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Abstract

In the present work, the notion of equilibrium and pre-equilibrium of vari-

ational inequalities (but also some for some quasi-variational inequalities)is

developed in Weighted Hilbert spaces, in strictly convex and smooth Banach

spaces and in reflexive Banach spaces. The concept of Weighted variational

inequality is introduced, some associated questions as regularity,delayed

equilibrium and Lagrangian duality are developed and applied to the traffic

equilibrium problem. The more recent notion of pre-equilibrium very im-

portant in time dependent equilibrium must be understood as the optimal

path from an arbitrarily point to reach the equilibrium (critical point of

the system). The notion of Non pivot and Implicit Dynamical system is

introduced, an existence result is given (in Hilbert spaces with linear dual-

ity mapping) as application an existence result is given also for a specific

quasi-variational inequality (translated set) without using the classical as-

sumption for the projection (Lipschitz) [This assumption is wrong a very

simple case and a counter example is provided]. The notion of projected

dynamical systems is extended to strictly convex and smooth Banach spaces

and reflexive Banach spaces and the equivalence between critical points of

such PDS and equilibrium of Variational inequalities is proved. Some appli-

cations will also be given to the traffic equilibrium problem, an elementary

design of an industrial application will be also illustrated.
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Chapter 1

Introduction

The aim of this thesis is to provide a detailed study of the traffic equilibrium problem

focusing the attention on the management of the major and minor congestions of the

traffic flows and on the choose of the more convenient distribution of the traffic demand

on the paths.

The congestion on the network can be modeled by introductions some weights acting

on the paths and on the path cost functions. This model will let to the introduction of

weighted variational inequalities and weighted projected dynamical systems. Moreover,

a more realistic model of the weighted traffic equilibrium problem requests the use of

the delay because the transmission of the data does not happen with infinity speed.

Therefore this characteristic justifies the introduction of retarded weighted variational

inequalities and retarded weighted projected dynamical system (this last point point

has not been included into this thesis because it is still under investigation). The

study of the new models has requested a generalization of existing theories. Moreover,

for a more complete analysis of the problem, computational methods has been also

generalized and a new visualization method as been set up. Since the critical points to

projected dynamical systems are the solutions to evolutionary variational inequalities,

our study starts generalizing the known results on the projected dynamical systems.

Precisely, our extensions regards the use of non-pivot Hilbert spaces and Reflexive

Banach Spaces. In Banach Spaces we have no inner product but only duality pairing

and apparently we have no projection concept that can be considered as an extension of

the usual projection operator. But looking more deeply some interesting results Alber

(1996, 2000) regarding an extension of the projection operator into Strictly Convex and
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Smooth Banach Spaces have been found. Strictly Convex and Smooth Banach Spaces

seems to be the nearest subclass of Banach Space to Hilbert Spaces (Lp spaces for

1 < p < +∞ are strictly convex and smooth Banach spaces). In fact the unit Ball of an

Hilbert space is round (and the duality mapping J = Id and the space can be identified

with its dual space) the unit ball of a Strictly convex and smooth Banach space is not

round (the duality mapping is an Isometry but J 6= Id and J is nonlinear). It has been

possible to obtain in this framework interesting results in the sense of an existence

result for Projected Dynamical Systems (see section 3.3) but the non linearity of the

duality paring coupled with the non linearity of the generalized projection operator

seems to be a non banal obstacle at least using constructive methods used in Cojocaru

(2002). A new problem appeared indirectly, if the J 6= Id and J is linear, to treat that

case, it is necessairily to introduce the framework of Non pivot spaces and therefore

with M.G. Cojocaru the problem of the existence of a solution in such spaces, has

been tackled. Also implicit Projected dynamical Systems are analyzed and the result is

used to obtain an interesting existence result for quasi-variational inequalities (see 3.2).

As it has been said Projected Dynamical Systems are strictly related to Variational

inequalities theory (see Proposition 3.2.6) in the sense that a critical point of a PDS is

an equilibrium point of a Variational Inequality and vice versa.

The new framework, Non Pivot Hilbert Spaces, opens the path to the study of dif-

ferent aspects to variational inequality (such has the regularity and numerical methods)

but also to go further in detail on this enhanced traffic equilibrium problem (the study

of weighted traffic equilibrium with delay and the study of the duality of the traffic

equilibrium problem). We propose during WICOM 08 (see Cojocaru & Pia (2008)) an

industrial application of this research to Intelligent GPS systems. Even if we extend

the theory of PdS and Variational inequality to Weighted Hilbert Spaces there is still

some very interesting work to do as some new aspects of the theory jump up from these

“old” problems. Recently the primary goal to enhance the PDS theory to a subclass of

Banach spaces found new possibilities to be attained. A very hidden paper (military

research) produced by Eduardo Zarantonello (see Zarantonello (1977)) change the pa-

ternity of the generalization of projection operator in Banach spaces. In fact, even if

Yakov Alber introduced this concept in Alber (1996) and he gave some very interesting

properties for the restricted framework of Strictly convex and smooth Banach spaces,

actually widely used, Zarantonello introduced a projector in Reflexive Banach spaces

2



in order to use this notion in an unachieved study, basically to develop the spectral

synthesis on cones (an extension of his well known paper Zarantonello (1971)) .

This work has three Chapters an two Appendixes. In Chapter 2, the relationship be-

tween Projected Dynamical System and Variational Inequalities are discussed and this

first discussion has the goal to clarify the concept of equilibrium and the concept of

pre-equilibrium. In Chapter 3 the theoretical results are exposed and among others we

have, existence results, regularity result for weighted Hilbert spaces and equivalence

theorem between critical points and equilibrium points moreover in this Chapter we

present also open problems and possible directions for future researches. In Chapter

4 we present the results obtained looking more deeply into one specific application:

Traffic Equilibrium problem. Of course the results obtained in this section can be

easily transposed to other networks as for example Financial Network but to avoid

dispersion we focus only on traffic equilibrium problem and develop different aspects

(how weights can be obtained, problem with delay, numerical method, analysis of the

dual problem and industrial application). To facilitate the reading and to separate in

a clear way the results obtained, published and pertinent with the thesis topics, major

results for existing theory of Variational Inequalities and Projected dynamical Systems

(and some results obtained but not enough pertinent with the scope of the thesis),

have been grouped in two Appendixes. Even if sometimes it is difficult to separate in

a clear manner the results, the intention has always been to offer a clear reading and

to communicate guiding ideas of the research process.
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Chapter 2

Notions of Equilibrium and

Pre-Equilibrium

2.1 Variational Inequalities

2.1.1 Variational Inequalities and the concept of Equilibrium

Variational Inequalities (VI) are a powerful generalization of a fundamental basic

fact in Analysis: The study of stationary point. This statement is of course an extreme

simplification but useful to have an intuitive understanding of the importance of the

theory and all possible applications. A very good introduction is given in Stampacchia

(1997), but for an easier reading we will remind some basics facts. For an overview of

the theory of (VI), the reader can refer to Appendix B.

Example 2.1.1. Let f ∈ C1 with f : [a, b]→ R. We wish to determine those points x0

for which:
f(x0) = min

a≤x≤b
f(x).

It’s clear that there exists at least one such point x0.
The following cases can occur.

• If a < x0 < b, then f
′
(x0) = 0,

• If x0 = a, then f
′
(x0) ≥ 0,

• If x0 = b, then f
′
(x0) ≤ 0.

4



2.1 Variational Inequalities

Therefore it is clear that for any such x0 we have, for all x ∈ [a, b],

f
′
(x0)(x− x0) ≥ 0

this is the first example of variational inequality.

Example 2.1.2. Let K be a closed, convex set in Rn and let

f : K→ R, f ∈ C2(R)

Let x0 ∈ K be such that f(x0) = minx∈K f(x). Since K is convex we have for each
y ∈ K that

λx0 + (1− λ)y ∈ K, 0 ≤ λ ≤ 1.

Define
F : [0, 1]→ R,

F (λ) = f(λx0 + (1− λ)y).

Then F (1) = minK f . It follows from (2.1.1) that F 1(λ− 1) ≥ 0 for all 0 ≤ λ ≤ 1; but
this is equivalent to F

′ ≤ 0. Therefore, for x0 ∈ K,

[grad f(x0)](y − x0) ≥ 0, ∀y ∈ K

becomes the variational inequality for this example

Example 2.1.3. Now let V be a real Hilbert space and let K be a closed convex subset
of V . Let f ∈ V . If u0 ∈ K such that

||u0 − f || = min
K
||u− f ||

we will say u0 = PK(f) and call u0 the projection of f onto K. Now clearly

||u0 − f || ≤ ||v − f ||, ∀v ∈ K

Let us define

F (λ) = (λu0 + (1− λ)v − f, λu0 + (1− λ)v − f) = ||λu0 + (1− λ)v − f ||2V

where (., .) denotes the inner product of V .
Then F : [0, 1]→ R. From example (2.1.1) we have F

′
(1) ≤ 0. That mean we have

u0 ∈ K, (u0, v − u0) ≥ (f, v − u0), ∀v ∈ K. (2.1.1)

We can rewrite the previous inequality as (u0 − f, v − u0) ≥ 0. In fact (2.1.1)implies
u0 = PK(f). Here also an existence result exist.

5



2.2 Projected Dynamical Systems

From these classical examples, up to now, a lot of directions has been explored and

a lot of applications has been given.

The usage of VI in specific infinite dimensional (functional) spaces permits to prove

interesting results as done for example in Daniele & Maugeri (2001) with the intro-

duction of the concept of evolutionary equilibrium (applied to the traffic equilibrium

problem). Using these framework, the equilibrium (the solution of the variational in-

equality) it is not anymore a “point” but a functional (i.e a point in the functional

space), which means that the solution of the VI is time dependent. Of course a specific

focus on this “evolutionary” set up open a full range of new problems as, regularity or

the differentiability of the solution with respect to the time variable, but also a large

number of applications (see for example Nagurney & Dong (2002)).

2.2 Projected Dynamical Systems

These systems are non-smooth dynamical systems and are defined as the solutions

to a class of ordinary differential equations with a discontinuous right-hand side. We

refer to this class of equations as projected differential equations. The word projected

indicates the use of a projection operator in defining a projected differential equation.

This operator restrains the whole Hilbert space X onto a non-empty, closed and convex

subset K ⊂ X. Suppose to be in a non equilibrium situation, i.e based on the definition

we give in Chapter 3 (section 3.1.3), we have the variational inequality not satisfied

but using an existence theorem we know that under certain conditions, the equilibrium

exists. The study of the optimal trajectory to reach the equilibrium starting from an

arbitrary point into our constraints set (the convex K) is precisely one of the purposes

of PDS. the projected differential equation is given in Hilbert case by

dx

dt
= PTK(x)(−F (x(t))), a.a. t ∈ I

Where K is a closed convex set and F a vector field.

If we are dealing with time dependent functions, that is if for instance if the varia-

tional inequality is defined on a functional space, the study of desequilibirum behaviour

is described using a different timescale. Solving the PDS means in that case to find and

Absolutely Countinuous function for [0, T [, T > 0 with values in a functional space X.

dxγ
dt

= PTKxγ (−F (xγ(t))), a.a. t ∈ I

6
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2.2 Projected Dynamical Systems

and our trajectory is in a certain dependent of the time parameter γ depending on the

choice of the functional space in which we set up the Variational inequality problem.

The coexistence of two times scales has been called double-layered dynamics in Co-

jocaru et al. (2006) , check also A.3.3.

The concept of the double time scale emerge naturally, from an historical point of view

in fact PDS theory has been introduced to study the dynamical part of Variational

inequality, when the variational inequality were only treated in Rn.

The motivation for studying a projected dynamical system is that it can be used in

the study of dynamics of perturbed steady states of problems arising from Economic

Theory, Physics and Engineering A micro-time scale which is used to describe the pre-

equilibrium situation using the projected Dynamical system setting and a macro-time

scale which is used to describe the evolution of the equilibrium situation. We can even

affirm that this is the more interesting problem as in most applied problem condition

changes so quickly that it is very difficult to maintain the equilibrium state on evolu-

tionary problems but the possibility to have the optimal path to the equilibrium can

represent a valid alternative to follow.

2.2.1 Projected Dynamical Systems and the concept of Pre-Equilibrium

When we deal with time dependent problems, equilibrium states have to be con-

sidered as we said before as time dependent. So the question to answer is, how looks

the time dependent functional that describes equilibrium? Answer to that question is

the main goal when we treat a variational equilibrium problem. Obviously in general

it is very difficult to have an exact solution, and the approximation of a solution can

be also far from reality. The reason is simple: In general it is very difficult to forecast

the variables we have to deal with.

This simple fact justifies by itself the introduction of the Projected Dynamical systems

(PDS). We will see later on 3.2.4.2, 3.3.2.3 and 3.4.4 that PDS (associated to a VI) and

Variational Inequalities have as a contact point the equivalence theorems. Therefore

we can say that the solution of PDS is the “best” trajectory to reach an equilibrium

point from a given point in the constraints set. In abstract, in an infinite constraints set

there are an infinity of possible states that precede an equilibrium if we start from an

7



2.2 Projected Dynamical Systems

arbitrary point in such set. Nevertheless we can prove under certain regularity condi-

tions that among all possible trajectories the is one better that others, in the sense that

finding the solutions of a PDS is equivalent in finding the “slow” solution (the solution

of minimal norm) to a differential variational inequality (see Section 3.3.2.4) The study

of this exceptional trajectory is the main goal of PDS theory, but several difficulties are

difficult to by-pass in Banach spaces, nevertheless we provide some elements to built a

solution to this problem.
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Chapter 3

Results in Weighted Hilbert

Spaces and Reflexive Banach

Spaces

This chapter is mainly dedicated to abstract results. We illustrate the results ob-

tained in Giuffré et al. (2006b), Cojocaru & Pia (2008), Giuffré & Pia (2008), Giuffré

et al. (2006a), Barbagallo & Pia (2009b) and Barbagallo & Pia (2009a). Basically we

focus on existence and regularity results in Weighted Hilbert spaces for Variational

inequalities and PDS including some extensions of this concept. Then we introduce

some options to set up the Problem for Strictly Convex and Smooth Banach spaces.

Intuitively a weighted Hilbert Space is an Hilbert Space in which not all the ‘directions’

are equivalents, and this basically means that the unit ball is not round. This frame-

work offer the possibility to extend, let’s say by compensation, the existence domain

of functional on some directions if singularity a appears (to be understood as a point

in which a given class of functions is not L2(Ω,Rn, (., .)), where Ω ⊂ Rp is open and

(., .) denotes an inner product). Of course this enhancement works if we can switch

from one space to another by multiplying the components by a continuous and strictly

positive function defined on Ω. In addition to the weights on the functional space we

introduce also weights for the bilinear form, this setting will be used in next chapter

for an application to traffic equilibrium problem, but has potentially a large number of

applications. It seems that weighted bilinear forms can be used to treat conservative

equations (Gao (2000)) but nothing has been explored in such direction in this thesis.
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3.1 Weighted Variational Inequalities in Weighted Spaces

It is divided in the following sections.

In 3.1 we treat Variational Inequalities in Weighted spaces and in order to do that, we

recall some basic material (subsection 3.1.1) then we provide some existence (subsection

3.1.2) and regularity results (subsection 3.1.4) all that notions will be used in chapter

4, mainly dedicated to applications.

In section 3.2 we extend the known results on PDS to non-pivot Hilbert spaces and

in 3.2.4 to introduce implicit PDS and provide and existence results for a particular

quasi-variational inequality with weaker assumptions than the one used in Noor (2003),

basically without using Lipchitz conditions on the projection operator . In section 3.3

we set-up PDS in strictly convex and smooth Banach spaces an equivalence theorem

3.3.2.3 between critical points of PDS and solutions of VI, in that way it is possible

to justify the notion of pre-equilibrium. We provide also some results that permits to

make a bridge between PDS theory and Differential inclusions theory 3.3.2.4. In the last

section 3.4, some results given in Zarantonello (1977) are exposed. They offers a large

potential for future research. This last section has been included in this thesis because

the paper Zarantonello (1977) introduce for the first time the notion of projection in

reflexive Banach spaces and give very interesting results (in particular a decomposition

theorem) use in Section 3.4.4 to prove an equivalence result. Paper Zarantonello (1977)

is almost forgotten and the introduction of the projection operator in Banach Space

and the decomposition theorem (only in strictly convex and smooth Banach space)

is attributed to Yakov Alber Alber (1996, 2000). Even if Alber obtained very inter-

esting estimates and as developped, several applications of the projection concept in

SCS Banach space, we think It is important to point out when such concepts has been

introduced for the first time.

3.1 Weighted Variational Inequalities in Weighted Spaces

3.1.1 Dual realization of a Hilbert space

Each time we work with a Hilbert space V , it is necessary to decide whether or not

we identify the topological dual space V ∗ = L(V,R) with V . Commonly this identifi-

cation is made, one of the reasons for this being that the vectors of the polar of a set of

V are in V . In some cases the identification does not make sense (see Example 3.1.8).

10



3.1 Weighted Variational Inequalities in Weighted Spaces

Figure 3.1: A simple view of Balls

11



3.1 Weighted Variational Inequalities in Weighted Spaces

For clarity of presentation, we remind below the basic results regarding the dual re-

alization of a Hilbert space. The readers can refer to Aubin (1987) for additional details.

First, consider a pre-Hilbert space V with an inner-product ((x, y)), and its topolog-

ical dual V ∗ = L(V,R). It is well known that V ∗ is a Banach space for the classical dual

norm (‖f‖∗ = supx∈V
|f(x)|
‖x‖ ). It is also known that there exists an isometry J : V → V ∗

such that J is linear and for all x ∈ V , J(x) = grad(‖x‖
2

2 ). This mapping J is called

a duality mapping of (V, V ∗). The gradient formulation of the duality mapping allows

to easily determine the mapping from the norm, as shown by the following examples.

Example 3.1.1. R2 endowed with the norm

‖(x1, x2)‖ = (x1
2 + Tx2

2)
1
2 , T > 0

is a reflexive, uniformly convex and uniformly smooth Banach space. And we have:

J((x1, x2)) = (x1, Tx2)

R3 endowed with the norm

‖(x1, x2, x3)‖ = (x1
2 + x2

2)
1
2 + (x2

2 + x3
2)

1
2

is a reflexive, strictly convex and smooth Banach space. And we have:

J((x1, x2, x3)) = (x1(1 +
x2

2 + x2
3

ω
), x2(1 +

x2
1 + 2x2

2 + x2
3

ω
), x3(1 +

x2
1 + x2

2

ω
))

where
ω = ((x1

2 + x2
2)(x2

2 + x3
2))

1
2

Example 3.1.2. If X = Lp(Ω,R) with 1 < p <∞ then

J(x) = ‖x‖2−p|x|p−1sgn(x)

and
J∗(x) = ‖x‖

p−2
p−1 |x|

1
1−p sgn(x)

where sgn(x) = χ[x>0] − χ[x<0].

we remind also that the duality mapping J enjoys the following properties:

• J is monotone in arbitrary Banach space.

12



3.1 Weighted Variational Inequalities in Weighted Spaces

• J is strictly monotone in strictly convex Banach spaces.

• J(x) = grad(‖x‖2/2) in smooth Banach spaces.

• J is continuous in Uniformly smooth Banach spaces.

• J = IdX ⇔ X is an Hilbert space

Theorem 3.1.3 (Theorem 1 page 68, Aubin (1987)). Let V be a Hilbert space with
the inner product ((x, y)) and J ∈ L(V, V ∗) the duality mapping above. Then J is a
surjective isometry from V to V ∗. The dual space V ∗ is a Hilbert space with the inner
product:

((f, g))∗ = ((J−1f, J−1g)) = f(J−1g).

Theorem 3.1.4 (Theorem 2 page 69, Aubin (1987)). Let V be a pre-Hilbert space.
Then there exists a completion V̂ of V, that is, an isometry j from V to the Hilbert
space V̂ such that j(V ) is dense in V̂ .

Definition 3.1.5. Let V be a Hilbert space. We call {F, j}, where

i) F is a Hilbert space and

ii) j is an isometry from F to L(V,R)

a dual realization of V. We then set

〈f, x〉 = j ◦ f(x),∀f ∈ F, ∀x ∈ V,

where 〈f, x〉 is the duality pairing for F × V .

Remark 3.1.6. The duality pairing is a non degenerate bilinear form on F × V and
‖f‖F = supx∈V

|〈f,x〉|
‖x‖ . These properties permit us to prove that F is isomorphic to V ∗.

We deduce from Theorems 3.1.3 and 3.1.4 that k = j−1 ◦J ∈ L(V, F ) is a surjective

isometry such that

(x, y) = 〈k(x), y〉

We use the following convention here: when a dual realization {F, j} of a space has

been chosen, we set F = V ∗ and j◦f(x) = 〈f, x〉. We say that the isometry k : V → V ∗

is the duality operator associated to the inner product on V and to the duality pairing

on V ∗ × V by the relation

(x, y) = 〈k(x), y〉

13



3.1 Weighted Variational Inequalities in Weighted Spaces

A special but most frequent case is to choose as a dual realization of V the couple

{V, J}; in this case the Hilbert space V is called a pivot space. To be more precise, we

introduce the following definition.

Definition 3.1.7. A Hilbert space H with an inner product (x, y) is called a pivot space,
if we identify H∗ with H. In that case

H∗ = H, j = J, 〈x, y〉 = (x, y)

Sometimes it does not make sense to identify the space itself with its topological

dual, as the following example shows.

Example 3.1.8. Let us consider V = L2(R, (1 + |x|)) ⊂ L2(R) (dense subspace of
L2(R)) endowed with the inner product:

(u, v)V =
∫

R
(1 + |x|)u(x)v(x)dx

an element ϕ ∈ L2(R)∗ is also an element of V ∗. If we identify ϕ to an element
f ∈ L2(R), this function does not define a linear form on V and the expression ϕ(v) =
〈f, v〉V has no meaning on V . In this situation it is necessary to work in a non-pivot
Hilbert space.

We provide now some useful examples of non-pivot H-spaces.

Let Ω ⊂ Rn be an open subset of, a : Ω→ R+\{0} a continuous and strictly positive

function called “weight” and s : Ω→ R+\{0} a continuous and strictly positive function

called “real time density”. The bilinear form defined on C0(Ω) (continuous functions

with compact support on Ω) by

(x, y)a,s =
∫

Ω
x(ω)y(ω)a(ω)s(ω)dω

is an inner product. We remark here that if a is a weight, then a−1 = 1/a is also a

weight. Let us introduce the following

Definition 3.1.9. We call L2(Ω, a, s) a completion of C0(Ω) for the inner product
〈x, y〉a,s.

14



3.1 Weighted Variational Inequalities in Weighted Spaces

We now introduce an n-dimensional version of the previous space. If we denote by

Vi = L2(Ω,R, ai, si) and V ∗i = L2(Ω,R, a−1
i , si), the space

V =
m∏
i=1

Vi (3.1.1)

is a non-pivot Hilbert space with the inner product

(F,G)V = (F,G)a,s =
m∑
i=1

∫
Ω
Fi(ω)Gi(ω)ai(ω)si(ω)dω.

The space

V ∗ =
m∏
i=1

V ∗i (3.1.2)

is clearly a non-pivot Hilbert space for the following inner product

(F,G)V ∗ = (F,G)a−1,s =
m∑
i=1

∫
Ω

Fi(ω)Gi(ω)si(ω)
ai(ω)

dω

and the following bilinear form:

V ∗ × V → R

〈f, x〉V ∗×V = 〈f, x〉s =
m∑
i=1

∫
Ω
fi(ω)xi(ω)si(ω)dω (3.1.3)

defines a duality between V and V ∗. More precisely we have:

Proposition 3.1.10. The bilinear form (3.1.3) defines a duality mapping between V ∗×
V , given by

J(F ) = (a1F1, . . . , amFm).

Proof. By Definition (3.1.9), for each i, Vi(Ω) = C0(Ω)
{ai,si} and V is complete if and

only if for each i, Vi is complete. Then it is enough to take F and G in Cn0 (Ω). Using
Cauchy-Schwartz inequality for fine sums and integrals we get

〈F,G〉s ≤
n∑
i=1

∫
Ω
|Fi(ω)

√
si(ω)

√
ai(ω)

Gi(ω)
√
si(ω)√

ai(ω)
|dω

≤
n∑
i=1

(
∫

Ω
F 2
i (ω)si(ω)ai(ω)dω)

1
2 (
∫

Ω

G2
i (ω)si(ω)
ai(ω)

dω)
1
2

≤ (
n∑
i=1

∫
Ω
F 2
i (ω)si(ω)ai(ω)dω))

1
2 (

n∑
i=1

∫
Ω

G2
i (ω)si(ω)
ai(ω)

dω)
1
2
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3.1 Weighted Variational Inequalities in Weighted Spaces

= ‖F‖a,s‖G‖a−1,s

where ‖.‖a,s and ‖.‖a−1,s denote respectively the norm in V and V ∗.
But if F ∈ V then aF = (a1F1, ..., anFn) ∈ V ∗ and ‖aF‖a−1,s = ‖F‖a,s that means

‖G‖a−1,s = sup
F∈V

|〈F,G〉s|
‖F‖a,s

.

So 〈·, ·〉s is a duality pairing and

〈F,G〉a,s =
n∑
i=1

∫
Ω
Fi(ω)Gi(ω)ai(ω)si(ω)dω = 〈aF,G〉s.

For applications of these spaces, the reader can refer to Giuffré & Pia (2009) or

Chapter 4.

3.1.2 Variational analysis in non-pivot H-spaces

Let X be a Hilbert space of arbitrary (finite or infinite) dimension and let K ⊂ X

be a non-empty, closed, convex subset. We assume the reader is familiar with tangent

and normal cones to K at x ∈ K (TK(x), respectively NK(x)), and with the projection

operator of X onto K, PK : X → K given by ||PK(z) − z|| = inf
x∈K
||x − z||. Moreover

we use here the following characterization (called Variational Principle) of PK(x) (see

Alber (1996));

x̄ = PK(x)⇔ 〈J(x− x̄), y − x̄〉 ≤ 0, ∀y ∈ K (3.1.4)

The directional derivative of the operator PK is defined, for any x ∈ K and any

element v ∈ X, as the limit (for a proof see Zarantonello (1971) or in a more general

case Lemma 3.1.16):

πK(x, v) := lim
δ→0+

PK(x+ δv)− x
δ

; moreover πK(x, v) = PTK(x)(v).

Let πK : K × X → X be the operator given by (x, v) 7→ πK(x, v). Note that πK is

nonlinear and discontinuous on the boundary of the set K. In Dupuis & Ishii (1990);

Isac & Cojocaru (2004) several characterizations of πK are given.

The following theorem has been proved in the framework of reflexive strictly convex

and smooth Banach spaces. It express the possibility to decompose any element of base
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3.1 Weighted Variational Inequalities in Weighted Spaces

space (or its dual) into the sum of elements belonging to mutually polar cones. We will

use it to obtain a decomposition theorem in non-pivot Hilbert spaces (for a proof see

Alber (2000), Th. 2.4).

Theorem 3.1.11. Let X be a real reflexive strictly convex and smooth Banach space,
and C a non-empty, closed and convex cone of X. Then ∀x ∈ X and ∀f ∈ X∗ the
following decompositions hold:

x = PC(x) + J−1ΠC0J(x) and 〈ΠC0J(x), PC(x)〉 = 0

f = PC0(f) + JΠCJ
−1(f) and 〈PC0(f),ΠCJ

−1(f)〉 = 0. (3.1.5)

Here PC is the metric projection operator on K and ΠC0 is the generalized projection
operator on the polar cone of C that is C0 (for a definition of ΠC0 see Alber (1996)).

Remark 3.1.12. It is known that that PC and ΠC coincide whenever the cone C

belongs to a Hilbert space. This observation implies the following the result.

