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Introdu
tionThe large amount of data derived from genomi
s and proteomi
s, aiming atelu
idating bio
hemi
al me
hanism, has often revealed the 
omplexity of 
el-lular regulation. Therefore, metaboli
 studies are in
reasingly 
ontributing togene fun
tion analysis, and an in
reased interest in metabolites as biomarkersfor disease progression or response to natural or external intervention is alsogrowing.Nu
lear Magneti
 Resonan
e (NMR) spe
tros
opy has emerged as a keytool for understanding metaboli
 pro
esses in living systems. Re
ently, a newapproa
h to elu
idate metabolism and its me
hanisms has been put forward.It is metabonomi
s: an analysis based on a minimum number of assumptionson the bio
hemi
al pro
esses that o

ur in a living system, mainly investigatedby advan
ed spe
tros
opi
 te
hniques in
luding mass spe
trometry and NMRspe
tros
opy.Metabonomi
s is formally de�ned as "the quantitative measurement of themulti-parametri
 metaboli
 response of living systems to pathophysiologi
alstimuli or geneti
 modi�
ation" [1℄. It has been 
oined to des
ribe the 
om-bined appli
ation of spe
tros
opy and multivariate statisti
al approa
hes toinvestigate of the multi
omponent 
omposition of bio�uids, 
ells and tissues.In parti
ular, NMR-based metabonomi
s has proven to be parti
ularly suitedfor the rapid analysis of 
omplex biologi
al samples. Indeed, the so generatedNMR spe
tral results yield a unique metaboli
 �ngerprint for ea
h 
omplexbiologi
al mixture. A

ording, if the status of a given organism 
hanges, su
has in a disease state or following exposure to a drug, the unique metaboli
 �n-gerprint or signature re�e
ts this 
hange, thus supplying relevant bio
hemi
alindi
ations.Multivariate statisti
al methods provide an expert means of analyzing andmaximizing information re
overy from 
omplex NMR spe
tral data. Detailedinspe
tion of NMR spe
tra and integration of individual peaks 
an give valu-able information on dominant bio
hemi
al 
hanges. However, subtle variationin spe
tra may be overlooked and it is di�
ult to envisage general e�e
ts asa fun
tion of both dose and time in a large 
ohort of samples with biologi-
al variability. Pattern re
ognition methods 
an be used to map the NMRspe
tra into a lower dimensional spa
e (than that implied by the number ofpoints in the digital representation of the NMR spe
trum) su
h that any 
lus-tering of the samples based on similarities of bio
hemi
al pro�les 
an easilybe determined and the bio
hemi
al basis elu
idated.The development of new spe
tros
opi
 tools for high thoughput analysis ofsele
ted bio
hemi
al pathways is 
ru
ial for metabolome investigations. The



viiipurpose of the present thesis is to explore the re
ent NMR improvements byapplying and developing new metabolomi
 strategies for biomarkers dis
overy,in
luding NMR data handling, peaks quanti�
ation and fast data a
quisition.In the �rst 
hapter, a general overview of the multivariate data analysisand pattern re
ognition methods is given. In parti
ular, we highlighted theadvantages of using those tools to NMR data for biomarkers investigations.The most 
ommon regression methods (Prin
ipal Components Analysis andProje
tion to Latent Stru
tures) and plot visualization (s
atters s
ores plotsand loadings plots) are des
ribed to supply the reader with the basi
 statis-ti
al tools for a better understanding of the appli
ation the biologi
al issuesreported in the last se
tion. NMR and regression te
hniques were appliedto di�erent patient 
lasses to dis
riminate a) hepati
 tissues and b) exhaledbreath 
ondensates belonging to patients with di�erent pathologi
al states.In the se
ond 
hapter we des
ribe a new integration method developed fortwo-dimensional NMR spe
tra quanti�
ation. Indeed, one-dimensional NMRspe
tra are often too 
omplex for interpretation and metabolite identi�
ationas most of the signals overlap heavily. By introdu
ing an additional dimen-sion, peaks are spread and spe
tra are simpli�ed. Quantitative informationfrom multidimensional NMR experiments 
an be obtained by peak volumeintegration. The standard pro
edure (sele
tion of a region around the 
hosenpeak and addition of all values) is often biased by poor peak de�nition be
auseof peak overlap. In this 
hapter we reported a simple method, 
alled CAKE,for volume integration of moderately to strongly overlapping peaks. Start-ing from the peak line shapes in two-dimensional NMR, we des
ribe how theCAKE routine was 
onstru
ted using the Monte Carlo Hit-or-Miss te
hniquesand some simple mathemati
al relationships.The third 
hapter is a general introdu
tion to fast NMR two-dimensionalspe
tros
opy. In parti
ular, we des
ribe the details of the so-
alled SO-FAST-HMQC pulse sequen
e [2, 3℄ we would like to apply to investigate in 
ellmetabolism. The SOFAST-HMQC sequen
e was 
reated and designed byShanda and Bruts
her and 
o-workers for proteins as it is based upon veryshort experimental re
y
le delays, whi
h, of 
ourse, must rely on short T1relaxations time. At a �rst sight, this is an evident drawba
k sin
e metabolitesare often 
hara
terized by T1 relaxations time longer than those of proteins.However, as detailed in Chapter 6, we have applied the SO-FAST experimentto the diatom T. rotula 
ells obtaining, to the best of our knowledge, the �rstappli
ation of fast NMR spe
tros
opy to 1H-15N metaboli
 pro�ling dire
tlyon living 
ells.The fourth 
hapter reports the metaboli
 
hara
terization of: a) the pro-gressive liver alterations during tumorigenesis and b) the exhaled breath 
on-densate of patients with airway diseases. We des
ribe the multivariate data



ixanalysis and pattern re
ognition methods starting from NMR spe
tra of livertissues extra
ts and exhaled breath 
ondensates. a) Samples were 
olle
tedand grouped in four 
lasses: hepato
ellular 
ar
inoma (HCC) developed onhepatitis C 
irrhosis (CIR), the 
irrhoti
 adja
ent HCC tissue, liver metasta-sis from 
olore
tal 
ar
inoma (MET-CRC), and the related adja
ent "normal"tissue 
onsidered as 
ontrol. The results indi
ate that the la
tate/glu
ose ratiois able to 
hara
terize and distinguish the analyzed subsets of hepati
 samples.In parti
ular, we identi�ed a statisti
al model that 
ould be used to distinguishhepati
 metastasis and human hepato
ar
inoma from a "normal" (healthy)hepati
 tissue. b) Exhaled breath 
ondensates (EBC) and paired salivas were
olle
ted from healthy subje
ts, larynge
tomized and 
hroni
 obstru
tive pul-monary disease (COPD) patients. The results showed that all NMR salivaspe
tra were signi�
antly di�erent from 
orresponding EBC samples, whi
hassessed no saliva 
ontamination in EBC samples. Indeed, EBC taken from
ondensers washed with re
ommended pro
edures invariably showed spe
traperturbed by disinfe
tant. By 
arefully 
hoosing non-
ontaminated spe
traregions, ea
h EBC sample 
lustered with 
orresponding samples of the samegroup, while presenting intergroup qualitative and quantitative signal di�er-en
es.The �fth 
hapter is dedi
ated to the simulations and the experimental testsof the CAKE integration method. In parti
ular, we tested CAKE integratione�
a
y on simulated peaks in di�erent overlapping 
onditions and signal-to-nose ratios. Furthermore, sin
e experimental two-dimensional peak shapesare 
lose to ellipti
, we tested CAKE on a simulated ellipse of known volumeat di�erent e

entri
ity degrees. Finally, we used CAKE on experimentalNMR data by making use of a sample 
ontaining two tripeptides at known
on
entrations. Peak volume estimations obtained with CAKE 
omparisonwith standard methods indi
ated that CAKE obtains un umbiased volumeestimation.In the sixth 
hapter, the appli
ation of the SO-FAST-HMQC experimentto 15N-labeled Thalassiosira rotula diatoms is des
ribed. We demonstrate thee�e
tive appli
ability of SO-FAST experiments to 
ells, 
olle
ting spe
tra in10-15 s of a
quisition time. Our results, de�nitively show the appli
ability ofSO-FAST experiments for fast metaboli
 data a
quisition thus providing aninstantaneous of the metaboli
 pathways going on in a well-de�ned physiolog-i
al state, therefore avoiding the measurement of an "average" metabolism,obtainable with a
quisition time of hours.





Chapter 1NMR analysis and patternre
ognition methods
Contents1.1 Introdu
tion . . . . . . . . . . . . . . . . . . . . . . . . 11.2 Pattern re
ognition methods for biomarker investi-gations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21.3 Multivariate data analysis te
hniques . . . . . . . . . 31.3.1 Unsupervised pattern re
ognition . . . . . . . . . . . . 41.3.2 Supervised pattern re
ognition . . . . . . . . . . . . . 71.3.3 Multivariate regression . . . . . . . . . . . . . . . . . . 71.4 Plots and data visualization . . . . . . . . . . . . . . . 101.5 Appli
ations . . . . . . . . . . . . . . . . . . . . . . . . . 131.5.1 a) Human hepato
ellular 
ar
inoma . . . . . . . . . . 131.5.2 b) Exhaled breath 
ondensate . . . . . . . . . . . . . . 15
1.1 Introdu
tionMetabonomi
s and metabolomi
s based on Nu
lear Magneti
 Resonan
e(NMR) spe
tros
opy are nowadays widely used for toxi
ologi
al assessment,biomarker dis
overy, and studies on toxi
 me
hanisms. The metabonomi
approa
h, (de�ned as the quantitative measurement of the multiparametri
metaboli
 response of living systems to pathophysiologi
al stimuli or geneti
modi�
ation) was originally developed to assist interpretation in NMR-basedtoxi
ologi
al studies. However, in re
ent years there has been a 
onvergen
ewith metabolomi
s and other metaboli
 pro�ling approa
hes developed inplant biology, with mu
h wider 
overage of the biomedi
al and environmental�elds. Spe
i�
ally, metabonomi
s involves the 
ombination of spe
tros
opi
te
hniques with statisti
al and mathemati
al tools to elu
idate dominant pat-terns and trends dire
tly 
orrelated with time-related metaboli
 �u
tuations



2 Chapter 1. NMR analysis and pattern re
ognition methodswithin spe
tral data sets, usually derived from bio�uids or tissue samples.Temporal multivariate metaboli
 signatures 
an be used to dis
over biomark-ers of toxi
 e�e
t, as general toxi
ity s
reening aids, or to provide novel me
h-anisti
 information. This approa
h is 
omplementary to proteomi
s and ge-nomi
s and is appli
able to a wide range of problems, in
luding disease diag-nosis, evaluation of xenobioti
 toxi
ity, fun
tional genomi
s, and nutritionalstudies. The use of biologi
al �uids as a sour
e of whole organism metaboli
information enhan
es the use of this approa
h in minimally invasive longitu-dinal studies.In this 
hapter, the main features of the statisti
al tools for su
h inves-tigation are exposed. As des
ribed in Chapter 4, we applied the "patternre
ognition analysis" to metabonomi
 
hara
terization of: a) liver alterationsduring hepati
 tumorigenesis and b) exhaled breath 
ondensates (EBC) frompatiens with airway diseases. Tissue samples asso
iated with four di�erentliver pathologi
al states 
olle
ted from surgi
al ex
isions and EBC obtainedby 
ooling exhaled air from spontaneous breathing, were analyzed by 1H NMRspe
tros
opy 
oupled with multivariate data analysis (MVA). Metaboli
 pro-�les were analyzed and 
lustering analysis readily separated and 
lassi�ed thetissues and the exhaled breath 
ondensates a

ording to the relative patho-logi
al 
onditions.1.2 Pattern re
ognition methods for biomarkerinvestigationsThe use of 
hemometri
 methods to analyze 
omplex spe
tral data setswas perhaps the most important development in the pra
ti
al appli
ation ofmetabonomi
s, and has de�ned the development and progression of the �eldever sin
e. Early pattern re
ognition studies on NMR data employed a re-du
tionist approa
h presele
ting the metabolite signals of interest. However,NMR spe
tra yield a unique metaboli
 �ngerprint for ea
h bio�uid, samplewhi
h 
onsists of thousands overlapping resonan
es, is obviously of limiteduse. If the status of a given organism 
hanges, su
h as in a diseased state orfollowing exposure to a drug, the unique metaboli
 �ngerprint or signaturere�e
ts this 
hange [1, 4℄.Multivariate statisti
al methods provide a robust tool for analyzing andmaximizing information re
overy from 
omplex NMR data sets. Detailed in-spe
tion of NMR spe
tra and integration of individual peaks 
an give valuableinformation on dominant bio
hemi
al 
hanges; however, subtle spe
tral vari-ation may be overlooked, and it is di�
ult to envisage general e�e
ts as afun
tion of both dose and time in a large 
ohort of samples with biologi
al



1.3. Multivariate data analysis te
hniques 3variability. Pattern re
ognition methods 
an be used to map the NMR spe
trainto a representative lower dimensional spa
e su
h that any 
lustering of thesamples based on similarities of bio
hemi
al pro�les 
an be determined andthe bio
hemi
al basis of the pattern elu
idated.As des
ribed in the next se
tion, the �rst step in metabonomi
s is spe
tra
lassi�
ation a

ording to peak patterns. The se
ond one relies upon iden-ti�
ation of spe
tral features responsible for the 
lassi�
ation (a

ording tophysiologi
al or pathologi
al status), and this 
an be a
hieved via both super-vised and unsupervised pattern re
ognition te
hniques.1.3 Multivariate data analysis te
hniquesMVA e�
iently extra
ts useful information from data generated via 
hemi
alor physi
al measurements. Indeed, most s
ienti�
 data generating systems aremultivariate, i.e. any parti
ular phenomenon we would like to study in detailusually depends on several fa
tors (variables). For instan
e, the health statusof a human individual depends on many elements, in
luding genes, so
ial sta-tus, eating habits, stress, environment et
. Consequently, it is often ne
essaryto simultaneously sample several variables to fully des
ribe the system.A panoply of multivariate data analysis te
hniques exists, and the 
hoi
edepends on the answer one wants to obtain. A large part of the method is
on
erned with simply "looking" at the data, 
hara
terizing then by usefulsummaries and displaying the intrinsi
 data stru
tures visually by suitableplots. Therefore, it is important to formulate the analyti
al problem in su
ha way that the goal is 
lear and the data are in a form suited for rea
hingthis goal. Usually, spe
tral data are prepro
essed, whi
h typi
ally involvesFourier transformation, 
alibration of the 
hemi
al shift s
ale with respe
t toan internal referen
e standard, and phase and baseline 
orre
ted. For multi-variate modeling, NMR spe
tra are often divided into verti
al regions (alongthe 
hemi
al shift axis), and their areas summed to provide an integral so thatthe intensities of peaks in su
h de�ned spe
tral regions 
an be extra
ted; su
ha pro
ess is known as bu
keting. As a 
onsequen
e, a data matrix is obtained,whi
h 
onsists of rows that represent observations/samples, and 
olumns thatrepresent variables as the spe
tral. From this matrix format, data are suit-able for MVA that 
an be used for a number of distin
t, di�erent purpose:data des
ription (explorative data stru
ture modeling), dis
rimination and
lassi�
ation, regression and predi
tion. So, more simply, we 
an des
ribeMVA as 
omposed by two main methods: multivariate 
lassi�
ation (patternre
ognition) and multivariate regression te
hniques [5, 6, 7, 8℄.The pattern-re
ognition te
hniques deal with the separation of data



4 Chapter 1. NMR analysis and pattern re
ognition methodsgroups. Su
h 
lustering ability, even for large set of measurements, givesthe possibility to derive a quantitative data model in order to dis
riminateamong di�erent groups of data. Multivariate 
lassi�
ation 
an be dividedinto two 
ategories: unsupervised and supervised pro
edures. In an unsuper-vised pattern re
ognition, no a priori knowledge of the training set samples isrequired, i.e. the 
lass membership of the training samples. Hen
e, sampleswill be grouped into a number of 
lasses with 
ertain 
ommunalities withoutinitial quali�
ation of the samples and their 
lass assignment. Therefore, apossible stru
ture within 
ertain data sets may be re
ognized even withoutthe initial knowledge of the number of 
lasses and the expe
ted di�eren
es. In
ontrast, a supervised pattern re
ognition requires a priori knowledge aboutthe 
lasses 
ontained within the training samples, i.e. whi
h sample belongsto whi
h 
lass, su
h as, samples from disease and from healthy patients. Con-sequently, unsupervised pattern-re
ognition te
hniques are exploratory meth-ods for data analysis, seeking inherent similarities in the data, and groupingthem in a "natural" way. This approa
h allows unexpe
ted grouping withina training set may be dis
overed often not initially evident, as for a groupof disease-related samples that might additionally separate into two or moredistin
tly di�erent 
lasses.Supervised pattern-re
ognition te
hniques are di�erent, as they group datainto prede�ned 
lasses during the training pro
edures, thereby allowing a morepre
ise 
lassi�
ation within the 
lass boundaries. Clearly, ea
h approa
h hasstrengths and weaknesses rendering a general re
ommendation impossible.E�orts have been made to 
ombine di�erent pattern-re
ognition methods forimproved 
lassi�
ation results [9, 10℄. In general, su�
ient a

ura
y and ro-bustness of 
lassi�
ation and predi
tive regression models has to be evaluatedwith an appropriate set of validation samples prior to the analysis of un-knowns.1.3.1 Unsupervised pattern re
ognitionPrin
ipal Component Analysis (PCA)PCA 
onstitutes the most basi
 "work horse" of all of multivariate data anal-ysis. The starting point is an X-matrix with n obje
ts and p variables (an nby p matrix) (Figure 1.1), often 
alled the "data matrix" or the "data-set".The obje
ts 
an be the observations, samples or experiments, while the vari-ables typi
ally are "measurements" of ea
h obje
t. In our 
ase, the n obje
tsare NMR spe
tra of samples, while the p variables are integrations of spe
trase
tions, 
alled "bu
kets", of a well de�ned size.



1.3. Multivariate data analysis te
hniques 5

Figure 1.1: X matrix or data matrix 
onsisting of n observations (n NMR spe
tra) andp variables (p spe
tral regions "bu
kts").The purpose of PCA, so as of all MVA te
hniques, is to de
ompose the datain order to dete
t and model the "hidden phenomena" for whi
h the 
on
eptof varian
e is very important. In fa
t, the fundamental assumption for thismethod is that the underlying dire
tions with maximum varian
e are moreor less dire
tly related to the hidden phenomena. The data matrix X, withits p bu
kets 
olumns and n spe
tra rows, 
an be represented in a Cartesian(orthogonal) 
oordinate system of dimension p 
alled the "variable spa
e" or,in this 
ase, the "spe
tros
opi
 spa
e", meaning the spa
e spanned by the pvariables 
orresponding to the bu
kets. The dimension of this spa
e is p, butthe dimension related to the rank of the matrix representation (mathemati-
ally: the number of independent basis ve
tors; statisti
ally: the number ofindependent sour
es of variation within the data matrix) may be often lessthan p. PCA seeks this operative or e�e
tive dimensionality by a linear 
oor-dinate transformation from the variable spa
e into a spa
e whi
h is spannedby a lower number of new 
oordinates, 
alled "prin
ipal 
omponents" (PCS),whi
h, in turn are related to dire
tions of largest varian
es in the ensemble(Figure 1.2). The �rst prin
ipal 
omponent (PC1) explains most of the vari-an
e, the se
ond (PC2) the se
ond most, et
. Therefore, PCA is a powerfuldata-redu
tion te
hnique that 
an 
ondense original data (with a large num-ber of initial variables) to a dataset with only few variables re�e
ting the mostrelevant analyti
al information.
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Figure 1.2: Representation of all observations in the data matrix in a 3D spa
e where the
omputed prin
ipal 
omponents are shown as ve
tor arrows.By looking into two-dimensional subspa
es like PC1 vs. PC2, one 
ould seeif all spe
tra have similar positions (s
ores) with respe
t to the 
orrespondingpart of the varian
e (Figure 1.3). The 
orresponding plots are 
alled "s
oresplots".

Figure 1.3: Representation of all observations from the variable spa
e to the prin
ipal
omponents spa
e. Su
h PC system 
onsists of a number of PCS , ea
h lying along amaximum varian
e dire
tions in de
reasing order. S
ores plot are obtained as proje
tion ofobservations onto the PCS axes.



1.3. Multivariate data analysis te
hniques 7A further step is to look for further stru
tures in the ensemble by redu
ing thevarian
e spa
e su
h that most of the total varian
e (like 99.5%) is explainedand the rest is regarded as noise. The redu
ed spa
e is 
alled "model spa
e".By 
al
ulating quantities like distan
e to model of ea
h spe
trum it is possibleto 
he
k if all spe
tra are still similar or if some spe
tra appear outside thismodel spa
e. This is also the basis for 
lassi�
ation. The relation betweenthe variables in the new prin
ipal 
omponent spa
e and original spe
tros
opi
spa
e are des
ribed by the so-
alled loadings (ref. Se
tion 1.4). By studyingone or two-dimensional loadings plots it is possible to understand how bu
k-ets 
ontributed to the 
onstru
tion of the new prin
ipal 
omponent spa
e. Ahigh loading of a bu
ket (variable) indi
ates that the 
orresponding area (orpeak) in the spe
trum was important. The loadings plots provide the linkbetween statisti
al and spe
tros
opi
 interpretation of the phenomena in theensemble. This is essential be
ause PCA itself reveals statisti
al phenomenabut does not explain the reason for these phenomena, for example in 
hemi
alterms. This interpretation remains to be done after the PCS 
al
ulation.1.3.2 Supervised pattern re
ognitionProje
tion to Latent Stru
tures Dis
riminant Analysis (PLS-DA)PLS-DA is a dis
riminant method derived from PLS regression models [11℄(see next Se
tion). Here, the threshold for separating two 
lasses is 
al
ulatedusing the observed distribution (P1, P2...Pm; m = number of 
lasses; Pm =probability that the spe
tra belongs to 
lass m) of the predi
ted values, andthe Bayesian theorem, whi
h 
al
ulates the probability of one obje
t belongingto a 
ertain 
lass by use of the ratio Pi∑
Pm

, for dis
riminating di�erent 
lasses.Barker et al. des
ribe how PLS-DA statisti
ally 
onne
ts with dis
riminantanalysis, and may thereby serve as a dis
riminant tool [11℄. For 
lassi�
ation,PLS is guided by among-group varian
e, while PCA, whi
h is guided only bythe total varian
e, 
annot dis
riminate among-group from within group vari-an
e. Compared to PCA, it is 
lear that PLS-DA provides favorable dis
rim-ination, espe
ially if the within-group di�eren
e dominates over among-groupdi�eren
e. In re
ent studies, this model was su

essfully used to dis
riminateartheros
leroti
 and normal aorta tissues in rabbit models [29, 48℄.1.3.3 Multivariate regressionPrin
iple 
omponent regression (PCR)During PCR, PCA is used to 
ompress and de
ompose the original spe
tragenerated from training samples into fewer variables (PCS) 
apturing the rel-
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ognition methodsevant varian
es within the data set, and then using the s
ores derived fromthe training data to 
reate a quantitative model. During the predi
tion of un-knowns, the s
ore ve
tors of the unknown are derived based on their uniquespe
tra, and regressed against the PC ve
tors obtained from the 
alibrationsamples for retrieving a quantitative predi
tion of the unknown 
on
entration.PCR was also su

essfully implemented as a 
lassi�
ation tool by Haaland etal., and was used to 
lassify 
ell and tissue samples [12℄.Proje
tion to Latent Stru
tures (PLS) regressionPLS also starts out with an ensemble of spe
tra, whi
h is translated into the Xmatrix, 
ommonly 
alled the "bu
ket table" where the number of p variablesis the number of bu
kets. However, a se
ond information table is needed.It 
ould 
omprise other spe
tros
opi
 data or any other sort of data, like
on
entration measurements, arbitrary id numbers, disease 
hara
terizationset
. This se
ondary table is 
ommonly 
alled Y matrix or Y table (Figure1.4).

