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Preface

Many problems in pure and applied sciences can be formulated as global optimiza-

tion problems in which the objective function is nonconvex and has many local

minima. An intense research activity has been devoted to developing numerical

solution methods, but there are still several open problems.

In this thesis we consider a global optimization problem arising in the detection of

gravitational waves. The detection of such waves has a fundamental role in modern

astrophysics. So far, only indirect evidences of the existence of gravitational waves

have been provided because of the many difficulties arising in the detection process.

Network of detectors have been recently deployed, but highly effective data analysis

techniques are still needed to filter the output of the detectors.

Coalescing binary systems (neutron stars and/or black holes) are very promising

sources of gravitational waves for ground-based laser interferometric detectors. For

these sources the most widely used detection technique is the generalized likelihood

ratio test, which corresponds to the application of the matched filtering technique.

A crucial issue in this methodology is the solution of a box-constrained global opti-

mization problem. This problem is hard to solve because of the strong nonlinearity

of the objective function, the unavailability of its derivatives, the presence of many

local solutions, and the high computational cost of its evaluation. Furthermore, the

objective function is a stochastic process because of the presence of noise, and hence,

for a given gravitational signal, the solution of the optimization problem changes

with the specific realization of the noise.

In the astrophysics community, this optimization problem is usually solved by
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applying the grid search technique on a suitable discretization of the feasible domain

that allows to satisfy certain accuracy requirements. However, this technique needs a

large number of objective function evaluations and hence has a high computational

cost. The reduction of such a cost is crucial in the overall detection process and

represents the main motivation for our investigations.

In order to solve the above optimization problem we considered genetic algo-

rithms. These algorithms are generally able to compute satisfactory solutions, es-

pecially when the objective function is a black box for which little or no additional

information is available. We developed a real-coded genetic algorithm which exploits

characteristic features of the problem itself. Special attention was devoted to the

choice of the initial population and of the recombination operator. Numerical exper-

iments showed that our algorithm is able to compute a reasonably accurate solution

of the optimization problem, requiring a much smaller number of function evalua-

tions than the grid search. Furthermore, the genetic algorithm largely outperforms

other global optimization algorithms on significant instances of the problem.

To further reduce the execution time in the solution of the optimization problem,

we developed a parallel version of our genetic algorithm using the multiple-deme

approach. This approach allows a great flexibility in the design of the algorithm

and hence a better adaptation to the problem. Numerical experiments showed that

the parallel algorithm allows to increase the accuracy and the reliability of the

sequential genetic algorithm, and to obtain results comparable to the grid search in

terms of accuracy, but with a lower computation time.

This thesis is organized as follows. In Chapter 1 we give an introduction to

Global Optimization, presenting results on the existence and the characterization of

the solutions. Then we discuss general features of global optimization methods and

give a classification of them in terms of convergence properties.

In Chapter 2 we introduce the problem of the detection of gravitational waves,

highlighting its importance in modern astrophysics. We briefly illustrate ground-

based laser interferometric detectors such as VIRGO and describe gravitational sig-
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nals emitted by coalescing binary systems. Then we present the generalized likelihood

ratio test, showing that the solution of a box-constrained global optimization prob-

lem is the main computational kernel of this methodology. Finally, we describe the

grid search, which is currently the most used algorithm to solve the global optimiza-

tion problem.

In Chapter 3 we present the genetic algorithm developed for the optimization

problem under consideration. We briefly introduce genetic algorithms, outlining

their structure and main components. We focus on the representation of the in-

dividuals and the choice of the genetic operators and related parameters, in order

to design a suitable algorithm for our problem. Special attention is devoted to the

initial population, which is chosen by combining information on the local variability

of the objective function, derived from the knowledge of the physical problem, with

a methodology which guarantees a good covering of the feasible domain. Further-

more, the recombination operator is designed for properly handling the constraints.

Finally, the results of an extensive testing activity, devoted to the evaluation of

the genetic algorithm, as well as to its comparison with other global optimization

algorithms, are presented.

In Chapter 4 we describe a parallel version of the previous genetic algorithm.

This version was developed for MIMD distributed memory systems, using the message-

passing paradigm, in order to reduce the execution time while enhancing the effec-

tiveness of the sequential algorithm. We first outline different approaches to the

development of parallel genetic algorithms. Then we present our algorithm, based

on the mutliple-deme approach, which uses several subpopulations that evolve in-

dependently, but exchange individuals occasionally through the migration operator.

