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ABSTRACT

Inflammatory conditions and infections in selected organs increase the 

risk of cancer. In the tumor microenvironment, smoldering inflammation 

contributes to proliferation and survival of malignant cells, angiogenesis, 

metastasis and subversion of adaptive immunity.  

The human immunodeficiency virus (HIV) infection is characterized by 

increased risk of several solid tumors due to its inherent nature of weakening 

the immune system. Recent observations point to a lower incidence of some 

cancers in patients treated with protease inhibitor (PI) cocktail such as HAART 

(Highly Active Anti-Retroviral Therapy). 

          Human Immunodeficiency Type-1 Virus protease inhibitors (HIV-1-PIs) 

originally designed to block selectively the aspartic protease of HIV-1, also 

shown the ability to modulate a variety of biological functions, including the 

immune response, by mechanisms largely independent from their anti-viral 

activity. Herein, we investigate the effects of PIs on differentiation programs of 

monocytes toward: (a) dendritic cells (DC); (b) Tumor Associated 

Macrophages-like cells (TAM-like). 

         Differentiation of human circulating monocytes in the presence of PIs led 

to generation of DC with atypical phenotype, including low level of Cd1a, and 

DC-SIGN, a receptor that enables DC to bind HIV-1 virions in tissues, and 

carry them to lymphonodes. Moreover, DC generated in the presence of 

ritonavir also fail to terminally differentiate, and secrete lower amounts of IL- 

12 and IL-15, in response to bacterial endotoxin (LPS). This phenomenon 

parallels their inability to prime NK cells, and become resistant to NK-

mediated cytotoxicity. 

        The exposure of monocytes to certains PIs determines generation of 

Tumour Associated Macrophages-Like cells with an atypical phenotype, 

including higher level of the co-stimulatory molecules CD86, and lower 
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expression of ILT3, a receptor playing an imunosuppressive role. Accordingly, 

in response to LPS, TAM-like cells generated in the presence of PIs, secrete 

lower amount of MM9 and VEGF, a phenomenon accompanying their ability 

to release more GM-CSF. 

       Altogether, these findings demonstrate the ability of PIs to modulate the 

differentiation programs of human monocytes. The remakable property of 

certain PIs to modulate phenotypes and functionalities of DC and TAM, might 

open novel perspectives for immune-intervention aimed to manipulate the 

cancer inflammatory milieu. 
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1. BACKGROUND

1.1 Mechanisms that link inflammation and cancer 

It was in 1863 that Rudolf Virchow noted leucocytes in neoplastic tissues and 

made a connection between inflammation and cancer. On these bases, he 

suggested that the “lymphoreticular infiltrate” reflected the origin of cancer at 

sites of chronic inflammation. Over the past ten years our understanding of the 

inflammatory microenvironment of malignant tissues has supported Virchow’s 

hypothesis, and the links between tumour and inflammation have implications 

for prevention and treatment. Furthermore, usage of non-steroidal anti 

inflammatory agents is associated with protection against various tumors, a 

finding that to a large extent mirrors that of inflammation as a risk factor for 

certain cancers. 

Table 1 lists some cancers where the inflammatory process is a cofactor 

in carcinogenesis.

Table 1. From Balkwill F and Mantovani A, Lancet 2001; 357: 539–45 

 About 15% of the global cancer burden is attributable to infectious 

agents, and inflammation is a major component of these chronic infections. 

Furthermore, increased risk of malignancy is associated with the chronic 
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inflammation caused by chemical and physical agents, and autoimmune and 

inflammatory reactions of uncertain aetiology (Balkwill and Mantovani 2001). 

For example, there are strong associations between alcohol abuse, which leads 

to inflammation of the liver and pancreas, and cancers of these organs. 

Cigarette smoking, asbestos and silica exposure are each associated with 

inflammation of the lung and lung carcinoma; inflammatory bowel disease 

(IBD) is associated with colon cancer; infections with Helicobacter pylori is 

associated with gastric carcinoma; chronical viral hepatitis is associated with 

liver cancer; infections with Schistosoma spp. is associated with bladder and 

colon carcinoma; infection with some strains of HPV is associated with 

cervical cancer; and infection with EBV is associated with Burkitt lymphoma 

and nasopharyngeal carcinoma. (Coussens et Werb 2002, Shacter and 

Weitzman, 2002, Hussain et al. 2003, Fox and Wang 2007, Dobrovolskaia and 

Kozlov, 2005). 

Key features of cancer-related inflammation (CRI) include the infiltration 

of white blood cells such as DCs, T cells, NK cells and prominently tumor-

associated macrophages (TAMs); the presence of polypeptide messengers of 

inflammation [cytokines such as tumor necrosis factor (TNF), interleukin (IL)-

1, IL-6, IL-12, chemokines such as CCL2 and CXCL8] and the occurrence of 

tissue remodeling and angiogenesis. (Colotta et al. 2009). 

Recent efforts have shed new light on molecular and cellular circuits 

linking inflammation and cancer (Mantovani et al. 2008). Two pathways have 

been schematically identified; in the intrinsic pathway, genetic events causing 

neoplasia initiate the expression of inflammation-related programs that guide 

the construction of an inflammatory microenvironment. Of note, it is reported 

that the rearrangements of the RET receptor tyrosine kinase gene generating 

RET-PTC oncogenes, specific to papillary thyroid carcinoma (PTC), when 

exogenously expressed in primary normal human thyrocytes, induce the 

expression of a large set of genes involved in inflammation and tumor 

invasion, including those encoding chemokines (CCL2, CCL20, CXCL8, and 
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CXCL12), chemokine receptors (CXCR4), cytokines (IL1B, CSF-1, GM-CSF, 

and G-CSF), matrix-degrading enzymes (metalloproteases and urokinase- type 

plasminogen activator and its receptor), and adhesion molecules (L-selectin). 

Selected relevant genes (CCL20, CCL2, CXCL8, CXCR4, L-selectin, GM-

CSF, IL1B, MMP9, UPA, and SPP1-OPN) were found up-regulated also in 

clinical samples of PTC, particularly those characterized by RET-PTC

activation, local extrathyroid spread, and lymph node metastases, when 

compared with normal thyroid tissue or follicular thyroid carcinoma, 

demonstrating that the RET-PTC1 oncogene activates a proinflammatory 

program and provide a direct link between a transforming human oncogene, 

inflammation, and malignant behaviour (Borrello et al. 2005). It is reported 

that other oncogenes representative of different molecular classes and mode of 

action (tyrosine kinases, ras–raf, nuclear oncogenes and tumor suppressors 

such as von Hippel-Lindau tumour suppressor (VHL), and phosphatase and 

tensin homologue (PTEN) share the capacity to orchestrate proinflammatory 

circuits (e.g. angiogenetic switch; recruitment of myelo-monocytic cells) 

(Mantovani et al. 2008) predisposing to cancer. 

In the extrinsic pathway, are the inflammatory conditions cited before to 

facilitate cancer development by a variety of mechanisms (Balkwill and 

Mantovani 2001). I will now look in more detail at the mechanisms by which 

cytokines and chemokines might act to promote cancer also summerized in 

next figure 1. 
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Figure 1: Chronic inflammation, tissue damage, and chronic infection may stimulate 

cytokines and chemokines that contribute to development of malignant disease ( Balkwill 

F and Mantovani A, 2001).

Mediators of inflammation as growth and survival factors 

Cytokines and chemokines have the potential to stimulate tumour-cell 

proliferation and survival and some of them may also act as autocrine growth 

and survival factors for malignant cells. IL-6 is a growth factor for 

haematological malignancies (Tricot 2000); IL-1 has growth stimulating 

activity for gastric carcinoma that may be related to genetic predisposition (B-

Omar 2000) and for myeloid leukaemias; and growth of melanomas is 

promoted by IL-8 and related chemokines (Hanghnegahdar et al. 2000) . 

Angiogenesis

The inflammatory cell infiltrate, particularly TAM, may contribute to 

tumour angiogenesis, and there are many reports of associations between 

macrophage infiltration, vascularity, and prognosis (Leek et al. 1999). 

Moreover TNF, IL-1, and IL-6 can stimulate production of angiogenic factors 

such as VEGF. Inflammatory macrophages also produce TGF- 1 that is itself 

angiogenic and induces production of VEGF. Chemokines also have a role. 
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Some CXC chemokines (eg, IL-8) are proangiogenic whereas others such as 

IP-10 (CXCL10) have antiangiogenic activity (Keane and Strieter 1999). In 

addition, CC chemokines may inhibit or stimulate angiogenesis indirectly, via 

their influence on TAM.

Invasion and metastasis 

Cytokines and chemokines affect various stages in the process of 

metastasis. TNF-  and CC chemokines can induce production of proteases 

important for invasion in both tumour cells and macrophages. In one skin 

tumour model, paracrine matrix metalloproteinase-9 production by 

inflammatory cells was implicated in epithelial hyperproliferation, 

angiogenesis and increased malignant potential, and skin tumour development 

was reduced in mice genetically “knocked out” for this protein. TNF-  and IL-

1 increase the expression of adhesion molecules on endothelial cells (Ekbom et 

al. 1990, Negus et al. 1997). IL- 18 derived from the endothelium may be the 

ultimate mediator of one tumour cytokine-induced adhesion molecule (Tricot 

2000) 10. Certain cells have receptors for adhesion molecules and use these 

molecular tools, typical of migrating leucocytes, to seed at distant anatomical 

sites (Martin Padura et al. 1991) . 

Furthermore, chemokine agonists induce migration or proliferation of 

some tumour cells (Hanghnegahdar et al. 2000). Receptors that are essential for 

lymphocyte and dendritic cell homing to lymph nodes (Allavena et al. 2000), 

could play a role in lymphatic dissemination of certain carcinomas. Thus, 

tumour cells use the same molecular tools (adhesion molecules, cytokines, 

chemokines, chemokine receptors) and pathways as leucocytes to spread to 

distant anatomical sites during inflammation. 

Subversion of immunity 

The prevalence of Th2 cells is common to tumours, suggesting that this 

polarization may be a general strategy to subvert immune responses against 

tumours. Chronic exposure to high cytokine concentrations (IL-4, IL-13, IL-
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10,) in the tumour microenvironment may set in motion a vicious cycle leading 

to skewing towards a type II inflammatory response (Sica et al. 2000). 

Some viruses encode chemokines and their inhibitors and receptors. Of 

particular interest is human herpesvirus type 8, which is involved in the 

pathogenesis of Kaposi’s sarcoma. The virus genome codes for three 

chemokines which are selective attractants of polarized Th2 cells. The virus-

encoded chemokines might subvert immunity by activating type 2 responses 

and diverting effective Th1 defence mechanisms (Sozzani et al. 1998, Endres 

et al. 1999). 

Genome Instability

Recent data suggest that an additional mechanism involved in cancer-

related- inflammation (CRI) is the induction of genetic instability by 

inflammatory mediators either directly inducing DNA damage (via reactive 

oxygen)  or affecting DNA repair systems and altering cell cycle checkpoint. 

For example HIF-1 , which is induced in cancer cells by inflammatory 

cytokines (TNF and IL-1 ), PGE2 (Jung et al. 2003) and reactive oxygen and 

nitrogen species (Sandau et al. 2000) downregulate mismatch repair (MMR)  

proteins MSH2 and MSH6 by displacing c-Myc from MSH2/MSH6 promoters 

(Koshiji et al. 2005).

Hydrogen peroxide produced by inflammatory cells inactivates MMR 

members by damaging the enzymes at the protein level; NO-induced 

upregulation of DNA methyltransferase results in extensive methylation of the 

cytosine bases, which is associated with promoter silencing and loss of gene 

expression of the MMR member hMLH1 (Fleisher et al. 2000). In fact by 

immunohistochemistry, decreased levels of hMLH1 proteins are seen in gastric 

epithelial cells in H.pylori-positive patients (Mirzaee et al. 2008) and in colitis-

associated cancers, hMLH1 hypermethylation is observed in a substantial 

proportion of patients (Fleisher et al. 2000). The nucleotide excision repair 

pathway, which serves to repair a variety of DNA lesions caused by UV 

radiation, mutagenic chemicals and chemotherapeutic agents, appears to be 
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affected by IL-6 that in multiple myeloma cells induces hypermethylation, and 

thus defective function, of the key nucleotide excision repair component 

hHR23B (Hodge et al. 2005). HIF-1  induces the microRNA-373 that 

downregulates the expression of the nucleotide excision repair component 

RAD23B (Crosby et al. 2009). Chromosomal instability (CI) results in 

abnormal segregation of chromosomes and aneuploidy. In most cancers with 

CI, proteins of the mitotic checkpoints are disregulated (Rajagopalan et al. 

2003). As a consequence, cancer cells fail to halt the cell cycle until DNA 

repair can be executed. Inactivation of p53 may play a role in CI (Tomasini et 

al. 2008). The p53 pathway protects cells from transformation by inducing 

apoptosis upon DNA damage and CI. p53 deficiency and a defective mitotic 

checkpoint in T lymphocytes increase CI through aberrant exit from mitotic 

arrest (Baek et al. 2003). Loss of p53 and p73 are associated with increased 

aneuploidy in mouse embryonic fibroblasts (Talos et al. 2007). The 

proinflammatory cytokine migration inhibitory factor suppresses p53 activity 

as a transcriptional activator (Hudson et al. 1999). NO and its derivatives 

inhibit the function of p53 (Calmels et al. 1997, Cobbs et al.2003) and are 

associated with p53 mutations (Ambs et al. 1999, Marshall et al. 2000, Jaiswa 

et al. 2001, Wink et al. 1994). NO (Hmadcha et al. 1999) and the inflammatory 

cytokine IL-6 (Hodge et al. 2005) increase the activity of DNA 

methyltransferase, resulting in CpG island methylation. Malignant cells 

employ matrix metalloproteinases (MMPs) to penetrate the extracellular matrix 

and basement membrane and to invade distant tissues. Recent data suggest that 

MMPs produced by tumours and by the inflamatory cells may also function as 

oncogenes by promoting CI. MT1-MMP, which is present also in the 

pericentrosomal compartment, compromises normal cytokinesis inducing 

aneuploidy. A potential target of MT1-MMP is pericentrin, an integral 

centrosomal/midbody protein required for centrosome performance and 

chromosome segregation (Golubkov et al. 2007). MMP-3, which is 

upregulated in many breast cancers (Stemlicht et al. 2001), also mediates CI in 
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cultured cells and in transgenic mice (Stemlicht et al. 1999, Lochter et al. 

1997). Expression of MMP-3 in cells stimulates the production of Rac1b 

(Matos et al. 2003), an hyperactive alternative splicing form of Rac1, which 

stimulates ROS production which can cause oxidative DNA damage and CI. 

 This cancer genetic instability through accelerated somatic evolution 

leads to a genomically heterogenous population of expanding cells naturally 

selected for their ability to proliferate, invade distant tissues and evading host 

defenses (Colotta et al. 2009). 

The intrinsic and extrinsic pathways converge on the inhibitor of NF-kB 

kinase/ NF-kB (IKK/ NF-kB) signaling pathway, which is activated by many 

proinflammatory cytokines. NF-kB is a transcription factor that regulates the 

expression of many genes whose products can suppress tumor cell death; 

stimulate tumor cell cycle progression; enhance epithelial-to-mesenchymal 

transition, which has an important role in tumor invasiveness; and provide 

newly emerging tumors with an inflammatory microenvironment that supports 

their progression, invasion of surrounding tissues, angiogenesis, and metastasis 

(Dobrovolskaia and Kozlov 2005, Karin 2006). 

In conclusion, CRI is a key component of tumors and may represent the 

seventh hallmark of cancer, providing further impetus for studies targeted to 

the inflammatory microenvironment of tumors (Colotta et al. 2009) (Figure 

1.2).
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Figure 1.2 Inflammation as the seventh hallmark of cancer. An integration to the six 

hallmarks of cancer. (Colotta et al. 2009) 

1.2 An overview of inflammation 

To fully understand the role of inflammation in the evolution of cancer, it 

is important to understand what inflammation is and how it contributes to 

physiological and pathological processes such as wound healing and infection. 

Inflammation is the complex biological response of vascular tissues to 

harmful stimuli, such as pathogens, damaged cells, or irritants. Inflammation is 

a protective attempt by the organism to remove the injurious stimuli as well as 

initiate the healing process for the tissue. Inflammation is not a synonym for 

infection. Even in cases where inflammation is caused by infection, the two are 

not synonymous: infection is caused by an exogenous pathogen, while 

inflammation is the response of the organism to the pathogen. 
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In the absence of inflammation, wounds and infections would never heal 

and progressive destruction of the tissue would compromise the survival of the 

organism (Ferrero-Miliani et al. 2007, Coussens and Werb 2002). 

Inflammation can be classified as either acute or chronic. Acute

inflammation is the initial response of the body to harmful stimuli and is 

achieved by the activation and directed migration of leukocyte (neutrophils, 

monocytes and eosinophils) from the blood into the injured tissues. For 

neutrophils, a four-step mechanism is believed to coordinate recruitment of 

these inflammatory cells to sites of tissue injury and to the provisional 

extracellular matrix (ECM) that forms a scaffolding upon which fibroblast and 

endothelial cells proliferate and migrate, thus providing a nidus for 

reconstitution of the normal microenvironment (Chettibi et al. 1999). These 

steps involve: activation of members of the selectin family of adhesion 

molecules (L- P-, and E-selectin) that facilitate rolling along the vascular 

endothelium; triggering of signals that activate and upregulate leukocyte 

integrins mediated by cytokines and leukocyte-activating molecules; 

immobilization of neutrophils on the surface of the vascular endothelium by 

means of tight adhesion through 4 1 and 4 7 integrins binding to  

endothelial vascular cell-adhesion molecule-1 (VCAM-1) and MadCAM-1, 

respectively; and transmigration through the endothelium to sites of injury, 

presumably facilitated by extracellular proteases, such as matrix 

metalloproteinases (MMPs). 

A number of  chemokines, which possess a relatively high degree of 

specificity for chemoattraction of specific leukocyte populations (Rossi and 

Zlotnik 2000, Homey et al. 2002), recruits downstream effector cells and 

dictates the natural evolution of the inflammatory response. 

Neutrophils (and sometimes eosinophils) are the first recruited effectors 

of the acute inflammatory response. Monocytes, which differentiate into 

macrophages in tissues, are next to migrate to the site of tissue injury, guided 

by chemotactic factors. Once activated, macrophages are the main source of 
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growth factors and cytokines, which profoundly affect endothelial, epithelial 

and mesenchymal cells in the local microenvironment. The process of acute 

inflammation is initiated also by cells already present in all tissues, mainly 

resident macrophages, dendritic cells, histiocytes, Kuppfer cells and 

mastocytes. At the onset of an infection, burn, or other injuries, these cells 

undergo activation and release inflammatory mediators responsible for the 

clinical signs of inflammation.

Prolonged inflammation, known as chronic inflammation, leads to a 

progressive shift in the type of cells which are present at the site of 

inflammation and is characterized by simultaneous destruction and healing of 

the tissue from the inflammatory process. (Cotran et al. 1998). 

