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1
Introduction

1.1 Background and motivations

Mirror neurons exhibit the intriguing behavioural property of becoming
active during both execution and observation of object-directed actions.
The expression “object-directed action” is used to denote actions directed
toward an object such as grasping, holding and tearing actions. Identified
in the macaque’s F5 cortical motor area, these neurons were first described
in seminal work by Giacomo Rizzolatti and co-workers (Rizzolatti et al.,
1996; Gallese et al., 1996). According to a prominent interpretation, mir-
ror neurons are involved in a circuit of cortical areas – usually referred to
as mirror system (Cattaneo and Rizzolatti, 2009; Rizzolatti and Craighero,
2004) – subserving the control of one’s own actions and the recognition
of observed actions. This interpretation posits significant functional com-
monalities between action control and action recognition processes, which
take their origin in a set of shared neurobiological mechanisms.

Additional functional roles have been hypothesised for mirror systems
in the framework of theories of language evolution (Arbib, 2005), mind-
reading (Gallese and Goldman, 1998), and learning by imitation (Carr
et al., 2003; Miall, 2003).

Various computational models have been advanced to account for the
behaviour of mirror neurons in the broader context of mirror system func-
tionalities (Haruno et al., 2001; Keysers and Perrett, 2004; Ito and Tani,
2004; Oztop et al., 2005; Oztop and Arbib, 2002).

In this PhD Thesis we point out that mirror neurons are usually mod-
elled in accordance with the following hypotheses:

� Same activity: Let A be an object-directed action. A mirror neuron
exhibits the same activity irrespective of whether A is carried out or
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1.2. THE PROPOSED APPROACH

observed.

� Same input: Let A be an object-directed action and let mA be any
mirror neuron which becomes active whenever A is carried out or
observed. Then, the same input signals are received, in both exe-
cution and observation conditions, by mA and any other F5 neuron
which directly affects mA’s behaviour. These input signals are the
outcome of computational processes which do not involve the mo-
tor system.

The same-activity hypothesis turns out to be an idealization in the light
of known experimental data about mirror neuron activation behaviours.
The same-input hypothesis implies the existence of a complicated percep-
tual processing which is needed to give the same input to mirror neurons,
irrespectively of whether one is in action observation or in action execu-
tion conditions. The main upshot of the analysis of computational mod-
els endorsing both same-activity and same-input hypotheses is that these
models are descriptively inadequate and functionally uninformative: de-
scriptively inadequate, insofar as these models fail to account for a wide
variety of mirror neuron behavioural data; and functionally uninformative
since mirror mechanisms do not play significant functional roles especially
insofar as sensory processing is concerned.

The critical analysis of extant computational models endorsing both
same-activity and same-input hypotheses prepares the ground for intro-
ducing a novel approach to the computational modelling of mirror neu-
rons. In this new model, same-activity and same-input hypotheses are
dispensed with; in particular the functional interaction between sensory
input and mirror activation mechanisms is significantly modified accord-
ing to a different interpretation of the direct-matching hypothesis.

1.2 The proposed approach

The direct matching hypothesis (Rizzolatti et al., 2001) states that the mo-
tor system plays a central role in action recognition. In this view, sen-
sory inputs concerning an observed object-directed action A are mapped
onto motor representations ofA, which is recognized when its observation
brings the observer’s neural motor system to “resonate”, that is, when the
neural motor representation of A becomes active in the observer’s brain.

How is the resonating effect achieved? Procedurally, one can envisage
different sorts of involvement for motor representations and processing
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1.2. THE PROPOSED APPROACH

in action recognition. According to one view, pursued in most compu-
tational models of mirror neurons, sensory inputs are turned into motor
information by means of a computational transformation unidirectionally
flowing from sensory input to direct internal input (that is the brain sig-
nals that mirror neurons receive from directly afferent brain areas), and
from the latter on to motor coding. According to this conception, mirror
activity is a straightforward consequence of the view-independent charac-
ter of mirror neurons inputs, thereby leading to impoverished functional
roles for mirror mechanisms in action recognition processes. According to
an alternative view, action recognition processes receive information from
the brain motor system at earlier processing stages, and this information
is deployed for the purpose of interpreting sensory inputs.

Major computational problems arising in connection with this approach
concern the identification of available motor information, and its specific
uses for the purpose of analyzing and interpreting sensory input during
action observation.

In order to tackle these problems as first step we have attempted to
isolate the motor information which is useful to both action control and
visual input interpretation.

Santello and co-workers showed that hand configurations can be de-
scribed by a restricted number of parameters. More precisely, a hand con-
figuration, during grasping actions, can be described as a linear combina-
tion of a few number of vectors (called eigenpostures) in the space of hand
joints.

In the context of grasping control, the opportunity of using simpler
hand description models is argued for in (Iberall and Fagg, 1996; Iberall
et al., 1986) and explored there by means of the notion of virtual finger,
which enables one to reduce the degrees of freedom and thereby the com-
plexity of the hand control problem.

In this work it is assumed that the motor information coded by the mir-
ror system to improve visual input processing is related to eigenpostures.

In particular we have verified that some classes of grasping actions
(such as precision grip and whole hand grasping actions) can be described
by the coefficients of a linear combination of eigenpostures. And each class
is associated to a different set of eigenpostures which is composed of few
elements with respect to the total number of hand joints.

Note that the estimation of an actual hand configuration from its visual
appearance only, is an inverse ill-posed problem. This is mainly due to
hand self-occlusions which turns the mapping from hand visual descrip-
tion to hand configuration into a multi-valued mapping.

In this work, a probabilistic approach is proposed to model such map-
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ping. In particular Mixture Density Networks have been used to model
the distribution of hand configurations conditional on current visual in-
put. However, the estimation of such distribution is a complicated task
due to the large number of variables needed to describe hand configura-
tions.

Hence, the benefit flowing from the use of eigenpostures is in the re-
duction of the parameters needed to describe hand configurations, and
thus in the simplification of the problem of distribution estimation, be-
cause we now estimate the distribution of the coefficients of the linear
combination of eigenpostures conditional on current visual input.

1.3 Overview

In Chapter 2 we will review significant neurophysiological data on the
brain areas involved in the generation and recognition of object-directed
actions. In particular we will describe functional properties of the so called
parieto-frontal circuits involved in visuo-motor transformations transform-
ing visual information into actions. We will describe in depth the func-
tional properties of mirror neurons, and in particular their classification
into different classes on the basis of the congruence between activity dur-
ing action execution and action observation.

In Chapter 3 we will review current computational models of mirror
neurons. We will give a critical description of each of them. It will turn
out that current computational models are based on two main hypothe-
ses: same-activity and same-input. Taken together, the two hypotheses,
entail that the activity of mirror neurons is a trivial consequence of view-
independence property of its inputs. However the same-input hypothe-
sis posits severe computational challenges, insofar as a view independent
scene description must be computed from visual input only. To under-
line the functional implications of the same-input hypothesis in perceptual
processes the NeGOI model is reviewed at the end of the chapter. NeGOI
is a computational model for extracting grip-aperture (which may be one
of the input signals received by mirror neurons) in a view-independent
fashion. Due to the view-independent property and the use of visual in-
formation only, NeGOI model is in accord with the same-input hypothesis.

In Chapter 4 we will introduce a new computational model of mirror
neurons in which the same-activity and same-input hypotheses are dis-
pensed with. In particular, the functional interaction between sensory in-
put and mirror activation mechanisms is significantly modified accord-
ing to a special interpretation of the direct-matching hypothesis. The pro-
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posed approach is investigated in a simplified scenario in which available
motor knowledge is restricted to sets of hand configurations that a hand
may assume in the course of specific kinds of object-directed actions; and
sensory inputs are restricted to hand-related visual inputs collected from
some fixed viewpoint. Accordingly, the simplified perceptual problem to
solve is that of estimating actual hand configurations on the basis of both
motor information and incoming visual inputs.

In Chapter 5 we will deal with the specification of the model and the de-
scription of both the problems and the proposed solutions. In particular
we will show in detail that the mapping from visual input to hand con-
figuration is an ill-posed problem and the probabilistic framework may
be used to model such mapping. Moreover we will show the existence
of different sets of eigenpostures for different classes of grasping actions
and we will describe the GA model as a way to select the initial sets of
eigenpostures.

In Chapter 6 we will show experimental results of the proposed ap-
proach.

In Chapter 7 we will discuss the goals attained in this work and open
questions to be addressed in the future.
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2
Mirror neurons

Mirror neurons form a class of visuo-motor neurons identified in the macaque’s
F5 cortical motor area with the property of becoming active during both
execution and observation of object-directed actions. These neurons were
first described in seminal work by Giacomo Rizzolatti and co-workers
(Rizzolatti et al., 1996; Gallese et al., 1996) and seem to be involved in a
circuit of cortical areas – usually referred to as mirror system (Cattaneo
and Rizzolatti, 2009; Rizzolatti and Craighero, 2004) – subserving the con-
trol of one’s own actions and the recognition of observed actions.

Various computational models have been advanced to account for the
behaviour of mirror neurons in the broader context of mirror system func-
tionalities (for a recent review, see Oztop et al. (2006b)). We will give a
detailed description and analysis of such models in Chapter 3.

In order to illustrate current computational models of mirror neurons,
focussing on same-activity and same-input hypotheses and related draw-
backs, a more extensive description of mirror neurons is needed.

Thus, we turn to present a review of significant neurophysiological in-
formation about other brain areas strictly related to mirror neurons be-
haviour.

2.1 Biological Background

In this section we will give a review of significant neurophysiological data
on the brain areas involved in the generation and recognition of the so
called “object-directed” actions. The expression “object-directed” action is
used to denote a series of movements that relate body parts (effectors like
hand or mouth) of a primate to a three-dimensional object, e.g. grasping a
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2.1. BIOLOGICAL BACKGROUND

Figure 2.1: Schematic illustration of posterior parietal lobe, intra-parietal
sulcus and motor cortex of monkey brain. Different colors represent dif-
ferent areas (picture taken from (Geyer et al., 2000)).

piece of food by a precision grip or tearing a sheet of paper are object-directed
actions.

What follows is related to the brain of macaque if not differently spec-
ified.

This section will form the background for Chapter 3 and Chapter 4. In
Chapter 3 we will make a critical analysis of extant computational models
of mirror neurons. In Chapter 4 we will propose a new approach to the
modelling of mirror neurons.

The brain regions of major interest for this work are the posterior pari-
etal cortex, intra-parietal sulcus and motor cortex (see Figure 2.1). Re-
cently, both motor and parietal cortex have been subdivided into different
areas mainly on the basis of their functional properties (Geyer et al., 2000)
(see Figure 2.1 different colors represent different areas).

10



2.1. BIOLOGICAL BACKGROUND

Figure 2.2: The three main parieto-frontal circuits involved in the execu-
tion and recognition of object-directed actions: VIP-F4, AIP-F5 and PF-F5.

In a standard interpretation, motor cortex is functionally involved only
in the generation and control of actions, while the parietal and intra-parietal
cortex is interpreted as an associative area integrating sensory informa-
tion from various parts of the body. However, recent studies on motor
areas, including those on mirror neurons, suggest that some motor areas
are strongly involved in additional functional tasks such as the recognition
of actions executed by others.

Some motor areas receive afferent connections from parietal areas and,
in many cases, a motor area receives connection mainly from one parietal
area leading to the so called parieto-frontal circuits (Matelli and Luppino,
2001). Broadly speaking, these circuits work in parallel and are responsi-
ble for visuo-motor transformations, transforming visual information into
actions.

Areas mainly involved in object-directed actions are: F1, F4 and F5 mo-
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tor areas, PF and PFG posterior parietal areas, VIP and AIP intra-parietal
sulcus areas. The motor area F5 consists of two main sectors, one of which
is located on the dorsal convexity (F5c), and the other one on the posterior
bank of the inferior arcuate sulcus (F5ab).

These areas establish three main circuits working in parallel: the VIP-
F4 circuit, AIP-F5ab and PF-F5c circuits (see Figure 2.2). The VIP-F4 cir-
cuit is mainly involved in coding peripersonal space and arm movements,
the AIP-F5ab circuit is mainly involved in coding abject affordances and in
hand movements, the PF-F5c circuit seems to be involved in the recogni-
tion of object-directed actions.

In the next subsections, we will describe these three circuits and in Sec-
tion 2.1.4 we will summarize their main functional interpretations.

2.1.1 The VIP-F4 circuit

Area VIP is located in the intraparietal sulcus and receives both visual and
somatosensory information. On the basis of functional properties, neurons
of this area can be categorized into two main classes: purely visual (uni-
modal) neurons and visual and tactile (bimodal) neurons. Neurons belong-
ing to the first class are selective to visual stimuli, in particular may be-
come active for expanding or contracting visual stimuli or can be strongly
selective for the direction and speed of stimuli moving along the sagittal
plane. Bimodal neurons respond independently to visual and tactile stim-
uli. Interestingly, the visual receptive fields (RFs) are located in parts of the
field of vision corresponding to the tactile RFs. Moreover many neurons
respond only to visual stimuli located in the peripersonal space and in one
third of visually-responsive neurons, the visual RF is encoded in egocen-
tric and not in retinal coordinates. This means that the response of these
neurons does not depend on the gaze direction but only on the location of
the visual stimuli with respect to the body.

Area VIP is strongly connected to motor area F4. Microstimulation ex-
periments have shown that in this area arm, neck, face and mouth move-
ments are represented. Single neuron recordings have shown that many
neurons fire during reaching movements directed toward the body or away
from it while they do not respond to distal movements (that is movements
of the hand). Neurons of area F4 have similar properties to neurons of
area VIP but unimodal neurons are typically tactile while purely visual
neurons are very rare.

Taken together these data indicate that this circuit plays a crucial role
in encoding peripersonal space and in transforming object locations into
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appropriate movements toward them (Rizzolatti et al., 1998).

2.1.2 The AIP-F5ab circuit

Area AIP is located in the intraparietal sulcus (see Figure 2.1). Neurons
of this area were studied in monkeys trained to reach and grasp objects of
different sizes and shapes. The experiments were carried out both in dark-
ness and in light. Most AIP neurons discharge during grasping of specific
objects and their activity is mainly due to hand and finger movements and
not to proximal arm movements nor to object position in space.

Three class of neurons have been identified: motor-dominant, visual and
motor, and visual-dominant neurons. Neurons of the first class do not show
any significant difference in activity when tested in darkness or light how-
ever they do not discharge during fixation of the object only. Visual and
motor neurons are less active in darkness than in light while visual-dominant
neurons fire vigorously only when the stimulus is visible. In contrast
to motor-dominant neurons, many visually-responsive neurons discharge
during fixation of the objects, even when fixation was not followed by a
subsequent grasping movement. Finally, in most visual and motor neu-
rons, the intrinsic characteristics of the object, effective in triggering a
neuron and the type of grip encoded by that neuron, coincided. This
means that, for example, a neuron which discharges during the fixation
of a small object, discharges also during precision-grip actions which are
usually used to grasp small objects.

In Figure 2.3 the behaviour of AIP neurons belonging to the three dif-
ferent classes is showed. Visual and motor and visual-dominant neurons
were further subdivided on the basis of their activity during object fixa-
tion.

Area AIP is richly connected with motor area F5ab where neurons dis-
charge during specific goal directed actions performed with the hand, the
mouth or both. According to the action effective in triggering them, F5ab
neurons were subdivided into various classes. Among them, the most
represented are: grasping, holding, tearing and manipulating neurons.
Most “grasping” neurons code specific types of hand prehension, such
as for example, precision grip, whole-hand prehension, finger prehension.
The temporal relation of neuron discharge with hand movements changes
from neuron to neuron. Some neurons fire during the last part of grasping,
others start to fire at finger aperture and continue during finger closure,
others are activated in advance of the onset of finger movements (Rizzo-
latti et al., 1988). So area F5ab can be clustered into different subsets, each
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Figure 2.3: AIP neurons’ behaviour (picture taken from (Murata et al.,
2000)). Motor-dominant neurons do not show any significant difference in
activity when tested in darkness or light and do not discharge during ob-
ject fixation. Visual and motor neurons are less active in darkness than in
light while Visual-dominant neurons fire vigorously only when the stimu-
lus is visible. Some visual and motor and visual-dominant neurons fire
just during object fixation (Object) while others do not fire if the action is
not made (Non Object).

14



2.1. BIOLOGICAL BACKGROUND

one responsible for different aspects of the temporal segmentation of the
movement (Rizzolatti et al., 1988, 1996). Furthermore, many grasping neu-
rons discharge in association with a particular type of grip. Most of them
are selective for one of the three most common grip types of the monkey:
precision grip, finger prehension and whole hand prehension. Sometimes
there is also specificity within the same general type of grip. For instance,
considering the whole hand grasping, the prehension of a sphere, which
requires the opposition of all fingers, is coded by neurons different from
those coding the prehension of a cylinder, which requires the opposition
of all fingers but the thumb.

Taken together, the functional properties of F5ab neurons suggest that
this area stores a set of motor schemata (Arbib, 1981), or, as it was pre-
viously suggested in (Rizzolatti and Gentilucci, 1988), a “vocabulary” of
motor acts. Populations of neurons constitute the “words” composing this
vocabulary. Some of them indicate the general category of an action (hold,
grasp, tear, manipulate). Other populations specify the appropriate way
to better adapt the hand to the grasped object (e.g. precision grip specific
neurons vs. whole hand specific neurons).

A subset of F5 neurons has also visual properties. We refer to them
as “visuo-motor neurons”. The visuo-motor neurons can be clearly par-
titioned into two classes on the basis of their visual properties: canonical
neurons and mirror neurons (Rizzolatti et al., 1998; Rizzolatti and Craighero,
2004). Canonical neurons are mainly located in area F5ab while mirror
neurons are mainly located in area F5c.

Canonical neurons discharge both during the execution of a object-
directed action and at the visual presentation of an object at which the
action will be directed. Often there is a congruence between the action
coded by a given canonical neuron and the observed object that is able
to evoke the visual discharge in that neuron. For instance, a canonical
neuron that motorically codes a precision grip is also activated when the
monkey looks at a small object (because a small object is usually grasped
by a precision grip). The most common interpretation for visual discharge
in canonical neurons is that there is a close link between the most com-
mon three-dimensional stimuli and the actions necessary to interact with
them. Thus, every time a graspable object is visually presented, the related
F5 canonical neurons “automatically” elicit the appropriate action (Fadiga
et al., 2000).

In conclusion, the AIP-F5ab data suggest that this circuit plays a crucial
role in transforming the intrinsic properties of the object into the appropri-
ate hand movements (Jeannerod et al., 1995). The description of an object,
possibly in terms of their affordances (Murata et al., 1997; Tessitore et al.,
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(a) Action execution. The mon-
key execute a grasping action with
hand and the neuron fires vigor-
ously.

(b) Action observation. The mon-
key observes the experimenter ex-
ecuting the same grasping action
and the neuron fires again.

Figure 2.4: Behaviour of a grasping mirror neuron (pictures taken from
(Iacoboni and Dapretto, 2006)).

2009), is carried out in AIP and then is transmitted to F5ab, where dif-
ferent types of actions are encoded (Murata et al., 1997). Strong support
for a crucial role of AIP-F5ab circuit in visuomotor transformation was
recently offered by studies in which the two areas were separately inacti-
vated and the monkey has to perform grasping movements (Fogassi et al.,
2001). The main effect observed following independent inactivation of AIP
and F5ab was a disruption of the preshaping of the hand during grasping.
The deficit consisted in a mismatch between the features of the object that
had to be grasped and the posturing of finger movements. When the mon-
key was successful in grasping the objects, the grip was achieved only after
a series of corrections that relied on tactile exploration of the object. These
data clearly show that lesion of the AIP-F5ab circuit does not disrupt the
ability to perform grasping movements, but only the capacity to transform
the 3D properties of the object into appropriate hand movements.

2.1.3 The PF-F5c circuit

As previously said the other visuo-motor neurons of area F5 are the mir-
ror neurons. These respond both when the monkey executes an object-
directed action and when the monkey observes another individual (mon-
key or human experimenter) executing a similar action. In order to be
triggered by visual stimuli, mirror neurons require an interaction between
a biological effector (e.g. hand or mouth) and an object (see Figure 2.4).

The sight of an object alone, of an agent mimicking an action, or of an
individual making intransitive (non object-directed) movements are all in-
effective. The object significance for the monkey has no obvious influence
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on the mirror-neuron response. Actions directed toward a piece of food
or a geometric solid produce responses of the same intensity (Rizzolatti
and Craighero, 2004). Mirror neurons show a large degree of generaliza-
tion. Presenting widely different visual stimuli, but which all represent
the same action, is equally effective. For example, the same mirror neuron
that responds to a human hand grasping an object responds also when the
grasping hand is that of a monkey. Similarly, the response is typically not
affected if the action is done near to or far from the monkey, in spite of the
fact that the apparent size of the observed hand is obviously different in
the two conditions (Rizzolatti and Craighero, 2004).

However, Mirror neurons behaviours show some congruence between
the observed and executed action, in some cases this congruence is ex-
tremely strict, in other cases the congruence is broader. For example in
(Gallese et al., 1996) are reported three different classes of mirror neurons
on the basis of their visual properties: strictly congruent, broadly congruent,
and non-congruent.

Strictly congruent mirror neurons are mirror neurons which exhibit ac-
tivity during observed and executed actions corresponding both in terms
of general action (e.g. grasping) and in terms of the way in which that
action is executed (e.g. precision grip).

When there is a similarity, but not identity, between the observed and
executed action the mirror neuron is classified as broadly congruent. Three
different groups of broadly congruent neurons can be identified. Neurons
of the first group are highly specific in terms of motor activity, discharging
in association not only with the execution of a single type of action (grasp-
ing or holding), but also with a specific way to execute that type of action
(e.g. grasping by a precision grip or finger prehension or whole hand pre-
hension). However, unlike the strictly congruent neurons, they respond to
the observation of various ways to execute a type of action (e.g. response
for precision grip is different from that for whole hand prehension). A sec-
ond group of broadly congruent mirror neurons is constituted of neurons
less specific in terms of motor activity than the first group, that is they be-
come active during one type of executed action regardless of the way the
action is executed, but visually respond to two or more different type of
actions (e.g. manipulation and grasping). The last group of broadly con-
gruent neurons seem to be activated by the “goal” of the observed action
regardless of how it was achieved. All these neurons are neurons that be-
come active during the execution of grasping movements performed by
the monkey itself, while they are activated by the observation of grasping
movements performed by the experimenter with either hand or mouth
(Gallese et al., 1996).
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Classification Percentage
STRICTLY CONGRUENT 32% (29/92)
BROADLY CONGRUENT 61% (56/92)

GROUP ONE 8% (7/92)
GROUP TWO 50% (46/92)

GROUP THREE 3% (3/92)
NON-CONGRUENT 7% (7/92)

Table 2.1: Experimental data reveal complex patterns of mirror be-
haviours, in the way of activation congruence between execution and ob-
servation modes. The table summarizes experimental data wrt observed
and executed action congruence as reported in Gallese et al. (1996).

