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Abstract.

The tomographic approach to quantum mechanics is revisited as a direct tool

to investigate violation of Bell-like inequalities. Since quantum tomograms are well

defined probability distributions, the tomographic approach is emphasized to be

the most natural one to compare the predictions of classical and quantum theory.

Examples of inequalities for two qubits an two qutrits are considered in the tomographic

probability representation of spin states.

PACS numbers: 03.65.Ud, 03.67.-a

1. Introduction

Bell’s inequalities were originally formulated [1] in order to provide a mathematical

characterization of classical local hidden variables theories. In their original formulation,

Bell’s inequalities are propositions concerning expectation values of dichotomic

observables (such as spin−1/2 polarization), when two spatially separated systems and

local measurements are considered, in presence of perfect (anti-) correlations between

the two systems relevant observables (such as two spin−1/2 in a singlet state). The

experimental violation of these inequalities is an evidence against local classical variables

models. Later on, other inequalities were proposed that generalize the Bell’s idea to

the case of non perfectly (anti-) correlated spin−1/2 systems [2, 3], to the case of

spin of higher value [4] and concerning probability of measurement output instead of

measurement expectation value [5].

It is a remarkable fact that not all the states of a (say) bipartite quantum system

do violate some Bell-like inequalities: only states that are entangled are truly non local

and not allowed to be described by means of a classical local variables model. With

the development of the theory of quantum information and in view of the special role

played by entangled states in quantum information protocols, a violation of some Bell-

like inequalities has assumed also an operational role as a witness of entanglement.

The power of Bell-like inequalities is that they refer only to observables quantities,

as expectation value, correlations and probabilities without an explicit link to the
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underlying theory. If a Bell-like inequality is a proposition that is true for a classical

theory, it is nevertheless a well defined proposition (not necessary true) in the framework

of quantum theory. Hence the very idea of Bell’s inequalities leads to consider a unified

description of both classical and quantum mechanics based on fundamental quantities

as probability distributions.

The conventional description of pure quantum states is by means of wave functions

[6] or state vector in Hilbert space [7]. For mixed states, the density matrix [8, 9] is

used to describe quantum states. The problem of measuring the quantum states was

considered as the problem of finding the Wigner function [10], by means of which the

optical tomograms of the states [11, 12], which are the probability distribution densities

of the homodyne photon quadratures, can be determined. In [13] the use of symplectic

tomogram as a tool for state reconstruction was extended in order to describe the

quantum state by the probability distribution from the very beginning. This approach

is called ”tomographic probability representation of quantum states”. For spin degrees

of freedom the probability representation was found in [14, 15] for one qudit and in [16]

for two qudits. In the framework of the tomographic representation, the spin state is

identified with the probability distribution of spin projection on direction labeled by

angular coordinates on the Bloch spheres for arbitrary number of qudits.

The tomographic map from state vectors or density matrices onto fair probability

distributions contains complete information on the quantum states. Its mathematical

structure was recently found in [17]. The relation of tomographic probability

representation with the star-product quantization procedure was established in [18].

The aim of this work is to find new explicit formulas for spin tomograms of two

qubits and two qutrits and to analyze, by means of these formulas, some Bell-like

inequalities. The paper is organized as follows. In section 2 we review the separability

problem using the tomographic probability description of spin states. In section 3 we

derive the formulas for spin tomograms of two qubits and study the CHSH inequalities

[2]. In section 4 we obtain the probability representation for multiqutrit state. In section

5 we present the conclusions.

2. Tomograms and separability

A tomographic description of quantum system can be formulated for systems with both

discrete and continuous variables [17]. Here we are interested in the case of discrete

variable systems that we are going to describe in the framework of spin tomography.