Figure 1.4: X matrix 
ontaining data and observations, and Y matrix 
ontaining, for ea
hobservation, data related to sample information like 
on
entrations or disease 
lassi�
ations.The number of Y variables (also 
alled response variables or q variables) isidenti
al to the number of 
olumns in the Y table. Unlike PCA, whi
h dete
tsthe dire
tion of maximum varian
e in the X matrix, PLS tries to �nd the best
orrelation between the X and Y matri
es using relevant linear 
ombinationsof variables in the X and Y tables. It dete
ts that part of the varian
e in the
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hniques 9X table whi
h �ts best the data in the Y table in an iterative way. Whilein PCA the user has to de
ide the number of prin
ipal 
omponents he wantsto work with (typi
ally su
h that most of the varian
e in the ensemble isexplained), in PLS he has to de�ne the number of PLS 
omponents (fa
tors)that should be used to model the Y table. This number is often not obvious.In prin
iple, it should be 
hosen su
h that the non-explained varian
es in Xand Y spa
e approa
h a minimum, and su
h that the PLS model has goodpredi
tive 
apabilities. Unlike the number of prin
ipal 
omponents in PCA,the number of PLS fa
tors must be 
arefully 
hosen. The results of a PLS
al
ulation are presented in similar ways 
ompared to PCA (again, we gets
ores and loadings plots of the X table data). However, there are a number offurther plots whi
h need interpretation, e.g. showing the 
orrelation betweenX and Y tables or the predi
tion power of the model. Similarly to PCA, themodel building pro
ess in PLS is to �nd the 
orre
t statisti
al variables (e.g.number of PLS fa
tors), and the right spe
tra that should stay in the model.On
e the model is established (
alibrated) it is used to analyze new spe
trawith missing Y table information and use the 
onstru
ted model to predi
t it.This is extremely valuable if the Y table would have been expensive to obtainotherwise, or if it 
an not be experimentally obtained at all.There is a se
ond interesting usage of PLS motivated by the followingsituation. Ensembles often 
ontain di�erent groups of spe
tra, say nor-mal/abnormal or originate from di�erent samples, say kidney/liver et
. Onethen would like to see these groups in a PCA analysis, e.g. as di�erent 
lus-ters in a s
ores plot. However, PCA is designed to �nd the maximum varian
ein the ensemble but not ne
essarily that part of the varian
e that results inthe best dis
rimination. To enfor
e this, it is of 
ourse possible to performa spe
tros
opi
 analysis �rst and �nd signals responsible for dis
rimination,and then use these signals in a subsequent PCA. Alternatively, it is possibleto supply a Y table whi
h 
ontains dis
riminating information (in the mostsimple 
ase just 0 and 1). A PLS then dete
ts that part of the varian
e inthe ensemble, whi
h �ts best to the Y table. A s
ores plot of the ensembledata may possibly show a good dis
rimination. How safe is su
h a pro
eed-ing, it depends on the appli
ation. With two indistinguishable groups in theensemble, a PLS using a Y table with 0 and 1 will not provide a good dis-
rimination and the 
orrelation plots between X and Y data would indi
atepoor 
orrelation. If the ensemble in fa
t 
ontains two groups of spe
tra, PLSwith a 
orresponding Y table 
an indeed improve dis
rimination. This shouldhowever be 
on�rmed by spe
tros
opi
 or other data, otherwise a not soliddis
rimination 
ould be overemphasized.
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ognition methodsOrthogonal Proje
tion to Latent Stru
tures Dis
riminant Analysis(O2PLS-DA)O2PLS is a multivariate regression method that extra
ts linear relationshipsfrom two data blo
ks, X and Y, by removing the stru
tured noise [13, 14℄. Inparti
ular, O2PLS de
omposes the systemati
 variation in the X-blo
k intotwo model parts: the so 
alled predi
tive part, whi
h models the 
orrela-tions between X and Y, and another 
alled the orthogonal part, whi
h is notrelated to Y. Like other PLS regression te
hniques, O2PLS 
an be used toperform dis
riminant analysis by introdu
ing suitable dummy variables. Themain advantage in using O2PLS-DA te
hnique is the redu
tion of the model
omplexity. For m 
lasses, the dimension of the predi
tive spa
e is m-1, andthe 
lassi�
ation model 
an be investigated by using only m-1 latent 
ompo-nents. Useful visualization tool, as the 
orrelation plot or S-plots, 
an be usedto highlight the role of the X-variables in the 
lassi�
ation model.1.4 Plots and data visualizationAs stated in the previous Se
tions, multivariate methods allow investigation ofthe relationships between all variables in a single 
ontext. These relationships
an be displayed in plots like time series, histograms and pair-wise s
atterplots.Model overview plotsModel overview plot 
ould be presented as an histogram showing how the
umulative explained varian
e (R2 value) gets larger as the number of the PCSin
reases on horizontal axis ( Figure 1.5). The number of PCS for the modelshould be su
h that R2 (sum of squares of all the X matrix variables explainedby the extra
ted 
omponents) and Q2 (the 
umulative 
ross validated R2)values are somewhere in the �at asymptoti
 part of 
urve histogram.In�uen
e plotsIn�uen
e plot shows spe
tra in a diagram where the verti
al axis is a measureof how far a spe
trum is from the model spa
e (o� model distan
e). If aspe
trum is in the upper part of this display it is most likely outside themodel spa
e. The horizontal axis is a measure how far a spe
trum is from themodel 
enter, after being proje
ted into the model spa
e (in model spa
e). Ifa spe
trum appears on the right side, it has a strong in�uen
e on the model.



1.4. Plots and data visualization 11The two lines displayed inside the plot are so-
alled 95% 
on�den
e limits.Spe
tra inside these limit belong to the model with a probability of 95%.S
ores plotsTwo dimensional s
ores plots of the form PCi vs. PCj (e.g. PC1 vs. PC2)show how the spe
tra are distributed in the 
orresponding sub-spa
e (Figure1.6). This plot is used to see whether spe
tra are gathered in groups or areoutlying from others. Dominant e�e
ts in the PCA may typi
ally be seenin plots that involve the �rst few PCS. Sometimes e�e
ts in higher PCSare equally important; so with PC1, PC2 and PC3 a 3D s
ores plot 
an bevisualized. It 
ould, for example, indi
ate strong unexpe
ted signals in aspe
trum but present in only very few spe
tra. By 
he
king the in�uen
e plotor all s
ores plots it 
an be seen whether higher PC s
ores plots should be
onsidered.Loadings plotsLoading plot shows how PCS are related to the original bu
kets. The 1Dloadings plot of a prin
ipal 
omponent looks like a spe
trum. Peaks indi
atethose bu
kets (and therefore spe
tral regions) whi
h 
ontributed signi�
antlyto that prin
ipal 
omponent. 1D loadings plots, e.g. of PC1 show how theoriginal variables (bu
kets) 
ontributed to the 
onstru
tion of a PC. They looklike a 1D spe
trum and the largest peaks indi
ate the strongest 
ontributions.2D loadings plots (Figure 1.7), e.g. of PC1 and PC2 relate loadings of thedi�erent PCS to ea
h other. Ea
h point in su
h a plot 
orresponds to a pairof bu
kets. A 
ombined interpretation of s
ores and 
orresponding loadingsplots 
an for example show the bu
kets responsible for an outlying behavior.Combined interpretation means to look for spe
tra whi
h are outlying along a
ertain dire
tion, and for loadings whi
h are lined up along the same dire
tion.For example, if a spe
trum is outlying in a parti
ular position in the plot, theloadings points into the same dire
tion indi
ate the resonan
es responsablefor spe
trum outlying.
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Figure 1.5: Model overview plot: R2 and Q2 values are parameters des
ribing how thenew PCS 
omponents �t the PCA model.

Figure 1.6: PCA s
atter plot PC1 vs. PC2 of two representative 
lass samples.
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Figure 1.7: S
ores s
atter plot reporting the bu
kets responsible for the samples distri-bution of PCA in Figure 1.6.1.5 Appli
ations1.5.1 a) Human hepato
ellular 
ar
inomaThe human hepato
ellular 
ar
inoma (HCC) is one of the most 
ommon ma-lignan
ies whose in
iden
e is steadily in
reasing worldwide [15, 16℄ (Figure1.8). The liver is also the most frequent site of metastati
 
olonization, andhepati
 metastasis are far more 
ommon than primary liver 
an
ers in West-ern 
ountries [17℄. Be
ause of its aggressiveness, early dete
tion of HCC is
ru
ial to s
hedule more e�e
tive therapeuti
 options and improve patients'survival. The most 
ommonly en
ountered di�erential diagnosis in liver isHCC versus intrahepati
 
holangio
ar
inoma or metastati
 adeno
ar
inoma.Moreover, small hepati
 lesions (≤ 1.5 
m in diameter) are frequently di�-
ult to 
hara
terize, and diagnosti
 ina

ura
y may lead to in
orre
t patienttreatment. Magneti
 Resonan
e Imaging (MRI) has been shown to e�e
tivelydi�erentiate benign and malignant small hepati
 lesions with moderate togood interobserver agreement [18, 19℄. Yet, the 
lini
al importan
e of theselesions often remains unknown until biopsy or follow-up imaging is performedmonths later [20℄. Serologi
al markers (su
h as alpha fetoprotein) 
an be use-ful in narrowing the di�erential diagnosis when they are markedly elevatedbut a substantial number of patients unfortunately do not have high levels
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ognition methodsof these markers at the time of presentation. Therefore, a tissue diagnosis isoften required, be
ause the presen
e of hepati
 metastasis may substantiallyalter prognosis and therapy [21℄.

Figure 1.8: Annual age-adjusted in
iden
e rates per 100,000 and trends, all hepato
ellular
ar
inoma 
ases and by sex, 1975 to 2005 (Surveillan
e, Epidemiology, and End Results 9[SEER9℄).Histopathologi
al evaluation of biopsy samples plays a key role in a
hiev-ing an a

urate diagnosis, and �ne needle aspiration biopsy of liver has gainedin
reasing a

eptan
e as the diagnosti
 pro
edure of 
hoi
e, and is reportedto be safe, minimally invasive, a

urate and 
ost e�e
tive [20℄. A possibledisadvantage of the biopsy-based histopathology is represented by the dif-�
ulties in its use as a s
reening approa
h for early tumor dete
tion. Onthe other hand, MRI and all the 
ommonly-used imaging te
hniques, whi
hare widely a

epted as s
reening tests, provide limited bio
hemi
al informa-tion (i.e., metabolite 
omposition), whi
h may be useful to dis
riminate thedi�erent hepati
 lesions at the mole
ular level. Evaluation of intra
ellularmetaboli
 pro�les of hepatitis C virus (HCV) infe
ted liver, HCC and metas-tases is la
king and NMR spe
tros
opy pro�les 
ould 
ontribute to 
larifythese aspe
ts. NMR is an established analyti
al tool extensively used forprobing the metaboli
 status of biologi
al samples [22, 23, 1℄, and providesa "metaboli
 �ngerprint" useful to investigate physiopathologi
al states. Aspointed out in the previous se
tions, the presen
e of dis
riminating elementsin an NMR spe
trum or in spe
tra belonging to the same 
lass 
an be testedwith multivariate data analysis, whi
h allows a thorough 
omparison of setsof spe
tra [24℄. As shown in this 
hapter, some of the most often used te
h-niques to identify models for possible groups as well as to predi
t a probable
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lass membership for new observations are based on PCA or multivariate re-gression methods as O2PLS to perform dis
riminant analysis [25℄. As it willbe des
ribed in the Chapter 4, we used multivariate data analysis to gaininsight into hidden phenomena and trends in ensembles of di�erent hepati
tissue spe
tra whi
h would not be obvious in the usual spe
tros
opi
 view.Su
h an analysis will also point out the most relevant NMR signals for the
lassi�
ation of tissue spe
tra, 
learly indi
ating 
hanges in 
on
entration ofa spe
i�
 metabolite as well as its relative variation.In-vitro studies 
ondu
ted on tissue extra
ts have shown that high-resolution NMR improves both spe
tral resolution and sensitivity, yieldingmore detailed metabolite information [13, 14℄. On the 
ontrary, in-vivo NMR
an dete
t non-invasively bio
hemi
al 
hanges in human 
an
ers [26℄, liver dis-eases su
h as 
hroni
 hepatitis [27℄, 
irrhosis and 
ar
inoma [28, 29℄. However,spe
tral resolution and sensitivity makes in-vivo NMR of limited value forthe identi�
ation and quanti�
ation of metabolites [30℄. A useful diagnosti
strategy 
ould be represented by a 
ombination of in-vitro and in-vivo NMR
ompared to histologi
al analysis in order to follow-up variations of distin
-tive lesions 
lassi�ed by high-resolution NMR spe
tra. We here followed thebio
hemi
al progression of human hepati
 lesions through NMR-based analy-sis of primary (HCC) and se
ondary (metastases from 
olore
tal 
ar
inoma)liver tumors, 
irrhoti
 tissues, and non-
irrhoti
 normal liver tissues adja
entmetastases, a
hieving a metaboli
 di�erentiation of the various pathologi
al
onditions based upon the variation of the intra
ellular la
tate/glu
ose ratio,thus suggesting that su
h a signal pattern may a
t as a potential marker forassessing pathologi
al hepati
 lesions.1.5.2 b) Exhaled breath 
ondensateExhaled breath 
ondensate (EBC) is a simple, noninvasive and useful toolto study the bio
hemi
al and in�ammatory mole
ules in the airway lining�uid [31℄. Obtained by 
ooling exhaled air from spontaneous breathing, EBCpredominantly 
ontains water vapour and 
olle
ts volatile and nonvolatilesubstan
es from the lower airways [32℄. As su
h, it 
an also be 
onsidered amatrix for analysis of environmental toxi
ants and for evaluation of exposuremonitoring [33℄. Very few data are available on EBC metabolite 
omposition;often single in�ammatory mole
ules are analysed by ELISA and spe
tros
opi
methods.Sin
e NMR, 
oupled with pattern re
ognition methods, has been proved tobe a powerful tool for bio�uids to probe the metaboli
 status [34, 1, 23, 35℄ andto investigate di�erent diseases [36, 37, 38, 39℄, we applied it to 
hara
terizeEBC metaboli
 pro�le.
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ognition methodsRe
ently, EBC of asthmati
 
hildren has been investigated by NMR andstatisti
al analysis [40℄. To date, there are several re
ommendations on themethodologi
al approa
h to EBC 
olle
tion, but its standardization is not
ompletely de�ned, as most in�ammatory mediators, obtained through tra-
heostomies, are similar to those 
olle
ted in the mouth [41, 42℄.The aims of the present study were:1. To validate the NMR metabonomi
 approa
h to analysis of EBC inadults, assessing the role of pre-analyti
al variables (saliva and disin-fe
tant 
ontamination) potentially in�uen
ing EBC and evaluating thestability and reprodu
ibility of samples;2. To evaluate the possibility of dis
riminating healthy subje
ts from pa-tients with airway disease.As detailed in Chapter 4, in total, 36 paired EBC and saliva samples, ob-tained from healthy subje
ts, larynge
tomized patients and 
hroni
 obstru
-tive pulmonary disease (COPD) patients, were analyzed by means of 1H-NMRspe
tros
opy followed by prin
ipal 
omponent analysis. The e�e
t on EBC ofdisinfe
tant, used for reusable parts of the 
ondenser, was assessed after dif-ferent washing pro
edures. To evaluate intra-day repeatability, eight subje
tswere asked to 
olle
t EBC and saliva twi
e within the same day. All NMRsaliva spe
tra were signi�
antly di�erent from 
orresponding EBC samples.EBC taken from 
ondensers washed with re
ommended pro
edures invariablyshowed spe
tra perturbed by disinfe
tant. Ea
h EBC sample 
lustered with
orresponding samples of the same group, while presenting intergroup qual-itative and quantitative signal di�eren
es (94% of the total varian
e withinthe data). In 
on
lusion, the nu
lear magneti
 resonan
e metabonomi
 ap-proa
h 
ould identify the metaboli
 �ngerprint of exhaled breath 
ondensatein di�erent 
lini
al sets of data. Moreover, metabonomi
s of exhaled breath
ondensate in adults 
an dis
riminate potential perturbations indu
ed by pre-analyti
al variables.



Chapter 2CAKE: Monte CArlo peaKvolume Estimation
Contents2.1 Introdu
tion . . . . . . . . . . . . . . . . . . . . . . . . 172.2 The fra
tional peak method . . . . . . . . . . . . . . . 192.2.1 Peak line shapes in two-dimensional NMR . . . . . . . 192.2.2 The R fa
tor estimation . . . . . . . . . . . . . . . . . 232.2.3 The Monte Carlo integration . . . . . . . . . . . . . . 23This 
hapter is based on the paper: R. Romano, D. Paris, F. A
ernese,F. Barone, A. Motta. Fra
tional volume integration in two-dimensional NMRspe
tra: CAKE, a Monte Carlo approa
h. J Magn Res 192 (2008) 294-301.2.1 Introdu
tionNMR spe
tra 
an provide quantitative analysis of a sample, and a standard1D 1H-NMR spe
trum is often used to obtain a reliable evaluation of peaks.However, as the 
omplexity of the sample in
reases, resonan
e overlap be
omesa serious problem that easily degrades the a

ura
y of the analysis, and 2DNMR data are required to gain su�
ient dis
rimination of resonan
es. Quan-ti�
ation of NMR spe
tra is also fundamental in the new emergering �eldof metabolomi
s/metabonomi
s [43, 34℄, and in the stru
ture and dynami
sof proteins in solution [44℄. This widespread requirement of deriving quanti-tative information from NMR data has prompted the need to �nd methodsfor a

urate and pre
ise integration pro
edures both for 1D and 2D spe
tra.This paper des
ribes a new simple method for peak volume integration in2D spe
tra, whi
h appears to be parti
ularly suited for overlapping peaks.Quantitative information in NMR spe
tra is brought by peak areas [45℄. Twomethods of peak integration are often used: dire
t summation of spe
traldata points and peak parameter sear
h by 
urve �tting. In the absen
e of amodel for the peak shape, dire
t summation appears to be the only pra
ti
al
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hnique. It is not, however, adaptable to (partially) overlapping peaks, andintrodu
es two kinds of systemati
 errors. One is due to the approximation
aused by the assimilation of the integral of a 
ontinuous fun
tion with a �-nite sum [46℄; the se
ond one is 
aused by the parts of the peaks that are leftoutside of the integration range [47℄.Ideally, an e�
ient integration method should be appli
able even when inthe presen
e of peak overlap or artifa
ts. Many of the available NMR pro
ess-ing and analysis pa
kages a
hieve volume integration by dire
t summation ofall data points within a polygonal bounding the peak. This pro
edure requiresa reliable de�nition of the peak area: the 
ir
ling should be as large as pos-sible to enable for a 
omplete integration, but also small enough to minimizein
lusion of artifa
ts (baseplane rolls, t1 noise, tails of other peaks). As su
h,the idealized pro
edure appears to be restri
ted to well-resolved peaks. In au-tomated proto
ols, a possible way to de�ne the area integration makes use ofthe observation that the slope of a peak height de
reases monotoni
ally withthe distan
e to the peak 
enter, at whi
h point it approximates zero [48, 49℄.A similar approa
h de�nes the peak integration area using an iterative region-growing algorithm [50, 51, 52℄, whi
h re
ognizes all data points that are partof a given peak, and the integration is performed on a user-de�ned thresholdlevel. This pro
edure works quite satisfa
torily even for overlapping peaks, aslong as the peak maxima are visibly resolved and therefore re
ognizable bythe peak-pi
king pro
edure. In a di�erent approa
h, the peaks are �tted bya set of referen
e peaks de�ned by the user [53, 54, 55℄. In order to obtaina

urate line shapes and integrals in one dimension, it is ne
essary to apply anonlinear 
urve-�tting pro
edure [56, 45℄. Although this proto
ol is probablybest suited in 
ases where peaks strongly overlap, it hinges on the 
arefulde�nition of suitable referen
e peaks and sele
tion of initial �tting parametersby the user.A general approa
h for peak integration would be to exploit the peak sym-metry as a 
riterion to evaluate the peak volume. Symmetry 
onsiderationshave previously been used for pattern re
ognition in 2D NMR spe
tros
opy[57℄, and only rarely for the analysis of in-phase peaks as in NOESY andTOCSY experiments. The program AUTOPSY used symmetry for automatedpeak pi
king in multi-dimensional NMR spe
tra of proteins [58℄. Here we pro-pose CAKE, a novel integration method based on peak symmetry. After a2D Lorentz-Gauss time domain �ltering, the spe
tral lines are 
onverted intoGaussian lines, therefore presenting a 
ylindri
al or ellipti
al symmetry. Byassuming the verti
al axial symmetry of individual peaks (a peak with a unique
enter 
orresponds to its maximum), the volume is obtained by multiplyinga sele
ted volume fra
tion by a fa
tor R, whi
h represents a proportionalityratio between the total and the fra
tional volume, optimized by Monte Carlo



2.2. The fra
tional peak method 19te
hniques. This minimalisti
 approa
h warrants that the fra
tional volume
an be 
hosen so as to minimize the e�e
t of overlap in 
omplex NMR spe
tra.When applied to simulated and experimental 2D in-phase peaks with di�erentdegrees of overlap, CAKE (Monte CArlo peaK volume E stimation) obtainsan unbiased volume estimation. It is shown that, 
ompared with the dire
tsummation pro
edure, the fra
tional volume approa
h yields rather good es-timates of the peak volumes, even for signi�
ant overlap, as long as a single
ontour level and its 
enter arising from a single peak 
an be dete
ted.2.2 The fra
tional peak method2.2.1 Peak line shapes in two-dimensional NMRIn high-resolution NMR the frequen
y domain line shapes are 
losely approx-imated by a Lorentzian fun
tion. Negle
ting 
oheren
e transfer e
hoes, thesignal envelope of a 2D experiment 
an be assumed to have a biexponentialform [57℄
s(e)(t1, t2) = s(e)(0, 0) exp (−λ(e)t1) exp (−λ(d)t2) (2.1)with rates λ = 1/T2 in the evolution (e) and dete
tion (d) periods. Su
h time-domain envelope, de
aying exponentially in both dimensions, la
ks 
ylindri
alsymmetry about the origin t1 = t2 = 0. After a 2D Fourier transformation, the
orresponding 2D absorption peak shows a Lorentzian shape, whose se
tions,taken parallel to either axis yield pure 1D absorption Lorentzian line shapes.The asymptoti
 de
ay is proportional to (∆ω

(e)
tu )−2 and (∆ω

(d)
sr )−2 on se
tionsparallel to one of the frequen
y axes, while it is proportional to the inversefourth power in the bise
ting planes [with (∆ω

(e)
tu ) and (∆ω

(d)
sr ), frequen
yo�set in evolution (e) and dete
tion (d) periods with respe
t to resonan
es

ω
(e)
tu and ω

(d)
sr ℄. This la
k of 
ylindri
al or ellipti
al symmetry has been 
alled"star e�e
t", and 
an be removed by a 2D Lorentz-Gauss transformation [57℄,whi
h yields a 2D absorption mode peak shape with 
ylindri
al or ellipti
alsymmetry (Figure 2.1 and 2.2).By using a weighting fun
tion

h(t1, t2) = exp (+λ1t1) exp (+λ2t2) exp (−σ2
1t

2
1/2) exp (−σ2

2t
2
2/2) (2.2)with σ being an adjustable parameter, the envelope of Eq. 2.1 be
omes

se(t1, t2) = se(0, 0) exp (−σ2
1(t

2
1/2)) exp (−σ2

2(t
2
2/2)). (2.3)
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Figure 2.1: 1D pro�les of Lorenztian and Gaussian peaks.
Figure 2.2: Removal of the so-
alled "star e�e
t" of a Lorentzian peak by a 2D Lorentz-Gauss transformation.After a 2D transformation, a Gaussian line shape is obtained