Finally, mirror neurons which exhibit a response with a no clear-cut re-
lationship between the observed action and the executed action movement
of the monkey are called non-congruent.

Note that, the temporal relationships between action phases and mirror
neuron firings have been less systematically and extensively investigated
to the present date. However, different temporal patterns of mirror neuron
activations were experimentally isolated: some mirror neurons become
inactive as soon as an action is completed; some other mirror neurons keep
on firing thereafter (Gallese et al., 1996); and mirror neurons were also
recorded whose responses are peaked at different action phases (Umilta’
et al., 2001).

Insofar as the connectivity of mirror neurons with other cortical areas
is concerned, note that F5c area, where mirror neurons are mainly located,
receives strong connections from parietal area PF. This area is in turn con-
nected to temporal area STS. It has been shown in (Fogassi et al., 2005)
that neurons with properties similar to mirror neurons exist in PF pari-
etal area. In particular neurons of this area were studied when monkeys
performed motor acts (e.g., grasping) embedded in different actions (e.g.,
grasping for eating wrt grasping for placing) and when they observed sim-
ilar acts done by an experimenter. Mirror neurons of area PF respond to
some grasp motor act (executed or observed) only when it is embedded
in a specific action (e.g. grasping for eating but not during grasping for
placing). Due to their behaviour it has been hypothesize that these neu-
rons not only code the observed motor act but also allow the observer to
understand the agent’s intentions.

It was suggested by Keysers and Perrett (2004) and Oztop et al. (2005)
that cortical area STS is involved in the process of extracting some high-
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level visual features. In particular, “shape-selective” cells have been found
in area STS which respond very selectively to hand/object interactions ex-
hibiting a mirror-like property (Keysers and Perrett, 2004; Perrett et al.,
1989). Indeed, these neurons selectively respond to object-directed actions
such as tearing, grasping, and manipulating in a view-invariant fashion.
Unlike mirror neurons, however, shape-selective neurons fail to exhibit
motor properties.

In conclusion PF-F5c circuit is strongly involved in the recognition of
action made by others (Rizzolatti et al., 2001).

2.1.4 Relevant functional interpretation

We can summarize the above as follows:

� VIP-F4 circuit plays a crucial role in encoding peripersonal space and
in transforming object locations into appropriate movements toward
them.

� AIP-F5ab circuit plays a crucial role in transforming the intrinsic
properties of the object into the appropriate hand movements.

� PF-F5c circuit is involved in the recognition of action made by others.

In particular as far as the circuits AIP-F5ab and PF-F5c are concerned, we
can summarize experimental results as follows:

� F5 is a macaque’s cortical motor area strongly involved in object-
directed actions. There is a strong congruence between the performed
action and the discharge of F5 neurons. Most of them are selective
for the general type of action (grasping, holding, tearing), that is,
for action type. Furthermore some of them can be selective for both
the general type of action and how that type of action is executed
(precision-grip, finger prehension, whole hand prehension), that is,
for action modality. Also, some neurons show a clear relation between
their activity and the temporal phases of an action.

� In F5 area there is a subset of neurons which show visual properties:
these are the visuomotor neurons. The set of visuomotor neurons
can be partitioned into two classes: canonical neurons and mirror
neurons.

� Canonical neurons discharge during both the execution of an object-
directed action and at the sight of an object alone. If a canonical
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neuron discharges at the visual presentation of an object then it dis-
charges also during the execution of actions which are usually per-
formed on that object.

� Mirror neurons discharge during both the execution of an object-
directed action and the observation of an object-directed action. If
an F5 mirror neuron discharges during the execution of an object-
directed action then it discharges also during the observation of an
action that:

. corresponds both in action type and in action modality (strictly
congruent mirror neurons);

. corresponds in action type only (broadly congruent mirror neurons
group 1);

. corresponds in action type but it responds also during the obser-
vation of other kinds of actions (broadly congruent mirror neurons
group 2);

. corresponds in action goal irrespectively of the effector used
(broadly congruent mirror neurons group 3);

. does not correspond in either action type or in action modality
(non-congruent mirror neurons).

� Several findings suggest that the discharge of some mirror neurons
is temporally linked to the phases of an observed action.

� Mirror neurons show a large degree of tolerance to scale, position
and point of view.
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3
Critical analysis of current computational

models of mirror neurons

Various computational models have been advanced in literature in order
to account for the behaviour of mirror neurons (see (Oztop et al., 2006b)
for a relatively recent review). Mirror neurons are usually modelled there
(Haruno et al., 2001; Keysers and Perrett, 2004; Ito and Tani, 2004; Oztop
et al., 2005; Oztop and Arbib, 2002) in accordance with the following hy-
potheses:

� Same activity: Let A be an object-directed action. A mirror neuron
exhibits the same activity irrespective of whether A is carried out or
observed.

� Same input: Let A be an object-directed action and let mA be any
mirror neuron which becomes active whenever A is carried out or
observed. Then, the same input signals are received, in both exe-
cution and observation conditions, by mA and any other F5 neuron
which directly affects mA’s behaviour. These input signals are the
outcome of computational processes which do not involve the mo-
tor system.

The predictive and explanatory implications of these hypotheses are ex-
amined in Sections 3.1.1 and 3.3. The same-activity hypothesis turns out
to be an idealization in the light of known experimental data about mirror
neuron activation behaviours. And the sweeping functional implications
of the same-input hypothesis are analyzed in the light of perceptual pro-
cesses one has to posit to let mirror neurons receive the same input data,
irrespectively of whether one is in action observation or in action execu-
tion conditions. The main upshot of this analysis is that computational
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models endorsing both same-activity and same-input hypotheses are de-
scriptively inadequate and functionally uninformative: descriptively in-
adequate, insofar as these models fail to account for a wide variety of mir-
ror neuron behavioural data; and functionally uninformative since mirror
mechanisms do not play significant functional roles especially insofar as
sensory processing is concerned. The critical analysis of extant compu-
tational models endorsing both same-activity and same-input hypotheses
prepares the ground for introducing, in Chapter 4, a novel approach to
the computational modelling of mirror neurons. There, same-activity and
same-input hypotheses are dispensed with; and the functional interaction
between sensory input and mirror activation mechanisms is significantly
modified. The benefit flowing this approach is twofold: consistently with
the direct matching hypothesis (Rizzolatti et al., 2001), a more central func-
tional role is vindicated for mirror mechanisms in sensory processing; and
the more substantive use which is thereby made of motor information en-
ables one to simplify the computational processing of sensory inputs in
action recognition processes.

3.1 Same-activity hypothesis

To begin with, let us examine the functional import of same-activity and
same-input hypotheses in isolation, before turning to consider the predic-
tive and explanatory consequences flowing from their confluence in com-
putational models of mirror mechanisms. Computational models endors-
ing the same-activity hypothesis (Haruno et al., 2001; Keysers and Perrett,
2004; Ito and Tani, 2004; Oztop et al., 2005; Oztop and Arbib, 2002) predict
that the activity of any mirror neuron during the execution of some object-
directed action A does not differ from its activity during the observation
ofA. Finer-grained differences between these models emerge with respect
to other features of mirror mechanisms. Let’s see.

Distinguishing features of the model MNS1 (which stands for Mirror
Neuron System 1 and whose block schema is shown in Figure 3.1) (Oztop
and Arbib, 2002) include:

1. A hand-program controlling hand movements (both reach and grasp),
computed on the basis of action-oriented object features (affordances)
by a procedure which is supposed to model the activity of the AIP-F5
circuit and VIP-F4 circuit.

2. The hand-state hypothesis, according to which visual inputs con-
cerning hand/target-object pairs are processed and coded into a vec-
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Figure 3.1: The MNS1 model is composed of several functional blocks
which are related to the computation of different brain areas. Notably
the Object affordance extraction and Motor program(Grasp) blocks model the
AIP-F5 canonical circuit while Object location and Motor program (Reach)
blocks model the VIP-F4 circuit. Mirror neurons are modelled by the Ac-
tion recognition block.

tor, called hand-state, which holds high-level, observer-independent
features of hand-object configurations, such as hand-object distance
and grip size compared with object size. The hand-state hypothesis
will be examined in some detail in the next section.

3. Mirror behaviours are modelled as the outcome of an action recog-
nition module, which classifies ongoing actions on the basis of com-
puted hand-state sequences. This functional module is implemented
by means of a multi-layered feed-forward neural network. Notably,
in self-observation conditions this network is trained to associate
hand-state sequences to canonically encoded hand-programs. In an
updated version of this model (Bonaiuto et al., 2007), a biologically
more plausible neural network is substituted for the multi-layered
feed-forward neural network.

On the whole, MNS1 construes mirror activity as the output of an ac-
tion recognition module in both execution and observation modes. This
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action recognition module classifies the ongoing action on the basis of se-
quences of hand-state vectors. The same-activity hypothesis is embedded
in the action recognition module of the MNS1 model, insofar as this mod-
ule produces the same output irrespective of whether object-directed ac-
tion A is executed or observed.

The model presented in (Ito and Tani, 2004) takes the form of a dis-
tributed controller system based on a Continuous Recurrent Neural Net-
work (CTRNN). The system includes both parametric and data input lines.
The parametric input lines are fed with so-called Parametric Bias (PB) vec-
tors, whereas both data input and data output lines are supplied with
sensory-motor pairs. The system works in learning, generation, and recog-
nition modes.

In learning mode, the system learns a mapping between PB vectors
and behavioural patterns, identified with temporal sequences of sensory-
motor pairs (st,mt). When learning is completed, the system operates in
either generation or recognition mode. In generation mode, a specific PB
vector fed into the parametric input line activates a closed-loop compu-
tation process: for each sensory-motor pair (st,mt) given as data input at
step t, the system predicts its updated value at step t + 1, producing on
the output lines a sensory-motor pair (st+1,mt+1) which is fed back into
the system as data input. Accordingly, for each PB vector, the system gen-
erates sequences of sensory-motor pairs without using actual sensory in-
puts. In observation mode, the data input lines receive an actual sensory
input st at step t. Using the current PB vector as supplementary informa-
tion, the system generates an expected sensory value st+1 on the output
lines. This expected value is compared with actual sensory input st+1 at
step t+1, and the prediction error is used to update the PB vector by means
of a “back-propagation through time” algorithm. Thus, if the system re-
ceives sensory sequences that are sufficiently similar to previously learned
sequences, then the PB vectors tend to converge to values determined in
the learning phase. This schematic account enables one to identify the
same-activity hypothesis in this model too: mirror neuron behaviours are
modelled by PB vectors, which assume the same values whenever some
given action A is either executed or observed.

Let us finally consider the forward model of mirror neuron behaviours
proposed in (Oztop et al., 2005).

1. In action execution mode, the forward model predicts next sensory
stimuli with respect to some desired bodily change. This informa-
tion is used for action control purposes, in order to compensate for
sensory delays involved in visual feedback loops.
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2. In action observation mode, predictions of next sensory stimuli by
the forward model are used to infer the agent’s intentions, on the
basis of a comparison between computed “simulated perceptions”
and actual movement perceptions.

Given some specific object-directed action, the forward model predicts the
sensory consequences of action planning in action execution mode, and
predicts the sensory correlates of agent’s intentions in action observation
mode. The same-activity hypothesis is at work in this model too, insofar
as the output produced in action observation mode is the closest available
match to the response provided in action execution mode.

The same-activity hypothesis is schematically represented in Figure
3.2. Mirror neurons are functionally represented there as black boxes,
whose input may include proprioceptive information, perceptual informa-
tion, and internal states, and whose output is (a code for) mirror neuron
activity. Given some specific actionA, z and y represent mirror neuron in-
put and output, respectively, during action execution; z′ and y′ represent
mirror neuron input and output, respectively, during action observation.
In this schema, the same-activity hypothesis is enforced by requiring that
y = y′ for every given action A.

3.1.1 The gap between same-activity hypothesis and exper-
imental data

On the whole, experimental data reveal complex patterns of mirror be-
haviours, in the way of both temporal patterns and activation congruence
between execution and observation modes. Table 2.1 summarizes experi-
mental data wrt observed and executed action congruence. Only strictly
congruent mirror neurons satisfy the same-activity hypothesis, insofar as
these neurons are selectively active during the execution and the observa-
tion of actions which do not differ from each other in the way of action
type and execution modality. Only about one-third of recorded mirror
neurons are strictly congruent. Therefore, computational models endors-
ing the same-activity hypothesis do not fit about two-thirds of experimen-
tal data in (Gallese et al., 1996; Rizzolatti et al., 1996). And recent data
showing that mirror neurons exhibit different behavioural responses in
action observation modality, depending on spatial regions in which the
action is being executed (Caggiano et al., 2009), add to the reasons for
considering these computational models as descriptively inadequate. In
the light of the above data, the same-activity hypothesis is aptly regarded
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Figure 3.2: Same-activity hypothesis. Mirror neurons are functionally rep-
resented as black boxes. Given some specific action A, z and y represent
mirror neuron input and output, respectively, during action execution; z′

and y′ represent mirror neuron input and output, respectively, during ac-
tion observation. The same-activity hypothesis is enforced by requiring
that y = y′ for every given action A.
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Figure 3.3: Visual sensory input to an executor of some object-directed
action A.

as an idealization, which enables one to abstract from some experimen-
tal data for the purpose of simplifying modelling tasks and isolating chief
causal factors producing observed phenomena. Accordingly, a pertinent
question to ask about computational models of mirror neurons is whether
endorsing the same-activity hypothesis brings about significant benefits in
the way of prediction or explanation. A negative answer to this question
will be provided in Section 3.3, in connection with a special class of mir-
ror neuron models, that is, computational models which jointly endorse
the same-activity idealization and the same-input hypothesis. Preliminar-
ily, let us turn to examine in the next section the functional implications
which flow from the same-input hypothesis alone.

3.2 Same-input hypothesis

The F5 motor area receives inputs mainly from parietal areas PF and AIP.
More generally, let us collectively call direct internal input to mirror neu-
rons the complex of brain signals that mirror neurons and F5 neurons
closely involved in mirror neuron activity receive from directly afferent
brain areas. The same-input hypothesis significantly bears on the ques-
tion of when and how direct internal input is computed. Indeed, this hy-
pothesis entails that, for each object-directed action, mirror neurons (and
possibly other strictly related F5 neurons) receive the same direct internal
input irrespectively of whether some object-directed action A is observed
or executed. Accordingly, this assumption expresses a strong modelling
commitment insofar as the actual sensory, proprioceptive, and internal
state inputs to action executors do not, in general, coincide with sensory,
proprioceptive, and internal state inputs to action observers. Consider, for
example, the visual sensory input which is collected from the perspective
of the executor of some object-directed action A (Figure 3.3).

In general, this perspectival input differs (on account of observation
angle, distance, illumination conditions, and so on) from the visual sen-
sory input to an observer of the same action A (Figure 3.4). Thus, sub-
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Figure 3.4: Visual sensory input to an observer of some object-directed
action A.

stantive pre-processing is in many cases required in order to converge on
the same direct internal input to mirror neurons (see, for example, (Pre-
vete et al., 2008)), when starting from the different input collection con-
ditions of action executors and action observers, respectively. To express
schematically the same-input hypothesis, let us encapsulate once again
mirror neuron computations as a functional module (see Figure 3.5).

In this schema, given some action A, z is the internal direct input to
mirror neurons during action execution, and z′ is the internal direct input
to mirror neurons during action observation. The same-input hypothe-
sis amounts, in this schema, to assuming that for each given A, z = z′

(see Figure 3.5). Since the total sensory, proprioceptive, and internal state
input Se to an action executor is usually quite different from the total sen-
sory, proprioceptive, and internal state input So to an observer of the same
action, then the same-input hypothesis entails that there are mechanisms
transforming Se into z and So into z′, which satisfy the additional restric-
tive condition that z = z′. To illustrate, consider again sensory inputs in
the visual modality only. The same-input hypothesis entails the condition
that viewpoint-independent information about object-directed actions can
be extracted from different visual sensory inputs, and supplied to mirror
mechanisms. Thus, in general, the pre-processing step presupposed by the
same-input hypothesis involves extensive computational mappings into
perspective-free perceptual information of perspectival visual inputs, that
is, of visual inputs collected from the vantage points of action observers or
executors, respectively (see Figure 3.6).

Current computational models of mirror neurons usually endorse the
hypothesis that perspective-free perceptual information is fed into mir-
ror mechanisms. Some of these models, however, merely presuppose that
this perceptual processing problem admits a computational solution; some
other models which outline a partial solution, that is, a solution which in-
volves special restrictions on sensory input collection conditions. Let’s see.
Consider the hand-state hypothesis in (Oztop and Arbib, 2002), according
to which one computes a hand-state vector making available perspective-
free information concerning hand/target-object pairs. In this model, se-
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Figure 3.5: Same-input hypothesis. Mirror neurons are functionally rep-
resented as black boxes. Given some specific action A, z and y represent
mirror neuron input and output, respectively, during action execution; z′

and y′ represent mirror neuron input and output, respectively, during ac-
tion observation. The same-input hypothesis amounts to assuming that
for each given A, z = z′.
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Figure 3.6: Pre-processing. Mirror neurons are functionally represented as
black boxes. Given some specific action A, x and x′ represent perspectival
sensory input from executor and observer vantage points, respectively. To
obtain the same direct internal input (z = z′) starting from different per-
spectival inputs (x 6= x′) a substantive pre-processing step is required.
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quences of hand-state vectors are the input data for an action classifi-
cation module, whose output is identified with mirror neuron activity.
Therefore, this model of mirror mechanisms presupposes substantive pre-
processing steps, which enable one to extract invariant (perspective-free)
information about object-directed actions from both executor and observer
sensory inputs. Likewise, in (Haruno et al., 2001; Keysers and Perrett,
2004; Fritsch, 2007; Ito and Tani, 2004; Oztop et al., 2005; Oztop and Ar-
bib, 2002), one presupposes that a view-independent description of the
environment is computed and fed into mirror neuron mechanisms. A pro-
cedure for attaining view-independence is outlined in some other compu-
tational models in terms of frame of reference transformations (see Weber
et al. (2008) for a review). In (Billard and Mataric, 2001), for example, view-
independence is achieved by means of the following two-stage process: di-
rection and orientation information about the executor’s arms is extracted
at first by reference to some selected point on the executor’s body; this
information is subsequently transferred onto the observer’s frame of ref-
erence. This system affords a solution to the same input pre-processing
problem only if a non-occluded and visually unambiguous initial position
is perceptually available. More important, this solution presupposes that
a kinematic model of a generic adult human is available for perceptual
processing. In (Demiris and Hayes, 2002; Demiris and Johnson, 2003) a
frame of reference transformation is carried out under the physical con-
straint that executor and observer be located in front of each other. To
sum up. Some computational models of mirror neurons presuppose a
solution to perceptual processing problems one has to posit in the light
of the same-input hypothesis, insofar as one assumes there that the out-
come of these perceptual processes is made available as an external input
to the computational model. Some other computational models provide
partial solutions to the same perceptual processing problems, insofar as
special restrictions on sensory data collection and processing conditions
are required for the proposed solution to work (such as the above men-
tioned physical constraint that executor and observer be located in front
of each other). A general formulation of the same internal input computa-
tion problem raises several modelling challenges. A major mathematical
problem arising in this context concerns the ill-posed character of many
required transformations from perspectival sensory data to intrinsic fea-
tures of object-directed actions. To illustrate, suppose that the description
one is looking for is given by a sequence of configurations that a hand
takes on during an object-directed action. However, the same visual input
can be associated to various hand configurations, insofar as the hands of
primates are highly complex structures including more than 20 degrees of
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freedom, perceptually producing many different self-occlusions. There-
fore, many visual sensory data x collected from any given vantage point
are compatible with various distal hand configurations, and this fact suf-
fices to conclude that the extraction of direct internal input z from any
such x is an inverse ill-posed problem (Friston, 2005; Fritsch, 2007). If one
allows for multiple vantage points in visual data collection processes, then
self-occlusion affects increased numbers of visual inputs; by the same to-
ken, increased numbers of inverse ill-posed transformation problems will
arise too. Additional information enabling one to turn these ill-posed, vi-
sual perception problems into well-posed functional mapping problems
is provided in (Billard and Mataric, 2001), where a kinematic model of
primate actions is made available. However, the underlying assumption
that primates are able to compute kinematic models of this sort requires
extensive empirical scrutiny.

3.3 The confluence of same-activity and same-input
hypotheses

Let us now turn to consider the problematic character of the functional im-
plications flowing from the conjunction of same-input and same-activity
hypotheses. To preserve generality, let us suppose that mirror neuron ac-
tivity is the outcome of two different computations, taking place during
object-directed action execution and observation, respectively. If one en-
capsulates mirror neuron computations as functional modules (see Figure
3.7), this supposition entails that one has to posit two different functional
modules F and G, encapsulating mirror activity in action execution and
observation modes, respectively. Mirror neuron input and output during
the execution of object-directed action A are represented in F by means
of z and y = F (z), respectively. And mirror neuron input and output
during the observation of A are represented in G by z′ and y′ = G(z′),
respectively. As discussed above, the same-input hypothesis implies that
modules F and G receive the same direct internal input, irrespectively
of whether A is observed or executed. Thus, for every given A, one ob-
tains that z = z′. And, by the same-activity hypothesis, for every such
A one has that y = y′. Thus, the conjunction of same-input and same-
activity hypotheses forces one to conclude that functional modules F and
G coincide (see Figure 3.7). One can hardly belittle the consequences of
this fact for modelling purposes. Indeed, to model mirror neuron activ-
ity under both hypotheses, it is sufficient to model mirror activity in ac-
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tion execution mode only (or, alternatively, in action observation mode
only). Accordingly, any function F (alternatively, any function G) will do,
as long as F (or else G) is consistent with experimental data during ac-
tion execution (during action observation, respectively) . For this reason,
computational models endorsing both same-activity and same-input hy-
potheses (Haruno et al., 2001; Keysers and Perrett, 2004; Oztop et al., 2005;
Oztop and Arbib, 2002) are bound to assign an impoverished functional
role to mirror neurons. In (Ito and Tani, 2004), mirror neuron activity is
accounted for in terms of two genuinely different functional modules. In
fact, one construes mirror neuron activity there as the outcome of a learn-
ing process during action observation, and as the output of some exter-
nal process during action execution. In this case too, however, the model
embodies a view-independence hypothesis about action description, so
that the distinguishing features of mirror behaviours arise as a mere “side
effect” of view-independence computational abilities. So far, descriptive
and explanatory problems affecting extant computational models of mir-
ror mechanisms have been isolated and analyzed. A novel approach to
the computational modelling of mirror mechanisms is introduced in the
next section, which dispenses with both same-activity and same-input hy-
potheses. Equally important, this approach makes room for more substan-
tive functional roles of mirror mechanisms in action recognition processes.

