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Introduction

The large amount of data derived from genomics and proteomics, aiming at
elucidating biochemical mechanism, has often revealed the complexity of cel-
lular regulation. Therefore, metabolic studies are increasingly contributing to
gene function analysis, and an increased interest in metabolites as biomarkers
for disease progression or response to natural or external intervention is also
growing.

Nuclear Magnetic Resonance (NMR) spectroscopy has emerged as a key
tool for understanding metabolic processes in living systems. Recently, a new
approach to elucidate metabolism and its mechanisms has been put forward.
It is metabonomics: an analysis based on a minimum number of assumptions
on the biochemical processes that occur in a living system, mainly investigated
by advanced spectroscopic techniques including mass spectrometry and NMR
spectroscopy.

Metabonomics is formally defined as "the quantitative measurement of the
multi-parametric metabolic response of living systems to pathophysiological
stimuli or genetic modification" |1]. It has been coined to describe the com-
bined application of spectroscopy and multivariate statistical approaches to
investigate of the multicomponent composition of biofluids, cells and tissues.
In particular, NMR-based metabonomics has proven to be particularly suited
for the rapid analysis of complex biological samples. Indeed, the so generated
NMR spectral results yield a unique metabolic fingerprint for each complex
biological mixture. According, if the status of a given organism changes, such
as in a disease state or following exposure to a drug, the unique metabolic fin-
gerprint or signature reflects this change, thus supplying relevant biochemical
indications.

Multivariate statistical methods provide an expert means of analyzing and
maximizing information recovery from complex NMR spectral data. Detailed
inspection of NMR spectra and integration of individual peaks can give valu-
able information on dominant biochemical changes. However, subtle variation
in spectra may be overlooked and it is difficult to envisage general effects as
a function of both dose and time in a large cohort of samples with biologi-
cal variability. Pattern recognition methods can be used to map the NMR
spectra into a lower dimensional space (than that implied by the number of
points in the digital representation of the NMR, spectrum) such that any clus-
tering of the samples based on similarities of biochemical profiles can easily
be determined and the biochemical basis elucidated.

The development of new spectroscopic tools for high thoughput analysis of
selected biochemical pathways is crucial for metabolome investigations. The
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purpose of the present thesis is to explore the recent NMR improvements by
applying and developing new metabolomic strategies for biomarkers discovery,
including NMR data handling, peaks quantification and fast data acquisition.

In the first chapter, a general overview of the multivariate data analysis
and pattern recognition methods is given. In particular, we highlighted the
advantages of using those tools to NMR data for biomarkers investigations.
The most common regression methods (Principal Components Analysis and
Projection to Latent Structures) and plot visualization (scatters scores plots
and loadings plots) are described to supply the reader with the basic statis-
tical tools for a better understanding of the application the biological issues
reported in the last section. NMR and regression techniques were applied
to different patient classes to discriminate a) hepatic tissues and b) exhaled
breath condensates belonging to patients with different pathological states.

In the second chapter we describe a new integration method developed for
two-dimensional NMR spectra quantification. Indeed, one-dimensional NMR
spectra are often too complex for interpretation and metabolite identification
as most of the signals overlap heavily. By introducing an additional dimen-
sion, peaks are spread and spectra are simplified. Quantitative information
from multidimensional NMR experiments can be obtained by peak volume
integration. The standard procedure (selection of a region around the chosen
peak and addition of all values) is often biased by poor peak definition because
of peak overlap. In this chapter we reported a simple method, called CAKE,
for volume integration of moderately to strongly overlapping peaks. Start-
ing from the peak line shapes in two-dimensional NMR, we describe how the
CAKE routine was constructed using the Monte Carlo Hit-or-Miss techniques
and some simple mathematical relationships.

The third chapter is a general introduction to fast NMR two-dimensional
spectroscopy. In particular, we describe the details of the so-called SO-FAST-
HMQC pulse sequence [2, 3| we would like to apply to investigate in cell
metabolism. The SOFAST-HMQC sequence was created and designed by
Shanda and Brutscher and co-workers for proteins as it is based upon very
short experimental recycle delays, which, of course, must rely on short T,
relaxations time. At a first sight, this is an evident drawback since metabolites
are often characterized by T; relaxations time longer than those of proteins.
However, as detailed in Chapter 6, we have applied the SO-FAST experiment
to the diatom 7' rotula cells obtaining, to the best of our knowledge, the first
application of fast NMR spectroscopy to 'H-'°N metabolic profiling directly
on living cells.

The fourth chapter reports the metabolic characterization of: a) the pro-
gressive liver alterations during tumorigenesis and b) the exhaled breath con-
densate of patients with airway diseases. We describe the multivariate data
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analysis and pattern recognition methods starting from NMR spectra of liver
tissues extracts and exhaled breath condensates. a) Samples were collected
and grouped in four classes: hepatocellular carcinoma (HCC) developed on
hepatitis C cirrhosis (CIR), the cirrhotic adjacent HCC tissue, liver metasta-
sis from colorectal carcinoma (MET-CRC), and the related adjacent "normal"
tissue considered as control. The results indicate that the lactate/glucose ratio
is able to characterize and distinguish the analyzed subsets of hepatic samples.
In particular, we identified a statistical model that could be used to distinguish
hepatic metastasis and human hepatocarcinoma from a "normal" (healthy)
hepatic tissue. b) Exhaled breath condensates (EBC) and paired salivas were
collected from healthy subjects, laryngectomized and chronic obstructive pul-
monary disease (COPD) patients. The results showed that all NMR saliva
spectra were significantly different from corresponding EBC samples, which
assessed no saliva contamination in EBC samples. Indeed, EBC taken from
condensers washed with recommended procedures invariably showed spectra
perturbed by disinfectant. By carefully choosing non-contaminated spectra
regions, each EBC sample clustered with corresponding samples of the same
group, while presenting intergroup qualitative and quantitative signal differ-
ences.

The fifth chapter is dedicated to the simulations and the experimental tests
of the CAKE integration method. In particular, we tested CAKE integration
efficacy on simulated peaks in different overlapping conditions and signal-to-
nose ratios. Furthermore, since experimental two-dimensional peak shapes
are close to elliptic, we tested CAKE on a simulated ellipse of known volume
at different eccentricity degrees. Finally, we used CAKE on experimental
NMR data by making use of a sample containing two tripeptides at known
concentrations. Peak volume estimations obtained with CAKE comparison
with standard methods indicated that CAKE obtains un umbiased volume
estimation.

In the sixth chapter, the application of the SO-FAST-HMQC experiment
to 1®N-labeled Thalassiosira rotula diatoms is described. We demonstrate the
effective applicability of SO-FAST experiments to cells, collecting spectra in
10-15 s of acquisition time. Our results, definitively show the applicability of
SO-FAST experiments for fast metabolic data acquisition thus providing an
instantaneous of the metabolic pathways going on in a well-defined physiolog-
ical state, therefore avoiding the measurement of an "average" metabolism,
obtainable with acquisition time of hours.






CHAPTER 1
NMR analysis and pattern
recognition methods
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1.1 Introduction

Metabonomics and metabolomics based on Nuclear Magnetic Resonance
(NMR) spectroscopy are nowadays widely used for toxicological assessment,
biomarker discovery, and studies on toxic mechanisms. The metabonomic
approach, (defined as the quantitative measurement of the multiparametric
metabolic response of living systems to pathophysiological stimuli or genetic
modification) was originally developed to assist interpretation in NMR~based
toxicological studies. However, in recent years there has been a convergence
with metabolomics and other metabolic profiling approaches developed in
plant biology, with much wider coverage of the biomedical and environmental
fields. Specifically, metabonomics involves the combination of spectroscopic
techniques with statistical and mathematical tools to elucidate dominant pat-
terns and trends directly correlated with time-related metabolic fluctuations
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within spectral data sets, usually derived from biofluids or tissue samples.
Temporal multivariate metabolic signatures can be used to discover biomark-
ers of toxic effect, as general toxicity screening aids, or to provide novel mech-
anistic information. This approach is complementary to proteomics and ge-
nomics and is applicable to a wide range of problems, including disease diag-
nosis, evaluation of xenobiotic toxicity, functional genomics, and nutritional
studies. The use of biological fluids as a source of whole organism metabolic
information enhances the use of this approach in minimally invasive longitu-
dinal studies.

In this chapter, the main features of the statistical tools for such inves-
tigation are exposed. As described in Chapter 4, we applied the "pattern
recognition analysis" to metabonomic characterization of: a) liver alterations
during hepatic tumorigenesis and b) exhaled breath condensates (EBC) from
patiens with airway diseases. Tissue samples associated with four different
liver pathological states collected from surgical excisions and EBC obtained
by cooling exhaled air from spontaneous breathing, were analyzed by 'H NMR
spectroscopy coupled with multivariate data analysis (MVA). Metabolic pro-
files were analyzed and clustering analysis readily separated and classified the
tissues and the exhaled breath condensates according to the relative patho-
logical conditions.

1.2 Pattern recognition methods for biomarker
investigations

The use of chemometric methods to analyze complex spectral data sets
was perhaps the most important development in the practical application of
metabonomics, and has defined the development and progression of the field
ever since. Early pattern recognition studies on NMR data employed a re-
ductionist approach preselecting the metabolite signals of interest. However,
NMR spectra yield a unique metabolic fingerprint for each biofluid, sample
which consists of thousands overlapping resonances, is obviously of limited
use. If the status of a given organism changes, such as in a diseased state or
following exposure to a drug, the unique metabolic fingerprint or signature
reflects this change [1, 4].

Multivariate statistical methods provide a robust tool for analyzing and
maximizing information recovery from complex NMR data sets. Detailed in-
spection of NMR spectra and integration of individual peaks can give valuable
information on dominant biochemical changes; however, subtle spectral vari-
ation may be overlooked, and it is difficult to envisage general effects as a
function of both dose and time in a large cohort of samples with biological
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variability. Pattern recognition methods can be used to map the NMR spectra
into a representative lower dimensional space such that any clustering of the
samples based on similarities of biochemical profiles can be determined and
the biochemical basis of the pattern elucidated.

As described in the next section, the first step in metabonomics is spectra
classification according to peak patterns. The second one relies upon iden-
tification of spectral features responsible for the classification (according to
physiological or pathological status), and this can be achieved via both super-
vised and unsupervised pattern recognition techniques.

1.3 Multivariate data analysis techniques

MVA efficiently extracts useful information from data generated via chemical
or physical measurements. Indeed, most scientific data generating systems are
multivariate, i.e. any particular phenomenon we would like to study in detail
usually depends on several factors (variables). For instance, the health status
of a human individual depends on many elements, including genes, social sta-
tus, eating habits, stress, environment etc. Consequently, it is often necessary
to simultaneously sample several variables to fully describe the system.

A panoply of multivariate data analysis techniques exists, and the choice
depends on the answer one wants to obtain. A large part of the method is
concerned with simply "looking" at the data, characterizing then by useful
summaries and displaying the intrinsic data structures visually by suitable
plots. Therefore, it is important to formulate the analytical problem in such
a way that the goal is clear and the data are in a form suited for reaching
this goal. Usually, spectral data are preprocessed, which typically involves
Fourier transformation, calibration of the chemical shift scale with respect to
an internal reference standard, and phase and baseline corrected. For multi-
variate modeling, NMR, spectra are often divided into vertical regions (along
the chemical shift axis), and their areas summed to provide an integral so that
the intensities of peaks in such defined spectral regions can be extracted; such
a process is known as bucketing. As a consequence, a data matrix is obtained,
which consists of rows that represent observations/samples, and columns that
represent variables as the spectral. From this matrix format, data are suit-
able for MVA that can be used for a number of distinct, different purpose:
data description (explorative data structure modeling), discrimination and
classification, regression and prediction. So, more simply, we can describe
MVA as composed by two main methods: multivariate classification (pattern
recognition) and multivariate regression techniques [5, 6, 7, §].

The pattern-recognition techniques deal with the separation of data
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groups. Such clustering ability, even for large set of measurements, gives
the possibility to derive a quantitative data model in order to discriminate
among different groups of data. Multivariate classification can be divided
into two categories: unsupervised and supervised procedures. In an unsuper-
vised pattern recognition, no a priori knowledge of the training set samples is
required, i.e. the class membership of the training samples. Hence, samples
will be grouped into a number of classes with certain communalities without
initial qualification of the samples and their class assignment. Therefore, a
possible structure within certain data sets may be recognized even without
the initial knowledge of the number of classes and the expected differences. In
contrast, a supervised pattern recognition requires a prior: knowledge about
the classes contained within the training samples, i.e. which sample belongs
to which class, such as, samples from disease and from healthy patients. Con-
sequently, unsupervised pattern-recognition techniques are exploratory meth-
ods for data analysis, seeking inherent similarities in the data, and grouping
them in a "natural" way. This approach allows unexpected grouping within
a training set may be discovered often not initially evident, as for a group
of disease-related samples that might additionally separate into two or more
distinctly different classes.

Supervised pattern-recognition techniques are different, as they group data
into predefined classes during the training procedures, thereby allowing a more
precise classification within the class boundaries. Clearly, each approach has
strengths and weaknesses rendering a general recommendation impossible.
Efforts have been made to combine different pattern-recognition methods for
improved classification results [9, 10|. In general, sufficient accuracy and ro-
bustness of classification and predictive regression models has to be evaluated
with an appropriate set of validation samples prior to the analysis of un-
knowns.

1.3.1 Unsupervised pattern recognition
Principal Component Analysis (PCA)

PCA constitutes the most basic "work horse" of all of multivariate data anal-
ysis. The starting point is an X-matrix with n objects and p variables (an n
by p matrix) (Figure 1.1), often called the "data matrix" or the "data-set".
The objects can be the observations, samples or experiments, while the vari-
ables typically are "measurements" of each object. In our case, the n objects
are NMR spectra of samples, while the p variables are integrations of spectra
sections, called "buckets", of a well defined size.
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X-variables p
Objects | Xu| Xiz| ... v | Xip
X | Xz

n x,-” ™ - an

Figure 1.1: X matrix or data matrix consisting of n observations (n NMR spectra) and
p variables (p spectral regions "buckts").

The purpose of PCA, so as of all MVA techniques, is to decompose the data
in order to detect and model the "hidden phenomena" for which the concept
of variance is very important. In fact, the fundamental assumption for this
method is that the underlying directions with maximum variance are more
or less directly related to the hidden phenomena. The data matrix X, with
its p buckets columns and n spectra rows, can be represented in a Cartesian
(orthogonal) coordinate system of dimension p called the "variable space" or,
in this case, the "spectroscopic space", meaning the space spanned by the p
variables corresponding to the buckets. The dimension of this space is p, but
the dimension related to the rank of the matrix representation (mathemati-
cally: the number of independent basis vectors; statistically: the number of
independent sources of variation within the data matrix) may be often less
than p. PCA seeks this operative or effective dimensionality by a linear coor-
dinate transformation from the variable space into a space which is spanned
by a lower number of new coordinates, called "principal components" (PCs),
which, in turn are related to directions of largest variances in the ensemble
(Figure 1.2). The first principal component (PC}) explains most of the vari-
ance, the second (PCy) the second most, etc. Therefore, PCA is a powerful
data-reduction technique that can condense original data (with a large num-
ber of initial variables) to a dataset with only few variables reflecting the most
relevant analytical information.
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Var 3
1 PC1

Figure 1.2: Representation of all observations in the data matrix in a 3D space where the
computed principal components are shown as vector arrows.

By looking into two-dimensional subspaces like PC; vs. PCy, one could see
if all spectra have similar positions (scores) with respect to the corresponding
part of the variance (Figure 1.3). The corresponding plots are called "scores
plots".

™ L]
A Object i

Figure 1.3: Representation of all observations from the variable space to the principal
components space. Such PC system consists of a number of PCys, each lying along a
maximum variance directions in decreasing order. Scores plot are obtained as projection of
observations onto the PCgs axes.
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A further step is to look for further structures in the ensemble by reducing the
variance space such that most of the total variance (like 99.5%) is explained
and the rest is regarded as noise. The reduced space is called "model space".
By calculating quantities like distance to model of each spectrum it is possible
to check if all spectra are still similar or if some spectra appear outside this
model space. This is also the basis for classification. The relation between
the variables in the new principal component space and original spectroscopic
space are described by the so-called loadings (ref. Section 1.4). By studying
one or two-dimensional loadings plots it is possible to understand how buck-
ets contributed to the construction of the new principal component space. A
high loading of a bucket (variable) indicates that the corresponding area (or
peak) in the spectrum was important. The loadings plots provide the link
between statistical and spectroscopic interpretation of the phenomena in the
ensemble. This is essential because PCA itself reveals statistical phenomena
but does not explain the reason for these phenomena, for example in chemical
terms. This interpretation remains to be done after the PCy calculation.

1.3.2 Supervised pattern recognition
Projection to Latent Structures Discriminant Analysis (PLS-DA)

PLS-DA is a discriminant method derived from PLS regression models [11]
(see next Section). Here, the threshold for separating two classes is calculated
using the observed distribution (P, P;...P,,; m = number of classes; P,, =
probability that the spectra belongs to class m) of the predicted values, and
the Bayesian theorem, which calculates the probability of one object belonging
to a certain class by use of the ratio ZP +—, for discriminating different classes.
Barker et al. describe how PLS-DA statistically connects with discriminant
analysis, and may thereby serve as a discriminant tool [11]|. For classification,
PLS is guided by among-group variance, while PCA, which is guided only by
the total variance, cannot discriminate among-group from within group vari-
ance. Compared to PCA, it is clear that PLS-DA provides favorable discrim-
ination, especially if the within-group difference dominates over among-group
difference. In recent studies, this model was successfully used to discriminate
artherosclerotic and normal aorta tissues in rabbit models [29, 48].

1.3.3 Multivariate regression
Principle component regression (PCR)

During PCR, PCA is used to compress and decompose the original spectra
generated from training samples into fewer variables (PCyg) capturing the rel-
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evant variances within the data set, and then using the scores derived from
the training data to create a quantitative model. During the prediction of un-
knowns, the score vectors of the unknown are derived based on their unique
spectra, and regressed against the PC vectors obtained from the calibration
samples for retrieving a quantitative prediction of the unknown concentration.
PCR was also successfully implemented as a classification tool by Haaland et
al., and was used to classify cell and tissue samples [12].

Projection to Latent Structures (PLS) regression

PLS also starts out with an ensemble of spectra, which is translated into the X
matrix, commonly called the "bucket table" where the number of p variables
is the number of buckets. However, a second information table is needed.
It could comprise other spectroscopic data or any other sort of data, like
concentration measurements, arbitrary id numbers, disease characterizations

etc. This secondary table is commonly called Y matrix or Y table (Figure
1.4).

X-variables p Y-variables q
U'bjects Xn| Xiz] - XIP Yul .. Ylﬂ
X | X Yl ...

Figure 1.4: X matrix containing data and observations, and Y matrix containing, for each
observation, data related to sample information like concentrations or disease classifications.

The number of Y variables (also called response variables or ¢ variables) is
identical to the number of columns in the Y table. Unlike PCA, which detects
the direction of maximum variance in the X matrix, PLS tries to find the best
correlation between the X and Y matrices using relevant linear combinations
of variables in the X and Y tables. It detects that part of the variance in the
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X table which fits best the data in the Y table in an iterative way. While
in PCA the user has to decide the number of principal components he wants
to work with (typically such that most of the variance in the ensemble is
explained), in PLS he has to define the number of PLS components (factors)
that should be used to model the Y table. This number is often not obvious.
In principle, it should be chosen such that the non-explained variances in X
and Y space approach a minimum, and such that the PLS model has good
predictive capabilities. Unlike the number of principal components in PCA,
the number of PLS factors must be carefully chosen. The results of a PLS
calculation are presented in similar ways compared to PCA (again, we get
scores and loadings plots of the X table data). However, there are a number of
further plots which need interpretation, e.g. showing the correlation between
X and Y tables or the prediction power of the model. Similarly to PCA, the
model building process in PLS is to find the correct statistical variables (e.g.
number of PLS factors), and the right spectra that should stay in the model.
Once the model is established (calibrated) it is used to analyze new spectra
with missing Y table information and use the constructed model to predict it.
This is extremely valuable if the Y table would have been expensive to obtain
otherwise, or if it can not be experimentally obtained at all.

