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ABSTRACT 
 

Oncolytic conditionally replicating adenoviruses (CRAds) are viral mutants able to 

selectively replicate in tumour cells. CRAds are considered a promising platform 

for cancer therapy. dl922-947, bearing a mutation in E1A gene and AdΔΔ, 

carrying mutations in both E1A and E1B genes, exhibited an antitumour effect 

against glioma and prostate cancer cells, respectively. Recently, it is thought that 

the adequate modulation of autophagy can enhance efficacy of anticancer therapy. 

However, the outcome of autophagy manipulation depends on the autophagy 

initiator, the combined stimuli, the extent of cellular damage and the type of cells. 

In this study, I characterized the role of autophagy in oncolytic adenovirus-induced 

therapeutics effects. When autophagy was inhibited at different steps by 

chloroquine (HCQ)  or 3-methyladenine (3-MA), the cytotoxicity of dl922-947 

and AdΔΔ in glioma and prostate cancer cells was augumented. These findings 

indicate that autophagy is a cell survival response in infected cells. Moreover, I 

showed that the oncolytic adenoviruses activated the Akt/mTOR/p70s6k pathway, 

that plays a central role in the negative regulation of autophagy, and, accordingly,  

inhibited the ERK pathway, that is a positive regulator of autophagy. Interestingly, 

a MEK inhibitor, PD98059, synergistically sensitized glioma cells to dl922-947 by 

increasing autophagy inhibition. These findings suggest that a disruption of ERK 

signalling pathway could greatly enhance the efficacy of CRAds by inhibiting 

autophagy.  

The observation that autophagy inhibitors increase adenoviruses antitumor activity 

in cancer cells suggests a novel multimodal strategy for virotherapy.  
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1. BACKGROUND 
 

 

1.1 Oncolytic viruses in the treatment of cancer  

 

An oncolytic virus (OV) is a virus used to treat cancer due to its ability to 

specifically infect and lyse cancer cells, while ideally leaving normal cells 

unharmed. These viruses are essentially tumor-specific, self-replicating, lysis-

inducing cancer killers. They are self-perpetuating in cancerous, rapidly dividing 

tissue and will continuously infect and replicate as long as the host’s cell 

population is permissive. Viruses which have been mutated to be dependent on 

certain molecular defects in cancer cells are called conditionally replicating (i.e. 

restricted to replicate only in permissive cells). 

Oncolytic virotherapy is a novel promising form of gene therapy for cancer. By 

using  a variety of viral vectors that are capable of replication specifically in tumor 

cells, virotherapy is finally emerging as potentially useful anticancer strategy. 

Numerous oncolytic viruses are currently in Phase I and II clinical testing in many 

different countries,  showing extremely encouraging results. The first marketing 

approval for an oncolytic virus was granted by Chinese regulators in 2005 (Russell 

and Peng 2007).  

Members from an increasing number of virus families are being investigated as 

oncolytic agents for cancer treatment. Some of these viruses are reported in table 

below (table 1).  

 

 
                                                                                                                          (Cattaneo  et al.  2008) 

 

Table 1. Oncolytic viruses that are currently used in cancer clinical trials.  

HSV1, herpes simplex virus 1; MV, measles virus; NDV, Newcastle disease virus; VSV, vesicular 

stomatitis virus.  
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1.1.1 Oncolytic adenoviruses biology 
 

Adenoviruses are the most widely used oncolytic viruses in cancer therapy and 

also the most widely described. Adenovirus is a non-enveloped, 80-110 nm 

diameter virus presenting icosahedral symmetry. The 51 distinct serotypes of 

human adenovirus have been classified into six groups (A–F) based on sequence 

homology (Shenk 1996). Most studies have been carried out on adenovirus 

serotype 2 (Ad2) and Ad5. Human adenoviruses contain a linear, double stranded 

DNA genome of 30-36 Kb. Adenovirus infection occurs through binding of the 

adenoviral fiber to cellular receptors such as the coxsackie-adenovirus receptor 

(CAR) or integrins. After the virus internalization through endocytosis the virus 

escapes the endosome and translocates to the nuclear pore complex, where the 

viral DNA is released into the nucleus and transcription begins. Transcription, 

replication and viral packaging take place in the nucleus of the infected cell. 

Adenoviral transcription occurs in two phases: early and late (Fields et al. 1996). 

The first gene that is transcribed in the viral genome is E1A. Two regions of 

conserved sequence among E1A proteins of different adenovirus types are 

conserved regions 1 and 2 (CR1 and CR2). During infection, the primary 

mechanism by which E1A forces quiescent cells to actively cycle is by interfering 

with proteins of the retinoblastoma (Rb) pathway (Harlow et al. 1986; Moran 

1993) and this interaction is mediated primarily by CR2. The E1A product is able 

to sequester Rb and release repression of E2F, allowing it to activate its target 

genes.  

The E1B transcription unit encodes two proteins, E1B-55kDa and E1B-19kDa. 

The E1B-19kDa protein is a functional homologue of the proto-oncogene-encoded 

Bcl-2 and prevents apoptosis by similar mechanisms (Debbas and White 1993, 

Rao et al. 1992). The E1B-55kDa protein complexes with the amino-terminal end 

of p53 and inhibits its activity as a transcription factor (Kao et al. 1990, Yew and 

Berk 1992, Yew et al. 1994). In addition to its antiapoptotic functions, the E1B-

55KDa protein facilitates the transport of viral mRNAs to the cytoplasm during the 

late stages of infection (Pilder et al., 1986). The E2 region encodes proteins 

necessary for replication of the viral genome: DNA polymerase, preterminal 

protein, and the 72-kDa single-stranded DNA-binding protein (De Jong et al. 

2003). Products of the viral E3 region function to subvert the host immune 

response and allow persistence of infected cells. The E4 transcription unit encodes 

a number of proteins that have been known to play a role in cell cycle control and 

regulation of DNA replication. The viral structural proteins and the proteins 

necessary for assembly of the virion are encoded by genes expressed during the 

late phase of viral replication.  
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1.1.2 Genetic modifications in adenoviruses for cancer selectivity 

 

There are different ways in order to develop tumour specificity in oncolytic 

adenoviruses, but the most widely-used strategy consists in the generation of 

replication-conditional adenoviruses. These viruses are genetically modified, by 

altering viral genes that attenuate replication in normal tissue but not in tumour 

cells. For example, some viruses have been designed to target cancer cells bearing 

mutations in the tumor suppressor proteins p53 or pRB. Inhibition of p53 protein 

activity must be blocked in normal cells in order to allow efficient viral 

replication. the first OV developed, dl1520 (ONYX-015), contains an 827-bp 

DNA deletion in the E1B region of the viral genome, thus lacking of E1B-p55 

protein. It was hypothesized that normal cells, upon infection with dl1520, should 

generate a p53 response that leads to apoptosis, preventing dl1520 virus replication 

(Fig. 1). In contrast, tumor cells lacking a functional p53 gene should be unable to 

suppress viral replication. Restricting replication of dl1520 to p53-deficient tumor 

cells results in selective destruction (O’Shea et al. 2005). Similar virus to dl1520 is 

the oncolytic adenovirus (H101), bearing a E1B-55kDa gene deletion. The world’s 

first oncolytic virus approved for the treatment of cancer patients (China).  

Other CRAd have been generated by mutating the E1A region of the adenoviral 

genome. A second generation E1A adenoviral mutant is dl922-947, which carries 

a 24-bp deletion in E1A Conserved Region 2 (CR2) therefore, is unable to induce 

progression from G1 into S-phase of quiescent cells. The G1-S checkpoint is 

critical for cell growth progression and is lost in almost all cancer cells as a result 

of mutations or deletions of the RB or CDKN2A genes, amplification and 

overexpression of Cyclin D, and amplification, overexpression or mutation of the 

CDK4 gene (Sherr 2000). The in vitro efficacy of dl922-947 was demonstrated in 

a range of a cancer cell lines and this efficacy exceeded that of adenovirus 5 wild-

type (Ad5wt) and dl1520 (Heise et al. 2000). dl922-947 has also been shown to 

have a higher oncolytic activity compared with dl1520 in anaplastic thyroid 

carcinoma cell (Libertini S. et al. 2008). A similar adenovirus, Δ24, with the same 

deletion in E1A-CR2, has shown activity in preclinical models of glioma (Fueyo et 

al. 2000). dl922-947 has also an impressive in vitro activity in ovarian carcinoma 

and was able to produce some long-term survivors in an aggressive xenograft 

model (Lockley et al. 2006).  

D. Oberg et al. have reported on the generation of potent replication-selective 

mutants targeting both altered pRb (ΔCR2) and apoptosis pathways (ΔE1B19K) 

with intact E3-region to improve efficacy and selectively both as single agents and 

in combination with standard clinical therapies. They have demonstrated that cell 

killing potency of the AdΔΔ mutant was either superior or similar to wild type 

virus in prostate, pancreatic and lung carcinoma cells. Moreover, they found 
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higher viral activity in vivo (human prostate cancer xenograft) when both CR2 and 

E1B19K regions were deleted (Oberg 2009).  

The mutation of these reported adenoviruses are reported in the Figure 1.  

 

 
 
Figure 1. Adenoviral genome and mutations  
 

 

 

1.1.3 The role of oncolytic adenoviruses in combination cancer therapy 
 

Although the safety and the antitumour efficacy of many oncolytic viruses alone 

were demonstrated in clinical trials, oncolytic virotherapy, by itself, has not been 

effective in complete tumor eradication. It appears that the best chance for 

complete tumor eradication lies in  combining oncolytic viruses  with current 

chemo- and radiation therapies or with the emerging novel biological agents. 

There have been several preclinical and clinical trials looking at the benefit of 

adding oncolytic adenoviruses to radiation therapy and chemotherapy. 

The addition of oncolytic adenoviruses to traditional chemotherapy has already 

entered Phase II trials with promising results. One such trial evaluated the use of 

intratumoral dl1520 injection in combination with cisplatin and 5-fluorouracil 

therapy in patients with recurrent squamous cell carcinoma of the head and neck 

(Nemunaitis et al. 2000). Another Phase II trial looked at the combination of 

dl1520 with leucovorin and 5-fluorouracil in patients with gastrointestinal 
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carcinoma metastatic to the liver (Kruyt and Curiel 2002). dl1520 was also 

administered intratumorally to patients with unresectable pancreatic cancer in 

combination with intravenous gemcitabine  in a Phase I clinical trial (Post et al. 

2003).  

Recent results from a phase III clinical trial have confirmed the ability of an 

oncolytic adenovirus (H101) to increase the response rate of 15 nasopharyngeal 

carcinoma in combination with cisplatin (Crompton and Kirn 2007; Yu and Fang 

2007). All these clinical trials have demonstrated that the combination treatment 

enhances the oncolytic viral effects. 

In addition, the chemotherapeutic drug, taxol, in combination with the E1B-

deleted chimeric oncolytic adenovirus SG235-TRAIL produced a synergistic 

cytotoxic effect in cancer cells as well as in the gastric tumor xenograft mouse 

model (Chen et al. 2009).  

D. Oberg et al. have also reported that the clinically used cytotoxic drug docetaxel 

synergises with the newly generated AdΔΔ mutant in killing prostate cancer cells 

(Oberg 2009).  

Some preclinical studies in combining oncolytic adenoviruses with radiation 

therapy have also provided several important findings. For example, enhanced 

antitumor action was shown with the combination of dl1520 and radiation therapy 

in anaplastic thyroid carcinoma (ATC) cells and tumor xenograft (Portella et al. 

2003), as well as in tumor xenograft models of human malignant glioma and colon 

cancer (Geoerger et al. 2003).  

In the last decade, novel drugs have been developed and tested in preclinical and 

clinical trials, showing promising results. These novel anti-cancer agents act 

against specific targets which are relevant for neoplastic cells proliferation, 

survival, invasion and other cancer features and they could be exploited to 

improve the efficacy of oncolytic viruses. Indeed, some evidences are reported. 

For example, Libertini S. et al. have demonstrated that the combined treatment 

with bevacizumab, a humanized anti-VEGF monoclonal antibody with an 

antiangiogenic action, significantly enhances the effects of dl922-947 against ATC 

tumor xenografts, by improving viral distribution within the tumour mass. 

(Libertini et al. 2008). The combination treatment of cyclooxygenase-2 (Cox-2) 

inhibitors with vaccinia virus is proved to be more effective that either treatment 

alone in treating ovarian tumors (Chang et al. 2009). Some Histone deacetylase 

(HDAC) inhibitors, such as trichostatin A (TSA), in combination with oncolytic 

herpes simplex virus (HSV) have been demonstrated to improve the therapeutic 

efficacy of in a human glioma xenograft model in vivo (Otsuki et al. 2008), as well 

as the antiangiogenetic and antitumoral efficacy in animal models (Liu et al. 

2008). Thus, elucidating how the oncolytic effects can be potenciated is relevant 

for the development of novel therapeutic strategies.  
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1.1.4 Oncolytic viruses and cell death 

 

In order to find drugs that could be used for the development of  novel therapeutic 

strategies based on the use of oncolytic viruses, the elucidations of the molecular 

mechanisms of virus-induced cell death is necessary. Although oncolytic viuses 

have been tested in clinical trials, so far oncolytic virus-induced cell death 

mechanisms remain to be delucidated.  

Cell death induced by replicating Ads has been often referred to as apoptosis. 

Some studies have shown that oncolytic viruses can induce apoptosis in some 

cancer cells both in vitro and in vivo, and that apoptosis seems a to contribute to  

enhanced antitumor effect in vivo (Li et al. 2008).  However, despite the known 

apoptosis-regulatory function of individual Ad genes, it is currently unknown 

whether the disruption of cancer cells at the last stage of CRAd infection, named 

oncolysis, always employs the basic apoptotic machinery of the host cell 

(Mohamed et al. 2004). Infact, a recent investigation showed that CRAds cause 

non-apoptotic programmed cell death in tumor cells and that Ads evolved a 

mechanism for disrupting the host cell at the final stage of the viral cycle, that does 

not require the activation of the basic apoptotic machinery. The authors infact 

showed that CRAd-induced oncolysis was not associated with apoptotic DNA 

fragmentation caused by internucleosomal DNA cleavage ( Mohamed et al. 2004). 

In ovarian cancer cells, dl922-947 has been found to produce some apoptotic 

morphological features such as caspase-3 activation. However, other typical 

features of apoptosis were not reported. Indeed, a pan-caspase inhibitor had no 

effect on viral citotoxicity, nor do miyochondria play any determing role. 

Therefore, the authors concluded that in ovarian cancer cells dl922-947 induces a 

non-apoptotic programmed cell death. The peculiar form of cell death viral-

induced is confirmed also by the observation that well known inducers of 

apoptosis (i.e. cisplatin) activate the typical apoptotic pathway in ovarian cancer 

cells. Moreover, few biochemical markers of necrosis are found in infected cells 

(Baird et al. 2008). 

More evidence is now accumulating that a “programmed cell death” (PCD) can 

occur in complete absence of caspases, and other, non-caspase proteases have been 

described to be able to execute PCD. Among models of caspase-independent death 

programs that have been described, autophagy has been proposed, caratherised by 

a distinctive set of morphological and biochemical features. 

Recent data suggest that some oncolytic adenoviruses are able to activate the 

autophagic process in cancer cells. The oncolytic adenovirus regulated by the 

human telomerase reverse transcriptase promoter (hTERT-Ad, OBP-301) induced 

tumor-specific autophagic cell death in human malignant glioma, prostate cancer 

and cervical cancer cells, as well as in glioma xenografts (Ito et al. 2006) and 

autophagy –inducing agents augment its antitumor effect on glioblastoma cells ( 
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Yokoyama et al. 2008). The Delta-24-RGD oncolytic adenovirus has been also 

shown to induce autophagic cell death in brain tumor stem cells (Jiang  et al. 

