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ABSTRACT 
 
 
 

The UbcH10 gene belongs to the E2 gene family and encodes for a 19.6 kDa 
protein involved in ubiquitin-dependent proteolysis. The hybridization of an 
Affymetrix HG_U95Av2 microarray led us to highlight that this gene is up-
regulated by 150 fold in all of the thyroid carcinoma cell lines in comparison to a 
primary cell culture of normal thyroid origin. To assess the role of UbcH10 in 
cancer progression, we analyzed its expression and its clinical/pathological 
relevance in breast and thyroid carcinomas and in lymphoproliferative diseases. 

 

In these tumor types, analysis of UbcH10 expression was performed on both cell 
lines and clinical samples by quantitative RT-PCR, Western blot, 
immunohistochemistry and flow cytometry. The effect of UbcH10 protein 
suppression by RNA interference was also evaluated in different tumor cell lines.  

 

Consistent data were derived from all tumor types. Deregulated UbcH10 
expression was clearly associated to a highly malignant phenotype. Implications 
were both diagnostic and prognostic: UbcH10 specifically associated with the 
breast tumors more aggressive expressing ErbB2; UbcH10 specifically marked 
high grade non-Hodgkin lymphomas; high UbcH10 expression increased the 
suspicion of malignancy on preoperative thyroid biopsies. In several cell lines 
suppression of UbcH10 expression affected the neoplastic cell growth potential. 

 

All together our results indicate that UbcH10 is a marker of aggressive neoplastic 
behavior. Assessing its  expression on clinical samples may contribute to both 
cancer diagnosis and prognosis. Moreover, the suppression of its function is to be 
evaluated as a potential therapeutic tool.   
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1. BACKGROUND 
 

1.1 The cell cycle 

The fundamental process for the development of cell life is the reproduction. It 
occurs by an elaborate series of events called the cell cycle, whereby 
chromosomes and other components are duplicated and then distributed into two 
daughter cells (Figure 1). A complex network of regulatory proteins governs 
progression through the steps of the cell cycle (O Morgan 2007).  

 

 
Figure 1 The cell cycle. Cell reproduction begins with the duplication of the cell’s 
components, including the exact duplication of each chromosome in S phase. These 
components are then divided equally between two daughter cells in M phase. 

 

The stages of the cell cycle are typically defined on the basis of chromosomal 
events. In the early cell cycle (the S phase), the DNA is replicated. The second 
phase of the cell cycle is the M phase, which is typically composed of two events: 
nuclear division (mitosis) and cell division (cytokinesis). The period between the 
end of the M phase and the beginning of the next is called Interphase. Most cell 
cycles contain additional phases, known as gap phases, between the S and the M 
phases. Gap phases provide additional time for cell growth, which generally 
requires much more time than is needed to duplicate and segregate the 
chromosomes. Gap phases also serve as important regulatory transitions, in which 
progression to the next cell-cycle stage can be controlled by a variety of 
intracellular and extracellular signals (O Morgan 2007). 
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1.2 The cell cycle control system 

All the events of the cell cycle are under the strict control of a regulatory network 
called the cell cycle control system. Its central components are a family of 
enzymes: the Cyclin-dependent kinases (Cdks). Like other protein kinases, Cdks 
catalyze the covalent attachment of phosphate group (derived from ATP) to 
protein substrates. This phosphorylation changes the substrate’s enzymatic activity 
or its interaction with other proteins. Cdks activities rise and fall as the cell 
progresses through the cell cycle. So, for example, an increase in Cdk activity at 
the beginning of the S phase causes the phosphorylation of proteins that then 
initiate the DNA synthesis. Cdks are activated by binding to regulatory proteins 
called cyclins (Figure 2) (Morgan 2007; Murray and Kirschner 1989). 
 

 
Figure 2 Cyclin-dependent kinase activation. The cell cycle control system is based on 
cyclin-dependent kinases (Cdks) that are activated at specific cell cycle stages by 
regulatory subunits called cyclins. 

 

Oscillations in Cdk activity during the cell cycle are due primarily to changes in 
the amounts of cyclins. Different types of cyclins are produced at different cell 
cycle phases, resulting in the periodic formation of distinct cyclin-Cdk complexes 
that trigger different cell cycle events that form the core of the cell cycle control 
system. The regulatory transitions are the checkpoints. The first is called Start or 
the G1/S checkpoint. When conditions are ideal for cell proliferation, G1/S and S 
phase cyclin-Cdk complexes are activated, resulting in the phosphorylation of 
proteins that initiate the DNA replication, the centrosome duplication and other 
early cell cycle events. G1/S and S phase cyclin-Cdk complexes also promote the 
activation of the M phase cyclin-Cdk complex, which drives the progression 
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through the second checkpoint to the entry into mitosis (G2/M checkpoint). The M 
phase cyclin-Cdks phosphorylate proteins, that promote spindle assembly, bring 
the cell to methaphase. The third checkpoint is the transition from metaphase to 
anaphase, which leads to sister chromatid segregation, to completion of mitosis 
and to cytokinesis. Progression through this checkpoint occurs when the M phase 
cyclin-Cdk complexes stimulate an enzyme called the anapha- promoting complex 
(APC), which causes the proteolytic destruction of cyclin and of proteins that hold 
the sister chromatids together (Hartwell and Weinert 1989). Activation of this 
enzyme therefore triggers the sister chromatid separation and segregation. 
Destruction of cyclins is required for the spindle disassembly, for the completation 
of mitosis, and for cytokinesis (Figure 3). 
 

 

Figure 3 Overview of cell cycle control. 

 

The Cdks also associate with inhibitory subunits. These Ckd inhibitors (Ckis) 
mediate cell cycle arrest in response to various antiproliferative signals (Sherr and 
Roberts 1995). Temporally regulated degradation of cyclins and Ckis is carried out 
by the ubiquitin-proteosome system ( Nefsky  and Beach 1996). Thus, destruction 
of the cell cycle regulatory proteins is a critical mechanism by which mitogenic 
and antimitogenic stimuli control the cell cycle (Baringa 1995; King et al. 1996; 
Rolfe et al. 1997). 
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1.3 Ubiquitin Proteasome pathway 

The ubiquitin proteasome pathway is the principal mechanism for protein 
catabolism in the mammalian cytosol and nucleus. This highly regulated pathway 
affects a wide variety of cellular substrates and processes, including cell cycle and 
division. Defects in this system can result in the pathogenesis of several important 
human diseases (Glickman and Ciechanover 2002). Degradation of a protein via 
the ubiquitin proteasome pathway involves two discrete and successive steps: 
tagging of the substrate protein by the covalent attachment of multiple ubiquitin 
molecules (conjugation); and the subsequent degradation of the tagged protein by 
the 26S proteasome (Glickman and Ciechanover 2002). This classical function of 
ubiquitin is associated with housekeeping functions, with the regulation of protein 
turnover and with antigenic-peptide generation. More recently, it has become 
evident that protein modification by ubiquitin also has unconventional (non-
degradative) functions such as the regulation of DNA repair and the endocytosis 
(Bergink and Jentsch 2009; Léon and Haguenauer-Tsapis 2009). These non-
traditional functions are dictated by the number of ubiquitin units attached to the 
proteins (mono- versus poly-ubiquitination) and also by the type of ubiquitin chain 
linkage that is present. Usually, the attachment of ubiquitin to the ε-amine of 
lysine residues of target proteins requires a series of ATP-dependent enzymatic 
steps by E1 (ubiquitin activating), by E2 (ubiquitin conjugating) and by E3 
(ubiquitin ligating) enzymes (Figure 4). The biochemical process of ubiquitin 
conjugation is started by the ATP-dependent E1 enzyme, followed by its transfer 
to the active site cysteine of E2 enzymes (also called Ubc in yeast, or UbcH for 
human enzymes). These enzymes perform the second step in the ubiquitin 
conjugation reactions by forming a thiolester linkage with the C-terminal glycine. 
E2 enzymes function alone and in conjunction with E3 ligases to catalyze the 
attachment of ubiquitin to the acceptor lysine residues of target proteins to form 
isopeptide bonds (Peters et al. 1998; Hilt and Wolfe 2000). Ubiquitin can be 
conjugated to itself via specific lysine (K6, K11, K27, K29, K33, K48 or K63) 
residues which results in diverse types of chain linkages. These covalent ubiquitin 
bonds (isopeptide linkages) can be reversed by specific deubiquitinating enzymes 
which remove ubiquitin conjugates from proteins and disassemble the ubiquitin 
chains (Glickman and Ciechanover 2002).   
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Figure 4 The ubiquitin proteolytic pathway. 1: Activation of ubiquitin by the ubiquitin-
activating enzyme E1, an ubiquitin-carrier protein, E2 (ubiquitin-conjugating enzyme, 
UBC), and ATP. The product of this reaction is a high-energy E2_ubiquitin thiol ester 
intermediate. 2: Binding of the protein substrate, via a defined recognition motif, to a 
specific ubiquitin-protein ligase, E3. 3: Multiple (n) cycles of conjugation of ubiquitin to the 
target substrate and synthesis of a polyubiquitin chain. E2 transfers the first activated 
ubiquitin moiety directly to the E3-bound substrate, and in the following cycles,it transfers 
to previously conjugated ubiquitin moiety. 4: Degradation of the ubiquitin- tagged 
substrate by the 26S proteasome complex with release of short peptides. 5: Ubiquitin is 
recycled via the activity of deubiquitinating enzymes (DUBs) (Glickman and Ciechanover 
2002). 
 

The proteasome is a large multicatalytic protease (26S) that degrades 
polyubiquitinated proteins to small peptides. It is composed of two subcomplexes: 
a 20S core particle (CP), that carries the catalytic activity, and a 19S regulatory 
particle (RP). The catalytic sites are localized to some of the CP subunits. Each 
extremity of the 20S barrel can be capped by a 19S RP. One important function of 
the 19S RP is to recognize the ubiquitinated proteins and other potential substrates 
of the proteasome. After  degradation of the substrate, short peptides derived from 
the substrate, are released, as well as reusable ubiquitin (Bochtler et al. 1999; 
Glickman 2000; Voges et al. 1999). 
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1.4 UbcH10 and its involvement in cancer 

The UbcH10 gene belongs to the E2 gene family and codes for a protein of 19.6 
kDa that is involved in the ubiquitin-dependent proteolysis (Hershko et al. 1998; 
Joazeiro et al. 2000). This enzyme is required for the destruction of the mitotic 
cyclins and for the cell cycle progression. Multiple transcript variants encoding 
different isoforms, have been found for this gene.  

As mentioned earlier the progression through the cell cycle is accomplished by the 
degradation of key cell-cycle regulators via ubiquitin proteasome pathway (Pickart 
2001; Harper et al. 2002; Peters 2002; De Gramont et al. 2006; Rape et al. 2006). 
Deregulation of appropriate cell cycle control often results in chromosomal 
instability, which is a potential trigger for the onset of cancer (Yamasaki and 
Pagano 2004). 

The role of UbcH10 in the cell progression is closely connected to E3-APC that is 
the central coordinator of the cell-cycle progression in mitosis and in G1 phase 
(Peters 2002). Their interaction and cooperation within the cell cycle is finely 
regulated at different levels. Many molecules as cyclin and their inhibitors, mitotic 
regulators (Emi1) (Lukas et al. 1999; Hsu et al. 2002; Rape and Kirschner 2004) 
and co-activators (Cdc20 and Cdh1) are involved in these mechanisms (Figure 5) 
(Burton et al. 2005; Kraft et al. 2005; Yamano et al. 2004; Glotzer et al. 1991; 
Pfleger and Kirschner 2000; Hsu et al. 2002; Reimann et al. 2001). In particular 
UbcH10 in conjunction with the APC catalyzes the destruction of the cyclins A 
and B, playing an important role in the control of the cell exit from mitosis. 
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Figure 5 The Anaphase Promoting Complex (APC). The anaphase-promoting 
complex/cyclosome (APC/C) is a ubiquitin ligase that controls the cell-cycle progression 
by targeting proteins for the destruction from the 26S proteasome (Nakayama and 
Nakayama 2006). 

 

These results suggest that UbcH10 is potentially involved in the termination of the 
spindle assembly checkpoint and further implies that aberrant UbcH10 expression 
impairs the spindle assembly checkpoint resulting in chromosomal instability 
(Summers et al. 2008;  Kriegenburg t al. 2008). So, it is not surprising to find that 
mutation of the active site cysteine of UbcH10 confers a dominant-negative 
phenotype that results in metaphase arrest, demonstrating that this protein is 
essential for the cell cycle progression (Townsley et al. 1997). Although clearly 
associated with the regulation of the cell cycle, the potential role of UbcH10 in 
cancer development has only recently been explored. Expression of the mouse 
ortholog of human UbcH10, mEC-2, was reported up-regulated in NIH3T3 cells 
transformed by EWS/FLI1 (activated by cdc42, v-ABL or c-myc), but not in a 
non-transformed NIH3T3 clone expressing EWS/FLI1 (Arvand et al. 1998). 
Recently, a comparison of expression levels of 17 E2 ubiquitin ligase genes in 
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normal and tumor tissues identified UbcH10 as the gene most specifically 
associated with cancer and, consistent with this notion, its over-expression in 
NIH3T3 cells led to an increased proliferative capacity (Okamoto et al. 2003). 
Moreover, in expression profiling studies, it was reported that the levels of 
UbcH10 transcript are highly elevated in different types of cancers compared with 
the corresponding normal tissues (Welsh et al. 2001; La Tulippe et al. 2002; 
Wagner et al. 2004, Beringieri et al. 2007; Troncone et al. 2009). It was 
demonstrated that its over-expression in some carcinomas may be due, at least in 
part, to genomic amplification of its locus (Wagner et al. 2004). It was also 
reported that the silencing of UbcH10 by RNA interference (RNAi), in 
combination with TRAIL/DR5 agonistic antibodies, resulted in enhanced cell 
death only in neoplastic cells but not in non-malignant human ones (Wagner et al. 
2004). 

 

1.5 UbcH10 as a potential clinical marker in breast 
cancer 

The recent techniques based on microarray cDNA hybridization have allowed the 
evaluation of the simultaneous expression of thousands of genes and, therefore, the 
identification of genes specifically regulated in neoplastic diseases (Michiels et al. 
2007). For this purpose we have recently examined the gene expression profile of 
thyroid carcinoma cell lines compared with normal counterpart. Among the mostly 
up-regulated genes we identified the UbcH10 gene. We were able to demonstrate 
that abundant UbcH10 levels were present in the highly invasive, undifferentiated 
thyroid carcinomas (Pallante et al. 2005). More recently, it was shown that the 
UbcH10 expression significantly correlates with the tumor grade and the 
undifferentiated histotype of the ovarian carcinomas. Moreover a significant 
relationship was observed between the UbcH10 expression and the overall survival 
(Berlingieri et al. 2007). Therefore, we decided to extend the studies of UbcH10 
expression to breast carcinomas representing the first highest incidence neoplasia 
in women. 

 

1.6 Proliferation assessment is relevant in human 
lymphomas 

Proliferation markers are useful in the pathological assessment of Hodgkin’s 
lymphoma (HL) and non-Hodgkin’s lymphoma (NHL) (Sanchez-Beato et al. 
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2003). In particular, the Ki67 protein, whose expression is associated with cell 
cycle stages G1, S and G2 ⁄ M, is routinely used to grade NHLs into low- and 
high-growth fraction neoplasms (Bryant et al. 2006). The former includes B-cell 
small lymphocytic lymphoma⁄ chronic lymphocytic leukaemia (SLL ⁄ CLL), 
splenic marginal zone lymphoma (SMZL), mantle cell lymphoma (MCL) and 
follicular lymphoma (FL); the low proliferative index of these tumors is associated 
with a small cell size, advanced disease stages, low clinical aggression and poor 
response to chemotherapy (Seng et al.1997; Capello et al. 2000). In contrast, 
diffuse large B-cell lymphoma (DLBCL), Burkitt’s lymphoma (BL) and peripheral 
T-cell lymphoma (PTCL) have a higher proliferative index, larger cells and an 
aggressive behavior; PTCL is poorly sensitive to current treatments, whereas 
DLBCL and BL are potentially responsive to chemotherapy (Sanchez-Beato et al. 
2003). It was recently shown that proliferation assessment by the G2 ⁄ M cell cycle 
genes is more predictive to treatment response than that based on the Ki67 protein 
(Obermann et al. 2005; Bjorck et al. 2005). Thus, the search for novel proliferation 
markers whose expression specifically covers the G2 ⁄ M cell cycle window is 
worth pursuing. A preliminary screening of anatomical UbcH10 expression has 
shown that it is highest in lymphoid tissue profiling (Wagner et al. 2004). More 
recently, UbcH10 was also shown to be up-regulated in a small cohort of FL 
patients by gene expression profiling (Bjorck et al. 2005). However, UbcH10 
investigation has not yet been systematically extended to lymphomas, so we 
screened UbcH10 expression in cell lines and tissues representative of a wide 
range of indolent and aggressive lymphomas. We also evaluated UbcH10 cell 
cycle regulation and the effect of suppression of its synthesis on lymphoma cell 
growth. 

 

1.7 UbcH10 as a preoperative malignancy candidate 
marker on thyroid Fine Needle Aspirate (FNA) 

In spite of their very high frequency, only rarely thyroid nodules are malignant 
(Mazzaferri 1993). Fine needle aspiration (FNA) is widely used to identify those 
nodules whose treatment unequivocally requires surgery (Mazzaferri 1993). 
However, FNA is not always able to differentiate between benign and malignant 
lesions (Baloch et al. 2002).  This uncertainty is clearly conveyed by the recent 
National Cancer Institute (NCI) thyroid FNA conference classification (Baloch et 
al. 2008). The follicular neoplasm category applies to a monotonous population of 
three-dimensional groups of follicular cells with scarce colloid; the suspicious for 
malignancy class is recommended when features suggesting malignancy are only 
focally observed (Baloch et al. 2008). These uncertain diagnosis do not correspond 
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to a single entity, but rather to a wide range of inflammatory, hyperplastic, and 
neoplastic histological lesions (Baloch et al. 2008). These latter including 
follicular adenoma (FA), follicular carcinoma (FTC) and follicular variant of 
papillary thyroid carcinoma (PTC), do not or only rarely harbour RET/PTC re-
arragements or BRAF mutations (Xing 2005). Thus, panels of mRNA and protein 
cancer markers are needed to refine indeterminate diagnosis (Saggiorato et al. 
2005). In this setting the 3-gene mRNA assay, which included cyclin D2 
(CCND2), protein convertase 2 (PCSK2), and prostate differentiation factor 
(PLAB), allowed molecular classification of FTC and FA (Weber et al. 2005; 
Shibru et al. 2008). 