There is a second interesting usage of PLS motivated by the following
situation. Ensembles often contain different groups of spectra, say nor-
mal/abnormal or originate from different samples, say kidney/liver etc. One
then would like to see these groups in a PCA analysis, e.g. as different clus-
ters in a scores plot. However, PCA is designed to find the maximum variance
in the ensemble but not necessarily that part of the variance that results in
the best discrimination. To enforce this, it is of course possible to perform
a spectroscopic analysis first and find signals responsible for discrimination,
and then use these signals in a subsequent PCA. Alternatively, it is possible
to supply a Y table which contains discriminating information (in the most
simple case just 0 and 1). A PLS then detects that part of the variance in
the ensemble, which fits best to the Y table. A scores plot of the ensemble
data may possibly show a good discrimination. How safe is such a proceed-
ing, it depends on the application. With two indistinguishable groups in the
ensemble, a PLS using a Y table with 0 and 1 will not provide a good dis-
crimination and the correlation plots between X and Y data would indicate
poor correlation. If the ensemble in fact contains two groups of spectra, PLS
with a corresponding Y table can indeed improve discrimination. This should
however be confirmed by spectroscopic or other data, otherwise a not solid
discrimination could be overemphasized.
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Orthogonal Projection to Latent Structures Discriminant Analysis
(O2PLS-DA)

O2PLS is a multivariate regression method that extracts linear relationships
from two data blocks, X and Y, by removing the structured noise [13, 14]. In
particular, O2PLS decomposes the systematic variation in the X-block into
two model parts: the so called predictive part, which models the correla-
tions between X and Y, and another called the orthogonal part, which is not
related to Y. Like other PLS regression techniques, O2PLS can be used to
perform discriminant analysis by introducing suitable dummy variables. The
main advantage in using O2PLS-DA technique is the reduction of the model
complexity. For m classes, the dimension of the predictive space is m-1, and
the classification model can be investigated by using only m-1 latent compo-
nents. Useful visualization tool, as the correlation plot or S-plots, can be used
to highlight the role of the X-variables in the classification model.

1.4 Plots and data visualization

As stated in the previous Sections, multivariate methods allow investigation of
the relationships between all variables in a single context. These relationships
can be displayed in plots like time series, histograms and pair-wise scatter
plots.

Model overview plots

Model overview plot could be presented as an histogram showing how the
cumulative explained variance (R? value) gets larger as the number of the PCg
increases on horizontal axis ( Figure 1.5). The number of PCs for the model
should be such that R? (sum of squares of all the X matrix variables explained
by the extracted components) and @Q* (the cumulative cross validated R?)
values are somewhere in the flat asymptotic part of curve histogram.

Influence plots

Influence plot shows spectra in a diagram where the vertical axis is a measure
of how far a spectrum is from the model space (off model distance). If a
spectrum is in the upper part of this display it is most likely outside the
model space. The horizontal axis is a measure how far a spectrum is from the
model center, after being projected into the model space (in model space). If
a spectrum appears on the right side, it has a strong influence on the model.
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The two lines displayed inside the plot are so-called 95% confidence limits.
Spectra inside these limit belong to the model with a probability of 95%.

Scores plots

Two dimensional scores plots of the form PC; vs. PC; (e.g. PCy vs. PCy)
show how the spectra are distributed in the corresponding sub-space (Figure
1.6). This plot is used to see whether spectra are gathered in groups or are
outlying from others. Dominant effects in the PCA may typically be seen
in plots that involve the first few PCs. Sometimes effects in higher PCs
are equally important; so with PC}, PCy and PCj3 a 3D scores plot can be
visualized. It could, for example, indicate strong unexpected signals in a
spectrum but present in only very few spectra. By checking the influence plot
or all scores plots it can be seen whether higher PC scores plots should be
considered.

Loadings plots

Loading plot shows how PCg are related to the original buckets. The 1D
loadings plot of a principal component looks like a spectrum. Peaks indicate
those buckets (and therefore spectral regions) which contributed significantly
to that principal component. 1D loadings plots, e.g. of PC; show how the
original variables (buckets) contributed to the construction of a PC. They look
like a 1D spectrum and the largest peaks indicate the strongest contributions.
2D loadings plots (Figure 1.7), e.g. of PC; and PC; relate loadings of the
different PCys to each other. Each point in such a plot corresponds to a pair
of buckets. A combined interpretation of scores and corresponding loadings
plots can for example show the buckets responsible for an outlying behavior.
Combined interpretation means to look for spectra which are outlying along a
certain direction, and for loadings which are lined up along the same direction.
For example, if a spectrum is outlying in a particular position in the plot, the
loadings points into the same direction indicate the resonances responsable
for spectrum outlying.
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Model Overview Plot
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Figure 1.5: Model overview plot: R? and Q? values are parameters describing how the
new PCs components fit the PCA model.
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Figure 1.6: PCA scatter plot PC; vs. PCy of two representative class samples.
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Figure 1.7: Scores scatter plot reporting the buckets responsible for the samples distri-
bution of PCA in Figure 1.6.

1.5 Applications

1.5.1 a) Human hepatocellular carcinoma

The human hepatocellular carcinoma (HCC) is one of the most common ma-
lignancies whose incidence is steadily increasing worldwide [15, 16] (Figure
1.8). The liver is also the most frequent site of metastatic colonization, and
hepatic metastasis are far more common than primary liver cancers in West-
ern countries [17]. Because of its aggressiveness, early detection of HCC is
crucial to schedule more effective therapeutic options and improve patients’
survival. The most commonly encountered differential diagnosis in liver is
HCC versus intrahepatic cholangiocarcinoma or metastatic adenocarcinoma.
Moreover, small hepatic lesions (< 1.5 cm in diameter) are frequently diffi-
cult to characterize, and diagnostic inaccuracy may lead to incorrect patient
treatment. Magnetic Resonance Imaging (MRI) has been shown to effectively
differentiate benign and malignant small hepatic lesions with moderate to
good interobserver agreement [18, 19]. Yet, the clinical importance of these
lesions often remains unknown until biopsy or follow-up imaging is performed
months later [20]|. Serological markers (such as alpha fetoprotein) can be use-
ful in narrowing the differential diagnosis when they are markedly elevated
but a substantial number of patients unfortunately do not have high levels
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of these markers at the time of presentation. Therefore, a tissue diagnosis is
often required, because the presence of hepatic metastasis may substantially
alter prognosis and therapy [21].
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Figure 1.8: Annual age-adjusted incidence rates per 100,000 and trends, all hepatocellular
carcinoma cases and by sex, 1975 to 2005 (Surveillance, Epidemiology, and End Results 9
[SEER9]).

Histopathological evaluation of biopsy samples plays a key role in achiev-
ing an accurate diagnosis, and fine needle aspiration biopsy of liver has gained
increasing acceptance as the diagnostic procedure of choice, and is reported
to be safe, minimally invasive, accurate and cost effective [20]. A possible
disadvantage of the biopsy-based histopathology is represented by the dif-
ficulties in its use as a screening approach for early tumor detection. On
the other hand, MRI and all the commonly-used imaging techniques, which
are widely accepted as screening tests, provide limited biochemical informa-
tion (i.e., metabolite composition), which may be useful to discriminate the
different hepatic lesions at the molecular level. Evaluation of intracellular
metabolic profiles of hepatitis C virus (HCV) infected liver, HCC and metas-
tases is lacking and NMR spectroscopy profiles could contribute to clarify
these aspects. NMR is an established analytical tool extensively used for
probing the metabolic status of biological samples |22, 23, 1|, and provides
a "metabolic fingerprint" useful to investigate physiopathological states. As
pointed out in the previous sections, the presence of discriminating elements
in an NMR spectrum or in spectra belonging to the same class can be tested
with multivariate data analysis, which allows a thorough comparison of sets
of spectra [24]. As shown in this chapter, some of the most often used tech-
niques to identify models for possible groups as well as to predict a probable
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class membership for new observations are based on PCA or multivariate re-
gression methods as O2PLS to perform discriminant analysis [25]. As it will
be described in the Chapter 4, we used multivariate data analysis to gain
insight into hidden phenomena and trends in ensembles of different hepatic
tissue spectra which would not be obvious in the usual spectroscopic view.
Such an analysis will also point out the most relevant NMR signals for the
classification of tissue spectra, clearly indicating changes in concentration of
a specific metabolite as well as its relative variation.

In-vitro studies conducted on tissue extracts have shown that high-
resolution NMR improves both spectral resolution and sensitivity, yielding
more detailed metabolite information [13, 14]. On the contrary, in-vivo NMR
can detect non-invasively biochemical changes in human cancers [26], liver dis-
eases such as chronic hepatitis [27], cirrhosis and carcinoma [28, 29]. However,
spectral resolution and sensitivity makes in-vivo NMR of limited value for
the identification and quantification of metabolites [30]. A useful diagnostic
strategy could be represented by a combination of in-vitro and in-vivo NMR
compared to histological analysis in order to follow-up variations of distinc-
tive lesions classified by high-resolution NMR spectra. We here followed the
biochemical progression of human hepatic lesions through NMR-based analy-
sis of primary (HCC) and secondary (metastases from colorectal carcinoma)
liver tumors, cirrhotic tissues, and non-cirrhotic normal liver tissues adjacent
metastases, achieving a metabolic differentiation of the various pathological
conditions based upon the variation of the intracellular lactate/glucose ratio,
thus suggesting that such a signal pattern may act as a potential marker for
assessing pathological hepatic lesions.

1.5.2 b) Exhaled breath condensate

Exhaled breath condensate (EBC) is a simple, noninvasive and useful tool
to study the biochemical and inflammatory molecules in the airway lining
fluid [31]. Obtained by cooling exhaled air from spontaneous breathing, EBC
predominantly contains water vapour and collects volatile and nonvolatile
substances from the lower airways [32]. As such, it can also be considered a
matrix for analysis of environmental toxicants and for evaluation of exposure
monitoring [33]. Very few data are available on EBC metabolite composition;
often single inflammatory molecules are analysed by ELISA and spectroscopic
methods.

Since NMR, coupled with pattern recognition methods, has been proved to
be a powerful tool for biofluids to probe the metabolic status [34, 1, 23, 35| and
to investigate different diseases |36, 37, 38, 39|, we applied it to characterize
EBC metabolic profile.
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Recently, EBC of asthmatic children has been investigated by NMR and
statistical analysis |[40]. To date, there are several recommendations on the
methodological approach to EBC collection, but its standardization is not
completely defined, as most inflammatory mediators, obtained through tra-
cheostomies, are similar to those collected in the mouth [41, 42].

The aims of the present study were:

1. To validate the NMR metabonomic approach to analysis of EBC in
adults, assessing the role of pre-analytical variables (saliva and disin-
fectant contamination) potentially influencing EBC and evaluating the
stability and reproducibility of samples;

2. To evaluate the possibility of discriminating healthy subjects from pa-
tients with airway disease.

As detailed in Chapter 4, in total, 36 paired EBC and saliva samples, ob-
tained from healthy subjects, laryngectomized patients and chronic obstruc-
tive pulmonary disease (COPD) patients, were analyzed by means of 'H-NMR,
spectroscopy followed by principal component analysis. The effect on EBC of
disinfectant, used for reusable parts of the condenser, was assessed after dif-
ferent washing procedures. To evaluate intra-day repeatability, eight subjects
were asked to collect EBC and saliva twice within the same day. All NMR
saliva spectra were significantly different from corresponding EBC samples.
EBC taken from condensers washed with recommended procedures invariably
showed spectra perturbed by disinfectant. Each EBC sample clustered with
corresponding samples of the same group, while presenting intergroup qual-
itative and quantitative signal differences (94% of the total variance within
the data). In conclusion, the nuclear magnetic resonance metabonomic ap-
proach could identify the metabolic fingerprint of exhaled breath condensate
in different clinical sets of data. Moreover, metabonomics of exhaled breath
condensate in adults can discriminate potential perturbations induced by pre-
analytical variables.



CHAPTER 2

CAKE: Monte CArlo peaK
volume FE'stimation

Contents
2.1 Introduction . ............... 00000, 17
2.2 The fractional peak method . ... ... ........ 19
2.2.1 Peak line shapes in two-dimensional NMR . . . . . .. 19
2.2.2 The R factor estimation . . .. .. .. ... .. .... 23
2.2.3 The Monte Carlo integration . . ... ... ... ... 23

This chapter is based on the paper: R. Romano, D. Paris, F. Acernese,
F. Barone, A. Motta. Fractional volume integration in two-dimensional NMR
spectra: CAKE, a Monte Carlo approach. J Magn Res 192 (2008) 294-301.

2.1 Introduction

NMR spectra can provide quantitative analysis of a sample, and a standard
1D 'H-NMR spectrum is often used to obtain a reliable evaluation of peaks.
However, as the complexity of the sample increases, resonance overlap becomes
a serious problem that easily degrades the accuracy of the analysis, and 2D
NMR data are required to gain sufficient discrimination of resonances. Quan-
tification of NMR spectra is also fundamental in the new emergering field
of metabolomics/metabonomics [43, 34|, and in the structure and dynamics
of proteins in solution [44]. This widespread requirement of deriving quanti-
tative information from NMR data has prompted the need to find methods
for accurate and precise integration procedures both for 1D and 2D spectra.
This paper describes a new simple method for peak volume integration in
2D spectra, which appears to be particularly suited for overlapping peaks.
Quantitative information in NMR spectra is brought by peak areas [45]. Two
methods of peak integration are often used: direct summation of spectral
data points and peak parameter search by curve fitting. In the absence of a
model for the peak shape, direct summation appears to be the only practical
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technique. It is not, however, adaptable to (partially) overlapping peaks, and
introduces two kinds of systematic errors. One is due to the approximation
caused by the assimilation of the integral of a continuous function with a fi-
nite sum [46]; the second one is caused by the parts of the peaks that are left
outside of the integration range [47].

Ideally, an efficient integration method should be applicable even when in
the presence of peak overlap or artifacts. Many of the available NMR process-
ing and analysis packages achieve volume integration by direct summation of
all data points within a polygonal bounding the peak. This procedure requires
a reliable definition of the peak area: the circling should be as large as pos-
sible to enable for a complete integration, but also small enough to minimize
inclusion of artifacts (baseplane rolls, t; noise, tails of other peaks). As such,
the idealized procedure appears to be restricted to well-resolved peaks. In au-
tomated protocols, a possible way to define the area integration makes use of
the observation that the slope of a peak height decreases monotonically with
the distance to the peak center, at which point it approximates zero [48, 49|.
A similar approach defines the peak integration area using an iterative region-
growing algorithm [50, 51, 52|, which recognizes all data points that are part
of a given peak, and the integration is performed on a user-defined threshold
level. This procedure works quite satisfactorily even for overlapping peaks, as
long as the peak maxima are visibly resolved and therefore recognizable by
the peak-picking procedure. In a different approach, the peaks are fitted by
a set of reference peaks defined by the user [53, 54, 55]. In order to obtain
accurate line shapes and integrals in one dimension, it is necessary to apply a
nonlinear curve-fitting procedure |56, 45]. Although this protocol is probably
best suited in cases where peaks strongly overlap, it hinges on the careful
definition of suitable reference peaks and selection of initial fitting parameters
by the user.

A general approach for peak integration would be to exploit the peak sym-
metry as a criterion to evaluate the peak volume. Symmetry considerations
have previously been used for pattern recognition in 2D NMR spectroscopy
[57], and only rarely for the analysis of in-phase peaks as in NOESY and
TOCSY experiments. The program AUTOPSY used symmetry for automated
peak picking in multi-dimensional NMR spectra of proteins |58]. Here we pro-
pose CAKE, a novel integration method based on peak symmetry. After a
2D Lorentz-Gauss time domain filtering, the spectral lines are converted into
Gaussian lines, therefore presenting a cylindrical or elliptical symmetry. By
assuming the vertical axial symmetry of individual peaks (a peak with a unique
center corresponds to its maximum), the volume is obtained by multiplying
a selected volume fraction by a factor R, which represents a proportionality
ratio between the total and the fractional volume, optimized by Monte Carlo
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techniques. This minimalistic approach warrants that the fractional volume
can be chosen so as to minimize the effect of overlap in complex NMR spectra.
When applied to simulated and experimental 2D in-phase peaks with different
degrees of overlap, CAKE (Monte CArlo peaK volume Estimation) obtains
an unbiased volume estimation. It is shown that, compared with the direct
summation procedure, the fractional volume approach yields rather good es-
timates of the peak volumes, even for significant overlap, as long as a single
contour level and its center arising from a single peak can be detected.

2.2 The fractional peak method

2.2.1 Peak line shapes in two-dimensional NMR

In high-resolution NMR the frequency domain line shapes are closely approx-
imated by a Lorentzian function. Neglecting coherence transfer echoes, the
signal envelope of a 2D experiment can be assumed to have a biexponential
form |57|

s (ty,t5) = 59(0,0) exp (=At;) exp (=ADt,) (2.1)

with rates A = 1/75 in the evolution (e) and detection (d) periods. Such time-
domain envelope, decaying exponentially in both dimensions, lacks cylindrical
symmetry about the origin ¢; = t; = 0. After a 2D Fourier transformation, the
corresponding 2D absorption peak shows a Lorentzian shape, whose sections,
taken parallel to either axis yield pure 1D absorption Lorentzian line shapes.
The asymptotic decay is proportional to (Aw!?)=2 and (Aw!?)~2 on sections
parallel to one of the frequency axes, while it is proportional to the inverse
fourth power in the bisecting planes |[with (Aw,fz)) and (Awg}i)), frequency
offset in evolution (e) and detection (d) periods with respect to resonances
wg) and w!? |. This lack of cylindrical or elliptical symmetry has been called
"star effect", and can be removed by a 2D Lorentz-Gauss transformation |57],
which yields a 2D absorption mode peak shape with cylindrical or elliptical
symmetry (Figure 2.1 and 2.2).

By using a weighting function
h(t1,ts) = exp (+Ait1) exp (+Aots) exp (—07t7/2) exp (—oats/2) (2.2)

with o being an adjustable parameter, the envelope of Eq. 2.1 becomes

s°(t1,t2) = 5°(0,0) exp (=07 (t1/2)) exp (—03(13/2)). (2.3)
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Figure 2.1: 1D profiles of Lorenztian and Gaussian peaks.
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Figure 2.2: Removal of the so-called "star effect" of a Lorentzian peak by a 2D Lorentz-
Gauss transformation.

After a 2D transformation, a Gaussian line shape is obtained

2 Aw? Aw?
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). (2.4)

The contours are circular for o1 = 09 and elliptical for unequal widths. It is
important to underline that 2D Lorentz-Gauss transformation is useful only if
the dispersive components in peaks with mixed phase are suppressed, and this
can be achieved with pure phase spectra (i.e. either pure 2D absorption or
pure 2D dispersion peaks) [57]. It must also be emphasized that the elliptical
symmetry of Gaussian signals is obtained only in phase-sensitive displays, and
if the absolute amplitude of a Gaussian signal is calculated, a peak shape is
obtained which features again a star effect.

In most practical applications, the complete analytical expression for a dis-
crete Fourier transform NMR spectrum is a sum of complex, non-Lorentzian
functions ([45, 59]). However, if the acquisition time ¢, is large, compared
to the relaxation time of the slowest decaying resonance (to > 1/Rs;), and
the sweep width is large compared to the relaxation rate R, ; as well as the
frequency range of the spectrum v; — v, a true Lorentzian spectrum is ob-
tained [60]. Nevertheless, this discrete Fourier transform spectrum requires
correction of a pseudobaseline stemming from the first point of the FID and of
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a frequency-dependent phase distortion of the spectrum (for details see Refs.
[59, 45]). Accordingly, a phased, baseplane corrected unsaturated resonance
line in solution is closely approximated by a Lorentzian function. Convolu-
tion of the time domain with exponential, sine, cosine functions, does not
alter the line shape after transformation [61], and preserves the frequency of
its maximum. This shape has been useful in peak fitting procedures applied
to experimental data [60]. As stated above, a 2D Lorentzian line lacks cylin-
drical or elliptical symmetry, which can be achieved by a 2D Lorentz-Gauss
transformation. Gaussian filtering transforms a Lorentzian frequency-domain
function of width wy into a Gaussian frequency-domain function of width pwy,
where p is typically less than unity, and it has been found that p = 0.66 is
usually close to optimum [62].

Bearing in mind the power of Lorentz-Gauss tranformation and the sym-
metry of the Gaussian line, the CAKE algorithm aims at integrating a peak
relying upon its axial symmetry, even when in drastic overlapping conditions.
The idea is that the volume can be estimated by integrating a non-overlapping
fraction of the peak obtaining a reasonable approximation of volume in cases
where cross peaks overlap. Therefore the major assumption in this study is
that the Lorentzian signal is transformed into a Gaussian line by a Lorentz-
to-Gauss transformation. For in-phase peaks of TOCSY and NOESY spectra,
such a transformation is well-suited, especially considering that the multiplet
structure of the in-phase components is only barely resolved and a maximum
signal-to-noise ratio is usually required to detect even weak signals [57].

Figure 2.3A shows the contour plot of a Gaussian peak. The arbitrary
angle AOB (a "slice" selected in a non-overlapping region and centered on
the center of mass), defines the area Ap, of a peak fraction for each i — th
level bound curve; such an angle identifies a fractional volume V% in the three-
dimensional representation. Because of the axial symmetry, for each 1 —th level
the fractional volume Vi relates to the total volume Vi as the fractional area
of each level relates to the corresponding total area Az,. From the equation

Ar,
TV (2.5)

(3

Vi =

true for each couple of level bound areas, if R; = 2—:?, the total volume of a
peak can be obtained by multiplying a fractional volume by the corresponding
R; factor.