For qudit states with spin j the tomographic probability distribution is defined as

the diagonal elements of the density operator

ρU = U †ρU (1)

in a standard basis {|m〉}m=−j,...j, where U is an operator of the unitary irreducible

representation of the SU(2) group. The tomogram of the qudit state reads

ω(m,
→
n) = 〈m|ρU |m〉 = 〈m|U †ρU |m〉 . (2)
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Here
→
n= (sin θ cosφ, sin θ sinφ, cos θ) is an unit vector determining a point on the Bloch

sphere. The tomogram is, by construction, the probability distribution of the spin

projection m onto the direction
→
n. The probability distribution determines the density

matrix ρ. The formula connecting the tomogram ω(m,
→
n) with the density matrix ρ was

obtained in [15]. For example the tomographic probability of the qubit state

ρ =

[

1 0

0 0

]

(3)

reads as follows

ω(1/2,
→
n) = cos2 θ/2 , (4)

ω(−1/2,
→
n) = sin2 θ/2 . (5)

We used the matrix U rotating the spinor in the form

U =





cos θ/2ei
φ+ψ

2 sin θ/2ei
φ−ψ

2

− sin θ/2e−i
φ−ψ

2 cos θ/2e−i
φ+ψ

2



 . (6)

Here φ, θ, ψ are the Euler angles. For two qudits the tomogram is defined as follows:

ω(m1, m2;
→
n1,

→
n2) = 〈m1m2|U †ρU|m1m2〉 , (7)

where ρ is a density matrix of two qudits, U = U1 ⊗ U2, and the matrices U1 and

U2 are matrices of irreducible representation of the group SU(2) corresponding to the

first and second qudit, respectively. The spin projections m1 and m2 onto directions
→
n1 and

→
n2 are random variables of the tomogram which is joint probability distribution

function for the two spin projections. Below we discuss in more details the generic

qudits tomograms.

Let us consider an operator A(j) acting on a space of a spin−j irreducible

representation of SU(2). Given a standard basis {|jm〉} with m = −j,−j + 1, ...j − 1, j

the matrix elements of the operator

A
(j)
m,m′ = 〈m|A(j)|m′〉 (8)

of course completely determine the operator

A(j) =
∑

A
(j)
m,m′ |m〉〈m′| . (9)

We consider the diagonal elements in a rotated frame

ωA(m,Ω) = 〈m|R†(Ω)A(j)R(Ω)|m〉 = tr
[

A(j)R(Ω)|m〉〈m|R†(Ω)
]

, (10)

where R(Ω) is a unitary spin−j representation of SU(2) and Ω is a short hand notation

for the three Euler angles α, β and γ. The diagonal elements, as functions of the variable

m and of the parameters Ω define the spin tomogram of the operator A(j). In the case

in which A(j) represents a density operator describing the state of a spin−j system,

the tomogram ωA(m,Ω) is interpreted as the probability of finding the system with

polarization m along the z axis in a system rotated with Euler angles Ω. The tomogram



Bell’s inequalities in the tomographic representation 4

(10) is a family of well defined probability distribution on the variable m with parameter
→
n:

ωA(m,
→
n) ≥ 0 , (11)

∑

m

ωA(m,
→
n) = 1 . (12)

It is a remarkable result that the knowledge of only diagonal matrix elements in a

generic rotated frame is sufficient to reconstruct the operator:

A(j) =
j

∑

m=−j

∫

dΩK(m,Ω)ωA(m,Ω) , (13)

where
∫

dΩ =
∫ 2π

0
dα

∫ π

0
sin βdβ

∫ 2π

0
dγ . (14)

The explicit expression for the quantizer operator K(m,Ω) was found in [18].

Notice that as long as the polarization along the z axis is considered, the spin

tomogram (10) depends only on two Euler angles: in the following we write

Π(j)(m,
→
n) = R(Ω)|m〉〈m|R†(Ω) , (15)

where
→
n= (cosα sin β, sinα sin β, cosβ) is the rotated axis of polarization. Hence, in the

tomographic approach, the state of a quantum system is described by means of a well

defined probability distribution ω(m,
→
n) related to a Stern Gerlach-like measurement

along the direction
→
n. Notice that a Bloch sphere description is obtained for the quantum

state even for j > 1/2.