In tumor development, the major driving force is chronic inflammation 

secondary to persistent infection with a parasite, bacterium, or virus (Karin and 

Greten 2005).

Infectious organisms (parasite, bacterium or virus) trigger inflammation 

through activation of receptors that recognize pathogen-associated molecular 

patterns (PAMPs), such as cell wall components and nucleic acids (Medzhitov 

2001). At least four families of mammalian innate immune receptors that 

recognize PAMPs have been identified; these are known as pattern recognition 

receptors (PRRs) and include TLRs, nucleotide-binding oligomerization 

domain–like (NOD-like) receptors (NLRs), C-type lectin receptors (CLRs), 

and triggering receptors expressed on myeloid cells (TREMs) (Akira et 

al.2006, Fritz et al. 2006, Robinson et al. 2006, Klesney-Tait et al. 2006). The 

interaction between PAMPs and PRRs results in the activation of innate 

immune cells and initiation of host responses whose major purpose is to 

eliminate and kill invading organisms (Karin and Greten 2005). However, 

inadequate pathogen eradication, prolonged inflammatory signaling, and 

defects in antinflammatory mechanisms can all lead to chronic inflammation 

and benefit tumor development (Han and Hulvetich 2005). 
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Inflammatory cells in tumour microenvironment. 

The inflammatory microenvironment of tumours is characterized by the 

presence of host leucocytes both in the supporting stroma and in tumour areas 

(Negus et al. 1997). Tumour infiltrating leucocytes may contribute to cancer 

growth and spread, and to the immunosuppression associated with malignant 

disease.

Macrophages and dendritic cells infiltrate tumours (Scarpino et al. 2000, 

Mantovani et al. 2002). In the tumour microenvironment many signals polarize 

these mononuclear phagocytes which can express different functional 

programmes. Fully polarized type I and type II (or alternatively activated) 

macrophages are the extremes of a continuum of functional states. Tumor-

derived and T cell-derived cytokines stimulate tumor associated macrophages 

(TAM) to acquire a polarized type II phenotype. These functionally polarized 

cells, and similarly oriented or dysfunctional and immature dendritic cells 

present in tumors, play a key role in the subversion of adaptive immunity and 

in inflammatory circuits which promote tumor growth and progression (Solinas 

et al. 2009, Fricke and Gabrilovich 2006). 

1.3 Tumor –Associated-Macrophages (TAM) 

The tumor mass is undoubtedly a multifaceted show, where different cell 

types, including neoplastic cells, fibroblasts, endothelial, and immune-

competent cells, interact with one another continuously. Macrophages 

represent up to 50% of the tumor mass, and they certainly operate as 

fundamental actors. (Solinas et al. 2009). 

Polarization of macrophage function. 

 Macrophages constitute  an extremely heterogeneous population, which 

could be divided schematically into two main classes: M1 and M2 (Figure 1.3). 

Blood monocytes differentiating in the presence of LPS/IFN-  mature into M1-

polarized cells (classically activated macrophages). They produce high levels 

of IL-12, IL-1, IL-23, TNF- , and CXCL10 and are characterized by cytotoxic 
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activity against microorganisms and neoplastic cells, expression of high levels 

of ROI, and capability as APCs with high expression of the co-stimulatory

molecule CD86. On the other hand, when monocytes differentiate in the 

presence of IL-4, IL-13, IL-10, or corticosteroids, they mature into M2 

macrophages (alternatively activated macrophage) which secrete IL-10, 

CCL17, CCL22, CCL18, IL-1ra, and IL-1R decoy. M2 cells are active workers 

of the host, promoting scavenging of debris, angiogenesis, remodeling, and 

repair of wounded/damaged tissues. Within the tumor mass, they exert the 

same functions favoring tumor promotion. In addition, M2 macrophages 

control the inflammatory response by down-regulating M1-mediated functions 

and adaptive immunity (Solinas et al. 2009). They are in fact the major source 

of the soluble and membrane-bound imunoglobulin-like transcript 3 (ILT3) 

which may be responsible for the immuno-escape mechanisms of tumors. Both 

membrane-bound ILT3 (mILT3) and soluble ILT3(sILT3) inhibited T cell 

proliferation in mixed lymphocyte culture (MLC), anergizing CD4+ Th cells, 

suppressing the differentiation of IFN-gamma producing CD8+ cytotoxic T 

cells, and inducing the differentiation of alloantigen-specific CD8+ T 

suppressors in primary 7-day MLC (Kim-Schulze et al. 2006). Furthermore, it 

is reported that in a humanized severe combined mmunodeficiency (SCID) 

mouse model, soluble and membrane ILT3 induce CD8+ T suppressor cells 

and prevent rejection of allogeneic tumor transplants. Furthermore, patients 

with carcinoma of the pancreas produce the soluble ILT3 protein, which 

induces the differentiation of CD8+ T suppressor cells and impairs T cell 

responses in mixed lymphocyte culture. These responses are restored by anti- 

ILT3 mAb or by depletion of sILT3 from the serum suggesting that ILT3 

depletion or blockade is crucial to the success of immunobiotherapy (Cortesini 

2007).
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Figure 1.3. Polarization of macrophage function. (Solinas G et al. 2009) 

TAM originate from blood monocytes recruited at the tumor site 

(Mantovani et al. 1992) by molecules produced by neoplastic and by stromal 

cells. The chemokine CCL2, earlier described in 1983 as a tumor-derived 

chemotactic factor, is the main player in this process and experimental and 

human studies correlate its levels with TAM abundance in many tumors, such 

as ovarian, breast and pancreatic cancer (Balkwill 2004). TAM themselves 

produce CCL2, suggesting the action of an amplification loop, and anti-CCL2 

antibodies combined with other drugs have been considered as an anti-tumor 

strategy. Other chemokines involved in monocyte recruitment are CCL5, 

CCL7, CXCL8, and CXCL12, as well as cytokines such as VEGF, PDGF and 

the growth factor M-CSF. Moreover, monocytes could be attracted by 

fibronectin, fibrinogen and other factors produced during the cleavage of ECM 

proteins induced by macrophage and/ or tumor cell-derived proteases 

(Allavena et al. 2008). 
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When monocytes reach the tumor mass, they are surrounded by several 

microenvironmental signals such as IL-3 and M-CSF, able to induce their 

differentiation toward mature macrophages (now called TAM) and to shape the 

“new” cells as needed by the tumor (CSFs, IL-4, IL-10, and TGF- ). Tumor-

molded macrophages resemble M2-polarized cells and play a pivotal role in 

tumor growth and progression. As shown in figure 1.4 TAM actively work for 

the tumor: they produce several molecules that sustain malignant cell survival 

(M-CSF, VEGF, PDGF, FGF, TGF Beta, MMPs) and they abundantly secrete 

matrix proteins and several proteases such as serine proteases, MMPs, and 

cathepsins, which act on cell– cell junctions, modify the ECM composition, 

and promote basal membrane disruption. Moreover, TAM actively contribute 

to build up the tumor matrix architecture by producing several matrix proteins, 

including secreted protein acid rich in cysteine, which modulate collagen 

density, leukocyte and blood vessel infiltration. TAM preferentially localize in 

tumor hypoxic regions, and hypoxia activates in these cells a specific 

proangiogenic program. Low oxygen conditions promote HIF-1 and HIF-2 

expression with subsequent overexpression of proangiogenic molecules. Of 

note, TAM express VEGF almost exclusively in a vascular and perinecrotic 

areas of human breast carcinomas. Among chemokines, hypoxia tightly 

regulates the expression of CXCL12, HIF-1-dependent potent chemoattractant 

for endothelial cells, and its receptor CXCR4. In addition to CXCL12, TAM 

release other chemokines involved in angiogenic processes such as CCL2, 

CXCL8, CXCL1, CXCL13, and CCL5. For instance, levels of CXCL5 and 

CXCL8 were associated with increased neovascularization and correlated 

inversely with survival. Finally, TAM affect adaptive immune responses 

significantly by recruiting and stimulating Tregs (IL10, CCL17, TGF, CCL22) 

and recruiting Th2 lymphocytes (CCL17, CCL22), which in turn inhibit Th1 

cells, and by inducing anergy of naıve T cells (CCL18) (Solinas et al. 2009). 
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Figure 1.4 Protumoral functions of tumor-associated macrophages (TAM) and interplay 

with tumor cells.  (Sica A et al. 2008) 

1.4 Dendritic Cells. 

Dendritic cells (DCs) are the most potent antigen-presenting cells of the 

immune system. They serve as the sentinels that capture antigens in the 

periphery, process them into peptides and present these to lymphocytes in 

lymph nodes. DCs play a key role in regulating immunity. Several DC-subsets 

exist, including myeloid-DCs (MDCs), plasmacytoid-DCs (PDCs) and 

Langerhans cells (LC). DCs not only instruct T- and B-lymphocytes, but also 

activate Natural Killer cells and produce interferons, thus linking the innate 

and adaptive immune system. (Bancherau et al. 2000). Inflammatory-mediators 

and especially the Toll like receptor (TLR) family of proteins play a pivotal 

role in inducing the immune activation program in DCs. TLRs recognize 

pathogen-associated-molecular-patterns (PAMPS) like LPS or flagellin and 

signal to alert immune cells in general, and DC in particular (Akira et al. 2006). 

DC activation, also referred to as DC maturation, thus results in immunity. 
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Mature DC produce pro-inflammatory cytokines. In contrast, resting DC or DC 

receiving immune-inhibitory signals, such as IL-10 and/or corticosteroids, 

induce immune tolerance via T cell deletion and induction of suppressive T 

cells, now termed regulatory T cells. Several mouse models have demonstrated 

that the immunological outcome depends upon the DC activation state; mature 

immune-activating DC protect mice from a tumor or pathogen, whereas 

tolerogenic DC induce tolerance against transplanted tissues. Hence, DC act at 

the interface of immunity and peripheral tolerance (Steinman et al. 2003). 

Among the inflammatory cytokines produced by DC, it is reported that 

IL-12 has a dual opposite effect: antitumor property relying on its ability to 

promote Th1 adaptive immunity and CTL responses by stimulating the 

production of IFN-  from T and natural killer (NK) cells, and reducing IL-4 

mediated suppression of IFN-  which results in enhancement of the cytotoxic 

activity of NK cells and CD8+ cytotoxic T lymphocytes (Trinchieri 2003), but 

also tumour- promoting role. In fact, it is reported that IL-12 plays a major role 

in sustaining the chronic phase of several inflammatory conditions that often 

degenarate in carcinoma such as colitis (Leach and Rennick 1998). 

IL-15 is an other cytokine produced by activated DC, that has been 

shown to play a pivotal role in orchestrating immune-mediated tissue 

destruction in inflammatory disease (Mention et al. 2003, Kovesdy and 

Kalantar-Zadeh 2008). IL-15 is indispensable for the generation, maintenance, 

and homeostasis of local T and NK cell. IL-15 also induces proliferation of 

CD8+ T and NK lymphocytes in addition to enhancing their effector functions, 

including those associated with cytolysis and cytokine secretion. IL-15 also 

promotes perpetuation of chronic inflammation by mediating activation of 

monocyte and neutrophils and by preventing activation-induced cell death of 

activated CD8+ T cells (Waldmann 2006, Huntington et al. 2007). In addition 

to these positive modulatory effects on the activation pathways leading to 

persistent inflammation, IL-15 can block the negative regulatory pathways 

critical in maintaining immune homeostasis by inhibiting the anti-
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inflammatory Smad-dependent signaling of TGF-  thereby, further 

aggravating ongoing inflammation (Benahmed et al. 2007).  

 The presence of DCs in human carcinomas has been largely 

documented, (Yang and Carbone 2004) and has been proposed to correlate 

with a more favorable prognosis (Tsujitani et al. 1990, Ishigami et al. 1998, 

Iwamoto et al. 2003). Ideally, DC should be recruited to the tumour site to 

initiate  the immune response, and promote tumour rejection.  In breast cancer, 

immature TADC are interspersed in the tumour mass, whereas mature dendritic 

cells are confined to the peritumoral area (Treiilleux et al. 2004). In papillary 

thyroid carcinoma TADC are also immature, but they tend to localise at the 

invasive edge of the tumour (Scarpino et al. 2000). 

        However, although DC can engulf tumor cells debrites, process and cross 

present tumor-associated antigens to cytotoxic T lymphocytes (CTLs) (Chan 

and Housseau 2008), the tumours microenvironment conteract this 

phenomenon by releasing a number of immunosuppressive factors, including 

IL6, VEGF, IL8 and IL10, that contributes to DC malfunction (Fricke and 

Gabrilovich 2006). Thus, tumour-associated-denditic cells (TADC) usually 

have an immature phenotype, with defective ability to stimulate T cells, a 

phenotype suggesting a controversial role for TADC in the immune response 

toward cancer cells. 

1.5 Dendritic Cell-Natural Killer crosstalk 

Natural killer (NK) cells are a population of large granular lymphocytes 

with a CD56+/CD3-phenotype. They are distinguishable from B and T 

lymphocytes by lack of antigen receptors. NK cells kill a variety of tumor cells, 

virus-infected cells and allogeneic cells in a non-major histocompatibility 

complex restricted manner, and provide the first line of immune defense 

(Trinchieri 1989, Moretta et al. 2002). 
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Although NK cells lack the antigen-specific receptors, they distinguish 

between normal cells and abnormal cells by their cell surface receptors. After 

binding to potential target cell, NK cell activating and inhibitory receptors 

interact with ligands and transmit signals, and then all the signals are integrated 

to determine whether NK cell stays and responds (Bottino et al. 2005, Long 

1999, Moretta et al. 2001). The effector function of NK cells is regulated by a 

balance between the inhibitory signals delivered by the MHC class I-specific 

inhibitory receptors and the activating signals transmitted by activating 

receptors (Lanier 2005). NK cell effector function is mainly mediated through: 

1) releasing cytoplasmic cytotoxic granules (granzyme and perforin) by 

exocytosis; 2) secreting proinflammatory cytokines (IFN- , TNF- , etc.); and 

3) the engagement of death receptors on target cells by their cognate ligands 

(e.g., FasL and TRAIL) on NK cells (Janeway and Medzhitov 2002). In course 

of DC-NK interplay, myeloid DCs by secreting NK-cells activating cytokines 

(IL-12, IL-15, type I IFNs), promote the secretion of pro-inflammatory 

cytokines and cytotoxicity of NK cells (Walzer et al. 2005). 

Reciprocally, NK cells, traditionally considered to be major innate 

effector cells, have also recently been shown to play immunoregulatory 'helper' 

functions, being able to activate DCs and to enhance their ability to produce 

pro-inflammatory cytokines. (Walzer et al. 2005, Moretta et al. 2006, Degli-

Esposti and Smyth 2005). In addition, once activated, NK cells acquire the 

capability of killing immature myeloid DCs (Moretta et al. 2002, Zitvogel 

2002). This effect is due to the fact that immature DCs typically underexpress 

HLA-class I molecules that would protect from NK-mediated lysis. On the 

other hand, DCs that, after Ag uptake, undergo maturation, upregulate MHC-

class I expression becoming essentially resistant to NK cells (Ferlazzo et al. 

2003). It has been suggested that the NK-mediated killing of DCs may serve to 

keep in check the quality and the quantity of DCs undergoing maturation 

(‘editing’ process). According to this view, DCs that fail to express sufficient 

amounts of MHC molecules would be removed. Thanks to this mechanism NK 
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cells may prevent the survival of faulty DCs that after expression of CCR7 and 

migration to lymph nodes, would induce inappropriate, low-affinity, T-cell 

priming resulting either in Th2 responses or in a state of tolerization 

(Langenkamp 2000). 

Indeed, only DCs undergoing this NK-mediated quality control would 

become fully mature and capable of inducing priming of protective and 

cytotoxic Th1 responses. 

1.6 Emerging aspects of NK cell biology 

In contrast to their protective role in various inflammatory conditions, 

NK cells can also act as mediators of innate immunopathology.In patients with 

chronic hepatitis B virus infection, a subset of NK cells contributes to liver 

inflammation by inducing hepatocyte death through a TRAIL-dependent

mechanism (Dunn et al. 2007). In hepatitis B virus transgenic mice, NK cells 

also promote liver injury through NKG2D (Chen et al. 2007). Moreover, NK 

cells act detrimentally in experimental sepsis induced by Streptococcus

pneumoniae or Escherichia coli by exacerbating inflammatory responses (Kerr 

et al. 2005, Badgwell et al. 2002). Consistent with these data, a potential 

contribution of NK cells has also been postulated in human inflammatory 

diseases such as arthritis (de Matos et al. 2007) and sarcoidosis (Katchar et al. 

2005) . 

Transgenic mice that express human NK cells-activating IL-15 

specifically in enterocytes (T3b-hIL-15 Tg mice) develop villous atrophy and 

severe duodeno-dejunal inflammation with massive accumulation of NK-like 

CD8-lymphocytes in the affected mucosa that leads to a major propensity for 

the development of enteropathy associated CD8 T cell lymphoma. Finally, in 

humans NK cells have been shown to home to inflamed skin in various 

conditions, such as vernal keratoconjunctivitis (Lambiase et al. 2007), atopic 

dermatitis (Buentke 2002) and psoriasis (Ottaviani et al. 2006). 
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Thus another interesting mechanism of action of drugs that target cancer-

related inflammation might be to prevent deleterious NK cell-driven 

inflammatory response.  

1.7 HIV protease inhibitors: antiretroviral agents 

 Immunodeficiency is a hallmark of human immunodeficiency virus type 

1 (HIV-1) disease and is characterized by a progressive decrease in CD4 T 

cells. The advent of new antiretroviral drugs, most notably HIV protease 

inhibitors, has generated new hope in the fight against AIDS. Development of 

HIV-protease inhibitors in the early 1990s followed the characterization of the 

crystal structure of HIV protease in 1989 (Navia MA et al. 1989). Inhibitors of 

HIV protease are peptidomimetics that generally contain a synthetic analogue 

of the peptide bond between phenylalanine and proline at positions 167 and 

168 of the gag-pol polyprotein, which is the target of the HIV aspartyl protease 

(Flexner C 1998). This action prevents production of infectious viral particles. 

The first inhibitor of HIV protease developed that received FDA approval was 

saquinavir, followed by ritonavir, indinavir, nelfinavir, and amprenavir. Drugs 

approved more recently include lopinavir (in combination with ritonavir), 

atazanavir, fosamprenavir (a prodrug of amprenavir), tipranavir, and darunavir. 

 Used in combination with nucleoside inhibitors of HIV reverse 

transcriptase, protease inhibitors have led to impressive clinical outcomes. 

