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1. Introduction 

 

 1.1 Cell polarity  

The polarity is a characteristic of some types of cells that can be defined in two 

different ways depending of the point of view from which we analyze the 

phenomenon: structural polarity and functional polarity. In the first case, cell polarity 

is defined as the asymmetric distribution of membrane proteins and lipids, the oriented 

distribution of organelles and cytoskeleton elements. Functional polarity refers to the 

property to perform tasks in a oriented manner, as the transport of ions, the transfer of 

proteins and migration. Cell polaritation, which is fundamental to many aspects of cell 

and developmental biology, is involved in the processes of differentiation, proliferation 

and morphogenesis in both unicellular and multicellular organisms. In a wide range of 

elementary cellular processes, many constituents of the cell, such as plasma membrane 

proteins, organelles, and cytoskeletal components are organized asymmetrically within 

the cell. This asymmetrical pattern of organization is enhanced by cell differentiation 

processes resulting in dynamic cell compartments specialized in complex vectorial 

functions. Cell polarity is essential for processes such as the growth of budding yeast, 

cell division, the development of a fertilized egg into an organism, the transmission of 

nerve impulses, the transport of molecules across an epithelial cell layer, cell crawling 

and lymphocyte homing, etc. Many cell types, if not all, express, or are capable of 

expressing, the polarized phenotype. Epithelial cells and nerve cells are the most 

common examples. Other cells, such as blood cells, do not manifest an explicit 

polarity, This property may become apparent when they interact with other cells or 

when they migrate. The epithelial cells express both types of polarity and the polarized 

phenotype is morphologically visible: 1) The functional specializations of the apical 

surface, like invaginations (eg, microvilli, or cilia), 2) the position of the Golgi in the 

apical zone and 3) accumulation of the products secreted into the apical cytoplasm, 4) 

in the specializations of the lateral surface (i.e the presence of numerous cell junctions) 

. The establishment of the polarized phenotype occurs in several steps and generates a 

reorganization of both the  the cytoskeleton ant the cell surface. Isolated, dispersed 

cells are non-polarized, but when such cells are seeded in a culture dish, the initial 

events observed are attachment of the cells to the substratum and establishment of cell-

cell contact (Rodriguez-Boulan and Nelson 1989). The attachment of non-polarized 

single cells of epithelial origin to the substrate generates a signal to form an immature 
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surface containing specific apical surface markers (Vega-Salas, Salas et al. 1987); 

basolateral membrane proteins are, at this stage, randomly distributed at the entire cell 

surface. The molecular mechanism of this process involve redistribution of membrane 

proteins via cytoskeleton rearrangements. Cell-cell contact in epithelia is mediated by a  

Ca2 + dependent cell adhesion molecule, E-Cadherin (Takeichi 1990). After cell-cell 

contacts are established, an intracellular vacuolar apical compartment, lined by a 

membrane wich form microvilli and contains apical surface markers, fuses with the 

plasma membrane, thus contributing to the completion of the apical cell surface (in the 

thyroid, the vacuolar apical compartment probably corresponds to intracellular lumina, 

wich are frequent in isolated thyrocytes in suspension). Formation of a distinct 

basolateral membrane requires foregoing establishment of cell-cell contact; specific 

basolateral membrane proteins, such as Na+/K+ ATPase then gradually accumulate 

(Nelson and Veshnock 1987) .    

Once acquired, the polarity is maintained through several mechanisms. The first is the 

formation of tight junctions, which, besides constituting a sealing element in the barrier 

function of epithelia, acts as a fence to prevent intermixing of membrane proteins and 

lipids in the apical and basolateral membranes (Gumbiner 1987). Another mechanism 

by which these components are maintained membrane-anchored is restriction of their 

mobility. This can accomplished by anchorage to components of the submembranous 

cytoskeleton (Nelson and Veshnock 1987), by interaction with extracellular matrix 

components (Parry, Cullen et al. 1987), or CAMs of neighbouring cells (McNeill, 

Ozawa et al. 1990) and by association with immobile glycolipids domains. In fact, 

many membrane proteins occur in microdomains both in apical and the basolateral 

plasma membrane. The different composition of two domains is continuously 

supported by intracellular sorting mechanism witch regulate the insertion of new 

proteins and degradation of old proteins in specific plasma membrane domains by, 

respectively, exocytosis and endocytosis of membrane. Ca2 +- dependent cell adhesion 

is important also for the preservation of cell polarity. Cell-extracellular matrix 

contacts, mediated by the family of transmembrane receptors, and integrins also 

contribute to the formation of the polarity axis. 

 

 

 

 



                                                                                                                                         Introduction 

                                                                                 8 

1.2 The polarity in epithelial cells  

The epithelial cells are contiguous, they work closely together and are connected 

together by junctional complexes that enable the creation of barriers with selective 

permeability. They thus form the epithelia which “cover” the free surfaces and cavities 

of an organism and constitute real barriers in relation to its content.  

The cells in an epithelium are highly polarized. Indeed, the plasma membrane of 

epithelial cells can be divided into two domains: an apical domain and a  basolateral 

domain (Simons and Fuller 1985; Simons 1993). The two domains have a different 

composition of lipids and proteins. The apical domain of epithelial cells is usually in 

contact with the external surface of an organism or with the body cavities, while the 

basolateral surface can be divided into two regions: the basal surface lies on a 

basement membrane and it is in close proximity to blood vessels and capillaries, 

whereas the lateral surface is adjacent to other cells in the same epithelium, and 

contains specialized junctional domains that allow interactions among adjacent cells 

(either simple mechanical adhesion as in the case of tight junctions, adherent junctions 

and desmosomes, or metabolic cooperation via gap junction). The apical domain, is 

often provided with specialized structures like cilia or flanges brush and is rich in 

sphingolipids (glycosphingolipids and sphingomyelin). The basolateral domain is rich 

in glycerophosfolipids and phosphatidylcholine. Thus, the different roles that these two 

domains play is reflected in a different lipid and protein composition due to the 

presence of a ring of tight junctions (TJs) (Figure 1). To maintain this asymmetry 

molecular proteins and lipids should be directed to the proper domain of residence. 

This process requires both the presence of signals on protein sorting and the 

recognition of these signals by a cellular machinery of "sorting" able to decipher them.  

.Through a series of studies based on both biochemical and imaging approaches in 

living cells, it has been suggested that the sorting of proteins toward the two 

compartments of the plasma membrane occurs at the level of trans-Golgi network 

(Mostov, Su et al. 2003; Rodriguez-Boulan, Kreitzer et al. 2005). In epithelial cells, the 

apical domain is particularly rich in glycolipids, cholesterol, H/K ATPase and ionic 

channels. The basolateral domain contains proteins involved in communication with 

adjacent cells. The thyrocytes, thyroid epithelial cells, are an excellent example of 

polarized epithelial cells. Studies on isolated follicles have given important 

contribution to the general concept of how cell polarity is established and maintained 

in epithelia (Mauchamp, Margotat et al. 1979; Nitsch and Wollman 1980; Garbi, 
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Tacchetti et al. 1986). In vivo, the thyrocytes are organized into follicles, spherical 

structures bounded by a closed monolayer of cells resting on basement membrane. 

Follicles are the functional unit of the thyroid because they are able to perform the 

essential functions of the entire gland to produce hormones (Tacchetti, Zurzolo et al. 

1986). In follicle lumen is secreted thyroglobulin and iodide, which is transported in 

the cells through a peroxidase, that is localized in apical plasma membrane; iodide 

binds the thyroglobulin and this generates the subsequent formation of thyroid 

hormones. Iodide is transported across both the basolateral and the apical plasma 

membrane. The basolateral membrane contains two components essential for the 

execution of thyroid-specific functions: the TSH receptor and the iodide pump 

(Westermark, Westermark et al. 1986). At this surface the thyroid hormones are also 

released after their liberation from intracellularly degradated thyroglobulin.  Apical 

secretion of thyroglobulin, the direct transport from base to apex of iodide, the 

internalization of iodinated thyroglobulin by the apical domain and secretion from the 

basolateral membrane of thyroid hormones are all expressions of the phenotype of 

these polarized epithelial cells.  

 

Error!  
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1 Image of an epithelial cell. As a result of polarization and the presence of TJs the plasma 
membrane of epithelial cells can be divided into two domains: an apical domain and a  basolateral 
domain. The apical domain of epithelial cells is usually in contact with the external surface of an 
organism or with the body cavities, while the basolateral surface can be divided into two regions: the 
basal surface lies on a basement membrane and it is in close proximity to blood vessels and capillaries, 
whereas the lateral surface is adjacent to other cells in the same epithelium.  
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1.3 Protein complexes involved in the acquisition of cellular polarity 

The cell polarization is achieved through the combined action of three protein 

complexes: the complex Crumbs-PALS1-Patj, called the CRB complex, the complex 

Par3-Par6-Apkc complex, called PAR (Partitionig defective) and the complex Scribble 

-Disc large (DGL)-letal giant larvae (LGL) (Assemat, Bazellieres et al. 2008). These 

three complexes have a different localization in cells. The first two are located in the 

apical region of the membrane,the third is concentrated along the lower side of the 

membrane. In some processes of polarization they cooperate in the induction of 

polarity, whereas in other systems can also act as antagonists.   (Figure 2).  

                                                

   
Fig. 2 Schematic view of apicobasal polarity complexes. The scheme indicates the major proteins 
thought to play a role in the initiation of apicobasal polarity.Three protein complexes are involved: the 
complex Crumbs-PALS1-Patj, called the CRB complex, the complex Par3-Par6-Apkc complex, called 
PAR and the complex Scribble DGL-LGL. The first two are localize near the apex, the third is 
concentrated along the lateral  . At the molecular level, LGL and Scribble are connected to trafficking 
machinery. LGL associates with syntaxin 4, a component of the basolateral exocytotic machinery 
whereas Scribble binds to PIX and GIT, two regulators of the ARF6 and CDC42/RAC small GTPase. 
Protein After the interaction of Tiam1 with the Par complex, by direct binding  to Par3, Rac1 binds PAR6 
in the complex with PAR3/aPKC and this interaction is involved in the maturation of tight junctions 
faciliting the onset of cell polarity. (taken from Margolis and Borg 2005). 
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The PAR complex initially described in the nematode C. elegans and later in the fruit 

fly D. melanogaster and vertebrates is composed of two scaffold proteins, PAR6 and 

PAR3 and an atypical protein kinase C, aPKC. This tripartite complex named 

PAR6/PAR3/aPKC is conserved from worms to vertebrates. PAR6, PAR3 and aPKC 

were first described as essential proteins for asymmetric division of the C. elegans 

zygote (Kemphues 2000). PAR6 protein has a molecular weight of 37 kDa, functions as 

part of a protein complex and contains three conserved domains mediating his 

interactions with the other members of the complex. A Phox/Bem 1 (PB1) domain that 

binds to other PB1-domain-containing proteins such as aPKC is located at the N-

terminal. The adjacent Cdc42/Rac interaction binding (CRIB) motif binds to the Cdc42 

or Rac GTPases only in their activated GTP-bound state. Lastly, it has a PDZ domain 

that binds to other proteins such as PAR3 and CRB3 (Joberty, Petersen et al. 2000; 

Hung and Sheng 2002). The exact function of PAR6 has not yet been elucidated, but 

since Garrard et al. (Garrard, Capaldo et al. 2003) established that Cdc42-GTP can 

induce a conformational change in PAR6B, Gao and Macara (Gao and Macara 2004)  a 

functional model for PAR6 can be proposed, in which the N-terminal folds back and 

interacts with the CRIB-PDZ domain. Cdc42-GTP binding to PAR6 results in the 

unfolding of PAR6, thus exposing the PALS1 binding site (PDZ domain inPAR6). The 

key function of PAR6 should be  to allow the interaction between aPKC and its 

downstream effectors such as PAR3 and LGL. Phosphorylation of LGL will result in its 

detachment from the aPKC/PAR6 dimer, leading to the formation of another functional 

complex: PAR6/PAR3/aPKC (Yamanaka, Horikoshi et al. 2003). PAR3 protein 

contains three PDZ domains and the first PDZ of  PAR3 interacts with PAR6. PAR3 

has been extensively studied in epithelial cells. It seems likely that the starting point 

required for PAR3 to target the tight junctions is its ability to form self-associations and 

to bind to the junctional adhesion molecules (JAMs). PAR3 forms a homodimer via its 

N-terminal region; this association seems to be required for the correct association of 

PAR3 at the apical side of the cell–cell contact region during the process of polarization 

(Mizuno, Suzuki et al. 2003). PAR3 may then be stabilized upon binding directly to 

JAM via its first PDZ domain, and these two proteins may then be co-distributed to the 

sites of cell–cell contact (Ebnet, Suzuki et al. 2001). As JAMs are present at newly 

formed cell-cell contacts prior to  PAR3, they can serve as anchors for the recruitment 

of PAR3 to the junctional complex at an early stage in the junction formation process 

(Itoh, Sasaki et al. 2001). Once PAR3 occupies this site, it can play the role of a 
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scaffold in the recruitment of proteins involved in the formation of the junctions, such 

as PAR6 or aPKC. Many studies have in fact shown that overexpression or depletion of 

PAR3 in epithelial cells leads to the disruption of tight junctions, along with the 

mislocalization of PAR6, aPKC and tight junction markers (Joberty, Petersen et al. 

2000; Mizuno, Suzuki et al. 2003; Chen and Macara 2006). aPKC has a molecular 

weights of 75 kDa and functions as part of the polarity complex PAR. It has a PB1 

domain in the N-terminal, which is known to interact with PAR6, and a catalytic 

domain present within the C-terminal region. This domain is known to phosphorylate 

several proteins such as PAR3 and LGL. In addition, Yamanaka et al. (Yamanaka, 

Horikoshi et al. 2003) have demonstrated that both LGL and PAR3 can form 

independent complexes with aPKC/PAR6 to regulate epithelial cell polarity. In MDCK 

epithelial cells, aPKCs localize with the other members of the PAR complex at tight 

junctions (Izumi, Hirose et al. 1998); and it is worth noting that aPKCs are the only 

members of the complex showing catalytic activity and this kinase activity is required 

for the formation of tight junction. As Cdc42-GTP binds to PAR6, it seems likely that 

Cdc42-GTP may form a complex with aPKC via the adaptor PAR6, the expression of 

Cdc42-GTP leads to the translocation of aPKC from the nucleus to the cytoplasm and 

cell periphery, where the complex will be involved in tight junction formation. Cdc42 

is activated upon E cadherin mediated cell–cell adhesion, resulting in phosphorylation 

and thus activation of aPKC, and this chain of events is crucial to tight junction 

formation. 

The Crumbs complex was identified in the epithelia of Drosophila and subsequently in 

vertebrates. Mammalian CRB are transmembrane proteins, whereas the other proteins 

present in this complex, PALS1 and PATJ, are cytoplasmic scaffolding proteins.  

CRB (crumbs) protein has a molecular weight of 13 kDa and has a very short 

extracellular domain but no recognizable protein domain and includes O and N 

glycosylation sites. This protein has a transmembrane domain and a cytoplasmic 

domain very well conserved. In the cytoplasmic tails, CRB protein contains two 

motives: a FERM (band 4.1-ezrin-radixinmoesin) protein-binding domain consisting of 

12 amino acids containing a GTY motif  and a PDZ-binding domain consisting of ERLI 

residues. The FERM domain is a protein–protein interaction domain which exists in 

various proteins, many of which serve as adapters linking transmembrane proteins to the 

cortical actin cytoskeleton. In addition to playing a role in the formation of tight 

junctions, CRB is involved in the differentiation of the apical membrane (Fogg, Liu et 
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al. 2005). PALS1 (77 kDa)  is an adaptor protein mediating indirect interactions 

between CRB and PATJ , then, it is a scaffold protein that has multiple protein–protein 

interaction domains and belongs to the MAGUK (membrane-associated guanylate 

kinase) family. PALS1 consists of two L27 domains, a PDZ domain, an SH3 domain, a 

hook domain and a GUK domain anh with his PDZ domain interacts with CRB. 

Knockdown of PALS1 in MDCK cells leads to tight junction and polarity defects 

(Straight, Shin et al. 2004) and to the mis-targeting of E-cadherin to the cell membrane 

(Wang, Chen et al. 2007). Furthermore, loss of PALS1 resulted in concomitant loss of 

PATJ expression and the presence of PALS1 in mammalian epithelia depends on 

interactions with PATJ, it seems possible that the stability of these two proteins may 

depend on interactions between them (Michel, Arsanto et al. 2005). The PATJ L27 

domain present at the N-terminal is followed by up to ten PDZ domains. The 6th and 

8th PDZ modules of PATJ interact directly with ZO3 and Claudin1, respectively, via 

the PDZ-binding domain present at the C-terminal ends of these proteins. The fact that 

overexpression or downregulation of PATJ in epithelial cells disrupts the tight junction-

specific localization of ZO1, ZO3 and Occludin, suggests that PATJ might be involved 

in stabilizing tight junctions (Lemmers, Medina et al. 2002; Michel, Arsanto et al. 

2005). SCRIB, LGL and DLG are localized in the basolateral domain of epithelial 

cells, the exact nature of the physical interactions between SCRIB, LGL and DLG has 

not yet been clearly defined. SCRIB (175 kDa) is a large cytoplasmic multidomain 

protein that plays many roles in flies and mammals. SCRIB is a member of the LAP 

protein family and has 16 LRR at its N-terminal, followed by 2 LAP-specific domains 

(LAPSD), a linker region, 4 PDZ domains and a C-terminal lacking any identifiable 

motives. SCRIB binds directly to the C-terminal motif of ZO2 via its PDZ domains 3 

and 4, theSCRIB/ZO2 interaction probably takes place at the cell junctions before ZO2 

is segregated in the tight junctions of the apical membrane (Metais, Navarro et al. 

2005). Mammalian DLG shows the characteristic MAGUK structural domains, 

including three PDZ domains, a SH3 domain, a hook domain and a GUK domain, in 

addition to this basic structure, DLG has a L27 domain at the N-terminal. LGL is 

localized to the lateral membrane, the region below the adherens junctions and it 

contains repeated WD40 domains that are known to form β-propellers that act as protein 

interacting modules for SCRIB. Previously data indicated that LGL has to be 

phosphorylated to be able to adopt its restricted basolateral localization, as non-

phosphorylatable LGL leaked into the apical domain of MDCK cells (Musch, Cohen et 



                                                                                                                                         Introduction 

                                                                                 14 

al. 2002). This phosphorylation is mediated by aPKC during the epithelial polarity 

establishment phase, leading to the detachment of LGL from the PAR6/aPKC dimmer 

(Yamanaka, Horikoshi et al. 2003). The formation of a polarized epithelial cell layer 

with functional tight junctions requires spatio-temporal coordination of the activity of 

the polarity complexes that regulate the establishment and maintenance of the apical 

polarity in the cell. E-cadherin/E-cadherin interactions in the cell–cell adhesion region 

trigger Cdc42 GTP activation (Kim 2000) and the phosphorylation of aPKC, which in 

turn phosphorylates LGL. Phosphorylated LGL dissociates from PAR6/aPKC dimer 

and distributes to the lateral membrane, where it could interact with DLG and SCRIB 

(Plant, Fawcett et al. 2003), aPKC is then able to interact with and phosphorylate PAR3, 

allowing the formation of the active PAR complex at the apical junctions. A direct 

connection therefore exists between the activity of the basolateral complex containing 

LGL and the active apical PAR complex. aPKC is required for the stable localization of 

PAR3, and PAR3 phosphorylated at S827 residue accumulates at tight junctions (Nagai-

Tamai, Mizuno et al. 2002; Suzuki, Ishiyama et al. 2002). Once it has been 

phosphorylated at the S827 residue, PAR3 therefore dissociates from aPKC and this 

protein is able to bind directly to the CRB cytoplasmic tail that contains two threonine 

residues (T6 and T9) in an evolutionarily conserved region, which are potential targets 

for aPKC phosphorylation. CRB binds to PAR6 directly or via PALS1, to promote the 

differentiation of the premature junctional structure into mature epithelial structures. 

SCRIB complex restricts the localization of CRB and PAR complexes to the apical 

region of epithelial cells, where they may act together to regulate tight junctions 

formation (Hurd, Gao et al. 2003; Lemmers, Michel et al. 2004). 

 

 

1.4 Tight junctions and cell polarity  

In epithelial cells, apical-basal polarity is manteined through the formation of several 

intercellular adhesion systems consisting of adherens junctions (AJs), desmosomes, and 

tight junctions (TJs). The tight junctions in addition to estabilish the adhesive contacts 

between cells, essential property for the function of many tissues,  also act as barriers to 

the diffusion of lipids and proteins between the apical domain and other domains in the 

membrane. In addition to membrane proteins that mediate the direct contact between 

cells, these junctions contain a large number of cytoplasmic proteins associated with 

transmembrane proteins, which function as adaptors that link the integral membrane 
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proteins with the actin cytoskeleton, thus stabilizing the tight junctions structure (Shin, 

Fogg et al. 2006). The tight junctions are composed of a network of sealing filaments. 

