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Introduction

Partial Least Squares (PLS) methods embrace a suite of data anal-

ysis techniques based on algorithms belonging to PLS family. These

algorithms consist in various extensions of the Nonlinear estimation

by Iterative PArtial Least Squares (NIPALS) algorithm, which was

proposed by Herman Wold [Wold 1966b] as an alternative algorithm

for implementing a Principal Component Analysis (PCA) [Hotelling

1933]. The peculiarity of this algorithm is that it calculates princi-

pal components by means of an iterative sequence of simple ordinary

least squares (OLS) regressions. This feature allows overcoming com-

putational problems due to missing data or landscape data matrices,

i.e. matrix having more columns than rows. Later on, Wold proposed

NIPALS to analyze causal relations between several blocks of vari-

ables [Wold 1975b]: the PLS approach to Structural Equation Model-

ing (SEM) [Bollen 1989], later called PLS-Path Modeling (PLS-PM),

was born. In the same period Svante Wold, Herman’s son, perceived

that PLS approach could be used in order to implement a regular-

ized component-based regression. He called this regression technique
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PLS-Regression (PLS-R) [Wold, Martens & Wold 1983].

PLS techniques, as all quantitative methods, were born to handle

data sets forming metric spaces. This involves that all the variables

embedded in the analysis are observed on interval or ratio scales.

An interval scale consists of a set of numerical values, for which

it makes sense to calculate differences. In practice, there are not so

many variables which are actually measured at interval scale level. A

good example of an interval scale is the Fahrenheit scale for temper-

ature. Equal differences on this scale represent equal differences in

temperature, but a temperature of 30 degrees is not twice as warm as

one of 15 degrees. The distinguishing feature of a ratio scale is the

possession of a non-arbitrary zero value. Other examples of variables

measured at ratio scale level are most of physical measurements, time,

and count variables.

The most important central tendency indexes (mode, median and

arithmetic mean) and dispersion indexes (standard deviation, range),

as well as the Pearson product-moment correlation coefficient can be

calculated on both interval and ratio measurements. Hence, in most

of statistical techniques differences between ratio and interval scale is

not relevant. In this work, variables measured at ratio or interval scale

level will be referred as numeric or metric variables.

Unfortunately, in many fields where PLS methods are largely ap-

plied (e.g. genomics, sensorial analysis, consumer analysis, marketing)

researchers are interested in analyzing set of variables measured on a

non-metric scale, i.e. categorical variables.
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A categorical variable has a measurement scale consisting of a set

of categories. Categorical variables have two primary types of scales.

Variables having categories without a natural ordering are called nom-

inal. Example are religious affiliation, mode of transportation to work

or favorite type of music. For the nominal variables, the order of list-

ing the categories is irrelevant. Categorical variables having ordered

categories are called ordinal. Ordinal variables have ordered cate-

gories (or levels), but even in this case distances between categories

are unknown. Classical examples of ordinal variable are the educa-

tion level and social-economic status. However many other variables,

which could seem numerical (and are often handled if they were) are

instead ordinal. In particular, any variable which is expression of a

judgement can not be considered numeric, because judgments are sub-

jective evaluations. Teacher’s judgement expressed in terms of grade,

for example, is measured at a metric scale level only if it is obtained

as a count variable (number of right answers to a set of questions).

In the other cases, grade ought to be considered as ordinal data; as a

matter of fact, as it is well known in psychometrics, pairs of differences

between consecutive points on the scale are non equal.

Variables measured on a nominal scale are sometime referred to as

categorical, while here the word categorical is referred to both ordinal

and nominal measurements. To avoid confusion, in this work ordi-

nal and nominal variables will be referred to as non-metric data as

well. Moreover, defining nominal and ordinal variables as non-metric

variables allows us to pinpoint that from the mathematical-statistical
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point of view, ordinal data are much more similar to nominal data

than to numerical data, as they do not follow a metric.

Handling categorical variables is still an open issue in all PLS

methodologies. This thesis focuses on new methodological proposals

to make PLS techniques able to handle jointly metric and non-metric

data. In particular, a new generation of PLS based algorithms, called

Non-Metric PLS (NM-PLS) algorithms, is proposed.

The core of all PLS algorithms is an iterative process with which

parameters are calculated. The main idea in this thesis is that poten-

tiality of these algorithms are not fully exploited. Until now, PLS has

been used in order to analyze data sets of any shape and with miss-

ing data. The aim of this thesis is to show how to modify NIPALS,

PLS-R and PLS-PM algorithms in order to make them able to work

as optimal scaling techniques. Three new algorithms, i.e. the Non-

Metric NIPALS algorithm, the Non-Metric PLS Regression algorithm,

and the Non-Metric PLS Path Modeling algorithm, are proposed and

their proprieties are discussed in detail.

Throughout this thesis, notation and wording will be used respect-

ing the field and the framework in which the PLS techniques are used.

Hence, for example, in order to indicate the scores vector resuming a

block of variables, word component will be used referring to Principal

Component Analysis and PLS Regression, while latent variable will be

used in SEM framework. At the same way, latin notations typical of

completely explorative analysis are used in PCA and PLS-Regression

context, while greek notations typical of SEM framework are used
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when PLS-PM is discussed.

Thesis outline

In chapter one PLS approaches to Principal Component Analysis, Re-

gression analysis, and Structural Equation Modeling are reviewed. In

section 1.2 the PLS approach to Principal Component Analysis is dis-

cussed. In this section particular attention is payed to NIPALS al-

gorithm, and its links to Power Method. In the following sections,

PLS Regression (section 1.3) and PLS Path Modeling (section 1.4)

are discussed in details, paying particular attention to both algorith-

mic aspects and diagnostic tools.

In chapter two measurement scales and scaling methods are intro-

duced. The various scales of measurement are reviewed, and their

properties are discussed (section 2.2). The concept of scaling is in-

troduced (section 2.3). The scaling analysis, i.e. the transformation

of measurements in order to yield a new set of measurements at a

different level is investigated. Metrics of new interval scales can be

constrained depending on the scale at which a raw variable is mea-

sured and on which of its properties the researcher wants to preserve.

All of these restrictions are discussed in the final section of the chapter.

In chapter three first we explained why PLS methods can handle

only metric data (section 3.1); afterwards, we discuss the use of binary

coding in PLS framework (section 3.2). Requirements and fundamen-

tal properties of optimal scaling methods are discussed; Alternating

Least Squares (ALS) basic principles, as well as its algorithmic flow,
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are illustrated (section 3.3.1). To conclude, a new suite of optimal

scaling methods, based on PLS algorithms, is proposed (section 3.4).

This new class of methods, called Non-Metric PLS (NM-PLS), perform

non-metric and non-linear analysis in PLS framework. In particular,

NM-PLS methods exploit the features of PLS iteration in order to

provide optimal scaling of variables. The different levels of scaling

analysis conceived in NM-PLS methods are discussed, as well as their

properties (section 3.4.1).

Chapters four, five and six describe in details non-metric PLS ap-

proaches to Principal Component Analysis, Regression analysis and

Structural Equation Modeling. In each chapter first we review the

specific literature concerning the use of categorical variables, then we

explain in detail the original proposition. Optimality properties of

each proposition are discussed.

In particular, in chapter four first we review the history and the

methodology of the multivariate descriptive analysis of categorical

variables by non parametric techniques (sections 4.2 and 4.3). Then,

the Non-Metric NIPALS algorithm is described (section 4.5 and 4.5.1),

and its connections to other non-metric approaches to PCA are dis-

cussed.

In chapter five we focus on PLS Regression (PLS-R). First, the main

approaches to non-linear and non-metric analysis in PLS-R framework

are briefly presented (section 5.2). Then, an adjusted PLS-R algo-

rithm, called Non-Metric PLS Regression (NM-PLSR) algorithm, is

proposed (section 5.4). The optimal scaling properties of the Non-
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Metric PLS regression algorithm are proven, and its algorithmic flow

is showed. To conclude an application of NM-PLSR to consumer pref-

erences analysis is provided in order to show the potentiality of the

method and its interpretation rules (section 5.6).

Non-Metric PLS method for Structural Equation Modeling is pre-

sented in the chapter six. First the main techniques to handle non-

metric data in PLS Path Modeling framework are discussed (section

6.2). Then, the Non-Metric PLS Path Modeling algorithm (MNPLS-

PM) is proposed (section 6.4). The algorithm is explained in details

and its optimality properties are discussed. To conclude, an applica-

tion of NMPLS-PM to macro-economic data is presented in order to

highlight how it can handle variables observed on a variety of mea-

surement scales, as well non linearity (section 6.7).

The codes for NM-PLSR and NM-PLSPM algorithms in R envi-

ronment are provided in the appendix.





Chapter 1

Partial Least Squares

methods

1.1 Introduction

Partial Least Squared (PLS) methods involve a set of multivariate

techniques based on algorithms belonging to the PLS family. The fa-

ther of these algorithms was Herman Wold, who in 1966 devised the

NILES (Non-linear Iterative Least Squares) algorithm [Wold 1966a].

Wold [1966b] proposed NILES as an iterative estimation method for

Principal Components Analysis (PCA) [Hotelling 1933]. NILES calcu-

lates principal components by means of an iterative sequence of simple

Ordinary Least Squares (OLS) regressions. Its usefulness is due to the

fact that NILES yields a Singular Value Decomposition (SVD) of a

data matrix regardless of the shape of the matrix and the presence of
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missing data. NILES was later re-named Non-linear Iterative PArtial

Least Squares (NIPALS) by the same author [Wold 1975a].

Later on, H. Wold [1975b] extended NIPALS basic principles to a

more general technique that analyzes several blocks of variables linked

by a network of relations specified by a path diagram. This technique

summarizes each block of observed variables (manifest variables, MV),

in a latent variable (LV) and investigates the relations among the

LVs. Since this technique avoids restrictive hypothesis, i.e. multi-

variate normality and large samples, underlying maximum likelihood

techniques, it is used to estimate Structural Equation Models (SEM)

[Bollen 1989] parameters, as a Soft Modeling [Wold 1982] alternative

to Jöreskog’s Covariance Structure Analysis (CSA) [Jöreskog 1970],

commonly known as LISREL (LInear Structural RELations). During

the 1980’s, Fred Bookstein deepened the study of PLS in Structural

Equation Modeling framework [Bookstein 1982] and, in collaboration

with Claes Fornell, was the first to apply PLS to Consumer Satisfac-

tion Analysis [Fornell & Bookstein 1982]. Nowadays, the Partial Least

Squares approach to SEM is known with the acronym PLS-PM (PLS

Path Modeling), and has became a standard tool in that field.

PLS-PM algorithm was slightly modified by Wold’s son, Svante,

and Harald Martens, in order to obtain a regularized component based

regression tool, known as PLS Regression (PLS-R) [Wold et al. 1983,

Wold, Ruhe, Wold & Dunn 1984]. PLS1 and PLS2 algorithms imple-

ment respectively single and multiple response PLS Regression. Due

to its usefulness in handling a large number of multicollinear predic-
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tors, PLS-R has become in the following years a standard tool in

Chemometrics and Sensometrics [Wold, Sjöström & Eriksson 2001].

For an extensive historical review of PLS methods, refer to Sánchez

[2009].

The core of any PLS algorithm is the iterative procedures used to

compute model parameters. PLS iterative procedures are exploited

to analyze covariance within a block of variables, or cross-covariance

among two o more blocks of variables, avoiding problems linked to

missing data and landscape shaped matrices.

In the next, PLS approaches to PCA (section 1.2), Regression (sec-

tion 1.3) and SEM (section 1.4) will be reviewed, paying particular

attention to their algorithmic aspects.

1.2 PLS approach to Principal Compo-

nent Analysis

LetX be an observation × variable data matrix. Each matrix element

xip is the measurement of the p-th variable (p = 1 . . . P ) on the i-th

observation (i = 1 . . . N). We suppose the variables be centered and

normalized to unitary variance.

Principal Component Analysis (PCA) [Hotelling 1933] summarizes

X in a H-dimensional space (H << P ) spanned by orthogonal Princi-

pal Components (PCs) th (h = 1 . . . H). The h-th PC th is obtained as

a linear combination of the P variables with a unit-norm weight vector

ph. PCA searches for the set of weights maximizing the variability of
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each th.

Classical PCA algorithm consists in the eigen analysis of the corre-

lation matrix X
′
X. The matrix PH = [p1 . . .pH ] of the eigenvectors

associated to the H greatest eigenvalues of X
′
X contains the set of

weights we are searching for. The score matrix TH = [t1 . . . tA] is

successively calculated as TH = XPH . It is noteworthy that load-

ing vectors ph may be interpreted even as the weight vectors used for

building the components, as

th = Xhph

In fact, in PCA the concepts of weight and loading coincide because

of the double orthogonality of components and weights.

Since eigenvectors are orthogonal by construction, X can be obtained

as TP
′
, where T = [t1 . . . tA], P = [p1 . . .pA], and A is the rank of

X. That’s why the matrix P is commonly called loading matrix.

The PLS approach to PCA, that is the Nonlinear Iterative PArtial

Least Squares (NIPALS) algorithm [Wold 1966a, Wold 1966b, Wold

1975a], works in a slightly different way. Firstly, It finds the first

loading vector as the dominant right singular vector of X, and the

first score vector as t1 = Xp1. Afterwards, it deflates X by calculat-

ing the residuals of the regression of X on t1, and finds the loading

vector of the second PC as the dominant right singular vector of the

residual matrix. Working on the deflated matrices assures the orthog-

onality among the components. High order components are obtained

analogously. For each component, loadings are computed through an
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iterative procedure in which loading and score vectors are calculated

iteratively each one as a function of the other.

The NIPALS algorithm pseudo-code is shown in algorithm 1.

Algorithm 1 NIPALS algorithm
Input: E0 = X
Output: P = [p1, . . . ,pH ],T = [t1, . . . , tH ]

for all h = 1, . . . , H do
Step 0: Initialize th
Step 1:
repeat

Step 1.1: ph = E
′

h−1th/(t
′

hth)
Step 1.2: ph = ph/‖ph‖
Step 1.3: th = Eh−1ph/(p

′

hph)
until convergence of ph

Step 2: Eh = Eh−1 − thp
′

h

end for

The relationships in the iteration step of the algorithm verify the

following equations:

E
′

h−1Eh−1ph = λhph (1.1)

Eh−1E
′

h−1ph = λhth (1.2)

where λh = (1/N)t
′

hth is the largest eigenvalue shared by E
′

h−1Eh−1

and Eh−1E
′

h−1, and E1 is the residual matrix of the regression of X

on t1.
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Since

1

N
X ′X =

1

N
(X − t1p′1)′(X − t1p′1) =

1

N
X ′X − λ1p1p

′
1 (1.3)

for h = 2 the eigenvector p2 of (1/N)E′1E1 associated to the largest

eigenvalue equals the eigenvector of (1/N)X ′X associated to the sec-

ond largest eigenvalue.

In general,

1

N
X ′X =

1

N
X ′X − λ1p1p

′
1 − · · · − λh−1ph−1p

′
h−1. (1.4)

Hence, the eigenvector ph of (1/N)E′h−1Eh−1 associated to the largest

eigenvalue equals the eigenvector of (1/N)X ′X associated to the h-th

largest eigenvalue.

The main feature of NIPALS algorithm is that it works towards

a suite of scalar products between pairs of vectors, i.e. (normalized)

sums of products of element pairs. This feature allows us to easily

handle missing data, by summing up in each operation only the avail-

able pairs (so-called element wise deletion procedure).

From the geometrical point of view, these scalar products can be inter-

preted as slopes of OLS regression lines. In particular, each value t1i of

t1 is the slope of the least-squares line without intercept going through

the cloud of points (p1;xi), where xi is the transposed i-th row of X.

Similarly, each value p1p is the slope of the least-squares line without

intercept going through the cloud of points (t1;xp), where xp is the

p-th column of X. So, geometrically speaking, element wise deletion



1.2. PLS approach to Principal Component Analysis 15

procedure handles missing elements as if they lied on the regression

line.

1.2.1 NIPALS and Power Method

The iterative sequence of NIPALS algorithm is very similar to well

known Power Method [Frazer, Duncan & Collar 1938]. Power Method

embraces a suite of algorithms, which generate a convergent sequence

of vectors and compute the largest eigenvalue of a symmetric matrix

by an iterative process. These methods use the relation that the eigen-

value of the p-th power of a matrix is the p-th power of the eigenvalue.

Quoting Svante Wold, “the difference is that the Power method applies

to symmetrical matrices and is used to find the largest eigen-value and

the corresponding eigen-vector of a symmetrical matrix. After “peel-

ing” off the first eigen-vector, one can get the second, and then the

third, etc.. The NIPALS method applies directly to the (scaled and

centered) data matrix, X, and hence is an SVD method”.

In effect, classic Power Method yields the largest eigenvalue of a

squared matrix, say S, by the following sequence:

v(0)

Sv(0) = v(1)

Sv(1) = v(2)

...

NIPALS algorithm, instead, uses a double chain iterative process



16 Partial Least Squares methods

[Amato 1977], yielding the dominant singular value and associated

right and left singular vectors of a rectangular matrix X

u(0)

X
′
u(0) = v(0) ; Xv(0) = u(1)

X
′
u(1) = v(1) ; Xv(1) = u(2)

... (1.5)

Since in our case S = X
′
X, its eigenvalues equal the right singular

vectors of X, the two algorithms give the same (normalized) solution

for v.

In algorithm 2 a modified version of the original NIPALS algorithm

is presented, where Steps 1.1 and 1.3 of classic NIPALS algorithm are

joined in order to highlight similarities with Power Method. This

algorithm consists of three steps. In the first, ph is obtained as the

eigenvector associated to the greatest eigenvalue of matrix X
′
X; in

the second step th is obtained as a function of ph; finally, in the third

step the matrix Eh is deflated.

1.3 PLS Regression

Partial Least Squares Regression (PLS-R) [Wold et al. 1983, Tenenhaus

1998] is a linear regression technique that allows relating a set of pre-

dictor variables to one or several response variables. At the same time,

PLS-R decomposes the predictor matrix by sequentially extracting



1.3. PLS Regression 17

Algorithm 2 The ”Power Method type” NIPALS algorithm
Input: E0 = X
Output: P = [p1, . . . ,pH ],T = [t1, . . . , tH ]

for all h = 1, . . . , H do
Step 0: Initialize ph such that ‖ph‖ = 1
Step 1:
repeat

Step 1.1: ph = E
′

h−1Eh−1ph

Step 1.2: ph = ph/‖ph‖
until convergence of ph

Step 2: th = Eh−1ph

Step 3: Eh = Eh−1 − thp
′

h

end for

orthogonal components which at the same time summarize the ex-

planatory variables and allow modelling and predicting the response

variables.

PLS Regression has been shown greatly efficient in applications

where data are characterized by many measured variables on few ob-

servations. This type of data generate three levels of problems: in-

ferential, computational and descriptive. The inferential problem is

due to the fact that large set of variables are always strongly corre-

lated. Multicollinearity raises the variability of regression coefficient

estimators, to the detriment of their significance. The computational

problem is due to the rank of predictor matrix, leading to a singu-

lar correlation matrix. The descriptive problem regards the difficulty

in analyzing at the same time relations among dozens or hundreds

variables. PLS-R offers a solution for all of these drawbacks.
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PLS-R can be included among regularized regression methods, as

PLS estimators have be proved to be shrinkage estimators [De Jong

1995] (see section 1.3.6); moreover, PLS-R algorithm does not involve

inversion of matrices: it consists of simple scalar products between

pairs of vectors (see section 1.3.2). Finally, PLS is a factorial analysis

method which resumes redundant information of predictor matrix in

few orthogonal components (see section 1.3.1). This makes PLS-R a

powerful visualization tool, because components compose a lower di-

mensional subspace in which information on predictor variables, useful

to explain the responses, is resumed. By means of projections on the

space spanned by the PLS components, it is possible to visualize non

redundant information, eliminating noise.

Due to these features, PLS-R in last twenty years has bees used

in a variety of fields. It has become a standard tool in chemometrics

for multivariate calibration with chemical composition predicted from

many high-speed but non-selective instrument measurements (e.g. NIR

reflectance at different wavelengths) [Martens & Naes 1989]; it has

been used extensively in quantitative structure-activity relationship

(QSAR) research to relate descriptors of molecules and their biological

activity [Hasegawa, Miyashita & Funatsu 1997]; in sensory science, it

has been used for relating human sensory response to chemical, phys-

ical measurements and experimental design descriptors [Schulbach,

Rouseff & Sims 2006]. Finally, PLS-R has been proposed in genet-

ics for Quantitative Trait Loci (QTL) analysis, with the aim to pre-

dict phenotypic trait data from genetic markers [Bjørnstad, Westad &
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Martens 2004].

From the algorithmic point of view, PLS Regression can be seen as

an extension of NIPALS algorithm to the analysis of a cross-covariance

matrix. Moreover, it can be considered as a slightly modified version

of the two blocks PLS Path Modeling algorithm.

1.3.1 The Model

Let x1 . . .xp . . .xP be a set of P predictor variables and y1 . . .yr . . .yR

be a set of R response variables measured on N observations. We

suppose that all variables are centered.

PLS-R model assumes that there is a common structure underlying the

two blocks of variable, and that this structure can be resumed by few

latent components th (h = 1 . . . H), calculated as a linear combination

of the predictor variables. Predictor and response matrices X and Y

are decomposed as

X = THP
′

H +EH

Y = THC
′

H + FH (1.6)

where PH and CH are the loading matrices, and EH and FH the

residual matrices representing the part of variability in data due to

noise.

Parameters of the model in are calculated by means of PLS Re-

gression algorithm called also PLS2 in the multiple response case and

PLS1 in the single response case [Tenenhaus 1998]. Since PLS1 is a
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particular case of PLS2 (see section 1.3.2), this distinction is purely

formal.

1.3.2 The algorithm

In PLS-R algorithm an iterative loop is used to calculate model param-

eters for each component. In any iteration Y -scores, X-weights, X-

scores and Y -weights are sequentially calculated each one as a function

of the previous one. All these steps can be interpreted as a sequence

of bivariate regressions.

The loop for calculating parameters of the first order model starts

choosing an initial value for the first component u1 in the Y -space.

Different options can be chosen for the initialization of uh: one of the

response variables, the first principal component of response matrix

among others. This choice, however, poorly affects the quickness of

the convergence, which is always verified. In the following step an

approximation for w1p, element of theX-weight vectorw1, is obtained

as a regression coefficient of u1 on xp. After having normalized w1,

theX-score ti1 is approximated by the regression coefficient of the i-th

row of X on w1. Then the Y -weight cr1 is computed as regression

coefficient of t1 on yr. The loop is closed by approximating X-score

ti1 by the regression coefficient of the i-th row of Y on c1. These steps

are repeated until convergence.

Once the convergence is obtained, X and Y are regressed on t1.

The residual matrices of these regressions, respectively E1 and F 1,

are successively used for the computation of the second component t2.
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Higher order components are similarly obtained.

The PLS-R algorithm, as presented in Tenenhaus [1998] is shown

in algorithm 3.

Algorithm 3 Tenenhaus PLS-R algorithm
Input: E0 = X,F 0 = Y
Output: W ,C,T ,U ,P

for all h = 1, . . . , H do
Step 0: Initialize uh

Step 1:
repeat

Step 1.1: wh = E
′

h−1uh/‖E
′

h−1uh‖
Step 1.2: th = Eh−1wh/(w

′

hwh)
Step 1.3: ch = F

′

h−1th/(t
′

hth)
Step 1.4: uh = F h−1ch/(c

′

hch)
until convergence of wh

Step 2: ph = E
′

h−1th/(t
′

hth)
Step 3: Eh = Eh−1 − thp

′

h

Step 4: F h = F h−1 − thc
′

h

end for

A slightly different version of PLS-R algorithm exists in literature

[Höskuldsson 1988] (see algorithm 4), in which the vector of Y -weights

c is scaled to unitary norm. In this version, Y -residuals are calculated

as

F h = F h−1 − b(uh|th)c
′
hth

where b(uh|th) is the OLS regression coefficient of uh on th.

This regression coefficient measures the so-called inner relation be-

tween the latent score vectors in the two spaces. The regression of uh
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on th is an implicit step in PLS-R algorithm presented in Tenenhaus

[1998], where b(uh|th) equals the unity. In fact, if ch is not normalized

cov(uh, th) = var(th).

In Step 3 of algorithm 4 the vector qh of Y -loadings is calculated.

The calculation of qh has no algorithmic relevance, but highlights

similarities and dissimilarities in the treatment of X and Y in PLS-

R: both are decomposed in own sets of weights (w and c), loadings

(p and q) and components (t and u); moreover, X is deflated as a

function of own component t, while Y is deflated as a function of the

prediction of u by means of a linear function of t.

Algorithm 4 Höskuldsson PLS-R algorithm
Input: E0 = X,F 0 = Y
Output: W ,C,T ,U ,P ,Q

for all h = 1, . . . , H do
Step 0: Initialize uh

Step 1:
repeat

Step 1.1: wh = E
′

h−1uh/‖E
′

h−1uh‖
Step 1.2: th = Eh−1wh/(w

′

hwh)
Step 1.3: ch = F

′

h−1th/‖F
′

h−1th‖
Step 1.4: uh = F h−1ch/(c

′

hch)
until convergence of wh

Step 2: ph = E
′

h−1th/(t
′
hth)

Step 3: qh = F
′

h−1uh/(u
′
huh)

Step 4: b(uh|th) = u′hth/(t
′
h/th)

Step 5: Eh = Eh−1 − thp′h
Step 6: F h = F h−1 − b(uh|th)thc

′
h

end for
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It is possible to show Tenenhaus [1998] that deflation of Y is un-

necessary when there are no missing data; parameters of the h-th

component can be obtained running the iterative algorithm on Y and

Eh−1. This modification leads to the same vectors wh, ph and ch and

yields more interpretable Y -components, as they are functions of the

original response variables.

Moreover, it is worth to notice that all mathematical operations

in algorithms 3 and 4 imply just scalar products of pairs of vectors.

This is the reason for which PLS-R (as NIPALS too) algorithm easily

handle missing data. In fact, computational problems due to missing

data can be avoided by means of pairwise deletion, that is calculating

the sum of the product between couple of available data.

For a detailed review of the mathematical properties of PLS-R al-

gorithm, refer to Tenenhaus [1998].

The single response case

In the single response case, it does not make sense calculating compo-

nents in the unidimensional response space. For the h-th component,

the weight wp can be directly calculated as a function of y. As a con-

sequence, step 1.4 in algorithms 3 and 4 becomes trivial, as well the

iterative loop, which stops itself in a single iteration. So, in the uni-

variate case, PLS Regression algorithm can be oversimplified as shown

in algorithm 5.