Such combined therapeutic regimens, known as highly active antiretroviral 

therapies (HAART), work by suppressing HIV replication and can lead to a 

large reduction in HIV plasma viraemia, restoration of normal numbers of 

CD4-positive T lymphocytes, immunological recovery, and reduction of 

morbidity and mortality related to HIV and opportunistic infections. The 

increase in CD4-positive T-cell counts and the immune restoration that occurs 

with HAART is most likely to depend on the following mechanisms: increased 

peripheral CD4-positive T-cell survival and proliferation, central renewal of 

lymphocytes, improvement of T-cell responses, and restoration of the T-cell 
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repertoire. Therefore, protease-inhibitor-based HAART owes its success to the 

ability to block HIV replication and promote subsequent immunological 

recovery (Sgadari et al. 2003). 

1.8 Antitumour effects of antiretroviral therapy 

Infection by human immunodeficiency virus (HIV) is associated with an 

increased risk of certain tumours, particularly Kaposi’s sarcoma, non-

Hodgkin’s lymphomas and cervical cancer. However, the incidence of these 

cancers and the general tumour burden in HIV-infected patients has decreased 

significantly since the widespread use of highly active antiretroviral therapy 

(HAART). This effect cannot be solely explained by the ability of these drugs 

to suppress HIV replication and thereby reconstitute the immune system; in 

fact tumour development is not always correlated with a patient’s viral load or 

level of immune reconstitution. Recent studies have shown that inhibitors of 

the HIV aspartyl protease, which are widely used in HAART, have direct anti-

angiogenic and antitumour effects that are unrelated to their antiviral activity 

(Monini et al. 2004).

These direct antitumour effects of HAART could be related to specific 

actions of the protease inhibitors included in this therapeutic cocktail, such as 

ritonavir, saquinavir, indinavir and nelfinavir. Figure 1.5 summarizes the 

various steps in tumour progression and metastasis affected by HIV-protease 

inhibitors. These steps usually lead to progression of in situ carcinoma (a) to 

invasive cancer (b) and to metastasis formation and dissemination (c–f). 

Tumour outgrowth (a,b) is dependent on tumour neoangiogenesis and its net 

rate is determined by the balance between tumour cell proliferation versus 

apoptosis, invasive behaviour and the ability of tumour cells to evade the 

immune response. At concentrations similar or above therapeutic peak levels, 

HIV-PIs promote apoptosis and inhibit proliferation of tumour cells with little 

or no effects on survival and proliferation of normal cells (Gaedicke et al. 

2002), whereas at therapeutic steady-state concentrations they inhibit tumour 
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angiogenesis and tumour-cell invasion. Furthermore, HIV-PIs have anti-

inflammatory effects (b). As metastatic cell clones emerge, tumour cells loosen 

their contact with surrounding cells and the extracellular matrix (ECM). This 

leads to invasion of blood or lymphatic vessels and to extravasation of tumour 

cells at distant sites (c–e). These steps require the degradation of basement 

membranes and, at the same time, inhibition of apoptosis following loss of cell 

anchorage (anoikis), processes that are also inhibited by HIV-PIs. Finally, 

colonization of ectopic tissue by tumour cells (f) is required for establishment 

of metastases, and this process is similarly affected by HIV-PIs (Sgadari et al. 

2002). During tissue invasion and establishment of metastases (b,f), activated 

endothelial cells, stromal cells and immune cells cooperate in basement 

membrane and ECM degradation, modify the ECM composition, release ECM-

bound growth and angiogenic factors, and produce cytokines and chemokines 

that stimulate tumour-cell growth and migration, and recruit all these cell types 

at the invasive front. These processes are all affected by HIV-PIs through their 

ability to inhibit cytokine and chemokine production, cell activation, and basal 

membrane and ECM degradation and remodelling. The ability of these drugs to 

prevent tumour growth and progression might be mediated by their ability to 

inhibit proteasome function, resulting in the inhibition of NF-kB activity, and 

the activity of matrix metalloproteinases (Pajonk et al. 2002).
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Figure 1.5 Steps in tumour progression and metastasis affected by HIV-

protease inhibitors. (Monini P et al. 2004)

HIV-PIs exert also indirect effects on tumour affecting tumour-associated 

inflammation and tumour immunity in HIV-free model. 

For example, ritonavir and saquinavir inhibit the production and/or 

release of inflammatory cytokines and chemokines including TNF-alpha, IL-6, 

and IL-8, by both peripheral-blood mononuclear cells and endothelial cells 

(Pati et al. 2002) This effect of HIV-PIs on inflammatory cytokines has been 

confirmed in treated patients, as PI-HAART has also been shown to inhibit 

TNF-alpha, IL-2 and IFN- production by peripheral-blood mononuclear cells 

from uninfected individuals who were treated with HIV-PIs for prophylactic 

intervention without acquiring HIV infection (Tovo 2000). Similarly, ritonavir 

inhibits the expression by endothelial cells of adhesion molecules, including 

VCAM1, ICAM1, and selectin E, which are known to mediate leukocyte 

recruitment at sites of inflammation (Pati et al. 2002). Pro-inflammatory 
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cytokines, chemokines and adhesion molecules are crucial in the development 

of Kaposi’s sarcoma, as they mediate local inflammatory and immune 

responses to Kaposi’s-sarcoma cells and to other KSHV-infected cells. 

Furthermore, they regulate survival, growth, invasion and eradication of most 

tumours. In fact, they lead to local stroma activation, basement-membrane 

and/or extracellular-matrix perturbation angiogenesis, and regulate local 

tumour immunity. In this context, HIV-PIs directly modulate antigen 

processing, T-cell survival (by the inhibition of T-cell apoptosis) and 

proliferative responses (Lu and Andrieu 2000, Sloand et al. 1999), and they 

might even affect T-cell priming, as they can inhibit dendritic-cell maturation 

and function (Gruber et al. 2001). 

The most prominent mechanism underlying these last antitumour effects 

of HIV-Pis is likely to be MMP inhibition, that is not only responsible for the 

blockage of cell invasion and angiogenesis but it is also involved in several 

crucial immune and immunomodulatory functions, and  in cancer-mediated 

immune suppression. (Sgadari et al. 2002, Lopez et al. 2000). Moreover, 

MMPs, including MMP2, act as potent modulators of local inflammation by 

activating or degrading inflammatory cytokines and chemokines present on the 

cell membrane, such as TNF-alpha, monocyte chemoattractant protein 3 nd IL-

8 (Gearing et al. 1994, Ito et al. 2000, Schonbeck et al. 1998). Importantly, 

MMPs activate transforming growth factor-beta which, in turn, inhibits T cell 

responses against tumours (Gorelik and Flavell 2001, Yu and Stamenkovic 

2000). MMPs can also cleave IL-2 receptor (Sheu et al. 2001), which is 

required for T-cell proliferation following antigen stimulation. These effects of 

MMPs are important determinants of tumour immune evasion, but might also 

explain the strong stimulatory effect of low HIV-PIs concentrations on T-cell 

proliferation and survival. Furthermore, as MMPs are required for leukocyte 

transmigration and tissue infiltration by inflammatory cells, the capability of 

ritonavir to inhibit CTL-dependent inflammatory responses could be mediated 

not only following the modulation of CTL-epitope processing by the 
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proteasome, but also through the inhibition of MMP activation or function in 

transmigrating lymphocytes (Kelleher et al. 2001). 
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2. AIM OF THE STUDY. 

         On last decade, an increasing number of reports have shown that PIs, 

originally designed to block the HIV-1 protease, can also exert remarkable 

immunomodulatory effects on multiple cell types by mechanisms not related to 

their anti-viral activity. Since these drugs have been widely used in HIV-1 

therapy, prove their capability to intercept the inflammatory response, and 

identify their cell targets, might generate valuable information for their 

“offlabel” use in disorders where a modulation of inflammatory response is 

required.

        A plethora of evidences identify the inflammatory response has a key 

component of mechanisms responsible for cell transformation, tumour growth 

and metastatic process, in human cancer. Hematopoietic cells, mostly from 

myeloid lineage, play a pivotal role in these processes by driving the immune 

response toward a beneficial anti-tumour pathway, or providing support to 

cancer cells. In this context, urges to propose novel immunomodulatory 

strategies aimed to modify cancer milieu, and drive the anti-tumors response 

toward most favorable routes. 

      Monocytes are the circulating progenitors of different cell types that can 

infiltrate cancer lesions, and has a powerful ability to shape the inflammatory 

response. For this reason, monocytes and their activation programs are 

attractive targets for immune therapies aimed to subvert the immune response 

in cancer-bearing individuals. The present study has been aimed to verify the 

capability of PIs to interfere with differentiation and activation programs of 

human peripheral monocytes. 

     Specifically, I verified the ability of a panel of PIs, widely used in HIV-1+ 

patients, to interfere with differentiation of monocytes toward: 

(a) Dendritic cell lineage 

(b) Tumor associated macrophage-like lineage. 
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3. MATERIALS AND METHODS 

3.1 Media and Reagents. 

The regular medium used throughout the study was RPMI 1640

(Invitrogen) supplemented with 2 mM L-glutamine, 50 ng/ml streptomycin, 50 

units/ml penicillin, and 10% heat-inactivated fetal calf serum (Hyclone 

Laboratories, Logan, UT). Granulocytes monocytes-colony stimulating factor

(GM-CSF) was purchased from Schering-Plough (Kenilworth, NJ) and used at

a concentration of 50 ng/ml. Interleukin-4 (IL-4) was obtained from 

ImmunoTools and used at 1000U/ml. 

Saquinavir, Ritonavir, Nelfinavir, Indinavir, Amprenavir were dissolved 

in dimethyl sulfoxide (Me2SO) and used at 20uM. As controls, cells were either 

left untreated or were treated with a comparable concentration of Me2SO but 

without HIV-1 protease inhibitor. Saquinavir, Ritonavir, Nelfinavir, Indinavir 

sulfate, Amprenavir were obtained through the NIH AIDS Research and 

Reference Reagent Program, Division af AIDS, NIAID, NIH. 

3.2 Isolation and culture of NK cells, DCs and Tumour-Associated-

Macrophage (TAM). 

         Peripheral blood mononuclear cells (PBMCs) from healthy donors were 

isolated by density gradient on Ficoll Lymphoprep (Axis-Shield PoC AS, Oslo, 

Norway). Blood samples were obtained in accordance with the ethical 

committee requirements. NK cells were negatively selected by depleting by 

using an antibodies cocktail against lineages specific markers and magnetic 

beads (StemCell Technologies Inc.). According to cytometry, typical purified 

NK cells were 97% pure. Purified NK cells contained 3% contamination with 

other PBMC subsets as determined by the expression of CD3, TCR- / , TCR-

/ , CD19, or CD14. Polyclonal NK cells and NK cell subsets were activated 

in vitro with recombinant IL-2 (rIL-2; Roche) at 200 UI/m for 6 days. 
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To generate iDCs, monocytes were purified by positive selection with anti-

CD14 conjugated magnetic microbeads (Miltenyi Biotec, Bologna, Italy). 

CD14+ cells were than cultured at a concentration of 0.5–1 x 106 cells/ml in 

regular medium supplemented with GM-CSF (50 ng/ml) and IL-4 (1000U/ml) 

for 4–5 days to obtain cells with typical phenotype of iDCs. After 6 d of 

stimulation in culture, CD14dim-neg and CD1apos iDCs were induced to 

undergo maturation by incubation with LPS at 1 g/ml (Sigma-Aldrich) for 24 

h.

In order to generate Macrophage and TAM, myeloid cells were 

maintained in complete medium (CM) consisting of culture medium 

supplemented with 20 ng/ml GM-CSF. Macrophages (M ) were differentiated 

from CD14+ monocytes cultured for 5 d in CM at 106 cells/ml. TA-M  were 

differentiated from CD14+  monocytes cultured for 5 d in CM at 106 cells/ml 

with tumour ascites (diluted 1:10).

All cell culture was conducted at 37°C in humidified 5 % CO2

atmosphere. 

3.3 Flow Cytometry. 

Cell phenotypes of DCs were analyzed by flow cytometry by using the 

following monoclonal antibodies conjugated: anti-HLA-I and anti-CD14 from 

Sigma; anti-CD1a, anti-CD86, anti-CD80, anti-CD83, anti-CD40, anti-HLA-

DR, anti-HLA-ABC, anti-CD11c, anti-CD36, anti-CD54 from BD 

Biosciences, anti DC-SIGN from NIH research and reference reagent program.  

To analyze T-cell programming, DCs generated in presence or absence of 

HIV-PIs (1×104 cells/well) were cocultered with allogeneic naïve CD45RA+ 

CD4+ Tcells (1×105 cells/well) in the presence of LPS for 10 days. Thereafter, 

T cells were stimulated with 10 ng/ml phorbol myristate acetate (PMA, Sigma-

Aldrich) and 1 µg/ml ionomycin (Sigma-Aldrich) for 4 h and evaluated for 

IFN-  and IL-4. For intracellular cytokine detection, Brefeldin A (5 µg/ml;

Sigma) was added to the culture medium. Cells were then fixed and
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permeabilized by using a cytokine staining kit following the manufacturer's 

instructions (Caltag Laboratories, Burlingame, CA). Antibodies against, IFN-

and IL-4 were purchased from BD Biosciences. FACSCalibur cytometer and 

Cellquest software were used for these analyses (BD Biosciences). 

Human NK cells analysis was performed with: anti–TCR- /  (IgG1), 

anti–TCR- /  (IgG1), anti-CD19 (IgG1), FITC-anti-CD14, PE-anti-CD107a 

purchased from Becton Dickinson, USA, FITC anti -CD3/PE-Cy5 –anti-CD56 

purchased from Beckman-Coulter-Immunotech, Marseille, France. 

Data were collected using a FACSCAlibur flow cytometer (Becton 

Dickinson, USA) and analyzed using FlowJo v6.3.3 (Treestar, Palo Alto, CA, 

USA).

Cell phenotypes of Macrophages (M ) and TA-M  were analyzed using 

FITC-labeled anti- ILT3 (R&D Systems), PE-labeled anti-CD86 (BD 

Pharmingen, San Diego, CA) and Per-CP-labeled anti-CD14 mAbs (Becton 

Dickinson, USA). Isotype control mAbs were from BD Pharmingen and 

Beckman Coulter. Results are expressed as mean fluorescence intensities 

(MFI) after subtraction of the value obtained with the control mAb. 

FACSCalibur cytometer and Cellquest software were used for these 

analyses (BD Biosciences). 

3.4 Proliferation Assay. 

 Freshly purified NK cells were cryopreserved until required as

responders. Experiments were performed in triplicate in 96-well round plates 

with complete medium. NK cells were cocultured at a constant concentration of 

2 x 105 NK cells/well with autologous mDCs (stimulators) in serial dilutions 

(10–1.50 x 103 cells/well). [3H]Thymidine (0.037 Mbq per well; PerkinElmer 

Life Sciences) was added 18 h before harvest cell cultures, and incorporation 

of [3H]thymidine into the cells was quantified using a b-counter. 
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3.5 Analysis of NK-cell cytotoxicity by chromium release.  

After 6 d of activation with rIL-2, NK cells were tested for cytolytic 

activity in a 4-h 51Cr release assay. A total of 1×106 target cells (K562 or 

autologous DC) were labeled with 1mCi of Na51CrO4 for 1 h at 37°C. 

Cells were then washed twice with complete medium and incubated with 

effector cells at an E:T ratio of 20:1. After incubation for 4 h at 37°C, a sample 

of supernatant was counted on a Microbeta Trilux Scintillation counter 

(PerkinElmer). Percentage of cytotoxicity was calculated using the formula 

(experimental-spons)/(maximum-spons) ×100%, where spons = release from 

targets incubated with medium alone and maximum = release from targets 

induced by 10% SDS (Sigma-Aldrich). 

Saturating concentrations (10 g/ml) of specific mAbs blocking NK cell 

receptors were added for the masking experiments performed with autologous 

DCs.

3.6 NK-DC cocolture. 

 NK-DCs were cocoltured at 1:1 ratio (2X 105 /well) in presence of LPS 

(10 g/ml) in 48-well cell culture plates. After 16-h incubation, cell culture 

supernatants were collected and stored at -20° until analyzed for cytokine 

production and NK cells were collected and analyzed for CD107a 

degranulation assay. 

3.7 CD107a degranulation assay.           

r-IL2–activated purified  NK cells were cocultered alone (no target 

control) or with K562 target cells at a 1:1 E:T ratio (2×105 effector cells: 2×105

target cells in a volume of 200 l) in the presence of 20 l of PE-CD107a mAb 

for 3 h at 37°C in total. After the first 1 h 5 l of the secretion inhibitor 2mM 

monensin (Sigma Aldrich, Munich, Germany) in 100% ethanol was added. At 

the end of coincubation, cells were washed in PBS and stained with mAbs 

(CD56, CD3) for flow cytometric analysis. NK cells were gated by 
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CD56+/CD3- staining, and CD107a expression was determined based on 

background level of staining exhibited by no target control cells. 

3.8 Cytokine secretion and mediators quantification.  

The levels of IL-12p70 (IL-12) , TNF-  and  IL-15 secreted by mDCs 

and that of MMP9, VEGF and GM-CSF secreted by 48h LPS- activated TA-

M  were quantified by ELISA in the cell-free supernatants. (R&D Systems 

and Biosource International). 

 To detect the production of IFN- , freshly purified NK cells were 

cryopreserved until required and cocultured with autologous LPS matured DCs 

in 96-well round-bottom plates with complete medium. The mDC/NK cell ratio 

was 1:10. The supernatant of the cultures was collected after 24 h and assayed 

by ELISA (BD Biosciences). 

To simultaneosly profile the relative levels of multiple cytokines and 

angiogenesis-related proteins in a single sample of TA-M  culture supernates 

were used the R&D Systems Human Cytokine Array Panel A  and the R&D 

Systems Human Angiogenesis Array .Briefly 500 L of conditioned media 

was used for each array shown. Cell density was 1 x 106 cells/mL. 

Array signals from scanned X-ray film images were analyzed using 

image analysis software. Array images are from one minute exposures to X-ray 

film. 
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4. RESULTS AND DISCUSSION 

4.1 HIV-1 protease inhibitor treatment affects the immune phenotype 

and LPS-induced terminal differentiation of DC.

         To investigate the ability of HIV-1 PIs to interfere with the differentiation 

program of human DCs, I generated monocyte-derived DCs in the presence or 

absence of 20uM of Saquinavir (SQV), Ritonavir (RTV), Indinavir (IDV), 

Amprenavir (APV) or Nelfinavir (NFV). After 7 days, cell surface expression 

of typical differentiation markers (CD14, CD1a, CD11c, CD83), adhesion 

molecules (CD54, CD11a, CD11c), co-stimulatory molecules (CD80, CD86) 

and scavenger receptors (CD209, CD36) was tested by flow cytometry. 

       DC generated in regular medium with or without PIs (DC-PI and DC, 

respectively) showed comparable levels of CD54, CD11a, CD11c, MHC-I and 

-II, and CD80 (fig. 4.1A). Monocyte differentiation program toward DC 

lineage includes downregulation of CD14 and de novo synthesis of CD1a, 

events that were unaffected by the presence in the culture medium of the 

majority of tested PIs. Although the loss of CD14 was unaffected in DC 

generated in the presence of sqv and rtv, these cells showed an atypical 

phenotype including a barely detectable expression of CD1a, and a low 

expression of CD86 (fig. 4.1A). Of note, DC generated in the presence of each 

individual PIs showed a marked decrease in the level of CD209 (DC-SIGN), a 

molecule involved in the binding and spreading of the HIV-1 virions to T 

lymphocytes. 