Each sealing strand is composed of a long line of transmembrane adhesion molecules 

immersed in each of the two interacting membranes. The extracellular domains of these 

proteins are united directly with one another to occlude the intercellular space. The TJ 

consist of transmembrane proteins claudins, occludins and JAM proteins (junctional 

adhesion molecules), wich are organized in intramembranous strands and are linked to 

the F-actin cytoskeleton, either directly or indirectly through intracellular membrane 

protein called ZO-1 (zonula occludens), ZO-2, ZO-3 (Figure 3). The ZO family 

proteins belong to the family of guanylate kinases (MAGUKs) and are composed of 

three domains: a PDZ domain that allows ZO proteins binding  to claudins, an SH3 

domain responsible for binding to α-catenin and guanylate kinase (GUK) domain, 

which lacks catalytic activity, but interaction with other proteins, such as occludins 

(Gonzalez-Mariscal, Betanzos et al. 2000). ZO Proteins colocalize with E-cadherin in 

primordial junctions in not polarized cellsbut  succesively they concentrate in tight 

junctions by interacting  

 

     
 
Fig. 3 Tight junctione structure. Tight junctions are multiproteic structures involved in cell-cell contacts 
and in other processes such as the regulation of cell polarity, proliferation and differentiation. They are 
platform from wich depart several cellular pathways. The TJs consist of transmembrane proteins claudine,  
occludine  and proteins JAM, wich are organized in intramembranous strands and are linked to the F-actin 
cytoskeleton either directly or indirectly through intracellular membrane protein called ZO-1, ZO-2, ZO-3. 
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with occludins and claudins, thus allowing the maturation of this adhesions. The 

proposed mechanism for the formation of junctional structures is a gradual and 

sequential mechanism, consisting of various stages and achieved by the cooperation of 

the three complexes that regulate cell polarity: Crumbs-Patje-Pals, Scribble-Leg-Dgl and 

par3-Par6 aPKC-protein with the proteins involved in cell-cell contacts. Indeed, this 

process is accompanied by reorganization of the cortical actin cytoskeleton and 

establishment of cell polarity. The first event is given by the formation of the first cell-

cell contacts, which occur following the formation of lamellipodia and filopodia. These 

structures allow two neighbor cells to move and come into contact with each other 

(Figure 4A). Following this step, the first proteins, that are locally recruited in regions of 

cell-cell contacts are the  nectins, Nectins, along with a scffolding protein afadin form 

homophilic and heterophilic trans-dimers and play a key role in identifying cell partners 

in the primordial cell-cell adhesions (Figure 4B). These junctions are then stabilized by 

recruiting the E-cadherin, that expand the lateral surface and allow the concentration of 

all the proteins that will form the tight junctions, in this domain Finally, the JAM 

proteins assemble and allow the recruitment of claudins, occludins, thereby stabilizing 

cell-cell junctions (Figure 4C e 4D). It has been  proposed  that an activator of the small 

Rho-GTPase Rac1, Tiam1, is associated directly with the Par complex by binding 

directly Par3 and is involved in the maturation of tight junctions, after the formation of 

the primordial adhesion (PA) (Mertens, Pegtel et al. 2006). In keratinocytes following 

the clustering of cadherins, both the Par complex and the Rac1 activator, Tiam1 are 

recriuited in the sites of primordial adhesions (PA) (figure 5). The polarity complex, 

par3-Par6-aPKC, interacts with the plasma membrane through the binding of Par-3 with 

JAM-A protein, also recruited in response to the clustering of cadherins (Itoh, Sasaki et 

al. 2001). Par3 directly interacts with Tiam1, which allows the activation of Rac and 

thus allows the interaction between Rac and the Par complex. This results in a 

translocation of occludins, claudins and JAM in the apical membrane with the 

subsequent formation of tight junctions. In conclusion, the activation of Rac1 mediated 

by Tiam1 is required for the formation of tight junctions and the activation of these 

proteins occurs upstream from the activation of the complex polarity Par. This 

consideration emphasize the role of the small GTPase Rac1 in the acquisition of 

polarity. The polarity complexes function to determine the site of the tight junction in 

the process of cell polarization, indeed, CRB and PATJ play an important role in the 

correct localization of tight junction proteins. In MDCK cells, iRNA-mediated reduction  
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Fig. 4 Sequenzial phases during tight junction formation.  The first step is the formation of the 
first cell-cell contacts (primordial junctions), which occur following the formation of lamellipodia 
and filopodia (A), in the scond step nectins are recruited, leading to the formation of the first type 
of cell-cell junctions ((primordial junctions, B) These junctions are then stabilized by recruiting 
the E-cadherin, that expand the lateral surface and allow the concentration of all the proteins that 
will form the tight junctions in this domain ; the JAM proteins assemble and allow the recruitment 
of claudins, occludins, thereby stabilizing cell-cell junctions (Fig C e D)This picture was taken 
from the review of Miyoshi and Takai in  Advanced Drug Delivery Reviews 57,205, 815-855). 
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Fig. 5 Signaling pathways from the nectin-based and E-cadherin-based Ajs. These signaling lead to 
reorganization of the actin cytoskeleton, gene expression, and cell polarity formation. The nectin and E-
cadherin–catenin systems induce activation of Cdc42 and Rac. Activated Cdc42 and Rac regulate 
reorganization of the actin cytoskeleton through their downstream effectors, IQGAP1, IRSp53/WAVE, 
NWASP, and WASP. Furthermore, they induce gene expression via JNK activation, and facilitate 
epithelial cell polarity. The picture illustrate salso the role of the Rac protein. 

This picture was taken from the review of Miyoshi and Takai in  Advanced Drug Delivery 
Reviews 57,205, 815-855). 
 
 

 

of PATJ expression results not only in polarity defects but also in a severe delay of tight 

junction formation, including mislocalization of occludin and ZO-3 to the lateral 

membrane (Latorre, Roh et al. 2005; Shin, Straight et al. 2005). In a study in mammary 

epithelial cells it was shown  that the cells expressing little endogenous CRB don’t form 

tight junctions in vitro (Fogg, Liu et al. 2005). An emerging concept is that this 

complexes define the apico-basal polarity and create the landmark where the tight 

junction will form. This leads to a close interdependence between polarity complexes 

and tight junction structural components. Polarity complexes target proteins to the tight 
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junction, then serves to reinforce polarity by preventing mixing of apical and basolateral 

membrane proteins. 

 

 

 

1.5 Small Rho GTPases 

The Rho GTPases are monomeric proteins of 20-30 kDa and belong to the superfamily 

of GTP-binding protein Ras, which is composed of over 50 members divided into 6 

families: Ras, Rho, Arf, Sar, Ran and Rab (Takaji, Sasaki et al 2001). They act as  

molecular switches in a wide range of signalling pathways upon stimulation of cell 

surface receptors (Ellenbroek and Collard 2007). These signalling cascades regulate 

gene transcription, vesicle trafficking and cytoskeleton reorganisation, junctonal 

complexes formation, processes which affect growth, differentiation, adhesion, and 

migration of cells (Bar-Sagi and Hall 2000; Mitin, Rossman et al. 2005). 

20 different mammalian Rho GTPases, some of them having different isoforms: Rho 

(isoforms A, B, C), Rac (isoforms 1,2,3), Cdc42 (cdc42Hs isoforms, G 25 k), Rnd1, 

Rnd2 ; Rnd3, Rho D, Rho G, TC10, and TTF.  

Among these the best characterized Rho GTPases are Rho, Rac and Cdc42. Small 

GTPases can be found either in an active conformation (bound to GTP) or in an inactive 

conformation (bound to GDP). Only in the GTP-bound state these proteins are able to 

bind effector proteins and transducer signals from a large variety of membrane receptors 

including adhesion receptors (such as integrins) and G-protein coupled receptors 

(Juliano 2002; Buchsbaum 2007). However they are also involved in processes of 

neoplastic transformation and metastasis. Two main classes of proteins regulate the 

activity of Rho GTPases, influencing the transition from the active to the inactive state: 

GEFs (guanine nucleotide exchange factors) and GAPS (GTPase-activating proteins) 

(Figure 6). The GEFs promote the exchange of GDP with GTP, thus stimulating the 

dissociation of GDP and the subsequent recruitment of GTP from the cytosol, leading to 

activation of Rho GTPases. more than 70 GEFs have been identified (Schmidt and Hall 

2002). They can be divided into 2 large families. One group is defined by the presence 

of two characteristic domains, which account for the catalytic activity. These GEFs 

contain a catalytic Dbl homology (DH) domain, which is almost invariantly followed by 

a pleckstrin-homology (PH) domain. The PH domain interacts with phospholipids, 

which may activate the catalytic DH domain of GEFs and localise them to the plasma 
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membrane (Mertens, Roovers et al. 2003; Rossman, Der et al. 2005). The second group 

of GEFs for Rho GTPases consists of proteins related to Dock180 (dedicator of 

cytokynesis 180). These proteins contain a Dock-homology region-2 (DHR2 or CZH2) 

domain, which renders these proteins catalytically active (Brugnera, Haney et al. 2002; 

Meller, Merlot et al. 2005). Besides promoting the exchange of nucleotides, GEFs 

contain various additional domains and are able to influence and determine the 

signalling route downstream of Rho GTPases by direct binding to different effector 

molecules, or to serve as scaffold proteins that associate with components of 

downstream effector signalling pathways (Mertens, Roovers et al. 2003; Rossman, Der 

et al. 2005). The inactive state is achieved with the GTPase-activating proteins, GAPs, 

which enhance the intrinsic ability of small GTPases to hydrolyze bound GTP to GDP, 

which is intrinsically very low. Thus, GAPs promote inactivation and reverse effector 

binding, thereby shutting down the signalling pathway. About 60 GAPs have been 

identified (Moon and Zheng 2003; Tcherkezian and Lamarche-Vane 2007), all 

characterized by an arginine residue, called arginine finger, which interact with the 

active site of small GTPase. With a few exceptions, Rho family members have a N-

terminal portion that interacts with trinucleotides GTP and GDP, followed by the switch 

I and switch II regions essential for binding to effector proteins and a C-terminal 

sequence that ends with a CAAX motif (Wherlock and Mellor 2002). Post-translational 

modifications of Rho GTPases at the C-terminus, such as prenylation (farnesylation or 

geranylgeranylation) or palmitoylation, determine their intracellular localisation. They 

act as a lipid anchor and allow GTPases to localise (and attach) to the plasma membrane 

where they can be activated by GEFs. The regulatory GDI proteins, of which three 

mammalian members have been identified (DerMardirossian and Bokoch 2005), are 

cytosolic proteins that form complexes with inactive, GDP-bound Rho GTPases. This 

binding occurs via an immunoglobulin-like domain present at the C-terminus of GDI 

protein containing a hydrophobic pocket that is able to accommodate the geranyl-

geranyl anchor. Their N-terminal domain, they bind to the switch I and switch II regions 

of Rho GTPases. Herewith they prevent cycling of the GTPases between cytosol and 

the plasma membrane and therefore also activation of Rho GTPases by GEFs. 

Furthermore, GDIs are able to interact with active, GTP-bound GTPases, preventing 

hydrolysis and interaction with downstream effectors. Association with GDIs thus 

keeps Rho GTPases in the cytoplasm, inactive or unable to signal towards downstream 

effectors (Robbe, Otto-Bruc et al. 2003) (Figure 6).  
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Fig. 6 Regulation of GTPase cycle: GDP-bound inactive GTPases are mainly cytoplasmic, maintained 
thereby GDIs masking the Cterminal tail required for plasma membrane localisation. Upon dissociation of 
the GDI, GTPases translocate to the plasma membrane, where they can be activated by GEFs upon 
external stimuli from surface ligand-receptor systems such as adhesion receptors, G-protein coupled 
receptors (GPCRs) and receptor tyrosine kinases. Upon activation by GEFs, Rho GTPases can bind 
different effector proteins, and induce downstream signalling pathways. GAPs inactivate the Rho GTPases 
and switch off the downstream signalling (this picture is taken by Saskia , Ellenbroek et al. 2007) 
. 

 

 

Phosphorylation of Rho GDIs may lead to dissociation of the complex and allow Rho 

GTPases to translocate from the cytoplasm to the plasma membrane, where they can be 

activated by GEFs and bind effectors. Specific signals mediated by integrins or other 

proteins, promote the dissociation of GDI from the Rho GTPase protein. The activation 

state of all Rho GTPases is dependent on the balance of the activities of their regulators 

(GEFs, GAPs and GDIs). Thus, the local amount of GTP-bound protein and the time 

during which the protein is active determines the downstream signalling at specific sites 

in cells.  
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 1.6 Functions of Rho GTPases 

1.6.1. Regulation of the actin cytoskeleton 

The Rho family of GTPases have been best characterised for their particular function in 

the regulation of the actin cytoskeleton in response to receptor signalling. All Rho 

proteins play an important role in organizing the actin filament system. RhoA regulates 

the formation of contractile actomyosin bundles (stress fibres) and focal adhesions, 

Rac1 regulates the formation of actin-rich protrusions (lamellipodia) a well as 

membrane ruffling and Cdc42 regulates the formation of filopodia (Hall 2005). These 

actin dynamics are regulated by coordinated activation of different signalling pathways 

downstream of the small GTPases. RhoA can interact with its effector protein ROCK, 

which can subsequently activate myosin light chain kinase, leading to activation of 

myosin (by phosphorylation), increased contractility and formation of stress fibres. 

Furthermore, RhoA can stimulate actin polymerisation via its effector proteins mDia1 

and mDia2, which catalyze F-actin assembly in filopodia and lamellae (Hotulainen and 

Lappalainen 2006; Gupton, Eisenmann et al. 2007). Cdc42 can signal to the Arp2/3 

complex via its effector N-WASP, which results in actin polymerisation and the 

formation of filopodia (Miki, Yamaguchi et al. 2000; Ten Klooster, Evers et al. 2006). 

Rac1 regulates actin organisation by activating WAVE or PAK, resulting in altered 

actin nucleation activity of the Arp2/3 complex. Furthermore, the Rac-activator Tiam1 

can bind IRSp53 and p21Arc, one of the components of the Arp2/3 complex, providing 

a mechanism to directly regulate Tiam1/Rac mediated actin polymerisation processes 

by the Arp2/3 complex (Figure 7). 

 

                 1.6.2. Regulation of the microtubule cytoskeleton 

Besides regulating the actin cytoskeleton, small Rho GTPases are also important 

regulators of the microtubule cytoskeleton, via regulation of activity of several 

downstream effector proteins. Interestingly, mDia is a downstream effector protein of 

RhoA, which is involved in both the regulation of the actin cytoskeleton as well as the 

microtubule cytoskeleton. RhoA can promote the formation of stable and aligned 

microtubules via signalling through mDia (Palazzo, Cook et al. 2001; Yamana, 

Arakawa et al. 2006). Both Rac1 and Cdc42 can influence microtubule stability by 

mediating PAK signalling to stathmin, an important microtubule destabilizing protein 

(Daub, Gevaert et al. 2001). Furthermore, Rac1 and Cdc42 are able to promote 

microtubule capture at the cell cortex (leading edge of migrating cells) by stimulating 
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binding of their effector protein IQGAP to the capture protein CLIP-170 (Fukata, 

Watanabe et al. 2002). Microtubule capture is necessary for the stabilisation of 

microtubules, which is essential for polarisation of cells. Cdc42 plays another crucial 

role concerning microtubule organisation, during polarisation and directional cell 

migration.  

 

                  
Fig. 7 Rho GTPases and interacting proteins: selected overview of GEFs that can activate RhoA, Rac1 
and/or Cdc42 and allow interaction with various downstream effector proteins, resulting in diverse cellular 
responses. Domain structures of GEFs are schematically represented (this picture is taken by Saskia , 
Ellenbroek et al. 2007). 
 
 

 

 

It binds to one of its effector proteins, Par6, which forms a polarity complex with 

atypical PKC and together transduce signals to downstream targets resulting for 

example in the reorientation of the Golgi apparatus and microtubule organizing centre 

(MTOC) (Etienne-Manneville 2004). The Rac-GEF Tiam1 also associates with proteins 

of the Par polarity complex (Par3, Par6 and atypical PKC) and promotes microtubule 

stability, thereby allowing cells to stably polarise and to migrate in a persistent fashion 

(Pegtel, Ellenbroek et al. 2007). 
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1.6.3. Rho GTPases and cytoskeleton-dependent processes 

Because of their function in cytoskeletal organisation, small Rho GTPases regulate 

various cytoskeleton-dependent processes such as changes in cell shape, cell adhesion, 

cell spreading, cell migration and cell polarity. Adhesive structures such as tight 

junctions (TJs), adherens junctions (AJs) and desmosomes are linked to the 

cytoskeleton and determine epithelial morphology and functionality and therefore play 

an essential role in the maintenance of tissue architecture (Halbleib and Nelson 2006). 

Rho GTPases have been shown to regulate the formation and maintenance of these 

adhesive structures (AJs and TJs) (Mertens, Pegtel et al. 2006). Interestingly, Rho 

GTPase signalling can contribute not only to stabilisation but also to disassembly of AJs 

leading to EMT. RhoA signalling via mDia and subsequent actin polymerisation is 

required for formation and maintenance of AJs, whereas RhoA signalling through 

ROCK results in disruption of AJs caused by increased contractility (Sahai and 

Marshall 2002). In vitro studies have shown that Tiam1-mediated Rac activity in 

conjunction with the Par polarity complex is essential for the establishment of apical-

basal polarity of epithelial cells and interference with either Tiam1 or the Par complex 

facilitates EMT and migration of cells (Mertens, Rygiel et al. 2005). Interestingly, the 

same Par-Tiam1 complex also regulates front-rear polarity and directional migration in 

dissociated migratory epithelial cells. Rho GTPases also function in polarisation 

processes in other cell types (T cells, neutrophils and neuronal cells ). The outcome of 

signalling of the Par complex in conjunction with Rho GTPases is clearly context and 

cell type dependent. Rho GTPase signalling is required for the regulation of vesicular 

trafficking, including exocytosis, endocytosis and phagocytosis, processes which are 

dependent on actin and microtubule dynamics and essential for establishment of 

asymmetrical distribution of proteins in polarized cells (Symons and Rusk 2003). 

 

1.6.4. Rho GTPases and regulation of transcription 

Rho proteins have also been implicated in the control of gene transcription. RhoA 

controls the activation of the nuclear transcription factor serum response factor (SRF), 

by which it can regulate the transcription of many genes. Furthermore, RhoA, Rac1 and 

Cdc42 regulate cell cycle progression and growth as well as apoptosis, by regulating 

transcription of specific genes, including cyclin D1 (Olson, Ashworth et al. 1995; 

Welsh 2004). Cyclin D1 belongs to a family of proteins that regulate cell cycle 

progression by stimulating G1 to S phase transition. The transcription of cyclin D1 is 
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controlled by transcription factors like ETS, AP-1 and NFjB of which activity is 

regulated by Rho GTPases. These transcription factors may also control anti-apoptotic 

survival signalling. Rac promotes cell survival by activating the NFjB pathway or by 

the production of ROS that promotes ROS dependent Erk-mediated survival signalling. 

Rac1 also stimulates survival signalling through activation of the phosphatidylinositol 

3-kinase (PI3K)-Akt signalling pathway (Murga, Zohar et al. 2002). Because of their 

regulatory function in various signalling cascades, it is not surprising that aberrant 

signalling by Rho GTPases has been found to be involved in disturbed cellular 

phenotypes in a wide range of diseases, including neurodegenerative disorders and 

cancer (Boettner and Van Aelst 2002; Sahai and Marshall 2002). 

 

 

 

 

1.7 Rac1 

Rac1, one of the most extensively studied members, was initially discovered as Ras-

related C3 botulinum toxin substrate 1 in 1989. 