Though algorithm 5 is a particular case of algorithm 3, with which it

shares all the properties, for historical reasons due to its extensive use
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Algorithm 5 PLS1 algorithm

Input: E0 = X,f 0 = y
Output: W , c,T ,P

for all h = 1, . . . , H do
Step 1: wh = E

′

h−1fh−1/‖E
′

h−1fh−1‖
Step 2: th = Eh−1wh/(w

′

hwh)
Step 3: ch = f ′h−1th/(t

′
hth)

Step 4: ph = E
′

h−1th/(t
′

hth)
Step 5: Eh = Eh−1 − thp

′

h

Step 6: fh = fh−1 − chth
end for

as regularization technique (see section 1.3.6 ), it is often considered

as an algorithm in itself, called PLS1 algorithm.

1.3.3 The algorithm as an extension of NIPALS

The link between PLS-R and NIPALS (and the double-chain algorithm

1.5) becomes clear if we work on the cross-covariance matrix F ′h−1Eh−1

and we join steps 1.1 and 1.4 as well as steps 1.2 and 1.3 in algorithm

3, as shown in algorithm 6.

From this point of view, the only difference between PLS-R and

NIPALS algorithms is in that PLS-R has not the double orthogonality

property for which weights and loadings coincide; PLS-R loop for the

computation of the h-th component, in fact, has as an output the

vector wh, while loading vector ph is calculated after the iteration as

the regression coefficient of E′h−1 on th.
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Algorithm 6 NIPALS type PLS-R algorithm
Input: E0 = X,F 0 = Y
Output: W ,C,T ,U

for all h = 1, . . . , H do
Step 0: Initialize ch

Step 1:
repeat

Step 1.1: wh = (F ′h−1Eh−1)
′ch/‖(F ′h−1Eh−1)

′ch‖
Step 1.2: ch = (F ′h−1Eh−1)wh/(t

′

hth)
until convergence of wh

Step 2: ph = E′h−1th/(t
′
hth)

Step 3: Eh = Eh−1 − thp′h
Step 4: F h = F h−1 − thc′h

end for

1.3.4 Choosing the number of components

From the computational point of view, PLS-R algorithm can extract

a number of components equal to the rank of X. However, PLS Re-

gression model supposes that the common information carried by X

and Y matrices can be summarized in few latent components. So,

a crucial issue in PLS-R model is the definition of the number H of

components to retain.

In PLS Regression the explicative ability of the model (measured

in terms of R2 index) increases as long as the number of the compo-

nents increases. On the contrary, the predictive ability of the model,

intended as the explicative ability of the model referred to units that

have not been considered in building the model (validation set), begins
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to decrease after a certain number of components. This means that

model overfits data, and we have to stop in extracting components.

A cross validation procedure is usually performed in order to evalu-

ate if the h-th component increases the predictive ability of the model.

The original sample is partitioned into S subsamples. For S times, a

different subsample is retained as validation data and the remaining

(S−1) subsamples are used as training data. Each time, for each unit

of the validation set, the squared prediction errors e2(−i)r referred to

yr are calculated. For each h-component model, the PRediction Error

Sum of Squares (PRESS) index is obtained as

PRESSrh =
∑

e2(−i)r.

Model over-fitting is investigated by plotting the PRESS index

against the number of components. Typically, the PRESS decreases

for a certain of components; then, it begins to increase: obviously, one

choices the number of components giving the minimum PRESS.

In order to measure the marginal contribution of the h-th compo-

nent to the predictive power of the model the Q2 index [Ball 1963] is

used

Q2
h = 1−

∑R
r=1 PRESSrh∑R

r=1RESSr(h−1)

(1.7)

where RESShr is the sum of the squared residuals of yr in a h − 1
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component model on the whole data-set, with

RESS0r =
N∑

i=1

(yir − ȳr)
2.

There are not ad hoc tests for assessing the significance of this index;

in the practice, the h-th component is retained if Q2
h ≥ 0.0975.

1.3.5 The optimizing criterion

Höskuldsson [1988] proved that the PLS iteration verifies the following

equations for ch, wh, th and uh:

(E′h−1F h−1F
′
h−1Eh−1)wh = λhwh

(F ′h−1Eh−1E
′
h−1F h−1)ch = λhch.

(Eh−1E
′
h−1F h−1F

′
h−1)th = λhth

(F h−1F
′
h−1Eh−1E

′
h−1)uh = λhuh

Hence,wh and ch are the normalized eigenvectors corresponding to the

common largest eigenvalue λh of these symmetric squared matrices.

PLS-R criterion directly descends as the maximization of

cov2(Eh−1wh,F h−1ch) (1.8)

Höskuldsson’s work confirms the interpretation of the PLS iteration as

the double-chain algorithm 1.5, as well the interpretation of wh and ch

as the right and left dominant singular vectors of matrix F ′h−1Eh−1.
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1.3.6 The regression equation

PLS Regression provides a classical regression equation, in which the

response is estimated as a linear combination of the predictor variables.

The following equation can be derived from the last step of algorithm

3:

Y = t1c
′
1 + t2c

′
2+, . . . , tHc

′
H + FH = THC

′
H + FH . (1.9)

This is the regression equation of a H-component PLS-R model, where

response variables are expressed as a function of the PLS components.

In PLS-R algorithm each th is calculated as a function of Eh−1

th = Eh−1wh. (1.10)

In a model with H components the matrix TH of the X-score factors

is

TH = [Xw1,E1w2, . . . ,EH−1wH ] (1.11)

TH can be obtained also as a function of the original X variables

TH = XWH(P ′
HWH)−1 (1.12)

Posing RH = WH(P ′
HWH)−1 we obtain the responses as a linear

function of the predictor variables

Y = THC
′
H + FH = XRHC

′
H + Y H = XBPLS

H + FH (1.13)
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where BPLS
H is the matrix of the coefficients of a H-component PLS

regression model.

PLS-R coefficient estimators have been proved to be shrinkage es-

timators by De Jong [1995], which showed that the sequence of PLS

coefficient estimators forms a suite of vectors whose length strictly

increases with the number of components. The upper bound of this

suite is the length of Least Squares estimator. As shown by Frank

& Friedman [1993] and Garthwaite [1994], this feature makes PLS-

R a valid regularization tool, whose validity is comparable to Ridge

Regression [Hoerl & Kennard 1970] and higher than Principal Com-

ponent Regression [Jolliffe 1982].

As all the shrinkage estimators, also PLS estimators are biased;

however, they have been shown to be asymptotically unbiased.

Regression coefficients of an A-component PLS-R univariate model

equal the Least Squares regression coefficients. Hence, in PLS-R so-

lution can be interpreted as a trade off between explicative power of

regression and stability of its parameters. The more multicollinearity

among predictors increases, the more this trade becomes convenient.

1.3.7 Outlier detection

Distances of each observation from the model can be calculated in

order to detect outliers. The distance of the i-th unit is calculated in
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X and Y spaces, respectively as

DModXi =

√∑P
p=1 e

2
ip

P −H
×
√

N

N −H − 1
(1.14)

and

DModYi =

√∑R
r=1 f

2
ir

R−H
(1.15)

where eip = (xip − x̂ip) and fip = (yip − ŷip).

To compare distances of different units from the model, these in-

dexes are normalizated with respect to the respective standard devia-

tions sX and sY

DModXi, Ni =
DModXi

sX

(1.16)

and

DModYiNi =
DModYi

sY

, (1.17)

where

sx =

√ ∑N
i=1

∑P
p=1 e

2
ip

(N −H − 1)(P −H)
(1.18)
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and

sy =

√ ∑N
i=1

∑r
r=1 f

2
ir

(N −H − 1)(R−H)
(1.19)

Under the hypothesis that DModXi, Ni and DModYi, Ni follow

a Fischer-Snedecor distribution, it is possible to calculate a critical

threshold for assessing the significance of these distances. Howeveer,

since this hypothesis has not a theoretical fundament, this threshold

have to be considered purely empirical.

1.3.8 VIP index

The explicative power of a predictor with respect to the whole set

of responses is measured by the V IP (Variable Importance in the

Projection) index [Wold 2009]. The V IP index is a normalized average

of the explicative power of the components (measured in terms of

redundancy) weighted by the contributions of xp to the construction

of the components (measured by the squares of the weights whp). It

is calculated as follows:

V IPp =

√√√√ ∑H
i=1Red(Y , th)w2

hp

(1/p)×
∑H

i=1Red(Y , th)
, (1.20)

where Red(Y , th) =
∑R

r=1 cor2(yr, th).

Since
∑

p V IP
2
p = P , greater than one rule is generally used as

a criterion for variable selection. However, Wold [2009] suggests to
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consider important a variable with a V IP > 0.8.

1.3.9 PLS Regression as a visualization technique

PLS-R allows visualizing information on bidimensional subspaces gen-

erated by pairs of components. Some of the plots are common to all

the factorial methods for multidimensional data analysis, others are

specific PLS-R outputs.

Plots common to the other component based methods are the ob-

servation plot and the correlation circle. Mapping the observation on

the plot (th, th′), it is possible to investigate similarities and differ-

ences in unit behaviors by simply looking at their euclidean distances.

Moreover, correlations of X and Y variables with the components can

be mapped in the correlation circle as points or as arrows joining each

point to the origin.

Other graphics are typical PLS-R outputs. For example, relations

between component in different space can be investigated by means

of the plot (th,uh). Another standard plot in PLS-R framework is

obtained by overlapping points (rh, rh′) and (ch, ch′). This repre-

sentation allows us to interpret the contribution of the predictors in

building components th, as well the component capability in explicat-

ing Y -variables. This plot, referred to the first two components, has

another interesting interpretation. Any regression coefficient bPLS
yr|xp

of

xp on yr in the two-component model, in fact, can be read on the

plot as the orthogonal projection of the point (rp1, rp2) on the straight
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line passing for the origin and the point (cr1, rp2). Hence, the ma-

trix of regression coefficients, which is usually hard to read due to the

large number of variables in PLS models, can be visualized and easily

interpreted on this plot.

1.3.10 Alternative PLS approaches to cross co-

variance analysis

PLS loop can be used for the cross-covariance analysis of two block of

matrices in several methods, depending on the way we deflate X and

Y . All of these methods provide the same pair of score vectors t1 and

u1 while differ in higher order components.

Since the aim of PLS Regression is prediction, in PLS-R the de-

flation is obtained by regressing both X and Y on t1. As a matter

of fact, this was the genial intuition which allowed Svante Wold and

Harald Martens to transform the two block PLS-PM in a powerful tool

for regularization of the OLS regression, giving up the orthogonality of

Y -space score vectors. In Herman Wold’s original approach to defla-

tion, instead, each matrix is deflated by means of its own components

and loadings in the following way:

Eh = Eh−1 − thp′h
F h = F h−1 − uhq

′
h

that is, by subtracting to Eh and F h their own best rank-1 approxi-

mation in the Least Squares sense. This approach leads to a maximum
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number of min(P,R) pair of components such that matrices T ′T and

U ′U are diagonal.

A last way for implementing two blocks PLS is a method known

with a number of different names in American literature: PLS-SB

[Sampson, Streissguth, Barr & Bookstein 1989, Rosipal & Krämer

2006], PLS-SVD [Wegelin 2000], Intercorrelation Analysis, Canonical

Covariance [Tishler, Dvir, Shenhar & Lipovetsky 1996], and so on. We

will call it Tucker-PLS. Tucker-PLS works on successive deflations of

the cross-covariance matrix X ′Y . For the h-th component, residual

matrix Zh (with Z0 = X ′Y ) is calculated as

Zh = Zh−1 − λhwhc
′
h

In Tucker-PLS, if we deal with full rank matrices, the maximum num-

ber of extractable components is min(P,R, rank(X ′Y )). Neither X

nor Y factor scores are orthogonal, but the matrix T ′U is diagonal.

Since this approach leads to the singular value decomposition of X ′Y ,

it is the sam that Tucker’s Inter-Battery Analysis [Tucker 1958] im-

plemented by PLS loop: from here the name.

Among these methods, PLS-R is the only one prediction oriented.

The others can be useful to investigate relations between the two

blocks, but they do not suppose cause-effect relations because of their

symmetry in decomposition of the matrices.
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1.4 PLS approach to Structural Equation

Modeling

PLS Path Modeling [Wold 1975a, Wold 1982, Tenenhaus, Esposito

Vinzi, Chatelin & Lauro 2005] aims to estimate the relationships

among Q blocks X1, . . . ,Xq, . . . ,XQ of manifest variables (MVs),

which are expression of Q unobservable constructs ξ1, . . . , ξq, . . . , ξQ,

that are usually called latent variables (LVs). Specifically, PLS-PM

estimates the network of relations among the manifest variables and

their own latent variables, and among the latent variables inside the

model, through a system of interdependent equations based on simple

and multiple regressions. The corresponding conceptual model can

be represented through path diagrams (see figure 1.1), adhering to

certain common drawing conventions. Specifically, ellipses or circles

represent LVs and rectangles or squares refer to the MVs. Arrows

showing causations among the variables (either latent or manifest),

and the direction of the array defines the direction of the relation,

i.e. variables receiving the array have to be considered as endogenous

variables in the specific relationship.

1.4.1 The predictive Path Model

PLS Path Model consists of two sub models: the Structural (or Inner)

Model and the Measurement (or Outer) Model (see figure 1.2).

The structural model specifies the relationships between the LVs;

a LV is called exogenous, if it is supposed to depend on other LVs
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Figure 1.1: An example of Path Diagram

and endogenous otherwise. Structural relationships can be taken in

account by means of a lower triangular matrix L of order Q. The

element lqq′ is filled with a 1 if ξq depends on ξq′ and 0 otherwise. In

the structural model each endogenous LV is linked to the other LVs
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Figure 1.2: PLS Path Model representation. The inner model is
painted in blue grey, the outer model in sky blue

by the following multiple regression model

ξq = βq0 +

Q∑
q=1

lqq′βqq′ξq′ + νq (1.21)

where βqq′ is the so-called path coefficient expressing the impact on
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the endogenous LV ξq of the connected exogenous LVs. The only

hypothesis of this model is what Wold named prediction specification

hypothesis [Wold 1982]: residual vector νq has zero mean and is not

correlated with predictors.

The measurement model relates the MVs to their own LV. A block

is defined reflective if the LV is assumed to be a common factor that

reflects itself in the MVs. This implies that the relation between each

MV xpq (p = 1, . . . , P q) and the corresponding LV is modeled as

xpq = λpq0 + λpqξq + εpq (1.22)

Also in this model the prediction specification hypothesis is required.

In the reflective case, MVs should be highly correlated, due to the fact

that they are correlated with the LV of which they are expression. In

other words, the block has to be homogeneous. There are four em-

pirical rules for assessing the homogeneity of a reflective block. All

of these rules assume, without loss of generality, that LVs are stan-

dardized and all correlations between MVs of the block show the same

sign. When this last hypothesis is not verified, it is possible just to

state that block is unidimensional, but not homogeneous.

a) Principal component analysis rule: a block is considered homo-

geneous if the first eigenvalue of the correlation matrix is higher

than 1, while the others are smaller;

b) Cronbach’s alpha rule: a block is considered homogeneous if this
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index is larger than 0.7

α =

∑
p 6=p′ cor(xpq,xp′q)

Pq +
∑

p 6=p′ cor(xpqxp′q)
× Pq

Pq − 1
, (1.23)

where xpq and xpq′ are two MVs of the q-th block;

c) Dillon-Goldstein’s rho rule (or Jöreskog’s): it measure the com-

posite reliability of the block. A block is considered homogeneous

if its composite reliability is larger than 0.7

ρDG =
(
∑Pq

p=1 λ̂
PCA
pq )2

(
∑Pq

p=1 λ̂
PCA
pq )2 +

∑Pq

p=1(1− (λ̂PCA
pq )2)

, (1.24)

where λ̂PCA
pq is the estimate of standardized loading λpq, obtained

ex-ante as the loading λ̂PCA
pq = cor(xpq, tq) of the first principal

component tq of Xq. For an analysis ex-post, PLS-PM estimate

λ̂pq = cor(xpq, ξ̂q) replaces λ̂PCA
pq , where ξ̂q is PLS-PM estimate

of ξq.

According to Chin [1998] the Dillon-Goldstein’s rho is considered

to be a better indicator of the homogeneity of a block than the

Cronbach’s alpha;

d) Confirmatory TETRAD Analysis [Bollen & Ting 1993, Guder-

gan, Ringle, Wende & Will 2008]: A TETRAD is the difference

of the products of two pairs of covariances between MVs of the

block. All non redundant TETRADs are tested be different from

zero with a Bootstrap-based test. If all null hypotheses are ac-
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cepted, block is assumed to be reflective; in the opposite case,

block is considered formative.

In the formative case, each manifest variable or each sub-block of

MVs represents different dimensions of the underlying concept: in

other words they are in a strictly causative relation with the LV, and

this relation is modeled as

ξq =

Pq∑
p=1

ωpqxpq + δpq (1.25)

where the error term δpq is that part of ξq variability not accounted

by the MVs which is supposed to satisfy the prediction specification

hypothesis.

Finally, a block can be composed of both reflective and formative

MVs: this is the MIMIC (multiple effect indicators for multiple causes)

case.

1.4.2 PLS Path Modeling algorithm

In PLS path model external weights ωpq, linking each MV to corre-

sponding LV, are estimated by an iterative procedure in which the

latent variable scores are obtained through the alternation of outer

(vq) and inner (zq) estimations of the LVs. This procedure is referred

to as PLS Path Modeling (PLS-PM) algorithm.

No formal proof of convergence of the general algorithm has been

provided until now, but in number of particular cases the PLS-PM
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loop is proven to monotonicallly converge versus a criterion (see section

1.4.5). However, convergence is always assured in practice.

In the next we suppose, without loss of generality, that each xpq

is centered. The procedure starts by choosing arbitrary weights wpq.

Then, each LV is calculated as a linear combination of its own centered

MVs (outer estimation)

vq ∝
Pq∑

p=1

wpqxpq = Xqwq (1.26)

The symbol ∝ means that the left side of the equation corresponds to

the normalized (v′
qvq = N) right side.

In the inner estimation, each LV is obtaines as a normalized linear

combination of the outer estimations of the connected LVs. Weights

e of this linear combination are called inner weights. Let cqq′ be the

generic element of the square matrix C = L+L′ of order Q. cqq′ = 1

if ξq is connected to ξq′ in path diagram and cqq′ = 0 otherwise; then,

the inner estimation zq can be expressed as

zq ∝
Q∑

q′=1

cqq′eqq′vq (1.27)

There are three way for calculating the inner weights (eqq′):

1. the centroid scheme (the Wold’s original scheme), where eqq′ is

equal to sign of the correlation between vq and vq′ ;

2. the factorial scheme (the Löhmoller scheme), where eqq′ is equal
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to correlation between vq and vq′ ;

3. the path weighting scheme, where, for each ξq: if ξq′ is a latent

predictor of ξq, eqq′ is equal to vq′ coefficient in the multiple

regression of vq on the inner estimations of its latent predictors;

if ξq′ is a latent response variable of ξq, eqq′ is equal to correlation

between vq and vq′ .

Once a first inner estimation of the latent variables is obtained, the

algorithm goes on by updating the outer weights wpq.

Two different ways are available to update the outer weights:

• Mode A: each outer weight wpq is the regression coefficient in

the simple regression of the p-th manifest variable of the q-th

block (xpq) on the inner estimate zq of the q-th latent variable.

As a matter of fact, since zpq is standardized, the generic outer

weight wpq is obtained as

wpq = cov (xpq, zq) (1.28)

• Mode B: the vectorwq of the weights wpq associated to the mani-

fest variables of the q-th block is the regression coefficient vector

in the multiple regression of the inner estimate zq of the q-th

latent variable on its manifest variables Xq:

wq =
(
X ′qXq

)−1
X ′qzq (1.29)

The choice of the external weight estimation mode is strictly related
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to the nature of the model. For a reflective model the Mode A is

more appropriate, while Mode B is better for the formative model.

Furthermore, Mode A is suggested for endogenous latent variables,

while Mode B for the exogenous ones.

In a completely data-driven approach, a further alternative to up-

date outer weights is Mode PLS [Esposito Vinzi, Trinchera & Amato

2009, Esposito Vinzi & Russolillo 2010]. In Mode PLSwq is the regres-

sion coefficient vector in a PLS Regression of zq on Xq. If PLS-PM

algorithm converges on a single-component PLS-R, then Mode PLS

weights will equal Mode A weights: data are definitively expression

of a reflective model. The case where PLS-PM algorithm converges

on a several-component PLS-R, have to be interpreted in a formative

sense: each sub-block of MVs represents different dimensions of the

concept underlying the LV. Whereas PLS-PM algorithm converges on

a Pq-component PLS-R, Mode PLS weights will equal Mode B weights:

each MV represents a different dimension of the concept underlying

the LV.

Inner and outer estimation steps are alternated till convergence on

the weights.

Once final weights wpq are obtained, the LVs scores are finally cal-

culated as normalized weighted aggregates of the manifest variables

ξ̂q ∝Xqwq (1.30)

In the last step of PLS-PM algorithm structural (or path) coeffi-

cients are estimated through an OLS multiple regression among the
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estimated latent variable scores, according to path diagram structure.

Denoting ξj (j = 1 . . . J) the generic endogenous LV and Ξ→j the ma-

trix of the corresponding latent predictors, the path coefficient vector

for each ξj is

βj =
(
Ξ̂′
→jΞ̂→j

)−1

Ξ̂′
→j ξ̂j (1.31)

In the case of multicollinearity among the estimated latent variable

scores, in order to reduce estimation variability, PLS regression can

be used instead of OLS regression [Esposito Vinzi et al. 2009].

Wold’s original algorithm has been further developed by Lohomöller

[Lohmöller 1987, Lohmöller 1989]. In Lohomöller’s algorithm, inner

estimation z
(s)
q in the s-th iteration is always a function of v

(s)
q′ . In the

original Wold’s algorithm, instead, z
(s)
q is a function of v

(s+1)
q′ if q

′
< q

and is a function of v
(s)
q′ if q

′
> q. As showed by Hanafi [2007], Wold’s

algorithm, if estimation mode B is used, converges in a monotonic

(and consequently faster) way. Here, both the Lohmöller’s and Wold’s

iterative procedures are presented respectively in algorithms 7 and 8.

1.4.3 Model assessment

PLS-PM aims to find LVs that at the same time summarize well their

own block and are correlated between them (following the path dia-

gram). So, the quality of a PLS Path Model depends on the quality
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Algorithm 7 Lohmöller’s PLS Path Modeling algorithm

Input: X = [X1, . . . ,Xq . . . ,XQ],C

Output: βj, wq, ξ̂q;

Step 0: Initialization
wq = w

(0)
q

Step 1: Iteration
repeat

Step 1.1: Outer estimation of the LVs
v

(s)
q ∝

∑Pq

p=1w
(s)
pq xpq = Xqw

(s)
q

Step 1.2: Computation of the inner weights

e
(s)
qq′ = f

(
v

(s)
q ,v

(s)
q′

)
, according to the chosen scheme

Step 1.3: Inner estimationof the LVs
z

(s)
q ∝

∑Q
q′=1 cqq′e

(s)
qq′v

(s)
q′

Step 1.4: Computation of the outer weights
w

(s+1)
q = (1/N)X

′

qz
(s)
q (Mode A) or

w
(s+1)
q = (X

′

qXq)
−1X

′

qz
(s)
q (Mode B)

until convergence of wq

Step 2: Computation of the LVs
ξ̂q ∝Xqwq

Step 3: Computation of the Path Coefficients

βj =
(
Ξ̂′
→jΞ̂→j

)−1

Ξ̂′
→j ξ̂j
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Algorithm 8 Wold’s PLS Path Modeling algorithm

Input: X = [X1, . . . ,Xq . . . ,XQ],C

Output: βj, wq, ξ̂q;

Step 0: Initialization
Step 0.1: wq = w

(0)
q

Step 0.2: v
(0)
q ∝

∑Pq

p=1w
(0)
pq xpq = Xqw

(0)
q

Step 1: Iteration
repeat

Step 1.1: Computation of the inner weights

if q
′
< q then e

(s)
qq′ = f

(
v

(s)
q ,Xqw

(s+1)
q′

)
end if
if q

′
> q then e

(s)
qq′ = f

(
v

(s)
q ,v

(s)
q′

)
end if
Step 1.2: Inner estimation of the LVs
zq ∝ (

∑
q′<q cqq′e

(s)
qq′Xqw

(s+1)
q′ +

∑
q′>q cqq′e

(s)
qq′v

(s)
q′ )

Step 1.3: Computation of the outer weights
w

(s+1)
q = (1/N)X

′

qz
(s)
q (Mode A) or

w
(s+1)
q = (X

′

qXq)
−1X

′

qz
(s)
q (Mode B)

Step 1.4: Outer estimation of the LVs
v

(s+1)
q ∝

∑Pq

p=1w
(s+1)
pq xpq = Xqw

(s+1)
q

until convergence of wq

Step 2: Computation of the LVs
ξ̂q ∝Xqwq

Step 3: Computation of the Path Coefficients

βj =
(
Ξ̂′
→jΞ̂→j

)−1

Ξ̂′
→j ξ̂j
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of both measurement and structural model.

In a good measurement model each MV is well summarized by its own

LV. So, for each block, a Communality index is computed as

Comq =
1

Pq

Pq∑
p=1

cor2
(
xpq, ξ̂q

)
=

1

Pq

Pq∑
p=1

λ̂2
pq (1.32)

that is the average of the communalities between each MV of the q-

th block and ξ̂q. A similar index is the Average Variance Extracted

(AVE) [Fornell & Larcker 1981], that express the part of variance of

the block explained by ξ̂q

AV Eq =

∑Pq

p=1 λ̂
2
pq∑Pq

p=1 var(xpq)
(1.33)

If we work on standardized MVs (var(xpq) = 1), AVE and Commu-

nality coincide for less than the constant 1/Pq.

Goodness of the whole measurement model is measured by Average

Communality index, i.e. the weighted average of all the Q blocks spe-

cific Communality indexes, with weights equal to the number of MVs

in each block

Com =

∑
q:Pq>1 PqComq∑

q:Pq>1

(1.34)

This index does not take into account blocks composed of just one MV

because their communality is systematically equal to 1.
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Goodness of the structural model depends on the portion of vari-

ability of each endogenous LVs explained by the corresponding ex-

ogenous LV, measured by the multiple determination coefficient (R2);

nevertheless, also communalities of the endogenous LVs must be taken

into account. So, for each endogenous LV, the following Redundancy

index measures the portion of variability of MVs, related to an en-

dogenous LV ξj, explained by its latent predictors

Redj = Comj ×R2
j (1.35)

The Average Redundancy index measures the quality of the whole

structural model. It is the average of the redundancies in the model.