Corollary 3.1.13. Let C be a nonempty closed convex cone of a non-pivot Hilbert
space X. Then for all x ∈ X and f ∈ X∗ the following decompositions hold:

x = PC(x) + J−1PC0J(x) and 〈PC0J(x), PC(x)〉 = 0

f = PC0(f) + JPCJ
−1(f) and 〈PC0(f), PCJ−1(f)〉 = 0

We highlight that Zarantonello has shown in Zarantonello (1977) a similar decom-

position result in reflexive Banach spaces, see also Corollary 3.4.29.

Lemma 3.1.14 (Zarantonello (1971), Lemma 4.5). For any closed convex set K,

PK(x+ h) = x+ h+ ◦(‖h‖), x ∈ K, h ∈ TK(x)

where ◦(‖h‖)/‖h‖ → 0 as h→ 0 over any locally compact cone of increments.

Remark 3.1.15. To prove Lemma 3.1.14 only the properties of the norm in Hilbert
spaces are used, therefore the proof is valid in the non-pivot setting.

The following lemma as been proved in the pivot case in Zarantonello (1971). We

give below a similar proof in non-pivot spaces.

Lemma 3.1.16. For any x ∈ K,

PK(x+ h) = x+ PTK(x)(h) + ◦(‖h‖)

where ◦(‖h‖)/‖h‖ → 0 as h→ 0 over any locally compact cone of increments.
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3.1 Weighted Variational Inequalities in Weighted Spaces

Proof. Clearly,

‖x+ h−PK(x+ h)‖2 = ‖x+ h−Px+TK(x)(x+ h)‖2 + ‖Px+TK(x)(x+ h)−PK(x+ h)‖2

+2(x+ h− Px+TK(x)(x+ h), x+ h− Px+TK(x)(x+ h))

but
(x+ h− Px+TK(x)(x+ h), x+ h− Px+TK(x)(x+ h))

= 〈J(x+ h− Px+TK(x)(x+ h)), x+ h− Px+TK(x)(x+ h)〉 ≥ 0

using the variational principle (3.1.4) applied to Px+TK(x)(x+ h). By definition of the
projection operator we have

‖x+ h− PK(x+ h)‖2 ≤ ‖x+ h− PK [(Px+TK(x)(x+ h)]‖2

therefore we have

‖x+h−Px+TK(x)(x+h)‖2+‖Px+TK(x)(x+h)−PK(x+h)‖2 ≤ ‖x+h−PK [(Px+TK(x)(x+h)]‖2

As Px+TK(x)(x+h) = PTK(x)(h) (just apply the definition and the variational principle
(3.1.4)), we have

‖h− PTK(x)(h)‖2 + ‖x+ PTK(x)(h)− PK(x+ h)‖2 ≤ ‖x+ h− PK(x+ PTK(x)(x))‖2,

but using the Corollary 3.1.13 we have h = PTC(x)(h)+J−1PNK(x)(J(h)) and therefore,

‖PK(x+h)−x−PTK(x)(h)‖2 ≤ ‖J−1PNK(x)(J(h))+x+PTK(x)(h)−PK(x+PTK(x)(h))‖2

−‖J−1PNK(x)(J(h))‖2

≤ ‖x+ PTK(x)(h)− PK(x+ PTK(x)(h))‖2

+2‖J−1PNK(x)(J(h))‖‖x+ PTK(x)(h)− PK(x+ PTK(x)(h))‖

But by Lemma 3.1.14, x+ PTK(x)(h)− PK(x+ PTK(x)(h)) = o(‖PTK(x)(h)‖) so we can
write

‖PK(x+ h)− x− PTK(x)(h)‖2 ≤ (2‖J−1PNK(x)(J(h))‖+ o(‖PTK(x)(h)))o(‖PTK(x)(h)‖)

Therefore we have,

‖PK(x+ h)− x− PTK(x)(h)‖2 ≤ o(‖h‖)2
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3.1 Weighted Variational Inequalities in Weighted Spaces

3.1.3 Variation Inequality in Non Pivot Hilbert spaces

Let us consider two vector a, s ∈ Rn, and let ai, si be the components, for i =

1, . . . , n. Denoting by Vi = L2(Ω,R, ai, si) and V ∗i = L2(Ω,R, a−1
i , si), the space V =∏n

i=1 Vi is a Hilbert space with respect to the inner product

(F,G)V = (F,G)a,s =
m∑
i=1

∫
Ω
Fi(ω)Gi(ω)ai(ω)si(ω)dω, ∀F,G ∈ V,

and the space V ∗ =
∏n
i=1 V

∗
i is a Hilbert space with respect to the inner product

(F,G)V ∗ = (F,G)a−1,s =
m∑
i=1

∫
Ω

Fi(ω)Gi(ω)si(ω)
ai(ω)

dω, ∀F,G ∈ V ∗.

Moreover, the following bilinear form, defined into V ∗ × V by

〈f, x〉V ∗×V = 〈f, x〉s =
m∑
i=1

∫
Ω
fi(ω)xi(ω)si(ω)dω, ∀f ∈ V ∗, ∀x ∈ V,

represents a duality between V and V ∗ and the duality mapping is given by J(F ) =

(a1F1, . . . , anFn).

Let us introduce weighted variational inequalities defined into a non-pivot Hilbert

space V .

Let K be a nonempty, convex and closed subset of V and let C : K → V ∗ be a

vector-function. The weighted variational inequality is the problem to find a vector

x ∈ K, such that

〈C(x), y − x〉s ≥ 0, ∀y ∈ K. (3.1.6)

3.1.4 Regularity of Variational Inequalities in Non pivot Hilbert Spaces

In order to prove a continuity result our methodology needs to introduce the

finite-dimensional weighted variational inequality associated to the infinite-dimensional

weighted variational inequality (3.1.6). Let us introduce the following norm in Rm

‖x‖2m,a,s =
m∑
i=1

x2
i aisi

where a, s ∈ Rm
+ . We introduce the following bilinear form:

(Rm, ‖ · ‖m,a−1,s)× (Rm, ‖ · ‖m,a,s)→ R
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3.1 Weighted Variational Inequalities in Weighted Spaces

〈y, x〉m,s =
m∑
i=1

yixisi,

it is easy to prove (same method that the one used in for Proposition 3.1.10) that it is

a duality pairing between (Rm, ‖ · ‖m,a−1,s) and (Rm, ‖ · ‖m,a,s). We set

K(t) =
{
f(t) ∈ Rm : f ∈ K

}
,

and we remark that K(t) is closed and convex, then we can introduce the finite-

dimensional weighted variational inequality associated to (3.1.6)

Find x(t) ∈ K(t) : 〈C(x(t)), y(t)− x(t)〉m,s(t) ≥ 0, ∀y(t) ∈ K(t), a.e. in Ω. (3.1.7)

Under our hypothesis we can prove the following result

x is solution of (3.1.6) ⇔ x(t) is solution of (3.1.7) for almost every t ∈ Ω.

In fact, we suppose that the integral form of the variational inequality problem

holds. If the pointed form is false, we have

∃I ⊆ Ω, µ(I) > 0, ∃ȳ(t) ∈ K(t) : 〈C(x(t)), y(t)− x(t)〉m,s(t) < 0, ∀t ∈ I.

Setting

y∗(t) =

{
ȳ(t) t ∈ I
x(t) t ∈ Ω \ I

,

we obtain∫
Ω
〈C(x(t)), y∗(t)− x(t)〉m,s(t)dt =

∫
Ω\I
〈C(x(t)), x(t)− x(t)〉m,s(t)dt

+
∫
I
〈C(x(t)), ȳ(t)− x(t)〉m,s(t)dt < 0

that is a contradiction.

We can now show the following regularity theorem, we can observe that the point

to point variational problem is a finite-dimensional problem.

Theorem 3.1.17. Let V be as in 3.1.1, let Ω ⊆ Rp, let t ∈ Ω and let K(t) be a
nonempty, closed, convex and bounded subset of Rm verifying Kuratowski’s convergence
assumptions, let C : Ω×K → V ∗ be a continuous function and C(t, ·) strongly pseudo-
monotone with degree α > 1. Then the solution map x : Ω 3 t→ x(t) ∈ Rm of (3.1.7)
is continuous on Ω.
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3.1 Weighted Variational Inequalities in Weighted Spaces

Proof. Let x(tn) be the unique solution of the weighted variational inequality

〈C(tn, x(tn)), y(tn)− x(tn)〉m,s(tn) ≥ 0, ∀y(tn) ∈ K(tn), ∀n ∈ N (3.1.8)

Fixing t = (t1, . . . , tp) ∈ Ω, it suffices to verify that for any {tn}n∈N = {(tn1 , . . . , tnp )}n∈N ⊆
Ω such that tn → t, we have that x(tn) → x(t). Under our hypothesis the generalized
version of Minty-Browder Lemma (see for instance Maugeri et al. (1997)) holds, that
is, for any t ∈ Ω we have

〈C(t, y(t)), y(t)− x(t)〉m,s(t) ≥ 0, ∀y(t) ∈ K(t).

Using the set convergence by Kuratowski, we know that for x(t) ∈ K(t), there exists a
sequence {v(tn)}n∈N such that v(tn) ∈ K(tn) for n large enough and, moreover, v(tn)→
x(t). It follows that C(tn, v(tn)) → C(t, x(t)) because of the continuity hypothesis on
C. Setting, for n large enough, y(tn) = v(tn) in (3.1.8), we have

〈C(tn, x(tn)), v(tn)− x(tn)〉m,s(tn) ≥ 0.

From the strongly pseudo-monotone with degree α > 1 assumption we obtain

ν‖v(tn)− x(tn)‖αm,a(tn),s(tn) ≤ 〈C(tn, v(tn)), v(tn)− x(tn)〉m,s(tn)

≤ ‖C(tn, v(tn))‖m,a−1(tn),s(tn)‖v(tn)− x(tn)‖m,a(tn),s(tn)

and, consequently,

‖v(tn)− x(tn)‖m,a(tn),s(tn) ≤ ν
1

1−α ‖C(tn, v(tn))‖
1

α−1

m,a−1(tn),s(tn)
.

It follows that

‖x(tn)‖m,a(tn),s(tn) ≤ ‖x(tn)− v(tn)‖m,a(tn),s(tn) + ‖v(tn)‖m,a(tn),s(tn)

≤ ν
1

1−α ‖C(tn, v(tn))‖
1

α−1

m,a−1(tn),s(tn)
+ ‖v(tn)‖m,a(tn),s(tn),

so that {x(tn)}n∈N is bounded. There exists v ∈ Rm and there exists a subsequence
denoted again by {x(tn)}n∈N, such that x(tn) ∈ K(tn), and, moreover, x(tn) → v.
Using again the sets convergence by Kuratowski we get that v ∈ K(t). Now we prove
that v = x(t). Applying again the generalized version of Minty-Browder lemma to any
x(tn) we obtain

〈C(tn, yn), y(tn)− x(tn)〉m,s(tn) ≥ 0, ∀y(tn) ∈ K(tn).
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Using again the proprieties of the Kuratowski’s convergence,for any y(t) ∈ K(t), one can
find {y(tn)}n∈N such that y(tn) ∈ K(tn) for n large enough and, moreover, y(tn)→ y(t).
As

〈C(tn, y(tn)), y(tn)−x(tn)〉m,s(tn) = 〈s(tn)C(tn, yn), y(tn)−x(tn)〉m ≥ 0, ∀y(tn) ∈ K(tn).

where 〈·, ·〉m is the standard inner product of Rm, letting n→ +∞ it follows that:

〈C(t, y(t)), y(t)− v〉m,s(t) ≥ 0, ∀y(t) ∈ K(t).

Applying the generalized version of Minty-Browder’s lemma once more we obtain

〈C(t, v), y(t)− v〉m,s(t) ≥ 0, ∀y(t) ∈ K(t).

From the uniqueness of solution to (3.1.7) it follows that v = x(t) and that x(tn) →
x(t).

Now, we want to prove that the unique solution to a variational inequality related

to a strictly pseudo-monotone operator, in a non-pivot Hilbert space, is a continuous

mapping on Ω. In order to obtain this result, it is necessary to make a remark concerning

generic variational inequalities with strictly pseudo-monotone operators.

Remark 3.1.18. Let V be as in (3.1.1) and let K(t) ⊆ Rm be a given nonempty closed
convex and bounded set for any fixed t ∈ Ω. For every ε > 0 and for any fixed t ∈ Ω,
let us consider the following perturbed variational inequality

〈C(t, x(t)) + εJm(x(t)), y(t)− x(t)〉m,s(t) ≥ 0, ∀y(t) ∈ K(t), (3.1.9)

where Jm is the duality mapping between (Rm, ‖·‖m,a,s) and (Rm, ‖·‖m,a−1,s). We note
that the map Jm is a monotone operator. If this inequality admits a unique solution
xε, then by virtue of Theorem 3.1.17, this solution is continuous on Ω.

With this in mind, we can now prove the continuity result for variational inequalities

with strictly pseudo-monotone operators. For any fixed t ∈ Ω, let us consider the

variational inequality

〈C(t, x(t)), y(t)− x(t)〉m,s(t) ≥ 0, ∀y(t) ∈ K(t). (3.1.10)

We suppose that the operator C(t, ·) is strictly pseudo-monotone and all the hypotheses

that guarantee the existence and uniqueness of a solution to (3.1.10) are satisfied, refer

for this purpose to Section B.4. Then, the following result holds.
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3.1 Weighted Variational Inequalities in Weighted Spaces

Theorem 3.1.19. Let V be as in (3.1.1), let Ω ⊆ Rn, let t ∈ Ω and let K(t) be a
nonempty closed convex and uniformly bounded with respect to t ∈ Ω subset of Rm,
verifying the Kuratowski’s convergence. Let C : Ω×K → V ∗ be a continuous function
such that C(t, ·) is strictly pseudo-monotone uniformly with respect to t ∈ Ω. Then the
solution map x : Ω 3 t→ x(t) ∈ Rm of (3.1.10) is continuous on Ω.

Proof. Let us consider the solution x(t) to weighted variational inequality (3.1.10) and
the solution x(tn) to the following variational inequality

〈C(tn, x(tn)), y(tn)− x(tn)〉m,s(tn) ≥ 0, ∀y(tn) ∈ K(tn), ∀n ∈ N. (3.1.11)

Fixing t ∈ Ω, it suffices to verify that for any {tn}n∈N ⊆ Ω such that tn → t, it results
x(tn)→ x(t), as n→ +∞.

Let xε(t) be the unique solution of perturbed strongly pseudo-monotone variational
inequality (3.1.9), namely xε(t) ∈ K(t) and

〈C(t, xε(t)) + εJm(xε(t)), y(t)− xε(t)〉m,s(tn) ≥ 0, ∀y(t) ∈ K(t). (3.1.12)

Taking into account Theorem 3.1.17, it results that xε(t) is a continuous function
on Ω. Then the solutions xε(tn) to the following weighted variational inequalities

〈C(tn, xε(tn)) + εJm(xε(tn)), y(tn)− xε(tn)〉m,s(tn) ≥ 0, ∀y(tn) ∈ K(tn), (3.1.13)

∀n ∈ N, converge to xε(t), as n→ +∞.
Moreover, we remark that xε(t) → x(t), as ε → 0, in Ω. In fact, let xε(t) be the

unique solution to (3.1.9), namely xε ∈ K(t) and

〈C(t, xε(t)) + εJm(xε(t)), y(t)− xε(t)〉m,s(t) ≥ 0, ∀y(t) ∈ K(t). (3.1.14)

Setting y(t) = x(t) in (3.1.12) we get

〈C(t, xε(t)), x(t)− xε(t)〉m,s(t) + ε〈Jm(xε(t)), x(t)− xε(t)〉m,s(t) ≥ 0. (3.1.15)

Moreover, setting y = xε(t) in (3.1.10) we have

〈C(t, x(t)), xε(t)− x(t)〉m,s(t) ≥ 0. (3.1.16)

From the strict pseudo-monotonicity of C(t, ·), uniformly with respect to t ∈ Ω, and
relation (3.1.16) it follows that

〈C(t, xε(t)), xε(t)− x(t)〉m,s(t) > 0.
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3.1 Weighted Variational Inequalities in Weighted Spaces

Then, by (3.1.15), we obtain

ε〈Jm(xε(t)), x(t)− xε(t)〉m,s(t) ≥ 0,

and dividing by ε > 0, we have

〈Jm(xε(t)), x(t)− xε(t)〉m,s(t) ≥ 0. (3.1.17)

Taking into account (3.1.17), one has

‖xε(t)‖2m,a(t),s(t) =
m∑
i=1

ai(t)si(t)
(
xiε(t)

)2
≤

( m∑
i=1

si(t)ai(t)
)

≤ 〈Jm(xε(t)), x(t)〉m,s(t)

≤

(
m∑
i=1

si(t)ai(t)
(
xiε(t)

)2) 1
2
(

m∑
i=1

si(t)ai(t)
(
xi(t)

)2) 1
2

= ‖x(t)‖m,a(t),s(t)‖xε(t)‖m,a(t),s(t),

which implies
‖xε(t)‖m,a(t),s(t) ≤ ‖x(t)‖m,a(t),s(t).

Since x(t) ∈ K(t), and K(t) is a family of uniformly bounded sets of Rm it results

‖x(t)‖m,a(t),s(t) ≤ C1,

with C1 a constant independent on ε, so that {xε(t)}ε is bounded therefore there
exists v ∈ V and there exists a subsequence denoted again by {xε(t)}ε, such that
xε(t) ∈ K(t), and, moreover, xε(t) → v. Taking into account the closeness of K(t) we
get that v ∈ K(t).
Now we prove that v = x(t), therefore we consider the following variational inequality

〈C(t, y(t)) + εJm(y(t)), y(t)− xε(t)〉m,s(t) ≥ 0, ∀y(t) ∈ K(t),

and letting ε→ 0, it results

〈C(t, y(t)), y(t)− v〉m,s(t) ≥ 0, ∀y(t) ∈ K(t). (3.1.18)

From the generalized version of Minty’s Lemma, we have that (3.1.18) is equivalent to
the following variational inequality

〈C(t, v), y(t)− v〉m,s(t) ≥ 0, ∀y(t) ∈ K(t). (3.1.19)
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3.1 Weighted Variational Inequalities in Weighted Spaces

Hence (3.1.19) implies that v is a solution to (3.1.10). Since the solution to (3.1.10)
is unique, then we concluded that the sequence {xε(t)}ε converges strongly to x(t), as
ε→ 0.

Now, we set y(tn) = x(tn), ∀n ∈ N, in (3.1.13),

〈C(tn, xε(tn)), x(tn)−xε(tn)〉m,s(tn) +ε〈Jm(xε(tn)), x(tn)−xε(tn)〉m,s(tn) ≥ 0, (3.1.20)

and y(tn) = xε(tn), ∀n ∈ N, in (3.1.11) it results, ∀n ∈ N

〈C(tn, x(tn)), xε(tn)− x(tn)〉m,s(tn) ≥ 0,

but, from the strict pseudo-monotonicity assumption on the function C(t, ·), uniformly
with respect to t ∈ [0, T ], it follows that

〈C(tn, xε(tn)), xε(tn)− x(tn)〉m,s(tn) > 0, ∀n ∈ N.

Then, from (3.1.20) we have

ε〈Jm(xε(tn)), x(tn)− xε(tn)〉m,s(tn) ≥ 0, ∀n ∈ N,

and proceeding as above, we have

‖xε(tn)‖m,a(tn),s(tn) ≤ C2, (3.1.21)

where C2 is a constant independent on ε and on n ∈ N. Therefore we have

xε(tn)→ x̃(tn), as ε→ 0, ∀n ∈ N,

with x̃(tn) ∈ K(tn) and such that

〈C(tn, x̃(tn)), y(tn)− x̃(tn)〉m,s(tn) ≥ 0, ∀y(tn) ∈ K(tn), ∀n ∈ N.

Since the solution to (3.1.11) is unique, it results

x̃(tn) = x(tn), ∀n ∈ N,

therefore we have
‖x(tn)‖m,a(tn),s(tn) ≤ C2, ∀n ∈ N.

Then, the sequence {x(tn)}n∈N is bounded, that implies the existence of a subsequence
denoted again by {x(tn)}n∈N, such that x(tn) ∈ K(tn), ∀n ∈ N, converging strongly in
Ω to an element x(t) of K(t), namely

x(tn)→ x(t), as n→ +∞.
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3.2 Projected Dynamical Systems in Weighted Hilbert Spaces

Taking into account the variational inequality

〈C(tn, y(tn)), y(tn)− x(tn)〉m,s(tn) ≥ 0, ∀y(tn) ∈ K(tn),

and passing to the limit as n→ +∞, it follows

〈C(t, y(t)), y(t)− x(t)〉m,s(t) ≥ 0, ∀y(t) ∈ K(t).

For the generalized version of Minty-Browder Lemma, we have that x(t) is a solution
to (3.1.10), since this variational inequality has a unique solution, it results

x(t) = x(t).

The same result holds for each subsequence and therefore

x(tn)→ x(t),

namely our assert. The proof is now complete.

3.2 Projected Dynamical Systems in Weighted Hilbert

Spaces

In this section we study the existence of solutions for a class of differential equa-

tions with discontinuous and non-linear right-hand side on the class of non-pivot Hilbert

spaces. This class of equations (called projected differential equations) was first intro-

duced in the form we use in Dupuis & Ishii (1990), however it has been other studies

of a similar formulation has been known since Aubin & Cellina (1984); Brezis (1967);

Henri (1973). The formulation of the flow of such equations as dynamical systems in Rn

is due to Dupuis & Ishii (1990); Dupuis & Nagurney (1993) and it has been applied to

study the dynamics of solutions of finite-dimensional variational inequalities in Dupuis

& Nagurney (1993); Nagurney & Zhang (1996).

Finite-dimensional variational inequalities theory provides solutions to a wide class

of equilibrium problems in mathematical economics, optimization, management science,

operations research, finance, etc. (see for example Aubin & Cellina (1984); Dafer-

mos (1980); Nagurney & Siokos (1997); Nagurney & Zhang (1996) and the references

therein). Therefore there has been a steady interest over the years in studying the sta-

bility of solutions to finite-dimensional variational inequalities (and consequently the
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3.2 Projected Dynamical Systems in Weighted Hilbert Spaces

stability of equilibria for various problems). In general, such a study is done by associ-

ating a projected dynamical system to a variational inequality problem, however in the

past few years the applied problems, as well as the theoretical results, have progressed to

a qualitative study of stability of solutions to variational inequality problems on Hilbert

spaces and even on Banach spaces. Examples of the kind of variational problems (and

their applications) can be found in (see Cojocaru (2007)-Cojocaru (2005),Barbagallo

(2007a); Barbagallo & Cojocaru (2009a,b); Cojocaru (2006); Daniele (2006); Isac &

Cojocaru (2002b); Johnston & Cojocaru (2008)) and the references therein).

In this paper we present a new step in this study: we show that a projected differ-

ential equation has solutions on a non-pivot Hilbert space of any dimension. We prove

the existence and uniqueness of integral curves and show they remain in a given con-

straint set of interest. As in the finite-dimensional case, a dynamics given by solutions

to a projected differential equation is interesting because it describes these problems as

dynamical systems. Moreover, as shown in this section, new results as been developped

for the study of the weighted traffic equilibrium problem (see Cojocaru & Pia (2008);

Giuffré & Pia (2009)). Our goal in this section is to present the mathematical tech-

niques involved in proving the existence of solutions to projected differential equations

in a non-pivot setting, which is in fact similar to the one in Cojocaru & Jonker (2004),

but adapted to a non-pivot space; in addition, there are a number of preliminary results

needed prior to obtaining our main result, which are remarkable since they also hold

in a larger setting, namely that of a reflexive Banach space (see the results in Giuffré

& Pia (2008); Giuffré et al. (2006b)). Last but not least, we also present a projected

system formulation called implicit. These kinds of systems have been introduced in

the literature in Noor (2003), but without any existence result being presented in their

case. We thus solve this additional problem as well.

3.2.1 PDS in pivot H-spaces

Let X be a pivot Hilbert space of arbitrary (finite or infinite) dimension and let

K ⊂ X be a non-empty, closed, convex subset. The following result has been shown

(see Cojocaru & Jonker (2004)).

Theorem 3.2.1. Let X be a Hilbert space and K be a non-empty, closed, convex subset.
Let F : K → X be a Lipschitz continuous vector field and x0 ∈ K. Then the initial
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3.2 Projected Dynamical Systems in Weighted Hilbert Spaces

value problem associated to the projected differential equation (PrDE)

dx(τ)
dτ

= πK(x(τ),−F (x(τ)), x(0) = x0 ∈ K (3.2.22)

has a unique absolutely continuous solution on the interval [0,∞).

This result is a generalization of the one in Nagurney (1993), where X := Rn, K

was a convex polyhedron and F had linear growth.

Definition 3.2.2. A projected dynamical system then is given by a mapping
φ : R+×K → K which solves the initial value problem: φ̇(t, x) = ΠK(φ(t, x),−F (φ(t, x)))
a.a. t, φ(0, x) = x0 ∈ K.

3.2.2 Existence of Solutions

In this subsection we show that, with minor modifications, the existence of PDS in

non-pivot H-spaces can be obtained. We first introduce non-pivot projected dynamical

systems (NpPDS) and then show their existence. In analogy with Cojocaru & Jonker

(2004) we first introduce

Definition 3.2.3. A non-pivot projected differential equation (NpPrDE) is a
discontinuous ODE given by:

dx(t)
dt

= πK(x(t),−(J−1 ◦ F )(x(t))) = PTK(x(t))(−(J−1 ◦ F )(x(t))). (3.2.23)

Consequently the associated Cauchy problem is given by:

dx(t)
dt

= πK(x(t),−(J−1 ◦ F )(x(t))), x(0) = x0 ∈ K. (3.2.24)

Next we define what we mean by a solution for a Cauchy problem of type (3.2.24).

Definition 3.2.4. An absolutely continuous function x : I ⊂ R→ X, such that{
x(t) ∈ K, x(0) = x0 ∈ K, ∀t ∈ I

ẋ(t) = πK(x(t),−(J−1 ◦ F )(x(t))), a.e. on I
(3.2.25)

is called a solution for the initial value problem (3.2.24).

Finally, assuming problem (3.2.24) has solutions as described above, then we are

ready to introduce:

28



3.2 Projected Dynamical Systems in Weighted Hilbert Spaces

Definition 3.2.5. A non-pivot projected dynamical system (NpPDS) is given
by a mapping φ : R+ ×K → K which solves the initial value problem:
φ̇(t, x) = ΠK(φ(t, x),−(J−1 ◦ F )(φ(t, x))), a.a. t, φ(0, x) = x0 ∈ K.

To end this section we show how problem (3.2.24) can be equivalently (in the sense

of solution set coincidence) formulated as a differential inclusion problem. Finally, in

subsection 3.2.3 we show that solutions for this new differential inclusion problem exist.

We introduce the following differential inclusion:

ẋ(t) ∈ J−1(−F (x)−NK(x)), x(0) = x0 ∈ K, (3.2.26)

and we call x : I ⊂ R→ X absolutely continuous a solution to (3.2.26) if{
x(t) ∈ K, x(0) = x0 ∈ K, ∀t ∈ I

ẋ(t) ∈ J−1(−F (x)−NK(x)), a.a. t.
(3.2.27)

We introduce also the following differential inclusion:

ẋ(t) ∈ J−1(−F (x)− ÑK(x)), x(0) = x0 ∈ K, (3.2.28)

where

ÑK(x) = {n ∈ NK(x) | ||n|| ≤ ||F (x)||}.

Obviously, we call x : I ⊂ R→ X absolutely continuous a solution to (3.2.28) if{
x(t) ∈ K, x(0) = x0 ∈ K, ∀t ∈ I

ẋ(t) ∈ J−1(−F (x)− ÑK(x)), a.a. t.
(3.2.29)

Proposition 3.2.6. The solution set of problem (3.2.24) coincides with the solution
set of problem (3.2.29).