S(ω1, ω2) = s(e)(0, 0)(
2π

σ1σ2
) exp (−

∆ω2
1

2σ2
1

) exp (−
∆ω2

2

2σ2
2

). (2.4)The 
ontours are 
ir
ular for σ1 = σ2 and ellipti
al for unequal widths. It isimportant to underline that 2D Lorentz-Gauss transformation is useful only ifthe dispersive 
omponents in peaks with mixed phase are suppressed, and this
an be a
hieved with pure phase spe
tra (i.e. either pure 2D absorption orpure 2D dispersion peaks) [57℄. It must also be emphasized that the ellipti
alsymmetry of Gaussian signals is obtained only in phase-sensitive displays, andif the absolute amplitude of a Gaussian signal is 
al
ulated, a peak shape isobtained whi
h features again a star e�e
t.In most pra
ti
al appli
ations, the 
omplete analyti
al expression for a dis-
rete Fourier transform NMR spe
trum is a sum of 
omplex, non-Lorentzianfun
tions ([45, 59℄). However, if the a
quisition time t2 is large, 
omparedto the relaxation time of the slowest de
aying resonan
e (t2 ≥ 1/R2,j), andthe sweep width is large 
ompared to the relaxation rate R2,j as well as thefrequen
y range of the spe
trum νj − ν, a true Lorentzian spe
trum is ob-tained [60℄. Nevertheless, this dis
rete Fourier transform spe
trum requires
orre
tion of a pseudobaseline stemming from the �rst point of the FID and of
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tional peak method 21a frequen
y-dependent phase distortion of the spe
trum (for details see Refs.[59, 45℄). A

ordingly, a phased, baseplane 
orre
ted unsaturated resonan
eline in solution is 
losely approximated by a Lorentzian fun
tion. Convolu-tion of the time domain with exponential, sine, 
osine fun
tions, does notalter the line shape after transformation [61℄, and preserves the frequen
y ofits maximum. This shape has been useful in peak �tting pro
edures appliedto experimental data [60℄. As stated above, a 2D Lorentzian line la
ks 
ylin-dri
al or ellipti
al symmetry, whi
h 
an be a
hieved by a 2D Lorentz-Gausstransformation. Gaussian �ltering transforms a Lorentzian frequen
y-domainfun
tion of width ω0 into a Gaussian frequen
y-domain fun
tion of width ρω0,where ρ is typi
ally less than unity, and it has been found that ρ = 0.66 isusually 
lose to optimum [62℄.Bearing in mind the power of Lorentz-Gauss tranformation and the sym-metry of the Gaussian line, the CAKE algorithm aims at integrating a peakrelying upon its axial symmetry, even when in drasti
 overlapping 
onditions.The idea is that the volume 
an be estimated by integrating a non-overlappingfra
tion of the peak obtaining a reasonable approximation of volume in 
aseswhere 
ross peaks overlap. Therefore the major assumption in this study isthat the Lorentzian signal is transformed into a Gaussian line by a Lorentz-to-Gauss transformation. For in-phase peaks of TOCSY and NOESY spe
tra,su
h a transformation is well-suited, espe
ially 
onsidering that the multipletstru
ture of the in-phase 
omponents is only barely resolved and a maximumsignal-to-noise ratio is usually required to dete
t even weak signals [57℄.Figure 2.3A shows the 
ontour plot of a Gaussian peak. The arbitraryangle AÔB (a "sli
e" sele
ted in a non-overlapping region and 
entered onthe 
enter of mass), de�nes the area AFi
of a peak fra
tion for ea
h i − thlevel bound 
urve; su
h an angle identi�es a fra
tional volume VF in the three-dimensional representation. Be
ause of the axial symmetry, for ea
h i−th levelthe fra
tional volume VF relates to the total volume VT as the fra
tional areaof ea
h level relates to the 
orresponding total area ATi

. From the equation
VT =

ATi

AFi

·VF, (2.5)true for ea
h 
ouple of level bound areas, if Ri =
ATi

AFi

, the total volume of apeak 
an be obtained by multiplying a fra
tional volume by the 
orresponding
Ri fa
tor.It is 
ommon experien
e that experimental 2D peak shapes are quite 
loseto an ellipse. Therefore, Eq. (2.5) is still valid if the right angle AÔB delimits
1
4
of the ellipse by lying on the semimajor and the semiminor axes (Figure2.3C).
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Figure 2.3: Contour plots of simulated isolated (A) and overlapping (B) Gaussian peaks.In (A), the arbitrary angle AÔB de�nes a fra
tion of the peak area, sele
ted in a non-overlapping region, and 
entered on the 
enter of mass. In (B), AÔB and CK̂D sele
t afra
tion of peaks 1 and 2, respe
tively. (C) Experimental Gaussian 
ross-peak. The rightangle AÔB sele
ts a fra
tional area 
orresponding to 1

4
of the total area.

In parti
ular, by de�ning the ellipse e

entri
ity as e =
√

1 − b2

a2 , where b anda are the semiminor and the semimajor axes (assuming b < a), 0 ≤ e ≤ 1and e = 0 in the 
ase of a 
ir
le. More generally, it 
an be demonstratedthat Eq. (2.5) applies with a good approximation to e

entri
ity e ≤ 0.5,whi
h 
orresponds to a di�eren
e < 10% between axes, and a 
ir
le wellapproximates the ellipse. For e

entri
ity e > 0.5, Eq. (2.5) 
an be safelyused if the polygonal AÔB identi�es a region symmetri
al with respe
t toone of the semiaxes. The advantage of this approa
h be
omes apparent foroverlapping Gaussian peaks. Here, the integration is biased by the presen
eof the overlapping region that a�e
ts both volumes. In 
ontrast, the "sli
e"
AÔB of peak 1 (Figure 2.3B), sele
ted in a non-overlapping region, has verylittle 
ontribution, if any, from peak 2, and therefore its fra
tional volume 
anmostly be attributed to peak 1. The same is true for CK̂D sli
ing peak 2(Figure 2.3B), whose fra
tional volume 
an mostly be attributed to peak 2.Therefore, if we integrate the volume fra
tion identi�ed by AÔB and 
al
ulatethe 
orresponding R1 
onstant, it should be possible to estimate the unbiasedvolume of ea
h peak. From Figure 2.3B, the se
ond most internal (highest)level of peak 1, essentially arises from peak 1, and the e�e
t of peak 2 on thatlevel is negligible. Consequently, the R1 
onstant 
an be obtained from theratio between the total area (AT1

) and the fra
tional area (AF1
) of that level,

AT1
/AF1

. Analogously, for peak 2 the fra
tional volume identi�ed by CK̂D
an be 
onsidered, and its se
ond highest level 
an be 
hosen to obtain therespe
tive fa
tor R2 (Figure 2.3B).
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tional peak method 232.2.2 The R fa
tor estimationIn order to estimate the R fa
tor for a sele
ted fra
tion of a peak, an internallevel attributable to the peak has to be 
hosen. Denoted by AT the totallevel area and by AF the fra
tional level area, the ratio R = AT/AF 
an beobtained by a Hit-or-Miss Monte Carlo te
hnique [63, 64℄. Let us denote by
(lxi, lyi), with i = 1, 2, ..., N, the vertex 
oordinates of the polygonal Plevelrelative to a 
ontour level, by (cx, cy) the 
oordinates of its 
enter point, andby α1, α2 two rays with their 
ommon origins in (cx, cy). The fra
tional area
AF is therefore de�ned by the interse
tion of the polygon Plevel and the areadelimited by the rays (Figure 2.4). Furthermore, let us denote by lxmin and
lxmax the minimum and maximum lxi 
oordinates, and by lymin and lymax theminimum and maximum lyi 
oordinates, respe
tively. Two pseudo randomnumbers xr and yr are now uniformly extra
ted in the intervals [lxmin, lxmax],and [lymin, lymax], respe
tively. The extra
tion is 
ontinued until a number
NAT

of points (xr, yr) is internal to the polygonal Plevel. If an extra
ted point
(xr, yr) is also inside the area AF, then the number of fra
tional hits NAF

isaugmented by one. Of 
ourse, being the (xr, yr) pairs uniformly extra
tedin the re
tangle [lxmin, lxmax]×[lymin, lymax], the ratio R = AT/AF will beestimated by the ratio R = NAT
/NAF

.

Figure 2.4: Total level area AT and fra
tional level area AF de�ned by the interse
tionof the polygon Plevel and the area delimited by the rays α1, α2.2.2.3 The Monte Carlo integrationIn prin
iple, any method is suitable to integrate the sele
ted fra
tional vol-ume. However, the simple sum 
an be biased be
ause of the small region andthe limited number of points within the sele
ted area. A

ordingly, the MonteCarlo Hit-or-Miss te
hnique appears to be more suitable. Let us denote by
(pxi, pyi), with i = 1, 2, 3, 4, the vertex 
oordinates of the quadrilateral Pbase,whi
h is the base of a prism of height h and that 
ontains the fra
tional volume
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VF (in parti
ular, px1 = cx, and py1 = cy, while other two points are 
hosen onthe α1 and α2 rays). Furthermore, let pxmin and pxmax be the minimum andmaximum pxi 
oordinates, and pymin and pymax the 
oordinates 
orrespond-ing to the minimum and maximum pyi, respe
tively. Two pseudo randomnumbers xr and yr are uniformly extra
ted in the intervals [pxmin, pxmax] and
[pymin, pymax], respe
tively. The extra
tion is 
ontinued until the extra
tionnumber NPbase

, whi
h represents the number of points (xr, yr), is internal tothe quadrilateral of base Pbase. If a point (xr, yr) is internal to the quadrilateralof base Pbase and to the polygonal base Plevel, a 
ubi
 interpolation gives thepeak p(x, y) values in the point (xr, yr), and another pseudo random number
ρ is uniformly extra
ted in the interval [0, 1]. If ρ·h ≤ p(xr, yr), that is, if ρ·his a point internal to the fra
tion volume VF, the number of volume hits NV isaugmented by one. If VP is the prism volume (Figure 2.5), 
al
ulated by thesoftware, then the fra
tional volume VF is estimated as

VF = NV·VP/NPbase (2.6)

Figure 2.5: Prism of volume VP that 
ontains the fra
tional peak volume VF .
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3.1 Introdu
tionNMR has found an in
reasingly broad range of appli
ations in di�erent �eldsof resear
h ranging from physi
al and material s
ien
es to 
hemistry, biol-ogy, and medi
ine. Be
ause it intera
ts with nu
lear spins by using veryweak ele
tromagneti
 �elds, NMR is virtually the only te
hnique that pro-vides atomi
-level information without disturbing the 
hemi
al properties ofthe mole
ules and materials under investigation. This enormous versatilityhas been possible be
ause of the development of a wide range of NMR toolsthrough the years. Among the major a
hievements one should 
ite Fourier-transform NMR that had a dramati
 e�e
t on the experimental sensitivity ofNMR [65℄, and the introdu
tion of multidimensional NMR spe
tros
opy byJeener [66℄ and Ernst [67℄ in early seventies.In re
ent years, NMR spe
tros
opy fa
es a number of new 
hallenges, su
has the investigation of the stru
ture and dynami
s of biologi
al mole
ules ofin
reasing size and 
omplexity, the 
hara
terization of protein-
omplexes, aswell as the study of kineti
 features of bio
hemi
al pro
esses in the 
ell. This
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hniques in metabonomi
srequires further te
hni
al and methodologi
al improvements in terms of ex-perimental sensitivity, spe
tral and temporal resolution. New advan
ed NMRpulse sequen
es and a
quisition s
hemes are thus required that make optimaluse of the improved instrumental performan
e, and are best adapted to thes
ienti�
 problems in me
hanisti
 systems biology. It has to be pointed outthat the wide variety of methods re
ently developed for fast data a
quisitionare mostly addressed to protein stru
ture elu
idation and protein-ligand ki-neti
 investigations. Therefore, fast NMR a
quisition s
hemes are shaped and
on�gured on relatively large mole
ules. In su
h 
ontext, this 
hapter will ex-plore the appli
ation of a fast-pulsing NMR experiment for metaboli
 pro�le
hara
terization, thus requiring the optimization of a re
ent pulse sequen
e forfast HMQC a
quisition, 
alled SOFAST-HMQC [2, 3℄ (band-Sele
tive Opti-mized Flip-Angle Short Transient heteronu
lear multiple quantum 
oheren
e),of small mole
ules su
h as metabolites.3.2 Fast multidimensional NMR spe
tros
opyMultidimensional NMR experiments are 
ru
ial for the study of biomole
u-lar stru
ture and dynami
s as they provide the required resolution to extra
tspe
tral parameters for individual nu
lear sites in the mole
ule. While in 1DNMR the time evolution of nu
lear spin magnetization is dete
ted dire
tlyvia the ele
tri
 
urrent indu
ed in a re
eiver 
oil, the evolution in a so-
alledindire
t time domain is monitored by stepwise in
rements of a delay in thepulse sequen
e. As a 
onsequen
e of this time in
rements pro
edure, theexperimental time required for the a
quisition of an nD NMR spe
trum in-
reases by 
a. 2 orders of magnitude per additional dimension. Therefore,even if the inherent sensitivity is su�
ient, 
omplete sampling of the indire
ttime domain grid imposes lower limits on the experimental times: severalminutes for 2D, several hours for 3D and so on. Therefore, new a
quisitions
hemes are required for a more rapidly data re
ording, taking 
are to obtaina su�
ient signal-to-noise ratio. In order to speed up multidimensional NMRdata a
quisition, the sampling problem 
an be resolved either by limiting thenumber of data points (sparse or non-uniform sampling te
hniques), or byredu
ing the duration of ea
h repetition of the experiment (fast pulsing te
h-niques). Most of the existing fast a
quisition te
hniques are based on the �rstsolution, in
omplete sampling of the indire
t dimensional time spa
e. Ex-amples are non-uniform data sampling 
ombined with non-linear pro
essings
hemes [68, 69℄, redu
ed dimensionality or proje
tion NMR [70, 71, 72, 73℄,and Hadamard NMR [74, 75℄ where data sampling is realized dire
tly in thefrequen
y domain. All of these methods basi
ally allow re
ording of multi-
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tros
opy 27dimensional 
orrelation spe
tra in an experimental time ranging from a fewminutes up to several hours.The ultimate solution to the NMR data sampling problem has re
entlybeen proposed and experimentally demonstrated by Frydman and 
o-workers[76℄. Their ingenious 
on
ept of "single-s
an" NMR allows re
ording of anymultidimensional NMR spe
trum within a single repetition of the experiment.Despite the high potential of single-s
an NMR for future biomole
ular appli-
ations, this te
hnique 
urrently requires a very high intrinsi
 sensitivity andspe
trometer hardware optimized for both NMR spe
tros
opy and imagingpurposes. On the other hand, for appli
ation to proteins in aqueous solu-tion, several s
ans are generally required to yield good water suppression anda

eptable signal to noise in a few se
onds of experimental time.NMR fast pulsing te
hniques present an alternative way to redu
ing a
qui-sition times. The main idea is to shorten the time delay between su

essives
ans (re
y
le delay) to a
hieve higher repetition rates and thus 
olle
t thesame number of s
ans in less time. Of 
ourse, the number of data points tobe re
orded 
an also be redu
ed as dis
ussed above, whi
h makes fast-pulsingte
hniques fully 
ompatible with sparse sampling approa
hes. A re
y
le delayis required to allow relaxation of the ex
ited spins (usually 1H) towards theirthermodynami
 equilibrium, and to build up su�
ient 1H polarization to beused for the next s
an.In order to keep the experimental sensitivity high enough while using fastrepetition rates, some spe
tros
opi
 tri
ks are required. A �rst approa
h hasbe
ome known as longitudinal relaxation enhan
ement [77℄. Su
h methodis based upon the fa
t that the e�
ien
y of 1H spin-latti
e relaxation is in-
reased if nearby 1H are unperturbed by the pulse sequen
e, so that they 
antake up some of the energy put into the system via dipole-dipole intera
tions(nu
lear Overhauser e�e
t, NOE), or via hydrogen ex
hange. In pra
ti
e, therelaxation enhan
ement is realized by sele
tively manipulating a subset of theproton spins of interest in a well de�ned spe
tral region throughout the pulsesequen
e, thus ensuring that the spin states of all other protons that are notdire
tly involved in the 
oheren
e transfer pathways of a parti
ular experi-ment remain unperturbed. This yields redu
tions in e�e
tive longitudinal 1Hrelaxation times from a few se
onds to a few hundred millise
onds. In some
ir
umstan
es, e.g., in HMQC experiments, the sensitivity of fast-pulsing ex-periments 
an be even further enhan
ed by adjusting the ex
itation �ip angleto the so
alled Ernst angle [57, 78℄. Both e�e
ts have been 
ombined in theSOFAST experiment [2, 3℄ that allows one to re
ord 2D 1H-15N or 1H-13C 
or-relation spe
tra of proteins in only a few se
onds, thus opening new avenues forreal-time investigations of protein kineti
s at atomi
 resolution. We exploredthe potential of su
h experiment for metaboli
 pro�ling issue by applying it
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hniques in metabonomi
sto 
ell samples for fast dete
tion of metabolites.3.3 SOFAST-HMQCThe introdu
tion of SOFAST-HMQC sequen
e by Shanda and Bruts
herrepresents an alternative te
hnique for fast a
quisition of 2D heteronu
lear
orrelation spe
tra. The sequen
e is realized by using very short inter-s
an delays therefore 
ombining the advantages of a small number of radio-frequen
y pulses, Ernst-angle ex
itation, and longitudinal relaxation optimiza-tion [77, 79℄ to obtain an in
reased signal to noise ratio for high repetitionrates of the experiment. Sin
e SOFAST-HMQC uses standard data samplingin the indire
t dimension, it has the further advantage of being therefore eas-ily implemented on any 
ommer
ially available high-�eld NMR spe
trometer.Figure 3.1 shows the basi
 pulse s
heme to re
ord SOFAST-HMQC spe
tra.

Figure 3.1: SOFAST-HMQC experiment to re
ord 1H-X (X=15N or 13C) 
orrelationspe
tra of proteins. Filled and open pulse symbols indi
ate 90◦ and 180◦ rf pulses, ex
eptfor the �rst 1H ex
itation pulse applied with �ip angle α. The variable �ip-angle pulse hasa poly
hromati
 PC9 shape, and band-sele
tive 1H refo
using is realized using an r-SNOBpro�le. The transfer delay ∆ is set to 1/(2JHX), the delay δ a

ounts for spin evolutionduring the PC9 pulse, and trec is the re
y
le delay between s
ans.3.3.1 General aspe
tsThis pulse sequen
e provides the required high sensitivity to perform fastheteronu
lear 1H-X 
orrelation experiments of ma
romole
ules by using veryshort re
y
le delays (trec). The main features of SOFAST-HMQC are thefollowing:
• The HMQC-type 1H-X transfer steps require only few rf pulses whi
hlimits signal loss due to B1-�eld inhomogeneities and pulse imperfe
-
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tion will be espe
ially important if the experimentis performed on a 
ryogeni
 probe, where B1-�eld inhomogeneities aremore pronoun
ed.
• The band-sele
tive 1H pulses redu
e the e�e
tive spin-latti
e relaxationtimes (T1) of the observed proton spins. The presen
e of a large numberof non-perturbed 1H spins, intera
ting with the observed 1H via dipolarintera
tions (NOE e�e
t), signi�
antly redu
es longitudinal relaxationtimes whereby the equilibrium spin polarization is more qui
kly restored.
• The adjustable �ip angle of the proton ex
itation pulse allows furtherenhan
ement of the available steady-state magnetization for a given re-
y
le delay.3.3.2 Ernst-angle ex
itationThe repetition rate of an NMR pulse sequen
e depends on the delay trecbetween the �rst pulse of one s
an and the �rst pulse of the next s
an. Ifthe spin system is saturated by fast rf pulsing, short inters
an delays (trec)lead to a signi�
ant loss in signal intensity. Ernst and 
o-workers developedan elegant te
hnique to optimize the sensitivity in fast pulsed 1D one-pulseNMR experiments by the appli
ation of a non-90◦ �ip-angle [57℄, known asthe Ernst angle [80, 44℄. Maximal signal for an inters
an delay trec, andlongitudinal relaxation time T1, is obtained by the appli
ation of an ex
itationangle βErnst given by:

cos(βErnst) = exp(
−trec

T1

) (3.1)T1 is the e�e
tive spin-latti
e relaxation time 
onstant assuming mono-exponential polarization re
overy. The longitudinal equilibrium magnetiza-tion Meq in dependen
e of the thermal equilibrium magnetization M0 is
Meq = M0

(1 − exp(−trec/T1))

(1 − exp(−2trec/T1)
(3.2)The signal resulting from a single rf pulse applied to Meq with a �ip-angle

βErnst is
Signal = Meq sin(βErnst) (3.3)and the signal-to-noise ratio per measurement time, referred to as the sensi-tivity of the single pulse experiment [57℄, is

Sensitivity = Signal/
√

trec (3.4)
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hniques in metabonomi
sIn the 
ase of SOFAST-HMQC sequen
e (Figure 6.1) Equation 3.1 be
omes
cos(βErnst) = exp(

−Trec

T1

) (3.5)with Trec the e�e
tive 1H longitudinal relaxation delay in
luding the inter-s
an delay (trec), the a
quisition times t1/2 and t2 , and the transfer delay ∆(Figure 6.1) and the S/N per unit experimental time, negle
ting transversespin relaxation e�e
ts and other sour
es of signal loss, is then given by
S/N ∝

(1 − exp(−Trec/T1))

1 − exp(−Trec/T1) cos(β)
·

sin(β)√
nTScan

(3.6)with β the e�e
tive �ip angle β = α−180◦ taking into a

ount the e�e
t of the
1H refo
using pulse, and TScan the time required for a single s
an in
ludingthe pulse sequen
e duration, a
quisition time, and the inter-s
an delay (trec).3.3.3 Proton band-sele
tive pulsesThe performan
e of SOFAST-HMQC 
riti
ally depends on the 
hoi
e of thepulse shapes for the band-sele
tive ex
itation and refo
using pulses on the
1H 
hannel. A
tually, the longitudinal relaxation optimization enhan
emente�e
t is stri
tly related to the number and type of the applied proton pulses.For this purpose, Shanda and 
o-workers [3℄ used only 2 (band-sele
tive) 1Hpulses in SOFAST-HMQC thus ensuring minimal perturbation of the unde-te
ted proton spins, and providing higher enhan
ement fa
tors than observedwith other longitudinal relaxation optimized pulse s
hemes [77℄. More over,sin
e the water resonan
e is outside the sele
ted 1H pulse bandwidth, theWATERGATE-type [81℄ pulse sequen
e element G1-180◦(1H)-G1 (Figure 6.1)yields e�
ient water suppression within a single s
an. The sele
tive protonmanipulation also removes 
oupling evolution between ex
ited 1H spins andpassive 1H spins from frequen
y bands that are not perturbed by the sele
tivepulses.As spin refo
using pulse, Shanda and 
o-workers [3℄ �rst 
hose r-SNOBpro�le [82℄ for it presents the advantage of a short pulse length thus redu
-ing signal loss due to transverse spin relaxation [2℄. Afterwards, they testedother pulse shapes and found that, for 1H-15N 
orrelation spe
tra, a REBURP(Figure 3.2) pro�le yields higher sensitivity despite a 3-times longer pulse du-ration. Experimental 
omparison of r-SNOB and REBURP performan
e in
1H-15N SOFAST-HMQC showed signal in
rease of up to 50% observed whenusing REBURP instead of r-SNOB for short s
an times. Su
h result depend onbetter o�-resonan
e performan
e of REBURP, resulting in less perturbation
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 1H spin polarization and, as a 
onsequen
e, shorter longitudi-nal relaxation times of the amide proton spins.