If J is the number of the endogenous LVs,

Red =
1

J

J∑
j=1

Redq (1.36)

The global quality of the model is assessed by the Goodness of Fit

(GoF ) index [Tenenhaus, Amato & Esposito Vinzi 2004]. The GoF

is computed as the geometric mean of the Average Communality and

the average R2 = (1/J)
∑J

j=1R
2
j of the J coefficients of determination

coefficients

GoF =
√
Com×R2 (1.37)

A normalized version of the same index has been proposed by Tenen-

haus et al. [2004]. In the normalizedGoF ,
∑Pq

p=1 λ̂
2
pq andR2

j are divided
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for their theoretical maximum. In particular, the sum of the squared

loadings (λ̂pq)
2 can not be greater than the sum of the squared load-

ings (λPCA
pq )2 corresponding to the first Principal Component of block

q; on the other hand, maximum value of R2
j is given by the square

of canonical correlation ρj between ξj and the MVs associated to the

latent predictors explaining ξj.

GoFnorm =

√√√√ 1∑
q:Pq>1 Pq

∑
q:Pq>1

∑Pq

p=1(λ̂pq)2∑Pq

p=1 (λPCA
pq )2

× 1

J

J∑
j=1

R2
j

ρ2
j

(1.38)

This index is bounded between 0 and 1.

Communalities, Redundancies and GoF measure respectively the

capacity of outer, inner and global models in explaining the MVs. By

cross-validating these indexes, it is possible to evaluate the capacity of

inner, outer and global models in predicting the MVs,i.e. in explaining

observations that do not participate to the PLS estimation procedure.

Wold [1982] proposed to use Stone-Geisser’s approach [Stone 1974,

Geisser 1974] to cross validation. This approach follows a blindfolding

procedure: data matrix is divided in G groups and a PLS Path Model

is runG times by excluding each time one of the groups (for a review on

missing data handling in PLS-PM, see Tenenhaus et al. [2005]). Once

model parameters are estimated, any missing data can be predicted

as

x̂pq(−i) = ξ̂q(−i)λ̂pq(−i),
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where ξ̂q(−i) and λ̂pq(−i) are computed in models considering i-th value

(i = 1, . . . , N) of variable xpq as missing data. Assuming that the vari-

ances of MVs are close each other (or simply working on standardized

data), the cross-validated communality is obtained as

H2
q = 1−

∑Pq

p=1

∑N
i=1(xpqi − x̂pq(−i))

2∑Pq

p=1

∑N
i=1 x

2
pqi

(1.39)

On the other side, the cross-validated Redundancy index is

F 2
j = 1−

∑Pq

p=1

∑N
i=1(xpqi − λ̂pq(−i)

̂̂
ξj(−i))

2∑Pq

p=1

∑N
i=1 x

2
pqi

(1.40)

where
̂̂
ξj(−i) is the prediction of ξ̂j(−i) in the structural model computed

without including the i-th observation of xpq. This index is built

under the further assumption that the regression coefficient of
̂̂
ξj in

the regression of xpq on
̂̂
ξj is close to λ̂pqi.

If the cross-validated communality indices for each block are all

positive, their mean can be used to measure the quality of the mea-

surement model. At the same way, the mean of the cross-validated

redundancy indexes can be used to assess the quality of the whole

model.
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1.4.4 Model validation

Since PLS-PM is a Soft Modeling approach, model validation regards

only the way relations are modeled, in both the structural and the mea-

surement model; in particular, the following null hypotheses should be

rejected:

• λpq = 0, as each reflective MV is supposed be correlated to

corresponding LV;

• ωpq = 0, as each LV is supposed be affected by all MVs of its

block;

• βqq′ = 0, as each latent predictor is assumed be causative with

respect to its latent response;

• R2
j = 0, as each endogenous LV ξj is assumed be explained by

its latent predictors;

• cor(ξq, ξq′) = 1, as LVs are assumed to measure concepts that

are different between them. Rejecting this hypotesis means to

assess the Discriminant Validity of the PLS Path Model;

• AV Eq and AV Eq′ ≤ cor(ξq, ξq′), as a LV should be related more

strongly with its block of indicators than with another LV rep-

resenting a different block of indicators.

If some of these hypotheses is not rejected, something was wrong in

choosing variables or in model specification.
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Since PLS-PM avoids any distributional hypothesis on MVs, it is

not possible to extend sample information to population through a

classic inferential procedure. In order to get confidence intervals for

model parameters, resampling techniques, such as Jackknife and Boot-

strap [Efron 1982], can be used. However, when relations between LVs

are modeled in a OLS framework, confidence intervals for parameters

of the structural model can be obtained by means of the usual Stu-

dent’s t test. In the practice, in fact, decision rules yielded by this

parametric test are similar to decision rules yielded by resampling

based tests, as Student’s t test is robust to deviations from normality

hypothesis.

1.4.5 Optimizing criteria

PLS-PM is a very flexible technique. PLS Path models may differ in

number of LVs, in the path linking them, and in the way we calculate

both inner and outer weights. As a consequence, there is not an overall

scalar function optimized by whatever model. However, the stationary

equation for most of the models has been found out in recent years,

showing that PLS-PM generalizes most of the Multivariate Analysis

techniques. In the following, a brief recap of the criteria optimized by

PLS-PM is given, distinguishing between the two-block case and the

multi-block case.
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Two-block case

In a path model with two blocks X1 and X2, PLS-PM algorithm

converges to three different stationary equations [Lyttkens, Areskoug

& Wold 1975], depending on the way the outer weights are calculated

(the scheme used in inner estimation does not affect the results). In

particular:

• if both ω1 and ω2 are estimated with Mode A, the covariance

between the LVs is maximized. As a consequence, PLS-PM algo-

rithm converges to the first component of Inter-battery Analysis

[Tucker 1958] and PLS Regression (see section 1.3.10);

• if both ω1 and ω2 are estimated with Mode B, the correlation

between the LVs is maximized: PLS-PM algorithm converges

to the first component of the Canonical Correlation Analysis

(CCA) [Hotelling 1936];

• if ω1 is estimated with Mode A and ω2 is estimated with Mode

B, the redundancy of X1 on X2 is maximized: PLS-PM al-

gorithm converges to the first component of the corresponding

Redundancy Analysis [Van de Wollemberg 1977, D’Ambra &

Lauro 1982].

Multi-block case

PLS Path Modeling can be also seen as the generalization of a number

of multi-block methods, and in particular:
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• hierarchical model: each block Xq is connected to a super-block

Xq+1 obtained by juxtaposing X1, . . . ,Xq (see figure 1.3). Us-

ing Mode B for all of the blocks in such path model finds out

different approaches to generalization of CCA to multi-block

case. In particular, depending on the inner estimation scheme,

PLS-PM algorithm converges to stationary equations of Horst’s

and Carrol’s Generalized Canonical Correlation analyses ([Horst

1961, Carroll 1968]). On the other hand, using Mode A and path

weighting scheme may lead to different techniques, among them

Multiple Factor Analysis [Escofier & Pagés 1994], depending on

slight transformations of original data. For a a complete review

on multi-block hierarchical case, see Tenenhaus et al. [2005].

• confirmative model: each LV is related to a single block, and

it is connected to all the LVs related to the other blocks (see

figure 1.4). This path model leads to the stationary equations

of Ketterning’s generalized CCA [Kettenring 1971]. For further

interpretations of the multi-block confirmative case, refer toTe-

nenhaus & Hanafi [2009].

• Mode B general model: All outer weights are calculated by means

of Mode B estimation process. Following Glang [1988] and Mathes

[1993], the Lagrange equations associated to the optimization of

the criterion ∑
q 6=q′

cqq′ |cor(Xqwq,Xq′wq′)| (1.41)



1.4. PLS approach to Structural Equation Modeling 55

Figure 1.3: An example of Hierarchical Path Model with three reflective
blocks

with respect to ‖wq = 1‖, give exactly the stationary equation

of PLS-PM algorithm when estimation Mode B is used in all the

blocks and the centroid scheme is used in inner estimation of the

LVs. They showed also that the Lagrange equations associated
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Figure 1.4: An example of Confirmatory Path Model with four reflec-
tive blocks

to the optimization of the criterion∑
q 6=q′

cqq′cor2(Xqwq,Xq′wq′) (1.42)
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with respect to ‖wq = 1‖, give exactly the stationary equation

of PLS-PM algorithm when estimation Mode B is used in all the

blocks and the factorial scheme is used in inner estimation of

the LVs. Hanafi [2007] proved that Wold’s iterative procedure is

monotonically convergent to these criteria.

• new Mode A general model: All outer weights are calculated by

means of the so-called new Mode A estimation process. Mode

A general PLS Path Model seems do not optimize any criterion,

as Krämer [2007] showed that Mode A Wold’s algorithm is not

based on stationary equations related to the optimization of a

twice differentiable function. However, Tenenhaus [2009] has re-

cently extended the results of Hanafi to a slightly adjusted Mode

A in which a normalization constraint is put on the weights. In

particular, he showed that Wold’s procedure, applied to a PLS

Path Model where the new Mode A is used in all the blocks,

monotonically converges to the criterion

arg max
‖wq=1‖

∑
q 6=q′

cqq′|cov(Xqwq,Xq′wq′)| (1.43)

when centroid scheme is used for the inner estimation of the LVs.

Analogously, it converges to the criterion

arg max
‖wq=1‖

∑
q 6=q′

cqq′cov2(Xqwq,Xq′wq′) (1.44)

when factorial scheme is used for the inner estimation of the LVs.
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At the present, hence, if all blocks are modeled in the same way, PLS-

PM seems to be an heuristic only when path weighting scheme is used.



Chapter 2

Theory of Scales of

Measurement and Scaling

2.1 Introduction

2.2 Theory of scales of measurement

Properties of data which have to be analyzed are important because

they determine which mathematical operations one can perform on

the data. This, in its turn, determines which statistics are allowed for

the data.

A scale is an ordered set of values or a set of categories to which

an attribute is mapped. The scale defines the range of possible values

that can be produced by executing the measurement method.
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In its seminal paper on the theory of the scales of measurement,

Stevens [1946] classified measurements into four different types of

scales. Even nowadays, Stevens’ theory is widely adopted, even if

there has been, and continues to be, debate about the merits of his

classification scheme [Velleman & Wilkinson 1993].

In table 2.1 are listed the four type of scales proposed by Stevens:

nominal, ordinal, interval and ratio. Each of these scales is character-

ized by some of the following properties:

• Equality (or Grouping): each number defines a particular group

of units.

• Order (or Magnitude): numbers have an inherent order from

smaller to larger.

• Equal intervals: differences between numbers anywhere on the

scale are the same (e.g., the difference between values 4 and 5 is

the same as the difference between 7 and 8).

• Absolute/true zero: the zero point represents the absence of the

property being measured. This property implies that equalities

between ratios can be assessed.

Here, with the word number we mean a numeric label which may refer

to both a qualitative (category or group) and a quantitative concept

(value). In the following, we review the features of the possible types

of scales, as classified by Stevens.
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Scale Basic empirical
operations

Mathematical
group struc-
ture

Permissible statistics

NOMINAL Determination of
equality

Permutation
group

mode, chi square

ORDINAL Determination of
greater or less

Isotonic group median, percentile

INTERVAL Determination of
equality of inter-
vals or differences

General linear
group

mean, standard deviation,
product moment and rank
order correlations

RATIO Determination of
equality or ratio

Similarity
group

geometric mean, harmonic
mean, coefficient of varia-
tion

Table 2.1: Stevens different type of measurement scales.

• Nominal scale. It is the lowest scale of measurement. Numbers

are assigned to categories (or groups) of units as labels. Which

number is assigned to which group is completely arbitrary: the

scale remains invariant under the general substitution or per-

mutation group. The number just identifies the group to which

units are assigned. Therefore, the only property of the nominal

scale of measurement is equality (or grouping). The only mathe-

matical operation we can perform with nominal data is to count

how many units belong to a group. As a consequence permissible

statistics for nominal data is the mode, at an univariate level,

and chi-squares, at a bivariate level.

• Ordinal scale. It is the most common scale in psychometrics.

Ordinal scale has the property of magnitude (order) as well as

equality. The numbers represent an attribute being measured
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(group membership) and can tell us whether a case has more (or

less) of the observed attribute than another case. The distance

between scale points is not equal. Ranked preferences are an

example of ordinal scales encountered in everyday life. We also

address the concept of unequal distance between scale points.

Because of the property of magnitude (or order), the numbers

are no longer considered arbitrary as they are in nominal scales.

Since any order-preserving transformation will leave the scale

form invariant, the structure of this scale can be called isotonic.

Further statistics, like median and percentiles, can be calculated

on data measured on this scale,

• Interval scale: Equal distances on this scale correspond to equal

quantities of the attribute without the use of 0 values. Interval

scales have the following properties: equality, magnitude, and

equal distance. The equal distance between scale points allows

us to know how many measurement units one case is greater or

smaller from another on the measured characteristic. So, we can

always be confident that the meaning of the distance between 25

and 35 is the same as the distance between 65 and 75. Interval

scales do not have a true zero point; the zero point on an interval

scale is a matter of convention or convenience; this is shown by

the fact that the scale form remains invariant when a constant is

added. The interval scale of measurement permits mathematical

operations of addition and subtraction. Ratios between numbers

on the scale are not meaningful, so operations such as multiplica-
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tion and division cannot be directly carried out. However, ratios

of differences can be expressed; for example, one difference can

be twice another. Hence, we can speak about equal relative dis-

tance (or spacing) property. This property implies that central

tendency indexes can be computed on interval data. Statistical

dispersion can be measured in most of the usual ways, which just

involves differences or averaging, such as range and interquartile

range. Also standardized moments are permissible, since ratios

of differences are meaningful, but one cannot define coefficient

of variation, since the mean is a moment about the origin, unlike

the standard deviation, which is (the square root of) a central

moment.

• Ratio scale: it is the most common encountered in physics. Ra-

tio scale has all of the properties previously listed. These prop-

erties allow us to apply all mathematical operations (addition,

subtraction, multiplication, and division) used in data analy-

sis. The absolute/true zero allows us to know how many times

greater one case is than another. Once such a scale is erected, its

numerical values can be transformed only by multiplying each

value by a constant if we want that scale form remains invariant.

All types of statistics are applicable to ratio scales.

Characteristics of the four measurement scales lead us to divide

scales, from the mathematical-statistical point of view, in two great

classes: non-metric and metric.

We define the variables observed on non-metric measurement scales
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as non-metric variables, and the variables observed on metric measure-

ment scales as metric variables.

Non-metric variables can be unordered (i.e. nominal, for example

religion or marital status) or ordered (i.e. ordinal, for example judg-

ments or Likert scales). The categories of nominal variables have la-

bels while the categories of ordinal variables have ordered labels (such

as low, medium, high, or never, sometimes, always) or numbers. In

this last case, we prefer to speak about pseudo-numbers. From the

mathematical-statistical point of view, these pseudo-numbers are just

labels representing an ordered sequence, as they can not be added or

subtracted. Hence, they can not be regarded as numeric values.

From the mathematical point of view, nominal and ordinal variables

are respectively ordered and ordered sets. Interval and ratio variables,

instead, are metric structures, i.e. sets where notion of distance (met-

ric) between elements of the set is defined. As a consequence, metric

variables have an unit of measurement, while non-metric data do not.

The main implication from the statistical point of view is that all the

standard factorial analyses can be performed only on metric variables.

2.3 The Scaling approach

Once a set of measurements have been made on a particular scale,

it is possible to transform the measurements to yield a new set of

measurements at a different level. As a matter of fact, it is always

possible to transform from a stronger level to a weaker level. For
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example, a temperature measurement in degrees Kelvin is at the ratio

level. If we convert the measurements to degrees Celsius, the level is

interval. If we rank the measurements, the level becomes ordinal.

Scaling techniques allow us to convert a weaker measurement scale

to a stronger measurement scale. Scaling a variable means to provide

non-metric variables with a metric; however, also a metric variable can

be re-scaled in the case where it is provided with a new metric.

We define a non-metric scaling as a scaling which does not depend

on the metric properties of the variable. A metric scaling, instead,

depends on the metric properties of the variable, i.e. is obtained as a

functional transformation of the variable.

In scaling approach, each observed category (which can be repre-

sented by a label, a pseudo-number or a numeric value) of the raw (i.e.

to be scaled) variable x∗ is replaced by a numerical value. The new

scale is an interval scale, independently on the original measurement

scale of x∗.

In the scaling process certain properties of the raw data are pre-

served. The researcher must decide which of the properties of the

old measurement scale have to be retained in the new metric scale.

This means to choose which properties of the original variable must

be preserved in the scaled variable x̃.

It is noteworthy that the scaling level is the level at which a variable

is analyzed, which does not need to retain all of the properties of

measurement level of the variable.

If the researcher wants to preserve in scaled variable all of the
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properties of the raw variable, the scaling level should be chosen in

accordance with the measurement level of the variable. With nominal

scaling level, only the grouping property is preserved, while ordinal

scaling level preserves grouping and order properties, and the linear

scaling level preserves grouping, ordering, and equal relative spacing.

However, the researcher can decide to do not keep all of the prop-

erties of the raw variable in the new measurement scale. This implies

that it is possible choose among different levels of scaling analysis for

the same variable, depending on which properties of its measurement

scale we want to preserve. For example, an interval variable can be

scaled in such a way to retain just its grouping property.

Metrics of new interval scales are constrained depending on the

scale level at which a raw variable is measured and on which of its

properties the researcher wants to preserve. These restrictions, to-

gether with the different levels at which a variable can be scaled, will

be discussed in detail in the next section.

2.4 Scaling levels and corresponding re-

strictions

A variable measured on a nominal scale carries information just about

the group membership: observations sharing the same category belong

to the same group. Hence, a nominal variable can be scaled only at

a nominal level. In order to respect grouping property, the scaled
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variable x̂ must be constrained in such a way that

(x∗i ∼ x∗
i′

)⇒ (x̂i = x̂i′ ), (2.1)

where the symbol ∼ indicates membership in the same category and

x∗ represent a raw variable.

An ordinal variable has a further property, as its categories are

unequivocally ordered. Hence, it can be scaled both at nominal and

ordinal level. If we choice the last option, in order to preserve the order

property, we must add an order constraint which further reduces the

space of all its possible quantifications. Guttman [1968] proposed an

approach providing strictly monotone quantification, such that

(x∗i ∼ x∗
i′

)⇒ (x̂i = x̂i′ ) and (x∗i ≺ x∗
i′

)⇒ (x̂i < x̂i′ ), (2.2)

where symbol ≺ indicates empirical order. These restrictions impose

that each category must be quantified by an individual numerical

value, as well as that different categories must be quantified by dif-

ferent values. A weaker approach to monotonicity, instead, allows

unequal categories to be quantified with the same value, following the

rules:

(x∗i ∼ x∗
i′

)⇒ (x̂i = x̂i′ ) and (x∗i ≺ x∗
i′

)⇒ (x̂i ≤ x̂i′ ). (2.3)

These restrictions correspond to which used in the weak monotonicity

approach by Kruskal [1964b]. They are used also in discrete-ordinal

scaling by de Leeuw, Young & Takane [1976].
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Even a numeric variable can be re-scaled. It can be transformed

regardless of its metric properties and preserving grouping and order-

ing properties, or just grouping property. In these cases it is treated

as it was a non-metric variable, with the number of categories equal

to the number of distinct values of the variable (thus, values of the

numeric variable will also be referred to as category values). Another

possibility is to keep into account in the scaling its metric properties

by imposing some functional restrictions, for example requiring that

scaled and raw variables are related by the following polynomial rule

x̂i =
D∑

d=0

αdx̂i, (2.4)

being D the degree of the polynomial function [Young 1981]. We will

call this level of scaling as functional. A particular case of this scaling

is the linear scaling level, obtained for D = 1.

Another discriminant in data scaling is tie handling. The question

is: should equal categories be quantified by equal values? This ques-

tion regards data measurement process, which is different from their

measurement level. It implies two possible scaling solutions, called by

Kruskal [1964b] primary and secondary approach to the ties. So far

we considered Kruskal’s primary approach, where all observations in

a particular category are represented by the same real number; this

implies that condition 2.1 is always verified. Young [1981] suggests

to use this approach if we want to reflect in the scaling the fact that

variable is measured through a discrete measurement process.
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In the secondary approach to the ties the same category can be

replaced by several values

(x∗i ∼ x∗
i′

)⇒ (x̂i Q x̂i′ ) (2.5)

According to Young [1981], this approach adopts a continuous assump-

tion about the measurement process underlying data. It has been

proposed in several papers [de Leeuw et al. 1976, Young 1981], where

it is called continuous option: a real number selected from a closed

interval of real numbers is assigned to each of the observations within

a particular category. The continuous option is suggestive from the

theoretical point of view, as it include in the model the measurement

process underlying the data. However, in the practice it gives triv-

ial results when (as it usually happens) there are a small number of

categories with respect to the number of the observations [Gifi 1990].

Moreover, in the reality all of the measurements involve a finite num-

ber of categories, because of the finite precision of the measurement

process. Hence, difference in data coming from different measurement

processes, is an issue much more philosophical than concrete.





Chapter 3

A PLS approach to Optimal

Scaling: the Non Metric

PLS methods

3.1 Motivation

As we showed in Chapter 2, PLS methods are component based tech-

niques. Components (or latent variables) are obtained as linear com-

bination of the corresponding block of indicators (or variables). The

main parameters in all PLS models are the weights associated to vari-

ables to build the components. In NIPALS the weight associated to

a generic variable measures the relation between the variable and the

component. In PLS-R it measures the relation between the variable

and a linear combination of the variables in the other space. Finally,
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in PLS-PM weights measure the relation between each manifest vari-

able and a linear combination (the corresponding latent variable inner

estimate) of linear combinations (the outer estimates of connected la-

tent variables) of manifest variables belonging to connected blocks. In

NIPALS, PLS-R and PLS-PM, when we work on standardized vari-

ables, weights are expressed as a function of Pearson product-moment

correlation coefficient. This leads to two basic hypotheses underlying

PLS models:

• Each variable is measured on interval (or ratio) scale.

• Relations between variables and latent constructs are linear and,

as a consequence, monotone.

As a consequence, standard PLS methods can not handle data which

are measured on a scale which has not metric properties.

There exists a simple way to overcome this problem: replacing each

non-metric variable with the corresponding indicator matrix. Most of

the softwares currently used to perform PLS analyses use such a coding

in order to handle categorical variables; however, in author’s opinion,

this is not an effective solution to the problem (see section 3.2).

In this chapter an alternative approach to handling non-metric vari-

ables in PLS framework is proposed: the Optimal Scaling (OS). OS

has been extensively proposed in multidimensional data analysis to

generalize MDA methods in a way that they can handle variables

measured on a variety of different scales (see section 3.3.1). In all of

these methodology, OS is implemented by Alternating Least Squares
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algorithms [de Leeuw et al. 1976]. In the next, it will be proven that

also properly adjusted PLS algorithms can be used as OS algorithms.

3.2 Drawbacks of binary coding in PLS

framework

A simple approach to cope with the quantification problem, which can

be easily used in whatever multidimensional data analysis method, is

to replace each non-metric variable x∗ with the corresponding N by

K indicator matrix X̃. X̃ has a row for each of the N observations

and a column for each of the K categories; its element x̃i,k equals the

unit if the i-th observation belongs to the k-th category and it is null

otherwise.

PLS are strongly component based methods. PLS components are

always built in order to well represent the variables, because the funda-

mental task of PLS is exploring data. The exploration of the relations

between latent concepts makes sense in PLS framework only if they ef-

fectively summarize the variables. Starting from these considerations,

it is easy to understand why, in author’s opinion, the main outputs of

any PLS algorithm are the weights assigned to each variable to build

the component.

Binary coding presents some relevant drawbacks which affect the

interpretability of the resulting weights. First of all, a binary coded

gives up the idea of the variable as a whole, while it considers categories

as they were variables in themselves. As a consequence, whatever PLS
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analysis on binary variables yields a weight for each category, and not

for the whole categorical variable. PLS weights measure the intensity

of the relation between indicators and latent constructs. Using the

binary coding, instead, such weights measure the impact of each in-

dividual category on the latent construct; this makes it impossible to

evaluate the importance of the whole variable in the model, as well

as to compare the weight of a variable with the ones of the other

variables.

Secondly, the binary coding affects the dimensionality of the data

matrix, as each categorical variable is coded in as many binary vari-

ables as the number of its categories. Hence, the number of categories

affects the relative impact of the categorical variables with respect to

the other variables. Moreover, if the number of categories is large,

binary coding generates sparse matrices.

Finally, the weight of binary variable representing a category mainly

associated to central values of the corresponding latent variable (or

component) score distribution is systematically underestimated. In

fact, such binary variables are always linked to the latent construct by

a non-monotonic relation. This type of relation can not be reflected

in the weights associated to these variables, as they are expressed in

terms of linear correlation coefficient.

These considerations lead us to discard this approach and to pro-

pose the OS approach in order to handle non-metric variables and

investigate non linearity in PLS framework.
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3.3 Optimal Scaling

According to Young [1981], “Optimal scaling is a data analysis tech-

nique which assigns numerical values to observation categories in a

way which maximizes the relation between the observations and the

data analysis model while respecting the measurement character of the

data”.

Hence, in order to define a scaling process as optimal, the resulting

scaling must be:

• suitable, as it must respect the constraints defining which among

the properties of the original measurement scale we want to pre-

serve.

• optimal, as it must optimize the same criterion of the analysis

in which the Optimal Scaling is involved.

Optimal scaling means to apply ad hoc scaling functions to non-

metric variables in such a way to transform them in numerical vari-

ables. This process is usually called quantification. However, optimal

scaling can be applied also to numerical variables, in order to detect

and handle non-linear relations. In this last case, it is more correct to

speak about transformation of numerical variables.

Optimal scaling methods are able to handle variables regardless of

their measurement scale. Non-metric variables, in fact, are quantified

in such a way that they can be analyzed as they were measured on an

interval scale. Metric variables, instead, can be properly transformed

in order to investigate non linearity in data.
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3.3.1 Alternating Least Squares approach to Op-

timal Scaling

OS has been extensively implemented in multivariate analysis by it-

erative algorithms of the family Alternating Least Squares (ALS) [de

Leeuw et al. 1976, Young 1981, Gifi 1990]: for this reason, these algo-

rithms are called also ALSOS (Alternating Least Squares approach to

Optimal Scaling) [Young 1981]. Each ALSOS algorithm optimizes an

objective loss function by using an algorithm based on the ALS and

OS principles.

The OS principle involves viewing observations as categorical, and

then representing each observation category by a parameter. This

parameter is subject to constraints implied by the measurement char-

acteristics of the variables.