2007). Analysis of human glioma cells infected with a CRAd that utilizes the 

survivin promoter did not show evidences of apoptosis induction, whereas auto-

phagosomal-mediated cell death was observed (Ulasov et al. 2009). 

Baird SK et al. have shown that in ovarian cancer cells treated with the oncolytic 

virus dl922-947 the classical apoptotis does not occurre, neither evidences of pure 

necrosis are found, but autophagy is induced.  

It is worth to note that literature data are controversial regarding the role of 

autophagy. Indeed, autophagy, differently from the other cell death models, can 

function both to enable cell survival during starvation, factors deprivation and to 

remove damaged organelles, or induce death in damaged cells without access to 

adequate survival factors (Klionsky and Emr 2000; Levine and Klionsky 2004). 

Thus, autophagy may have complex roles in mammals, and further investigations 

are required to better understand its role.  

 

 

 

1.2 Autophagy 

 

The word “autophagy” is derived from the Greek and means to eat (“phagy”) 

oneself (“auto”). 

Cell homeostasis depends on the balance between the biosynthesis and catabolism 

of macromolecules. Cells respond to changes in their environment and 

intracellular milieu by altering their anabolic and catabolic pathways. Two major 

pathways in eukaryotic cells are involved in the catabolism of cellular material: the 

multi-enzyme proteasome system and the lysosome/vacuole (Codogno 2005).  

The proteasomal degradative pathway is selective for proteins. The lysosomal 

system is responsible for the degradation of several classes of macromolecules and 

for the turnover of organelles by at least three different pathways: Cvt (cytosol to 

vacuole targeting pathway) (Scott et al.1996), Vid (vacuolar import and 

degradation pathway) (Shieh and Chiang 1998), and autophagy (Lockshin and 

Zakeri 2004). Whereas the ubiquitin-proteosomal system is the major cellular 

pathway for the degradation of short-lived proteins, autophagy is the primary 

intracellular catabolic mechanism for degrading and recycling long-lived proteins 

and organelles, by using a lysosomal degradation pathway.  

Autophagy is a ubiquitous physiological process, that occurs at a basal level in 

most of eukaryotic cells, and this probably reflects its role in regulating the 

turnover of long-lived proteins (Bergamini et al. 2004). However, autophagy can 

represent a cellular response to both extracellular stress conditions (e.g., nutrient 

starvation, hypoxia, overcrowding, high temperature) and intracellular stress 



 11  

conditions (e.g., accumulation of damaged or superfluous organelles and 

cytoplasmic components) and allows lower eukaryotic organisms, such as yeast, to 

survive nutrient starvation conditions by recycling. During periods of nutrient 

shortage, autophagy provides the constituents required to maintain the metabolism 

essential for survival (Lum et al. 2005). 

In the developing organism, autophagy plays a role in the cellular and tissue 

remodeling that occurs during metamorphosis. In many tissues in the adult 

organism (especially postmitotic cells, e.g. neurons, cardiomyocytes), this function 

of autophagy is largely obsolete; however, protein and organelle turnover by 

autophagy plays an essential homeostatic or housekeeping function, removing 

damaged or unwanted organelles and proteins.(Levine and Klionsky 2004) 

Autophagy is basically a non-selective process, in which bulk cytoplasm is 

randomly sequestered into the cytosolic autophagosome. However, in some cases 

it may select its target. For example, autophagy can selectively eliminate some 

organelles, such as injured or excrescent peroxisomes, endoplasmic reticulum 

(ER) and mitochondria (Elmore et al. 2001).  

Depending on the delivery route of the cytoplasmic material to the lysosomal 

lumen, four different primary forms of autophagy are known: macroautophagy, 

microautophagy, chaperone-mediated autophagy (CMA), and crinophagy 

(Eskelinen 2005). During CMA, cytosolic proteins with particular peptide 

sequence motifs are delivered to lysosomes with the help of molecular chaperones. 

(Mjeski and Dice 2004). In crinophagy, secretory vesicles directly fuse with 

lysosomes, which leads to degradation of the granule contents (Glaumann 1989). 

Differently from CMA, both micro- and macroautophagy involve vescicular traffic 

and differ with respect to the pathway by which cytoplasmic material is delivered 

to the lysosome but share in common the final steps of lysosomal degradation of 

the cargo with eventual recycling of the degraded material. Microautophagy is a 

form with few features. In this pathway, the membrane of the lysosome/vacuole 

directly invaginates material derived from the cytoplasm to form an internal 

vacuolar vesicle. It involves the engulfment of cytoplasm directly at the lysosomal 

surface, by invagination, protusion, and/or septation of the lysosomal limiting 

membrane (Levine and Klionsky 2004). 

At present, the most prevalent and well characterized form of autophagy is 

macroautophagy.  

The notable difference between macroautophagy and microautophagy is that in the 

latter the cytoplasm is directly up taken into the lysosome/vacuole (Wang and 

Klionsky, 2004). 

In contrast to microautophagy, macroautophagy involves the formation of 

cytosolic double-membrane vesicles that sequester portions of the cytoplasm. 

Fusion of the completed vesicle ( autophagosome) with the lysosome  results in 



 12  

the delivery of an inner vesicle or autophagic body into the lumen of the 

degradative compartment (Levine and Klionsky 2004).  

There is still debate on the origin of autophagosome membranes. Initially, double-

membrane structures were believed to be derived from the ribosome-free region of 

the rough endoplasmic reticulum (Yokota et al.1993), but now it is generally 

accepted that they might originate from a pre-existing membrane structure called a 

phagophore, a poorly characterized organelle (Stromhaug et al. 1998), or could be 

formed de novo (Noda et al. 2002). 

Autophagosomes undergo a stepwise maturation process including fusion events 

with endosomal and/or lysosomal vesicles (Dunn WA Jr 1994). Autophagosomes 

that have fused with endosomes are called amphisomes or intermediate autophagic 

vacuoles. The term autolysosome refers to an autophagosome or amphisome the 

has fused with a lysosome. The term autophagic vacuole refers to an 

autophagosome, amphisome or autolysosome. Morphologically, autophagic 

vacuoles can be further classified into early or initially autophagic vacuoles (AVi), 

containing morphologically intact cytosol or organelles, and to late or degradative 

autophagic vacuoles (AVd), containing partially degraded cytoplasmic material. 

During the maturation process the segregated cytoplasm, still engulfed by the inner 

limiting membrane, is delivered to the endo/lysosomal lumen. Both the cytoplasm 

and the membrane around it are then degraded by lysosomal hydrolases, and the 

degradation products are transported back to the cytoplasm, where they can be 

eventually reused for the metabolism (Eskelinen 2005) (Fig. 2). 

So, the maturation of autophagosomes in mammalian cells is a multi-step process 

including several fusion events with vesicles originating from the endo/lysosomal 

compartment. Lysosomal membrane proteins and enzymes are present in both late 

endosomes and lysosomes, indicating that these protein can be delivered to 

autophagic vacuoles during fusion with either of them. In agreement with 

experimental data, autophagosomes (AVi) do not contain lysosomal membrane 

proteins or enzymes, while both amphisomes and autolysosomes (AVd) do 

(Tanaka Y et al.  2000).  
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                                                                                                         Eskelinen et al. 2005 

Figure 2. A schematic presentation of the formation and maturation of autophagosomes in 

mammalian cells. 
 

 

 

1.2.1 Autophagy inhibitors 

 

Several autophagy inhibitors have been developed acting at different autophagic 

steps. During maturation autophagic vacuoles become acidic (Punnonen et al. 

1992). In mouse epatocytes the pH values of AVi and AVd are estimated to be 6.4 

and 5.7, respectively. It is suggested that acidification begins before the delivery of 

lysosomal enzymes, via fusion with vesicles containing lysosomal membrane 

proteins and proton pumps, but no lysosomal enzymes (Dunn 1990). Infact, the 

vacuolar H
+
-ATPase is known to mediate the acidification process, leading to the 

formation of acidic vescicular organelles (AVOs). This process is inhibited by 

bafilomycin A1, a specific inhibitor of the lysosomal proton pump. It has been 

demonstrated that bafilomycin A treatment inhibits fusion of autophagosomes with 

both endosomes and lysosomes, suggesting that acidification of autophagic 

vacuoles, and/or endo/lysosomes, might be needed for fusion (Mousavi et al. 

2001). Other drugs inhibit the maturation of autophagic vacuoles and thus cause 

their accumulation in mammalian cells. Chloroquine (HCQ) is a lysosomotropic 

agent that as a weak base attracts to lysosomes, which compromises their normal 

degradation and recycling capacity, thus also resulting in an inhibition of 

autophagy. Another important mediator of the fusion event are microtubules, 

because treatment of cells with microtubule-destabilizing drugs blocks 
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autophagosomes maturation. The microtubule inhibitor vinblastine causes 

accumulation of mainly early autophagic vacuoles in hepatocytes, by inhibiting the 

fusion of autophagosomes with lysosomes and probably also with endosomes. 

Another microtubule inhibitor, nocodazole, causes accumulation of intermediate or 

late autophagic vacuoles in fibroblasts (Eskelinen et al. 2002). Cells treated with  

cytochalasin D, an agent that disrupts actin filaments, display a significant 

reduction in autophagosomes formation (Blankson et al. 1995), whereas the 

microtubule stabilization mediated by a new antitumor drug, taxol, increases the 

fusion of amphisomes with lysosomes (Bursch et al. 2000).  

Inhibition of lysosomal enzymes, such as cathepsins D, B and L, also causes 

accumulation of late autophagic vacuoles. Leupeptin, that blocks the activity of 

lysosomal proteases, has been reported to inhibit degradation of segregated 

cytoplasm, causing accumulation of autophagic vacuoles (Eskelinen 2005)  

Aother early autophagy inhibitor is 3-methyladenine (3MA) (Shintani and 

Klionsky 2004). 

The multi-step autophagic process and the main autophagic inhibitors are 

summarysed in figure 3. 

       
 

                                                                                                                 Kondo et al. 2005 
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Figure 3. The cellular process of autophagy.  

Conditions such as nutrient starvation, pathogen infection and other environmental stressors, can 

induce autophagy. Autophagy begins with the isolation of double-membrane-bound structures 

inside an intact cell. The elongated double membranes form autophagosomes, which sequester 

cytoplasmic proteins and organelles such as mitochondria. The formation of the pre-

autophagosomal structure can be inhibited by the phosphatidylinositol 3-phosphate kinase (PI3K) 

inhibitor 3-methyladenine (3-MA). The autophagosomes mature with acidification by the H+-

ATPase and fuse with lysosomes to become autolysosomes (also known as the degradative 

autophagic vacuoles). Microtubules are important mediators of this fusion process. This process is 

inhibited by the H+-ATPase inhibitor bafilomycin A1, or by microtubule inhibitors such as 

vinblastine and nocodazole. Eventually, the sequestered contents are degraded by lysosomal 

hydrolases for recycling.  
 

 

 

1.2.2 Molecular mechanisms of autophagy 
 

Several  molecules involved in the autophagic process have been identified, 

although the morphology of autophagy was first characterized in studies of 

mammalian cells, the molecular components of autophagy were initially elucidated 

in yeast. The study of autophagy in yeast have allowed the identification of the 

molecular machinery and their biological functions in higher eukaryotes, revealing 

a conservation of the autophagic mechanism (Mizushima et al. 2002). At least 25 

specific yeast genes are exclusively involved in autophagy, and more than 40 

additional yeast genes are also required for autophagy (Yang 2005). Recently, the 

autophagy-related genes and the products of these genes were named ATG and 

Atg, respectively (Klionsky et al. 2003). Despite the the resulst of previous studies 

have  given a deep insight in the knowledge of autophagy, the physiological 

functions of many of these genes need to be further clarified. One of the most 

remarkable findings regarding the Atg proteins is the discovery of two ubiquitin-

like conjugation systems, Atg12-Atg5 and Atg8-phosphatidylethanolamine (PE). 

Both Atg12-Atg5 and Atg8 conjugation systems are involved in autophagosomes 

formation. These genes  are well conserved among eukaryotes, and are related to 

each other. Microtubule-associated protein 1 light chain 3 (LC3), the mammalian 

orthologue of Atg8, targets to the autophagosomal membranes in an Atg5-

dependent manner. Thus LC3 is the only accepted marker of the autophagosome in 

mammalian cells. In wild-type cells, LC3 is detected in 2 forms: LC3-I (18 kDa) 

and LC3-II (16 kDa) (Kabeya et al. 2000). Twenty-two amino acids in the C-

terminus of the newly synthesized LC3 are cleaved immediately by the 

mammalian orthologue of the yeast cysteine proteinase Atg4, autophagin, to 

produce an active cytosolic form, LC3-I. Then with the catalysis of Atg7 and 

Atg3, LC3-I undergoes a series of ubiquitination-like reactions, and is modified to 

LC3-II. LC3-I is located in the cytoplasm, while LC3-II is a tightly membrane 
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bound protein and is attached to PAS and autophagosomes. The relative amount of 

membrane-bound LC3-II reflects the abundance of autophagosomes, so the 

induction and inhibition of autophagy can be monitored through measuring total 

and free LC3-II levels (Kabeya et al. 2000). The conjugation systems involving 

Atg genes are summarysed in figure 4. 

In cells grown in serum- and amino acid-free medium the increase in the amount 

of LC3-II is observed. Autophagy is induced under these conditions, and Kabeya 

Y et al. found a correlation between the rate of LC3-II increase and the rate of 

autophagosomes formation. Inhibitors of autophagosomes formation, i.e. 3-MA 

suppress the starvation-induced increase of LC3-II. Conversely drugs able to 

induce an accumulation of  autophagosomes, such as vinblastine, chloroquine and 

bafilomycin A1, have a strong LC3-II- increasing effect. 

 

 
                                                                                                    Levine and Deretic 2007 

 

Figure 4. Autophagy is regulated by a set of autophagy-related proteins (ATG proteins).  

a) In the absence of amino acids or in response to other stimuli, ATG1 and a complex of the class 

III PI3K (phosphoinositide 3-kinase) VPS34 and beclin 1 lead to the activation of downstream 

ATG factors that are involved in the initiation (a), elongation (b) and maturation (c) of autophagy. 

b)The elongation and shape of the autophagosome are controlled by two protein (and lipid) 

conjugation systems, similar to the ubiquitylation systems: the ATG12 and LC3 (also known as 

ATG8)–phosphatidylethanolamine (PE) conjugation pathways, which include E1-activating and 

E2-conjugating enzymes. ATG12 is initially conjugated to ATG7 (an E1-activating enzyme) and 

then is transferred to the E2-like conjugating enzyme ATG10. This intermediate presents ATG12 

for conjugation to an ATG5 lysine residue. The ATG5–ATG12 conjugate, stabilized non-
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covalently by ATG16, triggers oligomerization on the outside membrane of the growing 

autophagosome, and enhances LC3 carboxy-terminal lipidation through the LC3 conjugation 

system. Upon autophagosome closure, ATG5–ATG12–ATG16 and LC3 (delipidated by ATG4) 

are recycled. C) LC3 associated with the lumenal membrane remains trapped in the autophagosome 

and is degraded during maturation into the autolysosome, which involves fusion of 

autophagosomes with late endosomes, including endosomal multivesicular bodies and lysosomal 

organelles, and dissolution of the internal membrane.  

 

 

 

1.2.3 Regulation of autophagy 

 

Autophagy is a multi-step process, and various signalling pathways have been 

implicated in its regulation (Meijer and Codogno 2004) (Fig. 5) . 

One of most important pathways involved in the regulation of autophagy is the 

PI3K-Akt-mTOR signalling pathway.  