It is common experience that experimental 2D peak shapes are quite close
to an ellipse. Therefore, Eq. (2.5) is still valid if the right angle AOB delimits
i of the ellipse by lying on the semimajor and the semiminor axes (Figure
2.3C).
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Figure 2.3: Contour plots of simulated isolated (A) and overlapping (B) Gaussian peaks.
In (A), the arbitrary angle AOB defines a fraction of the peak area, selected in a non-
overlapping region, and centered on the center of mass. In (B), AOB and CKD select a

fraction of peaks 1 and 2, respectively. (C) Experimental Gaussian cross-peak. The right

angle AOB selects a fractional area corresponding to % of the total area.

In particular, by defining the ellipse eccentricity as e = 4/1 — 2—2, where b and
a are the semiminor and the semimajor axes (assuming b < a), 0 < e <1
and e = 0 in the case of a circle. More generally, it can be demonstrated
that Eq. (2.5) applies with a good approximation to eccentricity e < 0.5,
which corresponds to a difference < 10% between axes, and a circle well
approximates the ellipse. For eccentricity e > 0.5, Eq. (2.5) can be safely
used if the polygonal AOB identifies a region symmetrical with respect to
one of the semiaxes. The advantage of this approach becomes apparent for
overlapping Gaussian peaks. Here, the integration is biased by the presence
of the overlapping region that affects both volumes. In contrast, the "slice"
AOB of peak 1 (Figure 2.3B), selected in a non-overlapping region, has very
little contribution, if any, from peak 2, and therefore its fractional volume can
mostly be attributed to peak 1. The same is true for CKD slicing peak 2
(Figure 2.3B), whose fractional volume can mostly be attributed to peak 2.
Therefore, if we integrate the volume fraction identified by AOB and calculate
the corresponding R; constant, it should be possible to estimate the unbiased
volume of each peak. From Figure 2.3B, the second most internal (highest)
level of peak 1, essentially arises from peak 1, and the effect of peak 2 on that
level is negligible. Consequently, the R; constant can be obtained from the
ratio between the total area (Ar,) and the fractional area (Ag,) of that level,
A, /Ap,. Analogously, for peak 2 the fractional volume identified by CKD
can be considered, and its second highest level can be chosen to obtain the
respective factor Ry (Figure 2.3B).
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2.2.2 The R factor estimation

In order to estimate the R factor for a selected fraction of a peak, an internal
level attributable to the peak has to be chosen. Denoted by At the total
level area and by Ap the fractional level area, the ratio R = Ar/Ap can be
obtained by a Hit-or-Miss Monte Carlo technique [63, 64]. Let us denote by
(lzs, ly;), with i@ = 1,2, ..., N, the vertex coordinates of the polygonal Pleyel
relative to a contour level, by (¢, ¢,) the coordinates of its center point, and
by a1, ap two rays with their common origins in (¢, ¢,). The fractional area
Apr is therefore defined by the intersection of the polygon Py and the area
delimited by the rays (Figure 2.4). Furthermore, let us denote by Iz, and
[Zmax the minimum and maximum [z; coordinates, and by (Y, and (Y., the
minimum and maximum [y; coordinates, respectively. Two pseudo random
numbers z, and y, are now uniformly extracted in the intervals [lZyin, [Zmax),
and [{Ymin, [Ymax), respectively. The extraction is continued until a number
Ny, of points (z,,y,) is internal to the polygonal Peyq. If an extracted point
(2, y,) is also inside the area Ap, then the number of fractional hits Ny, is
augmented by one. Of course, being the (x,,y,) pairs uniformly extracted
in the rectangle [[Zmin, (Zmax] X [[Ymin, [Ymax], the ratio R = Ar/Ap will be
estimated by the ratio R = Na,./Na,.

Figure 2.4: Total level area At and fractional level area Ap defined by the intersection
of the polygon Pever and the area delimited by the rays oy, as.

2.2.3 The Monte Carlo integration

In principle, any method is suitable to integrate the selected fractional vol-
ume. However, the simple sum can be biased because of the small region and
the limited number of points within the selected area. Accordingly, the Monte
Carlo Hit-or-Miss technique appears to be more suitable. Let us denote by
(pxs, py;), with @ = 1,2, 3,4, the vertex coordinates of the quadrilateral B s,
which is the base of a prism of height h and that contains the fractional volume
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Vr (in particular, pzy = ¢, and py; = ¢, while other two points are chosen on
the oy and s rays). Furthermore, let pyin and prop.x be the minimum and
maximum pz; coordinates, and pymin and pymax the coordinates correspond-
ing to the minimum and maximum py;, respectively. Two pseudo random
numbers z, and y, are uniformly extracted in the intervals [pZpin, PTmax] and
[DYrmin, PYmax), respectively. The extraction is continued until the extraction
number Np, , which represents the number of points (x,,y,), is internal to
the quadrilateral of base P, .s. If a point (., y,-) is internal to the quadrilateral
of base Pasc and to the polygonal base P, a cubic interpolation gives the
peak p(x,y) values in the point (z,,y,), and another pseudo random number
p is uniformly extracted in the interval [0, 1]. If p-h < p(x,,y,), that is, if p-h
is a point internal to the fraction volume Vg, the number of volume hits Ny is
augmented by one. If Vp is the prism volume (Figure 2.5), calculated by the
software, then the fractional volume Vg is estimated as

VF = NV'VP/NPbaso (26)
r
h
cubic
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Figure 2.5: Prism of volume Vp that contains the fractional peak volume V.
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3.1 Introduction

NMR has found an increasingly broad range of applications in different fields
of research ranging from physical and material sciences to chemistry, biol-
ogy, and medicine. Because it interacts with nuclear spins by using very
weak electromagnetic fields, NMR is virtually the only technique that pro-
vides atomic-level information without disturbing the chemical properties of
the molecules and materials under investigation. This enormous versatility
has been possible because of the development of a wide range of NMR tools
through the years. Among the major achievements one should cite Fourier-
transform NMR that had a dramatic effect on the experimental sensitivity of
NMR [65], and the introduction of multidimensional NMR, spectroscopy by
Jeener [66] and Ernst [67] in early seventies.

In recent years, NMR spectroscopy faces a number of new challenges, such
as the investigation of the structure and dynamics of biological molecules of
increasing size and complexity, the characterization of protein-complexes, as
well as the study of kinetic features of biochemical processes in the cell. This
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requires further technical and methodological improvements in terms of ex-
perimental sensitivity, spectral and temporal resolution. New advanced NMR
pulse sequences and acquisition schemes are thus required that make optimal
use of the improved instrumental performance, and are best adapted to the
scientific problems in mechanistic systems biology. It has to be pointed out
that the wide variety of methods recently developed for fast data acquisition
are mostly addressed to protein structure elucidation and protein-ligand ki-
netic investigations. Therefore, fast NMR acquisition schemes are shaped and
configured on relatively large molecules. In such context, this chapter will ex-
plore the application of a fast-pulsing NMR experiment for metabolic profile
characterization, thus requiring the optimization of a recent pulse sequence for
fast HMQC acquisition, called SOFAST-HMQC |2, 3| (band-Selective Opti-
mized Flip-Angle Short Transient heteronuclear multiple quantum coherence),
of small molecules such as metabolites.

3.2 Fast multidimensional NMR spectroscopy

Multidimensional NMR, experiments are crucial for the study of biomolecu-
lar structure and dynamics as they provide the required resolution to extract
spectral parameters for individual nuclear sites in the molecule. While in 1D
NMR the time evolution of nuclear spin magnetization is detected directly
via the electric current induced in a receiver coil, the evolution in a so-called
indirect time domain is monitored by stepwise increments of a delay in the
pulse sequence. As a consequence of this time increments procedure, the
experimental time required for the acquisition of an nD NMR spectrum in-
creases by ca. 2 orders of magnitude per additional dimension. Therefore,
even if the inherent sensitivity is sufficient, complete sampling of the indirect
time domain grid imposes lower limits on the experimental times: several
minutes for 2D, several hours for 3D and so on. Therefore, new acquisition
schemes are required for a more rapidly data recording, taking care to obtain
a sufficient signal-to-noise ratio. In order to speed up multidimensional NMR
data acquisition, the sampling problem can be resolved either by limiting the
number of data points (sparse or non-uniform sampling techniques), or by
reducing the duration of each repetition of the experiment (fast pulsing tech-
niques). Most of the existing fast acquisition techniques are based on the first
solution, incomplete sampling of the indirect dimensional time space. Ex-
amples are non-uniform data sampling combined with non-linear processing
schemes [68, 69|, reduced dimensionality or projection NMR |70, 71, 72, 73],
and Hadamard NMR |74, 75| where data sampling is realized directly in the
frequency domain. All of these methods basically allow recording of multi-
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dimensional correlation spectra in an experimental time ranging from a few
minutes up to several hours.

The ultimate solution to the NMR data sampling problem has recently
been proposed and experimentally demonstrated by Frydman and co-workers
[76]. Their ingenious concept of "single-scan" NMR allows recording of any
multidimensional NMR spectrum within a single repetition of the experiment.
Despite the high potential of single-scan NMR for future biomolecular appli-
cations, this technique currently requires a very high intrinsic sensitivity and
spectrometer hardware optimized for both NMR spectroscopy and imaging
purposes. On the other hand, for application to proteins in aqueous solu-
tion, several scans are generally required to yield good water suppression and
acceptable signal to noise in a few seconds of experimental time.

NMR fast pulsing techniques present an alternative way to reducing acqui-
sition times. The main idea is to shorten the time delay between successive
scans (recycle delay) to achieve higher repetition rates and thus collect the
same number of scans in less time. Of course, the number of data points to
be recorded can also be reduced as discussed above, which makes fast-pulsing
techniques fully compatible with sparse sampling approaches. A recycle delay
is required to allow relaxation of the excited spins (usually *H) towards their
thermodynamic equilibrium, and to build up sufficient *H polarization to be
used for the next scan.

In order to keep the experimental sensitivity high enough while using fast
repetition rates, some spectroscopic tricks are required. A first approach has
become known as longitudinal relaxation enhancement [77|. Such method
is based upon the fact that the efficiency of 'H spin-lattice relaxation is in-
creased if nearby 'H are unperturbed by the pulse sequence, so that they can
take up some of the energy put into the system wvia dipole-dipole interactions
(nuclear Overhauser effect, NOE), or via hydrogen exchange. In practice, the
relaxation enhancement is realized by selectively manipulating a subset of the
proton spins of interest in a well defined spectral region throughout the pulse
sequence, thus ensuring that the spin states of all other protons that are not
directly involved in the coherence transfer pathways of a particular experi-
ment remain unperturbed. This yields reductions in effective longitudinal *H
relaxation times from a few seconds to a few hundred milliseconds. In some
circumstances, e.g., in HMQC experiments, the sensitivity of fast-pulsing ex-
periments can be even further enhanced by adjusting the excitation flip angle
to the socalled Ernst angle [57, 78|. Both effects have been combined in the
SOFAST experiment [2, 3] that allows one to record 2D 'H-'°N or 'H-'3C cor-
relation spectra of proteins in only a few seconds, thus opening new avenues for
real-time investigations of protein kinetics at atomic resolution. We explored
the potential of such experiment for metabolic profiling issue by applying it
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to cell samples for fast detection of metabolites.

3.3 SOFAST-HMQC

The introduction of SOFAST-HMQC sequence by Shanda and Brutscher
represents an alternative technique for fast acquisition of 2D heteronuclear
correlation spectra. The sequence is realized by using very short inter-
scan delays therefore combining the advantages of a small number of radio-
frequency pulses, Ernst-angle excitation, and longitudinal relaxation optimiza-
tion [77, 79] to obtain an increased signal to noise ratio for high repetition
rates of the experiment. Since SOFAST-HMQC uses standard data sampling
in the indirect dimension, it has the further advantage of being therefore eas-
ily implemented on any commercially available high-field NMR spectrometer.
Figure 3.1 shows the basic pulse scheme to record SOFAST-HMQC spectra.
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Figure 3.1: SOFAST-HMQC experiment to record 'H-X (X=1°N or !3C) correlation
spectra of proteins. Filled and open pulse symbols indicate 90° and 180° rf pulses, except
for the first 'H excitation pulse applied with flip angle o.. The variable flip-angle pulse has
a polychromatic PC9 shape, and band-selective 'H refocusing is realized using an r-SNOB
profile. The transfer delay A is set to 1/(2JHX), the delay 0 accounts for spin evolution
during the PC9 pulse, and t,.. is the recycle delay between scans.

3.3.1 General aspects

This pulse sequence provides the required high sensitivity to perform fast
heteronuclear 'H-X correlation experiments of macromolecules by using very
short recycle delays (tye.). The main features of SOFAST-HMQC are the

following:

e The HMQC-type 'H-X transfer steps require only few rf pulses which
limits signal loss due to Bj-field inhomogeneities and pulse imperfec-
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tions. Rf pulses reduction will be especially important if the experiment
is performed on a cryogenic probe, where B;-field inhomogeneities are
more pronounced.

e The band-selective 'H pulses reduce the effective spin-lattice relaxation
times (77) of the observed proton spins. The presence of a large number
of non-perturbed 'H spins, interacting with the observed 'H via dipolar
interactions (NOE effect), significantly reduces longitudinal relaxation
times whereby the equilibrium spin polarization is more quickly restored.

e The adjustable flip angle of the proton excitation pulse allows further
enhancement of the available steady-state magnetization for a given re-
cycle delay.

3.3.2 Ernst-angle excitation

The repetition rate of an NMR pulse sequence depends on the delay t,..
between the first pulse of one scan and the first pulse of the next scan. If
the spin system is saturated by fast rf pulsing, short interscan delays (t,.)
lead to a significant loss in signal intensity. Ernst and co-workers developed
an elegant technique to optimize the sensitivity in fast pulsed 1D one-pulse
NMR experiments by the application of a non-90° flip-angle [57|, known as
the Ernst angle [80, 44]. Maximal signal for an interscan delay t,.., and
longitudinal relaxation time 77, is obtained by the application of an excitation
angle Og.ns given by:

cos(Brmst) = exp<‘;j“> (3.1)

Ty is the effective spin-lattice relaxation time constant assuming mono-
exponential polarization recovery. The longitudinal equilibrium magnetiza-
tion M., in dependence of the thermal equilibrium magnetization M is

(1 — exp(—trec/T1))
(1 — exp(—2t,ec/T1)

M., = My (3.2)
The signal resulting from a single rf pulse applied to M., with a flip-angle

ﬁErnst 1s
Signal = M.y sin(Bernst) (3.3)

and the signal-to-noise ratio per measurement time, referred to as the sensi-
tivity of the single pulse experiment [57], is

Sensitivity = Signal /\/t,ec (3.4)
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In the case of SOFAST-HMQC sequence (Figure 6.1) Equation 3.1 becomes

- Trec
T

) (3.5)

COS(ﬁErnst) - eXp(

with T}.. the effective 'H longitudinal relaxation delay including the inter-
scan delay (t,e.), the acquisition times t/, and #, , and the transfer delay A
(Figure 6.1) and the S/N per unit experimental time, neglecting transverse
spin relaxation effects and other sources of signal loss, is then given by

(1 —exp(=Tree/T1))  sin(F)
1 —exp(—Tree/T1) cos(B)  V/nTscan

S/N o (3.6)

with ( the effective flip angle 3 = a—180° taking into account the effect of the
'H refocusing pulse, and Ts.q, the time required for a single scan including
the pulse sequence duration, acquisition time, and the inter-scan delay (t..)-

3.3.3 Proton band-selective pulses

The performance of SOFAST-HMQC critically depends on the choice of the
pulse shapes for the band-selective excitation and refocusing pulses on the
'H channel. Actually, the longitudinal relaxation optimization enhancement
effect is strictly related to the number and type of the applied proton pulses.
For this purpose, Shanda and co-workers [3] used only 2 (band-selective) 'H
pulses in SOFAST-HMQC thus ensuring minimal perturbation of the unde-
tected proton spins, and providing higher enhancement factors than observed
with other longitudinal relaxation optimized pulse schemes [77|. More over,
since the water resonance is outside the selected 'H pulse bandwidth, the
WATERGATE-type [81] pulse sequence element G1-180°(*H)-G; (Figure 6.1)
yields efficient water suppression within a single scan. The selective proton
manipulation also removes coupling evolution between excited 'H spins and
passive 'H spins from frequency bands that are not perturbed by the selective
pulses.

As spin refocusing pulse, Shanda and co-workers [3| first chose r-SNOB
profile [82] for it presents the advantage of a short pulse length thus reduc-
ing signal loss due to transverse spin relaxation [2|. Afterwards, they tested
other pulse shapes and found that, for 'H-'>N correlation spectra, a REBURP
(Figure 3.2) profile yields higher sensitivity despite a 3-times longer pulse du-
ration. Experimental comparison of r-SNOB and REBURP performance in
'H-1°N SOFAST-HMQC showed signal increase of up to 50% observed when
using REBURP instead of r-SNOB for short scan times. Such result depend on
better off-resonance performance of REBURP, resulting in less perturbation
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of the aliphatic *H spin polarization and, as a consequence, shorter longitudi-
nal relaxation times of the amide proton spins.

Figure 3.2: Excitation shaped pulses profiles. A) PC9 pulse; B) RE-BURP pulse.

The most band-selective "top-hat" pulse shapes commonly used for NMR
spectroscopy, e.g. BURP [83|, Gaussian pulse cascades [84|, or SNOB [82],
have only been optimized for discrete flip angles of 90° or 180°, and generally
are not useful for variable flip angle excitation purposes. In contrast, polychro-
matic (PC) selective pulses have been shown to perform well for a whole range
of flip angles [85]. These PC pulses are based on a series of simultaneously
applied, frequency shifted basic pulse elements. For the SOFAST application,
Shanda and co-workers used the PC9 excitation pulse shape (Figure 3.3),
which has the required "top-hat" excitation profile for flip angles 0°<a<120°.

Moreover, unlike other band-selective excitation pulses that yield "pure-
phase" transverse magnetization, the PC9 pulses produce phase that is a linear
function of the frequency offset. So, Shanda and Brutscher proposed to replace
a PC9 pulse by the combination of a pure-phase excitation pulse followed by
a delay 6. The chemical shift and scalar Jyx coupling evolution occurring
during this delay 0 can be accounted for by adjusting the subsequent transfer
delay of the HMQC sequence to 1/(2Jyx) — 0 (Figure 6.1). If the delay 0 has
been properly adjusted prior to data acquisition no first-order phase correction
is required in the 'H dimension. Otherwise, pure-phase spectra can still be
obtained by applying a first order phase correction.
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Figure 3.3: Simulated frequency-domain response of the polychromatic pulse PC9
consisting of nine radiofrequencies spaced Af = 1/T apart with relative intensities of
1:2:2:2:2:2:2:2:2:1. A) Absorbtion; B) dispersion.

3.3.4 Application to protein

The SOFAST-HMQC pulse sequences of Figure 6.1 have been designed to
provide high sensitivity for fast repetition rates. To examine the performance
of the SOFAST-HMQC experiment for the desired short interscan delays,
Shanda and co-workers measured 1D spectra of ®N-labeled ubiquitin. Fig-
ure 3.4 shows the measured S/N ratios for constant experimental time as a
function of the duration of a single repetition of the experiment T, (tak-
ing into account the length of the pulse sequence, data acquisition time, and
recycle delay) for ubiquitin sample acquired at 600 MHz on a spectrometer
equipped with a standard probe (Figure 3.4a) and at 800 MHz on a spec-
trometer equipped with cryoprobe (Figure 3.4b). Such spectra provide only
information on the average signal to noise ratio obtained by the different
pulse sequences. Each intensity point was obtained by scaling all spectra to
the same noise level according to the number of applied scans, and integrating
the spectral intensity over the range 7.0-9.5 ppm. The curves are therefore
representative of the average behavior of the experiment for all amide sites in
the protein.

The SOFAST-HMQC data (Figure 3.4) for three different flip angles (90°,
120°, and 150°) are compared to results from a sensitivity-enhanced (se) water-
flipback (wfb) HSQC pulse sequence, and from a longitudinal relaxation op-
timized HSQC (LHSQC) experiment [77].
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Figure 3.4: Signal-to-noise ratios per unit time (intensity) plotted as a function of the
scan time (Tseqn) obtained with different *H-5N correlation experiments for (a) ubiquitin
(8.6 kDa, 2 mM, 25 °C, pH 6.2) at 600 MHz, (b) ubiquitin at 800 MHz. The intensities
were extracted from 1D spectra recorded using the SOFAST-HMQC sequence of Figure 6.1
(t1=0) with flip angles of a o= 90° (M), 120° (A) and 150° (o), LHSQC (V), and se-wib
HSQC (e). Band-selective 'H pulses in the SOFAST-HMQC and LHSQC experiments were
centered at 8.0 ppm covering a bandwidth of 4.0 ppm. Variable flip angle excitation and
refocusing in SOFAST-HMQC were realized using a PC9 pulse of 3.0 ms and a REBURP
pulse of 2.03 ms, respectively.