Genes that regulate cell-cycle progression may be differentially expressed in 
malignant versus benign thyroid nodules (Kebebew et al. 2006). Since UbcH10 is 
one of the genes most up-regulated in thyroid cancer cell lines and tissues it is 
conceivable to postulate for this marker a role on FNAs. In this study UbcH10 was 
applied to follicular neoplasm and suspicious for malignancy thyroid FNA. 
UbcH10 expression was evaluated both at transcriptional and translational levels. 
At the mRNA level, its diagnostic performance was compared with those of the 
most performing components (CCND2, PCSK2) of the 3-gene diagnostic assay; 
similarly, at the protein level UbcH10 was compared to that of the standard 
proliferation marker  Ki-67.   
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2. AIMS OF THE STUDY 
 

UbcH10 (also known as E2C or UBE2C) is a cell cycle-related protein involved in 
mitosis completion. Its ubiquitin-conjugating enzymatic activity (E2) is exerted 
from G2 ⁄ M to early G1 phase, when UbcH10 together with ubiquitin ligase (E3) 
transfers ubiquitin to the mitotic cyclins, thereby promoting their degradation by 
the proteosome. Once mitotic cyclins are ubiquitinated, UbcH10 triggers its own 
destruction. This event marks mitotic completion and provides the molecular 
switch that allows cells to bring cell division to an end and proceed to the new 
round of the DNA duplication.  

 

To assess the role of UbcH10 in cancer progression, we analyzed its expression 
and its clinical/pathological relevance in breast and thyroid carcinomas and in 
lymphoproliferative diseases.  In these tumor types, we evaluated whether UbcH10 
expression differs between normal and neoplastic tissues and whether its status is 
correlated to relevant clinical parameters. The effect of UbcH10 protein 
suppression in different tumor cell lines was also evaluated.  

 

The final objective of this study would be the perspective to use UbcH10 as a new 
additional tool for diagnosis and prognosis of both epithelial and lymphoid 
neoplasms. 
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3. MATERIALS AND METHODS 
 

3.1 Cell culture 

Lymphomas cell lines were obtained from the Continuous Cell Lines Collection at 
CEINGE Biotecnologie Avanzate (Naples, Italy). The HL cell lines used in this 
study were HDLM2, KM-H2, L-428, L-540 and L-1236. The NHL cell lines were 
Raji (Burkitt’s lymphoma) and Karpas-299 (human anaplastic large cell 
lymphoma), Hut-102 and Hut-78 (cutaneous T-cell lymphoma). The human breast 
carcinoma cell lines used in this study were MB231 (metastasis of 
adenocarcinoma); MDA468 (metastasis of adenocarcinoma); MDA436 (metastasis 
of adenocarcinoma); MCF7 (metastasis of adenocarcinoma); T47D (metastasis of 
ductal carcinoma) and ZR 75-1 (metastasis of ductal carcinoma); they were 
purchased from the American Type Culture Collection (ATCC). All cell lines were 
grown as already described (Troncone et al. 2009). 

 

3.2 Human tissue samples 

Neoplastic human breast and lymphoid tissues were obtained from surgical 
specimens and immediately frozen in liquid nitrogen. Samples were stored frozen 
until RNA or protein extractions were performed. All the samples were  obtained 
at the Dipartimento di Scienze Biomorfologiche e Funzionali, University of 
Naples Federico II, upon approval of the University Ethics Committee.  

 

3.3 Thyroid FNA samples 

The FNAs were carried out at the Dipartimento di Scienze Biomorfologiche e 
Funzionali (University of Naples Federico II), as described elsewhere (Zeppa et al. 
1990; Troncone et al. 2000). All patients of this study provided informed consent 
and the study was approved by the University Federico II Ethics Committee. 
Thyroid FNAs are routinely performed by the cytopathologist using 25-gauge 
needles, under ultrasound guidance aided by the radiologist. From each passage by 
the nodule the obtained material is smeared into one or two slides. On-site Diff-
Quik stained smears are prepared from the first pass for rapid assessment of 
specimen adequacy. When a neoplastic lesion is suspected from the on-site 
assessment, additional passes are performed. The rationale behind this study 
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sample collection method was to ensure first an adequate cytological diagnosis 
and, then, to exploit the left-over material for UbcH10 analysis. A total of 103 
cases with a cytological diagnosis of either follicular neoplasm or suspicious for 
malignancy  were prospectively collected. Histological follow-up was available in 
84 cases, that represented this study series. Fifty-eight patients were women and 
26 were men (age range 18-75). On review, histology showed dominant 
hyperplastic nodule in 24 cases, Hashimoto’s thyroiditis (HT) in 4 cases, follicular 
adenoma (FA) in 26 cases, papillary thyroid carcinoma (PTC) in 24 cases, and 
follicular cell carcinoma (FC) in 6 cases. Thus, on histology, the malignancy rate 
of our series was 35,7 %, which confirms that the performance of traditional 
cytology in this setting is not totally reliable (Baloch et al. 2002).  This limit is 
intrinsic to the method and it is not due to our sample collection procedures.  

 

3.4   RNA isolation 

Total RNA was extracted from tissues and cell cultures using the RNAeasy mini 
kit (Qiagen, Valencia, CA) according to the manufacturer’s instructions. The 
integrity of the RNA was assessed by denaturing agarose gel electrophoresis. 

 

3.5 Reverse transcriptase and qPCR analysis  

Reverse transcription  

1 µg of total RNA from each sample was reverse-transcribed with QuantiTect® 
Reverse Transcription Kit (Qiagen) using an optimized blend of oligo-dT and 
random primers according to the manufacturer's instructions.  

 

TaqMan qRT-PCR: selection of primers and probes 

To design a quantitative real-time polymerase chain reaction (qRT-PCR) assay the 
Human ProbeLibrary system (Exiqon, Vedbaek, Denmark) was used. Using the 
free ProbeFinder assay design software, which is included in the package, the best 
probe and primer pair was chosen. To amplify a fraglnent for RT-PCR ofUbcH10 
mRNA, its accession number NM_007019 was entered on the assay design page 
of the ProbeFinder software. The sequences of forward and reverse primers are 
reported in Table 1 and they correspond to the nucleotides 172-190 for the forward 
and 443-425 for the reverse. The probe number was 'human #58' (according to the 
numbering of Exiqon's Human ProbeLibrary kit). The same procedure was used to 
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choose the probe and primers for the housekeeping gene glucose 6-phosphate 
dehydrogenase (g6pd; accession number X03674). An amplicon of 106 
nucleotides that spanned the third and fourth exons was chosen. The probe number 
was 'human #05' (according to the numbering of Exiqon's Human ProbeLibry kit) 
and the primer sequences are reported in Table 1. All fluorogenic probes were 
dual-labelled with FAM at the 5' end and with a black quencher at the 3' end. 

 

qRT-PCR  

Relative Quantitative TaqMan PCR was performed in a Chrom04 Detector (MJ 
Research, Waltham, MA, USA) in 96-well plates using a final volume of 20 )11. 
For PCR we used 8 )11 of 2.5x RealMasterMix™ Probe ROX (Eppendorf AG, 
Hamburg, Germany), 200 nM of each primer, 100 nM probe and cDNA generated 
from 50 ng of total RNA. The conditions used for PCR were 2 min at 95°C, and 
then 45 cycles of 20 s at 95°C and I min at 60°C. Each reaction was performed in 
duplicate. The 2-ΔΔct method to calculate the relative expression levels was used 
(Livak KJ et a1. 2001). 

 

Syber Green qRT-PCR  

We also carried out qRT-PCR reactions in a final volume of 20 µl using 10 µl of 
2x Power SYBR Green PCR Master Mix (Applied Biosystems), 200 nM of each 
primer and cDNA generated from 50 ng of total RNA. The conditions used for 
PCR were 10 min at 95°C and then 45 cycles of 30 s at 95°C and 1 min a 60°C. 
Each reaction was carried out in duplicate, and at the end of the PCR run, a 
dissociation curve was constructed using a ramping temperature of 0.2°C per sec 
from 65°C to 95°C. A single melting point was obtained for all the genes analyzed 
and HGUS amplicons (data not shown). The HGUS gene served as control. The 
primers used are reported in Table 1. 
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Table 1 List of primers  

Expression Fwd 5'    3' Fwd 5'    3' 

CCND2 GGACATCCAACCCTACATGC CGCACTTCTGTTCCTCACAG 

G6PD ACAGAGTGAGCCCTTCTTCAA GGAGGCTGCATCATCGTACT 

HGUS CTCATTTGGAATTTTGCCGATT CCCAGTGAAGATCCCCTTTTTA 

PCSK2 GAGAAGACGCAGCCTACACC CTGCAAAGCCATCTTTACCC 

UbcH10 TGCCCTGTATGATGTCAGGA GGGACTATCAATGTTGGGTTCT

 

The Mann-Withney U Test was used to determine differences between mRNA 
expression levels. A P value of <0.05 was considered statistically significant. To 
determine the diagnostic accuracy of this gene assay, we determined the area 
under the curve (AUC) of the receiver operating characteristic (ROC) curve for 
each gene individually and in combination by using logistic regression analysis.  

 

3.6 Protein extraction, Western blotting, and antibodies  

The detailed procedure for protein extraction and Western blotting for UbcH10 has 
been described in detail in the original article Troncone et al. 2009.  

 

3.7  Tissue microarray and conventional immunohistochemistry  

Tissue samples, technique and evaluation  

The detailed procedure for IHC for UbcH10, Ki-67 and Cyclin B1 has been 
described in detail in the original article Berlingieri et al. 2007 and Troncone et al. 
2009.  
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3.8 Immunostaining on Cell Blocks (CBs) 

The residual material from one or two passages by the lesion was processed as cell 
block (CB) and dedicated to UbcH1 0 and Ki-67 immunostainings. The CBs were 
prepared with the plasma-thrombin clot technique as described elsewhere 
(Sanchez et al. 2006). The criteria for CB adequacy were the presence of three or 
more groups of follicular cells or two or more tissue fragments according to 
Sanchez et al. Only 57 cases (67,8%) had a contributory CB and that were 
adequate for UbcH10 assessment by immunostaining. Immunocytochemistry on 
FNA-derived, formalin-fixed, and paraffin-embedded CBs was done as described 
elsewhere5. Briefly, antigen retrieval microwave treatment (0.01 M citrate buffer, 
pH 6.0) was applied for three cycles of 5 min each at 750 W. Endogenous 
peroxidase activity was quenched with methanol-hydrogen peroxide (3%) for 15 
min. After blocking with unrelated antiserum, slides were incubated with the 
primary antibodies: rabbit polyclonal anti-UbcH10 (BostonBiochem), diluted 1: 
1000; mouse monoclonal anti-Ki67, clone Mib-l (Dako, Glostrup, Denmark) 
diluted 1: 100. After incubation with the primary antibodies, CB sections were 
stained with specie-specific biotinylated secondary antibodies, followed by 
peroxidase-labelled streptavidin (Dako); the signal was developed by using 
diaminobenzidine chromogen (Dako) as substrate. Incubations with unrelated 
antibodies or without the specific antibodies were used as negative controls. Single 
cells were scored for UbcH 10 and Ki-67 expression with a computerized system 
(Ibas 2000, Kontron, Zeiss, Munich, Germany) as described elsewhere (Troncone 
et al. 2007). Scoring was done taking into account in the case of Ki67, only 
nuclear reactivity, whereas for UbcH10 cells showing nuclear and/or cytoplasmic 
reactivity were considered to be positive. To determine the cut-off value most 
predicable of malignancy, we calculated the area under the curve (AUC) of the 
receiver operating characteristic (ROC) for both UbcH10 and Ki-67 by means of 
the SPSS Inc. (Cary, NC) software package. Sensitivity, specificity, positive 
predictive value (PPV), negative predictive value (NPV) and diagnostic accuracy 
were calculated with standard formulae for each stain separately and for the 
combination of both stains, using benign vs malignant histological diagnosis as the 
standard.  

 

3.9 RNA Interference 

The detailed procedure for UbcH10 RNA interference experiments has been 
described in detail in the original article (Troncone et al. 2009). 
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3.10 Flow cytometry for UbcH10 expression 

Peripheral blood lymphocytes and neoplastic cell lines were analysed for 
expression of the UbcH10 protein by flow cytometry (Becton Dickinson FACS 
Canto II; New York, NY, USA). Samples were processed as described in 
Troncone et al. 2009. We evaluated UbcH10 protein levels also during the 
different phases of the cell cycle using biparametric staining for DNA and for 
UbcH10 (Troncone et al. 2009). 
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4. RESULTS AND DISCUSSION 

 

4.1  UbcH10 gene is overexpressed in breast carcinoma cell lines 

We evaluated the expression of UbcH10 by RT-PCR in breast carcinoma cell lines 
in comparison to the normal tissue. All of the carcinoma cell lines showed a high 
UbcH10 expression that, conversely, was barely detectable in the normal tissue 
(Figure 6A). These results were confirmed by Western blot analysis that showed 
the presence of an abundant band of 19.6 kDa corresponding to the UbcH10 
protein, compared to the normal breast tissue (Figure 6B).  

 

 
 

Figure 6 UbcH10 expression in human breast carcinoma cell lines. (A) UbcH10 gene 
expression analysis by RT-PCR in human breast carcinoma cell lines versus the normal 
breast tissue (NB). β-Actin gene expression was evaluated as control to normalize the 
amount of the used RNAs. (B) UbcH10 protein expression analysis by Western blot in the 
same human breast carcinoma cell lines. Blot against α-Tubulin has been performed as 
control for equal protein loading. 
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4.2 Analysis of UbcH10 expression in normal and neoplastic 
breast tissues by RT-PCR and Western blot analysis 

UbcH10 expression was also evaluated by RT-PCR analysis on a panel of  
matched tumour/normal tissues. As shown in Figure 7A, an amplified band of 115 
bp was clearly detected in two ductal, two lobular and one mixed carcinoma  
samples, but not in one mastopathy and in all the corresponding normal breast 
tissues. Similar results were obtained when the UbcH10 protein levels were 
analysed as demonstrated by a representative Western blot shown in Figure 7B. A 
band corresponding to the UbcH10 protein, in fact, was detected in ductal, lobular 
and mixed carcinoma tissues, but not in two mastopathies and in normal breast 
tissues. Equal amounts of total proteins were used for each sample as demonstrated 
by the same gel analysed with an antibody against a-Tubulin. Therefore, these data 
show a strong overexpression of UbcH10 in breast malignancies. 
 

 
Figure 7 UbcH10 expression in human breast fresh tumour samples. (A) RT-PCR 
analysis of UbcH10 expression in human breast tumour samples versus their normal 
counterparts. b-Actin expression shows the same amount of RNAs used. NB, normal 
breast tissue; (B) Western blot analysis of UbcH10 protein expression in a panel of breast 
neoplasias. The level of a-Tubulin has been used as loading control. NB, normal breast 
tissue. 
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4.3 Immunostaining pattern of UbcH10 expression in breast 
cancer 

To confirm the UbcH10 overexpression we analyzed 103 malignant and 21 benign 
cases by immunohistochemical technique because it allows a rapid and sensitive 
screening of breast pathological tissues and is amenable to regular use as a routine 
diagnostic test. The immunocytochemical staining pattern of UbcH10 in breast 
carcinomas differed from that observed in benign breast samples. In fact, the latter 
were almost always completely negative for UbcH10 expression and the mean of 
cells expressing UbcH10 was 0.22%. Only occasionally, single UbcH10-labelled 
breast epithelial cells could be observed by meticulous scrutiny (Figure 8A). 
Conversely, the UbcH10 staining was always easily detectable in the nuclei of the 
breast carcinoma cells with a strong staining intensity, mostly evident in cells 
showing mitotic figures (Figure 8B and 8C).  
 

 

Figure 8 Immunostaining pattern of UbcH10 expression in breast cancer. UbcH10 
expression in benign (A) (original magnification, 25x) and malignant (B, C) (original 
magnification, 25x) breast tissues. While benign tissue is lacking UbcH10 expression (A), 
ductal cancer (C) displays high levels of protein expression. Abundant UbcH10 expression 
is also shown by lobular cancer (B): note a benign duct negative for UbcH10 expression, 
whereas infiltrating malignant cells are strongly positive for UbcH10. 

 

In this group the average of UbcH10-positive cells was 11.01%; the differences in 
the average percentage of UbcH10 stained cells between benign and malignant 
lesions was highly significant (p = 0.0001 Wilcoxon signed rank test). The data 
obtained in our laboratories assess that UbcH10 expression allow to discriminate 
benign from malignant breast neoplasias since immunohistochemical studies in 
breast cancer indicate a significant difference (p = 0.0001) in the average 
percentage of UbcH10 stained cells between benign (0.22%) and malignant lesions 
(11.01%). 
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4.4 UbcH10 expression and breast cancer clinical-pathological 
data 

Neoplastic breast diseases range from benign fibroadenomas, lobular and ductal, to 
very aggressive undifferentiated carcinomas (Brierley JD et al. 2003). One of the 
main differences between lobular and ductal breast carcinomas is the presence of 
inactivating E-cadherin gene mutations in the former ( De Leeuw et al. 1997). In 
many other respects, lobular breast carcinomas and low-grade ductal carcinomas 
exhibit similar geno-phenotypic profiles ( Korkola et al. 2003). The development 
of p53 dysfunction may be a hallmark of infiltrating ductal carcinomas of 
intermediate and high grade. Sequential ErbB2/neu and Ras abnormalities define a 
subset of aggressive high-grade tumours, and the development of Rb dysfunction 
may define a separate subset of aggressive ductal cancers (Shackeney and 
Silverman 2003). Moreover, recent results on breast cancer show a direct 
relationship between the gene expression profile and clinical aggressiveness of the 
neoplasia (Cleator nd Ashworth 2004). Based on these observations, breast cancer 
represents a good model for studying epithelial multistep carcinogenesis.  