One of the open problems in quantum mechanics and quantum information theory

is to give a complete characterization of entangled states. Given a bipartite system, a

quantum state of the system is said to be separable if it can be written as a convex sum

of factorized states:

ρ =
∑

k

pkρ
(A)
k ⊗ ρ

(B)
k ,

∑

k

pk = 1 . (16)

Otherwise the state is said to be entangled. Let us also recall that a factorized state

ρ = ρ(A) ⊗ ρ(B) is called a simply separable state. These definitions can be generalized,

with some care, to the case of multi-partite systems [19, 20].

The relation between local realism and separability of quantum states was widely

studied. It is clear from the definition (16), that every separable states can be described

by means of a local hidden variables model (where the hidden variable can be identified

with the index k). In [21] it was first shown with an example that the converse is not true,

i.e. there exist quantum states that can be described by a hidden local variables model

but are nevertheless entangled. This means that the violation of a Bell’s inequalities by

a given quantum states is a sufficient (though not necessary) condition for the state to

be entangled. Although a systematic approach to generate all Bell’s inequalities exists

[22], how to find the inequality that presents a maximal violation for a given entangled

state is still an open problem.
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From the point of view of entanglement detection and characterization, it is

interesting to consider the tomographic description of state of multipartite quantum

systems. To fix the ideas, let us consider a bipartite system composed of one spin−j1
and one spin−j2: in this case the spin tomogram of a state of the compound system

described by density matrix ρ is written as follows:

ωρ(m1, m2;
→
n1,

→
n2) = tr

(

ρΠ(j1)(m1,
→
n1) ⊗ Π(j2)(m2,

→
n2)

)

. (17)

This definition is simply generalized to the case of multipartite spin systems and refers

to local Stern Gerlach-like measurement.

For example the tomographic probability distribution function for the two qubit

state

ρ =













1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0













(18)

reads

ω(1/2, 1/2;
→
n1,

→
n2) = cos2 θ1/2 cos2 θ2/2 , (19)

ω(1/2,−1/2;
→
n1,

→
n2) = cos2 θ1/2 sin2 θ2/2 , (20)

ω(−1/2, 1/2;
→
n1,

→
n2) = sin2 θ1/2 cos2 θ2/2 , (21)

ω(−1/2,−1/2;
→
n1,

→
n2) = sin2 θ1/2 sin2 θ2/2 . (22)

The state is simply separable and the tomographic probability has the form of factorized

joint probability distribution

ω(m1, m2;
→
n1,

→
n2) = ω1(m1,

→
n1)ω2(m2,

→
n2) , (23)

where the probability distributions ω1 and ω2 describe the states of the first and second

spin respectively. The joint tomographic probability determines the density matrix by

means of inversion formula obtained in [16]. Due to linearity of the tomographic map of

density matrices onto joint probability distributions of spin projections, the tomogram

of a separable state is the convex sum of factorized joint probability distributions of the

simply separable states:

ω(m1, m2;
→
n1,

→
n2) =

∑

k

pkω
(k)
1 (m1,

→
n1)ω

(k)
2 (m2,

→
n2) . (24)

3. Qubits tomograms

In this section we discuss the tomographic representation for spin−1/2 (qubit) systems

in its link with standard density matrix description. Let us first consider a one-qubit

system. It is well known that a qubit density state can be written in terms of Pauli

matrices:

ρ1 =
1

2

(

σ0 + xiσi

)

, (25)
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where (the sum over repeated indices is intended)

xi = δij tr(ρσj) = δijxj (26)

since

tr(σiσj) = 2δij . (27)

In the following we take m = −1, 1. With this convention, from the definition (10)

it follows that in the tomographic representation:

ω(m,
→
n) = tr

(

ρ1Π(m,
→
n)

)

, (28)

where

Π(m,
→
n) =

1

2

(

σ0 +mniσi

)

(29)

is the projector on the eigenstate with polarizationm along the direction
→
n= (n1, n2, n3),

where for convenience we have chosen m = ±1. The operator Π(m,
→
n) plays the role of

the de-quantizer operator used in star-product quantization scheme [23].