We focus on the migration operator to obtain a suitable migration strategy for

the optimization problem. Numerical experiments show the effectiveness of our

approach.



Chapter 1

Global Optimization

We first introduce global optimization, presenting results on the existence and the

characterization of solutions. Then we deal with general features of any global op-

timization methods and given a classification according to their convergence prop-

erties.

1.1 Introduction

Global optimization is a relatively young field of applied mathematics. It fundamen-

tally dates back to 1975-78, when the two volumes Towards Global Optimisation, by

Szego and Dixon, appeared [1, 2]. These volumes are the first books containing a

collection of papers that present different solution methods for global optimization

problems with continuous variables.

The reason why global optimization remained marginal for a long time with re-

spect to local optimization is simply that global optimization problems may be very

difficult to deal with. A difficulty is related to the fact that differential calculus,

which plays a fundamental role in local optimization for characterizing the solutions

and for devising solution methods, cannot be generally applied to global optimiza-

tion. Indeed, the differential of any order of a function at a point is a local notion,

while global optimization need notions that must be “global” . Only in the case in
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1.1. INTRODUCTION 5

which the objective function is convex, local methods can be applied to solve global

optimization problems since each local optimum is also global.

However, the field of global optimization has received increasing attention by

researchers since many problems in pure and applied science can be formulated as

global optimization problems: packing problems as the knapsack problem [3] or

the Kepler’s conjecture [4] in geometry, the travelling salesman problem [5] or the

maximum clique problem [6] in graph theory, the protein folding [7] and equilibrium

problems in chemistry [8], and the scheduling problem [9] in computer science, just

to name a few. Furthermore, in many problems the objective function has many

local optima, then methods are needed that distringuish among these local optima

for locating the best possible one.

In order to characterize a solution of a global optimization problems several

approaches have been investigated. These approaches either are difficult to be used

for devising solution methods [10, 11, 12, 13] or can just be applied to optimization

problems with special structure [14, 15, 12].

One more difficulty in the solution of global optimization problems is related to

the development of efficient stopping criteria. These criteria require the knowledge

of global information on the optimization problem. Indeed, in absence of global

information the success of any method is possible only through a dense covering of

feasible domain [16]. This result has a strong impact on the solution of problem in

which the objective function is a black box, i.e. the only information on the problem

is the value of the function is a given point. In these situations the experimental

analysis assumes a fundamental role to choose the most suitable method for problems

under consideration [17, 18].
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1.2 Global Optimization Problems

1.2.1 Problem Formulation

In general an optimization problem can be written as
minimize f(x)

subject to x ∈ A
(1.1)

The function f : A ⊆ Rn → R is called the objective function and the set A ⊆ Rn is

called the feasible domain. Maximization problems are included in the formulation

(1.1) because, if max{f(x) | x ∈ A} exists, then

max{f(x) | x ∈ A} = −min{−f(x) | x ∈ A};

thus, without loss of generality, we consider global optimization problems like (1.1)

unless otherwise specified.

The aim of global optimization [19] is to solve one or both of the following prob-

lems:

Problem 1. Find a point x∗ ∈ A such that f(x∗) ≤ f(x), for all x ∈ A.

Problem 2. Find the value f ∗ = min f(x), with x ∈ A.

A solution x∗ of Problem 1 is called a global minimizer ; while the value f ∗ that is

the solution of Problem 2 is called global minimum. The set of all global minimizers

is

X∗f = {x∗ ∈ A | f(x∗) ≤ f(x) ∀x ∈ A}.

The nature of global optimization problem depends on the characteristics of

the objective function and the feasible domain. We focus on continuous global

optimization problems which, in general, are classified as unconstrained problems

when A = Rn or, more generally, A is an open subset of Rn, and as constrained

problems when A is defined by a set of equality and inequality constraints

A = {x ∈ Rn | g(x) ≤ 0, h(x) = 0},

where g : Rn → Rm and h : Rn → Rp are given functions.



1.2. GLOBAL OPTIMIZATION PROBLEMS 7

1.2.2 Existence Conditions

Concerning the existence of a global minimizer, these situations may happen:

• the feasible domain A is empty;

• the feasible domain A is nonempty, but the objective function is unbounded

from below;

• the feasible domain A is nontempty and the objective function is bounded

from below, but global minimizers do not exist;

• global minimizers exist.