In this study we used Tissue Microarrays (TMAs) provided with relevant clinico-
pathological parameters, such as tumour size, node status, grading, hormonal 
status, proliferation index, p53 and ErbB2 status and survival rates. High UbcH10 
expression was associated with ductal histotype (p = 0.065; Fisher’s exact test), 
with ErbB2 positivity (p = 0.092 Fisher’s exact test) and high Ki-67 staining (p = 
0.015 Fisher’s exact test), while no relationship was seen with tumor size and 
grade, p53 expression, hormonal status (as assessed by ER and PgR tissue 
staining) and the rates of overall and relapse free survival.  

 

4.5 UbcH10 expression is dependent on ErbB2 expression in 
MCF-7 cell line 

The association of UbcH10 staining with ErbB2 amplification suggested the 
hypothesis that the expression of Ubch10 could be under the control of ErbB2 
activity. To validate this hypothesis we suppressed the synthesis of the ErbB2 
protein by interference methodology and analysed the UbcH10 expression. As 
shown in the Western blot of Figure 9, the transfection with siRNA 
oligonucleotides targeting ErbB2 was able to drastically reduce the ErbB2 protein 
levels in the MCF-7 cell line. Consistently with our hypothesis, the expression of 
UbcH10 paralleles ErbB2 levels (72 h), showing an association between UbcH10 
expression and ErbB2 amplification. 
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Figure 9 UbcH10 expression is dependent on ErbB2 expression. Inhibition of ErbB2 
protein expression by siRNA in MCF7 cell line evaluated by Western blot analysis shows, 
at 72 h after siRNA transfection, a decrease of the UbcH10 expression. Cells transfected 
with a scrambled duplex (siScrambled) and untransfected cells (Untransfected) were used 
as negative controls. Total cell lysates were prepared and normalised for protein 
concentration. The expression of a-Tubulin was used to control equal protein loading (30 
µg). 
 

Therefore, UbcH10 can be considered one of the effectors of ErbB2 and then its 
role in breast carcinogenesis may be taken in consideration: this idea is further 
supported by functional studies demonstrating that the suppression of the UbcH10 
expression reduced the growth of a breast carcinoma cell line.  

 

4.6 Suppression of the UbcH10 synthesis inhibits breast 
carcinoma cell growth 

We asked whether UbcH10 overexpression had a role in the process of breast 
carcinogenesis by evaluating the growth rate of one breast carcinoma cell line, in 
which UbcH10 protein was suppressed by RNA interference. The T47D cell line 
was treated with siRNA duplexes targeting the UbcH10 mRNA. After transfection 
we observed an efficient knock-down of the UbcH10 protein levels at 48 h after 
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treatment (Figure 10A). The analysis of cell growth in the presence or absence of 
the UbcH10 siRNA duplexes revealed that the block of the UbcH10 protein 
synthesis significantly inhibits breast carcinoma cell growth. In fact, as shown in 
Figure 10B, a significant reduction in cell growth rate was observed in T47D cell 
line treated with UbcH10 siRNA in comparison to the untreated cells or those 
treated with the control scrambled siRNA.  

 
Figure 10 The block of UbcH10 protein synthesis by RNA interference inhibits the 
proliferation of breast carcinoma cells. (A) Inhibition of UbcH10 protein expression by 
siRNA in T47D cell line evaluated by Western blot analysis. At 48 h after siRNA 
transfection, total cell lysates were prepared and normalised for protein concentration. 
The expression of α-Tubulin was used to control equal protein loading (30 µg). (B) Growth 
curves of T47D cell line after siUbcH10 treatment. T47D cells were transfected with 
siUbcH10 duplexes (siUbcH10) and the relative number of viable cells was determined by 
MTT assay. Cells transfected with a scrambled duplex (siScrambled) and untransfected 
cells (Untransfected) were used as negative controls. Absorbance was read at 570 nm 
and the data are the mean of triplicates. 
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Our results confirm a critical role of the ubiquitination process in the breast 
carcinogenesis and in the proliferation of breast cancer cells. In fact, a recent work 
demonstrates the overexpression of a novel RING-type ubiquitin ligase breast 
cancer-associated gene 2 (BCA2) in breast carcinomas and its correlation with an 
increased proliferation, whereas a specific BCA2 small interfering RNA inhibited 
growth of T47D human breast cancer cells and NIH3T3 mouse cells (Burger et al. 
2005). In conclusion, these results show a critical role of UbcH10 in breast 
carcinogenesis, strongly suggesting the suppression of its function as a possible 
tool in breast carcinoma therapy. 

 

4.7 UbcH10 expression in lymphoma cell lines 

Since our and other study have consistently shown that high UbcH10 expression is 
a marker of aggressive carcinoma behavior (Pallante et al. 2005; Berlingieri et al. 
2007; Berlingieri et al. 2007; Wagner et al.. 2004; Lin et al. 2006; Jiang et al. 
2008), we have characterized the expression of UbcH10 at mRNA and protein 
levels in cell lines and tissues from indolent and aggressive lymphoma types. 
UbcH10 gene expression was assessed in a large array of HL and NHL cell lines. 
qRT-PCR analysis showed that UbcH10 mRNA fold change values were higher in 
neoplastic cell lines than in peripheral blood (Figure 11A). Accordingly, a 
conspicuous 19.6-kDa band was shown by Western blotting only in cells (Figure 
11B). Flow cytometry confirmed higher levels of UbcH10 expression versus 
peripheral blood lymphocytes. However, UbcH10 expression differed widely 
among cell lines, as shown by the UbcH10 FITC median values, which ranged 
from 428 to 7152 (Figure 11C). 
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Figure 11 UbcH10 expression in human lymphoma cell lines. (A) UbcH10 gene 
expression analysis by quantitative real-time polymerase chain reaction in human 
lymphoma cell lines versus normal peripheral blood lymphocytes. UbcH10 mRNA levels 
were high in all cell lines and barely detectable in peripheral blood lymphocytes. (B) 
UbcH10 gene expression analysis by Western blot in human lymphoma cell lines versus 
normal peripheral blood lymphocytes. Note the very clear 19.6-kDa band corresponding to 
the UbcH10 protein in all cell lines, but not in peripheral blood lymphocytes. Blot against 
β-actin served to control for equal protein loading. (C) UbcH10 protein expression analysis 
by flow cytometry in human lymphoma cell lines versus normal peripheral blood 
lymphocytes. Data within the quadrants are expressed as median UbcH10 fluorescent 
intensity values. 
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4.8 UbcH10  expression in lymphoid tissues 

Both hyperplastic (FH) and neoplastic lymphoid tissues were systematically 
screened for UbcH10 expression. UbcH10 expression was abundant in FH, as 
consistently shown by qRT-PCR (Figure 12A) and Western blot (Figure 12B). The 
pole of the reactive germinal centers harboring mitotic cells was intensely 
immunoreactive, and a very sharp border resulted from the contrast between the 
highly positive proliferating centroblasts and the surrounding quiescent mantle 
zone cells (Figure 13). This pattern is very similar to that shown by Ki67 and by 
cyclin B1 (Figure 14). Similarly, in the thymus, UbcH10 labeling occurred only in 
proliferating cortical cells (data not shown). Thus, the intense UbcH10 expression 
in reactive lymphoid tissue was mainly due to the expansion of proliferative tissue. 

The association between UbcH10 expression and proliferation was also evident in 
lymphomas. In fact, mitotic cells were consistently immunoreactive in each single 
cylinder (see arrows in Figure 13). In HL, UbcH10 selectively highlighted atypical 
cells. In particular, Hodgkin and Sternberg–Reed cells were strongly positive 
(Figure 13). In NHLs, the neoplastic grade closely paralleled UbcH10 expression. 
qRT-PCR showed higher average levels of expression in DLBCL, PTCL and BL 
than in SLL ⁄ CLL, MCL and SMZL samples (Figure 12A). Similarly, Western 
blot analysis revealed more intense expression in high- than in low-grade 
lymphomas (Figure 12B). This was confirmed by the TMA immunohistochemical 
data (Figure 8A). UbcH10 positive cells were scarce in CLL ⁄ SLL (median 1.5%), 
and only mitotic cells and para-immunoblasts were immunoreactive (Figure 13). 
UbcH10 expression was sporadic in MCL (median 3.0%), homogeneously 
distributed and limited to mitotic cells (Figure 13). Low UbcH10 expression 
occurred in SMZL (median 2.5%); the centre of the neoplastic nodules, consisting 
of small dark cells, remained negative, whereas the outer marginal zone, 
containing large cells and transformed blasts, was strongly positive. Thus, UbcH10 
recapitulated the Ki67 ‘target-like’ staining typical of SMZL(Figure 13) ( Piris et 
al. 1998). In FL grade II, UbcH10 staining (median 12.0%) was displayed only by 
centroblasts, whereas centrocytes remained negative. Neoplastic follicles lacked 
the zonation and the sharp border seen in the germinal centres of FH because 
positive cells did not concentrate at one pole but were scattered throughout the 
follicles (Figure 13). Higher (median 20.0%) levels of UbcH10 expression were 
found in PTCL, in which a large number of cells with irregular, pleomorphic 
nuclei were labelled (Figure 13). Similarly, in DLBCL, there was abundant nuclear 
⁄cytoplasmic UbcH10 reactivity (median 32.5%) in most centroblasts and in 
mitotic figures (Figure 13). UbcH10 expression was highest in BL cells (median 
65.0%); indeed, most BL cells had very abundant nuclear ⁄cytoplasmic reactivity 
(Figure 13). 
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Figure 12 UbcH10 expression in lymphoid fresh tissue samples. (A) Quantitative real-
time polymerase chain reaction analysis showing higher UbcH10 mRNA fold changes in 
high-grade [diffuse large B-cell lymphoma (DLBCL), Burkitt’s lymphoma (BL) and 
peripheral T-cell lymphoma (PTCL)] than in low-grade lymphoma [small lymphocytic 
lymphoma (SLL) ⁄ chronic lymphocytic leukemia (CLL), mantle cell lymphoma (MCL)] and 
reactive lymph nodes [follicular hyperplasia (FH)]. Each histogram represents the average 
level of expression for each histotype. (B) Western blot analysis of UbcH10 protein 
expression showing a more intense band in high grade (DLBCL, BL and PTCL) than in 
low-grade lymphoma (SLL ⁄ CLL and MCL) and reactive lymph nodes (FH). A 
representative sample for each histotype is shown. Blot against α-Tubulin showed as 
control for equal protein loading. 
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Figure 13 UbcH10 expression by tissue microarray immunohistochemistry. Follicular 
hyperplasia: abundant UbcH10 expression. The immunoreactivity is mainly seen at one 
pole of the germinal centre (arrows). A sharp border results from the contrast between the 
highly positive centroblasts and the lack of signal in the surrounding mantle zone. 
Hodgkin’s lymphoma: immunoreactivity for UbcH10 selectively highlights atypical cells. 
Note the strong nuclear ⁄cytoplasmic reactivity of popcorn cells (arrows) against a clean 
background of infiltrating inflammatory cells. Small lymphocytic lymphoma ⁄chronic 
lymphocytic leukemia: sporadic UbcH10 immunoreactivity. Only mitotic prolymphocytes 
and para-immunoblasts are positive (arrows), whereas small lymphocytes remain 
negative. Mantle cell lymphoma: low UbcH10 expression. The reactivity is limited to rare 
mitotic cells (arrow), whereas the neoplastic cells with irregular nuclei are negative. 
Splenic marginal zone lymphoma: UbcH10 target pattern. The neoplastic nodules show a 
negative central zone and positive large cells in the outer marginal zone. Follicular 
lymphoma grade II: neoplastic nodules lack the zonation and the sharp border of reactive 
germinal centres. Positive centroblasts are evenly scattered throughout the neoplastic 
follicles (arrows), whereas centrocytes are negative. Peripheral T-cell lymphoma: high 
UbcH10 expression. A large number of UbcH10+ cells with irregular, pleomorphic nuclei 
(arrows). Diffuse large B-cell lymphoma: high UbcH10 expression. Note the intense 
UbcH10 nuclear⁄cytoplasmic immunoreactivity of the centroblasts and the intense labelling 
of the mitotic figures. Burkitt’s lymphoma: very high UbcH10 expression. The vast majority 
of neoplastic cells show abundant UbcH10 expression. (Haematoxylin counterstain). 
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Figure 14 Ki67, UbcH10 and cyclin B1 expression on tissue microarray consecutive 
sections. Follicular lymphoma: Ki67 immunoreactivity highlights a very hyperplastic 
follicle, in which the light zone has been overrun by the expanded dark zone to yield a 
nearly 100% growth rate. Only the subpopulation of Ki67 localized at the germinal centre 
pole and  displaying the highest Ki67 labelling (arrow) is also positive (arrow) for UbcH10. 
A similar distribution (arrow) is shown by cyclin B1. Diffuse large B-cell lymphoma: Ki67 
stains a very large percentage of neoplastic cells evenly distributed  throughout the tissue 
core. By contrast, UbcH10 stains a much smaller number of cells, and the pattern of 
immunoreactivity resembles that of cyclin B1. Burkitt’s lymphoma: virtually all neoplastic 
cells are stained by Ki67; the large majority of cells are also stained by UbcH10. Note that, 
by immunohistochemistry, UbcH10 distinguishes between DLCBL and BL better than 
either Ki67 or cyclin B1 (haematoxylin counterstain). 
 

As a general rule, UbcH10 expression was cell-cycle dependent and related to 
proliferation. Low levels were observed in peripheral blood lymphocytes, in 
quiescent naive B-cells of the mantle zones of secondary lymphoid follicles, and in 
low-grade lymphomas. High levels were observed in a wide variety of HL and 
NHL cell lines, in cells showing mitotic figures, in reactive germinal centre 
proliferating centroblasts and in aggressive lymphomas. UbcH10 expression 
increased with pathological grade, and reached a maximum in BL as revealed by 
qRT-PCR and TMA immunohistochemistry. This confirms the close relationship 
between UbcH10 overexpression and poor tumour differentiation described in 
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thyroid (Pallante et al. 2005), ovarian (Berlingieri et al. 2007), breast (Berlingieri 
et al. 2007), lung (Wagner et al. 2004), bladder (Wagner et al. 2004),  liver (Ieta et 
al. 2007) and brain (Jiang et al. 2008) tumors. UbcH10 immunoreactivity was 
significantly related to reactivity of the proliferation markers Ki67 (r = 0.91; P < 
0.001) and cyclin B1 (r = 0.93; P < 0.001; Figure 15B) and occurred in similar 
lymphoid tissue areas as shown on consecutive TMA sections (Figure 14). 

 

4.9 UbcH10 cell cycle regulation 

We next investigated the relationship between UbcH10 and other proliferation 
markers on consecutive TMA sections. There was a significant correlation 
between UbcH10 and both Ki67 (Spearman’s q 0.913; P < 0.001) and cyclin B1 
(Spearman’s q 0.931; P < 0.001) (Figure 15B). As evident on consecutive sections, 
cells stained by Ki67, UbcH10 and cyclin B1 antibodies were distributed in the 
same tissue areas (Figure 14), in particular, UbcH10 and cyclin B1 labelled a 
subpopulation of Ki67+ cells. Thus, UbcH10 immunoreactivity was in keeping 
with a G2 ⁄ M labelling index, which was similar to that obtained with cyclin B1 
(Figure 14). We investigated this concept further by evaluating changes in the 
levels of UbcH10 expression during cell cycle progression. To this end, we 
evaluated a wide range of neoplastic lymphoid cell lines by flow cytometry. 
Similar kinetics was shown by both low and high expressing cell lines. Indeed, in 
all instances UbcH10 expression steadily increased from late G1 through the S 
phase, peaked at G2 ⁄ M, and dramatically decreased in the G1 ⁄ G0 phase of the 
cell cycle (Figure 16). 
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Figure 15 Statistical analysis of UbcH10, Ki67 and cyclin B1 immunohistochemistry 
on tissue microarray. (A) Graphic representation of protein levels evaluated by 
immunohistochemistry. Data are reported as median, highest and lowest values and 
interquartile range containing the 50% of values for each diagnostic group. For any protein 
the differences between the different lymphoma types were analysed by the Kruskal–
Wallis one-way anova test. (B) Graphic representation of the non-parametric Spearman’s 
q test used to assess the correlation between UbcH10, Ki67 and cyclin B1 protein 
expression among the different diagnostic groups. 
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Figure 16 Median value of fluorescence intensity for UbcH10 immunoreactivity 
(MFI). Correlation between the expression of UbcH10 and the phases of cellular cycle in 
human lymphoma cell lines. 
 

Thus, UbcH10 expression was mostly associated with the G2 ⁄M phase. Although 
Ki67 covers the whole cell cycle from early G1 on (Bryant et al. 2006), it is 
conceivable that only in G2⁄M phase are UbcH10 levels high enough to be 
detected by immunohistochemistry. In fact, in all the TMA cores of non-neoplastic 
lymphoid tissue or lymphoma, the proportion of cells expressing UbcH10 never 
exceeded that of Ki67, being similar to the proportion of cyclin B1-stained cells 
(Figures 14 and 15A). Thus, aggressive B-cell lymphomas, which are constituted 
mainly by cycling cells, are better typed into DLBCL and BL by UbcH10 than by 
Ki67, whose expression is uniformly too intense in both neoplasms (Figures 14 
and 15A). Taken together, these data indicate that UbcH10 is a novel lymphoid 
proliferation marker, whose overexpression in aggressive lymphomas probably 
reflects the tumor related increases in cell proliferation. 
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4.10 Suppression of UbcH10  synthesis inhibits lymphoma cell  
growth 

Since UbcH10 expression and lymphoid cell proliferation were closely related, we 
next evaluated whether suppression of the synthesis of the UbcH10 protein by 
RNA interference affected the growth rate of the human anaplastic large cell 
lymphoma Karpas-299 cell line. This cell line was treated with siRNA duplexes 
targeting the UbcH10 mRNA. Twenty-four hours after transfection, there was an 
efficient knock-down of UbcH10 protein levels (Figure 17A). Analysis of cell 
growth in the presence or absence of the UbcH10 siRNA duplexes revealed that 
the block of UbcH10 protein synthesis significantly inhibited lymphoma cell 
growth. In fact, as shown in Figure 17B, cell growth rate was significantly lower 
in cell lines treated with UbcH10 siRNA than in untransfected cells or in those 
treated with the control scrambled siRNA.  