Class I PI3K enzymes phosphorylate PtdIns4P and PtdIns(4,5)P2 to produce 

PtdIns(3,4)P2 and PtdIns(3,4,5)P3, which, via Pleckstrin Homology (PH) domains 

bind to protein kinase B (Akt/PKB) and its activator phosphoinositide-dependent 

kinase-1 (PDK1), that  phosphorylates other kinases. It has been reported that the 

activation of this pathway either by receptors recruiting class I PI3K or by 

expressing a constitutive active form of PKB has an inhibitory effect on autophagy 

(Arico et al. 2001).  

Upstream PI3K and Akt activation by growth factors activate mTOR, the 

mammalian target of rapamycin, a serine/threonine kinase belonging to the family 

of phosphatidylinositol kinase-related kinase. mTOR regulates translation and cell 

growth by its ability to phosphorylate both 4E-BP1 and p70s6k. p70s6 protein 

kinase of ribosomal 40S subunit S6 (p70s6) is the best candidate among potential 

mTOR substrates. Phosphorylation of S6 upregulates the translation of mRNAs 

containing 5' terminal oligopyrimidine tract (5' Top) that accounts for 

approximately 20% of all cell mRNAs. The major products of 5' Top mRNAs 

include ribosomal protein,  elongation factor (EFla, EF2), and polyA binding 

protein. When nutrition is sufficient, TOR is turned on and the activity of the 

enzyme s6K increases. 

The mammalian target of rapamycin (mTOR) kinase is also a key regulatory 

component that controls the induction of autophagy (Petiot et al 2002). Inhibition 

of mTOR (by nutrient-depletion, starvation or rapamycin) leads to cell cycle 

arrest, inhibition of cell proliferation, immunosuppression and induction of 

autophagy. Increased levels of the mTOR kinase are found to inhibit the 

autophagy process resulting in an increased in cell growth and tumor development. 

Rapamycin is a specific mTOR inhibitor, binding to a distinct region of mTOR 

upstream of the catalytic domain. It induces autophagy and inhibits the 

proliferation of a variety of cells (Takeuchi et al. 2005). The phosphatase PTEN, 
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which hydrolyzes PtdIns (3,4,5)P3, has a stimulatory effect on autophagy by 

relieving the class I PI3K/PKB inhibition (Arico et al. 2001). 

Differently from class I PI3K, class III PI3K is a positive regulator of autophagy, 

promoting the sequestration of cytoplasmic material that occurs during autophagy 

(Petiot et al. 2000). 

Beclin-1 is a 60KDa tumor suppressor protein that binds to class III P13K, 

forming a complex which promotes the trafficking of lysosomal enzymes to the 

lysosomes (Kihara et al. 2001). Reduced expression of Beclin-1 is associated with 

a reduced autophagic vacuole formation. Overexpression of Beclin-1 in MCF-7 

human breast cancer cells is found to facilitate autophagy induced by serum and 

amino-acid deprivation, which indicates that Beclin-1 is a necessary regulator for 

autophagy (Liang 1999). 

The mitogen-activated protein kinases are a family of serine-threonine kinases also 

involved in regulating autophagy. Infact, the extracellular signal-regulated kinases 

ERK1 and ERK2, when stimulated by the RAS–RAF1–mitogen-activated protein 

kinase kinase (MEK) signalling pathway, have been shown to induce autophagy in 

HT-29 colon cancer cells (Ogier-Denis et al. 2000). 

 
 

                                                                                                                         Kondo et al. 2005 
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Figure 5. The molecular regulation of autophagy.  

In the presence of growth factors, growth factor receptor signalling activates class I 

phosphatidylinositol 3-phosphate kinase (PI3K) at the plasma membrane to keep cells from 

undergoing autophagy. PI3K activates the downstream target AKT, leading to activation of 

mammalian target of rapamycin (mTOR), which results in inhibition of autophagy. p70S6 kinase 

(p70S6K) might be a good candidate for the control of autophagy downstream of mTOR. 

Overexpression of the phosphatase and tensin homologue (PTEN) gene, by an inducible promoter, 

antagonizes class I PI3K47 to induce autophagy. When RAS activates the RAF1–mitogen-activated 

protein kinase kinase (MEK)–extracellular signal-regulated kinase (ERK) cascade, autophagy is 

stimulated. Rapamycin, an inhibitor of mTOR, induces autophagy. A complex of class III PI3K 

and beclin 1 (BECN1) at the trans-Golgi network acts to induce autophagy. This pathway is 

inhibited by 3-methyladenine (3-MA). Downregulation of BCL2, or upregulation of BCL2–

adenovirus E1B 19-kD-interacting protein 3 (BNIP3) or HSPIN1 at the mitochondria, also induces 

autophagy, indicating that BCL2 protects against autophagy. BNIP3 and HSPIN1 trigger 

autophagy. Autophagy is also induced by the cell death-associated protein kinase (DAPK) and the 

deathassociated related protein kinase 1 (DRP1). 

 

 

 

1.2.4 Autophagy and cell survival 

 

It has long been assumed that autophagy is a non specific process, in which 

cytoplasmic structures and macromolecules are randomly sequestered in order to 

generate the substrates and other molecules (e.g. amino acids) that are essential for 

cell survival when nutrients are scarce. However, we now know that, indeed, 

autophagy can also be very specific under certain conditions. Thus, the process can 

be involved in the elimination of damaged mitochondria (Rodriguez-Enriquez et 

al. 2004) or the selective removal of organelles that are functionally redundant 

(e.g. peroxisomes). Recent evidence suggests that the elimination of damaged 

mitochondria by autophagy may act as a rescue mechanism that the cell uses to 

escape from cell death, rather than as a mechanism producing cell death. A 

classical example is the mammalian liver, in which autophagy is switched on 

during starvation to produce amino acids which, after conversion into glucose, are 

used to meet the energy requirements of the brain and erythrocytes. Autophagy is 

also extremely important as a source of oxidizable substrates in the neonate, which 

is suddenly faced by a sudden interruption of the supply of nutrients via the 

placenta, but which has not yet received sufficient nutrients via the milk. Another 

situation in which autophagy is required to supply nutrients is that of cancer cells. 

Although suppression of autophagy may contribute to the initial rapid growth of 

tumors, in more advanced stages of cancer autophagy may be required to provide 

essential nutrients to the cells in the inner part of a solid tumor that do not have 

direct access to the circulation. Finally, autophagy can prevent cells from 

undergoing apoptosis by maintaining an adequate intracellular supply of substrates 
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despite nutrient depletion (Boya et al. 2005) or when the uptake of extracellular 

nutrients is inhibited by a lack of growth factor. 

 

 

 

1.2.5 Autophagy and cell death 

 

under some Autophagy can promote conditions cell death. Starvation-induced 

autophagy is a mechanism tightly controlled by amino acids and hormones.  A 

more complex regulation of autophagy is observed  during cell death since  the 

signaling pathway overlap with those of the apoptotic signaling,  

When involves autophagis cell death, is designated as type II PROGRAMMED 

CELL DEATH (PCD) in contrast to apoptosis, which is referred to as type I . The 

morphological and biochemical features of autophagic cell death and apoptosis are 

generally distinct. (Bursch et al. 2000). The main differences between apoptotic 

and autophagic cell death are summarysed in table 2. 

 

 
 

Table 2. Characteristics of apoptotic and autophagic cell death 

 

 

Despite the different features of the two forms of programmed cell death, 

apoptosis and autophagy are not always separate and there can be crosstalk 

between the two pathways. In many cases, inhibition of apoptosis causes 

autophagy, and inhibition of autophagy triggers apoptosis (Kondo et al. 2005). 

When apoptosis was inhibited in mouse fibroblasts by a caspase-8 inhibitor, 

autophagic cell death was induced, and autophagy inhibitors decreased the amount 

of cell death (Yu et al. 2004). Conversely, the use of autophagy inhibitors such as 
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3-MA, or inhibition of autophagy by small interfering RNAs (siRNAs) targetted 

against autophagy-associated genes, induced apoptosis in HeLa cells (Boya et al.  

2005). 

Autophagy becomes apparent as a survival mechanism mostly in an apoptosis-

defective background (Lum et al. 2005), thus tumor cells exhibiting signs of 

treatment-induced autophagy likely have inherent apoptotic defects and cannot 

undergo cell death characterized by classic signs of apoptosis. In this case, non-

apoptotic cell death occurs via alternative death pathways, autophagy. The active 

role of autophagy as a cell death mechanism can be in principle validated by 

experiments documenting prolongation of cell survival upon autophagy 

downregulation (Chen and Karantza-Wadsworth 2009).  

The mechanisms that regulate the mutually opposed survival-supporting and 

death-promoting roles for autophagy are still far from resolution. The most 

plausible explanation is that catabolism through autophagy is predominantly 

survival-supporting, but that an imbalance in cell metabolism, where autophagic 

cellular consumption exceeds the cellular capacity for synthesis, promotes cell 

death (Mathew et al. 2007). 

 

 

 

1.2.6 Modulation of autophagy for cancer treatment 

 

Autophagy is believed to play an important role in tumour development. When 

baseline levels were compared, the amount of proteolysis or autophagic 

degradation in cancer cells was less than that of their normal counterparts (Gunn et 

al. 1977). Breast cancer cell lines frequently contain deletions of one allele of 

beclin 1 (BECN1), necessary to induce autophagy in response to nitrogen 

deprivation. Introduction of BECN1 into MCF7 breast cancer cells induced 

autophagy and inhibited tumorigenicity (Liang et al.1999). The allelic deletion of 

chromosome 17q21, where BECN1 is located, is common in breast, in ovarian and 

prostate tumours, so it is possible that deletion of BECN1 are involved in the 

development of these tumours. A possible explanation could be that  the early 

stages of tumour development require cancer cells to undergo a higher level of 

protein synthesis than protein degradation (Cuervo 2004). Therefore, inhibition of 

autophagy could maintain continuous tumour growth. Although autophagy is 

suppressed during the early stages of tumorigenesis, it seems to be upregulated 

during the later stages of tumour progression as a protective mechanism against 

stressful conditions (Ogier-Denis and Codogno 2003). Thus, suppression of 

autophagy may contribute to the initial rapid growth of tumors, but in more 

advanced stages of cancer, autophagy may be required.  

http://www.ncbi.nlm.nih.gov/pubmed?term=%22Chen%20N%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVAbstract
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Karantza-Wadsworth%20V%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVAbstract
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Given this apparently quite complex role of autophagy in cancer, autophagy has 

become a very important target for cancer  treatment. Some of the recent strategies 

for cancer treatment suggested include inducing autophagy in early developed 

cancers while inhibiting autophagy in advanced tumor cells with intact autophagy 

response to sensitize the cells to a variety of anticancer agents (Tan et al. 2009). 

 

 

a) Treatment of autophagy-competent tumors. 

Autophagy-competent tumors may activate autophagy as an adaptive response to 

anticancer agents, in which case autophagy may act as a treatment resistance 

mechanism. In this case, concurrent inhibition of autophagy is expected to enhance 

the efficacy of anticancer drugs. Given that apoptosis-defective cancer cells rely 

on autophagy for survival under metabolic stress, it is also expected that 

autophagy inhibition will likely be therapeutically more beneficial in the treatment 

of tumors with apoptosis defects, but functional autophagy. Autophagy inhibition 

as a means to sensitize cancer cells to treatment has been validated in several 

studies.   

Inhibition of autophagy by chloroquine, a lysosomotropic agent that raises 

intralysosomal pH and interferes with autophagosome degradation within 

lysosomes, was shown to enhance the anticancer activity of the alkylating agent 

cyclophosphamide in a myc-induced lymphoma model (Amaravadi et al. 2007); 

both chloroquine and 3-methyladenine (3-MA), a class III PI3K inhibitor, 

synergistically augmented the proapoptotic effects and overall anticancer activity 

of the histone deacetylase inhibitor suberoylanilide hydroxamic acid (SAHA) in 

chronic myelogenous leukemia (CML) cells (Carew et al. 2007). Inhibition of 

autophagy with the vacuolar-type H1-ATPase inhibitors bafilomycin A1 enhances 

imatinib-induced cytotoxicity in human malignant glioma cells through increasing 

apoptosis. (Shingu et al. 2009). Knockdown of autophagy, in combination with 

tamoxifen or 4-hydroxy-tamoxifen (4-OH-T), resulted in decreased cell viability 

of estrogen receptor-positive MCF-7 and T-47D cells (Qadir et al. 2008); 

inhibition of autophagy along with irradiation lead to enhanced cytotoxicity of 

radiotherapy in resistant cancer cells (Apel et al. 2008). 

Clinical trial  are currently in progress to validate this hypothesis (National Cancer 

Institute, NCI lists trials) (Chen and Karantza-Wadsworth 2009). 

It has also been reported that autophagy-competent tumors may activate autophagy 

in response to anticancer agents, however tn these cases autophagy resulted in 

tumor cells elimination. These studies have shown that autophagy is involved in 

the cell death induced by therapeutic agents for glioma, such as temozolomide, 

rapamycin, irradiation, and oncolytic adenoviruses (Ito et al. 2006; Ito et al. 2005; 

Iwamaru et al. 2007; Jiang et al. 2007; Kanzawa et al. 2004; Yokoyama et al. 

2008). Moreover, mTOR inhibitors combined with radiations or chemotherapeutic 
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agents increase anticancer effect in human gliomas, breast cancer and pancreatic 

cancer cells (Eshleman et al. 2002; Mondesire et al. 2004). 

All these different evidences suggest that, upon autophagy activation, the choice 

between either survival or cell death programs depends on several factors, 

including the cell types, the duration, the concentration and the kind of stimuli.  

 

 

b) Treatment of autophagy-deficient tumors. 

Chronically autophagy-deficient tumors likely adjust to their autophagy-defective 

status over time and acquire compensatory cell survival mechanisms. Thus, cancer 

cells with autophagy defects are not expected to depend on autophagy for 

cytoprotection during chemotherapy and radiotherapy. Therefore Autophagy-

defective tumors may be particularly sensitive to metabolic stress-inducing 

regimens, such as antiangiogenic drugs, growth factor receptor inhibitors and 

glucose deprivation, and to DNA damage-inducing agents. Defective autophagy 

may not only sensitize tumor cells to certain drugs, but it may also confer 

resistance to agents inducing gene amplification as a resistance mechanism..  

Figure 6 summaryses the potential strategies for treating cancer by manipulating 

the autophagic process (Kondo et al. 2005).  
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                                                                                                           Kondo et al. 2005 

 

Figure 6. Potential strategies for treating cancer by manipulating the autophagic process.  

a) Cancer cells that have defects in the autophagic pathway might be treated by replacing the 

autophagic signal through expression of beclin 1 (BECN1) or the phosphatase and tensin 

homologue (PTEN) tumour suppressor, resulting in induction of autophagy and cell death, or 

inhibition of proliferation. b) Cancer cells that are capable of undergoing autophagy in response to 

anticancer therapies might be treated with autophagy inducers, such as rapamycin, to promote 

autophagy-induced cell death. c) Cancer cells that undergo autophagy to protect themselves from 

the effects of anticancer therapies, might be treated with autophagy inhibitors, such as bafilomycin 

A1 or short interfering RNAs specific for the autophagy-related genes, to induce apoptosis. 
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2. AIM OF THE STUDY 
 

 

Conditionally replicating adenoviruses (CRAds) are emerging as a promising tool 

in cancer therapy. Because of their capability to multiply, lyse infected tumor cells 

and spread to surrounding cells, CRAds may have better antitumor efficacy than 

that of non-replicating adenoviruses. Some adenoviral mutants have demonstrated 

the tumor-selective replication predicted by preclinical and clinical reports. 

Although safety and selectivity have been encouraging, durable objective 

responses with the virus as a single agent have been uncommon. The best chance 

for complete tumour eradication lies in a multimodal cancer therapy approach 

utilizing oncolytic viruses in conjunction with chemotherapy and radiotherapy. 

