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IntrodutionThe large amount of data derived from genomis and proteomis, aiming ateluidating biohemial mehanism, has often revealed the omplexity of el-lular regulation. Therefore, metaboli studies are inreasingly ontributing togene funtion analysis, and an inreased interest in metabolites as biomarkersfor disease progression or response to natural or external intervention is alsogrowing.Nulear Magneti Resonane (NMR) spetrosopy has emerged as a keytool for understanding metaboli proesses in living systems. Reently, a newapproah to eluidate metabolism and its mehanisms has been put forward.It is metabonomis: an analysis based on a minimum number of assumptionson the biohemial proesses that our in a living system, mainly investigatedby advaned spetrosopi tehniques inluding mass spetrometry and NMRspetrosopy.Metabonomis is formally de�ned as "the quantitative measurement of themulti-parametri metaboli response of living systems to pathophysiologialstimuli or geneti modi�ation" [1℄. It has been oined to desribe the om-bined appliation of spetrosopy and multivariate statistial approahes toinvestigate of the multiomponent omposition of bio�uids, ells and tissues.In partiular, NMR-based metabonomis has proven to be partiularly suitedfor the rapid analysis of omplex biologial samples. Indeed, the so generatedNMR spetral results yield a unique metaboli �ngerprint for eah omplexbiologial mixture. Aording, if the status of a given organism hanges, suhas in a disease state or following exposure to a drug, the unique metaboli �n-gerprint or signature re�ets this hange, thus supplying relevant biohemialindiations.Multivariate statistial methods provide an expert means of analyzing andmaximizing information reovery from omplex NMR spetral data. Detailedinspetion of NMR spetra and integration of individual peaks an give valu-able information on dominant biohemial hanges. However, subtle variationin spetra may be overlooked and it is di�ult to envisage general e�ets asa funtion of both dose and time in a large ohort of samples with biologi-al variability. Pattern reognition methods an be used to map the NMRspetra into a lower dimensional spae (than that implied by the number ofpoints in the digital representation of the NMR spetrum) suh that any lus-tering of the samples based on similarities of biohemial pro�les an easilybe determined and the biohemial basis eluidated.The development of new spetrosopi tools for high thoughput analysis ofseleted biohemial pathways is ruial for metabolome investigations. The



viiipurpose of the present thesis is to explore the reent NMR improvements byapplying and developing new metabolomi strategies for biomarkers disovery,inluding NMR data handling, peaks quanti�ation and fast data aquisition.In the �rst hapter, a general overview of the multivariate data analysisand pattern reognition methods is given. In partiular, we highlighted theadvantages of using those tools to NMR data for biomarkers investigations.The most ommon regression methods (Prinipal Components Analysis andProjetion to Latent Strutures) and plot visualization (satters sores plotsand loadings plots) are desribed to supply the reader with the basi statis-tial tools for a better understanding of the appliation the biologial issuesreported in the last setion. NMR and regression tehniques were appliedto di�erent patient lasses to disriminate a) hepati tissues and b) exhaledbreath ondensates belonging to patients with di�erent pathologial states.In the seond hapter we desribe a new integration method developed fortwo-dimensional NMR spetra quanti�ation. Indeed, one-dimensional NMRspetra are often too omplex for interpretation and metabolite identi�ationas most of the signals overlap heavily. By introduing an additional dimen-sion, peaks are spread and spetra are simpli�ed. Quantitative informationfrom multidimensional NMR experiments an be obtained by peak volumeintegration. The standard proedure (seletion of a region around the hosenpeak and addition of all values) is often biased by poor peak de�nition beauseof peak overlap. In this hapter we reported a simple method, alled CAKE,for volume integration of moderately to strongly overlapping peaks. Start-ing from the peak line shapes in two-dimensional NMR, we desribe how theCAKE routine was onstruted using the Monte Carlo Hit-or-Miss tehniquesand some simple mathematial relationships.The third hapter is a general introdution to fast NMR two-dimensionalspetrosopy. In partiular, we desribe the details of the so-alled SO-FAST-HMQC pulse sequene [2, 3℄ we would like to apply to investigate in ellmetabolism. The SOFAST-HMQC sequene was reated and designed byShanda and Brutsher and o-workers for proteins as it is based upon veryshort experimental reyle delays, whih, of ourse, must rely on short T1relaxations time. At a �rst sight, this is an evident drawbak sine metabolitesare often haraterized by T1 relaxations time longer than those of proteins.However, as detailed in Chapter 6, we have applied the SO-FAST experimentto the diatom T. rotula ells obtaining, to the best of our knowledge, the �rstappliation of fast NMR spetrosopy to 1H-15N metaboli pro�ling diretlyon living ells.The fourth hapter reports the metaboli haraterization of: a) the pro-gressive liver alterations during tumorigenesis and b) the exhaled breath on-densate of patients with airway diseases. We desribe the multivariate data



ixanalysis and pattern reognition methods starting from NMR spetra of livertissues extrats and exhaled breath ondensates. a) Samples were olletedand grouped in four lasses: hepatoellular arinoma (HCC) developed onhepatitis C irrhosis (CIR), the irrhoti adjaent HCC tissue, liver metasta-sis from oloretal arinoma (MET-CRC), and the related adjaent "normal"tissue onsidered as ontrol. The results indiate that the latate/gluose ratiois able to haraterize and distinguish the analyzed subsets of hepati samples.In partiular, we identi�ed a statistial model that ould be used to distinguishhepati metastasis and human hepatoarinoma from a "normal" (healthy)hepati tissue. b) Exhaled breath ondensates (EBC) and paired salivas wereolleted from healthy subjets, laryngetomized and hroni obstrutive pul-monary disease (COPD) patients. The results showed that all NMR salivaspetra were signi�antly di�erent from orresponding EBC samples, whihassessed no saliva ontamination in EBC samples. Indeed, EBC taken fromondensers washed with reommended proedures invariably showed spetraperturbed by disinfetant. By arefully hoosing non-ontaminated spetraregions, eah EBC sample lustered with orresponding samples of the samegroup, while presenting intergroup qualitative and quantitative signal di�er-enes.The �fth hapter is dediated to the simulations and the experimental testsof the CAKE integration method. In partiular, we tested CAKE integratione�ay on simulated peaks in di�erent overlapping onditions and signal-to-nose ratios. Furthermore, sine experimental two-dimensional peak shapesare lose to ellipti, we tested CAKE on a simulated ellipse of known volumeat di�erent eentriity degrees. Finally, we used CAKE on experimentalNMR data by making use of a sample ontaining two tripeptides at knownonentrations. Peak volume estimations obtained with CAKE omparisonwith standard methods indiated that CAKE obtains un umbiased volumeestimation.In the sixth hapter, the appliation of the SO-FAST-HMQC experimentto 15N-labeled Thalassiosira rotula diatoms is desribed. We demonstrate thee�etive appliability of SO-FAST experiments to ells, olleting spetra in10-15 s of aquisition time. Our results, de�nitively show the appliability ofSO-FAST experiments for fast metaboli data aquisition thus providing aninstantaneous of the metaboli pathways going on in a well-de�ned physiolog-ial state, therefore avoiding the measurement of an "average" metabolism,obtainable with aquisition time of hours.





Chapter 1NMR analysis and patternreognition methods
Contents1.1 Introdution . . . . . . . . . . . . . . . . . . . . . . . . 11.2 Pattern reognition methods for biomarker investi-gations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21.3 Multivariate data analysis tehniques . . . . . . . . . 31.3.1 Unsupervised pattern reognition . . . . . . . . . . . . 41.3.2 Supervised pattern reognition . . . . . . . . . . . . . 71.3.3 Multivariate regression . . . . . . . . . . . . . . . . . . 71.4 Plots and data visualization . . . . . . . . . . . . . . . 101.5 Appliations . . . . . . . . . . . . . . . . . . . . . . . . . 131.5.1 a) Human hepatoellular arinoma . . . . . . . . . . 131.5.2 b) Exhaled breath ondensate . . . . . . . . . . . . . . 15
1.1 IntrodutionMetabonomis and metabolomis based on Nulear Magneti Resonane(NMR) spetrosopy are nowadays widely used for toxiologial assessment,biomarker disovery, and studies on toxi mehanisms. The metabonomiapproah, (de�ned as the quantitative measurement of the multiparametrimetaboli response of living systems to pathophysiologial stimuli or genetimodi�ation) was originally developed to assist interpretation in NMR-basedtoxiologial studies. However, in reent years there has been a onvergenewith metabolomis and other metaboli pro�ling approahes developed inplant biology, with muh wider overage of the biomedial and environmental�elds. Spei�ally, metabonomis involves the ombination of spetrosopitehniques with statistial and mathematial tools to eluidate dominant pat-terns and trends diretly orrelated with time-related metaboli �utuations



2 Chapter 1. NMR analysis and pattern reognition methodswithin spetral data sets, usually derived from bio�uids or tissue samples.Temporal multivariate metaboli signatures an be used to disover biomark-ers of toxi e�et, as general toxiity sreening aids, or to provide novel meh-anisti information. This approah is omplementary to proteomis and ge-nomis and is appliable to a wide range of problems, inluding disease diag-nosis, evaluation of xenobioti toxiity, funtional genomis, and nutritionalstudies. The use of biologial �uids as a soure of whole organism metaboliinformation enhanes the use of this approah in minimally invasive longitu-dinal studies.In this hapter, the main features of the statistial tools for suh inves-tigation are exposed. As desribed in Chapter 4, we applied the "patternreognition analysis" to metabonomi haraterization of: a) liver alterationsduring hepati tumorigenesis and b) exhaled breath ondensates (EBC) frompatiens with airway diseases. Tissue samples assoiated with four di�erentliver pathologial states olleted from surgial exisions and EBC obtainedby ooling exhaled air from spontaneous breathing, were analyzed by 1H NMRspetrosopy oupled with multivariate data analysis (MVA). Metaboli pro-�les were analyzed and lustering analysis readily separated and lassi�ed thetissues and the exhaled breath ondensates aording to the relative patho-logial onditions.1.2 Pattern reognition methods for biomarkerinvestigationsThe use of hemometri methods to analyze omplex spetral data setswas perhaps the most important development in the pratial appliation ofmetabonomis, and has de�ned the development and progression of the �eldever sine. Early pattern reognition studies on NMR data employed a re-dutionist approah preseleting the metabolite signals of interest. However,NMR spetra yield a unique metaboli �ngerprint for eah bio�uid, samplewhih onsists of thousands overlapping resonanes, is obviously of limiteduse. If the status of a given organism hanges, suh as in a diseased state orfollowing exposure to a drug, the unique metaboli �ngerprint or signaturere�ets this hange [1, 4℄.Multivariate statistial methods provide a robust tool for analyzing andmaximizing information reovery from omplex NMR data sets. Detailed in-spetion of NMR spetra and integration of individual peaks an give valuableinformation on dominant biohemial hanges; however, subtle spetral vari-ation may be overlooked, and it is di�ult to envisage general e�ets as afuntion of both dose and time in a large ohort of samples with biologial



1.3. Multivariate data analysis tehniques 3variability. Pattern reognition methods an be used to map the NMR spetrainto a representative lower dimensional spae suh that any lustering of thesamples based on similarities of biohemial pro�les an be determined andthe biohemial basis of the pattern eluidated.As desribed in the next setion, the �rst step in metabonomis is spetralassi�ation aording to peak patterns. The seond one relies upon iden-ti�ation of spetral features responsible for the lassi�ation (aording tophysiologial or pathologial status), and this an be ahieved via both super-vised and unsupervised pattern reognition tehniques.1.3 Multivariate data analysis tehniquesMVA e�iently extrats useful information from data generated via hemialor physial measurements. Indeed, most sienti� data generating systems aremultivariate, i.e. any partiular phenomenon we would like to study in detailusually depends on several fators (variables). For instane, the health statusof a human individual depends on many elements, inluding genes, soial sta-tus, eating habits, stress, environment et. Consequently, it is often neessaryto simultaneously sample several variables to fully desribe the system.A panoply of multivariate data analysis tehniques exists, and the hoiedepends on the answer one wants to obtain. A large part of the method isonerned with simply "looking" at the data, haraterizing then by usefulsummaries and displaying the intrinsi data strutures visually by suitableplots. Therefore, it is important to formulate the analytial problem in suha way that the goal is lear and the data are in a form suited for reahingthis goal. Usually, spetral data are preproessed, whih typially involvesFourier transformation, alibration of the hemial shift sale with respet toan internal referene standard, and phase and baseline orreted. For multi-variate modeling, NMR spetra are often divided into vertial regions (alongthe hemial shift axis), and their areas summed to provide an integral so thatthe intensities of peaks in suh de�ned spetral regions an be extrated; suha proess is known as buketing. As a onsequene, a data matrix is obtained,whih onsists of rows that represent observations/samples, and olumns thatrepresent variables as the spetral. From this matrix format, data are suit-able for MVA that an be used for a number of distint, di�erent purpose:data desription (explorative data struture modeling), disrimination andlassi�ation, regression and predition. So, more simply, we an desribeMVA as omposed by two main methods: multivariate lassi�ation (patternreognition) and multivariate regression tehniques [5, 6, 7, 8℄.The pattern-reognition tehniques deal with the separation of data



4 Chapter 1. NMR analysis and pattern reognition methodsgroups. Suh lustering ability, even for large set of measurements, givesthe possibility to derive a quantitative data model in order to disriminateamong di�erent groups of data. Multivariate lassi�ation an be dividedinto two ategories: unsupervised and supervised proedures. In an unsuper-vised pattern reognition, no a priori knowledge of the training set samples isrequired, i.e. the lass membership of the training samples. Hene, sampleswill be grouped into a number of lasses with ertain ommunalities withoutinitial quali�ation of the samples and their lass assignment. Therefore, apossible struture within ertain data sets may be reognized even withoutthe initial knowledge of the number of lasses and the expeted di�erenes. Inontrast, a supervised pattern reognition requires a priori knowledge aboutthe lasses ontained within the training samples, i.e. whih sample belongsto whih lass, suh as, samples from disease and from healthy patients. Con-sequently, unsupervised pattern-reognition tehniques are exploratory meth-ods for data analysis, seeking inherent similarities in the data, and groupingthem in a "natural" way. This approah allows unexpeted grouping withina training set may be disovered often not initially evident, as for a groupof disease-related samples that might additionally separate into two or moredistintly di�erent lasses.Supervised pattern-reognition tehniques are di�erent, as they group datainto prede�ned lasses during the training proedures, thereby allowing a morepreise lassi�ation within the lass boundaries. Clearly, eah approah hasstrengths and weaknesses rendering a general reommendation impossible.E�orts have been made to ombine di�erent pattern-reognition methods forimproved lassi�ation results [9, 10℄. In general, su�ient auray and ro-bustness of lassi�ation and preditive regression models has to be evaluatedwith an appropriate set of validation samples prior to the analysis of un-knowns.1.3.1 Unsupervised pattern reognitionPrinipal Component Analysis (PCA)PCA onstitutes the most basi "work horse" of all of multivariate data anal-ysis. The starting point is an X-matrix with n objets and p variables (an nby p matrix) (Figure 1.1), often alled the "data matrix" or the "data-set".The objets an be the observations, samples or experiments, while the vari-ables typially are "measurements" of eah objet. In our ase, the n objetsare NMR spetra of samples, while the p variables are integrations of spetrasetions, alled "bukets", of a well de�ned size.



1.3. Multivariate data analysis tehniques 5

Figure 1.1: X matrix or data matrix onsisting of n observations (n NMR spetra) andp variables (p spetral regions "bukts").The purpose of PCA, so as of all MVA tehniques, is to deompose the datain order to detet and model the "hidden phenomena" for whih the oneptof variane is very important. In fat, the fundamental assumption for thismethod is that the underlying diretions with maximum variane are moreor less diretly related to the hidden phenomena. The data matrix X, withits p bukets olumns and n spetra rows, an be represented in a Cartesian(orthogonal) oordinate system of dimension p alled the "variable spae" or,in this ase, the "spetrosopi spae", meaning the spae spanned by the pvariables orresponding to the bukets. The dimension of this spae is p, butthe dimension related to the rank of the matrix representation (mathemati-ally: the number of independent basis vetors; statistially: the number ofindependent soures of variation within the data matrix) may be often lessthan p. PCA seeks this operative or e�etive dimensionality by a linear oor-dinate transformation from the variable spae into a spae whih is spannedby a lower number of new oordinates, alled "prinipal omponents" (PCS),whih, in turn are related to diretions of largest varianes in the ensemble(Figure 1.2). The �rst prinipal omponent (PC1) explains most of the vari-ane, the seond (PC2) the seond most, et. Therefore, PCA is a powerfuldata-redution tehnique that an ondense original data (with a large num-ber of initial variables) to a dataset with only few variables re�eting the mostrelevant analytial information.



6 Chapter 1. NMR analysis and pattern reognition methods

Figure 1.2: Representation of all observations in the data matrix in a 3D spae where theomputed prinipal omponents are shown as vetor arrows.By looking into two-dimensional subspaes like PC1 vs. PC2, one ould seeif all spetra have similar positions (sores) with respet to the orrespondingpart of the variane (Figure 1.3). The orresponding plots are alled "soresplots".

Figure 1.3: Representation of all observations from the variable spae to the prinipalomponents spae. Suh PC system onsists of a number of PCS , eah lying along amaximum variane diretions in dereasing order. Sores plot are obtained as projetion ofobservations onto the PCS axes.



1.3. Multivariate data analysis tehniques 7A further step is to look for further strutures in the ensemble by reduing thevariane spae suh that most of the total variane (like 99.5%) is explainedand the rest is regarded as noise. The redued spae is alled "model spae".By alulating quantities like distane to model of eah spetrum it is possibleto hek if all spetra are still similar or if some spetra appear outside thismodel spae. This is also the basis for lassi�ation. The relation betweenthe variables in the new prinipal omponent spae and original spetrosopispae are desribed by the so-alled loadings (ref. Setion 1.4). By studyingone or two-dimensional loadings plots it is possible to understand how buk-ets ontributed to the onstrution of the new prinipal omponent spae. Ahigh loading of a buket (variable) indiates that the orresponding area (orpeak) in the spetrum was important. The loadings plots provide the linkbetween statistial and spetrosopi interpretation of the phenomena in theensemble. This is essential beause PCA itself reveals statistial phenomenabut does not explain the reason for these phenomena, for example in hemialterms. This interpretation remains to be done after the PCS alulation.1.3.2 Supervised pattern reognitionProjetion to Latent Strutures Disriminant Analysis (PLS-DA)PLS-DA is a disriminant method derived from PLS regression models [11℄(see next Setion). Here, the threshold for separating two lasses is alulatedusing the observed distribution (P1, P2...Pm; m = number of lasses; Pm =probability that the spetra belongs to lass m) of the predited values, andthe Bayesian theorem, whih alulates the probability of one objet belongingto a ertain lass by use of the ratio Pi∑
Pm

, for disriminating di�erent lasses.Barker et al. desribe how PLS-DA statistially onnets with disriminantanalysis, and may thereby serve as a disriminant tool [11℄. For lassi�ation,PLS is guided by among-group variane, while PCA, whih is guided only bythe total variane, annot disriminate among-group from within group vari-ane. Compared to PCA, it is lear that PLS-DA provides favorable disrim-ination, espeially if the within-group di�erene dominates over among-groupdi�erene. In reent studies, this model was suessfully used to disriminateartherosleroti and normal aorta tissues in rabbit models [29, 48℄.1.3.3 Multivariate regressionPriniple omponent regression (PCR)During PCR, PCA is used to ompress and deompose the original spetragenerated from training samples into fewer variables (PCS) apturing the rel-



8 Chapter 1. NMR analysis and pattern reognition methodsevant varianes within the data set, and then using the sores derived fromthe training data to reate a quantitative model. During the predition of un-knowns, the sore vetors of the unknown are derived based on their uniquespetra, and regressed against the PC vetors obtained from the alibrationsamples for retrieving a quantitative predition of the unknown onentration.PCR was also suessfully implemented as a lassi�ation tool by Haaland etal., and was used to lassify ell and tissue samples [12℄.Projetion to Latent Strutures (PLS) regressionPLS also starts out with an ensemble of spetra, whih is translated into the Xmatrix, ommonly alled the "buket table" where the number of p variablesis the number of bukets. However, a seond information table is needed.It ould omprise other spetrosopi data or any other sort of data, likeonentration measurements, arbitrary id numbers, disease haraterizationset. This seondary table is ommonly alled Y matrix or Y table (Figure1.4).