 
Figure 17 The block of UbcH10 protein synthesis by RNA interference inhibits the 
proliferation of the lymphoma cells. (A) Inhibition of UbcH10 protein expression by 
small interfering (si) RNA in the Karpas-299 cell line evaluated by Western blot analysis 
(24 h). The expression of a-tubulin was used to control for equal protein loading 30 lg. (B) 
Growth curves of the Karpas-299 cell line after siUbcH10 treatment. Karpas-299 cells 
were transfected with si-UbcH10 duplexes (siUbcH10) and the relative number of viable 
cells was determined by MTT assay. Cells transfected with a scrambled duplex 
(siScrambled) and untransfected cells (Untransfected) were used as negative controls. 
Absorbance was read at 570 nm and the data are the mean of triplicates. 
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These results indicate that UbcH10 plays a critical role in lymphoid cell 
proliferation. Previous studies have shown that UbcH10 is essential for cell cycle 
progression ( Lukas et al. 2004). In this study we have shown that blocking of 
UbcH10 protein synthesis significantly inhibited growth of an NHL cell line. It 
was recently reported that oesophageal adenocarcinoma cells strongly expressing 
UbcH10 were highly sensitive to treatment with the proteasome inhibitor MG-262 
(Lin et al. 2006). Although no specific UbcH10 inhibitors are currently available 
for clinical use, targeting the ubiquitin-proteosome system may block the 
degradation of ubiquitinated mitotic cyclins, thereby preventing the effect exerted 
by UbcH10 on cell cycle progression. Further investigations are required to 
explore the possibility that inhibition of UbcH10 could be a therapeutic approach 
in lymphomas. 
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4.11 UbcH10  expression on FNAs 

UbcH10 and Ki-67 imunohistochemical expression on CBs derived from follicular 
neoplasm and  suspicious for malignancy FNAs. 

UbcH10 and Ki-67 immunohistochemical expression were assessed on CB derived 
from FNAs diagnosed as either follicular neoplasm or suspicious for malignancy; 
representative examples are reported in Figure 18. 

 

Figure 18 UbcH10 and Ki-67 expression in FNA derived CBs corresponding to 
histologically  diagnosed FA  (A and B) and PTC (C-F). Both Ki-67 and UbcH10 
labeled more cells in PTC rather than in FA (Hematoxylin  counterstained 10x.). At higher 
magnification, note that UbcH10 and Ki-67 share a similar staining pattern as shown on 
parallel (E and F) CB sections (Hematoxylin  counterstained 20x). 
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The expression of both UbcH10 and Ki-67 was significantly higher in malignant 
than in benign thyroid lesions (Table 2).  

 
Table 2 UbcH10 and Ki-67 immunohistochemical expression values.  

% expression Benign histology 

n=38 

Malignant histology 

n=19 

Mann-Whitney U test 

P value 

UbcH10 0,0 (0,0-2,0) 2,3 (0,0-5,0) <0,001 

Ki-67 1,0 (0,0-5,0) 4,3 (0,0-6,3) <0,001 

UbcH10 and Ki-67 immunohistochemical expression values (median and range) on CBs 
derived from FNAs whose corresponding histological specimens were grouped as either  
benign or malignant.   

 

To our knowledge, this is the first study evaluating UbcH10 on FNA samples.  
Thus, it was important to set meaningful cut off values to score UbcH10 
immunostaining. The value more predicable of malignancy was determined using 
the ROC analysis.   The best compromise between sensitivity and specificity was 
reached at a cut-off value of 1,25% for UbcH10 (AUC=0,964; P<0,001) and at a 
cut-off value of 3,05 for Ki-67 (AUC=0,967; P<0,001). Resulting specificity, 
sensitivity, PPV, NPV, and diagnostic accuracy of UbcH10 and Ki-67 and of their 
combinations  are  reported in Table 3. 

 
Table 3 Diagnostic performance of UbcH10, Ki-67 and their combination.  

 Cut-off Sensitivity Specificity PPV NPV Accuracy 

UbcH10 ≥1,25% 100% 89% 83% 100% 93% 

Ki-67 ≥3,05% 100% 95% 90% 100% 96% 

UbcH10 & Ki-67 ≥1,25 & ≥3,05 100% 95% 90% 100% 96% 

UbcH10 or Ki-67 ≥1,25 or ≥3,05 100% 89% 83% 100% 93% 

Diagnostic performance of UbcH10, Ki-67 and their combination in FNAs diagnosed as  
either follicular neoplasm or suspicious for malignancy. Data analysis based on the 
individual most efficient positive cut-off values for stained thyroid cells derived from ROC 
analysis. 
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Both markers were found to be highly sensitive (100%), and  there were no false-
negative cases (NPV, 100%). However, staining was less specific for  UbcH10 
(89%) than for Ki-67  (95%); the PPV was 83% for UbcH10 and 90% for Ki-67.  

Although this performance was remarkable, even on CBs whose corresponding 
histology was malignant only a few cells stained for UbcH10 (Figure 18D and F). 
This is conceivable since UbcH10 expression is limited to cells encompassing  the 
G2⁄M cell cycle phase, as we previously showed (Troncone et al. 2009); 
interestingly, the proportion of cells expressing UbcH10 never exceeded that of 
Ki67, which concurs with the notion that Ki67 covers the whole cell cycle from 
early G1 on (Bryant et al. 2006). Thus, the UbcH10 cut-off value derived from the 
ROC analysis was too low to allow a reliable microscopic scoring.  Moreover, the 
association of UbcH10 to Ki-67 (samples that were positive for both proteins) did 
not improve specificity (95%) and accuracy (96%). Consequently, UbcH10 
immunostaining on FNAs is not feasible and does not improve Ki-67 performance. 

 

Quantitative analysis of UbcH10, CCND2 and PCSK2 mRNA levels derived  from  
follicular neoplasm and  suspicious for malignancy FNAs 

In this study  the usefulness of  UbcH10 mRNA levels detection  from follicular 
neoplasm and  suspicious for malignancy FNA was evaluated. Data were 
compared to CCND2 and PCSK2 assessment. Histology represented the gold 
standard; FNAs were divided into two groups: one associated to benign histology 
and the other to malignancy. FNAs associated to malignant histology showed 
significantly different UbcH10 (P= 0.02) and CCND2 (P= 0.002) mRNA levels 
(Table 4); conversely, PCSK2 mRNA levels were less discriminative  (P= 0.23). 

 
Table 4 For each gene individually and in combination we reported the P value 
calculated using Mann-Withney U Test and the area under the curve (AUC). 
 

 P value AUC 

UbcH10 0.02 0.74 

CCND2 0.002 0.81 

PCSK2 0.22 0.62 

UbcH10/CCND2 - 0.84 
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Each gene average level of expression in FNAs associated to benign and malignant 
histology is schematically shown in Figure 19. 

 

 
Figure 19 Quantitative analysis of UbcH10, CCND2 and PCSK2 mRNA levels derived 
from  FNAs associated to benign and  malignant histology. Average level of 
expression of UbcH10, CCND2 and PCSK2 genes in benign and malignant lesions. 
Arbitrary Units are obtained by the following formula: 2-ΔC t where ΔCt =Ct HGUS - Ct 
target (Shibru et al.2008). 

 

ROC curve results are shown in Figure 20 A-B. The AUC for UbcH10 and 
CCND2 to distinguish benign from malignant thyroid neoplasm tissue samples 
were respectively 0.74 and 0.81 (Figure 20A). Their combination increased the 
diagnostic accuracy, with an AUC of 0.84 (Figure 20B).   The AUC for PCSK2 
was 0.62 (Figure 20A). 

Thus, UbcH10 expression assessment by qRT-PCR is effective and the results are 
easy to be interpreted, thanks to a constitutive reference gene (Shibru et al. 2008; 
Samija et al. 2008). CCND2 and PCSK2, the most performing components of the 
3-gene assay, were used for comparison (Weber et al. 2005; Shibru et al. 2008). 
The UbcH10 diagnostic accuracy was similar to that CCND2 and higher than 
PCSK2. Moreover, the UbcH10-CCND2 combination further increased the qRT-
PCR diagnostic accuracy. 
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Thyroid cancer markers are more effective when they are evaluated in panels 
rather than individually; our data suggest that a panel composition should include 
UbcH10, thus it is a useful marker in neoplasms diagnosis. Using gene expression 
profiling, we found that UbcH10 was one of the genes most up-regulated in 
thyroid cancer cell lines (Pallante et al. 2005); then, we confirmed this observation 
on histological samples: UbcH10 is barely detectable in normal thyroid tissues, 
goiters and adenomas, whereas its increase was shown in papillary and follicular 
carcinomas (Pallante et al. 2005). UbcH10 is a prognostic marker for thyroid 
(Pallante et al. 2005), ovarian (Berlingieri et al. 2007), breast (Berlingieri et al. 
2007) and lymphoid (Troncone et al. 2009) neoplasms. Similar findings have been 
reported by others for carcinomas arising from the lung (Wagner et al. 2004), 
bladder (Wagner et al. 2004), gastrointestinal tract (Takahashi et al. 2006; Ieta et 
al. 2007), liver (Ieta et al. 2007), gallbladder (Washiro et al. 2008), prostate (La 
Tulippe et al. 2002), oesophagus (Lin J et al. 2006) and brain (Jiang et al. 2008 ). 
In addition, UbcH10 is a very sensitive and specific marker of circulating breast 
tumour cells (Chen et al. 2006). Thus, it is widely held that UbcH10 
overexpression is associated to cancer. Conversely, other candidate thyroid cancer 
markers are supported by less consistent data. In one study, CCND2 was 
underexpressed in malignant samples (Weber et al. 2005) and upregulated in 
others (Shibru et al. 2008). In this study we observed that CCND2 is 
downregulated in malignant samples. 

Thus here we show that UbcH10 can effectively be translated into a clinically 
useful marker for making patient care decisions, without interfering with 
conventional cytology. In summary, our prospective study of routinely collected 
follicular neoplasm/suspicious for malignancy FNA suggested that quantitative 
RT-PCR analysis of UbcH10 expression level, rather than immunohistochemistry, 
is the elective method to increase the suspicion of malignancy in this controversial 
area of diagnostic cytology.  

 



45 

 

 
 
Figure 20 AUC for individual UbcH10, CCND2 and PCSK2 expression and their 
combination by using logistic regression analysis. Panel A shows the ROC curve for 
any single gene. Panel B shows the ROC curves for singly and combined UbcH10 and 
CCND2 genes. 
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5. CONCLUSIONS 

 

UbcH10 is essential for G2 ⁄M cell cycle progression, as it plays a pivotal role in 
mitotic cyclins ubiquitination. Previous studies found that its expression was up-
regulated in several cancer cell lines and tissues. Moreover UbcH10 expression 
was, also in vivo, consistently associated to cell proliferation. In this study we 
evaluated UbcH10 in three different diagnostic settings: breast cancer, lymphomas 
and thyroid FNAs.  

Breast cancer represents a good model for studying epithelial multistep 
carcinogenesis, and, therefore, we aimed to evaluate the detection of the UbcH10 
expression as a possible tool in the diagnosis of this tumor. In this setting we 
demonstrated that high UbcH10 expression is associated to those aggressive 
neoplasms. In breast carcinoma cell lines the suppression of the ErbB2 expression 
induced a reduction of UbcH10 level and, moreover, the block of UbcH10 protein 
synthesis by RNA interference resulted in cell growth inhibition. 

Proliferation markers are useful to grade non-Hodgkin’s lymphoma into low- and 
high-growth fraction neoplasms. Thus UbcH10, whose expression specifically 
covers the G2 ⁄M cell cycle window, is worth investigating. Also in lymphomas 
UbcH10 expression was related to the grade of malignancy, being low in indolent 
tumors and high in a variety of NHL cell lines and in aggressive lymphomas. As 
observed in breast cancer, blocking of UbcH10 synthesis by RNA interference 
inhibited cell growth. Flow cytometry of lymphoma cell lines confirmed that 
UbcH10 expression is cell-cycle dependent, steadily increasing in S phase, 
peaking in G2/M phase and dramatically decreasing in G0/G1 phases. 

UbcH10 is one of the genes most up-regulated in thyroid cancer cell lines and 
tissues. Often pre-operative thyroid biopsies yield uncertain diagnoses. In these 
settings, testing for UbcH10 may have significance. We demostred that UbcH10 
qRT-PCR analysis, rather than immunohistochemistry, was useful to increase the 
suspicion of malignancy on thyroid FNA samples.   

 

In conclusion, all together, these results indicate a broad role of UbcH10 as 
neoplastic marker of different neoplasm types. UbcH10 may have both a 
diagnostic and a prognostic significance. Moreover, the suppression of its function 
is a possible tool in antineoplastic therapy. 
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A B S T R A C T

Our group has recently demonstrated the overexpression of the UbcH10 gene in undiffer-

entiated thyroid carcinomas. Subsequently, a clear correlation between UbcH10 overex-

pression and a reduced survival in ovarian carcinoma patients has been described

indicating UbcH10 as a valid prognostic marker in this neoplastic disease.

Here we have extended the analysis of the UbcH10 expression to neoplastic breast dis-

eases. We demonstrated, by tissue micro-arrays immunohistochemical studies, a signifi-

cant difference (p = 0.0001) in the mean percentage of UbcH10 stained cells between

benign (0.22%) and malignant (11.01%) neoplastic lesions. High UbcH10 expression was

associated with intense Ki-67 staining (p = 0.015) and ErbB2 positivity (p = 0.092).

The suppression of the ErbB2 expression in breast carcinoma cell lines induces a reduc-

tion of UbcH10 level. Consistently, the inhibition of breast carcinoma cell growth was

achieved following the block of UbcH10 protein synthesis by RNA interference. Therefore,

these results suggest the perspective of a therapy of aggressive breast carcinomas based

on the suppression of the UbcH10 function.

� 2007 Elsevier Ltd. All rights reserved.
1. Introduction

Human neoplasias derive from the accumulation of genetic

alterations inside the cell. This results in drastic changes of

the protein levels involved in cell growth control, signal trans-

duction and cellular regulatory system in specific and charac-

teristic manner.1 The recent techniques based on microarray

cDNA hybridisation have allowed the evaluation of the simul-

taneous expression of thousands of genes and, therefore, the
er Ltd. All rights reserved

fax: +39 81 3737808.
usco@unina.it (A. Fusco).
identification of genes specifically regulated in neoplastic dis-

eases.2 To this purpose we have recently examined the gene

expression profile of thyroid carcinoma cell lines compared

with normal counterpart. Among the mostly up-regulated

genes we identified the UbcH10 gene.3 The UbcH10 gene

belongs to the E2 gene family and codes for a protein of

19.6 kDa that is involved in the ubiquitin-dependent proteol-

ysis. In this pathway, ubiquitin-conjugating enzyme (E2),

together with ubiquitin ligase (E3), transfers ubiquitin to
.
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specific substrate proteins.4,5 We were able to demonstrate

that abundant UbcH10 levels were present in the highly inva-

sive, undifferentiated thyroid carcinomas.3 More recently, we

have shown that UbcH10 expression significantly correlates

with the tumour grade and the undifferentiated histotype of

the ovarian carcinomas and a significant relationship was ob-

served between UbcH10 expression and overall survival.6

Therefore, we decided to extend the studies of UbcH10

expression to breast carcinomas, this representing the first

highest incidence neoplasia in women.7

Here, we report that the expression levels of UbcH10, eval-

uated by semiquantitative RT-PCR and immunohistochemical

analysis, were increased in breast carcinomas compared to

benign breast tissues. Since an association was found be-

tween ErbB2 and UbcH10 expression, we have blocked ErbB2

synthesis by RNA interference: this resulted in the reduction

of UbcH10 expression, further validating a critical role of

UbcH10 overexpression in the progression step of breast

carcinogenesis.

2. Materials and methods

2.1. Cell culture

The human breast carcinoma cell lines used in this study

were MB231 (metastasis of adenocarcinoma); MDA468

(metastasis of adenocarcinoma); MDA436 (metastasis of ade-

nocarcinoma); MCF7 (metastasis of adenocarcinoma); T47D

(metastasis of ductal carcinoma) and ZR 75-1 (metastasis of

ductal carcinoma); they were purchased from the American

Type Culture Collection (ATCC). They were grown in DMEM

(Gibco Laboratories, Carlsbad, CA) containing 10% foetal calf

serum (Gibco Laboratories), glutamine (Gibco Laboratories)

and ampicillin/streptomycin (Gibco Laboratories). Cells were

incubated in a humidified atmosphere of 95% air and 5%

CO2 at 37 �C.

2.2. Human tissue samples

Neoplastic human breast tissues were obtained from surgical

specimens and immediately frozen in liquid nitrogen. Sam-

ples were stored frozen until RNA or protein extractions were

performed.

Breast carcinoma samples were collected at the Diparti-

mento di Anatomia Patologica e Citopatologia, Facoltà di

Medicina e Chirurgia, Università di Napoli ‘Federico II’, by

Dr. G. Troncone.

2.3. RNA isolation

Total RNA was extracted from tissues and cell cultures using

the RNAeasy mini kit (Qiagen, Valencia, CA) according to the

manufacturer’s instructions. The integrity of the RNA was as-

sessed by denaturing agarose gel electrophoresis.