Figure 3.2: Ex
itation shaped pulses pro�les. A) PC9 pulse; B) RE-BURP pulse.The most band-sele
tive "top-hat" pulse shapes 
ommonly used for NMRspe
tros
opy, e.g. BURP [83℄, Gaussian pulse 
as
ades [84℄, or SNOB [82℄,have only been optimized for dis
rete �ip angles of 90◦ or 180◦, and generallyare not useful for variable �ip angle ex
itation purposes. In 
ontrast, poly
hro-mati
 (PC) sele
tive pulses have been shown to perform well for a whole rangeof �ip angles [85℄. These PC pulses are based on a series of simultaneouslyapplied, frequen
y shifted basi
 pulse elements. For the SOFAST appli
ation,Shanda and 
o-workers used the PC9 ex
itation pulse shape (Figure 3.3),whi
h has the required "top-hat" ex
itation pro�le for �ip angles 0◦<α<120◦.Moreover, unlike other band-sele
tive ex
itation pulses that yield "pure-phase" transverse magnetization, the PC9 pulses produ
e phase that is a linearfun
tion of the frequen
y o�set. So, Shanda and Bruts
her proposed to repla
ea PC9 pulse by the 
ombination of a pure-phase ex
itation pulse followed bya delay δ. The 
hemi
al shift and s
alar JHX 
oupling evolution o

urringduring this delay δ 
an be a

ounted for by adjusting the subsequent transferdelay of the HMQC sequen
e to 1/(2JHX)− δ (Figure 6.1). If the delay δ hasbeen properly adjusted prior to data a
quisition no �rst-order phase 
orre
tionis required in the 1H dimension. Otherwise, pure-phase spe
tra 
an still beobtained by applying a �rst order phase 
orre
tion.
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s

Figure 3.3: Simulated frequen
y-domain response of the poly
hromati
 pulse PC9
onsisting of nine radiofrequen
ies spa
ed ∆f = 1/T apart with relative intensities of1:2:2:2:2:2:2:2:2:1. A) Absorbtion; B) dispersion.3.3.4 Appli
ation to proteinThe SOFAST-HMQC pulse sequen
es of Figure 6.1 have been designed toprovide high sensitivity for fast repetition rates. To examine the performan
eof the SOFAST-HMQC experiment for the desired short inters
an delays,Shanda and 
o-workers measured 1D spe
tra of 15N-labeled ubiquitin. Fig-ure 3.4 shows the measured S/N ratios for 
onstant experimental time as afun
tion of the duration of a single repetition of the experiment Tscan (tak-ing into a

ount the length of the pulse sequen
e, data a
quisition time, andre
y
le delay) for ubiquitin sample a
quired at 600 MHz on a spe
trometerequipped with a standard probe (Figure 3.4a) and at 800 MHz on a spe
-trometer equipped with 
ryoprobe (Figure 3.4b). Su
h spe
tra provide onlyinformation on the average signal to noise ratio obtained by the di�erentpulse sequen
es. Ea
h intensity point was obtained by s
aling all spe
tra tothe same noise level a

ording to the number of applied s
ans, and integratingthe spe
tral intensity over the range 7.0-9.5 ppm. The 
urves are thereforerepresentative of the average behavior of the experiment for all amide sites inthe protein.The SOFAST-HMQC data (Figure 3.4) for three di�erent �ip angles (90◦,120◦, and 150◦) are 
ompared to results from a sensitivity-enhan
ed (se) water-�ipba
k (wfb) HSQC pulse sequen
e, and from a longitudinal relaxation op-timized HSQC (LHSQC) experiment [77℄.
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Figure 3.4: Signal-to-noise ratios per unit time (intensity) plotted as a fun
tion of thes
an time (Tscan) obtained with di�erent 1H-15N 
orrelation experiments for (a) ubiquitin(8.6 kDa, 2 mM, 25 ◦C, pH 6.2) at 600 MHz, (b) ubiquitin at 800 MHz. The intensitieswere extra
ted from 1D spe
tra re
orded using the SOFAST-HMQC sequen
e of Figure 6.1(t1=0) with �ip angles of a α= 90◦ (�), 120◦ (N) and 150◦ (◦), LHSQC (▽), and se-wfbHSQC (•). Band-sele
tive 1H pulses in the SOFAST-HMQC and LHSQC experiments were
entered at 8.0 ppm 
overing a bandwidth of 4.0 ppm. Variable �ip angle ex
itation andrefo
using in SOFAST-HMQC were realized using a PC9 pulse of 3.0 ms and a REBURPpulse of 2.03 ms, respe
tively.The prin
ipal 
on
lusions from those experimental results are the follow-ing:
• Using optimized a
quisition parameters (s
an time, �ip angle) and mod-erate t1 a
quisition times, SOFAST-HMQC yields the most sensitive

1H-15N 
orrelation spe
tra of folded proteins.
• SOFAST-HMQC provides a mu
h higher sensitivity than se-wfb-HSQCusing the same s
an times, and a similar sensitivity as se-wfb-HSQCre
orded with optimized inter-s
an delays.The SOFAST features showed in Figure 3.4 
ould be used as guidelines forsetting up SOFAST-HMQC experiments. For pra
ti
al appli
ations the au-thors re
ommended to �x the s
an time (re
y
le delay) and then optimize the�ip angle of the PC9 ex
itation pulse experimentally by re
ording a series of1D SOFAST-HMQC spe
tra varying the power level (�ip angle) of the PC9pulse.
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hniques in metabonomi
s3.4 Real-time 
ell 1H-15N metaboli
 pro�leNMR is a well-established te
hnique for monitoring metabolism in living 
ells.They are often investigated by 1D NMR spe
tros
opy, therefore bene�ting ofreal-time measurements sin
e all spe
tral frequen
ies are ex
ited by a singles
an. However, 1D NMR la
ks the resolution needed to 
ope with the degen-era
y of the NMR resonan
e frequen
y and a reasonable S/N ratio, the latterbe
ause of the short a
quisition time required for the short lifetime of samples.The la
k of resolution 
an be 
ir
umvented by 2D spe
tros
opy that, 
omparedwith 1D, does yield higher resolution, but is intrinsi
ally time-
onsuming be-
ause data a
quisition for the se
ond dimension spans at least several minutes.As dis
ussed before, the total experimental time will be given by the produ
tof the number of s
ans Nscan, required for a proper sampling of the indire
t do-main, and the single-s
an duration (the repetition time) Tscan, whi
h in
ludesthe spin relaxation time ne
essary to restore the thermal equilibrium beforethe next additional measurement. This re
y
le delay is therefore asso
iatedwith the 1H spin-latti
e relaxation time T1, and, depending on its duration,a
quisition times 
an be of the order of minutes, yielding total experimentaltimes of hours.Cells are able to survive and stay suspended in the solvent medium forseveral hours, but, after only few minutes, oxygen starvation 
hanges theirmetabolism and de
reases the 
ytoplasmi
 pH [86℄. Therefore, long a
quisitiontimes may dete
t small mole
ules originating from an "average" metabolismthat does not 
orrespond to the physiologi
al state of the 
ell. For sam-ples with short lifetime data a
quisition must be rapid, and fast-a
quisition2D te
hniques, as those used to study the stru
ture and dynami
s of pro-teins in solution are required [87℄. Two di�erent strategies have been putforward for fast a
quisition spe
tros
opy: the "single-s
an" NMR [76, 88℄ andthe SOFAST-HMQC. The single-s
an approa
h is able to re
ord any multi-dimensional NMR spe
trum within a single repetition of the experiment, butwith 
urrent spe
trometer hardware it typi
ally la
ks in sensitivity, resolution,and/or su�
ient gradient strength over extended periods of time. Alterna-tively, the SOFAST method is able to drasti
ally redu
e Tscan by relaying ona

elerated T1 of the spins of interest [77℄ and on optimized �ip-angles (e.g.,the Ernst angle [57℄) to enhan
e the steady-state magnetization of the ex
itedspins [78℄. As pointed out in the previous se
tion, Bruts
her and 
o-workershave 
ombined these features into single 2D and three-dimensional NMR pro-to
ols [2, 3, 89, 90℄, showing that it is possible to redu
e Tscan down to 100 ms,obtaining 2D 1H-15N or 1H-13C 
orrelation spe
tra in the range of se
ondsand with high S/N ratio.Be
ause of its adaptability to routine spe
trometers, we have investigated
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ell 1H-15N metaboli
 pro�le 35the possibility of using the SOFAST-HMQC approa
h to explore 
ellularmetabolism in 15N-labeled 
ells. In Chapter 6 we report that the SOFAST ex-periment allows a
quisition of 2D 1H-15N 
orrelation spe
tra of small metabo-lites dire
tly in living 
ells in few se
onds, with a high S/N ratio, thereforea�ording a pi
ture of the "instantaneous" in-
ell metabolism. In parti
ular,we have applied the SOFAST-HMQC experiment to 15N-labeled diatoms 
ells,whi
h are uni
ellular algae with sili
i�ed 
ell walls.

Figure 3.5: Thalassiosira rotula image from SEM mi
ros
ope.They are at the base of the marine food web, and are the major 
ontributorsto phytoplankton biomass worldwide. In response to favorable light and nutri-ent 
onditions, diatoms rapidly divide and form large blooms, and as bloomspropagate, nutrients are depleted, growth 
eases, and 
ells sink to the deepo
ean. The sinking diatom blooms fuel the biologi
al 
arbon pump and export
arbon from the atmosphere to the deep o
ean. Despite this, little is knownabout the mole
ular underpinnings of diatom biology. As a part of a long-running proje
t, we have re
ently undertaken a study of the metaboli
 pro�leof Thalassiosira rotula (Figure 3.5) to understand how diatoms a
quire nutri-ents, how they respond to stress, and how they a
tivate 
hemi
al defense and
hemi
al signaling that regulates algal bloom. Although useful information
an be a
hieved by investigating the metaboli
 pro�le of polar and lipophili
extra
ts, in-vivo studies of T. rotula 
ells in (arti�
ial) sea water are expe
tedto yield a more reliable understanding of the metaboli
 pathways.On the other hand, the presen
e of salt in the arti�
ial sea water 
ulturemedium, used to suspend the 
ells in the NMR tube, will 
ause resonan
ebroadening, and this, together with the degenera
y of the resonan
e frequen
y,
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hniques in metabonomi
swill make 1D spe
tros
opy useless. T. rotula 
ells 
an easily be 
ultured onunlabeled and 15N-labeled media, and this warrants that a su�
ient numberof 
olonies 
an rapidly be obtained to test the potential appli
ation of theSOFAST-HMQC sequen
e to 15N-labeled 
ells. The 2D 
orrelation spe
traobtained for T. rotula 
ells in 10-15 se
onds with a high S/N ratio suggestthat fast a
quisition te
hniques introdu
ed for proteins 
an be easily extendedto other living 
ell systems, monitoring the metabolism under physiologi
al orstressing 
onditions in the emerging �elds of metabolomi
s and metabonomi
s[91, 35℄.
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hapter is based on the following papers:a) D. Paris, D. Mel
k, M. Sto

hero, O. D'Apolito, R. Calemma, G. Castello,F. Izzo, G. Palmieri, G. Corso, A. Motta. Monitoring liver alteration duringhepati
 tumorigenesis by NMR pro�ling and pattern re
ognition, submitted toMetabolomi
s.b) G. de Laurentiis, D. Paris, D. Mel
k, M. Manis
al
o, S. Marsi
o, G. Corso,A. Motta and M. So�a. Metabonomi
 analysis of exhaled breath 
ondensate inadults by Nu
lear Magneti
 Resonan
e spe
tros
opy. Eur Respir J 2008; 32:1-9.4.1 Materials and methods: a) hepato
ellular
ar
inomaSpe
imens 
olle
tionLiver tissues were 
olle
ted from patients with diagnosis of hepato
ellular 
ar-
inoma (HCC) developed on liver hepatitis C virus (HCV) related 
irrhosis(CIR) or liver metastasis from 
olore
tal 
ar
inoma (MET-CRC). The por-tions of the surgi
ally ex
ised samples that were addressed to NMR spe
-tros
opy 
onsisted of HCC tissues (HCC; N = 17), with the 
orresponding
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 pro�le experimentsHCV -related 
irrhoti
 tissues (CIR; N = 17), tissues from liver metastases(MET-CRC; N = 9), and the 
orresponding adja
ent non-
irrhoti
 liver tis-sues plus two liver tissues from healthy subje
ts (NT; N = 11). All sampleswere frozen in liquid nitrogen in order to immediately "quen
h" any metaboli
rea
tion and preserve metabolite 
on
entrations. Tissues were stored at -80
◦C until extra
tion to prevent any metaboli
 de
ay. Pathologi
al evaluationwas performed on ea
h 
ase, histopathologi
al 
lassi�
ation was based on the
riteria of World Health Organization; disease status at the time of diagno-sis was de�ned depending on 
lini
al staging as assessed by medi
al history,physi
al examination, and instrumental tests. A written informed 
onsent fortissue sampling was obtained before the analysis from 
an
er patients. Thestudy was reviewed and approved by the ethi
al review board at the NationalCan
er Institute - G. Pas
ale Foundation - of Naples. The main 
hara
teristi
sof 
an
er patients are presented in table of Figure 4.1 .Sample preparationTissues were me
hani
ally disrupted to deproteinize the sample and perma-nently halt the metabolism. The pro
edure allowed extra
tion of only themetabolites of interest (e.g., lipids, 
arbohydrates, amino a
ids and other smallmetabolites) while leaving others 
ompounds (e.g., DNA, RNA, proteins) inthe tissue pellet. Combined extra
tion of polar and lipophili
 metaboliteswas 
arried out by using methanol/
hloroform as suggested by the StandardMetaboli
 Reporting Stru
tures working group [92℄. It appears to be the pre-ferred 
hoi
e for metabonomi
 NMR studies 
onsidering yield, reprodu
ibility,ease and speed, as per
hlori
 a
id extra
ts show a large sample-to-sample vari-ation [93℄, espe
ially for parti
ularly lipid-ri
h tissues su
h as liver and brain[93, 94℄. Homogenization of 30 mg of frozen tissue samples was 
arried outin 8 ml/g of wet tissue of methanol and 1.70 ml/g per wet tissue of water(all solvents were 
old) with UltraTurrax for 2 min on i
e. Then, 4 ml/g wettissue of 
hloroform were added and the homogenate was stirred and mixed,on i
e, deli
ately using an orbital shaker for 10 min (the solution must bemono-phasi
). Then, other 4 ml/g wet tissue of 
hloroform and 4 ml/g wettissue of water were added and the �nal mixture was shaken well and 
en-trifuged at 12000 g for 15 min at 4 ◦C. This pro
edure separates three phases:a water/methanol phase at the top (aqueous phase, with the polar metabo-lites), a phase of denatured proteins and 
ellular debris in the middle anda 
hloroform phase at the bottom (lipid phase: with lipophili
 
ompounds).The upper and the lower layers of ea
h sample were transferred into glass vialsand the solvents were removed under a stream of dry nitrogen and stored at-80 ◦C until required. For one-dimensional (1D) and two-dimensional (2D)
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ellular 
ar
inoma 39homonu
lear NMR experiments the polar extra
ts were resuspended in 700 µlPhosphate Bu�er Saline (PBS, pH 7.4) with D2O 10% for lo
k pro
edure, andthen transferred in an NMR tube. For 2D heteronu
lear 1H-13C experiments,the polar fra
tion was resuspended in 700 µl of D2O.
NMR measurements1D spe
tra were re
orded at 600.13 MHz on a Bruker Avan
e-600 spe
trome-ter, equipped with a TCI CryoProbeTM �tted with a gradient along the Z-axis,at a probe temperature of 27◦C and a
quired at the Institute of Bio
hemi
alChemistry in Pozzuoli (Napoli). 1D proton spe
tra were a
quired by usingthe ex
itation s
ulpting sequen
e [95℄. We used a double-pulsed �eld gradi-ent e
ho, with a soft square pulse of 4 ms at the water resonan
e frequen
y,with the gradient pulses of 1 ms ea
h in duration, adding 1024 transients of16384 points with a spe
tral width of 7002.8 Hz. Time-domain data were allzero-�lled to 32768 points, and prior to Fourier transformation, an exponen-tial multipli
ation of 0.6 Hz was applied. Clean total 
orrelation spe
tros
opy(TOCSY) [96, 97, 98℄ spe
tra were re
orded using a standard pulse sequen
e,and in
orporating the ex
itation s
ulpting sequen
e for water suppression.In general, 320 equally spa
ed evolution-time period t1 values were a
quired,averaging 4 transients of 2048 points, with 7002.8 Hz of spe
tral width. Time-domain data matri
es were all zero-�lled to 4096 points in both dimensions,thus yielding a digital resolution of 3.42 Hz/pt. Prior to Fourier transforma-tion, a Lorentz-to-Gauss window with di�erent parameters was applied forboth t1 and t2 dimensions for all the experiments. TOCSY experiments werere
orded with spin-lo
k period of 64 ms, a
hieved with the MLEV-17 pulsesequen
e. Spe
tra were referred to 0.1 mM sodium trimethylsilylpropionate(TSP), assumed to resonate at δ= 0.00 ppm. The natural abundan
e 2D 1H-
13C Heteronu
lear Single Quantum Coheren
e (HSQC) spe
tra were re
ordedon the Avan
e-600 spe
trometer operating at 150.90 MHz for 13C, using ane
ho-antie
ho phase sensitive pulse sequen
e using adiabati
 pulses for de-
oupling [99, 100℄. 128 equally spa
ed evolution time period t1 values werea
quired, averaging 48 transients of 2048 points and using GARP4 for de
ou-pling. The �nal data matrix was zero-�lled to 4096 in both dimensions, andapodized before Fourier transformation by a shifted 
osine window fun
tion int2 and in t1. Linear predi
tion was also applied to extend the data to twi
e itslength in t1. Spe
tra were referred to the la
tate doublet (βCH3) resonatingat 1.33 ppm for 1H, and 20.76 ppm for 13C.
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Figure 4.1: Chara
teristi
s of 
an
er patients (*AFP, alpha-fetoprotein).
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al and multivariate data analysisHigh resolution 1H-NMR spe
tra were automati
ally data redu
ed to inte-grated regions ("bu
kets") having equal width of 0.04 ppm over the spe
tral re-gion between 0.04 and 9.40 ppm by using AMIX 3.6 software pa
kage (BrukerBiospin, Germany). The residual water resonan
e region (4.72 - 5.10 ppm)was ex
luded and the integrated region was normalized to the total spe
trumarea. To di�erentiate liver tissues through NMR spe
tra, we 
arried out a mul-tivariate statisti
al data analysis using proje
tion methods. The integrateddata redu
ed format of the spe
tra was imported into SIMCA-P+ 12 pa
kage(Umetri
s, Umea, Sweden), and Prin
ipal Component Analysis (PCA) andOrthogonal Proje
tion to Latent Stru
tures Dis
riminant Analysis (O2PLS-DA) were performed. Mean-
entering was applied as data pre-treatment forPCA, while Pareto s
aling and mean-
entering were used prior to O2PLS-DA.Both the ANOVA and the t-test were used for statisti
al analysis of the signalssele
ted for quanti�
ation.4.2 ResultsNMR experimentsNT, CIR, HCC and MET-CRC underwent a dual-phase extra
tion, and theaqueous fra
tions were investigated by high-resolution NMR. Typi
al spe
-tra of NT (tra
e A), CIR (tra
e B), HCC (tra
e C) and MET-CRC (tra
eD) are reported in Figure 4.2. Although isolated resonan
es 
an readilybe assigned to spe
i�
 metabolites by 
omparing their 
hemi
al shifts withliterature data [101, 102℄, line overlapping prevented the 
omplete spe
tralidenti�
ation. This required homo- and heteronu
lear 2D experiments su
has TOCSY (Figure 4.3) to identify 1H-1H 
onne
tivities, and 1H-13C HSQC(Figure 4.4) for dire
tly bonded 1H and 13C nu
lei. Thus, we were able toidentify all resonan
es by a 
omparison with literature data and with NMRspe
tra of standards a
quired in separate experiments. The 1H assignmentsare reported in table of Figure 4.5. Inspe
tion of 4.2 shows 
lear visible dif-feren
es among NT, CIR, HCC and MET-CRC. The spe
tral region from 0.5to 3.00 ppm 
ontains signals assigned to leu
ine, valine, threonine, alanine,lysine, glutamate, glutamine, and some organi
 a
ids su
h as la
tate, a
etateand su

inate. The region from 3.0 to 4.5 ppm in
ludes signals attributed to
reatinine, 
holine, arginine, phosphoethanolammine, phospho
holine, gly
-erolphosphatidil
holine, α-glu
ose, trimethylamine-N-oxide, gly
ine, gly
ogen,myo-Inositol and gly
erol, and represents the most variable region. The 4.5-7.5 ppm region, together with the residual water signal eliminated by the
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 pro�le experimentsspe
i�
 pulse-sequen
e used in the experiment, 
ontains the resonan
es of β-glu
ose, fumarate, tyrosine, histidine and phenylalanine. The region 5.5-6.4ppm does not 
ontain signals, and as su
h it has been omitted from 4.2.

Figure 4.2: Representative aliphati
 1H-NMR spe
tra of all liver tissue extra
ts used inthis study (spe
tra s
aled to TSP): (A) 
ontrol non-tumoral adja
ent to metastasis (NT)and (D) metastasis from the same patient (MET-CRC); (B) 
irrhoti
 adja
ent to HCC(CIR) and (C) HCC from the same patient (HCC). Numbers labels: 1, Leu
ine; 2, Valine;3, Threonine; 4, La
tate; 5, Alanine; 6, Lysine; 7, A
etate; 8, Glutamate; 9, Glutamine;10, Su

inate; 11, Creatine; 12, Choline; 13, Arginine; 14, Phosphoethanolamine; 15, Phos-pho
holine; 16, Gly
erophospho
holine; 17, β-Glu
ose; 18, Trimethylamine-N-oxide; 19,Gly
ine; 20, Gly
ogen; 21, myo-inositol; 22, Gly
erol; 23, α-Glu
ose; 24, Fumarate; 25,Tyrosine; 26, Histidine; 27, Phenylalanine.
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Figure 4.3: Typi
al TOCSY spe
trum of HCC extra
t sample; for metabolites identi�
a-tion see Figure 4.5 
aption.

Figure 4.4: Example of 1H-13C HSQC spe
trum of HCC sample; for metabolites identi-�
ation see Figure 4.5 
aption.
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Figure 4.5: List of 1H and 13C 
hemi
al shift (δ, ppm) of metabolites found in 1H-TOCSY and 1H-13C-HSQC-NMR spe
tra of HCC, metastasis and adja
ent non-involvedliver tissues. a Abbreviations: GPC, gly
erophospho
holine; PC, phospho
holine; PE,Phosphoryl-ethanolamine; TMAO: Trimethylamine-N-oxide. * Expe
ted 
hemi
al shift.
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ipal Component AnalysisNotwithstanding the use of 2D spe
tra, visual inspe
tion alone did not war-rant meaningful observations of the metabolite distribution. To obtain sta-tisti
ally relevant bio
hemi
al information from NMR data, we �rst appliedmultivariate data analysis based on pattern re
ognition methods to all spe
traby 
omparing ea
h tissue with the anothers. Therefore, we applied PCA onspe
tra of NT and CIR in order to evaluate their metabolomi
 pro�les. Figure4.6 shows the PCA results as s
ores (Figure 4.6A) and loadings plots (Fig-ure 4.6B) for the �rst two prin
ipal 
omponents from spe
tra of CIR (�lledsquares, �) and NT samples (empty squares, �).

Figure 4.6: PCA 
omparison of non-tumoral (NT) with 
irrhoti
 tissues (CIR). (A) S
oresplot (R2=73.14%) for CIR (�) and NT (�). The major metaboli
 signals that di�erentiatethe two 
lasses are shown in the loadings plot (B), where numbers refer to metabolites aslabeled in Figure 4.2.Clustering is observed from the s
ores plot PC1 vs. PC2 (Figure 4.6A), wherePC1 and PC2 explained 73.14% of the total varian
e within the data. The
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 pro�le experimentsmetaboli
 signals responsible for the di�erentiation of the two 
lasses 
an beidenti�ed from loadings plot (Figure 4.6B) asso
iated with the PCA. Com-pared with NT tissue extra
ts, CIR showed in
reased 
on
entrations of la
tate(Figure 4.2 for labeling), α-/β-glu
ose, and gly
ogen, with de
reased 
on
en-tration of Thr, a
etate, Glu, Gln, 
reatine, PC, GPC, TMAO, and myo-Inositol. Applying PCA to the spe
tra of liver metastasis (�), they resultedseparated from those 
orresponding to non-
irrhoti
 normal liver (�), as de-pi
ted in the s
ores plot PC1 vs. PC2, whi
h explains 90.78% of the totalvarian
e (Figure 4.7C). The loadings plot in Figure 4.7D shows the major al-terations of the metaboli
 signals responsible for the separation. In parti
ular,metastasis di�erentiated from the non-
irrhoti
 normal liver for high level ofLeu, Thr, la
tate, Ala, a
etate, Glu, Gln, Gly, GPC, PE, and myo-Inositol,and for lower level of α-/β-glu
ose and gly
ogen.