Proof. (3.2.24) ⇒ (3.2.29). Let x(.) be an absolutely continuous function on K such
that x(.) is a solution to (3.2.24). Then x(t) ∈ K, ∀t ∈ T and ẋ(t) = πK(x(t),−(J−1 ◦
F )(x(t))), a.e. on I, therefore using (3.1.13) we get ẋ(t) = −J−1(F (x))−J−1PNK(x)(−F (x)),
a.e ∈ I. Evidently, PNK(x)(−F (x)) ∈ NK(x). Moreover as NK(x) is a closed, convex
cone, we get that

‖PNK(x)(−F (x))‖X∗ ≤ ‖ − F (x)‖X∗

(N0
K(x) = TK(x) and both contains 0). Therefore ∃ñK(x) ∈ ÑK(x), ñK(x) := PNK(x)(−F (x))

such that ẋ(t) = −J−1(F (x(t))−ñK(x)) for a.a t ∈ I so we have ẋ(t) ∈ −J−1(F (x(t))−
ÑK(x)) for a.a t ∈ I and x(.) is a solution to (3.2.29).
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3.2 Projected Dynamical Systems in Weighted Hilbert Spaces

(3.2.29) ⇒ (3.2.24).
As the trajectory remains in K it is clear that ẋ(t) ∈ TK(x(t)). First we show that

for almost all t ∈ I we have
ẋ(t) ∈ N⊥K(x(t)) (3.2.30)

Let us consider three different cases, first suppose that x(t) ∈ int(K), we have then
NK(x(t)) = {0X∗} and then N⊥K(x(t)) = X∗ and (3.2.30) is automatically satisfied.
Suppose now that x(t) ∈ ∂K and in x(t), ∂K is smooth. In that case TK(x(t)) is flat
and N⊥K(x(t)) ( TK(x(t)) with N⊥K(x(t)) not reduced to {0X∗}, if ẋ(t) /∈ N⊥K(x(t)) then
in a neighbourhood V(t) the trajectory x(t′), t′ ∈ V(t) goes in int(K) so we are in the
first case and we can exclude time t. Suppose now that x(t) ∈ ∂K and x(t) is in a corner
point. In that case N⊥K(x(t)) = {0} therefore if ẋ(t) = 0 (3.2.30) is satisfied. If ẋ(t) 6= 0
it means that x(t′) 6= x(t) for t′ ∈ V(t), with x(t′) in one of the tow previous cases, as
we can “exclude” time t, we have (3.2.30). As we can write ẋ(t) = J−1(−F (x)− ñK(x))
we have

〈J(ẋ(t))− JJ−1(−F (x)), ẋ(t)〉 = 0

Using the polarity between NK(x(t)) and TK(x(t)) and the variational principle (3.1.4)
we deduce (3.2.24).

3.2.3 Existence of NpPDS

In this section we show that problem (3.2.24) has solutions, and consequently that

NpPDS exist in the sense of Definition 3.2.4, by showing that problem (3.2.28) has

solutions, in the sense of (3.2.27). To obtain the main result of this paper, we need

some preliminary ones, according to the following steps:

1) we first prove the existence of a sequence of approximate solutions with “good”

properties such that

∀k ≥ k0, (xk(t), ẋk(t)) ∈ graph(J−1(−F − ÑK)) + M,

for any neighbourhood M of 0 in X ×X. This step constitutes Theorem 3.2.9;

2) we prove next that the sequence obtained in the first step converges to a solu-

tion of problem (3.2.28), and that it has a weakly convergent subsequence whose

derivative converges to ẋ(.).
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The methodology of the proofs is completely analogous to that used for pivot Hilbert

spaces in Cojocaru & Jonker (2004). Therefore we present the results with summary

proofs, pointing out where the they need to be updated for the case of a non-pivot H-

space. The main difference in all proofs is made by the presence of the linear mapping

J .

The main result can be stated as follows:

Theorem 3.2.7. Let X be a Hilbert space and X∗ its topological dual and let K ⊂ X

be a non-empty, closed and convex subset. Let F : K → X∗ be a Lipschitz continuous
vector field with Lipschitz constant b. Let x0 ∈ K. Then the initial value problem
(3.2.24) has a unique solution on R+.

Proof. Existence of a solution on an interval [0, l], l <∞.

For this part of the proof, we need two major results, as follows:

Proposition 3.2.8. Let X be a nonpivot H-space, X∗ its topological dual and K ⊂ X
a non-empty, closed and convex subset. Let F : K → X∗ be a Lipschitz continuous
vector field with Lipschitz constant b, so that on K∩BX(x0, L), with L > 0 and x0 ∈ K
arbitrarily fixed, we have ‖F (x)‖ ≤M := ‖F (x0)‖+ bL.

Then the set-valued mapping Np : K ∩BX(x0, L)→ R given by

x 7→ 〈F − ÑK(x), p〉

has a closed graph.

Proof. The proof is similar to the one in Cojocaru & Jonker (2004). We show first
that the mapping Np : K ∩ BX(x0, L) → R given by x 7→ 〈−ÑK(x), p〉 has a closed
graph. It is clear that for each p ∈ X, the set-valued map Np : K ∩ BX(x0, L) →
R maps K ∩ BX(x0, L) into 2[−M‖p‖,−M‖p‖]. Let {(xn, zn)}n ∈ graph(Np) such that
(xn, zn) → (x, z) ∈ X × 2[−M‖p‖,−M‖p‖]. We want to show that (x, y) ∈ graph(Np).
From zn ∈ graph(Np), for all n, we deduce that there exists yn ∈ −ÑK(xn) such that
zn = 〈yn, p〉. Since the set −ÑK(x) ⊂ BX∗(0,M) and BX∗(0,M) is weakly compact,
then there exists a subsequence ynk and y ∈ X∗ such that

ynk ⇀ y

for the weak topology σ(X∗, X∗∗)
by reflexivity

= σ(X∗, X), which is equivalent to

〈ynk , β〉 → 〈y, β〉,∀β ∈ X
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Suppose now that y /∈ −ÑK(x). This implies that at least one of the following two
alternatives should be satisfied:

1) There exists w ∈ K such that 〈y, w − x〉 < λ < 0

2) ‖y‖ > µ > ‖F (x)‖

In the first case as 〈ynk , β〉 → 〈y, β〉, ∀β ∈ X for k > k0 we have 〈ynk , w − x〉 < λ
2 .

But 〈ynk , w − xnk〉 = 〈ynk , w − x〉+ 〈ynk , x− xnk〉 and as xnk → x, there exists k1 > 0
such that ∀k ≥ k1, we have 〈ynk , x − xnk〉 ≤ ‖x − xnk‖ ‖ynk‖ <

|λ|
4MM = |λ|

4 . Thus
〈ynk , w − xnk〉 < λ

4 < 0, for all k > max(k0, k1). But this contradicts the fact that
ynk ∈ −ÑK(xnk).
In the second case as 〈ynk , β〉 → 〈y, β〉,∀β ∈ V , we have (Brezis (1993a), Propo-
sition III.12) ‖F (x)‖ < ‖y‖ ≤ lim infk→∞ ‖ynk‖ which is a contradiction because
yn ∈ −ÑK(xn), ∀n ∈ N. The continuity of F and the first part of the proof implies
that

x 7→ 〈F − ÑK(x), p〉

has non-empty, closed and convex values for each x ∈ K and has a closed graph.

The next result is constructing the sequence of approximate solutions for Problem
(3.2.28).

Theorem 3.2.9. Let X be a Hilbert space and X∗ its topological dual, let K ⊂ X be
a non-empty, closed and convex subset. Let F : K → X∗ be a Lipschitz continuous
vector field so that on K ∩ BX(x0, L), with L > 0 and x0 ∈ K, we have ‖F (x)‖ ≤
M := ‖F (x0)‖ + bL. Let l := L

M and I := [0, l]. Then there exists a sequence {xk(.)}
of absolutely continuous functions defined on I, with values in K, such that for all
k ≥ 0, xk(0) = x0 and for almost all t ∈ I, {xk(t)} and {ẋk(t)} (the sequence of its
derivatives) have the following property: for every neighbourhood M of 0 in X × X

there exists k0 = k0(t,M) such that

∀k ≥ k0, (xk(t), ẋk(t)) ∈ graph(−F − ÑK) + M

Proof. The proof, based on topological properties of the space X, can be found in
Cojocaru & Jonker (2004). However, given we are now working in non-pivot H-spaces,
then instead of
zp := PK(x− hpF (x)) we now construct zp := PK(x− hpJ−1 ◦ F (x)).
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Next we show that the sequence {xk(.)} built in Theorem 3.2.9 is uniformly con-
vergent to some x(.). Again, following closely Cojocaru & Jonker (2004), by Theorem
3.2.9 there exists a pair
(uk,−F (uk)− nk) ∈ graph(−F − ÑK) such that

xk(t)− uk(t) = ε1,k(t) and ẋk(t) + J−1(F (uk(t) + nk) = ε2,k(t)

where ε1,k(t) and ε2,k(t) are vector functions, not necessarily continuous, satisfying
‖ε1,k(t)‖ < εk and ‖ε2,k(t)‖ < εk where εk → 0 as k → ∞ and nk ∈ ÑK(uk) and
nm ∈ ÑK(um).
Let k,m be two indexes. Then we evaluate

1
2
d

dt
‖xk(t)− xm(t)‖2 = 〈J(ẋk(t)− ẋm(t)), xk(t)− xm(t)〉

= 〈−F (uk(t)) + F (xk(t)) + F (um(t))− F (xm(t)), xk(t)− xm(t)〉

+〈−F (xk(t)) + F (xm(t)), xk(t)− xm(t)〉

+〈−nk + nm, uk(t)− um(t)〉+ 〈−nk + nm,−uk(t) + xk(t) + um(t)− xm(t)〉

+〈J(ε1,k(t)− ε2,m(t)), xk(t)− xm(t)〉

But using the monotonicity of x 7→ NK(x), the isometry property of J and the b-
Lipschitz continuity of F we get that

1
2
d

dt
‖xk(t)−xm(t)‖2 ≤ b||xk(t)−xm(t)||2+(εk+εm)‖uk(t)−um(t)‖+(1+b)(εk+εm)‖xk(t)−xm(t)‖

We now let φ(t) := ‖xk(t)− xm(t)‖ so from the previous inequalities we get

φ̇(t)φ(t) ≤ bφ(t)2 + (εk + εm)[(1 + b)φ(t) + 2M ]

Using the same technique as in Cojocaru & Jonker (2004) we get

φ(t)2 ≤ a

b
(εk + εm)(e−2bt − 1) ≤ a

b
(εk + εm)(e−2bl − 1)

where l is the length of I. So the Cauchy criteria is satisfied uniformly and we get the
conclusion.

From the previous step we know that {xk(.)} is uniformly convergent to x(.) and
as (xk(t), ẋ(t)) ∈ graph(−F − ÑK + M), we now deduce that there exists a θ such
that ‖ẋ(t)‖ ≤ θ. Using the arguments in Cojocaru & Jonker (2004) and the result of
S.Heikkila (1994), we deduce the existence of a subsequence of {xk} weakly∗-convergent
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to ẋ(.) ∈ L∞(I,X).

Finally, we finish this part of the proof by showing that x(.) is indeed a solution of
the differential inclusion (3.2.28). From Theorem 3.9, for each k ≥ k0 and almost every
t ∈ I there exists a pair

(uk(t), vk(t)) ∈ graph(−F − ÑK)

such that ‖xk(t) − uk(t)‖ < εk and ‖ẋk(t) − vk(t)‖ < εk where εk → 0 when k → ∞.
Let p ∈ X arbitrarily fixed. Then for almost all t ∈ I

(uk(t), 〈vk(t), p〉) ∈ graph(〈−F − ÑK , p〉)

and
‖〈ẋk(t), p〉 − 〈vk(t), p〉‖ ≤ ‖p‖εk.

So uk(t) → x(t) for every t ∈ I and 〈vk(t), p〉 → 〈ẋk(t), p〉 for almost all t ∈ I. By
Proposition 3.8, we know that graph(〈−F − ÑK , p〉) is closed, so it follows that for
almost all t ∈ I,

(x(t), 〈ẋk(t), p〉) ∈ graph(〈−F − ÑK , p〉).

Since the set F (x(t))− ÑK(x(t)) is convex and closed it follows that

ẋ(t) ∈ J−1(−F (x(t)− ÑK)(x(t)).

By Proposition 3.2.8, x(t) is a solution of Problem (3.2.25).
Uniqueness of solutions on [0, l]

Step 4: x(.) is the unique solution. Suppose that we have two solutions x1(.) and x2(.)
starting at the same initial point. For any fixed t ∈ I we get

1
2
d

dt
‖x1(t)− x1(t)‖2 = 〈J(ẋ1(t)− ẋ2(t)), x1(t)− x2(t)〉

= 〈J(ẋ1(t))− J(ẋ2(t)), x1(t)− x2(t)〉

≤ ‖J−1(−F (x1(t)) + F (x2(t))), x1(t)− x2(t) >≤ b‖x1(t)− x2(t)‖2

because the metric projection is a nonexpansive operator in X, J is a linear isometry
and F is b-Lipschitz. By Gronwall’s inequality we obtain ‖x1(t) − x2(t)‖2 ≤ 0, so we
have x1(t) = x2(t) for any t ∈ I.

Existence of solutions on R+.
From above we can assert the existence of a solution to Problem (3.2.24) on an interval
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[0; l], with b > 0 fixed and L > 0 arbitrary. We note that we can choose L such that
l ≥ 1

1+b in the following way: if ||F (x0)|| = 0 we let L = 1 and if ||F (x0)|| 6= 0, then
we let L ≥ ||F (x0)||. In both cases we obtain l ≥ 1

1+b . Therefore beginning at each
initial point x0 ∈ K problem (3.2.24) has a solution on an interval of length at least
[0; 1

1+b ]. Now if we consider problem (3.2.24) with x0 = x( 1
1+b), applying again all the

above, we obtain an extension of the solution on an interval of length at least 1
1+b . By

continuing this solution we obtain a solution on [0,∞).

3.2.4 Implicit Projected Dynamical System

3.2.4.1 Introduction and Existence

In this section we consider a generic Hilbert space X, where generic is taken to

mean that the dimensionality could be either finite or infinite, and the space could be

either a pivot or a non-pivot space. Let us introduce the following definition:

Definition 3.2.10. Let X be a generic H-space and K ′ ⊂ X be a non-empty, closed
subset. Consider a pair (g,K) such that K is convex and g : K ′ → K = r(K ′) ⊂ X, is
continuous, injective, and g−1 is Lipschitz continuous. Consider F : X → X∗ satisfying
(F ◦ g)(y) = F (y), ∀y ∈ K ′. Then the pair (g,K) is called a convexification pair of

(F,K ′).

Example. Here is an example of such a convexification pair in R2. Let K ′ =

{(x, y) ∈ R2 | 0 ≤ x ≤ 1, 0 ≤ y ≤ x} and g be the map of K ′ into K = [0, 1] × [0, 1],

namely

g(x, y) = (x,
2

1 + x
y +

1− x
1 + x

)

We can easily check that g is continuous and monotone. Now take F to be F (x, y) =

(x, a), where a is an arbitrary constant in R. Then we have F◦g(x, y) = (x, a) = F (x, y).

We now introduce another type of a projected equation as follows:

Definition 3.2.11. Let X be a generic H-space and K ′ ⊂ X be a non-empty, closed
subset. An implicit projected differential equation (ImPrDE) is a (PrDE) given
by (3.2.23) where x(t) := g(y(t)), g : K ′ → K ⊂ X, i.e.

dg(y(t))
dt

= PTK(g(y(t)))(−J−1 ◦ F ◦ g(y(t))). (3.2.31)
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The motivation for the introduction of such an equation comes from the desire to

study the dynamics on a set K ′ ⊂ X, where K ′ could be non-convex, and to study as

well some dynamic problems on a so-called translated set (see Application 3.2.21).

Considering now an equation (3.2.31) and a convexification pair (g,K) of a nonempty,

closed K ′ ⊂ X, then the Cauchy problem associated to (3.2.31) and the pair (g,K) is

given by:
dg(y(t))
dt

= πK(g(y(t)),−(J−1 ◦ F |K′)(y(t)), g(y(0)) = x0 ∈ K. (3.2.32)

Next we define what we mean by a solution for a Cauchy problem of type (3.2.32).

Definition 3.2.12. An absolutely continuous function y : I ⊂ R→ X, such that{
y(t) ∈ K ′, g(y(0)) = x0 ∈ K, ∀t ∈ I
dg(y(t))
dt = πK(g(y(t)),−(J−1 ◦ F |K′)(y(t))), a.e. on I

(3.2.33)

is called a solution for the initial value problem 3.2.32.

We claim that problem (3.2.32) has solutions by Theorem 3.2.9. It is obvious that

by a change of variable x(.) := g(y(.)), problem (3.2.32) has solutions on K, in the

sense of Definition 3.2.4. But since g is assumed continuous and strictly monotone,

then g is invertible and so y(.) = g−1(x(.)); moreover, we see that such a y is a solution

to problem (3.2.32) in the above sense.

Now we are ready to introduce:

Definition 3.2.13. An implicit projected dynamical system (ImPDS) is given
by a mapping φ : R+ ×K ′ → K which solves the initial value problem:

φ̇(t, g(y(t))) = ΠK(φ(t, g(y(t))),−(J−1 ◦ F )(φ(t, y(t))), a.a. t, φ(0, g(y(0))) = x0 ∈ K
(3.2.34)

where (g,K) is a convexification pair.

Theorem 3.2.14. Let X be a generic Hilbert space, and let K
′

be a non-empty closed
subset of X. Let K be non-empty, closed and convex, g : K

′ → K be continuous and
strictly monotone, and F : K

′ → X be Lipschitz continuous such that (F ◦ g)|K′ = F .
Let also x0 ∈ K and L > 0 such that ‖x0‖ ≤ L. Then the initial value problem (3.2.32),
has a unique solution on the interval [0, l], where l = L

‖F (x0)‖+bl

Proof. The proof consists in the modification of a few easy steps of the proof given in
Cojocaru & Jonker (2004) combined with the results exposed in section 3.2.2 of the
present Chapter.
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3.2.4.2 Applications

The relation between an ImPDS and a VI problem is more interesting, as has been

considered before in the literature, but with superfluous conditions on the projection

operator PK .

We describe this relation next.

Definition 3.2.15. Let X be a generic H-space and K ′ ⊂ X be a non-empty, closed
subset. Let F : X → X∗ be a mapping. Then we call g-variational inequality on the set
K ′ the problem of

finding y ∈ K ′, < F ◦ g(y), z − g(y) >≥ 0, ∀z ∈ K (3.2.35)

where (g,K) is a convexification pair of (F,K
′
).

We highlight the importance of the relation F ◦ g(y) = F (y) from Definition 3.2.10

in order for the inequality (3.2.35) to make sense. Under (3.2.10) we can rewrite (3.2.35)

as

find y ∈ K ′, < F (y), z − g(y) >≥ 0, ∀z ∈ K (3.2.36)

Remark 3.2.16. In Noor (2003), inequality (3.2.36) is considered in an usual Hilbert
space (pivot) and is called a “general variational inequality”. We prefer to use the term
“g-variational inequality” in relation to (3.2.36), in order to avoid confusion with the
commonly accepted “generalized variational inequality” which involves multi-mappings.

Theorem 3.2.17. If the problems (3.2.36) and (3.2.32) admit a solution, then the
equilibrium points of (3.2.36) coincide with the critical points of (3.2.32).

Proof. Suppose x∗ ∈ K ′ is a solution of (3.2.36); then by definition we have

< F (y∗), z − g(y∗) >≥ 0, ∀z ∈ K

so by multiplying by a strictly positive constant λ and using the bilinearity of the inner
product we get

< −F (y∗), z >≤ 0, ∀y ∈ TK(g(y∗))

so we deduce that −F (y∗) ∈ NK(g(y∗)); using the decomposition theorem (3.1.11) we
get PTK(g(y∗))(−J−1F (y∗)) = 0 and so y∗ is a critical point of (3.2.32).

Now suppose that y∗ is a critical point of (3.2.32); then by definition we have

PTK(g(y∗))(−J−1F (y∗)) = 0

37



3.2 Projected Dynamical Systems in Weighted Hilbert Spaces

and by the decomposition theorem we get −F (y∗) ∈ NK(g(y∗)). By the definition of
the normal cone to K in g(y∗), the following inequality is satisfied

< −F (y∗), z − g(y∗) >≤ 0,∀z ∈ K

which is exactly (3.2.36).

Let X be a generic H-space, D closed, convex, nonempty in X. Let K : D → 2X

with K(x) convex for all x ∈ D and F :→ 2X
∗

a mapping. Let us introduce the

following variational inequality:

find x ∈ K(x), 〈F (x), y − x〉 ≥ 0, ∀y ∈ K(x). (3.2.37)

Note that in this case the set in which we are looking for the solution depends on x.

For problem (3.2.37) we can refer to Tian & Zhou (1991) or to Section B.6.2 for an

existence result. In order to study the disequilibrium behavior of (3.2.37), we introduce

now the following projected differential equation.

Definition 3.2.18. We call projected dynamical system associated to the quasi-variational
inequality (3.2.37) the solution set of the projected differential equation

dx(t)
dt

= lim
δ→0+

PK(x)(x− δJ−1F (x))− x
δ

= PTK(x)(x)(−J−1F (x)), x(0) = x0 ∈ K

Remark 3.2.19. In general there are no existence results for problem (3.2.18). An
existence result for a particular case of (3.2.18) has been given in Noor (2003), assuming
the following fact:

Assumption 3.2.20. Let X be a pivot H-space. For all u, v, w ∈ X, PK(u) satisfies
the condition

‖PK(u)(w)− PK(v)(w)‖ ≤ λ‖u− v‖ (3.2.38)

where λ > 0 is a constant.

However, this assumption fails to be true. One counterexample is as follows. We
denote by C a closed convex set and we take u, v ∈ C; we denote by K(u) = TC(u) and
by K(v) = TC(v) the tangent cones of C at u and v.

In fact, w ∈ X can only be chosen in one of the following four situations:

1. w ∈ K(u)
⋂

K(v)
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2. w ∈ K(u) \K(v)

3. w ∈ K(v) \K(u)

4. w ∈ X \ (K(u)
⋃

K(v))

Suppose now that we have w ∈ K(u)\K(v); then by Moreau’s decomposition theorem
we get

‖PK(u)(w)− PK(v)(w)‖ = ‖w − PK(v)(w)‖ = ‖PNC(v)(w)‖ ≤ λ‖u− v‖ (3.2.39)

where NC(v) is the normal cone of C at v. Consider now X = R2, C = [0, ε]2, u = (0, 0)
and v = (ε, ε). It is clear that we have the following:

TC(u) = R2
+ (3.2.40)

TC(v) = R2
− (3.2.41)

NC(v) = R2
+ = TC(u) (3.2.42)

So for any w ∈ NC(v) we get

‖w‖ ≤ λ‖u− v‖ =
√

2ελ.

Since w is arbitrary, let now w := µw, for any µ > 0. Then

‖µw‖ ≤ λ‖u− v‖ =
√

2ελ

should be true for any µ > 0. However this does not hold.

Application 3.2.21. Consider now the special case of a set-valued mapping K which
is the translation of a closed, convex subset K:

K : x→ K + v(x)

where v(x) is a vector linearly dependant on x, then problems (3.2.37) and (3.2.18)
can be studied, under certain conditions, respectively as a g-VI and an implicit PDS as
shown bellow.
If K(x) = K + p(x) as done by Noor in Noor (2003) we have the following equivalent
formulations:

dx(t)
dt

= PTK+p(x)(x)(−J−1F (x))

= PTK (g(x))(−J−1F (x)), x(0) = x0 ∈ K (3.2.43)
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where g(x) = x−p(x), assuming F (g(x)) = F (x−p(x)) = F (x). We can observe that if
dp(x)
dt = 0, then (3.2.43) is equal to the implicit projected differential equation (3.2.31),

and therefore Theorem 3.2.14 provide an existence result without assuming any kind of
Lipschitz condition of the projection operator.

Figure 3.2: Simple Representation of Existence results

3.3 Extensions to Strictly Convex and Smooth Banach

Spaces

3.3.1 Introduction to Generalized Projection

We denote by X a Banach space with dual space X∗ and by ‖.‖ and ‖.‖∗ the

respective norms. We denote also the duality pairing between X∗ and X by < f, x >

for f ∈ X∗ and x ∈ X, < x, f > the duality pairing between X∗ and X for f ∈ X∗

and x ∈ X.

We define the duality mapping J : X → X∗ by

J(x) = {f ∈ X∗ :< f, x >= ‖f‖2∗ = ‖x‖2}, ∀x ∈ X

In the same manner we have the duality mapping J∗ : X∗ → X defined by:

J∗(f) = {x ∈ X :< x, f >= ‖x‖2 = ‖f‖2∗}, ∀f ∈ X∗
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The existence of J and J∗ is a corollary of the Hahn-Banach analytic form (see for

instance Brezis (1993b)).

Remark 3.3.1. If X is an Hilbert space, we have J = IdX = J∗.

Example 3.3.2. If X = Lp(Ω,R) with 1 < p <∞ then

J(x) = ‖x‖2−p|x|p−1sgn(x)

and
J∗(x) = ‖x‖

p−2
p−1 |x|

1
1−p sgn(x)

where sgn(x) = χ[x>0] − χ[x<0].
This result could be usefully applied to Time Dependent Traffic Equilibria problems (see
Daniele et al. (1999a)).

Now we recall two definitions we need in the sequel.

Definition 3.3.3 (see Diestel (1975)). A space (X, ‖.‖) is strictly convex if

∀x ∈ X, ∀y ∈ X : ‖x‖ = ‖y‖ = 1, x 6= y ⇒ ‖tx+ (1− t)y‖ < 1, ∀t ∈]0, 1[

Let us denote by S(X) = {x ∈ X : ‖x‖ = 1}.

Definition 3.3.4 (see Diestel (1975)). A Banach space X is said to be smooth at
x0 ∈ S(X) whenever there exists a unique f ∈ S(X∗) such that f(x0) = 1. If X is
smooth at each point of S(X) then we say that X is smooth.

From Diestel (1975) we have also the following characterization criteria: A Banach

space (X, ‖.‖) is smooth if and only if the norm ‖.‖ admits a Gâteaux derivative in

each direction.

Remark 3.3.5. Hilbert spaces and Lp spaces (1 < p <∞) are reflexive, strictly convex
and smooth.

From Barbu & Precapanu (1978) we know that if we have X reflexive, strictly

convex and smooth then J , J∗ are one-to-one single-valued operators and J−1 = J∗.

More precisely we have:

• X is reflexive if and only if J is surjective;

• X is smooth if and only if J is single-valued;
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• X is strictly convex if and only if J is injective.

Besides the notion of projection operator in Hilbert space, it is possible to give an

effective projection operator definition in a more general framework. Let us recall the

following definition of metric projection operator (for more details see for instance Song

& Cao (2004)).

Definition 3.3.6 (see Song & Cao (2004)). Let X be a Banach space and K a closed
convex subset of X. We call the metric projection operator from X on K the set valued
mapping π(K|.) : X → C defined by

x→ π(K|x) = {y ∈ K : ‖x− y‖ = dK(x)}

where dK(x) = infz∈K ‖x− z‖.

Note that for x ∈ K, π(K|x) is the set of optimal solution of the following mini-

mization problem:

inf
y∈C
‖x− y‖2 (3.3.44)

From now on and unless otherwise stated, we make the following assumptions: X re-

flexive, strictly convex and smooth Banach space.

Then these additional assumptions ensure that π(K|.) = PK(.) is single valued and PK
is called the best approximate operator. Moreover we have the following characteriza-

tion of PK(x):

x̄ = PK(x)⇔< J(x− x̄), y − x̄ >≤ 0, ∀y ∈ K (3.3.45)

As an extension of what we have on Hilbert spaces, (3.3.45) is called the basic varia-

tional principle for PK in X. This characterization plays a fundamental role for our

application.

Another possibility to generalize the notion of projection is to use, as done by Alber

in Alber (1996), the Lyapunov function.