Figure 1.4: X matrix ontaining data and observations, and Y matrix ontaining, for eahobservation, data related to sample information like onentrations or disease lassi�ations.The number of Y variables (also alled response variables or q variables) isidential to the number of olumns in the Y table. Unlike PCA, whih detetsthe diretion of maximum variane in the X matrix, PLS tries to �nd the bestorrelation between the X and Y matries using relevant linear ombinationsof variables in the X and Y tables. It detets that part of the variane in the



1.3. Multivariate data analysis tehniques 9X table whih �ts best the data in the Y table in an iterative way. Whilein PCA the user has to deide the number of prinipal omponents he wantsto work with (typially suh that most of the variane in the ensemble isexplained), in PLS he has to de�ne the number of PLS omponents (fators)that should be used to model the Y table. This number is often not obvious.In priniple, it should be hosen suh that the non-explained varianes in Xand Y spae approah a minimum, and suh that the PLS model has goodpreditive apabilities. Unlike the number of prinipal omponents in PCA,the number of PLS fators must be arefully hosen. The results of a PLSalulation are presented in similar ways ompared to PCA (again, we getsores and loadings plots of the X table data). However, there are a number offurther plots whih need interpretation, e.g. showing the orrelation betweenX and Y tables or the predition power of the model. Similarly to PCA, themodel building proess in PLS is to �nd the orret statistial variables (e.g.number of PLS fators), and the right spetra that should stay in the model.One the model is established (alibrated) it is used to analyze new spetrawith missing Y table information and use the onstruted model to predit it.This is extremely valuable if the Y table would have been expensive to obtainotherwise, or if it an not be experimentally obtained at all.There is a seond interesting usage of PLS motivated by the followingsituation. Ensembles often ontain di�erent groups of spetra, say nor-mal/abnormal or originate from di�erent samples, say kidney/liver et. Onethen would like to see these groups in a PCA analysis, e.g. as di�erent lus-ters in a sores plot. However, PCA is designed to �nd the maximum varianein the ensemble but not neessarily that part of the variane that results inthe best disrimination. To enfore this, it is of ourse possible to performa spetrosopi analysis �rst and �nd signals responsible for disrimination,and then use these signals in a subsequent PCA. Alternatively, it is possibleto supply a Y table whih ontains disriminating information (in the mostsimple ase just 0 and 1). A PLS then detets that part of the variane inthe ensemble, whih �ts best to the Y table. A sores plot of the ensembledata may possibly show a good disrimination. How safe is suh a proeed-ing, it depends on the appliation. With two indistinguishable groups in theensemble, a PLS using a Y table with 0 and 1 will not provide a good dis-rimination and the orrelation plots between X and Y data would indiatepoor orrelation. If the ensemble in fat ontains two groups of spetra, PLSwith a orresponding Y table an indeed improve disrimination. This shouldhowever be on�rmed by spetrosopi or other data, otherwise a not soliddisrimination ould be overemphasized.



10 Chapter 1. NMR analysis and pattern reognition methodsOrthogonal Projetion to Latent Strutures Disriminant Analysis(O2PLS-DA)O2PLS is a multivariate regression method that extrats linear relationshipsfrom two data bloks, X and Y, by removing the strutured noise [13, 14℄. Inpartiular, O2PLS deomposes the systemati variation in the X-blok intotwo model parts: the so alled preditive part, whih models the orrela-tions between X and Y, and another alled the orthogonal part, whih is notrelated to Y. Like other PLS regression tehniques, O2PLS an be used toperform disriminant analysis by introduing suitable dummy variables. Themain advantage in using O2PLS-DA tehnique is the redution of the modelomplexity. For m lasses, the dimension of the preditive spae is m-1, andthe lassi�ation model an be investigated by using only m-1 latent ompo-nents. Useful visualization tool, as the orrelation plot or S-plots, an be usedto highlight the role of the X-variables in the lassi�ation model.1.4 Plots and data visualizationAs stated in the previous Setions, multivariate methods allow investigation ofthe relationships between all variables in a single ontext. These relationshipsan be displayed in plots like time series, histograms and pair-wise satterplots.Model overview plotsModel overview plot ould be presented as an histogram showing how theumulative explained variane (R2 value) gets larger as the number of the PCSinreases on horizontal axis ( Figure 1.5). The number of PCS for the modelshould be suh that R2 (sum of squares of all the X matrix variables explainedby the extrated omponents) and Q2 (the umulative ross validated R2)values are somewhere in the �at asymptoti part of urve histogram.In�uene plotsIn�uene plot shows spetra in a diagram where the vertial axis is a measureof how far a spetrum is from the model spae (o� model distane). If aspetrum is in the upper part of this display it is most likely outside themodel spae. The horizontal axis is a measure how far a spetrum is from themodel enter, after being projeted into the model spae (in model spae). Ifa spetrum appears on the right side, it has a strong in�uene on the model.



1.4. Plots and data visualization 11The two lines displayed inside the plot are so-alled 95% on�dene limits.Spetra inside these limit belong to the model with a probability of 95%.Sores plotsTwo dimensional sores plots of the form PCi vs. PCj (e.g. PC1 vs. PC2)show how the spetra are distributed in the orresponding sub-spae (Figure1.6). This plot is used to see whether spetra are gathered in groups or areoutlying from others. Dominant e�ets in the PCA may typially be seenin plots that involve the �rst few PCS. Sometimes e�ets in higher PCSare equally important; so with PC1, PC2 and PC3 a 3D sores plot an bevisualized. It ould, for example, indiate strong unexpeted signals in aspetrum but present in only very few spetra. By heking the in�uene plotor all sores plots it an be seen whether higher PC sores plots should beonsidered.Loadings plotsLoading plot shows how PCS are related to the original bukets. The 1Dloadings plot of a prinipal omponent looks like a spetrum. Peaks indiatethose bukets (and therefore spetral regions) whih ontributed signi�antlyto that prinipal omponent. 1D loadings plots, e.g. of PC1 show how theoriginal variables (bukets) ontributed to the onstrution of a PC. They looklike a 1D spetrum and the largest peaks indiate the strongest ontributions.2D loadings plots (Figure 1.7), e.g. of PC1 and PC2 relate loadings of thedi�erent PCS to eah other. Eah point in suh a plot orresponds to a pairof bukets. A ombined interpretation of sores and orresponding loadingsplots an for example show the bukets responsible for an outlying behavior.Combined interpretation means to look for spetra whih are outlying along aertain diretion, and for loadings whih are lined up along the same diretion.For example, if a spetrum is outlying in a partiular position in the plot, theloadings points into the same diretion indiate the resonanes responsablefor spetrum outlying.
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Figure 1.5: Model overview plot: R2 and Q2 values are parameters desribing how thenew PCS omponents �t the PCA model.

Figure 1.6: PCA satter plot PC1 vs. PC2 of two representative lass samples.
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Figure 1.7: Sores satter plot reporting the bukets responsible for the samples distri-bution of PCA in Figure 1.6.1.5 Appliations1.5.1 a) Human hepatoellular arinomaThe human hepatoellular arinoma (HCC) is one of the most ommon ma-lignanies whose inidene is steadily inreasing worldwide [15, 16℄ (Figure1.8). The liver is also the most frequent site of metastati olonization, andhepati metastasis are far more ommon than primary liver aners in West-ern ountries [17℄. Beause of its aggressiveness, early detetion of HCC isruial to shedule more e�etive therapeuti options and improve patients'survival. The most ommonly enountered di�erential diagnosis in liver isHCC versus intrahepati holangioarinoma or metastati adenoarinoma.Moreover, small hepati lesions (≤ 1.5 m in diameter) are frequently di�-ult to haraterize, and diagnosti inauray may lead to inorret patienttreatment. Magneti Resonane Imaging (MRI) has been shown to e�etivelydi�erentiate benign and malignant small hepati lesions with moderate togood interobserver agreement [18, 19℄. Yet, the linial importane of theselesions often remains unknown until biopsy or follow-up imaging is performedmonths later [20℄. Serologial markers (suh as alpha fetoprotein) an be use-ful in narrowing the di�erential diagnosis when they are markedly elevatedbut a substantial number of patients unfortunately do not have high levels



14 Chapter 1. NMR analysis and pattern reognition methodsof these markers at the time of presentation. Therefore, a tissue diagnosis isoften required, beause the presene of hepati metastasis may substantiallyalter prognosis and therapy [21℄.

Figure 1.8: Annual age-adjusted inidene rates per 100,000 and trends, all hepatoellulararinoma ases and by sex, 1975 to 2005 (Surveillane, Epidemiology, and End Results 9[SEER9℄).Histopathologial evaluation of biopsy samples plays a key role in ahiev-ing an aurate diagnosis, and �ne needle aspiration biopsy of liver has gainedinreasing aeptane as the diagnosti proedure of hoie, and is reportedto be safe, minimally invasive, aurate and ost e�etive [20℄. A possibledisadvantage of the biopsy-based histopathology is represented by the dif-�ulties in its use as a sreening approah for early tumor detetion. Onthe other hand, MRI and all the ommonly-used imaging tehniques, whihare widely aepted as sreening tests, provide limited biohemial informa-tion (i.e., metabolite omposition), whih may be useful to disriminate thedi�erent hepati lesions at the moleular level. Evaluation of intraellularmetaboli pro�les of hepatitis C virus (HCV) infeted liver, HCC and metas-tases is laking and NMR spetrosopy pro�les ould ontribute to larifythese aspets. NMR is an established analytial tool extensively used forprobing the metaboli status of biologial samples [22, 23, 1℄, and providesa "metaboli �ngerprint" useful to investigate physiopathologial states. Aspointed out in the previous setions, the presene of disriminating elementsin an NMR spetrum or in spetra belonging to the same lass an be testedwith multivariate data analysis, whih allows a thorough omparison of setsof spetra [24℄. As shown in this hapter, some of the most often used teh-niques to identify models for possible groups as well as to predit a probable



1.5. Appliations 15lass membership for new observations are based on PCA or multivariate re-gression methods as O2PLS to perform disriminant analysis [25℄. As it willbe desribed in the Chapter 4, we used multivariate data analysis to gaininsight into hidden phenomena and trends in ensembles of di�erent hepatitissue spetra whih would not be obvious in the usual spetrosopi view.Suh an analysis will also point out the most relevant NMR signals for thelassi�ation of tissue spetra, learly indiating hanges in onentration ofa spei� metabolite as well as its relative variation.In-vitro studies onduted on tissue extrats have shown that high-resolution NMR improves both spetral resolution and sensitivity, yieldingmore detailed metabolite information [13, 14℄. On the ontrary, in-vivo NMRan detet non-invasively biohemial hanges in human aners [26℄, liver dis-eases suh as hroni hepatitis [27℄, irrhosis and arinoma [28, 29℄. However,spetral resolution and sensitivity makes in-vivo NMR of limited value forthe identi�ation and quanti�ation of metabolites [30℄. A useful diagnostistrategy ould be represented by a ombination of in-vitro and in-vivo NMRompared to histologial analysis in order to follow-up variations of distin-tive lesions lassi�ed by high-resolution NMR spetra. We here followed thebiohemial progression of human hepati lesions through NMR-based analy-sis of primary (HCC) and seondary (metastases from oloretal arinoma)liver tumors, irrhoti tissues, and non-irrhoti normal liver tissues adjaentmetastases, ahieving a metaboli di�erentiation of the various pathologialonditions based upon the variation of the intraellular latate/gluose ratio,thus suggesting that suh a signal pattern may at as a potential marker forassessing pathologial hepati lesions.1.5.2 b) Exhaled breath ondensateExhaled breath ondensate (EBC) is a simple, noninvasive and useful toolto study the biohemial and in�ammatory moleules in the airway lining�uid [31℄. Obtained by ooling exhaled air from spontaneous breathing, EBCpredominantly ontains water vapour and ollets volatile and nonvolatilesubstanes from the lower airways [32℄. As suh, it an also be onsidered amatrix for analysis of environmental toxiants and for evaluation of exposuremonitoring [33℄. Very few data are available on EBC metabolite omposition;often single in�ammatory moleules are analysed by ELISA and spetrosopimethods.Sine NMR, oupled with pattern reognition methods, has been proved tobe a powerful tool for bio�uids to probe the metaboli status [34, 1, 23, 35℄ andto investigate di�erent diseases [36, 37, 38, 39℄, we applied it to haraterizeEBC metaboli pro�le.



16 Chapter 1. NMR analysis and pattern reognition methodsReently, EBC of asthmati hildren has been investigated by NMR andstatistial analysis [40℄. To date, there are several reommendations on themethodologial approah to EBC olletion, but its standardization is notompletely de�ned, as most in�ammatory mediators, obtained through tra-heostomies, are similar to those olleted in the mouth [41, 42℄.The aims of the present study were:1. To validate the NMR metabonomi approah to analysis of EBC inadults, assessing the role of pre-analytial variables (saliva and disin-fetant ontamination) potentially in�uening EBC and evaluating thestability and reproduibility of samples;2. To evaluate the possibility of disriminating healthy subjets from pa-tients with airway disease.As detailed in Chapter 4, in total, 36 paired EBC and saliva samples, ob-tained from healthy subjets, laryngetomized patients and hroni obstru-tive pulmonary disease (COPD) patients, were analyzed by means of 1H-NMRspetrosopy followed by prinipal omponent analysis. The e�et on EBC ofdisinfetant, used for reusable parts of the ondenser, was assessed after dif-ferent washing proedures. To evaluate intra-day repeatability, eight subjetswere asked to ollet EBC and saliva twie within the same day. All NMRsaliva spetra were signi�antly di�erent from orresponding EBC samples.EBC taken from ondensers washed with reommended proedures invariablyshowed spetra perturbed by disinfetant. Eah EBC sample lustered withorresponding samples of the same group, while presenting intergroup qual-itative and quantitative signal di�erenes (94% of the total variane withinthe data). In onlusion, the nulear magneti resonane metabonomi ap-proah ould identify the metaboli �ngerprint of exhaled breath ondensatein di�erent linial sets of data. Moreover, metabonomis of exhaled breathondensate in adults an disriminate potential perturbations indued by pre-analytial variables.



Chapter 2CAKE: Monte CArlo peaKvolume Estimation
Contents2.1 Introdution . . . . . . . . . . . . . . . . . . . . . . . . 172.2 The frational peak method . . . . . . . . . . . . . . . 192.2.1 Peak line shapes in two-dimensional NMR . . . . . . . 192.2.2 The R fator estimation . . . . . . . . . . . . . . . . . 232.2.3 The Monte Carlo integration . . . . . . . . . . . . . . 23This hapter is based on the paper: R. Romano, D. Paris, F. Aernese,F. Barone, A. Motta. Frational volume integration in two-dimensional NMRspetra: CAKE, a Monte Carlo approah. J Magn Res 192 (2008) 294-301.2.1 IntrodutionNMR spetra an provide quantitative analysis of a sample, and a standard1D 1H-NMR spetrum is often used to obtain a reliable evaluation of peaks.However, as the omplexity of the sample inreases, resonane overlap beomesa serious problem that easily degrades the auray of the analysis, and 2DNMR data are required to gain su�ient disrimination of resonanes. Quan-ti�ation of NMR spetra is also fundamental in the new emergering �eldof metabolomis/metabonomis [43, 34℄, and in the struture and dynamisof proteins in solution [44℄. This widespread requirement of deriving quanti-tative information from NMR data has prompted the need to �nd methodsfor aurate and preise integration proedures both for 1D and 2D spetra.This paper desribes a new simple method for peak volume integration in2D spetra, whih appears to be partiularly suited for overlapping peaks.Quantitative information in NMR spetra is brought by peak areas [45℄. Twomethods of peak integration are often used: diret summation of spetraldata points and peak parameter searh by urve �tting. In the absene of amodel for the peak shape, diret summation appears to be the only pratial



18 Chapter 2. CAKE: Monte CArlo peaK volume Estimationtehnique. It is not, however, adaptable to (partially) overlapping peaks, andintrodues two kinds of systemati errors. One is due to the approximationaused by the assimilation of the integral of a ontinuous funtion with a �-nite sum [46℄; the seond one is aused by the parts of the peaks that are leftoutside of the integration range [47℄.Ideally, an e�ient integration method should be appliable even when inthe presene of peak overlap or artifats. Many of the available NMR proess-ing and analysis pakages ahieve volume integration by diret summation ofall data points within a polygonal bounding the peak. This proedure requiresa reliable de�nition of the peak area: the irling should be as large as pos-sible to enable for a omplete integration, but also small enough to minimizeinlusion of artifats (baseplane rolls, t1 noise, tails of other peaks). As suh,the idealized proedure appears to be restrited to well-resolved peaks. In au-tomated protools, a possible way to de�ne the area integration makes use ofthe observation that the slope of a peak height dereases monotonially withthe distane to the peak enter, at whih point it approximates zero [48, 49℄.A similar approah de�nes the peak integration area using an iterative region-growing algorithm [50, 51, 52℄, whih reognizes all data points that are partof a given peak, and the integration is performed on a user-de�ned thresholdlevel. This proedure works quite satisfatorily even for overlapping peaks, aslong as the peak maxima are visibly resolved and therefore reognizable bythe peak-piking proedure. In a di�erent approah, the peaks are �tted bya set of referene peaks de�ned by the user [53, 54, 55℄. In order to obtainaurate line shapes and integrals in one dimension, it is neessary to apply anonlinear urve-�tting proedure [56, 45℄. Although this protool is probablybest suited in ases where peaks strongly overlap, it hinges on the arefulde�nition of suitable referene peaks and seletion of initial �tting parametersby the user.A general approah for peak integration would be to exploit the peak sym-metry as a riterion to evaluate the peak volume. Symmetry onsiderationshave previously been used for pattern reognition in 2D NMR spetrosopy[57℄, and only rarely for the analysis of in-phase peaks as in NOESY andTOCSY experiments. The program AUTOPSY used symmetry for automatedpeak piking in multi-dimensional NMR spetra of proteins [58℄. Here we pro-pose CAKE, a novel integration method based on peak symmetry. After a2D Lorentz-Gauss time domain �ltering, the spetral lines are onverted intoGaussian lines, therefore presenting a ylindrial or elliptial symmetry. Byassuming the vertial axial symmetry of individual peaks (a peak with a uniqueenter orresponds to its maximum), the volume is obtained by multiplyinga seleted volume fration by a fator R, whih represents a proportionalityratio between the total and the frational volume, optimized by Monte Carlo



2.2. The frational peak method 19tehniques. This minimalisti approah warrants that the frational volumean be hosen so as to minimize the e�et of overlap in omplex NMR spetra.When applied to simulated and experimental 2D in-phase peaks with di�erentdegrees of overlap, CAKE (Monte CArlo peaK volume E stimation) obtainsan unbiased volume estimation. It is shown that, ompared with the diretsummation proedure, the frational volume approah yields rather good es-timates of the peak volumes, even for signi�ant overlap, as long as a singleontour level and its enter arising from a single peak an be deteted.2.2 The frational peak method2.2.1 Peak line shapes in two-dimensional NMRIn high-resolution NMR the frequeny domain line shapes are losely approx-imated by a Lorentzian funtion. Negleting oherene transfer ehoes, thesignal envelope of a 2D experiment an be assumed to have a biexponentialform [57℄
s(e)(t1, t2) = s(e)(0, 0) exp (−λ(e)t1) exp (−λ(d)t2) (2.1)with rates λ = 1/T2 in the evolution (e) and detetion (d) periods. Suh time-domain envelope, deaying exponentially in both dimensions, laks ylindrialsymmetry about the origin t1 = t2 = 0. After a 2D Fourier transformation, theorresponding 2D absorption peak shows a Lorentzian shape, whose setions,taken parallel to either axis yield pure 1D absorption Lorentzian line shapes.The asymptoti deay is proportional to (∆ω
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sr ℄. This lak of ylindrial or elliptial symmetry has been alled"star e�et", and an be removed by a 2D Lorentz-Gauss transformation [57℄,whih yields a 2D absorption mode peak shape with ylindrial or elliptialsymmetry (Figure 2.1 and 2.2).By using a weighting funtion
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Figure 2.1: 1D pro�les of Lorenztian and Gaussian peaks.
Figure 2.2: Removal of the so-alled "star e�et" of a Lorentzian peak by a 2D Lorentz-Gauss transformation.After a 2D transformation, a Gaussian line shape is obtained

S(ω1, ω2) = s(e)(0, 0)(
2π

σ1σ2
) exp (−

∆ω2
1

2σ2
1

) exp (−
∆ω2

2

2σ2
2

). (2.4)The ontours are irular for σ1 = σ2 and elliptial for unequal widths. It isimportant to underline that 2D Lorentz-Gauss transformation is useful only ifthe dispersive omponents in peaks with mixed phase are suppressed, and thisan be ahieved with pure phase spetra (i.e. either pure 2D absorption orpure 2D dispersion peaks) [57℄. It must also be emphasized that the elliptialsymmetry of Gaussian signals is obtained only in phase-sensitive displays, andif the absolute amplitude of a Gaussian signal is alulated, a peak shape isobtained whih features again a star e�et.In most pratial appliations, the omplete analytial expression for a dis-rete Fourier transform NMR spetrum is a sum of omplex, non-Lorentzianfuntions ([45, 59℄). However, if the aquisition time t2 is large, omparedto the relaxation time of the slowest deaying resonane (t2 ≥ 1/R2,j), andthe sweep width is large ompared to the relaxation rate R2,j as well as thefrequeny range of the spetrum νj − ν, a true Lorentzian spetrum is ob-tained [60℄. Nevertheless, this disrete Fourier transform spetrum requiresorretion of a pseudobaseline stemming from the �rst point of the FID and of



2.2. The frational peak method 21a frequeny-dependent phase distortion of the spetrum (for details see Refs.[59, 45℄). Aordingly, a phased, baseplane orreted unsaturated resonaneline in solution is losely approximated by a Lorentzian funtion. Convolu-tion of the time domain with exponential, sine, osine funtions, does notalter the line shape after transformation [61℄, and preserves the frequeny ofits maximum. This shape has been useful in peak �tting proedures appliedto experimental data [60℄. As stated above, a 2D Lorentzian line laks ylin-drial or elliptial symmetry, whih an be ahieved by a 2D Lorentz-Gausstransformation. Gaussian �ltering transforms a Lorentzian frequeny-domainfuntion of width ω0 into a Gaussian frequeny-domain funtion of width ρω0,where ρ is typially less than unity, and it has been found that ρ = 0.66 isusually lose to optimum [62℄.Bearing in mind the power of Lorentz-Gauss tranformation and the sym-metry of the Gaussian line, the CAKE algorithm aims at integrating a peakrelying upon its axial symmetry, even when in drasti overlapping onditions.The idea is that the volume an be estimated by integrating a non-overlappingfration of the peak obtaining a reasonable approximation of volume in aseswhere ross peaks overlap. Therefore the major assumption in this study isthat the Lorentzian signal is transformed into a Gaussian line by a Lorentz-to-Gauss transformation. For in-phase peaks of TOCSY and NOESY spetra,suh a transformation is well-suited, espeially onsidering that the multipletstruture of the in-phase omponents is only barely resolved and a maximumsignal-to-noise ratio is usually required to detet even weak signals [57℄.Figure 2.3A shows the ontour plot of a Gaussian peak. The arbitraryangle AÔB (a "slie" seleted in a non-overlapping region and entered onthe enter of mass), de�nes the area AFi
of a peak fration for eah i − thlevel bound urve; suh an angle identi�es a frational volume VF in the three-dimensional representation. Beause of the axial symmetry, for eah i−th levelthe frational volume VF relates to the total volume VT as the frational areaof eah level relates to the orresponding total area ATi

. From the equation
VT =

ATi

AFi

·VF, (2.5)true for eah ouple of level bound areas, if Ri =
ATi

AFi

, the total volume of apeak an be obtained by multiplying a frational volume by the orresponding
Ri fator.It is ommon experiene that experimental 2D peak shapes are quite loseto an ellipse. Therefore, Eq. (2.5) is still valid if the right angle AÔB delimits
1
4
of the ellipse by lying on the semimajor and the semiminor axes (Figure2.3C).
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Figure 2.3: Contour plots of simulated isolated (A) and overlapping (B) Gaussian peaks.In (A), the arbitrary angle AÔB de�nes a fration of the peak area, seleted in a non-overlapping region, and entered on the enter of mass. In (B), AÔB and CK̂D selet afration of peaks 1 and 2, respetively. (C) Experimental Gaussian ross-peak. The rightangle AÔB selets a frational area orresponding to 1

4
of the total area.