3.4 A case study: the computation of grip-size

In the previous section we have argued that most computational mod-
els of mirror neurons usually endorse the hypothesis that perspective-free
perceptual information is fed in input to mirror neurons. A general for-
mulation of the same internal input computation problem raises several
modelling challenges. A major mathematical problem concerns the ill-
posed character of many required transformations from perspectival sen-
sory data to intrinsic features of object-directed actions. This is particu-
larly true for perspectival sensory data comprising only visual input and
features of object-directed actions comprising a detailed hand description.
A way to alleviate the ill-posed nature of this problem is to consider only a
restricted number of features useful to object-directed actions description.
For example if we consider the hand alone how many different features
must be taken into account, and how detailed must the hand description
be for the purpose of both recognition and grasping control tasks?

Grip aperture (Jeannerod, 1984), that is, the aperture between index
finger and thumb, appears to be a key element of this set, insofar as it
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Figure 3.7: Same function. Mirror neurons are functionally represented
as black boxes. Given some specific action A, z and y represent mirror
neuron input and output, respectively, during action execution; z′ and y′

represent mirror neuron input and output, respectively, during action ob-
servation. As discussed in the text, the same-input and same-activity hy-
potheses imply that, for every given A, z = z′ and y = y′, respectively.
Thus, the conjunction of same-input and same-activity hypotheses forces
one to conclude that the functional modules F and G coincide.
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is a crucial variable in the dynamical evolution of certain types of grasp-
ing actions. Some have even advanced and supported the hypothesis that
grasping actions are basically coded in terms of changes in grip aperture
((Castiello, 2005) and (Jeannerod, 1984)). During a reach-to-grasp action,
grip aperture initially increases until a maximum value is reached which
exceeds object size; then grip aperture gradually decreases until it matches
the actual object size; the grip-aperture largest value (maximum grip aper-
ture) is reached within 60–70% of the grasp action duration and is linearly
correlated with the size of the object. On the whole, grip aperture is a
good candidate for being included into a parsimonious set of hand high-
level features that are sufficient to describe overall hand movement dur-
ing reach-to-grasp actions. Indeed, grip aperture is a relationship between
fingers which plays a pivotal role in grasp actions, and the position of the
other fingers correlates to grip movement because of the above-mentioned
hand synergies. One should be careful to notice that in addition to grip
aperture further object/hand features are certainly needed to describe on-
going actions in the general setting of object-directed action recognition.
For example, at least one object property or relationship between hand
and target, such as hand–object distance, is clearly needed.

In (Prevete et al., 2008) we have proposed a biologically plausible com-
putational mechanism for extracting grip aperture in a view-independent
fashion, whose architecture and experimental results are described in the
next sections.

3.4.1 Model description

We have developed a neural network architecture and system for measur-
ing grip aperture in an observer-independent way (NeGOI). This architec-
ture, as it is pointed out in next section, is coherent with the computational
model of the visual ventral stream for view-independent object recogni-
tion proposed by (Giese and Poggio, 2003; Riesenhuber and Poggio, 2002).

An assumption built into NeGOI is that grip aperture can be measured
from the superposition of a small number of prototypical hand shapes cor-
responding to predefined grip-aperture sizes. In Figure 3.8 three prototyp-
ical hand shapes are shown, corresponding to fully opened grip aperture
(PHS1), middle size grip aperture (PHS2), and fully closed grip aperture
(PHS3). The selection of these prototypical hand shapes, which have been
used throughout the experimental work reported in the next section, is
the outcome of a trade-off between model complexity and an effective al-
gorithmic capacity to estimate grip aperture.
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Figure 3.8: Prototypical hand shapes. In NeGOI the grip aperture is mea-
sured from the superposition of three prototypical hand shapes: fully
opened grip aperture (PHS1), middle size grip aperture (PHS2) and fully
closed grip aperture (PHS3). In this figure, from left to right, PHS1, PHS2

and PHS3, respectively, are shown from a specific point of view.

The key idea underlying the NeGOI model is to introduce view-independent
units (VIP units) that are selective for the prototypical hand shapes, and
to integrate the output of VIP units in order to compute grip aperture. In
particular, given a novel hand shape, the VIP units provide a similarity
measure with respect to each prototypical hand shape. These three mea-
sures are integrated to estimate actual grip aperture. The integration is
performed by a further unit, called here grip aperture (GA), which out-
puts a measure of the grip size in a view-independent fashion. View inde-
pendence of VIP units is achieved by a “pooling operation” over a set of
view-dependent units (VDP units) which are selective to both a prototyp-
ical hand shape and a specific viewpoint. Note that the prototypical hand
shapes in question do not depend on the specific action.

The overall NeGOI approach can be briefly described as follows. There
is a set of computing units hierarchically organized into three modules (see
Figure 3.9). The output of the first module is computed by units which are
selective to visual complex features and generalize across changes in scale
and position. The second module is composed of both the view-dependent
units VDP and the view-independent units VIP. The VDP units receive in
input the output from the first module and send their output to the VIP
units. The VDP units are selective to a specific prototypical hand shape,
and generalize across transformation of the preferred stimulus to changes
in scale and position, but fail to generalize across changes in viewpoints.
The VIP units are selective to a specific prototypical hand shape and gen-
eralize across transformation of the preferred stimulus to changes in scale,
position, and viewpoint. The output of the third module is computed by
the GA unit. The third module receives in input similarity measures, com-
puted by each VIP unit, of the current shape with respect to all the pro-
totypical hand shapes. On the basis of these similarity measures, the GA
unit computes the grip-aperture measure, normalized in the range from 0
(fully closed grip aperture) to 1 (fully opened grip aperture), by an “inte-
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Figure 3.9: NeGOI model is composed of computing units hierarchi-
cally organized in three modules: view-based module, prototypical view-
invariant module and grip-aperture module. The output of the first mod-
ule is computed by units which are selective to visual complex features
and generalize across changes in scale and position. The second module
is composed of both view-dependent units, VDP, and view-independent
units, VIP. The VDP units are selective to a specific prototypical hand
shape, and generalize across transformation of the preferred stimulus to
changes in scale and position, but fail to generalize across changes in view-
points. The VIP units are selective to a specific prototypical hand shape
and generalize across transformation of the preferred stimulus to changes
in scale, position, and viewpoint. The output of the third module is com-
puted by the GA unit. The GA unit computes the grip-aperture measure,
normalized in the range from 0 (fully closed) to 1 (fully opened).
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Figure 3.10: Grip aperture. The figure shows four different grip apertures
corresponding to roughly 2, 4, 6, and 8 cm.

gration” operation. The NeGOI architecture is explained in more details
in appendix A.

In order to verify the capability of our system to measure actual grip
aperture, and to test the view-independence property, two different sets
of experiments were performed. These experiments were conducted com-
plying with the experimental procedures described in appendix A.

3.4.2 Testing the model

Grip aperture

In order to test NeGOI’s performance in measuring grip aperture, two dif-
ferent experiments were performed. In the first experiment, the correct-
ness of NeGOI with respect to grip aperture measuring is tested. To this
purpose five human subjects were asked to assume four hand shapes cor-
responding to four preassigned grip-aperture values equal to roughly 2,
4, 6, and 8 cm, respectively. In order to obtain the above-mentioned grip-
aperture values each subject sequentially held four cubes whose sizes are
equal to 2, 4, 6, and 8 cm, respectively. Each hand shape was recorded
using a camera from a fixed viewpoint, thus obtaining a sequence of four
images for each subject. Figure 3.10 shows one of the five hand-shape
sequences obtained. Each image sequence is given in input to NeGOI,
thereby obtaining a sequence of output values, i.e., a set of five NeGOI
outputs for each given hand shape. The mean and the standard deviation
were computed for each set of the five NeGOI outputs.

Since the four preassigned grip-aperture values increase linearly from
2 to 8 cm, the correctness of the NeGOI behaviour is validated if the com-
puted mean values increase linearly as well.

The NeGOI outcomes showed a clear linear relationship with grip-
aperture values (see Figure 3.11). In fact, by performing a linear regres-
sion between NeGOI output values and grip-aperture values, one obtains
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an average determination index r2 = 0.98.
The goal of the second experiment is to verify NeGOI ability “to fol-

low” the grip aperture during a reach-to-grasp action. For this aim, notice
that during a grasp action 1) the hand grip-aperture temporal profile has
a typical bell shape, i.e., grip aperture initially increases until a maximum
value is reached which exceeds object size; then grip aperture gradually
decreases until it matches the actual object size, 2) the value of the max-
imum grip aperture occurs at roughly 70–80% of action duration and, fi-
nally, 3) the maximum grip aperture has a linear relationship with target
size ((Castiello, 2005; Jeannerod, 1984)).

Thus we have recorded 8 human grasp actions using a camera from
a fixed viewpoint (see Figure 3.12 for an example). The targets of these
object-directed actions were 8 cubes of different sizes (cm 2, 3, . . . , 9 respec-
tively). Accordingly, a significant test for NeGOI is to compare the proper-
ties of the grip aperture computed by the system during a reach-to-grasp
action with the expected grip-aperture properties above-mentioned. For
each reach-to-grasp action, the output values measured by NeGOI com-
pared with the actual values are shown in Figure 3.13. It turns out that
for every recorded grasp action the temporal profile of grip aperture as
measured by NeGOI has a bell shape and it is consistent with the actual
temporal profile. The maximum grip-aperture value shows a linear rela-
tionship with target size (see Figure 3.14). In fact, by performing a linear
regression between maximum grip-aperture values and target sizes, one
obtains an average determination index r2 which is roughly equal to 0.85
(roughly 0.90 for actual values). The maximum grip-aperture values occur,
on the average, at roughly 80% of action duration.

Hence it turns out that NeGOI is able to measure the grip aperture
during a reach-to-grasp action.

Viewpoint independence

In order to test NeGOI’s viewpoint independence, two additional exper-
iments were performed. In the first experiment one tests NeGOI capac-
ity to measure, in a view-independent way, grip apertures correspond-
ing to the three prototypical hand shapes. A subject was asked to as-
sume three hand configurations as close as possible to the three proto-
typical hand shapes. For each hand configuration, the subject’s hand was
recorded while rotating the camera in accordance with a viewpoint range,
view1–view3, roughly equal to 45° (from viewpoint view1 to viewpoint view3

and back). Thus, for each hand configuration, a sequence of about 120 im-
ages was obtained (a sample being shown in Figure 3.15). Each image was
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Figure 3.11: Liner regression. Five human subjects were asked to assume
four hand shapes corresponding to four preassigned grip-aperture values
equal to roughly 2, 4, 6, and 8 cm, respectively. Each hand shape was
recorded by using a camera from a fixed viewpoint, thus obtaining a se-
quence of four images for each subject (Figure 3.10 shows one of the five
hand-shape sequences obtained). Each image sequence is given in input to
NeGOI, thereby obtaining a sequence of output values. The mean and the
standard deviation were computed for each set of the five NeGOI outputs.
Linear regression analysis between mean and actual grip-aperture values
has been performed, obtaining an average determination index r2 = 0.98.
The y-axis represents the grip aperture as measured by NeGOI ([0, 1]). The
x-axis represents the actual grip aperture.

Figure 3.12: Reach-to-grasp example. In this figure an example of reach-
to-grasp action is shown.
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Figure 3.13: Grip aperture during a reach-to-grasp action. We have
recorded 8 human grasp actions using a camera from a fixed viewpoint.
The targets of these object-directed actions were 8 cubes of different sizes
(cm 2, 3, . . . , 9 respectively). The graphic shows the grip aperture as mea-
sured by NeGOI compared with the actual values during eight reach-to-
grasp actions performed on the eight objects. The dashed lines represent
the grip aperture as measured by NeGOI, while the continuous lines rep-
resent the actual grip-aperture values. The grip aperture is normalized in
the range [0, 1]. The x-axis represents the time normalized in [0, 1]. The
time 0 corresponds at the beginning of the action, the time 1 corresponds
with the moment when the hand touched the object.
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Figure 3.14: Maximum grip aperture. We have recorded 8 human grasp
actions using a camera from a fixed viewpoint. The targets of these object-
directed actions were 8 cubes of different sizes (cm 2, 3, . . . , 9 respectively).
We obtained eight sequences of grip aperture values as computed by Ne-
GOI. The graphic shows the maximum grip-aperture values of each se-
quence as computed by NeGOI (circles) compared with the actual maxi-
mum grip-aperture values (squares). The maximum grip-aperture values
of each sequence shows a linear relationship with target size as reported
in the literature. In fact, by performing a linear regression between maxi-
mum grip-aperture values and target sizes, one obtains an average deter-
mination index r2 which is roughly equal to 0.85 (roughly 0.90 for actual
values).
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Figure 3.15: Grip aperture for different viewpoints. Three hand configura-
tions as close as possible to the three prototypical hand shapes (see Figure
3.8) were recorded while rotating the camera (see Figure A.1) around the
Z−axis in accordance with a viewpoint range, view1–view3, roughly equal
to 45° (from viewpoint view1 to viewpoint view3 and back). For each hand
configuration, a sequence of about 120 images was obtained. The figure
shows a sample extracted from the sequence corresponding to the hand
configuration fully opened grip aperture.

processed by NeGOI, resulting into a sequence of about 120 grip-aperture
values for each hand configuration (see Figure 3.16 and Figure 3.17).

One verifies view independence by testing if each sequence of grip-
aperture values is “almost stable”. This has been done by verifying the
following two conditions:

maxi < mini+1 with i = 1, 2

σi � minh,k∈{1,2,3}|µh − µk| = 0.49 ∀i = 1, 2, 3

where maxi are the maximum values, mini are the minimum values, σi
are the standard deviations and µh are the mean values of each sequence
of values computed by NeGOI (see Table 3.1). From Table 3.1 one can
observe that the first condition is verified.

A subject was asked to assume both three hand configurations as close
as possible to the three prototypical hand shapes (see Figure 3.8) and four
specific hand configurations, different from the prototypical hand shapes,
corresponding to grip-aperture values equal to roughly 2, 4, 6, 8 cm. For
each hand configuration, the subject’s hand was recorded while rotating a
camera in accordance with a viewpoint range, view1–view3, roughly equal
to 45° (from viewpoint view1 to viewpoint view3 and back). Thus, for each
hand configuration, a sequence of about 120 images was obtained. Each
image was processed by NeGOI, resulting into a sequence of about 120
grip-aperture values for each hand configuration. In the table we show
mean, standard deviation, minimum and maximum value for each se-
quence.
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Figure 3.16: View independence for prototypical shapes. A subject was
asked to assume three hand configurations as close as possible to the three
prototypical hand shapes (see Figure 3.8). For each hand configuration,
the subject’s hand was recorded while rotating the camera (see Figure A.1)
around the Z − axis in accordance with a viewpoint range roughly equal
to 45°. For each hand configuration, a sequence of about 120 images was
obtained. The graphic shows the three sequences of grip-aperture values
as computed by NeGOI.
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Figure 3.17: VIP unit response. Three specific hand shapes as close as pos-
sible to the three prototypical hand shapes (see Figure 3.8) were recorded
while rotating the camera (see Figure A.1) in accordance with a view-
point range roughly equal to 45°. For each hand configuration, a sequence
of about 120 images was obtained. For each reach-to-grasp action, the
graphic shows the responses of the three VIP units each one selective to
one of the three prototypical hand shapes (PHS1, PHS2 and PHS3) and
independent of the viewpoint. Notice that for each sequence (row) just
one VIP unit assumes a high output value.
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Actual grip aperture Mean Standard deviation min max
Fully opened grip (PHS1) 0.96 0.01 0.94 0.96
Middle size grip (PHS2) 0.54 0.04 0.46 0.61
Fully closed grip (PHS3) 0.05 0.03 0.03 0.15

2 (cm) 0.28 0.05 0.20 0.41
4 (cm) 0.50 0.03 0.43 0.61
6 (cm) 0.72 0.04 0.64 0.81
8 (cm) 0.92 0.04 0.85 0.96

Table 3.1: A subject was asked to assume both three hand configurations as
close as possible to the three prototypical hand shapes (see Figure 3.8) and
four specific hand configurations, different from the prototypical hand
shapes, corresponding to grip-aperture values equal to roughly 2, 4, 6, 8
cm. For each hand configuration, the subject’s hand was recorded while
rotating a camera in accordance with a viewpoint range, view1–view3,
roughly equal to 45° (from viewpoint view1 to viewpoint view3 and back).
Thus, for each hand configuration, a sequence of about 120 images was
obtained. Each image was processed by NeGOI, resulting into a sequence
of about 120 grip-aperture values for each hand configuration. In the table
we show mean, standard deviation, minimum and maximum value for
each sequence.
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To verify the second condition, for each sequence we performed a one-
sided chi-square test at significance level p < 0.01, with the null hypothesis
that the standard deviation is equal to 0.05 and the alternative hypothesis
that the standard deviation is smaller than 0.05, obtaining on the basis of
this test that one has to accept the alternative hypothesis.

The second experiment was devoted to test the NeGOI capacity to pre-
serve the view invariance property for hand configurations different from
the prototypical hand shapes. To this aim, we asked the subject to assume
specific hand configurations different from the prototypical hand shapes,
and corresponding to grip-aperture values equal to roughly 2, 4, 6, 8 cm.
As in the previous experiment, for each hand configuration, the hand was
recorded while rotating the camera in accordance with a viewpoint range,
view1–view3 (from viewpoint view1 to viewpoint view3 and back) obtaining
again a sequence of about 120 grip-aperture values as computed by Ne-
GOI. The capability of NeGOI to obtain a viewpoint independent measure
is assessed by verifying whether each sequence of grip-aperture values is
“almost stable”. The sequences of grip-aperture values shown in Figure
3.18 were obtained. Thus, the view-independence property is again veri-
fied if:

maxi < mini+1 with i = 1, 2

σi � minh,k∈{1,2,3}|µh − µk| = 0.20 ∀i = 1, 2, 3

where maxi are the maximum values, mini are the minimum values, σi
are the standard deviations and µh are the mean values of each sequence
of values computed by NeGOI (see Table 3.1). From Table 3.1 one can
observe that the first condition is verified.

To verify the second condition, for each sequence we performed a one-
sided chi-square test at the significance level p < 0.01, with the null hy-
pothesis that the standard deviation is equal to 0.06, and the alternative
hypothesis that the standard deviation is smaller than 0.06, thereby sug-
gesting that one has to accept the alternative hypothesis.

These tests confirm the hypothesis that NeGOI measures grip aper-
tures in a view-independent fashion at least insofar as the range view1–view3

is concerned.
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Figure 3.18: View independence. A subject was asked to assume four spe-
cific hand configurations corresponding to grip-aperture values roughly
equal to cm 2, 4, 6, and 8. For each hand configuration, the subject’s hand
was recorded while rotating the camera around the Z − axis (see Figure
A.1) in accordance with a viewpoint range, view1–view3, roughly equal to
45° (from viewpoint view1 to viewpoint view3 and back). For each hand
configuration, a sequence of about 120 images was obtained. The graphic
shows the four sequences of grip-aperture values as computed by NeGOI.
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3.5. SAME-INPUT HYPOTHESIS AND MODEL OF
VIEW-INDEPENDENT GRIP-SIZE COMPUTATION

3.5 Same-input hypothesis and model of view-
independent grip-size computation

In order to develop a significant computational model of mirror neurons
one must deal with same-activity and same-input hypotheses in the light
of the considerations made in this chapter. In particular the same-input
hypothesis raises a series of conceptual and computational problems. The
latter kind of problems mainly concern how a view-invariant scene de-
scription (direct internal input) can be computed on the basis on visual
input only. The NeGOI model provides evidence that at least one fea-
ture of the such description can be computed with some tolerance with
respect to changes in point of view. But presumably other features, should
be taken into account to provide the overall description. Accordings, two
main questions arise:

� how many features should be included in scene description ?

� how tolerant may be a system which computes scene descriptions
with respect to changes in points of view ?

The limitations imposed by the same-input hypothesis give rise to serious
doubts about the feasibility that a similar description can be computed
only by visual input. We will show that a comprehensive description (at
least of the hand) can be computed if we use both visual input and motor
information provided by mirror neurons.
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4
A new computational approach for mirror

neurons

According to the direct matching hypothesis (Rizzolatti et al., 2001), the
motor system plays a central role in action recognition. Due to their be-
haviour mirror neurons provide empirical evidence in favour of this hy-
pothesis. In fact it can be argued that an action A is recognized, by an
observer O when its observation brings (a part of) the observer’s neural
motor system to become active in the same way as when A is performed
by O. Thus mirror neurons properly represent the part of the motor sys-
tem which activates during both action observation and execution. Even
if this may be regarded as a convincing functional interpretation of ex-
perimental data, it is unsatisfactory from a computational point of view
insofar as it does not specify how can be achieved this sort of “resonating
effect” of the motor system.

In particular one can envisage different sorts of involvement for mo-
tor representations and processing in action recognition. According to
one view, pursued in most computational models of mirror neurons, and
spelled out in Section 3.2, perspectival sensory inputs are turned into mo-
tor information by means of a computational transformation unidirection-
ally flowing from perspectival sensory input to direct internal input, and
from the latter on to motor coding. This conception leads to an impover-
ished functional roles for mirror mechanisms in action recognition pro-
cesses as far as mirror activity is a straightforward consequence of the
view-independent character of direct internal inputs. According to an al-
ternative view, action recognition processes receive information from the
brain motor system at earlier processing stages, and this information is de-
ployed for the purpose of interpreting perspectival sensory inputs. Con-
sistently with this latter view, the computational modelling approach pro-

50



4.1. USING MOTOR INFORMATION FOR INTERNAL INPUT
COMPUTATION

posed here relies on some distinctive assumptions.

1. According to neurophysiological data (Rizzolatti et al., 1996; Umilta’
et al., 2001), a necessary condition for mirror neuron activity to arise
in observation modality is the evidence (usually perceptual evidence)
that there is an object towards which the action is directed.

2. Given that the observer knows how to manipulate the object, then
the observer knows the set of the more probable configurations a
hand (more generally, an effector) can sequentially assume in ac-
tions that are directed towards that object. This assumption is akin to
the affordance hypothesis in the psychology of perception (Gibson,
1979), according to which the observer selectively identifies proper-
ties enabling interactions with objects in the environment. In (Tessi-
tore et al., 2009) a biologically plausible architecture is proposed for
affordance extraction in the context of grasping actions.