Therefore, is important to find new therapeutic strategies to potenciate the 

oncolytic viral activity. One of the aspects that can be investigated to enhance viral 

potency is better understanding the mechanisms of oncolytic virus-induced cell 

death. Infact, the exact mechanisms by which adenoviruses cause cell death 

remain uncertain, and the studies are often controversial.  

Autophagy, a type of degradation system, has been shown to be activated in cells 

in response to viral infection and it has been demonstrated that some oncolytic 

adenoviruses induce autophagy in cancer cells. We have demonstrated that the 

oncolytic adenoviruses dl922-947 and AdΔΔ are active against glioma and 

prostate cancer cells; however, the mechanisms of virus-induced cell death are not 

clear. Glioma and prostate cancer cells have been demonstrated to activate 

autophagy in response to several stimuli and could represent an optimal 

experimental model to evaluate the activation of this cellular process. Therefore, I 

have decided to investigated the activation of autophagy in these cancer cells 

following the infection with dl922-947 and AdΔΔ adenoviruses.  

Although it has been demonstrated that some oncolytic adenoviruses induce 

autophagy in cancer cells, little is known about the role of virus-induced 

autophagy: it may either be triggered in infected cancer cells as a defense 

mechanism to protect against intracellular pathogens, or represent a cell death 

modality induced by the viral replication complex. Thus, the induction or the 

inhibition of autophagy may have a therapeutic value. In order to enhance the 

adenoviral efficacy, I have decided to clarify the role of autophagy upon infection 

with oncolytic adenoviruses in glioma and prostate cancer cells, validating the 

autophagy as potential therapeutic target.  
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3. MATERIALS AND METHODS 
 

 

3.1 Tumor cell lines 

Human glioma cell lines U373MG and U87MG, human carcinoma cell lines from 

prostate PC3 and 22Rv1 and were purchased from American Type Culture 

Collection. All cell lines were cultured in DMEM supplemented with 10% fetal 

bovine serum, 100 IU of penicillin/ml, 100 IU of streptomycin/ml and 2% L-

glutamine in humified CO2 incubator.  

 

 

 

3.2 Preparation of adenoviruses 

dl922-947 is a second generation adenoviral mutant that has a 24-bp deletion in 

E1A Conserved Region 2 (CR2) therefore, is unable to induce progression from 

G1 into S-phase of quiescent cells. 

AdΔΔ carries two deletion, in E1A CR2 (ΔCR2) and in the E1B region that 

encodes the 19-KDa protein, with intact E3 region. AdGFP is a non replicating 

E1-deleted adenovirus encoding green fluorescent protein. 

dl1520 (ONYX-015) is a chimaeric human group C adenovirus (Ad2 and Ad5) 

that has a deletion between nucleotides 2496 and 3323 in the E1B region that 

encodes the 55-kDa protein.  

Ad5wt is a non-mutant adenovirus used as control adenovirus. 

Viral stocks were expanded and titered in human embryonic kidney cell line HEK-

293, which expresses the E1 region. Stocks were stored at -80°C after the addition 

of glycerol to a concentration of 50% vol/vol. Virus titer was determined by 

plaque-forming units (pfu) on the HEK-293 cells. 

 

 

 

3.3 Viability assay 

For the evaluation of the cytotoxic effects of dl922-947 and  AdΔΔ viruses, cells 

were seeded in 96-well plates, and 24 h later increasing concentrations of viruses 

were added to the incubation medium. For the evaluation of the cytotoxic effects 

of the dl922-947 virus in combination with chloroquine or 3-MA, cells were 

seeded in 96-well plates, and 24 h later were treated with increasing concentration 

of viruses in combination or not with the drugs. Six  days later, the media were 

fixed with 50% TCA and stained with 0.4% sulforhodamine B in 1% acetic acid. 

The bound dye was solubilized in 100 µl of 10 mM unbuffered Tris HCl solution 

and the optical density was determined at 540 nm in a microplate reader (Biorad). 
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The percent of survival rates of cells exposed to adenovirus vectors were 

calculated by assuming the survival rate of untreated cells to be 100%. 

 

 

 

3.4 Cell cycle analysis 

Adherent U373MG and U87MG cells detached with trypsin–EDTA were 

collected, fixed with 70% ethanol, and stained with a 10% propidium iodide 

solution (cellular DNA flow cytometric analysis reagent set; Roche) according to 

the manufacturer’s instructions. DNA content was analyzed with a FACScan flow 

cytometer.  

 

 

 

5. Quantifi cation of Acidic Vesicular Organelles With Acridine Orange 

Autophagy is characterized by the development of acidic vesicular organelles. The 

cytoplasm and nucleoli of acridine orange–stained cells fluoresce bright green and 

dim red, respectively, whereas acidic compartments fluoresce bright red (Paglin et 

al 2001). Therefore, autophagy was assessed in U373-MG and U87-MG cells by 

the quantification of acidic vesicular organelles with supravital cell staining using 

acridine orange. To inhibit autophagy, 1.0 mM 3-MA (Sigma-Aldrich), or 10μM 

HCQ (Sigma-Aldrich), were added to cells the day after infection by dl922-947 or 

AdΔΔ. Cells that were detached with 0.05% trypsin–EDTA and stained with 1.0 μ 

g/mL acridine orange (Sigma-Aldrich) for 15 minutes at room temperature. 

Stained cells were then analyzed by flow cytometry using the FACScan cytometer 

(Becton Dickinson, San Jose, CA).  

 

 

 

3.5 Western blot analysis 

The methods are described in detail in the publication (Botta et al., pending 

revision) at the end of the references. 

The primary antibody used are the following: polyclonal rabbit antibody against 

LC3-I/II (Santa Cruz) 1:100, mouse antibody against caspase-3 (Abcam) 1:500, 

rabbit antibody p-ERK1/2 (Cell Signalling) 1:1000, rabbit polyclonal antibody 

against p-Akt (Cell Signalling) 1:1000, rabbit polyclonal antibody against p-

p70s6k (Cell Signalling), 1:500, or with the goat antibody against actin (Santa 

Cruz) 1:2000 . 
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4. RESULTS AND DISCUSSION 
 

 

4.1 Cytotoxic effects of dl922-947 in glioma cells 

 

I have previously demonstrated that glioma cells are sensitive to the effect of the 

selective replicating oncolytic adenovirus dl922-947, although displaying different 

sensitivity (Botta et al. 2009). In this study, the sensitivity of U87MG and 

U373MG glioma cells to dl922-947 was evaluated. Cells were seeded in 96-well 

plates and infected with different multiplicity of infection (MOIs) of dl922-947, 

expressed as plaque forming unit (pfu/cell) and cell survival was evaluated after 

seven days. The results are shown in Fig.7. In the diagrams the percentage of cell 

survival is represented as a function of pfu/cell. Both U87MG and U373MG 

glioma cell lines are sensitive to dl922-947. However the two cell lines display a 

different sensitivity to the virus.  

U373MG cell line displayed higher sensitivity to dl922/947 with an IC50 of  MOI 

0.0001 (pfu/cell), whereas for U87MG IC50 was observed at a MOI of 19,59 

(pfu/cell). 

 

 
 

Figure 7. Sensitivity of human glioma cells to the oncolytic adenovirus dl922-947 

U373MG and U87MG cells were infected with increasing concentration of dl922-947 for seven 

days and analysed for viability assay. U373MG cells display higher sensitivity to the cytophatic 

effect of the virus compared to U87MG cells.  

 

Next, I investigated whether dl922-947 could induce apoptosis in glioma  cells. To 

evaluate whether viral infection induces the appearance of a sub-G1 fraction, 

suggestive of cell death either by apoptosis or by necrosis, a cell cycle analysis 

was performed. Cells were treated with different concentrations of dl922-947 (0-

0.1-1-10 pfu/cell), and cell cycle profile analysed 24, 48 and 72 hours post 

infection (hpi). For all times and concentrations used, dl922-947 infection 
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increased the percentage of cells in S and G2-M phase, but no increase of sub-G1 

fraction, compared to untreated cells, was observed (Fig.8a).  

Caspase-3 analysis by western blotting did not show any activation of pro-

caspase3 after infection in U373MG cells, while U87MG cells showed a slightly 

activation of caspase-3 only after infection with the highest concentration of the 

virus (Fig 8b). 

The lack of caspase-3 activation and of a sub-G1 fraction increase clearly indicate 

that dl922-947-induced cell death in glioma cells is not apoptosis-mediated.  

 

a) 

          

 
 

b) 

         
   

Figure 8. Cell cycle profiles and caspase-3 levels in dl922-947-infected glioma cells 

a) U373MG cells were infected with different concentrations of dl922-947 (0.1, 1, 10 pfu/cell) and 

stained with PI 24, 48 and 72 hpi. Cell cycle distribution was quantified by flowcytometry. First 

peak indicates the cells in G0/G1 phase, second peak indicates G2/M phase and in-between is S 

phase. b) U373MG and U87MG cells show no significant cleavage of  procaspase-3. Equal 

amounts of protein lysates (50μg) were loaded. 
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4.2 Induction of autophagy in malignant glioma cells by dl922-947 

 

Previous studies have shown that cancer cells can undergo autophagy in response 

to radiation or chemotherapy (Paglin et al. 2001; Kanzawa et al. 2004). Recently it 

has been demonstrated  that also oncolytic adenoviruses are able to activate the 

autophagic process in cancer cells (Yokoyama et al.2008; Baird et al. 2007).  

Therefore, I evaluated the activation of autophagy in glioma cells infected with 

dl922-947. The development of acidic vescicular organelles (AVOs) is a peculiar 

feature of  autophagic process, thus I examined AVOs development upon infection 

with dl922-947. For detecting of the acidic compartment, I used the 

lysosomotropic agent acridine orange, a weak base that moves freely across 

biological membranes when uncharged. Its protonated form accumulates in acidic 

compartments, where it forms aggregates that fluoresce bright red. The intensity of 

the red fluorescence is proportional to the degree of acidity and/or the volume of 

the cellular acidic compartment. Therefore, by comparing the mean red:green 

fluorescence ratio within different cell populations, I could measure a change in 

the degree of acidity and/or the fractional volume of their cellular acidic 

compartment (Paglin et al. 2001). U373MG and U87MG cells were infected with 

different MOIs of dl922-947 and vital staining of infected cells was performed 

with acridine orange 72 hours later. Flow cytometry using acridine orange 

revealed that the infection with dl922-947 increased the strength of the bright red 

fluorescence of cells, indicating an increase of  the development of AVOs in a 

MOI-dependent manner (up to 20% in U373MG cells and 23% in U87MG cell), 

whereas not infected cells exhibited mainly green fluorescence with minimal red 

fluorescence (Fig. 9a, b). Thus, dl922-947 induces AVOs accumulation in glioma 

cells, suggesting the activation of the autophagic process.  
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Figure 9. Quantification of acidic vescicular organelles (AVOs) by acridine orange staining in 

dl922-947-infected glioma cells 

U373MG and U87MG cells were infected with different concentrations of dl922-947 (0.1, 1, 10 

pfu/cell for U373MG and 5, 10, 20 pfu/cell for U87MG) for 72 h and subjected to acridine orange 

staining. Percentage of cells with enhanced red fluorescence was quantified using flow cytometry 

and was indicated in the upper quadrants. AVOs development increases in dl922-947-infected 

glioma cells in a dose-dependent manner.  

 

 

In amino acid starvation-induced autophagy, the microtubule-associated protein 1 

light chain 3 (LC3) is localized in autophagosome membranes. LC3 protein exists 

in two cellular forms: LC3-I and LC3-II. LC3-I, the cytoplasmic form, is 

processed by enzymatic cleavage into LC3-II, which is associated with the 

autophagosome membrane. Therefore, an increase in the ratio of LC3-II to LC3-I 

is closely correlated with the autophagosome formation. Thus, I analyzed the 

accumulation of LC3-I and LC3-II in dl922-947–infected cells. U373MG and 

U87MG cells were infected with different MOIs of dl922-947 and LC3 content 

was measured 72 hpi by western blotting (Fig. 10). In both cell lines, the amount 

of LC3-II and the ratio of LC3-II to LC3-I was clearly increased by infection with 

dl922-947 in a dose-dependent manner, whereas it was unchanged in not infected 

cells (Fig. 10a, b). These results, together with AVOs formation, demonstrate  that 

dl922-947 infection induces autophagy in malignant glioma cells. 
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a)                                                                 b) 

 
   
Figure 10. Western blot analysis of  LC3-I and LC3-II in dl922-947-infected glioma cells 

U373MG and U87MG cells were infected with the indicated concentrations of dl922-947 (pfu/cell) 

for 72 h and subjected to western blotting using polyclonal rabbit anti-microtubule-associated 

protein 1 light chain 3 (LC3)-I and –II antibody, that detects LC3-I and LC3-II at a molecular mass 

of approximately 16 and 14 KDa respectively (Mizushima and Yoshimori, 2007). Equal amounts 

of protein lysates (50μg) were loaded. Anti β-actin antibody was used as a loading control. LC3-I/II 

conversion increases in U373MG (a) and in U87MG cells (b) in dose-dependent manner. 

 

Next, I infected glioma cells with other mutant adenoviruses: dl1520, carrying a 

deletion in E1B region and the newly generated AdΔΔ oncolytic adenoviruses 

carrying two deletion, in E1A CR2 (ΔCR2) and in the E1B region; the non 

replicating virus encoding green fluorescent protein (AdGFP) and the wilde type 

virus (Ad5) were used as controls. Both cell lines were infected with 0.1 and 1 

pfu/cell of each virus and LC3 levels were analysed 72 hpi. AdGFP, a non 

replicating adenoviruse did not modify LC3 cleavage (Fig. 11a, b). In U373MG 

cells dl922-947 induced a marked decrease of LC3-I levels compared to the other 

replicating viruses, indicating that dl922-947 activates autophagic pathway more 

efficiently with respect to the other viruses (Fig. 11c). This observation suggest 

that the induction of autophagy in glioma cells is a specific feature of dl922-947 

infection. 
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a)                                                               b) 

                                                                                   

   c)                                                                      

                          
 

Figure 11. Effect of different oncolytic adenoviruses on LC3 cleavage 

U373MG cells were infected with 0, 0.1, 1, 10 pfu/cell of different adenoviruses, and LC3 levels 

were analysed 72 h later by western blotting. Equal amount of protein were loaded in each lane (50 

μg). The infection with the non replicating adenovirus AdGFP does not increase LC3-II levels 

compared to dl922-947 in U373MG (a) and in U87MG cells (b).  

c) the wilde type virus (Ad5), the oncolytic adenoviruses dl1520 and AdΔΔ do not modify LC3 

cleavage compared to  dl922-947. 

  

 

 

  4.3 Effect of Inhibition of dl922-947–induced autophagy on malignant        

glioma cells 

 

The role of autophagy is still controversial. According to some studies, treatment–

induced autophagy in cancer cells represents a protective reaction, whereas in 

other studies autophagy has been shown to represent a cell death mechanism 

(Kondo et al. 2005). To assess the role of dl922-947–induced autophagy in glioma 
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cells, I decided to block virus-induced autophagy using pharmacological 

inhibitors.  Several autophagy inhibitors have been developed (Kondo et al. 2005). 

Among those, two autophagy inhibitors, acting at different autophagic steps, were 

chosen. 3-methyladenine (3-MA), a class-III-PI3K inhibitor blocks early stages of 

autophagy process by inhibiting pre-autophagosome formation, thus reducing the 

acidic compartment. Hydroxychloroquine (HCQ) is a lysosomotropic agent that 

inhibits later stages of autophagy by preventing the fusion of autophagosomes and 

lysosomes, blocking the formation of autolysosomes where LC3-II should be 

degraded, and leading to accumulation of the acidic vescicular organelles. Both 

drugs have been reported to have different effects in cancer cells in combination 

with other treatments, (depending on the autophagy initiator, the type of inhibitors 

used and the extent of cellular damage) (Kondo et al. 2005).  