In partiular, by de�ning the ellipse eentriity as e =
√

1 − b2

a2 , where b anda are the semiminor and the semimajor axes (assuming b < a), 0 ≤ e ≤ 1and e = 0 in the ase of a irle. More generally, it an be demonstratedthat Eq. (2.5) applies with a good approximation to eentriity e ≤ 0.5,whih orresponds to a di�erene < 10% between axes, and a irle wellapproximates the ellipse. For eentriity e > 0.5, Eq. (2.5) an be safelyused if the polygonal AÔB identi�es a region symmetrial with respet toone of the semiaxes. The advantage of this approah beomes apparent foroverlapping Gaussian peaks. Here, the integration is biased by the preseneof the overlapping region that a�ets both volumes. In ontrast, the "slie"
AÔB of peak 1 (Figure 2.3B), seleted in a non-overlapping region, has verylittle ontribution, if any, from peak 2, and therefore its frational volume anmostly be attributed to peak 1. The same is true for CK̂D sliing peak 2(Figure 2.3B), whose frational volume an mostly be attributed to peak 2.Therefore, if we integrate the volume fration identi�ed by AÔB and alulatethe orresponding R1 onstant, it should be possible to estimate the unbiasedvolume of eah peak. From Figure 2.3B, the seond most internal (highest)level of peak 1, essentially arises from peak 1, and the e�et of peak 2 on thatlevel is negligible. Consequently, the R1 onstant an be obtained from theratio between the total area (AT1

) and the frational area (AF1
) of that level,

AT1
/AF1

. Analogously, for peak 2 the frational volume identi�ed by CK̂Dan be onsidered, and its seond highest level an be hosen to obtain therespetive fator R2 (Figure 2.3B).



2.2. The frational peak method 232.2.2 The R fator estimationIn order to estimate the R fator for a seleted fration of a peak, an internallevel attributable to the peak has to be hosen. Denoted by AT the totallevel area and by AF the frational level area, the ratio R = AT/AF an beobtained by a Hit-or-Miss Monte Carlo tehnique [63, 64℄. Let us denote by
(lxi, lyi), with i = 1, 2, ..., N, the vertex oordinates of the polygonal Plevelrelative to a ontour level, by (cx, cy) the oordinates of its enter point, andby α1, α2 two rays with their ommon origins in (cx, cy). The frational area
AF is therefore de�ned by the intersetion of the polygon Plevel and the areadelimited by the rays (Figure 2.4). Furthermore, let us denote by lxmin and
lxmax the minimum and maximum lxi oordinates, and by lymin and lymax theminimum and maximum lyi oordinates, respetively. Two pseudo randomnumbers xr and yr are now uniformly extrated in the intervals [lxmin, lxmax],and [lymin, lymax], respetively. The extration is ontinued until a number
NAT

of points (xr, yr) is internal to the polygonal Plevel. If an extrated point
(xr, yr) is also inside the area AF, then the number of frational hits NAF

isaugmented by one. Of ourse, being the (xr, yr) pairs uniformly extratedin the retangle [lxmin, lxmax]×[lymin, lymax], the ratio R = AT/AF will beestimated by the ratio R = NAT
/NAF

.

Figure 2.4: Total level area AT and frational level area AF de�ned by the intersetionof the polygon Plevel and the area delimited by the rays α1, α2.2.2.3 The Monte Carlo integrationIn priniple, any method is suitable to integrate the seleted frational vol-ume. However, the simple sum an be biased beause of the small region andthe limited number of points within the seleted area. Aordingly, the MonteCarlo Hit-or-Miss tehnique appears to be more suitable. Let us denote by
(pxi, pyi), with i = 1, 2, 3, 4, the vertex oordinates of the quadrilateral Pbase,whih is the base of a prism of height h and that ontains the frational volume



24 Chapter 2. CAKE: Monte CArlo peaK volume Estimation
VF (in partiular, px1 = cx, and py1 = cy, while other two points are hosen onthe α1 and α2 rays). Furthermore, let pxmin and pxmax be the minimum andmaximum pxi oordinates, and pymin and pymax the oordinates orrespond-ing to the minimum and maximum pyi, respetively. Two pseudo randomnumbers xr and yr are uniformly extrated in the intervals [pxmin, pxmax] and
[pymin, pymax], respetively. The extration is ontinued until the extrationnumber NPbase

, whih represents the number of points (xr, yr), is internal tothe quadrilateral of base Pbase. If a point (xr, yr) is internal to the quadrilateralof base Pbase and to the polygonal base Plevel, a ubi interpolation gives thepeak p(x, y) values in the point (xr, yr), and another pseudo random number
ρ is uniformly extrated in the interval [0, 1]. If ρ·h ≤ p(xr, yr), that is, if ρ·his a point internal to the fration volume VF, the number of volume hits NV isaugmented by one. If VP is the prism volume (Figure 2.5), alulated by thesoftware, then the frational volume VF is estimated as

VF = NV·VP/NPbase (2.6)

Figure 2.5: Prism of volume VP that ontains the frational peak volume VF .



Chapter 3Fast NMR tehniques inmetabonomis
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3.1 IntrodutionNMR has found an inreasingly broad range of appliations in di�erent �eldsof researh ranging from physial and material sienes to hemistry, biol-ogy, and mediine. Beause it interats with nulear spins by using veryweak eletromagneti �elds, NMR is virtually the only tehnique that pro-vides atomi-level information without disturbing the hemial properties ofthe moleules and materials under investigation. This enormous versatilityhas been possible beause of the development of a wide range of NMR toolsthrough the years. Among the major ahievements one should ite Fourier-transform NMR that had a dramati e�et on the experimental sensitivity ofNMR [65℄, and the introdution of multidimensional NMR spetrosopy byJeener [66℄ and Ernst [67℄ in early seventies.In reent years, NMR spetrosopy faes a number of new hallenges, suhas the investigation of the struture and dynamis of biologial moleules ofinreasing size and omplexity, the haraterization of protein-omplexes, aswell as the study of kineti features of biohemial proesses in the ell. This



26 Chapter 3. Fast NMR tehniques in metabonomisrequires further tehnial and methodologial improvements in terms of ex-perimental sensitivity, spetral and temporal resolution. New advaned NMRpulse sequenes and aquisition shemes are thus required that make optimaluse of the improved instrumental performane, and are best adapted to thesienti� problems in mehanisti systems biology. It has to be pointed outthat the wide variety of methods reently developed for fast data aquisitionare mostly addressed to protein struture eluidation and protein-ligand ki-neti investigations. Therefore, fast NMR aquisition shemes are shaped andon�gured on relatively large moleules. In suh ontext, this hapter will ex-plore the appliation of a fast-pulsing NMR experiment for metaboli pro�leharaterization, thus requiring the optimization of a reent pulse sequene forfast HMQC aquisition, alled SOFAST-HMQC [2, 3℄ (band-Seletive Opti-mized Flip-Angle Short Transient heteronulear multiple quantum oherene),of small moleules suh as metabolites.3.2 Fast multidimensional NMR spetrosopyMultidimensional NMR experiments are ruial for the study of biomoleu-lar struture and dynamis as they provide the required resolution to extratspetral parameters for individual nulear sites in the moleule. While in 1DNMR the time evolution of nulear spin magnetization is deteted diretlyvia the eletri urrent indued in a reeiver oil, the evolution in a so-alledindiret time domain is monitored by stepwise inrements of a delay in thepulse sequene. As a onsequene of this time inrements proedure, theexperimental time required for the aquisition of an nD NMR spetrum in-reases by a. 2 orders of magnitude per additional dimension. Therefore,even if the inherent sensitivity is su�ient, omplete sampling of the indirettime domain grid imposes lower limits on the experimental times: severalminutes for 2D, several hours for 3D and so on. Therefore, new aquisitionshemes are required for a more rapidly data reording, taking are to obtaina su�ient signal-to-noise ratio. In order to speed up multidimensional NMRdata aquisition, the sampling problem an be resolved either by limiting thenumber of data points (sparse or non-uniform sampling tehniques), or byreduing the duration of eah repetition of the experiment (fast pulsing teh-niques). Most of the existing fast aquisition tehniques are based on the �rstsolution, inomplete sampling of the indiret dimensional time spae. Ex-amples are non-uniform data sampling ombined with non-linear proessingshemes [68, 69℄, redued dimensionality or projetion NMR [70, 71, 72, 73℄,and Hadamard NMR [74, 75℄ where data sampling is realized diretly in thefrequeny domain. All of these methods basially allow reording of multi-



3.2. Fast multidimensional NMR spetrosopy 27dimensional orrelation spetra in an experimental time ranging from a fewminutes up to several hours.The ultimate solution to the NMR data sampling problem has reentlybeen proposed and experimentally demonstrated by Frydman and o-workers[76℄. Their ingenious onept of "single-san" NMR allows reording of anymultidimensional NMR spetrum within a single repetition of the experiment.Despite the high potential of single-san NMR for future biomoleular appli-ations, this tehnique urrently requires a very high intrinsi sensitivity andspetrometer hardware optimized for both NMR spetrosopy and imagingpurposes. On the other hand, for appliation to proteins in aqueous solu-tion, several sans are generally required to yield good water suppression andaeptable signal to noise in a few seonds of experimental time.NMR fast pulsing tehniques present an alternative way to reduing aqui-sition times. The main idea is to shorten the time delay between suessivesans (reyle delay) to ahieve higher repetition rates and thus ollet thesame number of sans in less time. Of ourse, the number of data points tobe reorded an also be redued as disussed above, whih makes fast-pulsingtehniques fully ompatible with sparse sampling approahes. A reyle delayis required to allow relaxation of the exited spins (usually 1H) towards theirthermodynami equilibrium, and to build up su�ient 1H polarization to beused for the next san.In order to keep the experimental sensitivity high enough while using fastrepetition rates, some spetrosopi triks are required. A �rst approah hasbeome known as longitudinal relaxation enhanement [77℄. Suh methodis based upon the fat that the e�ieny of 1H spin-lattie relaxation is in-reased if nearby 1H are unperturbed by the pulse sequene, so that they antake up some of the energy put into the system via dipole-dipole interations(nulear Overhauser e�et, NOE), or via hydrogen exhange. In pratie, therelaxation enhanement is realized by seletively manipulating a subset of theproton spins of interest in a well de�ned spetral region throughout the pulsesequene, thus ensuring that the spin states of all other protons that are notdiretly involved in the oherene transfer pathways of a partiular experi-ment remain unperturbed. This yields redutions in e�etive longitudinal 1Hrelaxation times from a few seonds to a few hundred milliseonds. In someirumstanes, e.g., in HMQC experiments, the sensitivity of fast-pulsing ex-periments an be even further enhaned by adjusting the exitation �ip angleto the soalled Ernst angle [57, 78℄. Both e�ets have been ombined in theSOFAST experiment [2, 3℄ that allows one to reord 2D 1H-15N or 1H-13C or-relation spetra of proteins in only a few seonds, thus opening new avenues forreal-time investigations of protein kinetis at atomi resolution. We exploredthe potential of suh experiment for metaboli pro�ling issue by applying it



28 Chapter 3. Fast NMR tehniques in metabonomisto ell samples for fast detetion of metabolites.3.3 SOFAST-HMQCThe introdution of SOFAST-HMQC sequene by Shanda and Brutsherrepresents an alternative tehnique for fast aquisition of 2D heteronulearorrelation spetra. The sequene is realized by using very short inter-san delays therefore ombining the advantages of a small number of radio-frequeny pulses, Ernst-angle exitation, and longitudinal relaxation optimiza-tion [77, 79℄ to obtain an inreased signal to noise ratio for high repetitionrates of the experiment. Sine SOFAST-HMQC uses standard data samplingin the indiret dimension, it has the further advantage of being therefore eas-ily implemented on any ommerially available high-�eld NMR spetrometer.Figure 3.1 shows the basi pulse sheme to reord SOFAST-HMQC spetra.

Figure 3.1: SOFAST-HMQC experiment to reord 1H-X (X=15N or 13C) orrelationspetra of proteins. Filled and open pulse symbols indiate 90◦ and 180◦ rf pulses, exeptfor the �rst 1H exitation pulse applied with �ip angle α. The variable �ip-angle pulse hasa polyhromati PC9 shape, and band-seletive 1H refousing is realized using an r-SNOBpro�le. The transfer delay ∆ is set to 1/(2JHX), the delay δ aounts for spin evolutionduring the PC9 pulse, and trec is the reyle delay between sans.3.3.1 General aspetsThis pulse sequene provides the required high sensitivity to perform fastheteronulear 1H-X orrelation experiments of maromoleules by using veryshort reyle delays (trec). The main features of SOFAST-HMQC are thefollowing:
• The HMQC-type 1H-X transfer steps require only few rf pulses whihlimits signal loss due to B1-�eld inhomogeneities and pulse imperfe-



3.3. SOFAST-HMQC 29tions. Rf pulses redution will be espeially important if the experimentis performed on a ryogeni probe, where B1-�eld inhomogeneities aremore pronouned.
• The band-seletive 1H pulses redue the e�etive spin-lattie relaxationtimes (T1) of the observed proton spins. The presene of a large numberof non-perturbed 1H spins, interating with the observed 1H via dipolarinterations (NOE e�et), signi�antly redues longitudinal relaxationtimes whereby the equilibrium spin polarization is more quikly restored.
• The adjustable �ip angle of the proton exitation pulse allows furtherenhanement of the available steady-state magnetization for a given re-yle delay.3.3.2 Ernst-angle exitationThe repetition rate of an NMR pulse sequene depends on the delay trecbetween the �rst pulse of one san and the �rst pulse of the next san. Ifthe spin system is saturated by fast rf pulsing, short intersan delays (trec)lead to a signi�ant loss in signal intensity. Ernst and o-workers developedan elegant tehnique to optimize the sensitivity in fast pulsed 1D one-pulseNMR experiments by the appliation of a non-90◦ �ip-angle [57℄, known asthe Ernst angle [80, 44℄. Maximal signal for an intersan delay trec, andlongitudinal relaxation time T1, is obtained by the appliation of an exitationangle βErnst given by:

cos(βErnst) = exp(
−trec

T1

) (3.1)T1 is the e�etive spin-lattie relaxation time onstant assuming mono-exponential polarization reovery. The longitudinal equilibrium magnetiza-tion Meq in dependene of the thermal equilibrium magnetization M0 is
Meq = M0

(1 − exp(−trec/T1))

(1 − exp(−2trec/T1)
(3.2)The signal resulting from a single rf pulse applied to Meq with a �ip-angle

βErnst is
Signal = Meq sin(βErnst) (3.3)and the signal-to-noise ratio per measurement time, referred to as the sensi-tivity of the single pulse experiment [57℄, is

Sensitivity = Signal/
√

trec (3.4)



30 Chapter 3. Fast NMR tehniques in metabonomisIn the ase of SOFAST-HMQC sequene (Figure 6.1) Equation 3.1 beomes
cos(βErnst) = exp(

−Trec

T1

) (3.5)with Trec the e�etive 1H longitudinal relaxation delay inluding the inter-san delay (trec), the aquisition times t1/2 and t2 , and the transfer delay ∆(Figure 6.1) and the S/N per unit experimental time, negleting transversespin relaxation e�ets and other soures of signal loss, is then given by
S/N ∝

(1 − exp(−Trec/T1))

1 − exp(−Trec/T1) cos(β)
·

sin(β)√
nTScan

(3.6)with β the e�etive �ip angle β = α−180◦ taking into aount the e�et of the
1H refousing pulse, and TScan the time required for a single san inludingthe pulse sequene duration, aquisition time, and the inter-san delay (trec).3.3.3 Proton band-seletive pulsesThe performane of SOFAST-HMQC ritially depends on the hoie of thepulse shapes for the band-seletive exitation and refousing pulses on the
1H hannel. Atually, the longitudinal relaxation optimization enhanemente�et is stritly related to the number and type of the applied proton pulses.For this purpose, Shanda and o-workers [3℄ used only 2 (band-seletive) 1Hpulses in SOFAST-HMQC thus ensuring minimal perturbation of the unde-teted proton spins, and providing higher enhanement fators than observedwith other longitudinal relaxation optimized pulse shemes [77℄. More over,sine the water resonane is outside the seleted 1H pulse bandwidth, theWATERGATE-type [81℄ pulse sequene element G1-180◦(1H)-G1 (Figure 6.1)yields e�ient water suppression within a single san. The seletive protonmanipulation also removes oupling evolution between exited 1H spins andpassive 1H spins from frequeny bands that are not perturbed by the seletivepulses.As spin refousing pulse, Shanda and o-workers [3℄ �rst hose r-SNOBpro�le [82℄ for it presents the advantage of a short pulse length thus redu-ing signal loss due to transverse spin relaxation [2℄. Afterwards, they testedother pulse shapes and found that, for 1H-15N orrelation spetra, a REBURP(Figure 3.2) pro�le yields higher sensitivity despite a 3-times longer pulse du-ration. Experimental omparison of r-SNOB and REBURP performane in
1H-15N SOFAST-HMQC showed signal inrease of up to 50% observed whenusing REBURP instead of r-SNOB for short san times. Suh result depend onbetter o�-resonane performane of REBURP, resulting in less perturbation



3.3. SOFAST-HMQC 31of the aliphati 1H spin polarization and, as a onsequene, shorter longitudi-nal relaxation times of the amide proton spins.