3. Knowledge of hand (effector) configurations, which is codified in
motor areas, can be used to form a priori hypotheses which constrain
the computation of a mapping from perspectival sensory input to
hand (effector) configuration coding.

4. Using the outcomes of this mapping jointly with perspectival sen-
sory inputs, one can either corroborate or replace previously formed
a priori hypotheses, and repeat, if necessary, the overall computa-
tional process.

Major computational problems arising in connection with this approach
concern the identification of available motor information, and its specific
uses for the purpose of analyzing and interpreting perspectival sensory
input during action observation.

4.1 Using motor information for internal input
computation

To begin with, it must be underlined that we are looking for motor infor-
mation useful to both action control and recognition. In (Iberall and Fagg,
1996; Iberall et al., 1986), in the context of grasping control, the opportu-
nity of using simple hand description models is explored. In particular,
in this work the notion of virtual finger is introduced and explored in or-
der to reduce the degrees of freedom, and thereby the complexity of the
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hand control problem. A simplified control strategy during reach-to-grasp
actions is also suggested, at the output stage, in the reduced number of
hand shapes one can effectively assume and, hence, in the reduced num-
ber of features that are needed to achieve a meaningful hand description.
Empirical evidence for the use of a reduced set of variables for represent-
ing hand shapes in the context of reach-to-grasp actions is provided by
behavioural findings (see (Santello et al., 2002; Mason et al., 2001)). No-
tably, in Santello’s work a principal component analysis (see Appendix
C) is performed over a series of hand features that are monitored while
a subject performs (or mimics) a reach-to-grasp action. The outcome of
this analysis shows that the first eigenposture (principal components are
called eigenpostures in this context) suffices to account for most hand fea-
ture variability, and the first two eigenpostures account for almost every
aspect of whole hand feature variability. Apparently, coordinated move-
ments of hand fingers result, during reach-to-grasp action, into a reduced
number of physically possible hand shapes.

Thus it can be argued that motor information in the form of eigen-
postures may be useful as far as the problem of hand grasping control is
concerned.

In this work we will show that the same motor information (in the form
of eigenpostures) may be useful to interpret perspectival sensory inputs.

More specifically the problem of analyzing and interpreting perspec-
tival sensory input during actions will be explored within a probabilistic
theoretical framework, and in connection with a simplified action recog-
nition scenario. In the envisaged scenario perspectival sensory inputs are
restricted to hand-related visual inputs collected from some fixed view-
point. Accordingly, the simplified perceptual problem to solve is that of
estimating actual hand configuration on the basis of both motor informa-
tion and incoming visual inputs.

In this simplified setting, it is assumed that different classes of object-
directed actions can be identified. Moreover, in accordance with exper-
imental data analyzed in (Mason et al., 2001; Santello et al., 2002), it is
assumed that a stereotyped/expected temporal sequence of hand configu-
rations, described by a restricted number of parameters, can be associated
to each of these classes. More precisely, each class C of object-directed
actions is associated to a specific set of vectors in the space of hand-joints
configurations. The eigenpostures associated toC span a low-dimensional
sub-space of hand-joints configurations that a hand can assume during
the execution of an object-directed action in C. Each set of eigenpostures
must be selected so as to obtain a “sufficiently detailed” description of
hand configurations during the execution of an action in C, in terms of
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an appropriate linear combination of eigenpostures. Thus, to each class of
object-directed actions one associates a stereotyped temporal sequence of
hand configurations, which is described in terms of the temporal evolu-
tion of coefficients in the selected linear combination of eigenpostures.

In this setting, an interpretive hypothesis about an observed action is
given by some set of eigenpostures associated to a class of object-directed
actions. This interpretive hypothesis is identified on the basis of motor
knowledge, which is broadly construed here as comprising both eigen-
posture representation and selection processes. Accordingly, the incoming
visual input is used to estimate the coefficients of the linear combination
of the selected eigenpostures, rather than the computationally more de-
manding estimate of the whole set of hand joints parameters.

4.2 Mechanisms for computing internal inputs
using motor information

Let us now proceed with the description of a formal framework which
appears to accommodate the requirements outlined in the previous section
towards a computational account of the interaction between motor and
perceptual processes in action observation.

Let N be the number of distinct classes of object-directed actions, and
let Sk = ekj be the set of eigenpostures (or principal subspace) associated
to the k-th class, with k = 1, 2, . . . , N , j = 1, 2, . . . ,Mk, and ekj ∈ Rc where
c is the number of degrees of freedom. Then a hand configuration t, rep-
resented in terms of hand-joints parameters, during the execution of an
object-oriented action belonging to the k-th class, is given by:

t =
∑
j

βje
k
j with βj ∈ R (4.1)

Furthermore, it is assumed a selection mechanism of a subset of prin-
cipal subspaces S1, . . . , Sr on the basis of (usually perceptual) informa-
tion concerning the object towards which the action is directed. To each
principal subspace Sk one associates a probability P (Sk), and a stereo-
typed/expected hand configuration in terms of coefficients βk

j . Note that
each principal subspace corresponds to a specific class of object-directed
actions, and that the values of the associated probabilities are initially set
to prior probabilities Pi, that is P (Si) = Pi with i = 1, 2, . . . , r. These Pi’s
give an initial estimate of the probability of observing each class of object-
directed actions. These probabilities will be updated on the basis of the in-
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coming visual input sequence x(t1), . . . ,x(tm). More specifically, for each
principal subspace Sk and each time step th, one computes the probability
that the expected/stereotyped hand-configuration corresponds to the ac-
tual hand-configuration on the basis of both incoming visual input x(th)
and principal subspace Sk. These probabilities, let us call them πkh, are
computed for the purpose of updating probabilities P (S1), . . . , P (Sr). In
this way, throughout an action recognition process, each P (Sk) value sup-
plies a regularly updated estimate that the observed action corresponds to
an object-directed action in the k-th class.

If one considers the incoming sensory input only, the problem of es-
timating probabilities πkh can be coped with by estimating at time th the
probability distribution of t(th), given the incoming sensory input x(th),
that is p(t(th)|x(th)). However, this task is, in general, computationally
expensive because of the large number of components in t. In contrast
with this, the approach proposed here has the advantage of expressing t in
terms of a small number of coefficients, insofar as one assumes that t lies in
one of the principal subspaces Sk. Thus, given sensory input x(th), one es-
timates for each selected principal subspace Sk the conditional probability
distribution pk(β(th)|x(th)), and computes the πkh as πkh = pk(β(th)|x(th)).

How can one estimate these conditional probability distributions? Ac-
cording to (Bishop, 1995), one may estimate the pk(β(th)|x(th)) by means
of mixture model:

pk(β(th)|x(th)) =
M∑
i=1

αi(x(th))φi(β(th)|x(th)) (4.2)

where the φi(β|x) are kernel functions, usually identified with Gaus-
sian functions of the form φi(β|x) = exp

(
− ||β−µi(x)||2

2σi(x)

)
. The parameters

αi(x) can be regarded as prior probabilities of β generated from the i-th
component of the mixture φi(β|x).

The coefficients of the mixture, αi(x(th)), and the parameters of the
kernel functions, φi(β|x), (µi(x(th)) and σi(x(th)) for a Gaussian kernel),
depend on sensory input x(th). A two-layer, feed-forward neural network
can be used to model the relationship between visual inputs x(th) and cor-
responding mixture parameters. Accordingly, the problem of estimating
the conditional probability distribution pk(β(th)|x(th)) can be approached
by combining a density model and a neural network structure (see Ap-
pendix B for more details).

Summarizing, the overall process in observation mode is expressible in
terms of the processing steps showed in Algorithm 4.1.
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Algorithm 4.1 Action observation algorithm.
1. On the basis of (perceptual) information concerning the object towards

which the action is directed, a set of principal subspaces S1, . . . , Sr is se-
lected. Each selected principal subspace Sk is associated to a probability
value P (Sk) = Pk

2. For h← 1 to m DO

2.1 Let x(th) be the current visual input;

2.2 On the basis of the selected sets of eigenpostures, generate expected
hand-configurations coefficients β1(th), . . . ,βr(th)

2.3 From the input x(th), compute probabilities πkh = pk(β(th)|x(th)) with
k = 1, . . . , r;

2.4 On the basis of the computed probabilities πkh, update the probability
values associated to each selected principal subspace:

P (Sk)← (P (Sk) ∗ πkh)/
∑

i=1,...,r P (Si) ∗ πih)

3. The final computed values P (Sk) identify the probability that the observed
action corresponds to an action belonging to the k-th class. Presumably,
only one of these probabilities will reach a sufficiently high value.

Algorithm 4.2 Action execution algorithm.
1. On the basis of task selection and perceptual information concerning the

object towards which the action is directed, a set of principal subspaces
S1, . . . , Sr is selected. An high prior probability is assigned to just one prin-
cipal subspace P (Sk) >> P (Sj) with j = 1, . . . , r and j 6= k

2. For h← 1 to m DO

2.1 Let x(th) be the current visual input;

2.2 On the basis of the selected sets of eigenpostures, generate expected
hand-configurations coefficients β1(th), . . . ,βr(th)

2.3 From the input x(th), compute probabilities πkh = pk(β(th)|x(th)) with
k = 1, . . . , r;

2.4 On the basis of the computed probabilities πkh, update the probability
values associated to each selected principal subspace:

P (Sk)← (P (Sk) ∗ πkh)/
∑

i=1,...,r P (Si) ∗ πih)

3. If P (Sk) falls below some fixed threshold, then action execution is inter-
rupted.
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In action execution mode, the model works in a similar way as in the
observation mode. However, in this case, on the basis of perceptual infor-
mation about the object, together with the performing subject action in-
tent, an high prior probability is assigned to just one principal subspaces
P (Sk) >> P (Sj) with j = 1, . . . , r and j 6= k. Subsequently, the probabil-
ities P (S1), . . . , P (Sr) are updated in action execution mode on the basis
of incoming visual input sequence x(t1), ...,x(tm). Moreover, one checks
whether probability P (Sk) falls below a certain threshold. If it does, this is
an indication that something is not working properly in action execution.
This overall process in action execution mode is expressible in terms of the
processing steps showed in Algorithm 4.2.

The same process, in action execution and observation mode, is schemat-
ically illustrated by means of the functional diagram in Figure 4.1.
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Figure 4.1: Functional diagram of interactions between motor and percep-
tual processes in action execution and observation. See text for details.
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5
Model specification and modelling problems

In this chapter we will specify in more detail the computational model of
mirror neurons introduced in previous chapter. We will extensively dis-
cuss the main modelling problems which were addressed during the con-
struction of model. More specifically, a first problem concerns the map-
ping between visual input and hand configuration which is an ill-posed
problem and cannot be faced by means of standard regression techniques.
Therefore, this mapping is approached here from withins a probabilistic
framework. In this framework motor information, in terms of eigenpos-
tures, is expected improve the computation of the mapping due to the
reduction of variables needed to describe hand configurations. Moreover,
the use of motor information presupposes the existence of both different
sets of eigenpostures for different object-directed actions and a selection
mechanism between them.

5.1 Mapping visual input to hand configuration:
an ill-posed problem

As discussed in Chapter 3, a general formulation of the same internal input
computation raises several modelling challenges. A major mathematical
problem concerns the ill-posed character of many required transforma-
tions from perspectival sensory data to intrinsic features of object-directed
actions. An example of such transformation is the determination of hand
configuration from its visual appearance because the relation between vi-
sual input and hand configuration is not a functional mapping. Approach-
ing such problem in a supervisioned learning fashion may lead to very
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poor performance in the prediction of unseen hand configurations. This
predicament affect standard regression techniques which try to minimize
a sum-of-squares error function to training data pairs.

In Chapter 4 we have introduced a probabilistic framework and sug-
gested the use of motor information as a way to overcome the ill-posed
problem we are facing and model the relational (but no functional) map-
ping. In the next section we will discuss in more depth i) how the proba-
bilistic framework may be used to model the non-functional mapping; ii)
how motor information, in the form of eigenpostures, may significantly
improve the computation of hand configurations.

As will be come clearer in the next section, the determination of hand
configuration from its visual appearance, can be seen as the problem of
constructing an inverse model. Thus, we start addressing the point i) by
illustrating the use of the probabilistic framework in the simplified sce-
nario of the determination of the inverse model of a robot arm.

5.1.1 Inverse kinematics of a robot arm

Consider the robot arm showed in Figure 5.1a, where we have indicated
by x ≡ (x1, x2) the Cartesian coordinates of the end effector and by the
vector t ≡ (θ1, θ2) the two joint angles of the arm. For every given val-
ues of θ1 and θ2 there exists a unique position of the end effector in the
space, that is g(t) = x. This is known as the forward kinematics of the arm.
However, given an arm position x = (x̄1, x̄2) we will have several joints
configurations that give rise to the same arm position (see the example in
Figure 5.1b). The problem of determining the joints angles given the end
effector position is an inverse kinematics problem which, in general, cannot
be modelled as a function.

Suppose we do not have an analytic formulation for both forward and
inverse kinematics. We can collect a set of pairs TS = {xn, tn}n=1,...,N by
giving to the system different values of tn and obtaining the corresponding
xn. Now we can approach the determination of the forward and inverse
kinematics in the framework of supervised learning.

Supervised learning can be described as follows (see Hastie et al. (2003)
for a more comprehensive treatment of this topic): suppose we have a set
of couple called training set TS = {xn, tn}n=1,...,N extracted from a deter-
ministic but unknown function f(xn) = tn + ε where ε is an error which
affects data and can be due, for example, to an error in the measure pro-
cedure. The goal of supervised learning is to construct an f̂ that for new
x /∈ TS is able to predict the right t (generalization property). The problem
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(a) A simple robot arm controlled by means
of two joints angles θ1 and θ2. The position of
end effector is specified by relative Cartesian
coordinates x ≡ (x1, x2).

(b) Given an end effector position x ≡
(x1, x2) more than just one joints angle con-
figuration exists to reach the position x (in
the example showed in this figure the two
joint configuration were represented by solid
and dotted lines, respectively).

Figure 5.1: A simple robot arm example.

of inferring f̂ from TS can be formalized in the framework of statistical
decision theory.

Let x ∈ Rd denote a real valued random input vector and t ∈ Rc a real
valued random output variable with joint distribution p(x, t). We seek a
function f(x) for predicting t given the value of the input x. We now need
a way to choose between different functions f . To do so, we introduce a
loss function L(t, f(x)) which tells us how good is f in predicting t given
x. The more common and convenient choice for L is squared error loss:

L(t, f(x)) = (t− f(x))2 (5.1)

It can be shown that the function f which minimizes 5.1 is given by:

f(x) = 〈t|x〉 (5.2)

where 〈t|x〉 denotes the conditional averages of the target data given x
that is:

〈t|x〉 =

ˆ
tp(t|x)dt

the function f which satisfies 5.2 is called regression function (see Figure
5.2).

The result in 5.2 has important consequences if we want to apply this
setting in the solution of both forward and inverse problems. In fact if
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Figure 5.2: Regression function.
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the relation between x and t is not functional, as is in general in inverse
problems, then the resulting mapping is quite poor because in general the
average of several solutions is not itself a solution.

To illustrate with a concrete example suppose that robot arm position
and arm control are scalar values and that the unknown forward relation
is given by:

x = t+ 0.3sin(2πt) + ε (5.3)

with t ∈ [0, 1] and ε a random variable drawn from a uniform distri-
bution in the range [0, 1]. A data set obtained by the previous relation is
shown in Figure 5.3 together with the estimated (blue solid line) 〈p(t|x)〉.
In this case the conditional average of the target data 〈p(t|x)〉 gives a good
representation of the function from which the data was generated, and
thus can be successfully used to estimate forward relation.

Consider now the inverse relation between x and t obtained by inter-
changing the roles of input and output of data as showed in Figure 5.4. In
this case the relation between x and t is not a function and the conditional
average of the target data 〈p(t|x)〉 gives a very poor representation of the
data (see Figure 5.4 blue solid line) since the average of several correct
target values (that is arm configurations) is not necessarily itself a correct
value (that is an arm configuration).

This can be easily viewed in Figure 5.1b where at the same x can be
associated to two correct solutions t1 ≡ (θ1

1, θ
1
2) (showed by solid lines)

and t2 ≡ (θ2
1, θ

2
2) (showed by dotted lines). However the mean solution be-

tween t1 and t2 given by t3 =
(
θ11+θ21

2
,
θ12+θ22

2

)
is not itself a solution because

the arm does not reach the position x.
To sum up. The estimation of conditional average 〈p(t|x)〉 does not

suffice to model inverse kinematics if the inverse relation between x and t
is not functional.

An alternative approach is to estimate the whole distribution p(t|x) in-
stead of the central value 〈p(t|x)〉 (Bishop, 1995). A powerful approach to
estimate p(t|x) makes use of mixture models of the form:

p(t|x) =
M∑
i=1

αi(x)φi(t|x) (5.4)

where M is the number of components in the mixture, αi(x) are the
mixing coefficients and φi(t|x) are the mixture components functions usu-
ally chosen Gaussians of the form:

62



5.2. A PROBABILISTIC FRAMEWORK FOR HAND CONFIGURATION
ESTIMATION

φi(t|x) =
1

(2π)c/2σci (x)
exp

{
−‖ t− µi(x)

2σ2
i (x)

}
(5.5)

The mixture density network (Bishop, 1994, 1995), described in depth
in Appendix B, can be used to estimate model’s parameters. Here we want
to give a broad idea of how the determination of the distribution p(t|x)
can be used to give a more powerful description of the inverse relation
between x and t.

Consider again the data showed in Figure 5.4 and supposed we have
estimated the parameters of the distribution p(t|x) expressed in the form
5.4. If the components φi of the mixture are well separated and have neg-
ligible overlap we can easily find the most probable branch associated to
every given x by:

arg max
i
{αi(x)}

Knowing the most probable branch, the most probable value t of the
distribution is given by the center µi of the related component φi.

In Figure 5.5 it is shown the plot of the central value of the most prob-
able branch as a function of x. The resulting map gives a good represen-
tation of the data with respect to the mapping obtained in Figure 5.4. In
particular, note that in the region where the mapping is multi-valued this
approach gives in output one of the possible solutions instead of the mean
of all solutions.

5.2 A probabilistic framework for hand configu-
ration estimation

In the previous section we have illustrated how a probabilistic framework
can be used to model a relational but not functional mapping. In particular
we have given an idea of how the estimation of p(t|x) using a mixture
model may be used to give a more powerful representation of the inverse
relation between x and t.

The problem of hand configuration estimation from its visual appear-
ance can be approached as the construction of an inverse model, where
the vector x contains hand visual features while the vector t contains hand
joints configuration.

We can repeat the same probabilistic approach used for the inverse
kinematic of the arm trying to estimate the distribution p(t|x). However,
the problem here is that the vector t has many components (in general
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Figure 5.3: A dataset extracted by the forward relation expressed by equa-
tion 5.3. Note that in the case in which the underlining relation is func-
tional the conditional mean give a good representation of the data.
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Figure 5.4: A dataset extracted by the forward relation by interchanging
the role between x and t. Note that in this case the conditional mean give
a poor representation of the data where the mapping is not functional.
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Figure 5.5: Progress of central value of the most probable branch as func-
tion of x. The resulting mapping is discontinuous giving however a good
description of the data.
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more than 20) and the determination of such distribution is a quite diffi-
cult task.

However it must be noted that we want to approximate p(t|x) in the
particular case in which x and t are related to the execution or observation
of object-directed actions.

It has been shown in the work of Santello et al. (2002) and successively
in Mason et al. (2001) that during grasping actions the hand assumes a
stereotyped sequence of hand configurations that can be described by a
restricted number of parameters. More precisely, both works show that
the hand configuration t during grasping actions can be described as a
linear combination of a small set of vectors (called eigenpostures) in the
space of hand-joints configurations, that is:

t =
K∑
j

βjej with βj ∈ R (5.6)

where ej ∈ Rc are the eigenpostures’ vectors and are computed by
applying Principal Component Analysis (see Appendix C) over a dataset
of hand joints configuration recorded by means of a dataglove during the
execution of grasping actions.

As already discussed in Chapter 4, the idea is to express each vector t
in terms of a linear combination of eigenpostures and then to estimate the
distribution p(β|x) instead of the distribution of p(t|x).

However, two main question arise in this case:

1. since mirror neurons’ activity is supposed to be related to different
sets of eigenpostures and since some mirror neurons show specificity
for the modality of action execution (e.g. grasping with precision
grip wrt grasping with whole hand) are there different sets of eigen-
postures for different modalities of action execution?

2. the decomposition of t in terms of a linear combination of eigenpos-
tures holds if one knows in advance which action (or which actions)
can be made. So a selection mechanism is needed to select the initial
sets of eigenpostures on the basis of the object or contextual informa-
tion.

In the next subsection we address 1 by describing how to make sure that
different sets of eigenpostures exist for different modality of object-directed
actions (e.g. whole hand prehension wrt precision grip prehension). Point
2 is instead faced in Section 5.3 by introducing the GA model. This model
has been inspired by the sensory-motor computation occurring in the cir-
cuit AIP-F5 introduced in Chapter 2.
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5.2.1 Different sets of eigenpostures for different modality
of object-directed actions

In this section we will discuss how we can investigate if there are different
sets of eigenpostures for different modality of object-directed actions. In
Section 6.1, the same methodological approach will be applied to grasping
actions to show the existence of different sets of eigenpostures for different
types of grasping actions.

Consider a specific object-directed action and modality of action exe-
cution (i.e. grasping with precision grip). We can construct the relative set
of eigenpostures by applying Principal Component Analysis (PCA) on a
sufficient large dataset of hand joints configurations recorded during the
execution of such type of action. We will usually take only a restricted
number of eigenpostures (eigenvectors obtained from the PCA suffice to
describe original data with enough accurance) to form the set of eigenpos-
tures.

This process can be repeated on data obtained during the execution
of the same action made by a different subject or made by the same sub-
ject but directed toward different objects, thus leading to the creation of
many sets of eigenpostures for the same type of modality of action exe-
cution. Moreover, the same process will be repeated for another modality
of action execution, every time leading to the creation of different sets of
eigenpostures.

We now need a way to measure the similarity between different sets
of eigenpostures. In (Krzanowski, 1979) a similarity measure is proposed
between principal subspaces1 which is described in detail in appendix C.

The proposed similarity measure can be computed as follows.
If T 1 and T 2 are two sets of data (i.e. related to two modalities of grasp-

ing action) and L andM are the sets of corresponding selected k eigenpos-
tures disposed column-wise, then the similarity measure between L and
M is given by:

sim(L,M, k) = trace(LTMMTL)

For principal subspaces, that is subspaces spanned by the selected set
of eigenvectors, of dimension k this similarity measure gives values be-
longing to [0, k] where we have k for identical principal subspaces and 0
for orthogonal principal subspaces.