         To investigate the capability of DC-PI to secrete cytokines and terminally 

differentiate, we exposed DC generated in the presence or absence of PIs to 

LPS, and after 24 hours we evaluated phenotype by flow cytometry and 

cytokines accumulated in supernatants. iDC generated in the presence of ind, 

ampr or nlf showed a comparable ability to terminally differentiate compared 

to DC generated in regular medium (fig. 4.1 B). On the contrary, iDC-sqv and 

iDC-rtv show a marked defect to up-regulate CD86 and de novo express CD83, 



45

changes typically associated with terminal differentiation process, in response 

to LPS. 

Figure 4.1 Influence of HIV-PIs on immunophenotype and maturation of DCs. 

(A) iDCs generated in presence or absence of HIV-1 PIs were analyzed by flow cytometry. 
The histograms represent the percentage of cells positive for the indicated molecule. (B) iDCs
generated in presence or absence of HIV-1 PIs were washed and then left in regular medium or 
exposed to LPS (1mg/ml) for 24 hours. Subsequently the expression levels of CD86 and CD83 
at the surface of DCs were determined by flow cytometry. The histograms represent the 
percentage of cells positive for the indicated molecule.Asterisks indicate a statistically 
significant difference (p< 0.05). 
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4.2 HIV-1 protease inhibitor treatment affects the cytokine production 

of LPS-induced terminal differentiated DC. 

 To further investigate the effect of the HIV-PIs on terminal 

differentiation of DC, I examined by ELISA the amount of pro-inflammatory 

cytokines (TNF-alpha, IL-12, IL-15) produced in response to LPS. I focused 

my study on RTV rather than on SQV, considering that the latter is less used in 

clinical practice, because of the plethora of adverse effects and the low 

biodisponibility. In addition, I compared RTV effects to APV, the less 

effective drug in my experimental system. While LPS-dependent TNF-alpha 

and IL-12p40 induction were both unchanged, RTV treatment completely 

blocked the secretion of bioactive IL-12p70 and IL-15 (Figure 4.2). These 

findings further substantiate the results of previous studies demonstrating that, 

for example, ritonavir and saquinavir inhibit the production and/or release of 

inflammatory cytokines and chemokines including TNF-alpha, IL-6, and IL-8, 

by both peripheral-blood mononuclear cells and endothelial cells (Pati et al. 

2002). This effect of HIV-PIs on inflammatory cytokines has been confirmed 

in treated patients, as PI-HAART has also been shown to inhibit TNF-alpha, 

IL-2 and IFN- production by peripheral-blood mononuclear cells from 

uninfected individuals who were treated with HIV-PIs for prophylactic 

intervention without acquiring HIV infection (Tovo 2000). Because of the 

great importance of DC in the control of the inflammatory response, it was 

conceivable that HIV-PIs might exert their anti-inflammatory activity by 

impairing the immunostimulatory properties of this cell type, with a potential 

perturbation of the inflammatory circuits supporting tumor growth and 

progression.
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Figure 4.2 Impact of HIV-PIs on cytokine expression of DCs. iDCs generated in presence or 
absence of HIV-1 PIs were washed and then left in regular medium or exposed to LPS 
(1mg/ml) for 24 hours.Supernatants were collected and the levels of secreted cytokines were 
evaluated by ELISA. The results are presented as mean± s.e. of duplicate 
determinations.Asterisks indicate a statistically significant difference (p<0.05) between the 
indicated cytokines production of Ritonavir-treated DCs in comparison to untreated DCs.  

4.3 Ritonavir impairs the polarization of CD4+ T cells toward a Th1 

phenotype.

         LPS-activated DCs efficiently direct the differentiation of na ve CD4+ T 

lymphocytes into IFN- -producing Th1 cells. To determine whether RTV 

inhibits this functional property, DCs that had been previously generated in 

presence or absence of the indicated drugs were cocultured with allogeneic 

naïve CD45RA+ CD4+ T cells in the presence of LPS. Thereafter, T cells were 

stimulated with PMA and ionomycin, and evaluated for IFN-  and IL-4 

production. As depicted in figure 4.3, Ritonavir profoundly impaired the 

capacity of LPS-activated DCs to induce differentiation into IFN- -producing

*
**

TNF-alpha IL-12p40

IL-12p70 IL-15 
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CD4+ T helper cells. This effect can be explained by the RTV-induced 

impairment of IL-12 secretion, since it has been shown that the differentiation 

of naïve CD4+ T cells into Th1 cells by LPS-stimulated DCs is critically 

dependent on this cytokine (Hsieh CS et al. 1993). These results reveal that the 

treatment with Ritonavir can substantially affect the potential of human DCs to 

induce programming of CD4+ T helper cells into Th1 cells which if on one 

hand may contribute to antitumor immunity, on the other by substainig the 

inflammatory network, can also have pro-tumour activity. Evidence indicates 

that NF- B is important in determining this balance between the protumour 

and antitumour properties of different inflammatory cell type  (Saccani A et al. 

2006), thus NF- B could be targeted to ‘re-educate’ tumour-promoting 

immune cell towards an antitumour function. 

The obtained results are in line with other studies indicating that 

Ritonavir can significantly inhibit CTL-dependent inflammatory response 

(Kelleher AD at al. 2001).  

Overall the effects of this class of drugs on eukaryotic cells can be 

explained supposing their inhibitory effect on endogen proteases that share 

amino acid sequence homology and structure with that of the proteases of HIV. 

Several authors highlighted the role of proteases in the regulation of the 

differentiation and functional activity of DCs. 

Recent studies reported indeed that ritonavir, by inhibiting the 

chymotrypsin-like activity of the proteasome impairs in a murine model the 

major histocompatibility complex class I restricted presentation of several viral 

antigens (Schmidtke G et al. 1999). Furthermore, it has been suggested that the 

proteasome inhibitor Bortezomib inhibited cytokine-induced maturation of 

human monocyte derived immature dendritic cells (DCs) (Subklewe et al. 

2007). Even if the immunosuppresion by proteasome inhibition has been 

demonstrated in a murine model, this last work suggests that the effect might 

be mediated by the inhibition of DCs maturation (Subklewe et al. 2007). 
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Ritonavir also inhibits calpain activity in PC12 cell extracts. Recently this 

enzyme has been involved in the mechanisms that regulate the survival and the 

migration of neural and dendritic cells (Tremper –Wells B et al. 2002, 

Grynspan F et al.1997, Tremper-Wells B et al. 2005), suggesting that some of 

the effects of Ritonavir might result from the regulation of the calpains 

protease activity.

Finally, the effects of HIV-PIs are also determined by their action on the 

MMP that are involved in the differentiation process of human peripheral 

blood monocytes (Major TC et al. 2002), as well as in the DCs migration and 

in their functional response to the bacterial endotoxin (Ratzinger G et al. 2002, 

Lai WC et al. 2003). 

Figure 4.3 Effects of Ritonavir  on the acquisition of  T cells stimulatory activity of LPS 

primed DCs iDCs generated in presence or absence of Ritonavir were washed and then 
coincubated with allogeneic naïve CDRA+ CD4+ T helper cells in the presence of LPS for 10 
days. The percentage of IFN- - orIL-4-producing CD4+ T helper cells was determined by flow 
cytometry. The results of one representative healthy donorout of four performed with similar 
results are depicted. 

RTV

IFN-

IL-

4

LPS

3.2%

24.6%

3.3%

32.8%

1.2%

15.3%

3.2%

21.4%



50

4.4 Inhibitory effects of Ritonavir on the capacity of mDC to activate 

autologous NK cells. 

Given the central role of 12p70 and IL-15  cytokines in the DC-

dependent NK-cells activation (Moretta A 2005, Ferlazzo G et al. 2002), I 

asked if RTV-treated DC preserved their ability to interplay with NK cells. I 

first examined the ability of LPS-treated mature DC (mDC) to activate these 

innate effector cells by inducing proliferation of autologous NK cells and IFN-

gamma secretion. Therefore, iDCs generated in presence or absence of 

Ritonavir or Amprenavir were washed and then left in regular medium or 

exposed to LPS (10 g/ml). After 6 hours, mDCs (stimulator) were cocultered 

with autologous fresh NK cells (responders) at different ratios. Cells were 

harvested after 4 d of coincubation, and the proliferation of NK cells was 

measured by 3[H]thymidine incorporation. Long exposure to RTV decreased 

of about 50% the ability of mDC to sustain NK- cells proliferation (figure 4.4 

A). In addition iDCs generated in presence or absence of HIV-PIs were washed 

and then left in regular medium or exposed to LPS (10 g/ml). After 18 h, 

freshly purified autologous NK cells were coincubated with  iDC or mDC  for 

24h. Supernatants were collected and INF-  concentration was determined by 

ELISA. As demonstrated in figure 4.4 B Ritonavir but not Amprenavir 

significantly reduced the ability of LPS-activated DCs to improve IFN-

production by NK cells. For the first time I here showed the effects of HIV-

protease inhibitors on a novel system: the crosstalk DC-NK. In particular, data 

obtained highlighted that Ritonavir treated DCs lose their capacity to 

efficiently stimulate NK cells, confirming and extending to a novel target the 

anti-inflammatory effects of HIV-PIs. 
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Figure 4.4 Influence of Ritonavir on the capacity of DCs to prime autologous NK cells. 

(A) iDCs generated in presence or absence of Ritonavir or Amprenavir were washed and then 
left in regular medium or exposed to LPS (10 g/ml). After 6 hours, mDCs (stimulator) were 
cocultered with autologous fresh NK cells (responders) at different ratios. Cells were harvested 
after 4 d of coincubation, and the proliferation of NK cells was measured by 3[H]thymidine 
incorporation.(B) iDCs generated in presence or absence of HIV-Pi were washed and then left 
in regular medium or exposed to LPS (10 g/ml). After 18 h, freshly purified autologous NK 
cells were coincubated with iDC or mDC  for 24h. Supernatants were collected and INF-
concentration was determined by ELISA. All data are presented as the mean ± SD of 
experiments conducted on 8 healthy donors. Asterisks indicate a statistically significant 
difference ( p< 0.05). 
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4.5 Impact of Ritonavir on the ability of mDC to improve tumor-

directed cytotoxicity of NK cells. 

In line with precedents reports (Ferlazzo G et al. 2002), I reasoned that 

the lack of mDC cognate activation of NK-cells would affect their cytotoxic 

effect on a non-cognate susceptible cellular target. To test this hypothesis, I co-

incubated mDC and NK-cells for 24 hours, and subsequently I analyzed the 

ability of DC-primed NK-cells to kill K562 target. CD107 cytometric analysis 

shows that K562 lysis is severely decreased by priming with RTV-treated 

mDC (Figure 4.5). These data suggest that the DCs-mediated enhancement of 

tumoricidal potential of NK cells was also markedly by Ritonavir. 

Figure 4.5 Ritonavir reduces the DCs-mediated enhancement of tumoricidal potential of 

NK cells. iDCs generated in presence or absence of Ritonavir or Amprenavir were washed and 
cultured with purified CD56+CD3- NK cells in the presence of LPS (10 g/ml). After 18 h, NK 
cells were separeted from adherent DCs and cocultured in round-bottom 96-well plates with K-
562 target cells at an E/T ratio of 1:1 in presence of anti-CD107a mAb. After 4 h of culture, 
cells were stained with the two other indicated mAbs and analyzed by multiparametric flow 
cytometry. The histograms represent the percentage of CD56+CD3- -gated NK cells staining 
positive for CD107 in the presence of targets following coincubation with treated or untreated 
mDC compared with control cultures incubated in the absence of mDC. All data are presented 
as the mean ± SD of experiments conducted on 8 healthy donors. Asterisks indicate a 
statistically significant difference ( p< 0.05).
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4.6 Impaired NK cell-mediated killing of Ritonavir treated mDC. 

I next asked if NK-cells dependent killing of autologous iDCs were 

active in my system. This function depends on the engagement of NKp30 by 

still-undefined cellular ligands expressed by DCs. Indeed Cr 51+ release assay 

showes that non treated autologous iDC are efficiently killed by NK cells in an 

NKp30-dependent manner, as demonstrated by the ability of the specific mAb 

masking NKp30 (F252) but not of the specific mAb masking NKG2D 

(BAT221) to inhibit the NK killing activity (Figure 4.6 A). As expected 

untreated mDCs that, upregulate MHC-class I expression become essentially 

resistant to NK cells (Figure 4.6 B). 

On the contrary, the treatment with Ritonavir increases the susceptibility 

to NK-cells mediated lysis of mDCs whereas iDC lysis was high irrespective to 

the treatment (Figure 4.6 A and B). This apparent paradox might be explained 

by the fact that RTV-treated DC failed to fully mature in response to LPS and 

even upon its stimulation RTV-treated DCs fail to express sufficient amounts 

of HLA-class I molecules that would protect from NK-mediated lysis (Ferlazzo 

G 2003).

All this set of results suggest that RTV can act on DC to disrupt their 

crosstalk with NK cells, leading to a deficient proliferation and activation. In 

addition, the major sensitivity to NK cells dependent lysis may lead to DC 

deficiency, thus amplifying the inhibitory effect on the adaptive immune 

response. These observations should be considered not only with respect to 

immunomodulatory aspects of HIV-1 treatment, but also to design new 

therapies for other inflammatory conditions that often degenerate in cancer. 
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Figure 4.6 Impaired NK cell-mediated killing of Ritonavir treated mDC(A) Autologous 
iDC cytolysis exerted by rIL-2–activated NK cells purified from a healthy donor . (B) 
Autologous mDC cytolysis exerted by rIL-2–activated NK cells purified from a healthy donor 
NK cells were incubated either in the absence (baseline lysis) or presence of a specific mAb 
masking NKp30 (F252) or NKG2D (BAT221). The NK cell/DC ratio in all experiments was 
10:1. All data are presented as the mean ± SD of experiments conducted on 8 healthy donors. 
Asterisks indicate a statistically significant difference ( p< 0.05).
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4.7 Ritonavir reduces the surface level of the inhibitory molecule ILT3 

and upregulates that of the costimulatory molecule CD86 in 

established TAM. 

Besides investigating the ability of DCs to sustain the pro-inflammatory 

circuits predisposing to cancer, I also evaluated whether RTV and APV may 

reverse  the immunosuppressive properties of Tumor-associated macrophages 

(TAM), that are the major players of the cancer-related inflammation. To this 

purpose, I first tested RTV and APV for their ability to restore 

immunostimulatory molecule expression on established TAM. TAM were 

stimulated for 48 hr with LPS, and then CD86 expression was analyzed.  

As a result, RTV- as well as APV-treated TAM recovered the ability to 

express higher levels of CD86 in response to LPS (Figure 4.7 A). Opposingly, 

analysis of surface molecules by flow cytometry also revealed that RTV-

treated TAM expressed lower levels of the cell surface inhibitory molecule 

ILT3 than untreated TAM (Figure 4.7 B). Also the treatment with APV 

decreased ILT3 expression by TAM, but to a lower extent than RTV. 

Up to now little is known about the regulation of ILT3 gene and protein 

expression. It is selectively expressed by myeloid antigen presenting cells such 

as monocytes, macrophages and dendritic cells, in which it displays a dual 

function of inhibitory receptor and antigen-capturing molecule. (Cella M et al. 

1997). Recent data underline the critical role of ILT3 in the control of 

inflammation because the silencing of ILT3 expression in DC increase TLR 

responsiveness to their specific ligand as reflected in increased synthesis and 

secretion of proinflammatory cytokines (Chang CC et al. 2009). I can’t 

hypothesize the mechanisms by which RTV might reduce ILT3 surface 

expression, however the reduction of its level by RTV really correlates with an 

antinflammatory condition (see later results). ILT3 signaling results in the 

inhibition of NF-kappaB pathway and of the transcription of costimulatory 

molecules (Suciu-Foca N and Cortesini R, 2007). On the other hand activation 

stimuli such as inflammatory conditions downregulate inhibitory ILT3 receptor 
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expression ( Ju XS et al. 2004) These last specular aspects might explain the 

apparent discrepancy between the opposite effects exerted by RTV on CD86 

molecule expression in DC and in TAM. In fact if on dendritic cells RTV and 

in general HIV-PIs reduce the surface levels of the costimulatory molecule 

CD86, in TAM RTV, by reducing the negative effect of ILT3 on its 

transcription, upregulates rather than downregulates, the level of CD86 

costimulatory molecule. Overall these results show for the first time that APV 

but especially RTV switch monocyte differentiation  into CD86high ILT3low 

M1 macrophages. I therefore tested whether these RTV-induced phenotypical 

modification were associated to the modulation of the functions of the TAM.
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Figure 4.7 HIV PIs affect the immunophenotype of tumor-associated macrophages 

 Human blood monocytes cultured 5 days in the absence (macrophage) or presence of ascites 
(TAM), were stimulated or not with HIV-PIs before stimulation with 200 ng/ml LPS. After 48 
hr, CD86 (A) and ILT3 (B) expression was analyzed by FACS. Results are expressed in MFI 
as mean of 6 separate experiments. * means p < 0.05.
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4.8 RTV alters the secretion profile of different human cytokine and 

protumoral mediators by TAM. 

TAM are characterized by the production of cytokine and mediators that 

promote tumor immune escape and progression. I thus tested the influence of 

RTV and APV on their expression by using two Proteome Profiler Array to 

detect multiple analytes in cell culture supernatants from untreated and treated 

TAM.

Array images are shown on the left and profiles created by quantifying 

the background-subtracted mean spot pixel densities are represented on the 

right. Array images are from one minute exposures to X-ray film. 

The analysis of the Human Cytokine Array (Figure 4.8 A) shows that 

macrophages generated in the presence of RTV and APV secreted higher levels 

of GM-CSF, INF-  and IL16 than TAM, while only RTV-treated TAM 

produced lower levels of the pro-inflammatory cytokine TNF-  and of the 

chemoattractant protein RANTES (CCL-5). In parallel, the analysis of the 

Human Angiogenesis Array shows that only macrophages generated in 

presence of RTV secreted reduced levels of MMP9, VEGF, Serpin E1 and of 

the chemoattractant MIP-1 alpha (CCL-3) (Figure 4.8 B) while the same 

analysis revealed that RTV-treated TAM secreted higher level of the GM-CSF, 

CXCL8 and Angiostatin proteins than TAM and APV-treated TAM. 

In many tumours (for example, non-small-cell lung cancer and pancreatic 

carcinoma) it is the concert of different factors and the balance between 

protumor and antitumor cytokines and chemokines, that regulates tumour 

progression.