2.4. Reverse transcriptase - PCR analysis

Five micrograms of total RNA from each sample, digested

with DNAseI (Invitrogen), were reverse-transcribed using

random hexanucleotides and MuLV reverse transcriptase
(Applied Biosystems, Foster City, CA). Semiquantitative PCR

was carried out on cDNA using the GeneAmp PCR System

9600 (Applied Biosystems). RNA PCR Core Kit (Applied Biosys-

tems) was used to perform semiquantitative PCR reactions.

For the UbcH10 gene, after a first denaturing step (94 �C for

3 min), PCR amplification was performed for 25 cycles (94 �C
for 30 s, 57 �C for 30 s, 72 �C for 30 s). The sequences of

forward and reverse primers were: forward 5 0-GTCTGGCGA-

TAAAGGGAT-3 0 and reverse 5 0-GGAGAGCAGAATGGTCCT-3 0

corresponding to the nucleotides 172–190 and 443–425 respec-

tively. The human ß-actin gene primers, amplifying a 109 bp

cDNA fragment, were used as control: ß-actin-forward,

5 0-TCGTGCGTGACATTAAGGAG-3 0; ß-actin-reverse, 5 0-GTCA-

GGCAGCTCGTA-GCTCT-30. To ensure that RNA samples were

not contaminated with DNA, negative controls were obtained

by performing the PCR on samples that were not reverse-

transcribed, but otherwise identically processed. For semi-

quantitative PCR, reactions were optimised for the number

of cycles to ensure product intensity within the linear phase

of amplificaton. The PCR products were separated on a 2%

agarose gel, stained with ethidium bromide and scanned

using a Typhoon 9200 scanner.

2.5. Protein extraction, Western blotting and Antibodies

Cells were washed once in cold PBS and lysed in a lysis buffer

containing 50 mM HEPES, 150 mM NaCl, 1 mM EDTA, 1 mM

EGTA, 10% glycerol, 1% Triton-X-100, 1 mM phenylmethylsul-

fonyl fluoride, 1 lg aprotinin, 0.5 mM sodium orthovanadate,

20 mM sodium pyrophosphate. The lysates were clarified by

centrifugation at 14,000 rpm · 10 min. Protein concentrations

were estimated by a Bio-Rad assay (Bio-Rad), and boiled in

Laemmli buffer (Tris-HCl pH 6.8 0,125 M, SDS 4%, glycerol

20%, 2-mercaptoethanol 10%, bromophenol blue 0.002%) for

5 min before electrophoresis. Proteins were subjected to

SDS-PAGE (15% polyacrylamide) under reducing condition.

After electrophoresis, proteins were transferred to nitrocellu-

lose membranes (Immobilon-P Millipore Corp., Bedford, MA);

complete transfer was assessed using prestained protein

standards (Bio-Rad). After blocking with TBS-BSA (25 mM Tris,

pH 7.4, 200 mM NaCl, 5% bovine serum albumin), the mem-

brane was incubated with the primary antibody against

UbcH10 (Boston Biochem Inc., Cambridge, MA) for 60 min

(at room temperature). To ascertain that equal amounts of

protein were loaded, the Western blots were incubated with

antibodies against the a-tubulin protein (Sigma). Membranes

were then incubated with the horseradish peroxidase-conju-

gated secondary antibody (1:3.000) for 60 min (at room tem-

perature) and the reaction was detected with a Western

blotting detection system (ECL; Amersham Biosciences, Uni-

ted Kingdom).

2.6. Immunostaining of TMA: Technique and Evaluation

UbcH10 breast immunoreactivity has been evaluated in two

tissue micro-arrays (TMAs), constructed at the Department

of Histopathology, S. Chiara Hospital, Trento, Italy. Original

diagnosis were reviewed according to standard criteria8 and

clinical, long term follow-up and immunohistochemical

data available for all tumours were collected by means of
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TMABoost, an integrated system for the management of tis-

sue microarray experiments.9 The breast TMA included 23 be-

nign samples and 115 invasive breast carcinomas, with two

cores sampled for each case.

Briefly, xylene dewaxed and alcohol rehydrated TMA

paraffin sections were placed in Coplin jars filled with a 0.01

M tri-sodium citrate solution, and heated for 3 min in a

conventional pressure cooker.3 After heating, slides were

thoroughly rinsed in cool running water for 5 min. They were

then washed in Tris-Buffered Saline (TBS) pH 7.4 before incu-

bating overnight with the specific rabbit polyclonal antibody

a-UbcH10 (BostonBiochem) diluted 1:1000. After incubation

with the primary antibody, tissue sections were stained with

biotinylated anti-rabbit immunoglobulins, followed by peroxi-

dase labelled streptavidine (Dako, Carpinteria, CA, USA); the

signal was developed by using diaminobenzidine (DAB)

chromogen as substrate. Incubations, both omitting and pre-

adsorbing the specific antibody, were used as negative controls.

Special care was taken to evaluate UbcH10 expression only

on well preserved tissue cores. In fact, whenever possible, the

labelling of mitotic figures was adopted as the required crite-

ria to ensure the validity of staining, as shown previously.3,6

Two benign and 12 malignant cases, in which both cores were

not adequately stained, were excluded from the study. Thus,

the percentage of UbcH10 expression was evaluated in 21 be-

nign and 103 malignant cases; the latter were classified

including ductal (n = 69), lobular (n = 13) and special histo-

types (n = 21), such as mucinous, medullary and tubular

types. The percentage of UbcH10 stained cells was jointly

evaluated by two pathologists (MB, GT) at the double headed

microscope. Values relative to each tumour samples, present

in duplicate, were derived by combining the percentage of any

single cores.

2.7. UbcH10 expression in breast cancer:
Clinical-pathological analysis on TMA

To analyse tissue microarrays, pooling methods and cut-off

values have to be chosen.10 Ideally, these choices should be

driven by prior biological knowledge. To our best knowledge,

there is no biological evidence in favour of a certain pooling

method; therefore, we employed maximum, minimum and

mean as pooling methods for the replicates. Statistical analy-

sis was carried out for each pooling method. We dichotomised

biomarker expression against its median values, so as to ease

biological interpretation. Finally, to account for the heteroge-

neity of protein expression across tumour tissues, cases

(n = 29) with only one core section with valid staining were ex-

cluded by the statistical analysis. This resulted in 74 cases of

breast cancer in which comparisons were made between

UbcH10 expression and clinicalpathological data (histotype,

grading, T, N, etc.), as well as with other biomarkers (i.e.

p53, ER, PR and others).

2.8. Statistical methods

The association of clinicopathological and biological data

with UbcH10 expression was examined using the following

tests: Wilcoxon signed rank test or v2 or Kruskall–Wallis test

on numerical expression data and with Fisher’s exact test
on categorised data. Statistical analysis was performed using

the R statistical package11 and SPSS ver. 11.5 for Windows.

Each comparison was performed accounting for the different

pooling methods. Kaplan–Meier survival analysis with log-

rank test was carried out for both overall and relapse free sur-

vival. A p-value less that 0.05 was considered statistically sig-

nificant for each analysis.

2.9. RNA interference

For small interfering RNA (siRNA) experiments, the following

double-strand RNA oligos specific for UbcH10 coding region

were used: 5 0-AACCTGCAAGAAACCTACTCA-3 0 as previously

described.12 As negative control we used a corresponding

scrambled sequence as follows: 5 0-AACTAACACTAGCTCAA-

GACC-30.

For ErbB2 siRNA experiments we used a Hs_ERBB2 HP Val-

idated siRNA from Qiagen (Catalog Number SI02223571) and

as a control a Nonsilencing Control siRNA from Qiagen (Cata-

log Number 1022076).

All of the siRNA were transfected using Human/Mouse

Starter Kit (Qiagen) according to the manufacturer’s recom-

mendations. siRNAs were used at a final concentration of

100 nM and 12 · 105 cells/well were plated in 6-well format

plates. Proteins were extracted at 48 h and 72 h after siRNA

treatment and the levels of the proteins were evaluated by

Western blot.

3. Results

3.1. UbcH10 gene is overexpressed in breast carcinoma
cell lines

We evaluated the expression of UbcH10 by RT-PCR in breast

carcinoma cell lines in comparison to the normal tissue. All

of the carcinoma cell lines showed a high UbcH10 expression

that, conversely, was barely detectable in the normal tissue

(Fig. 1A). These results were confirmed by Western blot anal-

ysis that showed the presence of an abundant band of 19.6

kDa corresponding to the UbcH10 protein, compared to the

normal breast tissue (Fig. 1B).

3.2. Analysis of UbcH10 expression in normal and
neoplastic breast tissues by RT-PCR and Western blot analysis

UbcH10 expression was also evaluated by RT-PCR analysis on

a panel of matched tumour/normal tissues. As shown in

Fig. 2A, an amplified band of 115 bp was clearly detected in

two ductal, two lobular and one mixed carcinoma samples,

but not in one mastopathy and in all the corresponding nor-

mal breast tissues. Similar results were obtained when the

UbcH10 protein levels were analysed as demonstrated by a

representative Western blot shown in Fig. 2B. In fact, a band

corresponding to the UbcH10 protein was detected in ductal,

lobular and mixed carcinoma tissues, but not in two mastop-

athies and in normal breast tissues. Equal amounts of total

proteins were used for each sample as demonstrated by the

same gel analysed with an antibody against a-Tubulin. There-

fore, these data show a strong overexpression of UbcH10 in

breast malignancies.



Fig. 1 – UbcH10 expression in human breast carcinoma cell

lines. (A) UbcH10 gene expression analysis by RT-PCR in

human breast carcinoma cell lines versus the normal breast

tissue (NB). b-Actin gene expression was evaluated as

control to normalise the amount of the used RNAs. (B)

UbcH10 protein expression analysis by Western blot in the

same human breast carcinoma cell lines. Blot against a-

Tubulin has been performed as control for equal protein

loading.

Fig. 2 – UbcH10 expression in human breast fresh tumour

samples. (A) RT-PCR analysis of UbcH10 expression in

human breast tumour samples versus their normal coun-

terparts. b-Actin expression shows the same amount of

RNAs used. NB, normal breast tissue; (B) Western blot

analysis of UbcH10 protein expression in a panel of breast

neoplasias. The level of a-Tubulin has been used as loading

control. NB, normal breast tissue.
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3.3. Immunostaining pattern of UbcH10 expression
in breast cancer

To confirm the UbcH10 overexpression we analysed 103

malignant and 21 benign cases by immunohistochemical

technique because it allows a rapid and sensitive screening

of breast pathological tissues and is amenable to regular

use as a routine diagnostic test. The immunocytochemical

staining pattern of UbcH10 in breast carcinomas differed

from that observed in benign breast samples. In fact, the lat-

ter were almost always completely negative for UbcH10

expression and the mean of cells expressing UbcH10 was

0.22%. Only occasionally, single UbcH10-labelled breast epi-

thelial cells could be observed by meticulous scrutiny

(Fig. 3A). Conversely, the UbcH10 staining was always easily

detectable in the nuclei of the breast carcinoma cells with a

strong staining intensity, mostly evident in cells showing mi-

totic figures (Fig. 3B and 3C). In this group the mean of

UbcH10-positive cells was 11.01%; the differences in the

mean percentage of UbcH10 stained cells between benign

and malignant lesions was highly significant (p = 0.0001 Wil-

coxon signed rank test).

3.4. UbcH10 expression and clinical-pathological data

In this study we used Tissue Microarrays (TMAs) provided

with relevant clinico-pathological parameters, such as tu-

mour size, node status, grading, hormonal status, prolifera-

tion index, p53 and ErbB2 status and survival rates. High

UbcH10 expression was associated with ductal histotype

(p = 0.065; Fisher’s exact test), with ErbB2 positivity (p = 0.092

Fisher’s exact test) and high Ki-67 staining (p = 0.015 Fisher’s

exact test), while no relationship was seen with tumour size

and grade, p53 expression, hormonal status (as assessed by

ER and PgR tissue staining) and the rates of overall and

relapse free survival.

3.5. UbcH10 expression is dependent on ErbB2
expression

The association of UbcH10 staining with ErbB2 amplification

suggested the hypothesis that the expression of Ubch10 could

be under the control of ErbB2 activity. To validate this hypoth-

esis we suppressed the synthesis of the ErbB2 protein by

interference methodology and analysed the UbcH10 expres-

sion. As shown in the Western blot of Fig. 4, the transfection

with siRNA oligonucleotides targeting ErbB2 was able to dras-

tically reduce the ErbB2 protein levels in the MCF-7 cell line.

Consistently with our hypothesis, the expression of UbcH10

paralleles ErbB2 levels (72 h).

3.6. Suppression of the UbcH10 synthesis inhibits
breast carcinoma cell growth

We asked whether UbcH10 overexpression had a role in the

process of breast carcinogenesis by evaluating the growth rate

of one breast carcinoma cell line, in which UbcH10 protein

was suppressed by RNA interference. The T47D cell line was

treated with siRNA duplexes targeting the UbcH10 mRNA.

After transfection we observed an efficient knock-down of



Fig. 3 – Immunostaining pattern of UbcH10 expression in breast cancer. UbcH10 expression in benign (A) (original

magnification, 25·) and malignant (B, C) (original magnification, 25·) breast tissues. While benign tissue is lacking UbcH10

expression (A), ductal cancer (C) displays high levels of protein expression. Abundant UbcH10 expression is also shown by

lobular cancer (B): note a benign duct negative for UbcH10 expression, whereas infiltrating malignant cells are strongly

positive for UbcH10.

Fig. 4 – UbcH10 expression is dependent on ErbB2

expression. Inhibition of ErbB2 protein expression by siRNA

in MCF7 cell line evaluated by Western blot analysis shows,

at 72 h after siRNA transfection, a decrease of the UbcH10

expression. Cells transfected with a scrambled duplex

(siScrambled) and untransfected cells (Untransfected)

were used as negative controls. Total cell lysates were

prepared and normalised for protein concentration.

The expression of a-Tubulin was used to control equal

protein loading (30 lg).

E U R O P E A N J O U R N A L O F C A N C E R 4 3 ( 2 0 0 7 ) 2 7 2 9 – 2 7 3 5 2733
the UbcH10 protein levels at 48 h after treatment (Fig. 5A). The

analysis of cell growth in the presence or absence of the

UbcH10 siRNA duplexes revealed that the block of the UbcH10

protein synthesis significantly inhibits breast carcinoma cell

growth. In fact, as shown in Fig. 5B, a significant reduction

in cell growth rate was observed in T47D cell line treated with

UbcH10 siRNA in comparison to the untreated cells or those

treated with the control scrambled siRNA.

These results indicate a critical role of UbcH10 in neoplas-

tic breast cell proliferation.
4. Discussion

It has already been determined that approximately 20–30% of

breast cancers arise in women who have inherited mutations

in cancer susceptibility genes such as BRCA1, BRCA2 and

other DNA repair genes.13 Conversely, the vast majority of

breast cancers are sporadic, presumably resulting from the

accumulation of genetic damage over lifetime.13

Neoplastic breast diseases range from benign fibroadeno-

mas, lobular and ductal, to very aggressive undifferentiated

carcinomas.14 One of the main differences between lobular

and ductal breast carcinomas is the presence of inactivating

E-cadherin gene mutations in the former.15 In many other re-

spects, lobular breast carcinomas and low-grade ductal carci-

nomas exhibit similar geno-phenotypic profiles.16 The

development of p53 dysfunction may be a hallmark of infil-

trating ductal carcinomas of intermediate and high grade.

Sequential ErbB2/neu and Ras abnormalities define a subset

of aggressive high-grade tumours, and the development of

Rb dysfunction may define a separate subset of aggressive

ductal cancers.17 Moreover, recent results on breast cancer

show a direct relationship between the gene expression pro-

file and clinical aggressiveness of the neoplasia.18

Based on these observations, breast cancer represents a

good model for studying epithelial multistep carcinogenesis,

and, therefore, our study aimed to evaluate the detection of

the UbcH10 expression as a possible tool to be used in the

diagnosis of breast carcinomas.

The data obtained in our laboratories assess that UbcH10

expression allow to discriminate benign from malignant

breast neoplasias since immunohistochemical studies in

breast cancer indicate a significant difference (p = 0.0001) in

the mean percentage of UbcH10 stained cells between benign

(0.22%) and malignant lesions (11.01%). Interestingly, an asso-

ciation was found between UbcH10 expression and ErbB2

amplification. This prompted us to verify whether there was

a functional correlation between these two events. Indeed, a

drastic decrease in UbcH10 expression followed the block of

ErbB2 protein synthesis. Therefore, UbcH10 can be considered



Fig. 5 – The block of UbcH10 protein synthesis by RNA

interference inhibits the proliferation of breast carcinoma

cells. (A) Inhibition of UbcH10 protein expression by siRNA

in T47D cell line evaluated by Western blot analysis. At 48 h

after siRNA transfection, total cell lysates were prepared and

normalised for protein concentration. The expression of a-

Tubulin was used to control equal protein loading (30 lg). (B)

Growth curves of T47D cell line after siUbcH10 treatment.

T47D cells were transfected with siUbcH10 duplexes

(siUbcH10) and the relative number of viable cells was

determined by MTT assay. Cells transfected with a scram-

bled duplex (siScrambled) and untransfected cells

(Untransfected) were used as negative controls. Absorbance

was read at 570 nm and the data are the mean of triplicates.
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one of the effectors of ErbB2 and then its role in breast carci-

nogenesis may be taken in consideration: this idea is further

supported by functional studies demonstrating that the sup-

pression of the UbcH10 expression reduced the growth of a

breast carcinoma cell line. Therefore, it is likely that UbcH10

overexpression has a role in breast carcinogenesis by influ-

encing the hyperproliferative status of the most malignant

cells.