The Lyapunov function is the strictly convex function in y, V (x, y) given by:

V (x, y) := ‖x‖2 − 2 < J(x), y > +‖y‖2

We remark that if K is a closed convex subset of X and if x ∈ K then the problem

min
y∈K

V (x, y)

is uniquely solvable (apply for instance Brezis (1993b),Corollary III.20), then we can

give the following definition:
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Definition 3.3.7 (see Alber (1996) or Song & Cao (2004)). We call generalized pro-
jection of x on C the following value:

ΠK(x) := argmin
y∈K

V (x, y)

Remark 3.3.8 (see Alber (1996)).

• The operator ΠK : X → K ⊂ X is the identity on K, i.e. for every x ∈
K,ΠK(x) = x.

• In a Hilbert space, V (x, y) = ‖x− y‖2, ΠK coincides with the projection operator
PK .

As stated in Alber (2000) we have the following characterization of ΠK(x).

Lemma 3.3.9. Assume that K is a closed convex subset of X, then:

x̂ = ΠK(x)⇔< J(x)− J(x̂), y − x̂ >≤ 0, ∀y ∈ K (3.3.46)

Here again the variational characterization plays a fundamental role for our appli-

cation.

From Corollary 1, page 22, Diestel (1975) we know that if X is reflexive then:

X strictly convex ⇔ X∗ smooth,

X smooth ⇔ X∗ strictly convex.

3.3.2 Set-up the problem on Strictly convex and smooth Banach Spaces

3.3.2.1 Set-up

Our aim is to introduce in the framework of Reflexive, smooth, and strictly convex

Banach space an operator with a lot of properties of πK(x,−F (x)) and apply this new

framework. We propose the following new definitions:

Definition 3.3.10. We call the Metric Projected Dynamical System the operator

ΛmK : K ×X∗ → X

defined by setting:
ΛmK(x, h) = PTK(x)(J

∗(h))
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Figure 3.3: Geometrical Relationships
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So we can define as done in Nagurney (1993) and in Cojocaru et al. (2005) the

differential equation with a discontinuous right hand side.

Definition 3.3.11. We call M-Projected Dynamical System (m-PDS), the discontinu-
ous right hand side differential equation given by:

dx

dt
= ΛmK(x,−F (x)) = PTK(x)(J

∗(−F (x))) (3.3.47)

where F is a mapping from K → X∗.

Consequently the associated Cauchy problem is given by:

dx

dt
= ΛmK(x,−F (x)) = PTK(x)(J

∗(−F (x))), x(0) = x0 ∈ K (3.3.48)

Definition 3.3.12. We call the Generalized Projected-Dynamical System the operator

ΛgK : K ×X∗ → X

defined by setting:
ΛgK(x, h) = ΠTK(x)(J

∗(h))

Definition 3.3.13. We call Generalized Projected Dynamical System (g-PDS), the
discontinuous right hand side differential equation given by:

dx

dt
= ΛgK(x,−F (x)) = ΠTK(x)(J

∗(−F (x))) (3.3.49)

where F is a mapping from K → X∗.

The associated Cauchy problem is given by:

dx

dt
= ΛgK(x,−F (x)) = ΠTK(x)(J

∗(−F (x))), x(0) = x0 ∈ K (3.3.50)

3.3.2.2 Decomposition Theorem

In this section we provide a result proved in (Alber (2000)) which generalize Moreau’s

Theorem (see Moreau (1962)).

Theorem 3.3.14. [Alber (2000), Theorem 2.4] Assume that X is a real reflexive strictly
convex and smooth Banach space, and C a non-empty, closed and convex cone of X
then: ∀x ∈ X and ∀f ∈ X∗ the decompositions

x = PC(x) + J∗ΠC0J(x) and < ΠC0J(x), PC(x) >= 0

f = PC0(f) + JΠCJ
∗(f) and < PC0(f),ΠCJ

∗(f) >= 0 (3.3.51)

hold.
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Remark 3.3.15. If X is an Hilbert space the decomposition x = PC(x) + J∗ΠC0J(x)
reduces to x = PC(x) + PC0(x).

Corollary 3.3.16. For each v ∈ X∗ we have:

ΛmK(x, v) = J∗(v)− J∗ΠNK(x)(v) (3.3.52)

Proof: From Theorem 3.3.14 with K = TK(x) and K0 = NK(x), we get:

J∗(v) = PTK(x)(J
∗(v)) + J∗ΠNK(x)J(J∗(v))

as JJ∗ = IdX∗ and PTK(x)(J∗(v)) = ΛmK(x, v) we deduce immediately the result.

Corollary 3.3.17. For each v ∈ X∗ we have:

ΛgK(x, v) = J∗(v − PNK(x)(v)) (3.3.53)

Proof: From Theorem 3.3.14 with C = TK(x) and C0 = NK(x), we get:

v = PNK(x)(v) + JΠTK(x)(J
∗(v)).

As ΠTK(x)(J∗(v)) = ΛgK(x, v) we deduce immediately the result.

3.3.2.3 Equivalence Theorems

We present the main results of our work, namely we show that the critical points

of m − PrDS (3.3.47) and g − PrDS (3.3.49) are the equilibrium points of following

variational inequality:

x ∈ K : < F (x), v − x > ≥ 0, ∀v ∈ K (3.3.54)

where F : K → X∗.

Let us recall some results regarding the existence of equilibria for (3.3.54). There are

two standard approaches to the existence of equilibria, namely, with and without a

monotonicity requirement.

We shall employ the following definitions.

Definition 3.3.18. (see Daniele et al. (1999a)) Let E be a real topological vector space,
K ⊂ E convex. Then F : K → E∗ is said to be:
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(i) pseudomonotone iff, for all x, y ∈ K, < F (x), y − x >≥ 0⇒< F (y), x− y >≤ 0;

(ii) hemicontinous iff, for all y ∈ K, the function ξ →< F (ξ), y − ξ > is upper semi-
continous on K;

(iii) hemicontinous along line segments iff, for all x,y ∈ K, the function ξ →< F (ξ), y−
x > is upper semicontinous on the line segment [x, y].

Then we have the following result, se also Section B.4

Theorem 3.3.19. (see Daniele et al. (1999a)) Let E be a real topological vector space,
and let K ⊆ E be convex and nonempty. Let F : K → E∗ be given such that:

(i) there exist A ⊆ K, compact, and B ⊆ K compact, convex such that, for every
x ∈ K \A, there exists y ∈ B with < F (x), y − x >< 0;
either (ii) or (iii) below holds:

(ii) F is hemicontinous;

(iii) F is pseudomonotone and hemicontinous along line segments.

Then, there exists x̄ ∈ A such that < F (x̄), y − x̄ >≥ 0, for all y ∈ K.

Theorem 3.3.20. Assume that the hypotheses of Theorems (3.3.14) and (3.3.19) hold.
Then each equilibrium point of (3.3.54) is a critical point of (3.3.47) and, if (3.3.47)
admits critical points then they are equilibrium points of (3.3.54).

Proof. Let x∗ be a solution of (3.3.54), since J is bijective there exists an unique ux∗ ∈ X
such that −F (x∗) = J(ux∗).
So we have

< −J(ux∗), x− x∗ >≥ 0, ∀x ∈ K

and then
< −J(ux∗), λ(x− x∗) >≥ 0, ∀x ∈ K ∀λ > 0

which is equivalent to write:

< J(ux∗ − 0X), y − 0X >≤ 0, ∀y ∈ TK(x∗)

So using the variational principle (3.3.45) for PTK(x∗) we get

PTK(x∗)(ux∗) = 0X = PTK(x∗)(J
∗(−F (x∗)))
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and we deduce that x∗ is a critical point of (3.3.47).�

Now suppose that x∗ is a critical point of (3.3.47).
We have PTK(x∗)(J∗(−F (x∗))) = 0X and by Corollary 3.3.16 we get

J∗(−F (x∗)) = J∗ΠNK(x∗)(−F (x∗))

as (J∗)−1 = J we get
−F (x∗) = ΠNK(x∗)(−F (x∗))

If x∗ ∈ ri(K): then NK(x∗) = 0X∗ so we get:

ΠNK(x∗)(w) = Π0X∗ (w) = 0X∗ = −F (x∗), ∀w ∈ X∗

so we deduce that x∗ is solution of (3.3.54).

If x∗ ∈ rb(K) and J∗(−F (x∗)) /∈ TK(x∗) we get NK(x∗) 6= 0X∗ and taking into
account that −F (x∗) = ΠNK(x∗)(−F (x∗)), we deduce that −F (x∗) ∈ NK(x∗) and so,
using the definition of NK(x∗) we obtain

< F (x∗), x− x∗ >≥ 0, ∀x ∈ K

which implies that x∗ is solution of (3.3.54).

If x∗ ∈ rb(K) and J∗(−F (x∗)) ∈ TK(x∗) we derive immediately

PTK(x∗)(J
∗(−F (x∗))) = 0X = J∗(−F (x∗))

but J∗ is an isometry and so −F (x∗) = 0X∗ . Then again x∗ is solution of (3.3.54).

Remark 3.3.21. In the previous proof, it is possible to avoid the use of ri(K), but this
notion permits to have an easier approach to geometrical aspects of the theorem.

Theorem 3.3.22. Assume that the hypotheses of Theorems (3.3.14) and (3.3.19) hold.
Then each equilibrium point of (3.3.54) is a critical point of (3.3.49) and, if (3.3.49)
admits critical points then they are equilibrium points of (3.3.54).

Proof. Let x∗ be a solution of (3.3.54), since J is bijective there exists an unique ux∗ ∈ X
such that −F (x∗) = J(ux∗).
So we have

< −J(ux∗), x− x∗ >≥ 0, ∀x ∈ K
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and then
< −J(ux∗), λ(x− x∗) >≥ 0, ∀x ∈ K ∀λ > 0,

which is equivalent to write:

< J(ux∗)− J(0X), y − 0X >≤ 0, ∀y ∈ TK(x∗).

So using the variational principle (3.3.46) for ΠTK(x∗) we get

ΠTK(x∗)(ux∗) = 0X = ΠTK(x∗)(J
∗(−F (x∗)))

from which we deduce that x∗ is a critical point of (3.3.49).

Now suppose that x∗ is a critical point of (3.3.49).
ΠTK(x∗)(J∗(−F (x∗))) = 0X and by Corollary 3.3.17 we get

J∗(−F (x∗)− PNK(x∗)(−F (x∗))) = 0X ⇔ −F (x∗) = PNK(x∗)(−F (x∗))

If F (x∗) = 0X∗ then (3.3.54) is trivially verified. Now we suppose that F (x∗) 6= 0X∗ .
Then as −F (x∗) = PNK(x∗)(−F (x∗)) we get −F (x∗) ∈ NK(x∗) which means

< −F (x∗), y − x∗ >≤ 0, ∀y ∈ K

and this is exactly (3.3.54).

3.3.2.4 Projected Dynamical Systems, Unilateral Differential Inclusions

We consider also the two following differential inclusions:

−ẋ ∈ J∗(F (x) +NTK(x)(ẋ)) (3.3.55)

−ẋ ∈ J∗(F (x) +NK(x)) (3.3.56)

Proposition 3.3.23. Let C be a non empty closed convex cone of X. For any s and v
in X the following relations are equivalent:

s = ΠC(v) (3.3.57)

J(v)− J(s) ∈ NC(s) (3.3.58)
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s ∈ C, J(v)− J(s) ∈ Co, < J(v)− J(s), s >= 0 (3.3.59)

J(v)− J(s) ∈ Co, and ∀ν ∈ Co, ‖s‖2 ≤< J(v)− ν, s > (3.3.60)

Proof. : Using the variational characterization of the generalized projection operator
(3.3.46) we get that (3.3.57) is equivalent to:

s ∈ C, < J(v)− J(s), y − s >≤ 0,∀y ∈ C

and by definition of a normal cone we get (3.3.58). Before the next step, first let us
prove that NC(s) = Co ∩ {s}⊥.
By definition of NC(s), Co and {s}⊥ we get immediately that Co ∩ {s}⊥ ⊂ NC(s).
Now suppose that y ∈ NC(s) then we have

< y, η − s >≤ 0, ∀η ∈ C

If < y, η >> 0, as C is a cone, we get ∀λ > 0, < y, λη >≤< y, s > which implies a
contradiction. Then < y, η >≤ 0 and y ∈ Co. As s ∈ C we get < y, s >≤ 0 and as
0 ∈ C we conclude that < y, s >= 0 and y ∈ {s}⊥. From the previous result we can
conclude that

J(v)− J(s) ∈ NC(s)⇔ s ∈ C, J(v)− J(s) ∈ Co, < J(v)− J(s), s >= 0

Now suppose that (3.3.59) holds, take ν ∈ Co, as < ν, s >≤ 0 =< J(v)− J(s), s > we
get < ν, s >≤< J(v), s > − < J(s), s > and by definition of J we get:

‖s‖2 ≤< J(v)− ν, s >, ∀ν ∈ Co

Now suppose that (3.3.60) holds, in particular we get

< ν, s >≤< J(v), s > −‖s‖2,∀ν ∈ Co

If < ν, s >> 0 we have a contradiction. In fact < ν, s > is bounded by < J(v), s >
−‖s‖2 and Co is a cone, so we get that < ν, s >≤ 0, ∀ν ∈ Co

But J(v) − J(s) ∈ Co then < J(v) − J(s), s >≤ 0 if we take ν = 0 in (3.3.60) we get
exactly (3.3.59).

Remark 3.3.24. A proof of the previous result in Rn space can be found in Acary et al.
(2004).

50



3.4 Extensions to Reflexive Banach Spaces

Corollary 3.3.25. The following statements are equivalent:

ẋ = ΠTK(x)(J
∗(−F (x))) (3.3.61)

−ẋ ∈ J∗(F (x) +NTK(x)(ẋ)) (3.3.62)


−ẋ ∈ J∗(F (x) +NK(x))

−ẋ = J∗(F (x) + PNK(x)(−F (x))
−ẋ = J∗(PNK(x)+F (x)(0))

(3.3.63)

Proof. We apply Proposition 3.3.23 with C = TK(x), v = J∗(−F (x)) and s = ẋ, so we
get immediately (3.3.61) from (3.2.23). From (3.3.58) we get

JJ∗(−F (x))− J(ẋ) ∈ NTK(x)(ẋ)

As JJ∗ = IdX∗ we have the equivalence with (3.3.62).
From Albert’s theorem we deduce that (3.3.61) is equivalent to

ẋ = J∗(−F (x)− PNK(x)(−F (x)))

so using the variational principle for metric projection we get:

< J∗(−F (x) + J(ẋ) + F (x)), y + J(ẋ) + F (x) >≤ 0, ∀y ∈ NK(x)

and this is equivalent to
−ẋ = J∗(PNK(x)+F (x)(0))

And this means that the vector J(−ẋ) is of minimum norm in (F (x) +NK(x)).

3.4 Extensions to Reflexive Banach Spaces

In July 1977, in Zarantonello (1977), the author introduces the concept of projectors

on convex sets in reflexive Banach spaces, in the report an extension to Reflexive Banach

spaces of the results obtained in Zarantonello (1971) is explored but unfortunately

the theory obtained is it not satisfactory as in Hilbert spaces. In fact in the report

Zarantonello explores the possibility to extend the process of compounding canonical

projectors through integration (i.e. Spectral synthesis) to bigger spaces than Hilbert

spaces, but the path is not easy at all, nevertheless the paper contains very interesting

results such as the definition of the projectors on convex sets in Reflexive Banach
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spaces and also interpretations of such projectors, decompositions theorems and other

interesting results which has been obtained independently (but in a subclass of Banach

spaces as remind in the previous section 3.3.2 in Alber (1996). The main goal of

this section is to remind (and provide some proofs) and see how we can set up a pre-

equilibrium analysis in reflexive Banach Spaces. The section contains only a part of the

work done by Zarantonello which primarily goal was to extend his theory of spectral

synthesis onver cones to reflexive Banach spaces . The criteria for the selection is

based on the actual knowledge of PDS theory, that means we have included the results

that we think are useful to prove some existence theorem. Sometimes we compare the

results obtained by Zarantonello and we rewrite them in the context of strictly convex

and smooth Banach spaces. As the goal of Zarantonello and Alber were different it is

difficult to compare their work. Roughly speaking we can say that the work done by

Alber is more analytic (he obtained very interesting estimates) and the work done by

Zarantonello is more geometric. Anyway what we can say, is that Alber’s contributions

have more impact on existing literature. At last but not least, the decision to dedicate

a section to the work of Zarantonello is not only guided by a functional need, but we

sincerely hope this will contribute in a certain way to rediscovered part of Zarantonello’s

work.

3.4.1 Introduction to Projectors in Reflexive Banach Spaces

Let X be a reflexive Banach space, J denotes as previously the duality mapping of

X onto X∗, therefore we have:

J : X → 2X
∗

(3.4.64)

J(x) = {x∗ ∈ X∗|〈x∗, x〉 = ||x||2 = ||X∗||2X∗} (3.4.65)

we introduce also J−1 the duality mapping of X∗ onto X,

J−1 : X∗ → 2X (3.4.66)

J−1(x) = {x ∈ X|〈x∗, x〉 = ||x||2 = ||X∗||2X∗} (3.4.67)

and we have in that case

J(x) = ∂
1
2
||x||2
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and

J−1(x∗) = ∂
1
2
||x∗||2

where ∂ denotes the set of all subdifferential.

We remind the definition of a subdifferential

Definition 3.4.1. A subdifferential of a function f : Ω ⊂ X → R in x0 ∈ Ω is an
element l ∈ X∗ such that

f(x)− f(x0) ≥ l(x− x0)

The subdifferential play a fundamental role in nonsmooth analysis.

Remark 3.4.2. Mappings even when single valued (always if the Banach space is
strictly convex ad smooth), are considered here in the context of multivalued mappings,
therefore the inverses always exists.

The conjugate of a proper lower semicontinuous function f : X →] − ∞,+∞] is

denoted f∗ and it is given by:

Definition 3.4.3. Let X be a real normed space, and let X∗ be the dual space of X.
For a function

f : X → R ∪ {+∞}

the convex conjugate is given by

f∗ : X∗ → R ∪ {+∞}

f∗(x∗) = sup{〈x∗, x〉 − f(x)|x ∈ X}

or equivalently
f∗(x∗) = − inf{f(x)− 〈x∗, x〉|x ∈ X}

We denote with Q the function x → 1
2 ||x||

2 and with Q∗ its conjugate given by

x∗ → 1
2 ||x

∗||2. If K is a convex set, ΨK denotes its indicator function defined by:

ΨK(x) =
{

0 if x ∈ K,
+∞ if x /∈ K.

Definition 3.4.4. The projector on a closed convex set K in X is the mapping

ΠB
K : X∗ → 2X
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assigning to each x∗ the set of points minimizing the function

1
2
||x∗||2 +

1
2
||x||2 − 〈x∗, x〉

over K, i.e.

ΠB
K(x∗) = {x ∈ K|1

2
||x||2 − 〈x∗, x〉 ≤ 1

2
||y||2 − 〈x∗, y〉, ∀y ∈ K} (3.4.68)

Remark 3.4.5. The difference between the definition given in 3.3.7 is that as in strictly
convex and smooth Banach spaces the duality mapping J is single valued we can define
the generalized projection operator directly as a mapping from X into 2X . In SCS
Banach spaces, the relationship between (3.3.7) and (3.4.4) is the following:
As for each x∗ there exist an unique x such that x∗ = J(x),

ΠB
K(x∗) = ΠB

K(J(x)) = ΠK(x)

This is true for all x ∈ X.
therefore we have

ΠB
KJ = ΠK

Remark 3.4.6. Definition 3.4.4 is given in Zarantonello (1977) using instead of ΠB
K

the standard notation for projection PK but we prefer to use PK for the operator of
minimum norm. As this operator still exists. In fact we can use Example 3.4.7 to see
that “generalized” and “metric” projection can coexist and be different.

Example 3.4.7. As shown by the following example, Metric Projection and the Gen-
eralized Projection normally do not coincide in a non Hilbert space.

In R3 endowed with the norm

‖(x1, x2, x3)‖ = (x1
2 + x2

2)
1
2 + (x2

2 + x3
2)

1
2

taking
K = {x ∈ R3|x2 = x3 = 0}

We get PK((1, 1, 1)) = (1, 0, 0) but ΠK((1, 1, 1)) = (2, 0, 0)

Remark 3.4.8. Since ||x||2 − 〈x∗, x〉 is a lower semi continuous convex function of x
tending to +∞ with ||x||, the infimum is always attained and PK(x∗) is never empty.

Theorem 3.4.9. ΠB
K(x∗) = {x ∈ K|(Q + ΨK)x + (Q + ΨK)∗x∗ = 〈x∗, x〉} = (J +

∂ΨK)−1x∗
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Proof. From (3.4.68) we obtain

x ∈ ΠB
K(x∗)⇔

〈x∗, x〉 − (
‖x‖2

2
+ ΨK(x)) = sup

y∈K
{〈x∗, x〉 − (

‖y‖2

2
+ ΨK(x))}

⇔ (Q+ ΨK)x+ (Q+ ΨK)∗x∗ = 〈x∗, x〉

Using Theorem 23.5 in Rockafellar & Wets (1998) we get that x ∈ ∂(Q + ΨK)∗(x∗)
and x∗ ∈ ∂(Q+ ΨK)(x) but the domains of Q and ΨK have of course a common point,
therefore using Moreau-Rockafellar theorem, we have x∗ ∈ ∂Q(x) + ∂ΨK(x) which is
equivalent to x∗ ∈ J(x) + ∂ΨK(x) or x ∈ (J + ∂ΨK)−1(x∗)

Corollary 3.4.10. ΠB
K is a subdifferential

Remark 3.4.11. This result is important. If we look at Lemma 3.1.16, we can notice
that in Hilbert spaces the projection operator is a differential. This property plays a
crucial role to prove an existence result. In further research we foresee to study the
relationship between (3.4.10) and (3.1.16).

Corollary 3.4.12. The function 1
2 ||x||

2 − 〈x∗, x〉 remains constant over PK(x∗)

Remark 3.4.13. This corollary justifies the notation 〈x∗, PK(x∗)〉 − 1
2 ||PK(x∗)||2 for

the common value of 〈x∗, x〉 − 1
2 ||x||

2 on PK(x∗)

Corollary 3.4.14. For each x∗ ∈ X∗, we have

〈x∗,ΠB
K(x∗)〉 − 1

2
||ΠB

K(x∗)||2 = (Q+ ΨK)∗(x∗) (3.4.69)

Proof. The left hand side coincides with the supremum of 〈x∗, y〉 − (1
2 ||y||

2 + ΨK(y))
which is (Q+ ΨK)∗(x∗).

Remark 3.4.15. In SCS Banach Spaces, we can rewrite (3.4.69) in the following way:

〈J(x),ΠK(x)〉 − 1
2
||ΠK(x)||2 = (Q+ ΨK)∗(J−1(x)) (3.4.70)

Corollary 3.4.16. ΠB
K satisfies the subdifferential equation

ΠB
K(x∗) = ∂[〈x∗,ΠB

K(x∗)〉 −
||ΠB

K(x∗)||2

2
] (3.4.71)

Remark 3.4.17. In SCS Banach Spaces we can rewrite (3.4.71) in the following way

ΠK(x) = ∂[〈J(x),ΠK(x)〉 − 1
2
||ΠK(x)||2] (3.4.72)
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Corollary 3.4.18. For each x∗, y∗ ∈ X∗ we have

ΠB
K(x∗) ∩ΠB

K(y∗) ⊂ ΠB
K(tx∗ + (1− t)y∗) (3.4.73)

Where t ∈ [0, 1]

We present now the variational principle proved by Zarantonello

Corollary 3.4.19. We have

x ∈ ΠB
K(x∗)⇔ ∃x̄∗ ∈ J(x) | 〈x∗ − x̄∗, x− y〉 ≥ 0,∀y ∈ K (3.4.74)

Proof. As we have,
x ∈ ΠB

K(x∗)⇔ x∗ ∈ J(x) + ∂ΨK(x),
we can write x∗ ∈ J(x) + ∂ΨK(x)⇔ ∃x̄∗ ∈ J(x) | x∗ − x̄∗ ∈ ΨK(x)
⇔ x ∈ K, x̄∗ ∈ J(x) | 〈x∗ − x̄∗, x− y〉 ≥ 0, y ∈ K

Remark 3.4.20. In SCS Banach spaces, setting x∗ = J(x), (3.4.74) can be rewrote:

x̂ = ΠK(x)⇔ 〈J(x)− J(x̂), x̂− y〉 ≥ 0,∀y ∈ K (3.4.75)

therefore we have exactly (3.3.46).

3.4.1.1 Conical Projectors

Projectors on closed convex cones with vertex at the origin (Tangent and Normal

Cone are examples of such cones) are called conical projectors. It is clear that a

projector on a convex set is positive homogeneous when the set is a cone with vertex

at 0, and only then so the class of conical projectors coincides with the class of positive

homogeneous projectors.

Definition 3.4.4 for projectors on cones can be expressed in the following way

Theorem 3.4.21. ΠB
C(x∗) = {x ∈ C|〈x∗, x〉 = ‖x‖2 = [supu∈C, ‖u‖≤1〈x∗, u〉]2

Proof. If x minimizes 1
2‖y‖

2 − 〈x∗, y〉 over C, then

t→ 1
2
t2‖y‖2 − t〈x∗, y〉

attains its minimum on the positive real axis at t = 1, and hence ‖x‖2 = 〈x∗, x〉.
Therefore x ∈ ΠB

C(x∗) if and only if ‖x‖2 = 〈x∗, x〉 and

−‖x‖
2

2
=
‖x‖2

2
− 〈x∗, x〉 = inf

y∈C
(
1
2
‖y‖2 − 〈x∗, y〉)
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= inf
y∈C

inf
t≥0

(
1
2
t2‖y‖2 − t〈x∗, y〉)

= inf
y∈C

inf
t≥0

(
1
2
t2‖y‖2 − t〈x∗, y〉)

= inf
y∈C

{
0, if 〈x∗, y〉 ≤ 0

−1
2〈x
∗, y
‖y‖〉

2, if 〈x∗, y〉 > 0

= −1
2

sup
u∈C,‖u‖≤1

〈x∗, u〉2

Remark 3.4.22. Any element x 6= 0 in ΠB
C(x∗) is of the form 〈x∗, u〉+u, where u is

a vector in C maximizing 〈x∗, u〉+, so ΠB
C(x∗) is obtained by looking for the directions

in C making the smallest angle with x∗ and projecting them in the ordinary sense. In
Hilbert spaces there is coincidence between the least angle mapping and the minimum
norm mapping.

Remark 3.4.23. Remark 3.4.22 is very important because this geometric approach
(least angle mapping), offers, from an intuitive point of view the possibility to affirm
that there exists conditions to guarantee, at least in Strictly convex and smooth Banach
Spaces, existence of solution to PDS.

Definition 3.4.24. Let f, h : X → R ∪ {+∞} be proper functions, i.e. there exist
points in X such that f and h are finite: We call epi-addition or inf-convolution of f
and h at x ∈ X the following operation:

(f�h)(x) := inf
y+z=x

(f(y) + h(z))

The inf-convolution has many important properties for non-linear problems it seems

to be also a very useful tool for integration of subdifferentials.

Properties 3.4.25. We have

(f�h)∗ = f∗ + h∗

Theorem 3.4.26. If we denote by δC∗(x∗) the distance from x∗ to C∗, we have

‖ΠB
C(x∗)‖2 = 〈x∗,ΠB

C(x∗)〉 = [ sup
u∈C, ‖u‖≤1

〈x∗, u〉]2 = δ2
C∗(x

∗)
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Proof. Using previous result we only have to prove the last equality. Using Theorem
3.4.9 and 3.4.14.