When the feasible domain A is a compact set, a sufficient condition for the

existence of a global minimum is given by the following well-known theorem [20]

Theorem 1.2.1 (Weierstrass). Let A be a nonempty compact set of Rn and let f be

a continuous real-valued function on A. Then there exists at least a global minimizer

of f on A.

We note that Theorem 1.2.1 is satisfied in weaker conditions. More precisely, given

the definition

Definition 1.2.1. Let A be a subset of Rn and let f be a real-valued function on A.

The function f is said lower semi-continuous at a point x0 ∈ A if

lim inf
x→x0

f(x) ≥ f(x0).

the following theorem is satisfied [20]

Theorem 1.2.2. Let A be a nonempty compact set of Rn and let f be a lower semi-

continuous real-valued function on A. Then there exists at least a global minimizer

of f on A.

The previous theorem ensures the existence of a solution of a constrained global

optimization problem provided that the objective function is lower semi-continuous.
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When A = Rn we can obtain sufficient conditions for the existence of a global

minimizer using the notion of either level set or coercivity. We start giving the

following definition

Definition 1.2.2. Let f be a real-valued function on Rn and α ∈ R. The level set

of the function f is defined as

L(f ;α) = {x ∈ Rn | f(x) ≤ α}.

Using Theorem 1.2.1 it is possible to prove the following theorem [20]

Theorem 1.2.3. Let f be a continuous real-valued function on Rn. If there exists a

nonempty and compact level set of f , then f has at least a global minimizer in Rn.

Now we give the definition of n-coercivity.

Definition 1.2.3. Let f be a real-valued function on Rn. The function f is said

n-coercive if

lim
||x||→∞

f(x)

||x||n
= +∞.

The following theorem holds [20]

Theorem 1.2.4. Let f be a continuous and 0-coercive real-valued function on Rn.

Then f has at least a global minimizer on Rn.

From the previous results we can deduce that Problem 2 of finding the global

minimum f ∗ is a well-posed problem. Indeed the previous theorems guarantee the

existence of the global minimum which is obviously unique; the continuous depen-

dence on the data is easly shown since for any continuous function f and g we

have:

|f ∗ − g∗| ≤ sup |f(x)− g(x)| = ||f − g||∞.

Conversly, the problem 1 is ill-posed because x∗ may not be unique. Furthermore,

even if it is unique, the continuous dependence on the data is not satisfied in the

uniform topology. This means that there exist continuous functions with arbitrarily
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small maximum absolute difference of the function values but global minimizers wide

apart. An example is given by the following class of function fδ [21]

fδ(x) = cos(x) + δx, with x ∈ [−2π, 2π].

If δ > 0 then x∗ ' −π, while if δ < 0, x∗ ' π. Therefore, if δ1 < 0 < δ2

||fδ1(x)− fδ2(x)|| ≤ 2π|δ2 − δ1|,

but the distance between the global minimizers is approximately 2π.

1.2.3 Optimality Conditions

The goal of deriving necessary and sufficient conditions for a feasible point to be a

global minimum is a very ambitious, unless the objective function has some special

properties. The simplest property is the convexity, which leads to the equivalence

between local and global optimality conditions. However, the convexity encompasses

just a very restricted class of optimization problems. More general conditions can

be derived by completing classical conditions for local optimality with some global

conditions. Following [13] we consider R̄ = R∪{+∞} and the class F of nonconvex

functions f : Rn → R̄ with the following properties:

Df = {x ∈ Rn | f(x) < +∞} is nonempty; (1.2)

f is lower-semicontinuous on Rn; (1.3)

f is 1-coercive on Rn. (1.4)

These properties ensure that for all f ∈ F the lower bound is finite and achieved,

and the set of its global minima is a nonempty compact set. We now define the

convex hull of a function f ∈ F and of a set A

Definition 1.2.4. The convex hull of a function f ∈ F is a function F such that

F (x) = sup{g(x) | g : Rn → R̄ convex, g ≤ f},
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Definition 1.2.5. The convex hull of a set A ⊆ Rn as the smallest convex set C(A)

that contains A.