The principal conclusions from those experimental results are the follow-
ing:

e Using optimized acquisition parameters (scan time, flip angle) and mod-
erate t; acquisition times, SOFAST-HMQC yields the most sensitive
'H-15N correlation spectra of folded proteins.

e SOFAST-HMQC provides a much higher sensitivity than se-wfb-HSQC
using the same scan times, and a similar sensitivity as se-wtb-HSQC
recorded with optimized inter-scan delays.

The SOFAST features showed in Figure 3.4 could be used as guidelines for
setting up SOFAST-HMQC experiments. For practical applications the au-
thors recommended to fix the scan time (recycle delay) and then optimize the
flip angle of the PC9 excitation pulse experimentally by recording a series of
1D SOFAST-HMQC spectra varying the power level (flip angle) of the PC9
pulse.
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3.4 Real-time cell ' H-> N metabolic profile

NMR is a well-established technique for monitoring metabolism in living cells.
They are often investigated by 1D NMR spectroscopy, therefore benefiting of
real-time measurements since all spectral frequencies are excited by a single
scan. However, 1D NMR lacks the resolution needed to cope with the degen-
eracy of the NMR resonance frequency and a reasonable S/N ratio, the latter
because of the short acquisition time required for the short lifetime of samples.
The lack of resolution can be circumvented by 2D spectroscopy that, compared
with 1D, does yield higher resolution, but is intrinsically time-consuming be-
cause data acquisition for the second dimension spans at least several minutes.
As discussed before, the total experimental time will be given by the product
of the number of scans Nyq,, required for a proper sampling of the indirect do-
main, and the single-scan duration (the repetition time) T.qp,, which includes
the spin relaxation time necessary to restore the thermal equilibrium before
the next additional measurement. This recycle delay is therefore associated
with the 'H spin-lattice relaxation time 77, and, depending on its duration,
acquisition times can be of the order of minutes, yielding total experimental
times of hours.

Cells are able to survive and stay suspended in the solvent medium for
several hours, but, after only few minutes, oxygen starvation changes their
metabolism and decreases the cytoplasmic pH [86]. Therefore, long acquisition
times may detect small molecules originating from an "average" metabolism
that does not correspond to the physiological state of the cell. For sam-
ples with short lifetime data acquisition must be rapid, and fast-acquisition
2D techniques, as those used to study the structure and dynamics of pro-
teins in solution are required [87]. Two different strategies have been put
forward for fast acquisition spectroscopy: the "single-scan" NMR [76, 88] and
the SOFAST-HMQC. The single-scan approach is able to record any multi-
dimensional NMR, spectrum within a single repetition of the experiment, but
with current spectrometer hardware it typically lacks in sensitivity, resolution,
and /or sufficient gradient strength over extended periods of time. Alterna-
tively, the SOFAST method is able to drastically reduce T, by relaying on
accelerated T of the spins of interest |77] and on optimized flip-angles (e.g.,
the Ernst angle [57]) to enhance the steady-state magnetization of the excited
spins [78]. As pointed out in the previous section, Brutscher and co-workers
have combined these features into single 2D and three-dimensional NMR pro-
tocols [2, 3, 89, 90], showing that it is possible to reduce Ts.,,, down to 100 ms,
obtaining 2D 'H-Y? N or 'H-'3C correlation spectra in the range of seconds
and with high S/N ratio.

Because of its adaptability to routine spectrometers, we have investigated
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the possibility of using the SOFAST-HMQC approach to explore cellular
metabolism in °N-labeled cells. In Chapter 6 we report that the SOFAST ex-
periment allows acquisition of 2D 'H-'5N correlation spectra of small metabo-
lites directly in living cells in few seconds, with a high S/N ratio, therefore
affording a picture of the "instantaneous" in-cell metabolism. In particular,
we have applied the SOFAST-HMQC experiment to '*N-labeled diatoms cells,
which are unicellular algae with silicified cell walls.

Figure 3.5: Thalassiosira rotula image from SEM microscope.

They are at the base of the marine food web, and are the major contributors
to phytoplankton biomass worldwide. In response to favorable light and nutri-
ent conditions, diatoms rapidly divide and form large blooms, and as blooms
propagate, nutrients are depleted, growth ceases, and cells sink to the deep
ocean. The sinking diatom blooms fuel the biological carbon pump and export
carbon from the atmosphere to the deep ocean. Despite this, little is known
about the molecular underpinnings of diatom biology. As a part of a long-
running project, we have recently undertaken a study of the metabolic profile
of Thalassiosira rotula (Figure 3.5) to understand how diatoms acquire nutri-
ents, how they respond to stress, and how they activate chemical defense and
chemical signaling that regulates algal bloom. Although useful information
can be achieved by investigating the metabolic profile of polar and lipophilic
extracts, in-vivo studies of T. rotula cells in (artificial) sea water are expected
to yield a more reliable understanding of the metabolic pathways.

On the other hand, the presence of salt in the artificial sea water culture
medium, used to suspend the cells in the NMR tube, will cause resonance
broadening, and this, together with the degeneracy of the resonance frequency,
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will make 1D spectroscopy useless. T. rotula cells can easily be cultured on
unlabeled and '°N-labeled media, and this warrants that a sufficient number
of colonies can rapidly be obtained to test the potential application of the
SOFAST-HMQC sequence to ?N-labeled cells. The 2D correlation spectra
obtained for T. rotula cells in 10-15 seconds with a high S/N ratio suggest
that fast acquisition techniques introduced for proteins can be easily extended
to other living cell systems, monitoring the metabolism under physiological or
stressing conditions in the emerging fields of metabolomics and metabonomics
[91, 35].
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4.1 Materials and methods: a) hepatocellular
carcinoma

Specimens collection

Liver tissues were collected from patients with diagnosis of hepatocellular car-
cinoma (HCC) developed on liver hepatitis C virus (HCV) related cirrhosis
(CIR) or liver metastasis from colorectal carcinoma (MET-CRC). The por-
tions of the surgically excised samples that were addressed to NMR spec-
troscopy consisted of HCC tissues (HCC; N = 17), with the corresponding
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HCV -related cirrhotic tissues (CIR; N = 17), tissues from liver metastases
(MET-CRC; N = 9), and the corresponding adjacent non-cirrhotic liver tis-
sues plus two liver tissues from healthy subjects (NT; N = 11). All samples
were frozen in liquid nitrogen in order to immediately "quench" any metabolic
reaction and preserve metabolite concentrations. Tissues were stored at -80
°C until extraction to prevent any metabolic decay. Pathological evaluation
was performed on each case, histopathological classification was based on the
criteria of World Health Organization; disease status at the time of diagno-
sis was defined depending on clinical staging as assessed by medical history,
physical examination, and instrumental tests. A written informed consent for
tissue sampling was obtained before the analysis from cancer patients. The
study was reviewed and approved by the ethical review board at the National
Cancer Institute - G. Pascale Foundation - of Naples. The main characteristics
of cancer patients are presented in table of Figure 4.1 .

Sample preparation

Tissues were mechanically disrupted to deproteinize the sample and perma-
nently halt the metabolism. The procedure allowed extraction of only the
metabolites of interest (e.g., lipids, carbohydrates, amino acids and other small
metabolites) while leaving others compounds (e.g., DNA, RNA, proteins) in
the tissue pellet. Combined extraction of polar and lipophilic metabolites
was carried out by using methanol/chloroform as suggested by the Standard
Metabolic Reporting Structures working group [92|. It appears to be the pre-
ferred choice for metabonomic NMR studies considering yield, reproducibility,
ease and speed, as perchloric acid extracts show a large sample-to-sample vari-
ation [93], especially for particularly lipid-rich tissues such as liver and brain
[93, 94]. Homogenization of 30 mg of frozen tissue samples was carried out
in 8 ml/g of wet tissue of methanol and 1.70 ml/g per wet tissue of water
(all solvents were cold) with UltraTurrax for 2 min on ice. Then, 4 ml/g wet
tissue of chloroform were added and the homogenate was stirred and mixed,
on ice, delicately using an orbital shaker for 10 min (the solution must be
mono-phasic). Then, other 4 ml/g wet tissue of chloroform and 4 ml/g wet
tissue of water were added and the final mixture was shaken well and cen-
trifuged at 12000 g for 15 min at 4 °C. This procedure separates three phases:
a water/methanol phase at the top (aqueous phase, with the polar metabo-
lites), a phase of denatured proteins and cellular debris in the middle and
a chloroform phase at the bottom (lipid phase: with lipophilic compounds).
The upper and the lower layers of each sample were transferred into glass vials
and the solvents were removed under a stream of dry nitrogen and stored at
-80 °C until required. For one-dimensional (1D) and two-dimensional (2D)
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homonuclear NMR experiments the polar extracts were resuspended in 700 ul
Phosphate Buffer Saline (PBS, pH 7.4) with DO 10% for lock procedure, and
then transferred in an NMR tube. For 2D heteronuclear 'H-13C experiments,
the polar fraction was resuspended in 700 ul of D50O.

NMR measurements

1D spectra were recorded at 600.13 MHz on a Bruker Avance-600 spectrome-
ter, equipped with a TCI CryoProbe™ fitted with a gradient along the Z-axis,
at a probe temperature of 27°C and acquired at the Institute of Biochemical
Chemistry in Pozzuoli (Napoli). 1D proton spectra were acquired by using
the excitation sculpting sequence [95]. We used a double-pulsed field gradi-
ent echo, with a soft square pulse of 4 ms at the water resonance frequency,
with the gradient pulses of 1 ms each in duration, adding 1024 transients of
16384 points with a spectral width of 7002.8 Hz. Time-domain data were all
zero-filled to 32768 points, and prior to Fourier transformation, an exponen-
tial multiplication of 0.6 Hz was applied. Clean total correlation spectroscopy
(TOCSY) (96, 97, 98] spectra were recorded using a standard pulse sequence,
and incorporating the excitation sculpting sequence for water suppression.
In general, 320 equally spaced evolution-time period t; values were acquired,
averaging 4 transients of 2048 points, with 7002.8 Hz of spectral width. Time-
domain data matrices were all zero-filled to 4096 points in both dimensions,
thus yielding a digital resolution of 3.42 Hz/pt. Prior to Fourier transforma-
tion, a Lorentz-to-Gauss window with different parameters was applied for
both t; and ty dimensions for all the experiments. TOCSY experiments were
recorded with spin-lock period of 64 ms, achieved with the MLEV-17 pulse
sequence. Spectra were referred to 0.1 mM sodium trimethylsilylpropionate
(TSP), assumed to resonate at d— 0.00 ppm. The natural abundance 2D 'H-
13C Heteronuclear Single Quantum Coherence (HSQC) spectra were recorded
on the Avance-600 spectrometer operating at 150.90 MHz for *C, using an
echo-antiecho phase sensitive pulse sequence using adiabatic pulses for de-
coupling 99, 100|. 128 equally spaced evolution time period t; values were
acquired, averaging 48 transients of 2048 points and using GARP4 for decou-
pling. The final data matrix was zero-filled to 4096 in both dimensions, and
apodized before Fourier transformation by a shifted cosine window function in
to and in t;. Linear prediction was also applied to extend the data to twice its
length in t;. Spectra were referred to the lactate doublet (3CH3) resonating
at 1.33 ppm for 'H, and 20.76 ppm for *C.
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Ciinical and pathological features Number of patients %
Hepatocellular carcinoma 17
Sex
Male 14 85
Female 3 i5
Age at diagnosis
Median (years) 67
Range 53-75
Presentation
Subclinical 5 27
Symptomatic 12 73
Serum AFP” leve!
< 20 ng/mL 11 65
= 20 ng/mL &) 35
Disease stage
| 3 15
I 8 46
1 5 31
v 1 8
Metastatic colorectal carcinoma 9
Sex
Male 5 53
Female 4 47
Age at diagnosis
Median (years) 61
Range 33-77
Serum CA719.9 level
< 30 ng/mL &) 67
> 30 ng/mL 3 33

Figure 4.1: Characteristics of cancer patients (*AFP, alpha-fetoprotein).
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Statistical and multivariate data analysis

High resolution *H-NMR spectra were automatically data reduced to inte-
grated regions ("buckets") having equal width of 0.04 ppm over the spectral re-
gion between 0.04 and 9.40 ppm by using AMIX 3.6 software package (Bruker
Biospin, Germany). The residual water resonance region (4.72 - 5.10 ppm)
was excluded and the integrated region was normalized to the total spectrum
area. To differentiate liver tissues through NMR spectra, we carried out a mul-
tivariate statistical data analysis using projection methods. The integrated
data reduced format of the spectra was imported into SIMCA-P-+ 12 package
(Umetrics, Umea, Sweden), and Principal Component Analysis (PCA) and
Orthogonal Projection to Latent Structures Discriminant Analysis (O2PLS-
DA) were performed. Mean-centering was applied as data pre-treatment for
PCA, while Pareto scaling and mean-centering were used prior to O2PLS-DA.
Both the ANOVA and the t-test were used for statistical analysis of the signals
selected for quantification.

4.2 Results

NMR experiments

NT, CIR, HCC and MET-CRC underwent a dual-phase extraction, and the
aqueous fractions were investigated by high-resolution NMR. Typical spec-
tra of NT (trace A), CIR (trace B), HCC (trace C) and MET-CRC (trace
D) are reported in Figure 4.2. Although isolated resonances can readily
be assigned to specific metabolites by comparing their chemical shifts with
literature data [101, 102], line overlapping prevented the complete spectral
identification. This required homo- and heteronuclear 2D experiments such
as TOCSY (Figure 4.3) to identify 'H-'H connectivities, and 'H-13C HSQC
(Figure 4.4) for directly bonded 'H and '*C nuclei. Thus, we were able to
identify all resonances by a comparison with literature data and with NMR
spectra of standards acquired in separate experiments. The 'H assignments
are reported in table of Figure 4.5. Inspection of 4.2 shows clear visible dif-
ferences among N'T, CIR, HCC and MET-CRC. The spectral region from 0.5
to 3.00 ppm contains signals assigned to leucine, valine, threonine, alanine,
lysine, glutamate, glutamine, and some organic acids such as lactate, acetate
and succinate. The region from 3.0 to 4.5 ppm includes signals attributed to
creatinine, choline, arginine, phosphoethanolammine, phosphocholine, glyc-
erolphosphatidilcholine, a-glucose, trimethylamine-N-oxide, glycine, glycogen,
myo-Inositol and glycerol, and represents the most variable region. The 4.5-
7.5 ppm region, together with the residual water signal eliminated by the
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specific pulse-sequence used in the experiment, contains the resonances of (-
glucose, fumarate, tyrosine, histidine and phenylalanine. The region 5.5-6.4
ppm does not contain signals, and as such it has been omitted from 4.2.
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Figure 4.2: Representative aliphatic 'H-NMR spectra of all liver tissue extracts used in
this study (spectra scaled to TSP): (A) control non-tumoral adjacent to metastasis (NT)
and (D) metastasis from the same patient (MET-CRC); (B) cirrhotic adjacent to HCC
(CIR) and (C) HCC from the same patient (HCC). Numbers labels: 1, Leucine; 2, Valine;
3, Threonine; 4, Lactate; 5, Alanine; 6, Lysine; 7, Acetate; 8, Glutamate; 9, Glutamine;
10, Succinate; 11, Creatine; 12, Choline; 13, Arginine; 14, Phosphoethanolamine; 15, Phos-
phocholine; 16, Glycerophosphocholine; 17, 8-Glucose; 18, Trimethylamine-N-oxide; 19,
Glycine; 20, Glycogen; 21, myo-inositol; 22, Glycerol; 23, a-Glucose; 24, Fumarate; 25,
Tyrosine; 26, Histidine; 27, Phenylalanine.
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Figure 4.3: Typical TOCSY spectrum of HCC extract sample; for metabolites identifica-
tion see Figure 4.5 caption.
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Figure 4.4: Example of 'H-'*C HSQC spectrum of HCC sample; for metabolites identi-
fication see Figure 4.5 caption.
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Entry Metabolite 5'H 513C Group Entry Metabolite 5'H 513C Group
3.23 54.69 N(CHy),
1 Leucine 095 2293 ot 15 pC: 361 6696 NCH,
: : pCH, 417 5878 OCH,
3.23 54.69 N(GH,),
2 Valine ;'g‘; ;Z'gg T%Hlj 16 GPCa 3.69 66.02 NCH,
: ; « 433 59.94 OCH,
464 96.40 C1H
3.26 74.60 C2H
. 348 76.22 C3H
3 Threonine 1.20 21.93 yCH; 17 B-glucose 3.40 7070 CaH
347 76.80 C5H
3.90 6140 CBH
134 2081 BCH,
4 Lactate Pttt g 18 TMAO? 3.27 55.20 N(CHy),
. 148 1737 BCH, .
5 Alanine 175 55.00 wCH 19 Glycine 3.56 4252 CH,
191 3095 BCH, 3.63 72.82 C2H
. A 3.93 7296 C3H
6 Lysine 1.71 2670 6CH, 20 Glycogen 387 7247 CEH
305 3936 CH : :
2 3.86 62.09 C6H
7 Acetate 191 2430 CH, 21 Myeinositol 4.06 72.70 C2H
377 5543 oCH 3.69 63.91 C1H
8 Glutamate ~ 2.06  27.70 BCH 22 Glycerol 384 7164 C2H
235 3430 CH, 411 63.28 1-CH,
5.24 9240 C1H
375 5513 «CH 38 7220 G2+
. 372 7330 c3H
9 Glutamine 215 27.60 BCH 23 a-glucose
sae 3900 o 342 70.03 CdH
: : Ll 384 7161 C5H
378 6237 C6H
10 Succinate 241 3497 «fCH, 24 Fumarate 6.52 136.10* o pC=C
3.93 57.00 aCH
. 304 3850 N(GH) . 3.14 4192 pCH
" Creatine 383 5450 N(CH) 25 Tyrosine 689  131.70  C3,5Hring
718  117.70'  C2,6Hring
. 320 5460  NYCH., _ 706 117.70" CdH
12 Choline 407 5650  CH,(OH) 26 Histidine 778 13670  C2Hring
3.27 40.76 BCH,
3.90 56.80 oCH
13 Aiginine 191 3045 Bok, 27 Phenylalanine  7.30 13033  C26ring
: : 2 743 130.30"  C35ring
733 128.60" C4 ring
322 4110 CH,
14 PE* 400 6110 CH,

Figure 4.5: List of 'H and '3C chemical shift (6, ppm) of metabolites found in *H-
TOCSY and 'H-'3C-HSQC-NMR spectra of HCC, metastasis and adjacent non-involved
liver tissues. ¢ Abbreviations: GPC, glycerophosphocholine; PC, phosphocholine; PE,
Phosphoryl-ethanolamine; TMAQ: Trimethylamine-N-oxide. * Expected chemical shift.
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Principal Component Analysis

Notwithstanding the use of 2D spectra, visual inspection alone did not war-
rant meaningful observations of the metabolite distribution. To obtain sta-
tistically relevant biochemical information from NMR data, we first applied
multivariate data analysis based on pattern recognition methods to all spectra
by comparing each tissue with the anothers. Therefore, we applied PCA on
spectra of NT and CIR in order to evaluate their metabolomic profiles. Figure
4.6 shows the PCA results as scores (Figure 4.6A) and loadings plots (Fig-
ure 4.6B) for the first two principal components from spectra of CIR (filled
squares, l) and NT samples (empty squares, [J).

16.15

081

Figure 4.6: PCA comparison of non-tumoral (NT) with cirrhotic tissues (CIR). (A) Scores
plot (R?=73.14%) for CIR, (M) and NT (0). The major metabolic signals that differentiate
the two classes are shown in the loadings plot (B), where numbers refer to metabolites as
labeled in Figure 4.2.