There are 3 isoforms of Rac: Rac1 is ubiquitously expressed, RAC2 is specific for 

hematopoietic cells and Rac3 is espressed in neurons. Isoforms of Rac1 and Rac 2 have 

an amino acid sequence identical to 92%. They have an identical effector domain, 

critical for interactions with both the GEF and with effector proteins. Rac1 exists in two 

conformational states, an inactive GDP-bound form and an active GTP-bound form. In 

response to extracellular signals, the interconversion of these states occurs via guanine 

nucleotide exchange factors (GEFs) which convert Rac1 to its active form, and GTPase-

activating proteins (GAPs), which inactivate (Van Aelst and D'Souza-Schorey 1997; 

Etienne-Manneville and Hall 2002). Among the first described Rac1 effector proteins 

was the family of p21 activating kinases (PAK). PAK1 binds Rac1 in aGTP-dependent 

manner, potently stimulating PAK kinase activity and leading to cytoskeletal dynamics, 

adhesion, and transcription. Rac1 signals through PAK to activate c-Jun Nterminal 

kinase (JNK), placing Rac1 between Ha-Ras and MEKK in a signaling cascade from 

growth factor receptors and v-Src to JNK activation. Rac1 has also been shown to 

influence nuclear signaling through its effectors MLK2/3, which have been shown to 

activate the JNK pathway (Teramoto, Coso et al. 1996). Rac1 signaling can be 

important for cellular transformation via modulation of anti-apoptotic and cell cycle 
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machineries. Rac1 positively regulates transcription at NFkB transcription factor-

dependent promoters and facilitates phosphatidylinositol-3 kinase (PI3K)-dependent 

activation of AKT ser/thr kinase, thereby permitting the survival of transformed cells 

(Perona, Montaner et al. 1997). Rac1 can also influence transformation through 

regulation of cyclin D1, a cell cycle protein that is frequently overexpressed in cancer 

(Westwick, Lambert et al. 1997; Joyce, Bouzahzah et al. 1999) (figure 8). The first 

studies of Rac1 function were performed in the context of clonal cell lines and a team of 

work implicated Rac1 in reorganization of the actin cytoskeleton, specifically 

lamellipodia formation, which is thought to contribute to cell movement (Ridley, 

Paterson et al. 1992). Rac1 was shown to reside at the leading edge of migrating cells, 

and microtubule growth can activate Rac1 to promote lamellipodial protrusion. The 

actin-rich lamellae formed at the leading edge in fibroblasts are similar to the membrane 

dynamics at developing cell-cell contacts in epithelial cells, where actin is recruited to 

physically strengthen adherens junctions following E-cadherin activation of Rac1 

(Vasioukhin, Bauer et al. 2000; Ehrlich, Hansen et al. 2002). Furthermore, because actin 

cytoskeletal dynamics are intimately linked to vesicular trafficking, it is not surprising 

that Rac1 has been implicated in this process. Rac1, also participates in reactive oxygen 

species (ROS) generation in primary cells via NADPH oxidase o via Nox, and it can 

regulate diverse functions, including transcription factor activation, proliferation, 

transformation, apoptosis, and cellular innate immune responses. In addition to its 

effects on the actin cytoskeleton, Rac1 signaling can affect cell growth through a variety 

of mechanisms. Rac1 can modulate gene transcription through the activation of NFkB, 

JNK, and p38 mitogen-activated protein kinase (MAPK), all of which induce activator 

protein-1(AP1) transcription factors that can upregulate the expression of proteins that 

control cell cycle progression, such as cyclin D1 and c-myc, to induce G1/S progression 

(Olson, Ashworth et al. 1995; Chiariello, Marinissen et al. 2001). Rac1 is a pleiotropic 

regulator of multiple cellular functions, some of which are unique in specific cellular 

contexts. Another role of Rac is in the process of cell-cell adhesion. In fact, it was 

demonstrated the presence of active Rac and its downstream effectors, in the early 

contact zone between cell-cell, suggesting that activation of Rac promotes the early 

stages of adhesion (Price, Leng  et al 1998). Indeed, the active form of Rac is able to 

bind IQGAP preventing it from mediating the dissociation between the β-catenin dall'α-

catenin and thus to promote the cell-cell adhesion mediated by cadherins (Kuroda, 

Fukata et al. 1999).  A recently characterized function specific for epithelial cells is the 
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maintainance of apico-basolateral cell polarity. In a model that use human keratinocyte 

is shown that, the Rac-specific guanine nucleotide exchange factor Tiam1 (T-lymphoma 

invasion and metastasis) controls the cell polarity of epidermal keratinocytes. Similar to 

wild-type (WT) keratinocytes, Tiam1-deficient cells establish primordial E-cadherin-

based adhesions, but subsequent junction maturation and membrane sealing are severely 

impaired (Mertens, Pegtel et al. 2006). Tiam1 and V12Rac1 (a constitutively activated 

form) can rescue the TJ maturation defect in Tiam1-deficient cells, indicating that this 

defect is the result of impaired Tiam1-Rac signaling. Tiam1 interacts with Par3 and 

aPKCzeta, which are two components of the conserved Par3-Par6-aPKC polarity 

complex, and triggers biogenesis of the TJ through the activation of Rac and aPKCzeta, 

which is independent of Cdc42. Rac is activated upon the formation of primordial 

adhesions (PAs) in WT but not in Tiam1-deficient cells. The data indicate that Tiam1-

mediated activation of Rac in PAs controls TJ biogenesis and polarity in epithelial cells 

by association with and activation of the Par3-Par6-aPKC polarity complex. 

 

                         

 
Fig. 8 Rac1 signaling model. Rac1 is a signal transducer and receive information via activated GEFs 
from a several extracellular stimuli such as receptor kinases, G protein-coupled receptors, and integrins. 
The GTP-bound Rac1 adopts an active conformation capable of binding effector molecules such as 
IQGAP, IRSp53/WAVE, PAK, MLK2/3, and p67phox. These effectors regulate many cellular functions, 
such as cytoskeleton remodeling, microtubule stability, gene transcription, and superoxide production (this 
picture was taken from Bosco, Mulloy et al. 2009) 
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 1.8 Integrin regulation of small Rho GTPase Rac1 

The integrin family of transmembrane receptors mediates cell–cell adhesion and cell 

attachment to the ECM (extracellular matrix). Integrins do not possess enzymatic 

activity, however, activation and/or ligand binding induces integrin clustering that leads 

to the recruitment of multiple signalling molecules and actin filaments (Hynes 2002). 

Integrins regulate multiple pathways, including Erk, PI3K (phosphoinositide 3-kinase), 

FAK, Src and small Rho GTPases that induce changes in cell polarity, cell migration, 

cell-cycle progression, gene expression and survival (Schwartz 1997; Assoian and 

Schwartz 2001). In addition, integrin signals are frequently required for coupling 

growth factor receptors to downstream effectors. Integrins regulate the activities of 

RhoA, Rac1 and Cdc42. These small GTP-binding proteins in turn regulate cell 

adhesion and changes in cell morphology by triggering dynamic changes in the actin 

cytoskeleton. Integrin activation of Rac1 and Cdc42 signaling induces the formation of 

lamellapodia and filopodia, which are necessary for cell spreading. It has recently 

become clear that integrin-regulated localization of Rac1 at specific plasma membrane 

microdomain is critical for binding to and activation of its effector PAK (p21 ctivated 

kinase) (Del Pozo 2004; Guan 2004). Rac is activated by growth factors present in 

serum in suspended and attached cells. Interestingly, Rac activation level in attached 

cells is higher than in suspended cells and this is due to the effect of integrins on Rac 

activation. Cell adhesion to fibronectin in the absence of serum induces a transient 

activation of Rac that is similar to growth factor induced Rac activation in non-adherent 

cells. Thus Rac is activated by growth factors present in serum and by cell attachment to 

the ECM and both stimuli are independent and accumulative. Although Rac GTP 

loading can be induced by growth factors in an integrin-independent manner, 

downstream signalling is strictly dependent on integrins. Pak is a Rac effector that is 

activated by serum in attached cells; however, it is not activated in suspended cells after 

serum stimulation, even though Rac activity is elevated under these conditions, these 

series of experiments indicate that adhesion to the ECM couples Rac with its effector 

Pak. Several observations strongly suggest that proper Rac membrane targeting 

regulates effector coupling and downstream signalling. Rac translocates to the 

membrane fraction after serum stimulation in adherent cells, but not in suspended cells. 

This is also the case for V12 Rac, indicating that changes in GTP loading due to 

integrin-mediated adhesion to the ECM do not determine Rac membrane targeting. Pak 

and other effectors also localize to the plasma membrane in activated cells (del Pozo, 
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Price et al. 2000). Binding between Rac and the lipid bilayer is regulated by RhoGDI, 

which keeps Rac soluble in the cytoplasm by shielding the isoprenoid moiety (Hoffman, 

Nassar et al. 2000). RhoGDI binds Rac in the cytosol to prevent both membrane and 

effector binding.the hypothesis is that  integrins would locally increase the affinity of 

the plasma membrane for Rac, favouring RhoGDI displacement and allowing Rac 

effector binding (Del Pozo, Kiosses et al. 2002) in the vicinity of focal adhesions. In 

support of this idea, binding between Rac and RhoGDI is higher in suspended than in 

adherent cells. In summary, these studies (Ren, Kiosses et al. 1999; Arthur, Petch et al. 

2000; del Pozo, Price et al. 2000)showed that integrins, in addition to regulating GTP 

loading, independently regulate GTP-Rac translocation to the plasma membrane in 

specific sites, CEMMs (cholesterol-enriched membrane microdomains), allowing 

effector binding (Grande-Garcia, Echarri et al. 2005). 

 

 
 

1.9 Alteration of polarized phenotype by expression of human β1B integrin subunit 
in epithelial cells line 
 

β1B integrin is a β1 integrin splice variant that differs from the ubiquitous β1A in the 

terminal portion of the cytosolic tail, in fact this domain is 9 amino acids shorter than 

β1A and the last 12 amino acids represent a sequence which is not present in the  β1A 

isoform. This region of the molecule is very important for the functional association of 

the integrin with talin and α-actinin. Experiments conducted in the FRT (Fisher Rat 

thyroid)  epithelial cell line in wich cells  have been transfected with β1 integrin splice 

variant have shown that the β1B expressing cells are affected in several of their 

properties (Cali, Retta et al. 1998). They  attached less efficiently and spread less on 

fibronectin, laminin or type IV collagen coated dishes, and  great reduction of 

fibronectin fibrils associated to the basal membrane of non confluent β1B transfected 

cells was observed. This was paralleled by disappearance of microfilament bundles and 

loss of basally located focal adhesion. Furthermore, this cells showed reduced motile 

properties when embedded as aggregates in type I collegen gels (Figure 9).  
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 Fig. 9 Analisys of migration in a type I collagen gel. FRT (b) cells and 
β1B expressing cells (a) were embedded ina gel and photographed 8h 
after embedding. These cells have a different behaviour in fact, β1B 
expressing cells do not migrate and aggregates still retain their round 
morphology (a), while FRT cells migrate and have an elongated form (b).                  

 

  

FRT parental cells cultured in suspension on agarose coated dishes form solid 

aggregates and thereafter polarized cysts which resemble inverted thyroid follicles 

formed in primary cultures in the same culture conditions. FRT cells expressing β1B 

variant integrin aggregate regularly; the aggregates undergo compaction but do not 

evolve, or do it very slowly, into dilated cysts. The data indicates that integrins is an 

important factor in the regulation of several cellular functions as migration, spreading, 

adhesion to substrates, organization of ECM, and demonstrate that β1 integrins play a 

role in the acquisition of cell polarity. Both parental FRT and FRT cells expressing β1B 

variant integrin are used as model cellular system in this report focused in the role of the 

Rac1 protein in the control of the polarized phenotype. Several aspects od Rac1 activity 

regulation, localization and interactions with effectors are not fully understood. 

Therefore understanding the molecular basis of these complex issues will certainly 

improve our knoledge of the involvement of Rac1 activity in the acquisition and 

mantainance of the proper polarity in epithelial cells.



                                                                                                                         Materials and Methods 

                                                                                 31 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                                                 Materials and  Methods



                                                                                                                         Materials and Methods 

                                                                                 32 

                 3. MATERIALS AND METHODS  

 

3.1 Cell culture  

The cells used as model of study during my work are epithelial FRT (Fisher Rat 

Thyroid) cells. They were cultured in Petri dishes from 100 to 35 mm of diameter and 

were kept in an incubator at 37 ° C in a humidified atmosphere containing 5% CO2 and 

95% air. Colture medium was changed every three days. FRT cells were grown in F12 

Coon’s medium containing 5% Fetal Bovine Serum (FBS, HyClone). Growth was 

monitored   daily by phase contrast microscopy, to assess the degree of confluence 

reached by the colture. When the cells reached confluence were washed once with a 

solution of trypsin 0.3%, glucosio 0.1% , EGTA 2 mM in PBS  pH 7.3 (KCl 13.7 mM, 

KH2PO4 1.47 mM, NaCl 137 mM, Na2HPO4 7H2O 8.06 mM) , incubated with the same 

trypsin solution for 10-15 minutes at 37° C and then resuspended in the medium culture 

and centrifuged at 1000 rpm for 4 minutes. The pellet  was resuspended again in F12 

Coon’s medium containing 5% Fetal Bovine Serum, and the cells were plated in Petri 

dishes. 

 

 

 

 

3.2 Plasmids and transfections 

FRT cells were stably transfected with the plasmid pFNR.β1B (described by Balzac, F. 

et all. 1993), containing a 3.5 kb fragment of the human β1B integrin subunit coding for 

an isoform with a cytoplasmic domain wich is 9 amino acids shorter than the one found 

in the β1A isoform. Furthermore the last 12 amino acids represent a sequence which is 

not present in β1A isoform. This region of the molecule is very important for the 

functional associations of the integrin with its substrates and cytosolic partners and it has 

been shown that the β1B  functions as a dominant negative protein. Neomicin resistent 

stable clones were previously obtained in the last years in the laboratory (described  by 

Calì, G. et all. 1998). 

β1B-isoform expressing-FRT cells were stably co-transfected with Pcefl-AU1-ER-

Rac1Q61L  (a kind gift of  Dr Mario Chiariello, Istituto Toscano Tumori, Siena). The 

DNA encoding the chimeric protein ER-Rac1Q61L consists of a fragment (inserted into 

Bgl II/EcoRI sites) encoding amino acids 281-599 of the mutated murine estrogen 
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receptor responsive to 4-OH-tamoxifen (HBD), fused to a fragment (inserted into Eco-

Not I sites) encoding the  protein Rac1 Q61L cloned into the vector pCEFL AU1 under 

the CMV promoter. The construct is in frame with the leader sequence and the tag. The 

tag is represented by a small peptide of six amino acids (DTYRYI) that is recognized by 

specific antibodies. Rac1(QL) protein is in frame with ER. Plasmid contains the internal 

resistance to neomycin for selection in eukaryotic cells (Figure 10). In unstimulated 

cells the protein ER-RAC1 (QL) is synthesized but in absence of 4-OH tamoxifen the 

hormone-binding domain interacts with the  Hsp 90 complex, a protein complex formed 

by three chaperonins, Hsp 90, Hsp 70 and Hsp 56 and this interaction makes the protein 

inactive. When 4-OH tamoxifen is added (100 nM) the chaperonine complex detaches, 

and interacts with the hormone-binding domain inducing a rapid and prolonged protein 

activation (figure 11).  

 

 

 

 

 

 

 

  

 
 

 

 

 

 

 

 

 
 
 
 
Fig.10 Schematic view of pCEFL AU1 ER. It contains a sequence of mutated murine estrogen receptor 
responsive to 4-OH-tamoxifen, it is fused to a fragment encoding the  protein Rac1 Q61L cloned into the 
vector pCEFL AU1 under the CMV promoter. Plasmid contains the internal resistance to neomycin for 
selection in eukaryotic cells. 
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Fig.11 Schematic representation of the regulation of a heterologous protein (protein 
X) by fusion to the hormon-binding domain (HBD) of a steroid receptor.  The 
interaction of HBD with Hsp complex makes the protein inactive but when the hormone 
(H) is added the inactivation ceases (from Picard D. 2000).  

 

 

To obtain stable transfectants, the cells were co-transfected with 4 μg of the plasmid 

containing AU1-ER-RAC1QL cDNA and 0,4 μg of the plasmid carrying a gene that 

confer resistence to hygromicin (because of the FRT cells expressing  β1B cDNA 

already were resistant to neomycin). Transfection was performed with FUGEN 6 

(Roche) following the manufacturer’s instructions. Hygromicin resistant clones were 

selected in Coon’s modified Ham’s F12 medium containing 5% FBS and 250 μg/ml of 

Hygromicin (Sigma).  FRT parental cells were also transfected with the plasmid 

containing AU1-ER-RAC1QL cDNA and stable clones were obtained  in the laboratory 

(by Dr A. Corteggio). Further, FRT parental cells were transfected with cDNA encoding 

for the human isoform of Rac1, inserted into BglII-EcoRI restriction sites of the pEGFP-

C2 vector (BD Bioscience Clontech, Palo Alto, CA) and stable clones were obtained in 

the laboratory (by Dr A. Corteggio). 
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3.3 Immunofluorescence 

 Immunofluorescence studies were performed on cells seeded onto 12-mm diameter 

glass coverslips or on top of filters in bicameral systems (see below) in medium 

containing 5% Fetal Bovine Serum for a variable time.  Indirect immunofluorescence 

staining in wich a secondary antibody labeled with a fluoruocrome is used to recognize 

a primary antibody was in general accomplished.  Cells were fixed for 20 minutes in 

PBS containing 4% paraformaldehyde (Sigma-St. Luis, MO-USA), washed two times 

for 5 minutes in NH4Cl 50mM, permeabilized with PBS containing Triton X-100 0,3%  

for 5-7 minutes and successively washed three time with PBS. Alternatively, the cell 

can be fixed with methanol for 1 minute at -20° C and then   permeabilized with acetone 

for 1 minute at -20° C and washed three time with PBS.  A third protocol was use in 

which case  methanol was used as fixative and the cells were permeabilized  with 0,3% 

Triton X-100 in PBS for 7 minutes at room temperature e then washed three time with 

PBS. Then the cells were incubated in humidified atmosphere with the primary 

antibody for 1 hour at room temperature. Cells were than washed three times with PBS 

and incubated in humidified atmosphere at room temperature with the appropriate 

rhodamine- or fluorescein- tagged goat anti-mouse or anti rabbit secondary antibody 

(Alexa Fluor, Molecular Probes) diluted 1:200 in PBS. After final washes with PBS, the 

coverslips were mounted on a microscope slide using a 50% solution of glycerol in PBS 

and examined with a confocal laser scanner microscope Zeiss 510LSM. The λ of the 

Argon ion laser was set at 488nm, that of the HeNe laser was set at 543nm. 

Fluorescence emission was reveled by BP 505-530 band pass filter for Alexa Fluor 488 

and by BP 560-LP band pass filter for Alexa Fluor 543. Double staining 

immunofluorescence images were acquired simultaneously in the green and red 

channels at a resolution of 1024x1024 pixels. 

 

3.4 Antibodies and reagents 

The  following antibodies were used:   the mouse mAb anti-AU1 that recognizes a six 

amino acid epitope (DTYRYI) in the AU1 ER-RAC1(QL) protein. (MMS-130R, 

Covance); the mouse mAb anti-Rac1 (clone 23A8) against recombinant protein 

containing the full length Rac1 (Upstate) mouse mAb anti E-Cadherin against amino 

acid 735-883 in the C-terminal  domain of human E-Cadherin (BD, Transduction 

Laboratories); rabbit anti-GM130 (Marra P., Maffucci T., et al. Nature Cell Biology 

vol.3.pag 1101-1113. 2001). 
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To inhibit endogenous Rac1 the specific inhibitor, NSC23766 (Calbiochem) at a dose of 

100-150 μM was used. NSC23766 is a cell-permeable pyrimidine compound that 

specifically inhibits Rac1 GDP/GTP exchange activity by interfering with the interaction 

between Rac1 and Rac specific GEFs, Trio and Tiam1 (Gao et al.,2004). 

To activate the AU1 ER-RAC1(QL) protein 4-Hydroxytamoxifen (Sigma Aldrich) was 

used. 4-OH tamoxifen is an active metabolite of tamoxifen which binds estrogen 

receptors (ER) and estrogen-related receptors (ERR) with estrogenic and anti-estrogenic 

effects. For nuclear chromatin staining it was used Hoechst 33258 a bis-benzimides 

fluorescent stains used for labelling DNA in fluorescence microscopy. It is excited by 

ultraviolet light at around 350 nm, and emits blue/cyan fluorescence light around an 

emission maximum at 461 nm. 

Cell culture reagents were purchased from Gibco Laboratories (Grand Island, NY). 