In ALS approach all of the parameters are divided into two mutually

exclusive and exhaustive subsets: the parameters of the model and the

parameters of the data (or scaling parameters). Then, the loss function

is optimized by alternately optimizing with respect a subset, then the

other.

In particular, the ALSOS flow proceeds as follows: least squares

estimates of model parameters are obtained while assuming that the

scaling parameters are constants. These least squares estimates are

defined conditional, since the least squares nature is conditional on

the values of the parameters in the other subsets. Successively, con-

ditional least squares estimates of scaling parameters is obtained for

fixed model parameters. This ALS procedure is iterated until conver-
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gence.

The ALSOS approach has been applied to the most various fields

of multivariate data analysis: analysis of variance [de Leeuw et al.

1976, Gifi 1990], multiple regression and canonical correlation anal-

ysis [Young, de Leeuw & Takane 1976], discriminant analysis [Gifi

1990], principal component analysis (see section 4.3) [Young, Takane

& de Leeuw 1978, de Leeuw & Van Rijckevorsel 1980, Gifi 1990],

path analysis [Gifi 1990], common factor analysis [Takane, Young

& de Leeuw 1979] and multidimensional scaling [Takane, Young &

de Leeuw 1977].

3.4 Partial Least Squares for Optimal Scal-

ing

Quoting Young [1981], “Certain strong correspondences exist between

an ALSOS procedure and the NILES approach developed by Wold and

Lyttkens .. The main difference between these metric algorithms and

the nonmetric ALSOS algorithms is the optimal scaling features of

the ALSOS algorithm. .. The scaling feature permits the analysis

of qualitative data, whereas the previous procedures can only analyze

quantitative data”.

The computational core of any PLS method, as well as the one of

ALSOS algorithms, is based an iterative least squares procedure used

to compute model parameters. In particular, in NIPALS approach

to PCA, PLS iteration is used for analyzing the covariance within a
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block of variables; in PLS-R it is used to analyze the cross-covariance

between two blocks of variables; in PLS-PM, PLS iteration is used to

analyze the cross-covariance among different blocks of variables. All

these algorithms exploit the PLS iteration in order to handle mul-

ticollinearity, missing data, landscape matrices and to explore data

regardless of distributional hypothesis.

In the following we will investigate a peculiarity of PLS iteration

which has not been fully exploited yet. We refer in particular to the

potentiality of PLS algorithms to yield data scaling with optimal fea-

tures.

In order to exploit this potentiality we propose to adjust the PLS

iteration to device an optimal scaling procedure, calculating iteratively

both scaling and model parameters. This new PLS procedure leads to

a new class of algorithms which implement methods that generalize

the standard PLS methods. We call them Non-Metric PLS (NM-

PLS) methods [Russolillo & Trinchera 2009a], because they are able

to provide data with a new metric structure, which does not depend on

the metric properties of the data. In other words, NM-PLS methods

yield a metric to non-metric data, and a new metric to metric data,

making relationships between variables and latent constructs linear,

as required by the hypothesis of standard PLS models (see section

3.1). These methods could be named non-linear PLS methods as well,

since they discard the intrinsic linearity hypothesis in standard PLS

methods. However, by naming them Non-Metric PLS methods, we

preferred to highlight their ability to work just on non-metric features
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of data.

NM-PLS methods overcome the limits of PLS techniques remarked

in section 3.1. In fact, they are able to quantify non-metric variables, in

such a way to make possible analyses by means of standard statistical

indexes; this allows us to analyze non-metric variables together with

variables measured at a higher scale level. Moreover, since in NM-PLS

methods the variables are scaled in a way to linearize their relations

with latent constructs, NM-PLS methods are not affected by violations

of linearity hypothesis intrinsic in each PLS model.

In the following section, the optimality of scalings provided by NM-

PLS methods will be discussed. In particular, NM-PLS scaling will be

proven to be suitable, as it respect the constraints depending on which

ones we want to preserve among the properties of its measurement

scale, as well as optimal, as it optimizes the same criterion of the

analysis in which the Optimal Scaling is involved.

3.4.1 Optimal scaling with respect to a latent cri-

terion

According to Hayashi [1952], methods of quantification can be divided

in two main classes [Tanaka 1979]. The first class contains the methods

for the case where an external criterion is present. These methods are

aimed to the prediction of the external criterion or to the analysis

of the effects of factors. The other class contains the methods for

the case where no external criterion is present. These methods are

used to construct a spatial configuration so as to grasp the mutual
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relationships of the data.

In PLS framework, like in all component-based methods, there is

not an external criterion to which to relate the quantifications. So,

the non-metric approach to PLS falls in the second class of Hayashi’s

methods. However, NM-PLS methods face the problem from another

point of view: optimal quantifications (scalings) are found out with

respect to a latent construct, that we will call Latent Criterion (LC).

The LC is an unknown vector of order N , centered by construction.

For each PLS method different LCa are considered, depending on the

way the weights linking each variables to the corresponding component

are calculated.

In NIPALS, the weight of variable xp is calculated in such a way to

maximize the squared correlation of the variable with a linear combi-

nation t of all the variables (see section 1.2). Hence, in NIPALS, the

LC to keep into account in the scaling process is the score vector t1.

In PLS-R, for each variable, the corresponding weight is calculated

in such a way to maximize the squared correlation with a linear com-

bination of the variables belonging to the other space. To be clear, the

weight of xp maximizes the squared correlation of the variable with

u, while the weight of yr maximizes the squared correlation of the

variable with t (see section 1.3). As a consequence, in PLS-R we have

to keep into account two LCa: u1 for the predictors and t1 for the

responses.

In Mode A PLS-PM, the weight of a variable xpq maximizes the

squared correlation of the variable with a linear combination zq of
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the variables belonging to connected blocks (see section 1.4). So, in a

PLS-PM framework, different LCa zq have to be considered for each

block of variables.

In the next, we will refer to all of these LCa with the generic no-

tation γ, in order to find out the general criterion optimized by the

weight w corresponding to a generic variable x in all the above cited

algorithms, that is

cor2(x,γ) (3.1)

NIPALS, PLS-R and Mode A PLS-PM work on a set of raw vari-

ables, measured on various measurement scales. It is possible to show

(see chapters 4, 5 and 6) that in all of NM-PLS methods the optimality

condition of the scaling with respect to the model criterion is satisfied

if, for each raw variable, the resulting quantified variable x̂ optimizes

the criterion

cor2(x̂,γ) (3.2)

under the constraints defined by the scaling level of the analysis chosen

for x∗ (see section 2.4).

NM-PLS methods conceive four levels of scaling analysis: nominal,

ordinal, functional and linear. The linear scaling level just implies the

standardization of the raw variable, like in ordinary PLS methods. In

the next (section 3.4.3) it will be explained why we consider the linear

scaling level as a particular case of the functional one. To each of these
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level implies an ad hoc scaling function, maximizing criterion 3.2. A

scaling function Q() is a real function applied to x∗ which generates

a numeric value (i.e. the optimally scaled value) x̂i for each observa-

tion. In the following, we will describe the optimal scaling functions

used in NM-PLS methods both for non-metric and metric variables.

These functions have already been proposed by [Young 1981] in AL-

SOS framework for data coming from a discrete measurement process.

3.4.2 Optimal scaling functions for non-metric vari-

ables

In NM-PLS methods, a non-metric variable can be analyzed at a nom-

inal or at an ordinal scaling level.

If we want to analyze x∗ at a nominal scaling level, we must find,

among all its possible quantifications, the one the most correlated to

γ, under the grouping constraint.

From the geometrical point of view, the scalings of the K categories

of x∗ satisfying the grouping constraint are the points in the space

spanned by the columns of the corresponding indicator matrix X̃.

This space is a closed convex cone, denoted Cn1, in <N . The nominal

quantifications of x∗ are geometrically represented by the rays of Cn.

In fact, any vector-ray in the cone respects the constraint for which

observations belonging to the same group assume the same value.

Following Hayashi’s first quantification criterion, the optimal ray is

1A set C ⊂ <N is called a cone if 0 ∈ C and qx ∈ C for every q ≥ 0 and every
x ≥ C. For further deepening on convex spaces, see Barvinok [2003].
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the closest one to the LC γ, that is the orthogonal projection of γ on

the cone

Q̃(x∗,γ) : x̂ = X̃(X̃
′
X̃)−1X̃

′
γ. (3.3)

The resulting scaling values for the categories of x∗ are the K least

squares regression coefficients of X̃ on γ, which correspond to the

averages of γ conditioned to x∗ categories.

Moreover, the quantified variable contains the LC values predicted

by the regression of γ on X̃. The determination coefficient of this

regression equals the squared Pearson’s correlation ratio between the

original categorical variable and the LC. Hence, the relation between γ

and x∗ in terms of linear correlation can be expressed as the Pearson’s

correlation ratio ηγ|x∗

corγ, x̂) = ηγ|x∗ . (3.4)

In the next, this equivalence will serve to give an nice interpretation

of weights of quantified variables in NM-PLS methods.

If x∗ is an ordinal variable, and we want analyze it at an ordinal

scale level, we must search for our quantifications in the conic subspace

of Co respecting the constraint 2.3.

From the operational point of view it would seem to be a better

procedure to search for a subset
˜̃
X of X̃ for which order constraints

are respected. This subset represent the conic space Co. The ray of this

cone the closest to γ is the projection of γ into
˜̃
X. This means that
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the quantified variable x̂ is the vector of the predictions of γ elements

obtained by regressing the LC on
˜̃
X. Hence, following Young [1975],

the ordering scaling function is

˜̃Q(x∗,γ) : x̂ =
˜̃
X(
˜̃
X
′˜̃
X)−1˜̃X ′γ, (3.5)

where
˜̃
X is build by Kruskal’s secondary least squares monotonic

transformation [Kruskal 1964a]. The vector of the regression coeffi-

cient (
˜̃
X
′˜̃
X)−1˜̃X ′γ contains the unnormalized optimal scaling values

which preserve the order of the categories of x∗, as required by the

condition 2.3.

In NM-PLS methods, Kruskal’s up-and-down block algorithm (also

known as pool-adjacent-violators algorithm) [Kruskal 1964b] is imple-

mented in order to obtain
˜̃
X. This algorithm consists of a suite of

regressions of γ on indicator matrices. In the first regression the in-

dicator matrix is X̃. Then, another indicator matrix is obtained by

merging adjacent columns of X̃ representing categories whose quan-

tification does not respect the order. In the following step of the

algorithm γ is regressed on this matrix. This procedure is repeated

until the regression coefficients respect the monotonicity condition.

Kruskal’s algorithm implements the monotonic regression of γ on

x∗. The residual variance of the regression is, as a consequence, an

index of departure from monotonicity. In fact, it is equal to Kruskal’s

raw STRESS index [Kruskal 1964a]. This leads us to state that corre-

lation between γ and x̂ can be calculated as a function of STRESS. In
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particular, if an increasing monotone regression is implemented, then

cor(γ, x̂) =
√

1− STRESS2
(γ,x∗) (3.6)

while, if a decreasing monotone regression is implemented, then

cor(γ, x̂) = −
√

1− STRESS2
(γ,x∗), (3.7)

where notation STRESS indicates the normalized STRESS index pro-

posed by Kruskal [1964a].

Hence, cor(γ, x̂) can be interpreted as a measure of the approaching

to monotonicity of the relation between x∗ and the LC; it equals the

unity if it exists a perfect increasing monotonicity and it is equal to

-1 when it exists a perfect decreasing monotonicity.

3.4.3 Optimal transformation functions for met-

ric variables

As previously discussed, (see section 2.4), a raw numerical variable x∗

can be handled both at a non-metric and a non-linear scaling level. In

the first case, we consider the different values assumed by the variable

as distinct categories, and we use the scaling functions 3.3 and 3.5. In

the latter, the different values assumed by the variable are considered

as numeric values and non-linear relations between x∗ and γ can be

investigated by projecting γ into a particular conic space.

Let’s suppose to know the degree of a polynomial relation between
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the variable and the LC. The aim is to find an optimal transformation

constrained to such functional restriction. Following Young [1981],

optimal parameters for the polynomial transformation are found by

means of the projection of γ in the conic space Cp spanned by the

columns of matrix Ẋ. Matrix Ẋ is built with a row for each observa-

tion and with D + 1 columns, each column being an integer power of

the vector x∗. The first column is the zero-th power (that is, all ones),

the second one is the first power and so on until the last column, which

is the D-th power of x. Hence, the transformation function yielding

optimal scaled variables will be

Q̇(x∗,γ) : x̂ = Ẋ(Ẋ
′
Ẋ)−1Ẋ

′
γ (3.8)

If we suppose that the variable and the LC are linked by a linear

relation, we have just to pose D = 1.

In the next chapters, we will show how to embed scaling func-

tions 3.3, 3.5 and 3.8 in NM-NIPALS, NM-PLSR and NM-PLSPM

algorithms, as well as how to interpret the properties of these scaling

function in a PLS framework.



Chapter 4

A Non-Metric PLS

algorithm for Principal

Component Analysis

4.1 Introduction

Among the PLS techniques reviewed in chapter 1, NIPALS (see section

1.2) is the only which is not a methodology in itself, but an algorithmic

tool born to implement a Principal Component Analysis (PCA) in

presence of missing data without an a priori imputation and avoiding

to work on the correlation matrix.

In literature there exist a huge suite of methods performing non-

metric PCA. All these methods are implemented by ALS algorithm or

gradient methods.
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Here a new PLS method for non-metric PCA, called Non-Metric

NIPALS (NM-NIPALS) is proposed. It represents the statistical base

on which more complex Non-Metric PLS methods lie. Moreover, just

because of the exstensive literature, NM-NIPALS can be compared

to the other well known methods, in order to assess its theoretical

consistency. This can not be done with non-metric approaches to PLS

Regression and PLS-PM, since they are methods in itself, maximizing

specific criteria.

In this chapter the history (section 4.2) and the methodology (sec-

tions 4.3 and 4.4) of the multivariate descriptive analysis of categor-

ical variables by non parametric techniques will be reviewed. Then,

the Non-Metric NIPALS will be presented (section 4.5), its properties

investigated (section 4.5.1 and section 4.5.2), and its connections to

other non-metric approaches to PCA will be discussed (section 4.5.3).

4.2 Multivariate descriptive analysis of

categorical variables: an historical re-

view

Multivariate descriptive analysis of two or several categorical variables

has a long tradition in statistical literature. Early work on multidi-

mensional quantification of categorical data can be traced back to

Richardson & Kuder [1933]. They used a method that was succes-

sively called by Horst [1935] method of the reciprocal averages in order
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to build a rating scale of employees, introducing the idea of scalig

categories and individuals, both of them connected with averaging

relations. In the same year the Simoultaneous linear regression ap-

proach for the quantitative analysis of a two way table was proposed

by Hirschfield [1935]. Some year later, basic principles of both these

approaches were rediscovered by Fisher [1940] as Discriminant Anal-

ysis methods. Later, the problem was quite completely formalized by

Guttman [1941], who successively introduced the concept of Scalogram

Analysis [Guttman 1950].

In the 1950s Hayashi launched a series of studies on the theory of

quantification, where he dealt with symmetric data matrices [Hayashi

1950], non-symmetric matrices [Hayashi 1952] and multidimensional

tables [Hayashi 1954].

The term Optimal Scaling was introduced by Bock [1960] to unify

“all the approaches which assign numerical values to alternatives, or

categories, so as to discriminate optimally among the objects ... in

some sense. Usually it is the Least Squares sense, and the values are

chosen so that the variance between objects after scaling is maximum

with respect to that within objects”.

In the same decade the Benzécri’s French school of Analyse des

Données (data analysis) was born. Benzécri developed a new ap-

proach to the optimal scaling, called Correspondence Analysis, pin-

pointing the geometrical interpretation and visualization of the out-

puts [Benzécri 1973]. A non-symmetrical approach to correspondence

analysis was proposed by Lauro & D’Ambra [1984].
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An alternative approach to the problem was yielded by the Homo-

geneity Analysis, deceived by the de Leeuw’s datatheory group of the

Leiden University [Michalidis & de Leeuw 1998].

The 1970s saw an increasing interest in the joint analysis of vari-

ables at different scale levels. Kruskal & Shepard [1974] proposed a

non-metric approach in order to bypass the linearity hypothesis in fac-

tor analysis. Nishisato & Arri [1975] yielded a contribute in handling

partially ordered variables. De Leeuw, Young and Takane published

a suite of papers in which proposed non-metric methods and soft-

wares for implementing almost all the multivariate methods (analysis

of variance, principal component analysis, canonical correlation anal-

ysis and multidimensional scaling among them) on variables measured

at different scale levels by ALS algorithms (see section 3.3.1). A sim-

ilar technique for implementing PCA on both nominal and numeric

variables was presented by Tenenhaus [1977].

In the following years the challenge was summing up all the ap-

proaches, by discussing their similarities and differences. Tenenhaus

& Young [1985] synthesized the different methods for the analysis of

a block of nominal variables. Young [1981] reviewed the ALS ap-

proaches to optimal scaling. Gifi [1990] made the same by resuming

the large contribute of the data theory group of the Leiden Univer-

sity on the issue. Other overviews of Correspondence Analysis are

by Greenacre [Greenacre 1984, Greenacre 2007] and Murtagh [2005],

while Nishisato reviewed similar issues with the name of Dual Scaling

[Nishisato 1980, Nishisato 2007].
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Non-parametric methods allowing the quantitative analysis of a

block of non-metric variables by means of a suitable scaling (or quan-

tification) of their categories will be review in the next section. Fol-

lowing Nishisato [1980], we will call them Dual Scaling (DS) methods.

4.3 Dual Scaling techniques for the mul-

tivariate descriptive analysis of cate-

gorical variables

Let N units (observations) be described by a set of P categorical

variables x∗1 . . .x
∗
p . . .x

∗
P with K1 . . . Kp . . . KP categories, and with∑

pKp = K. We denote pk the generic category k of the variable p.

The generic element x̃ikp of the N by Kp indicator binary matrix X̃p

associated to x∗p is one if individual i is in category k of variable p

and zero otherwise. The N by K indicator matrix X̃ = [X̃1 . . . X̃P ]

is obtained by horizontally adjoining the several X̃p.

Any DS method looks for multiple orthogonal quantifications (scal-

ings) for each observation and each category of X̃ (from here the name

of Dual Scaling proposed by Nishisato [1980]). The scaling value φpk

of category pk is a real number associated with the category. The

numerical scaled variable x̂p is the quantification of the variable x∗p
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induced by the Kp scale values φpk, elements of the vector φ(p)

x̂p =

Kp∑
i=1

φpkx̃pk = X̃pφ(p) (4.1)

The scaling vector of all the K categories is denoted φ′ = φ′(1) . . .φ
′
(P ).

Finally, the scaling ψ of units is defined by associating a real number

ψi to the unit i.

The DS problem consists in searching for optimal solution for ψ

and φ. It has been approached from a number of different point of

view along the previous century. Here, these approaches are divided

in three principal groups: the Classic approach, the French approach,

and the Dutch approach, yielding substantially the same results, or

results very closely related.

4.3.1 The classical approach

The classical approach to DS, introduced by Richardson & Kuder

[1933] and fully formalized by Guttman [1941], involves the concept

of Internal Consistency of the scaling of categories and individuals.

Internal Consistency means that:

• Globally, over the individuals, the optimal scale values of cate-

gories associated with each unit vary as little as possible;

• Globally, over the categories, the optimal scale values of units

sharing the same category vary as little as possible.
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More formally, Guttman’s criterion consists in finding out, on a

hand, a category scaling vector φ maximizing

φ′X̃
′
X̃φ

Pφ′Dφ
(4.2)

under the normalization requirements

1′KDφ = 0 and
1

NP
φ′Dφ = 1, (4.3)

where D = diag(X̃
′
X̃) is the diagonal matrix of the frequencies npk,

and 1′K a vector of K ones.

On the other, an unit scaling vector ψ maximizing

ψ′X̃DX̃
′
ψ

Pψ′ψ
(4.4)

The optimal scaling values are respectively the eigenvectors φ1 and

ψ1 corresponding to the dominant (non trivial) eigenvalue of the ma-

trices

(1/P )D−1X̃
′
X̃ (4.5)

and

(1/P )X̃D−1X̃
′

(4.6)

Each of these two matrices have identical non zero eigenvalues, all of
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which are between zero and one. The number of positive common

eigenvalues equals the minimum of N and (K − P ).

A second pair of scaling vectors (quantifications) can be obtained

by maximizing 4.2 and 4.4 under the further restrictions

φ′Dφ1 = 0 and ψ′ψ1 = 0 (4.7)

The solutions to this optimization problem are the eigenvectors φ2 and

ψ2 associated to the second largest non trivial eigenvalues of matrices

4.5 and 4.6.

At the same way it is possible to extract successive quantifications

ψh and φh, linked by the following transition relations

ψh = µ
−1/2
h (1/P )X̃φh (4.8)

and

φh = µ
−1/2
h D−1X̃

′
ψh, (4.9)

where µh is the h-th non-zero eigenvector associated to both matrices

4.5 and 4.6.
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4.3.2 The French approach

The French approach to DS aims to find a category scaling vector φ

maximizing

var

 1

P

P∑
p=1

Kp∑
kp=1

φpkxpk

 (4.10)

This criterion can be maximized in two different ways.

The first is a Principal Component Analysis (PCA) on a suitable

transformation of X̃ [Burt 1950, Benzécri 1973]. Denoting Oc the

centering operator (1/N)(IN −INI
′
N), ψh can be obtained as the left

eigenvector corresponding to the h-th largest singular value of

(1/N)OcX̃D1/2. (4.11)

Moreover, if we define ah the right eigenvector corresponding to the

h-th largest singular value of the same matrix, ψh can be obtained as

ψh ∝D−1/2ah (4.12)

where the symbol ∝ indicates that the right part of the equation must

be normalized to unitary norm.

Another way to maximize the criterion 4.10 is to implement a Gen-

eralized Canonical Correlation Analysis (GCCA) to the P blocks of

indicator matrices X̃p [Bouroche, Saporta & Tenenhaus 1975]; From

GCCA point of view, we wish to maximize the sum of the squared
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correlations between the scaled variables and the scaling of the units.

Hence, the DS problem can be reformulated as the research of a N by

H matrix of observation scalings (components) Ψ = [ψ1 . . .ψh . . .ψH ]

and a K by H matrix of category scalings Φ = [φ1 . . .φh . . .φH ] max-

imizing

1

P

H∑
h=1

P∑
p=1

cor2(X̃pφ(p)h,ψh) (4.13)

under the constraints

Φ′Φ = I and Ψ′Ψ = I,

where I indicates the identity matrix and X̃pφ(p)h is the scaling of

variable xp yielded by the h-th component.

Criterion 4.13 is maximized with respect to φ(p)h for

φ(p)h = (X̃
′
pX̃p)−1X̃

′
pψp, (4.14)

which implies that, for these values of φ(p)h,

cor2(X̃pφ(p)h,ψh) = (1/N)ψ′pX̃p(X̃
′
pX̃p)−1X̃

′
pψh (4.15)

and:

φh = D−1X ′ψh (4.16)
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Therefore, criterion 4.13 can be rewritten as

1

NP

H∑
h=1

ψ′X̃D−1X̃ψ (4.17)

and it is maximized by means of eigenvectors associated with the eigen-

values of 4.6.

The link between DS and GCCA allows us to apply to DS an inter-

esting result derived by Kettenring [1971] in the context of Carroll’s

GCCA [Carroll 1968]: if we use normalized scaled variables, ψ1 is the

first normalized principal component of X̂.

A further interpretation of criterion 4.13 in terms of sum of corre-

lation ratios was provided by Saporta [1980], who noticed the equality

cor2(X̃pφ(p)h,ψh) = η2
(x∗p,ψh), (4.18)

where η denotes the Pearson’s correlation ratio, i.e. the part of the

variance of ψh explained by the categories of x∗p. As a consequence,

the factors of DS are also solution of the problem

1

P

H∑
h=1

P∑
p=1

η2(x∗p,ψh) (4.19)

under the constraint Ψ′Ψ = I.
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4.3.3 The Dutch approach

Under the pseudonym of Albert Gifi, a group led by Jan de Leeuw,

was involved with an important development of DS. This group mostly

explored the use of DS as a quantification technique embedded in

classical multivariate analysis to achieve nonlinear generalizations of

multivariate methods. The work of the Gifi group is amply described

in Gifi [1990].

According to Gifi [1990], it is possible to use two different ap-

proaches to multivariate descriptive analysis of categorical variables:

HOMALS (HOMogeneity analysis by Alternating Least Squares) and

PRINCALS (PRINCipal component analysis by Alternating Least

Squares). HOMALS [Gifi 1990] uses the multiple approach, in which

multiple transformations for each variable are found. PRINCALS [de

Leeuw & Van Rijckevorsel 1980] uses the single approach, in which

we look for a single transformation for each variable. In the next we

focus on HOMALS, while PRINCALS approach will be deepened in

the next section.

HOMALS finds multiple sets of rank-one quantifications (i.e. the

best approximation in an unidimensional space) Φ1 . . .ΦH for each

variable x∗p.

Let Φ(p) be the Kp by H sub-matrix of the optimal scalings of

the categories of variable X∗p induced by the H observation scalings;

HOMALS algorithm minimizes the loss function

1

P

∑
p

SSQ(Ψ− X̃pΦ(p)) (4.20)
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where the operator SSQ() denotes the sum of the squares of the ele-

ments of the matrix (or vector) to which it is applied. Loss function

4.20 is minimized under the constraints 1′NΨ = 0 and Ψ′Ψ = NI

(the observation scalings must be centered and normalized to unitary

variance) by means of a three-step Alternating Least Squares (ALS)

algorithm.

In the first step, criterion 4.20 is minimized with respect to Φ(p) for

fixed Φ. The optimal Φ(p) is

Φ(p) = (X̃
′
pX̃p)−1X̃pΨ (4.21)

In the second step, 4.20 is minimized with respect to Ψ for fixed

Φ(p). The optimal Ψ is obtained as

Ψ =
1

P

∑
p

X̃pΦ(p) (4.22)

In the third step Ψ is centered and orthonormalized following the

Gram-Schmidt procedure [Golub & Loan 1996].

The ALS algorithm iterates these three steps until convergence.

It is possible to show (see Gifi [1990]) that also HOMALS optimal

observation scaling correspond to the left eigenvectors of the Singular

Value Decomposition of 4.11.
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4.4 The non-metric approach to PCA

Principal Component Analysis (PCA) [Hotelling 1933] postulates that

an N by P matrix X of N observations on P variables can be approx-

imated by the bilinear structure TP ′ of rank H obtained as the matri-

cial product of a N by H component score matrix T = [t1 . . . tH ] and

a P by H loading matrix P = [p1 . . .pH ]. For identification purposes,

T and P are constrained such that T ′T = NI and P ′P is diagonal.