Figure 3.2: Exitation shaped pulses pro�les. A) PC9 pulse; B) RE-BURP pulse.The most band-seletive "top-hat" pulse shapes ommonly used for NMRspetrosopy, e.g. BURP [83℄, Gaussian pulse asades [84℄, or SNOB [82℄,have only been optimized for disrete �ip angles of 90◦ or 180◦, and generallyare not useful for variable �ip angle exitation purposes. In ontrast, polyhro-mati (PC) seletive pulses have been shown to perform well for a whole rangeof �ip angles [85℄. These PC pulses are based on a series of simultaneouslyapplied, frequeny shifted basi pulse elements. For the SOFAST appliation,Shanda and o-workers used the PC9 exitation pulse shape (Figure 3.3),whih has the required "top-hat" exitation pro�le for �ip angles 0◦<α<120◦.Moreover, unlike other band-seletive exitation pulses that yield "pure-phase" transverse magnetization, the PC9 pulses produe phase that is a linearfuntion of the frequeny o�set. So, Shanda and Brutsher proposed to replaea PC9 pulse by the ombination of a pure-phase exitation pulse followed bya delay δ. The hemial shift and salar JHX oupling evolution ourringduring this delay δ an be aounted for by adjusting the subsequent transferdelay of the HMQC sequene to 1/(2JHX)− δ (Figure 6.1). If the delay δ hasbeen properly adjusted prior to data aquisition no �rst-order phase orretionis required in the 1H dimension. Otherwise, pure-phase spetra an still beobtained by applying a �rst order phase orretion.
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Figure 3.3: Simulated frequeny-domain response of the polyhromati pulse PC9onsisting of nine radiofrequenies spaed ∆f = 1/T apart with relative intensities of1:2:2:2:2:2:2:2:2:1. A) Absorbtion; B) dispersion.3.3.4 Appliation to proteinThe SOFAST-HMQC pulse sequenes of Figure 6.1 have been designed toprovide high sensitivity for fast repetition rates. To examine the performaneof the SOFAST-HMQC experiment for the desired short intersan delays,Shanda and o-workers measured 1D spetra of 15N-labeled ubiquitin. Fig-ure 3.4 shows the measured S/N ratios for onstant experimental time as afuntion of the duration of a single repetition of the experiment Tscan (tak-ing into aount the length of the pulse sequene, data aquisition time, andreyle delay) for ubiquitin sample aquired at 600 MHz on a spetrometerequipped with a standard probe (Figure 3.4a) and at 800 MHz on a spe-trometer equipped with ryoprobe (Figure 3.4b). Suh spetra provide onlyinformation on the average signal to noise ratio obtained by the di�erentpulse sequenes. Eah intensity point was obtained by saling all spetra tothe same noise level aording to the number of applied sans, and integratingthe spetral intensity over the range 7.0-9.5 ppm. The urves are thereforerepresentative of the average behavior of the experiment for all amide sites inthe protein.The SOFAST-HMQC data (Figure 3.4) for three di�erent �ip angles (90◦,120◦, and 150◦) are ompared to results from a sensitivity-enhaned (se) water-�ipbak (wfb) HSQC pulse sequene, and from a longitudinal relaxation op-timized HSQC (LHSQC) experiment [77℄.
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Figure 3.4: Signal-to-noise ratios per unit time (intensity) plotted as a funtion of thesan time (Tscan) obtained with di�erent 1H-15N orrelation experiments for (a) ubiquitin(8.6 kDa, 2 mM, 25 ◦C, pH 6.2) at 600 MHz, (b) ubiquitin at 800 MHz. The intensitieswere extrated from 1D spetra reorded using the SOFAST-HMQC sequene of Figure 6.1(t1=0) with �ip angles of a α= 90◦ (�), 120◦ (N) and 150◦ (◦), LHSQC (▽), and se-wfbHSQC (•). Band-seletive 1H pulses in the SOFAST-HMQC and LHSQC experiments wereentered at 8.0 ppm overing a bandwidth of 4.0 ppm. Variable �ip angle exitation andrefousing in SOFAST-HMQC were realized using a PC9 pulse of 3.0 ms and a REBURPpulse of 2.03 ms, respetively.The prinipal onlusions from those experimental results are the follow-ing:
• Using optimized aquisition parameters (san time, �ip angle) and mod-erate t1 aquisition times, SOFAST-HMQC yields the most sensitive

1H-15N orrelation spetra of folded proteins.
• SOFAST-HMQC provides a muh higher sensitivity than se-wfb-HSQCusing the same san times, and a similar sensitivity as se-wfb-HSQCreorded with optimized inter-san delays.The SOFAST features showed in Figure 3.4 ould be used as guidelines forsetting up SOFAST-HMQC experiments. For pratial appliations the au-thors reommended to �x the san time (reyle delay) and then optimize the�ip angle of the PC9 exitation pulse experimentally by reording a series of1D SOFAST-HMQC spetra varying the power level (�ip angle) of the PC9pulse.



34 Chapter 3. Fast NMR tehniques in metabonomis3.4 Real-time ell 1H-15N metaboli pro�leNMR is a well-established tehnique for monitoring metabolism in living ells.They are often investigated by 1D NMR spetrosopy, therefore bene�ting ofreal-time measurements sine all spetral frequenies are exited by a singlesan. However, 1D NMR laks the resolution needed to ope with the degen-eray of the NMR resonane frequeny and a reasonable S/N ratio, the latterbeause of the short aquisition time required for the short lifetime of samples.The lak of resolution an be irumvented by 2D spetrosopy that, omparedwith 1D, does yield higher resolution, but is intrinsially time-onsuming be-ause data aquisition for the seond dimension spans at least several minutes.As disussed before, the total experimental time will be given by the produtof the number of sans Nscan, required for a proper sampling of the indiret do-main, and the single-san duration (the repetition time) Tscan, whih inludesthe spin relaxation time neessary to restore the thermal equilibrium beforethe next additional measurement. This reyle delay is therefore assoiatedwith the 1H spin-lattie relaxation time T1, and, depending on its duration,aquisition times an be of the order of minutes, yielding total experimentaltimes of hours.Cells are able to survive and stay suspended in the solvent medium forseveral hours, but, after only few minutes, oxygen starvation hanges theirmetabolism and dereases the ytoplasmi pH [86℄. Therefore, long aquisitiontimes may detet small moleules originating from an "average" metabolismthat does not orrespond to the physiologial state of the ell. For sam-ples with short lifetime data aquisition must be rapid, and fast-aquisition2D tehniques, as those used to study the struture and dynamis of pro-teins in solution are required [87℄. Two di�erent strategies have been putforward for fast aquisition spetrosopy: the "single-san" NMR [76, 88℄ andthe SOFAST-HMQC. The single-san approah is able to reord any multi-dimensional NMR spetrum within a single repetition of the experiment, butwith urrent spetrometer hardware it typially laks in sensitivity, resolution,and/or su�ient gradient strength over extended periods of time. Alterna-tively, the SOFAST method is able to drastially redue Tscan by relaying onaelerated T1 of the spins of interest [77℄ and on optimized �ip-angles (e.g.,the Ernst angle [57℄) to enhane the steady-state magnetization of the exitedspins [78℄. As pointed out in the previous setion, Brutsher and o-workershave ombined these features into single 2D and three-dimensional NMR pro-tools [2, 3, 89, 90℄, showing that it is possible to redue Tscan down to 100 ms,obtaining 2D 1H-15N or 1H-13C orrelation spetra in the range of seondsand with high S/N ratio.Beause of its adaptability to routine spetrometers, we have investigated



3.4. Real-time ell 1H-15N metaboli pro�le 35the possibility of using the SOFAST-HMQC approah to explore ellularmetabolism in 15N-labeled ells. In Chapter 6 we report that the SOFAST ex-periment allows aquisition of 2D 1H-15N orrelation spetra of small metabo-lites diretly in living ells in few seonds, with a high S/N ratio, thereforea�ording a piture of the "instantaneous" in-ell metabolism. In partiular,we have applied the SOFAST-HMQC experiment to 15N-labeled diatoms ells,whih are uniellular algae with silii�ed ell walls.

Figure 3.5: Thalassiosira rotula image from SEM mirosope.They are at the base of the marine food web, and are the major ontributorsto phytoplankton biomass worldwide. In response to favorable light and nutri-ent onditions, diatoms rapidly divide and form large blooms, and as bloomspropagate, nutrients are depleted, growth eases, and ells sink to the deepoean. The sinking diatom blooms fuel the biologial arbon pump and exportarbon from the atmosphere to the deep oean. Despite this, little is knownabout the moleular underpinnings of diatom biology. As a part of a long-running projet, we have reently undertaken a study of the metaboli pro�leof Thalassiosira rotula (Figure 3.5) to understand how diatoms aquire nutri-ents, how they respond to stress, and how they ativate hemial defense andhemial signaling that regulates algal bloom. Although useful informationan be ahieved by investigating the metaboli pro�le of polar and lipophiliextrats, in-vivo studies of T. rotula ells in (arti�ial) sea water are expetedto yield a more reliable understanding of the metaboli pathways.On the other hand, the presene of salt in the arti�ial sea water ulturemedium, used to suspend the ells in the NMR tube, will ause resonanebroadening, and this, together with the degeneray of the resonane frequeny,



36 Chapter 3. Fast NMR tehniques in metabonomiswill make 1D spetrosopy useless. T. rotula ells an easily be ultured onunlabeled and 15N-labeled media, and this warrants that a su�ient numberof olonies an rapidly be obtained to test the potential appliation of theSOFAST-HMQC sequene to 15N-labeled ells. The 2D orrelation spetraobtained for T. rotula ells in 10-15 seonds with a high S/N ratio suggestthat fast aquisition tehniques introdued for proteins an be easily extendedto other living ell systems, monitoring the metabolism under physiologial orstressing onditions in the emerging �elds of metabolomis and metabonomis[91, 35℄.



Chapter 4NMR metaboli pro�leexperiments
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38 Chapter 4. NMR metaboli pro�le experimentsHCV -related irrhoti tissues (CIR; N = 17), tissues from liver metastases(MET-CRC; N = 9), and the orresponding adjaent non-irrhoti liver tis-sues plus two liver tissues from healthy subjets (NT; N = 11). All sampleswere frozen in liquid nitrogen in order to immediately "quenh" any metabolireation and preserve metabolite onentrations. Tissues were stored at -80
◦C until extration to prevent any metaboli deay. Pathologial evaluationwas performed on eah ase, histopathologial lassi�ation was based on theriteria of World Health Organization; disease status at the time of diagno-sis was de�ned depending on linial staging as assessed by medial history,physial examination, and instrumental tests. A written informed onsent fortissue sampling was obtained before the analysis from aner patients. Thestudy was reviewed and approved by the ethial review board at the NationalCaner Institute - G. Pasale Foundation - of Naples. The main harateristisof aner patients are presented in table of Figure 4.1 .Sample preparationTissues were mehanially disrupted to deproteinize the sample and perma-nently halt the metabolism. The proedure allowed extration of only themetabolites of interest (e.g., lipids, arbohydrates, amino aids and other smallmetabolites) while leaving others ompounds (e.g., DNA, RNA, proteins) inthe tissue pellet. Combined extration of polar and lipophili metaboliteswas arried out by using methanol/hloroform as suggested by the StandardMetaboli Reporting Strutures working group [92℄. It appears to be the pre-ferred hoie for metabonomi NMR studies onsidering yield, reproduibility,ease and speed, as perhlori aid extrats show a large sample-to-sample vari-ation [93℄, espeially for partiularly lipid-rih tissues suh as liver and brain[93, 94℄. Homogenization of 30 mg of frozen tissue samples was arried outin 8 ml/g of wet tissue of methanol and 1.70 ml/g per wet tissue of water(all solvents were old) with UltraTurrax for 2 min on ie. Then, 4 ml/g wettissue of hloroform were added and the homogenate was stirred and mixed,on ie, deliately using an orbital shaker for 10 min (the solution must bemono-phasi). Then, other 4 ml/g wet tissue of hloroform and 4 ml/g wettissue of water were added and the �nal mixture was shaken well and en-trifuged at 12000 g for 15 min at 4 ◦C. This proedure separates three phases:a water/methanol phase at the top (aqueous phase, with the polar metabo-lites), a phase of denatured proteins and ellular debris in the middle anda hloroform phase at the bottom (lipid phase: with lipophili ompounds).The upper and the lower layers of eah sample were transferred into glass vialsand the solvents were removed under a stream of dry nitrogen and stored at-80 ◦C until required. For one-dimensional (1D) and two-dimensional (2D)



4.1. Materials and methods: a) hepatoellular arinoma 39homonulear NMR experiments the polar extrats were resuspended in 700 µlPhosphate Bu�er Saline (PBS, pH 7.4) with D2O 10% for lok proedure, andthen transferred in an NMR tube. For 2D heteronulear 1H-13C experiments,the polar fration was resuspended in 700 µl of D2O.
NMR measurements1D spetra were reorded at 600.13 MHz on a Bruker Avane-600 spetrome-ter, equipped with a TCI CryoProbeTM �tted with a gradient along the Z-axis,at a probe temperature of 27◦C and aquired at the Institute of BiohemialChemistry in Pozzuoli (Napoli). 1D proton spetra were aquired by usingthe exitation sulpting sequene [95℄. We used a double-pulsed �eld gradi-ent eho, with a soft square pulse of 4 ms at the water resonane frequeny,with the gradient pulses of 1 ms eah in duration, adding 1024 transients of16384 points with a spetral width of 7002.8 Hz. Time-domain data were allzero-�lled to 32768 points, and prior to Fourier transformation, an exponen-tial multipliation of 0.6 Hz was applied. Clean total orrelation spetrosopy(TOCSY) [96, 97, 98℄ spetra were reorded using a standard pulse sequene,and inorporating the exitation sulpting sequene for water suppression.In general, 320 equally spaed evolution-time period t1 values were aquired,averaging 4 transients of 2048 points, with 7002.8 Hz of spetral width. Time-domain data matries were all zero-�lled to 4096 points in both dimensions,thus yielding a digital resolution of 3.42 Hz/pt. Prior to Fourier transforma-tion, a Lorentz-to-Gauss window with di�erent parameters was applied forboth t1 and t2 dimensions for all the experiments. TOCSY experiments werereorded with spin-lok period of 64 ms, ahieved with the MLEV-17 pulsesequene. Spetra were referred to 0.1 mM sodium trimethylsilylpropionate(TSP), assumed to resonate at δ= 0.00 ppm. The natural abundane 2D 1H-
13C Heteronulear Single Quantum Coherene (HSQC) spetra were reordedon the Avane-600 spetrometer operating at 150.90 MHz for 13C, using aneho-antieho phase sensitive pulse sequene using adiabati pulses for de-oupling [99, 100℄. 128 equally spaed evolution time period t1 values wereaquired, averaging 48 transients of 2048 points and using GARP4 for deou-pling. The �nal data matrix was zero-�lled to 4096 in both dimensions, andapodized before Fourier transformation by a shifted osine window funtion int2 and in t1. Linear predition was also applied to extend the data to twie itslength in t1. Spetra were referred to the latate doublet (βCH3) resonatingat 1.33 ppm for 1H, and 20.76 ppm for 13C.
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Figure 4.1: Charateristis of aner patients (*AFP, alpha-fetoprotein).



4.2. Results 41Statistial and multivariate data analysisHigh resolution 1H-NMR spetra were automatially data redued to inte-grated regions ("bukets") having equal width of 0.04 ppm over the spetral re-gion between 0.04 and 9.40 ppm by using AMIX 3.6 software pakage (BrukerBiospin, Germany). The residual water resonane region (4.72 - 5.10 ppm)was exluded and the integrated region was normalized to the total spetrumarea. To di�erentiate liver tissues through NMR spetra, we arried out a mul-tivariate statistial data analysis using projetion methods. The integrateddata redued format of the spetra was imported into SIMCA-P+ 12 pakage(Umetris, Umea, Sweden), and Prinipal Component Analysis (PCA) andOrthogonal Projetion to Latent Strutures Disriminant Analysis (O2PLS-DA) were performed. Mean-entering was applied as data pre-treatment forPCA, while Pareto saling and mean-entering were used prior to O2PLS-DA.Both the ANOVA and the t-test were used for statistial analysis of the signalsseleted for quanti�ation.4.2 ResultsNMR experimentsNT, CIR, HCC and MET-CRC underwent a dual-phase extration, and theaqueous frations were investigated by high-resolution NMR. Typial spe-tra of NT (trae A), CIR (trae B), HCC (trae C) and MET-CRC (traeD) are reported in Figure 4.2. Although isolated resonanes an readilybe assigned to spei� metabolites by omparing their hemial shifts withliterature data [101, 102℄, line overlapping prevented the omplete spetralidenti�ation. This required homo- and heteronulear 2D experiments suhas TOCSY (Figure 4.3) to identify 1H-1H onnetivities, and 1H-13C HSQC(Figure 4.4) for diretly bonded 1H and 13C nulei. Thus, we were able toidentify all resonanes by a omparison with literature data and with NMRspetra of standards aquired in separate experiments. The 1H assignmentsare reported in table of Figure 4.5. Inspetion of 4.2 shows lear visible dif-ferenes among NT, CIR, HCC and MET-CRC. The spetral region from 0.5to 3.00 ppm ontains signals assigned to leuine, valine, threonine, alanine,lysine, glutamate, glutamine, and some organi aids suh as latate, aetateand suinate. The region from 3.0 to 4.5 ppm inludes signals attributed toreatinine, holine, arginine, phosphoethanolammine, phosphoholine, gly-erolphosphatidilholine, α-gluose, trimethylamine-N-oxide, glyine, glyogen,myo-Inositol and glyerol, and represents the most variable region. The 4.5-7.5 ppm region, together with the residual water signal eliminated by the



42 Chapter 4. NMR metaboli pro�le experimentsspei� pulse-sequene used in the experiment, ontains the resonanes of β-gluose, fumarate, tyrosine, histidine and phenylalanine. The region 5.5-6.4ppm does not ontain signals, and as suh it has been omitted from 4.2.

Figure 4.2: Representative aliphati 1H-NMR spetra of all liver tissue extrats used inthis study (spetra saled to TSP): (A) ontrol non-tumoral adjaent to metastasis (NT)and (D) metastasis from the same patient (MET-CRC); (B) irrhoti adjaent to HCC(CIR) and (C) HCC from the same patient (HCC). Numbers labels: 1, Leuine; 2, Valine;3, Threonine; 4, Latate; 5, Alanine; 6, Lysine; 7, Aetate; 8, Glutamate; 9, Glutamine;10, Suinate; 11, Creatine; 12, Choline; 13, Arginine; 14, Phosphoethanolamine; 15, Phos-phoholine; 16, Glyerophosphoholine; 17, β-Gluose; 18, Trimethylamine-N-oxide; 19,Glyine; 20, Glyogen; 21, myo-inositol; 22, Glyerol; 23, α-Gluose; 24, Fumarate; 25,Tyrosine; 26, Histidine; 27, Phenylalanine.
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Figure 4.3: Typial TOCSY spetrum of HCC extrat sample; for metabolites identi�a-tion see Figure 4.5 aption.

Figure 4.4: Example of 1H-13C HSQC spetrum of HCC sample; for metabolites identi-�ation see Figure 4.5 aption.
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Figure 4.5: List of 1H and 13C hemial shift (δ, ppm) of metabolites found in 1H-TOCSY and 1H-13C-HSQC-NMR spetra of HCC, metastasis and adjaent non-involvedliver tissues. a Abbreviations: GPC, glyerophosphoholine; PC, phosphoholine; PE,Phosphoryl-ethanolamine; TMAO: Trimethylamine-N-oxide. * Expeted hemial shift.



4.2. Results 45Prinipal Component AnalysisNotwithstanding the use of 2D spetra, visual inspetion alone did not war-rant meaningful observations of the metabolite distribution. To obtain sta-tistially relevant biohemial information from NMR data, we �rst appliedmultivariate data analysis based on pattern reognition methods to all spetraby omparing eah tissue with the anothers. Therefore, we applied PCA onspetra of NT and CIR in order to evaluate their metabolomi pro�les. Figure4.6 shows the PCA results as sores (Figure 4.6A) and loadings plots (Fig-ure 4.6B) for the �rst two prinipal omponents from spetra of CIR (�lledsquares, �) and NT samples (empty squares, �).

Figure 4.6: PCA omparison of non-tumoral (NT) with irrhoti tissues (CIR). (A) Soresplot (R2=73.14%) for CIR (�) and NT (�). The major metaboli signals that di�erentiatethe two lasses are shown in the loadings plot (B), where numbers refer to metabolites aslabeled in Figure 4.2.Clustering is observed from the sores plot PC1 vs. PC2 (Figure 4.6A), wherePC1 and PC2 explained 73.14% of the total variane within the data. The



46 Chapter 4. NMR metaboli pro�le experimentsmetaboli signals responsible for the di�erentiation of the two lasses an beidenti�ed from loadings plot (Figure 4.6B) assoiated with the PCA. Com-pared with NT tissue extrats, CIR showed inreased onentrations of latate(Figure 4.2 for labeling), α-/β-gluose, and glyogen, with dereased onen-tration of Thr, aetate, Glu, Gln, reatine, PC, GPC, TMAO, and myo-Inositol. Applying PCA to the spetra of liver metastasis (�), they resultedseparated from those orresponding to non-irrhoti normal liver (�), as de-pited in the sores plot PC1 vs. PC2, whih explains 90.78% of the totalvariane (Figure 4.7C). The loadings plot in Figure 4.7D shows the major al-terations of the metaboli signals responsible for the separation. In partiular,metastasis di�erentiated from the non-irrhoti normal liver for high level ofLeu, Thr, latate, Ala, aetate, Glu, Gln, Gly, GPC, PE, and myo-Inositol,and for lower level of α-/β-gluose and glyogen.

Figure 4.7: PCA omparison of non-tumoral (NT) with metastasis tissues (MET-CRC).The sores plot C (R2=90.78%) distintly shows a separation for metastasis (�) and non-irrhoti (�) tissues along the PC1 axis. The loadings plot (D) shows the major signals thatdetermined di�erene in the lustering, numbers refer to metabolites as labeled in Figure4.2.



4.2. Results 47As it an be seen in the sores plot (Figure 4.8A), PCA suessfully lassi-�ed HCC tissues (�) from the CIR strains (�) through two PCA omponents,whih explained 70.93% of the variane within the dataset. The separationwas due to an inrease of Leu, Thr, latate, Ala, aetate, Glu, Gln, PC+GPCand PE, and to a derease of reatine, α-/β-gluose and glyogen in HCC(Figure 4.8B).