Therefore, I tested the effect of these drugs on the development of acidic vesicular 

organelles.  

U373-MG cells were infected with  dl922-947 at an MOI of 0.1 and 1.0 pfu/cell in 

combination with HCQ (5μM) or 3-MA (1.0 mM)  for 72 hours and then stained 

with acridine orange. As shown in Fig. 12, treatment with HCQ increased the 

percentage of red-positive cells (Fig.12a), whereas 3-MA partially reverted the 

induction of acidic vesicular organelles in U373-MG cells infected with dl922-947 

(Fig. 12b).  

In Fig. 13 is shown that the increase in LC3-II induced by  dl922-947 was strongly 

augmented by 10μM HCQ (Fig. 13a), in agreement with inhibitory activity of 

HCQ. In contrast to HCQ, 1 mM 3-MA partially reverted the dl922-947-induced 

increase in LC3-II (Fig. 13b), indicating inhibition of autophagy upstream to 

conversion of LC3-I. 
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a)                                                   b)                                             
          

 
    
Figure 12. Effect of autophagy inhibitors on dl922-947-mediated AVOs development in 

glioma cells 

U373MG cells were infected with dl922-947 (0, 0.1, 1 pfu/cell) in presence of 10μM of chloroquine 

(HCQ) (a) or 200μM of 3-methyladenine (3-MA) (b) for 72 h and stained with acridine orange. 

The indicated percentages represent the amount of cells red fluorescence-positive.  

 

a)                                                                     b) 

 
 

Figure 13. Effect of autophagy inhibitors on dl922-947-mediated LC3 cleavage in glioma cells 

U373MG and U87MG cells were infected with dl922-947 (0, 0.1, 1 pfu/cell) in presence of 

chloroquine (HCQ) (10μM) or 3-methyladenine (3-MA) (200μM) for 72 h and subjected to western 
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blotting using polyclonal rabbit anti-microtubule-associated protein 1 light chain 3 (LC3)-I and –II 

antibody. Anti β-actin antibody was used as a loading control. The autophagy inhibitors have 

similar effect on LC3 cleavage in U373MG (a) and in U87MG cells (b). 

 

 

Next, I examined the effect of the two inhibitors on dl922-947-induced 

cytotoxicity, by measuring cell survival after treating cells with different 

concentrations of dl922-947, in the presence of HCQ or 3-MA. dl922-947– 

induced cytotoxicity was significantly augmented by both HCQ (Fig. 14a) or 3-

MA (Fig. 14b), with synergistic lethal effect, whereas treatment alone did not 

induce cell death. Similar results were observed in U87MG cells.  

These results suggest that dl922-947–induced autophagy is a protective response 

to dl922-947 infection and contrasts the antitumoral activity of the virus. 

Therefore,  these data indicate that pharmacological inhibition of autophagy can 

sensitize glioma cells to the oncolytic effect of dl922-947.  

 

a)                                                             b) 

 
 

Figure 14. Autophagy inhibition enhances dl922-947-mediated cytotoxicity in glioma cells 

U373MG cells were infected with increasing concentration of dl922-947 in combination with 

10μM of chloroquine (HCQ) (a) or 200μM of 3-methyladenine (3-MA) (b) for seven days and 

analysed for viability assay. Both HCQ  and 3-MA enhance the cytotoxic effect of dl922-947. 

 

 

 

4.4 Pharmacological inhibition of autophagy activates apoptotic pathway in 

dl922-947 –infected glioma cells 

 

Recent evidences have suggested the existence of a double switch between the two 

main lethal signaling pathways, type 1 (apoptotic) and type 2 (autophagic) cell 

death. Inhibition of apoptosis can lead to a chronic degenerative autophagic cell 

death (Xue et al. 2001). On the other hand, all autophagy inhibitors have been 
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reported to induce nuclear apoptosis and caspase-3 activation. (Boya et al. 2005). 

Moreover, inhibition of autophagy increased apoptotic cell death in various cancer 

cells irradiated or treated with chemotherapeutic agents (Kanzawa et al. 2004; 

Paglin et al. 2001). Since dl922-947-induced cytotoxicity in glioma cells was 

significantly augmented by HCQ and 3-MA, I investigated whether apoptosis 

contributes to the enhancement of cell death. U373MG cells were treated with 

dl922-947 (1 pfu/cell) in combination with HCQ (1, 5 μM), and cell cycle profile 

analysed 72 hours post infection (hpi). In presence of HCQ, dl922-947 infection 

increased the percentage of sub-G1 population compared to single treatments. No 

changes were detected in cells treated with HCQ alone (Fig. 15a).  

An immunoblot in Fig. 15b, c confirmed a stronger reduction of pro-caspase-3, 

and subsequently a clear activation of caspase-3 in cells undergoing the combined 

treatment, compared to untreated cells. Similar results were observed in U87MG 

cells.  Taken together, inhibitors of autophagy at both early (3-MA) or late (HCQ) 

stages augment dl922-947–induced cell death, probably stimulating signals 

triggering caspase-3 activation and, subsequently, apoptotic cell death. 
 

a)     
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b)                                                               c) 

 
 

Figure 15. Autophagy inhibition  induces apoptosis in dl922-947-infected glioma cells 

a) U373MG cells were infected with dl922-947 (1 pfu/cell) in combination with 5 and 10μM of 

chloroquine (HCQ) and stained with PI 72 hpi. Cell cycle distribution was quantified by 

flowcytometry and the indicated percentage represent sub-G1 cell population. Combination with 

HCQ increases the percentage of cells in sub-G1 phase.  

In dl922-947-infected cells procaspase-3 was activated after combination either with 10μM of 

HCQ (b) or 200 μM of 3-MA (c).  

 

 

 

4.5 Effect of dl922-947 on autophagy signalling pathways in glioma cells 

 

Since I have shown that dl922-947 infection of glioma cells elicits the activation 

of the autophagy as a cell survival mechanism, I have decided to analyse the 

involvment of two crucial pathways controlling autophagy activation or inhibition. 

Akt/mTOR/p70s6k pathway is the main pathway involved in the negative 

regulation of autophagy (Arico et al. 2001), whereas the ERK1/2 pathway is 

involved in positively regulating autophagy in cancer cells (Ogier-Denis et al. 

2000). I examined the effect of the infection with dl922-947 on the two pathways. 

U373MG cells were infected with dl922-947 in a time-course and in a dose-

response experiments. Phosphorilation of Akt and p70s6k increased in a time- 

(Fig.16a) and dose-dependent manner (Fig.16b) up to 12 hours after exposure to 

dl922-947. The expression level remained high 48 hours after infection. 

Conversely, ERK1/2 phosphorilation upon infection with dl922-947 was reduced 

in a time- (Fig. 16a) and in a dose-dependent manner (fig.16b).      

These results demonstrated that dl922-947 infection activates Akt/mTOR/p70s6k 

pathway and inhibits ERK pathway. 

Both changes in Akt/mTOR/p70s6k and ERK pathways could represent the 

attempt of the virus to suppress the survival response of glioma cells, being 

conceivable that glioma cells activate autophagy in response to the infection as a 

defence mechanism, maybe in order to degrade viral proteins. 
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a)                                                                   b)              

 
 

 

Figure 16. dl922-947 activates the Akt/mTOR/p70S6K pathway and inhibits the ERK 

pathway in glioma cells 

a) U373MG cells were treated with 1 pfu/cell of dl922-947 and relative levels of phosphorylated 

ERK (p-ERK), Akt (p-Akt) and p70s6k (p-p70s6k) were analysed by western blotting at different 

times (ranging from 30 min up to 48 h). b) U373MG cells were infected with different 

concentration of dl922-947 (ranging from 10
-4 

up to 10 pfu/cell) and subjected to western blot after 

72 h. Equal amounts of protein lysates (50μg) were loaded. Anti β-actin antibody was used as a 

loading control. dl922-947 infection induces increased p-Akt and p- p70s6k, whereas reduced p-

ERK in time- and dose-dependent manner. 

 

 

I have observed that dl922-947, but not other oncolytic adenoviruses, induce LC3 

cleavage and autophagy activation. Thus, the effects of these oncolytic 

adenoviruses on Akt/mTOR/p70s6k and ERK1/2 signalling pathways were 

analysed. Both cell lines were infected and phosphorilation levels analysed 72 hpi. 

The blot in figure 17 shows that  the oncolytic adenoviruses dl1520 and AdΔΔ did 

not change Akt, p70s6k and ERK1/2 phosphorilation levels as efficiently as dl922-

947, paralleling LC3 cleavage (shown in Fig. 11c above). These results clearly 

indicate a strong correlation between the modulation of Akt/mTOR/p70s6k and 

ERK1/2 signalling pathways and autophagy induction in glioma cells infected with 

dl922-947. Moreover, the modulation of these two pathways is a specific feature 

of dl922-947 infection in glioma cells.  
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a)                                                               b) 

 
 

Figure 17. Effect of different oncolytic adenoviruses on Akt/mTOR/p70S6K and ERK 

pathways 

U373MG (a) and U87MG (b) cells were infected with the indicated concentrations of adenoviruses 

for 48 h. Equal amount of extracted protein in each sample (50 μg) was subjected to 

immunoblotting using anti-phosphorylated (p-) Akt, p70s6k, or ERK1/2. Anti β-actin antibody was 

used as a loading control.  

 

 

 

4.6 Inhibition of ERK pathway inhibits dl922-947-induced autophagy and  

induces apoptosis 

 

It has been demonstrated that ERK1/2 pathway is involved in the positive 

regulation of autophagy; however, the role of this pathway in autophagy in 

response to anticancer therapy is not clear yet.  

Since dl922-947 strongly reduced ERK1/2 activation, I speculated that inhibitors 

of ERK signalling might increase the antineoplastic effects of this virus against 

glioma cells. To test this hypothesis, I used a MEK inhibitor, PD98059. U373MG 

and U87MG cells were infected with dl922-947 (pfu/cell) for 48 hours in presence 

of PD98059 (50 μM) and the inhibitory effect of PD98059 on dl922-947-induced 

autophagy was analysed by evaluating LC3 cleavage. Expression of LC3-II was 

decreased in infected cells in presence of PD98059 for 48 hours (Fig. 18a, b).  

Next, I examined the effect of this inhibitor on dl922-947-induced cytotoxicity, by 

measuring cell survival after treating U373MG cells with different concentrations 

of dl922-947 in the presence of PD98059 (5, 10, 25 μM). dl922-947–induced 

cytotoxicity was significantly augmented by PD98059, with synergistic lethal 

effect (Fig. 18c).  
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The ERK pathway is known to exert an antiapoptotic action, and it represents one 

of the overlaps of signalling worknets found between autophagy and apoptosis. 

Therefore, I investigated whether inhibition of this pathway induces apoptosis in 

dl922-947-infected glioma cells. Caspase-3 was clearly cleaved in U373MG cells 

treated with dl922-947 and PD98059, compared to untreated cells or single 

treatment (Fig. 18d ).  

Taken together, these results indicate that ERK pathway is involved in dl922-947-

induced autophagy. It is also possible to conceive that the disruption of ERK 

pathway could enhance the efficacy of dl922-947 infection in U373MG and 

U87MG cells.  

 

a)                                                                          b) 

 
  

c)                                                                   d)                                                                   
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Figure 18. inhibition of ERK pathway reduces dl922-947-induced autophagy and enhances 

dl922-947 cytotoxicity 

U373MG (a) and U87MG (b) cells were infected with the indicated pfu/cell of dl922-947 in 

presence or not of the MEK inhibitor PD98059 (50, 100 μM)  for 72 h and equal amount of 

extracted protein in each sample (50 μg) was subjected to immunoblotting using polyclonal rabbit 

anti-microtubule-associated protein 1 light chain 3 (LC3)-I and –II antibody. Anti β-actin antibody 

was used as a loading control. Treatment with PD98059 partially reverted the dl922-947-induced 

LC3 cleavage in both cell lines. c) U87MG cells were infected with increasing concentration of 

dl922-947 in combination with PD98059 (5, 10, 25 μM ) for seven days and analysed for viability 

assayd. d) In dl922-947-infected U87MG cells procaspase-3 was activated after combination either 

with 25μM or 50μM of  PD98059 for 72 h.  
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4.7 The novel adenoviral mutant AdΔΔ  

 

In the frame of a collaboration with Dr Gunnel Hallden,  I have spent three months 

in the Centre for Molecular Oncology, John Vane Science Centre (London). In this 

laboratory has been recently generated a new oncolytic adenovirus mutant, 

carrying two deletions, in E1A CR2 and in the E1B region that encodes the 19-

KDa protein, with intact E3 region (AdΔΔ). This virus targets both altered pRb 

(ΔCR2) and apoptotic pathways (ΔE1B19K). An improved efficacy and 

selectively of this virus, both as single agents and in combination with therapeutic 

agents, have been reported. Oberg et al. have demonstrated AdΔΔ to be effective 

against prostate, pancreatic and lung carcinoma cells and to have a cell killing 

potency either superior or similar to wild type virus. They also found higher viral 

activity in vivo (human prostate cancer xenograft) (Oberg 2009).  

Since it has been demonstrated that the combination of the clinically used 

cytotoxic drugs docetaxel and mitoxantrone could significantly increase prostate 

cancer cell killing when combined with Ad5, during these three months, I have 

decided to test the effect of these drugs on the AdΔΔ-mediated cytotoxicity in 

prostate cancer cells and the cell death pathways activated upon infection.  

 

 

 

4.8 Cytotoxic effects of AdΔΔ in prostate cancer cells 

 

First, I evaluated the AdΔΔ cell killing effect on two prostate cancer cell lines, 

PC3 and 22Rv1. Cells were seeded in 96-well plates and infected with different 

MOIs of AdΔΔ, espressed as particle per cell (ppc). Cell survival was evaluated 

after seven days. The results are shown in Fig. 19. In the diagrams the percentage 

of cell survival is represented as a function of used ppc. Both PC3 and 22Rv1 

prostate cell lines are sensitive to AdΔΔ, although displaying a different 

sensitivity. 22Rv1 cell line displayed higher sensitivity to AdΔΔ with an IC50 of  

MOI 20.8 ppc, whereas for PC3 IC50 was observed at a MOI of 12428 ppc 

(Fig.19).  

E1B19K gene product normally exerts an antiapoptotic function. Therefore, AdΔΔ 

virus is expected to induce apoptosis in cancer cells. Accordingly, I analysed 

caspase-3 activation in infected cells. Caspase-3 was clearly activated in AdΔΔ-

infected cells and this activation was greater than that observed in cell infected 

with a non replicating virus (dl312) and the wilde type virus (Ad5) (Fig. 19c, d).  

Thus, I confirmed that AdΔΔ is effective against prostate cancer cells and induces 

caspase-3 activation.  
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a)                                                                b) 

 
 

c)                                                                  d) 

 
 

Figure 19. Sensitivity of human prostate cancer cells to the oncolytic adenovirus AdΔΔ 

PC3 (a) and 22Rv1 (b) cells were infected with increasing concentration of AdΔΔ for seven days 

and analysed for viability assay. 22Rv1 cells display higher sensitivity to the cytophatic effect of 

the virus compared to PC3 cells. PC3 (c) and 22Rv1 (d) cells were infected with indicated particle 

per cell of AdΔΔ (ppc) for 72 h and equal amount of extracted protein in each sample (50 μg) was 

subjected to immunoblotting using anti-caspase-3 antibody, which detects pro- and caspase-3 

levels. AdΔΔ infection induces caspase-3 activation in both cell lines.  