Hotelling’s method find finds T and P such that

1

P

∑
p

∑
i

(xip − t′ipp)2 (4.23)

is minimized under a prescribed number of components.

With notations t′i and pp we denote respectively the i-th row of the

matrix T intended as a H order row vector and the p-th row of the

matrix P intended as a H order column vector. Note that quantity

4.23 may be expressed also as

1

P

∑
p

SSQ(xp − Tpp) (4.24)

The purpose of non-metric PCA is to apply certain non-linear trans-

formation (or scaling) functions to X-variables, in order to obtain a

new set of transformed variables X̂ that minimizes the loss function

1

P

∑
p

SSQ(x̂p − Tpp) (4.25)
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This quantity is a function of the model parameters (component scores

and loadings) and the scaling parameters, i.e. the vectors q1 . . . qP of

the category scaling values of each variable, such that X̃pqp = x̂p.

It’s noteworthy that in this and in the following sections we denote

th the generic score vector, whereas we noted ψh the generic units

scaling vector in previous section. This change in notation is due to

the fact that we prefer to keep traditional PCA notations, in order

to yield a clearer comparison between standard and non-metric PCA

methods.

Differently from the DS techniques, that require for each category

of the p-th variable multiple quantifications Φ(p)k (one for each com-

ponent), in non-metric PCA methods, for each category pk we have a

single quantification qpk.

Another important difference is that while ordinary PCA and DS

are nested methods, these non-metric PCA methods are not. This

means that if one requires a h-dimensional solution and then a second

h′-dimensional solution, with (h′ > h), then the first h dimensions

of the latter solution are not necessary identical to the h-dimensional

solution.

An additional feature of non-metric PCA methods is that their so-

lutions are not eigenvalue problems. So, this methods are implemented

by iterative procedures such as ALS algorithms or gradient methods.

Unfortunately, these algorithm may converge to local optima if the

initialization of the parameters is not properly chosen.

In 1970’s a number of methods and respective softwares were born
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to implement non-metric PCA. The three more important approaches

are the non-metric PCA by Kruskal and Shepard, PRINCIPALS by

Young, Takane and De Leeuw, PRINQUAL by Tenenhaus and PRIN-

CALS by De Leeuw and Van Rijckevorsel. In the next, these methods

will be briefly reviewed.

4.4.1 Kruskal&Shepard’s non-metric PCA

J.J Thurstone, the father of the theory of multiple factors [Thurstone

1931], wrote that “one of the principal assumptions underlying facto-

rial theory is that the scores are monotonic increasing or decreasing

scores functions of the scores on the primary factors or parameters”,

and indeed that the further assumption of linearity was adopted only

“as a first approximation”. Hence, “it would probably be ... profitable

to develop non-metric methods of factor analysis” [Thurstone 1947].

Starting from this idea and from their previous studies on ordinal

data [Kruskal 1964b, Kruskal 1964a, Shepard 1966], Kruskal & Shep-

ard [1974] developed a non-metric variant of linear factor analysis.

This method keeps the monotonicity assumption cited by Thurstone,

but ignores the further assumption of linearity. It is based on normal-

ized STRESS, which measures the departure from monotonicity

STRESS =

√√√√ 1

P

∑
p

SSQ(Tpp − x̂p)

SSQ(x̂p − (1/N)
∑

i x̂pi)
(4.26)

This function must be minimized under the constraints T ′T = NI
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and p′ppp = 1.

Given these constraints, except irrelevant details, STRESS function

equals 4.25, and can be interpreted as a normalized loss function,

defined by the variance of the residuals divided by the variance of the

transformed data.

The method is implemented in two steps; firstly, for fixed T and P ,

optimal x̂p are found performing a least squares monotone regression

[Kruskal 1964b] for each variable p. Then, for fixed values of x̂p,

STRESS is minimized with respect to T and P using the method of

gradients (see e.g. Kelley [1962]).

4.4.2 PRINCIPALS

PRINCIPal component analysis by Alternating Least Squares (PRIN-

CIPALS) [Young et al. 1978] has been the first procedure able to ex-

tend PCA to the case where the variables have a variety of measure-

ments charateristics. Some may be nominal, others ordinal and the

rest interval. Furthermore, some may be discrete and others continu-

ous.

PRINCIPALS optimizes the loss function 4.25, formulated as

tr(X̂ − TP ′)(X̂ − TP ′) (4.27)

under standardization contraints x̂′p1 = 0 and x̂′px̂p = N on the quan-

tified variables.

PRINCIPALS is implemented by an iterative algorithm that alter-



104 A Non-Metric PLS algorithm for PCA

nates model parameters estimation and scaling parameter estimation.

For fixed values of X̂, the loss function is optimized with respect to

T and P calculated as the H largest terms of a singular value de-

composition of X̂. Since the quantifications are column conditional

and, for fixed T and P , function 4.25 is separable with respect to the

optimally scaled data for each variable, the optimal scaling of data

can be performed for each variable separately and independently.

This procedure is proved to be monotonically convergent (see de

Leeuw et al. [1976]). Hence, in each step the value of 4.27 decreases;

the procedure is arrested when the improvement of the fit is irrelevant.

4.4.3 PRINQUAL

PRINQUAL is a method (and a program) which perform a PCA on

a set of nominal and numerical variable devised by Tenenhaus [1977].

PRINQUAL solves 4.25 rewritten the maximization problem of the

function

1

P

∑
p

∑
h

cor2(x̂p, th) (4.28)

under standardization contraints 1′x̂p = 0 and x̂′px̂p = N on the

quantified variables.

Each quantification of a nominal variable is calculated as the prod-

uct between a suitable standardization ∆ of its indicator matrix (see

formula 4.11) and a vector of order Kp. Also this procedure is imple-

mented by alternatively estimating scaling and model parameters.
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In PRINQUALS, an optimal initial solution for X̂ is obtained per-

forming a Carrol’s GCCA [Carroll 1968] on P blocks of variables, each

block being composed just of a numerical variable or a nominal variable

properly recoded. Then, for given X̂, scaling parameters are calcu-

lated as the first canonical vector associated to ∆ in the Canonical

Correlation Analysis of ∆ and T . Finally, for given scaling parame-

ters, the maximum of 4.28 with respect to th is obtained by the first

H principal components of X̂.

This procedure is shown to monotonically converge to a maximum

(see Tenenhaus [1977].

4.4.4 PRINCALS

PRINCALS (PRINcipal Component analysis by means of Alternating

Least Squares) algorithm [de Leeuw & Van Rijckevorsel 1980] is a

generalization of HOMALS, where the set of quantifications Φp for

the variable p is constrained to be of unitary rank by means of the

restriction

Φ(p) = qpp
′
p (4.29)

with qp being the vector of the single quantifications for the cat-

egories of variable p. Moreover, qp is constrained to be centered

(1′X̃
′
pX̃pqp = 0) and normalized (q′pX̃

′
pX̃pqp = 1) following the met-

ric X̃
′
pX̃p. The introduction of the rank-1 restriction allows the exis-

tence of multidimensional solutions for the observations (unit scalings
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in DS language, components in PCA language) with a single category

quantification, and also makes it possible to incorporate the measure-

ment level for the variables into the analysis.

PRINCALS optimizes HOMALS loss function 4.20 that, under the

additional rank-1 restriction, becomes

1

P

∑
p

SSQ(X̃pqpp
′
p − T ). (4.30)

This function can be decomposed in a sum of two functions, of which

the first one, called multiple loss, is exactly 4.20 and the latter, called

single loss is

1

P

∑
p

tr(qpp
′
p −Φ(p))X̃

′
pX̃p(qpp

′
p −Φ(p))

′. (4.31)

The single loss corresponds to the additional loss incurred by imposing

the rank-1 restriction.

PRINCALS algorithm consists in a double ALS loop: the outer

loop and the inner loop. In the outer loop, corresponding to HOMALS

loop, the multiple loss is minimized for fixed Φ(p). In the inner loop

the single loss function is minimized with respect to qp and pp. Once

its optimum obtained, qp is projected in the conic space correspond-

ing to all possible transformations given the restriction imposed by

the measurement level of the variable. In the practice, since the value

of the loss function is smaller after a single iteration of the inner loop,

the inner loop is iterated just one time each iteration of the outer
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loop. Hence, PRINCALS algorithm can be summarized in the follow-

ing steps:

1. Initialize T , so that 1′T = 0 and T ′T = NI

2. For fixed T : Φ(p) = (X̃
′
pX̃p)−1X̃pT

3. pp = (Φ′pX̃
′
pX̃

′
pqp)/(qpX̃

′
pX̃

′
pqp)

4. qp = Φ(p)pp/(p
′
ppp)

5. Account for the measurement level of the p-th variable by per-

forming a suitable conic regression

6. Φ(p) = qpp
′
p

7. T = (1/P )
∑

p X̃pΦ(p)

8. Center and orthonormalize T

9. Check the convergence criterion

In PRINCALS, for each variable the preferred level of analysis can

be chosen: multiple nominal, single nominal, ordinal or numerical.

PRINCALS is a generalization of all previous methods, and in partic-

ular, if all the variables are analyzed at a multiple nominal level (i.e.

if we search for multiple quantifications of the variable), it yields the

same results as HOMALS.
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4.5 A new PLS method for non-metric

PCA: the Non-Metric NIPALS

Non-Metric NIPALS (NM-NIPALS) is a new algorithm developed by

the author that performs a non-metric PCA on a N by P matrix X∗

representing a mixed set of P variables observed at different measure-

ment scales on N units.

In NM-NIPALS, each raw variable xp is transformed in a interval

variable x̂p by means of an OS procedure implemented by an algorithm

of the PLS family. This procedure depends on the scaling level at

which one want to analyze each variable. The scaling level is strictly

connected to the relation we suppose to exist between the variable and

the first component. If we make no assumption about this relation (or

if we simply can not make any assumption, because we are handling a

nominal raw variable), then the suitable scaling level of the analysis is

the nominal one. If we deal with a raw variable measured on an ordinal

or interval measurement scale, and we suppose a non functional but

monotonic relation, we can analyze the variable at ordinal scaling level.

In these two cases we do a non-metric analysis of the variable: we just

preserve its category ordering and/or grouping properties. Finally,

NM-NIPALS can model a non linear functional relation between a

numeric raw variable and the first PC by means of a polynomial rule

of degree D. In the particular case where D = 1, it means that all

of the assumptions of PCA model are verified (see section 3.1) and a

standard linear analysis is allowed. In this last case, we keep in the
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analysis all of the measurement properties of the variable.

In any case we assume that the measurement process is discrete,

i.e. that the variable can assume a finite number of different values

that corresponds to the number of different observed values.

NM-NIPALS scalings can be defined optimal, as they maximize the

same criterion of a PCA.

4.5.1 The algorithm

First Principal Component (PC) can be defined as the linear combina-

tion t1 = Xp1 of the variables the most correlated with the variables

themselves. In mathematical terms, the first PC maximizes∑
p

cor2(xp,Xp1) (4.32)

with respect to p1, under the restriction p′1p1 = 1.

In non-metric approach to NIPALS we find a matrix X̂ of quantified

variables maximizing ∑
p

cor2(x̂p, X̂p1) (4.33)

under the constraints p′1p1 = 1, 1′x̂p = 0 and x̂′px̂p = N .

Criterion 4.33 is a function of the quantified variables x̂p and the

model parameters p1 and t1, where further restrictions on the quan-

tification of each variable depend on the chosen scaling level.

The optimal value for p1, given x̂p, is the right singular vector corre-
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sponding to the dominant singular value of X̂. This value, in standard

NIPALS algorithm, is iteratively found using the power method prin-

ciple (see section 1.2).

For fixed t1 = X̃p1, function 4.33 is separable with respect to the

optimal scaled data for each variable x̂1 . . . x̂P . Criterion 4.33 can be

decomposed into a sum of components each of which is a function only

of the scaling parameters of one variable. Hence, the problem can be

solved by separately maximizing each function

cor2(x̂p, t1) (4.34)

with respect to x̂p.

Remembering the discussion in section 3.4.1, and considering t1 as

our LC, optimal x̂p can be found as one of the following conic projec-

tions, where the type of cone depends on the restriction imposed by

the chosen scaling level of the analysis for each variable. In particular,

for each x̂p analyzed at nominal scaling level we have

Q̃(x∗p, t1) : x̂p ∝ X̃p(X̃
′
pX̃p)−1X̃

′
pt1 (4.35)

while, for each x̂p analyzed at ordinal scaling level the quantification

function is

˜̃Q(x∗p, t1) : x̂p ∝
˜̃
Xp(

˜̃
X
′

p
˜̃
Xp)−1˜̃X ′pt1 (4.36)
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To conclude, for each x̂p analyzed at a functional scaling level we have

Q̇(x∗p, t1) : x̂p ∝ Ẋp(Ẋ
′
pẊp)−1Ẋ

′
pt1 (4.37)

Symbol ∝ in equations 4.35, 4.36 and 4.37 means that the left part of

the equation is standardized to unitary variance.

In criterion 4.34 quantified variables are functions of t1 = X̃p1.

Since t1, on its turn, is a function of the quantified variables x̂p, the

only way to obtain both is estimating the quantifications simultane-

ously with the estimation of the NIPALS parameters by alternating

maximization of criterion 4.34 with respect to scaling and model pa-

rameters.

The problem is solved by NM-NIPALS algorithm, in which a quan-

tification step is added to the classic NIPALS loop.

In the first step of the NM-NIPALS loop the chosen quantification

function is applied to each raw variable. In this quantification step, for

fixed model parameters, each optimal x̃p is calculated as a function

of t1 and one among the matrices X̃p,
˜̃
Xp and Ẋp, depending on

the scaling restrictions. Then, for fixed x̃p, optimal model parameters

are obtained one as function of the other. Since in each iteration the

value of criterion 4.34 will be larger after the quantification step, the

procedure will monotonically converge to a maximum. This procedure

yields the first PC and the optimally quantified variable matrix X̃.

Further components are added by implementing the standard NI-

PALS iteration to the deflated matrix E1 = X̂ − t1p
′
1.

The pseudo-code of NM-NIPALS algorithm is shown in algorithm
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9.

Algorithm 9 NM-NIPALS algorithm

Input: X∗

Output: PH = [p1, . . . ,pH ],TH = [t1, . . . , tH ], X̂

Step 1.0: Initialize t1
Step 1.1:
repeat

Step 1.1.1: x̂p = Q(x∗p, t1)

Step 1.1.2: X̂ = [x̂1 . . . x̂P ]

Step 1.1.3: p1 = X̂
′
t1/(t

′
1t1)

Step 1.1.4: p1 = p1/‖p1‖
Step 1.1.5: t1 = X̂p1/(p

′
1p1)

until convergence of p1

Step 1.2: E1 = X̂ − t1p
′
1

for all h = 2, . . . , H do
Step 2.0: Initialize th
Step 2.1:
repeat

Step 2.1.1: ph = E
′

h−1th/(t
′

hth)
Step 2.1.2: ph = ph/‖ph‖
Step 2.1.3: th = Eh−1ph/(p

′

hph)
until convergence of ph

Step 2.2: Eh = Eh−1 − thp
′

h

end for

4.5.2 Interpretation of the outputs

Non-metric PCA implemented by NM-NIPALS yields the same re-

sults of a metric PCA on the optimally scaled variables implemented
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by NIPALS. Thus, all of the relations between the quantified variables,

which are measured on an interval scale, and the factors can be inter-

preted and represented as in the classic PCA. However, this rule has

an exception, as if x∗p is analyzed at a nominal scaling level, cor(x̂p, t1)

is positive by construction. As a consequence, relation between the

factor and such a variable can be interpreted in terms of intensity,

but not in terms of sign. This is due to the fact that, for non-metric

scaling analyses, statistical relation between t1 and x̂p can be nicely

interpreted also in terms of the statistical relation between the factor

and the original raw variable. In fact, if a raw variable x∗p is quantified

at nominal scale level, the following relation holds

cor(x̂p, t1) = η(t1|x∗p), (4.38)

where η is the Pearson’s correlation ratio, i.e. the part of variability

of t1 explicated by the categories of x∗p.

Since 0 ≤ η ≤ 1, this correlation is always not negative. This

implies that the relation of a quantified variable x̂p generated by a

nominal scaling level analysis with the first PC can be interpreted in

terms of intensity, but not in terms of sign. This makes sense, as

it is conceptually wrong expecting a sign in the relation between a

numerical variable (the score vector) and a nominal variable, since a

nominal variable neither increases, nor decreases.

If a variable is quantified at an ordinal level, instead, the sign of

corresponding weight can be interpreted as an index of approaching
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to monotonicity. In fact, the following equations hold

cor(x̂p, t1) =


√

1− STRESS2
(t1,x∗p) if cor(x̂p, t1) ≥ 0

−
√

1− STRESS2
(t1,x∗p) if cor(x̂pq, t1) < 0

These equations show that, when x∗p is analyzed at a nominal scaling

level:

• if p1p approaches to one, relation between x∗p and t1 is increasing

monotone;

• if p1p approaches to zero, relation between x∗p and t1 is absolutely

non-monotone;

• if p1p approaches to minus one, relation between x∗p and t1 is

decreasing monotone.

4.5.3 Links with other non-metric approaches to

PCA

If all the variables are analyzed at a nominal scaling level, NM-NIPALS

solution for t1 corresponds, for less than a scale factor, to dominant

eigenvector of X̃D−1X̃
′
. As a consequence, NM-NIPALS first compo-

nent equals, for less then a scale factor, to the one dimensional solution

for the unit scaling ψ1 in all the methods discussed in section 4.3.

In fact, if all of the variables are nominal, step 1.1.1 of algorithm
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9, for each p, becomes

x̂p ∝ X̃p(X̃
′
pX̃p)−1X̃

′
pt1

For these scaling values

cor2(t1, x̂p) ∝ t′1X̃p(X̃
′
pX̃p)−1X̃

′
pt1

and criterion 4.33 can be written∑
p

t′1X̃p(X̃
′
pX̃p)−1X̃

′
pt1

which is equal to

t′1X̃D
−1X̃

′
t1

When the analysis is generalized at a variety of scaling levels, NM-

NIPALS considers well known restrictions, as:

• In nominal scaling analysis, we retrieve the restrictions used by

the discrete-nominal option in PRINCALS and PRINCIPALS

and by PRINQUALS quantification.

• In ordinal scaling analysis, we retrieve the restriction used by the

discrete-ordinal option in PRINCALS and PRINCIPALS, and

by secondary approach to monotonicity in Kruskal&Shepard’s

non-metric PCA.

• In linear scaling analysis, we retrieve the restrictions implicated

in standard PCA. Other non-linear functional restrictions can
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be introduced by means of polynomial rule, as proposed in de

Leeuw et al. [1976] and in Young [1981].

Since both NM-NIPALS solution and the one dimensional solution of

methods discussed in section 4.4 maximize PCA criterion, on equal

scaling levels, these methods yields the same results for less than a

constant factor due to the different normalization applied to the scaling

functions.



Chapter 5

Non-Metric PLS Regression

5.1 Motivation

One of the main applications of PLS-R is consumer preference anal-

ysis. The aim of consumer preferences analysis is the prediction of

consumer preferences from the product attributes, as well as mapping

consumer preferences on factorial planes. Typically, data-set consists

of two sets of variables organized in two matrices. In the first ma-

trix the variables are the preferences of the consumers or not trained

judges, expressed as rating or ranking, for each of N products. In

the other matrix chemical or sensorial characteristics (attributes) are

measured on the products. Alternatively, it is a design matrix where

a suite of qualitative attributes are observed on the products. Many

of these attributes are qualitative, such as packaging, color, shape,

marketing strategies and so on. So, these variable must be quan-



118 Non-Metric PLS Regression

titatively coded in order to be introduced in the analysis. This is

commonly done by using the binary coding, where each variable is

replaced by its indicator matrix (see section 3.2). As a matter of fact,

even preference variables should not be handled as numeric variables,

as, to be rigorous, they are just ordinal variables and they do not have

metric properties. Moreover, serious non-monotonicity problems arise

when Just-About-Right (JAR) scales [Rothman & Parker 2009] are

used to assess consumer expectations of a product attribute [Xiong &

Meullenet 2008].

Here we propose a new method, called Non-Metric PLS Regression

(NM-PLSR), as a flexible and comprehensive tool for performing a

PLS-R on non-metric data in consumer preference analysis and other

fields, such as the analysis of genetic marker-phenotype relationships.

NM-PLSR is an Optimal Scaling method based on PLS Regression

algorithm. It allows us to analyze predictor and response variables

measured on a variety of measurement scales, as well to handle non-

linear relations in PLS-R framework.

5.2 State of the art

The treatment of non-metric variables has been explored in PLS-

R framework almost always in classification problems. A number

of proposals exist in literature for using adjusted PLS-R with the

aim to discriminate categories of a non-metric response from a set

of quantitative predictors [Tenenhaus, Giron, Viennet, Bera, Saporta
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& Fertil 2007, Bastien, Esposito Vinzi & Tenenhaus 2005, Fort &

Lambert-Lacroix 2005, Barker & Rayens 2003]. However, at author’s

knowledge, there not exists a comprehensive approach aimed to the

analysis of predictor and response variables measured on a variety of

measurement scales in PLS framework. In this more general case, non-

metric variables are usually replaced by a suitable indicator matrix.

Another issue very discussed in PLS-R literature is non linearity.

Several approaches have been proposed to provide non-linear models

that retain the properties of a linear PLS Regression. Some of these

approaches work on the functional form of the inner relation; others

work on a suitable transformation of the predictor variables.

Methods belonging to the first family are based on a non-linear

inner relation linking the predictor PLS components with the response

PLS components:

ûh = f(th) (5.1)

Various forms have been proposed for f(th), such as a quadratic form

[Wold, Kettaneh-Wold & Skagerberg 1989, Baffi, Martin & Morris

1999a, Höskuldsson 1992], a smoothing procedure [Frank 1990], a

spline function [Wold 1992] and a neural network [Qin & McAvoy

1992, Baffi et al. 1999a]. A more general approach, based on the

principles of continuum regression, was proposed in Taavitsainen &

Korhonen [1992] and Haario & Taavitsainen [1994].

The alternative way to cope with non-linearity in PLS-R is based on

the transformation of the explanatory variables [Rosipal & Trejo 2001,
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Durand & Sabatier 1997, Berglund & Wold 1997, Berglund, Kettaneh,

Uppgard, Wold, Bendwell & Cameron 2001, Durand 2001]. All meth-

ods following the latter approach are based on a priori transformation

function of the predictors. Rosipal applied the theory of kernel-based

learning to PLS. According to the Durand’s proposals, predictors are

transformed by spline functions, while Berglund’s proposals involve

the transformation of quantitative variables to a set of dichotomous

variables similar to the binary coding of qualitative variables. For an

extensive review of most of these methods, see Vivien [2002].

Optimal scaling has been proposed in non-linear approaches to OLS

Regression [Young et al. 1976, Breiman & Friedman 1985] Canonical

Correlation Analysis [Young et al. 1976], as well as in Redundancy

Analysis [Israels 1984]. Lovaglio proposed a new methodology for a

non-parametric factorial modeling of two blocks of variables linked by

a causal relation, which works also with variables observed on differ-

ent measurement scales [Lovaglio 2001, Lovaglio 2002]. The author

was the first to propose using optimal scaling approach in PLS-R, in

order to overcome drawbacks due to binary coding: the PLS algo-

rithm for CAtegorical Predictors (PLS-CAP). This approach is useful

for handling nominal predictors [Russolillo & Lauro 2010], as well non

linearity [Russolillo, Trinchera & Esposito Vinzi 2009b], in PLS Re-

gression. PLS-CAP was born to handle categorical predictors in a

PLS regression. It involves an optimal quantification of predictors,

finding out scaling parameters that maximize covariance between the

first PLS components in predictor and response space. PLS-CAP as-
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signs a numerical value to each bin of the variable properly discretized.

This implies that the number of predictors does not change when vari-

ables are tranformed. Another advantage of this technique is that the

trasformation of the variables is internal to the algorithm and not a

priori. As a consequence, transformations are more prediction oriented

and coherent with the model.

However, PLS-CAP can handle predictors only at a nominal scaling

level. Here, we propose an extension of PLS-CAP, which can analyze

both non-metric predictor and response variables at a variety of differ-

ent measurement level: the Non-Metric PLS Regression (NM-PLSR).

NM-PLSR can handle also metric variables affected by non linear-

ity problem by non-metric quantifications, as well as by polynomial

transformations of metric variables.

5.3 Non-Metric PLS Regression optimiza-

tion criterion

Let two blocks Y ∗ of and X∗ of raw variables measured on a variety

of measurement scales. The generic variable of Y ∗ is y∗r (with r =

1 . . . R), while the generic variable of of X∗ is x∗p (with p = 1 . . . P ).

NM-PLSR finds out optimally scaled data matrices X̂ and Ŷ max-

imizing criterion

cov2(Ŷ c1, X̂w1) (5.2)



122 Non-Metric PLS Regression

Criterion 5.2 depends on two sets of parameters; the first set consists

of model parameters, constrained to unitary norm (‖w1‖ = 1 and

‖c1‖ = 1). The other set consists of scaling parameters, constrained

to the restrictions due to the scaling level chosen for each variable and

normalized to unitary variance (var(ŷr) = 1 and var(x̂p) = 1).

The aim of NM-PLSR is to maximize criterion 5.2 with respect to

model and scaling parameters. It is noteworthy that, since criterion

5.2 involves just the first component parameters, NM-PLSR logic can

be applied also to methods discussed in section 1.3.10.

In the next, the problem of the maximization of 5.2 will be solved

with respect to model parameters, keeping fixed the scaling parame-

ters; afterwards, we will solve the same problem with respect to the

scaling parameters, keeping fixed the model parameters. In order to

find out a global optimization, we will propose a modified PLS loop,

which is he core of the MN.PLSR algoritm.

The maximization of 5.2 for fixed scaling parameters is yielded

by the classic PLS-R solution (see section 1.3.5), given by the eigen-

vectors w1 and c1 corresponding to the common largest eigenvalue

λ = f(w, c) verifying the equations

(Ŷ
′
X̂X̂

′
Ŷ )c1 = λc1 (5.3)

and

(X̂
′
Ŷ Ŷ

′
X̂)w1 = λw1 (5.4)
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For given model parameters, instead, the problem involves search-

ing for the largest λ = f(Ŷ , X̂) among all the dominant eigenvalues

resulting from the eigenvalue analysis of the matrices obtained from

different quantifications respecting the constraints due to the level of

the scaling for each variable. In order to find optimal scaling param-

eters for the response variables, we maximize λ = f(Ŷ , X̂), for fixed

Y -weights in 5.3. It can be easily done maximizing, for each p

cor2(x̂p,u1), (5.5)

where, following the notations in section 1.3, u1 is the first PLS-R

component in the response space. In fact,

λ = c′1Ŷ
′
X̂X̂

′
Ŷ c1

= u′1X̂X̂
′
u1

= (X̂
′
u1)

2

=
∑

p

cov2(x̂p,u1)

=
∑

p

cor2(x̂p,u1)var(x̂p)var(u1)

Since var(x̂p) = 1 and var(u1) is fixed with respect to the sum, optimal

solutions for scaling parameter are the ones maximizing

λ =
∑

p

cor2(x̂p,u1) (5.6)
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For fixed u1 = Ỹ c1, this function is separable with respect to the

optimal scaled data for each variable x̂p.