Figure 4.7: PCA 
omparison of non-tumoral (NT) with metastasis tissues (MET-CRC).The s
ores plot C (R2=90.78%) distin
tly shows a separation for metastasis (�) and non-
irrhoti
 (�) tissues along the PC1 axis. The loadings plot (D) shows the major signals thatdetermined di�eren
e in the 
lustering, numbers refer to metabolites as labeled in Figure4.2.



4.2. Results 47As it 
an be seen in the s
ores plot (Figure 4.8A), PCA su

essfully 
lassi-�ed HCC tissues (�) from the CIR strains (�) through two PCA 
omponents,whi
h explained 70.93% of the varian
e within the dataset. The separationwas due to an in
rease of Leu, Thr, la
tate, Ala, a
etate, Glu, Gln, PC+GPCand PE, and to a de
rease of 
reatine, α-/β-glu
ose and gly
ogen in HCC(Figure 4.8B).

Figure 4.8: PCA 
omparison of HCC with 
irrhoti
 tissues (CIR). HCC (�) and the
orresponding 
irrhoti
 (�) samples separated in the s
ores plot A (R2=70.93%) along thePC1 axis, by means of the loadings plot B. Numbering as in Figure 4.2 
aption.Furthermore, we readily distinguished HCC (�) from metastases (�), asshown by the s
ores plot PC1 vs. PC2, where the two 
omponents explained83.79% of the total varian
e within the data (Figure 4.9C). The asso
iatedloadings plot shows di�eren
es of the metabolite 
on
entration whi
h deter-mined su
h 
lustering (Figure 4.9D). Compared to metastasis, HCC tissueshad higher levels of α-/β-glu
ose and gly
ogen, with lower levels of Leu,Thr, la
tate, a
etate, Glu, 
reatine, TMAO, myo-Inositol, Gly, GPC and
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 pro�le experimentsPE. Finally, we performed PCA of the whole dataset by extending pattern

Figure 4.9: PCA 
omparison of HCC with metastasis tissues (MET-CRC). The s
oresplot C (R2=83.79%) displays HCC spe
tra (�) and metastasis (�) spe
tra in two 
lustersalong the PC1 axis a

ording to the signals in the loading plot D, whi
h highlights thesignals involved in the 
lustering. Numbering as in Figure 4.2 
aption.re
ognition te
hnique to all 
lasses. Figure 4.10 shows the s
ores plot PC1 vs.PC2 and explains 77.94% of the total varian
e.Although 
lusterings displayed in Figures 4.6, 4.7, 4.8 and 4.9 
learly sep-arated di�erent pairs of hepati
 tissues, the whole model is more 
ontroversialas it appears in the s
atter plot of Figure 4.10. For that reason we performedan OPLS-DA analysis.
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Figure 4.10: PCA showing the metaboli
 di�eren
es within ea
h individual group oftissues, namely NT (N), CIR (�), HCC (�) and MET-CRC (△).Orthogonal Proje
tion to Latent Stru
tures Dis
riminantAnalysisTo better 
onstru
t a four tissue 
lasses model and to understand the role ofthe X variables ("bu
kets") in the 
lass separation, and to prove the potentialof the NMR representation in assigning new samples to a spe
i�
 
lass, we
onstru
ted an O2PLS-DA model, whi
h resulted in three predi
tive and threeorthogonal 
omponents (R2=0.65 and Q2=0.35).

Figure 4.11: 3D s
ore plot showing the 
lass separation of the di�erent group of tissues,namely NT (blue), CIR (red), HCC (yellow) and MET-CRC (green).
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 pro�le experimentsIn the 3D s
ore plot (Figure 4.11) the four tissue 
lasses appear su�
ientlyseparated in 
lusters, although the model seems to be robust for the MET-CRC samples (R2=0.82 and Q2= 0.63), but weaker for the HCC (R2=0.55and Q2=0.26) and CIR samples (R2=0.58 and Q2=0.17). However, the latentstru
ture 
orresponding to the predi
tive part of the model 
an be used toexplain the relationships between X-variables and 
lass separation.The p(
orr)/q(
orr) plot (Figure 4.12) is a useful tool to identify the vari-ables responsible for the tissues 
lass separation. The pi(
orr)j parameter isthe 
orrelation 
oe�
ient between the ti predi
tive s
ore ve
tor and the Xjvariable, and 
an be 
onsidered as a measure of the similarity between the tis
ore ve
tor and the Xj variable. On the other hand, the qi(
orr)j parameter
orresponds to the 
orrelation 
oe�
ient between the ti predi
tive s
ore ve
torand the dummy variable representing the 
lass j, and allows its representationin the same plot of the X variables. Figure 4.12 indi
ates that the �rst prin-
ipal 
omponent is very similar to variables 
orresponding to "bu
kets" 1.34,4.10, 3.90 and 3.82 ppm. In parti
ular, a progressive in
rease of the 1.34 ppmvariable 
an be observed starting from the NT 
lass, through the CIR andthe HCC up to the MET-CRC samples (Figure 4.13A). On the 
ontrary, the3.90 ppm variable shows an opposite trend through the four 
lasses (Figure4.13B).

Figure 4.12: Identi�
ation of variables responsible for the tissues 
lass separation:pq(
orr) plot with all variables ("bu
kets").
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Figure 4.13: Identi�
ation of variables responsible for the tissues 
lass separation. (A)and (B) variation of the "bu
kets" relative to the most signi�
ant signals at 1.34 ppm(la
tate) and 3.90 ppm (α-glu
ose), respe
tively, showing a progressive in
rease of the 1.34-ppm variable, and a 
orresponding de
rease of the 3.90-ppm variable. Samples are identi�edby a 
olor 
ode.In order to build a Naïve Bayes 
lassi�er the three predi
tive s
ore ve
torswere used to obtain a new representation of the sample spa
e. The predi
tionperforman
e of the 
lassi�er was evaluated by 
omplete 
ross-validation (fourgroups). It showed just 7.4% of in
orre
t predi
tion (4/54 samples), while92.6% of samples were 
orre
tly predi
ted (50/54 samples). The four sampleswere in
orre
tly 
lassi�ed as belonging to adja
ent 
lasses: one NT samplewas predi
ted as CIR (1/11 NT); two CIR samples were predi
ted as HCC(2/17 CIR), and one HCC was predi
ted as MET-CRC (1/17). For a two-
lass model, O2PLS-DA is able to obtain a powerful 
lassi�
ation and dete
tpotential markers [14℄. In this 
ase, only one 
omponent is needed to explainthe variation between the two 
lasses, and the predi
tive s
ore ve
tor t 
andire
tly be used to highlight resonan
es ("bu
kets") a
ting as potential mark-
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 pro�le experimentsers. This 
ould easily be a
hieved by building the S-plot, in whi
h p(
orr)is plotted against the predi
tive loading ve
tor p of the model, and only thevariables having an absolute p/perr ratio > 1.7 (where perr is the error on pestimated by ja
k-knife in 
ross-validation) will be 
onsidered.

Figure 4.14: S-plots reporting p(
orr) against the predi
tive loading ve
tor p of the model:(A) NT vs. HCC; (B) NT vs. MET-CRC. All models indi
ated the signals at 1.34 and 3.90ppm, as the prin
ipal dis
riminating variables.

Figure 4.15: S-plots reporting p(
orr) against the predi
tive loading ve
tor p of the model:(C) CIR vs. MET-CRC; and (D) HCC vs. MET-CRC. All models indi
ated the signals at1.34 and 3.90 ppm, as the prin
ipal dis
riminating variables.Six models were 
onsidered, ea
h 
orresponding to a pair of sample 
lasses.Figure 4.14 shows the S-plots of NT vs. HCC (panel A) and NT vs. MET-CRC (panel B) while Figure 4.15 shows the S-plots of CIR vs. MET-CRC(panel C) and HCC vs. MET-CRC (panel D). All models indi
ated the signalsat 1.34 and 3.90 ppm, stemming from the la
tate and the glu
ose, respe
tively,
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ipal variables dis
riminating both MET-CRC and HCC from NTsamples, and CIR and HCC from MET-CRC. These models 
an all be 
onsid-ered robust having high Q2 values (> 0.69). On the 
ontrary, the NT vs. CIRand the CIR vs. HCC models did not show any dis
riminating variable asa putative marker. Table reported in Figure 4.16 summarizes all parametersrelated to the O2PLS-DA models.

Figure 4.16: Summary of O2PLS-DA parameters from the six pairs of models analyzed.
a No dis
riminating variables were found as a putative marker.
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 pro�le experimentsIf a parti
ular 
lass 
an be 
onsidered as a 
ontrol, it is possible to gaininformation about the variables that dis
riminate ea
h 
lass, with respe
t tothe 
ontrol, using the so 
alled SUS-plot (Shared and Unique Stru
ture plot).Assuming the NT samples as 
ontrol, the p(
orr) ve
tors estimated for ea
htwo 
lasses models, separately in
luding the NT 
lass, were used to representthe X-variables in the SUS-plot (Figure 4.17). Sin
e the NT vs. CIR modelwas not robust enough to be understood in terms of single variables, we limitedour analysis to NT, HCC and MET-CRC 
lasses. We found that the samesignals separate both HCC and MET-CRC samples from the 
ontrol, whileno unique signals dis
riminate these two 
lasses. In parti
ular, the bu
ketslo
ated at 1.30-1.38 ppm and 4.00-4.14 ppm; whi
h 
ontain the la
tate signals,are elevated in both HCC and MET-CRC 
lasses, suggesting the la
tate as theputative marker. On the 
ontrary, the bu
kets at 3.70-4.00 ppm, 
ontainingthe glu
ose signals, are prominent in NT 
lass, suggesting the glu
ose as theputative marker. Therefore, both metabolites primarily 
ontribute to the
lassi�
ation of the di�erent groups, showing an opposite trend among thegroups. In parti
ular, the la
tate level in
reases from NT group, through CIRand HCC, to rea
h the highest value in the liver MET. On the 
ontrary, thesignals of glu
ose progressively de
rease from NT group, through CIR, HCCand MET-CRC group, whi
h shows the lowest intensity.

Figure 4.17: SUS plot of NT, HCC, and MET-CRC 
lasses. Assuming the NT samplesas 
ontrol, the p(
orr) ve
tors estimated for ea
h two 
lasses models, separately in
ludingthe NT 
lass, were used to represent the X-variables.
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ation and statisti
al signi�
an
eTo 
on�rm the parallel trend of these two putative markers (in
reased la
tateand de
reased glu
ose), we integrated the 1H-NMR isolated signals of la
-tate (βCH3, 1.33 ppm) and α-glu
ose (C1H, 5.24 ppm) in all tissue samples.We only 
onsidered the α-glu
ose, whi
h represents 
a. 36% of total glu
ose,be
ause the remaining 64%, 
orresponding to the β form, gives a signal at4.65 ppm, and as su
h it is strongly perturbed by the pulse sequen
e usedfor water peak (4.68 ppm) suppression in the NMR experiments. The peakarea of la
tate and α-glu
ose was s
aled to the molar 
on
entration takinginto a

ount that they represent the la
tate methyl group and the glu
oseisomer, and 
al
ulated the la
tate/glu
ose molar ratio. Figure 4.18 illustratesthe la
tate/glu
ose molar ratio for ea
h patient sample. The analysis of vari-an
e (ANOVA with Bonferroni 
orre
tion) has been applied, and statisti
allysigni�
ant di�eren
es were observed for the la
tate/glu
ose ratio of NT vs.MET-CRC (p < 0.001), CIR vs. MET-CRC (p < 0.001) and HCC vs. MET-CRC (p < 0.001).

Figure 4.18: La
tate-α-glu
ose molar ratio for ea
h patient sample. Statisti
ally signif-i
ant di�eren
es were observed for the la
tate/glu
ose ratio of NT vs. MET-CRC (p <0.001), CIR vs. MET-CRC (p < 0.001) and HCC vs. MET-CRC (p < 0.001). The verti
alaxis has been 
ut to highlight the variations for NT, CIR and HCC samples, all with a ratio<15.
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 pro�le experiments4.3 Dis
ussionIn this study we have used high-resolution 1H-NMR spe
tros
opy to investi-gate the metabolite 
omposition of human hepati
 tissue extra
ts of 17 pa-tients a�e
ted by hepato
ellular 
ar
inoma HCV-related (HCC), and 9 pa-tients a�e
ted by liver metastases from 
olore
tal 
ar
inoma (MET-CRC).As a 
ontrol we used 
irrhoti
 liver tissues of HCC patients (CIR) and nor-mal liver tissue of MET-CRC patients (NT), respe
tively. All spe
tral 
lasseswere visualized by PCA analysis, whi
h also highlighted the "evolution" andrelationship of the di�erent pathologi
al liver 
onditions represented by thefour NMR data 
lasses. The disease evolution is established along the PC1axis (Figure 4.12A), following the in
rease of the la
tate (Figure 4.13B), andthe remarkable de
rease of glu
ose (Figure 4.13C). The progressive in
reaseof la
tate/glu
ose ratio along the PC1 axis is 
onsistent with the enhan
ed
onversion of glu
ose into la
tate, through the di�erent 
lasses that representdi�erent tissue 
onditions su
h as hypoxia and/or "aerobi
 gly
olisis". Solidmalignant tumors are 
hara
terized by pronoun
ed tissue hypoxia [103℄ andenhan
ed formation of la
tate [104℄, but many tumors exhibit a strong gener-ation of la
tate even in the presen
e of oxygen. This phenomenon, known as"aerobi
 gly
olysis" or the "Warburg e�e
t" [105℄, is generally 
onsidered theresult of on
ogeni
 alteration in glu
ose metabolism following malignant trans-formation [106℄, but its signi�
an
e is still 
ontroversial [107℄. An elevatedla
tate 
on
entration in primary lesions at �rst diagnosis has been related toan in
reased risk of metastases in squamous 
ell 
ar
inomas of the uterine
ervix, of the head and ne
k, and in adeno
ar
inomas of the re
tum [108℄.Certainly no endogenous marker alone is able to predi
t the hypoxi
 status ofthe tumor, and we need to �nd, within hypoxi
 metaboli
 pro�les, a patternof signals (metabolites) that are expression of the pathologi
al 
hanges. How-ever, our observations suggest that the metaboli
 shift towards enhan
ed gly-
olysis would already be present in the early stage, during multi-step hepati
tumorigenesis. Starting from liver 
irrhosis, widely 
onsidered as pre
an
erouslesions, the upregulation of gly
olysis showed progressive rate of 
onversion indi�erent hepati
 
onditions, thus indi
ating the metastasis group as the one,among all 
lasses, requiring the larger amount of 
onversion in energy for itsmalignan
y 
hara
teristi
s. Most probably, 
ell population with upregulatedgly
olysis 
ould develop growth advantages whi
h promote un
onstrained pro-liferation and invasion [106℄.The PCA analysis of variables shows that PC1 separates NT from MET-CRC, and CIR from HCC, while PC2 separates NT from CIR, and MET-CRC from HCC. These separations ideally identify two di�erent "metaboli
developmental traje
tories", whi
h, based on the 
hanges in the NMR-visible
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ussion 57metabolome, des
ribe liver tumorigenesis (Figure 4.12). Starting from NT, itis possible to ideally draw an ideal line through CIR to HCC, a

ording to asequel of pathologi
al liver alterations. Conversely, it is possible to 
onne
tNT dire
tly to MET-CRC, a

ording to the absen
e of any liver "interme-diate" state. It is worth spe
ulating about the possible appli
ations of su
hmetaboli
 traje
tories. Firstly, the traje
tory 
ould be used to identify aspe
i�
 pathologi
al state by verifying when 
andidate metabolites deviatefrom the normal path. This 
ould then be 
orrelated with known morpholog-i
al events providing insight into the progression towards HCC. Furthermore,the traje
tory 
ould de�ne the point of HCC tumorigenesis where a limitednumber of genomi
 (DNA mi
roarray) and/or proteomi
 studies 
ould be 
ar-ried out to better 
hara
terize the on
ogeni
 
hanges. Se
ondly, 
omparisonof metaboli
 traje
tories 
an provide a suitable way to distinguish primarytumors from metastases. Thirdly, the e�e
ts of drug treatment 
ould be as-sessed by determining if the pathologi
al metaboli
 traje
tory tends to the"normal" state. On this regard, the 1H-NMR spe
tra provided quantitativedata by integrating sele
ted metabolite signals that were found to primarily
ontribute to the 
lassi�
ation of the di�erent groups. In parti
ular, we identi-�ed the la
tate/glu
ose ratio, whi
h shows an opposite trend among subgroupsand within ea
h of them, therefore a�ording a reliable method for evaluatinghealthy or non-healthy status of the liver.In this study the patients who developed HCC were also a�e
ted by 
hroni

irrhosis HCV-related. Hepatites C infe
tion is the most frequent liver infe
-tion and is 
onsidered a pre-
an
erous lesion of liver. HCV infe
tion is alsoasso
iated with an in
reased risk of glu
ose intoleran
e and diabetes maybedue to an impaired glu
ose homeostasis mediated dire
tly by HCV proteins.Liver 
irrhosis is a progressive �broti
 pro
ess that is 
hara
terized by the �nalne
rosis of hepato
ytes. In normal 
onditions, after 
arbohydrate digestion,blood glu
ose level rises, and in hepato
ytes insulin a
ts so as to stimulateseveral enzymes and 
onvert ex
ess glu
ose into gly
ogen, thus preventing ex-
essive osmoti
 pressure build up inside the 
ell. In fa
t, CIR samples (Figure4.2B), 
ompared to NT samples (Figure 4.2A), show an in
reased amountof la
tate, and the la
tate/glu
ose ratio is 
a. 2 times that in NT (Figure4.18). Hepati
 transformations o

ur by sequential a

umulation of geneti
and mole
ular alterations, and HCC is often the result of a slow and progres-sive evolution going through the development of liver 
irrhosis. The la
tatein HCC samples is 
a. 2 times higher than that in CIR samples, meaningthat there is an alteration of the 
arbohydrate metabolism, with enhan
edgly
olysis and alteration of the tri
arboxyli
 a
id (TCA) 
y
le [15℄.Metastasis formation is the result of a multi-step 
as
ade of events o

ur-ring to 
an
er 
ells during tumor dissemination, whi
h brings about 
onsid-
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 pro�le experimentserable metaboli
 
hanges [109℄. The large in
rease in la
tate 
on
entration aswell as the de
rease of intra
ellular glu
ose level was the predominant e�e
tfor the separation of metastases from HCC and NT (Figure 4.17), and thela
tate/glu
ose ratio in MET-CRC ranges from 9 to 40 fold higher 
omparedto HCC and NT, respe
tively (Figure 4.18), thus suggesting a role for theenhan
ed phenomenon of "aerobi
 gly
olysis". Furthermore, the metastati
pro
ess for remodeling and altering extra-
ellular matrix, tightly asso
iatedwith 
ell proliferation, is 
onsistent with the elevation of la
tate, and has beenalready reported for metastasis in axillary lymph nodes in breast 
an
er andhuman 
ervi
al 
an
er [110℄.The approa
h used in this study highlighted metaboli
 evolution of di�er-ent liver diseases: 
irrhosis, HCC, and liver metastasis. The analysis of su
ha wide range of spe
imen types indi
ated that the 
ommon dis
riminatingfa
tor, a progressive in
rease of la
tate 
on
entration, is 
oupled with 
hangesin TCA 
y
le and alterations of the energy metabolism in the liver of CIRand HCC patients HCV-related. In addition, the raise of la
tate is also 
ou-pled with a stronger elevation of la
tate/glu
ose ratio of patients MET-CRCmay be due to other metaboli
 me
hanisms. In previous HR-MAS studieson inta
t tissues, the la
tate resonan
e was dis
arded for possible anaerobi
degradation of glu
ose indu
ed during surgery or experiment [111℄. Here allsamples underwent the same treatment, and therefore we 
an safely ex
ludeexternal fa
tors altering the la
tate levels. Furthermore, the dual extra
tionpro
edure used in our study allowed identi�
ation and quanti�
ation a mu
hhigher number of polar metabolites in 
omparison with proto
ols previouslydes
ribed for the NMR spe
tros
opy on inta
t tissues ex vivo [112℄.



4.4. Materials and methods: b) exhaled breath 
ondensate 594.4 Materials and methods: b) exhaled breath
ondensateSpe
imens 
olle
tionA total of 36 paired EBC and saliva samples were 
olle
ted from the followinggroups of subje
ts: 12 healthy subje
ts (HS; nine males, mean age 55.6±7.2yrs); 12 larynge
tomized patients (nine males, mean age 60.2±6.2 yrs); and 12patients a�e
ted by 
hroni
 obstru
tive pulmonary disease (COPD; 11 males,mean age 64.9±5.7 yrs). All HS were nonsmokers, while the larynge
tomizedpatients (who provided samples through a stoma, bypassing the pharynx en-tirely) and the COPD patients were ex-smokers (at least 24 months sin
esmoking). All subje
ts presented no o

upational or other pronoun
ed expo-sure to organi
 solvents. The larynge
tomized patients had been previouslytreated by larynge
tomy for laryngeal 
ar
inoma for at least one year prior(range 12-18 months) and did not have a history of 
hroni
 respiratory dis-ease or re
urrent exa
erbations. COPD patients had re
eived diagnosis in thepast a

ording to the Global Initiative for Chroni
 Obstru
tive Lung Diseaseguidelines [113℄. The COPD anthropometri
 
hara
teristi
s are summarizedin table in Figure 4.19.

Figure 4.19: Anthropometri
 
hara
teristi
s of 12 patients a�e
ted by 
hroni
 obstru
tivepulmonary disease. BIM: body mass index; FEV1: for
ed expiratory volume in one se
ond;% pred: predi
ted; FVC: For
ed vital 
apa
ity; GOLD: Global Initiative for Chroni
 Ob-stru
tive Lung Disease; M: male; F: female. FEV1, FVC and FEV1/FVC were measuredafter bron
hodilatation inhalation test.None of the patients were on regular systemi
 or inhaled 
orti
osteroid treat-ment. They were asked not to use long-a
ting β2-agonist and anti
holinergi
agents for a period longer than 12 h and 24 h, respe
tively, before EBC 
olle
-
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 pro�le experimentstion. All subje
ts were free from upper and/or lower airway infe
tion for, atleast, 4 weeks before the EBC 
olle
tion. They refrained from food intake for4 h before the test and from al
oholi
 drinks for 18 h before EBC 
olle
tion.In larynge
tomized patients, lower respiratory tra
t se
retions were a
tivelymanaged by selfsu
tioning and 
leaning before ea
h EBC 
olle
tion.To assess within-day repeatability, eight subje
ts (four HS and four COPDpatients) were asked to 
olle
t EBC and saliva twi
e within the same day (attimes 0 h and 12 h). All subje
ts gave informed 
onsent and the study proto-
ol was approved by the Ethi
s Committee of the Monaldi Hospital (Naples,Italy).EBC samplingEBC was 
olle
ted using an E
oS
reen 
ondenser (Jaeger, Wurzburg, Ger-many) as previously des
ribed [40℄ (Figure 4.20). Brie�y, all subje
ts breathedthrough a mouthpie
e (larynge
tomized patients provided samples throughthe stoma) and a two-way nonrebreathing valve, whi
h also served as a salivatrap, at normal frequen
y and tidal volume, while sitting 
omfortably andwearing a nose-
lip for a period of 15 min. They maintained a dry mouthduring 
olle
tion by periodi
ally swallowing ex
ess saliva.