It can be shown that C(A) consists of all the convex combinations, λ1x1 + · · ·+

λnxn, with λi ≥ 0 and
∑
λi = 1, of the elements of A. The following theorem links

the minimization of a function f to that of its convex hull F [13]

Theorem 1.2.5. Let f ∈ F and let F be its convex hull. The following results hold:

min
x∈Rn

f(x) = min
x∈Rn

F (x), (1.5)

X∗F = C(X∗f ), (1.6)

where X∗f , X
∗
F are the sets of the global minimizers of the function f and its convex

hull F , respectively.

Hence any global minimizer of the convex hull F is a convex combination of

global minimizers of the function f . Furthermore, it is easy to note that x is a

global minimizer of f if and only if x is a global minimizer of F and F (x) = f(x).

From Theorem 1.2.5 it follows that the convex hull might have a relevant rule in

the solution of global optimization problems. Indeed we may attempt to solve a

nonconvex problem by solving a convex problem where the objective function is the

convex hull of the original problem. However, in general, finding the convex hull of

a function is as difficult as computing its global minimum [13]. Only in some cases

the convex hull can be explicitely described, as in the following theorems [20].

Theorem 1.2.6. Let v1, . . . , vk be the vertices of a polytope P ⊆ Rn. The convex

hull F of a concave function f over P can be expressed as

F (x) = min
α

k∑
i=1

αif(vi),

where
k∑
i=1

αivi = x,
k∑
i=1

αi = 1, αi ≥ 0, i = 1, . . . , k.
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Theorem 1.2.7. Let S be the simplex generated by the vertices v0, v1, . . . , vn ∈ Rn,

and let f be a concave function defined on S. Then the convex hull of f over S is

the affine function l(x) = cTx+ b that is uniquely determined by the system of linear

equations f(vi) = cTvi + b, with i = 0, . . . , n.

In the case the objective function is differentiable we have the following theorem

[10]:

Theorem 1.2.8. Let f ∈ F be a differentiable function. Then x∗ is a global mini-

mizer of f if and only if

∇f(x∗) = 0 (1.7)

F (x∗) = f(x∗). (1.8)

In such a case F is differentiable at x∗ and ∇F (x∗) = 0.

Equality (1.7) is a “global condition” added to the local optimality condition

(1.8) to ensure that the stationary point x∗ is a global minimizer. Furthermore we

can conclude that for a differentiable function fm the stationary points are global

minima that are global minimizers are those that satisfying

{x∗ | ∇f(x∗) = 0} ⊂ {x∗ | F (x∗) = f(x∗)}.

Again this condition cannot be generally used to solve a global optimization prob-

lems, since, as we already noted, the determination of the convex hull is very difficult.

However, we can use this condition in its negative form: a point x∗ (stationary or

not) such that l < f(x∗), where l is un upper bound of F (x∗) cannot be a global

minimum.

Another approach for deriving characterizations of global minimizers is based

on the measure theory. Following [11, 12], we assume that the feasible domain is a

robust set, that is

Definition 1.2.6. A set A of Rn is called robust if it is the closure of a nonempty

bounded open set.
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According to the previous definition, a robust set has no isolated points. Thus, for

each point of a robust set A, the following property is satisfied:

∀x ∈ A and ∀ε ∃ x′ | x′ ∈ I(x, ε) ∩ Int(A)

where I(x, ε) is a neighbourhood of x of radius ε, and Int(A) is the interior of A.

Moreover, we suppose that the objective function f : A → R is continuous on A.

The following theorem holds.

Theorem 1.2.9. Let A ⊂ Rn be a robust set and let f be a continuous function

on A. A point x∗ ∈ A is a global minimizer of f on A if and only if the level set

L(x∗) = {x ∈ A | f(x) < f(x∗)} has a null Lebesgue measure.

When the objective function has a unique global minimizer we have the following

characterization:

Theorem 1.2.10. Let A ⊂ Rn be a robust set and let f be a continuous function

on A. If the function f has a unique global minimizer x∗ ∈ A, then

lim
k→∞

∫
A
xie
−kf(x)dx∫

A
e−kf(x)dx

= x∗i

for i = 1, . . . , n.

As before, these results are very difficult to use for devising a solution method for

global optimization problems.

1.3 Global Optimization Methods

1.3.1 General Features

Several methods have been devised to solve global optimization problems [22, 23].