Criterion 5.6 can be decomposed into a sum of components each

of which is a function only of the scaling parameters of one variable.

Hence, the problem can be solved by separately maximizing with re-

spect to x̂p the squared correlation of each quantified predictor and

the first PLS component in Y -space, taking into account the level of

scaling analysis for x̂p.

Starting from equation 5.3, a specular reasoning can be done in

order to find the optimal quantifications for response variables, leading

to the maximization of each

cor2(ŷr, t1). (5.7)

with respect to ŷr.

Optimization of the quantifications in PLS-R can be interpreted

also as a Least Squares minimization of scaling parameters with re-

spect to a LC, which depends on the role played by the variable. In

the quantification of a predictor variable the LC is the component u1,

and the aim is to minimize the least squares function

(x̂p − u1)
′(x̂p − u1). (5.8)

In the quantification of a response variable, the LC is the component
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t1, and the objective becomes the minimization of

(ŷr − t1)′(ŷr − t1). (5.9)

This specular treatment is due to the fact that the single component

PLS-R model is symmetric. In fact, PLS-R model becomes asym-

metric only when successive latent dimensions are computed, as both

predictors and responses are deflated on the components in the X-

space.

The optimization of criterion 5.5 must be constrained to the scaling

level chosen for the quantification. In order to obtain scalings which

are coherent with the scaling level of the analysis, we use the scaling

functions discussed in section 3.4.1.

If one wants to quantify a predictor xp at a nominal scaling level,

the corresponding indicator matrix X̃p must be computed. Then, the

following scaling function have to be used

Q̃(x∗p,u1) : x̂p ∝ X̃p(X̃
′
pX̃p)−1X̃

′
pu1. (5.10)

If one wants to quantify a predictor at a ordinal scaling level, the

following scaling function have to be applied

˜̃Q(x∗p,u1) : x̂p ∝
˜̃
Xp(

˜̃
X
′

p
˜̃
Xp)−1˜̃X ′pu1. (5.11)

Finally, if we know a priori that relation between a numerical predictor

and u1 can be modeled by means of a polynomial rule, we have to
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choose the transformation function

Q̇(x∗p,u1) : x̂p ∝ Ẋp(Ẋ
′
pẊp)−1Ẋ

′
pu1. (5.12)

It is noteworthy that choosing a first order polynomial means to sup-

pose that standard PLS-R linearity requirements are respected, and

the effect of the transformation 5.12 is just the standardization of the

raw variable x∗p.

The optimal quantification process regarding the responses vari-

ables is analogous, but referred to the component t1. The optimal

quantification of y∗r is the one minimizing the Least Squares function

(ŷr − t1)′(ŷr − t1). (5.13)

respecting the normalization constraint var(ŷr) = 1 and the constraint

linked to the scaling level.

For each response analyzed at a nominal scaling level, indicator

matrix Ỹ r has to be computed. Then, each response variable y∗r is

optimally quantified by means of the quantification function

Q̃(y∗r, t1) : ŷr ∝ Ỹ r(Ỹ
′
rỸ r)

−1Ỹ
′
rt1 (5.14)

For each response analyzed at an ordinal scaling level analysis, we

compute matrix
˜̃
Y r by merging adjacent columns of Ỹ r representing

categories whose quantification does not respect the order constraint.
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Then, we use the quantification function

˜̃Q(y∗r, t1) : ŷr ∝
˜̃
Y r(

˜̃
Y
′

r
˜̃
Y r)

−1 ˜̃Y ′rt1. (5.15)

For each response analyzed at a functional scaling level analysis, the

transformation function

Q̇(y∗r, t1) : ŷr ∝ Ẏ r(Ẏ
′
rẎ r)

−1Ẏ
′
rt1 (5.16)

is applied to variable y∗r.

5.4 Non-Metric PLS Regression algorithm

In the last section optimally quantified variables have been showed

to be functions of the first PLS component in predictor and response

spaces. Since the PLS component is, on its turn, a function of the

quantified variables, it is not possible to obtain both by means of a

one-step algorithm.

The Non-Metric PLS Regression (NM-PLSR) algorithm is a modi-

fied PLS-R algorithm where the first component is obtained by means

of a new loop involving computation of both scaling and model pa-

rameters.

NM-PLSR loop starts with the quantification of each predictor that

is optimal with respect to an initial vector u1 by means of the quan-
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tification functions 5.10-5.12. Once obtained a first approximation of

the matrix of the quantified predictors X̂, w1 is calculated as a func-

tion of X̂ and u1. After having obtained t1 as function of X̂ and w1,

Y -variables can be optimally quantified with respct to t1 by means of

the quantification functions 5.14-5.16. Then, weights c1 are computed

as a function of Ŷ and t1. Finally, the vector u1 is computed as a

function of Ŷ and c1 and the loop can restart until convergence.

At the convergence, this iterative process yields in output both

model parameters w1, c1, t1 and u1, and quantified variable matrices

X̂ and Ŷ . MN-PLSR algorithm continues by regressing X̂ and Ŷ on

t1. Residuals matrices Ê1 and F̂ 1 are then entered in the standard

PLS-R loop in order to extract a second set of component, and so on.

The pseudo-code of NM-PLSR algorithm is provided in algorithm

10. This code is based on PLS-R algorithm described in Tenenhaus

[1998] and showed in algorithm 3; however, the version presented in

Höskuldsson [1988] (see algorithm 4) can be modified as well.

5.5 Interpretation of the outputs in Non-

Metric PLS Regression

In NM-PLSR, the weight of a quantified variable in the construction

of the first component can be expressed also as a function of the raw

non-metric variables. However, though this feature enriches their in-

formative power, it can leads to misleading interpretation, as some of

their properties depend on scaling level of the analysis.
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Algorithm 10 NM-PLSR algorithm

Input: X∗,Y ∗

Output: W ,C,T ,U , X̂, Ŷ

Step 1.0: Initialize u1

Step 1.1:
repeat

Step 1.1.1: x̂p = Q(u1,x
∗
p)

Step 1.1.2: X̂ = [x̂1 . . . x̂P ]

Step 1.1.3: w1 = X̂
′
u1/‖X̂

′
u1‖

Step 1.1.4: t1 = X̂w1/(w
′
1w1)

Step 1.1.5: ŷr = Q(t1,y
∗
r)

Step 1.1.6: Ŷ = [ŷ1 . . . ŷP ]

Step 1.1.7: c1 = Ŷ
′
t1/(t

′
1t1)

Step 1.1.8: u1 = Ŷ c1/(c
′
1c1)

until convergence of w1

Step 1.2: p1 = X̂t1/(t
′
1t1)

Step 1.3: E1 = X̂ − t1p
′
1

Step 1.4: F 1 = Ŷ − t1c
′
1

for all h = 2, . . . , H do
Step 2.0: Initialize uh

Step 2.1:
repeat

Step 2.1.1: wh = E
′

h−1uh/‖E
′

h−1uh‖
Step 2.1.2: th = Eh−1wh/(w

′

hwh)
Step 2.1.3: ch = F

′

h−1th/(t
′

hth)
Step 2.1.4: uh = F h−1ch/(c

′

hch)
until convergence of wh

Step 2.2: ph = E
′

h−1th/(t
′

hth)
Step 2.3: Eh = Eh−1 − thp

′

h

Step 2.4: F h = F h−1 − thc
′

h

end for
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5.5.1 The weights

The generic weight wp1 in PLS-R equals the OLS regression coefficient

bOLS
(u1|xp) of u1 on xp. In NM-PLSR, since the quantified variables are

standardized by construction, the weights of the first PLS component

can be interpreted in term of correlations with the component: the

higher the correlation is, the higher the weight is In particular, for

each p, wp1 equals the correlation between x̂p and u1 for less than the

constant
√

var(u1)/‖w1‖. Analogously proceeding for the Ŷ -weights

leads us to the equations

c1r ∝ cor(ŷr, t1) and w1r ∝ cor(x̂p,u1), (5.17)

where symbol ∝ indicates a proportionality factor constant for each r

and for each p.

The quantifications listed in the previous section assure a nice in-

terpretation of weights even in term of statistical relation between the

component and the original variable analyzed at a non-metric scaling

level (for metric scaling level analyses, of course, the problem of the

interpretation does not exists).

When a predictor x∗p is quantified at nominal scaling level, the

following relation holds

cor(x̂p,u1) = η(u1|x∗p), (5.18)

where η is the Pearson’s correlation ratio, i.e. the part of variability

of u1 explicated by the categories of x∗p.
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At the same way, if a response x∗p is quantified at nominal scaling

level,

cor(ŷr, t1) = η(t1|y∗r). (5.19)

It is necessary to pay attention in interpreting these weights, because

they are always not negative, since 0 ≤ η ≤ 1. The weight referred to a

variable analyzed at a nominal scaling level can be interpreted in terms

of intensity, but not in terms of sign. After all, it is conceptually wrong

expecting a sign in the relation between a numerical and a nominal

variable, since a nominal variable neither increases, or decreases. To be

clear, a sentence like “When income increases, the nationality increase

too” does not make sense.

If a variable is quantified at an ordinal level, the sign of correspond-

ing weight can be interpreted. In fact, the following equations hold

cor(ŷr, t1) =


√

1− STRESS2
(t1,y∗r) if cor(ŷr, t1) ≥ 0

−
√

1− STRESS2
(t1,y∗r) if cor(ŷr, t1) < 0

cor(x̂p,u1) =


√

1− STRESS2
(u1,x∗p) if cor(x̂p,u1) ≥ 0

−
√

1− STRESS2
(u1,x∗p) if cor(x̂p,u1) < 0

From these relations it descends that if the weight of a scale variable is

positive there is a direct relation between the raw variable and the first

component. In the opposite case, it means that this relation is inverse.

Moreover, intensity of the weight of a quantified variable measures the
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strength of the statistical relations between the component with both

the quantified and the raw variable: the first in terms of correlation,

the second in terms of approaching to perfect monotonicity, intended

as in Kruskal’s secondary approach [Kruskal 1964a].

5.5.2 The regression coefficients

The one-component PLS regression coefficient b
PLS(1)byr|bxp

of x̂p on ŷr

equals the product of the weights c1r and w1p. Hence, the sign of

the weight affect the sign of the regression coefficient in the following

way:

• If both x̂p and ŷr are analyzed at a nominal scaling level, the

regression coefficient equals

b
PLS(1)byr|bxp

= η(u1|x∗p) × η(t1|y∗r)

and it is always positive.

• If one of the two variable is analyzed at a nominal and the other

at ordinal scaling level,

b
PLS(1)byr|bxp

=

η(u1|x∗p) ×±
√

1− STRESS2
(t1,y∗r)

±
√

1− STRESS2
(u1,x∗p) × η(t1|y∗r)

Hence, it takes the sign of the weight of the variable analyzed at

an ordinal scaling level.
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• If the two variables are analyzed at an ordinal scaling level, the

sign of the regression coefficient is expressed by the product of

the signs of the weights c1r and w1p, like in standard PLS-R

b
PLS(1)byr|bxp

= ±
√

1− STRESS2
(u1,x∗p) ×±

√
1− STRESS2

(t1,y∗r)

5.6 A Conjoint Analysis by means of Non-

Metric PLS Regression

In this section NM-PLSR is applied to Conjoint Analysis. The aim

of this application is to show how Non-Metric PLS Regression can

improve data interpretation with respect to the dummy coding.

We use a very known data-set, that is the tea data-set used as

example in Kuhfeld [1993] in order to show the procedure Transreg of

SAS software. It is a classic example of Conjoint Analysis, where we

want to study consumer (or judges) preferences with respect to a set

of scenarios described by relevant attributes.

Tea data-set has been already analyzed in Tenenhaus [1998] using

the PLS Regression. Tenenhaus handled the nominal attributes using

the dummy coding: each nominal variable was replaced by the cor-

responding indicator matrix. We discussed the drawbacks of such a

coding in section 3.2. First of all, dummy coding gives up the idea of

the variable as a whole, while it considers all the categories as they

were variables in themselves. Furthermore, the dummy coding in-

creases the dimensionality of the data matrix. Finally, the weight of a
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dummy variable representing a category mainly associated to central

values of the corresponding component distribution is systematically

underestimated.

Here we overcome these drawbacks by performing a Non-Metric

PLS Regression.

In the following, first we briefly present the data (section 5.6.1).

Then we perform three different PLR Regression analyses on these

data (sections 5.6.2, 5.6.3 and 5.6.4). These analyses are performed

by using an R code developed by the author (see Appendix). In the

first analysis, we run a standard PLS Regression according to Tenen-

haus [1998]. In particular, we consider judges’ preference rankings as

they were interval variables, and we replace each attribute with the

corresponding indicator matrix. In the second analysis, we implement

a NM-PLS Regression analyzing each attribute at a nominal scaling

level and considering the responses as interval variables. In the third,

we scale also the response variables, using an ordinal scaling level.

5.6.1 A data-set on tea tasting

Tea data-set (see table 5.1) consists of six judges who rank, accord-

ing to their preferences, 18 teas differing in four attributes: temper-

ature (three levels: “hot”, “warm” and “iced”), strength (“light”,

“medium”, “strong”), presence of lemon (“yes”, “no”) and of sugar

(“no” sugar, “one” sugar cube, “two” sugar cubes).

Data are organized in the following way:

• the consumer rankings are the columns J1, J2, .., J6, of a re-
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sponse matrix. These ranking are considered in inverse order:

in this way, the better the preference is, the higher the value

is. For example, the value assigned to the preferred scenario is

“18”, and the value assigned to the worst one is “1”.

• the four attributes observed on the scenarios are the columns of

a predictor matrix X

• attributes and consumer prefefences are observed on eighteen

scenarios (raws), chosen among the 54 possible scenarios so as

to build an orthogonal design.

5.6.2 PLS Regression on dummy coded attributes

A standard PLS-R is performed according to Tenenhaus [1998]. In

particular, we consider judges’ rankings as they were interval variables,

and we replace each attribute with the corresponding indicator matrix

(see table 5.2). In order to distinguish this analysis from the next, we

will name it “linear-dummy”.

Using dummy coding heavily enlarges the number of predictors. In

the case of the tea data-set the predictor set passes from four categor-

ical variables (the attributes) to eleven binary variables (the levels).

Afterwards, all the variables are centered and standardized to unitary

variance in order to make the analysis comparable to the next ones.

According to Tenenhaus [1998], we perform a four-component PLS

Regression. Since the number of predictors is large, the analysis has

a very good explanatory power. In fact, the four components explain
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Judgements Attributes

Scenario J1 J2 J3 J4 J5 J6 Temp Sugar Strength Lemon

1 15 17 15 16 6 14 Hot Zero Strong Yes
2 17 11 18 10 9 11 Hot One Medium Yes
3 13 9 6 1 14 13 Hot Two Light No
4 6 6 9 14 17 7 Warm Zero Medium No
5 5 3 2 7 3 10 Warm One Light Yes
6 4 1 7 4 11 3 Warm Two Strong Yes
7 12 16 5 17 1 17 Iced Zero Light Yes
8 8 13 14 12 16 2 Iced One Strong No
9 9 8 13 6 7 12 Iced Two Medium Yes
10 16 18 8 15 13 15 Hot Zero Light No
11 18 12 17 9 12 5 Hot One Strong Yes
12 14 7 16 2 10 6 Hot Two Medium Yes
13 2 5 3 13 8 1 Warm Zero Strong Yes
14 1 4 10 8 18 8 Warm One Medium No
15 3 2 1 3 4 9 Warm Two Light Yes
16 11 15 11 18 5 18 Iced Zero Medium Yes
17 10 14 4 11 2 16 Iced One Light Yes
18 7 10 12 5 15 4 Iced Two Strong No

Table 5.1: Tea data-set
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Judgements Attributes

Sc. J1 J2 J3 J4 J5 J6 H W I Z O T S M L Y N

1 15 17 15 16 6 14 1 0 0 1 0 0 1 0 0 1 0
2 17 11 18 10 9 11 1 0 0 0 1 0 0 1 0 1 0
3 13 9 6 1 14 13 1 0 0 0 0 1 0 0 1 0 1
4 6 6 9 14 17 7 0 1 0 1 0 0 0 1 0 0 1
5 5 3 2 7 3 10 0 1 0 0 1 0 0 0 1 1 0
6 4 1 7 4 11 3 0 1 0 0 0 1 1 0 0 1 0
7 12 16 5 17 1 17 0 0 1 1 0 0 0 0 1 1 0
8 8 13 14 12 16 2 0 0 1 0 1 0 1 0 0 0 1
9 9 8 13 6 7 12 0 0 1 0 0 1 0 1 0 1 0
10 16 18 8 15 13 15 1 0 0 1 0 0 0 0 1 0 1
11 18 12 17 9 12 5 1 0 0 0 1 0 1 0 0 1 0
12 14 7 16 2 10 6 1 0 0 0 0 1 0 1 0 1 0
13 2 5 3 13 8 1 0 1 0 1 0 0 1 0 0 1 0
14 1 4 10 8 18 8 0 1 0 0 1 0 0 1 0 0 1
15 3 2 1 3 4 9 0 1 0 0 0 1 0 0 1 1 0
16 11 15 11 18 5 18 0 0 1 1 0 0 0 1 0 1 0
17 10 14 4 11 2 16 0 0 1 0 1 0 0 0 1 1 0
18 7 10 12 5 15 4 0 0 1 0 0 1 1 0 0 0 1

Table 5.2: Tea data-set: the dummy coding

the 89.8% of the variability of Y . However, as table 5.1 shows, J1 and

J2 preferences are well represented on the first component, while the

second component mainly explains J3 and J5 preferences. The third

component is important in the description of J4 preferences that are

sufficiently represented also on the first component. J6 is the worst

modeled judge and his better representation is on the first axis. There-

fore, observing the loading plot of first two components, which explain

the 70.3% of Y variability, most of the relations between variables can

be read (see figure 5.2). The first dimension represents judges J1, J2,
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Figure 5.1: PLS Regression on dummy predictors: Response variabil-
ity explained by the first four components

J4 and J6. On aggregate, they don’t like warm tea, while they like

tea without sugar. Other attributes have a secondary importance in

their preferences. Judges J3 and J5 are well represented on the second

dimension. They prefer hot tea, while dislike light tea with lemon. It’s

noteworthy that all of these information can be read without excessive

effort because the number of judges, attributes and their levels is quite

low. In most complex cases the judges can be grouped in classes in

order to simplify the interpretation of the analysis. However, it makes

no sense do the same with levels of different attributes.

This type of analysis does not provide information about which

characteristics are the most important drivers for judge preferences.
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Figure 5.2: PLS Regression on dummy predictors: Loading plot of
(r1, c1) and (r2, c2)

In fact, the dummy approach does not consider each attribute as a

whole, but considers separately each level of the attributes. In order

to overcome these drawbacks, in the next a NM-PLSR is implemented,

where each attribute is scaled by assigning a numerical value to each
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of its levels.

5.6.3 Non-Metric PLS Regression on optimally

scaled attributes

Here data are analyzed via NM-PLS Regression. We will call this anal-

ysis “linear-nominal”, as each attribute is analyzed at a nominal scal-

ing level and the responses are considered at a linear scaling level (i.e.

they are simply standardized). As a result, we predict six responses

from just four optimally scaled predictors, any predictor representing

an attribute (temperature, presence of sugar, strength and presence

of lemon). This analysis has a good explicative power (R2
Y = 0.81 in

the four-component model), but lower than the “linear-dummy” one.

However, preference variables are well represented on the first loading

plot, of (r1, c1) and (r2, c2), since each of them is well explained by

one of the first two components (see figure 5.3).

The loading plot highlights all the information useful for investigat-

ing judges preferences with respect to each attribute (see figure 5.4).

In interpreting the loading plot, however, we have to pay attention,

as the impact of each attribute on the preferences of each judges can

be read only in terms of intensity and not in terms quality. For exam-

ple, the fact that variables “temperature” and “J2” lie on the same

quadrant and they are very close in terms of angle does not mean that

judge J2 prefers very hot tea. The right interpretation is that attribute

temperature is the most important for J2 preferences; similarly, for J3

and J5, strength and force are the most important attributes; for J4
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Figure 5.3: Non-Metric PLS Regression on predictors scaled at a nom-
inal scaling level: Response variability explained by the four compo-
nents

the presence of lemon in the tea is a very discriminant factor for its

preference; finally, preferences of J6 depend more or less on all of the

attributes but temperature.

The previous loading plot does not describe the way an attribute

affects the preferences, that is which level of the attribute is appre-

ciated or disliked by judges. However, this information can be easily

recovered if we remember that the scaling value for each level equals

the average of the Y -scores of observations sharing that level. This

implies that levels associated to positive scaling values are globally

preferred by the judges and vice versa. Hence, we can infer which
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Figure 5.4: Non-Metric PLS Regression on predictors scaled at a nom-
inal scaling level: Loading plot of vectors (r1, c1) and (r2, c2)

levels are preferred by judges from their scaling values. In the case of

judges J1 and J2, for example, “iced” and “hot” levels are preferred,

as their scaling values are positive (respectively 0.58 and 0.79); on

the contrary, they don’t like at all warm tea, as scaling value of level
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“warm” is -1.37. This information can be effectively represented by

plotting these values on the loading plot.

In particular, we propose to represent each level as a point lying

on the direction spanned by the point-vector of the corresponding

attribute having a distance from the origin equal to own scaling value.

In alternative, for each attribute, the averages of the predicted scaling

values referred to observations sharing the same level of the attribute

can be plotted. Using the predicted values allows us to interpret the

variability of the point-levels referring to each attribute in terms of

variability of the attribute explained by the model. In the loading

plot in figure 5.5 this type of representation is used. As one can

clearly deduce by this plot, temperature is important for J1 and J2 in

the sense that they strongly dislike warm tea; J4 prefers hot or iced tea

too, but the most important for him is that there is no sugar inside;

J6 likes light tea with lemon but without sugar; on the contrary, J3

and J5 prefer strong tea without lemon.

5.6.4 Non-Metric PLS Regression of optimally scaled

preferences on optimally scaled attributes

In standard PLS Regression model a linear relation between variables

and components is supposed. The analysis of variables at an ordinal

scaling level allows us discarding this hypothesis and replacing it by a

milder hypothesis of monotonicity.

In this last analysis, response variables (i.e. the judges’ preferences

expressed in terms of ranking) are analyzed at an ordinal scaling level
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Figure 5.5: Non-Metric PLS Regression of responses scaled at a ordinal
level on predictor scaled at a nominal level: Mapping of the levels in
the loading plot
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in order to detect their non-linear (but monotonic) relations with the

first PLS component. Predictor variables (ie. the attributes), instead,

are analyzed at a nominal scaling level, as in “linear-nominal” analysis.

Therefore, we will call this analysis “ ordinal-nominal”.

Since this analysis discards linear constraint in relation between

the responses and the first component, we obtain a very predictive

first order model, which explains the 59% of response variability. On

aggregate, the first two components explain very well responses J1

(R2 = 0.84), J2 (R2 = 0.98), J3 (R2 = 0.86) and J4 (R2 = 0.78),

and adequately responses J5 (R2 = 0.58) and J6 (R2 = 0.62). Higher

order components does not seem to add useful information (see figure

5.6)

In figure 5.7 the scaling values of response variables are plotted

versus their original rankings. This plot can suggest functional trans-

formations to apply to original variables in order to capture their

non-linear relation with the first component. For example, relation

between the original ranking variable J3 and the component could be

well approximated by an exponential function.

Looking at the correlation between the scaled variables and the

first component it is possible to measure the degree of monotonicity

of the relation between the component and the original ranking (see

section 5.5.1). The same information can be visualized looking at the

x-axis values of the response variables in the loading plot of (r1, c1)

and (r2, c2) (see figure 5.8).

The loading plot in figure 5.8 shows the relations already observed
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Figure 5.6: Non-Metric PLS Regression of responses scaled at a ordi-
nal level on predictor scaled at a nominal level: Response variability
explained by the four components

in previous analyses. J1’s preferences are very influenced by attributes

presence of lemon and strength; strength, as well as temperature im-

portant also for J3. Preferences of J1, J2, J4 and J6 depend on at-

tributes temperature and presence of sugar. Temperature is of main

importance for J1 and J2, while sugar is of primary importance for J4

and J6.

In order to investigate the way each attribute influences judge’s

preferences, levels can be mapped in the same plot, as previously ex-

plained. The resulting plot (figure 5.9) is even clearer than the one in

“linear-nominal” analysis, as all of the responses lie in the right part
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Figure 5.7: Response variables: scaling values vs ranking

of the plot. Hence, in order to satisfy the most of the judges’ tastes

the tea should be not warm, with neither lemon nor sugar and not too

light.
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Figure 5.8: Non-Metric PLS Regression of responses scaled at a ordinal
level on predictor scaled at a nominal level: Loading plot of (r1, c1)
and (r2, c2)

5.6.5 Conclusion

From the comparison of the explicative power of the three analyses,

it descends that dummy approach provides better results when we
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Figure 5.9: Non-Metric PLS Regression of responses scaled at a ordinal
level on predictor scaled at a nominal level: Mapping of the levels on
the loading plot

build models with several components (see figure 5.10). This can be

explained by the fact that “linear-dummy” analysis works with eleven

predictors, while the non-metric approaches can exploit the explicative
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Figure 5.10: Response variability explained by model from one to four
component in the three analyses
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capability of just four scaled predictors. However, this difference is

mainly quantitative, since we can extract the same information in all

of the three analyses.

Non-Metric PLS Regression resumes most of the information in

fewer components, and allows for a two level analysis. This synthesis

ability of NM-PLSR can be greatly useful when we have a large number

of attributes with a large number of levels.

In a first level analysis, we observe the impact of each attribute

on the judges’ preferences. This leads to cleaner and more easily in-

terpretable factorial representations, as we observe relations between

the original variables, and not between their levels. Moreover, since

in NM-PLSR each attribute is handled as a whole, it is possible to

assess which attributes are the most important in judges’ preferences

by means of regression coefficients and V IP indexes.

V IP index (see section 1.3.8) measures the importance of each

predictor in the prediction of the whole response set. In table 5.3,

the predictors sorted by V IP of four-component models are shown.