The data presented reflect the effective differential expression of many 

factors that contribute to carcinogenesis and the impact of the HIV-protease 

inhibitor Ritonavir on their modulation. TAM are key orchestrators of cancer- 

related inflammation, and as first, neoplastic cells together  with TAM

themselves actively lead monocyte recruitment, by producing chemoattrachtant 

mediators, from the blood into the tumor  tissues to their own advantage,
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Several “anti-macrophage” approaches are under evaluation currently. 

Interesting observations come from studies performed with chemokines and 

chemokine receptors as anti-cancer targets. For instance, in a breast cancer 

murine model, malignant cells recruit macrophages via the chemokine 

RANTES (CCL5), and treatment of murine breast cancers with Met-CCL5 

(receptor antagonist) leads to a decreased number of infiltrating macrophages 

associated with a significantly reduced tumor size (Robinson et al. 2003). From 

the literature it is clear that protease inhibitors therapy reduced the high 

production of inflammatory cytokines (TNF- alpha, MIP-1alpha, MIP-1beta, 

RANTES, and INF-gamma) (De Luca A et al. 2000, Tovo PA 2000) in patients 

with more advanced HIV infection vivo. All this support the observations done 

in my experimental model, where ritonavir exerts an antitumor function by 

reducing the protein levels of inflammatory molecules linked to the recruitment 

of macrophages such as RANTES (CCL-5), MIP-1 alpha (CCL-3) and VEGF 

as well as that of TNF-alpha which exert a key role in the inflammatory 

circuits supporting tumor growth and progression. However, I also found an 

increase rather than a decrease in the level of the other pro-inflammatory 

cytokine, INF-gamma. This is just in apparent contrast with the antitumour 

potential of Ritonavir. It is enough to think that blood monocytes 

differentiating in the presence of INF-gamma mature into M1-polarized cells 

(classically activated macrophages) that offers defence against bacteria,  tumor 

suppression and immuno-stimulation (Solinas G et al. 2009). 

 TAM contribute to tumor progression also by producing several factors 

which enhance neo-angiogenesis (VEGF), and the dissolution and remodeling 

of the interstitial matrix (metalloproteases, MMPs). I then investigated the 

effect of RTV and APV on the detected ELISA VEGF and MMP9. (see next 

results). On the other hand this process is counteracted by the production of

factors that limit the tumour spread like endostatin. My data reveale that RTV 

reduces the protein levels of VEGF and MMP9, increasing that of the 

endostatin that is the most potent inhibitor of tumor anngiogenesis. 
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Finally, data showed that RTV can also affect the protein level of PAI-

1/Serpin E1, whose expression is increased in primary tumor tissue of breast 

cancer patients, and correlate with tumor aggressiveness and poor clinical 

outcome (Annecke K et al. 2008). 

Figure 4.8. The human Cytokine and Angiogenesis arrays detects multiple analytes in TAM 
culture supernates generated in presence or absence of the indicated HIV-Pis. Array images are 
shown on the left and profiles created by quantifying the background-subtracted mean spot 
pixel densities are identified on the right. Array images are from one minute exposures to X-
ray film. 
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4.9 RTV-treated TAM lose their protumoral properties. 

To confirm the ability of RTV and APV to affect TAM-like cell 

functions, I next focused the attention on specific mediators seen modulated 

before and now assayed by ELISA in the cell-free supernatants. Thus, TAM 

generated in presence or absence of RTV and APV were stimulated for 48 hr 

with 200 ng/ml LPS and then MMP-9 (A), VEGF (B) and GM-CSF (C) were 

quantified in supernatants. Data showed that the macrophages generated in the 

presence of RTV secreted lower levels of MMP9 and VEGF than TAM and 

APV-treated TAM while RTV enhanced that of the immunostimulatory 

cytokine GM-CSF (Figure 4.9). 

The data below confirmed the previous observations and contribute to 

better define the anti-angiogenic and anti-tumour activity of the Human 

Immunodeficiency Type-1 Protease Inhibitors, Ritonavir.

GM-CSF might be relevant to cancer patients in two broad areas: first, it 

drives hematopoietic precursor cells to mature granulocytes, macrophages, or 

dendritic cells (Wognum et al. 1994) and for this it is used clinically to 

accelerate bone marrow recovery and to increase the production of white blood 

cells to facilitate host defense and second, because of its pletora of effects on 

cancer cells. If on one hand it is reported that GM-CSF is aberrantly expressed 

in a number of different solid tumors (for example osteosarcoma (Rochet N et 

al, 1999), gliomas (Mueller MM et al., 1999) and pulmonary adenocarcinoma 

(Wislez M et al., 2001), where it correlates with an enhanced and metastatic 

potential and where it increases the number of granulocytes and macrophages 

in the tumor vicinity (Obermueller E et al., 2004) as well as that of the 

immunosuppressive immature myeloid cells (Serafini P, 2004); on the other 

hand recent data suggest that GM-CSF reduces VEGF activity by inducing 

secretion of the soluble form of VEGFR-1 by human monocytes/macrophages 

and thus by reducing biologically active VEGF available for angiogenesis 

(Eubank TD et al., 2004). Because Ritonavir increased the levels of GM-CSF 

produced by TAM, this result can give more details on the unpredicted anti-
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tumor actions of this class of compounds, suggesting that Ritonavir in 

particular is effective in inhibiting tumour-associated angiogenesis and tumour 

cell invasion. This statement is corroborated also by the finding that in my 

experimental model RTV reduced the release by TAM of the angiogenic and 

monocyte chemoattrachtant factor VEGF and of the metalloprotease, MMP-9 

which is involved in the degradation and remodelling of the matrix but also in 

the modulation of local inflammation (Sgadari C et al. 2002, Lopez et al. 

2000); that could explain the ability of Ritonavir to reduce a set of 

inflammatory cytokine by TAM but also by dendritic cell. Data presented in 

the literature confirm that two other HIV-PIs, Indinavir and Saquinavir, 

effectively reduced the number of neo-formed vessels in a murine model of 

Kaposi Sarcoma (Sgadari C et al. 2002). HIV-Pis are also effective in 

inhibiting tumor-associated angiogenesis and tumor cell invasion in other 

xenograft human tumor models, including lung and breast adenocarcinoma and 

tumor of haematopoietic cell origin such as myelomonocytic or T-cell 

leukaemia and Burkitt Lymphoma (Monini P et al. 2003). In a separate set of 

experiments it is also reported that Saquinavir and Indinavir affect pathways 

involved in cell invasion and MMP activity, particularly MMP-2 proteolytic 

activation. (Sgadari C et al. 2002). The data shown extend the anti-

angiogenetic activity of the HIV-PIs also to the Ritonavir, and indicated for the 

first time the specific cell type, TAM, a critical supplier of mediators to the 

carcinogenesis pathway, that is the target of the action of the drug. 
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Figure 4.9 Ritonavir treated TAM loose their protumoral properties. TAM generated in 
presence or absence of the indicated HIV-PIs were stimulated 48 hr with 200 ng/ml LPS. 
MMP9 (a),VEGF (b) and GM-CSF (c) were quantified by ELISA in the cell-free supernatants. 
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5. CONCLUSIONS 

            A plethora of evidences identify the inflammatory response as a key 

component of mechanisms responsible for cell transformation, tumour growth 

and metastatic process, in human cancer. Thus, it urges to identify novel 

therapies aimed to revert the inflammatory status, and subvert 

immunosuppressive mechanisms operating in established cancer lesions. 

          In the present study, I have identified PIs used in the therapy of HIV-1 

infection, as a promising class drugs with unexpected immunomodulatory 

activity. I demonstrated that PIs, and in particular ritonavir, interfere with 

differentiation programs of monocyte by modulating their ability to generate 

DC, and most notably, TAM. 

         The findings I have generated in the first part of the present study 

document the differential ability of PIs to affect phenotype and functionality of 

immature DC. Ritonavir has been identified as the PIs with the most 

remarkable immunomodulatory activity: DC generated in the presence of this 

drug fail to differentiate, secrete lower amount of pro-inflammatory cytokines, 

and lack the ability to polarize T-cells toward a Th1 phenotype. Ritonavir also 

impair DC-NK crosstalk, by reducing the ability of DCs to promote secretion 

of IFN-g, and cytotoxicity of NK cells. 

        The results obtained in the second part of my study, highlight for the first 

time the ability of ritonavir to interfere with phenotype and functions of 

monocyte derived TAM, by promoting the expression of co-stimulatory 

molecules, and decreasing the level of immunosuppressive ones. In parallel, 

TAM generated in the presence of ritonavir secrete lower level of mediators 

promoting tumor growth. 

         Altogether, these findings identify the differentiation programs of human 

monocytes as relevant targets of PIs activity. In this context, the remarkable 

property of certain PIs to modulate phenotypes and functionalities of DC, and 
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most notably TAM, might open novel perspectives for immune-intervention 

aimed to manipulate the cancer inflammatory milieu. 

Finally the anti-angiogenic, anti-tumour and anti-inflammatory effects of 

PIs, their relatively low toxicity and the large body of data on their 

pharmacokinetics and tissue distribution, make them a suitable candidate for 

their rapid clinical ‘repositioning’ in the oncological field: in combination with 

the traditional antiblastic therapies, they might significantly contribute to the 

achievement of improved clinical goals without requiring imponent additional 

research efforts. 
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Microbial products, including lipopolysac-

charide (LPS), an agonist of Toll-like re-

ceptor 4 (TLR4), regulate the lifespan of

dendritic cells (DCs) by largely undefined

mechanisms. Here, we identify a role for

calcium-calmodulin–dependent kinase IV

(CaMKIV) in this survival program. The

pharmacologic inhibition of CaMKs as

well as ectopic expression of kinase-

inactive CaMKIV decrease the viability of

monocyte-derived DCs exposed to bacte-

rial LPS. The defect in TLR4 signaling

includes a failure to accumulate the phos-

phorylated form of the cAMP response

element-binding protein (pCREB), Bcl-2,

and Bcl-xL. CaMKIV null mice have a

decreased number of DCs in lymphoid

tissues and fail to accumulate mature

DCs in spleen on in vivo exposure to LPS.

Although isolated Camk4�/� DCs are able

to acquire the phenotype typical of ma-

ture cells and release normal amounts of

cytokines in response to LPS, they fail to

accumulate pCREB, Bcl-2, and Bcl-xL and

therefore do not survive. The transgenic

expression of Bcl-2 in CaMKIV null mice

results in full recovery of DC survival in

response to LPS. These results reveal a

novel link between TLR4 and a calcium-

dependent signaling cascade comprising

CaMKIV-CREB-Bcl-2 that is essential for

DC survival. (Blood. 2008;111:723-731)

© 2008 by The American Society of Hematology

Introduction

Dendritic cells (DCs) are antigen presenting cells (APCs) that

circulate in the blood and are also present in peripheral tissues and

lymphoid organs. They are able to sustain and polarize the primary

adaptive immune response and are involved in the mechanisms of

tolerance toward self-antigens.1-3 These cells recognize microbial

products by using a variety of molecules expressed on their surface

that enable them to detect infections in the periphery. Among these

molecules, the Toll-like receptors (TLRs) bind pathogen-derived

molecules to trigger the activation programs of DC, thus inducing

the release of cytokines and driving DC migration to the T-cell

zone.4-6 Visualization of cellular interactions in intact lymphoid

tissues reveals that DC–T cell conjugates must remain stable for up

to 2 days for lymphocytes to become fully activated.7 Therefore,

the lifespan of DC is an essential factor in controlling the number of

viable antigen-bearing DC in the T-cell zone, and in turn, to

regulate the quality and magnitude of the adaptive immune

response.

Agonists of TLR, including the Gram-negative bacterial lipo-

polysaccharide (LPS), control survival of DC by mechanisms only

partially defined.8 LPS signals DC via TLR4, an interaction that

requires the lipopolysaccharide-binding protein and MD2, a TLR4-

associated molecule.4,6 Two distinct biochemical pathways are

activated by this interaction. The “MyD88-dependent” cascade,

involving Toll-interleukin-1 receptor domain adaptors MyD88 and

Mal, regulates activation of the NF-k�B transcription factor and

drives the synthesis of cytokines and the terminal differentiation

program. The triggering of the “MyD88-independent” pathway

requires TRIF and TRAM (a second set of Toll-interleukin-1

receptor domain adaptors) and stimulates phosphorylation and

dimerization of IRF-3, a key event regulating the synthesis of

interferon-�. Several reports have suggested that TLR4 agonists

activate antiapoptotic as well as proapoptotic pathways.8-12 Re-

cently, it has been proposed that LPS controls accumulation of both

proapoptotic and antiapoptotic members of the Bcl-2 family of

proteins and in so doing regulates the lifespan of DC.8

Calcium (Ca2�) is a pervasive intracellular second messenger

that initiates signaling cascades, leading to essential biologic

processes such as secretion, cell proliferation, differentiation,

and movement.13 In DCs, many critical functions involve Ca2�

signaling. For example, apoptotic body engulfment and process-

ing are accompanied by a rise in intracellular Ca2� and are

dependent on external Ca2�.14 In addition, chemotactic mol-

ecules produce Ca2� increases in DC,15-18 suggesting the

involvement of a Ca2�-dependent pathway in the regulation of

DC migration. The role of a Ca2�-dependent pathway in the

mechanism regulating DC maturation is suggested by the
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opposite effects induced by Ca2� ionophores or chelation of

extracellular Ca2� on this process.19-21

Many of the effects of Ca2� are mediated via Ca2�-induced

activation of the ubiquitous Ca2� receptor calmodulin (CaM).22 In

turn, Ca2�/CaM stimulates a plethora of enzymes including those

that comprise the family of multifunctional, serine-threonine

kinases (CaMKs), 2 of which are CaMKII and CaMKIV.23 These

protein kinases have different tissue distributions, as CaMKII is

ubiquitous24 whereas CaMKIV is tissue-selective, and expressed

primarily in brain, thymus, testis, ovary, bone marrow, and adrenal

glands.25 Whereas CaMKIV is expressed in immature thymocytes

and mature T cells, it is absent in B cells. Previous studies have

revealed roles for CaMKIV in regulating thymic selection as well

as activation of naive and memory T cells. Moreover, CaMKIV

plays a role in regulating the survival of hematopoietic progenitor

cells.26 Importantly, in addition to a rise in intracellular Ca2�,

activation of CaMKIV requires phosphorylation by an upstream

CaMKK, leading to the suggestion that these 2 Ca2�/CaM-

dependent enzymes constitute a “CaM kinase cascade.”

In this study, we demonstrate that CaMKIV is expressed in DC

and plays a key role in the pathway linking the TLR4 with the

control of DC lifespan by regulating the temporal expression of

Bcl-2. These findings, which have been confirmed in human

monocyte–derived DCs as well as in DCs derived from mice null

for CaMKIV, reveal the importance of a CaMK cascade in

mediating DC survival.

Methods

Mice and DCs

Mice were housed and maintained in the Levine Science Research Center

Animal Facility located at Duke University under a 12-hour light, 12-hour

dark cycle. Food and water were provided ad libitum, and all care was given

in compliance within National Institutes of Health (NIH) and institutional

guidelines on the use of laboratory and experimental animals under an

approved Duke Institutional Animal Care and Use Committee protocol.

Camk4�/� mice were generated as previously described.27 The BCL-2

transgenic mice (a kind gift from Dr Tannishtha Reya, Duke University)

have been previously described.28

BCL-2tg/tg/Camk4�/� mice were generated by crossing BCL-2tg/tg with

Camk4�/� mice to generate BCL-2tg/tg/Camk4�/� hybrids. These hybrids

were crossed to generate the BCL-2tg/tg/Camk4�/� mice used in our

experiments. All mice were screened by PCR to confirm the presence of the

BCL-2 transgene and the absence of the Camk4 gene.

Mouse DCs were isolated from spleen, thymus, and lymph nodes of

4- to 8-week-old mice. CD11c� cells were positively selected using an

anti-CD11 antibody (Miltenyi Biotech, Calderara di Reno, Italy). The purity

of DC determined by flow cytometry was 80%-92%.

Human DCs were generated from CD14� monocytes isolated from

peripheral blood of healthy donors (Miltenyi Biotech) cultured for 5 days in

RPMI 1640 (Invitrogen, Carlsbad, CA), 10% fetal calf serum, 50 ng/mL

granulocyte macrophage colony stimulating factor (GM-CSF; Schering-

Plough, Kenilworth, NJ), and 250 ng/mL interleukin-4 (PeproTech, Rocky

Hill, NJ). Phenotype was evaluated by cytometry. LPS was from Sigma

(St Louis, MO).

Measurement of viability

The percentage of apoptotic cells was quantified using annexin V fluores-

cein isothiocyanate (FITC) kits (Bender MedSystem, Vienna, Austria)

according to the manufacturer’s instructions. Viable cells were evaluated by

the exclusion of Trypan blue using a kit from Invitrogen.

Protein and RNA analyses

Immunoblots were performed as described.29 Calpain inhibitors ALLM and

ALLN were obtained from Calbiochem (San Diego, CA). Primary antibod-

ies were: anti-CaMKII (Santa Cruz Biotech, Santa Cruz, CA), anti-

CaMKIV (BD, San Jose, CA and Acris, Hidden Hausen, Germany),

anti-actin (Sigma), anti-pCREB (phosphorylated form of the cAMP re-

sponse element-binding protein), anti-pAkt, anti-Bcl-2 family proteins

(Cell Signaling, Danvers, MA), anti-human Bcl-2 (BD). Binding was

detected by horseradish peroxidase-conjugated secondary antibody and

chemiluminescence (Amersham Pharmacia Biotech, Chalfont, United King-

dom). NIH Scion Image software version 1.61 (Bethesda, MD) was used to

quantify bands.

RNA was isolated by using Trizol kits (Invitrogen), and first strand

cDNA prepared by using SuperScript III (Invitrogen), according to the

manufacturer’s directions. PCR-based gene expression analysis was per-

formed as reported elsewhere.27 The sequences of all the primers used in

this study are available on request.

Immunocytochemistry

CD14� monocytes were resuspended at 106 cells/mL in regular medium

supplemented with IL-4 (1000 IU/mL, Immunotools, Friesoythe, Ger-

many) and GM-CSF (50 ng/mL, Schering-Plough) and adhered to

microscope slides coated with 0.05 mg/mL of poly-L-lysine in 24-well

plates. DCs were fixed and permeabilized with the Cytofix/Cytoperm

reagent (Becton Dickinson, Milan, Italy) according to the manufactur-

er’s instruction and left in 3% bovine serum albumin solution in

phosphate-buffered saline for 30 minutes at room temperature. DCs

were then incubated with a rabbit polyclonal antibody to CaMKIV

(0.5 �g/mL Acris Antibodies), stained with Alexa Fluor 594 goat

anti-rabbit IgG (0.5 �g/mL Molecular Probes, Eugene, OR) and

counterstained with Hoechst 33342 (Vector). Images were acquired with

a DMIRE2 inverted confocal microscope (Leica Microsystems, Wetzlar,

Germany) using a 40� lens at 40�/1.25 NA oil objective and processed

using LCS software version 2.61 (Leica Microsystems). Internal photon

multiplier tubes collected images in 8-bit, unsigned images at a 400-Hz

scan speed. Hoechst 33342 fluorescence (Invitrogen) was excited with a

mode-locked titanium-sapphire laser (Chameleon; Coherent, Santa

Clara, CA; excitation wavelength: 740 nm, emission range:

410-470 nm). Two-photon intensity input was regulated with an

amplitude modulator linked to the Leica Software System. Alexa Fluor

594 (Invitrogen) was excited by a helium-neon laser line (excitation

wavelength: 543 nm, emission range: 600-700 nm). Line profiles of

acquired images were performed with LCS 2.61 image analysis software

(Leica Microsystems).