Clustering is observed from the scores plot PCy vs. PCy (Figure 4.6A), where
PC; and PC, explained 73.14% of the total variance within the data. The
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metabolic signals responsible for the differentiation of the two classes can be
identified from loadings plot (Figure 4.6B) associated with the PCA. Com-
pared with NT tissue extracts, CIR showed increased concentrations of lactate
(Figure 4.2 for labeling), a-/(-glucose, and glycogen, with decreased concen-
tration of Thr, acetate, Glu, Gln, creatine, PC, GPC, TMAO, and myo-
Inositol. Applying PCA to the spectra of liver metastasis (l), they resulted
separated from those corresponding to non-cirrhotic normal liver (OJ), as de-
picted in the scores plot PC; vs. PC,, which explains 90.78% of the total
variance (Figure 4.7C). The loadings plot in Figure 4.7D shows the major al-
terations of the metabolic signals responsible for the separation. In particular,
metastasis differentiated from the non-cirrhotic normal liver for high level of
Leu, Thr, lactate, Ala, acetate, Glu, Gln, Gly, GPC, PE, and myo-Inositol,
and for lower level of a-/B-glucose and glycogen.
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Figure 4.7: PCA comparison of non-tumoral (NT) with metastasis tissues (MET-CRC).
The scores plot C (R*=90.78%) distinctly shows a separation for metastasis (W) and non-
cirrhotic (OJ) tissues along the PC; axis. The loadings plot (D) shows the major signals that
determined difference in the clustering, numbers refer to metabolites as labeled in Figure
4.2.
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As it can be seen in the scores plot (Figure 4.8A), PCA successfully classi-
fied HCC tissues (O) from the CIR strains (H) through two PCA components,
which explained 70.93% of the variance within the dataset. The separation
was due to an increase of Leu, Thr, lactate, Ala, acetate, Glu, Gln, PC+GPC
and PE, and to a decrease of creatine, a-/f-glucose and glycogen in HCC
(Figure 4.8B).
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Figure 4.8: PCA comparison of HCC with cirrhotic tissues (CIR). HCC (O) and the
corresponding cirrhotic () samples separated in the scores plot A (R2=70.93%) along the
PC; axis, by means of the loadings plot B. Numbering as in Figure 4.2 caption.

Furthermore, we readily distinguished HCC (M) from metastases ([J), as
shown by the scores plot PC; vs. PCs, where the two components explained
83.79% of the total variance within the data (Figure 4.9C). The associated
loadings plot shows differences of the metabolite concentration which deter-
mined such clustering (Figure 4.9D). Compared to metastasis, HCC tissues
had higher levels of a-/f-glucose and glycogen, with lower levels of Leu,
Thr, lactate, acetate, Glu, creatine, TMAO, myo-Inositol, Gly, GPC and
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PE. Finally, we performed PCA of the whole dataset by extending pattern
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Figure 4.9: PCA comparison of HCC with metastasis tissues (MET-CRC). The scores
plot C (R?=83.79%) displays HCC spectra (W) and metastasis ((J) spectra in two clusters
along the PC; axis according to the signals in the loading plot D, which highlights the
signals involved in the clustering. Numbering as in Figure 4.2 caption.

recognition technique to all classes. Figure 4.10 shows the scores plot PC; ws.
PCy and explains 77.94% of the total variance.

Although clusterings displayed in Figures 4.6, 4.7, 4.8 and 4.9 clearly sep-
arated different pairs of hepatic tissues, the whole model is more controversial
as it appears in the scatter plot of Figure 4.10. For that reason we performed
an OPLS-DA analysis.



4.2. Results 49

0.15 L
0.10
0.05
0.00
-0.05
-0.10

PC2

PC1

Figure 4.10: PCA showing the metabolic differences within each individual group of
tissues, namely NT (A), CIR (H), HCC (O) and MET-CRC (A).

Orthogonal Projection to Latent Structures Discriminant
Analysis

To better construct a four tissue classes model and to understand the role of
the X variables ("buckets") in the class separation, and to prove the potential
of the NMR representation in assigning new samples to a specific class, we
constructed an O2PLS-DA model, which resulted in three predictive and three
orthogonal components (R?=0.65 and Q*=0.35).

Figure 4.11: 3D score plot showing the class separation of the different group of tissues,
namely NT (blue), CIR (red), HCC (yellow) and MET-CRC (green).
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In the 3D score plot (Figure 4.11) the four tissue classes appear sufficiently
separated in clusters, although the model seems to be robust for the MET-
CRC samples (R*=0.82 and Q*= 0.63), but weaker for the HCC (R*=0.55
and Q?=0.26) and CIR samples (R?=0.58 and Q?=0.17). However, the latent
structure corresponding to the predictive part of the model can be used to
explain the relationships between X-variables and class separation.

The p(corr)/q(corr) plot (Figure 4.12) is a useful tool to identify the vari-
ables responsible for the tissues class separation. The p;(corr); parameter is
the correlation coefficient between the t; predictive score vector and the X;
variable, and can be considered as a measure of the similarity between the t;
score vector and the X; variable. On the other hand, the g;(corr); parameter
corresponds to the correlation coefficient between the t; predictive score vector
and the dummy variable representing the class j, and allows its representation
in the same plot of the X variables. Figure 4.12 indicates that the first prin-
cipal component is very similar to variables corresponding to "buckets" 1.34,
4.10, 3.90 and 3.82 ppm. In particular, a progressive increase of the 1.34 ppm
variable can be observed starting from the NT class, through the CIR and
the HCC up to the MET-CRC samples (Figure 4.13A). On the contrary, the

3.90 ppm variable shows an opposite trend through the four classes (Figure
4.13B).

pg(corr) plot

pa(corn[2]

Figure 4.12: Identification of variables responsible for the tissues class separation:
pq(corr) plot with all variables ("buckets").
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Figure 4.13: Identification of variables responsible for the tissues class separation. (A)
and (B) variation of the "buckets" relative to the most significant signals at 1.34 ppm
(lactate) and 3.90 ppm (a-glucose), respectively, showing a progressive increase of the 1.34-
ppm variable, and a corresponding decrease of the 3.90-ppm variable. Samples are identified
by a color code.

In order to build a Naive Bayes classifier the three predictive score vectors
were used to obtain a new representation of the sample space. The prediction
performance of the classifier was evaluated by complete cross-validation (four
groups). It showed just 7.4% of incorrect prediction (4/54 samples), while
92.6% of samples were correctly predicted (50/54 samples). The four samples
were incorrectly classified as belonging to adjacent classes: one NT sample
was predicted as CIR (1/11 NT); two CIR samples were predicted as HCC
(2/17 CIR), and one HCC was predicted as MET-CRC (1/17). For a two-
class model, O2PLS-DA is able to obtain a powerful classification and detect
potential markers [14]. In this case, only one component is needed to explain
the variation between the two classes, and the predictive score vector t can
directly be used to highlight resonances ("buckets") acting as potential mark-
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ers. This could easily be achieved by building the S-plot, in which p(corr)
is plotted against the predictive loading vector p of the model, and only the
variables having an absolute p/pe, ratio > 1.7 (where p,,, is the error on p
estimated by jack-knife in cross-validation) will be considered.
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Figure 4.14: S-plots reporting p(corr) against the predictive loading vector p of the model:
(A) NT vs. HCC; (B) NT vs. MET-CRC. All models indicated the signals at 1.34 and 3.90
ppm, as the principal discriminating variables.

038
08{ C 134 06l D 134
08 04
04
fg 09 %\0.2
K 2 00
o o
02 02
04
081 £
038 3%&%@ g CIR vs. MET | HCC vs WET
02 01 00 01 02 03 04 05 02 01 00 01 02 03 04 05
P P

Figure 4.15: S-plots reporting p(corr) against the predictive loading vector p of the model:
(C) CIR ws. MET-CRC; and (D) HCC vs. MET-CRC. All models indicated the signals at
1.34 and 3.90 ppm, as the principal discriminating variables.

Six models were considered, each corresponding to a pair of sample classes.
Figure 4.14 shows the S-plots of NT vs. HCC (panel A) and NT vs. MET-
CRC (panel B) while Figure 4.15 shows the S-plots of CIR vs. MET-CRC
(panel C) and HCC vs. MET-CRC (panel D). All models indicated the signals
at 1.34 and 3.90 ppm, stemming from the lactate and the glucose, respectively,
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as the principal variables discriminating both MET-CRC and HCC from NT
samples, and CIR and HCC from MET-CRC. These models can all be consid-
ered robust having high Q? values (> 0.69). On the contrary, the NT vs. CIR
and the CIR wvs. HCC models did not show any discriminating variable as

a putative marker. Table reported in Figure 4.16 summarizes all parameters
related to the O2PLS-DA models.

Markers
Group 1 vs. Group 2 R2 Q? Group 1 t(;/:l;:? Group 2 t values (>1.71)
NT > CIR 0.65 0.32 a a a a
NT > HCC 0.90 0.69 1.34 5.60
4.10 3.70
4.14 3.58
3.94 4.24
3.90 3.62
3.70 3.14
3.86 2.86
NT > MET-CRC 0.90 0.85 1.34 9.54
1.38 7.27
4.14 7.1
4.10 6.44
3.70 9.36
3.90 7.60
3.86 8.15
3.82 5.93
3.94 4.69
CIR > MET-CRC 0.97 0.85 1.34 1035
4.14 8.32
4.10 8.42
3.82 9.22
3.86 7.98
3.90 7.60
3.50 6.82
3.46 6.18
CIR > HCC 0.68 0.41 a a a a
HCC > MET-CRC 0.9 0.73 1.34 5.0
4.10 3.92
4.14 3.52
3.78 5.32
3.82 4.49
3.86 4.17
3.90 3.61

Figure 4.16: Summary of O2PLS-DA parameters from the six pairs of models analyzed.
¢ No discriminating variables were found as a putative marker.
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If a particular class can be considered as a control, it is possible to gain
information about the variables that discriminate each class, with respect to
the control, using the so called SUS-plot (Shared and Unique Structure plot).
Assuming the NT samples as control, the p(corr) vectors estimated for each
two classes models, separately including the N'T' class, were used to represent
the X-variables in the SUS-plot (Figure 4.17). Since the NT vs. CIR model
was not robust enough to be understood in terms of single variables, we limited
our analysis to NT, HCC and MET-CRC classes. We found that the same
signals separate both HCC and MET-CRC samples from the control, while
no unique signals discriminate these two classes. In particular, the buckets
located at 1.30-1.38 ppm and 4.00-4.14 ppm; which contain the lactate signals,
are elevated in both HCC and MET-CRC classes, suggesting the lactate as the
putative marker. On the contrary, the buckets at 3.70-4.00 ppm, containing
the glucose signals, are prominent in N'T class, suggesting the glucose as the
putative marker. Therefore, both metabolites primarily contribute to the
classification of the different groups, showing an opposite trend among the
groups. In particular, the lactate level increases from N'T group, through CIR
and HCC, to reach the highest value in the liver MET. On the contrary, the
signals of glucose progressively decrease from NT group, through CIR, HCC
and MET-CRC group, which shows the lowest intensity.
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Figure 4.17: SUS plot of NT, HCC, and MET-CRC classes. Assuming the NT samples
as control, the p(corr) vectors estimated for each two classes models, separately including
the N'T class, were used to represent the X-variables.
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Quantification and statistical significance

To confirm the parallel trend of these two putative markers (increased lactate
and decreased glucose), we integrated the "H-NMR isolated signals of lac-
tate (CHgs, 1.33 ppm) and a-glucose (C1H, 5.24 ppm) in all tissue samples.
We only considered the a-glucose, which represents ca. 36% of total glucose,
because the remaining 64%, corresponding to the § form, gives a signal at
4.65 ppm, and as such it is strongly perturbed by the pulse sequence used
for water peak (4.68 ppm) suppression in the NMR experiments. The peak
area of lactate and a-glucose was scaled to the molar concentration taking
into account that they represent the lactate methyl group and the glucose
isomer, and calculated the lactate/glucose molar ratio. Figure 4.18 illustrates
the lactate/glucose molar ratio for each patient sample. The analysis of vari-
ance (ANOVA with Bonferroni correction) has been applied, and statistically
significant differences were observed for the lactate/glucose ratio of NT vs.
MET-CRC (p < 0.001), CIR vs. MET-CRC (p < 0.001) and HCC vs. MET-
CRC (p < 0.001).
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Figure 4.18: Lactate-a-glucose molar ratio for each patient sample. Statistically signif-
icant differences were observed for the lactate/glucose ratio of NT vs. MET-CRC (p <
0.001), CIR ws. MET-CRC (p < 0.001) and HCC vs. MET-CRC (p < 0.001). The vertical
axis has been cut to highlight the variations for NT, CIR and HCC samples, all with a ratio
<15.
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4.3 Discussion

In this study we have used high-resolution *H-NMR spectroscopy to investi-
gate the metabolite composition of human hepatic tissue extracts of 17 pa-
tients affected by hepatocellular carcinoma HCV-related (HCC), and 9 pa-
tients affected by liver metastases from colorectal carcinoma (MET-CRC).
As a control we used cirrhotic liver tissues of HCC patients (CIR) and nor-
mal liver tissue of MET-CRC patients (NT), respectively. All spectral classes
were visualized by PCA analysis, which also highlighted the "evolution" and
relationship of the different pathological liver conditions represented by the
four NMR data classes. The disease evolution is established along the PC;
axis (Figure 4.12A), following the increase of the lactate (Figure 4.13B), and
the remarkable decrease of glucose (Figure 4.13C). The progressive increase
of lactate/glucose ratio along the PC1 axis is consistent with the enhanced
conversion of glucose into lactate, through the different classes that represent
different tissue conditions such as hypoxia and/or "aerobic glycolisis". Solid
malignant tumors are characterized by pronounced tissue hypoxia [103| and
enhanced formation of lactate [104], but many tumors exhibit a strong gener-
ation of lactate even in the presence of oxygen. This phenomenon, known as
"aerobic glycolysis" or the "Warburg effect" [105], is generally considered the
result of oncogenic alteration in glucose metabolism following malignant trans-
formation |106], but its significance is still controversial [107]. An elevated
lactate concentration in primary lesions at first diagnosis has been related to
an increased risk of metastases in squamous cell carcinomas of the uterine
cervix, of the head and neck, and in adenocarcinomas of the rectum [108].
Certainly no endogenous marker alone is able to predict the hypoxic status of
the tumor, and we need to find, within hypoxic metabolic profiles, a pattern
of signals (metabolites) that are expression of the pathological changes. How-
ever, our observations suggest that the metabolic shift towards enhanced gly-
colysis would already be present in the early stage, during multi-step hepatic
tumorigenesis. Starting from liver cirrhosis, widely considered as precancerous
lesions, the upregulation of glycolysis showed progressive rate of conversion in
different hepatic conditions, thus indicating the metastasis group as the one,
among all classes, requiring the larger amount of conversion in energy for its
malignancy characteristics. Most probably, cell population with upregulated
glycolysis could develop growth advantages which promote unconstrained pro-
liferation and invasion [106].

The PCA analysis of variables shows that PC; separates NT from MET-
CRC, and CIR from HCC, while PC, separates NT from CIR, and MET-
CRC from HCC. These separations ideally identify two different "metabolic
developmental trajectories", which, based on the changes in the NMR-visible
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metabolome, describe liver tumorigenesis (Figure 4.12). Starting from NT, it
is possible to ideally draw an ideal line through CIR to HCC, according to a
sequel of pathological liver alterations. Conversely, it is possible to connect
NT directly to MET-CRC, according to the absence of any liver "interme-
diate" state. It is worth speculating about the possible applications of such
metabolic trajectories. Firstly, the trajectory could be used to identify a
specific pathological state by verifying when candidate metabolites deviate
from the normal path. This could then be correlated with known morpholog-
ical events providing insight into the progression towards HCC. Furthermore,
the trajectory could define the point of HCC tumorigenesis where a limited
number of genomic (DNA microarray) and/or proteomic studies could be car-
ried out to better characterize the oncogenic changes. Secondly, comparison
of metabolic trajectories can provide a suitable way to distinguish primary
tumors from metastases. Thirdly, the effects of drug treatment could be as-
sessed by determining if the pathological metabolic trajectory tends to the
"normal" state. On this regard, the 'H-NMR spectra provided quantitative
data by integrating selected metabolite signals that were found to primarily
contribute to the classification of the different groups. In particular, we identi-
fied the lactate/glucose ratio, which shows an opposite trend among subgroups
and within each of them, therefore affording a reliable method for evaluating
healthy or non-healthy status of the liver.

In this study the patients who developed HCC were also affected by chronic
cirrhosis HCV-related. Hepatites C infection is the most frequent liver infec-
tion and is considered a pre-cancerous lesion of liver. HCV infection is also
associated with an increased risk of glucose intolerance and diabetes maybe
due to an impaired glucose homeostasis mediated directly by HCV proteins.
Liver cirrhosis is a progressive fibrotic process that is characterized by the final
necrosis of hepatocytes. In normal conditions, after carbohydrate digestion,
blood glucose level rises, and in hepatocytes insulin acts so as to stimulate
several enzymes and convert excess glucose into glycogen, thus preventing ex-
cessive osmotic pressure build up inside the cell. In fact, CIR samples (Figure
4.2B), compared to NT samples (Figure 4.2A), show an increased amount
of lactate, and the lactate/glucose ratio is ca. 2 times that in NT (Figure
4.18). Hepatic transformations occur by sequential accumulation of genetic
and molecular alterations, and HCC is often the result of a slow and progres-
sive evolution going through the development of liver cirrhosis. The lactate
in HCC samples is ca. 2 times higher than that in CIR samples, meaning
that there is an alteration of the carbohydrate metabolism, with enhanced
glycolysis and alteration of the tricarboxylic acid (TCA) cycle [15].

Metastasis formation is the result of a multi-step cascade of events occur-
ring to cancer cells during tumor dissemination, which brings about consid-
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erable metabolic changes [109]|. The large increase in lactate concentration as
well as the decrease of intracellular glucose level was the predominant effect
for the separation of metastases from HCC and NT (Figure 4.17), and the
lactate/glucose ratio in MET-CRC ranges from 9 to 40 fold higher compared
to HCC and NT, respectively (Figure 4.18), thus suggesting a role for the
enhanced phenomenon of "aerobic glycolysis". Furthermore, the metastatic
process for remodeling and altering extra-cellular matrix, tightly associated
with cell proliferation, is consistent with the elevation of lactate, and has been
already reported for metastasis in axillary lymph nodes in breast cancer and
human cervical cancer [110].

The approach used in this study highlighted metabolic evolution of differ-
ent liver diseases: cirrhosis, HCC, and liver metastasis. The analysis of such
a wide range of specimen types indicated that the common discriminating
factor, a progressive increase of lactate concentration, is coupled with changes
in TCA cycle and alterations of the energy metabolism in the liver of CIR
and HCC patients HCV-related. In addition, the raise of lactate is also cou-
pled with a stronger elevation of lactate/glucose ratio of patients MET-CRC
may be due to other metabolic mechanisms. In previous HR-MAS studies
on intact tissues, the lactate resonance was discarded for possible anaerobic
degradation of glucose induced during surgery or experiment [111]. Here all
samples underwent the same treatment, and therefore we can safely exclude
external factors altering the lactate levels. Furthermore, the dual extraction
procedure used in our study allowed identification and quantification a much
higher number of polar metabolites in comparison with protocols previously
described for the NMR spectroscopy on intact tissues ex vivo [112].
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4.4 Materials and methods: b) exhaled breath
condensate

Specimens collection

A total of 36 paired EBC and saliva samples were collected from the following
groups of subjects: 12 healthy subjects (HS; nine males, mean age 55.64+7.2
yrs); 12 laryngectomized patients (nine males, mean age 60.246.2 yrs); and 12
patients affected by chronic obstructive pulmonary disease (COPD; 11 males,
mean age 64.9+5.7 yrs). All HS were nonsmokers, while the laryngectomized
patients (who provided samples through a stoma, bypassing the pharynx en-
tirely) and the COPD patients were ex-smokers (at least 24 months since
smoking). All subjects presented no occupational or other pronounced expo-
sure to organic solvents. The laryngectomized patients had been previously
treated by laryngectomy for laryngeal carcinoma for at least one year prior
(range 12-18 months) and did not have a history of chronic respiratory dis-
ease or recurrent exacerbations. COPD patients had received diagnosis in the
past according to the Global Initiative for Chronic Obstructive Lung Disease
guidelines |[113]. The COPD anthropometric characteristics are summarized
in table in Figure 4.19.
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Figure 4.19: Anthropometric characteristics of 12 patients affected by chronic obstructive
pulmonary disease. BIM: body mass index; FEV1: forced expiratory volume in one second;
% pred: predicted; FVC: Forced vital capacity; GOLD: Global Initiative for Chronic Ob-
structive Lung Disease; M: male; F: female. FEV1, FVC and FEV1/FVC were measured
after bronchodilatation inhalation test.

None of the patients were on regular systemic or inhaled corticosteroid treat-
ment. They were asked not to use long-acting 2-agonist and anticholinergic
agents for a period longer than 12 h and 24 h, respectively, before EBC collec-
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tion. All subjects were free from upper and/or lower airway infection for, at
least, 4 weeks before the EBC collection. They refrained from food intake for
4 h before the test and from alcoholic drinks for 18 h before EBC collection.
In laryngectomized patients, lower respiratory tract secretions were actively
managed by selfsuctioning and cleaning before each EBC collection.

To assess within-day repeatability, eight subjects (four HS and four COPD
patients) were asked to collect EBC and saliva twice within the same day (at
times 0 h and 12 h). All subjects gave informed consent and the study proto-
col was approved by the Ethics Committee of the Monaldi Hospital (Naples,
Italy).