〈x∗,ΠB
C(x∗)〉 −

‖ΠB
C(x∗)‖2

2
= (Q+ ΨC)∗(x∗) = (Q∗�Ψ∗C)∗(x∗)

= (Q∗�ΨC∗)(x∗)

= inf
z∗+y∗=x∗

(
‖z∗‖2

2
+ ΨC∗(y∗)) = inf

y∗∈C∗
inf

z∗+y∗=x∗
(
‖z∗‖2

2
)

= inf
y∗∈C∗

(
‖x∗ − y∗‖2

2
) =

δ2
C∗(x

∗)
2

Since 〈x∗,ΠB
C(x∗)〉 − ‖Π

B
C (x∗)‖2

2 is equal to both ‖Π
B
C (x∗)‖2

2 and 〈x∗,ΠB
C(x∗)〉 the the-

orem is proved.

Corollary 3.4.27. We have

ΠB
C(x∗) = ∂

‖ΠB
C(x∗)‖2

2
= ∂

δ2
C∗(x

∗)
2

Proof. Using (3.4.16) and previous result we get the result.

3.4.2 Decomposition Theorems and Applications

Establishing the relationship between the conical projector and the nearest point

mapping we will optain as Corollary 3.4.29 the decomposition theorem. Which is

both a generalization of Moreau’s decomposition theorem and Albert’s decomposition

theorem. Corollary 3.4.29 is fundamental to establish the equivalence between critical

point of PDS (see 3.4.3) and equilibrium point of Variational inequalities. If an existence

result for PDS is extended to Reflexive Banach spaces we can describe the dynamic of

pre-equilibrium (seen as the more efficient path to the equilibrium).

Theorem 3.4.28. (IdX∗ − JΠB
C)(x∗) ∩ C∗ is the set of point in C∗ closest to x∗

Proof. If z∗ ∈ (IdX∗ − JΠB
C)(x∗) ∩ C∗ then x∗ − z∗ ∈ JΠB

C(x∗) and

‖x∗ − z∗‖ = ‖JΠB
C(x∗)‖ = ‖Pi∗C(x∗)‖ = δC∗(x∗)

this shows that z∗ minimizes the distance from x∗ to points in C∗.
Conversely, if z∗1 ∈ C∗ realizes the minimum distance from x∗ to C∗, then

δ2
C∗(x

∗) = ‖x∗ − z∗‖2
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3.4 Extensions to Reflexive Banach Spaces

As we have
δ2
C∗(y

∗) = ‖y∗ − z∗‖2, ∀y∗ ∈ X∗

and using (3.4.27),

∂
δ2
C∗(x

∗)
2

= ΠB
C(x∗)

we get
‖y∗ − z∗‖2

2
− ‖x

∗ − z∗‖2

2
≥
δ2
C∗(y

∗)
2

−
δ2
C∗(x

∗)
2

≥ 〈y∗ − x∗,ΠB
C(x∗)〉, ∀y ∈ X∗

Using the definition of subgradient

ΠB
C(x∗) ⊂ ∂ ‖x

∗ − z∗‖2

2
= J−1(x∗ − z∗)

therefore we have
z∗ ∈ x∗ − JΠB

C(x∗)

Let us denote by PC∗ : X∗ → 2X
∗

the nearest point mapping on C∗ we can express

the previous theorem to get a generalization of the theorems proved by Moreau and

Alber.

Corollary 3.4.29. For any x∗ ∈ X∗ there are vectors u and v∗ such that

x∗ = Ju+ v∗, u ∈ C, v∗ ∈ C∗, 〈v∗, u〉 = 0 (3.4.76)

Moreover if (3.4.76) holds then u ∈ ΠB
C(x∗) and v∗ ∈ PC∗(x∗)

3.4.3 Projected Dynamical Systems in Reflexive Banach spaces

Our aim in this section is to propose a Projected Dynamical System which can be a

generalization of the concepts exposed earlier in the chapter (see sections 3.2 and 3.3).

We will proceed in an analogous way, therefore we set-up:

Definition 3.4.30. Let K be a close convex set of a Reflexive Banach space X. A
Projected differential equation in Reflexive Banach spaces (PDS-RB) is a dis-
continuous ODE given by:

dx(t)
dt
∈ ΠB

TK(x(t))(−F )(x(t)). (3.4.77)
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3.4 Extensions to Reflexive Banach Spaces

Consequently the associated Cauchy problem is given by:

dx(t)
dt
∈ ΠB

TK(x(t))(−F )(x(t)), x(0) = x0 ∈ K. (3.4.78)

Next we define what we mean by a solution for a Cauchy problem of type (3.4.78).

Definition 3.4.31. An absolutely continuous function x : I ⊂ R→ X, such that{
x(t) ∈ K, x(0) = x0 ∈ K, ∀t ∈ I

ẋ(t) ∈ ΠB
TK(x(t))(−F )(x(t)), a.e. on I

(3.4.79)

is called a solution for the initial value problem (3.4.78) if there exist v ∈ L1(I, X) such
that v ∈ ΠB

TK(x(t))(−F )(x(t)).

Remark 3.4.32. No existence results as been proved for problem (3.4.78), therefore
we don’t know if Definition 3.4.31 is set up correctly.

Finally, assuming problem (3.4.78) has solutions as described above, then we are

ready to introduce:

Definition 3.4.33. A projected dynamical system in Reflexive Banach Space
(PDS-RB) is given by a mapping φ : R+ × K → K which solves the initial value
problem:
φ̇(t, x) ∈ ΠB

K(φ(t, x),−F )(φ(t, x))), a.a. t, φ(0, x) = x0 ∈ K.

3.4.4 Equivalence Results

Even if we don’t provide in this work an answer regarding the existence of solution

for PDS-RB, we investigate how far the analogy to the situation present in Hilbert

spaces can be pushed on. Another advantage to illustrate the basis of the theory in

Reflexive Banach Space is that the results presented by Zarantonello are very promising.

The goal of this section is to establish a contact point between the theory of Variational

Inequalities and PDS in reflexive Banach spaces.

We remind the following:

Definition 3.4.34. Let K be a nonempty, convex and closed subset of X, reflexive
Banach space and let F : K → X∗ be a vector-function. A variational inequality is the
problem to find a vector x ∈ K, such that

〈F (x), y − x〉 ≥ 0, ∀y ∈ K. (3.4.80)
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3.4 Extensions to Reflexive Banach Spaces

Definition 3.4.35. Let call Mx = ΠB
TK(x))(−F (x)).

A critical point of (3.4.78) is a point x such that

inf
y∈Mx

‖y‖ = 0 (3.4.81)

In an equivalent way we can say that x0 is a critical point of (3.4.78),

0X ∈ ΠB
TK(x))(−F (x)) (3.4.82)

Remark 3.4.36. It is important to note that the notion of critical point is weeker that
the one used in strictly convex and smooth Banach spaces. This definition is of course
a generalization of the previous one.

Theorem 3.4.37. Assume that the hypotheses of Theorem 3.3.19 hold. Then each
equilibrium point of (3.4.80) is a critical point of (3.4.79) and, if (3.4.79) admits critical
points then they are equilibrium points of (3.4.80).

Proof. Let x0 be a solution of (3.4.80), by hypothesis we have

〈F (x0), y − x0〉 ≥ 0, ∀y ∈ K. (3.4.83)

since X is reflexive, J is surjective, therefore there exists an element u ∈ X such
that −F (x0) = J(u).
So we have

< −J(u), x− x0 >≥ 0, ∀x ∈ K

and then
< −J(u), λ(x− x0) >≥ 0, ∀x ∈ K ∀λ > 0,

which is equivalent to write (J is an Isometry):

< J(u)− J(0X), y − 0X >≤ 0, ∀y ∈ TK(x0).

So using the variational principle (3.4.74) it is equivalent to,

0X ∈ ΠB
TK(x0)(J(u)) = ΠB

TK(x0)(−F (x0)))

from which we deduce that x0 is a critical point of (3.4.78).
Now suppose that x0 is a critical point of (3.4.78).

By absurd, if (3.4.80) is not satisfied there exists y0 ∈ K such that

〈F (x0), y0 − x0〉 < 0 (3.4.84)
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As there exists u ∈ X such that J(u) = −F (x0), we can write (3.4.84) in the following
way

< J(u)− J(0X), y0 − 0X >> 0

But as x0 ∈ K, we have y0 ∈ K ⊂ TK(x0). as by hypothesis

0X ∈ ΠB
TK(x0)(J(u)) = ΠB

TK(x0)(−F (x0)))

using (3.4.74) we get a contradiction.

The previous result confirm that Reflexive Banach spaces are a good to study Pro-

jected Dynamical system, as they have in this context the propriety to have an equiva-

lence between their critical points and equilibrium point as previously proved in easier

frameworkos.

Nevertheless still no existence results has been obtained in such spaces.

The difficulties can be shortly listed as follow:

• J is not linear

• There are no results about the differentiability of the generalized projection oper-

ator (projector). The only result we have is given by (3.4.71). A result analogous

to (3.1.16) should be very usefull.
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Chapter 4

Applications to Weighted traffic

equilibrium problem in Weighted

Hilbert Spaces

4.1 Introduction

The weighted traffic equilibrium model has been presented in Giuffré & Pia (2009),

moreover, its retarded formulation in Barbagallo & Pia (2009a). This problem extends

the dynamic traffic model (see Daniele et al. (1998, 1999b)) as regards the operator

involved in the description of the equilibrium and the spaces used. In particular, we

remark that a very important difficulty in the dynamic traffic equilibrium problem is

related to the real time cost determination of the flow over the links in the transporta-

tion network. More precisely, it is fundamental to know how the distribution of the

traffic flow is over routes connecting the same origin-destination pair in order to obtain

the optimal distribution of the flow in the transportation network. For this reason,

we have to be able to determinate the traffic density over each route. The collection

of this information could be very costly and moreover it is very difficult and almost

impossible to aggregate data on a real time basis. The smart idea developed by the

SENSEable City laboratory at MIT is that this information can be roughly collected

using mobile devices connection data. As explained in Ratti et al. (2006), it is possible

to compute these data in order to estimate the traffic repartition over a monitored area.

The authors introduce this information in the duality pairing (cost/flow) involved in
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4.1 Introduction

the model described in Daniele et al. (1999b), so that the operator could act on a more

appropriate way. Moreover, it is possible to study the traffic equilibrium problem in

more complex situations, for example in the presence of a congestion. In fact, we con-

sider Hilbert spaces not identified with their topological dual, that allow us to examine

the problem for a wider class of flows. More precisely, let us consider the non-pivot

Hilbert space L2(Ω,Rm,a, s) and observe that a system of wireless communications

allows to obtain information in real time about traffic congestion in the paths. Then,

it is necessary to indicate to the user what are the more preferable paths. The novelty

is that can happen by means of a system of weights on the paths and on the path cost

function. In fact, considering a term of the bilinear form which underlines the problem:

m∑
i=1

∫
Ω
Fi(ω)

√
ai(ω)

√
si(ω)Gi(ω)

1√
ai(ω)

√
si(ω)dω

we can see that if (
√
ai)−1 is the weight acting on the path Gi(ω), then

√
ai(ω) is the

weight acting on the path cost function. In such a way, it is guaranteed the following

behaviour if (ai(ω))−1 is very large then Gi(ω) must be very small. We can obtain

this we observe that ai(ω) is very small and then the path cost very large. Then the

objective to reduce the flow in this path on the weight acting in a reciprocal way.

Moreover, the vector-weight s is connected with the traffic density on paths of the

network. This means that if we fix an Origin-Destination pair wj on the network and

we consider two paths p and q that connect wj and have the same cost trajectory and

two different weights sp < sq, then the user discards the path q.

In this section we consider a variant case of the model described in Daniele et al.

(1998, 1999b). The framework of non-pivot Hilbert spaces allows us to solve some

“congested” traffic problems, namely problems that have no solution in L2(Ω,Rm).

The introduction of a new bilinear form permits to apply the recent research done by

the SENSEable City laboratory directed by Carlo Ratti to improve the optimal solution

of a traffic problem taking into account a real time observation (for more details see

Ratti et al. (2006) and Giuffré & Pia (2009)).

Let us introduce a network N, which is represented by a graph G = [N,L], where

N is the set of nodes (i.e. cross-roads, airports, railway stations) and L is the set of

directed links between the nodes. Let a denote a link of the network connecting a pair

of nodes and let r be a path consisting of a finite sequence of links which connect an
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4.1 Introduction

Origin-Destination (O/D) pair of nodes. In the network there are n links and m paths.

Let W denote the set of O/D pairs with typical O/D pair wj , |W | = l and m > l.

The set of paths connecting the O/D pair wj is represented by Rj and the entire set

of paths in the network by R. Let Ω be an open subset of R, let a = {a1, . . . , am}
and a−1 = {a−1

1 , . . . , a−1
m } be two families of weights such that for each 1 ≤ r ≤ m,

ar ∈ C(Ω,R+ \ {0}). We introduce also the family called real time traffic density

s = {s1, . . . , sm} such that for each 1 ≤ r ≤ m, si ∈ C(Ω,R+\{0}). We associate to each

path r, r = 1, 2, . . . ,m the components ar and sr of the weights a and s, respectively.

By means of these components, we define the spaces V and V ∗, as introduced in

Section 3.1.3. Let F ∈ L2(Ω,Rm,a, s) denote the path flow vector-function. Let

λ, µ ∈ L2(Ω,Rm,a, s) be the capacity constraints functions, such that λ < µ and

for all r ∈ R and for almost all t ∈ Ω,

λr(t) ≤ Fr(t) ≤ µr(t).

Let Φ be the O/D pairs-paths incidence matrix, whose typical entry φjr is 1 if path

r connects the pair wj and 0 otherwise. We denote by αj the family of indices r

such that φjr = 1, for j = 1, . . . , l, let dj = |αj |, for j = 1, . . . , l, then we set

a∗j = max(a(αj)1 , . . . , a(αj)dj
)1, for j = 1, . . . , l, and s∗j = max(s(αj)1 , . . . , s(αj)dj

), for

j = 1, . . . , l and we group the weights into the vectors a∗ = (a∗1, . . . , a
∗
l ) and s∗ =

(s∗1, . . . , s
∗
l ). Let ρj ∈ L2(Ω,R, a∗j , s∗j ), for j = 1, . . . , l, represent the travel demand asso-

ciated with the users travelling between O/D pair wj and let ρ = (ρ1, . . . , ρj , . . . , ρl)T ∈
L2(Ω,Rl,a∗, s∗) =

∏l
j=1 L

2(Ω,R, a∗j , s∗j ) be the total demand vector-function. The traf-

fic conservation law is
m∑
r=1

φjrFr(t) = ρj(t), a.e. in Ω,

which can be written in matrix-vector notation as

ΦF (t) = ρ(t), a.e. in Ω.

Furthermore, we give the cost trajectory C which is a function belonging to L2(Ω,Rm,a−1, s).
1Where we denote by a(αj)k

, for k = 1, . . . , dj and j = 1, . . . , l, the k-th element of the family αj ,

for j = 1, . . . , l.
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4.1 Introduction

The set of feasible flows is the set K of all the path flows in the network which

satisfy the capacity constraints and the conservation law:

K =
{
F ∈ L2(Ω,Rm,a, s) : λ(t) ≤ F (t) ≤ µ(t), a.e. in Ω,

ΦF (t) = ρ(t), a.e in Ω
}

It is to prove that K is a nonempty, convex, closed and bounded subset of L2(Ω,Rm,a, s).

The following result holds (see Barbagallo & Pia (2009b)).

Proposition 4.1.1. Let λ, µ ∈ L2(Ω,Rm,a, s) ∩ C(Ω,Rm
+ ), let ρ ∈ L2(Ω,Rl,a∗, s∗) ∩

C(Ω,Rl
+) and let {tn}n∈N ⊆ Ω be a sequence such that tn → t ∈ Ω, as n→ +∞. Then,

the sequence of sets

K(tn) =
{
F (tn) ∈ Rm : λ(tn) ≤ F (tn) ≤ µ(tn), ΦF (tn) = ρ(tn)

}
,

∀n ∈ N, converges to

K(t) =
{
F (t) ∈ Rm : λ(t) ≤ F (t) ≤ µ(t), ΦF (t) = ρ(t)

}
,

as n→ +∞, in the Kuratowski’s sense.

In the following, we continue to make use of the weighted norm on Rm

‖x(t)‖2m,a,s =
m∑
i=1

x2
i (t)ai(t)si(t).

The next uniformly boundedness result holds (see Barbagallo & Pia (2009b)).

Proposition 4.1.2. Let λ, µ ∈ L2(Ω,Rm,a, s) ∩ C(Ω,Rm
+ ), let ρ ∈ L2(Ω,Rl,a∗, s∗) ∩

C(Ω,Rl
+) and

‖µ(t)‖m,a(t),s(t) ≤M, ∀t ∈ Ω.

Then the set

K(t) =
{
F (t) ∈ Rm : λ(t) ≤ F (t) ≤ µ(t), ΦF (t) = ρ(t)

}
,

is uniformly bounded for all t ∈ Ω.

Now, we define the equilibrium condition by means of a weighted variational in-

equality (see Giuffré & Pia (2009)).

Definition 4.1.3. H ∈ V is an equilibrium flow if and only if

H ∈ K : 〈C(H), F −H〉s ≥ 0, ∀F ∈ K. (4.1.1)
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4.1 Introduction

It is possible to prove the equivalence between condition (4.1.1) and a condition

that we call the weighted Wardrop condition (see Giuffré & Pia (2009)).

Theorem 4.1.4. H ∈ K is an equilibrium flow in the sense of (4.1.1) if and only if

∀w ∈W, ∀q,m ∈ R(w), a.e. in Ω,

sq(t)Cq(t,H(t)) < sm(t)Cm(t,H(t)) (4.1.2)

⇒ Hq(t) = µq(t) or Hm(t) = λm(t).

Proof. Assume that (4.1.2) holds. Let w ∈W and

A = {q ∈ R(w) : Hq(t) < µq(t) a.e. inΩ}

B = {m ∈ R(w) : Hm(t) > λm(t) a.e. inΩ}

From (4.1.2) it follows

sq(t)Cq(H(t)) ≥ sm(t)Cm(H(t))∀q ∈ A, ∀m ∈ B, a.e. inΩ.

Then there exists a function γw(t) : [0, T ]→ R such that a.e. in Ω

inf
q∈A

sq(t)Cq(H(t)) ≥ γw(t) ≥ sup
m∈B

sm(t)Cm(H(t)).

Let F ∈ K be arbitrary. For every r ∈ R(w) such that sr(t)Cr(H(t)) < γw(t) a.e. inΩ,
it results r /∈ A, that is Hr(t) = µr(t) a.e. inΩ. This implies Fr(t)−Hr(t) ≤ 0 a.e. inΩ
and then

(sr(t)Cr(H(t))− γw(t))(Fr(t)−Hr(t)) ≥ 0 a.e. inΩ.

Likewise for every r ∈ R(w) such that sr(t)Cr(H(t)) > γw(t) a.e. inΩ, it results r /∈ B
and

(sr(t)Cr(H(t))− γw(t))(Fr(t)−Hr(t)) ≥ 0 a.e. inΩ.

It follows
n∑
r=1

sr(t)Cr(H(t))(Fr(t)−Hr(t)) ≥ γw(t)
n∑
r=1

(Fr(t)−Hr(t)) = γw(t)(ρw(t)− ρw(t)) = 0

and finally we may conclude

〈C(H), F −H〉s =
∫

Ω

n∑
i=1

si(ω)Ci(H(ω))(Fi(ω)−Hi(ω))dω ≥ 0
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that is (4.1.1) holds.
Now assume that (4.1.2) does not hold. Then there exists w ∈W and q,m ∈ R(w)

together with a set E ⊆ Ω having positive measure such that

sq(t)Cq(H(t)) < sm(t)Cm(H(t)), Hq(t) < µq(t), Hm(t) > λm(t), a.e. inE.

For t ∈ E let δ(t) := min{µq(t)−Hq(t), Hm(t)− λm(t)}. It results δ(t) > 0 a.e. on E.
We construct F : Ω→ R in the following way:

Fq(t) := Hq(t) + δ(t), Fm(t) := Hm(t)− δ(t) a.e. inE,

Fr(t) := Hr(t) for r 6= q,m, a.e. inE, Fr(t) := Hr(t) a.e. inΩ \ E.

It results that F ∈ K and

〈C(H), F −H〉s =
∫

Ω

n∑
i=1

Ci(H(ω))(Fi(ω)−Hi(ω))si(ω)dω =

∫
E
δ(ω)[sq(ω)Cq(H(ω))− sm(ω)Cm(H(ω))]dω < 0.

Thus H is not an equilibrium.

4.2 Retarded Weighted traffic equilibrium problem

We suppose now for an easier reading that Ω =]0, T [ and for h > 0 we define

Ωh =]0, T+h[. We consider a variant case of the model described in Maugeri (1998) and

Raciti (2001). Let us introduce a network N, that means a set W of origin-destination

pair (origin/destination node) and a set R of routes. Each route r ∈ R links exactly

one origin-destination pair w ∈ W. The set of all r ∈ R which link a given w ∈ W is

denoted by R(w), we consider vector flow F (t) ∈ Rn.

Let us denote by n = card(R), a = {a1, . . . , an} and by a−1 = {a−1
1 , . . . , a−1

n } two

families of weights such that for each 1 ≤ i ≤ n, ai ∈ C(Ω,R+ \{0}). We introduce also

the family of real time traffic densities s = {s1, . . . , sn} such that for each 1 ≤ i ≤ n,

si ∈ C(Ω,R+ \ {0}). We use the framework of a non-pivot Hilbert space which is a

multidimensional version of the weighted space L2(Ω,R, a, s). To each element of a and

s, let us say ai and si, corresponds a route that we denote by ri.

As done in Section 3.1.3, we denote by Vi = L2(Ω,R, ai, si) and V ∗i = L2(Ω,R, a−1
i , si),

the space

V =
n∏
i=1

Vi
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4.2 Retarded Weighted traffic equilibrium problem

is a non pivot Hilbert space for the inner product

〈F,G〉a,s =
n∑
i=1

∫
Ω
Fi(ω)Gi(ω)ai(ω)si(ω)dω.

The space

V ∗ =
n∏
i=1

V ∗i

is a non pivot Hilbert space for the following inner product

〈F,G〉a−1,s =
n∑
i=1

∫
Ω

Fi(ω)Gi(ω)si(ω)
ai(ω)

dω

and the following bilinear form defines a duality between V ∗ and V :

〈f, x〉s =
n∑
i=1

∫
Ω
fi(ω)xi(ω)si(ω)dω (4.2.3)

We suppose that the traffic demand at time t is satisfied after a delay h > 0. So if

the set of all delayed feasible flows is given by

Kh := {F ∈ Vh| λ(t) ≤ F (t) ≤ µ(t), a.e. in Ωh, (4.2.4)

ΦF (t+ h) = ρ(t), a.e in Ω}

where Vh =
∏n
i=1 L

2(Ωh,R, ai, si).

Definition 4.2.1. H ∈ Vh is an retarded equilibrium flow if and only if

H ∈ Kh :
∫

Ω
〈C(H(t)), F (t+ h)−H(t+ h)〉s(t)dt ≥ 0, ∀F ∈ Kh. (4.2.5)

We remark that weighted variational inequality (4.2.5) is equivalent to the pointed

weighted variational inequality

H ∈ Kh : 〈C(H(t)), F (t+ h)−H(t+ h)〉s(t) ≥ 0, ∀F (t) ∈ Kh(t), a.e. in Ω,

where

Kh(t) := {F (t) ∈ Rn| λ(t) ≤ F (t) ≤ µ(t), ΦF (t+ h) = ρ(t)}

It is possible to prove the equivalence between condition (4.2.5) and what we will

call a weighted retarded Wardrop condition (4.2.6). More precisely we have:
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Theorem 4.2.2. H ∈ Kh is an equilibrium flow in the sense of (4.2.5) if and only if

∀w ∈W, ∀rq, rm ∈ R(w), a.e. inΩ,

sq(t)Cq(H(t)) < sm(t)Cm(H(t))

⇒ Hq(t+ h) = µq(t+ h) or Hm(t+ h) = λm(t+ h). (4.2.6)

Proof. Assume that (4.2.6) holds. Let w ∈W and

A = {q ∈ R(w) : Hq(t+ h) < µq(t+ h), a.e. in Ω}

B = {m ∈ R(w) : Hm(t+ h) > λm(t+ h), a.e. in Ω}

From (4.2.6) it follows

sq(t)Cq(H(t)) ≥ sm(t)Cm(H(t)), ∀q ∈ A, ∀m ∈ B, a.e. in Ω.

Then there exists a function γw(t) : (0, T )→ R such that a.e. in Ω

inf
q∈A

sq(t)Cq(H(t)) ≥ γw(t) ≥ sup
m∈B

sm(t)Cm(H(t)).

Let F ∈ Kh be arbitrary. For every r ∈ R(w) such that sr(t)Cr(H(t)) < γw(t), a.e.
in Ωh, it results r /∈ A, that is Hr(t + h) = µr(t + h), a.e. in Ωh. This implies
Fr(t+ h)−Hr(t+ h) ≤ 0, a.e. in Ωh and then

(sr(t)Cr(H(t))− γw(t))(Fr(t+ h)−Hr(t+ h)) ≥ 0, a.e. in Ω.

Likewise for every r ∈ R(w) such that sr(t)Cr(H(t)) > γw(t) a.e. in Ω, it results r /∈ B
and

(sr(t)Cr(H(t))− γw(t))(Fr(t+ h)−Hr(t+ h)) ≥ 0, a.e. in Ω.

It follows
n∑
r=1

sr(t)Cr(H(t))(Fr(t+ h)−Hr(t+ h)) ≥

γw(t)
n∑
r=1

(Fr(t+ h)−Hr(t+ h)) = γw(t)(ρw(t)− ρw(t)) = 0

and finally summing up ∀w ∈W we get the result by integration on Ω.
Now assume that (4.2.6) does not hold. Then there exists w ∈W and q,m ∈ R(w)

together with a set E ⊆ Ω having positive measure such that

sq(t)Cq(H(t)) < sm(t)Cm(H(t)),

Hq(t+ h) < µq(t+ h), Hm(t+ h) > λm(t+ h), a.e. inE.
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For t ∈ E let δ(t) := min{µq(t + h) − Hq(t + h), Hm(t + h) − λm(t + h)}. It results
δ(t+ h) > 0 a.e. on E. We construct F : Ω→ R in the following way:

Fq(t+ h) := Hq(t+ h) + δ(t+ h),

Fm(t+ h) := Hm(t+ h)− δ(t+ h), a.e. in E,

Fr(t+ h) := Hr(t+ h), for r 6= q,m, a.e. in E,

Fr(t+ h) := Hr(t+ h), a.e. in Ω \ E.

It results that F ∈ Kh and∫
Ω

n∑
i=1

Ci(H(ω))(Fi(ω + h)−Hi(ω + h))si(ω)dω

=
∫
E
δ(ω)[sq(ω)Cq(H(ω))− sm(ω)Cm(H(ω))]dω < 0.

Thus H is not an equilibrium.