  

 

 

 

3.5 SDS PAGE and WESTERN blotting 

Cells were seeded at low confluence in 100 mm diameter dishes, after 2 days, cell-

culture dishes are placed on ice, and cells are washed with ice-cold phosphate-buffered 

saline (PBS) two times. Whole cell lysates were prepared by homogenization in 

modified RIPA buffer [150 mM sodium chloride, 50 mM Tris-HCl, pH 7.4, 1 mM 

ethylenediamine tetraacetic acid (EDTA), 1 mM phenylmethylsulfonyl fluorite (PMSF), 

1% Triton X-100, 1% sodium deoxycholic acid, 0.1% sodium dodecylsulfate (SDS), 5 

µg/ml aprotinin and 5 µg/ml leupeptin] for 10 min a 4°C by shaking. Cell debris was 

removed by centrifugation. The lysate was cleared by centrifugation at 3000 rpm for 5 

min. Protein concentration was determined with the Bio-Rad protein assay. The lysate 

was boiled for 5 min in 1x SDS sample buffer (50 mM Tris-HCl pH 6.8, 12.5% glycerol, 

1% sodium dodecylsulfate, 0.01% bromophenol blue) containing 5% beta-

mercaptoethanol, run on 10%-15% SDS polyacrylamide gel electrophoresis, transferred 

onto a membrane filter (Cellulosenitrate, Schleider and Schuell, Keene, NH) at 400 mA 

constant for 1h.The nitrocellulose was blocked by incubation with TTBS (50 mM Tris, 

pH 7.9, 150 mM NaCl and 0.05% Tween 20) 5% NFDM (Non Fat Dry Milk) for 1h at 

room temperature and successively incubated with the primary antibody diluted in TTBS 

5% NFDM. The antibodies against the proteins of interest were all used diluted 1:1000 
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and incubated one hour at room temperature.  The nitrocellulose was washed three times 

(5 min each) in TTBS, and the appropriate peroxidase-conjugated anti-rabbit IgG or 

anti-mouse IgG, were used. Then, the membrane was washed again four  times (5 min 

each) in TTBS. The blots were developed with the ECL system (Supersignal West Pico, 

Celbio, PIERCE, Rockford, IL, USA).   

 

 

 

 

 

 

 

3.6 Bicameral culture system and TER measurements  

Acquisition and the maintenance of cell polarity by epithelial cells in monolayer culture 

can be monitored by measuring the transepithelial reistance (TER) which is generated 

when cells are grown on top of filters in bicameral systems. Filters are composed of 

some inert materials as polycarbonate and nitrocellulose and glued on  rings in plastic  

which are placed in conventional culture wells. Filters have a pores of 0.4 μm and a 

diameter of 24 mm. This system allows to create two compartments above and below the 

filter, and culture medium is added to both compartments of the system. The 

development of this technique has made it possible to study in detail mechanism 

governing epithelial polarity, occluding barrier function and vectorial transport in 

epithelial cells. Since FRT cells are derived from thyroid follicular epithelium the cell 

layer on the filter can be considered to represent the wall of a follicle which has been 

opened and laid on top of the filter with the luminal surface facing the culture medium in 

the upper (apical) chamber compartment as schematized in figure below (Figure 12), and 

the basal membrane in close contact with the filter surface.  
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Fig.12 Drawing of the bicameral system. The cells were seeded on the filter with the apical membrane 
in the upper chamber compartment and the  basal membrane in close contact with the filter surface.  
 

  

The essentials of the method are to seed the cells on the top of the filter and allow the 

cells to grow to confluence and form a continuous growth-arrested monolayer.   In 

general it can be said that the higher is the seeding density  and more rapidly are reached 

both confluency and maximal TER values. This event correlates with tight junctions 

formation and great decrease in tight junction paracellular permeability. It is 

known that epithelial cell lines from different sources are characterized by 

different maximal TER values. In all experiments presented in this thesis   

commercial bicameral chambers were used, (TranswellTM , Costar Corp., Cambrige, 

MA/USA). A layer of polarized, confluent cells can generates a barrier between the two 

compartments, apical and basolateral, that they separate and under these conditions, it is 

resistant to the passage of current applied through electrodes connected to a voltmeter 

(TER, transepithelial resistance). The TER was measured by placing an electrode in the 

apical compartment and another electrode in the basolateral compartment. The electrical 

potential difference is about of 3 mV and was measured the resistance that the 

monolayer opposed to the passage of electric current by another pair of electrodes 

connected to a voltmeter. TER of cell monolayers was measured with the aid of the 

Millicel-ERS resistance monitoring apparatus (Millipore). TER values are 

espressed as Ohms/cm2.  

In this report TER measurements were performed in order to define the degree of 

polarization of the cells in conditions where endogenous Rac1 activity was 

APICAL DOMAIN 
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experimentally inhibited or where the activity of the exogenous chimeric ER-Rac(QL) 

protein was induced (see results section). 

This system allows to create two compartments above and below the filter, the culture 

medium was added to both compartments of the system. In the experiments we 

measured the transepithelial resistance that determines The measurements were made 

with the Millicell-ERS apparatus (Millipore), which directly provides the values of the 

resistance in ohms. The measured value must be multiplied by the area of the filter to 

obtain the absolute value of RTE.  

                   

 

3.7 Suspension cultures 

To prepare suspension cultures, confluent monolayers of FRT cell line were trypsinized 

and the single cell suspension (2x102) was plated on regular 35-mm tissue culture dishes 

previously coated by a thin layer of 1% agarose (Sigma) in H2O to prevent cell 

attachment to the dish. Agarose was heated for 30 min at 100'C. While still hot, 1 ml of 

the solution was added to each plastic tissue culture dish and allowed to sit for about 10 

sec. The agarose solution was then aspirated and the dishes were left at room 

temperature until the remaining thin layer of agarose solidified. Dishes were washed 

with medium before use. FRT cells in this condition first aggregate e successively form 

polarized three-dimensional structures, known as cysts, formed by a single layer of 

tightly connected cells delimiting a central cavity (lumen) that could be seen by phase-

contrast microscopy. Most lumens were surrounded by a single layer of cells, but in 

some places additional cells were evident. The normal polarity of thyroid epithelial cells 

reverses when follicles are in suspension culture. During the polarity reversal, the cells 

remain attached to their neighbours. The surface features characteristic of the region of 

the cell next to the lumen (tight junction and microvilli) appear on the cell surface next 

to the medium and the surface features characteristic of the region of the cell next to the 

medium appear in the inside of the cyst. The plarity inversion involves changes first in 

the surface features of the epithelial cell and then in the position of cytoplasmic 

organelles.  
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3.8 Cell growth curve 

50x104  cells were seeded in 60 mm diameter dishes. Each cell line was cultured in   

dishes to be analyzed at 24h, 48h, 72h and 96h after the initial plating. Two dishes for 

each experimental group were analyzed.  In these experiments  4-OH Tamoxifen was 

added to the cultures after the first 24h . At the end of the selected time intervals, cells 

were collected and counted to determine the growth trend of each cell line.    

 

 

 

                 3.9 Wound healing assay 

The wound healing assay allows  to study cell migration. It is simple, inexpensive, and 

one of the earliest developed methods to study directional cell migration in vitro. This 

method mimics cell migration during wound healing in vivo. The basic steps involve 

creating a “wound” in a cell monolayer, capturing the images at the beginning and at 

regular intervals during cell migration to close the wound, and comparing the images to 

quantify the migration rate of the cells. It is important that all the cultures are confluent 

at the start of  the experiment. Therefore cells were grown to confluence in F12 Coon’s 

medium containing 5% FBS medium and then were maintained in serum free medium 

for 48h. The monolayers were scratched with a sterile, disposable 1000 ml plastic pipette 

tip, the cells were washed 3 times and monolayers were photographed at different time 

intervals after the initial scratch to monitor the velocity of cell migration.  In this thesis  

the wound healing test was adopted to monitor the migratory activity in monolayers 

treated with the Rac specific inhibitor or with 4-OH tamoxifen.  

 

 

 

3.10 Expression and purification of recombinant GST-PAK-CD fusion proteins 

E. coli BL21 cells transformed with the GST-fusion constructs are grown for 16-18 h in 

bacterical dishes with LB/agar/ with ampicillin (100 μg/ml) at 37°C.  One colony was 

picked and was grown in 3 ml of LB/ampicillin for 6-8h. Then, 10 μl of bacterical 

suspension were diluted in 200 ml of LB/ampicillin and let to grown for 16-18h and 

successively in 2L of the same solution for about 1h to permit to bacteria to achieve the 

appropriate optical density value (about 600), in fact bacteria scatter light in proportion 

to their numbers and this is an important factor to induce recombinant  proteins 
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expression. Expression of recombinant protein is induced by addition of IPTG 1 mM 

and further incubation in Luria broth (LB)/ampicillin at 37°C for 3h. Cells are harvested 

by centrifugation (30 min at  3000 rpm), resuspended in 40 mL bacterial lysis buffer 

(TRITON X100 10%, EDTA 1mM, Aprotinin 40μg/ml, 3mM PMSF), and then 

sonicated (3×30 s, 50% cycle, mark 4). Cell lysates are centrifuged at 4°C for 45 min at 

4000 rpm, and the supernatant is incubated with glutathione-coupled Sepharose 4B 

beads (Amersham) for 1 h at 4°C (in a ratio of 1ml of 50% bead slurry per 20mL of 

supernatant). Protein bound to the beads is washed 3 times in cell lysis buffer. The 

amount of bound fusion protein is estimated by comparing to  bovine serum albumin 

(BSA) standards resolved in parallel on a 12% reducing polyacrylamide gel, and 

afterwards stained with Coomassie blue. Protein bound to the beads were conseved at -

20°C. 

 

 

 

3.11 GTPase activity assays. GST-Pull-Down   

To evaluate the rate of Rac1 activity in several experimental situations it was used a 

GST-Pull-Down assay. This assays is based on the use of a chimeric protein consisting 

of the glutathione-binding moiety of glutathione-S-transferase (GST) fused to part of an 

effector molecule which binds to the GTPase in its GTP-bound form. The complex of 

fusion protein and GTPase is then isolated from a cell lysate by immobilization (“pull-

down”) of the GST moiety on a sepharose substrate to which glutathione has been 

adsorbed. Finally, following elution from the glutathione Sepharose, the captured GTP-

bound GTPase is detected by Western blotting. For the Rac activity assays, the CRIB 

domain of the kinase PAK was fused to GST (GST-PAK-CD). An equivalent number of 

cells (3x106) was analyzed for each different sample. Cell-culture dishes were placed on 

ice, and cells were washed with ice-cold phosphate-buffered saline (PBS) 2 times, then, 

cell-lysis buffer, RIPA buffer (see SDS PAGE and Western Blot) was added in the 

dishes (500 μL–1 mL). A cell scraper were used to harvest cell lysates, and they were 

incubated with lysis buffer, in tubes eppendorf, for 15 min at 4°C in shaking and were 

then centrifuged for 5 min at  3000rpm at 4°C. Protein concentration was determined in 

supernatant with the Bio-Rad protein assay. Aliquots was taken from the supernatant 

(100 μg of total protein) and were incubated with bacterially produced GST-PAK1-CD 

protein bound to glutathione-coupled Sepharose at 4°C for 30. The beads and proteins 
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bound to the fusion protein were washed 3 timesin an excess of cold cell-lysis buffer, 

eluted in Laemmli sample buffer, boiled for 5 min, and then analyzed for SDS-PAGE 

and Western blotting using mouse mAb anti-Rac1 diluted 1:1000 (Upstate 

Biotechnoloy).   ECL detection followed  the incubation with a HRP-conjugated 

secondary antibody (diluited 1.1000) (Figure 13).   

 

 

                   
Fig. 13 Outline of the experimental scheme used to isolate Rac1 in his active GTP-bound state. Cell 
lysate is mixed with GST-fusion protein attached to glutathione-bearing Sepharose beads. Centrifugation 
of the sepharose beads is followed by washing and elution of the captured active-Rac in sample-loading 
buffer. Protein is then resolved by SDS-PAGE and Western Blot. 
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3. Aim of the project 

To carry out the present project interest was mainly focused in the analysis of the role of 

the Rac1 protein in the acquisition of the polarized phenotype in epithelial cells. To this 

aim a cell line (FRT)  derived from the thyroid gland and expressing high levels of 

polarity was used. 

The Rho family proteins consist of about 20 mammalian members including RhoA, 

Rac1 and Cdc42. This Ras-related GTPases act as intracellular molecular switches that 

transduce diverse signals by cicling between the active GTP-bound and the inactive 

GDP-bound states, leading to cellular responses crucial for cell cycle progression, 

apoptosis, migration., intercellular adhesion.The Rho proteins become activated through 

interaction with a class of positive regulators, the Dbl family of guanine nucleotide 

exchange factors (GEFs). The Rho family of small GTPases regulate the organization of 

the actin cytoskeleton and are involved in cadherin-dependent cell-cel adhesion. The 

process of cell-cell adhesion, during the acquisition of the polarized phenotype, can be 

divided into three steps: formation of new cell-cell contacts, stabilization of these new 

contacts and junction maturation. As will be addressed in the discussion section Rac1 is 

critically involved in all these processes. It is also true that several aspects od Rac1 

activity regulation, localization and interactions with effectors are not fully understood 

and await further experimental work.  

 The establishment of cultures of the FRT rat thyroid cells  was achieved by cloning 

cells of 18-month-old donor rats (Ambesi-Impiombato and Coon,1979). This epithelilal 

cell line have been widely used previously in studies on polarized traffic of intracellular 

molecules, on epithelial cells interactions with extracellular matrix and on the role of 

integrins in the control of the polarized phenotype. It also allowed advancements in the 

study of thyroid specific genes. 

To study the involvement of Rac1 activity in the acquisition and mantainance of the 

proper polarity in FRT cells two approaches were used: 

A- Elucidate the role of Rac1 in the parental FRT cells by investigating its subcellular 

localization and the consequences on polarized functions of these  cells induced by  

treating them with a small molecule inhibitor (NSC23766), targeting Rac1 activation by 

GEFs. 

 In vitro this compound have been shown to effectively inhibit Rac1 binding and 

activation by the Rac-specific GEF Trio or Tiam1. 

B-  Verify the involvement of an integrin-dependent signaling to Rac1 in stable cell 
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lines expressing the ß1B integrin. It has been shown that β1 integrins plays a critical 

role in orienting the polarity of FRT cels. The FRT-β1B cells have been generated in 

previous years in the laboratory to directly demonstrate that ß1 integrins play a role in 

the acquisition of polarity, FRT cells have been transfected with the dominant-negative 

ß1B integrin that inactivates the endogenous ß1A integrin. An impairment of the 

polarized phenotype have been obseved  (i.e impairment of the ability to form polarized 

cysts in suspension culture) (Calì et al.,1998). Furthermore, it has been shown that β1 

integrin lies upstream of Rac1 in a pathway controlling orientation of polarity (Yu et 

al.,2005)  

We wanted to test the hypothesis  that in these cells, where ß1 integrin-dependent 

signalling is defective , the polarization defect   might be  related to a reduced activity 

of Rac1, and that it could have been possibile to rescue the normal phenotype 

implementing Rac1 activity, by expressing exogenous Rac1 molecules. To do this FRT-

β1B cells  were stably transfected with a ER-Rac(QL) expression vector that allowed 

cells to stably express an inducile, constitutively active, Rac1 protein. In this study on 

the role of Rac1 in the control of FRT phenotypical charecteristics the attention was 

focused on three different properties of the polarized phenotype that epithelial cell 

manifest in vitro: migration, transepithelial resistance and threedimensional polarized 

structures formation. Cell polarization is essential for the migration of individual cells 

or groups of adherent cells, and migration of epithelial cells is essential during tissue 

morphogenesis. Cells that persistently migrate exhibit a front rear polarized 

morphology. It has been shown that proper polarization and diretional migration of 

many cell types requires coordinated crosstalk between Rho GTPases and polarity 

proteins. In this thesis work one one of the simplest experimental procedures, the 

wound healing test have been used, to monitor this activity and to evaluate the influence 

of the Rac1 activity in the process. When epithelial cells are grown on top of filters in 

bicameral systems they come across sequential stages of functonal maturation  that lead 

to junctions establishment and reinforcement. The overall process can monitored in this 

system measuring the increase of the transepithelial resistance. Mature fully polarized 

epithelial monolayer express the highest value of TER, that correspond to the minimum 

value of paracellular permeability and indicate solid junctions formation. Generation of 

polarized cysts by epithelial cells cultivated in suspension culture in the form cell 

aggregates may represent the end point of a morphogenetic process that cells are still 

able to perform in the unusual enviroment of an in vitro culture, and that requires that 
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cells become polarized during the complex rearrangements that are undertaken to form 

a stable polarized structure. Subcellular localization studies of the Rac1 molecule were 

performed in parallel with those regarding E-cadherin. Both proteins are in fact 

intimately related functionally and  several studies are being carried in many 

laboratories  trying to define  in detail the nature of their direct and/or in direct 

interactions. Thus the present project combines the interest in defining the role of Rac1 

in a model of  thyroid derived-epithelium in which the functional properties of this 

small Rho GTPase heve not been investigated yet to novel experimenal approaches such 

as the use of the Rac1-GEFs-interaction  inhibitor and of a novel construct used, in 

transfection experiments, to obtain cells that express an inducible constitutively active 

exogenous Rac1 protein.  
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4. Results 
As a starting point for this work the subcellular localization of the Rac1 protein in the 

FRT rat thyroid–derived epitelial cell line was investigated by indirect 

immunofluorescence. As indicated in the Materials and methods section several distinct  

fixation-permeabilization procedures have been utilized. Every one of them manifested 

advantages and disavantages, in terms of  quality and/or intensity of Rac1 localization 

in specific cell compartments. Paraphormaldehyde fixation followed by Triton X-100 

permeabilization gave a satisfactory staining of intracellular, mostly cytosolic Rac 

protein but failed to represent its localization at the plasma membrane level. The 

methanol-acetone procedure on the contrary gave the best staining for the plasma 

membrane-associated component but poorly showed the intracellular fraction. The best 

technical compromise we found was to fix the cells with methanol and permeabilize 

them with Triton X-100.   

 

4.1 Rac1 localization in FRT cells grown as monolayers on plastic or on filters   

Cells grown to subconfluency as monolayers on plastic and stained with the anti Rac1 

antibodies by immunofluorescence are shown in Figure 14. The molecule is present in 

the cytoplasm in the form of diffuse small clusters and around the nuclear envelope (a). 

A strong staining can be evidenced in the cell plasma membrane at sites of cell-cell 

contacts (a and b). 

 

 

 

 

 

 

             

 

 
Fig.14 Subcellular localization of the Rac1 protein in confluent  monolayers of 
FRT cells evidenced by immunofluorescence. Cells grown on monolayers were 
fixed with methanol/Triton X100 (a) and with methanol/acetone (b) and were 
stained with anti Rac1 antibody. Both procedures stain well Rac1  on the cell plasma 
membrane at sites of cell-cell contacts, The cytosolic localization into cytoplasm in 
the form of diffuse small clusters is better shown in a. The methanol-acetone 
procedure gave the best staining for the plasma membrane-associated component but 
poorly showed the intracellular fraction (b). 

 

 

a 

 

b 
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A similar distribution pattern is observed also when cultures are not confluent and form 

colonies af different sizes (Figure 15). It is interesting to underline that, according to  a 

generally accepted  point of view, the plasma membrane-located fraction of Rac1 may 

be considered the activated form of this protein. 

 

 

 

 

 

 

 

 
 

 

Fig.15  Immunolocalization of Rac1 protein in not confluent FRT cells.  FRT cells were 
fixed at the stage of small colonies and were stained with anti Rac1 antibody.  Rac1   is 
localized on the plasma membrane and in the cytoplasm similarly to cultures in a more 
advanced state of confluency 

 

In this not confluent culture condition few cells that are positioned at the colony 

periphery generate lamellipodia. These structures have to be intended in connection 

with the migratory activity of the cells, that eventually ends up with fusion of the 

colonies. As shown in Figure 16 Rac 1 accumulates in lamellipodia. 

 

 

 

 

 

 

 

 

 
 
 
 
 Fig.16  Rac1 protein is localized in lamellipodia in not confluent cells. FRT cells were analyzed for 
the Rac1 localization. They were fixed when cultures are not confluent and stained with anti Rac1 
antibody. At this stage few cells that are positioned at colony periphery generate lamellipodia and these 
structures are positive for Rac1 staining (see arrows in pictures). 
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We then analyzed the Rac1 localization in cells that were grown as monolayers on 

filters in bicameral system, a condition that allows cells to achieve a high degree of 

morphological and functional polarization. Confocal microscopic analysis of cells in 

this cultural setting shows that in FRT cells Rac concentrates in the lateral membranes 

in a region that is  close to the apical domain.(Figura 17)   

 

     
 

 

 

 

 

We also investigated the distribution of the Rac1-GFP  in FRT clones stably expressing 

this chimeric protein that were obtained in our laboratory (Corteggio A. et al., 

unpublished results). As shown in Figure 18  the same type of distribution, compared to 

wild type FRT cells, is found in FRT cells expressing the chimeric Rac-GFP protein. In 

our work cells expressing Rac1-GFP were mostly used in studies in which a 

contemporary analysis of Rac1 and E-cadherin localization had to be attempted, since 

Fig.17 Rac1 localization in monolayers on filter in bicameral system. Growing cells on filters 
in a bicameral system allows cells to achieve a high degree of morphological and functional 
polarization. In this cultural setting, multiple sequencial sections obtained by confocal imaging 
shows that in FRT cells Rac1 concentrates in the lateral membranes in a region that is very close 
to the apical domain (see green signal), while Na+ /K+ ATPase (red signal), a marker for the 
basolater domain , do not colocalize with Rac1.  
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suitable primary antibodies for detection of these proteins  were both of the monoclonal 

type. 