EBC sampling

EBC was collected using an EcoScreen condenser (Jaeger, Wurzburg, Ger-
many) as previously described [40] (Figure 4.20). Briefly, all subjects breathed
through a mouthpiece (laryngectomized patients provided samples through
the stoma) and a two-way nonrebreathing valve, which also served as a saliva
trap, at normal frequency and tidal volume, while sitting comfortably and
wearing a nose-clip for a period of 15 min. They maintained a dry mouth
during collection by periodically swallowing excess saliva.
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Figure 4.20: EBC schematic collecting system.

Condensate samples (3-4 ml) were immediately transferred into glass vials of
10 ml volume, closed with 20 mm butyl rubber lined with polytetrafluoroethy-
lene septa, and crimped with perforated aluminium seals. Volatile substances,
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possibly deriving from extra-pulmonary sources |114, 115, 116/, were removed
by a gentle stream of nitrogen before sealing. Nitrogen was applied for a
variable time (1, 3, 5, 10, 15 and 20 min); no difference was observed with
spectra acquired after 1 min nitrogen exposure, but since such an interval
appeared to be too short to avoid systematic errors, a 3 min interval was
chosen. Nitrogen was used because the concentration of volatile solutes in
EBC is dependent on their distribution between the saliva, exhaled air and
droplets, and the condensate. This distribution can be altered by multiple
factors, including minute ventilation, salivary pH, solubility, temperature and
sample preparation [117]. Therefore, spectral differences may depend upon
uncontrollable variables that prevent reliable quantification. The nitrogen
stream also removes oxygen from solutions. Such a procedure, used for NMR,
protein structure determination [118], together with freezing of sealed samples
in liquid nitrogen, immediately "quenches" metabolism at the collection time,
and prevents any metabolic decay [37]. Samples were then stored at -80 °C
until NMR analysis. Drying of the samples was avoided to circumvent irre-
versible solute precipitation and/or formation of insoluble aggregates, which
were observed upon dissolving the dried condensate for NMR measurements.

Pre-analytical preparation of EBC condenser reusable
parts

Before and after collection of each EBC sample, the reusable parts of the
condenser (valve, salivary trap and lamellar condenser) were disinfected for 15
min using a solution of a 1.5% freshly prepared chemical agent (Descogen?/;
FILT GmbH, Berlin, Germany), and repeatedly flushed with water following
the manufacturer’s guidelines. To completely eliminate the disinfectant, parts
already disinfected and washed were thoroughly rinsed for 15 min with pure
grade ethanol (96%), thereafter exhaustively soaked with deionized distilled

water for 15 min and dried under vacuum at 50 °C.

Salivary collection

Together with EBC collection, a salivary sample was taken in the same day. To
avoid any interference from exogenous agents into the oral environment, the
patients were asked to collect all saliva available (~ 2-4 ml), i.e. "whole" saliva
expectorated from the mouth, into a plastic universal tube immediately after
waking in the morning. As previously described by Silwood et al. [38], each
patient was requested to refrain completely from oral activities (i.e. eating,
drinking, tooth brushing, oral rinsing,smoking, etc.) during the short period
between awakening and sample collection (<5 min). Each collection tube
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contained 15 pmol sodium fluoride, sufficient to ensure that metabolites were
not generated or consumed wvia the actions of bacteria or bacterial enzymes
present in whole saliva during periods of sample preparation and/or storage
[39]. Specimens were transported to the laboratory on ice and immediately
centrifuged (at 20,000xg at 4 °C for 15 min) on their arrival to remove cells
and debris. Following this, a gentle nitrogen gas flow was applied for ~5 min
to supernatants, which were then stored at -80 °C until measurements were
made.

The 'H-NMR profiles of salivary supernatant specimens subjected to anal-
ysis immediately after collection into the fluoride-containing tubes and rapid
centrifugation were compared with those of the same samples stored as de-
scribed previously, and no differences were discernible, ¢.e. none of the criteria
investigated changed significantly during these periods of storage.

Sample preparation for NMR analysis

EBC samples were rapidly defrosted. To provide a field frequency lock, 70 ul
of a deuterium oxide (D20O) solution, containing 1 mM sodium 3-trimethylsilyl
(2,2,3,3-2H,) propionate (TSP) as a chemical shift reference for 'H spectra and
sodium azide at 3 mM, was added to 630 ul of condensate, thus making 700
w1l total volume. Saliva samples were rapidly defrosted and 70 ul of reference
standard solution (D2O-TSP) was added to 630 ul of sample.

NMR measurements

1D spectra were recorded on a Bruker Avance spectrometer (Bruker BioSpin
GmbH, Rheinstetten, Germany) operating at a frequency of 600.13 MHz (*H)
and equipped with a TCI CryoProbe’™ (Bruker BioSpin GmbH), at a probe
temperature of 27 °C. The water resonance was suppressed by using the
noesypresat pulse sequence, called noesyprld according to the manufactur-
ers. It has the form - RD-90°-t-90°-t,,-ACQ, where RD is a relaxation delay,
t a short delay, 90° represents a 90° radio frequency pulse, t,, the mixing
time and ACQ the data acquisition period. In the present study acquisition
conditions, the carrier frequency (O;) value was set on the water resonance,
the saturation power was 62 dB, t was 4 us, t,, was 100 ms, the spectral
amplitude was 7002.8 Hz, the time domain was 16 K, RD was 2.0 s and the
number of transients was 256. This resulted in a total acquisition time of 14
min per sample. For processing, a line broadening of 0.6 Hz was applied and
a real spectrum size of 32 K was used. Spectra were referred to TSP, assumed
to resonate at a ¢ of 0.00 ppm.
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Statistical analysis

High-resolution 'H-NMR spectra were automatically data reduced to 200 inte-
gral segments ("buckets"), each of 0.02 ppm, using the AMIX software package
(Bruker BioSpin GmbH). The resulting integrated regions were imported into
the SIMCA package (Umetrics, Umea, Sweden) and used for statistical analy-
sis and pattern recognition. Before pattern recognition analysis, each integral
region is usually normalized to the sum of all integral regions of each spec-
trum; however, because of the presence of contaminant peaks, each bucket
was normalized to the TSP peak of known concentration for a reference re-
gion of between 0.014 and -0.014 ppm. The correctness of the approach was
tested by comparing the results with those obtained by referring to the sum of
all integral regions of each contaminant free spectrum. No significant differ-
ence was observed between the two approaches; therefore, pattern recognition
analysis was reliable with normalization to TSP. Data were preprocessed with
the Centering scaling and then processed with PCA and partial least squares
discriminant analysis (PLS-DA).

4.5 Results

Spectral differences between EBC and saliva

Figure 4.21 represents spectra of saliva (Fig. 4.21a, b and ¢) and EBC samples
(Fig. 4.21d, e and f) from one HS (Fig. 4.21a and d), one laryngectomized
patient (Fig. 4.21b and e) and one COPD patient (Fig. 4.21c and f). Saliva
spectra were highly different from corresponding EBC samples and were no-
tably dissimilar between patients: a visual examination establishes a corre-
spondence between spectra from a HS (Fig. 4.21a) and a laryngectomized
patient (Fig. 4.21b), but a difference from the COPD spectrum (Fig. 4.21c¢),
which shows sharper lines. The most intense signals in the 0.0-3.2 ppm region
of saliva were assigned according to previous studies [38, 101]. Resonance
assignment was as follows: leucine 0CHg; (triplet) at 0.96 ppm; propionate
BCH3 at 1.04 ppm (triplet) and «CHy at 2.19 ppm (quartet); lactate SCHy
at 1.32 ppm (doublet) and aCH at 4.11 ppm (quartet); threonine yCHj; at
1.36 ppm (doublet); alanine SCHj at 1.47 ppm (doublet) and oCH at 4.20
ppm (quartet); acetate SCHjs (singlet) at 1.93 ppm; SCH, of glutamate and
glutamine at 2.10 ppm (multiplet); SCHj3 of pyruvate at 2.37 ppm (singlet);
a,3CHy of succinate at 2.41 ppm (singlet); eCHy of lysine at 3.06 (triplet);
N-CHj; of choline at 3.16 ppm and of phosphorylcholine at 3.23 ppm (both
singlets); and N-CHj of taurine at 3.23 ppm (triplet).



64 Chapter 4. NMR metabolic profile experiments

Saliva EBC
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Figure 4.21: Representative one-dimensional 'H-NMR spectra of saliva (a, b and ¢) and
exhaled breath condensate (EBC; d, e and f) samples from healthy (a and d), laryngec-
tomized (b and e) and chronic obstructive pulmonary disease (c and f) patients. The group
of signals centered at 3.8 ppm in saliva spectra originates from carbohydrates and is not
visible in the corresponding EBC spectra.



4.5. Results 65

Signals between 3.3 and 6.0 ppm originate from carbohydrates and were
virtually absent in the EBC spectra. Compared with saliva, EBC spectra pre-
sented fewer signals and, as observed for saliva, the COPD patient trace (Fig.
4.21f) appeared to be different from the HS (Fig. 4.21d) and laryngectomized
patient (Fig. 4.21e) traces. Spectral differences between saliva and EBC were
verified by PLS-DA analysis. Due to the complete absence of the carbohydrate
signals in the EBC spectrum, the region 5.0 to 3.5 ppm was cut out from all
spectra, partitioning the region between 3.5 and 0.8 ppm. Figure 4.22 shows
the score plots of saliva and EBC samples from all subjects. Considering two
PLS-DA components, it was possible to obtain a sample classification of 95%
(samples correctly classified into different regions). In particular, while EBC
samples were all clustered, the saliva samples of HS, laryngectomized and
COPD patients were positioned differently from EBC and from each other.
Such a separation comes mostly from signals resonating within the 3.5-2.9 and
2.1-1.7 ppm regions. EBC and saliva samples collected from eight subjects
twice within the same day (at times 0 h and 12 h) demonstrated good within-
day repeatability, showing no evident difference in resonances in the spectra.
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Figure 4.22: Partial least squares discriminant analysis (PLS-DA) scores discrimination
for exhaled breath condensate (A: laryngectomized patients; A: healthy subjects (HS); e:
chronic obstructive pulmonary disease (COPD) patients)and saliva (O: laryngectomized,;
H: HS; o: COPD). All variables were used and two PLS-DA components were retained in
the model, obtaining a classification of ~95%. The region 5.0 to 3.5 ppm, containing the
carbohydrate signals, was cut out from the bucketing, and only the signals between 3.5 and
0.8 ppm were analyzed. t[1] and t[2] are the first two principal components.
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Effects of disinfectant contamination on EBC spectra

Figure 4.23 shows the 'H-NMR spectrum of Descogen’™ (Fig. 4.23a) with
representative spectra of EBC samples contaminated by the disinfectant be-
cause of insufficient washing time (Fig. 4.23b and c). To completely eliminate
the disinfectant, parts already disinfected and washed were thoroughly rinsed
for 15 min with pure grade ethanol (96%), thereafter exhaustively soaked with
deionized distilled water for 15 min and dried under vacuum at 50 °C (Fig.
4.23d).
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Figure 4.23: Contamination of exhaled breath condensate (EBC) samples by Descogen”™
(FILT GmbH, Berlin, Germany). a) 'H-nuclear magnetic resonance spectrum of
Descogen”™ | compared with b) spectra of EBC samples after partial washing (15 min),
and c) intense water rinsing (30 min). d) Contamination was completely removed after
the washing procedure using ethanol. The acetate signal at 1.93 ppm was cut in all EBC
spectra. a) The vertical scale is one quarter the size of the other spectra. #: lactate
resonarnces.

The resonances of the "saline" components of the disinfectant (citric acid,
at 2.66 ppm in the Descogen”™™ spectrum (Fig. 4.23a), and pentapotassium
bis(peroxymonosulphate) bis(sulphate), highly soluble in water) disappeared
completely after partial washing (15 min; Fig. 4.23b). However, minor un-
known components, such as those giving signals in the 8.2-7.3 and 1.3- 0.7
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ppm regions and the signal located at 3.2 ppm, appeared to be more persistent
even after intense water rinsing (30 min; Fig. 4.23c). They were completely
removed only after the washing procedure using ethanol (Fig. 4.23d). As
the perturbation induced by the disinfectant contamination of EBC samples
showed visible signals, two different contaminated sets of 12 EBC samples
from all COPD patients were examined after partial washing (15 min, "high
Descogen”™™"; Fig. 4.23b); and after intense water rinsing (30 min, "low
Descogen”™™"; Fig. 4.23c¢). Since the region 8.5-7.0 ppm was absent in the
"cleaned" EBC spectrum (Fig. 4.23d), as suggested by Carraro et al. [40],
the region 4.5 to 0.5 ppm was used and the lactate signals were excluded (Fig.
4.23d). Considering two PLS-DA components, a classification of ~72% was
obtained, with high-Descogen”™ and low- Descogen”™ EBC samples classi-
fied in two wide regions (Fig. 4.24). This suggests that the presence of the
disinfectant at variable concentration affects the interpretation and the sta-
tistical analysis of the samples. However, if the presence of contaminant is
ignored by a careful selection of the spectral regions to be used for statistical
analysis, it is possible to correctly classify the samples. In fact, by selecting
only the Descogen?™- free regions of the spectra (3.5-2.9 and 2.1-1.7 ppm),
all the samples could be correctly classified.
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Figure 4.24: Partial least squares discriminant analysis scores discrimination for contam-
inated exhaled breath condensate (EBC) samples after different washing times; o: high
Descogen”™ (15-min rinsing); e: low Descogen’™ (30-min rinsing). t[1] and t[2] are the
first two principal components.
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EBC spectral discrimination between HS, laryngec-
tomized and COPD patients

The 3.5-1.7 ppm region of clean (i.e. Descogen’ -free) EBC samples was used
to investigate the metabolites characterizing EBC. Figure 4.25 depicts repre-
sentative spectra of HS (Fig. 4.25a), laryngectomized patients (fig. 4.25b)
and COPD patients (Fig. 4.25¢).
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Figure 4.25: Representative !H-nuclear magnetic resonance spectra of contaminant-free
exhaled breath condensate samples from a) healthy subjects, b) laryngectomized patients
and c) chronic obstructive pulmonary disease patients. The acetate singlet at 1.93 ppm is
cut by a horizontal bar.

Although the region contains few signals, the signals specifically charac-
terize each patient subset, showing both quantitative (signal intensity) and
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qualitative (signal absence/ presence) differences. Differences in intensity
were shown by the signals of: acetate SCH3 (singlet) at 1.93 ppm; propi-
onate «CH2 at 2.19 ppm (quartet); pyruvate SCH3 (singlet) at 2.37 ppm;
succinate «, SCH2 (singlet) at 2.41 ppm; glutamine yCH2 (multiplet) at 2.45
ppm; choline and phosphorylcholine N-CHs, (singlets) at 3.16 and 3.23 ppm,
respectively; methanol CH3 at 3.37 ppm (singlet); and trimethylamine-N-
oxide (TMAO) N-CH; (singlet) at 3.44 ppm, as well as by the singlet at 3.03
ppm that most likely originated from N-CHj of creatine/creatinine. Pyru-
vate was present in the COPD spectrum (Fig. 4.25c¢) and was very intense
in the HS spectrum (Fig. 4.25a), but barely visible in the laryngectomized
spectrum (Fig. 4.25b). Succinate was small in the HS spectrum (Fig. 4.25a),
bigger in the laryngectomized spectrum (Fig. 4.25b) but absent in the COPD
spectrum (Fig. 4.25¢). Glutamine was only present in the HS spectrum (Fig.
4.25a). The singlet at 3.03 ppm was only present in the COPD spectrum (Fig.
4.25¢). Choline and phosphorylcholine were absent in the COPD spectrum
(Fig. 4.25¢), and TMAO was present in the HS spectrum (Fig. 4.25a), barely
seen in the laryngectomized spectrum (Fig. 4.25b) and absent in the COPD
spectrum (Fig. 4.25¢). All these differences prompted a clear discrimination
of HS, laryngectomized and COPD patients in three separate groups (Fig.
4.26).
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Figure 4.26: Partial least squares discriminant analysis (PLS-DA) scores discrimination
for contaminant-free exhaled breath condensate samples. B: healthy subjects; [J: laryn-
gectomized patients; o: chronic obstructive pulmonary disease patients. Two PLS-DA
components afforded a clear classification (~94%), with all samples correctly classified into
three regions. Vertical and horizontal bars refer to samples collected in duplicate. t[1] and
t[2] are the first two principal components.
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4.6 Discussion

The present study demonstrates, for the first time, that NMR based metabo-
nomics can be used to analyze EBC samples from adults, allowing a clear-cut
separation between HS and patients with airway disease.

Although less sensitive than ELISA and mass spectrometry, NMR requires
minimal sample preparation with a rapid acquisition time (~10-15 min). Fur-
thermore, it is nondestructive and allows complete detection of observable
metabolites ("sample metabolic fingerprint") at a reasonable cost.

The present data show that saliva is significantly different from the EBC
samples and that the presence of identical metabolites in EBC and saliva
does not hamper discrimination. By selecting the 3.5-0.8 ppm region (thereby
excluding the carbohydrate signals absent in EBC), saliva spectra clearly dif-
fer from EBC (Fig. 4.22), notwithstanding the presence of some common
metabolites (leucine, lactate, propionate, acetate, etc.). EBC standardizing
guidelines [32| indicate that it is reasonable to assume that there is some de-
gree of oral contamination of EBC, as saliva contains many of the mediators
that are also present in the lower airways. Contamination of EBC is often
proved by measuring the amylase level, but such a test is not specific and
a negative signal does not completely exclude minute contribution from the
mouth. To date, there are no data comparing the metabolic saliva composition
and a lower airway derivate such as EBC, mainly because condensate samples
have been screened for single, specific biomarkers and not as a whole. Indeed,
combined saliva and EBC analysis by a metabonomics method has been re-
cently advocated [116]. In light of these assumptions, the current authors also
examined EBC from laryngectomized patients, which may represent a true
saliva-free material from the lower airways, showing that in those subjects all
saliva spectra strictly differed from corresponding EBC samples. Importantly,
all EBC and saliva collected twice within the same day (12 h apart) showed
good within-day repeatability (Fig. 4.26). Taken together, the data suggest
that saliva contamination may play a minor role in the interpretation of EBC
by NMR-based metabonomics. The influence of external contaminants was
also considered, as the International Consensus on EBC recommends special
care in the disinfection of reusable parts of condensers [31]. Upon standard
cleaning, all EBC spectra presented signals corresponding to unknown inactive
substances of the disinfectant. They persisted even after strong and repeated
water soaking, and the presence of variable disinfectant concentration upon
different cleaning levels may render classification less effective. Complete re-
moval of the disinfectant signals was observed after washing the reusable parts
with 96% ethanol and then rinsing thoroughly with distilled water for 15 min.
EBC samples were "spiked" by partially washing the apparatus with water,
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after treatment with freshly prepared Descogen”? | obtaining different degrees
of EBC contamination. Since the citric acid signals were absent after partial
washing (Fig. 4.23b), it is important to underline that the potentially toxic
saline components of the disinfectant are easily removed from the condenser
apparatus by water washing. However, the removal of interfering residual
external contaminants is crucial for a correct EBC analysis. There are no
data on the influence of residual disinfectant agents of reusable parts of EBC
condensers. The influence of residual Descogen?™ on reported biomarker lev-
els was not evaluated by an ELISA method, but the present authors suggest
that the potential role of external contamination on the variability of some
biomarkers [119, 120] should be evaluated. Significantly, by selecting specific
regions of EBC spectra for statistical analysis, an efficient discrimination of
samples was obtained. Although separation between HS and COPD patients
can be achieved by either forced expiratory volume in one second measure-
ments or clinically, the current authors evaluated the capability of NMR-based
metabonomics to separate EBC subjects with airway diseases (COPD) from
subjects without respiratory diseases. Five NMR signals appear to differenti-
ate "respiratory”" (COPD) from "non-respiratory" (HS and laryngectomized)
subjects. As a comparison, Carraro et al. [40]| reported the single acetate
signal variation as distinctive in asthmatic children with respect to controls.
They hypothesized that acetate increase might be related to increased acety-
lation of pro-inflammatory proteins in the extracellular space in the airway
environment. Furthermore, they found that peaks in 3.2- 3.4 ppm regions
of the NMR spectrum of asthmatic children were probably related to oxi-
dised compounds. Heili-Frades et al. [121] have reported preliminary data
on significant variations between NMR, EBC spectra of normal and patholog-
ical cases with implications for correlative studies using spectral and clinical
classification.