4.2.1 Existence of Equilibria

In this Section, we obtain an existence result for the retarded weighted model, we

can state the following theorem:

Theorem 4.2.3. Each one of the following conditions is a sufficient condition for the
existence of solutions for problem (4.2.5).

i) ∀H,F ∈ Kh we have∫
Ω
〈C(H(t)), F (t+h)−H(t+h)〉s(t)dt ≥ 0⇒

∫
Ω
〈C(F (t)), H(t+h)−F (t+h)〉s(t)dt ≤ 0

ii) ∀F ∈ Kh the function:

H →
∫

Ω
〈C(H(t)), F (t+ h)−H(t+ h)〉s(t)dt

is weakly upper semicontinuous.

iii) ∀F,G ∈ Kh the function:

H →
∫

Ω
〈C(H(t)), F (t+ h)−G(t+ h)〉s(t)dt

is weakly upper semicontinuous on the segment [F,G].
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4.2 Retarded Weighted traffic equilibrium problem

Proof. We remark that Kh is closed , convex and bounded, hence weakly compact.
setting t+ h = y from (4.2.5) we get the following problem: Find H ∈ Kh such that∫

Ωh

〈C(H(y − h)), F (y)−H(y)〉s(t)dy, ∀F ∈ Kh (4.2.7)

where

Kh := {F ∈ V h| λ(y) ≤ F (y) ≤ µ(y), a.e. in Ω2h,

ΦF (y) = ρ(y − h), a.e in Ωh}

where V h =
∏n
i=1 L

2(Ω2h,R, ai, si) and Ω2h =]0, t+ 2h[ We denote by Ch the mapping
such that:

C(H(y − h)) = Ch(H(s)), ∀y ∈ Ωh

So (4.2.7) can be written

H ∈ Kh,

∫
Ωh

〈Ch(H(y)), F (y)−H(y)〉s(t)dy ≥ 0, ∀F ∈ Kh (4.2.8)

we can now apply Corollary 5.1 of Maugeri (1998) and give sufficient condition for the
existence of a solution to (4.2.8). But if C satisfies condition (i) on Kh, ∀H, F ∈ Kh

we have∫
Ω
〈C(H(t)), F (t+h)−H(t+h)〉s(t)dt ≥ 0⇒

∫
Ω
〈C(F (t)), H(t+h)−F (t+h)〉s(t)dt ≤ 0

is pseudomonotone which implies the pseudomonotony of Ch on Kh. If C satisfies
condition (ii) on Kh, ∀F ∈ Kh

H →
∫

Ω
〈C(H(t)), F (t+ h)−H(t+ h)〉s(t)dt

is hemicontinuous which implies the hemicontinuity of Ch on Kh. And if C satisfies
condition (iii) on Kh, ∀F ∈ Kh

H →
∫

Ω
〈C(H(t)), F (t+ h)−G(t+ h)〉s(t)dt

is upper semi-continuous on the segment [F,G] which implies the semi-continuity of Ch
on [F,G]. Therefore we get the theorem.
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4.3 Study of Equilibrium

4.3.1 Existence and Regularity

The feasible flows have to satisfy the time-dependent capacity constraints and de-

mand requirements, namely for all r ∈ R, w ∈W and for almost all t ∈ Ω,

λr(t) ≤ Fr(t) ≤ µr(t)

and ∑
r∈R(w)

Fr(t) = ρw(t)

where λ(t) ≤ µ(t) are given, ρ(t) ∈ Rl, Fr, r ∈ R, denotes the flow in the route r. If

Φ = (Φw,r) is the pair route incidence matrix, with w ∈W and r ∈ R, that is

Φw,r := χR(w)(r),

the demand requirements can be written in matrix-vector notation as

ΦF (t) = ρ(t).

The set of all feasible flows is given by

K := {F ∈ V | λ(t) ≤ F (t) ≤ µ(t), a.e. in Ω,

ΦF (t) = ρ(t), a.e in Ω}

We will use again the following norm on Rm

‖x(t)‖2m,a,s =
m∑
i=1

x2
i (t)ai(t)si(t)

Proposition 4.3.1. Let λ, µ ∈ C(Ω,Rm
+ ), let ρ ∈ C(Ω,Rl

+) and

‖µ(t)‖m,a(t),s(t) ≤M ∀t ∈ Ω.

Then the set

K(t) =
{
F (t) ∈ Rm : λ(t) ≤ F (t) ≤ µ(t), ΦF (t) = ρ(t)

}
,

is uniformly bounded in Ω.

73



4.4 Lagrangian theory

Proof Let us take an arbitrary H(t) ∈ K(t) therefore we have for i = 1, ..m

λi(t) ≤ Hi(t) ≤ µi(t), ∀t ∈ Ω.

We have

‖H(t)‖2m,a,s =
m∑
i=1

H2
i (t)ai(t)si(t) ≤

m∑
i=1

µi(t)2ai(t)si(t)

= ‖µ(t)‖2m,a(t),s(t) ≤M
2, ∀t ∈ Ω.

that implies the claim. �

It is simply to prove that K is a nonempty, closed and bounded subset of V , so

we can apply Theorem B.4.3 and Theorem B.4.4 to obtain necessary conditions for

the existence of the equilibrium solution to the weighted traffic equilibrium problem.

Moreover, from Proposition 4.1.1 and Theorem 3.1.19 we deduce that under continuity

assumptions of the data, the equilibrium solution to (4.1.1) is continuous.

4.4 Lagrangian theory

This section is devoted to show duality results for the weighted traffic equilibrium

problem. In particular, the infinite-dimensional duality theory will be applied in order

to obtain the characterization of the weighted traffic equilibrium conditions by means of

the Lagrange multipliers. The duality theory has been introduced to solve the unsolved

problem of finding, in the infinite dimensional case, the Lagrange multipliers associated

to an optimization problem or to a variational inequality subject to possibly nonlinear

constraints.

In the papers Daniele et al. (2007), Daniele & Giuffré (2007) and Maugeri & Raciti

(2009) the authors present an infinite dimensional duality theory which, with the aid of

a generalized constraint qualification assumption related to the notion of quasi-relative

interior, guarantees the existence of strong duality between a convex optimization prob-

lem and its Lagrange dual. The use of quasi relative interior, introduced by Borwein

and Lewis Borwein & Lewis (1991), and the notions of tangent and normal cone, allows

to overcome the difficulty that in many cases the interior of the set involved in the

regularity condition is empty. This is the case of all optimization problems or varia-

tional inequalities connected with network equilibrium problems, the obstacle problem,
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4.4 Lagrangian theory

the elastic-plastic torsion problem Barbagallo & Maugeri (appear); Daniele & Giuffré

(2007); Daniele et al. (2007, to appear); Donato et al. (2008); Maugeri & Raciti (2008)

which use positive cones of Lebesgue spaces or Sobolev spaces. Then it is not possible to

apply the usual duality theory and separation theory which require the Slater assump-

tion. The obstacle was overcome by introducing a new qualification condition called

Assumption S which allows us to solve the problem of finding the Lagrange multipliers.

First of all, we introduce the concept of cones generated by sets and of tangent

cone.

Definition 4.4.1. Let C be a nonempty subset of a real linear space. Then, the set

cone (C) = {λx : x ∈ C, λ ∈ R+}

is called the cone generated by C.

Let X denote a real normed space, let X∗ be the topological dual of all continuous

linear functionals on X and let C be a nonempty subset of X.

Definition 4.4.2. Given an element x ∈ X, the set:

TC(x) =
{
h ∈ X : h = lim

n→∞
λn(xn − x), λn ∈ R and λn > 0∀n ∈ N,

xn ∈ C ∀n ∈ N and lim
n→∞

xn = x
}

is called tangent cone to C at x.

It results TC(x) ⊆ cl cone (C−{x}) and, if C is convex, we get TC(x) = cl cone (C−
{x}) (see Jahn (1996)).

Following Zarantonello Zarantonello (1971) and Borwein and Lewis Borwein &

Lewis (1991), we give the following definition of quasi-relative interior for a convex

set.

Definition 4.4.3. Let C be a convex subset of X. We define quasi-relative interior of
C, the set

qri C = {x ∈ C : cl cone (C − x) is a linear subspace of X}

or, equivalently,

qri C = {x ∈ C : TC(x) is a linear subspace of X} .
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4.4 Lagrangian theory

We define normal cone to C at x ∈ X the set

NC(x) = {ξ ∈ X∗ : 〈ξ, y − x〉 ≤ 0, ∀y ∈ C} ,

then, the following result holds:

Proposition 4.4.4. Let C be a convex subset of X. Then x ∈ C belongs to the quasi-
relative interior of C, in short, x ∈ qri C, if and only if NC(x) is a linear subspace of
X∗.

Using the notion of qri C, in Daniele et al. (2007), the following separation theorem

is proved.

Theorem 4.4.5. Let C be a convex subset of X and x0 ∈ C \qri C. Then, there exists
ξ 6= θX∗ such that

〈ξ, x〉 ≤ 〈ξ, x0〉, ∀x ∈ C.

Viceversa, let us suppose that there exists ξ 6= θX∗ and a point x0 ∈ X such that
〈ξ, x〉 ≤ 〈ξ, x0〉, ∀x ∈ C, and that Cl(TC(x0)− TC(x0)) = X. Then x0 /∈ qri C.

Finally, we remind the definition of convex-like function.

Definition 4.4.6. Let S be a nonempty subset of a real linear space X and let Y be
a real linear space partially ordered by the cone C. A function f : S → Y is called
convex–like if the set f(S) + C is convex.

For the reader’s convenience we present the statement of the duality theorem. Let

X be a real linear topological space and let S be a nonempty convex subset of X; let

(Y, ‖·‖Y ) be a real normed space partially ordered by a convex cone C and let (Z, ‖·‖Z)

be a real normed space. Let f : S → R and g : S → Y be two functions such that

the function (f, g) is convex-like with respect to the cone R+ × C of R × Y and let

h : S → Z be an affine function.

Let us consider the optimization problem

min
x∈K

f(x) (4.4.9)

where

K = {x ∈ S : g(x) ∈ −C, h(x) = θZ}
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4.4 Lagrangian theory

and the dual problem

max
u∈C∗
v∈Z∗

inf
x∈K
{f(x) + 〈u, g(x)〉+ 〈v, h(x)〉}, (4.4.10)

where

C∗ = {u ∈ Y ∗ : 〈u, y〉 ≥ 0 ∀y ∈ C}

is the dual cone of C.

We will say that Assumption S is fulfilled at a point x0 ∈ K if it results

TfM (f(x0), θY , θZ) ∩
(

]−∞, 0[×{θY , θZ}
)

= ∅, (4.4.11)

where

M̃ = {(f(x)− f(x0) + α, g(x) + y, h(x)) : x ∈ S \K, α ≥ 0, y ∈ C},

The following theorem holds (see Daniele & Giuffré (2007)):

Theorem 4.4.7. Under the above assumptions, if problem (4.4.9) is solvable and As-
sumption S is fulfilled at the extremal solution x0 ∈ K, then also problem (4.4.10) is
solvable, the extreme values of both problems are equal and if (x0, u, v) ∈ K× C∗ × Z∗

is the extremal point of problem (4.4.10), it results:

〈u, g(x0)〉 = 0.

Using Theorem 4.4.7, we are able to show the usual relationship between a saddle

point of the so-called Lagrange functional

L(x, u, v) = f(x) + 〈u, g(x)〉+ 〈v, h(x)〉, ∀x ∈ S, ∀u ∈ C∗, ∀v ∈ Z∗, (4.4.12)

and the solution of constraint optimization problem (4.4.9) (see Daniele & Giuffré

(2007)).

Theorem 4.4.8. Let us assume that the assumptions of Theorem 4.4.7 are satisfied.
Then x0 ∈ K is a minimal solution to problem (4.4.9) if and only if there exist u ∈ C∗

and v ∈ Z∗ such that (x0, u, v) is a saddle point of Lagrange functional (4.4.12), namely

L(x0, u, v) ≤ L(x0, u, v) ≤ L(x, u, v), ∀x ∈ S, u ∈ C∗, v ∈ Z∗

and, moreover, it results that
〈u, g(x0)〉 = 0.
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4.5 Duality results for weighted traffic equilibrium prob-

lem

Let us apply the infinite dimensional duality theorems presented in the previous

section in order to characterize the weighted traffic equilibrium conditions in terms of

the Lagrange multipliers. At this end, let us consider H ∈ K a solution to weighted

variational inequality (4.1.1) and let us set

Ψ(F ) = 〈C(H), F −H〉s, ∀F ∈ K.

Let us remark that

Ψ(F ) ≥ 0 ∀F ∈ K

and

min
F∈K

Ψ(F ) = Ψ(H) = 0. (4.5.13)

Before showing the main theorem, we prove some results making use of additional

assumptions on the constraint functions of the weighted traffic equilibrium model, more

precisely, we suppose that λ = 0 and µ = +∞. Let us show the following preliminary

lemma having interest in itself.

Lemma 4.5.1. H ∈ K is a weighted traffic equilibrium flow if and only if there exist
C̃ ∈ L2(Ω,Rm,a−1) and χ ∈ L2(Ω,Rm,a−1) such that

C(H)− ΦT C̃ = χ, 〈χ, H〉 = 0, χ ≥ 0.

Proof. Let us assume that µ = +∞ and λ = 0, then from Theorem 4.1.4 we have that
H ∈ K verifies variational inequality (4.1.1) if and only if for all i = 1, . . . , l, all q, s
such that φiq = φis = 1 and a.e. in Ω

sq(t)Cq(t,H(t)) > ss(t)Cs(t,H(t)) =⇒ Hq(t) = 0. (4.5.14)

Setting C̃j(t) = min{sr(t)Cr(t,H(t)) : φjr = 1} ∈ L2(Ω,R, a−1
j ), j = 1, . . . , l, we can

rewrite (4.5.14) in an equivalent form a.e. in Ω as:(
sq(t)Cq(t,H(t))− C̃j(t)

)
Hq(t) = 0 ∀q such that φjq = 1, j = 1, . . . , l. (4.5.15)

In fact, if (4.5.14) holds true and sq(t)Cq(t,H(t)) − C̃j(t) > 0, then Hq(t) = 0, since
C̃j(t) is equal to some ss(t)Cs(t,H(t)). Vice versa, we suppose that (4.5.15) holds. We
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4.5 Duality results for weighted traffic equilibrium problem

assume by contradiction that (4.5.14) does not hold, namely there exists q and s such
that φjq = φjs = 1 and

sq(t)Cq(t,H(t)) > ss(t)Cs(t,H(t)), Hq(t) > 0, a.e. in Ω.

From (4.5.15), it follows
sq(t)Cq(t,H(t)) = C̃j(t),

that is a contradiction, because C̃j(t) = min{sr(t)Cr(t,H(t)) : φjr = 1}.
Let us set sq(t)Cq(t,H(t))− C̃j(t) = χq(t)

χq(t)Hq(t) = 0
. (4.5.16)

Denoting by C̃(t) the vector
[
C̃1(t), . . . , C̃l(t)

]T
, χ the vector [χ1(t), . . . , χm(t)]T and

taking into account that in each column of the incidence matrix Φ there is only one
entry different from zero, we can rewrite condition (4.5.16) in the formsC(H)− ΦT C̃ = χ,

〈χ,H〉 = 0,

with χ ≥ 0, χ ∈ L2(Ω,Rm,a−1).

Now, we are able to prove the following result.

Theorem 4.5.2. Problem (4.5.13) verifies Assumption S at the minimal point H ∈ K.

Proof. Now, assuming that H ∈ K is a solution to (4.1.1), we can rewrite the problem
in the form (4.5.13), then we want to prove that Assumption S at the minimal point
H ∈ K is fulfilled. In fact, we have to prove that if (l, θY , θZ) ∈ TfM (Ψ(H), θY , θZ),
where Y = L2(Ω,Rm,a, s) and Z = L2(Ω,Rl,a∗, s∗), namely if

l = lim
n
λn(Ψ(Fn) + αn −Ψ(H)),

θY = lim
n
λn(−Fn +Gn), (4.5.17)

θZ = lim
n
λn(ΦFn(t)− ρ(t)),

with λn > 0, limn(Ψ(Fn)+αn−Ψ(H)) = 0, limn(−Fn+Gn) = θY , limn(ΦFn(t)−ρ(t)) =
θZ , l must be nonnegative. In virtue of Lemma 4.5.1 we have

Ψ(Fn)−Ψ(H) =
∫

Ω
〈C(t,H(t)), Fn(t)−H(t)〉s(t) dt

=
∫

Ω
〈s(t)C(t,H(t)), Fn(t)−H(t)〉 dt

=
∫

Ω
〈ΦT C̃(t) + χ(t), Fn(t)−H(t)〉 dt
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and, taking into account that ΦH(t) = ρ(t) and 〈χ,H〉 = 0, we get:

λn(Ψ(Fn) + αn − Φ(H))

= λn

∫
Ω
〈ΦT C̃(t), Fn(t)−H(t)〉 dt+ λn

∫
Ω
〈χ(t), Fn(t)−H(t)〉 dt+ λn αn

=
∫

Ω
〈C̃(t), λn(ΦFn(t)− ρ(t))〉 dt+

∫
Ω
〈χ(t), λn(Fn(t)−Gn(t))〉 dt

+
∫

Ω
〈χ(t), λnGn(t)〉 dt+ λnαn.

By means of conditions (4.5.17), we obtain:

lim
n

∫
Ω
〈C̃(t), λn(ΦFn(t)− ρ(t))〉 dt = 0, lim

n

∫
Ω
〈χ(t), λn(Fn(t)−Gn(t))〉 dt = 0,

and, being χ ≥ 0, λn > 0, Gn(t) ≥ 0, αn ≥ 0, we get:

lim
n
λn(Ψ(Fn) + αn −Ψ(H)) ≥ 0,

namely our claim.

In the following, we obtain the main theorem under the assumptions that the con-

straint functions are two generic functions belonging to L2(Ω,Rm,a, s) such that λ < µ.

Remark 4.5.3. We note that if H is a solution to weighted variational inequality
(4.1.1) Theorem 4.2 in Giuffré & Pia (2009) holds, and, moreover, the following con-
dition is fulfilled: for every w ∈W , there exists a real-valued function γw(·) on Ω such
that, for all r ∈ R(w) and a.e. on Ω,

sr(t)Cr(t,H(t)) < γw(t) =⇒ Hr(t) = µr(t),

sr(t)Cr(t,H(t)) > γw(t) =⇒ Hr(t) = λr(t). (4.5.18)

Theorem 4.5.4. Problem (4.5.13) verifies Assumption S at the minimal point x∗ ∈ K.

Proof. Let us set

A = {t ∈ Ω : sr(t)Cr(t,H(t)) < γw(t)},

B = {t ∈ Ω : sr(t)Cr(t,H(t)) > γw(t)},

C = {t ∈ Ω : sr(t)Cr(t,H(t)) = γw(t)}.
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Let us consider the weighted variational inequality

〈C(H), F −H〉s =
∫

Ω
〈C(t,H(t)), F (t)−H(t)〉s(t)dt

=
∫

Ω

∑
w∈W

∑
r∈R(w)

sr(t)Cr(t,H(t))
[
Fr(t)−Hr(t)

]
dt

=
∑
w∈W

∑
r∈R(w)

{∫
A
sr(t)Cr(t, x0(t))

[
xr(t)− µr(t)

]
dt

+
∫
B
sr(t)Cr(t, x0(t))

[
xr(t)− λr(t)

]
dt

+
∫
C
γw(t)

[
xr(t)− x0

r(t)
]
dt

}
. (4.5.19)

Let us consider, for every w ∈W , for all r ∈ R(w) and a.e. on Ω,

sr(t)Cr(t,H(t)) =

γw(t)− C̃r(t,H(t)), on A,

γw(t) + C∗r (t,H(t)), on B,

where C̃r(t,H(t)) and C∗r (t,H(t)) are positive functions.
Making use of the previous statement, (4.5.19) and the traffic conservation law, it

follows

〈C(H), F −H〉s =
∑
w∈W

∑
r∈R(w)

{∫
Ω
γw(t)

[
Fr(t)−Hr(t)

]
dt

+
∫
A
−C̃r(t,H(t))

[
Fr(t)− µr(t)

]
dt

+
∫
B
C∗r (t,H(t))

[
Fr(t)− λr(t)

]
dt

}

=
∑
w∈W

∫
Ω
γw(t)

∑
r∈R(w)

[
Fr(t)−Hr(t)

]
dt

+
∑
w∈W

∑
r∈R(w)

{∫
A
−C̃r(t,H(t))

[
Fr(t)− µr(t)

]
dt (4.5.20)

+
∫
B
C∗r (t,H(t))

[
Fr(t)− λr(t)

]
dt

}

=
∑
w∈W

∑
r∈R(w)

{∫
A
−C̃r(t,H(t))

[
Fr(t)− µr(t)

]
dt

+
∫
B
C∗r (t,H(t))

[
Fr(t)− λr(t)

]
dt

}
.
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Now, we suppose that H ∈ K is a solution to (4.1.1), we can rewrite the problem as the
optimization problem (4.5.13), we show that Assumption S at the minimal point H ∈ K
is fulfilled. In fact, we have to prove that if (l, θX , θY , θZ) ∈ TfM (Ψ(H), θX , θY , θZ),
where X = Y = L2(Ω,Rm,a, s) and Z = L2(Ω,Rl,a∗, s∗), namely if

l = lim
n
λn(Ψ(Fn) + αn −Ψ(H)),

θX = lim
n
λn(−Fn + λ+Gn),

θY = lim
n
λn(Fn − µ+Gn), (4.5.21)

θZ = lim
n
λn(ΦFn(t)− ρ(t)),

with λn > 0, limn(Φ(Fn)+αn−Ψ(H)) = 0, limn(−Fn+Gn) = θY , limn(ΦFn(t)−ρ(t)) =
θZ , l must be nonnegative. Taking into account (4.5.20) we have

Ψ(Fn)−Ψ(H) =
∫

Ω
〈C(t,H(t)), Fn(t)−H(t)〉s(t)dt

=
∑
w∈W

∑
r∈R(w)

{∫
A
−C̃r(t,H(t))

[
Fnr (t)− µr(t)

]
dt

+
∫
B
C∗r (t,H(t))

[
Fnr (t)− λr(t)

]
dt

}
.

Hence, it results

λn(Ψ(Fn) + αn −Ψ(H)) =
∑
w∈W

∑
r∈R(w)

λnr

{∫
A
−C̃r(t,H(t))

[
Fnr (t)− µr(t)

]
dt

+
∫
B
C∗r (t,H(t))

[
Fnr (t)− λr(t)

]
dt

}
+ λnαn

=
∑
w∈W

∑
r∈R(w)

λnr

{∫
A
−C̃r(t,H(t))

[
Fnr (t)− µr(t) +Gnr (t)

]
dt

+
∫
A
C̃r(t,H(t))Gnr (t)dt

+
∫
B
C∗r (t,H(t))

[
Fnr (t)− λr(t)−Gnr (t)

]
dt

+
∫
B
C∗r (t,H(t))Gnr (t)dt

}
+ λnαn

From (4.5.21), we get for every w ∈W , for all r ∈ R(w) and a.e. on Ω

lim
n

∫
A
−C̃r(t,H(t))λn

[
Fnr (t)− µr(t) +Gnr (t)

]
dt = 0,

lim
n

∫
B
C∗r (t,H(t))λn

[
F rn(t)− λr(t)−Gnr (t)

]
dt = 0,
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4.5 Duality results for weighted traffic equilibrium problem

and, since λn > 0, Gn(t) ≥ 0, C̃r(t,H(t)) ≥ 0, C∗r (t,H(t)) ≥ 0, αn ≥ 0, we have

lim
n
λn(Ψ(Fn) + αn −Ψ(H)) ≥ 0,

this completes the proof.

Now, we can prove the next result.

Theorem 4.5.5. H ∈ K is a solution to variational problem (4.1.1) if and only if there
exist α∗, β∗ ∈ L2(Ω,Rm,a−1, s) δ∗ ∈ L2(Ω,Rm, (a∗)−1, s∗) such that:

(i) α∗(t), β∗(t) ≥ 0 a.e. in Ω;

(ii) α∗(t)(λ(t)−H(t)) = 0 a.e. in Ω,
β∗(t)(H(t)− µ(t)) = 0 a.e. in Ω;

(iii) s(t)C(t,H(t))− s(t)α∗(t) + s(t)β∗(t) + ΦT s∗(t)ρ(t) = 0 a.e. in Ω.

Proof. From Theorem 4.4.8 there exists (α∗, β∗, δ∗) ∈ C∗ such that (H,α∗, β∗, δ∗) is a
saddle point of the Lagrange functional L:

L(H,α, β, δ) ≤ L(H,α∗, β∗, δ∗) ≤ L(F, α∗, β∗, δ∗), (4.5.22)

∀(α, β, δ) ∈ C∗ and ∀F ∈ L2(Ω,Rm,a, s), and furthermore

〈α∗, λ−H〉s = 0,

〈β∗, H − µ〉s = 0. (4.5.23)

Since α, β, δ ≥ 0, λ−H,H − µ ≤ 0, ΦH − ρ = 0, by means of (4.5.23) we obtain

α∗(t)(λ(t)−H(t)) = 0, a.e. in Ω,

β∗(t)(H(t)− µ(t)) = 0, a.e. in Ω.

From (4.5.22) it follows, ∀F ∈ L2(Ω,Rm,a, s),

L(F, α∗, β∗, δ∗) = 〈C(H), F −H〉s + 〈α∗, λ− F 〉s + 〈β∗, F − µ〉s + 〈δ∗,ΦF − ρ〉s∗

≥ 0 = L(H,α∗, β∗, δ∗), (4.5.24)

Taking into account conditions (4.5.23) and that it results

〈δ∗,ΦF − ρ〉s∗ = 〈δ∗,ΦF − ρ〉s∗ − 〈δ∗,ΦH − ρ〉s∗ = 〈ΦT s∗δ∗, F −H〉,

from the right-hand side of (4.5.24), we get

〈sC(H)− sα∗ + sβ∗ + ΦT δ∗, F −H〉 ≥ 0, ∀F ∈ L2(Ω,Rm,a, s),
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4.5 Duality results for weighted traffic equilibrium problem

Now, we assume

F 1 = H + ε, F 2 = H − ε, ∀ε ∈ L2(Ω,Rm,a, s),

then, it results, for all ε ∈ L2(Ω,Rm,a, s),

L(F 1, α∗, β∗, δ∗) = −〈sC(H)− sα∗ + sβ∗ + ΦT δ∗, ε〉 ≥ 0, (4.5.25)

L(F 2, α∗, β∗, δ∗) = 〈sC(H)− α∗ + β∗ + ΦT s∗δ∗, ε〉 ≥ 0, (4.5.26)

Moreover, taking into account (4.5.25), we get, for all ε ∈ C∞0 (Ω):

〈sC(H)− sα∗ + sβ∗ + ΦT δ∗, ε〉 = 0,

namely, we obtain

s(t)C(t,H(t))− s(t)α∗(t) + sβ∗(t) + ΦT s∗δ∗(t) = 0, a.e. in Ω. (4.5.27)

Conversely, if there exists

H ∈ K, α∗, β∗ ∈ L2(Ω,Rm,a−1, s)

and
δ∗ ∈ L2(Ω,Rm, (a∗)−1, s∗)

that satisfy the condition i), ii), iii), one has that (H,α∗, β∗, δ∗) is a saddle point of
the Lagrange functional L. Then, taking into account Theorem 4.4.8, it results that H
is a solution to weighted variational inequality (4.1.1).

Remark 4.5.6. The importance of such Lagrange variables is their capacity to describe
the behavior of the weighted traffic equilibrium problem. In fact, let us remark that from
ii) and if α∗(t) > 0, we have that H(t) is given by the flow vector λ(t), and if β∗(t) > 0
then H(t) is given by µ(t); vice versa if α∗(t), β∗(t) = 0, it results

ΦT s∗(t)δ∗(t) = −s(t)C(t,H(t)), a.e. in Ω.

Moreover, assuming that β∗(t) = δ∗(t) = 0, we get

C(t,H(t)) = α∗(t),

namely, α∗ represents the equilibrium cost.
Analogously, if α∗(t) = δ∗(t) = 0, we obtain

C(t,H(t)) = −β∗(t),

namely, −β∗ij is the equilibrium cost.
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4.6 Some considerations about Weights

In this section we propose a way to define the Real Time Traffic Density (RTTD)

for a route. This data will be the “weight” of the route considered and it will be used to

define the corresponding element of the duality mapping. To define the RTTD we use

the smart idea of the Senseable Labo at MIT directed by Carlo Ratti (see Ratti et al.

(2006) and Ratti et al. (2005)). In various contests, using mobile phone connections

data, they were able to interpolate and represent graphically, in a continuous way,

the density of mobile phone connected over a monitored area. The principle can be

generalized to other wireless devices, for instance instead of using mobile phone data it

is possible to use also RFID or WiFi devices. It is clear that to weight properly a link

is really difficult and it is at least necessary to take into account network’s geometry,

which means for us the position of network’s elements.

We can suppose to have I ⊂ R2 closed and large enough to include the monitored

area and a parametric continuous function γt with t ∈ Ω such that:

γt : I → R+

γt : (x, y)→ γt(x, y)

This function represent a normalized interpolation obtained using the communication

data. We suppose now to have a network that means a set W of origin-destination pair

(origin/destination node) and a set R of routes. Each route r ∈ R links exactly one

origin-destination pair w ∈W.