 

 

 

 

 

 

 

 

 

 
Fig. 18  Analisys of Rac1 distribution in clones stablly expressing a chimeric 
Rac1-GFP protein. Rac1-GFP expressing cells were fixed and analyzed for 
Rac1-GFP distribution. In these cells a large fraction of the protein is present on 
plasma membrane  like endogenous Rac1 in  parental FRT cells. 

 

 
 
 
4.2 Rac1-GFP colocalizes with E-cadherin at plasma membrane at regions of cell-cell   
contacts 
 
FRT cells were stained by immunofluorescence to determine E-cadherin distribution in 

the cells. As expected, due to its localization in the adherent junctions cadherin 

appeared to be concentrated at the plasma membrane at regione of cell-cell contacts,  a 

localization that is strongly reminiscent of that of Rac1. Furthermore a significative 

amount of this protein was  localized in the perinuclear region, in a compartment with 

morphological features of the Golgi complex (Figure 19).  Colocalization of Rac1 with 

E-cadherin was investigated  in Rac-GFP expressing cells using the monoclonal anti E-

cadherin antibody. 
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Fig.19 Cellular staining for E-Cadherin.  FRT cells were fixed and 
stained with anti-E-cadherin antibody. Cadherin appears to be 
concentrated at the plasma membrane, like Rac1, and a significative 
amount of this protein is localized in the perinuclear region in a 
compartment with morphological features of the Golgi complex. 

 

As shown in Figure 20 the GFP fluorescence  matched that of E-cadherin, suggesting 

that Rac1 is concentrated at the plasma membrane, in association to  the adherens 

junctions.  It is interesting to observe that no relevant staining of Rac-GFP corresponded 

to the Golgi compartment. 

 

 

 

 

 

 

 

 
Fig.20 Parallel analysis of Rac1-GFP and E-Cadherin distribution in Rac-GFP expressing cells.  
The cells were fixed and stained only with monoclonal anti E-cadherin antibody. Rac1-GFP (b) and E-
cadherin (c) localize on plasma membrane and the merge in a suggest that at this level both proteins 
colocalize. Furthermore E-cadherin is localized also in a compartment that corresponds to the Golgi 
apparatus but the GFP fluorescence is not detectable in this area . 
 
 

To carry out the present project the interest was mainly focused on the role of Rac1 in 

the control of polarized functioning of FRT cells. We considered that a useful approach 

to uncover Rac1- dependent phenotypical properties could have been to treat cells with 

a specific inhibitor of Rac1 activation and monitor Rac1 distribution in the cells and 

effects on polarized functions, such as cell migration, acquisition of transepithelial 
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resistance by cells grown on filters in bicameral systems and formation of polarized 

structures in suspension culture. The NSC23766 molecule used for this purpose have 

been described in the paper by Gao et al., (2004). Its effects rely on its capacity to fit 

into the GEF-recognition groove of Rac1 to act as an activation-specific inhibitor. 

 

4.3 The treatment with the Rac1 inhibitor induces changes in the overall morphology 
of FRT cells observed at semiconfluence by phase contrast microscopy  
  
Figure 21 shows that when FRT cultures are treated with the inhibitor changes are 

observed in the morphology of the colonies. In control cultures colonies have mostly a 

rounded aspect, while after NSC23766 treatment they have a deformed, mostly 

elongated appearance, probably due to changes in morphology of component cells.  
Cells were smaller and had a less flat aspect compared to control cultures. These 

changes are gradual and are better manifested after the first 24 hours of treatment. 

Changes in cell morphology are less evident in the case of more confluent cultures. 

As indicated in Figure 22 a significative reduction in the cell number in treated cells is 

also observed. 

 

 

 

 

 

 

 
 
 
 

 
Fig.21 Changes induced by treatment with the Rac1 inhibitor evidenced by phase contrast 
microscopy of living cells. FRT cells were plated on plastic dishes and kept overnight in regular 
medium. Then NSC23766 was added. Untreated FRT cells (a) and inhibitor-treated cultures (b) were 
photographed 24 hours after the inhibitor addition. Following Rac1 inhibition colonies assumed very 
irregular shapes and  increased the tendency to fuse. Compared to the control component cells were 
smaller and less spread.  
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Fig.22 Treatment with the Rac1 inhibitor reduces the growth rate. FRT cells were plated at the same 
cell density on two different plastic dishes and kept overnight in regular medium. Then medium was 
changed in all dishes and to one dish NSC23766 was added . Untreated FRT cells (a) and inhibitor-
treated cultures (b) were photographed 48 hours after the inhibitor addition. It is clearly evident that a 
smaller number of cells is present in dhe dish treated wiyh yhe inhibitor 
 
 

 
4.4 The disappearance of Rac1 molecules from the plasma membrane follows the 
treatment with the Rac1 inhibitor   
 

The traslocation of the GTP-bound Rac to the plasma membrane is essential for Rac 

1binding to effectors. Although the molecular mechanism that control the targeting of 

GTP-Rac to the plasma membrane remains largely unknown it appears that it is 

integrin-regulated and depends from cell adhesion to ECM. According to this  point of 

view the plasma membrane localized Rac1 molecules should represent the fraction of 

active protein inside the cells. The consequences of Rac1 activity inhibition on its 

subcellular localization would be therefore an issue interesting to be investigated. This 

was checked by treating adhaerent cells with the NSC23766 inhibitor and monitoring 

Rac1 localization in fixed cells by immunofluorescence. Cells were plated in regular 

medium and allowed to adhaere to the substratum for 24 hours, a sufficient time for the 

cells to spread and to target Rac to the plasma membrane. Then the inhibitor was added 

and kept in the medium for 48 hours. Cultures were fixed at the intervals of 12, 24 and 

48 hours after the addition of the inhibitor. 

The main observation related to this type of experiment is that Rac1 staining at the 

plasma membrane, in the regions of cell-cell contacts, became progressively fainter. 

(Figure 23).  
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Fig.23 Reduced plasmamembrane localization of Rac1 in FRT cells treated with the Rac1 inhibitor. 
Cells were treated  for 24 hours with NSC23766 and then fixed and stained by immunofluorescence with  
anti Rac antibodies. Compared to the control (a) a reduced amount of the molecule is visibile associated 
to the cell plasma mebrane (b). This finding is in agreement with the generally accepted idea that Rac1 is 
membrane-associated in its active conformation. In the cytoplasm of treated cells clusters of Rac1 
molecules were apparent (arrows). They had different sizes and their number increased prolonging the 
treatment with the inhibitor (see Figure 10). 
 

On the contrary to our expectations however this was not a rapid effect (morphological 

changes are recognizable following the first 24 hours of treatment) and was prevalently 

observed in colonies in subconfluent monolayers. In addition when cells were fixed and 

permeabilized with metanol/acetone  large clusters (vescicles ?) of variable sizes with a 

positive staining for Rac1 appeared in the cytosol. Their number increased with time, 

suggesting  that this phenomenon was not an artifact due to the specific reagents used in 

the fixation (Figure 24). 

 

 

 

 

 

 

 

 

 

 

 
Fig.24 Rac1-positive clusters in the cytoplasm of   FRT cells treated with the Rac 
inhibitor. Cells were treated  for 48 hours with NSC23766 and then fixed and stained  by 
immunofluorescence  with anti Rac antibody. This field was selected in the virtue of the 
great number of cells that contain the peculiar Rac-positive granules in the cytoplasm. 
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Interestingly these structures were very rarely observed when NSC23766-treated FRT-

RacGFP cells were investigated (Figure 25).   

Differently from control in FRT-RacGFP cells,  in addition to a significative reduction 

in plasma membrane staining, a diffuse, although pale, staining for the molecule was 

observed in the cytosol of cells treated with the inhibitor. We do not have an 

explanation for this discrepancy. 

 

 

 

 

 

 

 

 

 

 

 
 
 

Fig.24 Reduced Rac plasma membrane staining in FRT Rac-GFP-expressing cells. Cells were 
treated  for 48 hours with NSC23766 and then fixed. Staining is very pale at the plasma membrane. 
Arrows point  to limited surface areas where cells appear to be at the point to separate one from the other.  
 

 

 

Figure 25 shows FRT cells expressing the Rac GFP protein stained by 

immunofluorescence with anti Rac1 antibody to localize endogenous Rac1 molecules in 

both control and inhibitor-treated cells. For  both  the endogenous and the chimeric Rac-

1 molecules  a significative reduction of plasma membrane staining is visibile. 

Endogenous Rac is almost completely undetectable while Rac-GFP is still visibile. One 

possibile explanation is that the chimeric protein is expressed into a large excess 

compared to endogenous Rac1 (compare b to c in the figure 12) 
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Fig.25 Comparison between endogenous Rac1 staining and Rac-GFP staining in cells treated with 
the Rac inhibitor  Control (a,b,c) and treated cells (d,e,f) observed 30 hours after the beginning of the 
treatment. Cells were immunostained with anti-Rac antibody to localize endogenous Rac1 (b,e). Rac-GFP 
fluorescence (c, f). Only negligeable amounts of endogenous Rac1 is visible while Rac-GFP staining 
although greatly reduced can be detected on the plasma membrane of several cells. The simplest 
explanaton for the finding might be that FRT-Rac-GFP cells express the chimeric protein at very high 
levels and therefore it takes a longer time to be dissociated from the membrane. a and d merge 
 

 

4.5 Inhibition of Rac1 activity impairs acquisition of transepithelial resistance 

Many cells , especially epithelial cells, do not migrate as single cells but rather migrate 

as sheets or clusters.  In vitro, on scratching of a wound, a cell monolayer induces the 

synchronized movement of sheet of cells. As with single cells, the migrating  sheets 

detect the direction of migration and polarize with the protrusive activity constrained to 

the front. Interaction with neighbours can provide additional directional cues to cells in 

monolayer. To study the migration of cell monolayers the Wound Healing Assay was 

performed (see materials and methods). The test was executed both in the absence and 

in the presence of NSC23766 inhibitor. The repair of the wound was monitored for 

several hours following the scratch, made with a pipette tip, and photographs were taken 

at different intervals. The time necessary to close the wound depends on the original 

size of the wound itself. The inhibition of Rac1 activity determined a significant delay 

in closing the wound areas (figure 26). According  to results in different experiments the 

FRT-treated cells have a loss in the efficiency in wound healing ranging from 35% to 

47% compared to control cells. 
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Fig.26 Wound healing test. Comparison between FRT parental cells and cells treated with Rac1 
inhibitor. Cells were photographed by phase contrast microscopy immediately after the scratch 
(time 0) and at different consecutive intervals. It is immediately apparent that Rac1 inhibition 
reduced the migratory ability of treated cells. 
 

 

 

4.6 Inhibition of Rac1 activity impairs the acquisition of transepithelial resistance 

Transepithelial resistance (TER) measurements have become universally established as 

the most convenient, reliable and non-destructive method to evaluate and monitor the 

growth of epithelial tissue cultures, grown on filters in culture inserts. The confluence 

of the cellular monolayer is quickly determined by a sharp increase in TER. This event 

correlates with tight junctions formation and great decrease in tight junction paracellular 

permeability. FRT cells can reach high values of TER compared to other different 

epithelial cell lines ( i.e MDCK, Caco2, etc…). The effect of the Rac1 inhibitor was 

tested with  two different approaches: in one case the inhibitor was added at an early 

time (few hours after plating) to the culture medium, when cells were still poorly 
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polarized and exhibited low TER values; in the second case the inhibitor was added 

when the monolayer have already reached the plateau value of TER. Transepithelial 

resistance of the cell monolayers was measured by the use of the Millicel-ERS 

resistance monitoring apparatus (Millipore, Milan). TER values are epressed as 

Ohms/cm2. When FRT cells are plated in the presence of NSC23766, although the 

capacity to express a measurable TER is not  completely lost,  values are significantly 

lower  compared to the control (Figure 27 a). This effect is reversibile: removal of the 

inhibitor allows cultures to recover and gain higher values of TER (Figure 27 b). 

This result suggests that prolonged Rac1 inhibition does not allow cells to reach their 

final mature polarized phenotype. Rac1 inhibition could interfere with the sorting  

machinery and/or with the formation of stable junctional complexes at the plasma 

membrane  (see also below for effects on E-cadherin localization in treated cells). An 

unlike result was obtained when Rac1 activity was inhibited in monolayers kept on 

filters for few days and characterized by high TER values. In this case the addition of 

the inhibitor  did not evoke detectable changes in the TER (Figure 27 c). 

In can be assumed that in this type of experiment  cells could have been fully polarized 

at the moment they were confronted with the inhibitor. The results suggest that in this 

type of culture setting (i.e cells grown on filters) Rac1 activity is predominantly 

involved in the process of acquisition of cell polarity, probably through its effects on 

stabilization of junctional complexes.  
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Fig.27 Rac inhibition affects TER in FRT cells grown on bicameral systems. In the top panel 
an exemplicative experiment is shown where the rise in TER is monitored for several days after 
the initial plating. High values of transepithelial resistance (TER), generated when cells are grown 
confluent on the surface of filter, correlate with the acquisition of a mature condition of cell 
polarity. When the inhibitor is added at an a early time ( few hours after plating) FRT cultures (red 
line in a)  reach significantly lower values of TER compared to the control. The middle panel (b) 
shows that the effect is reversible. Removal of the inhibitor (in this particular experiment at day 5) 
allows cultures to gain higher TER values, comparable to those generated by controls (b). In the 
panel c the TER curves refer to cells that were plated on filters at high density and that have 
already reached plateau values at the 3th day. Inhibition of Rac1 in this culture condition is very 
much less effective in eliciting changes in TER 
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4.7 Inhibition of Rac1 activity interferes with the generation of polarized cysts 

A characteristic morphogenetic event  that can be observed when FRT epithelial cells 

are grown as aggregates in suspension culture is that aggregates undergo compaction 

and then evolve into polarized three-dimensional structures, indicated as cysts (or 

inverted follicles). The ability to form cysts is linked to the acquisition of a polarized 

phenotype: cells are connected by tight junctions,  segregate membrane proteins in 

distinct plasma-membrane domains, and vectorially pump liquid inside the follicular 

lumen. We decided to investigate the effect of Rac1 inhibition on the morphogenetic 

ability of FRT cells to develop such polarized structures. Cells were plated in 

suspension on agarose-coated dishes (see Materials and methods) in the presence or in 

the absence of NSC23766. Crucial in this type of experiment is the time when the 

inhibitor is added to the cultures. We proceeded in two different ways: a) adding the 

inhibitor at the very onset of the culture to the suspended cells, b) delaying the 

administration of the inhibitor about 6-8 hours from the time of initial plating. Cysts 

formation was monitored in the following 48 hours and pictures taken at 24 and 48 

hours.  In the first case the cells hardly formed aggregates and remained in suspension 

as single cells or small clusters, made of very few cells. In the second case cells 

aggregated, however, as shown in Figure 28, following the inhibition of Rac1  

aggregates, although vital, did not form cysts.    

These results suggest that Rac1 activity is required both in mantaining the association 

between cells in the building of an aggregate  and also during the establishment of the 

polarized phenotype that precedes the organization of the follicular cysts.  
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Fig.28 Rac inhibition affects cell aggregation and polarized cysts formation. Cells were grown in 
suspension as indicated in materials and methods and cultures were monitored at intervals for 
the presence of  cysts with lumen. By 24 hours cysts already formed in control cultures. They 
are stable structures and can be kept  in suspension for very long periods of time. When the Rac 
inhibitor is added to the cells at the onset of the experiment the major effect is on cell 
aggregation. Cells remain in suspension mostly as single cells, and a very limited number of 
small aggregates form. If cells are allowed to form aggregates before NSC23766 administration 
aggregates stay as they are and did not complete the morphogenetic process that leads to 
reorganization into a polarized cyst.   
 

 

 

 

 

4.8 Reduced plasma membrane localization and disappearance of the Golgi complex-
associated E-cadherin in cells treated with the Rac1 inhibitor 

 
Due to the role of the Rho small G-proteins in the dynamic organization and 

mantainance of the E-cadherin based adhaerens junctions, the E-cadherin localization 

was investigated in FRT cells treated with the Rac1 inhibitor. As above mentioned this 

condition results in a progressive loss of plasma-membrane-associated Rac1 molecules. 

Immunofluorescent staining of the cells showed that a comparable loss of E-cadherin 

follows the treatment with NSC23766 (Figure 29) 
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 Fig.29 E-cadherin immunostaining in control and Rac inhibitor-treated FRT cells. E-cadherin 
localizes at the plasma membrane at sites of cell.cell contacts in control cells (a) A significative amount 
of the protein is also present  in a compartment close to the nucleus. As a consequence of Rac1 inhibition  
a quite relevant disapperance of E-cadherin can be observed both at the plasma membrane and at the 
perinuclear region (b) Incubation with the inhibitor lasted for 48 hours. 
 

Furthermore this effect is accompanied by the disappearance of the staining from the 

Golgi area and the generation of cadherin-positive granules of different sizes dispersed 

in the cytosol ( Figure 30). 

 

 

 

 

 

 

 

 

 
Fig.30 Cadherin positive granules in FRT colonies after the treatment with the Rac inhibitor. Cells 
were treated for 48 hours in the presence of the inhibitor, fixed and stained for E-cadherin. Several cells 
contain E-cadherin positive granules (or equivalent structures). These structures are better seen at a higher 
magnification  in cells shown in c. 

 

In several areas cells appeared to have lost their connection in the virtue of the loss of   

E-cadherin (arrows in Figure 31). 

Although the overall morphology of the colonies changed ( see phase-contrast pictures 

of living cells) detached cells did not disperse in the dish. One possibile interpretation is 

b a c 
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that the cells still continue to mantain their adhesion to the extracellular matrix 

substratum. 

 

 

 

 

 

 

 

 
 

 

 
Fig.31 Loss of plasma membrane E-cadherin and loss of 
intercellular contacts in FRT cells after the inhibition of 
Rac1 activity (arrows). 48 hours of incubation with NSC23766 

 

The extent of the cadherin disappearance from the membrane parallelled that of Rac1. 

WhenE-cadherin immunofluorescence was done in FRT-Rac-GFP cells after the 

treatment with the inhibitor it was frequently observed that regions in the plasma 

membrane  that were devoided of one molecule were devoided of the other as well 

(Figure 32).  

 

 

 

 

 

 

 

 

 

 
 
Fig.32 Loss of plasma membrane E- cadherin parallelles the loss of Rac1. FRT Rac-GFP cells treated 
for  48 hours with the Rac1 inhibitor were fixed and immunostained for E-cadherin. Where Rac1 is 
dissociated from the membrane also E-cadherin is absent (arrows). On the other hand in GFP-positive 
membrane regions also E-cadherin is present (asterisks). Note the numerous E-cadherin-positive granules 
dispersed throghout the cytosol in many cells. 
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As mentioned one intriguing observation was that similarly to endogenous Rac1 also E-

cadherin appeared in cytosolic vescicles following the treatment with the inhibitor. It 

might have been of interest for us to establish if the same intracellular compartment 

and/or structure contains both type of molecules. This could have allowed us to have an 

hint to interprete the fate of the molecules that were dissociated at the plasma membrane 

level. Surprisingly enough in fact in our experimental conditions  the total amount of 

the E-cadherin did not change, as indicated by Western blot analysis of control and 

inhibitor-treated samples (Figure 33). However we are at the moment hampered in 

clarifying the issue since GFP-expressing cells do not tend to form Rac1 clusters and we 

do not have suitable antibodies to investigate a colocalization between endogenous Rac 

and E-cadherin.   

 

 

 
Fig.33 Analysis of the effect of Rac1 inhibitor on E-cadherin levels 
by western blot. Parental FRT cells were  plated in dishes with 10 mm 
of diameter and  after 24h from plating, same of they were treated with 
Rac inhibitor (100 μM) for 48h; then cells extracts were obtained and 
western blot analisys was performed. In the sample treated with 
inhibitor and in the control the total amount of the E-cadherin did not  
change. 

  
 

 
4.9 Rac1 inhibition leads to Golgi apparatus partitioning 

One question we wanted to answer to was: is E-cadherin disappearance from the Golgi 

area, observed after Rac1 inhibition, related to some kind of alteration in the general 

organization of this cellular compartment ?   

To properly address this issue the anti-GM130 polyclonal antibody (see Materials and 

methods) was used in association to anti E-cadherin monoclonal antibodies in indirect 

immunnofluorescence experiments. In control FRT cells the anti GM-130 antibody 

nicely stained vescicular structures concentrated at the perinuclear area. Cadherin 

staining was to a large extent superimposable to that of GM130 (Figure 34 a,b,c). In 

some cases E-cadherin appeared to be in close association but not superimpose to 
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GM130-containing structures. This probably reflected the presence of a fraction of E-

cadherin in a different Golgi region. It has  to be evidenced in fact that the GM130 

antigen is a molecular marker  for  the cis Golgi membranes (and ERGIC compartment). 