In the present study, by comparing EBC from respiratory (COPD) pa-
tients and non-respiratory (HS and laryngectomized) subjects, as well as ac-
etate, four additional signal variations were found, which are likely to have
included the methoxy compounds. It can be speculated that such variations
could derive from the increased oxidative stress that is a hallmark of COPD,
and these variations are usually investigated in EBC by measuring a limited
number of markers [119, 120|. Also, the comparison between HS, laryngec-
tomized and COPD EBC samples showed a clear-cut difference (Fig. 4.25)
in the COPD patients compared with the other subjects. Figure 4.26 depicts
a significant statistical difference along t[1] of COPD patients compared with
HS and laryngectomized patients, who are less separated along t|2|. This
could be interpreted by the fact that laryngectomized patients were not la-
beled as COPD before or after surgery; furthermore, mild airflow limitation
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was detected in only a few subjects (data not shown).

In conclusion, NMR-based metabonomics can safely be applied to exhaled
breath condensate in adults, allowing an unambiguous definition irrespective
of natural and/or artificial contaminants. In particular, the current authors
report that nuclear magnetic resonance spectra of exhaled breath condensate,
collected with a device using a salivary trap, do not show the presence of saliva
signals. Furthermore, for the disinfectant medium currently used, a careful
selection of the nuclear magnetic resonance region allows a clear statistical
classification of samples, even for contaminated exhaled breath condensate
samples. Finally, the present results suggest that condensate can be efficiently
studied as a whole, and that nuclear magnetic resonance may become a leading
diagnostic technique in this field.
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This chapter is based on the paper: R. Romano, D. Paris, F. Acernese,
F. Barone, A. Motta. Fractional volume integration in two-dimensional NMR
spectra: CAKE, a Monte Carlo approach. J Magn Res 192 (2008) 294-301.

5.1 Simulation tests

In order to test the CAKE algorithm, we simulated peaks of different shape
and overlapping degree. First, we applied CAKE to simulated overlapping
peaks of known volume with different overlapping degrees to optimize the
number Npp,se to determine the fractional volume Vr with the Hit-or-Miss
method. Second, we tested CAKE integration on different elliptic NMR peak
sections.

5.1.1 Simulations: bias vs. overlapping

We considered two Gaussian peaks centered at (z;,;), of equation

(z— i)+ (y - yi)Q]

G(z,y) = Aiexp|— 5,2
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volume V; = 270? A; and with half-height width ¢; = \/202In2, i =1,2, and
addition of Gaussian noise. Denoting by

d=/(x1—22)2+ (Y1 — 12)? (5.2)
the distance between the peak centers, it is possible to define the parameter n
G+ G
= 5.3
! (53)

as an index of the overlap, such that a large value corresponds to strong
overlap. Setting the amplitude A; = 50.0 and the dispersion 207 = 2.0 to
obtain V; = 1007, the Ay and 202 values were changed so as to keep the
volume V5 constant (Vo = 1007), with the overlap index being 0.8 <n < 1.5.
The contour plots of the simulated peaks are reported in Figure 5.1and Figure
5.2 for n = 0.8 (peak 1), and n = 1.5 (peak 2).

Figure 5.1: 3D Gaussian peaks with different degree of overlap (n): a) n = 0.8 and b)
n=1.5.

CAKE integration was compared with the standard one, obtained by sum-
ming the amplitudes of all data points within a polygonal bounding the peak.
In order to establish the best number of extractions Np in the Hit-or-Miss de-
termination of R, and the best number of extractions Np, _ in the Hit-or-Miss
determination of the fractional volume, simulations were conducted in the ex-
treme limit of n = 1.5.(Figure 5.2, peak 2). Figure 5.3 reports the percentage
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Figure 5.2: Contour plot of two Gaussian peaks with different degree of overlap (n): peak
1, 7 = 0.8 and peak 2, n = 1.5. For the definition of 1 see text. d is the distance between
peak centers.
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Figure 5.3: Percentage (%) of Bias as a function of the number of extractions (Np) to
estimate the R factor. For each Np we tested several Np, . values to estimate the volume
fraction, and they are indicated with corresponding symbols on the right.
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of Bias vs. the number of extractions Np, for different Np__ values ranging
from 100 to 1000 (right column in Figure 5.3). As it can be seen, results be-
come unbiased for Np > 1500, while, except for Np, = 100 (square symbol),
the dependence on Np, _ is negligible. Accordingly, the values Np = 2000,
and Np, . = 500 appear to be a good compromise between computing time
and accuracy. The results of the simulations are reported as percentage of
Bias vs. the degree of overlap for a signal-to-noise ratio (SNR) of 34.943.0
(Figure 5.4A) and 56.1+4.7 (Figure 5.4B). The standard integration (filled
squares) was carried out by bounding the peak with an ellipse, while for the
CAKE integration (filled circles) we used Np = 2000, and Np, . = 500. In
both cases, each integration was repeated 10 times.

A
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10} '
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Figure 5.4: Simulation results expressed as percentage of Bias in volume estimation vs.
the degree of overlap (7). Integration was achieved with the standard (M) and the CAKE
() methods at different signal-to-noise ratios. (A) SNR = 34.943.0; (B) SNR = 56.1+4.7.
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In Figure 5.4A (SNR = 34.943.0), the standard method gives unbiased
integration values only for low overlap index n < 0.9. (Figure 5.2, peak 1), to
become totally biased for n > 1.0. In contrast, CAKE always performs better,
especially in the range 1.0 < n < 1.3, which represents different degree of over-
lap commonly found in 2D spectra. Overall, the fractional method appears to
be unbiased in the whole 0.8 < n < 1.5 range, that is for strongly overlapping
peaks and in the presence of a low signal-to-noise ratio (SNR = 34.9+3.0).
Figure 5.4B reports the same simulations with a SNR = 56.1£4.7. The stan-
dard method performs well for n < 0.9, with a general trend very similar to
that observed for lower SNR (Figure 5.4A). In contrast, the fractional method
shows a general reduction of the bias percentage, with values generally lower
than those obtained in the previous simulation. Taken together our results
suggest that, regardless of the SNR, the CAKE method performs always better
than the standard one.

5.1.2 Simulations: bias vs. eccentriciy

Since experimental 2D-peak shapes are close to elliptic, we tested CAKE on
a simulated ellipse of known volume. In particular, we considered peaks of

equation
2 Aw? Aw?

0-17;0-21') eXp (_ 20%2 ) eXp ( 20_%

Si(wr,wa) = Aq(

) (5.4)

)

volume V; = A; and contour of eccentricity

. \/1_M 5.5

max(oy;, 09;)

with addition of Gaussian noise. Integration was carried out in two ways. The
fractional area was firstly selected randomly (i.e. avoiding any symmetry),
and, secondly, symmetrically with respect to any of the semiaxes of the elliptic
peak. The random choise (Figure 5.5A) produced a scattered bias distribution
between 0 and 20% for 0.8 < e < 0.74, with a maximum of 25% for e = 0.78.
For 0.8 < e < 0.9, which corresponds to a ratio between semiaxes in the
range of 0.45 < b/a < 0.60, the average bias is 5%. This result appears to
be relevant as the b/a value corresponds to the experimental elliptic shapes
usually found in 2D spectra.

The symmetry selection of the fractional area (Figure 5.5B) shows a bias
<10% for all eccentricity values, with the maximum at ¢ = 0.78 reduced to
12%. For 0.8 < e < 0.9 the average bias is very similar to that found for the
random selection (Figure 5.5A).

In conclusion, it is suggested that, for elliptical peaks, slicing should be done
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symmetrically with respect to one of the semiaxes, even though for 0.8 <
e < 0.9, that is for most of the experimental 2D peaks, the bias is essentially
indipendent from the selection.

£
g .
o
m 5 T
|
| m o "
0- [
-5 1
-10 T r T . T T T T T T T
0.0 0.2 04 0.6 0.8 1.0
Eccentricity (e)
30
25 B
20

Bias (%)
(6]
1
u
|
-
. y

0.0 0.2 04 0.6 0.8 1.0

Eccentricity (e)

Figure 5.5: CAKE integration of simulated elliptic peaks expressed as percentage of Bias
in volume estimation vs. Contour eccentricity (e). In (A) the fractional area was chosen
in a non symmetric way with respect to the semimajor and the semiminor axes of the
elliptic peak. In (B) the fractional area was chosen in a symmetric way with respect to the
semimajor and semiminor axes of the elliptic peak. In both cases the SNR = 69.5+3.2.



5.2. Experimental test 79

5.2 Experimental test

To test the efficacy of the new integration method, after simulations, CAKE
was applied to 2D-NMR spectra of a sample containing two tripeptides in
known concentrations; we compared peak volume estimations obtained by
CAKE with those obtained by standard integrations.

5.2.1 NMR data collection

The sample, a mixture of the tripeptides Ala-Phe-Ala (AFA) and pyroGlu-His-
Pro (thyrotropin-releasing hormone, TRH), was prepared by dissolving appro-
priate amounts in 0.5 ml of ' H,O/2H,0O (90/10 v/v) to yield for each peptide
a concentration of 0.10 mM. 'H—NMR spectra, recorded at 295 K and pH
7.4, were acquired on a Bruker DRX-600 spectrometer operating at 600 MHz,
equipped with a TCI cryoprobe’™ fitted with a gradient along the Z-axis.
Spectra were referenced to sodium 3-(trimethylsilyl)-[2,2,3,3-2H 4|propionate.
Homonuclear 2D clean TOCSY spectra [122] were recorded by standard tech-
niques and incorporating the excitation sculpting sequence [95] for water sup-
pression. We used a pulsed-field gradient double echo with a soft square pulse
of 4 ms at the water resonance frequency, with the gradient pulses of 1 ms each.
512 equally spaced evolution time-period t; values were acquired, averaging 4
transients of 2048 points, with 6024 Hz of spectral width. Time-domain data
matrices were all zero-filled to 4096 in both dimensions, yielding a digital res-
olution of 2.94 Hz/pt. Prior to Fourier transformation, time-domain filtering
was applied with a Lorentz-Gauss window to both ¢; and ¢, dimensions. The
TOCSY experiment was recorded with a spin-lock period of 64 ms, achieved
with the MLEV-17 pulse sequence [98].

5.2.2 Software

NMR data processing and baseline correction were obtained with the program
XWINNMR (Bruker, Biospin GmbH, Ettlingen, 2003). Standard peak inte-
gration was carried out with the programs XWINNMR and MestRe-C [123],
in which integrated volumes are computed as the sum of all digital intensities
within a rectangular box and a tunable ellipse bounding a peak, respectively.
CAKE software was written in MATLAB language and was implemented in
the graphical environment of MATLAB 7.1.
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5.2.3 Experimental Results

The power of the CAKE approach was tested on a TOCSY spectrum of a
mixture of two tripeptides, AFA and TRH (Figure 5.6).
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Figure 5.6: (a)TOCSY spectrum of the AFA and THR tripeptides aliphatic region, ac-
quired at 300K with 64 msec mixing time. Expansions (b) and (c) report peaks originating
from yC'H, protons of the TRH pyroGlu [labeled 1 in (b)], and o and 8 protons of AFA
Phe? [labeled 2 in (¢)], and TRH His? [labeled 3 in (c)].

In order to have an internal reference we selected pairs of peaks, each of
them stemming from a single spin system, such that they have similar inten-
sity within each pair but one peak overlaps with others. In particular we chose
pairs that exemplify the correlations between the yC'Hy (labeled 1 in Figure
5.6b), and between o and 3 protons of AFA Phe?® (labeled 2 in Figure 5.6a),
and TRH His? labeled 3 in Figure 5.6a). The magnitude of a given TOCSY
peak [governed by mixing coefficients a;(7,,) for transfer of magnetization
through the spin system from spin /; to spin I;| depends on the topology of
the spin system, the coupling constants between pairs of spins, the efficiency
of the isotropic mixing sequence employed, and the relaxation rate during the
mixing pulse. Although the robustness of the integration method does not de-
pend upon the experiment type or the intensity of the chosen peak, we looked
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for pairs in which the peaks are expected to have similar intensity but one
of them overlaps with others. Accordingly, we selected the AMX spin system
of the two aromatic residues (Figure 5.6a) in AFA and TRH. From relax-
ation measurements (not shown) at two different spectrometer frequencies,
we estimated for both peptides similar correlation times and relaxation rates;
furthermore, the measured 3.J,5 and 3Ja5’ values in each spin system were
identical, therefore excluding differences in the peak intensity due to different
coupling constants; finally, the single 2JW/ value for the vC'H, protons of the
T RHpyroGlu warrants a similar intensity for the two peaks within each pair.

The selected peaks were integrated with standard and with CAKE meth-
ods and the results are reported in Figure 5.6¢ as the Difference percentage of
volume for each cross-peak pair. For the CAKE integration we selected the
most internal level belonging to a single peak, which had elliptical symmetry
with eccentricity e > 0.75. The values obtained with CAKE for the three
peak pairs are all within 10%, giving an unbiased estimation of the difference
percentage of the volumes in each pair. In contrast, the standard method
estimates for each peak pair values > 35% for pairs 1 and 2, and ~ 25% for
pair 3. Surprisingly, the CAKE approach gives for the pair 1, which lies on
the TOCSY diagonal, about zero volume difference, supporting robustness for
the method, also in the presence of elliptical symmetry.

5.2.4 Bias wvs. digital resolution

The dependence of CAKE on digital resolution was investigated by integrating
the peak pair 2 (Fig. 5.6¢) at different digital resolution (0.5, 1.1, 2.2, 4.3 and
8.6 Hz/pt), and integration was carried out for each value with standard and
CAKE methods (Fig. 5.7). The volume of pair 2 overlapping peak (located
at wy =4.75 ppm and ws =3:05 ppm, Fig. 5.6¢) was compared to the volume
of the corresponding single peak at w; =4.75 ppm and ws =3:05 ppm at its
maximum digital resolution, taken as reference. The values obtained with
CAKE are all within 2%, giving an unbiased estimation of the % Difference
up to 8.6 Hz/pt. On the contrary, the standard method estimates values
>10% already at 2.2 Hz/pt to become ~ 25% at 8.6 Hz/pt. This finding
can be explained by considering that a low resolution drastically reduces the
number of points within an area identified by the i-th level, which, in turn, is
itself poorly defined. Therefore, the sum of points done by standard methods
is obviously biased. On the contrary, the Hit-or-Miss technique used in CAKE
does not sum the existing points included in a level bound area, but generates
random points and counts the number of "hits" (or points) that are included
in the unknown area. Since a cubic interpolation (see Chapter 2) is used as a
decisional mean to establish if the extracted point can be considered a "hit",
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a low digital resolution could, in principle, affect the peak profile. However,
with CAKE we were able to correctly integrate peaks with digital resolution
up to ca. 30 Hz/pt.
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Figure 5.7: Difference percentage (%) of volume determination at different resolution for
cross-peak 2, as labeled in Fig.5.6. The digital resolution was ca. 0.5, 1.1, 2.2, 4.3 and 8.6
Hz/pt. Filled squares and circles refer to the standard and CAKE integration methods,
respectively.

5.3 Discussion

Quantification of NMR, spectra is fundamental both in metabolomics/
metabonomics and in the structure determination of biomolecules. However,
quantification of peaks is often hampered by the degeneracy of the NMR res-
onance frequency, a factor that aggravates with the increasing size of macro-
molecules and the number of metabolites. Here we have presented the CAKE
approach that uses the symmetry of a single in-phase peak (a peak with a
unique center corresponding to its maximum) to calculate its volume. It is ob-
tained by multiplying the fractional volume by the R factor, a proportionality
ratio between the total and the fractional volume, both evaluated with Monte
Carlo techniques. Therefore, the peak volume can be estimated by integrating
a known fraction of the peak, and the fractional volume can be chosen so as
to minimize the effect of overlap in complex NMR spectra. Strictly speaking
CAKE applies to Gaussian peaks showing cylindrical or elliptic symmetry.
However, an NMR spectrum is closely approximated by Lorentzian functions,
which in its 2D shape show the so-called "star effect". It can be easily removed
by 2D Lorentz-to-Gauss transformation, which is routinely used for in-phase
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experiments, like TOCSY and NOESY. Therefore, the major assumption in
this study is that the Lorentzian signal is converted into a Gaussian line by a
Lorentz-to-Gauss transformation, which is routinely applied in 2D data ma-
nipulation. Integration of simulated and experimental 2D in-phase peaks with
different degree of overlap shows that CAKE works well even for strongly over-
lapping peaks. The main advantage of CAKE is its simplicity as difficulties
in its use are comparable to those presented by methods that sum all data
points in a defined area. In fact, the user only has to select a peak slice not
overlapping with other peaks therefore avoiding the guess of the total contour
shape of the peak. Furthermore, CAKE does not require any time-consuming
fitting of the peaks to functional forms, and therefore it can be easily incorpo-
rated as a subroutine in any NMR processing software. Tests on tripeptides
have shown that CAKE is a powerful method for volume integration. The
substantial independence of CAKE on digital resolution and SNR warrants
that it can be safely used for peak integration in three-dimensional spectra.
Because of its inherent simplicity the software can be extended to automated
integration of three- and possibly higher-dimensionality NMR spectra.
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This chapter is based on the paper: A. Motta, D. Paris, G. Andreotti, D.
Melck. Monitoring real-time metabolism of living cells by fast two-dimensional
NMR spectroscopy. Submitted to Analitical Chemistry.

6.1 Materials and methods

6.1.1 Cell culturing

Axenic cultures of T'. rotula cells were prepared as described in Miralto and co-
workers protocols [124]. Briefly, diatoms were grown in Guillard’s (F/2) Ma-
rine Enrichment Basal Salt Mixture Powder medium, containing standard and
different salinities (20, 35 and 45 %) and unlabeled or »N-labeled NaNOj,
on a 12 h light /12 h dark cycle, and a light intensity of 20.9 J mol~' pym=2s!,
Cells were kept in a 10 L carboy for 1 week and then harvested in the early
stationary phase by centrifugation at 1200g in a swing-out rotor. Prior to ex-
traction, diatom cultures were allowed to settle overnight and the supernatant
was gently removed by suction with a water pump.
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6.1.2 Extracts manipulation

Combined extraction of polar and lipophilic metabolites from unlabeled and
®N-labeled diatoms cells was carried out by using the methanol/chloroform
procedure [92| Pelleted cells were resuspended in methanol (4 ml/g pellet)-
water (0.85 ml/g pellet), and sonicated for 2 min. Then 4 ml/g pellet of
chloroform were added and the homogenate was gently stirred and mixed on
ice for 10 min using an orbital shaker (the solution must be mono-phasic).
Other 4 ml/g pellet of chloroform and 4 ml/g pellet of water were then added,
and the final mixture was shaken well and centrifuged at 12000g for 15 min at
4 °C. This procedure separates a water/methanol phase at the top (aqueous
phase, with the polar metabolites), a phase of denatured proteins and cellular
debris in the middle, and a chloroform phase at the bottom (lipid phase,
with lipophilic compounds). The upper layer of each sample was transferred
into glass vials, and, after solvent removal under a stream of dry nitrogen,
was stored at -80 °C until required. For 1D and 2D NMR experiments the
polar extracts were resuspended in 700 ul HoO-DyO (90%-10%), and then
transferred into an NMR tube.

6.1.3 Gel electrophoresis for protein detection

To eventually exclude the detections of small proteins from the SOFAST-
HMQC in wvivo spectra acquisition of T. rotula, we performed SDS-PAGE
electrophoresis. SDS-PAGE on slab gel containing 12 and 15% acrylamide, in
order to reach the lower limit of 3 kDa, was performed by using the standard
procedure (12). Proteins were located on the gels using Comassie Brillant Blue
staining. For 12% acrylamide we used Phosphorylase b (97.4 kDa), bovine
serum albumine (66.2 kDa), ovalbumin (45.0 kDa), carbonic anhydrase (31.0
kDa), trypsin inhibitor (21.5, kDa), and lysozyme (14.4 kDa), all from BIO-
RAD. For 15% acrylamide we used chymotrypsinogen A (24 kDa), cytochrome
¢ (13 kDa), bovine pancreatic tripsin inhibitor (BPTI, 6.6 kDa), insulin B-
chain (3.5 kDa), all from Sigma. Size-exclusion chromatography was carried
out at room temperature, using a 1.5 x 50 cm Sephadex G-50 Fine column and
a flow rate of 0.2 ml/min. Separate chromatography experiments of standard
amino acids were performed in 50 mM sodium phosphate, at pH 6.7, using
a 55 uM peptide concentration. Salmon calcitonin (3.4 kDa), bacitracin (1.4
kDa), standard amino acids all from Sigma, and sodium 3-(trimethylsilyl)-
(2,2,3,3-H,)propionate (TSP, 172 Da), from Aldrich, were used as molecular
mass standards.



6.1. Materials and methods 87

6.1.4 NMR experiments

All NMR experiments were carried out on a Bruker DRX-600 spectrometer,
equipped with a TCI CryoProbe™ fitted with a gradient along the Z-axis.