Flow cytometry

Antibodies used for human DC analysis: FITC-anti-CD14, phycoerythrin

(PE)-anti-CD86, PE-CD1a, FITC-anti-CD83. Mouse DC staining were

performed with: FITC-anti-I-A, PE-anti-CD8�,APC-anti-CD11c, FITC-anti-

CD86, PE-anti-tumor necrosis factor (TNF), FITC-anti-IL-6. All of these

antibodies were purchased from BD Pharmingen.

Lentiviral infection

The lentiviral constructs were generated and characterized by Kitsos et al.26

Briefly, CaMKIV-WT and CaMKIV-K71M cDNA were cloned into Lenti-

IRES-GFP vectors, and high titer control and recombinant viruses were

prepared by pseudo-typing with VSV.G using a quadruple transfection

protocol in 293T cells according to Follenzi et al.30 Approximately

5 � 106 of immature monocyte-derived DCs were infected with the

appropriate lentivirus at a multiplicity of infection of 5.2 days after

infections GFP� cells were sorted by flow cytometry and cultured for an

additional 18 hours in the presence of LPS (1 �g/mL), or left in regular

medium.
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Results

CaMKIV accumulates during differentiation of human

monocyte–derived DCs

CD14� cells were cultured in the presence of optimal amounts of

GM-CSF and IL-4 and at different time points aliquots of cells

were lysate to measure CaMKIV accumulation. Immunoblots

showed a barely detectable amount of CaMKIV in freshly isolated

monocytes (Figure 1A). However, within 2 hours after cytokine

exposure CaMKIV was robustly up-regulated and remained so

after 48 hours. After 120 hours of stimulus, cells have acquired the

phenotype typical of immature DCs (CD14� CD1a� CD86�

CD83�; data not shown) and still expressed CaMKIV. No signifi-

cant modulation in the amount of CaMKI occurred during the

monocyte differentiation process (data not shown). Parallel analy-

sis showed that CaMKIV mRNA remained stable during the

differentiation process. Based on these findings, we reasoned

CaMKIV expression likely to be largely regulated by a posttranscrip-

tional mechanism.

Pharmacologic inhibition of calpain activity leads to the rapid

accumulation of CaMKIV

Previous studies have suggested that accumulation of CaMKIV

in neuronal cells is regulated by a Ca2�-sensitive protease,

calpain.31 Thus, we evaluated CaMKIV expression in fresh

isolated monocytes and in monocytes cultured for 2 hours in

regular medium, with or without ALLM, a cell-permeable

calpain inhibitor, or the cytokine cocktail composed of GM-CSF

and IL-4. The immunoblot in Figure 1B reveals that the

exposure to ALLM or GM-CSF/IL-4 resulted in a statistically

significant and comparable accumulation of CaMKIV. This

contention was confirmed using an additional calpain inhibitor

ALLN (data not shown). Because the anti-CaMKIV antibody

used recognizes the entire p55 molecule,31 the barely detectable

amount of p55 observed in untreated monocytes as well as the

ability of calpain to increase its expression led us to hypothesize

that a protease-dependent mechanism was likely to play a role in

the control of CaMKIV accumulation in myeloid cells.

Confocal analysis of CaMKIV expression

To analyze the intracellular distribution of CaMKIV in differentiat-

ing monocytes, we used 2-photon confocal microscopy (Figure

1C-E). The image analysis confirmed a low level of CaMKIV in

untreated monocytes and revealed that this kinase was primarily

localized in close proximity to the nuclear membrane (Figure

1Ci,ii). Exposure to the cytokine cocktail or to ALLM induced a

rapid increase in CaMKIV (Figure 1Ciii-vi). However, whereas

inhibition of calpain activity did not stimulate nuclear accumu-

lation of this kinase, a large amount of CaMKIV is detected in

nuclei of monocytes exposed to GM-CSF/IL-4 for 2 hours.

(Figure 1Ciii,iv). Finally, in monocytes treated with cytokines

for 120 hours, conditions that generate a phenotype typical of

DC, CaMKIV is detected predominantly in the perinuclear

region as well as in spotted zones in proximity to plasma

membranes (Figure 1Cvii,viii).

Figure 1. CaMKIV accumulates during differentiation

of monocyte-derived dendritic cells. (A) CD14� mono-

nuclear cells were cultured in the presence of GM-CSF

and IL-4. Whole-cell lysates were prepared at the indi-

cated times and analyzed by immunoblot with specific

antibodies (CaMKIV and actin). Aliquots of cells were

used to measure CaMKIV and actin mRNA levels by

quantitative reverse transcription–polymerase chain reac-

tion. Bottom panel shows mean ( � SD) of optical density

measurements expressed as the ratio between the CaMKs

and actin bands (n 	 4). *P 
 .01. (B) Calpain regulates

CaMKIV accumulation in differentiating monocytes.

CD14� mononuclear cells were cultured in the presence

of ALLM, a selective calpain inhibitor (ALLM), or GM-CSF

and IL-4 and analyzed for CaMKIV expression by immu-

noblot (top). The bottom panel shows mean (� SD) of the

optical density measurements expressed as the ratio

between the CaMKIV and actin bands (n 	 4). *P 
 .01.

(C-E) Intracellular distribution of CaMKIV in differentiating

monocytes. (C) Transmission and confocal fluorescent

immunocytochemistry images of CaMKIV expression in

monocytes cultured for: 2 hours in regular medium (i,ii);

2 hours in the presence of GM-CSF/IL-4 or ALLM (iii, iv, v,

and vi, respectively); and 120 hours in the presence of

GM-CSF/IL-4 (vii,viii). (D) Line profiles of cells indicated

by white arrows in the corresponding subpanels in panel

C. The line segment is 20 �M; F indicates the fluores-

cence intensity in arbitrary units (a.u.). The bottom right

graph shows the ratio (R) between the mean fluores-

cence intensity of Alexa Fluor 594 (CaMKIV) and Hoechst

33342 (nuclear staining) in the nuclear region along

different line profiles. Means (� SD) represent 20 indepen-

dent line profiles. *P 
 .01. (E) Expression and line profile

analysis of CaMKIV in monocytes treated for 120 hours

with GM-CSF/IL-4.

.
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A quantitative 20-�m line profile analysis of the acquired

images confirmed a very low nuclear/perinuclear ratio of CaMKIV

in unstimulated monocytes (Figure 1D, b�). This ratio is similar to

that observed in freshly isolated cells and did not increase on

culture in the absence of differentiating stimuli or in the presence of

calpain inhibitors (Figure 1D, c� and d�). Kinetic analysis showed

that at a later time point (6 hours) the nuclear accumulation of

CaMKIV in cytokine-treated cells decreases and CaMKIV returns

to be localized mainly in the perinuclear region (Figure 1D bottom

right). The quantitative analysis of DC images confirmed that, at

this stage of differentiation, CaMKIV is located predominantly

outside the nucleus (Figure 1E).

CaMKs regulate differentiation and survival of

monocyte-derived DCs

To examine potential roles of the multifunctional CaMKs in the

activation process of DCs, we tested the ability of KN93, a

selective inhibitor of the multifunctional CaMKs (CaMKI, CaMKII,

CaMKIV), to alter terminal differentiation and/or survival of DCs

exposed to LPS. As shown in Figure 2A, KN-93 interfered with

up-regulation of CD83 and CD86 induced by LPS (Figure 2A). To

analyze the effect of KN93 on survival, we exposed DCs to

increasing concentrations of the kinase inhibitor and double-

stained cells at different time points with annexin-V and propidium

iodide. Finally, we quantified the number of double-negative viable

cells by flow cytometry or by using a trypan blue-exclusion assay

(Figure 2B top and bottom, respectively). The exposure of DCs to

LPS normally increases their lifespan: 50% of DCs treated with

LPS were still viable after 2 days of culture compared with 25% of

cells left in regular medium alone (Figure 2B). Probably because of

its inhibitory effect on all 3 multifunctional CaMKs (I, II, and IV),

high doses of KN93 (� 5 �M) also led to a decrease in the survival

of unstimulated DCs (Figure 2B top and bottom left). However, at

lower doses this drug exerted its effect preferentially on the

LPS-stimulated DCs by preventing the prosurvival ability of the

bacterial endotoxin with barely detectable effects on the viability of

unstimulated DCs (Figure 2B bottom right). Of note KN92, a

KN93 derivative that is 10-fold less potent that KN93 as a CaMK

inhibitor, had no effect on differentiation and survival of DC at a

concentration equivalent to the effective dose of KN93 (data not

shown). These results suggest the importance of multifunctional

CaM kinases in LPS-mediated DC survival.

The ectopic expression of kinase-inactive CaMKIV decreases

the viability of LPS-stimulated DCs

Our experiments using KN93 indicated that CaMKs play an

important role in the activation programs triggered by TLR4

stimulation. However, because of the ability of KN93 to equiva-

lently inhibit CaMKI, CaMKII, and CaMKIV, it is impossible to

identify the relevant multifunctional CaMK family members. To

directly investigate a role for CaMKIV in DC activation, we

infected human immature monocyte–derived DCs with lentiviral

vectors encoding wild-type or kinase-inactive Camk4 (Lenti-IRES-

GFP CaMKIV-WT and CaMKIV-K71M, respectively). Aliquots of

DC were also infected with the control virus (Lenti-IRES-GFP).

After 2 days, GFP� cells were sorted, washed, and cultured for

additional 24 hours in the presence or absence of LPSs (1 �g/mL),

before being analyzed by flow cytometry (Figure 3; Table 1).

Although DCs infected with CaMKIV-K71M or control viruses

(DN and Mock, respectively) left in regular medium expressed

comparable amounts of CD86, infection of the cells with the

CaMKIV-WT virus (WT) induced a significant up-regulation of

this costimulatory molecule. However, neither CaMKIV-WT, nor

Figure 2. CaMKs regulate terminal differentiation and survival of monocyte-

derived dendritic cells. Immature monocyte–derived DCs were cultured untreated

or stimulated with LPS- (1 �g/�L) in the presence or absence of KN93 (10 �M), a

selective inhibitor of the multifunctional CaMKs. After 24 hours, cells were recovered

and double-stained with anti-CD86/anti-CD83 antibodies or with Annexin V/pro-

pidium iodide (A,B top). (A) Bottom: effects of KN93 on CD83 and CD86 expression

as a function of the LPS dose. Mean (� SD) represents 6 independent experiments.

(B) Bottom: effects of KN93 on survival of LPS-stimulated DC (LPS, 10 �g/mL) as a

function of time or KN93 dose (left or right, respectively). Viability was calculated by

trypan blue exclusion. Mean (� SD) represents 6 independent experiments.*P 
 .01.

Values in panel A represent the mean fluorescente intensity of CD86 and the

percentage of CD83 positive cells. Ctr refers to profiles of unstained cells. Values in

panel B represent the percentage of cells in each quadrant.

Figure 3. CaMKIV regulates survival of monocyte–derived DCs. Monocyte-

derived DCs were infected with Lenti-IRES-GFP lentivirus expressing Camk4,

Camk4-WT, or Camk4-K71M (Mock, WT, and DN, respectively). After 48 hours, cells

were cultured for an additional 18 hours in the presence of LPS (1 �g/mL) or left

untreated. Top: fluorescence-activated cell sorting (FACS) profiles of DC stained with

CD86, CD83, and Annexin-V.

Table 1. Effects of CaMKIV on DC activation markers

Mock WT DN

Regular medium

CD86 (MFI) 350 � 125 950 � 320* 270 � 160

CD83, % 10 � 5 8� 2 7 � 3

A-V, % 55 � 14 28� 17* 63 � 22

Viability, % 35 � 12 67� 16* 32 � 18

LPS

CD86 (MFI) 1140 � 250 1250 � 305 1070 � 360

CD83, % 52 � 13 48� 20 51 � 18

A-V, % 28 � 10 23� 15 65 � 19*

Viability, % 65 � 11 62� 15 30 � 16*

Means are plus or minus SD. MFI indicates mean fluorescence intensity; and

A-V, annexin-V.

* indicates statistical significance (n 	 3); P 
 .01.

726 ILLARIO et al BLOOD, 15 JANUARY 2008 � VOLUME 111, NUMBER 2

For personal use only. by on November 29, 2009. www.bloodjournal.orgFrom



CaMKIV-K71M, nor control virus interfered with LPS-induced

increases in the surface level of CD86 or CD83 (Figure 3).

The effect of ectopic CaMKIV expression on DC survival was

evaluated at 24 hours by both annexin-V staining and the trypan

blue-exclusion assay. As shown in Figure 3, in mock-infected DC,

LPS treatment led to a significant decrease in the percentage of

annexin-V-positive cells and induced a parallel increase in the

percentage of viable cells (trypan blue unstained cells), compared

with DCs cultured in regular medium. Overexpression of

CaMKIV-WT in DCs induced a detectable antiapoptotic effect

(Figure 3). Contrariwise, CaMKIV-K71M did not affect viability of

untreated DCs but abrogated the antiapoptotic effect induced by

LPS, suggesting that the kinase-inactive protein might play a

dominant/negative role in this instance. These results clearly

implicate CaMKIV in survival of human monocyte–derived DC

and suggest that the absence of CaMKIV in mice should negatively

impact the number of DC cells.

Camk4�/� mice contain a decreased number of DC

To evaluate the hypothesis, we analyzed spleen-derived DCs in WT

and Camk4�/� mice. Splenocytes from Camk4�/� and WT mice

were isolated, counted, and stained with anti-CD11c and CD8�

antibodies. Immunoblots were performed to measure CaMKIV

expression (Figure 4A left). Camk4�/� and WT mice contained

comparable numbers of splenocytes (Figure 4A middle), but the

former genotype showed a significant decrease in the percentage of

both CD11c� CD8�� and CD8�� subsets (Figure 4A right).

Similar results were found on analysis of CD11c� cells present in

the lymph nodes of WT versus CaMKIV null mice (data not

shown).

The injection of LPSs in WT resulted in a significant increase in

the percentage of cells with a phenotype typical of mature myeloid

DC: CD11chigh/CD11bhigh/I-Ahigh (0.28 � 0.05 vs 0.65 � 0.07, un-

treated vs LPS-treated; Figure 4B right). Otherwise, this treatment

did not induce similar changes in Camk4�/�: the CD11chigh/

CD11bhigh/I-Ahigh population failed to accumulate in response to

LPSs and only 37% of the CD11chigh/CD11bhigh subset, compared

with the 87% detected in WT mice, expressed high levels of I-A

molecules. Therefore, genetic ablation of CaMKIV led to a marked

defect in the accumulation of cells showing typical markers of

mature myeloid DC in response to LPSs.

The CD11chigh/CD11blow population contains a mixture of DCs

at different stages of differentiation, including DC precursors

(DCp), immature DC (iDC), and plasmacytoid DC (pDC), which

display different abilities to replicate and differentiate in basal

condition as well as in response to LPSs.32 Our data show a

significant decrease in the percentage of CD11chigh/CD11blow cells

in untreated Camk4�/� mice (0.1% vs 0.04%, WT and Camk4�/�,

respectively). However, although LPSs did not induce significant

changes in the percentage of CD11chigh/CD11blow cells, this did

occur in Camk4�/� mice (Figure 4B). Thus, in WT, the CD11chigh/

CD11blow population seems to be made up predominantly of

LPS-unresponsive DC subsets (ie, pDC). However, in Camk4�/�

mice, the CD11chigh/CD11blow cells appear to be mainly derived

from LPS-responsive DC subsets (ie, DCp, iDC). These data

suggest that CaMKIV may be involved in either the developmental

program of other DC subsets (ie, pDC) or in the control of the

proliferative capacity of DC precursors.

Genetic ablation of CaMKIV does not prevent the ability of DC

to differentiate and secrete cytokines in response to LPSs

The involvement of CaMKIV in LPS signaling was evaluated in

vitro using purified DCs. To this end, CD11c� cells were positively

selected from splenocytes of Camk4�/� and WT mice before being

cultured in the presence or absence of LPSs (10 �g/mL). After

24 hours, we measured the cell surface expression of I-A and CD86

by flow cytometry as well as the intracellular levels of TNF-� and

IL-6 by immunocytochemistry (Figure 5A,B, respectively; Table

2). LPS treatment induced a comparable increase of I-A and CD86

expression in WT and Camk4�/� DC (Figure 5A). Moreover, cells

from both genotypes accumulated comparable levels of IL-6 and

TNF-� in response to LPSs (Figure 5B). Therefore, we conclude

that CaMKIV is largely dispensable for this branch of the LPS

signaling pathway.

Figure 4. The number of splenic mature DCs is

reduced in Camk4�/� mice. Splenocytes from normal or

Camk4�/� mice were counted and stained for CD11c and

CD8. (A) Left panel: immunoblots show CaMKIV and

actin expression in splenocytes isolated from 2 mice from

each genotype. Middle: bar graph reports mean (� SD)

of the total number of splenocytes (n 	 15 mice per

genotype). Right: percentage of WT and Camk4�/�

CD11c � subsets. Bars graphs show mean (� SD) repre-

senting 15 mice per genotype. *P 
 .01. (B) LPS-induced

mature DC accumulation is impaired in Camk4�/� mice in

vivo. LPS or phosphate-buffered saline (PBS) was in-

jected into Camk4�/� and control WT mice. Eighteen

hours later, splenocytes were isolated and triple-stained

with anti-CD11b, -CD11c and -I-A antibodies. For the

typical dot plot profiles, the inset values show the percent-

age of cells in the R6/R7 gates (CD11bhigh/CD11chigh and

CD11blow/CD11chigh, respectively. FACS profile histo-

grams show I-A expression. Inset values refer to the

percentage of I-Ahigh cells in the R6/R7 gates. Values in

parenthesis display the percentage of CD11bhigh/

CD11chigh/I-Ahigh and CD11blow/CD11chigh/I-Ahigh in whole

splenocytes. *P 
 .01.

SURVIVAL PATHWAY OF ACTIVATED DENDRITIC CELLS 727BLOOD, 15 JANUARY 2008 � VOLUME 111, NUMBER 2

For personal use only. by on November 29, 2009. www.bloodjournal.orgFrom



DCs from CaMKIV null mice fail to increase CREB

phosphorylation in response to LPSs

To investigate the role of CaMKIV in the early events induced by

LPS signaling, we compared the levels of pCREB and pAKT in

DCs isolated from WT and Camk4�/� mice cultured for 1 hour in

the presence or absence of the bacterial endotoxin. Although a

comparable up-regulation in the levels of pAKT was observed in

DCs isolated from both genotypes, the ablation of CaMKIV

prevented the increase in pCREB in response to LPSs (Figure 6;

Table 3). This finding suggests a role for CaMKIV in the

CREB-dependent pathway by which TLR4 regulates DC survival.