Suppose now that we have collected N different sets of eigenpostures.
We can construct a similarity matrix of dimension N × N where each el-

1A principal subspace is the space spanned by a set of eigenvectors
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ement (i, j) is the similarity measure between the i-th and the j-th set of
eigenpostures.

The initial aim of showing that different sets of eigenpostures exists for
different modalities of action execution can be approached as the problem
of showing that the set of eigenpostures related to the same kind of action
modality group together. This can be obtained by applying a clustering
algorithm.

5.3 Eigen-postures selection mechanisms: the con-
cept of affordances

A set of eigen-postures must be selected on the basis of perceptual infor-
mation concerning the object toward which the action is directed and con-
textual information. In this section we will address this problem in the
simplified case in which perceptual information is restricted to the visual
information about the object toward which the action is directed.

In Tessitore et al. (2009) we have proposed a model for the extraction of
hand-configurations useful to grasp a given object whose 2D visual rep-
resentation is fed in input to the model. The model architecture is con-
structed on the basis of the concept of affordance, in particular on its inter-
pretation for the special case of grasping affordance, and has some analo-
gies with the computation of some neurons of the ventral visual stream
up to parietal area AIP and F5 whose functional properties have been dis-
cussed in Section 2.1.2.

The model can be readily adapted to associate sets of eigenpostures
instead of hand-configurations but we will discuss this point at the end of
this section. Now we will first give a description of the model together
with the underlying assumptions and interpretations in particular as the
concept of affordance is concerned.

5.3.1 Grasping Affordance (GA) model

The notion of affordance was originally introduced by J. J. Gibson Gib-
son (1979) to single out perceived properties that enable one to interact
with objects in the environment. Procedurally, the notion of affordance
is framed in the context of direct perception theories, insofar as “higher-
level” cognitive processes, such as access to semantic memory, logical in-
ference, and object recognition processes are allegedly unnecessary to iden-
tify an affordance.
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A more precise understanding of the processes involved in identify-
ing an affordance is crucial for the modelling of specific sensory-motor
control mechanisms in biological systems. The existence of a particu-
larly versatile sensory-motor control mechanism is witnessed by the wide
range of sensory-motor associations that monkeys are able to perform.
Notably, this behavioural ability persists upon presentation of many un-
known/novel objects, thereby suggesting that a robust generalization pro-
cess, based on perceived object properties, is at work there (Borghi, 2005).

In the context of grasping actions, neurophysiological data on the macaque’s
brain cortex are consistent with direct perception views of affordances. In
particular, these data suggest that the anterior intraparietal area (AIP) is in-
volved in the coding of object affordances (Rizzolatti and Sinigaglia, 2008),
in the light of functional hypotheses concerning more extended brain cir-
cuits. The functional models of brain areas which have been found to
deliver afferent signals to AIP include neither perceptual object recogni-
tion nor higher-level cognitive processes, such as planning and decision-
making (?Milner, 1998). Moreover, strong efferent pathways have been
identified which connect AIP to pre-motor area F5 (Rizzolatti and Sini-
gaglia, 2008). Since F5 is prominently involved in the coding of object-
oriented actions (such as grasping, holding, and manipulating), the AIP to
F5 connections suggest the existence of some sort of direct functional link
between perceptual feature detection and object-directed actions.

The computational model Grasping Affordances (GA) model (Tessitore
et al., 2009), provides a precise explication of the notion of affordance in
the context of grasping actions carried out by monkeys. This explication
is consistent with both direct perception theories and neuroscientific mod-
els of the macaque’s brain. It is consistent with direct perception theories,
insofar as the identification of grasping affordances requires, according to
the proposed computational model, neither object recognition processes
nor access to semantic memory. It is consistent with neuroscientific mod-
els of the macaque’s brain, insofar as (i) visual processes furnishing AIP in-
puts are modelled in accordance with the biological "Standard Model" pro-
posed in (Riesenhuber and Poggio, 2000), and (ii) the overall system out-
put does not conflict with neuroscientific data and modelling constraints
insofar as inputs supplied by AIP to brain motor areas are concerned.

5.3.1.1 Affordances for Grasping

Affordances are not intrinsic properties of an object, but rather depend on
the relationship between object and agent (Chemero, 2003). For example,
differences in primate and feline effectors account to a large extent for the
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different affordances that objects convey to humans and cats, respectively.
As one moves to consider more specifically grasping affordances for mon-
keys and humans, one should still be careful to note that graspable objects
do not merely ’afford’ our grasping them. Indeed, multiple opportunities
for grasping arise in connection with many graspable objects. For exam-
ple, a mug can be grasped by handle, lateral side, and top. These grasps
can be distinguished from each other in terms of hand shape and wrist
rotation obtaining just before grasping the object (Tucker and Ellis, 2000).
Accordingly, the grasping affordances associated to a graspable object will
be identified in the GA model with a collection of (codes for) appropriate
hand configurations assumed by a hand just prior to grasping the object
(Oztop et al., 2006a; Tsiotas et al., 2005). Since a graspable object may be
grasped in several ways, this means that multiple hand configurations can
be associated to any given object in the GA model.

5.3.1.2 General GA Model Description

From the above discussion, three main requirements have emerged for a
computational model of grasping affordances to be empirically adequate
and to move beyond previous computational models which include af-
fordance extraction functionalities: (a) the model must provide computa-
tional solutions for significant processing steps along the path from V1 to
AIP; (b) the model must enable one to extract multiple hand-configurations
from the same graspable object; (c) the model must possess generalization
capabilities with respect to novel/unknown objects.

To accomplish (a), the visual pathway was modelled starting from pri-
mary visual cortex V1 and reaching, through areas V2 and V4, into the
posterior infero-temporal area (PIT), which is identified as the cortical re-
gion supplying visual monocular information to AIP (?). A biologically
plausible model of the ventral visual stream, named Standard Model, was
proposed in (Riesenhuber and Poggio, 2000). A component of the Stan-
dard Model, the view-based Module, accounts for computations along the
path from V1 to PIT which makes inputs available to AIP. Accordingly,
the Monocular Perception (MP) Module (see Figure 5.6) which is an im-
plementation of the view-based module was developed and included in
the GA model.

To accomplish (b), that is, to provide a computational solution to the
multiple affordance extraction problem, we must compute a multi-valued
function which relates any visual input to a collection of hand-configurations.
This resemble the problem described in Section 5.1 where at the same hand
visual description more one hand joints configuration can be associated.
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Figure 5.6: The GA model is formed by four modules: the SE Module, the
MP Module, The APC Module, and the AR Module. This computational
model receives an image depicting an object as input, and produces a list
of affordances (appropriate grasps for the given object) as output.

Thus the same probabilistic approach was pursued.
More precisely, letX ⊆ Rd be the d-dimensional space of visual inputs,

and let T ⊆ Rc be the c-dimensional space of hand configurations. Then
the Affordance Probabilistic Coding (APC) (see Figure 5.7) will compute the
distribution p(t|x) with the same mixture model expressed in Equation
5.4.

To accomplish (c), that is, generalization capabilities enabling one to ex-
tract affordances from novel objects, a starting point was provided by the
observation that the agent usually focuses its attention on the part of the
object at which the grasping action is directed (Schiegg et al., 2003). This
behaviour suggests the possibility of associating parts of a graspable object
to affordances, and to store this “mereological“ information for use when
novel graspable objects are presented. For example, one may learn to asso-
ciate appropriate affordances to handles and cylinders, respectively, and to
use this information when a cup (resulting from the “composition” of han-
dle and cylinder) is presented. This process was actually implemented by
sliding an “attention window” on the image of an object, and by extract-
ing a collection of grasping affordances at each displacement step. This
function is achieved by the Subimage Extraction (SE) Module (see Figure
5.6). Finally, a post-processing step was required as well, in order to select
the more plausible affordances. The post-processing step is accomplished
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Figure 5.7: The APC Module is formed by a neural network and a Gaus-
sian mixture model. Given an x vector, the neural network computes
the required Gaussian parameters θ(x) to approximate p(t|x) (see (Bishop,
1995) for more details).

by Affordance Ranking (AF) Module (see Figure 5.6). APC and AR mod-
ules account for the AIP affordance computation. The online learning of
sensorimotor associations might be grounded onto a basic grasping ability
such as described in (Oztop et al., 2004). Learning of sensorimotor asso-
ciations may occur by collecting pairs of visually presented ”object part”
and related ”hand-configuration” every time a successful grasp is made.
Since the focus of this work is not on the acquisition of sensorimotor as-
sociations, however, we suppose here that a series of such pairs is already
available.

5.3.1.3 GA Model specification and implementation

The GA model takes the image of an object as input and supplies the ob-
ject’s grasping affordances as output. It is composed by four modules,
as shown in Figure 5.6. The input image I , represented in gray scale, is
processed by the SE Module, which extracts n subimages Ij , j = 1, ..., n.
The number of subimages depends on the dimensions of the window W
sliding on the image I , the image size, and the window displacement step
DS.

Each subimage is then sent as input to the MP Module. The MP Mod-
ule takes a sub-image Ij as input, and gives a 256 feature vector as output
xj . The latter is presented as input to the APC Module, which computes
the corresponding p(t|xj).

To estimate p(t|xj), one uses a mixture model of the form expressed in
eq. 5.4, whose parameters αk(x), µk(x) and σk(x) (for Gaussian kernel as
in eq. 5.5) depend on the visual input x. The relationship between visual
inputs x and corresponding mixture parameters is modelled by means of
a two-layer, feed-forward neural network with H hidden nodes. There-
fore, the ACP Module has a combined density model and neural network
structure, as shown in Figure 5.7.
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Since the APC Module receives n feature vectors xj in input, its overall
output is formed by n density functions p(t|xj). Note, however, that the
desired output is a set T = {t1, t2, . . . , tL} corresponding to the L distinct
hand-configurations that enable one to grasp the viewed object. There-
fore, a non-trivial output selection problem remains to be solved at this
stage: one has to isolate hand-configurations which differ from each other
as much as possible, and whose probability value is sufficiently high.

This requirement corresponds, for each single feature vector x and re-
lated p(t|x), to choose as member of the set T the gaussians’ centers µk(x)
of the mixture associated to the higher values of αk(x). In the case of n
probability distributions p(t|x1), . . . , p(t|xn), in order to obtain a behaviour
similar to the single distribution case, one may proceed as follow:

1. generate s sample points from each distribution, obtaining n × s
points, each of which defines a hand configuration. Not every hand
configuration thus obtained corresponds to grasps for the input ob-
ject; only those gathering around the kernel’s means do, while the
other points are distributed in a sparse manner;

2. a clustering over the n× s points is performed;

3. the clusters are ranked according to the order of their variance val-
ues, and the first L clusters with lower variances are selected because
a lower variance implies less uncertainty about the hand configura-
tions;

4. finally, the set T will be formed by the centers of the selected clusters.

5.3.2 How GA model can be used to select the initial sets
of eigenpostures

As discussed in previous section, given a new object x, the GA model can
be used to predict appropriate hand configurations t1, . . . , tL that can be
used to interact with that object. The GA model can be also used to select
the initial sets of eigenpostures. Let N be the number of distinct classes
of object-directed actions, and let Sk = ekj be the set of eigenpostures as-
sociated to the k-th class. We will suppose that all the eigenpostures ekj
are stored in some brain area and our problem is just to select them in an
appropriate manner.

To this aim we will further suppose that an unique index can be as-
signed to each eigenpostures. So, in order to select the set of eigenposture
ek1, . . . e

k
c with associated indexes ind1, . . . , indc, the vector t ≡ (t1, . . . , tc)
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5.4. GENERATION OF EXPECTED HAND-CONFIGURATIONS
COEFFICIENTS ON THE BASIS OF SELECTED SETS OF

EIGEN-POSTURES

Figure 5.8: The selection mechanism used by the GA model to identify a
set of eigenpostures.

will has components ti = indi (see Figure 5.8). Accordingly to this ap-
proach, given a new object x, the GA model will give in output a set of
vectors t1, . . . , tL each of which identify a specific set of eigenpostures.

5.4 Generation of expected hand-configurations
coefficients on the basis of selected sets of
eigen-postures

The algorithms showed in Algorithms 4.1 and 4.2 presuppose that a se-
quence of hand joints configurations coefficients βk(th) is generated for
each selected set of eigenpostures. Each of these sequences can be seen as
a sort of prototype action associated to every sets of eigenpostures.

Each prototype action can be constructed as follows. For each class
of object-directed action, we collect a sufficient number of actions each
of which have an associated sequence of hand joints configurations co-
efficients βik(t1), . . . , βik(tm) where i identify the i-th action instance, k the
object-directed action class and m the length of the actions. The prototype
action is formed by the sequence β̄k(t1), . . . , β̄k(tm) where each element
β̄k(tj) is obtained as:

β̄k(tj) =
1

N

N∑
i=1

βik(tj)

that is the element at time tj of the sequence is obtained as the mean of
all coefficients of the collected actions at time tj .
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6
Experiments and results

6.1 Different eigenposture sets for different classes
of grasp actions

A basic hypothesis of the computational model of mirror neurons intro-
duced in Chapter 4 concerns the existence of different sets of eigenpos-
tures for different classes of object-directed actions. In this work we have
focussed on one type of object-directed actions, that is grasping actions,
and our objective is to show that different sets of eigenpostures exist for
different modalities of grasping actions execution.

Although mirror neurons have been studied on a restricted number of
grasping actions performed by monkeys1, here we have chosen to work
with a more comprehensive set of grasping actions performed by human
beings (see Table 6.1). The dataset used has been provided by Lira Lab Uni-
versity of Genova, Italy and consists of five different grasping actions (cylin-
drical, spherical, tripod, flat and pinch) some of which are executed toward
different objects and all of them repeated by twenty subjects. The pinch
grasp is the same as the precision grip grasping while all others types of
grasping are variants of the whole hand grasping.

Table 6.1 summarizes the set of grasping actions together with the ob-
jects toward which the actions have been directed.

1For instance in Gallese et al. (1996) the activity of mirror neurons has been recorded
during the execution/observation of grasping with precision grip and grasping with a
whole-hand prehension.
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OF GRASP ACTIONS

Grasp type object

SPHERICAL BALL

TRIPOD BALL

PINCH PEN

TRIPOD PEN

PINCH DUCK

TRIPOD DUCK

CYLINDRICAL PIGLET

Grasp type object

FLAT HAMMER

PINCH SCOTCH-TAPE

SPHERICAL SCOTCH-TAPE

TRIPOD SCOTCH-TAPE

FLAT LEGO

PINCH LEGO

Table 6.1: The Grasp dataset used in this work were provided by Lira Lab
University of Genova, Italy. It is composed of five different grasping ac-
tions: cylindrical, spherical, tripod, flat and pinch. The objects used are:
lego, scotch-tape, duck, piglet, hammer, pen and ball. Some actions were
directed toward more than one object.
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OF GRASP ACTIONS

6.1.1 Experimental set-up

For each grasping action the dataset contains the sequence of hand config-
urations obtained with the dataglove CyberGlove (CyberGlove; Virtual Tech-
nologies, Palo Alto, CA, USA) endowed with 22 sensors.

The experimental setting used to record the dataset is illustrated in Fig-
ure 6.1. The subject was seated at a table with a clearly visible surface mark
(X) placed at a comfortable distance for grasping execution. For each tar-
get object and grasping action modality a subject was asked to position the
right hand approximately on a starting position, and to reach and grasp
the target object placed on mark X and to place the object on another sur-
face mark (X) near the previous mark. Each grasping action was repeated
twenty times. An example of grasping action execution is shown in Figure
6.2.

6.1.2 Results

For our tests we have used only the data related to the first subject.
We have thus constructed 13 (resulting from the combination of dif-

ferent grasping modality and objects) different matrices indicated with
{T i}i=1,...13 each containing all vectors t disposed row-wise related to the
execution of a given grasping action directed toward a specific object. Each
matrix T i has thus c = 22 columns equal to the number of sensors and a
number of rows equal to the sum of the lengths of all actions for that kind
of grasping and object.

In order to obtain eigenpostures we have performed Principal Compo-
nents Analysis on each matrix T i. PCA technique is described in appendix
C.

Table 6.2 summarizes the cumulative variance obtained by selecting
the first four eigenpostures (eigenvectors) ordered by decreasing value of
associated eigenvalues λi. For k selected eigenpostures the cumulative
variance is computed as follows:

variancek =

∑k
i=1 λi∑c
i=1 λi

· 100

where we have multiplied by 100 to obtain a result expressed as per-
centage of total variability.

The results show that four components suffice for capturing ∼ 90% of
data variability for all modalities of grasping actions.
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Figure 6.1: The picture illustrates the experimental setting used to record
the dataset. The subject was seated at a table with a clearly visible surface
mark (X) placed at a comfortable distance for grasping execution. For
each target object and grasping action modality a subject was asked to
position the right hand approximately on a starting position, and to reach
and grasp the target object placed on mark X and to place the object on
another surface mark (X) near the previous mark.

Figure 6.2: An example of grasping action contained in the used dataset.
In particular the example was related to a tripod grasping action directed
toward a ball.
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BALL BALL PEN PEN DUCK DUCK PIGLET

SPHERICAL TRIPOD PINCH TRIPOD PINCH TRIPOD CYLINDRICAL

1 81 66 48 83 84 73 73
2 87 81 78 92 93 92 84
3 92 86 86 94 95 94 89
4 95 89 89 96 97 96 92

HAMMER SCOTCH-TAPE SCOTCH-TAPE SCOTCH-TAPE LEGO LEGO

FLAT PINCH SPHERICAL TRIPOD FLAT PINCH

1 77 81 74 41 77 57
2 86 88 84 69 85 74
3 89 92 90 78 91 81
4 92 94 93 83 93 87

Table 6.2: The table summarize the cumulative variance for the first four
principal components resulting from the PCA analysis on each grasping
action. As can been seen four principal components suffice for capturing
∼ 90 of data variability for all actions.

Thus, we have obtained a set of eigenpostures for each modality of
grasping action and object; we have computed the similarity measure be-
tween each pairs of principal subspace as proposed in (Krzanowski, 1979).

The obtained similarity matrix is shown in Figure 6.3.
In order to show the existence of different sets of eigenpostures we

have performed a divisive clustering (Hastie et al., 2003) between prin-
cipal subspaces. This kind of clustering algorithm starts with all objects
grouped into a single cluster and recursively divides each cluster if the
maximum distance2 between elements exceeds a certain threshold toll.

The result of clustering is shown in Table 6.3 and in Table 6.4. The
former is related to the results obtained with a threshold toll = 0.75.

In this case only three clusters were obtained. As can been seen, all the
pinch grasps have been grouped together in cluster 2. In the same cluster
one other kind of grasping action is contained: a flat one directed toward a
lego object. It can be argued, however, that for this action there is a strong
similarity in hand shape with the other kind of pinch actions, in particular
with the pinch lego grasping action. Moreover, note that the cylindrical
grasping action, for which we have instances only directed towards the
piglet toy object, is placed into a different cluster. Finally, the other three
classes of grasping actions, that is tripod, spherical and flat are grouped

2The distance between two principal subspaces is computed as the inverse of the sim-
ilarity, that is dist(L,M, k) = 1/sim(L,M, k) (see also Section 5.2.1).
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Figure 6.3: Similarity matrix between all computed principal subspaces.

together in cluster 1.
We can achieve some insight into the nature of the clustering result

by changing the toll value. For toll = 0.7 we obtain four clusters whose
elements are summarized in Table 6.4. As a result, cluster 1 of the previous
experiment has been split into two different clusters: cluster 1 and cluster
4. If we compare the elements of each clusters we note that, even when
the grasping actions are different, they share a common hand shape due
to the object shape features.

This leads us to the following concluding considerations:

� different sets of eigenpostures exist for the two main modalities of
grasping actions. In fact all the pinch grasps, which are the same as
precision grip grasping actions, group together. All other grasping
actions, which are very similar to whole hand grasping action are
mainly grouped (except for the cylindrical grasp) in one other clus-
ter;

� distinguishing between sets of eigenpostures may become more or
less difficult on the basis of the object at which the action is directed.
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cluster 1 cluster 2 cluster 3

spherical scotch-tape pinch pen cylindrical piglet

flat hammer pinch duck

tripod ball pinch scotch-tape

spherical ball pinch lego

tripod duck flat lego

tripod scotch-tape

tripod pen

Table 6.3: Results of the divisive clustering with toll = 0.75 on the different
sets of eigenpostures.
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cluster 1 cluster 2 cluster 3 cluster 4

spherical scotch-tape pinch pen cylindrical piglet flat hammer

tripod ball pinch duck tripod pen

spherical ball pinch scotch-tape

tripod duck pinch lego

tripod scotch-tape flat lego

Table 6.4: Results of the divisive clustering with toll = 0.7 on the different
sets of eigenpostures.
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(a) Some training objects (left) and test ob-
ject (right)

(b) Target hand-configurations

Figure 6.4: Examples of spherical, cylindrical and bottle objects used to
train and test the system, and target hand-configurations.

6.2 Testing the GA model for affordance extrac-
tion

The GA model was designed so as to extract multiple hand-configurations,
and to generalize its affordance-extraction capability with respect to novel
objects. Two experiments were performed to test the extraction and gen-
eralization abilities, respectively. The results of these tests corroborate the
possession of the extraction ability, in addition to the required generaliza-
tion ability as far as novel objects obtained from the composition of known
object parts are concerned

6.2.1 Experimental set-up

6.2.2 Results

The first test, which is concerned with the extraction of multiple hand-
configurations, makes use of three different prototypical object images: a
sphere, a cylinder and a bottle. It is assumed that the first two objects can
be grasped using a power grasp only, whereas the bottle can be grasped
in two different ways, by precision and power grasps. For each of these
prototypical object images, similar images were generated by means of
small contour variations. For each prototype, the resulting training and
test sets were composed by 20 and 10 images, respectively (Figure 6.4)

In order to generate target hand configurations, GraspIt! (Miller and
Allen, 2004), a robotic grasping simulator, was used. In particular, the
robotic hand called Robonaut, endowed with 14 degrees of freedom, was
chosen. Consequently, in the GA model hand configurations are identi-
fied by a vector of 14 components, where each component represents just
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Bottle Grasp Bottle Grasp 2 Spherical Cylindrical
1.2%± 0.4 1.9%± 0.6 3.9%± 1.4 1.3%± 0.4

Table 6.5: For each object class, the mean and standard deviation of the
average error over all objects in the test set is reported here. Moreover, for
each class mean hand-configuration over all objects in the class is exhib-
ited.