Our results confirm a critical role of the ubiquitination pro-

cess in the breast carcinogenesis and in the proliferation of

breast cancer cells. In fact, a recent work demonstrates the

overexpression of a novel RING-type ubiquitin ligase breast

cancer-associated gene 2 (BCA2) in breast carcinomas and
its correlation with an increased proliferation, whereas a spe-

cific BCA2 small interfering RNA inhibited growth of T47D hu-

man breast cancer cells and NIH3T3 mouse cells.19

In conclusion, these results show a critical role of UbcH10

in breast carcinogenesis, strongly suggesting the suppression

of its function as a possibile tool in breast carcinoma therapy.
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UbcH10 expression in human lymphomas

Aims: The UbcH10 ubiquitin-conjugating enzyme plays
a key role in regulating mitosis completion. We have
previously reported that UbcH10 overexpression is
associated with aggressive thyroid, ovarian and breast
carcinomas. The aim of this study was to investigate
UbcH10 expression in human lymphomas.
Methods and results: Cell lines and tissue samples of
Hodgkin’s lymphoma (HL) and of non-Hodgkin’s
lymphoma (NHL) were screened for UbcH10 expression
at transcriptional and translational levels. UbcH10
expression was related to the grade of malignancy. In
fact, it was low in indolent tumours and high in a
variety of HL and NHL cell lines and in aggressive
lymphomas. It was highest in Burkitt’s lymphoma, as
shown by quantitative real-time polymerase chain

reaction and by tissue microarray immunohistochem-
istry. Flow cytometry of cell lines confirmed that
UbcH10 expression is cell-cycle dependent, steadily
increasing in S phase, peaking in G2 ⁄ M phase and
dramatically decreasing in G0 ⁄ G1 phases. We also
showed that UbcH10 plays a relevant role in lymphoid
cell proliferation, since blocking of its synthesis by RNA
interference inhibited cell growth.
Conclusions: Taken together, these results indicate that
UbcH10 is a novel lymphoid proliferation marker
encompassing the cell cycle window associated with
exit from mitosis. Its overexpression in aggressive
lymphomas suggests that UbcH10 could be a thera-
peutic target in this setting.

Keywords: HL, immunohistochemistry, NHL, RT-PCR, TMA, UbcH10 (E2C; Ube2c), Western blot

Abbreviations: BL, Burkitt’s lymphoma; BSA, bovine serum albumin; CLL, chronic lymphocytic leukaemia; DLBCL,
diffuse large B-cell lymphoma; FH, follicular hyperplasia; FITC, fluorescein isothiocyanate; FL, follicular lymphoma;
HL, Hodgkin’s lymphoma; MCL, mantle cell lymphoma; NGS, normal goat serum; NHL, non-Hodgkin’s lymphoma;
PBS, phosphate-buffered saline; PTCL, peripheral T-cell lymphoma; qRT-PCR, quantitative real-time polymerase
chain reaction; SDS–PAGE, sodium dodecyl sulphate–polyacrylamide gel electrophoresis; siRNA, small interfering
RNA; SLL, small lymphocytic lymphoma; SMZL, splenic marginal zone lymphoma; TBS, Tris-buffered saline; TMA,
tissue microarray

Introduction

Proliferation markers are useful in the pathological
assessment of Hodgkin’s lymphoma (HL) and non-

Hodgkin’s lymphoma (NHL).1 In particular, the Ki67
protein, whose expression is associated with cell cycle
stages G1, S and G2 ⁄ M, is routinely used to grade NHLs
into low- and high-growth fraction neoplasms.2 The
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Federico II, via Sergio Pansini 5, 80131, Napoli, Italia. e-mail: giancarlo.troncone@unina.it

� 2009 The Authors. Journal compilation � 2009 Blackwell Publishing Limited.

Histopathology 2009, 54, 731–740. DOI: 10.1111/j.1365-2559.2009.03296.x



former includes B-cell small lymphocytic lymph-
oma ⁄ chronic lymphocytic leukaemia (SLL ⁄ CLL), sple-
nic marginal zone lymphoma (SMZL), mantle cell
lymphoma (MCL) and follicular lymphoma (FL); the
low proliferative index of these tumours is associated
with a small cell size, advanced disease stages, low
clinical aggression and poor response to chemother-
apy.3,4 In contrast, diffuse large B-cell lymphoma
(DLBCL), Burkitt’s lymphoma (BL) and peripheral T-cell
lymphoma (PTCL) have a higher proliferative index,
larger cells and aggressive behaviour; PTCL is poorly
sensitive to current treatments, whereas DLBCL and BL
are potentially responsive to chemotherapy.1 It was
recently shown that proliferation assessment by the
G2 ⁄ M cell cycle genes is more predictive of treatment
response than that based on the Ki67 protein.5,6 Thus,
the search for novel proliferation markers whose
expression specifically covers the G2 ⁄ M cell cycle
window is worth pursuing.

UBCH10 (also known as E2C or UBE2C) is a cell-
cycle-related protein involved in mitosis completion.7

Its ubiquitin-conjugating enzymatic activity (E2) is
exerted from G2 ⁄ M to early G1 phase, when UbcH10
together with ubiquitin ligase (E3) transfers ubiquitin
to the mitotic cyclins, thereby promoting their degra-
dation by the proteosome.7 Once mitotic cyclins are
ubiquitinated, UbcH10 triggers its own destruction.8

This event marks mitotic completion and provides the
molecular switch that allows cells to bring cell division
to an end and proceed to the new round of DNA
duplication.9 Thus, UbcH10 is essential for cell cycle
progression, and mutation of its active site cysteine
confers a dominant-negative phenotype.10

In recent years, our group has been investigating the
role of UbcH10 in carcinogenesis.11–13 Using gene
expression profiling, we found that UbcH10 was one of
the genes most up-regulated in thyroid cancer cell
lines.11 We then showed that UbcH10 is a prognostic
marker for thyroid,11 ovarian12 and breast carcin-
omas.13 Similar findings have subsequently been
reported for carcinomas arising from the lung,14

bladder,14 gastrointestinal tract,14,15 liver,16 gallblad-
der,17 prostate,18 oesophagus19 and brain.20 Moreover,
UbcH10 is a very sensitive and specific marker of
circulating breast tumour cells.21

A preliminary screening of anatomical UbcH10
expression has shown that it is highest in lymphoid
tissue profiling.14 More recently, UbcH10 was also
shown to be up-regulated in a small cohort of FL
patients by gene expression profiling.6 However,
UbcH10 investigation has not yet been systematically
extended to lymphomas. The present study was
undertaken to screen UbcH10 expression in cell lines

and tissues representative of a wide range of indolent
and aggressive lymphomas. We also evaluated UbcH10
cell cycle regulation and the effect of suppression of its
synthesis on lymphoma cell growth.

Materials and methods

cell culture

Cell lines were obtained from the Continuous Cell Lines
Collection at CEINGE Biotecnologie Avanzate (Naples,
Italy). The HL cell lines used in this study were HDLM2,
KM-H2, L-428, L-540 and L-1236. The NHL cell lines
were Raji (Burkitt’s lymphoma) and Karpas-299
(human anaplastic large cell lymphoma), Hut-102
and Hut-78 (cutaneous T-cell lymphoma). All cell lines
were grown in Dulbecco’s Modified Eagle’s Medium
(Gibco Laboratories, Carlsbad, CA, USA) containing
10% fetal calf serum (Gibco Laboratories), glutamine
(Gibco Laboratories) and ampicillin ⁄ streptomycin (Gibco
Laboratories). Cells were incubated in a humidified
atmosphere of 95% air and 5% CO2 at 37�C.

tissue samples

Fresh surgical specimens of follicular hyperplasia (FH;
n = 5), CLL ⁄ SLL (n = 5), MCL (n = 2), DLBCL
(n = 5), BL (n = 2) and PTCL (n = 2) were obtained
at the Dipartimento di Scienze Biomorfologiche e
Funzionali, University of Naples Federico II, upon
approval of the University Ethics Committee. Samples
were immediately frozen in liquid nitrogen after
removal and kept at )80�C until required for RNA
and protein extraction.

rna isolation

Total RNA was extracted from cell cultures and tissues
using the RNAeasy mini kit (Qiagen Inc., Valencia, CA,
USA) according to the manufacturer’s instructions. The
extracted RNA was dissolved in diethylpyrocarbonate-
treated water, and its concentration and purity were
assessed by measurement of optical density at
260 ⁄ 280 nm. The integrity of the RNA was assessed
by denaturing agarose gel electrophoresis.

c dna preparation

One microgram of total RNA of each sample was
reverse-transcribed with QuantiTect� Reverse Tran-
scription (Qiagen Inc.) using an optimized blend of
oligo-dT and random primers according to the manu-
facturer’s instructions.

732 G Troncone et al.

� 2009 The Authors. Journal compilation � 2009 Blackwell Publishing Ltd, Histopathology, 54, 731–740.



quantitative real-time polymerase chain

reaction ( rt-pcr ) selection of primers

and probes

To design a quantitative real-time polymerase chain
reaction (qRT-PCR) assay the Human ProbeLibrary�
system (Exiqon, Vedbaek, Denmark) was used. Using the
free ProbeFinder assay design software, which is
included in the package, the best probe and primer pair
was chosen. To amplify a fragment for RT-PCR of
UbcH10 mRNA, its accession number NM_007019 was
entered on the assay design page of the ProbeFinder
software. The sequences of forward and reverse primers
were: forward 5¢-TGCCCTGTATGATGTCAGGA-3¢ and
reverse 5¢-GGGCTATCAATGTTGGGTTCT-3¢, corre-
sponding to the nucleotides 172–190 and 443–425,
respectively. The probe number was ‘human #58’
(according to the numbering of Exiqon’s Human
ProbeLibrary kit). The same procedure was used to
choose the probe and primers for the housekeeping gene
glucose 6-phosphate dehydrogenase (g6pd; accession
number X03674). An amplicon of 106 nucleotides that
spanned the third and fourth exons was chosen. The
probe number was ‘human #05’ (according to
the numbering of Exiqon’s Human ProbeLibry kit) and
the primer sequences were: g6pd forward 5¢-ACAGAG-
TGAGCCCTTCTTCAA-3¢; g6pd reverse 5¢-GGAGGCT-
GCATCATCGTACT-3¢. All fluorogenic probes were
dual-labelled with FAM at the 5¢ end and with a black
quencher at the 3¢ end.

Relative Quantitative TaqMan PCR was performed in
a Chromo4 Detector (MJ Research, Waltham, MA,
USA) in 96-well plates using a final volume of 20 ll.
For PCR we used 8 ll of 2.5· RealMasterMix� Probe
ROX (Eppendorf AG, Hamburg, Germany), 200 nm of
each primer, 100 nm probe and cDNA generated from
50 ng of total RNA. The conditions used for PCR were
2 min at 95�C, and then 45 cycles of 20 s at 95�C and
1 min at 60�C. Each reaction was performed in
duplicate. The 2)DDCT method to calculate the relative
expression levels was used.22

protein extraction and western blot

Cells and tissues were washed once in cold phosphate-
buffered saline (PBS) and lysed in a lysis buffer contain-
ing 50 mm N-(2-hydroxyethyl)-piperazine-N¢-2-ethane-
sulfonic acid, 150 mm NaCl, 1 mm ethylenediamine
tetraaceticacid, 1 mm ethylene glycol tetraaceticacid,
10% glycerol, 1% Triton-X-100, 1 mm phenylmethyl-
sulfonyl fluoride, 1 lg aprotinin, 0.5 mm sodium
orthovanadate and 20 mm sodium pyrophosphate.
The lysates were clarified by centrifugation at

16 000 g · 10 min. Protein concentrations were esti-
mated by a BioRad assay (BioRad, Hercules, CA, USA)
and boiled in Laemmli buffer (Tris–HCl 0.125 m pH 6.8,
sodium dodecyl sulphate (SDS) 4%, glycerol 20%,
2-mercaptoethanol 10%, bromophenol blue 0.002%)
for 5 min before electrophoresis. Proteins were subjected
to SDS–polyacrylamide gel electrophoresis (PAGE) (15%
polyacrylamide) under reducing condition. After elec-
trophoresis, proteins were transferred to nitrocellulose
membranes (Immobilon-P Millipore Corp., Bedford, MA,
USA); complete transfer was assessed using prestained
protein standards (BioRad). After blocking with
Tris-buffered saline (TBS)–bovine serum albumin (BSA)
(25 mm Tris, pH 7.4, 200 mm NaCl, 5% BSA), the
membrane was incubated with the rabbit polyclonal
antibody against UbcH10 (BostonBiochem, Boston, MA,
USA) diluted 1:500 for 60 min (at room temperature)
and then incubated with the horseradish peroxidase-
conjugated secondary antibody (1:3000) for 60 min
(at room temperature); the reaction was detected with a
Western blotting detection system (ECL; Amersham
Biosciences, Little Chalfont, UK). To ascertain that equal
amounts of protein were loaded, membranes were
incubated with antibodies against the b-actin protein
(Sigma, St Louis, MO, USA).

tissue microarray immunohistochemistry:

technique and evaluation

UbcH10 immunoreactivity was compared with the
standard marker of cell proliferation Ki67 and with the
G2 ⁄ M phase indicator cyclin B123 on consecutive
sections of the TA80 tissue microarrays (TMAs)
produced in the Immunocytochemistry Unit at the
Centro Nacional de Investigaciones Oncologicas,
Madrid, Spain. This TMA included 177 samples
consisting of 17 cylinders of reactive lymphoid tissue
(including lymphadenitis and thymus) and 160 cylin-
ders representative of the most frequent lymphomas,
for all of which the diagnosis and classification had
been confirmed by central review of standard tissue
sections.24

Briefly, xylene-dewaxed and alcohol-rehydrated TMA
paraffin sections were placed in Coplin jars filled with a
0.01 m tri-sodium citrate solution and microwaved.
After heating, slides were thoroughly rinsed in cool
running water for 5 min. They were then washed in TBS
pH 7.4 before incubating overnight with the following
antibodies: anti-UbcH10 (BostonBiochem), diluted
1:1000; mouse monoclonal anti-Ki67, clone Mib-1
(Dako, Glostrup, Denmark) diluted 1:100; and mouse
monoclonal anti-cyclin B1, clone 7A9 (Novocastra,
Newcastle, UK) diluted 1:10. After incubation with the
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primary antibody, tissue sections were stained with
specie-specific biotinylated secondary antibodies,
followed by peroxidase-labelled streptavidin (Dako); the
signal was developed by using diaminobenzidine
chromogen (Dako) as substrate. Incubations with
unrelated antibodies or without the specific antibodies
were used as negative controls.

Special care was taken to evaluate UbcH10, Ki67
and cyclin B1 expression only on well-stained tissue
cores. In fact, for each single cylinder and for each
single antibody, the labelling of the mitotic figures was
the criterion to ensure the validity of immunoreactiv-
ity, as previously shown.11–13 Twenty-seven cases of
lymphoma, whose cylinders had been damaged during
the array procedure or lacked the appropriate reactivity
of mitotic figures for any of the three antibodies, were
not considered valid for scoring and were excluded
from the study. Immunoreactivity was optimal for all
three antibodies in 133 out of 160 cases, namely: 19
CLL ⁄ SLL, 19 MCL, 17 FL grade II, 16 SMZL, 14 DLBCL,
12 BL, 18 T-cell lymphomas and 18 HL. UbcH10, Ki67
and cyclin B1 reactivity was evaluated by two pathol-
ogists (G.T. and L.P.) with a double-headed microscope
and the percentage of immunoreactive cells was scored
in each single cylinder by assessing at least 100 cells.
In the case of Ki67, only nuclear reactivity was
considered to be specific, whereas for UbcH10 and
cyclin B1, cells showing nuclear and ⁄ or cytoplasmic
reactivity were considered to be positive. In each
lymphoma type, protein expression was reported as
median, highest or lowest value and interquartile range
containing 50% of values, and between-type differences
were analysed by the Kruskal–Wallis one-way anova

test. Correlation between UbcH10, Ki67 and cyclin
B1 protein expression among diagnostic groups was
evaluated by the non-parametric Spearman’s q test. A
P-value <0.05 was considered to be statistically
significant.

flow cytometry for u b c h 1 0 expression

Peripheral blood lymphocytes and neoplastic cell lines
were analysed for expression of the UbcH10 protein by
flow cytometry (Becton Dickinson FACS Canto II; New
York, NY, USA). Samples were fixed in 70% cold
ethanol and washed in cold PBS before being incubated
with the specific UbcH10 protein rabbit polyclonal
antibody (BostonBiochem) diluted 1:10 in PBS con-
taining 0.5% Tween 20 and 1% normal goat serum
(NGS). The cells were then washed in cold PBS and in
PBS containing 0.5% Tween 20 and 1% NGS for
10 min at room temperature before being incubated
with a fluorescein isothiocyanate (FITC)-conjugated

antirabbit secondary antibody at room temperature
(Becton Dickinson). We evaluated UbcH10 protein
levels during the different phases of the cell cycle using
biparametric staining for DNA and for UbcH10 and the
same protocol reported above, followed by incubation
with 2.5 lg ⁄ ml propidium iodide and 1 mg ⁄ ml small
interfering RNA (siRNA) in PBS overnight at 4�C.

rna interference

For siRNA experiments, the following double-strand
RNA oligo specific UbcH10 coding region was used:
5¢-AACCTGCAAGAAACCTACTCA-3¢ as previously
described.11–13 As a negative control, a corresponding
scrambled sequence was used as follows: 5¢-AACTAA-
CACTAGCTCAAGACC-3¢. All siRNA duplexes were
purchased from Qiagen and were transfected using
Oligofectamine (Invitrogen, Carlsbad, CA, USA) accord-
ing to the manufacturer’s recommendations. Small
interfering RNAs were used at a final concentration
of 100 nm and 12 · 105 cells ⁄ well were plated in
six-well format plates. Proteins were extracted 24 and
48 h after siRNA treatment and the levels of the
proteins were evaluated by Western blot.