Figure 4.8: PCA omparison of HCC with irrhoti tissues (CIR). HCC (�) and theorresponding irrhoti (�) samples separated in the sores plot A (R2=70.93%) along thePC1 axis, by means of the loadings plot B. Numbering as in Figure 4.2 aption.Furthermore, we readily distinguished HCC (�) from metastases (�), asshown by the sores plot PC1 vs. PC2, where the two omponents explained83.79% of the total variane within the data (Figure 4.9C). The assoiatedloadings plot shows di�erenes of the metabolite onentration whih deter-mined suh lustering (Figure 4.9D). Compared to metastasis, HCC tissueshad higher levels of α-/β-gluose and glyogen, with lower levels of Leu,Thr, latate, aetate, Glu, reatine, TMAO, myo-Inositol, Gly, GPC and



48 Chapter 4. NMR metaboli pro�le experimentsPE. Finally, we performed PCA of the whole dataset by extending pattern

Figure 4.9: PCA omparison of HCC with metastasis tissues (MET-CRC). The soresplot C (R2=83.79%) displays HCC spetra (�) and metastasis (�) spetra in two lustersalong the PC1 axis aording to the signals in the loading plot D, whih highlights thesignals involved in the lustering. Numbering as in Figure 4.2 aption.reognition tehnique to all lasses. Figure 4.10 shows the sores plot PC1 vs.PC2 and explains 77.94% of the total variane.Although lusterings displayed in Figures 4.6, 4.7, 4.8 and 4.9 learly sep-arated di�erent pairs of hepati tissues, the whole model is more ontroversialas it appears in the satter plot of Figure 4.10. For that reason we performedan OPLS-DA analysis.
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Figure 4.10: PCA showing the metaboli di�erenes within eah individual group oftissues, namely NT (N), CIR (�), HCC (�) and MET-CRC (△).Orthogonal Projetion to Latent Strutures DisriminantAnalysisTo better onstrut a four tissue lasses model and to understand the role ofthe X variables ("bukets") in the lass separation, and to prove the potentialof the NMR representation in assigning new samples to a spei� lass, weonstruted an O2PLS-DA model, whih resulted in three preditive and threeorthogonal omponents (R2=0.65 and Q2=0.35).

Figure 4.11: 3D sore plot showing the lass separation of the di�erent group of tissues,namely NT (blue), CIR (red), HCC (yellow) and MET-CRC (green).



50 Chapter 4. NMR metaboli pro�le experimentsIn the 3D sore plot (Figure 4.11) the four tissue lasses appear su�ientlyseparated in lusters, although the model seems to be robust for the MET-CRC samples (R2=0.82 and Q2= 0.63), but weaker for the HCC (R2=0.55and Q2=0.26) and CIR samples (R2=0.58 and Q2=0.17). However, the latentstruture orresponding to the preditive part of the model an be used toexplain the relationships between X-variables and lass separation.The p(orr)/q(orr) plot (Figure 4.12) is a useful tool to identify the vari-ables responsible for the tissues lass separation. The pi(orr)j parameter isthe orrelation oe�ient between the ti preditive sore vetor and the Xjvariable, and an be onsidered as a measure of the similarity between the tisore vetor and the Xj variable. On the other hand, the qi(orr)j parameterorresponds to the orrelation oe�ient between the ti preditive sore vetorand the dummy variable representing the lass j, and allows its representationin the same plot of the X variables. Figure 4.12 indiates that the �rst prin-ipal omponent is very similar to variables orresponding to "bukets" 1.34,4.10, 3.90 and 3.82 ppm. In partiular, a progressive inrease of the 1.34 ppmvariable an be observed starting from the NT lass, through the CIR andthe HCC up to the MET-CRC samples (Figure 4.13A). On the ontrary, the3.90 ppm variable shows an opposite trend through the four lasses (Figure4.13B).

Figure 4.12: Identi�ation of variables responsible for the tissues lass separation:pq(orr) plot with all variables ("bukets").
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Figure 4.13: Identi�ation of variables responsible for the tissues lass separation. (A)and (B) variation of the "bukets" relative to the most signi�ant signals at 1.34 ppm(latate) and 3.90 ppm (α-gluose), respetively, showing a progressive inrease of the 1.34-ppm variable, and a orresponding derease of the 3.90-ppm variable. Samples are identi�edby a olor ode.In order to build a Naïve Bayes lassi�er the three preditive sore vetorswere used to obtain a new representation of the sample spae. The preditionperformane of the lassi�er was evaluated by omplete ross-validation (fourgroups). It showed just 7.4% of inorret predition (4/54 samples), while92.6% of samples were orretly predited (50/54 samples). The four sampleswere inorretly lassi�ed as belonging to adjaent lasses: one NT samplewas predited as CIR (1/11 NT); two CIR samples were predited as HCC(2/17 CIR), and one HCC was predited as MET-CRC (1/17). For a two-lass model, O2PLS-DA is able to obtain a powerful lassi�ation and detetpotential markers [14℄. In this ase, only one omponent is needed to explainthe variation between the two lasses, and the preditive sore vetor t andiretly be used to highlight resonanes ("bukets") ating as potential mark-



52 Chapter 4. NMR metaboli pro�le experimentsers. This ould easily be ahieved by building the S-plot, in whih p(orr)is plotted against the preditive loading vetor p of the model, and only thevariables having an absolute p/perr ratio > 1.7 (where perr is the error on pestimated by jak-knife in ross-validation) will be onsidered.

Figure 4.14: S-plots reporting p(orr) against the preditive loading vetor p of the model:(A) NT vs. HCC; (B) NT vs. MET-CRC. All models indiated the signals at 1.34 and 3.90ppm, as the prinipal disriminating variables.

Figure 4.15: S-plots reporting p(orr) against the preditive loading vetor p of the model:(C) CIR vs. MET-CRC; and (D) HCC vs. MET-CRC. All models indiated the signals at1.34 and 3.90 ppm, as the prinipal disriminating variables.Six models were onsidered, eah orresponding to a pair of sample lasses.Figure 4.14 shows the S-plots of NT vs. HCC (panel A) and NT vs. MET-CRC (panel B) while Figure 4.15 shows the S-plots of CIR vs. MET-CRC(panel C) and HCC vs. MET-CRC (panel D). All models indiated the signalsat 1.34 and 3.90 ppm, stemming from the latate and the gluose, respetively,



4.2. Results 53as the prinipal variables disriminating both MET-CRC and HCC from NTsamples, and CIR and HCC from MET-CRC. These models an all be onsid-ered robust having high Q2 values (> 0.69). On the ontrary, the NT vs. CIRand the CIR vs. HCC models did not show any disriminating variable asa putative marker. Table reported in Figure 4.16 summarizes all parametersrelated to the O2PLS-DA models.

Figure 4.16: Summary of O2PLS-DA parameters from the six pairs of models analyzed.
a No disriminating variables were found as a putative marker.



54 Chapter 4. NMR metaboli pro�le experimentsIf a partiular lass an be onsidered as a ontrol, it is possible to gaininformation about the variables that disriminate eah lass, with respet tothe ontrol, using the so alled SUS-plot (Shared and Unique Struture plot).Assuming the NT samples as ontrol, the p(orr) vetors estimated for eahtwo lasses models, separately inluding the NT lass, were used to representthe X-variables in the SUS-plot (Figure 4.17). Sine the NT vs. CIR modelwas not robust enough to be understood in terms of single variables, we limitedour analysis to NT, HCC and MET-CRC lasses. We found that the samesignals separate both HCC and MET-CRC samples from the ontrol, whileno unique signals disriminate these two lasses. In partiular, the buketsloated at 1.30-1.38 ppm and 4.00-4.14 ppm; whih ontain the latate signals,are elevated in both HCC and MET-CRC lasses, suggesting the latate as theputative marker. On the ontrary, the bukets at 3.70-4.00 ppm, ontainingthe gluose signals, are prominent in NT lass, suggesting the gluose as theputative marker. Therefore, both metabolites primarily ontribute to thelassi�ation of the di�erent groups, showing an opposite trend among thegroups. In partiular, the latate level inreases from NT group, through CIRand HCC, to reah the highest value in the liver MET. On the ontrary, thesignals of gluose progressively derease from NT group, through CIR, HCCand MET-CRC group, whih shows the lowest intensity.

Figure 4.17: SUS plot of NT, HCC, and MET-CRC lasses. Assuming the NT samplesas ontrol, the p(orr) vetors estimated for eah two lasses models, separately inludingthe NT lass, were used to represent the X-variables.



4.2. Results 55Quanti�ation and statistial signi�aneTo on�rm the parallel trend of these two putative markers (inreased latateand dereased gluose), we integrated the 1H-NMR isolated signals of la-tate (βCH3, 1.33 ppm) and α-gluose (C1H, 5.24 ppm) in all tissue samples.We only onsidered the α-gluose, whih represents a. 36% of total gluose,beause the remaining 64%, orresponding to the β form, gives a signal at4.65 ppm, and as suh it is strongly perturbed by the pulse sequene usedfor water peak (4.68 ppm) suppression in the NMR experiments. The peakarea of latate and α-gluose was saled to the molar onentration takinginto aount that they represent the latate methyl group and the gluoseisomer, and alulated the latate/gluose molar ratio. Figure 4.18 illustratesthe latate/gluose molar ratio for eah patient sample. The analysis of vari-ane (ANOVA with Bonferroni orretion) has been applied, and statistiallysigni�ant di�erenes were observed for the latate/gluose ratio of NT vs.MET-CRC (p < 0.001), CIR vs. MET-CRC (p < 0.001) and HCC vs. MET-CRC (p < 0.001).

Figure 4.18: Latate-α-gluose molar ratio for eah patient sample. Statistially signif-iant di�erenes were observed for the latate/gluose ratio of NT vs. MET-CRC (p <0.001), CIR vs. MET-CRC (p < 0.001) and HCC vs. MET-CRC (p < 0.001). The vertialaxis has been ut to highlight the variations for NT, CIR and HCC samples, all with a ratio<15.



56 Chapter 4. NMR metaboli pro�le experiments4.3 DisussionIn this study we have used high-resolution 1H-NMR spetrosopy to investi-gate the metabolite omposition of human hepati tissue extrats of 17 pa-tients a�eted by hepatoellular arinoma HCV-related (HCC), and 9 pa-tients a�eted by liver metastases from oloretal arinoma (MET-CRC).As a ontrol we used irrhoti liver tissues of HCC patients (CIR) and nor-mal liver tissue of MET-CRC patients (NT), respetively. All spetral lasseswere visualized by PCA analysis, whih also highlighted the "evolution" andrelationship of the di�erent pathologial liver onditions represented by thefour NMR data lasses. The disease evolution is established along the PC1axis (Figure 4.12A), following the inrease of the latate (Figure 4.13B), andthe remarkable derease of gluose (Figure 4.13C). The progressive inreaseof latate/gluose ratio along the PC1 axis is onsistent with the enhanedonversion of gluose into latate, through the di�erent lasses that representdi�erent tissue onditions suh as hypoxia and/or "aerobi glyolisis". Solidmalignant tumors are haraterized by pronouned tissue hypoxia [103℄ andenhaned formation of latate [104℄, but many tumors exhibit a strong gener-ation of latate even in the presene of oxygen. This phenomenon, known as"aerobi glyolysis" or the "Warburg e�et" [105℄, is generally onsidered theresult of onogeni alteration in gluose metabolism following malignant trans-formation [106℄, but its signi�ane is still ontroversial [107℄. An elevatedlatate onentration in primary lesions at �rst diagnosis has been related toan inreased risk of metastases in squamous ell arinomas of the uterineervix, of the head and nek, and in adenoarinomas of the retum [108℄.Certainly no endogenous marker alone is able to predit the hypoxi status ofthe tumor, and we need to �nd, within hypoxi metaboli pro�les, a patternof signals (metabolites) that are expression of the pathologial hanges. How-ever, our observations suggest that the metaboli shift towards enhaned gly-olysis would already be present in the early stage, during multi-step hepatitumorigenesis. Starting from liver irrhosis, widely onsidered as preanerouslesions, the upregulation of glyolysis showed progressive rate of onversion indi�erent hepati onditions, thus indiating the metastasis group as the one,among all lasses, requiring the larger amount of onversion in energy for itsmalignany harateristis. Most probably, ell population with upregulatedglyolysis ould develop growth advantages whih promote unonstrained pro-liferation and invasion [106℄.The PCA analysis of variables shows that PC1 separates NT from MET-CRC, and CIR from HCC, while PC2 separates NT from CIR, and MET-CRC from HCC. These separations ideally identify two di�erent "metabolidevelopmental trajetories", whih, based on the hanges in the NMR-visible



4.3. Disussion 57metabolome, desribe liver tumorigenesis (Figure 4.12). Starting from NT, itis possible to ideally draw an ideal line through CIR to HCC, aording to asequel of pathologial liver alterations. Conversely, it is possible to onnetNT diretly to MET-CRC, aording to the absene of any liver "interme-diate" state. It is worth speulating about the possible appliations of suhmetaboli trajetories. Firstly, the trajetory ould be used to identify aspei� pathologial state by verifying when andidate metabolites deviatefrom the normal path. This ould then be orrelated with known morpholog-ial events providing insight into the progression towards HCC. Furthermore,the trajetory ould de�ne the point of HCC tumorigenesis where a limitednumber of genomi (DNA miroarray) and/or proteomi studies ould be ar-ried out to better haraterize the onogeni hanges. Seondly, omparisonof metaboli trajetories an provide a suitable way to distinguish primarytumors from metastases. Thirdly, the e�ets of drug treatment ould be as-sessed by determining if the pathologial metaboli trajetory tends to the"normal" state. On this regard, the 1H-NMR spetra provided quantitativedata by integrating seleted metabolite signals that were found to primarilyontribute to the lassi�ation of the di�erent groups. In partiular, we identi-�ed the latate/gluose ratio, whih shows an opposite trend among subgroupsand within eah of them, therefore a�ording a reliable method for evaluatinghealthy or non-healthy status of the liver.In this study the patients who developed HCC were also a�eted by hroniirrhosis HCV-related. Hepatites C infetion is the most frequent liver infe-tion and is onsidered a pre-anerous lesion of liver. HCV infetion is alsoassoiated with an inreased risk of gluose intolerane and diabetes maybedue to an impaired gluose homeostasis mediated diretly by HCV proteins.Liver irrhosis is a progressive �broti proess that is haraterized by the �nalnerosis of hepatoytes. In normal onditions, after arbohydrate digestion,blood gluose level rises, and in hepatoytes insulin ats so as to stimulateseveral enzymes and onvert exess gluose into glyogen, thus preventing ex-essive osmoti pressure build up inside the ell. In fat, CIR samples (Figure4.2B), ompared to NT samples (Figure 4.2A), show an inreased amountof latate, and the latate/gluose ratio is a. 2 times that in NT (Figure4.18). Hepati transformations our by sequential aumulation of genetiand moleular alterations, and HCC is often the result of a slow and progres-sive evolution going through the development of liver irrhosis. The latatein HCC samples is a. 2 times higher than that in CIR samples, meaningthat there is an alteration of the arbohydrate metabolism, with enhanedglyolysis and alteration of the triarboxyli aid (TCA) yle [15℄.Metastasis formation is the result of a multi-step asade of events our-ring to aner ells during tumor dissemination, whih brings about onsid-



58 Chapter 4. NMR metaboli pro�le experimentserable metaboli hanges [109℄. The large inrease in latate onentration aswell as the derease of intraellular gluose level was the predominant e�etfor the separation of metastases from HCC and NT (Figure 4.17), and thelatate/gluose ratio in MET-CRC ranges from 9 to 40 fold higher omparedto HCC and NT, respetively (Figure 4.18), thus suggesting a role for theenhaned phenomenon of "aerobi glyolysis". Furthermore, the metastatiproess for remodeling and altering extra-ellular matrix, tightly assoiatedwith ell proliferation, is onsistent with the elevation of latate, and has beenalready reported for metastasis in axillary lymph nodes in breast aner andhuman ervial aner [110℄.The approah used in this study highlighted metaboli evolution of di�er-ent liver diseases: irrhosis, HCC, and liver metastasis. The analysis of suha wide range of speimen types indiated that the ommon disriminatingfator, a progressive inrease of latate onentration, is oupled with hangesin TCA yle and alterations of the energy metabolism in the liver of CIRand HCC patients HCV-related. In addition, the raise of latate is also ou-pled with a stronger elevation of latate/gluose ratio of patients MET-CRCmay be due to other metaboli mehanisms. In previous HR-MAS studieson intat tissues, the latate resonane was disarded for possible anaerobidegradation of gluose indued during surgery or experiment [111℄. Here allsamples underwent the same treatment, and therefore we an safely exludeexternal fators altering the latate levels. Furthermore, the dual extrationproedure used in our study allowed identi�ation and quanti�ation a muhhigher number of polar metabolites in omparison with protools previouslydesribed for the NMR spetrosopy on intat tissues ex vivo [112℄.



4.4. Materials and methods: b) exhaled breath ondensate 594.4 Materials and methods: b) exhaled breathondensateSpeimens olletionA total of 36 paired EBC and saliva samples were olleted from the followinggroups of subjets: 12 healthy subjets (HS; nine males, mean age 55.6±7.2yrs); 12 laryngetomized patients (nine males, mean age 60.2±6.2 yrs); and 12patients a�eted by hroni obstrutive pulmonary disease (COPD; 11 males,mean age 64.9±5.7 yrs). All HS were nonsmokers, while the laryngetomizedpatients (who provided samples through a stoma, bypassing the pharynx en-tirely) and the COPD patients were ex-smokers (at least 24 months sinesmoking). All subjets presented no oupational or other pronouned expo-sure to organi solvents. The laryngetomized patients had been previouslytreated by laryngetomy for laryngeal arinoma for at least one year prior(range 12-18 months) and did not have a history of hroni respiratory dis-ease or reurrent exaerbations. COPD patients had reeived diagnosis in thepast aording to the Global Initiative for Chroni Obstrutive Lung Diseaseguidelines [113℄. The COPD anthropometri harateristis are summarizedin table in Figure 4.19.

Figure 4.19: Anthropometri harateristis of 12 patients a�eted by hroni obstrutivepulmonary disease. BIM: body mass index; FEV1: fored expiratory volume in one seond;% pred: predited; FVC: Fored vital apaity; GOLD: Global Initiative for Chroni Ob-strutive Lung Disease; M: male; F: female. FEV1, FVC and FEV1/FVC were measuredafter bronhodilatation inhalation test.None of the patients were on regular systemi or inhaled ortiosteroid treat-ment. They were asked not to use long-ating β2-agonist and antiholinergiagents for a period longer than 12 h and 24 h, respetively, before EBC olle-



60 Chapter 4. NMR metaboli pro�le experimentstion. All subjets were free from upper and/or lower airway infetion for, atleast, 4 weeks before the EBC olletion. They refrained from food intake for4 h before the test and from aloholi drinks for 18 h before EBC olletion.In laryngetomized patients, lower respiratory trat seretions were ativelymanaged by selfsutioning and leaning before eah EBC olletion.To assess within-day repeatability, eight subjets (four HS and four COPDpatients) were asked to ollet EBC and saliva twie within the same day (attimes 0 h and 12 h). All subjets gave informed onsent and the study proto-ol was approved by the Ethis Committee of the Monaldi Hospital (Naples,Italy).EBC samplingEBC was olleted using an EoSreen ondenser (Jaeger, Wurzburg, Ger-many) as previously desribed [40℄ (Figure 4.20). Brie�y, all subjets breathedthrough a mouthpiee (laryngetomized patients provided samples throughthe stoma) and a two-way nonrebreathing valve, whih also served as a salivatrap, at normal frequeny and tidal volume, while sitting omfortably andwearing a nose-lip for a period of 15 min. They maintained a dry mouthduring olletion by periodially swallowing exess saliva.