For each route we construct a weight in the following way: let us fix ϑ ∈ R+ \ {0},
a strict positive number called “resolution”. We introduce the set rϑ = r×ϑ, rϑ ⊂ I.

We propose now a definition of weight which does not pretend to be exhaustive,

all the contrary. We think that the weights should be calibrated case by case. For

example one can decide to take into account very exceptional events that are not visible

by mobile connection data adding to the definition given below terms that will increase

or decrease the weight.

Definition 4.6.1. Given ϑ a resolution and N a finite network, we call weight of the
route r, the real positive number s̃r(t) such that

s̃r(t) =
∫
rϑ
γt(x, y)[χrϑ\(S

p6=r p
ϑ)(x, y) +mϑ(x, y, t)

∑
p 6=r

χrϑ
T
pϑ(x, y)]dxdy (4.6.28)
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4.7 Computational Procedure and convergence Analysis

where mϑ : I × Ω → R+ is continuous and called proximity contribution weight and χ

is the standard characteristic function.

Remark 4.6.2. The function mϑ should be calculated case by case. It has been intro-
duced to balance the action due to the proximity of intersections, roads, etc. In a first
approximation we can suppose that mϑ(x, y, t) = 1, ∀(x, y, t) ∈ I × Ω

Remark 4.6.3. The time derivative of γt in a fixed point (x, y) and/or the variation
of γt with respect of to a standard situation γt0 in a same point (x, y) could be a very
useful information to take into account to set up the real time traffic density.

Assumption 4.6.4. We assume that for each r ∈ R, s̃r(t) 6= 0 for all t ∈ Ω.

Definition 4.6.5. A given family of weights {s̃r(t)}r∈R, is called Normalized Family
of Weights if ∑

r∈R

s̃r(t) = 1, ∀ t ∈ Ω

It is clear that each family of weights can be normalized. To define the inner product

〈·, ·〉a,s we use a normalized family of weights s.

4.7 Computational Procedure and convergence Analysis

In the present section, we consider the work of Solodov-Svaiter (see Solodov &

Svaiter (1999)) developed for Euclidean spaces endowed with the standard inner prod-

uct in order to extend it in our context. Even if the modifications strictly related to

the extension are few but we provide some proofs for reader’s convenience. For the

detailed description of the method see Solodov & Svaiter (1999).

In particular, to solve a weighted variational inequality we first discretize the time

interval, then solve a set of variational inequalities and at least we get the solution by

interpolation (the procedure is explained later on). It is clear that the solving method

for the variational inequality should be as computationally inexpensive as possible

therefore we found the method described by Solodov-Svaiter in Solodov & Svaiter (1999)

reduces the computational time because only two projection by iteration are needed.

Moreover, this method converges under common assumptions, instead other methods,

as extragradient method, request the Lipschitz continuity (see for example Konnov

(2001)).

86



4.7 Computational Procedure and convergence Analysis

In the following, we will show three steps:

Step 0: We present the Solodov-Svaiter method for the non-pivot setting and we give

a convergence result, in Rm endowed with a weighted norm.

Step 1: We discretize the time interval and we obtain N + 1 variational inequalities.

Step 2: Then, we apply the Solodov-Svaiter method to N + 1 variational inequalities.

Step 3: We interpolate the solutions and prove a convergence result of the approximate

solution to the exact solution.

Step 0: The purpose is to solve the following weighted variational inequality

〈C(x), y − x〉s ≥ 0, ∀y ∈ K. (4.7.29)

where K is a closed convex subset of V = Rm endowed with a weighted norm, as for

example the set that we introduce in Section 5, and we suppose that the norm is given

by

‖x‖2m,a,s =
m∑
i=1

x2
i aisi.

It was shown in Auslender & Teboulle (2005) that the projection methods admit dif-

ferent distance functions, although the usual norm distance is the simplest, in this case

it is necessary to use the previous one because the problem is modeled by means of

weights.

We suppose that the function C : V → V ∗ is strictly monotone and hemicontinuous

with respect to 〈·, ·〉s (as in Definition B.2.3). If we denote by

r(x) = x− PK(x− J−1
m C(x))

we can note that

r(x) = 0⇔ x ∈ SV I(C,K),

where SV I(C,K) is the set of solutions to weighted variational inequality (4.7.29).

For an easier reading we denote by xi the iteration of order i to find an element of

SV I(C,K).

Algorithm 4.7.1. Choose x0 ∈ K and two parameters γ ∈]0, 1[ and σ ∈]0, 1[. Having
xi, compute r(xi). If r(xi) = 0 stop. Otherwise, compute zi = xi − ηir(xi), where
ηi = γki, with ki the smallest nonnegative integer k satisfying

〈C(xi − γkr(xi)), r(xi)〉s ≥ σ‖r(xi)‖2V (4.7.30)

87
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Compute
xi+1 = PK∩Hi(x

i)

where
Hi =

{
x ∈ V | 〈C(zi), x− zi〉s ≤ 0

}
As done in Solodov & Svaiter (1999) for the finite-dimensional variational inequal-

ities, we need to remind some proprieties of the metric projection operator. We state

them for a not necessarily pivot Hilbert space (instead of an Euclidean space), but

the proof remains the same. For further details see Solodov & Svaiter (1999) and

Zarantonello (1971).

Lemma 4.7.2. Let V be a non necessarily pivot Hilbert space. Let B be any nonempty
closed convex subset of V . For any x, y ∈ V and any z ∈ V the following properties
hold.

• (x− PB(x), z − PB(x))V ≤ 0.

• ‖PB(x)− PB(y)‖2V ≤ ‖x− y‖2V − ‖PB(x)− x+ y − PB(y)‖2V

where (·, ·)V and ‖.‖V are respectively the inner product and the norm of V .

Lemma 4.7.3. Suppose that the linesearch procedure (4.7.30) of Algorithm (4.7.1) is
well-defined. Then it holds that

xi+1 = PK∩Hi(x̄
i)

where
x̄i = PHi(x

i).

We also use the following lemma state in an even more general context.

Lemma 4.7.4. Let X be strictly convex and smooth Banach space, if we denote by f
an element of X∗ \ {0}, by α a real number and by

Kα = {x ∈ V | 〈f, x〉s ≤ α},

we have
PKα(x) = xi −max

{
0,
〈f, x〉X∗,X − α
‖f‖2X∗

}
J−1(f). (4.7.31)

Proof. See Theorem 4.2 in Song & Cao (2004).

Now, we are able to prove the following result.
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4.7 Computational Procedure and convergence Analysis

Corollary 4.7.5. For xi construct as specified in Algorithm (4.7.1) and V a not nec-
essarily pivot Hilbert space, if

Hi =
{
x ∈ V | 〈C(zi), x− zi〉V ∗,V ≤ 0

}
,

then

xi = PHi(x
i) = xi − 〈C(zi), xi − zi〉V ∗×V

‖C(zi)‖2V ∗
J−1(C(zi)). (4.7.32)

Proof. A not necessarily pivot Hilbert space is a strictly convex and smooth Banach
space, and the metric and the generalized projection coincide in V because J is linear,
by Lemma 4.7.4 we obtain immediately the result taking α = 〈C(zi), zi〉V ∗,V and
observing that xi /∈ Hi which implies that 〈f, xi〉V ∗,V − α > 0.

We can present now the modified convergence theorem, where V = Rm endowed

with a weighted norm. This implies that we have to deal with J the duality mapping

between V and V ∗.

Theorem 4.7.6. Let C(·) be a continuous and monotone (with respect to 〈·, ·〉s as in
Definition B.2.3) function. Suppose SV I(C,K) is nonempty. Then any sequence {xi}
generated by Algorithm (4.7.1) converges to a solution of V I(C,K)

Proof. First we show that the linesearch (4.7.30) is well-defined. If r(xi) = 0, then we
have that xi is a solution to the problem. Now, we suppose that ‖r(xi)‖V > 0 and
that, for some i, (4.7.30) is not satisfied for any k, this implies

〈C(xi − γkr(xi)), r(xi)〉s < σ‖r(xi)‖2V , ∀k (4.7.33)

Applying Lemma 4.7.2, we get

0 ≥ (xi − J−1(C(xi))− PK(xi − J−1(C(xi))), xi − PK(xi − J−1(C(xi))))V

= (r(xi)− J−1(C(xi)), r(xi))V

= ‖r(xi)‖2V− < C(xi), r(xi) >V ∗,V

Hence
〈C(xi), r(xi)〉s ≥ ‖r(xi)‖2V (4.7.34)

Since xi − γkr(xi) → xi as k → +∞, and C(.) is continuous, passing to the limit as
k → +∞ in (4.7.33), we get

〈C(xi), r(xi)〉s < σ‖r(xi)‖2V
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So we have a contradiction because σ < 1 and ‖r(xi)‖V > 0, that means there exists
an integer ki such that (4.7.30) is satisfied. As xi+1 = PK∩Hi(x̄

i), where x̄i = PHi(x
i).

Using Lemma (4.7.2) for B = K ∩ Hi, x = x̄i and y = x∗ ∈ SV I(C,K) ⊂ K ∩ Hi

we have by definition of the projection on K ∩ Hi, (x̄i − xi+1, x∗ − xi+1)V ≤ 0, but
(x̄i − xi+1, x∗ − xi+1)V = ‖xi+1 − x̄i‖2V − (xi+1 − x̄i, x∗ − x̄i)V , it follows that

(x∗ − x̄i, xi+1 − x̄i)V ≥ ‖xi+1 − x̄i‖2V .

Moreover,

‖xi+1 − x∗‖2V = ‖x̄i − x∗‖2V + ‖xi+1 − x̄i‖2V + 2(xi+1 − x̄i, x̄i − x∗)V

therefore, we get

‖xi+1 − x∗‖2V ≤ ‖x̄i − x∗‖2V − ‖xi+1 − x̄i‖2V . (4.7.35)

Using Corollary 4.7.5, we get

‖xi − x∗‖2V = ‖xi − xi‖2V + ‖xi − x∗‖2V − 2(xi − xi, xi − x∗)

=
(ηi〈C(zi), r(xi)〉s
‖C(zi)‖2V ∗

)2
‖J−1(C(zi))‖2V + ‖xi − x∗‖2V

−2
ηi〈C(zi), r(xi)〉s
‖C(zi)‖2V ∗

(J−1(C(zi)), xi − x∗) (4.7.36)

=
η2
i

(
〈C(zi), r(xi)〉s

)2
‖C(zi)‖4V ∗

‖C(zi)‖2V ∗ + ‖xi − x∗‖2V

−2
ηi〈C(zi), r(xi)〉s
‖C(zi)‖2V ∗

〈C(zi), xi − x∗〉s.

Moreover, it results
〈C(zi), x∗ − zi〉s ≤ 0 (4.7.37)

then, from (4.7.37) we obtain

〈C(zi), xi − x∗〉s = 〈C(zi), xi − zi〉s − 〈C(zi), x∗ − zi〉s (4.7.38)

≥ ηi〈C(zi), r(xi)〉s.

Now, using (4.7.36), (4.7.38) and (4.7.30), we are able to establish the following in-
equality

‖xi − x∗‖2V ≤ ‖xi − x∗‖2V −
η2
i

(
〈C(zi), r(xi)〉s

)2
‖C(zi)‖2V ∗

≤ ‖xi − x∗‖2V −
η2
i

(
σ‖r(xi)‖2V

)2
‖C(zi)‖2V ∗

. (4.7.39)
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Finally, from (4.7.35) and (4.7.39) we get

‖xi − x∗‖2V ≤ ‖xi − x∗‖2V − ‖xi+1 − x̄i‖2V −
η2
i

(
σ‖r(xi)‖2V

)2
‖C(zi)‖2V ∗

. (4.7.40)

From the last inequality we can deduce that the sequence {‖xi − x∗‖V }i∈N is non
increasing, so we deduce that the sequence {xi}i∈N is bounded, the same holds for
{zi}i∈N. So there exists a constant M > 0 such that ‖C(zi)‖V ∗ ≤ M for all i. We
deduce that

‖xi+1 − x∗‖2V ≤ ‖xi − x∗‖2V − ‖xi+1 − x̄i‖2V −
(ηiσ
M

)2
‖r(xi)‖4V . (4.7.41)

Since {‖xi − x∗‖V }i∈N converges, we deduce

lim
i→∞

ηi‖r(xi)‖V = 0

Now supposing that lim supi→∞ ηi > 0, we must have in that case lim infi→∞ ‖r(xi)‖V =
0. Since {xi}i∈N is bounded there exists x̂ an accumulation point of {xi}i∈N, moreover,
being r(·) continuous, we deduce that r(x̂) = 0. Then, it follows that x̂ ∈ SV I(C,K)
and applying the previous step we deduce that {‖xi− x̂‖V } converges necessarily to 0,
which means that xi → x̂ ∈ SV I(C,K).

Suppose now that limi→∞ ηi = 0, by definition of ηi = γki , we have ∀k ≤ ki − 1

〈C(xi − γkr(xi)), r(xi)〉s < σ‖r(xi)‖2V

again as {xi}i∈N is bounded there exists a subsequence again denoted by {xi}i∈N which
converges to x̂. So passing to the limit in the previous inequality we get

〈C(x̂), r(x̂)〉s < σ‖r(x̂)‖2V ,

taking into account (4.7.34) we have

〈C(x̂), r(x̂)〉s ≥ ‖r(x̂)‖2V

as σ < 1 this is possible only if r(x̂) = 0 which mean x̂ ∈ SV I(C,K). Using the same
method than before we obtain that {xi}i∈N converges to x̂ ∈ SV I(C,K).

Step 1 and Step 2: To solve the dynamical case we discretize the open set

Ω =]0, T [, in particular we fix ε > 0 and we consider the following partition of Ω:

0 < tε0 < tε1 < . . . < tεr < . . . < tεN < T
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where tε0 < ε and T − tεN < ε. For each value of tεr for r = 0, 1, . . . , N we apply the

Solodov-Svaiter method, to solve the finite-dimensional weighted variational inequality

given by:

〈C(x(tεr), y(tεr)− x(tεr)〉m,a(tr),s(tr) ≥ 0, ∀y(tεr) ∈ K(tεr). (4.7.42)

Let us denote by V I(C,K(tεr)) the variational inequality defined by (4.7.42) and SV I(C,K(tεr))

the corresponding set of solutions. It is clear that SV I(C,K(tεr)) coincide with the

points that satisfy:

PK(tεr)
(x− J−1C(x)) = x (4.7.43)

where PK(tεr)
is the metric projection operator associated to the norm induced above,

and it is characterized by the following variational principle:

x̄ = PK(x)⇔ 〈J(x− x̄), y − x̄〉s ≤ 0, ∀y ∈ K, (4.7.44)

where J is the duality mapping (linear) given in (3.1.10). It results that a point

x ∈ SV I(F,K(tεr)) if and only if r(x) := PK(tεr)
(x− J−1(F (x))− x = 0.

Generally it is well-known that x(t) solves the variational inequality (4.7.29) if and only

if we have x(t) = PK(x(t) − λJ−1(C(x(t)))) for all λ > 0. Where PK is the metric

projection operator on K related to the norm ‖ · ‖a,s. But from the definition,

PK(x(t)− λJ−1(C(x(t)))) = arg min
v∈K
‖x− λJ−1(C(x))− v‖2a,s

= arg min
v∈K

(1
2
〈v, v〉s − 〈x− λJ−1(C(x)), v〉s

)
(4.7.45)

In order to solve infinite-dimensional weighted variational inequality (4.7.29) defined

into ]0, T [, we consider a partition of the time interval and the finite-dimensional

weighted variational equalities (4.7.42) associated to every point of the partition and we

apply the generalized Solodov-Svaiter method to compute the solutions, then, by means

of an interpolation procedure, we obtain the solution to infinite-dimensional weighted

variational inequality, as it has been done in Barbagallo (2006, 2007b, 2009a,b).

Step 3: We interpolate the stationary equilibrium solution, in order to do that,

we assume that all hypothesis to have the continuity of the solution to (4.7.29) and

the convergence of the method to compute solutions to finite-dimensional variational
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inequalities hold. Let us introduce a sequence of {πn}n∈N of partitions of time interval

]0, T [ such that

πn = (t0n, . . . , t
r
n, . . . , t

Nn
n )

where

0 < εn = t0n < . . . < trn < . . . < tNnn = T − εn < T

where {εn}n∈N is a strictly positive and decreasing sequence. We consider a sequence

of equidistant partitions, such that

kn := max{trn − tr−1
n |r = 1, 2, . . . , Nn}

approaches zero for n→ +∞. We consider an approximation of the solution by mean

of piecewise constant functions.

We denote by ‖ · ‖m,a,s the norm associated to the inner product before introduced.

Under some additional conditions on the weights, we can show the following result:

Theorem 4.7.7. Assume that the conditions of Theorem 3.1.19 and Theorem 4.7.6
are satisfied, then the approximate solution, given by

uk(t) =


0 if t ∈]0, εn[∑Nk

r=1 u(trk)χ[tr−1
k ,trk[(t) if t ∈ [t0k, t

Nk
k [

0 if t ∈]T − εk, T [

,

converges to u(t) in L2(]0, T [,Rm,a, s) sense

Proof. Let us estimate the following integral

‖u− uk‖2a,s =
∫ T

0
‖u(t)− uk(t)‖2m,a,sdt

=
∫ εk

0
‖u(t)‖2m,a,sdt+

∫ T−εk

εk

‖u(t)− uk(t)‖2m,a,sdt+
∫ T

T−εk
‖u(t)‖2m,a,sdt

≤
∫ εk

0
‖u(t)‖2m,a,sdt+

Nk∑
r=1

∫ trk

tr−1
k

‖u(t)− u(trk)‖2m,a,sdt+
∫ T

T−εk
‖u(t)‖2m,a,sdt

≤ 2εk‖u‖2a,s + ε
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Figure 4.1: A network model.

because u is uniformly continuous on [εk, T − εk] , we have that for every ε > 0 there
exists δ > 0 such that if t ∈ [tr−1

n ; trn] satisfies the condition |t− trn| < δ, it results

‖u(t)− u(trn)‖2m,a,s <
ε

T
, for r = 1, 2, . . . , Nn, ∀n ∈ N

Choosing n large enough in such way that kn < δ, we get

Nk∑
r=1

∫ trk

tr−1
k

‖u(t)− u(trk)‖2m,a,sdt ≤ ε

therefore we get the result.

4.7.1 Computational methods to solve Projected Dynamical Systems

Actually there are no published work regarding a computational analysis of a scheme

in order to determine the trajectory of the pre-equilibrium, it will be object of a future

publication by the author. There exists indeed computational methods in order to

calculate critical points of a PDS which is equivalent to calculate the solutions of a

variational inequality.

The first difficulty that we have to overcome is that calculation of the tangent cone

related to a convex K in a generic point x. In a large quantity of problems the convex

K is quite simple and even if multidimensional it is possible to calculate it .

4.8 Numerical Example

Let us consider a network as Figure 4.1. The network consists of four nodes and

five links. The origin-destination pair is w = (P1, P3), which is connected by the paths

R1 = (P1, P3), R2 = (P1, P2) ∪ (P2, P3) and R3 = (P1, P2) ∪ (P2, P4) ∪ (P4, P3). Let us
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consider the cost operator on the path C defined by

C1(t,H(t)) =
t+ 2
t

H1(t) + 2t,

C2(t,H(t)) =
t+ 3
2− t

H2(t) + 1, (4.8.46)

C3(t,H(t)) = tH2(t) + (2t+ 3)H3(t) + 3t+ 1.

The set of feasible flows is given by

K =
{
F ∈ L2(]0, 2[,R3

+) : (0, 0, 0) ≤ (F1(t), F2(t), F3(t)) ≤ (20t, 10t+ 3, 20t+ 5),

F1(t) + F2(t) + F3(t) = 4t+ 3, a.e. in ]0, 2[
}

We compute the solution for two different real time densities (using 20 nodes in

the interval ]0, 2[) using two different real time densities. The first real time density is

given by:

s1(t) =
6
5
t,

s2(t) =
6
5

(2− t), (4.8.47)

s3(t) = 1.

The cost function is strictly monotone with the previous weight, in fact for all

F (t) 6= H(t), a.e. in ]0, 2[ it results

〈C(t, F (t))− C(t,H(t)), F (t)−H(t)〉s(t) =
3∑
i=1

si(t)(Ci(t, F (t))− Ci(t,H(t)))(Fi(t)−Hi(t))

=
6
5

(t+ 2)(F1(t)−H2(t))2 +
6
5

(t+ 3)(F2(t)−H2(t))2

+t(F2(t)−H2(t))(F3(t)−H3(t)) + (2t+ 3)

(F3(t)−H3(t))2

≥ 6
5

(t+ 2)(F1(t)−H1(t))2 +
( 7

10
t+

18
5

)
(F2(t)−H2(t))2 +

(3
2
t+ 3

)
(F3(t)−H3(t))2 > 0.

We get the graphical distribution of the traffic flows in Figure 4.2.

The second real time density used is given by increasing the previous one by the

real time density (RTD) on the first path by 25% and the RTD on the third path by
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4.8 Numerical Example

Figure 4.2: Curves of equilibria.

50%. Therefore the RTD that we consider now is

s1(t) =
3
2
t,

s2(t) =
6
5

(2− t), (4.8.48)

s3(t) =
3
2
.

In the following, we prove that the cost function is also strictly monotone with the

weight above, in fact for all F (t) 6= H(t), a.e. in ]0, 2[ it results

〈C(t, F (t))− C(t,H(t)), F (t)−H(t)〉s(t) =
3∑
i=1

si(t)(Ci(t, F (t))− Ci(t,H(t)))(Fi(t)−Hi(t))

=
3
2

(t+ 2)(F1(t)−H2(t))2 +
6
5

(t+ 3)(F2(t)−H2(t))2

+
3
2
t(F2(t)−H2(t))(F3(t)−H3(t)) +

3
2

(2t+ 3)

(F3(t)−H3(t))2

≥ 6
5

(t+ 2)(F1(t)−H1(t))2 +
( 9

20
t+

18
5

)
(F2(t)−H2(t))2 +

(9
4
t+

9
2

)
(F3(t)−H3(t))2 > 0.
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4.8 Numerical Example

Figure 4.3: Curves of equilibria.

We obtain the equilibrium distribution of the traffic flows in Figure 4.3.

We can visualize the densities and the flows in the following way: We present

Figure 4.4: Densities and Flows ] 1

also this more suggestive visual representation. The graphics has been generated by

Mathlab. It is possible to observe that when the density is high on a route, then the
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flows are redistributed in an equivalent route with lower density.

Figure 4.5: Densities and Flows ] 2
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Figure 4.6: Densities and Flows ] 3

Figure 4.7: Densities and Flows ] 4
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Figure 4.8: Densities and Flows ] 5

Figure 4.9: Densities and Flows ] 6
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Figure 4.10: Densities and Flows ] 7

Figure 4.11: Densities and Flows ] 8
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Figure 4.12: Densities and Flows ] 9

Figure 4.13: Densities and Flows ] 10
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Figure 4.14: Densities and Flows ] 11

Figure 4.15: Densities and Flows ] 12
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Figure 4.16: Densities and Flows ] 13

Figure 4.17: Densities and Flows ] 14
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Figure 4.18: Densities and Flows ] 15

Figure 4.19: Densities and Flows ] 16
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Figure 4.20: Densities and Flows ] 17

Figure 4.21: Densities and Flows ] 18
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4.9 Industrial Application - Intelligent GPS

Figure 4.22: Densities and Flows ] 19

We can observe, as foreseen, a redistribution of the traffic flows with a clear increase

on the flow on the path R2. We can highlight also a new and interesting problem to

study, the sensitivity of the equilibrium with respect to the real time density, and this

point will be part of our future publications.

4.9 Industrial Application - Intelligent GPS

It is quite difficult to foresee all the necessarily steps to make productive an in-

dustrial project. There are many unknown factors that can convert an idea into a

successful application or into something unusable. The decision to include a possible

industrial application is in our work as been induced by the willing to prove that even

well studied domain as for instance the traffic equiibrium problem can be renewed from

a theoretical and practical point of view, integrating an interdisciplinary knowledge.

We know that portable GPS systems have a capillary diffusion in modern societies, as

well as portable wired devices. The idea is therefore to integrate previous work into

portable GPS devices, producing in a certain sense an intelligent GPS device, which is

able to propose “the best” routing according preferred criteria.
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Figure 4.23: Basic design of Intelligent GPS systems.

108



Chapter 5

Conclusion

In the following work, we present some achievements in the two main directions.

First we extend the notion of Projected Dynamical Systems in Weighted Hilbert Spaces,

and, as the projection operator is strictly related to the inner product (or the duality

paring and the duality mapping), the work done generalizes existing results. We intro-

duce then a framework to extend PDS theory to Banach spaces proving an equivalence

theorem in Reflexive Banach spaces. Nevertheless we still don’t have an existence result

in such spaces, even if the think there are good perspective of results in that direction.

Implicit Non pivot PDS has been introduced, and using them we prove and existence

result for a quasi-variational inequality with any assumption on the projection operator.

A generalization of the traffic equilibrium model has been introduced to manage flows

according to the real time urban density (obtained from mobile device connexion data).

Moreover some problems have been studied related to this weighted traffic equilibrium

model, among others, regularity of solution, dual problem, retarded traffic equilibrium

model. There are numbers of paths still to be studied. In particular we can highlight

the needs to develop a model for very large Networks (as urban Network) in order to

design in a concrete way a prototype for industry. There are several ideas to make that

possible, using exactly this model but mapping only critical routes, trying to describe

the complex network using a topological approach or using a stochastic approach. On

the other hand, it is necessarily to get an existence result for PDS in Banach space:

this point is still a big challenge, but recently some interesting perspectives can be in-

vestigated . There are also some on going activities related to a deeper analysis of the

double layered phenomena. On the VI front line, some generalizations are under study,

to include for example a relationship between densities and flows. Finally we hope that
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our contribution is useful to show how a classical problem can be renewed both theo-

retically and from the point of view of applications following advances (technological

for instance) of real life.
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Appendix A

Variational Geometry and PDS

A.1 Tangent Cones, Normal Cones

Definition A.1.1. Let be C ⊂ X convex, we call General Tangent Cone to C at x̄

the set given by:

TC(x̄) = lim sup
λ→0

1
λ

(C − x̄)

Remark A.1.2. The definition A.1.1 is valid also if C is non convex. If C is a convex

subset of X, the definition A.1.1 is equivalent to:

TC(x̄) =
⋃
λ>0

λ(C − x̄)

Definition A.1.3. We call Regular Tangent Cone to C at x̄ the set given by:

T̂C(x̄) = lim inf
λ→0, x→x̄, x∈C

1
λ

(C − x̄) (A.1.1)

This cone is also called Clarke Tangent Cone.

Remark A.1.4. We always have T̂C(x̄) ⊂ TC(x̄). If C is convex then T̂C(x̄) = TC(x̄).

Definition A.1.5. We call Regular Normal Cone to C at x̄ the set given by:

N̂C(x̄) = {v| < v, x− x̄ >≤ ◦(‖x− x̄‖) per x ∈ C} (A.1.2)
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A.1 Tangent Cones, Normal Cones

Where ‖.‖ is the norm on X and “◦” means

lim sup
x→x̄,x∈C,x6=x̂

< v, x− x̄ >
‖x− x̄‖

≤ 0 (A.1.3)

Definition A.1.6. We call General Normal Cone to C at x̄ the set given by:

NC(x̄) = {v| ∃xν ∈ C, vν ∈ N̄C(xν), con (xν , vν)→ (x̂, v)} (A.1.4)

Note: As done in Rockafellar & Wets (1998) we use ν indexes to indicate the

elements of a suite.

Definition A.1.7. We call Clarke normal Cone the set given by:

N̄C(x̄) = Closed convex hull of NC(x̄) (A.1.5)

Remark A.1.8. N̄C(x̄) and NC(x̄) are closed and convex.