From (28) and (26) it follows that the explicit expression for a generic qubit

tomogram is

ω1(m,
→
n) =

1

2

(

1 +m
→
n · →

x
)

, (30)

where
→
x= (x1, x2, x3) and

→
n · →

x= nixi. The expression (28) can be immediately

generalized to the case of multi-qubit system. In the case of a system of N qubits

in a global state ρN , the (global) tomogram is given by the following relation:

ωN(m1, m2, . . .mN ;
→
n1,

→
n2, . . .

→
nN) = tr

[

ρN

⊗

i=1...N

Π(mi,
→
ni)

]

. (31)

In the case of a system of two qubits (31) simplifies to

ω2(m1, m2;
→
n1,

→
n2) = tr

[

ρ2
1

4
(σ0 +m1n

i
1σi) ⊗ (τ0 +m2n

i
2τi)

]

, (32)

where σµ and τµ are the Pauli matrices respectively related to the first and second qubit.

Defining xi = tr(ρ2σi), yi = tr(ρ2τi) and zij = tr(ρ2σi ⊗ τj), where σi and τi are

short-hand notation for σi ⊗ τ0 and σ0 ⊗ τi respectively, the tomogram (32) reads:

ω(m1, m2;
→
n1,

→
n2) =

1

4

(

1 +m1n
i
1xi +m2n

i
2yi +m1m2n

i
1zijn

j
2

)

. (33)

Notice that for simply separable states tr(ρ2σi ⊗ τj) = tr(ρ2σi) tr(ρ2τj), i.e. zij = xiyj

and the tomogram assumes a factorized form:

ω(m1, m2;
→
n1,

→
n2) =

1

4

(

1 +m1
→
n1 ·

→
x

) (

1 +m2
→
n2 ·

→
y

)

. (34)
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3.1. Two spin−1/2 Bell-Wigner inequalities

Let us consider the inequality proposed in [5]. It is related to the case of two

spin−1/2 particles with perfect anti-correlation. For each particle the polarization is

independently measured along three arbitrary directions. The joint probability of finding

the first and the second particles polarized respectively in the
→
n1 and

→
n2 direction is

indicated with P (
→
n1,

→
n2). The hypothesis of perfect anti correlation implies that the

probability of measure parallel polarization along a fixed direction vanishes:

P (
→
n,

→
n) = 0 . (35)

Given three arbitrary directions
→
na,

→
nb and

→
nc the following inequality holds for a

classically correlated state [5]:

P (
→
na,

→
nb) + P (

→
nb,

→
nc) − P (

→
na,

→
nc) ≥ 0 . (36)

Notice that these probability distributions are directly given in the tomographic

representation, since

P (
→
n1,

→
n2) = ω(1, 1;

→
n1,

→
n2) . (37)

Inequality (36) is obtained for perfectly classically anti-correlated states. It is easy

to see that a quantum simply separable state cannot exhibit perfect (anti-) correlations,

hence we consider non-perfect anti-correlation in a simply separable state of the following

form:

ω(m1, m2;
→
n1,

→
n2) =

1

4

[

1 +m1(
→
n1 ·

→
x)

] [

1 −m2(
→
n2 ·

→
x)

]

. (38)

For such a state (36) are always fulfilled and are simply written as follows:

ω(1, 1;
→
na,

→
nb) + ω(1, 1;

→
nb,

→
nc) − ω(1, 1;

→
na,

→
nc) = (39)

1

4

[

1 − (
→
na · →

x)(
→
nb ·

→
x) − (

→
nb ·

→
x)(

→
nc ·

→
x) + (

→
na · →

x)(
→
nc ·

→
x)

]

≥ 0 , (40)

that is

(
→
na · →

x)(
→
nb ·

→
x) + (

→
nb ·

→
x)(

→
nc ·

→
x) − (

→
na · →

x)(
→
nc ·

→
x) ≤ 1 . (41)

Since the inequalities are fulfilled by non-perfectly anti-correlated particles in a

factorized state it follows that the same is true for a generic anti-correlated separable

state.