These methods may be divided in deterministic and stochastic methods, depending

on whether or not they incorporate any stochastic element [24, 21]. All global

optimization methods are iterative methods that generate a sequence of trial points

{xi}i∈N in the feasible domain which converges in some sense to a solution.
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In order to formalize previous notions, we first consider the following class of

functions

F = {f : A→ R | A ⊆ Rn compact set with no isolated points, f continuous}

and give the definition below.

Definition 1.3.1. The class of functions F is called sufficiently rich if ∀y ∈ R,∀x ∈

A, ∀f ∈ F ,∀N open subset of A such that x ∈ N , there exists a function g ∈ F such

that g(x) = y and g(x) = f(x),∀x ∈ A \N

Examples of functions in this class are the C0, Cn and C∞ functions, the Lipschitz-

continuous functions, and the functions with Lipschitz-continuous derivatives. Let

X be the set of all finite sequences in A. We define formally the notion of local

information

Definition 1.3.2. A local information for F is a function LI defined on F×X such

that ∀f, g ∈ F ,∀X ∈ X ,∀N open subset of A containing X, the following property

is satisfied

f(x) = g(x) ∀x ∈ N =⇒ LI(f,X) = LI(g,X)

A local information may includes any information depending on function values

and/or derivatives, but also any formula depending on them.

Let {xi}i∈N be sequence generated by a method and let Xk be the finite sequence

{x1, . . . , xk}. Now we define deterministic and stochastic sequential methods

Definition 1.3.3. A deterministic sequential method on F is a method for which

there is a local information function LI such that, for all f ∈ F , the trial point xk+1

depends only on LI(f,Xk).

Definition 1.3.4. A stochastic sequential method on F is a method for which

there is a local information function LI such that, for all f ∈ F , the trial point xk+1

depends on LI(f,Xk) and an instance ωk+1 of a random variable.
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We denote with Xf the sequence of trial points generated by a method running

on the function f . In the case of a stochastic sequential method, Xf is a random

variable. Let ω = {ωi}i∈N and let Xf (ω) be an instance of Xf . We denote by X̄f

the closure of Xf and by X ′f the set of limit points. We note that X ′f is nonempty

since A is compact and X̄f = Xf ∪X ′f . We recall that X∗f denote the set of global

minimizer. Following [25], we define two types of convergence.

Definition 1.3.5. A method is said to “see” the global minimum of f if

X̄f ∩X∗f 6= ∅.

This type of convergence ensure that it is possible to construct a subsequence which

converges to a global minimizer. This convergence is typical of methods for which

the emphasis is on finding the global minimum.

Definition 1.3.6. A method is said to “localize” the global minimizers if

X ′f = X∗f (or weaker ∅ 6= X ′f ⊆ X∗f ).

This type of convergence ensure that subsequences of trial points converge only to

global minimizers. This convergence is typical of methods which emphasize finding

the global minimizers.

In the context of numerical methods, since we cannot carried out an infinite

number of iterations, we relaxe Problems 1 and 2 in the following problems

Problem 3. Find x ∈ A that satisfies

e(x,X∗f ) = min
x∗∈X∗

f

d(x, x∗) ≤ ε

where d is a given distance in Rn, ε is a fixed tolerance and X∗f is the set of all global

minimizers.

Problem 4. Find a value f(x) that satisfies

f(x) ≤ f ∗ + ε

where ε > 0 is a fixed tolerance and f ∗ is the global minimum.



1.3. GLOBAL OPTIMIZATION METHODS 15

However also for these relaxed problems is difficult to establish when an approx-

imation has computed with a fixed tolerance. In order to show this we give some

theorems concerning the two forms of convergence defined above [25]. In the case of

deterministic sequential methods the following theorems holds.

Theorem 1.3.1. Any deterministic sequential method on F sees the global minimum

of f, ∀f ∈ F if and only if

X̄f = A∀f ∈ F .

Since localizing implies seeing, it follows immediately that a method localizing ∀f ∈

F implies that X̄f = A ∀f ∈ F . On the other hand, the following result holds:

Theorem 1.3.2. For any deterministic sequential method on F , there exists a func-

tion f ∈ F for which the method fails to localize the global minimizer of f .

We denote with Bf the event corresponding to “the method sees the global

minimum of f” and with Cf the event “the method localizes the global minimizers”.