H M Image size W DS Cluster
Test 1 5 2 160× 160 160× 160 0 None
Test 2 5 2 500× 500 160× 160 30 5

Table 6.6: Model parameters for each test. Image size, W and DS are ex-
pressed in pixels.

one hand joint’s angle. Spherical and cylindrical objects are associated to
a single hand configuration, generated manually by changing the Robo-
naut’s degrees of freedom. Bottle objects are associated with two distinct
hand configurations: a precision grasp, applied on the object’s top part,
and a power one applied on the lateral part (see Figure 6.4). Training set
targets are generated adding some Gaussian noise to these hand configu-
rations. In this test, the attention window encompasses the whole object.
Thus, for each object there is a single feature vector x with an associated
p(t|x). Hand configurations are obtained by selecting µk(x) associated
with the higher values of αk(x). The model parameters are summarized
in Table 6.6. For the i-th degree of freedom, percentage error is defined
as |ti−yi|

maxi−mini × 100, where yi is the model output, and maxi and mini are
the max and the min value, respectively, for the i-th degree of freedom.
Average error between model output hand configuration and target hand
configuration is defined as the mean of percentage error over all degrees
of freedom. For all test objects in each class, mean and standard deviation
of average error is computed and shown in Table 6.5.

The second experiment is meant to test generalization capabilities with
respect to novel objects. To test this ability, the system was trained to as-
sociate parts of an object to hand-configurations. Subsequently, the system
was given in input a novel object resulting from the "composition“ of pre-
viously known parts. In this test, a cup is used, which is obtained from
the composition of a cylinder and a handle. Examples of both training
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CONFIGURATION ESTIMATION

(a) Some training objects (left) and test ob-
ject (right).

(b) Target hand-configurations.

Figure 6.5: (a) Examples of training and test images (see text). (b) Exam-
ples of target hand-configurations.

images and the cup used as test image are shown in Figure 6.5. There
are four kinds of training images: (a) cup handles; (b) upper and lower
cup parts; (c) lateral cup parts; (d) non-graspable cup parts. Two tar-
get hand-configurations are associated with images (a); only one hand-
configuration is associated to images (b) to (d). The training set targets are
generated adding some Gaussian noise to hand configurations. Targets for
non-graspable cup parts images are drawn from a Gaussian distribution
with a large variance, so as to reflect the fact that in this case no plausible
hand-configuration candidate exists. The K-Mean clustering algorithm is
implemented by the AR Module, setting to 5 the number of clusters. In
Table 6.7, cluster centroids are shown together with cluster variance. The
fifth cluster was discarded in view of its large variance. Note that the first
four cluster centroids are very similar to target hand configurations (Fig-
ure 6.5) with respect to which mean percentage error was computed.

6.3 Soundness of the probabilistic approach for
hand configuration estimation

In this section the soundness of the probabilistic approach is tested with re-
spect to a standard regression technique in the task of hand configuration
estimation from it visual appearance. The selected standard regression
technique is a two layer feedforward neural networks (FFW) (see Section
B.1 for a brief introduction to feedforward neural networks).

The performances of the two systems have been tested on a reach to
grasp action observed from different points of view. We have chosen to
use multiple observation points of view to stress the problem of fingers
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Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5

σ = 0.12 σ = 0.12 σ = 0.09 σ = 0.09 σ = 0.34
Mean and standard deviation of percentage error

1.9%± 2 2.5%± 2 2%± 1.2 1.8%± 1.5 (discarded)

Table 6.7: The graph visualizes the obtained cluster centroids. Compare
these images with target hand configurations of Figure 6.5. The fifth clus-
ter was discarded in view of its large variance. The percentage error with
respect to target was mediated over all degrees of freedom.

self-occlusions. The results show that:

� when the problem of fingers self-occlusions is immaterial the two
systems have comparable performance;

� when the number of fingers self-occlusions increases then the prob-
abilistic approach outperforms a standard regression technique.

6.3.1 Experimental set-up

In order to compare the two systems a dataset of pairs {xn, tn}n=1,...,N ,
with xn vectors of hand visual features and tn vectors of hand joints con-
figurations, must be collected to train and test the two systems.

To achieve this goal a dataglove together with a 3D rendering software
have been used.

The dataglove is a HumanGlove (HumanGlove, Humanware S.r.l., Pont-
edera, Pisa, Italy) (see Figure 6.6) endowed with 16 sensors. The dataglove
is connected to a 3D rendering software which read the values of the sen-
sors and constantly updates a 3D human hand model (see Figure 6.7).
Thus, we are able to collect pairs sensors values - hand image.

In order to extract the visual features vectors xn, each image of size
670 × 490 pixels is converted to grayscale, subsampled at size 151 × 112
pixels and linearized into a single vector of size 1×16912. A PCA algorithm
is applied over a large dataset of collected input image and only the first
principal component is computed. Each image is projected in the space of
the first principal component and is therefore coded by a scalar value xn.

One may doubt that a single principal component suffices to give a
good representation of data variability. However this choice is motivated
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Figure 6.6: The Human-glove is used to obtain hand joints configurations.
This glove is endowed with 16 sensors.

by the following consideration: the input images are constructed with a
3D rendering software, and thus have little or negligible noise with re-
spect to real world images. This fact simplifies drastically the problem of
hand configuration estimation. By contrast we want to stress the prob-
lem of computing the joints configurations from visual inputs when the
mapping from visual inputs to hand configurations does not assume func-
tional form. For this reason, by taking only the first principal component,
we have discarded a lot of input information and made the problem “more
difficult” with respect to problems in which the visual input is constructed
by many principal components.

6.3.2 Results

We have tested the two systems on grasping actions made with a precision-
grip. A precision grip action has been repeated by a human being twenty
times and the 3D simulator have synthesized the related hand configura-
tions with respect to five different points of view as showed in Figure 6.8.
All these points of view are related to an observer who should recognize
the correct hand configurations.

We have collected a dataset of N = 2059 elements for each point of
view. This dataset was split into three different subsets for training, vali-
dation and testing respectively.
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Figure 6.7: A 3D rendering software is used to construct a 3D hand model
starting from hand joints configuration. The 3D hand model can be used
to obtain 2D hand images from arbitrary points of view.

View 0 View 20° View 40° View 60° View 80°

Figure 6.8: Five different points of view have been used for this test. All
of them are related to an observer which has to recognize the correct hand
configuration.
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FFW MDN
Dim. x 1 1
Dim. t 16 16
H 5− 10− 15 10
K None from 5 to 40

at step 5
N train 686 686
N valid 686 686
N test 687 687
T 10 10

Table 6.8: The table summarizes the parameters used to test both FFW and
MDN.

The FFW was trained using different numbers, H , of hidden units. The
training was repeated T times for each hidden nodes configuration.

The MDN was trained with H = 10 hidden units for the neural net-
work component and different numbers, K, of kernels for the mixture
component. Again for each kernel configuration the training was repeated
T times.

The error for the two systems have been computed by means of a for-
ward model as described in Section B.5 and schematically illustrated in
Figure 6.9 in which the two systems implement the inverse model block.
The forward model is just another FFW which has to learn the relation be-
tween t and x and must be able to predict the visual input x associated to a
given new hand-configuration t. The network which implements the for-
ward model has 10 hidden units and has been trained on the same training
set as the FFW system and MDN system by interchanging the role of input
and target. The forward model has a Root Mean Square Error (RMS) on
the test set equal to 0.025.

For each configuration (of nodes for FFW and of kernels for MDN) and
each trial the RMS error was computed and mediated over all trials T .
Thus, an RMS error value was obtained for each configuration and only
the best configuration was selected. The same training and test process
was repeated for each point of view. The testing parameters are summa-
rized in Table 6.8.

Figure 6.10 shows the RMS error for different points of view.
As can be seen the error increases for both systems as the angle at

which the hand is observed increases. However, MDN error is almost
always less than FFW error (only for view point 40° the error is almost the
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Figure 6.9: The schema used to compute the error of the two systems FFW
and MDN. See Section B.5 for more details.
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Figure 6.10: RMS error for both FFW and MDN system. As can been seen
the error increases as the angle at which the hand is observed increases.
In almost all case but one the MDN system have a minor RMS error with
respect to the FFW system.
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Figure 6.11: Datapoints for the point of view 40° and for the joint 1. As can
be seen for many points the mapping between x and t is single valued.
This is the reason of the similarity between the performance of FFW and
MDN.

same for the two systems).
We can achieve more insight into the nature of error by looking at (Fig-

ure 6.11) where the plot of the datapoints x is shown, related to the view
point 40° with respect to dof 1. As can be seen the mapping between x
and t is in some zone multi-valued while in other zones it is single valued.
Moreover, there are many points for which the mapping is single-valued
and this behaviour is common to many others joints. This is the reason for
the similarity between the performance of FFW and MDN.

If we compare the performances of the two systems only in the zone in
which the mapping is multi-valued we obtain the results showed in Figure
6.12. In this case the difference between the performance of MDN and
FFW is significant and MDN outperforms the results of MDN everywhere.

It is important to note that the points of the multi-valued zone cor-
respond to positions of the hand in which there are more self-occlusions
between fingers (e.g. when the hand is closed on the object).
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Figure 6.12: Performance of the two systems in the zone in which the map-
ping is multi-valued. The difference between the performance of MDN
and FFW is significant and MDN outperform the results of MDN for all
points of view.
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Figure 6.13: Comparison between the MDN and the FFW mapping. As can
be seen where the mapping is multi-valued the MDN gives in output one
of the possible solutions while FFW mediate over all possible solutions.

In order to give an idea of why the MDN system works better we can
look at the mapping obtained for FFW and MDN, and showed in Figure
6.13. As can be seen, where the mapping is multi-valued the MDN gives in
output one of the possible solutions while FFW mediates over all possible
solutions which are not a hand configuration.

To sum up. We have shown that the probabilistic approach outper-
forms the standard regression technique in the task of hand configuration
estimation especially when the number of self-occlusions between fingers
increases.
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6.4 How motor information improves hand-configuration
estimation

In the previous section, we have shown that the probabilistic approach can
be used to outperform a standard regression technique in hand configu-
ration estimation. In this section we want to show that even better results
can be obtained if we use motor information.

As explained in previous chapters motor information is a prior infor-
mation furnished by motor system to visual system in order to interpret
incoming visual input. For example, if we are looking an object we are
already able to infer possible actions that can be directed toward that ob-
ject. Moreover, we can benefit from knowing how such action can be per-
formed by providing to the visual system additional useful information to
improve hand configuration estimation.

More specifically, given the probabilistic framework introduced previ-
ously, motor information can be used in two ways:

1. knowing which object-directed action can be performed given the
current object, we can create “specialized” modules (where each mod-
ule implements the probabilistic framework), one for each object-
directed action. Each module will be responsible for the estimation
of hand configuration during a particular action;

2. for each object-directed action, we know how such kind of action
can be performed, in particular we know the associated set of eigen-
postures useful for action control. We can use such information to
decompose t in terms of the linear combination of the set of eigen-
postures associated to that action, and estimate the distribution of
the parameters β of the linear combination p(β|x) instead of the dis-
tribution p(t|x).

In the next section we will show that we improve performance wrt both 1
and 2.

6.4.1 Experimental set-up

The first test will show that specialized modules, one for each object-directed
action, work better, in terms of reduced error, with respect to a single mod-
ule in hand configuration estimation (see Figure 6.14). In the following we
will call single system the system formed by a single MDN and multiple
systems the system formed by many MDN, one for each action.
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(a) The multiple systems has an
MDN component for each ac-
tion. Each component is special-
ized for hand configuration esti-
mation during the observation of
the associated action.

(b) The single systems has only
one MDN component for all ac-
tions. In this case it must esti-
mated hand configurations irre-
spectively of the kind of action
currently observed.

Figure 6.14: Comparison between the multiple system and the single sys-
tem architecture.

Whole hand grasp Precision grip grasp

Table 6.9: Two types of grasping action have been used for this test: a
whole hand grasping action and a precision grip grasping action.

In order to compare the two systems we have recorded two different
grasping actions: a whole hand grasping action and a precision grip grasp-
ing action. Some representative frames for each of the two actions, as re-
constructed by the 3D rendering software, are shown in Figure 6.9.

Both actions have been repeated twenty times and the obtained input
images have been processed as in the previous experiment in order to ex-
tract feature vectors.

6.4.2 Results

We have collected a dataset of N = 2200 elements for each action. Both
datasets were split into three different sets for training, validation and
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SINGLE SYSTEM MULTIPLE SYSTEMS MULTIPLE SYSTEMS
MDN_1 MDN_2

Dim. x 1 1 1
Dim. of t 16 16 16

H 10 10 10
K from 5 to 40 from 5 to 40 from 5 to 40

at step 5 at step 5 at step 5
Data whole hand grasp whole hand grasp precision grip grasp

source precision grip grasp
N train 686 686 686
N valid 686 686 686
N test 687 687 687
T 10 10 10

Table 6.10: The table summarizes the parameters used to test both Single
system and Multiple Systems. Note that for the multiple system we have
two different MDN each of which is trained on only one grasping action.

testing respectively. For the multiple system we have two different MDNs
each of which has been trained on data related to one of the two actions.
The MDN related to the single system has, instead, been trained on data
related to both actions. The training parameters have been summarized in
Table 6.10.

The error for the two systems have been computed by means of a for-
ward model as described in Section B.5. The error was computed on the
test set of both actions. However, for multiple system we have selected the
output of the MDN related to the action currently given in input as test. In
Table 6.10 the testing parameters are summarized.

In Figure 6.15 it is shown the Root Mean Square Error (RMS) for dif-
ferent kernel configurations for both single system and multiple system.
The two systems have almost similar error on whole hand grasping ac-
tion, while on precision grip action the multiple system has considerable
less error for every kernel configuration.

This behaviour is brought out in Figure 6.16 where we have plotted
the error related to the best kernel configuration for both single system
and multiple system.
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(a) RMS error for precision grip grasping action related to each kernel configuration.
The multiple systems outperform the single system for every kernel configurations.
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(b) RMS error for whole hand grasping action related to each kernel configuration. The
multiple systems and the single system have comparable performance.

Figure 6.15: RMS error for the two systems and each grasping action.
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Figure 6.16: RMS error for precision grip and whole hand grasping actions
related related to the best kernel configuration for the two systems. The
multiple systems outperform the single system for latter grasping action
while have comparable performance with respect to the single system for
the former grasping action.
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FFW MDN WITHOUT MDN WITH
EIGENPOSTURES EIGENPOSTURES

Dim. x 1 1 1
Dim. t (β) 16 16 3

H 5− 10− 15 10 10
K None from 5 to 40 from 5 to 40

at step 5 at step 5
N train 686 686 686
N valid 686 686 686
N test 687 687 687
T 10 10 10

Table 6.11: The table summarizes the parameters used to test a classical
regression system, in this case a feedforward neural network, and two
different MDN systems. The former is the same as the test described in
section 6.3.1 while the latter benefits from the decomposition of t in terms
of eigenpostures.

6.4.3 Experimental set-up

In this experiment we will show the benefit flowing by the decomposition
of t in terms of a linear combination of eigenpostures. More specifically
we will show that we can outperform the result showed in Section 6.3.2 if
we estimate the distribution p(β|x) instead of the distribution p(t|x).

Eigenpostures have been computed in the same way as described in
Section 6.1.2. Three components suffice to describe more than 90% of the
total variability of hand-joints configurations t.

The test was performed on the same data of experiment reported in
section 6.3.1 on five different point of view. The test parameters are sum-
marized in Table 6.11.

6.4.4 Results

Figure 6.17 shows the RMS error for the best configuration, over all trials
and kernels or nodes configurations, for the five points of view. The results
of FFW and MDN without eigenpostures are the same as Figure 6.10. The
system with eigenpostures gives almost always better results with respect
to MDN without eigenpostures.

Again if we compute the error where the mapping is not functional the
differences between the three systems change significantly.
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Figure 6.17: RMS error for both FFW and MDN systems. As can been seen
the error increases as the angle at which the hand is observed increases. In
almost all case but one (view point 80°) the MDN system with eigenpos-
tures have a minor RMS error with respect to the MDN system without
eigenpostures. However the MDN with eigenposture always have less
RMS error with respect to FFW.

101



6.4. HOW MOTOR INFORMATION IMPROVES
HAND-CONFIGURATION ESTIMATION

0 20 40 60 80
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

degree

R
M

S
 E

rr
or

 

 

FFW

MDN without eigenpostures

MDN with eigenpostures

Figure 6.18: Performance for both FFW and MDN systems in the zone in
which the mapping is multi-valued. As can been seen MDN system with
eigenpostures have always a minor RMS error with respect to both FFW
system and MDN system without eigenpostures.
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NWH Np
WH NPG Np

PG m
52 25 51 25 41

Table 6.12: Parameters used to test the whole system in action observation
mode.

6.5 A test of the whole system

The objective of this test is to show the soundness of the whole system in
action observation mode as described in Algorithm 4.1.

In this preliminary test there are the same two classes of actions taken
into consideration for the test described in Section 6.4, that is a whole hand
grasping action (WH) and a precision grip grasping action (PG). We as-
sume that the GA model can be used, as discussed in Section 5.3.2, to se-
lect the correct two sets of eigenpostures associated to the two classes of
grasping actions. We further assume that two prototype actions, in terms
of sequences of hand joints configurations coefficients, can be constructed
as discussed in Section 5.4.

6.5.1 Experimental set-up

We have recorded NWH actions of type WH and NPG actions of type PG.
We have used the HumanGlove together with the 3D rendering system to
obtain both hand joints configurations and related visual input. The visual
input xn for each frame were constructed as explained above. Moreover
a PCA algorithm have been applied to each of the two set of hand joints
configurations related to actions of class WH and PG. The first three com-
ponents suffice to obtain a whole variance of more than 90%. So each hand
joints configurations have been expressed in terms of the coefficients β. All
the recorded actions have been aligned to a fixed length ofm frames. Np

WH

actions of class WH and Np
PG of class PG have been used to construct the

two prototype sequences βWH
1 , . . . , βWH

m and βPG1 , . . . , βPGm , while the re-
maining actions have been used to test the system. In Table 6.12 the used
parameters for this test are summarized.

6.5.2 Results

Each test action is classified accordingly to the Algorithm 4.1. We have
assumed that GA model is able to select two different sets of eigenpostures
S1 ≡ WH grasp ans S2 ≡ PG grasp. The initial probability of each set of
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Figure 6.19: System response example 1

eigenpostures, P (S1) and P (S2), have been fixed to 0.5. At each time step
th, such probabilities are updated on the basis on incoming visual input
x(th) as follows:

P (Sk)← (P (Sk) ∗ πkh)/
∑
i=1,2

P (Si) ∗ πih)

where the πkh = pk(β(th)|x(th)) with k = 1, 2, are computed with the
same probabilistic framework presented in the above tests. In particular
two MDNs have been used, one for each class of action, both with 10 hid-
den units and 10 kernels.

Each test action is assigned to the class for which the probability P (Sk)
is maximum at the end of the action.

All the 27 actions of class WH were correctly classified while 23 on a
total of 26 test actions were correctly classified for the class PG.

In Figure 6.19 it is shown a typical system response for a PG action. As
can been seen, in this simplified settings, the system is able to predict the
correct action soon. This is what it happens for most cases.

In Figure 6.20 it is reported the response of the system to another PG
action. In this case the system predict the wrong action in the first phase
of the action and then the correct action in the last part of the action.
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Figure 6.20: System response example 2
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7
Conclusion and future work

7.1 Contribution of this work

We have argued that descriptively and explanatorily more adequate com-
putational models of mirror neurons are needed. One of the main aspects
that future computational modelling efforts should carefully take into ac-
count is, in our view, the functional interaction between sensory input and
mirror activity.

As discussed in Chapter 3, in most current computational models of
mirror neurons, motor information is the target of a computational pro-
cess unidirectionally flowing from visual information to motor informa-
tion. According to the same-input hypothesis, such computational process
provides to mirror neurons a view-invariant scene description computed
by the visual input only. If the same-activity hypothesis is also assumed
in the model, the mirror behaviour arises simply as a side effect of the
view-invariant property of the scene description computation.

This view of the underlying computation of mirror neurons behaviour
has two major drawbacks: (a) it posits significant computational chal-
lenges insofar as the computation of a detailed scene description from vi-
sual input only is a difficult and often ill-posed task, (b) it makes the role
of mirror neurons shallow.

The NeGOI model, in accord with the same-input hypothesis and pre-
sented in Chapter 3, provides evidence that at least one feature of the scene
description, the grip-size, can be computed with some tolerance with re-
spect to changes in point of view. Nevertheless, this model posits a cascade
of complex computational processes to compute just one feature, and pre-
sumably other features should be taken into account to provide the overall
description, giving rise to serious doubts about the feasibility that a similar
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description can be computed by visual input only.
Accordingly, in this work, it was argued that motor involvement in sen-

sory input interpretation may “facilitate” this interpretive process, in ad-
dition to assigning causally more significant roles to mirror mechanisms.

The following steps were taken in order to corroborate the claim that
motor information can be used to improve sensory processing:

1. motor information useful to both action control and sensory process-
ing was identified;

2. how the identified motor information can be used to improve the
performance of the visual processes was described;

3. a model of the visual-motor interaction during object-directed ac-
tions was proposed;

In connection with (1), in Chapter 4, eigenpostures were identified as mo-
tor information useful to both action control and perspectival sensory in-
puts processing. Eigenpostures allow hand configurations to be identified
with a very restricted number of variables. In Santello’s works it is shown
that such eigenpostures exist for a class of object directed actions (grasp-
ing actions). However we also require that different sets of eigenpostures
exist for different modalities of action execution. The experimental results
showed in Section 5.2.1 endorse this requirement. Moreover the GA model
examined in Section 5.3.1 provides a selection mechanism to choose the
appropriate sets of eigenpostures during both action execution and action
observation.

In connection with (2), in Section 6.4 the motor information in terms of
sets of eigenpostures, selected by the GA model, has been proposed to be
used in order to improve visual processing insofar as: i) more specialized
mappings between perspectival sensory input and direct internal input
can be achieved; ii) each mapping can benefit from the hand representa-
tion in terms of a very restricted number of eigenpostures. The results
presented in Section 6.4 support both points i) and ii).