Results

u b c h 1 0 express ion in lymphoma cell l ines

UbcH10 gene expression was assessed at both mRNA
and protein levels in a large array of HL and NHL
cell lines. qRT-PCR analysis showed that UbcH10
mRNA fold change values were higher in neoplastic
cell lines than in peripheral blood (Figure 1A).
Accordingly, a conspicuous 19.6-kDa band was
shown by Western blotting only in cells (Figure 1B).
Flow cytometry confirmed higher levels of UbcH10
expression versus peripheral blood lymphocytes.
However, UbcH10 expression differed widely among
cell lines, as shown by the UbcH10 FITC
median values, which ranged from 428 to 7152
(Figure 1C).

u b c h 1 0 express ion in lymphoid tissues

Both hyperplastic (FH) and neoplastic lymphoid tissues
were systematically screened for UbcH10 expression.
UbcH10 expression was abundant in FH, as consis-
tently shown by qRT-PCR (Figure 2A) and Western
blot (Figure 2B). The pole of the reactive germinal
centres harbouring mitotic cells was intensely immuno-
reactive, and a very sharp border resulted from the
contrast between the highly positive proliferating
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centroblasts and the surrounding quiescent mantle zone
cells (Figure 3). This pattern is very similar to that
shown by Ki67 and by cyclin B1 (Figure 4). Similarly,
in the thymus, UbcH10 labelling occurred only in
proliferating cortical cells (data not shown). Thus, the
intense UbcH10 expression in reactive lymphoid tissue
was mainly due to the expansion of proliferative tissue.

The association between UbcH10 expression and
proliferation was also evident in lymphomas. In fact,
mitotic cells were consistently immunoreactive in each
single cylinder (see arrows in Figure 3). In HL, UbcH10
selectively highlighted atypical cells. In particular,
Hodgkin and Sternberg–Reed cells were strongly
positive (Figure 3). In NHLs, the neoplastic grade
closely paralleled UbcH10 expression. qRT-PCR showed
higher average levels of expression in DLBCL, PTCL

and BL than in SLL ⁄ CLL, MCL and SMZL samples
(Figure 2A). Similarly, Western blot analysis revealed
more intense expression in high- than in low-grade
lymphomas (Figure 2B). This was confirmed by
the TMA immunohistochemical data (Figure 5A).
UbcH10+ cells were scarce in CLL ⁄ SLL (median
1.5%), and only mitotic cells and para-immunoblasts
were immunoreactive (Figure 3). UbcH10 expression
was sporadic in MCL (median 3.0%), homogeneously
distributed and limited to mitotic cells (Figure 3). Low
UbcH10 expression occurred in SMZL (median 2.5%);
the centre of the neoplastic nodules, consisting of small
dark cells, remained negative, whereas the outer
marginal zone, containing large cells and transformed
blasts, was strongly positive. Thus, UbcH10 recapitu-
lated the Ki67 ‘target-like’ staining typical of SMZL

Figure 1. UbcH10 expression in human lymphoma cell lines. A, UbcH10 gene expression analysis by quantitative real-time polymerase

chain reaction in human lymphoma cell lines versus normal peripheral blood lymphocytes. UbcH10 mRNA levels were high in all cell lines and

barely detectable in peripheral blood lymphocytes. B, UbcH10 gene expression analysis by Western blot in human lymphoma cell lines versus

normal peripheral blood lymphocytes. Note the very clear 19.6-kDa band corresponding to the UbcH10 protein in all cell lines, but not in

peripheral blood lymphocytes. Blot against b-actin served to control for equal protein loading. C, UbcH10 protein expression analysis by flow

cytometry in human lymphoma cell lines versus normal peripheral blood lymphocytes. Data within the quadrants are expressed as median

UbcH10 fluorescent intensity values.

UbcH10 in lymphomas 735

� 2009 The Authors. Journal compilation � 2009 Blackwell Publishing Ltd, Histopathology, 54, 731–740.



(Figure 3).25 In FL grade II, UbcH10 staining (median
12.0%) was displayed only by centroblasts, whereas
centrocytes remained negative. Neoplastic follicles
lacked the zonation and the sharp border seen in the
germinal centres of FH because positive cells did not
concentrate at one pole but were scattered throughout
the follicles (Figure 3). Higher (median 20.0%) levels of
UbcH10 expression were found in PTCL, in which a
large number of cells with irregular, pleomorphic
nuclei were labelled (Figure 3). Similarly, in DLBCL,
there was abundant nuclear ⁄ cytoplasmic UbcH10
reactivity (median 32.5%) in most centroblasts and in
mitotic figures (Figure 3). UbcH10 expression was
highest in BL cells (median 65.0%); indeed, most BL
cells had very abundant nuclear ⁄ cytoplasmic reactiv-
ity (Figure 3).

u b c h 1 0 cell cycle regulation

We next investigated the relationship between UbcH10
and other proliferation markers on consecutive TMA
sections. There was a significant correlation between
UbcH10 and both Ki67 (Spearman’s q 0.913;
P < 0.001) and cyclin B1 (Spearman’s q 0.931;
P < 0.001) (Figure 5B). As evident on consecutive
sections, cells stained by Ki67, UbcH10 and cyclin B1
antibodies were distributed in the same tissue areas
(Figure 4), In particular, UbcH10 and cyclin B1 labelled
a subpopulation of Ki67+ cells. Thus, UbcH10 immuno-
reactivity was in keeping with a G2 ⁄ M labelling index,
which was similar to that obtained with cyclin B1
(Figure 4). We also investigated UbcH10 kinetics during
cell cycle progression by flow cytometry (Figure 6).
Similar kinetics was shown by both low- and high-
expressing cell lines. Indeed, in all instances UbcH10
expression steadily increased from late G1 through the S
phase, peaked at G2 ⁄ M, and dramatically decreased in
the G1 ⁄ G0 phase of the cell cycle.

suppression of u b c h 1 0 synthesis inhib its

lymphoma cell growth

Since UbcH10 expression and lymphoid cell proliferation
were closely related, we next evaluated whether sup-
pression of the synthesis of the UbcH10 protein by RNA
interference affected the growth rate of the human
anaplastic large cell lymphoma Karpas-299 cell line.
This cell line was treated with siRNA duplexes targeting
the UbcH10 mRNA. Twenty-four hours after transfec-
tion, there was an efficient knock-down of UbcH10
protein levels (Figure 7A). Analysis of cell growth in the
presence or absence of the UbcH10 siRNA duplexes
revealed that the block of UbcH10 protein synthesis

significantly inhibited lymphoma cell growth. In fact, as
shown in Figure 7B, cell growth rate was significantly
lower in cell lines treated with UbcH10 siRNA than in
untransfected cells or in those treated with the control
scrambled siRNA. These results indicate that UbcH10
plays a critical role in lymphoid cell proliferation.

Discussion

In recent years, much attention has focused on the
expression of the UbcH10 gene in human neoplasms;
large series of different carcinoma types have been
evaluated thanks to the availability of commercial

Figure 2. UbcH10 expression in lymphoid fresh tissue samples.

A, Quantitative real-time polymerase chain reaction analysis

showing higher UbcH10 mRNA fold changes in high-grade [diffuse

large B-cell lymphoma (DLBCL), Burkitt’s lymphoma (BL) and

peripheral T-cell lymphoma (PTCL)] than in low-grade lymphoma

[small lymphocytic lymphoma (SLL) ⁄ chronic lymphocytic leukaemia

(CLL), mantle cell lymphoma (MCL)] and reactive lymph nodes

[follicular hyperplasia (FH)]. Each histogram represents the average

level of expression for each histotype. B, Western blot analysis of

UbcH10 protein expression showing a more intense band in high-

grade (DLBCL, BL and PTCL) than in low-grade lymphoma (SLL ⁄ CLL

and MCL) and reactive lymph nodes (FH). A representative sample for

each histotype is shown. Blot against a-tubulin showed as control for

equal protein loading.
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antibodies suitable for staining paraffin-embedded sec-
tions.11–14,19,20 The results have consistently shown
that high UbcH10 expression is a marker of aggressive
carcinoma behaviour.

Here we have characterized the expression of
UbcH10 at mRNA and protein levels in cell lines and
tissues from indolent and aggressive lymphoma types.
As a general rule, UbcH10 expression was cell-cycle-
dependent and related to proliferation. Low levels were

observed in peripheral blood lymphocytes, in quiescent
naive B-cells of the mantle zones of secondary lymphoid
follicles, and in low-grade lymphomas. High levels were
observed in a wide variety of HL and NHL cell lines, in
cells showing mitotic figures, in reactive germinal
centre proliferating centroblasts and in aggressive
lymphomas. UbcH10 expression increased with path-
ological grade, and reached a maximum in BL as
revealed by qRT-PCR and TMA immunohistochemis-

Figure 3. UbcH10 expression by tissue microarray immunohistochemistry. Follicular hyperplasia: abundant UbcH10 expression. The

immunoreactivity is mainly seen at one pole of the germinal centre (arrows). A sharp border results from the contrast between the highly positive

centroblasts and the lack of signal in the surrounding mantle zone. Hodgkin’s lymphoma: immunoreactivity for UbcH10 selectively highlights

atypical cells. Note the strong nuclear ⁄cytoplasmic reactivity of popcorn cells (arrows) against a clean background of infiltrating inflammatory

cells. Small lymphocytic lymphoma ⁄chronic lymphocytic leukaemia: sporadic UbcH10 immunoreactivity. Only mitotic prolymphocytes and

para-immunoblasts are positive (arrows), whereas small lymphocytes remain negative. Mantle cell lymphoma: low UbcH10 expression. The

reactivity is limited to rare mitotic cells (arrow), whereas the neoplastic cells with irregular nuclei are negative. Splenic marginal zone

lymphoma: UbcH10 target pattern. The neoplastic nodules show a negative central zone and positive large cells in the outer marginal zone.

Follicular lymphoma grade II: neoplastic nodules lack the zonation and the sharp border of reactive germinal centres. Positive centroblasts

are evenly scattered throughout the neoplastic follicles (arrows), whereas centrocytes are negative. Peripheral T-cell lymphoma: high UbcH10

expression. A large number of UbcH10+ cells with irregular, pleomorphic nuclei (arrows). Diffuse large B-cell lymphoma: high UbcH10

expression. Note the intense UbcH10 nuclear ⁄cytoplasmic immunoreactivity of the centroblasts and the intense labelling of the mitotic figures.

Burkitt’s lymphoma: very high UbcH10 expression. The vast majority of neoplastic cells show abundant UbcH10 expression. (Haematoxylin

counterstain).

UbcH10 in lymphomas 737

� 2009 The Authors. Journal compilation � 2009 Blackwell Publishing Ltd, Histopathology, 54, 731–740.



try. This confirms the close relationship between
UbcH10 overexpression and poor tumour differentia-
tion described in thyroid,11 ovarian,12 breast,13 lung,14

bladder14 liver16 and brain20 tumours. UbcH10 immu-
noreactivity was significantly related to reactivity of the
proliferation markers Ki67 (r = 0.91; P < 0.001) and
cyclin B1 (r = 0.93; P < 0.001; Figure 5B) and
occurred in similar lymphoid tissue areas as shown
on consecutive TMA sections (Figure 4). Taken to-
gether, these data indicate that UbcH10 is a novel
lymphoid proliferation marker, whose overexpression
in aggressive lymphomas probably reflects the tumour-
related increases in cell proliferation.

We investigated this concept further by evaluating
changes in the levels of UbcH10 expression during cell
cycle progression. To this end, we evaluated a wide

range of neoplastic lymphoid cell lines by flow
cytometry. UbcH10 levels steadily increased in S
phase, peaked at G2 ⁄ M phase and dramatically
decreased in G1 ⁄ G0 phases (Figure 6). Thus, UbcH10
expression was mostly associated with the G2 ⁄ M
phase. Although Ki67 covers the whole cell cycle from
early G1 on,2 it is conceivable that only in G2 ⁄ M
phase are UbcH10 levels high enough to be detected
by immunohistochemistry. In fact, in all the TMA
cores of non-neoplastic lymphoid tissue or lymphoma,
the proportion of cells expressing UbcH10 never
exceeded that of Ki67, being similar to the proportion
of cyclin B1-stained cells (Figures 4 and 5A). Thus,
aggressive B-cell lymphomas, which are constituted
mainly by cycling cells, are better typed into DLBCL
and BL by UbcH10 than by Ki67, whose expression is

Figure 4. Ki67, UbcH10 and cyclin B1 expression on tissue microarray consecutive sections. Follicular lymphoma: Ki67 immunoreactivity

highlights a very hyperplastic follicle, in which the light zone has been overrun by the expanded dark zone to yield a nearly 100% growth rate.

Only the subpopulation of Ki67 localized at the germinal centre pole and displaying the highest Ki67 labelling (arrow) is also positive (arrow) for

UbcH10. A similar distribution (arrow) is shown by cyclin B1. Diffuse large B-cell lymphoma: Ki67 stains a very large percentage of neoplastic

cells evenly distributed throughout the tissue core. By contrast, UbcH10 stains a much smaller number of cells, and the pattern of

immunoreactivity resembles that of cyclin B1. Burkitt’s lymphoma: virtually all neoplastic cells are stained by Ki67; the large majority of cells

are also stained by UbcH10. Note that, by immunohistochemistry, UbcH10 distinguishes between DLCBL and BL better than either Ki67 or

cyclin B1 (haematoxylin counterstain).
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uniformly too intense in both neoplasms (Figures 4
and 5A).

Previous studies have shown that UbcH10 is essen-
tial for cell cycle progression.7 This finding prompted us
to carry out functional studies to investigate whether
UbcH10 could be a therapeutic target. We have shown
that blocking of UbcH10 protein synthesis significantly
inhibited growth of an NHL cell line. It was recently
reported that oesophageal adenocarcinoma cells

Figure 5. Statistical analysis of UbcH10, Ki67 and cyclin B1 immunohistochemistry on tissue microarray. A, Graphic representation of

protein levels evaluated by immunohistochemistry. Data are reported as median, highest and lowest values and interquartile range containing

the 50% of values for each diagnostic group. For any protein the differences between the different lymphoma types were analysed by the

Kruskal–Wallis one-way anova test. B, Graphic representation of the non-parametric Spearman’s q test used to assess the correlation between

UbcH10, Ki67 and cyclin B1 protein expression among the different diagnostic groups.

Figure 6. Median value of fluorescence intensity for UbcH10

immunoreactivity (MFI). Correlation between the expression of

UbcH10 and the phases of cellular cycle in human lymphoma cell lines.

Figure 7. The block of UbcH10 protein synthesis by RNA interfer-

ence inhibits the proliferation of the lymphoma cells. A, Inhibition of

UbcH10 protein expression by small interfering (si) RNA in the

Karpas-299 cell line evaluated by Western blot analysis (24 h).

The expression of a-tubulin was used to control for equal protein

loading 30 lg. B, Growth curves of the Karpas-299 cell line after

siUbcH10 treatment. Karpas-299 cells were transfected with si-

UbcH10 duplexes (siUbcH10) and the relative number of viable cells

was determined by MTT assay. Cells transfected with a scrambled

duplex (siScrambled) and untransfected cells (Untransfected) were

used as negative controls. Absorbance was read at 570 nm and the

data are the mean of triplicates.
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strongly expressing UbcH10 were highly sensitive to
treatment with the proteasome inhibitor MG-262.19

Although no specific UbcH10 inhibitors are currently
available for clinical use, targeting the ubiquitin-
proteosome system may block the degradation of
ubiquitinated mitotic cyclins, thereby preventing the
effect exerted by UbcH10 on cell cycle progression.
Further investigations are required to explore the
possibility that inhibition of UbcH10 could be a
therapeutic approach in lymphomas.
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Condensed abstract: We have recently identified UbcH10 as a novel cancer 

marker useful in the diagnosis and prognosis of several human neoplasms, 

including thyroid cancer. Here we show that  quantitative RT-PCR analysis, 

rather than immunohistochemistry, of UbcH10 expression is useful to increase 

the suspicion of malignancy in follicular neoplasm/suspicious for malignancy 

routine thyroid fine-needle aspirate.   

 

ABSTRACT 

Background. Thyroid fine-needle aspiration (FNA) samples belonging to the 

follicular neoplasm/suspicious for malignancy classes are controversial. We 

identified UbcH10 as a marker useful in the diagnosis of several neoplasms, 

including thyroid cancer. Here, analysis of UbcH10 expression by quantitative 

RT-PCR and immunohistochemistry was applied to FNAs. Methods. A series 

of 84 follicular neoplasm/suspicious for malignancy FNAs with histological 

follow-up (30 malignant) was prospectively collected. UbcH10 imunostaining 

was carried out on cell blocks and compared to that of the proliferation marker 

Ki-67. At the mRNA level, UbcH10 was compared with CCND2 and PCSK2 

expression, these latter being the most performing components of the 

previously reported 3-gene assay; to determine the diagnostic accuracy the area 

under the curve (AUC) of the receiver operating characteristic (ROC) curve for 

each gene individually and in combination was evaluated. Results. UbcH10 

and Ki-67 shared a similar pattern; although UbcH10 expression was higher in 

malignant than in benign lesions (P<0,001), staining was sporadic and the cut-
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off value derived by the ROC analysis was too low (1,25%) for routine 

application. Conversely, UbcH10 expression assessment by qRT-PCR was 

effective. UbcH10 mRNA levels associated to malignant histology were 

significantly higher than those associated to benign histology (P= 0.02).  The 

AUC was 0.74 for UbcH10,  0.81 for CCDN2, 0.62 for PCSK2 and 0,84 for 

UbcH10 and CCND2 combination.  Conclusions.  UbcH10 qRT-PCR 

analysis, rather than immunohistochemistry, is useful to increase the suspicion 

of malignancy in thyroid FNAs. UbcH10 may be added as a panel component 

in qRT-PCR based assays.  
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INTRODUCTION 

 In spite of their very high frequency, only rarely thyroid nodules are 

malignant 1. Fine needle aspiration (FNA) is widely used to identify those 

nodules whose treatment unequivocally requires surgery 1. However, FNA is 

not always able to differentiate between benign and malignant lesions 2.  This 

uncertainty is clearly conveyed by the recent National Cancer Institute (NCI) 

thyroid FNA conference classification 3.  The follicular neoplasm category 

applies to a monotonous population of three-dimensional groups of follicular 

cells with scarce colloid; the suspicious for malignancy class is recommended 

when features suggesting of malignancy are only focally observed 3. These 

uncertain diagnosis do not correspond to a single entity, but rather to a wide 

range of inflammatory, hyperplastic, and neoplastic histological lesions 3. 