CaMKIV regulates survival of DC

To evaluate whether CaMKIV plays a direct role in regulating the

survival of DCs, we isolated CD11c� from Camk4�/� and WT

mice and measured their ability to survive in vitro in the absence or

presence of LPSs. At different time points, cell viability was tested

by trypan blue exclusion (Figure 7A). The number of viable DCs

remaining in the culture in the absence of treatment decreased

progressively as a function of days in culture and the time course

was similar in WT and Camk4�/� cells (Figure 6). On the other

hand, whereas LPS clearly increased viability of WT cells, it failed

to alter the lifespan of Camk4�/� DC (Figure 7A).

To begin to evaluate the mechanism by which CaMKIV might

participate in LPS-initiated signaling, we quantified the expression

of Bcl-2 family proteins. CD11c� cells were isolated by positive

selection from spleens of WT and Camk4�/� mice. Freshly isolated

WT and Camk4�/� DCs expressed comparable amounts of Bcl-2

but undetectable levels of Bcl-xL (Figure 7B). Although the

amount of Bcl-2 decreased similarly in cells of both genotypes

cultured for 24 hours, LPS prevented the decrease in WT but not

Camk4�/� DCs. In addition, LPS induced accumulation of Bcl-xL

in WT cells, and this effect was markedly decreased in Camk4�/�

DCs (Figure 7B).

Transgenic expression of Bcl-2 reverses the ability of

CaMKIV-null DC to survive

To analyze the contribution of the decreased amount of Bcl-2 to

survival, we generated BCL-2tg/tg/Camk4�/� mice by crossing

BCL-2tg/tg mice with Camk4�/� mice to generate BCL-2tg/tg/

Camk4�/� hybrid mice that overexpress Bcl-2 in a CaMKIV-null

background. The immunoblot in Figure 7C shows a typical result

obtained in mice carrying the 4 different genotypes. CD11c� cells

were recovered by positive selection from spleens of BCL-2tg/tg and

BCL-2tg/tg/Camk4�/� mice, cultured in the presence or absence of

LPSs and analyzed for viability as described previously (Figure

7D). DCs from BCL-2tg/tg and BCL-2tg/tg/Camk4�/� mice cultured

in regular medium show a comparable and prolonged lifespan.

Furthermore, regardless of genotypes, the presence of LPS in the

culture medium did not result in a significant increase in the

number of viable cells (Figure 7D).

The immunoblot in Figure 7E shows the typical expression

of total Bcl-2 and Bcl-XL in these transgenic mouse strains.

Regardless of CaMKIV expression but correlated with the

presence of the human Bcl-2 transgene, mice carrying the hybrid

genotypes show a high level of total Bcl-2 protein that was

barely altered by LPS treatment (Figure 7E). Because most of

the effect exerted by the LPS-CaMKIV pathway on Bcl-2 was at

the transcriptional level (data not shown), we reasoned that the

ectopic promoter of the BCL-2 transgene would require a

different set of transcription factors compared with the endoge-

nous mouse gene and, in turn, be less dependent on the presence

of CaMKIV. On the other hand, CaMKIV was still required in

BCL-2tg/tg hybrid mice to link the LPS–mediated pathway with

Figure 6. CaMKIV is required to link TLR4 signaling with pCREB accumulation.

CD11c � DCs were isolated from spleens of WT or Camk4�/� mice and cultured in

the presence or absence of LPS (10 �g/mL) for 1 hour. Whole lysates were separated

by SDS-PAGE and immunoblotted with the reported antibodies (pCREB, pAKT, actin,

LPS). A typical immunoblot analysis is shown.

Table 2. Effects of LPS on CamK4�/� DC (n � 6)

Markers wt Camk4�/� P

Regular medium

I-A (MFI) 658 � 107 538 � 97 .09

CD86 (MFI) 150 � 57 128 � 50 .54

TNF-� , % 2.3 � 0.5 2.6 � 0.6 .46

IL-6, % 2.6 � 0.5 3.0 � 0.4 .18

LPS

I-A (MFI) 1241 � 289 938 � 190 .08

CD86 (MFI) 657 � 159 830 � 127 .08

TNF-� , % 11 � 3 15 � 3 .49

IL-6, % 13 � 3 15 � 6 .48

Means are plus or minus SD (n 	 6).

I-A indicates major histocompatibility complex class II molecules; and IL-6,

interleukin-6.

Figure 5. CaMKIV is not required for terminal differen-

tiation and cytokine synthesis induced by LPS. Iso-

lated CD11c� splenic DCs from WT and Camk4�/� were

exposed to LPS (10 �g/mL) or left untreated (none). After

16 hours, cells were recovered and double-stained for I-A

and CD86 (A). Aliquots of cells were stained for the

presence of intracellular TNF-� and IL-6 (A,B).
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Bcl-xL expression (Figure 7D). This finding provides an addi-

tional evidence for a role for CaMKIV in the pathway respon-

sible for Bcl-xL expression and also documents the dominant

role played by Bcl-2 in modulating the lifespan of LPS-activated

DC in a manner that involves CaMKIV signaling.

Discussion

Stimulation of TLR4 has been associated with the initiation of both

apoptotic and antiapoptotic pathways, the balance of which deter-

mines the outcome of innate and adaptive immune responses.4-6

Here we describe a novel CaMK cascade-dependent antiapoptotic

pathway responsible for the survival of LPS-activated DCs. The

results obtained, using pharmacologic inhibition of CaMKs, ec-

topic expression of CaMKIV, and a CaMKIV kinase-inactive

mutant as well as mice null for CaMKIV, demonstrate that a

CaMKIV signaling cascade controls the phosphorylation of CREB

and accumulation of Bcl-2 necessary to support the antiapoptotic

branch of the TLR4 pathway.

The multifunctional CaMK family proteins are involved in the

control of differentiation and survival of several cell types, including

neurons and hematopoietic stem cells.26,27 Analysis of mouse embryos

Figure 7. CaMKIV regulates lifespan and Bcl-2 family

protein accumulation. CD11c � DCs were positively

selected from WT (Camk4�/�), Camk4�/�, BCL-2 tg/tg

transgenic, and Camk4�/�/BCL-2 tg/tg hybrid mice cul-

tured in the presence or absence of LPS (10 �g/mL).

(A,D) Viability was assayed by trypan blue exclusion at

daily intervals. The results represent mean and SD of

6 independent experiments. (B,E) Typical results ob-

tained by immunoblot analysis. Bar graphs show mean

(� SD) of the optical density measurements expressed

as the ratio between Bcl-2 or Bcl-xL and actin bands

(n 	 6). (C) Immunoblot shows the typical expression of

CaMKIV and hu-Bcl-2 detected in WT (Camk4�/�),

Camk4�/�, BCL-2 tg/tg transgenic, and Camk4�/�/BCL-

2tg/tg hybrid mice (lanes 1, 2, 3, and 4, respectively).

*P 
 .01.

Table 3. TLR4 signaling in CamK4�/� DC

wt Camk4�/�

Regular medium

pCREB 0.32 � 0.1 0.19 � 0.05*

pAKT 0.09 � 0.04 0.07 � 0.06

LPS

pCREB 0.51 � 0.12 0.15 � 0.03*

pAKT 0.17 � 0.05 0.23 �0.06

Means are plus or minus SD of the optical density measurements expressed as

the ratio between pCREB or pAKT.

* indicates statistical significance (n 	 3); P 
 .01.
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revealed expression of CaMKIV mRNA in the developing nervous

system as well as in the hematopoietic-related tissues.25,26 These

developmental patterns coincide temporally with periods of significant

cellular differentiation in the nervous system, axonal migration and

neuron survival. Correlation of CaMKIV expression with differentiation

is also evident in adult animals as Camk4�/� mice show major defects in

maintenance of hematopoietic stem cells, postnatal maturation of

Purkinje cells, thymopoiesis, ovulation, and terminal differentiation of

spermatozoa.26,33-39 Here we show that CaMKIV expression is tightly

regulated during the developmental program of human monocyte–

derived DCs, a well-characterized model of myeloid cell differentiation,

and is also expressed in murine mature DCs isolated from secondary

lymphoid tissues.

Extensive gene expression analyses performed using microar-

ray or SAGE technologies failed to identify Camk4 among the

mRNAs that were altered during the monocyte-derived DC

differentiation process.40-42 In agreement with these findings, we

show comparable Camk4 mRNA levels in monocyte and

monocyte-derived DCs. However, we provide evidence for a

cytokine-dependent, rapid accumulation of CaMKIV in differen-

tiating DCs that is overcome by a calpain-dependent mechanism

that keeps CaMKIV levels low in the absence of stimulation.

Calpain is a cysteine protease activated by an increase in

intracellular Ca2�43,44 that influences normal signal transduction

pathways by cleaving cytoskeletal proteins, membrane proteins,

and enzymes normally involved in cell survival.45 The suscepti-

bility of CaMKIV to calpain has been documented in cerebellar

granule cell neurons.31 More recently, a role for calpain has been

proposed in the mechanism regulating podosome turnover and

composition in murine DCs.46 Here, we show that inhibition of

calpain activity leads to accumulation of CaMKIV in the

perinuclear region of monocytes cultured in regular medium.

However, our data also reveal that stabilization of CaMKIV by

calpain inhibition is not sufficient to promote the nuclear

translocation of CaMKIV that occurs in response to GM-CSF

and IL-4. Our findings provide novel evidence to suggest that

differentiating cytokines may inhibit the degradation of CaMKIV

and stimulate the entry of this enzyme into the nucleus where it

participates in the regulation of genes, such as Bcl-2, that are

necessary to support the survival of DCs.

Recently, it has been reported that the selective inhibition of another

multifunctional CaMK, CaMKII, interferes with terminal differentiation

of monocyte-derived DCs by preventing up-regulation of costimulatory

and MHC II molecules as well as secretion of cytokines induced by

TLR4 agonists.47 The findings described in the present study indicate

that CaMKIV selectively regulates survival of stimulated DCs without

interfering with their differentiation. Thus, in DC, as in neuronal cells,

the coordinated activation of CaMKII and CaMKIV seems to be

required to orchestrate the differentiation and survival programs.33

Isolated DCs are prone to apoptosis that can be modulated by

a variety of bioactive molecules, including cytokines, CD40

agonists, and TLR ligands, which share the ability to regulate

the levels of Bcl-2 family proteins.8 TLR agonists seem to

promote DC survival mainly by controlling the timing of the

accumulation of Bcl-2 family proteins,8 leading to the idea that

Bcl-2 acts as a “molecular timer” to set the lifespan of DCs and

the magnitude of the adaptive immune response.8 The crucial

role of Bcl-2 in the regulation of DC lifespan has been

confirmed in vivo using transgenic mice expressing the human

BCL-2 gene under the control of the murine CD11c promoter as

well as by testing the ability of Bcl-2 null DCs to survive.8,46 In

agreement with these findings, we show here that the number of

viable CD11c� cells progressively decreases during culture, a

phenomenon that is associated with a parallel decline in the

level of Bcl-2. Stimulation of TLR4 triggers accumulation of

proapoptotic Bcl-2 family proteins and induces the progressive

temporal decline in the level of Bcl-2. The timing of these

events sets the lifespan of DCs and our results support this

contention. That is, freshly isolated DCs (time 0) contain higher

amounts of Bcl-2 relative to DC cultured for 24 hours in the

presence of LPS. However, a different conclusion can be drawn

when taking into account the spontaneous loss of Bcl-2 expres-

sion observed in DCs cultured in absence of any stimuli coupled

with the net accumulation of Bcl-2 that occurs in cells cultured

with LPS for 24 hours. Therefore, while isolated DCs activate

the “Bcl-2 molecular timer” and undergo spontaneous apoptosis,

signals transduced by TLR4 modify the loss of Bcl-2 and thus

prolong the lifespan of activated DCs.

Our results reveal that genetic ablation of CaMKIV results in a

decrease in the number of mature DC present in lymphoid tissues

of adult mice. Moreover, isolated DCs derived from Camk4�/�

genotype show a marked defect in their capability to prolong

lifespan in response to LPS, a phenomenon that is associated with

the failure of TLR4 signaling to prevent the temporal decline in

Bcl-2 and accumulation of Bcl-xL. However, the analysis of

CaMKIV-null DC overexpressing transgenic Bcl-2 provide support

for a dominant role Bcl-2 in regulating the lifespan of LPS-

activated DCs and demonstrate that one of the crucial roles of the

CaMKIV cascade in activated DC might be the regulation of the

temporal accumulation of Bcl-2.

CaMKIV regulates survival and differentiation of several cell types,

including hematopoietic progenitors, neurons, thymocytes, and osteo-

blasts; one common mechanism is by activating transcription by

stimulating pCREB.26,27,34,48 We show that pharmacologic inhibition of

CaMKs as well as the genetic ablation of the CaMKIV gene affects the

early events triggered by TLR4 stimulation by preventing accumulation

of pCREB. Recently, it has been shown that a CREB-dependent

pathway inhibits the pathogen-induced apoptosis of bone marrow–

derived macrophages.12 Our data confirm the relevance of pCREB in the

survival program and document its involvement in the molecular

mechanisms regulating the lifespan of LPS-activated DCs. Furthermore,

they identify the CaMKIV/CREB signaling cascade as a novel pathway

that is essential in the antiapoptotic branch of the TLR4 signaling

pathway.

Genetic or microenvironmental factors may control the

lifespan of activated DCs and in turn regulate the adaptive

immune response by promoting the eradication of pathogens or

the development of immune-mediated diseases. In this context,

our results may contribute to a better understanding of the

mechanisms used by pathogens to control the lifespan of

antigen-presenting cells, and may inform novel perspectives to

manipulate the immune response by targeting components of the

CaMKIV cascade in DCs.
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Abstract  

HIV-1 protease inhibitors (PIs) are designed to specifically inhibit the aspartic protease of HIV-1, but 

several evidences shown that are also able to exert various effects on immune cells. Here we investigate the 

capability of HIV-1 PIs to interfere with Monocyte-Derived DCs (MDCs) lifecycle. We shown that 

prolonged exposure of PIs decrease the yield of MDCs; decrease the expression of typical MDCs 

differentiation markers;  decrease ability to secrete IL-15 and IL-12 p40 in response to bacterial endotoxin 

stimulus. In turn, these cells fail to prime the proliferation, interferon gamma secretion and cytotoxicity of 

autologous NK cells. In addition, MDCs generated in the presence of PIs are more prone to NK-dependent 

lysis. These findings reveal DC-NK as a novel target of the immunomodulatory activity of PIs opening 

novel therapeutical perspective for using this category of drug to manipulate the immune response. 
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Introduction 

Dendritic cells (DC) are well described as sentinels of the immune system, able to recognize 

danger signals mainly via Toll-Like Receptors, undergo maturation process and efficiently prime naïve T 

cells, inducing the adaptive immune response (Steinman RM 2006). Actually, there is a growing body of 

evidences about the interplay of DC and Natural Killer (NK)-cells (Walzer T et al. 2005). NK-cells can 

induce terminal differentiation of DC, and, reciprocally, DC can secrete NK-cells activating cytokines (IL-

12, IL-15, type I IFNs), leading to proliferation, IFN-gamma secretion and increase of cytotoxic activity. 

High NK - DC (DC) ratio, results in the killing of DC which express low levels of MHC I molecules and/or 

human leukocyte antigen-E molecule. This “switch-off” mechanism of the immune response is mediated by 

triggering NKp30 NKAR and CD40L on NK cells and TNF-related apoptosis-inducing ligand (TRAIL) 

death receptors on DC (Walzer et al. 2005, Moretta L et al. 2006). 

 HIV-1 Protease Inhibitors (PIs), that are included in the Highly Active Antiretroviral Therapy 

(HAART) of AIDS, are specifically designed to inhibit HIV-1 aspartic protease and have significantly 

improved the clinical management of HIV-1 infected patients (Mastrolorenzo et al. 2007, Dash C et al. 

2003). However, a number of evidences proved that HIV-1 PIs are able to inhibit mitochondrial-mediated 

apoptosis in uninfected T lymphocytes, in an antiviral-independent fashion. This effect can be directly 

mediated by inhibition of mitochondrial-membrane permeabilization, or by neutralization of pro-apoptotic 

effects of HIV-1 proteins (Vpr) (Hisatomi T et al. 2008). While there are more evidences about the 

antiviral-unrelated effects of HIV-1 PIs on T lymphocytes, poor is known about uninfected DC. Previous 

study report that exposure to different HIV-1 PIs (Saquinavir, Ritonavir, Indinavir, Nelfinavir) during DC 

differentiation, induce decrease ability to undergo maturation process and to sustain T lymphocyte 

proliferation (Gruber et al.2001). In addition, it is reported that HIV-1 PI Ritonavir can impairs 

proteasome-activity in cell lines, leading to defects in antigen processing and presentation (Schmidtke G et 

al. 1999). In light of this findings, we looked more extensively at the effects of HIV-1 PIs on DC 

differentiation and function. We describe that DC generated in the presence of Ritonavir show a marked 

decrease in their ability to activate NK-cells and are more prone to NK-cells mediated lysis. These results 

reveal for the first time that HIV-1 PIs can impairs DC-NK cells cross-talk, shedding light on their 

immunomodulatory activity in HIV-1 infection and opening novel therapeutical perspectives to manipulate 

the immune response.  

Materials and Methods 

Media and Reagents. The regular medium used throughout was RPMI 1640 (Invitrogen) supplemented with 

2 mM L-glutamine, 50 ng/ml streptomycin, 50 units/ml penicillin, and 10% heat-inactivated fetal calf serum 

(Hyclone Laboratories, Logan, UT). Granulocytes monocytes-colony stimulating factor (GM-CSF) was 

purchased from Schering-Plough (Kenilworth, NJ) and used at a concentration of 50 ng/ml. Interleukin-4 
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(IL-4) was obtained from ImmunoTools and used at 1000U/ml. Interleukin-2 ( IL-2 ) was purchased from 

Roche and used at a concentration of 200 UI/ml . 

Saquinavir, Ritonavir, Nelfinavir, Indinavir, Amprenavir were dissolved in ethanol and added at cells 

cultures at a concentration of 20mM. Saquinavir, Ritonavir, Nelfinavir, Indinavir sulfate, Amprenavir were 

obtained through the NIH AIDS Research and Reference Reagent Program, Division af AIDS, NIAID, 

NIH. 

Isolation and culture of NK cells and generation of MDDCs. PBMCs were isolated from healthy donors by 

density gradient on Ficoll Lymphoprep (Axis-Shield PoC AS, Oslo, Norway). NK cells were freshly 

isolated by negative selection (StemCell Technologies Inc.). Purified NK cells contained 3%

contamination with other PBMC subsets as determined by the expression of CD3, TCR- / , TCR- / ,

CD19, or CD14. Polyclonal NK cells and NK cell subsets were activated in vitro with recombinant IL-2 

(rIL-2; Roche) at 200 UI/m for 6 d . 