As a simple example, we consider the case of a two-qudit system in the Werner

state, defined for φ ∈ [−1, 1] as follows:

ρd(φ) =
1

d3 − d2
[(d− φ)Idd2 + (dφ− 1)V ] , (42)

where Idd2 is the identity operator in the compound system space and V is the swap

operator (V ψ⊗ φ = φ⊗ψ). These states are symmetric under local unitary operations

of the kind U ⊗ U : hence we expect a particular simple tomographic expression for

these states. The state (42) is known to be entangled for φ < 0 and separable otherwise.

Notice that a spin−j system can be viewed as a qudit with d = 2j + 1.
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In the case of two qubits (d = 2) the tomogram of (42) reads as follows:

ωW =
1

4

[

1 +
2φ− 1

3
m1m2(

→
n1 ·

→
n2)

]

. (43)

In terms of tomogram, the inequality (36) is immediately written as

2φ− 1

3

[

(
→
na · →

nc) − (
→
na · →

nb) − (
→
nb ·

→
nc)

]

≤ 1 . (44)

It follows that the inequality (36) is violated for any φ < −1/2.

3.2. Two spin−1/2 CHSH inequalities

As we have recalled above, both the Bell’s inequalities [1] and Bell-Wigner inequalities

[5] assume perfect (anti-) correlations between the two system qubits. The inequalities

known as CHSH inequalities were introduced [2] in order to relax the hypothesis of

perfect correlation between the two systems. Also in this case we deal with dichotomic

observables. In the following we consider the case of a composite system of two spin−1/2

and the relevant observables are local magnetizations along a couple of directions. As in

the original Bell argument, but in contrast with the Wigner approach, these inequalities

are expressed in terms of expectation values and correlations of local observables.

Some aspects of CHSH inequalities and their relation to tomographic probabilities were

discussed in [24].

Given two arbitrary directions
→
n1 and

→
n2, let us consider the function

M(
→
n1,

→
n2) = tr(ρ2n

i
1σi ⊗ nj

2τj) , (45)

that represents the correlation between the polarizations along the
→
n1 and

→
n2 direction,

respectively for the first and second qubit, over the two qubits density state ρ2. Notice

that, in terms of tomograms, the correlation function (45) can be easily written as

M(
→
n1,

→
n2) =

∑

m1,m2

m1m2ω(m1, m2;
→
n1,

→
n2) . (46)

Given four arbitrary directions
→
na,

→
nb,

→
nc and

→
nb′ , the CHSH inequalities read as

follows:

|M(
→
na,

→
nb) −M(

→
na,

→
nc)| +M(

→
nb′ ,

→
nb) +M(

→
nb′ ,

→
nc) − 2 ≤ 0 . (47)

For two qubits Werner state, using (43), the average magnetization is easily written

as

M(
→
n1,

→
n2) =

2φ− 1

3

(→
n1 ·

→
n2

)

. (48)

The inequality (47) reads

|2φ− 1|
3

[

| →
na ·(→nb − →

nc)|− →
nb′ ·(→nb +

→
nc)

]

≤ 2 . (49)

Notice that the maximum of the function

Y (
→
na,

→
nb,

→
nb′ ,

→
nc) = | →

na ·(→nb − →
nc)|− →

nb′ ·(→nb +
→
nc) (50)
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is reached when

→
na = ±

→
nb −

→
nc

| →
nb −

→
nc |

(51)

→
nb′ = −

→
nb +

→
nc

| →
nb +

→
nc |

(52)

and
→
nb ·

→
nc= 0, and it is equal to 2

√
2. The inequality is violated for any φ < −3

√
2−2
4

.

Hence, the violation of the inequality does not detect entanglement when −1 ≤ φ ≤
−3

√
2−2
4

.