Figure 4.20: EBC shemati olleting system.Condensate samples (3-4 ml) were immediately transferred into glass vials of10 ml volume, losed with 20 mm butyl rubber lined with polytetra�uoroethy-lene septa, and rimped with perforated aluminium seals. Volatile substanes,



4.4. Materials and methods: b) exhaled breath ondensate 61possibly deriving from extra-pulmonary soures [114, 115, 116℄, were removedby a gentle stream of nitrogen before sealing. Nitrogen was applied for avariable time (1, 3, 5, 10, 15 and 20 min); no di�erene was observed withspetra aquired after 1 min nitrogen exposure, but sine suh an intervalappeared to be too short to avoid systemati errors, a 3 min interval washosen. Nitrogen was used beause the onentration of volatile solutes inEBC is dependent on their distribution between the saliva, exhaled air anddroplets, and the ondensate. This distribution an be altered by multiplefators, inluding minute ventilation, salivary pH, solubility, temperature andsample preparation [117℄. Therefore, spetral di�erenes may depend uponunontrollable variables that prevent reliable quanti�ation. The nitrogenstream also removes oxygen from solutions. Suh a proedure, used for NMRprotein struture determination [118℄, together with freezing of sealed samplesin liquid nitrogen, immediately "quenhes" metabolism at the olletion time,and prevents any metaboli deay [37℄. Samples were then stored at -80 ◦Cuntil NMR analysis. Drying of the samples was avoided to irumvent irre-versible solute preipitation and/or formation of insoluble aggregates, whihwere observed upon dissolving the dried ondensate for NMR measurements.Pre-analytial preparation of EBC ondenser reusablepartsBefore and after olletion of eah EBC sample, the reusable parts of theondenser (valve, salivary trap and lamellar ondenser) were disinfeted for 15min using a solution of a 1.5% freshly prepared hemial agent (DesogenTM ;FILT GmbH, Berlin, Germany), and repeatedly �ushed with water followingthe manufaturer's guidelines. To ompletely eliminate the disinfetant, partsalready disinfeted and washed were thoroughly rinsed for 15 min with puregrade ethanol (96%), thereafter exhaustively soaked with deionized distilledwater for 15 min and dried under vauum at 50 ◦C.Salivary olletionTogether with EBC olletion, a salivary sample was taken in the same day. Toavoid any interferene from exogenous agents into the oral environment, thepatients were asked to ollet all saliva available (∼ 2-4 ml), i.e. "whole" salivaexpetorated from the mouth, into a plasti universal tube immediately afterwaking in the morning. As previously desribed by Silwood et al. [38℄, eahpatient was requested to refrain ompletely from oral ativities (i.e. eating,drinking, tooth brushing, oral rinsing,smoking, et.) during the short periodbetween awakening and sample olletion (<5 min). Eah olletion tube



62 Chapter 4. NMR metaboli pro�le experimentsontained 15 µmol sodium �uoride, su�ient to ensure that metabolites werenot generated or onsumed via the ations of bateria or baterial enzymespresent in whole saliva during periods of sample preparation and/or storage[39℄. Speimens were transported to the laboratory on ie and immediatelyentrifuged (at 20,000×g at 4 ◦C for 15 min) on their arrival to remove ellsand debris. Following this, a gentle nitrogen gas �ow was applied for ∼5 minto supernatants, whih were then stored at -80 ◦C until measurements weremade.The 1H-NMR pro�les of salivary supernatant speimens subjeted to anal-ysis immediately after olletion into the �uoride-ontaining tubes and rapidentrifugation were ompared with those of the same samples stored as de-sribed previously, and no di�erenes were disernible, i.e. none of the riteriainvestigated hanged signi�antly during these periods of storage.Sample preparation for NMR analysisEBC samples were rapidly defrosted. To provide a �eld frequeny lok, 70 µlof a deuterium oxide (D2O) solution, ontaining 1 mM sodium 3-trimethylsilyl(2,2,3,3-2H4) propionate (TSP) as a hemial shift referene for 1H spetra andsodium azide at 3 mM, was added to 630 µl of ondensate, thus making 700
µl total volume. Saliva samples were rapidly defrosted and 70 µl of referenestandard solution (D2O-TSP) was added to 630 µl of sample.NMR measurements1D spetra were reorded on a Bruker Avane spetrometer (Bruker BioSpinGmbH, Rheinstetten, Germany) operating at a frequeny of 600.13 MHz (1H)and equipped with a TCI CryoProbeTM (Bruker BioSpin GmbH), at a probetemperature of 27 ◦C. The water resonane was suppressed by using thenoesypresat pulse sequene, alled noesypr1d aording to the manufatur-ers. It has the form - RD-90◦-t-90◦-tm-ACQ, where RD is a relaxation delay,t a short delay, 90◦ represents a 90◦ radio frequeny pulse, tm the mixingtime and ACQ the data aquisition period. In the present study aquisitiononditions, the arrier frequeny (O1) value was set on the water resonane,the saturation power was 62 dB, t was 4 µs, tm was 100 ms, the spetralamplitude was 7002.8 Hz, the time domain was 16 K, RD was 2.0 s and thenumber of transients was 256. This resulted in a total aquisition time of 14min per sample. For proessing, a line broadening of 0.6 Hz was applied anda real spetrum size of 32 K was used. Spetra were referred to TSP, assumedto resonate at a δ of 0.00 ppm.



4.5. Results 63Statistial analysisHigh-resolution 1H-NMR spetra were automatially data redued to 200 inte-gral segments ("bukets"), eah of 0.02 ppm, using the AMIX software pakage(Bruker BioSpin GmbH). The resulting integrated regions were imported intothe SIMCA pakage (Umetris, Umea, Sweden) and used for statistial analy-sis and pattern reognition. Before pattern reognition analysis, eah integralregion is usually normalized to the sum of all integral regions of eah spe-trum; however, beause of the presene of ontaminant peaks, eah buketwas normalized to the TSP peak of known onentration for a referene re-gion of between 0.014 and -0.014 ppm. The orretness of the approah wastested by omparing the results with those obtained by referring to the sum ofall integral regions of eah ontaminant free spetrum. No signi�ant di�er-ene was observed between the two approahes; therefore, pattern reognitionanalysis was reliable with normalization to TSP. Data were preproessed withthe Centering saling and then proessed with PCA and partial least squaresdisriminant analysis (PLS-DA).4.5 ResultsSpetral di�erenes between EBC and salivaFigure 4.21 represents spetra of saliva (Fig. 4.21a, b and ) and EBC samples(Fig. 4.21d, e and f) from one HS (Fig. 4.21a and d), one laryngetomizedpatient (Fig. 4.21b and e) and one COPD patient (Fig. 4.21 and f). Salivaspetra were highly di�erent from orresponding EBC samples and were no-tably dissimilar between patients: a visual examination establishes a orre-spondene between spetra from a HS (Fig. 4.21a) and a laryngetomizedpatient (Fig. 4.21b), but a di�erene from the COPD spetrum (Fig. 4.21),whih shows sharper lines. The most intense signals in the 0.0-3.2 ppm regionof saliva were assigned aording to previous studies [38, 101℄. Resonaneassignment was as follows: leuine δCH3s (triplet) at 0.96 ppm; propionate
βCH3 at 1.04 ppm (triplet) and αCH2 at 2.19 ppm (quartet); latate βCH3at 1.32 ppm (doublet) and αCH at 4.11 ppm (quartet); threonine γCH3 at1.36 ppm (doublet); alanine βCH3 at 1.47 ppm (doublet) and αCH at 4.20ppm (quartet); aetate βCH3 (singlet) at 1.93 ppm; βCH2 of glutamate andglutamine at 2.10 ppm (multiplet); βCH3 of pyruvate at 2.37 ppm (singlet);
α,βCH2 of suinate at 2.41 ppm (singlet); εCH2 of lysine at 3.06 (triplet);N-CH3s of holine at 3.16 ppm and of phosphorylholine at 3.23 ppm (bothsinglets); and N-CH3 of taurine at 3.23 ppm (triplet).
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Figure 4.21: Representative one-dimensional 1H-NMR spetra of saliva (a, b and ) andexhaled breath ondensate (EBC; d, e and f) samples from healthy (a and d), larynge-tomized (b and e) and hroni obstrutive pulmonary disease ( and f) patients. The groupof signals entered at 3.8 ppm in saliva spetra originates from arbohydrates and is notvisible in the orresponding EBC spetra.



4.5. Results 65Signals between 3.3 and 6.0 ppm originate from arbohydrates and werevirtually absent in the EBC spetra. Compared with saliva, EBC spetra pre-sented fewer signals and, as observed for saliva, the COPD patient trae (Fig.4.21f) appeared to be di�erent from the HS (Fig. 4.21d) and laryngetomizedpatient (Fig. 4.21e) traes. Spetral di�erenes between saliva and EBC wereveri�ed by PLS-DA analysis. Due to the omplete absene of the arbohydratesignals in the EBC spetrum, the region 5.0 to 3.5 ppm was ut out from allspetra, partitioning the region between 3.5 and 0.8 ppm. Figure 4.22 showsthe sore plots of saliva and EBC samples from all subjets. Considering twoPLS-DA omponents, it was possible to obtain a sample lassi�ation of 95%(samples orretly lassi�ed into di�erent regions). In partiular, while EBCsamples were all lustered, the saliva samples of HS, laryngetomized andCOPD patients were positioned di�erently from EBC and from eah other.Suh a separation omes mostly from signals resonating within the 3.5-2.9 and2.1-1.7 ppm regions. EBC and saliva samples olleted from eight subjetstwie within the same day (at times 0 h and 12 h) demonstrated good within-day repeatability, showing no evident di�erene in resonanes in the spetra.

Figure 4.22: Partial least squares disriminant analysis (PLS-DA) sores disriminationfor exhaled breath ondensate (△: laryngetomized patients; N: healthy subjets (HS); •:hroni obstrutive pulmonary disease (COPD) patients)and saliva (�: laryngetomized;
�: HS; ◦: COPD). All variables were used and two PLS-DA omponents were retained inthe model, obtaining a lassi�ation of ∼95%. The region 5.0 to 3.5 ppm, ontaining thearbohydrate signals, was ut out from the buketing, and only the signals between 3.5 and0.8 ppm were analyzed. t[1℄ and t[2℄ are the �rst two prinipal omponents.



66 Chapter 4. NMR metaboli pro�le experimentsE�ets of disinfetant ontamination on EBC spetraFigure 4.23 shows the 1H-NMR spetrum of DesogenTM (Fig. 4.23a) withrepresentative spetra of EBC samples ontaminated by the disinfetant be-ause of insu�ient washing time (Fig. 4.23b and ). To ompletely eliminatethe disinfetant, parts already disinfeted and washed were thoroughly rinsedfor 15 min with pure grade ethanol (96%), thereafter exhaustively soaked withdeionized distilled water for 15 min and dried under vauum at 50 ◦C (Fig.4.23d).

Figure 4.23: Contamination of exhaled breath ondensate (EBC) samples by DesogenTM(FILT GmbH, Berlin, Germany). a) 1H-nulear magneti resonane spetrum ofDesogenTM , ompared with b) spetra of EBC samples after partial washing (15 min),and ) intense water rinsing (30 min). d) Contamination was ompletely removed afterthe washing proedure using ethanol. The aetate signal at 1.93 ppm was ut in all EBCspetra. a) The vertial sale is one quarter the size of the other spetra. #: latateresonanes.The resonanes of the "saline" omponents of the disinfetant (itri aid,at 2.66 ppm in the DesogenTM spetrum (Fig. 4.23a), and pentapotassiumbis(peroxymonosulphate) bis(sulphate), highly soluble in water) disappearedompletely after partial washing (15 min; Fig. 4.23b). However, minor un-known omponents, suh as those giving signals in the 8.2-7.3 and 1.3- 0.7



4.5. Results 67ppm regions and the signal loated at 3.2 ppm, appeared to be more persistenteven after intense water rinsing (30 min; Fig. 4.23). They were ompletelyremoved only after the washing proedure using ethanol (Fig. 4.23d). Asthe perturbation indued by the disinfetant ontamination of EBC samplesshowed visible signals, two di�erent ontaminated sets of 12 EBC samplesfrom all COPD patients were examined after partial washing (15 min, "highDesogenTM"; Fig. 4.23b); and after intense water rinsing (30 min, "lowDesogenTM"; Fig. 4.23). Sine the region 8.5-7.0 ppm was absent in the"leaned" EBC spetrum (Fig. 4.23d), as suggested by Carraro et al. [40℄,the region 4.5 to 0.5 ppm was used and the latate signals were exluded (Fig.4.23d). Considering two PLS-DA omponents, a lassi�ation of ∼72% wasobtained, with high-DesogenTM and low- DesogenTM EBC samples lassi-�ed in two wide regions (Fig. 4.24). This suggests that the presene of thedisinfetant at variable onentration a�ets the interpretation and the sta-tistial analysis of the samples. However, if the presene of ontaminant isignored by a areful seletion of the spetral regions to be used for statistialanalysis, it is possible to orretly lassify the samples. In fat, by seletingonly the DesogenTM - free regions of the spetra (3.5-2.9 and 2.1-1.7 ppm),all the samples ould be orretly lassi�ed.

Figure 4.24: Partial least squares disriminant analysis sores disrimination for ontam-inated exhaled breath ondensate (EBC) samples after di�erent washing times; ◦: highDesogenTM (15-min rinsing); •: low DesogenTM (30-min rinsing). t[1℄ and t[2℄ are the�rst two prinipal omponents.



68 Chapter 4. NMR metaboli pro�le experimentsEBC spetral disrimination between HS, larynge-tomized and COPD patientsThe 3.5-1.7 ppm region of lean (i.e. DesogenTM -free) EBC samples was usedto investigate the metabolites haraterizing EBC. Figure 4.25 depits repre-sentative spetra of HS (Fig. 4.25a), laryngetomized patients (�g. 4.25b)and COPD patients (Fig. 4.25).

Figure 4.25: Representative 1H-nulear magneti resonane spetra of ontaminant-freeexhaled breath ondensate samples from a) healthy subjets, b) laryngetomized patientsand ) hroni obstrutive pulmonary disease patients. The aetate singlet at 1.93 ppm isut by a horizontal bar.Although the region ontains few signals, the signals spei�ally hara-terize eah patient subset, showing both quantitative (signal intensity) and



4.5. Results 69qualitative (signal absene/ presene) di�erenes. Di�erenes in intensitywere shown by the signals of: aetate βCH3 (singlet) at 1.93 ppm; propi-onate αCH2 at 2.19 ppm (quartet); pyruvate βCH3 (singlet) at 2.37 ppm;suinate α, βCH2 (singlet) at 2.41 ppm; glutamine γCH2 (multiplet) at 2.45ppm; holine and phosphorylholine N-CH3s (singlets) at 3.16 and 3.23 ppm,respetively; methanol CH3 at 3.37 ppm (singlet); and trimethylamine-N-oxide (TMAO) N-CH3 (singlet) at 3.44 ppm, as well as by the singlet at 3.03ppm that most likely originated from N-CH3 of reatine/reatinine. Pyru-vate was present in the COPD spetrum (Fig. 4.25) and was very intensein the HS spetrum (Fig. 4.25a), but barely visible in the laryngetomizedspetrum (Fig. 4.25b). Suinate was small in the HS spetrum (Fig. 4.25a),bigger in the laryngetomized spetrum (Fig. 4.25b) but absent in the COPDspetrum (Fig. 4.25). Glutamine was only present in the HS spetrum (Fig.4.25a). The singlet at 3.03 ppm was only present in the COPD spetrum (Fig.4.25). Choline and phosphorylholine were absent in the COPD spetrum(Fig. 4.25), and TMAO was present in the HS spetrum (Fig. 4.25a), barelyseen in the laryngetomized spetrum (Fig. 4.25b) and absent in the COPDspetrum (Fig. 4.25). All these di�erenes prompted a lear disriminationof HS, laryngetomized and COPD patients in three separate groups (Fig.4.26).

Figure 4.26: Partial least squares disriminant analysis (PLS-DA) sores disriminationfor ontaminant-free exhaled breath ondensate samples. �: healthy subjets; �: laryn-getomized patients; ◦: hroni obstrutive pulmonary disease patients. Two PLS-DAomponents a�orded a lear lassi�ation (∼94%), with all samples orretly lassi�ed intothree regions. Vertial and horizontal bars refer to samples olleted in dupliate. t[1℄ andt[2℄ are the �rst two prinipal omponents.



70 Chapter 4. NMR metaboli pro�le experiments4.6 DisussionThe present study demonstrates, for the �rst time, that NMR based metabo-nomis an be used to analyze EBC samples from adults, allowing a lear-utseparation between HS and patients with airway disease.Although less sensitive than ELISA and mass spetrometry, NMR requiresminimal sample preparation with a rapid aquisition time (∼10-15 min). Fur-thermore, it is nondestrutive and allows omplete detetion of observablemetabolites ("sample metaboli �ngerprint") at a reasonable ost.The present data show that saliva is signi�antly di�erent from the EBCsamples and that the presene of idential metabolites in EBC and salivadoes not hamper disrimination. By seleting the 3.5-0.8 ppm region (therebyexluding the arbohydrate signals absent in EBC), saliva spetra learly dif-fer from EBC (Fig. 4.22), notwithstanding the presene of some ommonmetabolites (leuine, latate, propionate, aetate, et.). EBC standardizingguidelines [32℄ indiate that it is reasonable to assume that there is some de-gree of oral ontamination of EBC, as saliva ontains many of the mediatorsthat are also present in the lower airways. Contamination of EBC is oftenproved by measuring the amylase level, but suh a test is not spei� anda negative signal does not ompletely exlude minute ontribution from themouth. To date, there are no data omparing the metaboli saliva ompositionand a lower airway derivate suh as EBC, mainly beause ondensate sampleshave been sreened for single, spei� biomarkers and not as a whole. Indeed,ombined saliva and EBC analysis by a metabonomis method has been re-ently advoated [116℄. In light of these assumptions, the urrent authors alsoexamined EBC from laryngetomized patients, whih may represent a truesaliva-free material from the lower airways, showing that in those subjets allsaliva spetra stritly di�ered from orresponding EBC samples. Importantly,all EBC and saliva olleted twie within the same day (12 h apart) showedgood within-day repeatability (Fig. 4.26). Taken together, the data suggestthat saliva ontamination may play a minor role in the interpretation of EBCby NMR-based metabonomis. The in�uene of external ontaminants wasalso onsidered, as the International Consensus on EBC reommends speialare in the disinfetion of reusable parts of ondensers [31℄. Upon standardleaning, all EBC spetra presented signals orresponding to unknown inativesubstanes of the disinfetant. They persisted even after strong and repeatedwater soaking, and the presene of variable disinfetant onentration upondi�erent leaning levels may render lassi�ation less e�etive. Complete re-moval of the disinfetant signals was observed after washing the reusable partswith 96% ethanol and then rinsing thoroughly with distilled water for 15 min.EBC samples were "spiked" by partially washing the apparatus with water,



4.6. Disussion 71after treatment with freshly prepared DesogenTM , obtaining di�erent degreesof EBC ontamination. Sine the itri aid signals were absent after partialwashing (Fig. 4.23b), it is important to underline that the potentially toxisaline omponents of the disinfetant are easily removed from the ondenserapparatus by water washing. However, the removal of interfering residualexternal ontaminants is ruial for a orret EBC analysis. There are nodata on the in�uene of residual disinfetant agents of reusable parts of EBCondensers. The in�uene of residual DesogenTM on reported biomarker lev-els was not evaluated by an ELISA method, but the present authors suggestthat the potential role of external ontamination on the variability of somebiomarkers [119, 120℄ should be evaluated. Signi�antly, by seleting spei�regions of EBC spetra for statistial analysis, an e�ient disrimination ofsamples was obtained. Although separation between HS and COPD patientsan be ahieved by either fored expiratory volume in one seond measure-ments or linially, the urrent authors evaluated the apability of NMR-basedmetabonomis to separate EBC subjets with airway diseases (COPD) fromsubjets without respiratory diseases. Five NMR signals appear to di�erenti-ate "respiratory" (COPD) from "non-respiratory" (HS and laryngetomized)subjets. As a omparison, Carraro et al. [40℄ reported the single aetatesignal variation as distintive in asthmati hildren with respet to ontrols.They hypothesized that aetate inrease might be related to inreased aety-lation of pro-in�ammatory proteins in the extraellular spae in the airwayenvironment. Furthermore, they found that peaks in 3.2- 3.4 ppm regionsof the NMR spetrum of asthmati hildren were probably related to oxi-dised ompounds. Heili-Frades et al. [121℄ have reported preliminary dataon signi�ant variations between NMR EBC spetra of normal and patholog-ial ases with impliations for orrelative studies using spetral and liniallassi�ation.In the present study, by omparing EBC from respiratory (COPD) pa-tients and non-respiratory (HS and laryngetomized) subjets, as well as a-etate, four additional signal variations were found, whih are likely to haveinluded the methoxy ompounds. It an be speulated that suh variationsould derive from the inreased oxidative stress that is a hallmark of COPD,and these variations are usually investigated in EBC by measuring a limitednumber of markers [119, 120℄. Also, the omparison between HS, larynge-tomized and COPD EBC samples showed a lear-ut di�erene (Fig. 4.25)in the COPD patients ompared with the other subjets. Figure 4.26 depitsa signi�ant statistial di�erene along t[1℄ of COPD patients ompared withHS and laryngetomized patients, who are less separated along t[2℄. Thisould be interpreted by the fat that laryngetomized patients were not la-beled as COPD before or after surgery; furthermore, mild air�ow limitation



72 Chapter 4. NMR metaboli pro�le experimentswas deteted in only a few subjets (data not shown).In onlusion, NMR-based metabonomis an safely be applied to exhaledbreath ondensate in adults, allowing an unambiguous de�nition irrespetiveof natural and/or arti�ial ontaminants. In partiular, the urrent authorsreport that nulear magneti resonane spetra of exhaled breath ondensate,olleted with a devie using a salivary trap, do not show the presene of salivasignals. Furthermore, for the disinfetant medium urrently used, a arefulseletion of the nulear magneti resonane region allows a lear statistiallassi�ation of samples, even for ontaminated exhaled breath ondensatesamples. Finally, the present results suggest that ondensate an be e�ientlystudied as a whole, and that nulear magneti resonane may beome a leadingdiagnosti tehnique in this �eld.
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Contents5.1 Simulation tests . . . . . . . . . . . . . . . . . . . . . . 735.1.1 Simulations: bias vs. overlapping . . . . . . . . . . . . 735.1.2 Simulations: bias vs. eentriiy . . . . . . . . . . . . 775.2 Experimental test . . . . . . . . . . . . . . . . . . . . . 795.2.1 NMR data olletion . . . . . . . . . . . . . . . . . . . 795.2.2 Software . . . . . . . . . . . . . . . . . . . . . . . . . . 795.2.3 Experimental Results . . . . . . . . . . . . . . . . . . 805.2.4 Bias vs. digital resolution . . . . . . . . . . . . . . . . 815.3 Disussion . . . . . . . . . . . . . . . . . . . . . . . . . . 82This hapter is based on the paper: R. Romano, D. Paris, F. Aernese,F. Barone, A. Motta. Frational volume integration in two-dimensional NMRspetra: CAKE, a Monte Carlo approah. J Magn Res 192 (2008) 294-301.5.1 Simulation testsIn order to test the CAKE algorithm, we simulated peaks of di�erent shapeand overlapping degree. First, we applied CAKE to simulated overlappingpeaks of known volume with di�erent overlapping degrees to optimize thenumber NPbase to determine the frational volume VF with the Hit-or-Missmethod. Seond, we tested CAKE integration on di�erent ellipti NMR peaksetions.5.1.1 Simulations: bias vs. overlappingWe onsidered two Gaussian peaks entered at (xi, yi), of equation

G(x, y) = Aiexp[−
(x − xi)

2 + (y − yi)
2

2σ2
i

] (5.1)
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i Ai and with half-height width ζi =

√
2σ2

i ln2, i = 1, 2, andaddition of Gaussian noise. Denoting by
d =

√
(x1 − x2)2 + (y1 − y2)2 (5.2)the distane between the peak enters, it is possible to de�ne the parameter η

η ≡
ζ1 + ζ2

d
(5.3)as an index of the overlap, suh that a large value orresponds to strongoverlap. Setting the amplitude A1 = 50.0 and the dispersion 2σ2

1 = 2.0 toobtain V1 = 100π, the A2 and 2σ2
2 values were hanged so as to keep thevolume V2 onstant (V2 = 100π), with the overlap index being 0.8 ≤ η ≤ 1.5.The ontour plots of the simulated peaks are reported in Figure 5.1and Figure5.2 for η = 0.8 (peak 1), and η = 1.5 (peak 2).