 

 

 

4.9 Combination treatments  

 

Next, potency of the combination treatment with docetaxel or mitoxantrone was 

evaluated in PC3 and 22Rv1 cells. Cells were infected with AdΔΔ in combination 

with docetaxel (2nM for 22Rv1 and 10 nM for PC3 cells), or mitoxantrone (50 nM 

for 22Rv1 and 100 nM for PC3 cells) and then assayed for viability assay 7 days 

after seeding. Results are shown in figure 20. Both drugs caused synergistic death 

in combination with AdΔΔ in both cell lines (Fig. 20a, b). 
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a)                                                                     b) 

 
  

Figure 20. Combination treatment with docetaxel or mitoxantrone enhances AdΔΔ-induced 

cell death in prostate cancer cells 

PC3 (a) and 22Rv (b) cells were infected with increasing concentration of AdΔΔ (ppc) in 

combination with the indicated concentration of docetaxel or mitoxantrone for six days and 

analysed for viability assay. Both docetaxel and mitoxantrone enhance the cytotoxic effect of 

dl922-947. 

 

 

 

4.10 Suppression of autophagy by AdΔΔ in prostate cancer cells via Akt 

pathway 

 

Prostate cancer cells have been demonstrated to undergo autophagy following 

several stimuli (DiPaola RS et al. 2008). Moreover, the oncolytic adenovirus 

regulated by the human telomerase reverse transcriptase promoter (hTERT-Ad, 

OBP-301) induced tumor-specific autophagic cell death in PC3 prostate cancer 

cells (Ito et al. 2006). The results of these previous studies indicate that prostate 

cancer cells thus represent a good experimental model to evaluate the activation of 

autophagy. 

I measured the content of LC3-I and LC3-II by western blotting after infection of 

prostate cancer cells. PC3 and 22Rv1 cells were infected with AdΔΔ, using the 

wilde type adenovirus (Ad5) and the non replicating adenovirus (dl312) as  

controls. Rapamycin (100nM) was also used as positive control. LC3 levels were 

analysed 72 hpi. Surpringly, AdΔΔ decreased LC3-II levels in both PC3 (Fig. 21a) 

and 22Rv1 (Fig. 21b) cells. dl312 did not affect LC3 levels compared to untreated 

cells, wherease Ad5 virus had similar effects to that of AdΔΔ (Fig. 21a, b ). 

In agreement with these results, the acridine orange staining revealed no 

development of acidic vescicular organelles in both cell lines upon infection with 

AdΔΔ compared to untreated cells (data not shown). Taken togheter, all these data 
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demonstrate that AdΔΔ does not activate the autophagic pathway in prostate 

cancer cells. This observation is also in agreement with the results obtained 

infecting glioma cells with AdΔΔ (Fig. 11c). 

Moreover, since AdΔΔ induced caspase-3 activation, the inhibition of LC3 

cleavage by AdΔΔ confirmed that in AdΔΔ-infected prostate cancer cells an 

inverse correlation between apoptosis and autophagy exists. 

 

a)                                                                 b) 

 
 

Figure 21. Effect of AdΔΔ on LC3 cleavage 

PC3 (a) and 22Rv (b) cells were infected with AdΔΔ (PC3: 300, 600 ppc; 22Rv1: 10, 20) for 72 h 

and equal amount of extracted protein in each sample (50 μg) was subjected to immunoblotting 

using polyclonal rabbit anti-microtubule-associated protein 1 light chain 3 (LC3)-I and –II 

antibody. Rapamycin was used as positive control. Anti β-actin antibody was used as a loading 

control. AdΔΔ reduced LC3-II levels in both cell lines.  

 

 

In order to investigate the molecular mechanisms by which AdΔΔ inhibits 

autophagy in prostate cancer cells, we investigated the involvement of the 

Akt/mTOR pathway, the main pathway that negatively regulates autophagy.  

PC3 cells were infected with different MOIs of AdΔΔ and phosphorilation levels 

of Akt and p70s6k were analysed 72 hpi. Western blotting in figure 22 shows an 

increase in Akt and p70s6k phosphorilation after infection in a dose-dependent 

manner (Fig. 22a, b). This observations indicate that AdΔΔ suppresses autophagy 

in prostate cancer cells by modulating the Akt/mTOR autophagic pathway.  
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Figure 22. AdΔΔ activates the Akt/mTOR/p70S6K pathway in prostate cancer cells 

PC3 (a) cells were infected with the indicated particle per cell (ppc) of AdΔΔ for 72 h and equal 

amount of extracted protein in each sample (50 μg) was subjected to immunoblotting using anti- 

phosphorylated (p-) Akt and p70s6k. Anti β-actin antibody was used as a loading control. AdΔΔ 

activates Akt/mTOR/p70s6k pathway.  

 

 

To confirm that AdΔΔ inhibits autophagy, I tested whether AdΔΔ is able to revert 

the effect of rapamycin, a known inducer of autophagy.  

Rapamycin and its analogues (such as CCI-779, RAD001, and AP23573) inhibit 

mTOR, the kinase that suppresses autophagy and is active when nutrients are 

abundant (Bjornsti and Houghton 2004). I verified whether AdΔΔ modified the 

rapamycin-induced AVOs accumulation. To this aim, I used different MOIs of 

AdΔΔ or dl312 to infect PC3 and 22Rv1 cells in presence of rapamycin (100nM) 

and 72 hpi I analysed the development of acidic vescicular organelles by flow 

cytometry after staining cells with acridine orange.  The diagrams in Fig. 23 

reports the percentage of red-positive cells, representing cells with increased acidic 

compartment. Rapamycin increased the percentage of red-positive cells in 22Rv1 

(from 12% to 18%), and PC3 (from 18% to 65%), indicating abundant cytoplasmic 

AVOs formation. AdΔΔ clearly inhibited the AVOs development in rapamycin-

treated cells (fig. 23a, b); conversely, the non replicating virus dl312 was not able 

to reverte the rapamycin effect (data not shown).  

Next, I examined the expression of LC3-I and LC3-II. In accordance with 

literature, LC3-II/I ratio increased in PC3 and 22Rv1 cells treated with rapamycin 

(100nM). In cells infected with AdΔΔ the rapamycin-induced increase in LC3-II/I 

ratio was partially inhibited (Fig. 23c, d). These results indicate that AdΔΔ 

suppresses autophagy in prostate cancer cells by reducing LC3-II levels, partially 

reverting LC3-II increase mediated by rapamycin.   
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a)                                                                    b) 

 
c)                                                                      d) 

 
 

Figure 23. AdΔΔ reduces the rapamycin-induced autophagy in prostate cancer cells 

PC3 (a) and 22Rv1 (b) cells were infected with different particle per cell (ppc) of AdΔΔ, in presence or 

not of 100nM of rapamycin for 72 h and stained with acridine orange. The percentages of red 

fluorescence-positive cells was calculated by flow cytometry and shown in the diagrams.  

c,d) Cells were treated with different concentration of AdΔΔ for 72 h in presence or not of rapamycin 

(100nM) and equal amount of extracted protein in each sample (50 μg) was subjected to 

immunoblotting using polyclonal rabbit anti-microtubule-associated protein 1 light chain 3 (LC3)-I 

and –II antibody. Anti β-actin antibody was used as a loading control. AdΔΔ reduced rapamycin-

induced AVOs accumulation and LC3 cleavage in both cell lines.  

 

 

 

4.11 Effect of 3-methyladenine on AdΔΔ-induced cytotoxicity in prostate 

cancer cells 

 

In prostate cancer cells, autophagy is clearly reduced by AdΔΔ. To investigate the 

role of this pathway (as cell survival or cell death mechanism), I decided to 
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analyse the effect of autophagy inhibition, by using 3-MA. PC3 and 22Rv1 cells 

were infected with different concentrations of AdΔΔ  in the presence of 3-MA 

(1mM), and cell survival was analysed seven days later. AdΔΔ–induced 

cytotoxicity was slightly increased by 3-MA in both cell lines (Fig. 24a, b), 

demonstrating that autophagic process in prostate cancer cells acts as a protective 

response to the infection with AdΔΔ. 

These results also confirm that pharmacological autophagy inhibition can enhance 

the effect of oncolytic viruses in prostate cancer cells.  

 

a)                                                                b) 

 
 
Figure 24. Autophagy inhibition enhances AdΔΔ-mediated cytotoxicity in prostate cancer  

cells  
PC3 (a) and 22Rv1 (b) cells were infected with increasing concentration of AdΔΔ in combination 

with 1mM of 3-methyladenine (3-MA) for six days and analysed for viability assay. Combination 

with 3-MA enhances the cytotoxic effect of AdΔΔ in both cell lines. 

 

 

 

4.12 AdΔΔ mutant synergistically enhances docetaxel/mitoxantrone-induced 

cell killing by inhibiting autophagy 

 

Oncolytic effects of AdΔΔ in prostate cancer cells were potenciated by the 

combination with docetaxel or mitoxantrone. Since AdΔΔ inhibited autophagy and 

induced apoptosis in PC3 and 22Rv1 cells, I decided to examine whether the 

autophagic and/or the apoptotic process could be involved in the synergistic effect 

of this virus with the drugs.  

To this aim, I analysed whether the combination treatment affects the LC3 

cleavage and caspase-3 activation. 22Rv1 and PC3 cells were treated with AdΔΔ  

in presence of docetaxel or mitoxantrone. LC3 levels were analysed 72 hours later 
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(Fig. 25). AdΔΔ or docetaxel, as single treatment, caused a decrease in LC3-II 

levels. In the combination treatment, a further decrease in LC3-II levels was 

observed (Fig.25a, b). Rapamycin (100nM) was used as positive control. 

Conversly, mitoxantrone treatment activated autophagy, by increasing LC3-II 

levels in both cell lines, but this effect was reduced by AdΔΔ (Fig. 25c, d).  

Surpringly, among these two drugs, docetaxel but not mitoxantrone can activate 

caspase-3, wherease a clear caspase-3 activation was observed when AdΔΔ was 

combined with both docetaxel or mitoxantrone (Fig. 25). 

In conclusion, in prostate cancer cells, the oncolytic adenovirus AdΔΔ inhibits 

autophagy and its oncolytic effects are enhanced by the pharmacological inhibition 

of autophagy. Docetaxel and mitoxantrone have opposite effects on autophagy: 

docetaxel inhibits it by reducing LC3-II levels, whereas mitoxantrone induces LC3 

cleavage increase. However, the combination treatment with AdΔΔ led to a further 

inhibition of autophagy and to a strong apoptosis induction in both cases.  

These findings indicate that also in prostate cancer cells a direct correlation 

between autophagy inhibition and apoptosis induction exists. Therefore, it is 

possible to conceive that adequate combination treatments could enhance the 

efficacy of AdΔΔ infection in PC3 and 22Rv1 cells, by modulating the autophagic 

pathway.  

 

a)                                                                       b) 
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c)                                                                           d) 

 
 

Figure 25. Combination treatment with docetaxel or mitoxantrone enhances AdΔΔ-induced 

autophagy inhibition and apoptosis induction 

PC3 and 22Rv1 cells were infected with different concentrations of AdΔΔ (ppc) in combination 

with the indicated concentrations of docetaxel (a,b) or mitoxantrone (c,d) for 72 h and equal 

amount of extracted protein in each sample (50 μg) was subjected to immunoblotting using 

polyclonal rabbit anti-microtubule-associated protein 1 light chain 3 (LC3)-I and –II and caspase-3 

antibodies. Anti β-actin antibody was used as a loading control. Rapamycin (100 nM) was used as 

positive control.  
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5. CONCLUSIONS 
 

In this study I demonstrated the efficacy of the oncolytic adenoviruses dl922-947 

and AdΔΔ for treating malignant glioma cells and prostate cancer cells, 

respectively. In order to find new therapeutic strategies to potenciate the oncolytic 

viral activity, I have investigated the mechanisms of oncolytic virus-induced cell 

death. I showed that in dl922-947-infected U373MG and U87MG glioma cells, 

autophagy, but not apoptosis, occurs. Autophagy is a type of protein degradation 

system, prominently observed in cells undergoing environmental stressors, such as 

amino acid starvation, but also viral and bacterial infection. I showed that the 

infection of glioma cells with dl922-947 led to the development of acidic 

vescicular organelles and to the increase of LC3-II levels, that are typical 

autophagic features. Autophagy is a survival process, allowing cells to survive in 

unfavourable conditions; however, it is also a type of programmed cell death 

alternative to apoptosis. Infact, studying the role of autophagy in treated cells may 

have a therapeutic value. The data presented in my study indicate that autophagy 

represent a survival mechanism, occurring in both glioma and prostate cancer cells 

infected with the oncolytic adenoviruses. Indeed, blocking of autophagy with 

pharmacological inhibitors enhanced the oncolytic viral effects triggering caspase-

3 activation and apoptotic cell death.  

It is well known that the Akt/mTOR/p70s6k pathway is the main pathway 

involved in the negative regulation of autophagy, whereas the ERK pathway is a 

positive regulator. Surpringly, this study clearly showed that both dl922-947 and 

AdΔΔ adenoviruses activate Akt/mTOR/p70s6k pathway, resulting in autophagy 

inhibition. Moreover, dl922-947 clearly inhibited ERK pathway and the inhibition 

of ERK pathway by using PD98059 enhanced dl922-947-induced cytotoxicity by 

activating apoptosis. 

In this study I also showed that AdΔΔ clearly inhibited autophagy in prostate 

cancer cells and is also able to reverte the rapamycin-induced autophagy. 

Moreover, the combination with docetaxel or mitoxantrone  increased autophagy 

inhibition and apoptosis induction.  

Given these observations, the activation of autophagy in glioma and prostate 

cancer cells is a survival mechanism in response to the infection and oncolytic 

adenoviruses try to suppress this process modulating important autophagic 

signalling pathways. 

In conclusion, the results described in this study encourage the use of  dl922-947 

and AdΔΔ oncolytic adenoviruses for the treatment of glioma and prostate cancer, 

using new therapeutic protocols. In particular, I have proposed that a novel 

therapeutic approach based on the combination between viruses and anti-

autophagic drugs could represent a better option for virotherapy against these so 

aggressive human tumors. 
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Abstract 

Aims: Glioblastomas multiforme (GBM) is the most aggressive human brain 

tumour, and is highly resistant to chemo and radiotherapy. Therefore novel 

treatments are required. Selective replicating oncolytic viruses represent a novel 

approach for the treatment of neoplastic diseases. Coxsackie and Adenovirus 

Receptor (CAR) is the primary receptor for adenoviruses, and loss or reduction of 

CAR greatly decreases adenoviral entry. The understanding of the mechanisms 

regulating CAR expression and localisation will contribute to increase the efficacy 

of oncolytic adenoviruses.   

Results. Two glioma cell lines (U343MG and U373MG) were infected with the 

oncolytic adenovirus dl922-947. U373MG cells were more susceptible to cell 

death following viral infection, compared to U343MG cells. The enhanced 

sensitivity was paralleled by increased adenoviral entry and CAR mRNA and 

protein levels in U373MG cells. In addition, U373MG cells displayed decreased 

ERK1/2 nuclear/cytosolic ratio, compared to U343MG cells. Intracellular content 

of PED/PEA-15, an ERK1/2 interacting protein, was also augumented in these 

cells. Both ERK2 overexpression and genetic silencing of PED/PEA-15 by 

antisense oligonucleotides increased ERK nuclear accumulation and reduced CAR 

expression and adenoviral entry.  

Conclusions: Our data indicate that dl922-947 could represent an useful tool for 

the treatment of GBM and that PED/PEA-15 modulates CAR expression and 

adenoviral entry, by sequestering ERK1/2. 
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Introduction 

Malignant glioma of astrocytic origin or glioblastoma multiforme (GBM) is the 

most common primary brain tumour in adults and the most aggressive human 

brain tumour. 