 

 

 

 

 

 

 

  

 

 

 

 

 

 
 
 
Fig.34  Changes in the Golgi apparatus organization accompanies E-cadherin disappearance from 
this compartment. After 30h of treatmnt with the inhibitor FRT cells were analyzed by 
immunofluorescence with anti GM130 and anti E-cadherin antibodies. In control cells the two proteins 
have the same intacellular distribution pattern and colocalize to a large extent (see b,c and the merge in 
a). In treated cells Golgi elements appeared more irregular in shape and dispersed in the cytosl (e). No E-
cadherin staining is detactable  at this stage  in association  to GM130-containing structures (f and merge 
in d ).   
 
 

 

 

As mentioned in the previous section the treatment with the NSC23766 inhibitor made 

the staining of the E-cadherin at the Golgi undetectable in the vast majority of the cells. 

GM130 staining was however clearly visibile and allowed to evidence the partitioning 

of the Golgi and dispersal of GM130 positive vescicles throughout the entire cytosol of 

the cells  (Figura 34 e).   Furthermore Figure 35 clearly shows that E-cadherin-positive 

large vescicles, accumulated in treated cells, are distinct from these cis-Golgi elements 

stained by the anti-GM130 antibodies. 
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Fig.35 E-Cadherin containing granules do not colocalize with dispersed Golgi elements in 
cells treated with Rac1 inhibitor. As shown in the insert and indicated by arrows E-
cadherin positive structures that accumulate in cells treated with NSC23766 do not 
superimpose to GM130-positive structures. 
 

 

This interesting observation raise a number of interesting questions such as: by which 

mechanism the Golgi complex became  depleted of E-cadherin?, is this a general 

consequence of Rac1 inhibition, affecting the traffic of other proteins in the cell ?, is the 

Golgi complex still able to function in these conditions? Our preliminary results suggest 

that the effect is reversibile, and that Golgi structures reassemble upon removal of the 

inhibitor from the culture medium . 

In summary the results obtained   with NSC23766 show that Rac1 inhibition in FRT 

cells: 

- causes Rac disappearance from the plasma membrane 

- inhibits oriented cell migration 

- prevents the acquisition of a high value of transephitelial resistance 

- impairs the formation of polarized cysts in suspension culture 

- disrupts E-cadherin association to plasma membrane and Golgi stacks. 

The above mentioned observations define the molecular basis for alterations observed in 

the polarization process in FRT cells treated with the Rac1 inhibitor. Furthermore they 

seem to establish a relationship between Rac1 activity and Golgi complex integrity, a 

cell biology issue not investigated so far. 
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4.10 FRT cells expressing the dominant negative version of the ββ1 integrin: a model 
to study Rac1 activity 
 
As pointed in the introduction FRT cells expressing the dominant negative β1B form of 

the human β1A integrin subunit show phenotipical changes very similar to those 

observed in parental FRT cells treated with Rac1 inhibitor. β1B  is a β1 integrin splice-

variant that differs from the ubiquitous β1A in the terminal portion of the cytosolic tail. 

The transfected integrins associated with the endogenous alpha subunits and are 

delivered to the plasma membrane. β1B-expressing cells attach less efficiently and 

spread less on fibronectin, laminin or type IV collagen coated dishes. Expression of β1B  

do not significantly modify the ability to manifest the polarized phenotype when cells 

are grown to confluence on filters in two-chamber-systems. Moreover, formation of 

polarized cysts in suspension culture is impaired. β1B-transfected cells show reduced 

motile properties when embedded as aggregates in type I collagen gels (see Figure 9 in 

the Introduction section). When immunestained for Rac1 β1B-expressing cells show 

reduced amounts of Rac1 at the cell plasma membrane (Figure 36). 

 

                                         
Fig.36 Rac1 staining in FRT ββ1B-expressing cells. Rac1 localization was analyzed with anti Rac1 
antibody by immunofluorescence. The amount of the protein in the plasma membrane is lesser than 
parental FRT cells. 
 

 

Figura 37 shows the different behavior of cells stably espressing the β1B integrin 

subunit (FRT-β1B cells) compared to the parental FRT cells (TER acquisition, cell 
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migration, and polarized cyst formation were monitored). As a general comment to 

these experiments it should be said  that these cells are only partially affected in their 

ability  to express the properties that have been analyzed. Therefore it was considered to 

be plausibile to attempt to fully restore their normal behaviour by rescuing the activity 

of molecular regulators implicated in the generation of the polarized phenotype.  
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Fig. 37 Different behavior of cells stably espressing  the beta 1B integrin 
subunit (FRT-β1B cells) compared to the parental FRT cells.A-Transepithelial 
acquisition resistence,B- Inverted cysis formation in sospension culture, C-wound 
healing test. In all cases FRT-β8i cells show an impairment in fully expressing the 
polarized phenotype. Note in B that FRT parental cells form numerous liquid filled 
cysts while FRT-β 8I cells do aggregate but only form few small cysts.  
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We tested here the hypothesis that an active Rac1 might correct the FRT-β1B cells 

polarity defect. Starting from the 8i clone of the FRT-β1B cells FRT-β1B 8i cells were 

obtained that stably expressed an inducible constitutively active Rac1 protein, ER-

Rac1(QL). As indicated in the Materials and methods section the inducibility was 

obtained by fusing the Rac1(QL) downstream of a tamoxifen (4-OH-Tamoxifen)-

sensitive mutant of the estrogen receptor ligand binding domain. 

A representative Western blot is shown in Figure 38 with three clones expressing 

different levels of the chimeric gene. Clone 32 and 46 were selected for this study. From 

now on the cells will be indicated as 8i ER-Rac1(QL). 

 

 

 

 

 
Fig.38 Western blot analisys of ER Rac1(QL) expressing cells. FRT β1B cells 
were transfected with ER Rac1(QL) construct and three stable clones were obtained 
(CL32, CL43, CL46). The presence of transfected protein was found by western blot 
using anti AU1 antibody that recognize a small tag on the chimeric protein. Three 
clones expressed different levels of ER Rac1(QL). As it can see in the picture, CL32 
and CL46 expressed a higher level of the protein and were selected for this study.  

 

 

 

4.11 ER-Rac 1(QL) localization. Effect of tamoxifen treatment  

Cells grown on monolayers were fixed and stained with the  AU1 antibody (see 

materials and methods). Figure 39 shows that the transfected Rac protein diffusely 

distributed in the cytosol in the absence of tamoxifen. Upon tamoxifen treatment the 

ER-Rac1(QL) protein became active, localized in the plasma membrane, and in 

confluent cells it was mostly found on the lateral plasmamembrane at sites of cell-cell 

contacts. From our observations it became apparent that a 30 min. incubation with 

tamoxifen is sufficient to transfer a detactable fraction of the Rac protein to the plasma 

membrane.  
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Incubation with tamoxifen did not strikingly change cell morphology. However for 

prolonged incubation periods (i.e 48,72h hours) a number of large binucleate cells  

could be  detected in the monolayer culture. (Figure 39 f  and Figure 40 b and c). This 

late observation was suggestive of an impairment in the cytokinesis and the growth rate 

of the cells was investigated by generating a growth curve for cells in the presence and 

in the absence of tamoxifen. From this experiments it emerged that prolonged 

expression of  constitutively activated Rac reduces the cell proliferation rate . 
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+20h 4-OH TAM. +72h 4-OH TAM. 
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c  d  

e  f  

Fig. 39 An inducible constitutively active Rac1 protein expressed in FRT-ββ  8I 
cells. (clones stably espressing the ER-Rac1(QL) construct were selected for 
these studies.) Cells grown on monolayers were fixed and stained with the AU1 
antibody that recognizes a specific element in the exogenous protein. In the absence 
of 4-OH tamoxifen the Rac1 protein is diffusely distributed in the cytosol (a and c). 
Upon 4-OH tamoxifen treatment the active ER-Rac(QL) protein localizes to the 
plasma membrane at sites of cell-cell contacts. In b cells were treated with 4-OH 
TAM. for 1 hour before fixation. In d e f cells were incubated in the presence of 4-
OH TAM for longer periods (5, 20 and 72 h) and then fixed and stained. Note at 
72h several binucleated cells. 
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Since our interest was mainly centered on the effects of the constitutive Rac1 activation 

on the polarized phenotype of the FRT-β1B cells the conseguences of tamoxifen 

treatment on cell migration, TER acquisition and cysts formation in suspension culture 

were evaluated in 8i ER-Rac1(QL) cells. To be sure that recorded data were not 

dependent upon the characteristics of the clones selected for the investigation, identical 

experimental procedures were concomitantly carried on 8i ER-Rac1(QL) cells and in 

FRT parental cells that express the ER-Rac1(QL) construct (also available in the 

laboratory, thanks to A. Corteggio). 

 

                   4.12 Activation of ER-Rac1(QL) reduced the wound healing efficiency  

8i cells expressing the β1B integrin subunit show reduced migratory potential both in        

monolayer culture and in a threedimensional environment when embedded in collagen 

gels. To evaluate the effect of Rac1 activation on the migratory properties of the cells 

the wound healing efficiency in the scratch test was tested. Activation of ER-Rac1(QL) 

D DDDDDDDDD

a 

b c 

Fig. 40 Constitutively activated Rac1 inhibits cell 
proliferation (growth curve, a) and impaired 
cytokinesis. Upon 4-OH tamoxifen treatment between 
48h and 72h a significative proportion of cells in the 
monolayer showed two or more nuclei. Staining of 
chromosomes with Hoechst evidenced abnormalities in 
chromosomes distribution during mitosis (see arrows in b 
and c). 
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by 4-OH-TAM. was induced in both 8i ER-Rac1(QL) and FRT parental cells 

expressing te same construct. Scratched monolayers were monitored for 48 hours and 

pictures taken every 12 hours interval (Figure 41). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Differently from our expectations 8i ER-Rac1(QL)  manifested a reduced migratory 

activity  and a delay in closing the wound was documented. It is interesting to note that 

the same behavior characterized also the FRT parental cells that express the ER-

Rac1(QL) construct suggesting that this type of result does not correlate with the type of 

cells but rather represent a cellular response to a sustained Rac1 activation.  

 

 

 

 

 

 

 

Fig. 41 Evaluation of the effect of Rac activation on the migratory properties of the cells. Activation of ER-
Rac(QL) by 4-OH-TAM in FRT-β 8I (a) and  FRT parental cells (b) that were transfected with the same 
construct reduced cell motility and delayed closing of the wound. Representatives fields of the scratch were 
shown for each time point. 

                       FRT ββ1B  RAC1(QL)ER  
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4.13 Activation of ER-Rac1(QL)  interferes with the acquisition of transepithelial 
resistance by confluent cells grown on filters 
 

We then asked wether a constitutively active Rac1 could influence the polarization 

process as monitored by the raise of the transepithelial resistance (TER). To check this 

issue, cells were grown as monolayers on filters in bicameral systems. Suspended cells 

after trypsinization were plated on the surface of filters in bicameral systems and 

allowed to attach. 4-OH Tamoxifen was added to the cells 24 h after the plating. 

Transepithelial resistance (TER) measurements were conducted every 24 h. TER 

graphics in Figure 42 b and c clearly evidences that activation of ER-Rac1(QL) 

interferes with the acquisition of transepithelial resistance. It can be excluded that the 

effect should be related to tamoxifen itself, since the treatment of control FRT-β 8I cells 

with tamoxifen did not result in changes in TER acquisition rate (Figure 42 a).
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Fig.42 Graphics of TER acquisition. Activation of ER-Rac(QL) by 4-OH 
Tamoxifen in FRT-β  8I (b) and  FRT parental cells (c) that were trasfected with 
the same  costruct   hampered TER acquisition. Suspended cells after typsinization 
are plated on the surface of filters in bicameral systems and allowed to attach. 4-OH 
Tamoxifen was added to the cells 24 h after the plating and TER measurements were 
conducted every 24 h. It can be excluded that the effect should be related to tamoxifen 
itself since the treatment of control FRT-β 8I cells with tamoxifen did not result in 
changes in TER acquisition (a).  
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4.14 Activation of ER-Rac(QL) impaired  polarized cysts formation by cells in 
suspension culture 
 
Integrins  may be  involved in the control of the processes that have to do with complex 

morphogenetic events , i.e, formation of epithelial cysts and tubules. It is well known 

that integrins regulate several aspects of Rac1 activity (for example Rac targeting to the 

plasma memmbrane and GTP-Rac localized effector interactions ). Furthermore Rac1 is 

necessary to orient epithelial polarity when epithelial cells polarize and it has been 

shown to promote tubulocystic structures in the MDCK cellular system. As reported in 

the Introduction section the FRT cells expressing the mutated β1B integrin subunit are 

affected in their ability to form polarized cysts. They aggregate regularly and aggregates 

undergo compaction but do not evolve,, or evolve very slowly, into dilated cysts. We 

reasoned that Rac1 was necessary for the FRT cells to express their polarized phenotype 

and that the property to form polarized structures could have been rescued in FRT-β 8I 

upon activation of exogenous ER-Rac1(QL).To do this 8i ER-Rac1(QL) cells were 

plated in suspension on agarose coated dishes in the presence of 4-OH Tamoxifen to 

induce Rac1 activation. Cells formed aggregates but aggregates did not develop into 

polarized (fluid filled) cysts with time, but rather tended to fuse into lager and more 

complex solid structures (Figure 43). Likewise wild–type FRT cells expressing the 

same ER-Rac1(QL) appeared to be similarly hampered in polarized cyst formation. 

Again also in this experimental setting a prolonged Rac stimulation, as the one obtained 

by the permanent presence of tamoxifen in the culture medium, did not achieved the 

expected results but rather some kind of inhibition of the machinery involved in cell 

polarization. 
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In summary the effects obtained through the activation of ER-Rac1(QL) in FRT cells 

expressing the  β1B integrin can be described as follows: 

- reduction in the growth rate and alterations in the cytokinesis 

- impairement in acquisition of TER (transepithelial resistance) 

- reduced migratory activity (in the wound healing test) 

- unsuccesfull development of polarized structures starting from aggregates cultivated in 

suspension 

The data indicate that sustained but not regulated acivation of Rac1 impairs the acquisition 

of cell polarity and this might  explain why the attempt to correct the phenotype in FRT 

expressing the  β1B integrin remained unsuccesful. Therefore the issue that Rac activation 

should be spatially and temporally controlled is a major theme to be discussed.

                              FRT ß1B RAC1(QL)ER  
             CTR                                            +4-OH TAMOXIFEN 

                        FRT RAC1(QL)ER  
        CTR                                     +4-OH TAMOXIFEN 

Fig.43 Suspension cultures on agarose coated dishes and evaluation of the formation of polarized 
epithelial structures (i.e. inverted cysts). Cells plated in suspension in the presence of 4-OH TAM. 
form aggregates but this aggregates do not develop into polarized (fluid filled) cysts with time. This 
result apply bothto FRT-β 8I  and FRT parental cells that express the ER-Rac(QL) construct. 
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5.DISCUSSION 

The work for this thesis is mainly focused on the analysis of the role of the Rac1 protein 

in the acquisition and mantainance of the polarized phenotype in thyroid epithelial cells 

FRT. The work represenst a part of a more broad project that is devoted to the 

characterization of the signal transduction pathways that are activated by cell-cell and 

by cell-ECM interactions during the acquisition of epithelial cell polarity. The project is 

focused on two pathways: the one activated by the apical PAR3/PAR6/α PKC complex 

and the one activated by the basolateral β1integrins, both of which apparently rely on 

GTPases signaling. Polarity is an essential property of epithelial cells that is acquired 

upon cell-cell interaction. The orientation of polarity depends, instead, upon cell 

interaction with the extracellular matrix (ECM). As a general rule, the side of a cell that 

is in touch with the ECM is, or will become, a basal surface. Loss of epithelial cell 

polarity during the progression of carcinomas is a major example of its relevance in 

human pathology. Many progresses have been made toward the understanding of the 

molecular mechanisms underlying the acquisition and the maintenance of cell polarity, 

and many proteins have been identified that play a pilot role in these processes. Some of 

them, that are very conserved throughout evolution, are organized in complexes, like  

the Par3/Par6/aPKC complex, which is mainly involved in the definition of the apical 

cell domain. It is interesting to note that this complex not only plays a role in the 

process of definition of the epithelial cell polarity but it is also involved in the process 

of polarization of other cells, like those that express the ability to migrate.  

The acquisition of cell polarity, which includes the establishment of the tight junction 

barrier, the polarized assembly of the cytoskeleton and the appropriate organization of 

membrane traffic, requires an external cue that in epithelial cells is represented by the 

interaction of cells with their neighbors. This is mainly mediated by cell adhesion 

molecules, such as the cadherins and the nexins.The Rho family of small 

GTPases,whose prototypes are RhoA, Rac1 and Cdc42 regulate many biological 

processes including cell cycle progression, apoptosis, migration,intercellular adhesion. 

Rho-GTPases and their effectors are also key regulators of microfilament and 

microtubule dynamics and, consequently, are crucially involved in polarity signaling.  

Unraveling how signaling transduced via Rac are translated into oriented distribution of 

molecules in epithelial cells is a central issue to fully understand the processes of 

acquisition/maintenance of cell polarity. Compartimentalization of the Rac signaling 

pathways, and of its activators GEFs, as well as the interdependence of the signaling 
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derived from the PAR3/PAR6/aPKC complex and the one derived from the beta1 

integrins, are also of major relevance 

 

5.1 FRT CELLS A USEFUL MODEL TO STUDY CELL POLARITY 

Fibroblast are a convenient model to study cell migration and formation of motion-

related structures such as lamellipodia, filopods etc…The MDCK canine kydney-

derived cell line is the most widely model for studies on epithelial cell polarity.  A 

substantial amount of data have been collected on several issues, i.e polarization of cell 

monolayers, intracellular sorting of proteins and lipids, generation and stabilization of 

junctional complexes, cadherin turnover and the functional interplay between Rac1 and 

other Rho GTPases. However from time to time conflicting results on certain issues are 

reported in the literature, i.e Akhtar and Hotchin 2001 on E-cadherin endocytosis 

(Akhtar and Hotchin 2001). This is not surprising because the role of Rac1 as been 

shown to be dependent on both cell type and cell context (Braga et al. 1999; Hordjik et 

al. 1997; Potempa and Ridley 1998; Takaishi et al 1997). The FRT cell line was 

originally established and characterized by Ambesi-Impiombato et al.  ( Ambesi-

Impiombato et al. 1979) and (Nitsch et al. 1985).  FRT cells are metabolically 

dedifferentiated, but still express a thyroid-specific transcription factor, Pax8 (Mascia et 

al. 1997) and are polarized and connected by a continuous belt of tight junctions. FRT 

cells express  a  set of integrins that partially differs from that expressed in MDCK 

cells, wich include in addition to α3β1 integrin, necessary for the laminin assembly, the 

α5β1 fibronectin receptor, involved in extracellular assembly of the fibronectin matrix 

(Calì et al., 1998).  In culture, FRT cells have the ability to form domes that correspond 

to domains of the epithelial layer where cells detached from the culture dish, due to 

transepithelial transport of ions and water, and accumulation of fluid underneath the cell 

layer (Nitsch et al. 1985; Garbi et al. 1996). In suspension culture they form hollow 

cysts where a polarized monolayer of cells has the apical surface facing the outside. 

When grown as monolayers on filters in bicameral systems they develop very high 

values of transepithelial resistance (compared to lower values of MDCK). 

 

 

                  5.2  PRINCIPAL ASPECTS INVESTIGATED AND RESULTS OBTAINED 

As mentioned the objective of this thesis work was to analyze the role of Rac1 in the 

acquisition of the polarized phenotype in thyroid epithelial cells FRT and in FRT cells 
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transfected with a protein that acts as a dominant negative of the beta1 integrin. FRT 

cell derived from rat thyroid express the polarized phenotype,  while in the FRT-β1B, in 

which beta1 integrin signalling is defective, an impairment of the polarized phenotype 

have been obseved. We have tested the hypothesis that this may be due to a reduced 

Rac1 activity. The observation that these cells manifest  properties similar  to those 

evidenced  in FRT cells where Rac1 is inhibited  gave origin to  this hypothesis.   

The experimental part of the work have been focused on: 

A- Identification and localization of Rac1 in FRT parental cells and in clones of FRT-β1B.  

B- Evaluation of the effects induced by the tretment of FRT cells with the inhibitor of Rac1 

activation NSC23766.  

Cell migration, acquisition of transepithelial resistance and formation of polarized 

structures in suspension cultures have been studied  in detail. 