Figure 5.1: 3D Gaussian peaks with di�erent degree of overlap (η): a) η = 0.8 and b)
η = 1.5.CAKE integration was ompared with the standard one, obtained by sum-ming the amplitudes of all data points within a polygonal bounding the peak.In order to establish the best number of extrations NP in the Hit-or-Miss de-termination of R, and the best number of extrations NPbase

in the Hit-or-Missdetermination of the frational volume, simulations were onduted in the ex-treme limit of η = 1.5.(Figure 5.2, peak 2). Figure 5.3 reports the perentage



5.1. Simulation tests 75

Figure 5.2: Contour plot of two Gaussian peaks with di�erent degree of overlap (η): peak1, η = 0.8 and peak 2, η = 1.5. For the de�nition of η see text. d is the distane betweenpeak enters.

Figure 5.3: Perentage (%) of Bias as a funtion of the number of extrations (NP ) toestimate the R fator. For eah NP we tested several NPbase
values to estimate the volumefration, and they are indiated with orresponding symbols on the right.



76 Chapter 5. CAKE simulations and experimental testsof Bias vs. the number of extrations NP , for di�erent NPbase
values rangingfrom 100 to 1000 (right olumn in Figure 5.3). As it an be seen, results be-ome unbiased for NP ≥ 1500, while, exept for NPbase

= 100 (square symbol),the dependene on NPbase
is negligible. Aordingly, the values NP = 2000,and NPbase

= 500 appear to be a good ompromise between omputing timeand auray. The results of the simulations are reported as perentage ofBias vs. the degree of overlap for a signal-to-noise ratio (SNR) of 34.9±3.0(Figure 5.4A) and 56.1±4.7 (Figure 5.4B). The standard integration (�lledsquares) was arried out by bounding the peak with an ellipse, while for theCAKE integration (�lled irles) we used NP = 2000, and NPbase
= 500. Inboth ases, eah integration was repeated 10 times.

Figure 5.4: Simulation results expressed as perentage of Bias in volume estimation vs.the degree of overlap (η). Integration was ahieved with the standard (�) and the CAKE(•) methods at di�erent signal-to-noise ratios. (A) SNR = 34.9±3.0; (B) SNR = 56.1±4.7.



5.1. Simulation tests 77In Figure 5.4A (SNR = 34.9±3.0), the standard method gives unbiasedintegration values only for low overlap index η ≤ 0.9. (Figure 5.2, peak 1), tobeome totally biased for η ≥ 1.0. In ontrast, CAKE always performs better,espeially in the range 1.0 ≤ η ≤ 1.3, whih represents di�erent degree of over-lap ommonly found in 2D spetra. Overall, the frational method appears tobe unbiased in the whole 0.8 ≤ η ≤ 1.5 range, that is for strongly overlappingpeaks and in the presene of a low signal-to-noise ratio (SNR = 34.9±3.0).Figure 5.4B reports the same simulations with a SNR = 56.1±4.7. The stan-dard method performs well for η ≤ 0.9, with a general trend very similar tothat observed for lower SNR (Figure 5.4A). In ontrast, the frational methodshows a general redution of the bias perentage, with values generally lowerthan those obtained in the previous simulation. Taken together our resultssuggest that, regardless of the SNR, the CAKE method performs always betterthan the standard one.5.1.2 Simulations: bias vs. eentriiySine experimental 2D-peak shapes are lose to ellipti, we tested CAKE ona simulated ellipse of known volume. In partiular, we onsidered peaks ofequation
Si(ω1, ω2) = Ai(

2π

σ1iσ2i
) exp (−

∆ω2
1

2σ2
1i

) exp (−
∆ω2

2

2σ2
2i

) (5.4)volume Vi = Ai and ontour of eentriity
ei =

√

1 −
min(σ1i, σ2i)

max(σ1i, σ2i)
(5.5)with addition of Gaussian noise. Integration was arried out in two ways. Thefrational area was �rstly seleted randomly (i.e. avoiding any symmetry),and, seondly, symmetrially with respet to any of the semiaxes of the elliptipeak. The random hoise (Figure 5.5A) produed a sattered bias distributionbetween 0 and 20% for 0.8 ≤ e ≤ 0.74, with a maximum of 25% for e = 0.78.For 0.8 ≤ e ≤ 0.9, whih orresponds to a ratio between semiaxes in therange of 0.45 ≤ b/a ≤ 0.60, the average bias is 5%. This result appears tobe relevant as the b/a value orresponds to the experimental ellipti shapesusually found in 2D spetra.The symmetry seletion of the frational area (Figure 5.5B) shows a bias

≤10% for all eentriity values, with the maximum at e = 0.78 redued to12%. For 0.8 ≤ e ≤ 0.9 the average bias is very similar to that found for therandom seletion (Figure 5.5A).In onlusion, it is suggested that, for elliptial peaks, sliing should be done



78 Chapter 5. CAKE simulations and experimental testssymmetrially with respet to one of the semiaxes, even though for 0.8 ≤
e ≤ 0.9, that is for most of the experimental 2D peaks, the bias is essentiallyindipendent from the seletion.

Figure 5.5: CAKE integration of simulated ellipti peaks expressed as perentage of Biasin volume estimation vs. Contour eentriity (e). In (A) the frational area was hosenin a non symmetri way with respet to the semimajor and the semiminor axes of theellipti peak. In (B) the frational area was hosen in a symmetri way with respet to thesemimajor and semiminor axes of the ellipti peak. In both ases the SNR = 69.5±3.2.



5.2. Experimental test 795.2 Experimental testTo test the e�ay of the new integration method, after simulations, CAKEwas applied to 2D-NMR spetra of a sample ontaining two tripeptides inknown onentrations; we ompared peak volume estimations obtained byCAKE with those obtained by standard integrations.5.2.1 NMR data olletionThe sample, a mixture of the tripeptides Ala-Phe-Ala (AFA) and pyroGlu-His-Pro (thyrotropin-releasing hormone, TRH), was prepared by dissolving appro-priate amounts in 0.5 ml of 1H2O/2H2O (90/10 v/v) to yield for eah peptidea onentration of 0.10 mM. 1H−NMR spetra, reorded at 295 K and pH7.4, were aquired on a Bruker DRX-600 spetrometer operating at 600 MHz,equipped with a TCI ryoprobeTM �tted with a gradient along the Z-axis.Spetra were referened to sodium 3-(trimethylsilyl)-[2,2,3,3-2H4℄propionate.Homonulear 2D lean TOCSY spetra [122℄ were reorded by standard teh-niques and inorporating the exitation sulpting sequene [95℄ for water sup-pression. We used a pulsed-�eld gradient double eho with a soft square pulseof 4 ms at the water resonane frequeny, with the gradient pulses of 1 ms eah.512 equally spaed evolution time-period t1 values were aquired, averaging 4transients of 2048 points, with 6024 Hz of spetral width. Time-domain datamatries were all zero-�lled to 4096 in both dimensions, yielding a digital res-olution of 2.94 Hz/pt. Prior to Fourier transformation, time-domain �lteringwas applied with a Lorentz-Gauss window to both t1 and t2 dimensions. TheTOCSY experiment was reorded with a spin-lok period of 64 ms, ahievedwith the MLEV-17 pulse sequene [98℄.5.2.2 SoftwareNMR data proessing and baseline orretion were obtained with the programXWINNMR (Bruker, Biospin GmbH, Ettlingen, 2003). Standard peak inte-gration was arried out with the programs XWINNMR and MestRe-C [123℄,in whih integrated volumes are omputed as the sum of all digital intensitieswithin a retangular box and a tunable ellipse bounding a peak, respetively.CAKE software was written in MATLAB language and was implemented inthe graphial environment of MATLAB 7.1.



80 Chapter 5. CAKE simulations and experimental tests5.2.3 Experimental ResultsThe power of the CAKE approah was tested on a TOCSY spetrum of amixture of two tripeptides, AFA and TRH (Figure 5.6).

Figure 5.6: (a)TOCSY spetrum of the AFA and THR tripeptides aliphati region, a-quired at 300K with 64 msec mixing time. Expansions (b) and () report peaks originatingfrom γCH2 protons of the TRH pyroGlu [labeled 1 in (b)℄, and α and β protons of AFA
Phe2 [labeled 2 in ()℄, and TRH His2 [labeled 3 in ()℄.In order to have an internal referene we seleted pairs of peaks, eah ofthem stemming from a single spin system, suh that they have similar inten-sity within eah pair but one peak overlaps with others. In partiular we hosepairs that exemplify the orrelations between the γCH2 (labeled 1 in Figure5.6b), and between α and β protons of AFA Phe2 (labeled 2 in Figure 5.6a),and TRH His2 labeled 3 in Figure 5.6a). The magnitude of a given TOCSYpeak [governed by mixing oe�ients alk(τm) for transfer of magnetizationthrough the spin system from spin Il to spin Ik℄ depends on the topology ofthe spin system, the oupling onstants between pairs of spins, the e�ienyof the isotropi mixing sequene employed, and the relaxation rate during themixing pulse. Although the robustness of the integration method does not de-pend upon the experiment type or the intensity of the hosen peak, we looked



5.2. Experimental test 81for pairs in whih the peaks are expeted to have similar intensity but oneof them overlaps with others. Aordingly, we seleted the AMX spin systemof the two aromati residues (Figure 5.6a) in AFA and TRH. From relax-ation measurements (not shown) at two di�erent spetrometer frequenies,we estimated for both peptides similar orrelation times and relaxation rates;furthermore, the measured 3Jαβ and 3Jαβ′ values in eah spin system wereidential, therefore exluding di�erenes in the peak intensity due to di�erentoupling onstants; �nally, the single 2Jγγ′ value for the γCH2 protons of the
TRHpyroGlu warrants a similar intensity for the two peaks within eah pair.The seleted peaks were integrated with standard and with CAKE meth-ods and the results are reported in Figure 5.6 as the Di�erene perentage ofvolume for eah ross-peak pair. For the CAKE integration we seleted themost internal level belonging to a single peak, whih had elliptial symmetrywith eentriity e > 0.75. The values obtained with CAKE for the threepeak pairs are all within 10%, giving an unbiased estimation of the di�ereneperentage of the volumes in eah pair. In ontrast, the standard methodestimates for eah peak pair values > 35% for pairs 1 and 2, and ≈ 25% forpair 3. Surprisingly, the CAKE approah gives for the pair 1, whih lies onthe TOCSY diagonal, about zero volume di�erene, supporting robustness forthe method, also in the presene of elliptial symmetry.5.2.4 Bias vs. digital resolutionThe dependene of CAKE on digital resolution was investigated by integratingthe peak pair 2 (Fig. 5.6) at di�erent digital resolution (0.5, 1.1, 2.2, 4.3 and8.6 Hz/pt), and integration was arried out for eah value with standard andCAKE methods (Fig. 5.7). The volume of pair 2 overlapping peak (loatedat ω1 =4.75 ppm and ω2 =3:05 ppm, Fig. 5.6) was ompared to the volumeof the orresponding single peak at ω1 =4.75 ppm and ω2 =3:05 ppm at itsmaximum digital resolution, taken as referene. The values obtained withCAKE are all within 2%, giving an unbiased estimation of the % Di�ereneup to 8.6 Hz/pt. On the ontrary, the standard method estimates values>10% already at 2.2 Hz/pt to beome ≈ 25% at 8.6 Hz/pt. This �ndingan be explained by onsidering that a low resolution drastially redues thenumber of points within an area identi�ed by the i -th level, whih, in turn, isitself poorly de�ned. Therefore, the sum of points done by standard methodsis obviously biased. On the ontrary, the Hit-or-Miss tehnique used in CAKEdoes not sum the existing points inluded in a level bound area, but generatesrandom points and ounts the number of "hits" (or points) that are inludedin the unknown area. Sine a ubi interpolation (see Chapter 2) is used as adeisional mean to establish if the extrated point an be onsidered a "hit",



82 Chapter 5. CAKE simulations and experimental testsa low digital resolution ould, in priniple, a�et the peak pro�le. However,with CAKE we were able to orretly integrate peaks with digital resolutionup to a. 30 Hz/pt.

Figure 5.7: Di�erene perentage (%) of volume determination at di�erent resolution forross-peak 2, as labeled in Fig.5.6. The digital resolution was a. 0.5, 1.1, 2.2, 4.3 and 8.6Hz/pt. Filled squares and irles refer to the standard and CAKE integration methods,respetively.5.3 DisussionQuanti�ation of NMR spetra is fundamental both in metabolomis/metabonomis and in the struture determination of biomoleules. However,quanti�ation of peaks is often hampered by the degeneray of the NMR res-onane frequeny, a fator that aggravates with the inreasing size of maro-moleules and the number of metabolites. Here we have presented the CAKEapproah that uses the symmetry of a single in-phase peak (a peak with aunique enter orresponding to its maximum) to alulate its volume. It is ob-tained by multiplying the frational volume by the R fator, a proportionalityratio between the total and the frational volume, both evaluated with MonteCarlo tehniques. Therefore, the peak volume an be estimated by integratinga known fration of the peak, and the frational volume an be hosen so asto minimize the e�et of overlap in omplex NMR spetra. Stritly speakingCAKE applies to Gaussian peaks showing ylindrial or ellipti symmetry.However, an NMR spetrum is losely approximated by Lorentzian funtions,whih in its 2D shape show the so-alled "star e�et". It an be easily removedby 2D Lorentz-to-Gauss transformation, whih is routinely used for in-phase



5.3. Disussion 83experiments, like TOCSY and NOESY. Therefore, the major assumption inthis study is that the Lorentzian signal is onverted into a Gaussian line by aLorentz-to-Gauss transformation, whih is routinely applied in 2D data ma-nipulation. Integration of simulated and experimental 2D in-phase peaks withdi�erent degree of overlap shows that CAKE works well even for strongly over-lapping peaks. The main advantage of CAKE is its simpliity as di�ultiesin its use are omparable to those presented by methods that sum all datapoints in a de�ned area. In fat, the user only has to selet a peak slie notoverlapping with other peaks therefore avoiding the guess of the total ontourshape of the peak. Furthermore, CAKE does not require any time-onsuming�tting of the peaks to funtional forms, and therefore it an be easily inorpo-rated as a subroutine in any NMR proessing software. Tests on tripeptideshave shown that CAKE is a powerful method for volume integration. Thesubstantial independene of CAKE on digital resolution and SNR warrantsthat it an be safely used for peak integration in three-dimensional spetra.Beause of its inherent simpliity the software an be extended to automatedintegration of three- and possibly higher-dimensionality NMR spetra.
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1H-15N SO-FAST-HMQCmeasurements

Contents6.1 Materials and methods . . . . . . . . . . . . . . . . . . 856.1.1 Cell ulturing . . . . . . . . . . . . . . . . . . . . . . . 856.1.2 Extrats manipulation . . . . . . . . . . . . . . . . . . 866.1.3 Gel eletrophoresis for protein detetion . . . . . . . . 866.1.4 NMR experiments . . . . . . . . . . . . . . . . . . . . 876.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 886.2.1 T. rotula 1H and TOCSY spetra . . . . . . . . . . . . 896.2.2 T. rotula 1H-15N SOFAST-HMQC spetra . . . . . . . 916.2.3 Gel eletrophoresis results . . . . . . . . . . . . . . . . 936.3 Disussion . . . . . . . . . . . . . . . . . . . . . . . . . . 95This hapter is based on the paper: A. Motta, D. Paris, G. Andreotti, D.Melk. Monitoring real-time metabolism of living ells by fast two-dimensionalNMR spetrosopy. Submitted to Analitial Chemistry.6.1 Materials and methods6.1.1 Cell ulturingAxeni ultures of T. rotula ells were prepared as desribed in Miralto and o-workers protools [124℄. Brie�y, diatoms were grown in Guillard's (F/2) Ma-rine Enrihment Basal Salt Mixture Powder medium, ontaining standard anddi�erent salinities (20, 35 and 45 %0) and unlabeled or 15N-labeled NaNO3,on a 12 h light/12 h dark yle, and a light intensity of 20.9 J mol−1 µm−2s−1.Cells were kept in a 10 L arboy for 1 week and then harvested in the earlystationary phase by entrifugation at 1200g in a swing-out rotor. Prior to ex-tration, diatom ultures were allowed to settle overnight and the supernatantwas gently removed by sution with a water pump.



86 Chapter 6. 1H-15N SO-FAST-HMQC measurements6.1.2 Extrats manipulationCombined extration of polar and lipophili metabolites from unlabeled and
15N-labeled diatoms ells was arried out by using the methanol/hloroformproedure [92℄ Pelleted ells were resuspended in methanol (4 ml/g pellet)-water (0.85 ml/g pellet), and soniated for 2 min. Then 4 ml/g pellet ofhloroform were added and the homogenate was gently stirred and mixed onie for 10 min using an orbital shaker (the solution must be mono-phasi).Other 4 ml/g pellet of hloroform and 4 ml/g pellet of water were then added,and the �nal mixture was shaken well and entrifuged at 12000g for 15 min at4 ◦C. This proedure separates a water/methanol phase at the top (aqueousphase, with the polar metabolites), a phase of denatured proteins and ellulardebris in the middle, and a hloroform phase at the bottom (lipid phase,with lipophili ompounds). The upper layer of eah sample was transferredinto glass vials, and, after solvent removal under a stream of dry nitrogen,was stored at -80 ◦C until required. For 1D and 2D NMR experiments thepolar extrats were resuspended in 700 µl H2O-D2O (90%-10%), and thentransferred into an NMR tube.
6.1.3 Gel eletrophoresis for protein detetionTo eventually exlude the detetions of small proteins from the SOFAST-HMQC in vivo spetra aquisition of T. rotula, we performed SDS-PAGEeletrophoresis. SDS-PAGE on slab gel ontaining 12 and 15% arylamide, inorder to reah the lower limit of 3 kDa, was performed by using the standardproedure (12). Proteins were loated on the gels using Comassie Brillant Bluestaining. For 12% arylamide we used Phosphorylase b (97.4 kDa), bovineserum albumine (66.2 kDa), ovalbumin (45.0 kDa), arboni anhydrase (31.0kDa), trypsin inhibitor (21.5, kDa), and lysozyme (14.4 kDa), all from BIO-RAD. For 15% arylamide we used hymotrypsinogen A (24 kDa), ytohrome (13 kDa), bovine panreati tripsin inhibitor (BPTI, 6.6 kDa), insulin B-hain (3.5 kDa), all from Sigma. Size-exlusion hromatography was arriedout at room temperature, using a 1.5× 50 m Sephadex G-50 Fine olumn anda �ow rate of 0.2 ml/min. Separate hromatography experiments of standardamino aids were performed in 50 mM sodium phosphate, at pH 6.7, usinga 55 µM peptide onentration. Salmon alitonin (3.4 kDa), baitrain (1.4kDa), standard amino aids all from Sigma, and sodium 3-(trimethylsilyl)-(2,2,3,3-2H4)propionate (TSP, 172 Da), from Aldrih, were used as moleularmass standards.