These latter including follicular adenoma (FA), follicular carcinoma (FTC) and 

follicular variant of papillary thyroid carcinoma (PTC), do not or only rarely 

harbour RET/PTC re-arragements or BRAF mutations 4. Thus, panels of 

mRNA and protein cancer markers are needed to refine indeterminate 

diagnosis 5. In this setting the 3-gene mRNA assay, which included cyclin D2 

(CCND2), protein convertase 2 (PCSK2), and prostate differentiation factor 

(PLAB), allowed molecular classification of FTC and FA6, 7. 

 Genes that regulate cell-cycle progression may be differentially 

expressed in malignant versus benign thyroid nodules8. UbcH10 (alias E2C or 

UBE2C) is a cell-cycle-related protein involved in mitosis completion9.  Its 

ubiquitin-conjugating enzymatic activity (E2) is exerted from G2/M to early 
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G1 phase, when UbcH10 together with ubiquitin ligase (E3) transfers ubiquitin 

to the mitotic cyclins thereby promoting their degradation by the proteosome 9. 

Once mitotic cyclins are ubiquinated, UbcH10 triggers its own destruction 10. 

This event marks mitotic completion and provides the molecular switch that 

allows cells to bring cell division to an end and to proceed to the new round of 

DNA duplication 11. Thus UbcH10 is essential in cell cycle progression 9. 

Using gene expression profiling, we found that UbcH10 was one of the genes 

most up-regulated in thyroid cancer cell lines 12. Next, we showed that UbcH10 

is barely detectable in normal thyroid tissues, goiters and adenomas, whereas 

its increases in papillary and follicular reaching the highest level expression in 

anaplastic carcinomas 12.  In addition, UbcH10 is a robust marker of cell 

proliferation, as we have also observed  in ovarian,13 breast,13, 14 and  lymphoid 

15 neoplasms.  

UbcH10 has not been assessed on cytological samples yet.  Here, 

UbcH10 was applied to follicular neoplasm and suspicious for malignancy 

thyroid FNA. UbcH10 expression was evaluated both at transcriptional and 

translational levels. At the mRNA level, its diagnostic performance was 

compared with those of the most performing components (CCND2, PCSK2) of 

the 3-gene diagnostic assay; similarly, at the protein level UbcH10 was 

compared to that of the standard proliferation marker  Ki-67.   
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MATERIAL AND METHODS 

Sample collection 

 In our institution thyroid FNAs are routinely performed by the 

cytopathologist using 25-gauge needles, under ultrasound guidance aided by 

the radiologist.16 From each passage by the nodule the obtained material is 

smeared onto one or two slides. On-site Diff-Quik stained smears are prepared 

from the first pass for rapid assessment of specimen adequacy.  When a 

neoplastic lesion is suspected from the on-site assessment, additional passes are 

performed.  

The rationale behind this study sample collection method was to ensure 

first an adequate cytological diagnosis and, then, to exploit the left-over 

material for UbcH10 analysis.  All patients of this study provided informed 

consent and the study was approved by the University of Naples Federico II 

Ethics Committee. A total of 103 cases with a cytological diagnosis of either 

follicular neoplasm or suspicious for malignancy were prospectively collected. 

Eighty-four cases,  for which histological follow-up was available, represented 

this study series. Fifty-eight patients were women and 26 were men (age range 

18-75). On review, histology showed dominant hyperplastic nodule in 24 

cases, Hashimoto’s thyroiditis (HT) in 4 cases, FA in 26 cases, PTC in 24 

cases, and FTC in 6 cases.  
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Immunostaining  

 The residual material from one or two passages by the lesion was 

processed as cell block (CB) and dedicated to UbcH10 and Ki-67 

immunostainings. The CBs were prepared with the plasma-thrombin clot 

technique, as described elsewhere 17. The criteria for CB adequacy were the 

presence of three or more groups of follicular cells or two or more tissue 

fragments according to Sanchez et al 17. Only 57 cases (67,8%) had a 

contributory CB and that were adequate for UbcH10 assessment by 

immunostaining.   

 Immunocytochemistry on FNA-derived, formalin-fixed, and paraffin-

embedded CBs was done as described elsewhere 5. Briefly, antigen-retrieval 

microwave treatment (0·01 M citrate buffer, pH 6·0) was applied for three 

cycles of 5 min each at 750 W. Endogenous peroxidase activity was quenched 

with methanol-hydrogen peroxide (3%) for 15 min. After blocking with 

unrelated antiserum, slides were incubated with the primary antibodies: rabbit 

polyclonal anti-UbcH10 (BostonBiochem, Cambridge, MA, USA), diluted 

1:1000; mouse monoclonal anti-Ki67, clone Mib-1 (Dako, Glostrup, Denmark) 

diluted 1:100. After incubation with the primary antibodies, CB sections were 

stained with specie-specific biotinylated secondary antibodies, followed by 

peroxidase-labelled streptavidin (Dako); the signal was developed by using 

diaminobenzidine chromogen (Dako) as substrate. Incubations with unrelated 

antibodies or without the specific antibodies were used as negative controls. 
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 Single cells were scored for UbcH10 and Ki-67 expression with a 

computerized system (Ibas 2000, Kontron, Zeiss, Munich, Germany) as 

described elsewhere 18. Scoring was done taking into account in the case of 

Ki67, only nuclear reactivity, whereas for UbcH10 cells showing nuclear and ⁄ 

or cytoplasmic reactivity were considered to be positive. The Mann-Withney U 

Test was used to determine UbcH10 and Ki-67 expression level differences 

between FNAs associated to benign and malignant histology. A p value of <.05 

was considered statistically significant. To determine the cut-off value most 

predicable of malignancy, we calculated the area under the curve (AUC) of the 

receiver operating characteristic (ROC) for both UbcH10 and Ki-67 by means 

of the SPSS Inc. (Cary, NC) software package 16. Sensitivity, specificity, 

positive predictive value (PPV), negative predictive value (NPV) and 

diagnostic accuracy were calculated with standard formulae for each stain 

separately and for the combination of both stains, using benign vs malignant 

histological diagnosis as the standard. 

 

RNA Extraction and cDNA Synthesis 

 The residual material from one passage by the lesion was immediately 

transferred to a vial containing TRIZOL® solution (Invitrogen, Carlsbad, CA, 

USA) and stored at -80ºC until RNA extraction. Total RNAs were extracted 

from FNAs using TRIZOL® solution (Invitrogen), according to the 

manufacture’s instructions. The pureness and concentration of RNA was 

assessed by NanoDrop® ND-1000 spectrophotometer (NanoDrop® 
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Technologies, DE, USA). 1 μg of total RNA of each sample was reverse-

transcribed with the QuantiTect® Reverse Transcription (QIAGEN, Valencia, 

CA, USA) using an optimized blend of oligo-dT and random primers according 

to the manufacturer’s instructions.   

 

Real Time Quantitative RT-PCR and Gene Expression  

  We adopted the same methodology previously validated on thyroid 

FNAs by Shibru et al, by using human β-glucoronidase (HGUS) as a 

constitutive reference gene 7. Only 62 cases (73,8%) showing successful  

HGUS amplification were selected for further assessment.  To design a qRT-

PCR assay we used Primer Express Software v2.0 (Applied Biosystem, Foster 

city, CA, USA). The primer for CCND2 forward were: 

5’GGACATCCAACCCTACATGC3, reverse 

5’CGCACTTCTGTTCCTCACAG3; for PCSK2 were: forward  

5’GAGAAGACGCAGCCTACACC3’, reverse  

5’CTGCAAAGCCATCTTTACCC3’; for UbcH10 were: forward 

5’TGCCCTGTATGATGTCAGGA3’, reverse 

5’GGGACTATCAATGTTGGGTTCT3’; for HGUS were: forward 

5’CTCATTTGGAATTTTGCCGATT3’, reverse 

5’CCCAGTGAAGATCCCCTTTTTA3’. Relative Quantitative PCR was 

performed in 7900 HT SDS Applied Biosytem, in 384-well plates using a final 

volume of 10 µl. For PCR we used 5 µl of 2x Power SYBER Green PCR 

Master Mix (Applied Biosytem) 200 nM of each primer, cDNA generated from 
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100 ng of total RNA. The conditions used for PCR were 10 min at 95°C, and 

then 45 cycles of 20 sec at 95°C and 1 min at 60°C. Each reaction was 

performed in duplicate. To normalized real-time PCR data we used the method 

proposed by Shibru et al 7. The Mann-Withney U Test was used to determine 

differences between mRNA expression levels. A p value of <.05 was 

considered statistically significant. To determine the diagnostic accuracy of this 

gene assay, we determined the AUC of the ROC curve for each gene 

individually and in combination by using logistic regression analysis.  

 

RESULTS 

 UbcH10 and Ki-67 imunohistochemical expression on CBs derived 

from follicular neoplasm and  suspicious for malignancy FNAs. 

UbcH10 and Ki-67 expression were assessed on CB derived from 

FNAs diagnosed as either follicular neoplasm or suspicious for malignancy; 

representative examples are reported in Figure 1.  The expression of both 

UbcH10 and Ki-67 was significantly higher in malignant than in benign 

thyroid lesions (Table 1) However, even in CBs corresponding to malignant 

histology, UbcH10 stained only a minority of the aspirated cells; the number of 

cells expressing UbcH10 never exceeded that of Ki67. As reported earlier, we 

determined which cut-off value was more predictive of malignancy. The best 

compromise between sensitivity and specificity was reached at a cut-off value 

of 1,25% for UbcH10 (AUC=0,964; p<0,001) and at a cut-off value of 3,05 for 

Ki-67 (AUC=0,967; p<0,001). Resulting specificity, sensitivity, PPV, NPV, 
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and diagnostic accuracy of UbcH10 and Ki-67 and of their combinations  are  

reported in Table 2. Both markers were found to be highly sensitive (100%), 

and  there were no false-negative cases (NPV, 100%). However, staining was 

less specific for  UbcH10 (89%) than for Ki-67  (95%); the PPV was 83% for 

UbcH10 and 90% for Ki-67. The association of both markers (samples that 

were positive for both proteins) did not improve specificity (95%) and 

accuracy (96%).  

 

Quantitative analysis of UbcH10, CCND2 and PCSK2 mRNA levels derived  

from  follicular neoplasm and  suspicious for malignancy FNAs. 

In this study  the usefulness of  UbcH10 mRNA levels detection  from 

follicular neoplasm and  suspicious for malignancy FNA was evaluated. Data 

were compared to CCND2 and PCSK2 assessment. Histology represented the 

gold standard; FNAs were divided into two groups: one associated to benign 

histology and the other to malignancy. FNAs associated to malignant histology 

showed significantly different UbcH10 (p= 0.02) and CCND2 (p = 0.002) 

mRNA levels (Table 3); conversely, PCSK2 mRNA levels were less 

discriminative  (p = 0.23).  Each gene average level of expression in FNAs 

associated to benign and malignant histology is schematically shown in Figure 

2.  

ROC curve results are shown in Figure 3 A-B. The AUC for UbcH10 

and CCND2 to distinguish benign from malignant thyroid neoplasm tissue 

samples were respectively 0.74 and 0.81 (Figure 3A). Their combination 
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increased the diagnostic accuracy, with an AUC of 0.84 (Figure 3B).   The 

AUC for PCSK2 was 0.62 (Figure 3A).   

 

DISCUSSION.  

This study demonstrates that high UbcH10 expression increases the 

efficiency of cytology to detect cancer on follicular neoplasm/suspicious for 

malignancy FNAs. On histology, the  malignancy rate of our series was 35,7%, 

which confirms that the performance of traditional cytology in this setting is 

not totally reliable 2.  This limit is intrinsic to the method and it is not due to 

our sample collection procedures. Designing this study special care was taken 

to validate UbcH10 evaluation in daily practice; thus, we first ensured an 

adequate cytological diagnosis, without altering the "informativeness" of the 

material for microscopy and, then, exploited the left-over material for UbcH10 

analysis. Thus, only  residual material from needle passes was processed as 

either CB or employed for RNA extraction. Contributory CBs were obtained in 

67,8% of the cases;  similarly, the 73,8% of the cases, showing successful  

HGUS amplification, yielded mRNA informative for cancer marker evaluation. 

Thus here we show that UbcH10 can effectively  be translated into a clinically 

useful marker for making patient care decisions, without interfering with 

conventional cytology.  

The expression of UbcH10 both at protein (by immunohistochemistry) 

and mRNA level (by Real Time RT-PCR)  was analysed. To our knowledge, 

this is the first study evaluating  UbcH10 on FNA samples.  Thus, it was 



  13

important to set meaningful cut off values to score UbcH10 immunostaining. 

The value more predicable of malignancy was determined using the ROC 

analysis.  Resulting specificity, sensitivity, PPV, NPV, and diagnostic accuracy 

of UbcH10 were remarkable. However, even on CBs whose corresponding 

histology was malignant only a few cells stained for  UbcH10  (Figure 1D and 

F). This is conceivable since UbcH10 expression is limited to cells 

encompassing  the G2 ⁄ M cell cycle phase, as we previously showed; 15 

interestingly, the proportion of cells expressing UbcH10 never exceeded that of 

Ki67, which concurs with the notion that Ki67 covers the whole cell cycle from 

early G1 on.19  Thus, the UbcH10 cut-off value derived by the ROC analysis 

was too low to allow a reliable microscopic scoring.  Moreover, the association 

of UbcH10 to Ki-67  (samples that were positive for both proteins) did not 

improve specificity and accuracy. Consequently,  UbcH10 immunostaining on 

FNAs is not feasible and does not improve Ki-67 performance.  

Conversely, UbcH10 expression assessment by qRT-PCR is effective. 

FNAs associated to malignancy had UbcH10 expression levels higher than 

those associated with benign histology.  The results were easy to be interpreted, 

thanks to a constitutive reference gene.7, 20 CCND2 and PCSK2, the most 

performing components of the 3-gene assay, were used for comparison 6, 7 The 

UbcH10 diagnostic accuracy was similar to that CCND2 and higher than 

PCSK2. Moreover, the UbcH10-CCND2 combination further increased the 

qRT-PCR diagnostic accuracy.  
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Thyroid cancer markers are more effective when they are evaluated in 

panels rather than individually; our data suggest that a panel composition 

should include UbcH10. A large body of evidences suggests UbcH10 plays a 

diagnostic role. Using gene expression profiling, we found that UbcH10 was 

one of the genes most up-regulated in thyroid cancer cell lines12; then, we 

confirmed this observation on histological samples: UbcH10 is barely 

detectable in normal thyroid tissues, goiters and adenomas, whereas its 

increases in papillary and follicular carcinomas12.  UbcH10 is a prognostic 

marker for thyroid12, ovarian13 and breast 14and lymphoid 15 neoplasms. Similar 

findings have been reported by others for carcinomas arising from the lung21, 

bladder21, gastrointestinal tract 22, 23, liver,23 gallbladder24, prostate25, 

oesophagus 26 and brain.27. In addition, UbcH10 is a very sensitive and specific 

marker of circulating breast tumour cells28. Thus, it is widely held that UbcH10 

overexpression is associated to cancer. Conversely, other candidate thyroid 

cancer markers are supported by less consistent data. In one study, CCND2 

was underexpressed in malignant samples6 and upregulated in an other7. In this 

study we observed that CCND2 is downregulated in malignancy.  

In summary, our prospective study of routinely collected follicular 

neoplasm/suspicious for malignancy FNA suggested that quantitative RT-PCR 

analysis, rather than immunohistochemistry, of UbcH10 expression as an 

elective method to increase the suspicion of malignancy in this controversial 

area of diagnostic cytology.  
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FIGURE LEGENDS 
 

Figure 1. UbcH10 and Ki-67 expression in FNA derived CBs 

corresponding to  histologically  diagnosed FA  (A and B) and PTC (C-F). 

Both Ki-67  and UbcH10 labelled more cells in PTC rather than in FA 

(Hematoxylin  counterstained 10x.). At higher magnification, note that 

UbcH10 and Ki-67 share a similar staining pattern as shown on parallel (E and 

F) CB sections (Hematoxylin  counterstained 20x). 

 

Figure 2. Quantitative analysis of UbcH10, CCND2 and PCSK2 mRNA 

levels derived  from  FNAs associated to benign and  malignant histology. 

Average of expression level of UbcH10, CCND2 and PCSK2 genes in benign 

and malignant lesions. Arbitrary Units are obtained by the following formula: 

2-ΔC t where ΔCt =Ct HGUS - Ct target 7.  

 

Figure 3. AUC for individual UbcH10, CCND2 and PCSK2 expression 

and their combination by using logistic regression analysis. Panel A shows 

the  ROC curve for any single gene. Panel B shows the ROC curves for singly 

and combined UbcH10 and CCND2 genes. 
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Table 1: UbcH10 and Ki-67 immunohistochemical expression values (median 

and range) on CBs derived from FNAs whose corresponding histological 

specimens were grouped as either  benign or malignant.   

 

% expression Benign histology 

n=38 

Malignant histology 

n=19 

Mann-Whitney U test 

P value 

UbcH10 0,0 (0,0-2,0) 2,3 (0,0-5,0) <0,001 

Ki-67 1,0 (0,0-5,0) 4,3 (0,0-6,3) <0,001 
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Table 2: Diagnostic performance of UbcH10, Ki-67 and their combination in 

FNAs diagnosed as  either follicular neoplasm or suspicious for malignancy. 

Data analysis based on the individual most efficient positive cut-off values for 

stained thyroid cells derived from ROC analysis. 

 

 Cut-off Sensitivity Specificity PPV NPV Accuracy

UbcH10 ≥1,25% 100% 89% 83% 100% 93% 

Ki-67 ≥3,05% 100% 95% 90% 100% 96% 

UbcH10 & Ki-67 ≥1,25 & ≥3,05 100% 95% 90% 100% 96% 

UbcH10 or Ki-67 ≥1,25 or 
≥3,05 100% 89% 83% 100% 93% 
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Table 3: For each gene individually and in combination we reported the  p-

value calculated using Mann-Withney U Test and the area under the curve 

(AUC). 

 

 P value AUC 

UbcH10 0.02 0.74 

CCND2 0.002 0.81 

PCSK2 0.22 0.62 

UbcH10/CCND2 - 0.84 
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