T. rotula 'H and TOCSY spectra

'H-NMR spectra were recorded at 600 MHz and were referenced to internal
TSP. Clean total correlation spectroscopy (TOCSY)|[97| spectra of cells and
extracts were recorded by using the time-proportional phase incrementation
of the first pulse, and incorporating the excitation sculpting sequence [95] for
water suppression. We used a double-pulsed field gradient echo, with a soft
square pulse of 4 ms at the water resonance frequency, with the gradient pulses
of 1 ms each in duration. In general, 256 equally spaced evolution-time period
t1 values were acquired, averaging 2 (for diatoms) and 8 (for extracts) tran-
sients of 2048 points, with 6024 Hz of spectral width. Time-domain data ma-
trices were all zero-filled to 4K in both dimensions, applying, prior to Fourier
transformation, a Lorentz-Gauss window with different parameters for both
t1 and to dimensions in all the experiments.

T. rotula 'H-’N SO-FAST-HMQC parameters set-up

The 'H-"N SOFAST-HMQC pulse sequence follows the scheme proposed by
Shanda and co-workers |2| (Figure 6.1). First, 'H pulses are applied band-
selectively |77); second, the first 'H pulse has an adjustable flip angle « that
allows further optimization of the sensitivity of the experiment for a chosen
(short) scan time [78]. In practice, the flip angle is chosen to ensure that part
of the proton magnetization is restored along the z-axis by the following 180°
pulse; third, the small number of radio-frequency pulses reduces signal loss
due to pulse imperfections and B; field inhomogeneities, and limits the effects
of sample and probe heating. We used polychromatic PC9 pulse shape for
adjustable flip-angle band-selective excitation [125] which yields quite uniform
excitation over the desired bandwidth for flip angles in the range 0° < a <
130°. As a refocusing pulse on the 'H channel we tested the r-SNOB [82] and
RE-BURP |[83] profiles. Because of a signal increase of ca. 35%, we used RE-
BURP instead of r-SNOB, confirming the finding of Schanda et al. for proteins
[3]. The acquisition parameters were as follows: a—120°, A(1/2JHX) — 6.7-
5.4 ms, 6= 1.8 ms, t7"**=20 ms, t5'**=40 ms, and t,=1 ms. Forty complex
data points were acquired in the t; dimension, adding 4 dummy scans (n =
80 + 4). The band-selective 'H excitation (PC9, 3.0 ms) and refocusing (RE-
BURP, 2.03 ms) pulses were centered at 8.0 ppm covering 4.0 ppm.
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Figure 6.1: SOFAST-HMQC experiment to record 'H-X (X=!N or !3C) correlation
spectra of proteins. Filled and open pulse symbols indicate 90° and 180° rf pulses, except for
the first ! H excitation pulse applied with flip angle o.. As described in the next section, the
variable flip-angle pulse has a polychromatic PC9 shape, and band-selective ' H refocusing
is realized using an r-SNOB profile. The transfer delay A is set to 1/(2Jgx), the delay
0 accounts for spin evolution during the PC9 pulse, and t,.. is the recycle delay between
scans.

15N was decoupled with GARP-4 [126], with a 90° pulse length of 600 us. N
chemical shifts are relative to external ’NH,;NO3 (5 M in 2 M HNO3).

6.2 Results

In the cell, metabolites experience a viscosity of ca. 2-3 times that of water
[127, 128] and interact with other components. As such, restriction of the ro-
tational freedom may be predicted [127|. However, their low molecular weight
is likely to counterbalance the viscosity effect, and an increase of the average
effective T of in-cell metabolites can be expected. Therefore, a balance of
intrinsic and extrinsic properties will affect metabolite relaxation. We firstly
checked if high viscosity is a prerequisite for application of SOFAST-HMQC
to low-molecular weight metabolites by using a sample of *N-labeled Leu (5
mM, pH 1.4, 300 K) in the presence of SDS, with a viscosity of 9 relative to
water (0.894 cP). The results of the application of the SOFAST pulse sequence
to such a sample are reported in Figure 6.2A, in which a 'H-'5N correlation
peak, centered at 8.01 and 172 ppm, is observed.

The influence of the viscosity on the volume of the cross-peak in Figure 6.2A
was investigated by lowering the SDS concentration, and therefore the rela-
tive viscosity from 9 to 1 (no SDS). In the 9-3 range we observed that the
cross-peak volume remained constant, to significantly decrease upon a reduc-
tion of the relative viscosity from 3 to 1 (Figure 6.2B). We estimated that
in the absence of SDS (relative viscosity of 1) the cross-peak volume halves.
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Figure 6.2: (A) 'H-'>N SOFAST-HMQC spectrum of °N-labeled Leu (5 mM, pH 1.4,
300 K) in the presence of SDS, with an acquisition time of 14 s. The A(1/2JHX) value
was set to 6.7 ms since Jyx = 74.6 Hz; for the remaining acquisition parameters see the
Materials and Methods Section. (B) Dependence of the cross-peak volume on the viscosity
of the medium, relative to water.

Therefore, for a molecule as small as Leu (MW 132.17 Da), a viscosity of
ca. 3 times that of water, corresponding to the viscosity inside a living cell
[127], maximizes the intensity of the 'H-1°N SOFAST-HMQC peak. However,
the efficient 'H-'"N dipolar interaction is also important, since a well-defined
cross peak, although with an intensity 1/2 of the maximum, is observed in
the experiment without SDS.

6.2.1 T. rotula 'H and TOCSY spectra

Due to intracellular viscosity, a molecule in a cellular environment displays
broad NMR line widths as a consequence of the reduced tumbling rate, and
overlapped, poor quality spectra are the likely result. In our case, a further
complication comes from the presence of high salt concentration in the sea
water culture medium, used to suspend the cells in the NMR tube. The final
result is that the 1D spectrum obtained for a °N-labeled T. rotula sample
containing ca. 50-million cells will show an unresolved "bumpy" distribution
of the resonances, as shown in Figure 6.3.

In order to better resolve signals from T. rotula, we acquired 'H (Figure
6.4) and TOCSY spectra (Figure 6.5) of T rotula polar extracts (see Materials
and Methods Section).
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Figure 6.3: 'H spectrum of in vivo N-labeled T.rotula (50x10° cells).
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Figure 6.4: 'H spectrum of *N-labeled T.rotula polar extracts (400x10° cells).
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Figure 6.5: TOCSY spectrum of ®N-labeled T.rotula polar extracts (400x10° cells).

6.2.2 T. rotula 'H-'"N SOFAST-HMQC spectra

The 'H-'N SOFAST-HMQC correlation spectrum of a 50-million 7" rotula
cells is reported in Figure 6.6: it was directly acquired in the culture medium
in an overall experimental time of 12 s.
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Figure 6.6: 'H-'°N correlation spectrum (central part) of a sample of 50-million ®N-
labeled diatom cells (in sea water culture medium, 300 K) recorded in 12 s. 1D traces
correspond to the proton spectrum (top), and (left) to a column extracted along the °N
dimension at the 'H frequency indicated by the dashed vertical line in the 2D spectrum.
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In such a short acquisition time, the NMR experiment certainly does not kill
the cells, and in fact the number of colony-forming units/OD is the same
before and after the 12-s SOFAST-HMQC experiment (data not shown). Fur-
thermore, compared with 1D, the 2D experiment presents a higher S/N, as
it can be appreciated from the trace on the left side of Figure 6.6, extracted
along the "N dimension (vertical broken line in Figure 6.6).

The robustness of in-cell SOFAST NMR spectroscopy was investigated by
controlling several aspects [86]. Firstly, because of the high S/N ratio, we
reduced the number of cells from 50 millions down to 10 millions, which, as
shown in all the experiments below, appear to be sufficient for fast acquisition
and high S/N spectra. Figure 6.7A reports the '"H-'SN SOFAST-HMQC spec-
trum of a 10-million cells sample of >N-labeled T. rotula, taken directly in the
culture medium. It reproduces the spectral pattern of the more concentrated
sample of Figure 6.6, and shows a high S/N ratio with well resolved reso-
nances. Secondly, when dealing with living cells it is important to consider
that molecules outside the cell tumble faster and, therefore, exhibit sharper
lines than internal metabolites in a more viscous environment. Consequently,
a small fraction of extracellular molecules could contribute disproportionately
to, or even dominate, the spectrum. This was investigated after removal of
the cells from the sample by centrifugation and filtration, and analyzing the
supernatant. It contained no detectable extracellular metabolites as its cor-
responding SOFAST-HSQC spectrum, acquired with the same parameters as
the in-vivo spectrum 6.7A, showed no signals (Figure 6.7B), therefore ruling
out any interference from the extracellular metabolites in Figure 6.7A. This
was confirmed by the following step. The pellet separated from the super-
natant was resuspended in fresh standard culture medium giving a spectrum
(Figure 6.7C) identical to that observed when in vivo (spectrum 6.7A). It is
concluded that the cross-peaks we observed in the SOFAST-HSQC experi-
ments of Figures 6.6 and 6.7A stem from molecules within the cell, and that
the amount of the released molecules, if present, are beyond detection.
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Figure 6.7: 'H-'>N SOFAST-HMQC spectrum of ®N-labeled T. rotula in varying condi-
tions: (A) in vivo spectrum of 10-million cells directly in the culture medium acquired in
12 s; (B) supernatant of the sample used in (A) after removal of all cells by centrifugation
and filtration (vertical scale x 8); (C) pellet after resuspension in fresh culture medium;
(D) polar extract obtained with the methanol/chloroform protocol to remove proteins (see
text). Peaks are labeled with the single-letter code for amino acids; the asterisk marks a
yet unidentified peak.

6.2.3 Gel electrophoresis results

When investigating intracellular 1’ N-labeled metabolites in vivo by NMR, care
must be taken to avoid detection of resonances originating from low-molecular
weight proteins within the cell, which might become labeled because of the un-
specific labeling process. This was examined by analyzing the polar extracts
of the diatom cells by using the methanol/chloroform protocol. The used pro-
cedure separates the polar metabolites in the water/methanol phase at the
top, a phase of denatured proteins and cellular debris in the middle, and a
chloroform phase at the bottom, with lipophilic compounds [92]. As a proof to
rule out the presence of signals originating from polypeptides/proteins in the
above SOFAST-HSQC spectra, we carried out SDS-PAGE gels of the polar
extracts obtained from 10- and 50-million cells. Figure 6.8 reports a 12%-
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acrylamide gel (6.8A), and a 15% acrylamide gel (6.8B). In both, the absence
of bands in lanes 1 and 2 (reporting 10-million cell extract ran in duplicate)
and lanes 3 and 4 (50-million cell extract ran in duplicate) confirmed the total
absence of polypeptides/proteins down to a molecular weight of 3 kDa.
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Figure 6.8: SDS polyacrylamide gel electrophoresis of *?N-labeled T. rotula polar extracts:
(A) 12% acrylamide, and (B) 15% acrylamide. In both, Lane S reports prestained protein
standards with molecular weight indicated on the left side; lanes 1 and 2, 10-million cells
ran in duplicate; lanes 3 and 4, 50-million cells ran in duplicate. Comassie Brillant Blue
staining was used to visualize proteins.

For lower molecular weight we resorted to size-exclusion chromatography un-
der the experimental conditions used for NMR analysis. At pH 6.7, all the
molecules present in the polar extract eluted with an apparent molecular mass
comparable to that of TSP (172 Da). The experiments described above con-
firm that the cross-peaks we observed are associated with metabolites within
the cells, and that the presence of polypeptides/proteins in the spectra can
be safely excluded. The SOFAST-HMQC spectrum of the polar extract (Fig-
ure 6.7D) well compares with the in vivo (6.7A) and the resuspended pellet
(6.7C) data, showing only small differences in chemical shift, possibly reflect-
ing differences in salt composition of the in-vitro NMR buffer and the cyto-
plasm. Identification of the cross-peaks was achieved upon a careful titration
of the solution with standard amino acids, and the signals are labeled with
the one-letter code in spectra 6.7A and 6.7D. It is important to notice that
the spectral position of free amino acids corresponds to that observed within
the cell, and a similar behavior is observed for proteins inside and outside the
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cell |86]. However, as for proteins, the great advantage of the observation of
in-cell metabolites by fast NMR spectroscopy does not lie in the structural
investigation, but on the possibility to examine the behavior of metabolites
directly in the cellular compartments, and follow their fate upon a change of
the physiological state of the cell as well as in the possible interaction with
unlabeled /labeled proteins.

6.3 Discussion

Our simple application had shown that 2D 'H-5N correlation spectra of ®N-
labeled metabolites can be recorded in living cells in only 10-15 s of data
acquisition using the SOFAST-HMQC sequence that provides high sensitiv-
ity. To the best of our knowledge, this is the first time that high-quality 2D
correlation spectra of metabolites have been directly recorded in living cells
on a time scale of seconds of experimental time and high S/N. Obviously,
these are preliminary results and more experimental investigations are needed
to explore the potentiality of SOFAST experiments for metabolic detection
purpose since, in the future, it is desirable to extend the investigation to eu-
karyotic cell systems. Potential applications include in-cell investigation under
physiological or stressing conditions, high-throughput characterization of cell
lines by NMR, testing potential drugs by fast measures of in-cell metabolic
changes, as well as investigation of the primary nitrogen metabolism in plant
cells.






Conclusions

The results here presented confirm that high resolution NMR, spectroscopy is
particularly suited for biomarkers discovery. We applied recent NMR avances
and developed new tools in order to improve analysis of biological samples for
biomarkers characterization in metabolomic strategies.

Application of NMR spectroscopy, coupled with pattern recognition meth-
ods, to two biological issues is reported: a) the progressive liver alterations
during tumorigenesis and b) the exhaled breath condensate of patients with
airway diseases.

In our first application, we investigated the metabolite composition of
human hepatic tissue extracts of 17 patients affected by hepatocellular carci-
noma HCV-related (HCC), and 9 patients affected by liver metastases from
colorectal carcinoma (MET-CRC); as a control, we used cirrhotic liver tissues
of HCC patients (CIR) and normal liver tissue of MET-CRC patients (NT),
respectively. PCA, together with OPLS-DA analysis, allowed spectral classes
clustering and classification. All spectra were visualized by scores and loadings
plots, which also highlighted the "evolution" and relationship of the different
pathological liver conditions represented by the four NMR data classes. The
disease evolution clearly followed the increase of the lactate together with the
remarkable decrease of the glucose signal, thus suggesting that such a signal
pattern may act as a potential marker for assessing pathological hepatic le-
sions. In particular, we identified a statistical model that could be used to
distinguish hepatic metastasis and human hepatocarcinoma from a "normal"
(healthy) hepatic tissue. The progressive increase of lactate/glucose ratio,
within the hepatic tissues, is consistent with the enhanced conversion of glu-
cose into lactate, through the different classes that represent different tissue
conditions such as hypoxia and/or "aerobic glycolisis". Although this trend
is generally known, as considered the result of oncogenic alteration in glucose
metabolism following malignant transformation, we reported a further infor-
mation which is the extreme lactate/glucose conversion showed by MET-CRC,
compared with all of the others tissue samples under investigation. Indeed,
metastasis formation is the result of a multi-step cascade of events occurring
to cancer cells during tumor dissemination, which brings about considerable
metabolic changes. The large increase in lactate concentration as well as the
decrease of intracellular glucose level was the predominant effect for the sep-
aration of metastases from HCC and NT, and the lactate/glucose ratio in
MET-CRC ranges from 9 to 40 fold higher compared to HCC and NT, re-
spectively, thus suggesting a role for the enhanced phenomenon of "aerobic
glycolysis".



98

A further application was addressed to investigate the 'H-NMR metabolite
profile of exhaled breath condensate (EBC) of patients with different airway
diseases. EBC, obtained by cooling exhaled air from spontaneous breath-
ing, is a simple, noninvasive and useful tool to study the biochemical and
inflammatory molecules in the airway lining fluid. Thirtysix paired EBC and
saliva samples, obtained from healthy subjects, laryngectomized patients and
chronic obstructive pulmonary disease (COPD) patients, were analyzed ap-
plying 'H-NMR spectroscopy followed by principal component analysis. Our
aim was to assess the role of pre-analytical variables (saliva and disinfectant
contamination), potentially influencing EBC, to evaluate the stability and re-
producibility of samples and to discriminate healthy subjects from patients
with airway disease. The results show that saliva metabolic profile is sig-
nificantly different from the EBC samples and that the presence of identical
metabolites in EBC and saliva does not hamper discrimination. Excluding the
carbohydrate signals (absent in EBC), saliva spectra clearly differ from EBC,
notwithstanding the presence of some common metabolites (leucine, lactate,
propionate, acetate, etc.). Furthermore, by examining EBC from laryngec-
tomized patients, which may represent a true saliva-free material from the
lower airways, we found that in those subjects all saliva spectra strictly differed
from corresponding EBC samples. Importantly, all EBC and saliva collected
twice within the same day (12 h apart) showed good within-day repeatability.
Finally, we could state that saliva contamination may play a minor role in
the interpretation of EBC by NMR-based metabonomics. Furthermore, we
considered the influence of external contaminants, as the International Con-
sensus on EBC recommends special care in the disinfection of reusable parts of
condensers. Upon standard cleaning, all EBC spectra presented signals corre-
sponding to unknown inactive substances of the disinfectant, that completely
disappeared only after washing the reusable parts with 96% ethanol. Af-
terwards, by selecting specific non-contaminated regions of EBC spectra for
statistical analysis, an efficient discrimination of EBC subjects with airway
diseases (COPD) from subjects without respiratory diseases, was obtained.
Some NMR signals appear to differentiate "respiratory" (COPD) from "non-
respiratory” (HS and laryngectomized) subjects, by showing both quantitative
(signal intensity) and qualitative (signal absence/presence) differences; among
all pyruvate, succinate, glutamine, TMAO, choline and phosphorylcholine.

As a further enhanced tool for high thoughput NMR analysis, we devel-
oped a new integration method for 2D NMR spectra quantification, which
is fundamental both in metabonomics and in the structure determination of
biomolecules. Quantitative information from multidimensional NMR, exper-
iments can be obtained by peak volume integration. However, the standard
procedure of selecting a region around the chosen peak and addition of all
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values is often biased by poor peak definition and/or the degeneracy of the
NMR resonance frequency, a factor that aggravates with the increasing size
of macromolecules and the number of metabolites. In this thesis, we devel-
oped and tested a simple method, called CAKE, for volume integration of
moderately-to-strongly overlapping peaks, using the Monte Carlo Hit-or-Miss
techniques, relying upon the peak line shapes in two-dimensional NMR. The
CAKE approach uses the symmetry of a single in-phase peak (a peak with
a unique center corresponding to its maximum) to calculate its volume. It
is obtained by multiplying the fractional volume by the R factor, a propor-
tionality ratio between the total and the fractional volume, both evaluated
with Monte Carlo techniques. Therefore, the peak volume can be estimated
by integrating a known fraction of the peak, and the fractional volume can be
chosen so as to minimize the effect of overlap in complex NMR spectra. All
integration of simulated and experimental 2D in-phase peaks, with different
degree of overlap, showed the CAKE efficacy in estimating umbiased peak
volume, even for strongly overlapping peaks. Moreover, it is substantially
independent on digital resolution and SNR.

Finally, we successfully investigated the possibility of exploiting enhanced
NMR pulse sequences for fast spectra acquisition. In particular, we applied
the so-called SOFAST-HMQC pulse scheme to detect in-cell metabolism. Cre-
ated and designed for protein observation, the pulse sequence is based upon
very short experimental recycle delays, which, of course, rely on short Ty re-
laxations time. Even if metabolites are often characterized by T; relaxations
time longer than those of proteins, we have applied the SOFAST experiment
to °N-labeled Thalassiosira rotula diatom cells obtaining, to the best of our
knowledge, the first application of fast NMR spectroscopy. We collected spec-
tra in 10-15 s of acquisition time, pinpointing the 7" rotula 'H-">N metabolic
profiling directly in living cells. Our results, definitively show that the ap-
plication of SOFAST experiments provides an instantaneous picture of the
metabolic pathways occurring in a well-defined physiological state, therefore
avoiding the observation of an "average" metabolism obtainable with acqui-
sition time of hours. With this approach, biochemical processes, taking place
during metabolic modifications, can be followed by real-time multidimensional
NMR methods, where spectral changes are monitored during a very short tem-
poral period. In the past, the long acquisition times associated with 2D NMR
have limited the application of real-time 2D NMR to slow kinetic processes
with characteristic time constants of minutes to hours. The introduction of
fast 2D data acquisition schemes, such as the SOFAST experiments, could ex-
tend the time window accessible to real-time 2D NMR, to the range of seconds,
thus representing a further advantaging tool for metabonomic and biomarkers
investigations. Obviously, it would be extremely advantageous to extend the
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described investigations to eukaryotic cell systems, where potential applica-
tions include in-cell investigation under physiological or stressing conditions,
induced by external toxicants or potential drugs, NMR metabolic characteri-
zation of cell lines, as well as investigation of the metabolism in plant cells. In
general, extensive application in the fields of metabolomics and metabonomics
can be predicted, and many of the above applications are in progress in our
laboratory.
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