In connection with (3), the computational model outlined in Chapter 4
and specified in Chapter 5 provides a computational account of how motor
information interacts with perspectival sensory input. In this approach,
conjoined motor knowledge and visual inputs are the data enabling one
to estimate the conditional probability distribution of hand configurations
by combining a density model and a feed-forward neural network.
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7.2 Open questions and future work

In order to work out a more detailed computational treatment for mirror
neurons behaviour, additional issues have to be identified and properly
addressed. Although, in our computational approach we have proposed
a novel and specific functional interpretation of mirror neurons activity
in relation to sensory input processing, a more detailed relation between
mirror neurons spikes activity and model’s variables must be provided.
In particular the spike frequencies occurring within some subsets of mir-
ror neurons might be regarded as encoding the probabilities of each sets of
eigenpostures. In this way, accordingly to the Algorithm 4.1, during action
execution, just one set of eigenposture Sk is selected with assigned high
probability, while all others sets Sj with j 6= k have very low probabilities.
If the action is properly executed, the same neurons will continue to have
an high spike frequency in order to assign high probability to Sk. During
the observation of the same action, different sets of eigenpostures are se-
lected with the same initial probabilities. Presumably Sk is included in this
set and will have, at the end of the action, an high probability with respect
to all other sets of eigenpostures. Mirror neurons encoding Sk probability
will fire again giving rise to the mirror property.

The results showed in Section 6.5 are a first step towards a more sys-
tematic analysis of the model in relation to mirror activity. The prelimi-
nary results show a fast-growing of the probability associated to the set of
eigenpostures of the action currently given in input to the model. More-
over this behaviour is common to almost all action instances taken into
consideration. This is an encouraging result despite of the simplified sce-
nario used for the test with a restricted number of actions and a simplified
external input x.

As far as the selection mechanism is concerned, we have seen the abil-
ity of the GA model in associating the correct hand joints configurations
in response to input objects. In Section 5.3.2 we have proposed a way for
using GA model for the selection of sets of eigenpostures even if no tests
have been performed for the modified system. Moreover the GA selection
mechanisms keep into consideration only object’s features while others
features related to the task could be taken into consideration.

To sum up. Various open questions must be addressed in the future
mostly related to the correspondence between model and mirror neurons
activity and to the selection mechanism of the sets of eigenpostures.
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A
NeGOI model specification and

implementation

As discussed Section 3.4.1 the NeGOI model is composed of a sequence
of three main modules: view-based module, prototypical view-invariant
module and grip-aperture module. The basic idea underlying the view-
based module is that extraction of position and scale invariant complex
features is obtained by a hierarchical and interleaved organization of a se-
ries of processing layers. There, layers of computing units which combine
simple filters into more complex ones, in order to increase pattern selectiv-
ity, are interleaved with layers based on a max operation, in order to build
invariance to position and scale. The prototypical view-invariant module
is composed of a layer of units combining the output of a previous layer
of units that are selective to specific views of prototypical hand shapes.
The key idea here is that selectivity to a specific prototypical hand shape
in a view-independent way, i.e, the model selectivity and generalization
properties, can be obtained by means of a Gaussian Radial Basis Function
(GRBF) network (Bishop, 1995). The GRBF network is endowed with a
hidden unit for each prototypical hand shape and point of view. The third
module, grip-aperture module, is based on the hypothesis that a view-
independent measure of grip aperture can be obtained by integrating the
activity of the view-independent units in the previous module which is in-
terpreted as providing a similarity measure between a generic hand shape
and the prototypical hand shapes. Thus, given an image representing a
generic hand shape during an object-directed action, the behaviours of
the overall model are as follow: (1) the view-based module extracts a set
of scale and position invariant complex features; (2) from these complex
features the prototypical view-invariant module recognizes the three pro-
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totypical hand shapes extracting a similarity measure between input hand
shape and prototypical hand shapes; finally, (3) from these similarity mea-
sures the grip-aperture module generates a measure of grip aperture. Fig-
ure 3.9 shows a schematic representation of the NeGOI model. The fol-
lowing subsections provide a more detailed description of how the three
NeGOI modules have been implemented.

A.1 View-based module

The view-based module is organized in a hierarchical fashion and com-
prises a finite number of ordered levels: S1, C1, S2 and C2. Each level
is composed of various computing units which receive as input the out-
puts of the units belonging to the previous level. The view-based module
computation starts from the units belonging to the lowest level, S1, which
implement simple local filters on an input graylevel image, selective to
“bars” located in a specific position, and having both a specific scale and a
specific orientation. The computing units of the level immediately above,
C1, implement a max operation increasing the receptive field of the local
filters in order to build invariance to position and scale. The S2 units com-
bine the responses of the C1 units implementing more complex filters in
order to increase pattern selectivity. Finally, the output of the C2 units, the
output of the view-based module, is again a max operation over the S2
output. The output of the view-based module represents a position and
scale invariant feature vector. More specifically, the S1 layer is composed
of a series of Gabor filter (Daugman, 1993) with 16 different sizes (from
7 × 7 to 37 × 37 pixels with a step equal to 2 pixels) and 4 different ori-
entations (0°, 45°, 90° and 145°). Thus, for each pixel located at position
(x, y) there are 64 S1 units. The S1 layer is organized into 8 bands and the
k-th band contains all the units which, independent of the orientations,
correspond to Gabor filters with sizes equal to dk = (7 + 4k) × (7 + 4k)
and dk+1 = (7 + 4k + 2) × (7 + 4k + 2), with k = 0, 1, . . . , 7. The C1 units
pool information coming from different S1 units having the same orien-
tation but different position and scale. The C1 units are organized into 8
bands too. For each orientation t, the C1 units belonging to the k-th band
are organized in a grid of size Mk ×Nk, with Mk = M

rk
and Nk = N

rk
where

rk = (8 + 2k) is called pooling range, and M × N is the size of the in-
put image. Let us call st,d(x, y) the output of a S1 unit corresponding to
a Gabor filter located at position (x, y) on the image, with size d × d and
orientation equal to t°; then the output of a C1 unit belonging to the band
k and located at position (i, j) of the grid corresponding to the orientation
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A.1. VIEW-BASED MODULE

t is computed as follows:

c1
k,t = max

{
s1
d,t(x, y) : (x, y) ∈ Iki,j, d ∈ {dk, dd+1}

}
where Iki,j is the set of S1 units providing input to the unit c1

k,t(i, j) de-
fined as follows

Iki,j = {(x, y) : (i− 1) ∗ rk < x ≤ i ∗ rk, (j − 1) ∗ rk < y ≤ j ∗ rk}

In this manner, a first step towards a position and scale invariant prop-
erty is achieved by a max operation over a number of S1 units that are
selective to the same simple feature and with receptive fields close to each
other, and over S1 units that are selective to different sizes of the same
simple feature.

The units of the S2 level are selective to more complex features than
the C1 units. This is achieved by combining the simple filters imple-
mented at level C1. In particular, each complex feature is obtained as a
combination, without repetitions, of the four simple features correspond-
ing to orientations of 0°, 45°, 90° and 135° respectively, these taken four at
a time, thus obtaining 256 complex features. Let us represent each com-
plex feature as a 4-tuple CF h = (th0 , t

h
1 , t

h
2 , t

h
3) with h ∈ 1, 2, . . . , 256 in and

thm ∈ {0°, 45°, 90°, 135°}.
Again, level S2 is organized in 8 bands. The k-th S2 band is organized

in 256 grids of sizes (Mk−1) × (Nk−1). The units belonging to a specific
grid h are selective to the specific complex feature CF h at different scales
and positions on the input image. More formally, the output of the S2
units belonging to the k-th band and the h-th grid at the location (i, j) is
computed by a Gaussian function as follows:

s2
k,h(i, j) = exp

(
−
((

c1
k,th0

(i, j)− 1
)2

+
(
c1
k,th1

(i, j + 1)− 1
)2
)

+

+
(
c1
k,th2

(i+ 1, j)− 1
)2

+
(
c1
k,th3

(i+ 1, j + 1)− 1
)2

/2σ2

)
where (th0 , t

h
1 , t

h
2 , t

h
3) = CF h.

Level C2, just as level C1, increases scale and position invariance while
preserving selectivity to the complex features extracted in the S2 level.
This level is composed of 256 units. Let us call c2

h the output of the C2 unit
selective to the complex feature CF h, with h = 1, 2, . . . , 256. This output is
computed as follows:
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A.2. PROTOTYPICAL VIEW-INVARIANT MODULE

c2
h = max

i,j,k

{(
s2
k,h(i, j)

)}
Hence, the output of the view-based module is a position and scale

invariant feature vector of size equal to 256.

A.2 Prototypical view-invariant module

The prototypical view-invariant module is made up of two layers. The
first layer is composed of three ordered groups of units receiving as input
from the view-based module the scale and position independent feature
vector. Each group is composed of N ordered units. Let V DPij be the j-
th unit belonging to i-th group, with i = 1, 2, 3 and j = 1, 2, . . . , N . Each
V DPij unit is scale and positionindependent; it is, however, selective to
both prototypical hand shape PHSi and viewpoint j. The second layer is
composed of three viewpoint-independent units selective to the three pro-
totypical hand shapes. Let V IPi be the i-th unit of the second layer, with
i = 1, 2, 3. The unit V IPi receives connections from units belonging to i-th
group of the first layer only. Each unit V IPi is selective to the prototypical
hand shape PHSi but is viewpoint independent.

The units of the first layer are the hidden neurons of a Gaussian Radial
Basis Function neural network.

There are nine hidden neurons (N = 9) only, i.e., three neurons for each
selected prototypical hand shape: V DP1j selective to both fully opened
grip aperture and viewpoint viewj , GV2j selective to both middle size grip
aperture and viewpoint viewj ,GV3j selective to both fully closed grip aper-
ture and viewpoint viewj , with j = 1, 2, 3. The view1, view2 and view3

viewpoints are sample viewpoints differing from each other by about 22°
(see Figure A.1). These viewpoints correspond to rotations of about 22°
of a camera around an axis Z (perpendicular to the surface of a table and
centered on the target object).

In the second layer, the V IPi neurons (i = 1, 2, 3) compute a linear
combination of the outputs of V DPij , with j = 1, 2, 3. Therefore, the V IP1,
V IP2 and V IP3 neurons, once trained, are selective to fully opened, mid-
dle size and fully closed grip aperture, respectively (see Figure 3.8).

Both V DPij and V IPi neurons were trained using three different train-
ing sets. Each set, compose of 450 frames of the three prototypical hand
shapes recorded from the viewj viewpoint, comprises 150 frames repre-
senting fully opened grip aperture, 150 frames representing middle size
grip aperture, and 150 frames representing fully closed grip aperture.
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A.2. PROTOTYPICAL VIEW-INVARIANT MODULE

Figure A.1: Experimental setting. A subject was seated at a table with two
clearly visible surface marks (m1 and m2) placed at a distance of roughly
40cm from each other. For each target object, a subject was asked to po-
sition the right hand on starting position m1, and to reach and grasp the
target object placed on mark m2. Each action was recorded using a camera
placed at a fixed distance (roughly 70cm) from the target and at a fixed
height (roughly 50cm) from table surface. The camera is able to rotate
around the Z axis.
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A.3. GRIP-APERTURE MODULE

In order to increase model tolerance to viewpoint variations it is suffi-
cient to augment the model by adding into each group of the first layer fur-
ther view-invariant units that are selective for different viewpoints which
are separated from each to other by about 22°.

A.3 Grip-aperture module

The grip-aperture module consists of a RBF network composed of a num-
ber of hidden nodes (in our implementation the number of hidden nodes
is equal to two) and one output node. The output node is the unit GA.
This module receives inputs from every V IPi in the prototypical view-
invariant module. The output of GA is a scale, position, and viewpoint in-
dependent value belonging to the interval [0, 1]. The GA unit was trained
under the hypothesis that the output of the V IP1, V IP2 and V IP3 units are
Gaussian centered on fully opened grip aperture, middle size grip aper-
ture, and fully closed grip aperture, respectively.

A.3.1 Experimental setting

A subject was asked to perform a variety of reach-to-grasp actions. These
actions were carried out while the subject was seated at a table with two
clearly visible surface marks (m1 and m2) placed at a distance of roughly
40cm from each other: each reach-to-grasp action starts at m1 and ends at
m2 (Figure A.1). For each target object, the subject was asked to position
the right hand on starting position m1, and to reach and grasp the target
object placed on markm2. Each action was recorded using a camera placed
at a fixed distance (roughly 70cm) from the target and at a fixed height
(roughly 50cm) from table surface. As mentioned above, this experimental
setting enables one to rotate the camera around the axis Z perpendicular
to table surface and centered on target object.

Accordingly, each action is represented as a sequence of frames (160×
160 pixels). Each frame is a gray-level image. This gray-level image is
relayed as input to the NeGOI system.
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B
Mixture Density Networks

Given a set of unlabeled data T = {ti}i=1,...,N with ti ∈ Rc, a powerful,
general framework for modelling unconditional distributions p(t), makes
use of mixture models of the form:

p(t) =
M∑
i=1

αiφi(t) (B.1)

where M is the number of components in the mixture. The parameters
αi are called mixing coefficients, and can be regarded as prior probabilities
of the data vector t having been generated from the i-th component of the
mixture. The kernel functions are usually chosen Gaussian of the form:

φi(t) =
1

(2π)c/2σci
exp

{
−‖ t− µi ‖2

2σ2
i

}
(B.2)

where c is the dimension of the data vector t, the vector µi represents
the center of the i-th kernel, with components µik, while σ2

i represents the
variance. A maximum likelihood approach can be pursued for the deter-
mination of model’s parameters (Redner and Walker, 1984).

Consider now a set of labeled data T = {xi, ti}i=1...,N , mixture models
can be used to approximate conditional distributions p(t|x) if we allow the
mixture’s parameters to be function of x, that is:

p(t|x) =
M∑
i=1

αi(x)φi(t|x) (B.3)

again m is the number of components in the mixture, the parameters
αi(x) are the mixing coefficients, and can be regarded as prior probabilities,
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Figure B.1: A Mixture Density Network (MDN) is a general framework
to estimate conditional distributions p(t|x). It is composed of a uni-
versal approximator, in particular a two layer feed-forward neural net-
work, and a mixture model. The neural network is used to learn the
relation between input vector x and mixture model parameters W (x) ≡
(α1(x), . . . , αM(x),µ1(x), . . . ,µM(x), σ1(x), . . . , σM(x)). These parameters
are feed in input to the mixture model in order to estimate p(t|x).

conditional on x, of the target vector t having been generated from the i-
th component of the mixture. Note that in this case the mixing coefficients
αi as well as the kernel functions parameters µi and σi are function of the
input vector x. Also in this case the kernel functions are usually chosen
Gaussian of the form:

φi(t|x) =
1

(2π)c/2σci (x)
exp

{
−‖ t− µi(x) ‖2

2σ2
i (x)

}
(B.4)

The relation between x and mixture parameters can be learned in a
supervisioned fashion by universal approximator, for example a two layer
feedforward neural networks with non-linear hidden units, thus leading
to a combined structure such that showed in Figure B.1 called Mixture
Density Networks (MDN) (Bishop, 1995, 2006).

By choosing a mixture model with a sufficient number of kernel func-
tions, and a neural network with a sufficient number of hidden units, the
MDN can approximate as closely as desired any conditional density p(t|x).

The neural network component of the MDN framework can be any
standard feed-forward structure with universal approximation capabili-
ties.

Before proceeding to the MDN model’s description in a more depth,
we will give a brief introduction to feed-forward neural networks.
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B.1. FEED-FORWARD NEURAL NETWORKS

B.1 Feed-forward neural networks

A graphical representation of Feed-Forward multi-layered neural networks
(from now on FFW) is shown in Figure B.1. It is composed of successive
layers of elementary units. Each units compute its input and its activa-
tion value by means of an activation function. A unit can receive and send
connection to other units.

In the feed-forward multi-layered neural networks the units are orga-
nized in layers and a unit of layer can send connection only to units of the
next layer.

The units of the first layer (represented bottom in Figure B.1) and called
input units do not compute its inputs but simply have an activation, in-
dicated with xi with i = 1, . . . , d, equal to input currently given to the
network.

The units of the last layer (represented top in Figure B.1) are called out-
puts units and related activation is indicated with yi with i = 1, . . . , c. The
units of the other layers are called hidden units. In the next we will always
consider networks with only one hidden layer whose activation will be in-
dicated with zi with i = 1, . . . , s. It has been shown that such networks can
approximate arbitrarily well any functional continuous mapping from one
finite-dimensional space to another, provide the number of hidden units
is sufficiently large (Funahashi, 1989). At each connection between unit i
and unit j it is associated a weight wji ∈ R. We will indicate with w(1)

ji the
weight connecting the input unit i with the hidden unit j while with w

(2)
kj

the weight connecting the hidden unit j with the output unit k.

We can now write the analytic function computed by the network.
Each hidden units compute its inputs aj as follows:

aj =
d∑
i=1

w
(1)
ji xi + w

(1)
j0 (B.5)

where w(1)
jo is the bias for the hidden unit j. We can include these pa-

rameters in the sum of B.5 by the inclusion of an extra input variable x0,
whose activation is fixed to one as shown in Figure B.1, thus leading to the
following expression for aj :

aj =
d∑
i=0

w
(1)
ji xi (B.6)
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B.1. FEED-FORWARD NEURAL NETWORKS

Figure B.2: Feed-forward neural network with two layers of adaptive
weights. The bias parameters of the first and second layer are shown as
weights from an extra input or hidden unit with activation fixed to value
1.

The activation of hidden unit j is obtained by applying an activation
function g(·) to aj :

zj = g(aj) (B.7)

where g(·) is usually chosen as logistic sigmoid of the form:

g(a) ≡ 1

1 + exp(−a)
(B.8)

The outputs units again construct a linear combination of its inputs
(that is the activations of the hidden units):

ak =
s∑
j=1

w
(2)
kj zj + w

(2)
k0 (B.9)

Again, we can absorb the bias into the weights, by including an extra
hidden unit with activation z0 = 1, to give:

ak =
s∑
j=0

w
(2)
kj zj (B.10)
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B.2. LEARNING ALGORITHM

The activation of the k-th output unit is the obtained as follows:

yk = g̃(ak) (B.11)

where g̃(·) is the activation function of the output layer usually chosen
as linear function.

So the computation of the network can be expressed as follows:

yk = g̃

(
s∑
j=0

w
(2)
kj g

(
d∑
i=0

w
(1)
ji xi

))
(B.12)

B.2 Learning algorithm

The estimation of MDN or FFW model’s parameters take place by min-
imizing a convenient error function usually derived from the maximum
likelihood principle.

In order to minimize the error function we can use standard gradient
descent algorithm with related optimization techniques to improve con-
vergence performance.

Broadly speaking gradient descent algorithm works as follows: it starts
with an initial guess for the model parameters (e.g. random), we can
group all of them in the vector Θ(0), then it iteratively updates model pa-
rameters such that, at each step, say τ , it moves a short distance in the di-
rection of the greatest rate of decrease of a pre-fixed error function E(Θ),
i.e. in the direction of the negative gradient, evaluated at Θ(τ):

∆Θ(τ) = −η∇E |Θ(τ)

In order to actually implement a gradient descent algorithm it is needed
a differentiable error function and a way to efficiently calculate the gradi-
ent of E.

In the case of standard feed-forward neural network the back-propagation
algorithm exists as a way to efficiently compute the gradient of differen-
tiable error functions. We will see that such algorithm apply to both MDN
model.

First of all we briefly describe general back-propagation algorithm for
a general network having feed-forward topology and differentiable non-
linear activation functions.
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B.3 Back-propagation in feed-forward networks

Many error functions, such as that we will use with MDN model, comprise
a sum of terms one for each data point in the training set so that:

E(W ) =
N∑
n=1

En(W ) (B.13)

Thus our objective is to evaluate∇En(W ).
In a general feed-forward network, each unit computes a weighted

sum of its inputs of the form:

aj =
∑
i

wjizi (B.14)

where zi is the activation of a unit, or input, which sends a connection
to unit j, while wji is the weight associated to the connection between unit
i and unit j.

The activation of a generic unit zj is obtained by applying a non-linear
activation function g(·) to aj , that is:

zj = g(aj) (B.15)

It is important to note that variables zi in B.14 could be inputs while
unit zj could be an output.

Consider now the evaluation of the derivative of En with respect to a
generic weight wji.

En depends on wji only through the summed input aj to unit j. So by
applying the chain rule for partial derivative we obtain:

∂E

∂wji
=
∂En

∂aj

∂aj
∂wji

(B.16)

We now define δj as:

δj ≡
∂En

∂aj
(B.17)

The second term of the right hand side of B.16 is simply:

∂aj
∂wji

= zi (B.18)

Substituting B.18 and B.17 in B.16 we obtain:
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Figure B.3: Illustration of the calculation of δj for hidden unit j by back-
propagation of the δ’s from those units k to which unit j sends connections.

∂E

∂wji
= δjzi (B.19)

This means that the evaluation of the derivative of En with respect to
the weight wji is given by multiplying the value of δ of the unit j for the
output zi of the unit i.

For the output units the evaluation of δk is straightforward:

δk ≡
∂E

∂ak
= g′(ak)

∂En

∂yk
(B.20)

where we have used equation B.14 and we have called yk the zk because
in this case zk are output units.

In order to obtain the evaluation of B.20 we must substitute the appro-
priate expression of g′(a) and ∂En

∂y
. This will be the main discussion for the

MDN model.
For the hidden units the expression for δj takes the form:

δj ≡
∂En

∂aj
=
∑
k

∂En

∂ak

∂ak
∂aj

(B.21)

where the sum runs over all units k to which units j sends connections.
This is schematically illustrated in Figure B.3.
Now note that in the expression B.21 ∂En

∂ak
is simply the definition of δk.

The second term of the sum in the right hand side of B.21 is for every
k:
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∂ak
∂aj

= g′(aj)wkj (B.22)

substituting in B.21 we finally obtain the expression for δj :

δj ≡
∂En

∂aj
= g′(aj)

∑
k

δkwkj (B.23)

It is important to observe the presence of δk terms in the equation B.23.
This means that the computation of the gradient of E proceeds in the fol-
lowing way: starting by the output layer we compute the δk terms and so
the expression of the derivative with respect to the corresponding weights
parameters; we then back-propagate the δk terms to the higher layer in order
to evaluate the derivative for the corresponding weights.

B.3.1 Back-propagation for sum-of-squares error function
and sigmoid activation function

The back-propagation algorithm illustrated in the previous section is re-
lated to general forms of differentiable error functions with respect to the
network outputs, differentiable activation functions and feed-forward net-
work topology. In this section we will briefly show such algorithm in the
particular case of sum-of-squares error function, logistic sigmoid activa-
tion function for hidden units and identity activation function for output
units.

The sum-of-square error function for the input n-th takes the form:

En =
1

2

c∑
k=1

(yk − tk)2 (B.24)

so the B.20 becomes:

δk = yk − tk (B.25)

Now note that the derivative of the sigmoid activation function of hid-
den units expressed in B.8 is simply:

g′(a) = g(a)(1− g(a)) (B.26)

so the B.23 becomes:

δj = g(aj)(1− g(aj))
∑
k

wkjδk (B.27)
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but g(aj) is simply zj and so:

δj = zj(1− zj)
∑
k

wkjδk (B.28)

The back-propagation algorithm is summarized in Table B.1.