Primary GBM develops de novo from glial cells, typically has a clinical history of 

<6 months, and is most frequent in older patients (Brandes et al., 2008). Secondary 

GBM develops from preexisting low-grade astrocytomas and affects younger 

patients. GBM is an anaplastic, highly cellular tumour  with poorly differentiated, 

round or pleomorphic cells (Furnari et al., 2007; Brandes et al., 2008). 

Treatment normally includes tumour resection, radiation and chemotherapy, 

however GBM cells are highly infiltrative, preventing the complete tumour 

resection, and largely resistant to chemo and radiotherapy. Consequently, only
 
a 

small minority of GBM patients achieves
 
long-term survival (Furnari et al., 2007; 

Brandes et al., 2008).
 
Novel treatment strategies are therefore required in order to 

increase the therapeutic options.
 
 

Selective replicating oncolytic viruses represent a novel platform for the treatment 

of neoplastic diseases and several studies have been performed showing the 

feasibility of this therapeutic strategy in glioblastoma patients (Haseley et al., 

2009).  

Adenoviruses and other viruses have been engineered for selective replication 

within neoplastic cells.  The most common approach is the deletion of viral gene 

whose product is necessary for replication in normal cells but expendable in cancer 

cells (Vähä-Koskela et al., 2007).  

The first replication-competent-virus described is dl1520 (Onyx-015), an 

adenoviral mutant containing a deletion of  E1B-55K gene, that abolishes its 

capability to bind and inhibit p53. Being unable to avoid the subsequent p53 

induced apoptosis, it has been hypothesised that dl1520 can only replicate in cells 

lacking functional p53 pathway (Bischoff et al., 1996). E1B-55K also mediates 

http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=%22Bischoff%20JR%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DiscoveryPanel.Pubmed_RVAbstractPlus
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late-viral RNA transport and the loss of E1B-55K restricts the viral replication to 

tumour cells capable of taking over the RNA export function of the viral gene 

product (O’Shea et al., 2005). Although active against tumoural cells and well 

tolerated in several clinical trials, objective responses with dl1520 are limited to 

date, highlighting the need of new oncolytic adenoviruses with higher replication 

efficiency (Kirn, 2001). 

dl922-947 is a second generation adenoviral mutant bearing a 24-bp deletion in 

E1A-Conserved Region 2 (CR2), necessary for binding and inactivation of pRb 

family of proteins (Heise et al., 2000); dl922-947 mutant is unable to induce 

progression from G1 into S-phase of normal cells, but replicates with high 

efficiency in cells with an abnormal G1-S checkpoint.  

The G1-S checkpoint is critical for cell growth progression (Sherr, 2000) and is 

abnormal in GBM (Solomon et al., 2008), therefore mutant E1A adenoviruses 

have been proposed for the therapy of gliomas and are now in preclinical 

development as antiglioma therapy (Giacomo et al., 2003).  

The efficacy of adenoviral vectors as therapeutic agents depends on the ability of 

neoplastic cells to bind and internalise adenoviruses. Adenoviral infection involves 

two distinct virus-cell interactions. First cell surface attachment is mediated by 

binding of the viral fiber protein to the cellular Coxsackie and Adenovirus 

Receptor (CAR) (Bergelson et al., 1997; Tomko et al., 2000). Internalization, via 

receptor-mediated endocytosis, involves interactions between the viral penton 

protein and cellular integrins, such as v, v5 3that act as 

coreceptors (Nemerow, 2000).Low or absent expression of CAR is seen in many 

primary tumour tissue (Rein et al., 2006) and a low expression of CAR receptor 

has been observed in grade IV gliomas (Fuxe et al., 2003). The analysis of CAR 

expression has been proposed to identify and select cancer patients, that could be 

successfully treated with adenoviral mutants.  
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However, the molecular mechanisms by which CAR expression is regulated have 

been only partially elucidated. Interestingly, the inhibition of ERK (extracellular-

signal-regulated kinase)/MAPK (mitogen-activated protein kinase) pathway has 

been reported to up-regulate CAR expression (Anders et al., 2003). 

Here we show that, in glioblastoma cell lines (Hao et al., 2001; Xiao et al., 2002), 

the expression of PED/PEA (phosphoprotein enriched in diabetes/ phosphoprotein 

enriched in astrocytes)-15, a protein which binds ERK and prevents its nuclear 

accumulation (Formstecher et al., 2001; Hill et al., 2002; Renault et al., 2003; 

Whitehurst et al., 2004; Renganathan et al., 2005), correlates with CAR mRNA 

levels as well as with the sensitivity to adenoviral infection and dl922-947 killing 

activity. Indeed, silencing of PED/PEA-15 promotes ERK nuclear translocation 

and simultaneously reduces CAR expression and adenoviral entry into 

glioblastoma cells. 

 

 

 

Material and methods 

Cell lines, plasmids and transfections  

Glioma cell lines U343MG, and U373MG were purchased from American Type 

Culture Collection. All cell lines were cultured in DMEM supplemented with 10% 

fetal bovine serum, 100 IU of penicillin/ml, 100 IU of streptomycin/ml and 2% L-

glutamine in humified CO2 incubator.  

Sequences of scramble and antisense oligonucleotides are as follows:  

AS-PED/PEA-15 human 5’-tGACGCCTCTGGAGCTGAGA,  

Scr-PED/PEA-15 human 5’-gGCAATTTCGAGCGGCACGT (Sigma).  

The plasmid pcDNA3-HA containing ERK2 cDNA (pcDNA3-HA-pMAPK2) was 

kindly provided by dr. Mario Chiariello. 

http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=%22Formstecher%20E%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DiscoveryPanel.Pubmed_RVAbstractPlus
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Transfection
 
of PED antisense and scramble oligonucleotides, or pcDNA3-HA 

containing ERK2 cDNA,
 
was accomplished using the lipofectamine (Invitrogen) 

method as described
 
previously (Condorelli et al., 1998). 

 

Preparation of adenoviruses, infection and viability assay 

dl922-947 is a second generation adenoviral mutant that has a 24-bp deletion in 

E1A Conserved Region 2 (CR2). AdGFP is a non replicating E1A-deleted 

adenovirus encoding green fluorescent protein. Viral stocks were expanded in the 

human embryonic kidney cell line HEK-293, and purified, as previously reported 

(Portella et al., 2002). 

Stocks were stored at -70°C after the addition of glycerol to a concentration of 

50% vol/vol. Virus titre was determined by plaque-forming units (pfu) on the 

HEK-293 cells. 

For the evaluation of the cytoxic effects of the dl 922-947 virus, 1 x10
3
 cells were 

seeded in 96-well plates, and 24 hours later cells infected with at different 

Molteplicity Of Infection (MOIs). After ten days cells were fixed with 10% TCA 

and stained with 0.4 % sulforhodamine B in 1% acetic acid (Skehan et al., 1990). 

The bound dye was solubilised in 200 l of 10 mM unbuffered Tris solution and 

the optical density was determined at 490 nm in a microplate reader (Biorad). The 

percent of survival rates of treated cells were calculated by assuming the survival 

rate of untreated cells to be 100%. 

For the evaluation of infectivity cells were detached, counted, and plated in 6 well 

plate at 70% cell density. After 24 hours cells were infected with AdGFP diluted in 

growth medium at different MOIs, medium was replaced after 2 hours. Cells were 

washed 24 hours post infection (hpi), then trypsinized and analyzed for GFP 

expression on a FACS cytometer (Dako Cytomation, U.S.A.) and Summit V4.3 

software (Dako). 
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Quantitative PCR of dl 922-947 

To quantify the amount of dl922-947 virus genome, cells were infected with 

dl922-947 at different MOIs (0.1, 1 and 10 pfu/cell). At 48 hpi, cell supernatant 

was collected and viral DNA extracted using a QIAamp DNA mini kit (Valencia, 

CA, USA), then quantified by real-time PCR using assay-specific primer and 

probe. A Real time-based assay was developed using the following primers: 5'-

GCCACCGAGACGTACTTCAGCCTG-3' (Upstream primer) and 5'-TTG TAC 

GAG TAC GC G GTA TCCT-3' (Downstream primer) for the amplification of 

143 bp sequence of the viral hexon gene (from bp 99 to 242 bp). For 

quantification, a standard curve was constructed by assaying serial dilutions of 

dl922-947  virus ranging from 0.1 to 100 pfu/cell to quantify the input dose. 

 

Detection of cell-surface CAR receptor and mRNA quantification  

Cells were grown in 6-well plates. After 48 hours cells were detached in PBS-

EDTA 10mM, washed with PBS and then incubated with a mouse anti-CAR 

monoclonal antibody RmcB (Hsu et al., 1988), a secondary antibody (polyclonal 

rabbit anti-mouse antibody conjugated to fluorescein isothiocyanate [FITC]; 

Sigma) and analyzed for CAR expression on a FACS cytometer (Dako 

Cytomation, U.S.A.) and Summit V4.3 software (Dako). 

To block CAR receptor, cells were pretreated with increasing concentrations of the 

mouse anti-CAR monoclonal antibody RmcB (1:100, 1:250, 1:500) , for 1 hour at 

room temperature before addition of virus. Cells were harvested and analysed as 

previously described.  

To analyse CAR mRNA levels cells were harvested and the total RNA was 

isolated and DNase digested using the RNeasy minikit (QIAGEN) according to the 

manufacturer’s recommendations. One microgram of tissue or cell RNA from each 

sample was reverse transcribed using Superscript II reverse transcriptase 

(Invitrogen). PCR products were analyzed using Sybr green mix (Invitrogen). 
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Reactions were performed using Platinum Sybr green qPCR Super-UDG using an 

iCycler IQ multicolour real-time PCR detection system (Bio-Rad). All reactions 

were performed in triplicate, and β-actin was used as an internal standard.  

The primer sequences were:  

Cxadr Forward, 5’-ATGAAAAGGAAGTTCATCAACGTA-3’, 

Cxadr Reverse, 5’-AATGATTACTGCCGATGTAGCTT-3’, generating an 

amplicon of 93 nucleotides scattered among sixth and seventh exon;  

β-actin Forward, 5’-GCGTGACATCAAAGAGAAG-3’;  

β-actin Reverse, 5’-ACTGTGTTGGCATAGAGG-3’. 

The conditions used for PCR were 10 min at 95 C and then 45 cycles of 20 sec at 

95 C and 1 min at 60 C. To calculate the relative expression levels, we used the 2
-

[Δ][Δ]Ct
 method, where [Δ][Δ]Ct= [Δ]Ct,sample -[ Δ]Ct,reference.  

 

Protein extraction, cell subfractionation and western blot analysis 

In all experiments, 70% confluent cells were used. Subcellular fractionation was 

performed by a previously described method (Ruvolo et al., 1998). Briefly, cells 

were broken in ice-cold hypotonic Hepes buffer (10 mM HEPES, pH 7.4, 5 mM 

MgCl2, 40 mM KCl, 1 mM phenylmethylsulfonyl fluoride, 10 g/ml aprotinin, 10 

g/ml leupeptin). Broken cells were centrifuged at 200 x g to pellet nuclei. The 

resulting supernatants were centrifuged at 10,000 x g to pellet the heavy 

membrane fraction. The last supernatant represented the cytosolic fraction. The 

nuclear membranes were isolated by centrifugation of the nuclei through a 2M 

sucrose cushion at 150,000 x g. For protein extraction cells were homogenised 

directly into lysis buffer (50 mM HEPES, 150 mM NaCl, 1 mM EDTA, 1 mM 

EGTA, 10% glycerol, 1%Triton-X-100, 1 mM phenylmethylsulfonyl fluoride, 1 

g/ml aprotinin, 0.5 mM sodium orthovanadate, 20 mM sodium pyrophosphate). 

The lysates were clarified by 20 minutes centrifugation at 14,000g. Protein 

concentrations were estimated by a Bio-Rad assay (Bio-Rad, München, Germany), 
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and then proteins were boiled in Laemmli buffer for 5 min before electrophoresis.  

Proteins were subjected to SDS-PAGE (10% polyacrylamide) under reducing 

condition. After electrophoresis, proteins were transferred to nitrocellulose 

membranes (Immobilon Millipore Corporation). After blocking with TBS-BSA, 

the membrane was incubated with the primary antibody: polyclonal rabbit 

antibody against CAR receptor SC-15-405 (Santa Cruz) 1:250, Rabbit anti PED 

serum (1:2000), previously described (25), rabbit antibody ERK 1 and 2 (1:1000) 

or with the rabbit antibody against actin (1:2000)(Santa Cruz) for an overnight 

incubation.  

Membranes were then incubated with the horseradish peroxidase-conjugated 

secondary antibody (1:2000) for 45 min (at room temperature) and the reaction was 

detected with an ECL system (Amersham Life Science, UK). 

 

 

 

 

Results 

U373MG and U343MG cells show a different sensitivity to adenoviral infection 

First, we evaluated the antineoplastic activity of the selective replicating oncolytic 

adenovirus dl922/947 against U373MG and U343MG glioma cell lines ( Fig 1 A). 

Cells were infected at different MOIs of dl922/947 and cell survival was evaluated 

after seven days. U373MG cell line displayed higher sensitivity to dl922/947 with 

an IC50 of  MOI 0.0001 (pfu/cell), whereas for U343MG IC50 was observed at a 

MOI of 0.1 (Fig 1 A). Genome equivalent copies analysis showed that both cell 

lines can sustain viral replication. However, a higher copy number of dl922/947 

was detected in U373MG compared to U343MG (Fig. 1B). 

Our data indicate that both glioma cell lines are sensitive to dl922-947, although 

displaying a different sensitivity to its oncolytic activity.  
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To study whether this difference could be due to unlike viral entry, we used a non 

replicating adenovirus encoding the green fluorescent protein (AdGFP). Cells were 

infected with different MOIs of AdGFP and 24 hpi the amount of GFP-positive 

cells was quantified by FACS analysis. U373MG cells were readily infected by 

AdGFP, showing 80% of positive cells at 1 pfu/cell of virus, whilst at the same 

MOI only 40% of U343MG cells were GFP positive (Fig 1C).  

 

Adenoviral entry is CAR-mediated in U343MG and U373MG cells  

It has been reported that CAR (Coxsackie And Adenovirus Receptor) is the main 

mediator of the adenoviral entry (Bergelson et al., 1997; Nemerow et Tomko et 

al., 2000; Arnberg, 2009). Therefore, we have analysed CAR expression by 

western blot and cytofluorimetric analysis in U343MG and U373MG cell lines. 

U373MG cells displayed higher total (Fig 2 A) and membrane levels (Fig 2 B), 

compared to U343MG cells; this observation parallels the higher viral entry and 

sensitivity to the oncolytic activity of dl922-947. To evaluate whether CAR may 

play a direct role in adenoviral entry, U343MG and U373MG cells were pretreated 

1 h with increasing amount of the blocking anti-CAR monoclonal antibody RmcB 

and infected with 25 pfu/cell of AdGFP.  

Significant decreases of GFP emission were observed in U373MG (p<0.005) and 

in U343MG cells (p<0.001), upon treatment with RmcB (Fig 2 C). These data 

confirm that CAR plays a crucial role in adenoviral entry in both cell lines.  

 

ERK modulates U373MG cells  infectivity by regulating CAR expression  

It has been described that ERK signalling regulates CAR levels in cancer cell lines 

(Anders et al., 2003). Therefore, we have evaluated ERK1/2 phosphorylation and 

subcellular localisation in U373MG and U343MG cells. No difference of ERK1/2 

phosphorylation was detected in the two cell lines (Fig 3A left ). However, in 

U373MG cells, ERK1/2 localization was mostly cytosolic. Conversely, in 
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U343MG it was mostly localised in the nuclei (Fig 3 A right), suggesting that 

ERK1/2 nuclear accumulation, might down-regulate CAR expression.  

Next, a plasmid containing  ERK2 cDNA (pcDNA3-HA pERK2) was transiently 

transfected into U373MG cells, in order to force ERK into the nucleus. 