Figure 4.20: EBC s
hemati
 
olle
ting system.Condensate samples (3-4 ml) were immediately transferred into glass vials of10 ml volume, 
losed with 20 mm butyl rubber lined with polytetra�uoroethy-lene septa, and 
rimped with perforated aluminium seals. Volatile substan
es,



4.4. Materials and methods: b) exhaled breath 
ondensate 61possibly deriving from extra-pulmonary sour
es [114, 115, 116℄, were removedby a gentle stream of nitrogen before sealing. Nitrogen was applied for avariable time (1, 3, 5, 10, 15 and 20 min); no di�eren
e was observed withspe
tra a
quired after 1 min nitrogen exposure, but sin
e su
h an intervalappeared to be too short to avoid systemati
 errors, a 3 min interval was
hosen. Nitrogen was used be
ause the 
on
entration of volatile solutes inEBC is dependent on their distribution between the saliva, exhaled air anddroplets, and the 
ondensate. This distribution 
an be altered by multiplefa
tors, in
luding minute ventilation, salivary pH, solubility, temperature andsample preparation [117℄. Therefore, spe
tral di�eren
es may depend uponun
ontrollable variables that prevent reliable quanti�
ation. The nitrogenstream also removes oxygen from solutions. Su
h a pro
edure, used for NMRprotein stru
ture determination [118℄, together with freezing of sealed samplesin liquid nitrogen, immediately "quen
hes" metabolism at the 
olle
tion time,and prevents any metaboli
 de
ay [37℄. Samples were then stored at -80 ◦Cuntil NMR analysis. Drying of the samples was avoided to 
ir
umvent irre-versible solute pre
ipitation and/or formation of insoluble aggregates, whi
hwere observed upon dissolving the dried 
ondensate for NMR measurements.Pre-analyti
al preparation of EBC 
ondenser reusablepartsBefore and after 
olle
tion of ea
h EBC sample, the reusable parts of the
ondenser (valve, salivary trap and lamellar 
ondenser) were disinfe
ted for 15min using a solution of a 1.5% freshly prepared 
hemi
al agent (Des
ogenTM ;FILT GmbH, Berlin, Germany), and repeatedly �ushed with water followingthe manufa
turer's guidelines. To 
ompletely eliminate the disinfe
tant, partsalready disinfe
ted and washed were thoroughly rinsed for 15 min with puregrade ethanol (96%), thereafter exhaustively soaked with deionized distilledwater for 15 min and dried under va
uum at 50 ◦C.Salivary 
olle
tionTogether with EBC 
olle
tion, a salivary sample was taken in the same day. Toavoid any interferen
e from exogenous agents into the oral environment, thepatients were asked to 
olle
t all saliva available (∼ 2-4 ml), i.e. "whole" salivaexpe
torated from the mouth, into a plasti
 universal tube immediately afterwaking in the morning. As previously des
ribed by Silwood et al. [38℄, ea
hpatient was requested to refrain 
ompletely from oral a
tivities (i.e. eating,drinking, tooth brushing, oral rinsing,smoking, et
.) during the short periodbetween awakening and sample 
olle
tion (<5 min). Ea
h 
olle
tion tube
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ontained 15 µmol sodium �uoride, su�
ient to ensure that metabolites werenot generated or 
onsumed via the a
tions of ba
teria or ba
terial enzymespresent in whole saliva during periods of sample preparation and/or storage[39℄. Spe
imens were transported to the laboratory on i
e and immediately
entrifuged (at 20,000×g at 4 ◦C for 15 min) on their arrival to remove 
ellsand debris. Following this, a gentle nitrogen gas �ow was applied for ∼5 minto supernatants, whi
h were then stored at -80 ◦C until measurements weremade.The 1H-NMR pro�les of salivary supernatant spe
imens subje
ted to anal-ysis immediately after 
olle
tion into the �uoride-
ontaining tubes and rapid
entrifugation were 
ompared with those of the same samples stored as de-s
ribed previously, and no di�eren
es were dis
ernible, i.e. none of the 
riteriainvestigated 
hanged signi�
antly during these periods of storage.Sample preparation for NMR analysisEBC samples were rapidly defrosted. To provide a �eld frequen
y lo
k, 70 µlof a deuterium oxide (D2O) solution, 
ontaining 1 mM sodium 3-trimethylsilyl(2,2,3,3-2H4) propionate (TSP) as a 
hemi
al shift referen
e for 1H spe
tra andsodium azide at 3 mM, was added to 630 µl of 
ondensate, thus making 700
µl total volume. Saliva samples were rapidly defrosted and 70 µl of referen
estandard solution (D2O-TSP) was added to 630 µl of sample.NMR measurements1D spe
tra were re
orded on a Bruker Avan
e spe
trometer (Bruker BioSpinGmbH, Rheinstetten, Germany) operating at a frequen
y of 600.13 MHz (1H)and equipped with a TCI CryoProbeTM (Bruker BioSpin GmbH), at a probetemperature of 27 ◦C. The water resonan
e was suppressed by using thenoesypresat pulse sequen
e, 
alled noesypr1d a

ording to the manufa
tur-ers. It has the form - RD-90◦-t-90◦-tm-ACQ, where RD is a relaxation delay,t a short delay, 90◦ represents a 90◦ radio frequen
y pulse, tm the mixingtime and ACQ the data a
quisition period. In the present study a
quisition
onditions, the 
arrier frequen
y (O1) value was set on the water resonan
e,the saturation power was 62 dB, t was 4 µs, tm was 100 ms, the spe
tralamplitude was 7002.8 Hz, the time domain was 16 K, RD was 2.0 s and thenumber of transients was 256. This resulted in a total a
quisition time of 14min per sample. For pro
essing, a line broadening of 0.6 Hz was applied anda real spe
trum size of 32 K was used. Spe
tra were referred to TSP, assumedto resonate at a δ of 0.00 ppm.



4.5. Results 63Statisti
al analysisHigh-resolution 1H-NMR spe
tra were automati
ally data redu
ed to 200 inte-gral segments ("bu
kets"), ea
h of 0.02 ppm, using the AMIX software pa
kage(Bruker BioSpin GmbH). The resulting integrated regions were imported intothe SIMCA pa
kage (Umetri
s, Umea, Sweden) and used for statisti
al analy-sis and pattern re
ognition. Before pattern re
ognition analysis, ea
h integralregion is usually normalized to the sum of all integral regions of ea
h spe
-trum; however, be
ause of the presen
e of 
ontaminant peaks, ea
h bu
ketwas normalized to the TSP peak of known 
on
entration for a referen
e re-gion of between 0.014 and -0.014 ppm. The 
orre
tness of the approa
h wastested by 
omparing the results with those obtained by referring to the sum ofall integral regions of ea
h 
ontaminant free spe
trum. No signi�
ant di�er-en
e was observed between the two approa
hes; therefore, pattern re
ognitionanalysis was reliable with normalization to TSP. Data were prepro
essed withthe Centering s
aling and then pro
essed with PCA and partial least squaresdis
riminant analysis (PLS-DA).4.5 ResultsSpe
tral di�eren
es between EBC and salivaFigure 4.21 represents spe
tra of saliva (Fig. 4.21a, b and 
) and EBC samples(Fig. 4.21d, e and f) from one HS (Fig. 4.21a and d), one larynge
tomizedpatient (Fig. 4.21b and e) and one COPD patient (Fig. 4.21
 and f). Salivaspe
tra were highly di�erent from 
orresponding EBC samples and were no-tably dissimilar between patients: a visual examination establishes a 
orre-sponden
e between spe
tra from a HS (Fig. 4.21a) and a larynge
tomizedpatient (Fig. 4.21b), but a di�eren
e from the COPD spe
trum (Fig. 4.21
),whi
h shows sharper lines. The most intense signals in the 0.0-3.2 ppm regionof saliva were assigned a

ording to previous studies [38, 101℄. Resonan
eassignment was as follows: leu
ine δCH3s (triplet) at 0.96 ppm; propionate
βCH3 at 1.04 ppm (triplet) and αCH2 at 2.19 ppm (quartet); la
tate βCH3at 1.32 ppm (doublet) and αCH at 4.11 ppm (quartet); threonine γCH3 at1.36 ppm (doublet); alanine βCH3 at 1.47 ppm (doublet) and αCH at 4.20ppm (quartet); a
etate βCH3 (singlet) at 1.93 ppm; βCH2 of glutamate andglutamine at 2.10 ppm (multiplet); βCH3 of pyruvate at 2.37 ppm (singlet);
α,βCH2 of su

inate at 2.41 ppm (singlet); εCH2 of lysine at 3.06 (triplet);N-CH3s of 
holine at 3.16 ppm and of phosphoryl
holine at 3.23 ppm (bothsinglets); and N-CH3 of taurine at 3.23 ppm (triplet).
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Figure 4.21: Representative one-dimensional 1H-NMR spe
tra of saliva (a, b and 
) andexhaled breath 
ondensate (EBC; d, e and f) samples from healthy (a and d), larynge
-tomized (b and e) and 
hroni
 obstru
tive pulmonary disease (
 and f) patients. The groupof signals 
entered at 3.8 ppm in saliva spe
tra originates from 
arbohydrates and is notvisible in the 
orresponding EBC spe
tra.



4.5. Results 65Signals between 3.3 and 6.0 ppm originate from 
arbohydrates and werevirtually absent in the EBC spe
tra. Compared with saliva, EBC spe
tra pre-sented fewer signals and, as observed for saliva, the COPD patient tra
e (Fig.4.21f) appeared to be di�erent from the HS (Fig. 4.21d) and larynge
tomizedpatient (Fig. 4.21e) tra
es. Spe
tral di�eren
es between saliva and EBC wereveri�ed by PLS-DA analysis. Due to the 
omplete absen
e of the 
arbohydratesignals in the EBC spe
trum, the region 5.0 to 3.5 ppm was 
ut out from allspe
tra, partitioning the region between 3.5 and 0.8 ppm. Figure 4.22 showsthe s
ore plots of saliva and EBC samples from all subje
ts. Considering twoPLS-DA 
omponents, it was possible to obtain a sample 
lassi�
ation of 95%(samples 
orre
tly 
lassi�ed into di�erent regions). In parti
ular, while EBCsamples were all 
lustered, the saliva samples of HS, larynge
tomized andCOPD patients were positioned di�erently from EBC and from ea
h other.Su
h a separation 
omes mostly from signals resonating within the 3.5-2.9 and2.1-1.7 ppm regions. EBC and saliva samples 
olle
ted from eight subje
tstwi
e within the same day (at times 0 h and 12 h) demonstrated good within-day repeatability, showing no evident di�eren
e in resonan
es in the spe
tra.

Figure 4.22: Partial least squares dis
riminant analysis (PLS-DA) s
ores dis
riminationfor exhaled breath 
ondensate (△: larynge
tomized patients; N: healthy subje
ts (HS); •:
hroni
 obstru
tive pulmonary disease (COPD) patients)and saliva (�: larynge
tomized;
�: HS; ◦: COPD). All variables were used and two PLS-DA 
omponents were retained inthe model, obtaining a 
lassi�
ation of ∼95%. The region 5.0 to 3.5 ppm, 
ontaining the
arbohydrate signals, was 
ut out from the bu
keting, and only the signals between 3.5 and0.8 ppm were analyzed. t[1℄ and t[2℄ are the �rst two prin
ipal 
omponents.
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 pro�le experimentsE�e
ts of disinfe
tant 
ontamination on EBC spe
traFigure 4.23 shows the 1H-NMR spe
trum of Des
ogenTM (Fig. 4.23a) withrepresentative spe
tra of EBC samples 
ontaminated by the disinfe
tant be-
ause of insu�
ient washing time (Fig. 4.23b and 
). To 
ompletely eliminatethe disinfe
tant, parts already disinfe
ted and washed were thoroughly rinsedfor 15 min with pure grade ethanol (96%), thereafter exhaustively soaked withdeionized distilled water for 15 min and dried under va
uum at 50 ◦C (Fig.4.23d).

Figure 4.23: Contamination of exhaled breath 
ondensate (EBC) samples by Des
ogenTM(FILT GmbH, Berlin, Germany). a) 1H-nu
lear magneti
 resonan
e spe
trum ofDes
ogenTM , 
ompared with b) spe
tra of EBC samples after partial washing (15 min),and 
) intense water rinsing (30 min). d) Contamination was 
ompletely removed afterthe washing pro
edure using ethanol. The a
etate signal at 1.93 ppm was 
ut in all EBCspe
tra. a) The verti
al s
ale is one quarter the size of the other spe
tra. #: la
tateresonan
es.The resonan
es of the "saline" 
omponents of the disinfe
tant (
itri
 a
id,at 2.66 ppm in the Des
ogenTM spe
trum (Fig. 4.23a), and pentapotassiumbis(peroxymonosulphate) bis(sulphate), highly soluble in water) disappeared
ompletely after partial washing (15 min; Fig. 4.23b). However, minor un-known 
omponents, su
h as those giving signals in the 8.2-7.3 and 1.3- 0.7



4.5. Results 67ppm regions and the signal lo
ated at 3.2 ppm, appeared to be more persistenteven after intense water rinsing (30 min; Fig. 4.23
). They were 
ompletelyremoved only after the washing pro
edure using ethanol (Fig. 4.23d). Asthe perturbation indu
ed by the disinfe
tant 
ontamination of EBC samplesshowed visible signals, two di�erent 
ontaminated sets of 12 EBC samplesfrom all COPD patients were examined after partial washing (15 min, "highDes
ogenTM"; Fig. 4.23b); and after intense water rinsing (30 min, "lowDes
ogenTM"; Fig. 4.23
). Sin
e the region 8.5-7.0 ppm was absent in the"
leaned" EBC spe
trum (Fig. 4.23d), as suggested by Carraro et al. [40℄,the region 4.5 to 0.5 ppm was used and the la
tate signals were ex
luded (Fig.4.23d). Considering two PLS-DA 
omponents, a 
lassi�
ation of ∼72% wasobtained, with high-Des
ogenTM and low- Des
ogenTM EBC samples 
lassi-�ed in two wide regions (Fig. 4.24). This suggests that the presen
e of thedisinfe
tant at variable 
on
entration a�e
ts the interpretation and the sta-tisti
al analysis of the samples. However, if the presen
e of 
ontaminant isignored by a 
areful sele
tion of the spe
tral regions to be used for statisti
alanalysis, it is possible to 
orre
tly 
lassify the samples. In fa
t, by sele
tingonly the Des
ogenTM - free regions of the spe
tra (3.5-2.9 and 2.1-1.7 ppm),all the samples 
ould be 
orre
tly 
lassi�ed.

Figure 4.24: Partial least squares dis
riminant analysis s
ores dis
rimination for 
ontam-inated exhaled breath 
ondensate (EBC) samples after di�erent washing times; ◦: highDes
ogenTM (15-min rinsing); •: low Des
ogenTM (30-min rinsing). t[1℄ and t[2℄ are the�rst two prin
ipal 
omponents.
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 pro�le experimentsEBC spe
tral dis
rimination between HS, larynge
-tomized and COPD patientsThe 3.5-1.7 ppm region of 
lean (i.e. Des
ogenTM -free) EBC samples was usedto investigate the metabolites 
hara
terizing EBC. Figure 4.25 depi
ts repre-sentative spe
tra of HS (Fig. 4.25a), larynge
tomized patients (�g. 4.25b)and COPD patients (Fig. 4.25
).

Figure 4.25: Representative 1H-nu
lear magneti
 resonan
e spe
tra of 
ontaminant-freeexhaled breath 
ondensate samples from a) healthy subje
ts, b) larynge
tomized patientsand 
) 
hroni
 obstru
tive pulmonary disease patients. The a
etate singlet at 1.93 ppm is
ut by a horizontal bar.Although the region 
ontains few signals, the signals spe
i�
ally 
hara
-terize ea
h patient subset, showing both quantitative (signal intensity) and



4.5. Results 69qualitative (signal absen
e/ presen
e) di�eren
es. Di�eren
es in intensitywere shown by the signals of: a
etate βCH3 (singlet) at 1.93 ppm; propi-onate αCH2 at 2.19 ppm (quartet); pyruvate βCH3 (singlet) at 2.37 ppm;su

inate α, βCH2 (singlet) at 2.41 ppm; glutamine γCH2 (multiplet) at 2.45ppm; 
holine and phosphoryl
holine N-CH3s (singlets) at 3.16 and 3.23 ppm,respe
tively; methanol CH3 at 3.37 ppm (singlet); and trimethylamine-N-oxide (TMAO) N-CH3 (singlet) at 3.44 ppm, as well as by the singlet at 3.03ppm that most likely originated from N-CH3 of 
reatine/
reatinine. Pyru-vate was present in the COPD spe
trum (Fig. 4.25
) and was very intensein the HS spe
trum (Fig. 4.25a), but barely visible in the larynge
tomizedspe
trum (Fig. 4.25b). Su

inate was small in the HS spe
trum (Fig. 4.25a),bigger in the larynge
tomized spe
trum (Fig. 4.25b) but absent in the COPDspe
trum (Fig. 4.25
). Glutamine was only present in the HS spe
trum (Fig.4.25a). The singlet at 3.03 ppm was only present in the COPD spe
trum (Fig.4.25
). Choline and phosphoryl
holine were absent in the COPD spe
trum(Fig. 4.25
), and TMAO was present in the HS spe
trum (Fig. 4.25a), barelyseen in the larynge
tomized spe
trum (Fig. 4.25b) and absent in the COPDspe
trum (Fig. 4.25
). All these di�eren
es prompted a 
lear dis
riminationof HS, larynge
tomized and COPD patients in three separate groups (Fig.4.26).

Figure 4.26: Partial least squares dis
riminant analysis (PLS-DA) s
ores dis
riminationfor 
ontaminant-free exhaled breath 
ondensate samples. �: healthy subje
ts; �: laryn-ge
tomized patients; ◦: 
hroni
 obstru
tive pulmonary disease patients. Two PLS-DA
omponents a�orded a 
lear 
lassi�
ation (∼94%), with all samples 
orre
tly 
lassi�ed intothree regions. Verti
al and horizontal bars refer to samples 
olle
ted in dupli
ate. t[1℄ andt[2℄ are the �rst two prin
ipal 
omponents.



70 Chapter 4. NMR metaboli
 pro�le experiments4.6 Dis
ussionThe present study demonstrates, for the �rst time, that NMR based metabo-nomi
s 
an be used to analyze EBC samples from adults, allowing a 
lear-
utseparation between HS and patients with airway disease.Although less sensitive than ELISA and mass spe
trometry, NMR requiresminimal sample preparation with a rapid a
quisition time (∼10-15 min). Fur-thermore, it is nondestru
tive and allows 
omplete dete
tion of observablemetabolites ("sample metaboli
 �ngerprint") at a reasonable 
ost.The present data show that saliva is signi�
antly di�erent from the EBCsamples and that the presen
e of identi
al metabolites in EBC and salivadoes not hamper dis
rimination. By sele
ting the 3.5-0.8 ppm region (therebyex
luding the 
arbohydrate signals absent in EBC), saliva spe
tra 
learly dif-fer from EBC (Fig. 4.22), notwithstanding the presen
e of some 
ommonmetabolites (leu
ine, la
tate, propionate, a
etate, et
.). EBC standardizingguidelines [32℄ indi
ate that it is reasonable to assume that there is some de-gree of oral 
ontamination of EBC, as saliva 
ontains many of the mediatorsthat are also present in the lower airways. Contamination of EBC is oftenproved by measuring the amylase level, but su
h a test is not spe
i�
 anda negative signal does not 
ompletely ex
lude minute 
ontribution from themouth. To date, there are no data 
omparing the metaboli
 saliva 
ompositionand a lower airway derivate su
h as EBC, mainly be
ause 
ondensate sampleshave been s
reened for single, spe
i�
 biomarkers and not as a whole. Indeed,
ombined saliva and EBC analysis by a metabonomi
s method has been re-
ently advo
ated [116℄. In light of these assumptions, the 
urrent authors alsoexamined EBC from larynge
tomized patients, whi
h may represent a truesaliva-free material from the lower airways, showing that in those subje
ts allsaliva spe
tra stri
tly di�ered from 
orresponding EBC samples. Importantly,all EBC and saliva 
olle
ted twi
e within the same day (12 h apart) showedgood within-day repeatability (Fig. 4.26). Taken together, the data suggestthat saliva 
ontamination may play a minor role in the interpretation of EBCby NMR-based metabonomi
s. The in�uen
e of external 
ontaminants wasalso 
onsidered, as the International Consensus on EBC re
ommends spe
ial
are in the disinfe
tion of reusable parts of 
ondensers [31℄. Upon standard
leaning, all EBC spe
tra presented signals 
orresponding to unknown ina
tivesubstan
es of the disinfe
tant. They persisted even after strong and repeatedwater soaking, and the presen
e of variable disinfe
tant 
on
entration upondi�erent 
leaning levels may render 
lassi�
ation less e�e
tive. Complete re-moval of the disinfe
tant signals was observed after washing the reusable partswith 96% ethanol and then rinsing thoroughly with distilled water for 15 min.EBC samples were "spiked" by partially washing the apparatus with water,



4.6. Dis
ussion 71after treatment with freshly prepared Des
ogenTM , obtaining di�erent degreesof EBC 
ontamination. Sin
e the 
itri
 a
id signals were absent after partialwashing (Fig. 4.23b), it is important to underline that the potentially toxi
saline 
omponents of the disinfe
tant are easily removed from the 
ondenserapparatus by water washing. However, the removal of interfering residualexternal 
ontaminants is 
ru
ial for a 
orre
t EBC analysis. There are nodata on the in�uen
e of residual disinfe
tant agents of reusable parts of EBC
ondensers. The in�uen
e of residual Des
ogenTM on reported biomarker lev-els was not evaluated by an ELISA method, but the present authors suggestthat the potential role of external 
ontamination on the variability of somebiomarkers [119, 120℄ should be evaluated. Signi�
antly, by sele
ting spe
i�
regions of EBC spe
tra for statisti
al analysis, an e�
ient dis
rimination ofsamples was obtained. Although separation between HS and COPD patients
an be a
hieved by either for
ed expiratory volume in one se
ond measure-ments or 
lini
ally, the 
urrent authors evaluated the 
apability of NMR-basedmetabonomi
s to separate EBC subje
ts with airway diseases (COPD) fromsubje
ts without respiratory diseases. Five NMR signals appear to di�erenti-ate "respiratory" (COPD) from "non-respiratory" (HS and larynge
tomized)subje
ts. As a 
omparison, Carraro et al. [40℄ reported the single a
etatesignal variation as distin
tive in asthmati
 
hildren with respe
t to 
ontrols.They hypothesized that a
etate in
rease might be related to in
reased a
ety-lation of pro-in�ammatory proteins in the extra
ellular spa
e in the airwayenvironment. Furthermore, they found that peaks in 3.2- 3.4 ppm regionsof the NMR spe
trum of asthmati
 
hildren were probably related to oxi-dised 
ompounds. Heili-Frades et al. [121℄ have reported preliminary dataon signi�
ant variations between NMR EBC spe
tra of normal and patholog-i
al 
ases with impli
ations for 
orrelative studies using spe
tral and 
lini
al
lassi�
ation.In the present study, by 
omparing EBC from respiratory (COPD) pa-tients and non-respiratory (HS and larynge
tomized) subje
ts, as well as a
-etate, four additional signal variations were found, whi
h are likely to havein
luded the methoxy 
ompounds. It 
an be spe
ulated that su
h variations
ould derive from the in
reased oxidative stress that is a hallmark of COPD,and these variations are usually investigated in EBC by measuring a limitednumber of markers [119, 120℄. Also, the 
omparison between HS, larynge
-tomized and COPD EBC samples showed a 
lear-
ut di�eren
e (Fig. 4.25)in the COPD patients 
ompared with the other subje
ts. Figure 4.26 depi
tsa signi�
ant statisti
al di�eren
e along t[1℄ of COPD patients 
ompared withHS and larynge
tomized patients, who are less separated along t[2℄. This
ould be interpreted by the fa
t that larynge
tomized patients were not la-beled as COPD before or after surgery; furthermore, mild air�ow limitation
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 pro�le experimentswas dete
ted in only a few subje
ts (data not shown).In 
on
lusion, NMR-based metabonomi
s 
an safely be applied to exhaledbreath 
ondensate in adults, allowing an unambiguous de�nition irrespe
tiveof natural and/or arti�
ial 
ontaminants. In parti
ular, the 
urrent authorsreport that nu
lear magneti
 resonan
e spe
tra of exhaled breath 
ondensate,
olle
ted with a devi
e using a salivary trap, do not show the presen
e of salivasignals. Furthermore, for the disinfe
tant medium 
urrently used, a 
arefulsele
tion of the nu
lear magneti
 resonan
e region allows a 
lear statisti
al
lassi�
ation of samples, even for 
ontaminated exhaled breath 
ondensatesamples. Finally, the present results suggest that 
ondensate 
an be e�
ientlystudied as a whole, and that nu
lear magneti
 resonan
e may be
ome a leadingdiagnosti
 te
hnique in this �eld.
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ussion . . . . . . . . . . . . . . . . . . . . . . . . . . 82This 
hapter is based on the paper: R. Romano, D. Paris, F. A
ernese,F. Barone, A. Motta. Fra
tional volume integration in two-dimensional NMRspe
tra: CAKE, a Monte Carlo approa
h. J Magn Res 192 (2008) 294-301.5.1 Simulation testsIn order to test the CAKE algorithm, we simulated peaks of di�erent shapeand overlapping degree. First, we applied CAKE to simulated overlappingpeaks of known volume with di�erent overlapping degrees to optimize thenumber NPbase to determine the fra
tional volume VF with the Hit-or-Missmethod. Se
ond, we tested CAKE integration on di�erent ellipti
 NMR peakse
tions.5.1.1 Simulations: bias vs. overlappingWe 
onsidered two Gaussian peaks 
entered at (xi, yi), of equation

G(x, y) = Aiexp[−
(x − xi)

2 + (y − yi)
2

2σ2
i

] (5.1)
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i Ai and with half-height width ζi =

√
2σ2

i ln2, i = 1, 2, andaddition of Gaussian noise. Denoting by
d =

√
(x1 − x2)2 + (y1 − y2)2 (5.2)the distan
e between the peak 
enters, it is possible to de�ne the parameter η

η ≡
ζ1 + ζ2

d
(5.3)as an index of the overlap, su
h that a large value 
orresponds to strongoverlap. Setting the amplitude A1 = 50.0 and the dispersion 2σ2

1 = 2.0 toobtain V1 = 100π, the A2 and 2σ2
2 values were 
hanged so as to keep thevolume V2 
onstant (V2 = 100π), with the overlap index being 0.8 ≤ η ≤ 1.5.The 
ontour plots of the simulated peaks are reported in Figure 5.1and Figure5.2 for η = 0.8 (peak 1), and η = 1.5 (peak 2).