Whereas in non-metric analysis is straightforward to observe that the

variable “temperature” is the most important in the prediction, in

standard PLS-R analysis a precise ranking is not possible because the

levels of this attribute take the first, the second but also the ninth

place in the V IP ranking. At the same way, levels of variable “sugar”

take very different places in the ranking. This variability is due to the

fact that importance in the prediction of levels associated to central

values of the component distribution is underestimated (see section
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(a) “linear-dummy”
analysis

Variable VIP
Warm 1.57
Hot 1.21
Zero 1.17
Two 1.12
Light 1.12
Yes 0.98
No 0.98
Strong 0.76
Iced 0.68
Medium 0.43
One 0.26

(b) “linear-nominal”
analysis

Variable VIP
Temp 1.27
Sugar 1.04
Strength 0.83
Lemon 0.78

(c) “ordinal-nominal”
analysis

Variable VIP
Temp 1.45
Sugar 1.02
Strength 0.84
Lemon 0.41

Table 5.3: Predictor variables ranked by VIP index (four-component
models)
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3.2).

Through a second level analysis, in MN-PLSR it is possible to inves-

tigate also the way an attribute affects the preferences exploiting the

a priori information we have about the membership of observations to

groups defined by the levels of the attributes.





Chapter 6

Non-Metric PLS Path

Modeling

6.1 Motivation

PLS-PM is very used in social science for its ability in handling latent

concepts like satisfaction, performance, wellness or intelligence, which

are not directly observable. All of these variable can not be directly

measured, but can be synthesized by a suite of indicators. Due to the

need to formalize models relating latent concepts, since 1982 PLS-PM

is more an more used in marketing research for the quantitative anal-

ysis of consumer satisfaction [Fornell & Bookstein 1982].

In marketing applications, however, latent concepts are expressed as

a synthesis of variables which in their turn can not be measured

strictu sensu. Typically, in fact, it is asked to the consumer to ex-
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press the level of agreement to a statement, or a judgement about

particular characteristics of the offered product or service. Some-

times interviewee are asked to associate their opinion choosing one

between a set of ordered response levels (the so-called Likert item

[Likert 1932]). For example, a typic Likert item is : Strongly dis-

agree, Disagree, Neither agree nor disagree, Agree, Strongly agree.

Afterwards, responses are replaced by more or less arbitrary values

(e.g. Strongly disagree=1, Disagree=2, Neither agree nor disagree=3,

Agree=4, Strongly agree=5) which are analyzed with standard quan-

titative methods. Most of times, in order to directly obtain (fake)

quantitative values, the interviewer asks to associate the agreement

level to one of the values of a certain scale (e.g. 1-5, 1-10 or 1-100).

Of course, this does not change the actual nature of the variable to be

analyzed: data collected in such a way are not based on a metric, and

so they could not be handled as they were numeric. Notwithstanding,

PLS Path Modeling is often implemented on this kind of data. In other

words, categories of non-metric variables are usually arbitrarily quan-

tified and then used as numerical indicators in a PLS Path Model.

Generally these quantifications suppose that relative differences be-

tween subsequent categories are equals. This approach does not take

in account that Likert scales may be subject to distortion from several

causes. Namely, respondents may avoid using extreme response cat-

egories (central tendency bias) [Couch & Keniston 1960]; agree with

statements as presented (acquiescence bias) [Knowles & Nathan 1997];

try to portray themselves in a more favorable light (social desirability
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bias) [Ferrando 2008]; or tend to endorse the most extreme response

categories regardless of content (extremity bias) [Greenleaf 1992].

A less arbitrary approach is provided by the Item Response Theory,

in which data coming from responses to questionnaires are supposed to

follow mathematical models defined ex ante [Andrich 1978]. However,

these model seems do not fit with the soft modeling spirit of PLS-PM,

due their strong distributional assumptions.

Here, we propose a new approach to PLS-PM, which provides at

the same time specific PLS-PM parameters as well as scaling values for

variables to be scaled. Non-Metric PLS Path Modeling (NM-PLSPM)

is a data driven approach, that allows for non-metric and non-linear

analysis of variables measured at any scale level in reflective Path Mod-

els. As in the other NM-PLS methods, in NM-PLSPM quantifications

depends on the scale level chosen for each variable and are coherent

with the model, as they optimize the same criterion with which model

parameters are estimated.

6.2 State of the art

Two proposals have been recently presented in order to handle nominal

variable in PLS-PM framework.

Betzin & Henseler [2005] proposed an ex ante transformation of

each block of nominal manifest variables (MVs). Starting from the

idea that PLS-PM can be interpreted as a multiple eigenvalue problem,

Betzin and Hanseler propose to transform any block composed of non-
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metric indicators by the transformation 4.11. This approach, however,

has some drawbacks:

• it can be used only if a block is composed of all nominal variables.

• it yields outer weights for each category

• it provides a priori quantifications, which do not depend on the

model

Jakobowicz & Darquenne [2007] proposed a modified PLS algo-

rithm, called Partial Maximum Likelihood (PML), that can be ap-

plied also in the case where a block is composed of both nominal and

numerical MVs.

PML algorithm works in three steps. In the first steps, an ini-

tial inner estimation is computed for each MV. For each block Xq a

so-called reference variable belonging to a connected block Xq′ is con-

sidered as a first outer estimation of ξq. Then, initial outer weights

for each numerical MV and for each category of a non-metric MV

are calculated following the measurement scale of both the MV and

the reference variable. In particular, Least Squares Regression model,

ANOVA model, Logistic Regression model, Polytomic Logit model

or Generalized Logit model coefficients are calculated considering the

MV as explanatory and the reference variable as response. At the end

of this step, initial outer estimations for each LV are calculated.

This procedure aims to obtain numerical initial latent variable (LV)

estimates, keeping at the same time the original scales of the MVs. It is

not clear the reason of all the computational burden in the first step of
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PLS aimed to obtain initial outer weights (and consequently initial LV

outer estimations) which are coherent with the measurement scales of

the MVs. In fact, quoting the authors themselves, “ Lohmöller [1989]

has showed that choosing different initial weights does not affects the

final estimation of the model”.

In the second step, a PLS loop is implemented in order to obtain

the parameters of the measurement model. Inner and outer estima-

tions of the LVs are alternated as in the standard PLS-PM algorithm.

Outer weights, however, are updated following the measurement scale

of the MVs. An outer weight for each modality of a non-metric MV is

calculated as conditioned mean of the outer estimation of LV related to

the reference variable, and it is successively centered and normalized.

Weights of numerical MVs, instead, are obtained in the standard way.

Hence, in PML a final outer weight for each category is obtained. The

authors propose a formula to calculate ex post a global outer weight

for each non-metric MV.

In the third step, inner model structural relations are estimated by

OLS regressions between each response LV and its explanatory LVs.

The authors advice using PML for nominal or binary MVs, as in this

cases “it is not possible to suppose there is any underlying continuous

distribution”.
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6.3 From Non-Metric PLS Regression to

Non-Metric PLS Path Modeling

Since Mode A PLS-PM algorithm is a straightforward extension of

PLS-R algorithm, basic algorithmic principles of NM-PLSR algorithm

can be easily extended to PLS approach to SEM. PLS-R algorithm

in fact, for less that normalization constraints, is the same than two

blocks PLS-PM algorithm.

Following PLS-PM notations, u1 is outer estimate of the LV asso-

ciated to the block Y (u1 ∝ Y c1), as well as the inner estimate of the

LV of the block X by means of which we calculate the outer weights

(w1 ∝ X ′u1). Simmetrically, t1 can considered as the outer estima-

tion of the block X (t1 ∝Xw1) as well as the inner estimation of the

LV of the block Y . These double functions are justified by the inner

relation t1 ∝ u1 This is a hidden step in PLS-R algorithm, which, in a

two-block PLS-PM context, can be interpreted as: the outer estimate

of the LV in a block is the inner estimate of the LV in the other block.

Hence, keeping on using PLS-PM notations, in NM-PLSR we ob-

tain quantified variables maximizing, under suitable constraints, their

correlation with the inner estimate of corresponding LV. So, from the

algorithmic point of view, the non-metric extension of PLS-R can be

easily applied also to PLS-PM, by adding to the PLS-PM loop a quan-

tification step in which any MV is quantified as a function of the inner

estimate of the corresponding LV.
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6.4 The Non-Metric PLS Path Modeling

algorithm

Non-Metric PLS-PM loop differs from the standard PLS-PM loop in

the fact that it starts by initializing the inner estimate of each LV,

used to obtain a first scaling of the MVs. In fact, each raw MV x∗pq is

quantified so as to be maximally correlated to the corresponding LV

inner estimate vq.

Quantified MVs x̂pq maximizing cor(vq, x̂pq) are obtained by means

of the quantification functions Q̃(x∗pq,vq),
˜̃Q(x∗pq,vq) and Q̇(x∗pq,vq):

they are the normalized orthogonal projections of the inner estimation

of the corresponding LV on a suitable space defined by the scaling level

at which each raw variable is analyzed (see section 3.4.2 for demon-

stration).

NM-PLSPM algorithm supports three levels of scaling analysis.

Variables quantified at a nominal level preserve grouping property.

Variables quantified at a ordinal level follow the secondary Kruskal’s

monotonic quantification. Variables transformed at a functional level

are related to the corresponding LV inner estimate by polynomial re-

lation (for further details, see section 2.4).

If a raw MV is analyzed at a nominal scale level, the corresponding

scaling is

Q̃(x∗pq, zq) : x̂pq ∝ X̃pq(X̃
′
pqX̃pq)

−1X̃
′
pqzq (6.1)
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If a raw MV is analzed at a ordinal scale level, is scaled as

˜̃Q(x∗pq, zq) : x̂pq ∝
˜̃
Xpq(

˜̃
X
′

pq
˜̃
Xpq)

−1˜̃X ′pqzq (6.2)

Finally, a metric MV can be analyzed at a functional level as

Q̇(x∗pq, zq) : x̂pq ∝ Ẋpq(Ẋ
′
pqẊpq)

−1Ẋ
′
pqzq (6.3)

Matrices X̃pq,
˜̃
Xpq and Ẋpq are built as explained in section 3.4.2.

Once we get the quantified variables, the standard PLS-PM loop

starts: LVs are first estimated by Mode A in the outer estimation

process, and successively re-estimated in the inner estimation process.

After obtaining new inner estimates of the LVs, another iteration

starts with a new quantification of the MVs, and the algorithm goes

on until convergence.

A pseudo-code on NM-PLSPM algorithm is provided in algorithm

11.

6.5 The optimizing criterion of Non-Metric

PLS Path Modeling

Unfortunately, NM-PLSPM algorithm suffers of the same drawbacks

of the Mode A PLS-PM algorithm. That is, since the criterion to which

it converges in unknown, we can not state that scalings provided by

NM-PLSPM algorithm are mathematically optimal with respect to
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Algorithm 11 Non-Metric PLS Path Modeling algorithm

Input: X = [X1, . . . ,Xq . . . ,XQ],L

Output: βj, wq, ξ̂q, X̂ = [X̂1, . . . , X̂q . . . , X̂Q]

Step 0: Initialization
zq = z

(0)
q

Step 1: Iteration
repeat

Step 1.1: Quantification step
x̂p = Q(z

(s)
q ,x

∗(s)
pq )

Step 1.2: Quantification step

X̂
(s)

q = [x̂
(s)
1q . . . x̂

(s)
Pq]

Step 1.3: Outer estimation of the LVs
v

(s)
q ∝

∑Pq

p=1w
(s)
pq xpq = Xqw

(s)
q

Step 1.4: Computation of the inner weights

e
(s)
qq′ = f

(
v

(s)
q ,v

(s)
q′

)
, according to the chosen scheme

Step 1.5: Inner estimationof the LVs
z

(s)
q ∝

∑Q
q′=1 cqq′e

(s)
qq′v

(s)
q′

Step 1.6: Computation of the outer weights
w

(s+1)
q = (1/N)X

′

qz
(s)
q (Mode A) or

w
(s+1)
q = (X

′

qXq)
−1X

′

qz
(s)
q (Mode B)

until convergence of wq

Step 2: Computation of the LVs
ξ̂q ∝Xqwq

Step 3: Computation of the Path Coefficients
βj = (Ξ′

→jΞ→j)
−1 Ξ′

→j ξ̂j
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the model. However, we can bypass this problem using the new Mode

A PLS-PM principles.

As we saw in section 1.4.5, new Mode A PLS-PM has been recently

showed to optimize criterion 1.43 when centroid scheme is used, as well

as criterion 1.44 when factorial scheme is used. However, Tenenhaus

[2009] showed also that the value of the maximized criterion is always

equal to

λ =
∑

q

cov(vq, zq) (6.4)

In the non-metric version of new Mode A PLS-PM scaling functions

Q̃(x̂pq,vq),
˜̃Q(x̂pq,vq) and Q̇(x̂pq,vq) can be showed to be optimal

scaling functions, as they maximize model criterion. This result is

obtained by re-writing the criterion as

λ =
∑

q

cov(Xqwq, zq)

=
∑

q

1

N
w′qX

′
qzq

=
∑

q

cov2(Xq, zq)

=
∑

q

Pq∑
p

cov2(xpq, zq) (6.5)

Wold’s PLS-PM algorithm implemented using the new Mode A,

monotonically converges to this criterion. In an optimal scaling frame-

work, this criterion has to be maximized with respect to scaling pa-
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rameters too. In order to obtain optimal quantifications with respect

to criterion 6.5, we have to maximize, for fixed zq, the quantity

λ =
∑

q

Pq∑
p

cov2(x̂pq, zq)

with respect to x̂pq, normalized to unit variance and constrained to

the scale level analysis for variable x∗pq.

Criterion 6.5 consists in a sum of criteria λpq, each of which is a

function of a single scaled variable. Hence, it can be maximized by

separately maximizing each criterion

λpq = cov2(x̂pq, zq)

= var(zq)cor2(x̂pq, zq) (6.6)

with respect to xpq), normalized to unit variance.

Since var(zq) is a constant in each λpq, the optimization problem is

solved by maximizing, for each x̂pq,∑
p

cor2(x̂pq, zp) (6.7)

Hence, each criterion λpq is optimized, under suitable scale level anal-

ysis constraints, by scaling each raw MV by means of one among the

quantification functions 6.1, 6.2 and 6.2.

A procedure alternating the optimization of criterion 6.5 with re-

spect to model parameters by means of new Mode A PLS loop and
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with respect to scaling parameters by means of functions Q̃(x∗pq,vq),˜̃Q(x∗pq,vq) and Q̇(x∗pq,vq) can be used.

Since in each step of such a procedure criterion 6.5 is optimized,

algorithm will converge to both optimal model parameters and optimal

scaling parameters.

However, in order to avoid unuseful computational burden, a quan-

tification step can be directly inserted in new Mode A PLS loop, ex-

actly as shown in algorithm 11.

6.6 The interpretation of the weights

In MN-PLSPM the outer weights of quantified non-metric variable can

be interpreted as a function of both quantified and raw MVs.

Since quantified MVs are standardized to unitary variance by con-

struction, the outer weight vector wpq for the p-th quantified MV x̂pq

of the q-th block is given by cor(x̂pq, zq) for less than a proportionality

factor constant in each block.

When a raw MV x∗pq is quantified at nominal scale level, the fol-

lowing relation holds:

cor(x̂pq, zq) = η(zq |x∗p), (6.8)

where η is the Pearson’s correlation ratio, i.e. the part of variability

of zq explicated by the categories of x∗pq.

It is necessary to pay attention in interpreting these weights, because

they are always not negative, since 0 ≤ η ≤ 1. The weight referred
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to a variable analyzed at a nominal scale level can be interpreted in

terms of intensity, but not direction. After all, it is conceptually wrong

expecting a sign in the relation between a numerical and a nominal

variable, since a nominal variable neither increases, or decreases.

If a MV is quantified at an ordinal level, instead, the sign of corre-

sponding weight can be interpreted. In fact, the following equations

hold:

cor(x̂pq, zq) =


√

1− STRESS12
(zq ,x∗pq) if cor(x̂pq, zq) ≥ 0

−
√

1− STRESS12
(zq ,x∗pq) if cor(x̂pq, zq) < 0

From this relation it descends that if the sign it is positive there is a

direct relation between the raw MV and the first LV. In the opposite

case, it means that this relation is inverse. Moreover, intensity of the

weight of a quantified variable measures the strength of the statistical

relations of the LV with both the quantified and the raw variable:

the first in terms of correlation, the second in terms of approaching

to perfect monotonicity, intended as in Kruskal’s secondary approach

[Kruskal 1964a].

From these consideration, we can conclude that NM-PLSPM algo-

rithm weights are coherent, in the sense that they reflects the statis-

tical relation between the raw MVs and the corresponding LV inner

estimate. This property makes much clearer their interpretation.
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6.7 An application to macroeconomic data

The data for this example ate taken from a paper by Russet [1964].

The basic hypothesis in Russet’s paper is that economic inequality

leads to political instability. In particular in Russet model political

instability is function of inequality of land distribution and of indus-

trial development. Three variables are used to measure inequality of

land distribution. Variable “gini” is the Gini’s index of concentration,

which measures the deviation of the Lorenz curve from the line of

equality. Variable “farm” is the percentage of farmers that own half

of the lands, starting with the smallest ones. Thus if “farm” is 90%,

then 10% of the farmers own half of the land. The third indicator is

“rent”, which is the percentage of farm households that rent all their

land. Two variables are used to measure industrial development: vari-

able “gnpr” is the gross national product pro capite (in U.S. dollars) in

1955, and variable “labo” is the percentage of labor force employed in

agriculture. Political stability is measured by four variables. Variable

“inst” is a function of the number of the chiefs of the executive and of

the number of years of independence of the country during the period

1946-1961. This index bounds between 0 (very stable) and 17 (very

unstable). Variable “ecks” is the Eckstein’s index, which measures

the number of violent internal war incidents during the same period.

Variable “death” is the number of people killed as a result of violent

manifestations during the period 1950-1962. Variable “demo” classi-
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fies countries in three groups: stable democracy, unstable democracy

and dictatorship.

This data-set was analyzed in Gifi [1990] using program CANALS

(Canonical Correlation Analysis by Alternating Least Squares). Vari-

ables were scaled in such a way to maximize the canonical correlation

between the block of variables regarding the economic inequality and

the block of variables regarding the political instability. However, Gifi

himself noticed that partitioning data in three set of variables (agri-

cultural inequality, industrial development and political instability)

would have been a more rational approach.

6.7.1 Model estimation with standard PLS Path

Modeling

Starting from this idea, Tenenhaus [1998] modeled the Russet data-

set in a PLS-PM framework (see figure 6.1). He partitioned Russet

data in three reflective blocks. The first block, consisting of variables

“gini”, “farm” and “rent” measures the latent concept “Agricultural

Inequality”. The second one, formed by variables “gnpr” and “labo”,

measures the latent concept “Industrial Development”. The third

block, composed by variables “inst”, “ecks”, “death” and “demo”,

expresses the latent concept “Political Instability”. Relations between

latent variables are modeled in the following way: Agricultural In-

equality and Industrial Development predict Political Instability (see

figure 6.1).

Since Gifi’s analysis suggested an high degree of non-linearity of
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Country gini farm rent gnpr labo inst ecks death demo

Argentina 86.3 98.2 32.9 374 25 13.6 57 217 unstable
Australia 92.9 99.6 NA 1215 14 11.3 0 0 stable
Austria 74 97.4 10.7 532 32 12.8 4 0 unstable
Belgium 58.7 85.8 62.3 1015 10 15.5 8 1 stable
Bolivia 93.8 97.7 20 66 72 15.3 53 663 dict.
Brasil 83.7 98.5 9.1 262 61 15.5 49 1 unstable
Canada 49.7 82.9 7.2 1667 12 11.3 22 0 stable
Chile 93.8 99.7 13.4 180 30 14.2 21 2 unstable
Colombia 84.9 98.1 12.1 330 55 14.6 47 316 unstable
CostaRica 88.1 99.1 5.4 307 55 14.6 19 24 unstable
Cuba 79.2 97.8 53.8 361 42 13.6 100 2900 dict.
Denmark 45.8 79.3 3.5 913 23 14.6 0 0 stable
Domin. Rep. 79.5 98.5 20.8 205 56 11.3 6 31 dict.
Ecuador 86.4 99.3 14.6 204 53 15.1 41 18 dict.
Egypt 74 98.1 11.6 133 64 15.8 45 2 dict.
Salvador 82.8 98.8 15.1 244 63 15.1 9 2 dict.
Finland 59.9 86.3 2.4 941 46 15.6 4 0 unstable
France 58.3 86.1 26 1046 26 16.3 46 1 unstable
Guatemala 86 99.7 17 179 68 14.9 45 57 dict.
Greece 74.7 99.4 17.7 239 48 15.8 9 2 unstable
Honduras 75.7 97.4 16.7 137 66 13.6 45 111 dict.
India 52.2 86.9 53 72 71 3 83 14 stable
Irak 88.1 99.3 75 195 81 16.2 24 344 dict.
Ireland 59.8 85.9 2.5 509 40 14.2 9 0 stable
Italy 80.3 98 23.8 442 29 15.5 51 1 unstable
Japan 47 81.5 2.9 240 40 15.7 22 1 unstable
Libia 70 93 8. 5 90 75 14.8 8 0 dict.
Luxemburg 63.8 87.7 18.8 1194 23 12.8 0 0 stable
The Netherl. 60.5 86.2 53.3 708 11 13.6 2 0 stable
New Zealand 77.3 95.5 22.3 1259 16 12.8 0 0 stable
Nicaragua 75.7 96.4 NA 254 68 12.8 16 16 dict.
Norway 66.9 87.5 7.5 969 26 12.8 1 0 stable
Panama 73.7 95 12.3 350 54 15.6 29 25 dict.
Peru 87.5 96.9 NA 140 60 14.6 23 26 dict.
Philippine 56.4 88.2 37.3 201 59 14 15 292 dict.
Poland 45 77.7 0 468 57 8.5 19 5 dict.
S. Vietnam 67.1 94.6 20 133 65 10 50 1000 dict.
Spain 78 99.5 43.7 254 50 0 22 1 dict.
Sweden 57.7 87.2 18.9 1165 13 8.5 0 0 stable
Switzerland 49.8 81.5 18.9 1229 10 8.5 0 0 stable
Taiwan 65.2 94.1 40 132 50 0 3 0 dict.
UK 71 93.4 44.5 998 5 13.6 12 0 stable
USA 70.5 95.4 20.4 2343 10 12.8 22 0 stable
Uruguay 81.7 96.6 34.7 569 37 14.6 1 1 stable
Venezuela 90.9 99.3 20.6 762 42 14.9 36 111 dict.
W. Germany 67.4 93 5.7 762 14 3 4 0 unstable
Yugoslavia 43.7 79.8 0 297 67 0 9 0 dict.

Table 6.1: Russet data-set
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Figure 6.1: Russet data as modeled by Tenenhaus
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data, Tenenhaus approximated CANALS scalings by means of mono-

tone functional transformations. Variables “rent” “gnpr” , “labo”,

“ecks” and “death” were transformed as functions of respective stan-

dardized logarithms. In particular, new variables l rent = ln(rent),

l gnpr = ln(gnpr), l labo = ln(labo), l ecks = ln(ecks+1), and l death =

ln(death + 1) replaced the old ones. Variable “inst” was transformed

according to the exponential rule (i.e. as e ins = expinst−16.3) and

standardized. Finally, variables “gini” and “farm” were just stan-

dardized. Since variable “demo” is categorical, it was replaced by the

three dummy variables “d-stb”, “d-inst”, and “dict” corresponding to

its categories.

Tenenhaus performed a PLS-PM analysis on the model defined in

figure 6.1 by using the option centroid for inner weight estimation and

handling all the blocks as reflective. We run the same analysis by

using an R code developed by the author.

Quality of Tenenhaus’ model is assessed looking at table 6.2. As

regard to the inner model, a good part of the variability of the latent

response ξ3 (“Political Instability”) is explained by the two latent

predictors, with an R2 value of 0.622. With respect to the quality

of the outer model the mean Communalities of exogenous blocks are

satisfying. However, the LV “Political Instability” only explain the

45.2% of its own MV variability.

Parameters estimates are represented in figure 6.2. It is possible

to investigate the relations between Agricultural Inequality, Industrial

Development and Political Instability through the path coefficients
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LV R2 Mean Comm. Mean Red.
ξ1 0.731
ξ2 0.907
ξ3 0.622 0.452 0.282

Table 6.2: PLS-PM analysis of Russet data as transformed by Tenen-
haus: model assessment

represented in figure; obviously, the two latent predictors impact in

opposite sense on the response. However, Political Instability largely

depends on Industrial Development than on Agricultural Inequality.

The higher the Industrial Development is, the smaller the Political

Instability is.

As one can expect, variables “gini”, “farm” and “l rent” are pos-

itively correlated to the LV ξ1, which measures the Agricultural In-

equality. LV Industrial Development, is positively affected by the gross

national product (variable “l gnpr”) and negatively affected by the

percentage of agricultural workers (variable “l labo”). All of the MVs

of the block representing Political Instability positively impact on the

LV ξ3 but binary variable “d-stb”, which indicates the countries with

a stable democratic regime.

It is not clear if the weight of variable “demo”, expressed by the

three dummy “d-stb”, “d-inst” and “dict”, is high or low. While

weights of “d-stb” and “dict” are large, the weight of “d-inst” is al-

most zero (see table 6.3). As matter of fact the weight of the binary

variable “d-inst” is so small just because there is a strong relation

between the categorical variable “demo” and the LV Political Insta-
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Figure 6.2: PLS-PM analysis of Russet data as transformed by Tenen-
haus: model parameter estimates
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LV MV Outer weights Stand. load. Comm. Red.

ξ1 gini 0.460 0.977 0.955
farm 0.516 0.986 0.972
l rent 0.081 0.516 0.266

ξ2 l gnpr 0.511 0.950 0.903
l labo -0.538 -0.955 0.912

ξ3 e inst 0.104 0.352 0.124 0.077
l ecks 0.270 0.816 0.665 0.414
l death 0.302 0.794 0.630 0.392
d-stb -0.336 -0.866 0.749 0.466
d-inst 0.037 0.094 0.009 0.006
dict 0.285 0.733 0.537 0.334

Table 6.3: PLS-PM analysis of Russet data as transformed by Tenen-
haus: outer model results

bility. In fact, category “d-stb” is mainly associated to observation

sharing the lowest values of ξ3, while category “dict” is mainly associ-

ated to observations sharing the highest values of the LV and category

“d-inst” is mainly associated to observation sharing the central values

of political instability score distribution. Hence, there are a strong

relation between ξ3 and all of the binary variables representing the

categories of MV “demo”. Unfortunately, while relations between bi-

nary variable “dict” and “d-stb” and ξ1 are pretty monotone (and so

they can easily approximated by a linear function), binary variable

“d-inst” is linked to ξ1 by a non-monotonic relation (see figure 6.3).