C- Generation of subclones derived from FRT-β1B cells that express after transfection a 

Rac1 construct whose activity rely on treatment with 4-OH-tamoxifen 

D- Evaluation of the effects induced by the tretment of FRT-β1B  cells with 4-OH-

tamoxifen. Again cell migration, acquisition of transepithelial resistance and formation 

of polarized structures in suspension cultures have been checked in detail. 

The evaluation of the effects induced by the pharmacological inhibition of Rac1 

represents the more substantial part of the experimental activity performed. 

In this set of experiments subcellular localization studies of the Rac1 molecule were 

performed in parallel with those regarding E-cadherin. The principle results that have 

been obtained can be summarized as follows: 

A- Blocking the activation of Rac by the GEF inhibitor NSC23766 determines: 

- Changes in the morphology of cells and cell colonies as demonstrated by in vivo 

observations made by phase-contrast microscopy 

- Dissociation of Rac1 from the plasma membrane as evidenced by immunofluorescent 

staining of fixed cells 

- Disappearance of E-cadherin from regions of cell-cell contacts and appearance of  E-

cadherin-positive large  vescicles in the cytosol  

- Complete loss of the E-cadherin localization at the level of the Golgi apparatus 

- Structural alterations of Golgi apparatus evidenced by immunofluorescence 

- Inhibition of cell migration 

- Great reduction in  values  of TER 

- Impairment in cell aggregation and development of polarized cysts 
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The data indicate that Rac1 is a major regulator of the polarization process in FRT cells. 

Since we only observed minor effects on TER when the inhibitor was used in 

monolayers that have already reached maximal values of transepithelial resistance we 

hypothesize that the protein is principally involved during the polarity acquisition phase  

and is likely dispensable when the fully mature phenotype is manifested. In addition to 

the control of cell-cell adhesion the presented data suggest that Rac1 may be involved in 

the control of intracellular traffic of proteins through the control of the Golgi apparatus 

integrity. This is  a relavant and exciting new finding that deserves further investigation. 

B- Inducing the costitutive expression of activated Rac1 molecules by tamoxifen 

administration determines: 

- reduced cell growth  and alterations in cytochinesis 

- impaired TER acquisition 

- reduced migratory activity 

- stimulation of aggregation but deficient maturation of aggregates into cysts 

These results indicate that costitutive activation obtained expressing the ER_Rac(QL) 

molecule is not sufficient to resume the normal phenotype in FRT-β1B cells expressing 

the dominant-negative version of the β1 integrin. We tend to exclude that the results 

may arise from some special feature that characterize clones we have selected for this 

study. In fact the same results  were obtained with the parental FRT cells expressing the 

same construct.  All the observations refer to long term experiments where Rac1 

activity was sustained for long time. Rac1 activity therefore could not have been 

adeguately modulated. Altoghether results confirm that the formation of apico-basal 

polarity in epithelial cells should be very carefully controlled. The unbalanced 

expression of only one of the many actors involved  in the generation of the polarized 

phenotype is able to impair the cell polarization process. 

The data presented in this data will be discussed relative to relevant data on the subject 

available in the literature. 

 

 

 

                   5.3 THE NSC23766 MOLECULE INHIBITS RAC1 ACTIVATION 

To carry out the inhibition af Rac1 activation we relied on the use of the NSC23766 

molecule, a chemical compund, which is now commercially avilable, and that was 

originally identified in a screening to search for a Rac-Gef interaction-specific inhibitor 



                                                                                                                                             Discussion 

                                                                                 83 

(Waszkowycz et al., 2001). The characterization of its biological effects on Rac1 

activity have been described by Gao and coll (Gao et al., 2004). In brief the molecule fit 

into a surface groove of Rac1 known to be critical for GEF specification. In this 

condition Rac1 binding and activation by Tiam1 and Trio are affected in a dose-

dependent manner. NSC23766 represent a novel experimental tool available to study 

the role of Rac1 in various cellular functions and by a prospectical point of view to 

investigate the reversibility of tumor cell phenotypes associated with Rac deregulation. 

A novel inhibitor of Rac family small GTPases has been recently decribed that inhibits 

Rac1 activity (and that of Rac1b, Rac2 and Rac3) (Shutes et al.,2007) 

We used the inhibitor molecule in the 100 and 150 micromolar concentration range. 

This allowed us to induce specific biological effects while keeping the cells alive. The 

main trouble that was experienced during the of the experimental activity is related to 

the impossibility to obtain a quantitative measure of the degree of Rac1 activity 

inhibition obtained.  Our attempts to set ideal conditions to measure Rac activity 

biochemically failed. Standard protocols to measure the Rac1 GTPase activity were 

utilized as indicated in Materials and methods section, however  the numerous 

experiments performed  did not gave reproducible results. We are hardly trying to solve 

the problem and also  would like to set protocols to measure Rac1 activity indirectly 

(ERK activation, Pak phosphorylation etc.). Prevoius studies on biological functions of 

RhoA proteins  in epithelial cells have been conducted through constitutive expression 

of Rho mutants, utilizing expression vectors driven by a viral promoter. Short and long-

term experiments were also performed expressing RhoA and Rac mutants under the 

control of the tetracycline-repressible transactivator. The use of the Rac1 inhibitor could 

represent an alternative  experimental approach, especially in long-term experiments.   

 

5.4 CHANGES IN CELL MORPHOLOGY INDUCED BY INHIBITION OF RAC1 
ACTIVATION 
 

Following Rac1 inhibition cells appeared smaller in size and  colonies assumed very 

irregular shapes and  increased the tendency to fuse. This changes indicated that the 

cells were reponsive to the treatment. Changes were  gradually manifested with time 

and better seen after the first 24 hours of tratment.  

 A   number of analogies can be drawn,  in spite of differences in the  cell system and in 

the experimental approaches, with observations made by Jou and Nelson ( Jou and 

Nelson,1998). Using tetracycline-repressible expression they examined short-term or 
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prolonged overespression effects of known amounts of Rho proteins mutants before, 

during and after the development of cell polarity in MDCKII cells.  

In low density MDCK cultures after 36 hours in the presence of DNRacN17 (dominant 

negative) cells have been shown to become less spread on the substratum and rounded-

up, and the colonies to become increasingly compacted. We noticed that after inhibition 

of Rac1 activity cell growth was negatively affected in FRT cells. A similar effect was 

suggested to take place also in RacN17-expressing MDCK cells. Furthermore when the 

morphology of cells expressing the CARacV12 (constitutively activated) molecules was 

analyzed by Jou and Nelson the cells were described as being flat, with prominent 

lamellipodia. Such a phenotypical aspect was evidenced in FRT cultures when cells 

were treated with tamoxifen to activate the transfected exogenous Rac1 protein. It is 

known that Rac1 can direcly or indirectly regulate actin and actin-associated proteins in 

microfilaments and in the plasma membrane-related cortical meshwork. Changes in 

actin organization have been in fact described in MDCK cells expressing Rac1V12, in 

which F-actin no longer appeared organized in stress fibers and formed sharp cortical 

bundles, lined along cell-cell contacts. Altough changes in cytoskeloton were not 

investigated in deep in support to the other findings presented in the thesis, it should be 

said that this aspect is under investigation,  as a part of a different experimental project 

developed in the laboratory. 

 

5.5 INHIBITION OF RAC1 ACTIVITY DISSOCIATES RAC FROM PLASMA 
MEMBRANE 
 

As mentioned in the Materials and metods section diferent fixation protocols for 

immunofluorescence staining have been experimented and we are now convinced that 

in studying Rac1 subcellular distribution in cytoplasmic compartments one should 

carefully consider wich is the best procedure to adopt. This is expecially true since Rac1 

molecules dynamically exchange with different membranes in different locations and 

following different types of stimuli. 

We show that in growing cells FRT cells Rac1 can be detected at the plasma membrane 

level, in cytosolic clusters, around the nuclear envelope and in lamellipodia. In this 

thesis we examined the dynamics of Rac-1 localization during the time that follows the 

inhibition of Rac by the treatment with the inhibitor NSC23766. We show that if cells 

are treated with the inhibitor of Rac1 activation a great reduction in the plasma 

membrane-associated quota and apperance large Rac1-positive granules could be 
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evidenced. As mentioned Rac1 seems to be required for the accumulation of actin 

filaments at cell-cell contact sites and for the establishment of cadherin/β-catenin-

mediated cell adhesion.  It has been shown that overespressing dominant negative Rac1 

(RacN17) in MDCKII cells reduces Rac1, actin and cadherin accumulation at the 

plasma membrane (Takaishi et al. 1997). Our observations in FRT cells are in good 

agreement also  with the data reported in the paper of Noritake and coll. They showed 

that Rac1 suppression by siRNA in MDCKII epithelial cells reduces actin accumulation 

at sites of cell- cell contact. Interestingly immunofluorescence analysis showed that  

Rac1 was reduced at sites of cell-cell contacts, in the cytoplasm and in the nuclei 

(Noritake et al. 2004). In the same experimental conditions the authors demonstrated 

that the intensity of E-cadherin and β-catenin staining on lateral membranes was 

reduced. ZO-1 intensity was slightly reduced. However the expression levels of actin, 

E-cadherin and β-catenin, as checked by immunoblot analysis, did not alter upon 

knock-down of Rac1. Again the observations we  made in the FRT system in which the 

E-cadherin staining fades away at the plasmamembrane after NSC23766 treatment, but 

the total amount of the protein remain almost unchanged,  are consistent with the data 

by Noritake and coll.  

 

5.6 WHY RAC1 DISSOCIATES FROM THE PLASMA MEMBRANE ? 

Why is Rac1 detaching from tha plasma membrane and why apparently does it take so 

much time? Rac1 cycles between the membrane and the cytosol. Solubility in the  

cytosol is conferred by the binding of Rac to GDIs. According to the experimental 

conditions settled by Moissoglu et al.. conversion of  GTP- to GDP-Rac is the major 

pathway for dissociation of Rac from the membrane (Moissoglu et al.,2006). To what 

extent GTP-Rac  on the membrane must interact with a GAP and convert to GDP-Rac 

before dissociation from the membrane is currently unclear. 

Moissoglu and coll.. did a very careful analysis of the in vivo dynamics of Rac-

membrane interactions. The dissociation rate costant of membrane-bound Rac was 

measured on protrusive areas of cells spreading on fibronectin developing a 

photobleaching method, and reported to be 0,048 s-1 for wild type Rac1. These 

dissociation rates are much faster however than persistent times for migrating cells  

indicating that the pathways that determine local Rac activation and deactivation during 

migration must operate on slower time scales. 
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Equivalent experiments focusing on the dynamics of Rac1 localized at the lateral 

plasma membrane in regions of cell-cell contacts have not been attempted to our 

knowledge. Association of Rac molecules to proteins in the junctional complexes and/or 

associated to the actin meshwork  could probably modify this parameter to a great 

extent. If Rac1 molecules cycle from a cytoplasmic pool to membranes and viceversa 

the actual amount of the protein, in a given compartment, will depend on the 

concentration range of  the classes of molecules that regulate activation and/or 

localization of Rho GTPases, and on the type of interactions that these molecules have 

with other factors that partecipate to the process. GEFs  promote membrane localization 

and it has been shown that Tiam1  overespression in NIH 3T3 cells may do so in part by 

slowing the dissociation of Rac1 from the membrane. The proposed mechanism  to 

explain this effect is that Tiam1 competes wiyh the GAP-RhoGDI pathway by 

converting the GDP-Rac formed at the membrane into GTP-Rac before it gets 

dissociated. (Moissoglu et al.,2006). In vitro data support this reasoning showing that 

Rho GTPases can be extracted from the membranes more efficiently in the GDP-bound 

form. It was suggested that GTP-Rac binds less well to GDI and/or it interacts with 

effector proteins that limit the access to GDI. The role of GDIs in establishing Rac1 

amount in the plasma membrane is complex: as mentioned Rho GDI can extract Rho 

GTPases from membranes, confer solubility  in the cytoplasm and inhibit activation by 

GEFs. GDI molecules may be involved in the regulation of membrane association. It 

has been shown that RhoGDI downregulation increases Rac1 membrane targeting with 

only slight effects on the dissociation of Rac! from the membrane (Moissoglou et al. 

2006), suggesting that the controll of GDI activity and/or availability should partecipate 

in regulating the rate of association to the membrane. As an example GDFs  (GDI 

displacement factors) have been described that initiates the activation of the Rho protein 

displacing Rho from Rho-GDI at a step before membrane targeting (Faure and al. 1999; 

Takahashi and al. 1997; Yamashita and al. 2003). Furthermore the Rac1 effector PAK1 

phosphorilates RhoGDI to reduce its binding to Rac1 and increase Rac targeting to the 

membrane. (DerMardirossian and al. 2004). Therefore a positive loop can be imagined 

were high Tiam1 concentrations can sustain Rac1 localization in the membrane by 

keeping high levels of activated PAK1. On the other hand  an excess of cellular GDI 

could generate opposite results. 

We do not have investigated all these aspects in our system and so we do not think to 

have  at the moment a sufficient amount of information  to interpret the progressive 
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release of Rac1 from the membrane observed in FRT cells treated with the GEF 

inhibitor. One possibility is that by  increasing the amount of inactive Rac1 molecules  

the amount of active PAK1 is also reduced, leading to a reduced GDI phosphorilation. 

This in turn should increase the affinity of GDI for Rac and promote Rac1 dissociation 

from the membrane. Our observations in FRT cells  suggest that Rac dissociation is 

slow. One possibile interpretation is that in the beginning Rac1 molecules,  that have 

been already activated, are bound to their effectors and therefore can not be approached 

by GDI, since effector interaction sites overlap with GDI-binding sites. Later on GAP-

dependent conversion to GDP-Rac increases the number of molecules that can be 

dissociated from the membrane by GDI. Another possibility is that the Tiam1 

concentration in FRT cells is high and Tiam1 competes with Rac-GDI, converting Rac-

GDP in Rac-GTP, so that the effccts promoted by Rac- GDI ( and by the inhibitor 

NSC23766.) are not so rapid as expected. 

 

 

5.7 FATE OF RAC1 MOLECULES IN RAC1-INHIBITED CELLS  

An interesting feature of prolonged incubation of FRT cell with the inhibitor is the 

appearance of large Rac-positive granules in the cytosol. It is not clear at the moment by 

which mechanism they are generated, so that we can not establish if they contain Rac1 

molecules released from the plasma membrane or from different intracellular pools.  

Intracellular Rac granules have been described in MDCK cells espressing the dominant 

negative  RacN17 proteins and stained with anti-myc antibodies to reveal only the 

exogenous protein.They have been shown to colocalize with cadherin and actin but have 

not been further characterized (Jou and Nelson, 2005).  

An interesting paper by Lynch and coll. discuss the possibility that the proteasome 

activity has a role in the documented down-regulation of Rac1-GTP and total Rac1 

observed during cell scattering that follows loss of adhaerent jnctions in MDCKII cells 

stimulated with HGF ( Lynch etal., 2006). They report that a very low level of 

ubiquitinated Rac-1 was also detected in polarized cells before scattering. It could be 

interesting in the next future to investigate in our FRT cell system wether a proteasome-

based mechanism of Rac1 degradation is operative in NSC23766-treated cells.  
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5.8 A RAC1-CADHERIN LOOP   

Rac1 seems to be required for the accumulation of actin filaments at cell-cell contacts 

sites and for the establishment of cadherin-mediated cell-cell adhesion. During the very 

early phases of polarity generation Cdc42 and Rac-1 are activated by the initiation of 

cell contacts formed by trans-interactions of nectins or E-cadherin (Fukuhara A, and al. 

2003; Kukuhara T. and al. 2004). As mentioned, overespression of constitutively active 

Rac1 induces a greater accumulation of E-cadherin, beta catenin  and actin at sites of 

cell-cell contacts in MDCK cells. However how the localization and activation of Rac1 

are regulated at sites of cell-cell contacts is not fully elucidated. It has been reported that 

Rac1 translocates to the cytosol during disruption of E-cadherin mediated cell-cell 

adhesion by calcium chelation (Nakagawa et al.,2001) suggesting that E–cadherin 

mislocalization affects Rac distibution in the cells. 

In this thesis changes in E-cadherin localization were  examined in parallel to the analysis 

the dynamics of Rac-1 localization during the period that follows the inhibition of Rac1 by 

the treatment with NSC23766. Whe demonstrated that GFP-Rac1  colocalized with E-

cadherin at sites of cell-cell contacts. As indicated in the Results section a significative 

reduction of plasma membrane staining is visibile  at regions of cell-cell contacts for both 

proteins. Furthermore analyzing the distribution of GFP-Rac1 and E-cadherin in treated 

cells it was evident that where Rac1 is dissociated from the membrane also E-cadherin is 

absent, and where Rac1 is still present E-cadherin is also present, suggesting that both are 

translocated simultaneously to the cytosol during the disuption of cell-cell adhesion. 

Therefore  Rac1 mislocalization can affect E-cadherin distribution in the cells.  

 

5.9 RAC1 INHIBITION AND POLARIZED TRAFFIC OF CADHERIN 

The observations presented in this project concerning the  accumulation of E-cadherin in 

large multiple intracellular vescicles (see Results section) suggest that Rac1 can influence 

cadherin dynamics in different ways. The dynamic traffic of E-cadherin to and from the 

lateral surface of epithelial cells is crucial  to delivery newly synthesized E-cadherin to the 

adhaerens junctions and thereafter to balance and modulate cadherin-based adhesions. 

It is now widely recognized that surface cadherins can be internalized costitutively and 

recycled in confluent monolayers or endocytosed via different endocytic carriers and 

pathways in response to growth factors (Lee et al. 1999; Bryant et Stow 2004). 
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The exocytosis of newly synhesized E-cadherin requires the  sorting and polarized 

transport to the basolateral membrane in epithelial cells. A dileucine motif in the tail 

domain mediates this traffic of E-cadherin ( Miranda et al. 2001). 

There is a strong evidence linking Rho GTPases to E-cadherin at the cell surface. Rac1 has 

been shown to regulate the endocytosis of E-cadherin, making non nonadhesive E-cadherin 

molecules available for internalization. ( Izumi et al. 2004). At the cell surface RhoA, 

Rac1, and Cdc42 act to directly regulate components of the cadherin-catenin complex to 

modulate cadherin-based adhesion and signaling (Fukata and Kaibuchi 2001).  

Wang and collaborators (Wang et al. 2005) showed that both Rac1 and Cdc42 are involved 

in the polarized trafficking of E-cadherin in  MDCK kidney cells, determining efficient 

post-Golgi sorting of E-cadherin and its delivery to the lateral cell surface. 

Data presented in this thesis show that in FRT cells intracellular cadherin colocalizes with 

markers of the Golgi membranes and that cadherin colocalizes with Rac1 at the plasma 

membrane. When cells are treated with the Rac1-GEF inhibitor a reduced staining for both  

Rac1 and E-cadherin is observed at the plasma membrane level. Concomitantly 

intracellular E-cadherin appeared in large vescicular structures and E-cadherin staining at 

the  Golgi disappeared. How does Rac1 inhibition correlates with changes in E-cadherin 

localization? Intracellular accumulation may be related to destabilization of plasma 

membrane-associated protein, with increased endocytosis,  or disregulation of the 

intracellular traffic and accumulation in a compartment associated with the post-Golgi 

transport of the protein. Reduced surfaced staining of E-cadherin have been described in 

polarized MDCK cells after the knock down of Rac-1 using small interfering RNA 

(Noritake et al. 2004) and intracellular vescicles heve been observed in MDCK cells 

expressing Rac 1 mutants ( Jou and Nelson 1998). The data obtained in the FRT system of 

polarized cells and presented in this report are consistent with these observations.  

In the mentioned  work of Wang and col. (2005) the authors, on the basis of absence of 

colocalizaion with the LBPA marker for late endosomes, suggested that E-cadherin 

accumulated in the exocytic rather than an endocyic pathway. They suggest that Rac1 

accumulates E-cadherin at o adjacent to the TGN, after the dileucine mediated sorting. 

Overespression of dominant negative Rac accumulated E-cadherin-GFP in large vescicular 

structures that overlapped significantly wit the staining of GM130 and also with the TGN 

marker p230 golgin. The structure of the Golgi complex or the TGN were not significantly 

affected by the overespression of mutated GTPases. These last mentioned observations do 

not match what we report for the FRT cells treated with the Rac1-GEF inhibitor. In fact as 
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indicated in the Results section we evidenced a vesciculation and dispersal of the  Golgi 

stacks and the absence of colocalization of the cadherin-containing large vescicles with the 

GM130 Golgi marker in cultured cells treated with NSC23766. 