Figure 5.1: 3D Gaussian peaks with di�erent degree of overlap (η): a) η = 0.8 and b)
η = 1.5.CAKE integration was 
ompared with the standard one, obtained by sum-ming the amplitudes of all data points within a polygonal bounding the peak.In order to establish the best number of extra
tions NP in the Hit-or-Miss de-termination of R, and the best number of extra
tions NPbase

in the Hit-or-Missdetermination of the fra
tional volume, simulations were 
ondu
ted in the ex-treme limit of η = 1.5.(Figure 5.2, peak 2). Figure 5.3 reports the per
entage
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Figure 5.2: Contour plot of two Gaussian peaks with di�erent degree of overlap (η): peak1, η = 0.8 and peak 2, η = 1.5. For the de�nition of η see text. d is the distan
e betweenpeak 
enters.

Figure 5.3: Per
entage (%) of Bias as a fun
tion of the number of extra
tions (NP ) toestimate the R fa
tor. For ea
h NP we tested several NPbase
values to estimate the volumefra
tion, and they are indi
ated with 
orresponding symbols on the right.
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tions NP , for di�erent NPbase
values rangingfrom 100 to 1000 (right 
olumn in Figure 5.3). As it 
an be seen, results be-
ome unbiased for NP ≥ 1500, while, ex
ept for NPbase

= 100 (square symbol),the dependen
e on NPbase
is negligible. A

ordingly, the values NP = 2000,and NPbase

= 500 appear to be a good 
ompromise between 
omputing timeand a

ura
y. The results of the simulations are reported as per
entage ofBias vs. the degree of overlap for a signal-to-noise ratio (SNR) of 34.9±3.0(Figure 5.4A) and 56.1±4.7 (Figure 5.4B). The standard integration (�lledsquares) was 
arried out by bounding the peak with an ellipse, while for theCAKE integration (�lled 
ir
les) we used NP = 2000, and NPbase
= 500. Inboth 
ases, ea
h integration was repeated 10 times.

Figure 5.4: Simulation results expressed as per
entage of Bias in volume estimation vs.the degree of overlap (η). Integration was a
hieved with the standard (�) and the CAKE(•) methods at di�erent signal-to-noise ratios. (A) SNR = 34.9±3.0; (B) SNR = 56.1±4.7.



5.1. Simulation tests 77In Figure 5.4A (SNR = 34.9±3.0), the standard method gives unbiasedintegration values only for low overlap index η ≤ 0.9. (Figure 5.2, peak 1), tobe
ome totally biased for η ≥ 1.0. In 
ontrast, CAKE always performs better,espe
ially in the range 1.0 ≤ η ≤ 1.3, whi
h represents di�erent degree of over-lap 
ommonly found in 2D spe
tra. Overall, the fra
tional method appears tobe unbiased in the whole 0.8 ≤ η ≤ 1.5 range, that is for strongly overlappingpeaks and in the presen
e of a low signal-to-noise ratio (SNR = 34.9±3.0).Figure 5.4B reports the same simulations with a SNR = 56.1±4.7. The stan-dard method performs well for η ≤ 0.9, with a general trend very similar tothat observed for lower SNR (Figure 5.4A). In 
ontrast, the fra
tional methodshows a general redu
tion of the bias per
entage, with values generally lowerthan those obtained in the previous simulation. Taken together our resultssuggest that, regardless of the SNR, the CAKE method performs always betterthan the standard one.5.1.2 Simulations: bias vs. e

entri
iySin
e experimental 2D-peak shapes are 
lose to ellipti
, we tested CAKE ona simulated ellipse of known volume. In parti
ular, we 
onsidered peaks ofequation
Si(ω1, ω2) = Ai(

2π

σ1iσ2i
) exp (−

∆ω2
1

2σ2
1i

) exp (−
∆ω2

2

2σ2
2i

) (5.4)volume Vi = Ai and 
ontour of e

entri
ity
ei =

√

1 −
min(σ1i, σ2i)

max(σ1i, σ2i)
(5.5)with addition of Gaussian noise. Integration was 
arried out in two ways. Thefra
tional area was �rstly sele
ted randomly (i.e. avoiding any symmetry),and, se
ondly, symmetri
ally with respe
t to any of the semiaxes of the ellipti
peak. The random 
hoise (Figure 5.5A) produ
ed a s
attered bias distributionbetween 0 and 20% for 0.8 ≤ e ≤ 0.74, with a maximum of 25% for e = 0.78.For 0.8 ≤ e ≤ 0.9, whi
h 
orresponds to a ratio between semiaxes in therange of 0.45 ≤ b/a ≤ 0.60, the average bias is 5%. This result appears tobe relevant as the b/a value 
orresponds to the experimental ellipti
 shapesusually found in 2D spe
tra.The symmetry sele
tion of the fra
tional area (Figure 5.5B) shows a bias

≤10% for all e

entri
ity values, with the maximum at e = 0.78 redu
ed to12%. For 0.8 ≤ e ≤ 0.9 the average bias is very similar to that found for therandom sele
tion (Figure 5.5A).In 
on
lusion, it is suggested that, for ellipti
al peaks, sli
ing should be done
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ally with respe
t to one of the semiaxes, even though for 0.8 ≤
e ≤ 0.9, that is for most of the experimental 2D peaks, the bias is essentiallyindipendent from the sele
tion.

Figure 5.5: CAKE integration of simulated ellipti
 peaks expressed as per
entage of Biasin volume estimation vs. Contour e

entri
ity (e). In (A) the fra
tional area was 
hosenin a non symmetri
 way with respe
t to the semimajor and the semiminor axes of theellipti
 peak. In (B) the fra
tional area was 
hosen in a symmetri
 way with respe
t to thesemimajor and semiminor axes of the ellipti
 peak. In both 
ases the SNR = 69.5±3.2.



5.2. Experimental test 795.2 Experimental testTo test the e�
a
y of the new integration method, after simulations, CAKEwas applied to 2D-NMR spe
tra of a sample 
ontaining two tripeptides inknown 
on
entrations; we 
ompared peak volume estimations obtained byCAKE with those obtained by standard integrations.5.2.1 NMR data 
olle
tionThe sample, a mixture of the tripeptides Ala-Phe-Ala (AFA) and pyroGlu-His-Pro (thyrotropin-releasing hormone, TRH), was prepared by dissolving appro-priate amounts in 0.5 ml of 1H2O/2H2O (90/10 v/v) to yield for ea
h peptidea 
on
entration of 0.10 mM. 1H−NMR spe
tra, re
orded at 295 K and pH7.4, were a
quired on a Bruker DRX-600 spe
trometer operating at 600 MHz,equipped with a TCI 
ryoprobeTM �tted with a gradient along the Z-axis.Spe
tra were referen
ed to sodium 3-(trimethylsilyl)-[2,2,3,3-2H4℄propionate.Homonu
lear 2D 
lean TOCSY spe
tra [122℄ were re
orded by standard te
h-niques and in
orporating the ex
itation s
ulpting sequen
e [95℄ for water sup-pression. We used a pulsed-�eld gradient double e
ho with a soft square pulseof 4 ms at the water resonan
e frequen
y, with the gradient pulses of 1 ms ea
h.512 equally spa
ed evolution time-period t1 values were a
quired, averaging 4transients of 2048 points, with 6024 Hz of spe
tral width. Time-domain datamatri
es were all zero-�lled to 4096 in both dimensions, yielding a digital res-olution of 2.94 Hz/pt. Prior to Fourier transformation, time-domain �lteringwas applied with a Lorentz-Gauss window to both t1 and t2 dimensions. TheTOCSY experiment was re
orded with a spin-lo
k period of 64 ms, a
hievedwith the MLEV-17 pulse sequen
e [98℄.5.2.2 SoftwareNMR data pro
essing and baseline 
orre
tion were obtained with the programXWINNMR (Bruker, Biospin GmbH, Ettlingen, 2003). Standard peak inte-gration was 
arried out with the programs XWINNMR and MestRe-C [123℄,in whi
h integrated volumes are 
omputed as the sum of all digital intensitieswithin a re
tangular box and a tunable ellipse bounding a peak, respe
tively.CAKE software was written in MATLAB language and was implemented inthe graphi
al environment of MATLAB 7.1.



80 Chapter 5. CAKE simulations and experimental tests5.2.3 Experimental ResultsThe power of the CAKE approa
h was tested on a TOCSY spe
trum of amixture of two tripeptides, AFA and TRH (Figure 5.6).

Figure 5.6: (a)TOCSY spe
trum of the AFA and THR tripeptides aliphati
 region, a
-quired at 300K with 64 msec mixing time. Expansions (b) and (
) report peaks originatingfrom γCH2 protons of the TRH pyroGlu [labeled 1 in (b)℄, and α and β protons of AFA
Phe2 [labeled 2 in (
)℄, and TRH His2 [labeled 3 in (
)℄.In order to have an internal referen
e we sele
ted pairs of peaks, ea
h ofthem stemming from a single spin system, su
h that they have similar inten-sity within ea
h pair but one peak overlaps with others. In parti
ular we 
hosepairs that exemplify the 
orrelations between the γCH2 (labeled 1 in Figure5.6b), and between α and β protons of AFA Phe2 (labeled 2 in Figure 5.6a),and TRH His2 labeled 3 in Figure 5.6a). The magnitude of a given TOCSYpeak [governed by mixing 
oe�
ients alk(τm) for transfer of magnetizationthrough the spin system from spin Il to spin Ik℄ depends on the topology ofthe spin system, the 
oupling 
onstants between pairs of spins, the e�
ien
yof the isotropi
 mixing sequen
e employed, and the relaxation rate during themixing pulse. Although the robustness of the integration method does not de-pend upon the experiment type or the intensity of the 
hosen peak, we looked
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h the peaks are expe
ted to have similar intensity but oneof them overlaps with others. A

ordingly, we sele
ted the AMX spin systemof the two aromati
 residues (Figure 5.6a) in AFA and TRH. From relax-ation measurements (not shown) at two di�erent spe
trometer frequen
ies,we estimated for both peptides similar 
orrelation times and relaxation rates;furthermore, the measured 3Jαβ and 3Jαβ′ values in ea
h spin system wereidenti
al, therefore ex
luding di�eren
es in the peak intensity due to di�erent
oupling 
onstants; �nally, the single 2Jγγ′ value for the γCH2 protons of the
TRHpyroGlu warrants a similar intensity for the two peaks within ea
h pair.The sele
ted peaks were integrated with standard and with CAKE meth-ods and the results are reported in Figure 5.6
 as the Di�eren
e per
entage ofvolume for ea
h 
ross-peak pair. For the CAKE integration we sele
ted themost internal level belonging to a single peak, whi
h had ellipti
al symmetrywith e

entri
ity e > 0.75. The values obtained with CAKE for the threepeak pairs are all within 10%, giving an unbiased estimation of the di�eren
eper
entage of the volumes in ea
h pair. In 
ontrast, the standard methodestimates for ea
h peak pair values > 35% for pairs 1 and 2, and ≈ 25% forpair 3. Surprisingly, the CAKE approa
h gives for the pair 1, whi
h lies onthe TOCSY diagonal, about zero volume di�eren
e, supporting robustness forthe method, also in the presen
e of ellipti
al symmetry.5.2.4 Bias vs. digital resolutionThe dependen
e of CAKE on digital resolution was investigated by integratingthe peak pair 2 (Fig. 5.6
) at di�erent digital resolution (0.5, 1.1, 2.2, 4.3 and8.6 Hz/pt), and integration was 
arried out for ea
h value with standard andCAKE methods (Fig. 5.7). The volume of pair 2 overlapping peak (lo
atedat ω1 =4.75 ppm and ω2 =3:05 ppm, Fig. 5.6
) was 
ompared to the volumeof the 
orresponding single peak at ω1 =4.75 ppm and ω2 =3:05 ppm at itsmaximum digital resolution, taken as referen
e. The values obtained withCAKE are all within 2%, giving an unbiased estimation of the % Di�eren
eup to 8.6 Hz/pt. On the 
ontrary, the standard method estimates values>10% already at 2.2 Hz/pt to be
ome ≈ 25% at 8.6 Hz/pt. This �nding
an be explained by 
onsidering that a low resolution drasti
ally redu
es thenumber of points within an area identi�ed by the i -th level, whi
h, in turn, isitself poorly de�ned. Therefore, the sum of points done by standard methodsis obviously biased. On the 
ontrary, the Hit-or-Miss te
hnique used in CAKEdoes not sum the existing points in
luded in a level bound area, but generatesrandom points and 
ounts the number of "hits" (or points) that are in
ludedin the unknown area. Sin
e a 
ubi
 interpolation (see Chapter 2) is used as ade
isional mean to establish if the extra
ted point 
an be 
onsidered a "hit",
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ould, in prin
iple, a�e
t the peak pro�le. However,with CAKE we were able to 
orre
tly integrate peaks with digital resolutionup to 
a. 30 Hz/pt.

Figure 5.7: Di�eren
e per
entage (%) of volume determination at di�erent resolution for
ross-peak 2, as labeled in Fig.5.6. The digital resolution was 
a. 0.5, 1.1, 2.2, 4.3 and 8.6Hz/pt. Filled squares and 
ir
les refer to the standard and CAKE integration methods,respe
tively.5.3 Dis
ussionQuanti�
ation of NMR spe
tra is fundamental both in metabolomi
s/metabonomi
s and in the stru
ture determination of biomole
ules. However,quanti�
ation of peaks is often hampered by the degenera
y of the NMR res-onan
e frequen
y, a fa
tor that aggravates with the in
reasing size of ma
ro-mole
ules and the number of metabolites. Here we have presented the CAKEapproa
h that uses the symmetry of a single in-phase peak (a peak with aunique 
enter 
orresponding to its maximum) to 
al
ulate its volume. It is ob-tained by multiplying the fra
tional volume by the R fa
tor, a proportionalityratio between the total and the fra
tional volume, both evaluated with MonteCarlo te
hniques. Therefore, the peak volume 
an be estimated by integratinga known fra
tion of the peak, and the fra
tional volume 
an be 
hosen so asto minimize the e�e
t of overlap in 
omplex NMR spe
tra. Stri
tly speakingCAKE applies to Gaussian peaks showing 
ylindri
al or ellipti
 symmetry.However, an NMR spe
trum is 
losely approximated by Lorentzian fun
tions,whi
h in its 2D shape show the so-
alled "star e�e
t". It 
an be easily removedby 2D Lorentz-to-Gauss transformation, whi
h is routinely used for in-phase



5.3. Dis
ussion 83experiments, like TOCSY and NOESY. Therefore, the major assumption inthis study is that the Lorentzian signal is 
onverted into a Gaussian line by aLorentz-to-Gauss transformation, whi
h is routinely applied in 2D data ma-nipulation. Integration of simulated and experimental 2D in-phase peaks withdi�erent degree of overlap shows that CAKE works well even for strongly over-lapping peaks. The main advantage of CAKE is its simpli
ity as di�
ultiesin its use are 
omparable to those presented by methods that sum all datapoints in a de�ned area. In fa
t, the user only has to sele
t a peak sli
e notoverlapping with other peaks therefore avoiding the guess of the total 
ontourshape of the peak. Furthermore, CAKE does not require any time-
onsuming�tting of the peaks to fun
tional forms, and therefore it 
an be easily in
orpo-rated as a subroutine in any NMR pro
essing software. Tests on tripeptideshave shown that CAKE is a powerful method for volume integration. Thesubstantial independen
e of CAKE on digital resolution and SNR warrantsthat it 
an be safely used for peak integration in three-dimensional spe
tra.Be
ause of its inherent simpli
ity the software 
an be extended to automatedintegration of three- and possibly higher-dimensionality NMR spe
tra.





Chapter 6
1H-15N SO-FAST-HMQCmeasurements

Contents6.1 Materials and methods . . . . . . . . . . . . . . . . . . 856.1.1 Cell 
ulturing . . . . . . . . . . . . . . . . . . . . . . . 856.1.2 Extra
ts manipulation . . . . . . . . . . . . . . . . . . 866.1.3 Gel ele
trophoresis for protein dete
tion . . . . . . . . 866.1.4 NMR experiments . . . . . . . . . . . . . . . . . . . . 876.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 886.2.1 T. rotula 1H and TOCSY spe
tra . . . . . . . . . . . . 896.2.2 T. rotula 1H-15N SOFAST-HMQC spe
tra . . . . . . . 916.2.3 Gel ele
trophoresis results . . . . . . . . . . . . . . . . 936.3 Dis
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hapter is based on the paper: A. Motta, D. Paris, G. Andreotti, D.Mel
k. Monitoring real-time metabolism of living 
ells by fast two-dimensionalNMR spe
tros
opy. Submitted to Analiti
al Chemistry.6.1 Materials and methods6.1.1 Cell 
ulturingAxeni
 
ultures of T. rotula 
ells were prepared as des
ribed in Miralto and 
o-workers proto
ols [124℄. Brie�y, diatoms were grown in Guillard's (F/2) Ma-rine Enri
hment Basal Salt Mixture Powder medium, 
ontaining standard anddi�erent salinities (20, 35 and 45 %0) and unlabeled or 15N-labeled NaNO3,on a 12 h light/12 h dark 
y
le, and a light intensity of 20.9 J mol−1 µm−2s−1.Cells were kept in a 10 L 
arboy for 1 week and then harvested in the earlystationary phase by 
entrifugation at 1200g in a swing-out rotor. Prior to ex-tra
tion, diatom 
ultures were allowed to settle overnight and the supernatantwas gently removed by su
tion with a water pump.



86 Chapter 6. 1H-15N SO-FAST-HMQC measurements6.1.2 Extra
ts manipulationCombined extra
tion of polar and lipophili
 metabolites from unlabeled and
15N-labeled diatoms 
ells was 
arried out by using the methanol/
hloroformpro
edure [92℄ Pelleted 
ells were resuspended in methanol (4 ml/g pellet)-water (0.85 ml/g pellet), and soni
ated for 2 min. Then 4 ml/g pellet of
hloroform were added and the homogenate was gently stirred and mixed oni
e for 10 min using an orbital shaker (the solution must be mono-phasi
).Other 4 ml/g pellet of 
hloroform and 4 ml/g pellet of water were then added,and the �nal mixture was shaken well and 
entrifuged at 12000g for 15 min at4 ◦C. This pro
edure separates a water/methanol phase at the top (aqueousphase, with the polar metabolites), a phase of denatured proteins and 
ellulardebris in the middle, and a 
hloroform phase at the bottom (lipid phase,with lipophili
 
ompounds). The upper layer of ea
h sample was transferredinto glass vials, and, after solvent removal under a stream of dry nitrogen,was stored at -80 ◦C until required. For 1D and 2D NMR experiments thepolar extra
ts were resuspended in 700 µl H2O-D2O (90%-10%), and thentransferred into an NMR tube.
6.1.3 Gel ele
trophoresis for protein dete
tionTo eventually ex
lude the dete
tions of small proteins from the SOFAST-HMQC in vivo spe
tra a
quisition of T. rotula, we performed SDS-PAGEele
trophoresis. SDS-PAGE on slab gel 
ontaining 12 and 15% a
rylamide, inorder to rea
h the lower limit of 3 kDa, was performed by using the standardpro
edure (12). Proteins were lo
ated on the gels using Comassie Brillant Bluestaining. For 12% a
rylamide we used Phosphorylase b (97.4 kDa), bovineserum albumine (66.2 kDa), ovalbumin (45.0 kDa), 
arboni
 anhydrase (31.0kDa), trypsin inhibitor (21.5, kDa), and lysozyme (14.4 kDa), all from BIO-RAD. For 15% a
rylamide we used 
hymotrypsinogen A (24 kDa), 
yto
hrome
 (13 kDa), bovine pan
reati
 tripsin inhibitor (BPTI, 6.6 kDa), insulin B-
hain (3.5 kDa), all from Sigma. Size-ex
lusion 
hromatography was 
arriedout at room temperature, using a 1.5× 50 
m Sephadex G-50 Fine 
olumn anda �ow rate of 0.2 ml/min. Separate 
hromatography experiments of standardamino a
ids were performed in 50 mM sodium phosphate, at pH 6.7, usinga 55 µM peptide 
on
entration. Salmon 
al
itonin (3.4 kDa), ba
itra
in (1.4kDa), standard amino a
ids all from Sigma, and sodium 3-(trimethylsilyl)-(2,2,3,3-2H4)propionate (TSP, 172 Da), from Aldri
h, were used as mole
ularmass standards.