To generate iDCs, monocytes were purified by positive selection with anti-CD14 conjugated magnetic 

microbeads (Miltenyi Biotec, Bologna, Italy). CD14+ cells were than cultured at a concentration of 0.5–1 x 

106 cells/ml in regular medium supplemented with GM-CSF (50 ng/ml) and IL-4 (1000U/ml) for 4–5 days 

to obtain cells with typical phenotype of iDCs. To generate mDCs, iDCs were further cultured for 24–48 h

in the presence of 1 µg/ml LPS (Sigma-Aldrich). 

All cell culture was conducted at 37°C in humidified 5 % CO2 atmosphere. 

Flow Cytometry. Phenotype of DC were analysed by flow cytometry by using the following monoclonal 

antibodies conjugated: anti-HLA-I and anti-CD14 from Sigma; anti-CD1a, anti-CD86, anti-CD80, anti-

CD83, anti-CD40, anti-HLA-DR, anti-HLA-ABC, anti-CD11c, anti-CD36, anti-CD54 from BD 

Biosciences, anti DC-SIGN from NIH research and reference reagent program.  

For intracellular cytokine detection, Brefeldin A (5 µg/ml; Sigma) was added to the culture 

medium. Cells were then fixed and permeabilized by using a cytokine staining kit following the

manufacturer's instructions (Caltag Laboratories, Burlingame, CA). Antibodies against TNF-�, IL-12, IL-

10, IFN-  and IL-4 were purchased from BD Biosciences. FACSCalibur cytometer and Cellquest software 

were used for these analyses (BD Biosciences). 

 Human NK cells analysis was performed with: anti–TCR- /  (IgG1),  anti–TCR- /  (IgG1), anti-CD19 

(IgG1), FITC-anti-CD14, PE-anti-CD107a purchased from Becton Dickinson, USA, FITC anti -CD3/PE-

Cy5 –anti-CD56 purchased from Beckman-Coulter-Immunotech, Marseille, France. 

Data were collected using a FACSCAlibur flow cytometer (Becton Dickinson, USA) and analyzed using 

FlowJo v6.3.3 (Treestar, Palo Alto, CA, USA). 
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Proliferation Assay. Freshly purified NK cells were cryopreserved until required as responders. 

Experiments were performed in triplicate in 96-well round plates with complete medium. NK cells were 

cocultured at a constant concentration of 2 x 105 NK cells/well with autologous mDCs (stimulators) in serial 

dilutions (10–1.50 x 103 cells/well). [3H]Thymidine (0.037 Mbq per well; PerkinElmer Life Sciences) was 

added 18 h before harvest cell cultures, and incorporation of [3H]thymidine into the cells was quantified 

using a b-counter. 

Analysis of NK-cell cytotoxicity by chromium release. After 6 d of activation with rIL-2, NK cells were 

tested for cytolytic activity in a 4-h 51Cr release assay. A total of 1×106 target cells (K562 or autologous 

DC) were labeled with 1mCi of Na51CrO4 for  1 h at 37°C. 

Cells were then washed twice with complete medium and incubated with effector cells at an E:T ratio of 

20:1. After incubation for 4 h at 37°C, a sample of supernatant was counted on a Microbeta Trilux 

Scintillation counter (PerkinElmer). Percentage of cytotoxicity was calculated using the formula 

(experimental-spons)/(maximum-spons) ×100%, where spons = release from targets incubated with 

medium alone and maximum  = release from targets induced by 10% SDS (Sigma-Aldrich). 

 Saturating concentrations (10 g/ml) of specific mAbs blocking NK cell receptors were added for the 

masking experiments performed with autologous DCs.  

NK-DC cocolture. NK-DCs were cocoltured at 1:1 ratio (2X 105 /well) in presence of LPS (10 g/ml) in 

48-well cell culture plates. After  16-h incubation, cell culture supernatants were collected and stored at -

20° until analyzed for cytokine production  and NK cells were collected and analyzed for CD107a 

degranulation assay. 

CD107a degranulation assay. r-IL2–activated purified  NK cells were cocultered alone (no target control) 

or with K562 target cells at a 1:1 E:T ratio (2×105 effector cells: 2×105 target cells in a volume of 200 l) in 

the presence of 20 l of PE-CD107a mAb for  3 h at 37°C in total. After the first 1 h 5 l of the secretion 

inhibitor 2mM monensin (Sigma Aldrich, Munich, Germany) in 100% ethanol was added.  At the end of 

coincubation, cells were washed in PBS and stained with mAbs (CD56, CD3) for flow cytometric analysis. 

NK cells were gated by CD56+/CD3- staining, and CD107a expression was determined based on 

background level of staining exhibited by no target control cells. 



6

Cytokine secretion. The levels of IL-12p70 (IL-12) and  IL-15 secreted by mDCs were measured from cell 

culture supernatant by ELISA (R&D Systems and Biosource International). To detect the production of 

IFN- , freshly purified NK cells were cryopreserved until required and cocultured with autologous 

LPS matured DCs in 96-well round-bottom plates with complete medium . The mDC/NK cell ratio was 

1:10. The supernatant of the cultures was collected after 24 h and assayed by ELISA (BD Biosciences). 
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Results 

HIV-1 protease inhibitor treatment affects the immune phenotype and LPS-induced terminal 

differentiation of DC.

To gain novel insights into the impact of HIV-1 PIs on the differentiation program and immunostimulatory 

properties of human DCs, we investigated whether this class of drugs influences the maturation and 

cytokine production of DCs. Therefore, freshly isolated CD14+ monocytes were cultured for 7 days in 

optimal amount of GM-CSF an IL-4 to obtain iDC, and in the presence or absence of 20uM of Saquinavir 

(SQV), Ritonavir (RTV), Indinavir (IDV), Amprenavir (APV) or Nelfinavir (NFV). At this time point, the 

expression of typical differentiation markers of iDC was evaluated by flow cytometry. We found that SQV 

and RTV exerted the strongest effect on iDC immunophenotype, leading to low expression of CD1a and 

CD86. Moreover, SQV and IDV treatment decreased CD36 expression, while APV exposure did not affect 

any of the markers analyzed. Notably, all the drugs tested, with the exception of APV, significantly 

decreased CD209 (DC-SIGN) expression (Figure 1 A). Overall, this results demonstrated that the majority 

of HIV-1PIs tested are able to impair iDC differentiation.  

Next, we examined the terminal maturation of DC following PIs exposure. To this end iDC generated in 

presence or absence of  20uM of Saquinavir (SQV), Ritonavir (RTV), Indinavir (IDV), Amprenavir (APV) 

or Nelfinavir (NFV) were collected, washed and exposed for additional 24 hours to TLR-4 agonist, namely 

Lipopolysaccharide (LPS). As expected, LPS induced a marked increase in double positive CD86/CD83 

percentage in DC growth in regular medium. On the contrary, and in line with the immunophenotype 

findings, the cells that had been exposed to PIs were unable to up-regulate CD86 and CD83, whereas the 

other drugs did not alter the maturation markers analyzed (Figure 1 B). 

This finding seems to missmatch with the previous study by Gruber et al. in which they did not 

observe any effect on iDC differentiation. The discordance can be due to the different protocol applied to 

generate DC. Indeed, conversely to CD14+monocyte-derived DC, plastic-adherent PBMC-derived DC 

contain lymphocytes populations which could impair the outcome of the differentiation process. Overall, 

the results we obtained demonstrated that the majority of HIV-1PIs tested are able to impair iDC 

differentiation. 

HIV-1 protease inhibitor treatment affects the cytokine production of LPS-induced terminal 

differentiated DC. 

 To further investigate the effect of the HIV-PIs on terminal differentiation of DC, we examined the amount 

of pro-inflammatory cytokines (TNF-alpha, IL-12, IL-15) produced in response to LPS by ELISA. We 

focused my study on RTV rather than on SQV, considering that the latter is less used in clinical practice, 

because of the plethora of adverse effects and the low biodisponibility. Furthermore, we compared RTV 

effects to APV, that was the less effective drug in my experimental system. Whereas LPS-dependent TNF-
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alpha and IL-12p40 induction were both unchanged, RTV treatment completely blocked the secretion of 

bioactive IL-12p70 and IL-15 (Figure 2). These findings further substantiate the results of previous studies 

demonstrating that, for example, ritonavir and saquinavir inhibit the production and/or release of 

inflammatory cytokines and chemokines including TNF-alpha, IL-6, and IL-8, by both peripheral-blood 

mononuclear cells and endothelial cells (Pati et al. 2002). This effect of HIV-PIs on inflammatory 

cytokines has been confirmed in treated patients, as PI-HAART has also been shown to inhibit TNF-alpha, 

IL-2 and IFN- production by peripheral-blood mononuclear cells from uninfected individuals who were 

treated with HIV-PIs for prophylactic intervention without acquiring HIV infection (Tovo 2000). Because 

of the great importance of DC in the control of the inflammatory response, it was conceivable that HIV-PIs 

might exert their anti-inflammatory activity by impairing the immunostimulatory properties of this cell 

type.

Inhibitory effects of Ritonavir on the capacity of mDC to activate autologous NK cells. 

Given the central role of 12p70 and IL-15  cytokines in the DC-dependent NK-cells activation (Moretta A 

2005, Ferlazzo G et al. 2002), we asked if RTV-treated DC preserved their ability to interplay with NK 

cells. We first examined the ability of LPS-treated mature DC (mDC) to activate these innate effector cells 

by inducing proliferation of autologous NK cells and IFN-gamma secretion.Therefore, iDCs generated in 

presence or absence of Ritonavir or Amprenavir were washed and then left in regular medium or exposed 

to LPS (10 g/ml). After 6 hours, mDCs (stimulator) were cocultered with autologous fresh NK cells 

(responders) at different ratios. Cells were harvested after 4 d of coincubation, and the proliferation of NK 

cells was measured by 3[H]thymidine incorporation. Long exposure to RTV decreased of about 50% the 

ability of mDC to sustain NK- cells proliferation (figure 3 A). In addition iDCs generated in presence or 

absence of HIV-PIs were washed and then left in regular medium or exposed to LPS (10 g/ml). After 18 h, 

freshly purified autologous NK cells were coincubated with  iDC or mDC  for 24h. Supernatants were 

collected and INF-  concentration was determined by ELISA. As demonstrated in figure 3 B Ritonavir but 

not Amprenavir significantly reduced the ability of LPS-activated DCs to improve IFN-  production by NK 

cells. For the first time here we showed the effects of HIV-protease inhibitors on a novel system: the 

crosstalk DC-NK. In particular, data obtained highlighted that Ritonavir treated DCs lose their capacity to 

efficiently stimulate NK cells, confirming and extending to a novel target the anti-inflammatory effects of 

HIV-PIs. 

Impact of Ritonavir on the ability of mDC to improve tumor-directed cytotoxicity of NK cells. 

In line with precedents reports (Ferlazzo G et al. 2002), we reasoned that the lack of mDC cognate 

activation of NK-cells would affect their cytotoxic effect on a non-cognate susceptible cellular target. To 

test this hypothesis, we co-incubated mDC and NK-cells for 24 hours, and subsequently we analyzed the 

ability of DC-primed NK-cells to kill K562 target. CD107 cytometric analysis shows that K562 lysis is 
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severely decreased by priming with RTV-treated mDC (Figure 4 ). These data suggest that the DCs-

mediated enhancement of tumoricidal potential of NK cells was also markedly by Ritonavir. 

Impaired NK cell-mediated killing of Ritonavir treated mDC. 

We next asked if NK-cells dependent killing of autologous iDCs were active in our system. This function 

depends on the engagement of NKp30 by still-undefined cellular ligands expressed by DCs. Indeed Cr 51+ 

release assay showes that non treated autologous iDC are efficiently killed by NK cells in an NKp30-

dependent manner, as demonstrated by the ability of the specific mAb masking NKp30 (F252) but not of 

the specific mAb masking NKG2D (BAT221) to inhibit the NK killing activity (Figure 5 A). As expected 

untreated mDCs that, upregulate MHC-class I expression become essentially resistant to NK cells (Figure 5 

B).

On the contrary, the treatment with Ritonavir increases the susceptibility to NK-cells mediated lysis of 

mDCs whereas iDC lysis was high irrespective to the treatment (Figure 5 A and B). This apparent paradox 

might be explained by the fact that RTV-treated DC failed to fully mature in response to LPS and even 

upon its stimulation RTV-treated DCs fail to express sufficient amounts of HLA-class I molecules that 

would protect from NK-mediated lysis (Ferlazzo G 2003).  
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Discussion 

 In our study we describe new evidences by which HIV-1 PI, targeting DCs, modulate NK cell function. 

We describe that Ritonavir (RTV) is able to impair MDDC differentiation and function, based on the 

expression of the typical markers and cytokine production. These alterations were responsible for a broad 

defects in NK cells activity. The proliferation, IFN-gamma production, killing ability was impaired and the 

same RTV-treated mDC was more susceptibile to NK cell induced-lysis.

The cross-talk DC-NK is an area of intense investigation in immunology and HIV research.  DC are central 

players of the immune response for their ability to prime naïve T cells and to stimulate, by cytokines and/or 

by cell-cell contact, the majority of the cells involved in the immune response, including NK cells. On the 

other hand, NK cells are the first defense line again extra-cellular pathogen and virus, they can interact with 

DCs regulating their maturation and function, thereby linking the innate and the adaptive immune 

responses. Long-term RTV exposure results deleterious directly to the innate-immune response. IL-12p70 

and Il-15 are multifunction cytokines that act on different cell types to induce and /or enhance 

inflammatory response. We focused on NK cells because they are directly dependent to both these 

cytokines for activation and function. 

One of the major obstacles to the HIV eradication from infected patients is the persistence of reservoirs in 

witch the virus can survive latently and be protected by the drugs. DCs are one of the most important viral 

reservoirs. One of the DC-molecules involved in the process is CD209 (DC-SIGN). CD209 show ability to 

bind with high affinity the HIV-1 envelope protein gp120, and DC-SIGN+ DCs can become a vehicle for 

the in trans infection of CCR5 or CCR7 positive T cells  (Kwon DS et al. 2002) 

In our experimental system we found that, despite the strongest effect on the inhibition of iDC immuno-

phenotype exerted by SQV and RTV, all the drugs tested, with the exception of APV, significantly 

decreased CD209 (DC-SIGN) expression. This implies that DC would be no more able to carry-on virus to 

lymph-nodes within their migrations and the spread of the infection may be reduced.  

Moreover, long-term treatment with RTV makes mDC more susceptible to NK-induced lysis. The effect of 

RTV on the reservoirs equilibrium is therefore double: from one side it reduces the ability of DC to be 

infected by HIV, from the other side it favors the direct killing of the same reservoirs, creating a synergy, 

or at least an additive effect, on the reduction of the infection spread. 

The impairment of DCs differentiation affects the crosstalk between the formers and NK cells.  

The crosstalk between DC and NK is responsible for the correct homeostasis of the innate immune 

response compartment and for a correct inflammatory response. Our study offers a better understanding of  

the well-known anti-inflammatory activity of  the HIV-PIs and  reveals DC-NK functional units as a novel 

potential target for this class of antiviral drug. This might open new fields in drug discovery aimed at the 

synthesis of more specific molecules with a different anti-viral and anti-inflammatory activity. 
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Figure Legends 

Figure 1. Influence of HIV-PIs on immunophenotype and maturation of DCs. (A) iDCs generated in 

presence or absence of HIV-1 PIs were analyzed by flow cytometry. The histograms represent the 

percentage of cells positive for the indicated molecule. (B) iDCs generated in presence or absence of HIV-1 

PIs were washed and then left in regular medium or exposed to LPS (1mg/ml) for 24 hours. Subsequently 

the expression levels of CD86 and CD83 at the surface of DCs were determined by flow cytometry. The 

histograms represent the percentage of cells positive for the indicated molecule.Asterisks indicate a 

statistically significant difference (p< 0.05).

Figure 2. Impact of HIV-PIs on cytokine expression of DCs. iDCs generated in presence or absence of 

HIV-1 PIs were washed and then left in regular medium or exposed to LPS (1mg/ml) for 24 

hours.Supernatants were collected and the levels of secreted cytokines were evaluated by ELISA. The 

results are presented as mean± s.e. of duplicate determinations.Asterisks indicate a statistically significant 

difference (p<0.05) between the indicated cytokines production of Ritonavir-treated DCs in comparison to 

untreated DCs.  

Figure 3. Influence of Ritonavir on the capacity of DCs to prime autologous NK cells. (A) iDCs generated 

in presence or absence of Ritonavir or Amprenavir were washed and then left in regular medium or 

exposed to LPS (10 g/ml). After 6 hours, mDCs (stimulator) were cocultered with autologous fresh NK 

cells (responders) at different ratios. Cells were harvested after 4 d of coincubation, and the proliferation of 

NK cells was measured by 3[H]thymidine incorporation.(B) iDCs generated in presence or absence of 

HIV-Pi were washed and then left in regular medium or exposed to LPS (10 g/ml). After 18 h, freshly 

purified autologous NK cells were coincubated with iDC or mDC  for 24h. Supernatants were collected and 

INF-  concentration was determined by ELISA. iDCs alone and NK cells alone or IL2 activated served as 

negative controls. All data are presented as the mean ± SD of experiments conducted on 8 healthy donors. 

Asterisks indicate a statistically significant difference ( p< 0.05). 

Figure 4. Ritonavir reduces the DCs-mediated enhancement of tumoricidal potential of NK cells. iDCs 

generated in presence or absence of Ritonavir or Amprenavir were washed and cultured with purified 

CD56+CD3- NK cells in the presence of LPS (10 g/ml). After 18 h, NK cells were separeted from 

adherent DCs and cocultured in round-bottom 96-well plates with K-562 target cells at an E/T ratio of 1:1 

in presence of anti-CD107a mAb. After 4 h of culture, cells were stained with the two other indicated 

mAbs and analyzed by multiparametric flow cytometry. The histograms represent the percentage of 

CD56+CD3- -gated NK cells staining positive for CD107 in the presence of targets following coincubation 

with treated or untreated mDC compared with control cultures incubated in the absence of mDC. All data 

are presented as the mean ± SD of experiments conducted on 8 healthy donors. Asterisks indicate a 

statistically significant difference ( p< 0.05).

Figure 5. Impaired NK cell-mediated killing of Ritonavir treated mDC. (A) Autologous iDC cytolysis 

exerted by rIL-2–activated NK cells purified from a healthy donor . (B) Autologous mDC cytolysis exerted 

by rIL-2–activated NK cells purified from a healthy donor NK cells were incubated either in the absence 

(baseline lysis) or presence of a specific mAb masking NKp30 (F252) or NKG2D (BAT221). The NK 

cell/DC ratio in all experiments was 10:1. All data are presented as the mean ± SD of experiments 

conducted on 8 healthy donors. Asterisks indicate a statistically significant difference ( p< 0.05).
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