We do not know at the present the reason for these discrepancies. One possibility is that 

the analysis have been conducted with a different timing. Our immunofluorescence-based 

morphological investigations were initiated at 24 hours following the treatment with the 

Rac1-GEF inhibitor, when fading of plasma membrane-associated E-cadherin appears to 

be noticeable.  It should be recognized that cadherin-containing cytosolic structures await 

to be chracterized in our system. However from data not presented in this report we can 

exclude that the large vescicles correspond to the early endosomal compartment 

(Santoriello M. unpublished).  

Furthermore the data presented in this report outlines the involvement of Rac1 activity in 

the control of the Golgi apparatus assembly and suggest that an additional pathway by 

wich the molecule can control the polarized phenotype in epithelial cells may exist and is 

linked to the  control the polarized sorting of glycoproteins to different domains of the cells 

via the post-Golgi compartment. 

 

  

 

5.10 MIGRATION AND TER ACQUISITION IN FRT CELLS TREATED WITH THE 
RAC1 INHIBITOR 
 

The observations made on TER (transepithelial resistance) acquisition indicated that when 

the inhibitor is added at an a early time ( few hours after plating on filters)  FRT   cultures  

manifest significantly lower values of TER compared to the control. Loss of plasma 

membrane E-cadherin and consequent impairment in tight junction assembly could 

represent the molecular basis of the defect in cell polarization, evidenced monitoring the 

TER. When cells  were plated on filters at high density and that have already reached 

plateau values  inhibition of Rac1 in this culture condition is very much less effective in 

eliciting changes in TER. This results are consistent with he observation that also  

morphological changes are less evident when FRT monolayers are very confluent, and are 

in agreement to data reported for MDCK cells expressing the dominant negative form of 

Rac1 in which more dramatic changes  where observed at low cell density (Jou and 

Nelson,1998). Recent studies indicate that Rho GTPases collaborate with polarity proteins 

in fibroblasts an epithelial cells to control directional cell migration. Cell migration is 
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achieved through the balance of Cdc42 and Rac1 function in the front of the cell and RhoA 

function in the rear (Iden and Collard, 2008). Components of the PAR,Scribble an Crumbs 

complexes crosstalk with Rho GTPases and regulate front-rear polarization and wound 

healing of cultured epithelial cells. FRT cell, as other types of epithelial cells, move as 

groups of adhaerent cells in a way  epithelials cells are used to do during tissues 

morphognesis. One intriguing aspect that has to do with the migratory activity of inhibitor-

treated cells in monolayer is the observation that, although cells have lost intercellular 

contacts, they do not tend to separate from each other and scatter. One speculation could be 

that disassembly of adhaerens junctions contribute to the acquisition of the migratory 

potential but molecular signalling from activated Rac1 is mandatory for the achievement of 

this type of motile activity. It is also true that we evidenced changes in the aspect of the 

cell colonies that suggest their tendency to fuse by an active process of cell locomotion. 

Also the data from the wound healing test imply that level of Rac1 inhibition attained with 

the inhibitor concentrations we used is not sufficient to completely abolish migration in 

FRT  cells. 

  

5.11 RAC1 AND THE CONTROL OF MORPHOGENETIC EVENTS IN FRT CELLS 

Cell polarization is achieved by the concerted actions of polarity proteins. By assembling 

multiprotein complexes they induce  downstream signaling to trigger the establishment of 

cellular asimmetry. Crosstalk between small GTPases and polarity proteins is crucial in 

cell polarization (an ecellent review is: Iden and Collard, 2008). 

There is strong evidence for a predominant function of Rac1 in the formation of 

epithelial apico–basal polarization (Takaishi et al 1997; Chen and Macara 2005; 

Mertens et al. 2005). The interaction between Tiam1 and Par3 couples Rac1 activation 

to the activation of aPKC, and loss of Tiam1 impairs the establishment of functional 

tight junctions in keratinocytes. Furthermore, Rac1 controls extracellular matrix-

induced reorientation of apico–basal polarity in three-dimensional cultures of epithelial 

cysts in a PI3K- and aPKC-dependent manner (O’Brien et al. 2001; Liu et al. 2007). 

Functional integrity of the junctional complexes   is a pre-requisite for cel-cell adhesion 

between epithelial cells (Miyoshi and Takai 2005). The adhaerens junctions (AJ) are 

considered to be the archetypes oj jnctional complexes, and AJ formation may precede 

tight junctions (TJ) formation in epithelial cells. According to working models adapted 

to cells grown on monolayers, assembly of the apical junctional complex is triggered by 

the initiation of cell-cell adhesion by nectins and E-cadherin. The nectin based cell-cell 
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adhesions are associated with the E-cadherin-based AJs through their respective adaptor 

proteins, afadin and alfa catenin. Nectin and E-cadherin are thought to form AJs 

cooperatively. When migrating cells recognize their neighbors cells primordial spot-like 

junctions are first formed at the tips of cell protrusions (Adams et al. 1998; Yonemura et 

al. 1995; Vasioukhin et al 2000). These primordial junctions fuse with each other to 

form short line-like planes wich develop into matured AJs. The contact between two 

cells generate nectin-based microclusters that then recruit E-cadherin and JAMS to the 

apical side of the AJs. Recruitment to this primordial junctions  of others components of 

TJs follow, which eventually leads to the establishment of the claudin-based TJs (see on 

this topic also the Introduction section). The model according to wich interactions of 

nectins facilitate the formation of E-cadherin based AJs  and claudin based TJs has been 

validated in the MDCK system. Cdc42 and Rac-1 are activated by the initiation of cell 

contacts formed by trans-interactions of nectins or E-cadherin (Fukuhara A. et al. 2003; 

Fukuhara T. et al. 2004). We already demonstrated the ability of FRT thyroid epithelial 

cells to form polarized structures when they are cultured in suspension on agarose-

coated dishes. In this culture condition they generate compact cell aggregates that 

undergo compaction, possibly due to junctions formation. A compact aggregate can be 

regarded as an unstable structure whose final configuration will depend upon the type of 

enviroment: compact aggregates will be converted into polarized cysts (three-

dimensional structures filled with fluid with inside-out polarity) if they are cultured in 

suspension culture, or will form follicular structures with lumina if they are embedded 

in dilute collagen gel or gelatin (Garbi et al. 1987). The whole sequence of events  

leading to the described  polarized structures may be regarded as a morphogenetic 

sequence that resemble that  occurring in  epithelia in vivo. Its tempting to speculate 

that suspended cells although in a completely different enviroment  try to form 

primordial junctions in the moment they come in close contact one the the other. 

Morphological observations of  the aggrgates show that in a initial stage individual cell 

components can be easily distinguished, probably due to the fact that the surface area 

involved in establishing contacts is limited. Later on aggregates show a smoother 

surface and single cells can not be traced anymore. This step corresponds to a stage 

defined as compaction, and may indicate that more solid and extended junctions, ie 

mature AJs, have been assembled. If this model holds true, than one can speculate that 

Rac1 activity is promoted by contacts and necessary for compaction and to prepare the 

ground to TJs assembly. At this point an asimmetric apico-basal polarity will be 
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established and  depending on external and intrinsic cues a polarized permanent 

structure will form. With thyroid epithelial cells it has been shown that embedding cell 

aggregates in a collagen gel  a follicular structure is generated with the outside-in 

configuration, that closely riproduce the follicular orientation in the gland. If aggregates 

are kept in suspension in the medium cysts with inverted polarity will form (inside–out 

configuration). A major issue on this subject is: does Rac1 controls the fate of 

aggregates also  in the this final step that follows compaction? 

In this thesis the the partecipation of Rac1 to the process of cell aggregation and 

polarization of aggregated cells in suspension culture have been investigated.  In one set 

of experiments the role of Rac1 in the morphogenetic process leading to formation of 

follicles was investigated in FRT parental cell grown in suspension culture and treated 

with the Rac1 inhibitor.  The inhibitor was added alternatively at the onset of culture, or 

few hours laters  at the moment when the initial aggregation of cell have already taken 

place. In a second set of experiments FRT-β1B cells expressing the RacER(QL) protein 

were used. The FRT-β1B  cells have been shown to form smaller aggreggates  and only 

a reduced number of cysts. It was expected tha upon tamoxifen treatment and induction 

of the exogenous Rac1 activity they could espress the normal phenotype back again.   

The results obtained with FRT aggregates tell us that Rac1 activity is necessary to 

promote aggregation and formation of polarized structures. The treatment with the 

inhibitor in fact inhibits both the processes. The tamoxifen-based experiments indicate 

that iperstimulation of Rac1 is able to impair cyst formation, independently from the 

type of cells that is used. Identical results were obtained with both FRT ER-Rac(QL) 

cells and FRT-β1B cells espressing ER-Rac(QL).  From the data collected, although the 

issue deserves additional verification, it can be proposed that: if the Rac1 activity is kept 

low then aggregates evolve into inverted follicles, if the Rac1 activity is inhibited 

aggregates stay as they are and do not form polarized structures, if Rac1 activity is 

greatly stimulated the cell aggregation process is promoted further on, originating large 

clusters of aggregated cells. It also possibile that TJ junctions is perturbed in this 

condition. In this respect many studies suggest that activities of the Rho family must be 

carefully balanced at levels optimal for TJ and AJ integrity. In epithelial and endothelial 

cells  constitutively activated forms of RhoA and Rac-1 perturbs TJ function (Braga et 

al. 1997; Wójciak-Stothard et al. 2001).  Wang and coll. reported that also MDCK cells 

form cysts with inverted polarity with the apical pole facing the free cellular surface of 

the cyst periphery when grown in suspension culture (Wang et al. 1990). Using the 
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same cellular system O’Brien and coll. investigated the role of Rac1 in the process of 

cell polarization. They observed that when cysts are embedded in a collagen gel they 

form a lumen and establish the apical pole in the interior, as indicated by the 

localization of the TJ protein ZO-1 (O’Brien et al. 2001). They showed that expression 

of costitutively active Rac1 did not signifcantly alter MDCK cyst morphogenesis, while 

expression of dominant-negative Rac1 (N17Rac1) caused a selective inversion of the 

apical pole to the cyst periphery and N17Rac1 cysts did not form lumina.  

Rac1 activity controls laminin assembly in apical pole polarization. N17 Rac1 cysts 

exhibited a marked decrease in alfa3 integrin levels that could relate with the alterations 

of laminin assembly that they have documented. Interistingly exogenous laminin 

restored proper apical orientation in N17Rac1  cysts. An interesting comment in that 

paper is in correlation to the role of Rac1 in the polarization process. Both monolayer 

and suspension culture are indicated as inherently anisotropic providing cells with a free 

and adhesive cellular surfaces. On the contrary cells in collagen are confronted with an 

isotropic enviroment, in which all cell surfaces are adhesive,either to collagen or to 

other cells.These cells must break the symmetry of their enviroment and polarize 

without external cues by forming a free luminal surface.  Intracellular Rac1 activity 

should have a special role in guiding  the cells throughout this process.   

    

 

5.12 INTEGRIN SIGNALING AND RAC1. THE FRT-β CELLS AS A MODEL TO 
INVESTIGATE THE ROLE OF RAC1 ACTIVITY IN POLARIZED CELLS 
 

Cell adhesion to extracellular matrix (ECM) is necessary to achieve a sustained activation 

of Rac1 and other signaling molecules. The integrino, (ECM receptors), engagement is 

crucial in this  respect. How integrins signal Rac-1 activation following cell adhesion is not 

completely clear. It has been shown that adhesion to ECM regulates the coupling of the 

Rac1 to its effetor Pak (del Pozo et al.,2000), that integrin induces GTP-Rac translocation 

to the plasmamembrane (Grande-Garcia et al.,2005), and that this process is a 

phospholipase D-dependent effect (Chae et al.,2008) 

The role of integrin signaling in the acquisition/maintenance of cell polarity has been 

studied to some extent in polarized epithelial cells in culture. It has been shown, in 

particular, that beta1 integrins plays a critical role in orienting the polarity of FRT and 

MDCK cells. In suspension culture, both cell type form hollow cysts where a 

monolayer of cells has the apical surface facing the outside. If the cysts are placed in a 
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collagen matrix, reversal of polarity occurs (Garbi etal., 87) and this process depends on 

β1 integrin (Ojakian et al.,2001) Furthermore, it has been shown that β1 integrin lies 

upstream of Rac1 in a pathway controlling orientation of polarity (Yu et al.,2005). 

Activation of integrin causes activation of Rac1, which in turn orients the polarity of the 

cells in a process that, in MDCK cells, also requires laminin-dependent assembly of a 

basement membrane. Recent evidences indicate that phosphoinositides may lye 

upstream of these signaling cascades and may be directly involved in the generation of 

an apical (Martin-Belmonte F, et al,2007 a and b) or a basolateral  (Gassama-Diagne A, 

et al., 2006) membrane domain. To directly demonstrate that β1 integrins play a role in 

the acquisition of polarity, FRT cells have been transfected with the dominant-negative 

β1B integrin that inactivates the endogenous β1A integrin  ( Calì et al.,1998). In these 

cells  a great reduction of fibronectin fibrils associated the basal membrane was 

observed ( Calì et al.,1998). RhoA is required to promote fibronectin matrix assembly in 

FRT cells and the activation of the signal transduction pathway downstream Rho can 

overcame the inhibitory effect of β1B (Calì et al.,1999). Moreover formation of of 

polarized cysts in suspension culture and cell migration of cells embedded in a collagen 

gel were impaired. Both  are are very likely Rac-dependent process. In fact the 

phenotical changes that we observed in FRT- β1B cells are remarkably similar to those 

manifested by FRT parental cell in which Rac1 activity have been inhibited. 

Furthermore β1B integrin differs from the canonic β1A the aminoacid sequence in its 

cytoplasmic tail and the integrin β1 tail has been shown to be required and sufficient to 

regulate adhesion signaling to Rac1 (Berrier et al.,2002). Since  b1 integrin lies 

upstream of Rac1 in a pathway controlling orientation of polarità we speculated that the 

integrin signaling converging on Rac1 is impaired in FRT- β1B cells. We tested in this 

work the hypothesis that could be possibile  to rescue the normal phenotype in these ells 

implementing Rac1 activity. Starting from the 8i clone of the FRT-β cells FRT-β 8i 

cells were obtained that stably expressed an inducible constitutively active Rac1 

protein, ER-Rac1(QL). As indicated in the Materials and methods section the 

inducibility was obtained by fusing the Rac1(QL) downstream of a 4-OH-Tamoxifen-

sensitive mutant of the estrogen receptor ligand binding domain. 

Polarized activities such as migration, transepithelial resistance development and 

polarized cyst formation were analyzed in the absence and in the presence of tamoxifen. 
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5.13 RAC1 OVERESPRESSION INDUCED BY TAMOXIFEN REDUCES THE 
GROWTH RATE OF THE CELLS  
 

Owing to the impossibility to directly measure Rac1 activity two in direct evidences 

suggested that the activity of the exogenous Rac molecule was effectively stimulated. The 

first was the demonstration by immunofluorescence  that upon tamoxifen treatment a 

noticeable amount of ER-Rac1(QL) moved from the cytosol to the plasma membrane at 

sites of cell-contacts. As indicated in the Materials and methods this effect is very rapid. 

Once stimulated cells keep the ER-Rac1(QL) protein stably associated to the membrane. 

The second was inferred from the observation that prolonged incubation with tamoxifen 

led to appearance of multinucleated cells in the monolayer. A similar observation has been 

reported following the overespression of the constitutively activated RacV12  (Yoshizaki 

et al,2004). In our FRT cellular system constitutive activation of Rac1 induces an arrest of 

cell proliferation. This result is in agreement with data reporting that Rac1 downregulation 

is essential at the end of the mitosis during cytokinesis, while RhoA activity is upregulated 

(Yoshizaki et al, 2004, Glotzer, 2005, Wolf et al., 2007)). Rac1 is sequestrated into the 

nucleus immediately before mitosis and released into the cytoplasm during cytokinesis 

(Michaelson et al., 2008). 

   

5.14 A CONSTITUTIVELY ACTIVE RAC1 IMPAIRS THE ACQUISITION OF 
EPITHELIAL CELL POLARITY 
 

We use the FRT-β1B cells as a model to investigate the role of Rac1 in epithelial cell 

polarity with an approach wich is different from that carried with the Rac1 inhibitor in 

FRT parental cells.  As a general comment on the results obtained expressing the inducible 

ER-Rac1(QL) construct in 8i cells  (the  clone of the FRT-β1B cells selected for 

transfection) is that they all give  the indication that a prolonged and sustained Rac1 

activity in our system  is not a guarantee that the proper polarization of the cells is 

achievable. The FRT-β cells polarity defect not only can not be rescued by the 

iperespression of active Rac1 molecules but also a general impairment of polarized 

activities is promoted.  We tend to esclude that these observations are linked to special 

features of the clones generated by the transfection. First all three clones analyzed behave 

in the same way. Furthermore also the FRT parental cells that have been transfected with 

the same construct show reduced wound healing efficiency, impaired formation of 

polarized cysts  in suspension culture and manifest only negligible levels of TER when 

treated with tamoxifen. Finally tamoxifen alone did not induce any modification in the 
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parental FRT cells used as control. The most obvious conclusion is that a constitutively 

active Rac1 do not promote. or implement, but instead impair the acquisition of cell 

polarity. Altogether all the data reported in this thesis emphasize the concept that Rac1 

activity must be carefully controlled both spatially and temporally.  

 

 

5.14 RAC1 IN FRT CELLS GROWN IN MONOLAYER: A MODEL 

We believe that major biological phenomena that occur in “in vitro” culture, such as 

colony migration, colonies fusion, proliferation, acquisition of the polarized phenotype and 

generation of polarized structures (domes in monolayer culture, or follicular structures in 

three-dimensional collagen gels), are reminescent of morphogenetic events that take place 

during differentiation and organogenesis.  FRT cells synthesize extracellular matrix (ECM) 

components such as laminin and fibronectin and organize them in the form of a complex, 

mostly fibrillar, extracellular deposits (Calì et al. 1998). In non-confluent cultures 

fibronectin (FN) is mainly organized into extracellular fibrils and larger fibers of different 

size and orientation. During their functional differentiation in culture FRT cells, initially 

plated as single cellular entities, form small colonies that progressively fuse generating a 

monolayer. The fibrillar basal FN progressively disappeares with time in culture and is 

substituted, in confluent cultures, by FN deposited at sites of cell-cell contacts in the form 

of granular deposits (Nezi et al. 2002). Domes only form in confluent monolayers and only 

after the cells have gained the polarized phenotype. Data presented in this thesis clearly 

show that Rac1 localizes at the plasma membrane both in small colonies and in confluent 

coltures. Therefore a fraction of activated Rac1 should be constantly present in the cells. 

Although very speculative in nature a model can be proposed, that apply to the FRT 

system. In the first period in culture  RhoA activity is prevalent on Rac1 activity and this 

assures microfilament assembly, fibronectin fibrillar matrix deposition and colonies 

migration and fusion. Previous work from the laboratory showed that the α5β1 dimer is the 

main integrin involved, and evidenced the critical role of the Rho A small GTPase in the 

process of FN fibril organization (Calì et al. 1999). With time the balance could change in 

favor of a more sustained Rac1 activity. A sustained activation of Rac by Tiam1 could 

downregulate Rho activity as it was shown in the NIH3T3 cell model (Sander et al.,1999). 

This could implement cell growth, initiate the process of fibronectin degradation and 

enforce junctional complexes assembly.  In agreement with this is the observation made in 

the study presented here that the treatment of FRT cultures with the Rac1 inhibitor reduced 
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the growth rate of the cells.  Furthermore it has been shown that Rac1 is a mediator of 

collagen-stimulated MMP2 (metalloprotease)  activity increase (Zughe and Xu 2001), and 

that in endotelial cells MMP2 production increases in response to actin depolymerization 

in a Cdc42/Rac1 dependent process. (Ispanovic and Haas 2004). Previous work from the 

laboratory showed that in FRT cells basal fibrillar FN is susceptible to degradation by 

proteolitic activities. FRT cells synthesize MMP2 and express MT1-MMP, necessary for 

cell membrane-mediated MMP2 activation (Nezi et al. 2002).  In addition, a transition 

from stress fibers-containing cells to cells with depolymerized filaments is clearly 

detectable in FRT cultures at the stage when colonies fuse, forming extended areas of the 

monolayer. Finally FRT cells synthesize and deposit a laminin-enriched extracellular 

matrix and, according to what have been described in MDCK cells, this should be a Rac1-

dependent process. A fully polarized monolayer is only formed after stable and solid 

junctions have been established. The balance between different Rho GTPases might be a 

crucial determinant of polarization. We expect that also in this final step the relative 

amount of activated Rho and Rac should be carefully controlled. In this respect it has been 

shown that Rho activity decreases with maturation of cell-cell contacts (Noren et al. 2001) 

and Rac1 has been shown to suppress RhoA activity at adhaerens junctions, by stimulating 

the association of p190  RhoGAP with cadherin-bound p120-catenin during cell-cell 

contact formation (Wildenberg et al. 2006).
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