6.1. Materials and methods 876.1.4 NMR experimentsAll NMR experiments were arried out on a Bruker DRX-600 spetrometer,equipped with a TCI CryoProbeTM �tted with a gradient along the Z-axis.T. rotula 1H and TOCSY spetra
1H-NMR spetra were reorded at 600 MHz and were referened to internalTSP. Clean total orrelation spetrosopy (TOCSY)[97℄ spetra of ells andextrats were reorded by using the time-proportional phase inrementationof the �rst pulse, and inorporating the exitation sulpting sequene [95℄ forwater suppression. We used a double-pulsed �eld gradient eho, with a softsquare pulse of 4 ms at the water resonane frequeny, with the gradient pulsesof 1 ms eah in duration. In general, 256 equally spaed evolution-time periodt1 values were aquired, averaging 2 (for diatoms) and 8 (for extrats) tran-sients of 2048 points, with 6024 Hz of spetral width. Time-domain data ma-tries were all zero-�lled to 4K in both dimensions, applying, prior to Fouriertransformation, a Lorentz-Gauss window with di�erent parameters for botht1 and t2 dimensions in all the experiments.T. rotula 1H-15N SO-FAST-HMQC parameters set-upThe 1H-15N SOFAST-HMQC pulse sequene follows the sheme proposed byShanda and o-workers [2℄ (Figure 6.1). First, 1H pulses are applied band-seletively [77℄; seond, the �rst 1H pulse has an adjustable �ip angle α thatallows further optimization of the sensitivity of the experiment for a hosen(short) san time [78℄. In pratie, the �ip angle is hosen to ensure that partof the proton magnetization is restored along the z-axis by the following 180◦pulse; third, the small number of radio-frequeny pulses redues signal lossdue to pulse imperfetions and B1 �eld inhomogeneities, and limits the e�etsof sample and probe heating. We used polyhromati PC9 pulse shape foradjustable �ip-angle band-seletive exitation [125℄ whih yields quite uniformexitation over the desired bandwidth for �ip angles in the range 0◦ < α <130◦. As a refousing pulse on the 1H hannel we tested the r-SNOB [82℄ andRE-BURP [83℄ pro�les. Beause of a signal inrease of a. 35%, we used RE-BURP instead of r-SNOB, on�rming the �nding of Shanda et al. for proteins[3℄. The aquisition parameters were as follows: α=120◦, ∆(1/2JHX) = 6.7-5.4 ms, δ= 1.8 ms, tmax

1 =20 ms, tmax
2 =40 ms, and trel=1 ms. Forty omplexdata points were aquired in the t1 dimension, adding 4 dummy sans (n =80 + 4). The band-seletive 1H exitation (PC9, 3.0 ms) and refousing (RE-BURP, 2.03 ms) pulses were entered at 8.0 ppm overing 4.0 ppm.
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Figure 6.1: SOFAST-HMQC experiment to reord 1H-X (X=15N or 13C) orrelationspetra of proteins. Filled and open pulse symbols indiate 90◦ and 180◦ rf pulses, exept forthe �rst 1H exitation pulse applied with �ip angle α. As desribed in the next setion, thevariable �ip-angle pulse has a polyhromati PC9 shape, and band-seletive 1H refousingis realized using an r-SNOB pro�le. The transfer delay ∆ is set to 1/(2JHX), the delay
δ aounts for spin evolution during the PC9 pulse, and trec is the reyle delay betweensans.
15N was deoupled with GARP-4 [126℄, with a 90◦ pulse length of 600 µs. 15Nhemial shifts are relative to external 15NH4NO3 (5 M in 2 M HNO3).6.2 ResultsIn the ell, metabolites experiene a visosity of a. 2-3 times that of water[127, 128℄ and interat with other omponents. As suh, restrition of the ro-tational freedom may be predited [127℄. However, their low moleular weightis likely to ounterbalane the visosity e�et, and an inrease of the averagee�etive T1 of in-ell metabolites an be expeted. Therefore, a balane ofintrinsi and extrinsi properties will a�et metabolite relaxation. We �rstlyheked if high visosity is a prerequisite for appliation of SOFAST-HMQCto low-moleular weight metabolites by using a sample of 15N-labeled Leu (5mM, pH 1.4, 300 K) in the presene of SDS, with a visosity of 9 relative towater (0.894 P). The results of the appliation of the SOFAST pulse sequeneto suh a sample are reported in Figure 6.2A, in whih a 1H-15N orrelationpeak, entered at 8.01 and 172 ppm, is observed.The in�uene of the visosity on the volume of the ross-peak in Figure 6.2Awas investigated by lowering the SDS onentration, and therefore the rela-tive visosity from 9 to 1 (no SDS). In the 9-3 range we observed that theross-peak volume remained onstant, to signi�antly derease upon a redu-tion of the relative visosity from 3 to 1 (Figure 6.2B). We estimated thatin the absene of SDS (relative visosity of 1) the ross-peak volume halves.
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Figure 6.2: (A) 1H-15N SOFAST-HMQC spetrum of 15N-labeled Leu (5 mM, pH 1.4,300 K) in the presene of SDS, with an aquisition time of 14 s. The ∆(1/2JHX) valuewas set to 6.7 ms sine JHX = 74.6 Hz; for the remaining aquisition parameters see theMaterials and Methods Setion. (B) Dependene of the ross-peak volume on the visosityof the medium, relative to water.Therefore, for a moleule as small as Leu (MW 132.17 Da), a visosity ofa. 3 times that of water, orresponding to the visosity inside a living ell[127℄, maximizes the intensity of the 1H-15N SOFAST-HMQC peak. However,the e�ient 1H-15N dipolar interation is also important, sine a well-de�nedross peak, although with an intensity 1/2 of the maximum, is observed inthe experiment without SDS.6.2.1 T. rotula 1H and TOCSY spetraDue to intraellular visosity, a moleule in a ellular environment displaysbroad NMR line widths as a onsequene of the redued tumbling rate, andoverlapped, poor quality spetra are the likely result. In our ase, a furtherompliation omes from the presene of high salt onentration in the seawater ulture medium, used to suspend the ells in the NMR tube. The �nalresult is that the 1D spetrum obtained for a 15N-labeled T. rotula sampleontaining a. 50-million ells will show an unresolved "bumpy" distributionof the resonanes, as shown in Figure 6.3.In order to better resolve signals from T. rotula, we aquired 1H (Figure6.4) and TOCSY spetra (Figure 6.5) of T. rotula polar extrats (see Materialsand Methods Setion).
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Figure 6.3: 1H spetrum of in vivo 15N-labeled T.rotula (50×106 ells).

Figure 6.4: 1H spetrum of 15N-labeled T.rotula polar extrats (400×106 ells).
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Figure 6.5: TOCSY spetrum of 15N-labeled T.rotula polar extrats (400×106 ells).6.2.2 T. rotula 1H-15N SOFAST-HMQC spetraThe 1H-15N SOFAST-HMQC orrelation spetrum of a 50-million T. rotulaells is reported in Figure 6.6: it was diretly aquired in the ulture mediumin an overall experimental time of 12 s.

Figure 6.6: 1H-15N orrelation spetrum (entral part) of a sample of 50-million 15N-labeled diatom ells (in sea water ulture medium, 300 K) reorded in 12 s. 1D traesorrespond to the proton spetrum (top), and (left) to a olumn extrated along the 15Ndimension at the 1H frequeny indiated by the dashed vertial line in the 2D spetrum.



92 Chapter 6. 1H-15N SO-FAST-HMQC measurementsIn suh a short aquisition time, the NMR experiment ertainly does not killthe ells, and in fat the number of olony-forming units/OD is the samebefore and after the 12-s SOFAST-HMQC experiment (data not shown). Fur-thermore, ompared with 1D, the 2D experiment presents a higher S/N, asit an be appreiated from the trae on the left side of Figure 6.6, extratedalong the 15N dimension (vertial broken line in Figure 6.6).The robustness of in-ell SOFAST NMR spetrosopy was investigated byontrolling several aspets [86℄. Firstly, beause of the high S/N ratio, weredued the number of ells from 50 millions down to 10 millions, whih, asshown in all the experiments below, appear to be su�ient for fast aquisitionand high S/N spetra. Figure 6.7A reports the 1H-15N SOFAST-HMQC spe-trum of a 10-million ells sample of 15N-labeled T. rotula, taken diretly in theulture medium. It reprodues the spetral pattern of the more onentratedsample of Figure 6.6, and shows a high S/N ratio with well resolved reso-nanes. Seondly, when dealing with living ells it is important to onsiderthat moleules outside the ell tumble faster and, therefore, exhibit sharperlines than internal metabolites in a more visous environment. Consequently,a small fration of extraellular moleules ould ontribute disproportionatelyto, or even dominate, the spetrum. This was investigated after removal ofthe ells from the sample by entrifugation and �ltration, and analyzing thesupernatant. It ontained no detetable extraellular metabolites as its or-responding SOFAST-HSQC spetrum, aquired with the same parameters asthe in-vivo spetrum 6.7A, showed no signals (Figure 6.7B), therefore rulingout any interferene from the extraellular metabolites in Figure 6.7A. Thiswas on�rmed by the following step. The pellet separated from the super-natant was resuspended in fresh standard ulture medium giving a spetrum(Figure 6.7C) idential to that observed when in vivo (spetrum 6.7A). It isonluded that the ross-peaks we observed in the SOFAST-HSQC experi-ments of Figures 6.6 and 6.7A stem from moleules within the ell, and thatthe amount of the released moleules, if present, are beyond detetion.
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Figure 6.7: 1H-15N SOFAST-HMQC spetrum of 15N-labeled T. rotula in varying ondi-tions: (A) in vivo spetrum of 10-million ells diretly in the ulture medium aquired in12 s; (B) supernatant of the sample used in (A) after removal of all ells by entrifugationand �ltration (vertial sale × 8); (C) pellet after resuspension in fresh ulture medium;(D) polar extrat obtained with the methanol/hloroform protool to remove proteins (seetext). Peaks are labeled with the single-letter ode for amino aids; the asterisk marks ayet unidenti�ed peak.6.2.3 Gel eletrophoresis resultsWhen investigating intraellular 15N-labeled metabolites in vivo by NMR, aremust be taken to avoid detetion of resonanes originating from low-moleularweight proteins within the ell, whih might beome labeled beause of the un-spei� labeling proess. This was examined by analyzing the polar extratsof the diatom ells by using the methanol/hloroform protool. The used pro-edure separates the polar metabolites in the water/methanol phase at thetop, a phase of denatured proteins and ellular debris in the middle, and ahloroform phase at the bottom, with lipophili ompounds [92℄. As a proof torule out the presene of signals originating from polypeptides/proteins in theabove SOFAST-HSQC spetra, we arried out SDS-PAGE gels of the polarextrats obtained from 10- and 50-million ells. Figure 6.8 reports a 12%-



94 Chapter 6. 1H-15N SO-FAST-HMQC measurementsarylamide gel (6.8A), and a 15% arylamide gel (6.8B). In both, the abseneof bands in lanes 1 and 2 (reporting 10-million ell extrat ran in dupliate)and lanes 3 and 4 (50-million ell extrat ran in dupliate) on�rmed the totalabsene of polypeptides/proteins down to a moleular weight of 3 kDa.

Figure 6.8: SDS polyarylamide gel eletrophoresis of 15N-labeled T. rotula polar extrats:(A) 12% arylamide, and (B) 15% arylamide. In both, Lane S reports prestained proteinstandards with moleular weight indiated on the left side; lanes 1 and 2, 10-million ellsran in dupliate; lanes 3 and 4, 50-million ells ran in dupliate. Comassie Brillant Bluestaining was used to visualize proteins.For lower moleular weight we resorted to size-exlusion hromatography un-der the experimental onditions used for NMR analysis. At pH 6.7, all themoleules present in the polar extrat eluted with an apparent moleular massomparable to that of TSP (172 Da). The experiments desribed above on-�rm that the ross-peaks we observed are assoiated with metabolites withinthe ells, and that the presene of polypeptides/proteins in the spetra anbe safely exluded. The SOFAST-HMQC spetrum of the polar extrat (Fig-ure 6.7D) well ompares with the in vivo (6.7A) and the resuspended pellet(6.7C) data, showing only small di�erenes in hemial shift, possibly re�et-ing di�erenes in salt omposition of the in-vitro NMR bu�er and the yto-plasm. Identi�ation of the ross-peaks was ahieved upon a areful titrationof the solution with standard amino aids, and the signals are labeled withthe one-letter ode in spetra 6.7A and 6.7D. It is important to notie thatthe spetral position of free amino aids orresponds to that observed withinthe ell, and a similar behavior is observed for proteins inside and outside the



6.3. Disussion 95ell [86℄. However, as for proteins, the great advantage of the observation ofin-ell metabolites by fast NMR spetrosopy does not lie in the struturalinvestigation, but on the possibility to examine the behavior of metabolitesdiretly in the ellular ompartments, and follow their fate upon a hange ofthe physiologial state of the ell as well as in the possible interation withunlabeled/labeled proteins.6.3 DisussionOur simple appliation had shown that 2D 1H-15N orrelation spetra of 15N-labeled metabolites an be reorded in living ells in only 10-15 s of dataaquisition using the SOFAST-HMQC sequene that provides high sensitiv-ity. To the best of our knowledge, this is the �rst time that high-quality 2Dorrelation spetra of metabolites have been diretly reorded in living ellson a time sale of seonds of experimental time and high S/N. Obviously,these are preliminary results and more experimental investigations are neededto explore the potentiality of SOFAST experiments for metaboli detetionpurpose sine, in the future, it is desirable to extend the investigation to eu-karyoti ell systems. Potential appliations inlude in-ell investigation underphysiologial or stressing onditions, high-throughput haraterization of elllines by NMR, testing potential drugs by fast measures of in-ell metabolihanges, as well as investigation of the primary nitrogen metabolism in plantells.





ConlusionsThe results here presented on�rm that high resolution NMR spetrosopy ispartiularly suited for biomarkers disovery. We applied reent NMR avanesand developed new tools in order to improve analysis of biologial samples forbiomarkers haraterization in metabolomi strategies.Appliation of NMR spetrosopy, oupled with pattern reognition meth-ods, to two biologial issues is reported: a) the progressive liver alterationsduring tumorigenesis and b) the exhaled breath ondensate of patients withairway diseases.In our �rst appliation, we investigated the metabolite omposition ofhuman hepati tissue extrats of 17 patients a�eted by hepatoellular ari-noma HCV-related (HCC), and 9 patients a�eted by liver metastases fromoloretal arinoma (MET-CRC); as a ontrol, we used irrhoti liver tissuesof HCC patients (CIR) and normal liver tissue of MET-CRC patients (NT),respetively. PCA, together with OPLS-DA analysis, allowed spetral lasseslustering and lassi�ation. All spetra were visualized by sores and loadingsplots, whih also highlighted the "evolution" and relationship of the di�erentpathologial liver onditions represented by the four NMR data lasses. Thedisease evolution learly followed the inrease of the latate together with theremarkable derease of the gluose signal, thus suggesting that suh a signalpattern may at as a potential marker for assessing pathologial hepati le-sions. In partiular, we identi�ed a statistial model that ould be used todistinguish hepati metastasis and human hepatoarinoma from a "normal"(healthy) hepati tissue. The progressive inrease of latate/gluose ratio,within the hepati tissues, is onsistent with the enhaned onversion of glu-ose into latate, through the di�erent lasses that represent di�erent tissueonditions suh as hypoxia and/or "aerobi glyolisis". Although this trendis generally known, as onsidered the result of onogeni alteration in gluosemetabolism following malignant transformation, we reported a further infor-mation whih is the extreme latate/gluose onversion showed by MET-CRC,ompared with all of the others tissue samples under investigation. Indeed,metastasis formation is the result of a multi-step asade of events ourringto aner ells during tumor dissemination, whih brings about onsiderablemetaboli hanges. The large inrease in latate onentration as well as thederease of intraellular gluose level was the predominant e�et for the sep-aration of metastases from HCC and NT, and the latate/gluose ratio inMET-CRC ranges from 9 to 40 fold higher ompared to HCC and NT, re-spetively, thus suggesting a role for the enhaned phenomenon of "aerobiglyolysis".



98 A further appliation was addressed to investigate the 1H-NMR metabolitepro�le of exhaled breath ondensate (EBC) of patients with di�erent airwaydiseases. EBC, obtained by ooling exhaled air from spontaneous breath-ing, is a simple, noninvasive and useful tool to study the biohemial andin�ammatory moleules in the airway lining �uid. Thirtysix paired EBC andsaliva samples, obtained from healthy subjets, laryngetomized patients andhroni obstrutive pulmonary disease (COPD) patients, were analyzed ap-plying 1H-NMR spetrosopy followed by prinipal omponent analysis. Ouraim was to assess the role of pre-analytial variables (saliva and disinfetantontamination), potentially in�uening EBC, to evaluate the stability and re-produibility of samples and to disriminate healthy subjets from patientswith airway disease. The results show that saliva metaboli pro�le is sig-ni�antly di�erent from the EBC samples and that the presene of identialmetabolites in EBC and saliva does not hamper disrimination. Exluding thearbohydrate signals (absent in EBC), saliva spetra learly di�er from EBC,notwithstanding the presene of some ommon metabolites (leuine, latate,propionate, aetate, et.). Furthermore, by examining EBC from larynge-tomized patients, whih may represent a true saliva-free material from thelower airways, we found that in those subjets all saliva spetra stritly di�eredfrom orresponding EBC samples. Importantly, all EBC and saliva olletedtwie within the same day (12 h apart) showed good within-day repeatability.Finally, we ould state that saliva ontamination may play a minor role inthe interpretation of EBC by NMR-based metabonomis. Furthermore, weonsidered the in�uene of external ontaminants, as the International Con-sensus on EBC reommends speial are in the disinfetion of reusable parts ofondensers. Upon standard leaning, all EBC spetra presented signals orre-sponding to unknown inative substanes of the disinfetant, that ompletelydisappeared only after washing the reusable parts with 96% ethanol. Af-terwards, by seleting spei� non-ontaminated regions of EBC spetra forstatistial analysis, an e�ient disrimination of EBC subjets with airwaydiseases (COPD) from subjets without respiratory diseases, was obtained.Some NMR signals appear to di�erentiate "respiratory" (COPD) from "non-respiratory" (HS and laryngetomized) subjets, by showing both quantitative(signal intensity) and qualitative (signal absene/presene) di�erenes; amongall pyruvate, suinate, glutamine, TMAO, holine and phosphorylholine.As a further enhaned tool for high thoughput NMR analysis, we devel-oped a new integration method for 2D NMR spetra quanti�ation, whihis fundamental both in metabonomis and in the struture determination ofbiomoleules. Quantitative information from multidimensional NMR exper-iments an be obtained by peak volume integration. However, the standardproedure of seleting a region around the hosen peak and addition of all



99values is often biased by poor peak de�nition and/or the degeneray of theNMR resonane frequeny, a fator that aggravates with the inreasing sizeof maromoleules and the number of metabolites. In this thesis, we devel-oped and tested a simple method, alled CAKE, for volume integration ofmoderately-to-strongly overlapping peaks, using the Monte Carlo Hit-or-Misstehniques, relying upon the peak line shapes in two-dimensional NMR. TheCAKE approah uses the symmetry of a single in-phase peak (a peak witha unique enter orresponding to its maximum) to alulate its volume. Itis obtained by multiplying the frational volume by the R fator, a propor-tionality ratio between the total and the frational volume, both evaluatedwith Monte Carlo tehniques. Therefore, the peak volume an be estimatedby integrating a known fration of the peak, and the frational volume an behosen so as to minimize the e�et of overlap in omplex NMR spetra. Allintegration of simulated and experimental 2D in-phase peaks, with di�erentdegree of overlap, showed the CAKE e�ay in estimating umbiased peakvolume, even for strongly overlapping peaks. Moreover, it is substantiallyindependent on digital resolution and SNR.Finally, we suessfully investigated the possibility of exploiting enhanedNMR pulse sequenes for fast spetra aquisition. In partiular, we appliedthe so-alled SOFAST-HMQC pulse sheme to detet in-ell metabolism. Cre-ated and designed for protein observation, the pulse sequene is based uponvery short experimental reyle delays, whih, of ourse, rely on short T1 re-laxations time. Even if metabolites are often haraterized by T1 relaxationstime longer than those of proteins, we have applied the SOFAST experimentto 15N-labeled Thalassiosira rotula diatom ells obtaining, to the best of ourknowledge, the �rst appliation of fast NMR spetrosopy. We olleted spe-tra in 10-15 s of aquisition time, pinpointing the T. rotula 1H-15N metabolipro�ling diretly in living ells. Our results, de�nitively show that the ap-pliation of SOFAST experiments provides an instantaneous piture of themetaboli pathways ourring in a well-de�ned physiologial state, thereforeavoiding the observation of an "average" metabolism obtainable with aqui-sition time of hours. With this approah, biohemial proesses, taking plaeduring metaboli modi�ations, an be followed by real-time multidimensionalNMR methods, where spetral hanges are monitored during a very short tem-poral period. In the past, the long aquisition times assoiated with 2D NMRhave limited the appliation of real-time 2D NMR to slow kineti proesseswith harateristi time onstants of minutes to hours. The introdution offast 2D data aquisition shemes, suh as the SOFAST experiments, ould ex-tend the time window aessible to real-time 2D NMR to the range of seonds,thus representing a further advantaging tool for metabonomi and biomarkersinvestigations. Obviously, it would be extremely advantageous to extend the



100desribed investigations to eukaryoti ell systems, where potential applia-tions inlude in-ell investigation under physiologial or stressing onditions,indued by external toxiants or potential drugs, NMR metaboli harateri-zation of ell lines, as well as investigation of the metabolism in plant ells. Ingeneral, extensive appliation in the �elds of metabolomis and metabonomisan be predited, and many of the above appliations are in progress in ourlaboratory.
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