As a consequence, this variable is underestimated in the model.
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Figure 6.3: Raw values of binary variables corresponding to categories
of variable “demo” plotted versus the LV Political Instability values

6.7.2 Model estimation with Non-Metric PLS Path

Modeling

In order to overcame the binary coding drawbacks, we perform two

Non-Metric PLS-PM analyses on Russet data-set by using an R code

developed by the author (see Appendix). In the first analysis, we let

metric variables as transformed by Tenenhaus while the non-metric

variable “demo” will be properly quantified (see subsection 6.7.2). In

the second, we provide new transformations for all of the original vari-

ables of the Russet data-set (see subsection 6.7.2).

Analyzing a variable at a nominal scaling level

In this NM-PLSPM analysis, variable “demo” is analyzed at a nominal

scaling level; for all the other variables we keep Tenenhaus’ transfor-

mations and we analyze them at a linear scaling level (i.e. we simply

standardize them). The new model is represented in figure 6.4. Now
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the LV political instability is expressed by just four MVs: “e inst”,

“l ecks”, “l death” and “demo”. The quality of this model is summa-

Figure 6.4: NM-PLSPM analysis of Russet data as transformed by
Tenenhaus (variable “demo” is analyzed at a nominal scaling level):
model parameter estimates

rized in table 6.4. With respect to the previous, this model loses in

predictive capability of the latent response, while gains in explicative

capability of the MV underlying the concept of Political Instability.

The mean Communalities of the other two blocks remain about the
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LV R2 Mean Comm. Mean Red.

ξ1 0.737
ξ2 0.908
ξ3 0.589 0.572 0.337

Table 6.4: NM-PLSPM analysis of Russet data as transformed by
Tenenhaus (variable “demo” is analyzed at a nominal scaling level):
model assessment

same. However, the global model fit improves, as GoF passes from

0.617 to 0.643.

The non-metric analysis makes it clear that MV “demo” is the most

important in the construction of the LV Political Instability (see table

6.5). According to these results we can conclude that the categories

of the MV “demo” are very discriminant with respect to the Political

Instability scores. In fact, the weight of a MV quantified at a nominal

scaling level reflects the variability of the corresponding LV explained

by the categories of the MV (see section 6.6).

Exploring non linearity by means of monotone transforma-

tions

Tenenhaus himself pinpointed that approximating CANALS transfor-

mations is not the better choice, as they are optimized for canonical

correlation, while transformations optimized for PLS-PM would be

preferable. In order to have monotone quantification that are coher-

ent with the model, we perform a second NM-PLS path model, where
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LV MV Outer weights Stand. load. Comm. Red.

ξ1 gini 0.455 0.973 0.947
farm 0.502 0.984 0.968
l rent 0.117 0.543 0.294

ξ2 l gnpr 0.514 0.951 0.904
l labo -0.536 -0.955 0.911

ξ3 e inst 0.127 0.375 0.140 0.083
l ecks 0.329 0.853 0.728 0.429
l death 0.370 0.826 0.682 0.402
demo 0.427 0.859 0.739 0.435

Table 6.5: NM-PLSPM analysis of Russet data as transformed by
Tenenhaus (variable “demo” is analyzed at a nominal scaling level):
outer model results

all quantitative MVs are analyzed at an ordinal scaling level, and the

MV “demo” is analyzed at a nominal scaling level.

The resulting quantifications (see figure 6.6) yield a sensibly better

model (GOF = 0.794). The interpretation of the inner relation does

not change: the impact on Political Instability of Industrial Develope-

ment (β̂ = −0.716) is higher than the one of Agricultural Inequality

(β̂ = 0.291). However, the multiple determination index of the re-

gression sensibly increases, as well the mean Redundancy of the MVs

connected to ξ3 (see figure 6.5).

As regards the outer model, we notice a substantial improvement of

the mean Communality of the endogenous block; also the mean Com-

munality of block referring to LV ξ2 increases, while the capability of

ξ1 in explaining its own MVs remains substantially stable (see table
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Figure 6.5: Non-Metric PLS-PM analysis of Russet data (all of the
manifest variables are properly quantified): model parameter esti-
mates
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LV R2 Mean Comm. Mean Red.
ξ1 0.739
ξ2 0.927
ξ3 0.794 0.671 0.532

Table 6.6: Non-Metric PLS-PM analysis of Russet data (all of the
manifest variables are properly quantified): model assessment

LV MV Outer weights Stand. load. Comm. Red.

ξ1 gini 0.425 0.954 0.910
farm 0.454 0.958 0.917
rent 0.256 0.623 0.389

ξ2 gnpr 0.523 0.963 0.928
labo -0.516 -0.962 0.926

ξ3 inst 0.201 0.624 0.390 0.310
ecks 0.310 0.896 0.802 0.637
death 0.358 0.900 0.810 0.643
demo 0.332 0.825 0.680 0.540

Table 6.7: Non-Metric PLS-PM analysis of Russet data (all of the
manifest variables are properly quantified): outer model results

6.6). Moreover, we observe an improvement of the loading estimates

of the worst modeled variables in previous analysis; we refer in par-

ticular to variables “rent” and “inst”. This improvement is reflected

also in the corresponding outer weights, which in standard PLS-PM

express the degree of linearity of the relation between each MV and

the corresponding LV, while in NM-PLSPM indicate the degree of

monotonicity of this relation (see table 6.7).
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Figure 6.6: Non-Metric PLS-PM analysis of Russet data (all of the
manifest variables are properly quantified): Raw values vs Scaling
values
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6.7.3 Conclusion

Previous analyses showed that NM-PLSPM is a valid tool to obtain

coherent models when we observe variables measured on a variety

of measurement scale, as well as when we want to discard linearity

hypothesis in relations between the MVs and the corresponding LV.

In fact, a milder hypothesis of monotonicity can be adopted in a non-

metric approach. In general, we can state that NM-PLS Path Models

provides better models, since MV are transformed in such a way to

make relations between manifest and latent variables linear.





Conclusion

In 1966 Herman Wold proposed the estimation of principal compo-

nents and related models by means of a Non-linear Iterative Partial

Least Squares procedure. Ten years later, for the first time an itera-

tive algorithm based on an Alternating Least Squares (ALS) procedure

was proposed by Jan de Leeuw, Yoshio Takane and Forrest W. Young

for implementing optimal scaling in additive structure analysis. They

themselves noticed, referring to ALS, that “this type of procedure is

philosophically much like the NILES/NIPALS procedure developed by

Wold and his associates with the distinction that Wold is usually con-

cerned with optimizing only model parameters” [de Leeuw et al. 1976].

It is surprising how along the last 33 years these two procedures

have been developed in a parallel way, never crossing each other.

ALS have become the most used procedure for optimal scaling in

joint non-parametric multivariate analysis of non-metric and metric

data. A whole system of non-linear multivariate analysis, working on

ALS principles, was developed by the data theory group of Leiden

University [Gifi 1990].
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NIPALS algorithm has been developed in order to implement Prin-

cipal Component Analysis, Canonical Correlation Analysis, Redun-

dancy Analysis, Multiple Factorial Analysis, Canonical Correlation

Analysis and Generalized Canonical Correlation Analysis. PLS Re-

gression and PLS Path Modeling, instead, are new methods, devel-

oped to perform respectively Regularized Regression and Structural

Equation Models in a soft modeling framework.

Nowadays, “among the open issue that currently represent the most

important and promising research challenges in PLS-PM,” there is the

“specific treatment of categorical (nominal and ordinal) variable and

specific treatment of non linearity” [Esposito Vinzi et al. 2009].

In this work we found out how NIPALS based algorithms, properly

adjusted, can work as optimal scaling algorithms. This new feature

of PLS, which had been until now totally unexplored, allowed us to

device a new suite of PLS methods: the Non-Metric PLS (NM-PLS)

methods.

NM-PLS methods can be used with different aims:

• to analyze at the same time variables observed on different mea-

surement scales;

• to investigate non linearity;

• to discard the hard assumption of linearity in favor of a milder

assumption of monotonicity.

In particular, these methods generalize standard NIPALS, PLS Re-

gression and PLS Path Modeling in order to handle variables observed
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on a variety of measurement scales, as well as to cope with non linear-

ity problems.

Three new algorithms have been proposed to implement NM-PLS

methods: the Non-Metric NIPALS algorithm, the Non-Metric PLS

Regression algorithm, and the Non-Metric PLS Path Modeling algo-

rithm.

All these algorithms provide at the same time specific PLS model

parameters as well as scaling values for variables to be scaled.

Scaling values provided by these algorithms have been proved to

be optimal, in the sense that they optimize the same criterion of the

model in which they are involved. Moreover, they are suitable, since

they respect the constraints depending on which among the properties

of the original measurement scale we want to preserve.

Further studies on stability of results have to be done in future

research, as well as to investigate if NM-PLS algorithms converge to

global or local optima. Moreover, future research challenges in NM-

PLS methods involve the extension of these methods to:

• optimal quantifications for H-dimensional models;

• monotone polynomials and splines transformations;

• Mode B PLS-PM.





Appendix

A.1 R code for Non-Metric PLS Regres-

sion

myPLSQQ <- function(Y=NA,Yc=NA,X=NA,Xc=NA,ncomp)

{

if (is.na(Y)==F)

{

n<-nrow(Y)

rownamesY<-rownames(Y)

}

else

{

n<-nrow(Yc)

rownamesY<-rownames(Yc)

}

ncolX<-0

if (is.na(X)==F)

{

ncolX<-ncol(as.matrix(X))

}

ncolXc<-0

if (is.na(Xc)==F)

{

ncolXc<-ncol(as.matrix(Xc))

189
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}

p<-numeric()

if (is.na(Xc)==F && is.na(X)==F)

{

p<-ncolX+ncolXc

}

if (is.na(Xc)==F && is.na(X)==T)

{

p<-ncolXc

}

if (is.na(X)==F && is.na(Xc)==T)

{

p<-ncolX

}

ncolY<-0

if (is.na(Y)==F)

{

ncolY<-ncol(as.matrix(Y))

}

ncolYc<-0

if (is.na(Yc)==F)

{

ncolYc<-ncol(as.matrix(Yc))

}

q<-numeric()

if (is.na(Yc)==F && is.na(Y)==F)

{

q<-ncolY+ncolYc

}

if (is.na(Yc)==F && is.na(Y)==T)

{

q<-ncolYc

}

if (is.na(Y)==F && is.na(Yc)==T)

{

q<-ncolY

}

a<-ncomp

Q<-matrix(,n,ncolXc)
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Qy<--matrix(,n,ncolYc)

W<-matrix(,p,a)

rownames(W)<-c(colnames(X),colnames(as.matrix(Xc)))

U<-matrix(,n,a)

U<-matrix(c(rep(c(1,rep(0,(n-1))),a)),n,a)

#if (is.na(Y)==F) { U[,1]<-Y[,1]}

#else {U[,1]<-c(1,rep(0,(n-1)))}

rownames(U)<-rownamesY

T<-matrix(,n,a)

rownames(T)<-rownamesY

C<-matrix(,q,a)

rownames(C)<-c(colnames(Y),colnames(Yc))

P<-matrix(,p,a)

rownames(P)<-c(colnames(X),colnames(Xc))

W_star<-matrix(,p,a)

b<-matrix(,a,1)

B<-matrix(,p,q)

Pcorr<-matrix(,p,a)

rownames(Pcorr)<-c(colnames(X),colnames(Xc))

Ccorr<-matrix(,q,a)

rownames(Ccorr)<-c(colnames(Y),colnames(Yc))

Tcorr<-matrix(,n,a)

rownames(Tcorr)<-rownamesY

Xi<-X

Yi<-Y

Xarray<-array(,c(n,p,a))

Yarray<-array(,c(n,q,a))

for (i in 0:(a-1))

{

ncicli<-0

repeat

{

Ustart<-U[,i+1]

if (i==0)

{

if (is.na(Xc)==F)

{

Q<-dummy.G(U[,i+1],Xc)$Quant

Q<-myScale(Q)
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colnames(Q)<-colnames(Xc)

if (is.na(X)==F)

{

Xi<-cbind(Xi[,1:ncolX],Q)

}

else

{

Xi<-Q

}

}

}

W[,i+1]<-as.matrix((t(Xi)%*%U[,i+1])/as.numeric(t(U[,i+1])%*%U[,i+1]))

W[,i+1]<-W[,i+1]/sqrt(as.numeric(t(W[,i+1])%*%W[,i+1]))

T[,i+1]<-(Xi%*%W[,i+1])/as.numeric(t(W[,i+1])%*%W[,i+1])

if (i==0)

{

if (is.na(Yc)==F)

{

Qy<-dummy.G(T[,i+1],Yc)$Quant

Qy<-myScale(Qy)

if (is.na(Y)==F)

{

Yi<-cbind(Yi[,1:ncolY],Qy)

}

else

{

Yi<-Qy

}

}

}

C[,i+1]<-(t(Yi)%*%T[,i+1])/as.numeric(t(T[,i+1])%*%T[,i+1])

C[,i+1]<-C[,i+1]/sqrt(as.numeric(t(C[,i+1])%*%C[,i+1]))

U[,i+1]<-(Yi%*%C[,i+1])/as.numeric(t(C[,i+1])%*%C[,i+1])

conv<-max(abs(Ustart-U[,i+1]))

print("conv");print(conv);

ncicli<-ncicli+1

if (conv<0.0000001 | ncicli>149) {break}

}

print("numero cicli"); print(ncicli);
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P[,i+1]<-t(Xi)%*%T[,i+1]/as.numeric(t(T[,i+1])%*%T[,i+1])

Xi<-Xi-(T[,i+1]%*%t(P[,i+1]))

Xarray[,,i+1]<-Xi

b[i+1,1]<-(t(U[,i+1])%*%T[,i+1])/(t(T[,i+1])%*%T[,i+1])

print("inner coefficient: ");print(b[i+1,1])

Yi<-Yi-(as.numeric(b[i+1,1])*T[,i+1]%*%t(C[,i+1]))

Yarray[,,i+1]<-Yi

}

W_star<-W

rownames(Q)<-rownamesY

colnames(Q)<-colnames(Xc)

rownames(B)<-c(colnames(X),colnames(Xc))

colnames(B)<-c(colnames(Y),colnames(Yc))

rownames(W_star)<-c(colnames(X),colnames(Xc))

if (is.na(Y)==F)

{

newY<-cbind(Y,Qy)

}

else

{

newY<-Qy

}

if (is.na(X)==F)

{

newX<-cbind(X,Q)

}

else

{

newX<-Q

}

R2X<-1-(sum(apply(as.matrix(Xarray[,,a]),2,var))/sum(apply(newX,2,var)))

R2Y<-1-(sum(apply(as.matrix(Yarray[,,a]),2,var))/sum(apply(newY,2,var)))

if (a>1)

{

W_star<-W%*%solve(t(P)%*%W)

Pcorr<-P%*%(diag(apply(T,2,sd)))

Ccorr<-C%*%(diag(apply(T,2,sd)))

diag_matr<-diag(1/(apply(T,2,sd)*sqrt(n-1)))

Tcorr<-T%*%(diag_matr)
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IDYarray<-array(,c(n,2,q))

lista_Ymedie<-list()

for (j in 1:q)

{

IDYarray[,1,j]<-(T%*%(C[j,]))/sqrt(1+(Ccorr[j,2]/Ccorr[j,1])^2)

IDYarray[,2,j]<-IDYarray[,1,j]*(Ccorr[j,2]/Ccorr[j,1])

}

if (is.na(Yc)==F)

{

for (k in 1:ncolYc)

{

matrice_Ymedie<-matrix(,max(as.matrix(Yc)[,k]),2)

matrice_Ymedie[,1]<-as.vector(tapply(IDYarray[,1,k+ncolY],Yc[,k],mean,na.rm=T))

matrice_Ymedie[,2]<-as.vector(tapply(IDYarray[,2,k+ncolY],Yc[,k],mean,na.rm=T))

lista_Ymedie[[k]]<-matrice_Ymedie

}

}

IDarray<-array(,c(n,2,p))

lista_medie<-list()

for (j in 1:p)

{

IDarray[,1,j]<-(T%*%(P[j,]))/sqrt(1+(Pcorr[j,2]/Pcorr[j,1])^2)

IDarray[,2,j]<-IDarray[,1,j]*(Pcorr[j,2]/Pcorr[j,1])

}

if (is.na(Xc)==F)

{

for (k in 1:ncolXc)

{

matrice_medie<-matrix(,max(as.matrix(Xc)[,k]),2)

matrice_medie[,1]<-as.vector(tapply(IDarray[,1,k+ncolX],Xc[,k],mean,na.rm=T))

matrice_medie[,2]<-as.vector(tapply(IDarray[,2,k+ncolX],Xc[,k],mean,na.rm=T))

lista_medie[[k]]<-matrice_medie

}

}

B<-W_star%*%diag(b[,1])%*%t(C)

VIP<-matrix(,p,1)

rownames(VIP)<-rownames(B)

for (j in 1:p)

{
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SumRdW2<-0

SumRd<-0

for (h in 1:a)

{

Rd<-0

for (k in 1:q)

{

Rd<-Rd+(cor(newY[,k],T[,h])^2)

}

SumRdW2<-SumRdW2+((Rd)*(as.numeric(W[j,h])^2))

SumRd<-SumRd+(Rd)

}

VIP[j,1]<-sqrt(p*SumRdW2/SumRd)

}

list(Q=Q,Qy=Qy,U=U,T=T,C=C,P=P,W=W,b=b,B=B,W_star=W_star,Pcorr=Pcorr,Ccorr=Ccorr,

Tcorr=Tcorr, Xarray=Xarray, Yarray=Yarray, IDarray=IDarray, lista_medie=lista_medie,

IDYarray=IDYarray, lista_Ymedie=lista_Ymedie,VIP=VIP,R2X=R2X,R2Y=R2Y)

}

else

{

B<-as.numeric(b[1,1])*W%*%t(C)

list(Q=Q,Qy=Qy,U=U,T=T,C=C,P=P,W=W,W_star=W_star,b=b,B=B, Xarray=Xarray,

Yarray=Yarray, R2X=R2X, R2Y=R2Y)

}

}
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A.2 R code for Non-Metric PLS-Path Mod-

eling
myPLSPM<-function(X, p_blocchi, path, scaling=NA)

{

if (is.na(scaling)==T)

{

scaling<-vector("list", length(p_blocchi))

for (i in 1:length(scaling))

{

scaling[[i]]<-c(rep("NUM",p_blocchi[i]))

}

}

X <- as.matrix(X)

path <- as.matrix(path)

link <- t(path)+path

N <- nrow(X)

P<- ncol(X)

blocchi<-list()

mean_X <-list()

var_X <- list()

correzione<-(sqrt((N-1)/N))

QQ <- list()

p_blocchi<-c(1,p_blocchi)

for (q in 1:(length(p_blocchi)-1))

{

blocchi[[q]]<-as.matrix(X[,(sum(p_blocchi[1:q])):(sum(p_blocchi[1:q])+p_blocchi[q+1]-1)])

QQ[[q]] <- blocchi[[q]]

}

p_blocchi<-p_blocchi[2:length(p_blocchi)]

nbloc<-length(p_blocchi)

w <- vector("list", nbloc)

z <- vector("list", nbloc)

for (q in 1:nbloc)

{

z[[q]]<-scale(svd(scale(blocchi[[q]]))$u[,1])*correzione

w[[q]]<-c(rep(1,p_blocchi[q]))

}
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y <- vector("list", nbloc)

e <- matrix(,nbloc,nbloc)

converg<-numeric()

ncicli<-0

z_temp<-matrix(0,N,1)

###############################################################

# iterative cycle #

###############################################################

repeat

{

ncicli<-ncicli+1

w_old <- w[[nbloc]]

# --- MV quantification ["QQ"] ---- #

for (q in 1:(nbloc))

{

for (p in 1:(p_blocchi[q]))

{

if (scaling[[q]][p]=="NOM")

{

QQ[[q]][,p]<-dummy.G(z[[q]],(blocchi[[q]][,p]))$Quant

QQ[[q]][,p]<-scale(QQ[[q]][,p])*correzione

}

if (scaling[[q]][p]=="NUM")

{

QQ[[q]][,p]<-scale(QQ[[q]][,p])*correzione

}

if (scaling[[q]][p]=="ORD")

{

eta2_temp<- (dummy.ord(z[[q]],(blocchi[[q]][,p]))$eta2)

if ( eta2_temp < (dummy.ord_decr(z[[q]],(blocchi[[q]][,p]))$eta2))

{

QQ[[q]][,p] <- -dummy.ord_decr(z[[q]],(blocchi[[q]][,p]))$Quant

}

else { QQ[[q]][,p] <- (dummy.ord( z[[q]],(blocchi[[q]][,p]))$Quant)}

QQ[[q]][,p]<-scale(QQ[[q]][,p])*correzione

}

if (scaling[[q]][p]=="RAW")

{

QQ[[q]][,p]<-QQ[[q]][,p]
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}

}

}

# --- updating the weights ["w"]: REFECTIVE WAY ---- #

for (q in 1:nbloc)

{

w[[q]]<-(1/N)*(t(QQ[[q]]) %*% z[[q]])

}

# --- updating the weights ["w"]:FORMATIVE WAY ---- #

#for (q in 1:nbloc)

#{

# w[[q]]<-solve(t(QQ[[q]]) %*% QQ[[q]]) %*% t(QQ[[q]]) %*% z[[q]]

#}

# --- outer estimations ["y"] ---- #

for (q in 1:nbloc)

{

y[[q]] <- QQ[[q]] %*% w[[q]]

y[[q]] <- scale(y[[q]])*correzione

}

# --- updating the weights ["e"] ---- #

for (q in 1:nbloc)

{

z[[q]] <- z_temp

for (k in 1:nbloc)

{

e[q,k]<-cor(y[[q]],y[[k]])

##########################################################################

# if centroid approach, ok; in factorial approach, delete next 2 raws #

##########################################################################

if (e[q,k]>0) {e[q,k]<-1}

else {e[q,k]<- -1}

z[[q]]<-(z[[q]])+(link[q,k]*e[q,k]*y[[k]])

}

z[[q]]<-scale(z[[q]])*correzione

}

converg <- sum((w_old-w[[nbloc]])^2)

print("converg")

print(converg)

print("ncicli")
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print(ncicli)

if (converg<0.0000001 | ncicli>51) {break}

}

##############################################################

# computation of the LV scores using the outer weigts w #

##############################################################

VL <- list()

sqm_VL <- array(, nbloc)

w_tilde <- list()

abs_w_tilde<-list()

VLS <- list()

somma_w_tilde<-array(,nbloc)

w_tilde_normal <- list()

for (q in 1:nbloc)

{

VL[[q]] <- QQ[[q]] %*% w[[q]]

sqm_VL[q] <- sd(VL[[q]])*sqrt((N-1)/N)

w_tilde[[q]] <- w[[q]]/as.numeric(sqm_VL[q])

VLS[[q]] <- QQ[[q]] %*% w_tilde[[q]]

abs_w_tilde[[q]] <- abs(w_tilde[[q]])

somma_w_tilde[[q]] <- sum(abs_w_tilde[[q]])

w_tilde_normal[[q]] <- w_tilde[[q]]/somma_w_tilde[[q]]

}

# ----- the LVs are standardized ----- #

############################################################################

# computation of the correlation between each LV and the corresponding MVs #

############################################################################

CORR_VL <- list()

COMM_vm <- list()

COMM <- list()

for (q in 1:nbloc)

{

CORR_VL[[q]] <-cor(VLS[[q]],QQ[[q]])

# ----- computation of the Communality and Redundancy indexes ------ #

COMM_vm[[q]] <- CORR_VL[[q]]^2

COMM[[q]] <- sum(COMM_vm[[q]])/p_blocchi[[q]]

}

###############################################################

# Average Communality #
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###############################################################

COMM_M <-0

for (i in 1:nbloc)

{

if (p_blocchi[i]>1)

{

COMM_M<-COMM_M+(p_blocchi[[i]]*COMM[[i]])

}

}

COMM_M<-COMM_M/sum( p_blocchi[which(p_blocchi>1)] )

###############################################################

# computation of the patameters of the inner model #

###############################################################

n_eso<-0

repeat

{

n_eso<-n_eso+1

if (path[n_eso,1]==1) {break}

}

n_eso<-n_eso-1

n_endo<-nbloc-n_eso

print(n_endo)

pred<-vector("list",n_endo)

inn_regr<-vector("list",n_endo)

R2<-array(,n_endo)

RED_blocco<-array(,n_endo)

RED_vm<-vector("list", n_endo)

for (i in 1:n_endo)

{

pred[[i]]<-matrix(,N,sum(path[n_eso+i,]))

count<-0

for (j in 1:ncol(pred[[i]]))

{

repeat

{

count<-count+1

if (sum(path[n_eso+i,1:count])==j) {break}

}

pred[[i]][,j]<-VLS[[count]]
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}

inn_regr[[i]]<-lm(VLS[[n_eso+i]]~pred[[i]])

R2[i]<-(var(VLS[[n_eso+i]])-(var(residuals(inn_regr[[i]]))))/var(VLS[[n_eso+i]])

RED_blocco[i]<-R2[i]*COMM[[n_eso+i]]

RED_vm[[i]]<-R2[i]*COMM_vm[[n_eso+i]]

}

R2_M<-mean(R2)

GOF<-sqrt(R2_M*COMM_M)

list(QQ=QQ, w=w,pred=pred,ncicli=ncicli,VLS=VLS,VL=VL,CORR_VL=CORR_VL,w_tilde=w_tilde,

w_tilde_normal=w_tilde_normal,COMM=COMM,COMM_M=COMM_M,COMM_vm=COMM_vm,blocchi=blocchi,

N=N,inn_regr=inn_regr,GOF=GOF,R2=R2,R2_M=R2_M,RED_blocco=RED_blocco,RED_vm=RED_vm)

}
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Jöreskog, K. [1970], ‘A general method for analysis of covariance structure’,

Biometrika 57, 239–251.

Kelley, H. [1962], Method of gradients, in G. L. Ed., ed., ‘Optimization

techniques with application to aerospace systems’, New York: Aca-

demic Press, pp. 205–254.

Kettenring, J. R. [1971], ‘Canonical analysis of several sets of variables’,

Biometrika 58, 433–451.

Knowles, E. S. & Nathan, K. [1997], ‘Acquiescent responding in self-reports:

Social concern or cognitive style?’, Journal of Research in Personality

31, 293–301.
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Lohmöller, J. [1987], LVPLS program manual, version 1.8, Technical report,

Zentralarchiv für Empirische Sozialforschung, Universität Zu Köln,
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