The analog of Theorems 1.3.1 and 1.3.1 for stochastic sequential methods are given

below.

Theorem 1.3.3. For any probability α and any stochastic sequential method, it

results that P (Bf ) ≥ α, ∀f ∈ F if and only if P (x ∈ X̄f ) ≥ α, ∀x ∈ A,∀f ∈ F ,

where P (·) is a probability function.

It follows immediately that P (Cf ) ≥ α, ∀f ∈ F if and only if P (x ∈ X̄f ) ≥ α, ∀x ∈

A, ∀f ∈ F .

Theorem 1.3.4. For any ε > 0 and any stochastic sequential methods, there exists

a function f ∈ F such that P (Cf ) < ε.

The previous theorems imply that the convergence of any method that uses lo-

cal information is possible only if the feasible domain is covered by a dense set of

trial points. Moreover, the localization of the global minimizers is not possible for

all functions in the class of sufficiently rich functions. Indeed, there exist func-

tions for which deterministic methods fail or stochastic methods fail with arbitrarily
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high probability. This have a strong impact on the solution of global optimization

problems.

Even if a global optimization method converges to the global minimum, the

determination of a stopping criterion requires “global” information on the class of

problems under consideration. Examples of global information are the Lipschitz

constant, the number of local minima, the value of global minimum, etc. However

this information is not available in many applications. In these cases the experimen-

tal analysis assumes a fundamental role in the development of a global optimization

method. In general, the development of any global optimization methods requires

a trade-off between the computational cost and the quality of the solution. In the

applications in which the computational cost has a fundamental importance several

methods, which do not ensure the convergence, have been developed. Fundamen-

tally, these methods are based on heuristics and in many problem they are be able

to compute “satisfactory” solutions.

1.3.2 Classification of Methods

Previously we divided global optimization methods in two groups: deterministc

and stochastic. Even if these methods are based on different philosophies, current

advanced global optimization methods often combine these philosophies and cannot

be put in any of the two groups. A more adequate approach to classify global

optimization methods is based on their type of convergence [26]:

• incomplete methods, which are based on clever intuitive heuristics, but are not

guaranteed to convergence to the global minimum;

• asymptotically complete methods, which ensure convergence to the global min-

imum with certainty or at least with probability one, but do not provide any

means to known when the global minimum has been found;

• complete methods, which ensure convergence to the global minimum, assuming

exact computations, and allow to establish that an approximation of the global
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minimum has been found with a fixed tolerance when global information about

the problem is known;

• rigorous methods, which ensure convergence to the global minimum and within

given tolerances even in the presence of rounding errors, except in near-

degenerate cases, where the tolerances may be exceeded.

Although incomplete methods do not provide a general guarantee of convergence,

they are frequently applied with success to many difficult problems. The funda-

mental advantage of these methods is that they require little information about

the optimization problem and for several problems they represent the only feasible

choice.

Several incomplete methods are based on the analogies to natural processes, the

global minimum usually represents some equilibrium state. Among these there are

smoothing methods [27] which are based on the intuition that in nature macroscopic

features are usually an average effect of microscopic details. The idea is funda-

mentally that of transforming the original problem into a problem with a single

minimizer through the definition of a homotopy. This homopoty is defined by intro-

ducing an additional parameter t into the problem in such a way that t = 0 gives

the original problem, while t = 1 gives either a related convex problem or a related

problem with a unique and known global minimizer. Then a sequence of local op-

timization problem is solved for t = t1, t2, . . . , tn, where the ti form a descreasing

sequence starting at 1 and ending at 0. Each time, the solution of the previous

problem is taken as the starting point for the current problem. The quality of the

final result depends on the homotopy, and frequently it is a least a local minimizer.

Simulated annealing [28] takes its intuition from the fact that the heating and

slow cooling of a metal brings it into a more uniformly crystalline state that corre-

sponds to a state in which the enery takes its global minimum. In its original form,

the simulated annealing method is provably convergent in a probabilistic sense, but

exceedingly slow. Various ad hoc enhancements have been developed for improving

its computational cost [29].
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Genetic algorithms [30, 31] make use of analogies to biological evolution by using

genetic operator for producing better and better individuals that represent candidate

solutions to the problem at hand. The efficiency of these algorithm is strongly

depended on the design and tuning of genetic operators. The main advantage of

genetic algorithms is related to the exploitation of specific knowledge about the

problem within the algorithms. This allow to improve considerably their efficiency.