N̂C(x̄) is convex if C is convex.

The following inclusions are always true:

N̂C(x̄) ⊂ NC(x̄) ⊂ N̄C(x̄) (A.1.6)

Proposition A.1.9. We have:

N̄C(x̄) = {v| < v,w >≤ 0, ∀w ∈ T̂C(x̂)}, (A.1.7)

T̂C(x̂) = {w| < v,w >≤ 0, ∀v ∈ N̄C(x̄)} (A.1.8)

We recall for readers utility the following basic definitions and properties.

Definition A.1.10. Let be C ⊂ X convex, we call Normal cone to C in x the set given

by:

NC(x) = {ξ ∈ X∗, < ξ, y − x >≤ 0, ∀y ∈ C}

Definition A.1.11. Let M be a cone of X, the polar set of M , noted M0 is defined

by:

M0 = {ξ ∈ X∗, < ξ, x >≤ 0, ∀x ∈M}
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A.1 Tangent Cones, Normal Cones

If X is reflexive, then the following relationships hold:

(TC(x))0 = NC(x),∀x ∈ C

(NC(x))0 = TC(x),∀x ∈ C

(A.1.9)

TC and NC are always closed and if C is non empty and convex they are non empty

and convex. These cones are used to introduce the relative interior (see Daniele et al.

(2007)).

Definition A.1.12. Let C ⊂ X be convex. We call the relative interior of C the

following set:

ri(C) = {x ∈ C : TC(x) = X}

Definition A.1.13. Let C ⊂ X be convex. We call the relative boundary of C the

following set:

rb(C) = C \ ri(C)

Proposition A.1.14 (Proposition 2.2 in Maugeri (1998)). Let us assume that X is a

reflexive Banach space and C ⊂ X convex. If x ∈ C we have:

x ∈ ri(C)⇔ NC(x) = {0X∗}

Proof: Let it be TC(x) = X then we have:

NC(x) = {ξ ∈ X∗ :< ξ, x >≤ 0,∀x ∈ X}

so we get ∀x ∈ X,< ξ, x >≤ 0 and < ξ, x >≥ 0 so we can deduce that ξ = 0X∗ .

On the other side if NC(x) = {0X∗} then using the polarity we get

TC(x) = {ξ ∈ X :< ξ, 0X∗ >≤ 0} = X

and by definition x ∈ ri(C). �

These notions reveal to be very useful in infinite dimensions because many convex sets

used in Variational analysis have a topological interior void and a relative interior non

void (see Maugeri (1998)).
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A.2 Projected Dynamical systems in Rn

PDS theory in Rn has been developed in Dupuis & Nagurney (1993). One of the

notable features of this tool is its relationship to variational inequality problem. In

Rn it is clear how the the static study of VI is extended by PDS which introduced an

additional time dimension in order to analyze desequilibrium behavior that precedes

the equilibrium. Supposte to have K ⊂ Rn a closed convex set. Given x ∈ K, and

v ∈ Rn define the the directional derivative of the operator PK is defined, for any x ∈ K
and any element v ∈ X, as the limit (for a proof see Zarantonello (1971)):

πK(x, v) := lim
δ→0+

PK(x+ δv)− x
δ

; moreover πK(x, v) = PTK(x)(v).

Let πK : K × X → X be the operator given by (x, v) 7→ πK(x, v). Note that πK is

nonlinear and discontinuous on the boundary of the set K.

The class class of ordinary differential equations of interest takes the form:

dx(τ)
dτ

= πK(x(τ),−F (x(τ)), x(0) = x0 ∈ K (A.2.10)

K corresponds to the constraint set in a particular application, and F (x) is a vector

field defined on K. the right hand side of the ordinary differential equation A.2.10 is

associated to an operator and hence it is discontinuous on the boundary of K therefore

we need to explicitly state what one means by solution to an ODE with discontinuous

right hand side.

Definition A.2.1. The projected dynamical system (PDS), X0(t) : K × Rn → K is

the family of solutions to the initial value problem A.2.10 for all x0 ∈ K

Definition A.2.2. A Critical point of the PDS is point x∗ such that:

0 = πK(x∗,−F (x∗) (A.2.11)

Let’s give now conditions for existence, we introduce for that purpose (Nagurney &

Dong (2002)) the linear growth condition assumption.

Assumption A.2.3. There exists a B < ∞ such that the vector field −F : Rn → Rn

satisfies the linear growth condition: ‖F (x)‖ ≤ B(1 + ‖x‖) for x ∈ K and also

〈−F (x) + F (y), x− y〉 ≤ B‖x− y‖2, ∀x, y ∈ K (A.2.12)
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Theorem A.2.4. Assume A.2.3, then for any x0 ∈ K, there exists a unique solution

X0(t) to the initial value problem A.2.10 and if xk → x0 as k →∞, then Xk(t)→ X0(t)

uniformly on every compact set of [0,∞].

Then second statement of this theorem is sometimes called the continuous depen-

dence of the solution path to A.2.10 on initial values The projected dynamical system

(PDS), x0(t) : K×Rn → K is the family of solutions to the initial value problem A.2.10

for all x0 ∈ K

A.3 Projected Dynamical System in Hilbert Spaces

In Cojocaru & Jonker (2004) the authors extends the theory of PDS to Hilbert

spaces, this extension is very important because instead of dealing with statics problems

it is possible to treat dynamic problems, the vectors are time dependent functions. This

new light on the problem is described in an excellent way in the paper Cojocaru et al.

(2006) in which the authors introduce the concept of double layered dynamic. The

formulation is exactly the same as before. But we need to define what is a solution for

a PDS in Hilbert Spaces.

Definition A.3.1. A solution for a PDS is an absolutely continuous function x : I ⊂

R→ X (X Hilbert space), such that x(t) ∈ K, ∀t ∈ I and

dx

dt
= πK(x(y)),−F (x(y)), a.a. t ∈ I

A.3.1 Existence result

To obtain the following existence result it is necessary to activate an important

machinery (Cojocaru & Jonker (2004)) which is used also in the Chapter 3 to prove

the existence result in Non pivot Hilbert spaces.

Theorem A.3.2. Let X be a Hilbert space of arbitrary dimension and let K ⊂ X be a

non-empty, closed and convex subset. Let F : K → X be a Lipschitz continuous vector

field with Lipschitz constant b. Let x0 ∈ K and L > 0 such that ‖x‖ ≤ L.Then the
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spaces

initial value problem dx
dt = πK(x(t),−F (x(t))), x(0) = x0 has a unique solution on the

interval [0, l], where I = L‖F (x0)‖+ bL.

A.3.2 Equivalence Results

In Cojocaru & Jonker (2004) an equivalence result is proven using Moreau’s decom-

position theorem. The result state that critical points of PDS and equilibrium point of

VI are equivalent.

A.3.3 Double layered time

The notion of Double Layered Time has been first time introduced in Cojocaru

et al. (2006). It is a quite surprising notion. In fact it states that there is a micro

time scale, that is the time scale used for PDS system and a macro time scale used

in Evolutionary variational Inequalities. The authors of Cojocaru et al. (2006) try to

answer to the following questions:

1. Is it accurate to expect that for almost all t ∈ [0, T ] given, the trajectories of the

PDS at t (which we denote by PDSt) evolve towards the curve of equilibria?

2. What is the relation between an arbitrarily chosen t ∈ [0, T ] and the time it takes

for solutions to PDSt to actually reach the curve of equilibria?

3. What is the interpretation of the double-layered dynamics for applications?

But we refer directly to the paper for the answers.

A.4 Projected Dynamical Systems for non Convex sub-

sets in Hilbert spaces

Remark A.4.1. This research has been included in this section even if it has been

developed in Giuffré et al. (2006a) because my consideration is that the following re-

sults are not really connected with the core subject of the thesis. Nevertheless there are
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interesting in the sense that they show that it is possible to set up projected dynami-

cal systems problems over cone that are more general that usual tangent and normal

cone...in particular it is possible to set up the problem in non convex sets.

Let us start introducing the following concepts of projected dynamical system for

non convex subsets of an Hilbert space.

Definition A.4.2. We call the Clarke Generalized Projected-Dynamical System the

operator

ΛgC : C ×X∗ → X

defined by setting:

ΛgC(x, h) = ΠT̂C(x)(J
∗(h))

Definition A.4.3. We call Generalized Projected Dynamical System (g-PDS), the dis-

continuous right hand side differential equation given by:

dx

dt
= ΛgC(x,−F (x)) = ΠT̂C(x)(J

∗(−F (x))) (A.4.13)

The associated Cauchy problem is given by:

dx

dt
= ΛgC(x,−F (x)) = ΠT̂C(x)(J

∗(−F (x))), x(0) = x0 ∈ C (A.4.14)

Remark A.4.4. If C is convex then T̂C(x) = TC(x) and we obtain the Projected Dy-

namical system defined in Giuffré & Pia (2009) and if in addition X is an Hilbert Space

then (A.4.13) is the Projected dynamical system used in (see Isac & Cojocaru (2002c),

Isac & Cojocaru (2002a), Cojocaru (2002), Cojocaru & Jonker (2004), Cojocaru et al.

(2005)).

We also introduce a quasi-variational inequality or using a common used denomi-

nation (see Rapcsák (2003)) a quasi-complementarity system.

Definition A.4.5. We call Quasi-Complementarity System based on Clarke tangent

cone, the problem given by a subset of a real Hilbert space H, a closed subset C and the
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spaces

set value mapping D : C → 2H such that :

D(x) = x+ T̂C(x)

and the following quasi-Variational inequality:

x ∈ C :< F (x), y − x >≥ 0, ∀y ∈ D(x) (A.4.15)

Where F is a mapping from C → H.

Then we may obtain the following equivalence results.

Theorem A.4.6. Assume that X is an Hilbert Space. If (A.4.15) and (A.4.14) admits

a solution then each equilibrium point of (A.4.15) is a critical point of (A.4.14) and, if

(A.4.14) admits critical points then they are equilibrium points of (A.4.15).

Proof: If x∗ is an equilibrium point of (A.4.15), then we get:

x∗ ∈ C :< x∗ − λF (x∗)− x∗, x− x∗ >≤ 0, ∀x ∈ x∗ + T̂C(x∗), ∀λ > 0

which can be written in the following way

x∗ = Px∗+T̂C(x∗)(x
∗ − λF (x∗)), ∀λ > 0

but as x∗ ∈ x∗ + T̂C(x∗) we deduce that PT̂C(x∗)(−F (x∗)) = 0 .�

Now suppose that x∗ is a critical point of (A.4.14), using Moreau’s theorem we can

write that

−F (x∗) = PT̂C(x∗)(−F (x∗) + PN̄C(x∗)(−F (x∗) = PN̄C(x∗)(−F (x∗)

If F (x∗) = 0 then (A.4.15) is trivially verified. Now we suppose that F (x∗) 6= 0.

Then as −F (x∗) = PN̄C(x∗)(−F (x∗)) we get −F (x∗) ∈ N̄C(x∗) which means by polarity

< −F (x∗), ω >≤ 0, ∀ω ∈ T̂C(x∗)

and this is (A.4.15).�
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Appendix B

Variational Inequalities

B.1 Historical development

Variational inequalities proved to be a very useful and powerful tool for investigation

and solution of many equilibrium type problems in Economics, Engineering, Operations

Research and Mathematical Physics. In fact, variational inequalities for example pro-

vide a unifying framework for the study of such diverse problems as boundary value

problems, price equilibrium problems and traffic network equilibrium problems. Be-

sides, they are closely related with many general problems of Nonlinear Analysis, such

as fixed point, optimization and complementarity problems. As a result, the theory

and solution methods for variational inequalities have been studied extensively, and

considerable advances have been made in these areas.

The theory of variational inequalities, born in Italy in the sixties, was introduced

to study elliptic problems with unilateral conditions at the boundary (the celebrated

Signorini problem Signorini (1959)), the obstacle problem, the elastic plastic problem,

and other similar problems of mathematical physics. The pioneer works in this field are

due to G. Fichera (see Fichera (1964)) and G. Stampacchia (see Stampacchia (1964))

were motivated by concrete problems, the first in mechanics (a problem in elasticity

with a unilateral boundary condition) and the second in potential theory (in connection

with capacity, a basic concept from electrostatics). A further study of a special case of

variational inequalities was done by J.L. Lions and G. Stampacchia in the joint papers,
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B.2 Preliminary concepts

Lions & Stampacchia (1965) and Lions & Stampacchia (1967), with applications to

elliptic and parabolic unilateral boundary value problems. In the same period, H.

Brezis (see Brezis (1967)) introduced evolutionary variational inequalities.

The existence theorem in the general form stated above (and its extension to semi-

monotone operators) was obtained by F.E. Browder (see Browder (1965a)) and P.H.

Hartman and G. Stampacchia (see Hartmann & G. Stampacchia (1966)) by using the

“monotonicity” approach to nonlinear problems previously developed for operator equa-

tions in Hilbert space by E.H. Zarantonello (see Zarantonello (1960)), G. Minty (see

Minty (1962)) and F.E. Browder (see Browder (1963c) and Browder (1963b)) and for

equations involving operators from a Banach space X to its dual X∗ by F.E. Browder

(see Browder (1963a) and Browder (1965b)), G. Minty (see Minty (1963)) and J. Leray

and J.L. Lions (see Leray & Lions (1965)).

In the following, many other authors worked on the theory of variational inequalities,

as D. Kinderleher and G. Satmpacchia (see Kinderleher & G. Stampacchia (1980)).

In the same years, A. Bensoussan and J.L. Lions in a series of papers (see, e.g., Ben-

soussan & Lions (1973)) introduced a more general mathematical tool, quasi-variational

inequalities, in connection with impulse optimal control problems. Then they have been

extensively studied in numerous publications, mainly from the viewpoints of existence of

solutions and numerical methods; see Baiocchi & Capelo (1984), Chan & Pang (1982),

Tan (1985) among others.

In the next sections we present various basic concepts in optimization and varia-

tional analysis and recall their properties.

B.2 Preliminary concepts

Let X be a real topological vector space and let S be a subset of X. Moreover let

X ′ be the topological dual space of X.

Definition B.2.1. A functional f : S → R∪{±∞} is said to be upper semi-continuous

(briefly u.s.c.) if for each x′, we have

lim sup
x→x′

f(x) ≤ f(x′).
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B.2 Preliminary concepts

Definition B.2.2. A functional f : S → R∪{±∞} is said to be lower semi-continuous

(briefly l.s.c.) if −f(x) is upper semi-continuous.

Definition B.2.3. An operator f : S → X ′ is monotone on S if

〈f(x1)− f(x2), x1 − x2〉 ≥ 0, ∀x1, x2 ∈ S.

Definition B.2.4. An operator f : S → X ′ is strictly monotone on S if

〈f(x1)− f(x2), x1 − x2〉 > 0, ∀x1 6= x2.

Definition B.2.5. An operator f : S → X ′ is strongly monotone on S if for some

ν > 0

〈f(x1)− f(x2), x1 − x2〉 ≥ ν‖x1 − x2‖2, ∀x1, x2 ∈ S.

Definition B.2.6. An operator f : S → X ′ is pseudomonotone on S if for all x1, x2 ∈

S

〈f(x1), x1 − x2〉 ≥ 0 =⇒ 〈f(x2), x1 − x2〉 ≤ 0.

Definition B.2.7. An operator f : S → X ′ is strongly pseudomonotone with degree

α > 0 on S if and only if there exists ν > 0 such that for all x1, x2 ∈ S

〈f(x2), x1 − x2〉 ≥ 0 =⇒ 〈f(x1), x1 − x2〉 ≤ ν‖x1 − x2‖α.

Let X be a real topological vector space and let K be a convex subset of X.

Definition B.2.8. An operator f : K → X ′ is hemicontinuous if for any x ∈ K, the

function

K 3 ξ → 〈f(ξ), x− ξ〉

is upper semi-continuous on K.
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B.2 Preliminary concepts

Definition B.2.9. An operator f : K → X ′ is hemicontinuous along line segments if

and only if for any x, y ∈ K, the function

K 3 ξ → 〈f(ξ), y − x〉

is upper semi-continuous on the line segment [x, y].

Let X, Y be two Hausdorff topological vector spaces and let S be a subset of X.

Moreover, let X ′ denote the dual space of X.

Definition B.2.10. A set-valued map F : S → 2Y is upper semi-continuous (briefly

u.s.c.) in x′ ∈ S if for any open subset Ω of Y such that F (x′) ⊆ Ω, there exists a

neighborhood V of x′ such that for all x ∈ V

F (x) ⊆ Ω.

Definition B.2.11. A set-valued map F : S → 2Y is lower semi-continuous (briefly

l.s.c.) in x′ ∈ S if for any open subset Ω of Y such that F (x′) ∩ Ω 6= ∅, there exists a

neighborhood V of x′ such that for all x ∈ V

F (x) ∩ Ω 6= ∅.

Definition B.2.12. A set-valued map F : S → 2Y is continuous if it is both u.s.c. and

l.s.c.

Definition B.2.13. A set-valued map F : S → 2Y is called closed if its graph

G = {(x, y) : x ∈ S, y ∈ F (x)}

is a closed subset of X × Y .

Remark B.2.14. It is easy to show that if X and Y are real topological linear locally

convex Hausdorff spaces the following statements hold:
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B.3 Finite dimensional variational inequalities

1. F is closed if and only if for any sequence {xn}n∈N, xn → x, and any {yn}n∈N,

yn ∈ F (xn), yn → y, then it results that y ∈ F (x);

2. F is l.c.s. in x ∈ K if and only if for any y ∈ F (x) and any {xn}n∈N, xn → x,

there exists a sequence {yn}n∈N such that yn ∈ F (xn) and yn → y.

B.3 Finite dimensional variational inequalities

Now, we introduce finite dimensional variational inequalities and we recall some

existence results.

Definition B.3.1. Let K be a nonempty, convex and closed set of the m-dimensional

Euclidean space Rm and let C : K→ Rm be a vector-function. The finite dimensional

variational inequality is the problem to find a vector x ∈ K, such that

〈C(x), y − x〉 ≥ 0, ∀y ∈ K. (B.3.1)

Geometrical meaning (B.3.1) states that C(x)T is orthogonal to the set K at the

point x.

Now, we recall some classic conditions showed by Stampacchia for existence of

solutions to variational inequality (B.3.1).

Theorem B.3.2. (Hartmann & G. Stampacchia (1966)) If K is a nonempty, convex

and compact subset of Rm and C : K→ Rm is a continuous operator, then variational

inequality (B.3.1) admits at least one solution.

Theorem B.3.3. (Lions & Stampacchia (1967)) If K is a nonempty, convex and

compact subset of Rm and C is continuous on K, then the set of solutions to the

variational inequality (B.3.1) is convex and compact.

Theorem B.3.4. (Mancino & Stampacchia (1972)) If C is strictly monotone on K,

then the solution to variational inequality (B.3.1), if it exists, is unique.
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B.4 Infinite dimensional variational inequalities

Whenever the set K is unbounded, the existence of solutions may also be established

under the coercivity condition, as shows the following result.

Theorem B.3.5. (Kinderleher & G. Stampacchia (1980)) If C satisfies the coercivity

condition

lim
‖x‖m→+∞

〈C(x)− C(x′), x− x′〉
‖x− x′‖m

= +∞ (B.3.2)

for x ∈ K and some x′ ∈ K1. Then variational inequality (B.3.1) admits a solution.

B.4 Infinite dimensional variational inequalities

In this section we give some results for the existence of solutions to variational

inequalities in infinite dimensional spaces.

Let X be a reflexive Banach space and let K ⊆ X be a convex and closed set. Let

us denote by ‖ ·‖ the norm in X. Let BR be the closed ball with center in O and radius

R and let us consider the closed and convex set KR = K ∩ BR. If R is large enough,

then KR is nonempty. We have the following result.

Theorem B.4.1. (Stampacchia (1969)) Let C : K→ X ′ be a monotone and hemicon-

tinuous along line segments function, the the variational inequality

x ∈ K : 〈C(x), y − x〉 ≥ 0, ∀y ∈ K, (B.4.3)

admits a solution if and only if there exists a constant R such that at least one solution

of the variational inequality

xR ∈ KR : 〈C(xR), y − xR〉 ≥ 0, ∀y ∈ KR, (B.4.4)

satisfies the condition

‖xR‖ < R. (B.4.5)

Remark B.4.2. If the set K is unbounded, then the following conditions for the exis-

tence of solutions are provided:
1From here onward we always denote by ‖ · ‖m the norm in Rm, for all m ≥ 1.
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B.4 Infinite dimensional variational inequalities

1. let us suppose that ∃x0 ∈ K and R > ‖x0‖ such that

〈C(y), x0 − y〉 < 0,

∀y ∈ K, ‖y‖ = R, then (B.4.5) is verified.

2. let us suppose that ∃x0 such that C satisfies the coercivity condition (B.3.2), then

(B.4.4) holds.

3. let us suppose that C satisfies the weak coercivity requirement:

lim
‖y‖→+∞

〈C(y), y〉
‖y‖

= +∞

∀y ∈ K, then (B.4.5) is fulfilled.

We recall Theorems 2 and 3 in Oettli & Schläger (1998).

Theorem B.4.3. Let X be a real topological vector space and let K ⊆ X be a nonempty

and convex set. Let C : K→ X ′ be a given function such that:

(i) there exist A ⊆ K nonempty, compact and B ⊆ K compact, convex such that, for

every y ∈ K \A, there exists x̂ ∈ B with 〈C(y), x̂− y〉 < 0〉;

(ii) C is pseudomonotone and hemicontinuous along line segments.

Then, there exists x ∈ A such that 〈C(x), y − x ≥ 0〉, for all y ∈ K.

Theorem B.4.4. Let X be a real topological vector space and let K ⊆ X be a nonempty

and convex set. Let C : K→ X ′ be a given function such that:

(i) there exist A ⊆ K nonempty, compact and B ⊆ K compact, convex such that, for

every y ∈ K \A, there exists x̂ ∈ B with 〈C(y), x̂− y〉 < 0〉;

(ii) C is hemicontinuous.

Then, there exists x ∈ A such that 〈C(x), y − x ≥ 0〉, for all y ∈ K.
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B.4 Infinite dimensional variational inequalities

With a weakened coercivity assumption, we get the following theorem.

Theorem B.4.5. (Ricceri (1995)) Let X be a Hausdorff real topological vector space

and K ⊆ X be a closed and convex subset with nonempty relative interior (that is

the interior of K in its affine hull) and C : K → X ′ a weakly∗ continuous function.

Moreover, let K1 and K2 be two nonempty and compact subset of X with K2 ⊆ K1

and K2 having finite dimension, such that ∀x ∈ X \K1, we have

sup
y∈K2

〈C(x), x− y〉 > 0.

Then the variational inequality

〈C(x), y − x〉 ≥ 0, ∀y ∈ K

admits solutions in K.

In particular, if X is a real Hilbert space and the operator C is affine, the next

result, due to Lions and Stampacchia (see Lions & Stampacchia (1967)), holds.

Theorem B.4.6. Let X be a real Hilbert space, let K be a nonempty, convex and closed,

subset of X and let A : K → X ′ a Lipschitz and coercive operator (not necessarily

linear), that is,

‖Ax−Ay‖∗ ≤ M‖x− y‖, ∀x, y ∈ K,

〈Ax−Ay, x− y〉 ≥ ν‖x− y‖2, ∀x, y ∈ K,

for some constant M,ν > 0. Then for each B ∈ X ′, there exists a unique solution to

the variational inequality

x ∈ K : 〈Au+B, y − x〉 ≥ 0, ∀y ∈ K.

Moreover, the (nonlinear) solution mapping is Lipsichitz continuous, that is, if

x1, x2 ∈ K are the solutions to the variational inequalities related to two different free

terms B1, B2 ∈ X ′, it results

‖x1 − x2‖ ≤
1
ν
‖B1 −B2‖∗. (B.4.6)
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B.5 Finite dimensional quasi-variational inequalities

Let us introduce finite dimensional quasi-variational inequalities.

Definition B.5.1. Let D be a nonempty subset of Rm, let C : D → Rm and K : D →

2D be a function and a multifunction, respectively. The quasi-variational inequality is

the problem to find a vector x ∈ K(x) such that

〈C(x), y − x〉 ≥ 0, ∀y ∈ K(x). (B.5.7)

Let us give some theorems concerning the existence of solutions to finite dimensional

quasi-variational inequalities.

Theorem B.5.2. (Harker & Pang (1990)) Let D be a compact and convex set. Let C

and K be a function and a multifunction, respectively, and, for all x ∈ D, let K(x) be

a nonempty, closed and convex subset of Rm
+ . Then quasi-variational inequality (B.5.7)

admits a solution.

Theorem B.5.3. (De Luca & Maugeri (1992)) Let D be a compact and convex set.

Let K be a continuous multifunction such that, for all x ∈ D, K(x) is a nonempty,

closed and convex subset of Rm
+ and let C satisfy the condition

{x ∈ X : C(x)y ≤ 0} is closed ∀y ∈ D −D.

Then quasi-variational inequality (B.5.7) admits a solution.

Theorem B.5.4. (De Luca (1995)) Let D be a compact and convex set. Let K be

a continuous multifunction such that, for all x ∈ D, K(x) is a nonempty, closed and

convex subset of Rm
+ . Let C : D → 2Rm+ be a set-valued map (possibly discontinuous)

such that:

∀y ∈ D −D the set Gy =
{
x ∈ D : inf

z∈C(x)
zy ≤ 0

}
is closed.

Then, there exist x ∈ K(x)∩D and z ∈ C(y) such that z(y−x) ≥ 0, for all y ∈ K(x)∩D.
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B.6 Infinite dimensional quasi-variational inequalities

B.6 Infinite dimensional quasi-variational inequalities

We may present problem (B.5.7) in an infinite dimensional setting by replacing Rm

with a real topological vector space X and assuming that C is a operator from D to

X ′, where X ′ is the topological dual of X.

In the following, we recall some results for the existence of solutions to the quasi-

variational inequality in infinite dimensional spaces.

Theorem B.6.1. (Tan (1985)) Let X be a topological linear locally convex Hausdorff

space and let D ⊂ X be a convex, compact and nonempty subset. Let C : D → 2X
′

be an u.s.c. multifunction with C(y), y ∈ C, convex, compact and nonempty and let

K : D → 2D be a closed l.s.c. set-valued mapping with K(y), y ∈ D, convex, compact

and nonempty and let ϕ : D → R a convex l.s.c. function. Then, there exists x ∈ C(x)

such that:

1. x ∈ K(x),

2. there exists y∗ ∈ C(x) for which

〈y − x, y∗〉+ ϕ(y)− ϕ(x) ≥ 0, ∀y ∈ K(x).

The following theorem relaxes the hypothesis of compactness of the set D requiring

the coercivity of the operator.

Theorem B.6.2. (Tian & Zhou (1991)) Let D be a convex subset in a locally convex

Hausdorff topological vector space X. Let us suppose that

(i) K : D → 2D is a closed l.s.c. correspondence with closed, convex and nonempty

values,

(ii) C : D → 2X
′

is a monotone, finite continuous and bounded single-valued map,

(iii) there exist a compact, convex and nonempty set Z ⊂ D and a nonempty subset

B ⊂ Z such that
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B.6 Infinite dimensional quasi-variational inequalities

(iii.a) K(B) ⊂ Z;

(iii.b) K(z) ∩ Z 6= ∅, for all z ∈ Z;

(iii.c) for every z ∈ Z \B there exists ẑ ∈ K(z) ∩ Z with 〈C(z), ẑ − z〉 < 0.

Then there exists x such that

x ∈ K(x) : 〈C(x), y − x〉 ≥ 0, ∀y ∈ K(x).
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dimensions. Théra, M.A. and Baillon, J.B. (eds), Pitman Research. 74, 75

Brezis, H. (1967). Inequations d’evolution abstraites. Comptes Rendus de l’Academie

des Sciences. 26, 120

131



REFERENCES

Brezis, H. (1993a). Analyse Fonctionnelle, Théorie et Applications. Masson. 32
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