6.1. Materials and methods 876.1.4 NMR experimentsAll NMR experiments were 
arried out on a Bruker DRX-600 spe
trometer,equipped with a TCI CryoProbeTM �tted with a gradient along the Z-axis.T. rotula 1H and TOCSY spe
tra
1H-NMR spe
tra were re
orded at 600 MHz and were referen
ed to internalTSP. Clean total 
orrelation spe
tros
opy (TOCSY)[97℄ spe
tra of 
ells andextra
ts were re
orded by using the time-proportional phase in
rementationof the �rst pulse, and in
orporating the ex
itation s
ulpting sequen
e [95℄ forwater suppression. We used a double-pulsed �eld gradient e
ho, with a softsquare pulse of 4 ms at the water resonan
e frequen
y, with the gradient pulsesof 1 ms ea
h in duration. In general, 256 equally spa
ed evolution-time periodt1 values were a
quired, averaging 2 (for diatoms) and 8 (for extra
ts) tran-sients of 2048 points, with 6024 Hz of spe
tral width. Time-domain data ma-tri
es were all zero-�lled to 4K in both dimensions, applying, prior to Fouriertransformation, a Lorentz-Gauss window with di�erent parameters for botht1 and t2 dimensions in all the experiments.T. rotula 1H-15N SO-FAST-HMQC parameters set-upThe 1H-15N SOFAST-HMQC pulse sequen
e follows the s
heme proposed byShanda and 
o-workers [2℄ (Figure 6.1). First, 1H pulses are applied band-sele
tively [77℄; se
ond, the �rst 1H pulse has an adjustable �ip angle α thatallows further optimization of the sensitivity of the experiment for a 
hosen(short) s
an time [78℄. In pra
ti
e, the �ip angle is 
hosen to ensure that partof the proton magnetization is restored along the z-axis by the following 180◦pulse; third, the small number of radio-frequen
y pulses redu
es signal lossdue to pulse imperfe
tions and B1 �eld inhomogeneities, and limits the e�e
tsof sample and probe heating. We used poly
hromati
 PC9 pulse shape foradjustable �ip-angle band-sele
tive ex
itation [125℄ whi
h yields quite uniformex
itation over the desired bandwidth for �ip angles in the range 0◦ < α <130◦. As a refo
using pulse on the 1H 
hannel we tested the r-SNOB [82℄ andRE-BURP [83℄ pro�les. Be
ause of a signal in
rease of 
a. 35%, we used RE-BURP instead of r-SNOB, 
on�rming the �nding of S
handa et al. for proteins[3℄. The a
quisition parameters were as follows: α=120◦, ∆(1/2JHX) = 6.7-5.4 ms, δ= 1.8 ms, tmax

1 =20 ms, tmax
2 =40 ms, and trel=1 ms. Forty 
omplexdata points were a
quired in the t1 dimension, adding 4 dummy s
ans (n =80 + 4). The band-sele
tive 1H ex
itation (PC9, 3.0 ms) and refo
using (RE-BURP, 2.03 ms) pulses were 
entered at 8.0 ppm 
overing 4.0 ppm.
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Figure 6.1: SOFAST-HMQC experiment to re
ord 1H-X (X=15N or 13C) 
orrelationspe
tra of proteins. Filled and open pulse symbols indi
ate 90◦ and 180◦ rf pulses, ex
ept forthe �rst 1H ex
itation pulse applied with �ip angle α. As des
ribed in the next se
tion, thevariable �ip-angle pulse has a poly
hromati
 PC9 shape, and band-sele
tive 1H refo
usingis realized using an r-SNOB pro�le. The transfer delay ∆ is set to 1/(2JHX), the delay
δ a

ounts for spin evolution during the PC9 pulse, and trec is the re
y
le delay betweens
ans.
15N was de
oupled with GARP-4 [126℄, with a 90◦ pulse length of 600 µs. 15N
hemi
al shifts are relative to external 15NH4NO3 (5 M in 2 M HNO3).6.2 ResultsIn the 
ell, metabolites experien
e a vis
osity of 
a. 2-3 times that of water[127, 128℄ and intera
t with other 
omponents. As su
h, restri
tion of the ro-tational freedom may be predi
ted [127℄. However, their low mole
ular weightis likely to 
ounterbalan
e the vis
osity e�e
t, and an in
rease of the averagee�e
tive T1 of in-
ell metabolites 
an be expe
ted. Therefore, a balan
e ofintrinsi
 and extrinsi
 properties will a�e
t metabolite relaxation. We �rstly
he
ked if high vis
osity is a prerequisite for appli
ation of SOFAST-HMQCto low-mole
ular weight metabolites by using a sample of 15N-labeled Leu (5mM, pH 1.4, 300 K) in the presen
e of SDS, with a vis
osity of 9 relative towater (0.894 
P). The results of the appli
ation of the SOFAST pulse sequen
eto su
h a sample are reported in Figure 6.2A, in whi
h a 1H-15N 
orrelationpeak, 
entered at 8.01 and 172 ppm, is observed.The in�uen
e of the vis
osity on the volume of the 
ross-peak in Figure 6.2Awas investigated by lowering the SDS 
on
entration, and therefore the rela-tive vis
osity from 9 to 1 (no SDS). In the 9-3 range we observed that the
ross-peak volume remained 
onstant, to signi�
antly de
rease upon a redu
-tion of the relative vis
osity from 3 to 1 (Figure 6.2B). We estimated thatin the absen
e of SDS (relative vis
osity of 1) the 
ross-peak volume halves.
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Figure 6.2: (A) 1H-15N SOFAST-HMQC spe
trum of 15N-labeled Leu (5 mM, pH 1.4,300 K) in the presen
e of SDS, with an a
quisition time of 14 s. The ∆(1/2JHX) valuewas set to 6.7 ms sin
e JHX = 74.6 Hz; for the remaining a
quisition parameters see theMaterials and Methods Se
tion. (B) Dependen
e of the 
ross-peak volume on the vis
osityof the medium, relative to water.Therefore, for a mole
ule as small as Leu (MW 132.17 Da), a vis
osity of
a. 3 times that of water, 
orresponding to the vis
osity inside a living 
ell[127℄, maximizes the intensity of the 1H-15N SOFAST-HMQC peak. However,the e�
ient 1H-15N dipolar intera
tion is also important, sin
e a well-de�ned
ross peak, although with an intensity 1/2 of the maximum, is observed inthe experiment without SDS.6.2.1 T. rotula 1H and TOCSY spe
traDue to intra
ellular vis
osity, a mole
ule in a 
ellular environment displaysbroad NMR line widths as a 
onsequen
e of the redu
ed tumbling rate, andoverlapped, poor quality spe
tra are the likely result. In our 
ase, a further
ompli
ation 
omes from the presen
e of high salt 
on
entration in the seawater 
ulture medium, used to suspend the 
ells in the NMR tube. The �nalresult is that the 1D spe
trum obtained for a 15N-labeled T. rotula sample
ontaining 
a. 50-million 
ells will show an unresolved "bumpy" distributionof the resonan
es, as shown in Figure 6.3.In order to better resolve signals from T. rotula, we a
quired 1H (Figure6.4) and TOCSY spe
tra (Figure 6.5) of T. rotula polar extra
ts (see Materialsand Methods Se
tion).
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Figure 6.3: 1H spe
trum of in vivo 15N-labeled T.rotula (50×106 
ells).

Figure 6.4: 1H spe
trum of 15N-labeled T.rotula polar extra
ts (400×106 
ells).
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Figure 6.5: TOCSY spe
trum of 15N-labeled T.rotula polar extra
ts (400×106 
ells).6.2.2 T. rotula 1H-15N SOFAST-HMQC spe
traThe 1H-15N SOFAST-HMQC 
orrelation spe
trum of a 50-million T. rotula
ells is reported in Figure 6.6: it was dire
tly a
quired in the 
ulture mediumin an overall experimental time of 12 s.

Figure 6.6: 1H-15N 
orrelation spe
trum (
entral part) of a sample of 50-million 15N-labeled diatom 
ells (in sea water 
ulture medium, 300 K) re
orded in 12 s. 1D tra
es
orrespond to the proton spe
trum (top), and (left) to a 
olumn extra
ted along the 15Ndimension at the 1H frequen
y indi
ated by the dashed verti
al line in the 2D spe
trum.



92 Chapter 6. 1H-15N SO-FAST-HMQC measurementsIn su
h a short a
quisition time, the NMR experiment 
ertainly does not killthe 
ells, and in fa
t the number of 
olony-forming units/OD is the samebefore and after the 12-s SOFAST-HMQC experiment (data not shown). Fur-thermore, 
ompared with 1D, the 2D experiment presents a higher S/N, asit 
an be appre
iated from the tra
e on the left side of Figure 6.6, extra
tedalong the 15N dimension (verti
al broken line in Figure 6.6).The robustness of in-
ell SOFAST NMR spe
tros
opy was investigated by
ontrolling several aspe
ts [86℄. Firstly, be
ause of the high S/N ratio, weredu
ed the number of 
ells from 50 millions down to 10 millions, whi
h, asshown in all the experiments below, appear to be su�
ient for fast a
quisitionand high S/N spe
tra. Figure 6.7A reports the 1H-15N SOFAST-HMQC spe
-trum of a 10-million 
ells sample of 15N-labeled T. rotula, taken dire
tly in the
ulture medium. It reprodu
es the spe
tral pattern of the more 
on
entratedsample of Figure 6.6, and shows a high S/N ratio with well resolved reso-nan
es. Se
ondly, when dealing with living 
ells it is important to 
onsiderthat mole
ules outside the 
ell tumble faster and, therefore, exhibit sharperlines than internal metabolites in a more vis
ous environment. Consequently,a small fra
tion of extra
ellular mole
ules 
ould 
ontribute disproportionatelyto, or even dominate, the spe
trum. This was investigated after removal ofthe 
ells from the sample by 
entrifugation and �ltration, and analyzing thesupernatant. It 
ontained no dete
table extra
ellular metabolites as its 
or-responding SOFAST-HSQC spe
trum, a
quired with the same parameters asthe in-vivo spe
trum 6.7A, showed no signals (Figure 6.7B), therefore rulingout any interferen
e from the extra
ellular metabolites in Figure 6.7A. Thiswas 
on�rmed by the following step. The pellet separated from the super-natant was resuspended in fresh standard 
ulture medium giving a spe
trum(Figure 6.7C) identi
al to that observed when in vivo (spe
trum 6.7A). It is
on
luded that the 
ross-peaks we observed in the SOFAST-HSQC experi-ments of Figures 6.6 and 6.7A stem from mole
ules within the 
ell, and thatthe amount of the released mole
ules, if present, are beyond dete
tion.
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Figure 6.7: 1H-15N SOFAST-HMQC spe
trum of 15N-labeled T. rotula in varying 
ondi-tions: (A) in vivo spe
trum of 10-million 
ells dire
tly in the 
ulture medium a
quired in12 s; (B) supernatant of the sample used in (A) after removal of all 
ells by 
entrifugationand �ltration (verti
al s
ale × 8); (C) pellet after resuspension in fresh 
ulture medium;(D) polar extra
t obtained with the methanol/
hloroform proto
ol to remove proteins (seetext). Peaks are labeled with the single-letter 
ode for amino a
ids; the asterisk marks ayet unidenti�ed peak.6.2.3 Gel ele
trophoresis resultsWhen investigating intra
ellular 15N-labeled metabolites in vivo by NMR, 
aremust be taken to avoid dete
tion of resonan
es originating from low-mole
ularweight proteins within the 
ell, whi
h might be
ome labeled be
ause of the un-spe
i�
 labeling pro
ess. This was examined by analyzing the polar extra
tsof the diatom 
ells by using the methanol/
hloroform proto
ol. The used pro-
edure separates the polar metabolites in the water/methanol phase at thetop, a phase of denatured proteins and 
ellular debris in the middle, and a
hloroform phase at the bottom, with lipophili
 
ompounds [92℄. As a proof torule out the presen
e of signals originating from polypeptides/proteins in theabove SOFAST-HSQC spe
tra, we 
arried out SDS-PAGE gels of the polarextra
ts obtained from 10- and 50-million 
ells. Figure 6.8 reports a 12%-
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rylamide gel (6.8A), and a 15% a
rylamide gel (6.8B). In both, the absen
eof bands in lanes 1 and 2 (reporting 10-million 
ell extra
t ran in dupli
ate)and lanes 3 and 4 (50-million 
ell extra
t ran in dupli
ate) 
on�rmed the totalabsen
e of polypeptides/proteins down to a mole
ular weight of 3 kDa.

Figure 6.8: SDS polya
rylamide gel ele
trophoresis of 15N-labeled T. rotula polar extra
ts:(A) 12% a
rylamide, and (B) 15% a
rylamide. In both, Lane S reports prestained proteinstandards with mole
ular weight indi
ated on the left side; lanes 1 and 2, 10-million 
ellsran in dupli
ate; lanes 3 and 4, 50-million 
ells ran in dupli
ate. Comassie Brillant Bluestaining was used to visualize proteins.For lower mole
ular weight we resorted to size-ex
lusion 
hromatography un-der the experimental 
onditions used for NMR analysis. At pH 6.7, all themole
ules present in the polar extra
t eluted with an apparent mole
ular mass
omparable to that of TSP (172 Da). The experiments des
ribed above 
on-�rm that the 
ross-peaks we observed are asso
iated with metabolites withinthe 
ells, and that the presen
e of polypeptides/proteins in the spe
tra 
anbe safely ex
luded. The SOFAST-HMQC spe
trum of the polar extra
t (Fig-ure 6.7D) well 
ompares with the in vivo (6.7A) and the resuspended pellet(6.7C) data, showing only small di�eren
es in 
hemi
al shift, possibly re�e
t-ing di�eren
es in salt 
omposition of the in-vitro NMR bu�er and the 
yto-plasm. Identi�
ation of the 
ross-peaks was a
hieved upon a 
areful titrationof the solution with standard amino a
ids, and the signals are labeled withthe one-letter 
ode in spe
tra 6.7A and 6.7D. It is important to noti
e thatthe spe
tral position of free amino a
ids 
orresponds to that observed withinthe 
ell, and a similar behavior is observed for proteins inside and outside the
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ell [86℄. However, as for proteins, the great advantage of the observation ofin-
ell metabolites by fast NMR spe
tros
opy does not lie in the stru
turalinvestigation, but on the possibility to examine the behavior of metabolitesdire
tly in the 
ellular 
ompartments, and follow their fate upon a 
hange ofthe physiologi
al state of the 
ell as well as in the possible intera
tion withunlabeled/labeled proteins.6.3 Dis
ussionOur simple appli
ation had shown that 2D 1H-15N 
orrelation spe
tra of 15N-labeled metabolites 
an be re
orded in living 
ells in only 10-15 s of dataa
quisition using the SOFAST-HMQC sequen
e that provides high sensitiv-ity. To the best of our knowledge, this is the �rst time that high-quality 2D
orrelation spe
tra of metabolites have been dire
tly re
orded in living 
ellson a time s
ale of se
onds of experimental time and high S/N. Obviously,these are preliminary results and more experimental investigations are neededto explore the potentiality of SOFAST experiments for metaboli
 dete
tionpurpose sin
e, in the future, it is desirable to extend the investigation to eu-karyoti
 
ell systems. Potential appli
ations in
lude in-
ell investigation underphysiologi
al or stressing 
onditions, high-throughput 
hara
terization of 
elllines by NMR, testing potential drugs by fast measures of in-
ell metaboli

hanges, as well as investigation of the primary nitrogen metabolism in plant
ells.





Con
lusionsThe results here presented 
on�rm that high resolution NMR spe
tros
opy isparti
ularly suited for biomarkers dis
overy. We applied re
ent NMR avan
esand developed new tools in order to improve analysis of biologi
al samples forbiomarkers 
hara
terization in metabolomi
 strategies.Appli
ation of NMR spe
tros
opy, 
oupled with pattern re
ognition meth-ods, to two biologi
al issues is reported: a) the progressive liver alterationsduring tumorigenesis and b) the exhaled breath 
ondensate of patients withairway diseases.In our �rst appli
ation, we investigated the metabolite 
omposition ofhuman hepati
 tissue extra
ts of 17 patients a�e
ted by hepato
ellular 
ar
i-noma HCV-related (HCC), and 9 patients a�e
ted by liver metastases from
olore
tal 
ar
inoma (MET-CRC); as a 
ontrol, we used 
irrhoti
 liver tissuesof HCC patients (CIR) and normal liver tissue of MET-CRC patients (NT),respe
tively. PCA, together with OPLS-DA analysis, allowed spe
tral 
lasses
lustering and 
lassi�
ation. All spe
tra were visualized by s
ores and loadingsplots, whi
h also highlighted the "evolution" and relationship of the di�erentpathologi
al liver 
onditions represented by the four NMR data 
lasses. Thedisease evolution 
learly followed the in
rease of the la
tate together with theremarkable de
rease of the glu
ose signal, thus suggesting that su
h a signalpattern may a
t as a potential marker for assessing pathologi
al hepati
 le-sions. In parti
ular, we identi�ed a statisti
al model that 
ould be used todistinguish hepati
 metastasis and human hepato
ar
inoma from a "normal"(healthy) hepati
 tissue. The progressive in
rease of la
tate/glu
ose ratio,within the hepati
 tissues, is 
onsistent with the enhan
ed 
onversion of glu-
ose into la
tate, through the di�erent 
lasses that represent di�erent tissue
onditions su
h as hypoxia and/or "aerobi
 gly
olisis". Although this trendis generally known, as 
onsidered the result of on
ogeni
 alteration in glu
osemetabolism following malignant transformation, we reported a further infor-mation whi
h is the extreme la
tate/glu
ose 
onversion showed by MET-CRC,
ompared with all of the others tissue samples under investigation. Indeed,metastasis formation is the result of a multi-step 
as
ade of events o

urringto 
an
er 
ells during tumor dissemination, whi
h brings about 
onsiderablemetaboli
 
hanges. The large in
rease in la
tate 
on
entration as well as thede
rease of intra
ellular glu
ose level was the predominant e�e
t for the sep-aration of metastases from HCC and NT, and the la
tate/glu
ose ratio inMET-CRC ranges from 9 to 40 fold higher 
ompared to HCC and NT, re-spe
tively, thus suggesting a role for the enhan
ed phenomenon of "aerobi
gly
olysis".



98 A further appli
ation was addressed to investigate the 1H-NMR metabolitepro�le of exhaled breath 
ondensate (EBC) of patients with di�erent airwaydiseases. EBC, obtained by 
ooling exhaled air from spontaneous breath-ing, is a simple, noninvasive and useful tool to study the bio
hemi
al andin�ammatory mole
ules in the airway lining �uid. Thirtysix paired EBC andsaliva samples, obtained from healthy subje
ts, larynge
tomized patients and
hroni
 obstru
tive pulmonary disease (COPD) patients, were analyzed ap-plying 1H-NMR spe
tros
opy followed by prin
ipal 
omponent analysis. Ouraim was to assess the role of pre-analyti
al variables (saliva and disinfe
tant
ontamination), potentially in�uen
ing EBC, to evaluate the stability and re-produ
ibility of samples and to dis
riminate healthy subje
ts from patientswith airway disease. The results show that saliva metaboli
 pro�le is sig-ni�
antly di�erent from the EBC samples and that the presen
e of identi
almetabolites in EBC and saliva does not hamper dis
rimination. Ex
luding the
arbohydrate signals (absent in EBC), saliva spe
tra 
learly di�er from EBC,notwithstanding the presen
e of some 
ommon metabolites (leu
ine, la
tate,propionate, a
etate, et
.). Furthermore, by examining EBC from larynge
-tomized patients, whi
h may represent a true saliva-free material from thelower airways, we found that in those subje
ts all saliva spe
tra stri
tly di�eredfrom 
orresponding EBC samples. Importantly, all EBC and saliva 
olle
tedtwi
e within the same day (12 h apart) showed good within-day repeatability.Finally, we 
ould state that saliva 
ontamination may play a minor role inthe interpretation of EBC by NMR-based metabonomi
s. Furthermore, we
onsidered the in�uen
e of external 
ontaminants, as the International Con-sensus on EBC re
ommends spe
ial 
are in the disinfe
tion of reusable parts of
ondensers. Upon standard 
leaning, all EBC spe
tra presented signals 
orre-sponding to unknown ina
tive substan
es of the disinfe
tant, that 
ompletelydisappeared only after washing the reusable parts with 96% ethanol. Af-terwards, by sele
ting spe
i�
 non-
ontaminated regions of EBC spe
tra forstatisti
al analysis, an e�
ient dis
rimination of EBC subje
ts with airwaydiseases (COPD) from subje
ts without respiratory diseases, was obtained.Some NMR signals appear to di�erentiate "respiratory" (COPD) from "non-respiratory" (HS and larynge
tomized) subje
ts, by showing both quantitative(signal intensity) and qualitative (signal absen
e/presen
e) di�eren
es; amongall pyruvate, su

inate, glutamine, TMAO, 
holine and phosphoryl
holine.As a further enhan
ed tool for high thoughput NMR analysis, we devel-oped a new integration method for 2D NMR spe
tra quanti�
ation, whi
his fundamental both in metabonomi
s and in the stru
ture determination ofbiomole
ules. Quantitative information from multidimensional NMR exper-iments 
an be obtained by peak volume integration. However, the standardpro
edure of sele
ting a region around the 
hosen peak and addition of all



99values is often biased by poor peak de�nition and/or the degenera
y of theNMR resonan
e frequen
y, a fa
tor that aggravates with the in
reasing sizeof ma
romole
ules and the number of metabolites. In this thesis, we devel-oped and tested a simple method, 
alled CAKE, for volume integration ofmoderately-to-strongly overlapping peaks, using the Monte Carlo Hit-or-Misste
hniques, relying upon the peak line shapes in two-dimensional NMR. TheCAKE approa
h uses the symmetry of a single in-phase peak (a peak witha unique 
enter 
orresponding to its maximum) to 
al
ulate its volume. Itis obtained by multiplying the fra
tional volume by the R fa
tor, a propor-tionality ratio between the total and the fra
tional volume, both evaluatedwith Monte Carlo te
hniques. Therefore, the peak volume 
an be estimatedby integrating a known fra
tion of the peak, and the fra
tional volume 
an be
hosen so as to minimize the e�e
t of overlap in 
omplex NMR spe
tra. Allintegration of simulated and experimental 2D in-phase peaks, with di�erentdegree of overlap, showed the CAKE e�
a
y in estimating umbiased peakvolume, even for strongly overlapping peaks. Moreover, it is substantiallyindependent on digital resolution and SNR.Finally, we su

essfully investigated the possibility of exploiting enhan
edNMR pulse sequen
es for fast spe
tra a
quisition. In parti
ular, we appliedthe so-
alled SOFAST-HMQC pulse s
heme to dete
t in-
ell metabolism. Cre-ated and designed for protein observation, the pulse sequen
e is based uponvery short experimental re
y
le delays, whi
h, of 
ourse, rely on short T1 re-laxations time. Even if metabolites are often 
hara
terized by T1 relaxationstime longer than those of proteins, we have applied the SOFAST experimentto 15N-labeled Thalassiosira rotula diatom 
ells obtaining, to the best of ourknowledge, the �rst appli
ation of fast NMR spe
tros
opy. We 
olle
ted spe
-tra in 10-15 s of a
quisition time, pinpointing the T. rotula 1H-15N metaboli
pro�ling dire
tly in living 
ells. Our results, de�nitively show that the ap-pli
ation of SOFAST experiments provides an instantaneous pi
ture of themetaboli
 pathways o

urring in a well-de�ned physiologi
al state, thereforeavoiding the observation of an "average" metabolism obtainable with a
qui-sition time of hours. With this approa
h, bio
hemi
al pro
esses, taking pla
eduring metaboli
 modi�
ations, 
an be followed by real-time multidimensionalNMR methods, where spe
tral 
hanges are monitored during a very short tem-poral period. In the past, the long a
quisition times asso
iated with 2D NMRhave limited the appli
ation of real-time 2D NMR to slow kineti
 pro
esseswith 
hara
teristi
 time 
onstants of minutes to hours. The introdu
tion offast 2D data a
quisition s
hemes, su
h as the SOFAST experiments, 
ould ex-tend the time window a

essible to real-time 2D NMR to the range of se
onds,thus representing a further advantaging tool for metabonomi
 and biomarkersinvestigations. Obviously, it would be extremely advantageous to extend the



100des
ribed investigations to eukaryoti
 
ell systems, where potential appli
a-tions in
lude in-
ell investigation under physiologi
al or stressing 
onditions,indu
ed by external toxi
ants or potential drugs, NMR metaboli
 
hara
teri-zation of 
ell lines, as well as investigation of the metabolism in plant 
ells. Ingeneral, extensive appli
ation in the �elds of metabolomi
s and metabonomi
s
an be predi
ted, and many of the above appli
ations are in progress in ourlaboratory.
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