Transfection efficiency was evaluated by western blot (Fig 3 B). ERK2 

overexpression was paralleled by increased detection of ERK2 in the nuclei and by 

a reduction of CAR total and membrane levels (Fig 3 B). CAR mRNA levels, 

evaluated by RT Real Time PCR, also showed a reduction of about 80%(Fig 3 C), 

thus suggesting that ERK nuclear shift down-regulates CAR gene expression. 

Accordingly, a significant reduction in GFP emission was observed in ERK2-

transfected U373MG cells, following infection with AdGFP (Fig 3 D).  

 

 

Down regulation of PED/PEA-15 decreases CAR levels and adenoviral infectivity 

in U373MG cells  

PED/PEA-15 is a death effector domain-containing protein, which is involved in 

the regulation of apoptotic cell death (Hao et al., 2001; Xiao et al., 2002). 

PED/PEA-15 is highly expressed in cells of glial origin (Hao et al., 2001; Xiao et 

al., 2002; Sharif et al., 2004). Moreover, it has been reported that PED/PEA-15 

inhibits nuclear translocation and activity of ERK1/2 (Formstecher et al., 2001; 

Hill et al., 2002; Renault et al., 2003; Whitehurst et al., 2004; Renganathan et al., 

2005). 

As also previously reported (Hao et al., 2001) PED/PEA-15 levels were higher in 

U373MG than in U343MG cells (Fig. 4 A). To assess whether PED/PEA-15 may 

control ERK localization, a PED/PEA-15 antisense oligonucleotide (PED-As) was 

transfected into U373MG cells, using a scrambled oligonucleotide as control 

(PED-Scr). PED/PEA-15 levels in transfected cells were evaluated by western blot 

(Fig. 4 B).  

http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=%22Formstecher%20E%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DiscoveryPanel.Pubmed_RVAbstractPlus
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Upon PED-As transfection, nuclear/cytosolic ratio of ERK distribution was shifted 

toward nucleus (Fig 4 C). 

Down-regulation of PED/PEA-15 was accompained by a reduction in total (Fig. 4 

B) and membrane (Fig. 5 A) CAR levels respectively. 

Moreover, Real Time RT PCR experiments showed about 50% reduction of CAR 

mRNA levels (Fig 5 B). Finally, upon infection with 25 MOIs of AdGFP for 24 

hours,  PED-As transfected cells showed a significant decrease in GFP emission 

(Fig 5 C), thus suggesting that PED/PEA-15 is involved in CAR expression and in 

the control of adenoviral infectivity in glioma cells.  
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Discussion 

GBM is surgically incurable in the vast majority of patients (Brandes et al., 2008), 

with median survival duration of about 9-15 months (Furnari et al., 2007). The 

recently developed protocol of adjuvant therapy, radiation followed by 

chemotherapy, administered after surgery, had only demonstrated a moderate 

increase in survival (Andreas et al., 2009). Therefore novel therapeutic approaches 

are required. The availability of novel prognostic and/or predictive markers could 

be also beneficial to tailor the treatment of GBM patients.  

Genetically engineered, conditionally replicating viruses are promising therapeutic 

agents for cancer. Indeed, radio and chemotherapy treatments are often potentiated 

by oncolytic adenoviruses in experimental and in clinical settings (Chu et al., 

2004; Vähä-Koskela et al., 2007) and therefore mutant adenoviruses could be used 

to for the development of combined treatments. 

Several oncolytic viruses have been already tested in preclinical or clinical studies 

for the treatment of gliomas. Herpes simplex oncolytic type 1 (HSV-1) has been 

tested in a phase I clinical study, showing that can be safely administered into 

human brains (Todo, 2008). Replication competent adenoviruses also hold a 

promise for the treatment of GBM. Delta 24, an adenovirus able to target Rb 

pathway and bearing a mutation similar to dl922/947, has been shown to be 

effective against GBM cells (Jiang et al., 2007).  

In the present study, we have observed that dl922/947 is active against two 

glioblastoma cell lines, U343MG and U373MG, reinforcing the concept that the 

therapy of glioblastoma could benefit of the use of oncolytic viruses. However, a 

differential sensitivity to the oncolytic activity of dl922/947 was evidenced in the 

two cell lines, being U343MG cells more resistant to the virus.  

This difference could be potentially due to factors affecting viral life cycle (such 

as attachment, entry, viral gene expression, etc). It is generally accepted that poor 

adenoviral entry in neoplastic cells represents the most important obstacle for an 
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effective therapy based on replicating oncolytic adenoviruses (Vähä-Koskela et 

al., 2007).  

Coxsackie and Adenovirus Receptor (CAR) is the primary receptor for 

adenoviruses, and loss or reduction of CAR greatly decreases adenoviral entry 

(Bergelson et al., 1997; Nemerow and Tomko et al., 2000; Rein et al., 2006). 

Higher levels of CAR expression were observed in U373MG, as compared to 

U343MG and this was paralleled by increased viral entry.  However, a significant 

reduction was observed in both cell lines upon blocking of the receptor with an 

anti CAR antibody.  

Although a complete abrogation of adenoviral entry was not obtained, possibly 

due to residual entry via alternative pathways (Arnberg et al., 2009) or sub-total 

blockade with the antibody, our data are consistent with the hypothesis that CAR-

mediated internalization plays a major role in both cell lines.  

It has been demonstrated that disruption of signaling
 
through the Raf-MEK-ERK 

pathway by MEK inhibitors (U0126 and PD184352) up-regulates
 
CAR expression 

(Anders et al., 2003) Interestingly, U373MG cells displayed a higher ERK1/2 

cytosolic localisation, compared to U343MG cells, where ERK1/2 was mostly 

nuclear. Since nuclear translocation is a crucial step for ERK-mediated regulation 

of gene expression, we hypothesized that ERK nuclear activity could control CAR 

expression. Indeed, overexpression of ERK2 into U373MG cells was accompanied 

by a forced nuclear localization and decreased CAR mRNA and protein levels, 

finally leading to reduced viral entry.  

PED/PEA-15 is a death effector domain-containing protein involved in the 

regulation of apoptotic cell death and highly expressed in cells of glial origin (Hao 

et al., 2001; Xiao et al., 2002). PED/PEA-15 regulates the ERK/MAPK pathway 

by binding ERK1/2 and preventing its nuclear accumulation and activity 

(Formstecher et al., 2001; Hill et al., 2002; Renault et al., 2003; Whitehurst et al., 

2004; Renganathan et al., 2005). Moreover, abrogation of ERK1/2 binding as a 

http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=%22Formstecher%20E%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DiscoveryPanel.Pubmed_RVAbstractPlus
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result of point mutations in PED/PEA-15 restores normal ERK1/2 function 

(Whitehurst et al., 2004). We have therefore hypothesised that PED/PEA-15 could 

be involved in CAR regulation and adenoviral infectivity by controlling ERK 

subcellular distribution. Indeed, PED/PEA-15 levels are higher in U373MG than 

in U343MG and positively correlate with the relative ERK cytosolic abundance, 

CAR levels, adenoviral infectivity and dl922/947 killing capacity. 

To further support this hypothesis, genetic silencing of PED/PEA-15 with a 

specific antisense oligonucleotide enhanced ERK1/2 nuclear distribution and led 

to a reduction of CAR mRNA and protein levels as well as of viral entry. Thus, 

our data indicated that PED/PEA-15 levels correlate with infectivity and 

sensitivity to oncolytic adenoviruses and suggested that, in association with CAR, 

the evaluation of PED/PEA-15 levels could represent an useful tool to address 

glioblastoma patients toward specific therapeutic options.  

Indeed, it is important to note that PED/PEA-15 is involved in the regulation of 

apoptotic cell death (Hao et al., 2001; Xiao et al. and Condorelli et al., 2002) and 

it has been demonstrated that, in glioma cell lines, the apoptotic cascade activated 

by TRAIL is negatively regulated by PED/PEA15 (Hao et al., 2001; Xiao et al., 

2002; Song et al., 2006). Moreover, overexpression of PED/PEA-15 induces a 

marked resistance against glucose deprivation-induced apoptosis in glioma cells 

(Eckert et al., 2008). Glioma cells overexpressing PED/PEA-15 also show a 

marked resistance to radiotherapy (Perruolo et al., unpublished data) and it has 

been reported that PED/PEA-15 may contribute to the resistance to 

chemotherapeutic agents in breast cancer cells (Stassi et al., 2005), B-cell chronic 

lymphocytic leukaemia cells cancer cells (Garofano et al., 2007) and in human 

non-small cell lung cancer (Zanca et al., 2008). 

All together these findings support the hypothesis that PED/PEA 15 increases the 

resistance to chemotherapeutic agents, radiations and to cytokines-based therapies 

( i.e TRAIL) and indicate that PED/PEA-15 expression could predict resistance to 
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apoptosis. Our data suggest a dual role of PED/PEA-15 as a predictive biomarker 

in glioblastoma patients: i) biomarker of resistance to chemo and radiotherapy for 

its antiapoptotic activity, ii) biomarker of sensitivity to adenoviral-based therapies, 

for its role on CAR expression. Further studies are required to assess this latter 

point.  

In conclusion, our data show that adenoviral infectivity is mostly CAR-mediated 

in glioblastoma cells and that PED/PEA-15 up-regulates CAR expression, by 

preventing ERK nuclear translocation. These data also suggest the use of 

PED/PEA-15 as potential predictive marker, to select the patients likely to 

advantage of therapies based on selective replicating oncolytic viruses.  
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Figure legends 

Figure 1  

Comparison of the cell killing activity, replication of dl922-947 and infectivity 

in U343MG and U373MG glioblastoma cell lines 

A. Cytotoxic effects of the oncolytic adenovirus dl922-947 were evaluated on 

U343MG and U373MG glioma cells. The percent of survival rates of cells 

exposed to adenovirus were calculated by assuming the survival rate of untreated 

cells to be 100% . dl922-947-infected U373MG cells showed significant or highly 

significant differences in viral sensitivity compared to U343MG cells. A highly 

significant difference (p<0.001) in cell survival was observed at all points with 

respect to the control for both cell lines; * indicates significance compared to 

equally infected U343MG cells. The differences observed were at least significant 

(* p<0.05; ** p<0.001). 

The standard deviation was calculated (bar). Points, mean percentage of the 

untreated cells and SD from three different experiments. 

B. Replication was assessed by Real-Time PCR genome equivalent analysis. Cells 

were infected with dl922-947 at different MOIs (0.1, 1 and 10 pfu/cell). At 48 hpi, 

cell medium was collected and viral DNA extracted and quantified. At a MOI of 

0.1 and 1 pfu/cell the difference of dl922-947 replication between U343MG and 

U373MG levels were highly significant (** p<0.001),whereas at a MOI of 10 the 

difference was significant (* p<0.05). 
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C. Cells were seeded in 6-well plates and infected with AdGFP at different MOIs 

(1, 10, 25, 50, 100 pfu/cell). At 24 hpi, cells were collected and the percentage of 

GFP-positive cells was quantified by FACS analysis. The data are the mean of 

three different experiments.  

 

Figure 2 

CAR receptor in U343MG and U373MG cells 

A. Western blot analysis of CAR expression in glioma cells. β-actin was used as 

loading control. U373MG cells displayed higher levels of total CAR expression. 

B. Cytofluorimetric analysis of CAR expression on the membrane of glioma cell 

lines. U343MG and U373MG cells were harvested and incubated with an anti-

CAR (RmcB) monoclonal antibody or fluorescein isothiocyanate (FITC)-labeled-

mouse alone. In all experiments, 70% confluent cells were used.  

C. U343MG and U373MG cells were pretreated 1 hour with increasing 

concentrations of the mouse anti-CAR monoclonal antibody RmcB (1:100, 1:250, 

1:500), and then infected with AdGFP (25 pfu/cell). At 24 hpi GFP emission was 

analyzed by citofluorimetric analysis. GFP emission decreased in a dose-

dependent manner (>50%) after pre-incubation with RmcB, in both cell lines. 

 

Figure 3  

ERK pathway regulates CAR expression in glioma cells  

A. U343MG and U373MG cells were analyzed for the expression of p-ERK1/2 by 

western blot, using ERK1/2 total levels as loading control (left). Subcellular 

fractionation (nuclear and cytoplasmatic) of U343MG and U373MG cells was 

performed, proteins extracted and ERK expression analysed by western blot in 

both fractions. The results were quantified by laser densitometry and the ERK1/2 

nucleus/cytosol ratio was determined (right). U373MG cells show sustained 
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ERK1/2 cytosolic amounts compared to U343MG cells. The data shown are 

representative of three independent experiments.  

B. U373MG cells were transiently transfected with the plasmid pcDNA3-HA 

containing ERK2 cDNA (pcDNA3-HA-pMAPK2) or pcDNA3-HA plasmid as a 

control. Total lysates, membrane enrichments and nuclear fractions  were obtained 

48 hours after transfection. -Actin , IGF1R and H1 histon levels were used as 

loading control and as markers for total, membrane and nuclear lysates, 

respectively.  

C. CAR mRNA levels were quantified in U373MG cells by RT-Real-time PCR 24 

hours after transfection with ERK2 plasmid or pcDNA3-HA control plasmid. 

Expression levels were normalized to the expression of β-actin. The data are the 

mean of three experiments. ERK2 overexpression greatly reduced CAR mRNA 

levels. 

D. Effect of ERK2 transfection on infectivity of glioma cells. U373MG cells were 

transfected with ERK2 plasmid or pcDNA3-HA control plasmid, and 48 hours 

post-transfection were infected with AdGFP (25 and 50 pfu/cell). GFP expression 

was analyzed by citofluorimetric analysis. The data are the mean of three 

experiments. 

 

Figure 4  

PED/PEA-15 antisense (PED As) transfection  

A. Differential expression of PED/PEA-15 in glioma cell lines. U343MG and 

U373MG cells were analyzed for the expression of the antiapoptotic protein 

PED/PEA-15 on western blot, using β-actin levels as loading control.  

B. Effect of PED/PEA-15 downregulation on CAR. U373MG cells were transiently 

transfected with PED/PEA-15 antisense oligonucleotides (PED As) and PED/PEA-

15 scramble oligonucleotides (PED Scr). PED/PEA-15 and CAR total levels were 

analysed 48h after transfection. 
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C. Effect of PED/PEA-15 down regulation on ERK1/2 localisation. U373MG cells 

were transiently transfected with PED/PEA-15 antisense (PED As), or with a 

scrambled oligonucleotide as control (PED Scr). Subcellular fractionation (nuclear 

and cytoplasmatic) of PED As-transfected U373MG cells was performed, and 

ERK1/2 expression analysed in both fractions. -actin and H1 histon were used as 

a loading control for cytosolic and nuclear fractions, respectively.  

 

Figure 5 

Transfection of PED/PEA-15 As reduces CAR levels and infectivity in 

U373MG cells. 

A. U373MG cells transfected with PED As or PED Scr. oligonucleotides were 

analysed for expression of CAR receptor by surface labeling. 48h after 

transfection, cells were harvested and incubated with anti-CAR or secondary FITC-

labeled anti-mouse antibody alone. Labeled cells were analyzed for CAR 

expression by cytofluorimetric analysis. The data are the mean of three different 

experiments. A strong reduction in CAR membrane levels was observed in PED 

As-transfected cells.  

B. CAR mRNA levels were quantified on U373MG cells by Real-time PCR 24 

hours after transfection. Expression levels were normalized to the expression of β-

actin. PED As-transfected cells displayed lower CAR mRNA levels. 

C. U373MG cells were transfected with PED/PEA-15 Antisense or Scrambled 

sequence and 48 hours post-transfection were infected with AdGFP (25 pfu/cell). 

GFP expression was analyzed by citofluorimetric analysis; PED As transfection 

reduced GFP emission.  
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