4. Qutrits tomography

In the previous sections we were dealing with qubit systems. Let us now consider the

case of qutrits. In order to write the spin tomogram for a generic qutrit state, one has

to consider the s = 1 irreducible representations of the group SU(2). Let us consider a

realization of the angular momentum as qutrits operators J1, J2, J3, such that

[Ji, Jj] = iǫkijJk . (53)

In terms of this given representation, the spin tomogram of a qutrit state is related to

the standard density matrix description via the following relation:

ω(m,
→
n) = tr(ρ1Π(m,

→
n)) , (54)

where m = −1, 0, 1, and the qutrit de-quantizer operator is now given by

Π(m,
→
n) =

(

1 −m2
)

Id3 +
m

2
niJi +

(

3

2
m2 − 1

)

(niJi)
2 , (55)

where Id3 is the qutrit identity operator, and Π(m,
→
n) is the projector on the eigenvector

of polarization m along the
→
n direction. The relation (54) is easily generalized in the

case of a system of N qutrits as follows:

ω(m1, m2, . . .mN ;
→
n1,

→
n2, . . .

→
nN ) = tr

[

ρN

⊗

i=1...N

Π(mi,
→
ni)

]

. (56)

As an example let us consider the two-qutrits Werner state obtained from (42) with

d = 3:

ρW =
3 − φ

24
Id9 +

3φ− 1

24
V . (57)

The tomographic representation is explicitly given by

ω(m1, m2;
→
n1,

→
n2) = tr

[

ρW Π(m1,
→
n1) ⊗ Π(m2,

→
n2)

]

, (58)

that yields to

ω(m1, m2;
→
n1,

→
n2) =

3 − φ

24
+

3φ− 1

24

[

3
(

1 −m2
1

) (

1 −m2
2

)

+
(

1 −m2
1

) (

3m2
2 − 2

)

+
(

1 −m2
2

) (

3m2
1 − 2

)

+
m1m2

2
(
→
n1 ·

→
n2)

+
(

3

2
m2

1 − 1
) (

3

2
m2

2 − 1
)

(

1 + (
→
n1 · →

n2)
2
)

]

. (59)
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As another example, we discuss the non-linear Bell-like inequality proposed in [25]:

〈AB′ + A′B〉2 + 〈AB − A′B′〉2 ≤ 1 , (60)

where A, A′ and B, B′ are local observables for a system composed of two spins, with

the property of orthogonality tr(AA′) = 0, tr(BB′) = 0. Although this inequality has

been formulated for a system of two qubits, it can be considered for a system of two

qutrits as well. If A = ni
AJi, A

′ = ni
A′Ji, B = ni

BJi, B
′ = ni

B′Ji, from (59) we obtain

that

〈AB′〉 =
3φ− 1

12

→
nA · →

nB′ , (61)

and the inequality reads as follows:
[

3φ− 1

24

]2 [

( →
nA · →

nB′ +
→
nA′ · →

nB

)2
+

( →
nA · →

nB − →
nA′ · →

nB′

)2
]

≤ 1 . (62)

Notice that
[

( →
nA · →

nB′ +
→
nA′ · →

nB

)2
+

( →
nA · →

nB − →
nA′ · →

nB′

)2
]

< 8, therefore the

inequality is never violated.

5. Conclusions

To conclude we point out the main results of the paper. We have developed a formulation

of Bell’s inequalities by means of tomographic probability distribution of spin projections

describing the quantum states completely. New formulas convenient for further analysis

for tomogram of one qubit, two qubits and tomograms of two qutrits Werner state were

obtained. The dequantizer operator for qutrit is also a new result presented in the

paper. We demonstrated that both Wigner inequalities and CHSH inequalities as well

their violations can be easily explained using joint probability distribution (tomograms)

for spin projections. There are bounds for the violation of CHSH inequalities discussed

in [26, 27, 28, 29]. The CHSH inequalities (47) are expressed exactly in terms of the

function (33), it follows that the bound can be found as the maximum of the left hand

side of (47). We will develop the analysis of Bell’s inequalities based on tomographic

star-product approach in future publications.
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