B.4 Mixture Density Networks

In an MDN with M kernel function, the network component will have M
output units, denoted with zαj , for the mixing coefficients αj(x), M output
units, denoted with zσj , for the kernel width σj(x), and M × c output units,
denoted with zµjk, for the kernel centers µj with components µjk. So the
network will have (c+ 2)×M output units.

In order to ensure that the mixing coefficients αi(x) can be interpreted
as probabilities and to ensure that the distribution is correctly normalized
(
´
p(t|x)dt = 1), they must satisfy the constraints:

M∑
i=1

αi(x) = 1 (B.29)

0 ≤ αj(x) ≤ 1 (B.30)

This is obtained by relating the coefficients αi(x) with the networks
outputs by a “softmax” function:

αi =
exp(zαi )∑M
j=1 exp(z

α
j )

(B.31)

Moreover it is convenient to represent the variances σj in terms of the
exponentials of the corresponding network outputs:

σj = exp(zσj ) (B.32)

This help to avoid pathological configurations in which one or more
of the variances goes to zero, since this would require the corresponding
zσj →∞.

Finally the centers µj are simple related to the corresponding network
outputs:

µjk = zµjk (B.33)
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B.4.1 Back-propagation in Mixture Density Network

In this section we derive the back-propagation algorithm for the Mixture
Density Network in the case of a specific error function. As said above, in
order to have an effective expression for the back-propagation algorithm
we need to define an error function and the expressions for the derivatives
of the error with respect to the output of the network, that is we must
specify the terms of the equation B.20.

As error function we will use the following, derived from the likeli-
hood principle:

E = −
∑
n

ln

{
M∑
j=1

αj(x
n)φj(t

n|xn)

}
(B.34)

Since such error function is composed of a sum of terms E =
∑

nE
n,

one for each input, we can consider the derivatives δnk = ∂En

∂zk
for a particu-

lar input n and then find the derivatives of E by summing over all inputs.
Note that the output units of the MDN have linear activation functions,

g(a) = a, so the quantities δnk can also be written as ∂En

∂ak
.

The φj can be regarded as conditional density functions, with prior
probabilities αj . It is convenient to introduce the corresponding posterior
probabilities in order to have some simplification of the subsequent anal-
ysis:

πj(x, t) =
αjφj∑M
l=1 αlφl

(B.35)

such probabilities sum to unity, that is:

M∑
j=1

πj = 1 (B.36)

We show now the form of the derivative of E with respect to each type
of network outputs zαj , zσj and zµj . We start by considering the derivatives
of En with respect to those network outputs which correspond to the mix-
ing coefficients αj .

First of all note that the error En depends on the outputs zαj by means
of the relation B.31. Moreover as a result of the softmax transformation,
the value of αk depends on all the network outputs which contribute to
the mixing coefficients.

From the chain rule and taking into account the contribution of all zαj
we can write:
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∂En

∂zαj
=
∑
k

∂En

∂αk

∂αk
∂zαj

(B.37)

The first term of the sum in the right hand side is:

∂En

∂αk
= − φk(t|x)∑M

j=1 αj(x)φj(t|x)
= −πk

αk
(B.38)

Where we have used the relation B.35.
The second term of the sum in the right hand side is:

∂αk
∂zj

=
δjkexp(z

α
k )
∑M

l=1 exp(z
α
l )− exp(zαj )exp(zαk )[∑M

l=1 exp(z
α
l )
]2

= δjkαk −
exp(zαj )∑M
l=1 exp(z

α
l )
· exp(zαk )∑M

l=1 exp(z
α
l )

= δjkαk − αjαk

So we have obtained:

∂αk
∂zj

= δjkαk − αjαk (B.39)

Where δjk is Kronecker delta symbol defined as δjk = 1 if j = k and
δjk = 0 otherwise.

Substituting B.38 and B.39 into B.37 and making use of B.36 we obtain:

∂En

∂zαj
=

∑
k

∂En

∂αk

∂αk
∂zαj

=
∑
k

−πk
αk

(δjkαk − αjαk)

= −πj
αj
αj + αj

∑
k

αk

that is:

∂En

∂zαj
= αj − πj (B.40)

For the derivatives corresponding to the σj parameters again remem-
ber that En depends on zj only through the relation B.32 and so from the
chain rule:

125



B.4. MIXTURE DENSITY NETWORKS

∂En

∂zσj
=
∂En

∂σj

∂σj
∂zσj

(B.41)

in order to compute the term ∂En

∂σj
we make use of B.34, B.35 and B.4:

∂En

∂σj
= − αj∑M

j=1 αjφj

1

(2π)
c
2

[
−cσ(c−1)

j[
σcj
]2 exp

{
−
‖ t− µj ‖2

2σ2
j

}
+

1

σcj
exp

{
−
‖ t− µj ‖2

2σ2
j

}
·
‖ t− µj ‖2

σ3
j

]
= − αjφj∑M

j=1 αjφj
·
[‖ t− µj ‖2

σ3
j

− c

σj

]
= −πj

{‖ t− µj ‖2

σ3
j

− c

σj

}
So we have obtained:

∂En

∂σj
= −πj

{‖ t− µj ‖2

σ3
j

− c

σj

}
(B.42)

The term ∂σj
∂zσj

is simple:

∂σj
∂zσj

= σj (B.43)

Substituting B.42 and B.43 into B.41 we obtain:

∂En

∂zσj
= −πj

{‖ t− µj ‖2

σ2
j

− c
}

(B.44)

Finally, using B.34, B.35 and B.4, and taking into account that the pa-
rameters µjk are given directly by the zµjk network outputs, we have:

∂En

∂zµjk
=

αj∑M
j=1 αjφj

·
exp

{
−‖t−µj‖2

2σ2
j

}
(2π)

c
2σcj

· (µjk − tk)
σ2
j

= πj

{
µjk − tk
σ2
j

}
∂En

∂zµjk
= πj

{
µjk − tk
σ2
j

}
(B.45)
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Algorithm B.1 Back-propagation procedure
INPUT An input-target couple {xn, tn}

input-hidden weights matrix W1, hidden-output weights matrix W2
OUTPUT derivative of En with respect to input-hidden weights derivative1

derivative of En with respect to input-hidden weights derivative2

1: function BACK-PROPAGATION(xn, tn,W1,W2)
. Computing hidden units input and activation

2: for j ← 1 to s do
3: a[j]←computeHiddenUnitInput(j, x,W1)
4: z[j]←sigmoid(a[j])
5: end for

. Computing network output and related delta
6: for k ← 1 to c do
7: y[k]←computeNetworkOutput(k, z,W2)
8: deltaout[k]←t[k]− y[j]
9: end for

. Computing delta for hidden units
10: for j ← 1 to s do
11: deltahidden[j]← 0
12: for k ← 1 to c do
13: deltahidden[j]← deltahidden[j] + deltaout[k] ∗W2[k][j]
14: end for
15: deltahidden[j]← z[j] ∗ (1− z[j]) ∗ deltahidden[j]
16: end for

. Computing derivative with respect to input-hidden weights
17: for j ← 1 to s do
18: for i← 1 to d do
19: derivative1[j][i]← deltahidden[j] ∗ x[i]
20: end for
21: end for

. Computing derivative with respect to hidden-output weights
22: for k ← 1 to c do
23: for j ← 1 to s do
24: derivative2[k][j]← deltaout[k] ∗ z[j]
25: end for
26: end for
27: return derivative1, derivative2

28: end function
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B.5 Implementation and Test

Both FFW network and MDN have been implemented in Matlab. The
FFW network weights and the weights of the MDN’s network component
have been initialized on the basis of Nguyen-Widrow method (Nguyen
and Widrow, 1990). In order to speed up the learning process the Rprop
(Riedmiller, 1994) variant of the gradient descent algorithm have been im-
plemented.

B.5.1 test 1: a simple uni-dimensional example

As first example of MDN capability we consider the problem of approx-
imate a one-dimensional multi-valued function as described in Bishop
1996.

Multi-valued functions are typical in inverse problems such as robot
kinematics. For such problems there exists a well-defined forward prob-
lem which can be described by a functional, single-valued, mapping. How-
ever for the same problem the inverse mapping can be often multi-valued.

Suppose that the forward relation between x and t is given by:

t = x+ 0.3sin(2πx) + ε (B.46)

with x ∈ [0, 1] and ε is a random variable drawn from a uniform distri-
bution in the range [−0.1, 0.1].

In Figure B.4 it is shown a data set obtained from B.46 together with a
FFW mapping. It can be noted how the network approximate the condi-
tional average of target data 〈p(t|x)〉 giving rise to a good representation
of the function from which the data was generated.

Consider now the inverse problem obtained by interchanging the roles
of input and output of data in Figure B.4. In this case, as Figure B.5 shows,
the network mapping gives a very poor fit to the data, as it again tries to
represent the conditional average of the target values.

The MDN model is also applied in this case with five hidden units for
the network component and three kernels for the mixture.

In Figure B.6 is shown contour plot of p(t|x) as estimate by MDN while
in Figure B.7 it is shown the plot of the priors αj(x) as function of x for the
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Figure B.4: Red bulled are points obtained from equation B.46. The under-
ling relation between x and t is a single-valued function and can be easily
approximate by standard neural networks. Note how network mapping
for a any given x, in blue, approximate the conditional average of target
data 〈p(t|x)〉.
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Figure B.5: The underling relation between x and t is a multi-valued func-
tion. In this case standard neural networks give a very poor description of
the data since it again try to approximate conditional average of t’s given
x.
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Figure B.6: Contour plot of conditional distribution p(t|x) as estimated by
Mixture Density Network.

three kernel functions. As can be seen the MDN uses only one kernel when
the mapping is single-valued and more kernels otherwise. Moreover in
Figure B.8 it is shown how each kernel contributes to overall estimation of
p(t|x).

In some cases we are interested in finding an output value for every
given input value x (for example in the case of control problems). If the
components of the distribution are well separated and have negligible
overlap we can easily find the most probable branch and associate with
x the related central value. In fact since each component of the mixture
model is normalized

´
φj(t|x)dt = 1 then the most probable branch of the

solution is given by:

arg max
j
{αj(x)} (B.47)

In Figure B.9 it is shown the plot of the central value of the most prob-
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Figure B.7: Progress of prior probabilities α1, α2 and α3 as function of x.
Note that where the function is single-valued only one kernel have prior
probability different from zero.
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Figure B.8: Plot of central values µ1, µ2 and µ3 as function of x together
with relative standard deviation µ1 ± σ1, µ2 ± σ2 and µ3 ± σ3.
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Figure B.9: Progress of central value of the most probable branch as func-
tion of x. The resulting mapping is discontinuous giving however a good
description of the data.

able branch as a function of x. As can be seen we have obtained a discon-
tinuous mapping which however give a good representation of the data
with respect to FFW mapping (see Figure B.5). Differently from FFW map-
ping with the MDN approach we may obtain one of the possible solutions
instead of the mean of all solutions. This give rise to a significant perfor-
mance improvement especially for problems (such as control problems) in
which the mean of more solutions is not itself a solution.

In order to quantify the performance of the two systems (MDN and
FFW) on the basis of how the predicted outputs are solutions and not the
mean of different solutions we can use the schema reported in Figure B.10
as done in (Bishop, 1994).

The underlining idea is simple: given a particular x the inverse model
(in our case modeled with the MDN or FFW) predict the corresponding
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Figure B.10: Schema used to quantify how the response of the MDN (FFW)
is one of the solutions of the inverse problem given a certain input x.

t; if t is a solution then giving t in input to the forward model we must
re-obtain x. So we can quantify how the predicted t is a solution by com-
puting the distance between x and x̃ which is the output obtained from
the forward model feed with the predicted t (see Figure B.10).

The error between x and x̃ is computed using the root-mean-square
(RMS) error1.

As expected there is a significant difference in term of RMS error be-
tween MDN and FFW. For the former RMS = 0.011 while for the last
RMS = 1.2216.

B.5.2 test 2: a two-dimensional example

In this test we follow the same step of test 1 but now t ≡ (t1, t2) is a two-
dimensional vector. Our objective is to give a broad idea of why the es-
timation of p(t|x) become more and more difficult when t increases its
dimensionality.

The forward model which describes the relation between x and t is the
following:

x = t1 + 0.3sin(2πt1) + t2 + 0.3sin(2πt2) + ε (B.48)

where t ∈ [0, 1]2 while ε is a random variable drawn from a uniform
distribution in the range [−0.1, 0.1].

1Root-mean-square error (RMS) between target vectors tn and model outputs yn is

computed as: ERMS =
PN

n=1‖y
n−tn‖2PN

i=1‖tn−t̄‖2 . Here t̄ is defined to be the average target vector,

that is: t̄ = 1
N

∑N
n=1 tn. The RMS has a value of unity when the model predicts the test

data “in the mean” while a value of zero when the model’s prediction is perfect.
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Figure B.11: Red bulled are points obtained from equation B.48. The un-
derling relation between x and t ≡ (t1, t2) is a single-valued function and
can be easily approximate by standard neural networks.
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Figure B.12: Contour plot of the function expressed by relation B.48. As
can be seen the inverse relation between x and t is multi-valued since for
a certain value of x (denoted by a different color) there will be several
different values of t.

In Figure B.11 it is shown a data set of 2500 points created by using
B.48 together with the mapping obtained using FFW. As can be seen the
network give a good representation of the underling function which de-
scribe the forward model.

Again we try to estimate the inverse relation between x and t with an
MDN networks. The mapping from x to t is multivalued as can be seen
from the contour plot of Figure B.12.

In Figure B.13 it is shown the relation between x and the components
of t. These graphics may be misleading because one may thinks that few
kernels suffice to have a good representation of p(t|x). However this is not
the case as can be seen from Figure B.14 where we have plotted the points
t for x = 1.

In Figure B.15 it is shown the contour plot of p(t|x = 1) estimated by
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(b) Plot of x versus t2

Figure B.13: Relation between x and the components of the vector t ≡
(t1, t2)

two different MDN with three and ten kernels respectively and both with
ten hidden units for the network component. As can be seen MDN model
with ten kernels give a more comprehensive description of the distribution
of t. This is confirmed by computing the error as for test 1. The RMS error
for the MDN with three kernels is 0.2607 while for MDN with ten kernels
is 0.0683.
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Figure B.14: The red bullets are points of the dataset corresponding to
x = 1. In blue are shown the location of the three kernel centers used
to approximate p(t|x). As can be seen from the next figure, three kernels
do not suffice to give a good representation of the distribution of the data
points.
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(a) Contour plot of the distribution p(t|x) as
estimated with an MDN with 3 kernels
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(b) Contour plot of the distribution p(t|x) as
estimated with an MDN with 10 kernels

Figure B.15: Contour plot of the distribution p(t|x) with 3 and 10 kernels.
As can be seen increasing the number of kernels leads to a better descrip-
tion of the distribution of the data points.
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C
Similarity measure between principal

subspaces

In this appendix the principal component analysis is introduced together
with a similarity measure between principal subspaces as reported in (Krzanowski,
1979).

The principal component analysis (from now on PCA) is a widely used
technique for dimensionality reduction, lossy data compression, feature
extraction and data visualization (Jolliffe, 2002).

There are two different but equivalent formulation for PCA. The for-
mer defines the PCA as the orthogonal projection of the data onto a lower
dimensional linear space (called principal subspace) such that the variance
of the projected data is maximized. The last defines the PCA as the lin-
ear projection that minimizes the mean squared distance between the data
points and their projections.

In Figure C.1 is shown a two dimensional example of PCA where the
red bullets represent original data points while green bullets represent
projected data points onto a one dimensional principal subspace.

In the following sections we will first briefly describe the maximum
variance formulation of PCA and then give a description of the similarity
measure between principal subspaces.

C.1 Principal Component Analysis

Consider a data set X of N observations {xn}n=1,...,N where xn ∈ Rd. Our
objective is to project the data onto a space with dimensionality k < d
while maximizing the variance of the projected data.
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Figure C.1: Two dimensional example of PCA. The red bullets represent
original data points while green bullets represent projected data points
onto a one dimensional principal subspace.
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We will start by considering a projection onto a one-dimensional space,
that is k = 1. The extension to multi-dimensional space is straightforward.
We can define the direction of this space using a vector u of dimension
d× 1.

Each data points x is projected onto a scalar value uTx where the su-
perscribe T indicate the transpose of vector u. If we indicate with x̄ the
sample mean of the data set, then the projected mean is uT x̄. The variance
of the projected data is given by:

1

N

N∑
n=1

(
uTxn − uT x̄

)2
= uTSu (C.1)

where S is the covariance matrix defined as:

S =
1

N

N∑
n=1

(xn − x̄)(xn − x̄) (C.2)

We want to maximize the projected variance with respect to u. How-
ever we must limit u in order to prevent the solution ‖ u ‖→ ∞. To do this
we impose the normalization condition uTu = 1.

By means of a Lagrange multiplier we can convert such constrained
maximization problem into an unconstrained one as follows:

uTSu + λ(1− uTu) (C.3)

by setting the deriving with respect to u equal to zero we obtain:

Su = λu (C.4)

so u must be an eigenvector of S. Multiplying both side by uT and
taking into account that uTu = 1 we have:

uTSu = λ (C.5)

So the variance is maximized when we choose u equal to the eigenvec-
tor having the largest eigenvalue λ of S.

if we consider the general case of an k-dimensional projection space,
the optimal linear projection for which the variance of the projected data
is maximized is defined by k eigenvectors u1, . . . ,uk of the data covariance
matrix S corresponding to the k largest eigenvalues λ1, . . . , λk.
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Algorithm C.1 PCA algorithm
INPUT The data set matrix X of dimension N × d

the number of components k
OUTPUT The projected data set matrix Y of dimension N ×M

1: function PCA(X, k)
. Centering data

2: Xmean ←computeMean(X)
3: Xc ← X −Xmean

4: CovX ← XT
c Xc . Computing covariance matrix

5: [U Lambda]←diagonalize(CovX) . Computing eigenvectors,
eigenvalues

. Sorting eigenvectors by decreasing values of corresponding
eigenvalues

6: U ←sortDescending(U,Lambda)
7: Uk ←getFirstKcomponents(U, k) . Taking only the first k

eigenvectors
8: Y ← XcUk
9: return Y

10: end function

C.2 Principal Subspace Comparison

In the previous section we have briefly described the PCA algorithm as
a way for describe a set of d-dimensional data onto a subspace of lower
dimension.

Now, suppose we have several data set X1, X2, . . . , XK each of which
with same number of variable d. We apply PCA algorithm for each dataset
and we search a criteria of congruence between the generated principal
subspaces.

Such criteria has been proposed in Krzanowski (1979) and is exposed
in the following.

Consider two data set X1 of size N1× d and and X2 of size N2× d each
of which has undergone PCA. Suppose that k components are considered
adequate for the purposes of representing each sample.

LetL andM be the matrices, both of size d×k, of the first k eigenvectors
of X1 and X2 respectively disposed column-wise.

It holds the following theorem:

Theorem 1. The minimum angle between an arbitrary vector in the space of the
first k principal components of X1 and the one most nearly parallel to it in the
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space of the first k components of X2 is given by cos−1 (λ1)
1
2 , where λ1 is the

largest eigenvalue of G ≡ LTMMTL.

Theorem 2. Let λi be the ith largest eigenvalue ofG, ui its associated eigenvector
of size k × 1, and vi = Lu (i = 1, . . . , k). Then v1, . . . ,vk form a set of mutu-
ally orthogonal vectors embedded in subspace X1 and MMTv1, . . . ,MMTvk, a
corresponding set of mutually orthogonal vectors in subspace X2 into which the
differences between the subspaces can be partitioned. The angle between the ith
pair vi, MMTvi is given by cos−1 (λi)

1
2 (i = 1, . . . , k).

The first Theorem shows that the pair v1 and MMTv1 gives the two
closest vectors in the original space when one is constrained to be in sub-
space X1 and the other in subspace X2. The second Theorem shows that
continuing the decomposition of G, the pair v2 and MMTv2 gives direc-
tions, orthogonal to the previous ones, along which the next smallest angle
between the subspaces is represented.

These arguments allow us the definition of a measure of similarity be-
tween two subspaces. Let’s see.

Let θij be the angle between the i-th principal component of X1 and
the j-th principal component of X2 then cosθij is the element (i, j) of the
matrix T = LTM . So it holds the following relation:

k∑
i=1

λi = traceG = trace TT T =
k∑
i=1

k∑
j=1

cos2θij (C.6)

The previous relation says that the sum of the eigenvalues of G equals
the sum of squares of the cosines of the angles between each of the k eigen-
vectors defining the principal components of X1 and X2. This value can
be used as similarity measure between the two principal subspaces. The
value of the sum is easily seen to lie between k, in this case the two princi-
pal subspaces are equal, and 0 in this case the two principal subspaces are
orthogonal.

C.3 A simple example

To give an idea of how the similarity measure introduced above works
let us consider a simple two dimensional example. We have two group
of data X1 and X2 both composed of 1000 points extracted from a normal
distribution with zero mean x ≡ (x, y) = 0 and diagonal covariance matrix
with σxx = 0.1 and σyy = 1. So both group of data have great variability
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Figure C.2: Data points belonging to the two data set X1 (blue) and
X2 (red). The corresponding principal components in the two sets have
the same direction but different eigenvalues because direction of greatest
spread of data is orthogonal between the two sets.

along only one direction. Point of the two group are rotated of 45° and
135° respectively by means of a rotation matrix of the form:(

cosθ −sinθ
sinθ cosθ

)
The points of the two groups so obtained as plotted in Figure C.2 to-

gether with principal components obtained by applying PCA algorithm.
Principal components of the two group are very similar and in the graph
only that of the first group are shown. However the associated eigenval-
ues are completely different in the two cases as one can see from Table C.1.
In fact the direction of maximum variance for point of X1 is orthogonal to
the direction of maximum variance for point of X2.
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Eigenvalues Eigenvectors X1

0.0105 (−0.7061,−0.7081)
1.0627 (−0.7081, 0.7061)

Eigenvalues Eigenvectors X1

0.9297 (−0.7080,−0.7063)
0.0101 (−0.7063, 0.7080)

Table C.1: Eigenvectors and corresponding eigenvalues for the two group
X1 and X2

Let us now consider two principal subspaces of dimension one gener-
ated by the first principal component of the two group X1 and X2. Since
they are orthogonal to each others the similarity measure 0 (recall that the
in this case such measure lies between 0 and 1). However if we consider
two principal subspace of dimension two the subspaces coincide and in
fact the similarity measure is 2 (in this case such measure lies between 0
and 2).
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