 

antibodies. Middle and Lower: The DNA synthesis of each sample was monitored by 

agarose gel electrophoresis and the percentage of synthesized DNA in each lane 

measured by phosphorimaging (average results ± S.D. of three independent 

determinations). 

 

Figure S4. Cloning of XNCOA4  and XNCOA4  cDNA and generation of anti-

XNCOA4 antibody.  

(A) Alignment between Xenopus l. XNCOA4 , XNCOA4  and human hsNCOA4 

coding sequences performed with CLUSTALW (www.ebi.ac.uk/clustalw/). Predicted 

coiled-coil motifs are boxed in grey. (B) Products from in vitro transcription/translation 

reactions using XNCOA4  and XNCOA4  cDNA as templates and 35S-Methionine 

have been subjected to immunoprecipitation with anti-XNCOA4, run on SDS-PAGE, 

fixed in acetic acid/methanol, dried and exposed to autoradiography. Aliquots of total 

reactions were loaded as input control.  

 



NCOA4 in DNA replication 
 

 30 

Figure S5. NCOA4 knock-down increases BrdU incorporation.  

(A) HeLa cells were mock-transfected (-) or transfected with NCOA4 1i or NCOA4 2i 

siRNAs or scrambled siRNA. After 72 hours, NCOA4 protein levels were measured by 

immunobloting. Anti-lamin antibody was used for normalization. (B) DNA synthesis 

was measured by anti-BrdU immunofluorescence. The average results ± SD of three 

independent experiments made in duplicate are reported. *P< 0.02 (two-side paired 

Student’s t-test). 

 

Figure S6. Adoptive NCOA4 over-expression reduces cell growth and BrdU 

incorporation and induces a S-phase arrest.  

(A) Immunoblot detection of Myc-tagged NCOA4 protein upon doxycycline (Dox) (48 

hours) induction in two independent HeLa-NCOA4 clones (clones 23 and 24). (B) 

HeLa-NCOA4 (clones 23 and 24) cell growth with and without Dox; the average results 

± SD of three independent experiments performed in triplicate are reported. (C) HeLa-

NCOA4 clone 24 cells flow cytometry and anti-BrdU immunofluorescence upon Dox 

treatment (48 hours). The average results ± SD of three independent experiments made 

in duplicate are reported. *P< 0.02 (two-side paired Student’s t-test). The same results 

were obtained with HeLa-NCOA4 clone 23 (not shown). 

 

Figure S7. Adoptive NCOA4 over-expression reduces RPA and PCNA loading on 

chromatin.  

HeLa NCOA4-Cl24 cells were treated or not with Dox for 48 hours. Cells were lysed 

with 0.5% Triton and subjected to low-speed centrifugation to obtain “soluble 1” 

fraction and “pellet 1” fraction, containing chromatin and chromatin-bound proteins. 

Chromatin-bound proteins were solubilized from pellet 1 upon treatment with DNAse 

followed by low-speed centrifugation to obtain soluble 2 fraction. For each fraction, 

protein amounts deriving from comparable number of cells were immunoblotted with 

anti-MCM7, anti-RPA and anti-PCNA antibodies.  


