Particle swarm [32] is based on the simulation of the social behaviour of a popu-

lation of agents or particles. Some of its advantages are the simplicity of implemen-

tation and ease of parallelization. Furthermore, they depend on a few of parameters,

so they do not require an intensive tuning phase.

The simplest asymptotically complete method is the pure random search [33],

in which the trial points are chosen randomly with uniform distribution from the

feasible domain. This method converge with probability 1 to the global minimum,

but it is rather inefficient. In order to improve the efficiency of the pure random

search, the multistart methods [34] have been introduced. In these methods a local

optimization algorithm is applied for each random trial point. This approach has

the disadvantages that the same local minima can be computed several times. In

order to improve their efficiency these methods have been modified in different ways

[35]. One of these is based on the use methods from the clustering theory [16]. The

basic idea is to locate regions of attraction of local minima and to start one local

search for each region of attraction.

An example of complete method is the grid search, which belongs to class of

passive strategies [36] where each trial point does not depend on the function values

at the other points. In these strategies, grids of finer and finer trial points are used to

approximate the global minimum. The accuracy of the approximation is related to

global information of the objective function. In particular for the class of Lipschitz

functions, it is possible to compute an approximation of the global mimimum with

a fixed tolerance and in a finite number of steps. However the grid search requires a

huge number of function evaluations which grows exponentially with the dimension
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of the problem.

In the context of Lipschitz optimization several methods have been developed

as the Shubert algorithm [37] for univariate objective functions and its extensions

to higher dimensions [38]. Generally speaking, these methods combine branching

techniques with lower bound estimations of the objective function based on the

knowledge of the exact value or an overestimation of the Lipschitz constant. How-

ever, in many applications it is hard or impossible to know the value of the Lipschitz

constant. For this reason several methods have been developed that use local ap-

proximations of the Lipschitz constant or do not require the explicit knowledge of

the Lipschitz constant [39]. Examples of complete methods that use only local in-

formation are DIRECT [40, 41] , MCS [42] and LGO [43]. All the three methods

employ a branching strategy to guarantee convergence. This strategy generates a

sequence of partitions of the feasible domain in which the diameters of all sets of

partitions converge to zero. The main differences are in how and when to split the

domain, and what is done within each set of partitions. Furthermore, since these

methods do not use global information they must generate a dense set of trial points

to ensure the convergence.

Finally, the rigorous methods [44, 45] fundamentally combine the interval anal-

ysis with strategies of branching and bound. These methods allow to determine

a set of intervals that contains all the global minimizers, but they require very

high computational costs. For these reasons these methods are generally used in

computer-assisted proofs [26].



Chapter 2

The Detection of Gravitational

Waves

We first introduce the problem of the detection of gravitational waves, highlighting

its importance in the context of modern astrophysics. Then we outline the most

used method for the detection of gravitational waves emitted from coalescing binary

system, showing that a crucial issue is the solution of a global optimization problem.

Finally we briefly describe the most used algorithm in astrophysics community to

solve this optimization problem.

2.1 Introduction

The first studies on the gravitational waves are due to Einstein and the main result

is known as the “quadrupole formula”. This formula plays a role, in gravity theory,

analogous to the dipole formula for electromagnetic radiation, showing that gravi-

tational waves arise from accelerated masses exactly as electromagnetic waves arise

from accelerated charges.

From the quadrupole formula and the weakness of the gravitational interaction it

follows that gravitational waves are difficult to produce and very large masses moving

at relativistic speeds are needed. For this reason, typical sources of gravitational

20
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waves are astrophysical objects. Indeed, an indirect confirmation of the existence

of gravitational waves has come from the study of binary neutron star systems.

The most celebrated example is the “Hulse-Taylor” pulsar, B1913+16, reported by

Hulse and Taylor in 1975 [46]. Thirty years of observation have shown an agreement

between experimental results and predictions of general relativity. For this discover

Hulse and Taylor were awarded the Nobel Prize in 1993.

Nowadays the detection of gravitational waves is one of the most awaited events

in the modern astrophysics. A direct evidence of the existence of such waves will

provide a validation of Einstein’s general relativity theory and will open a path

toward a new view of the universe [47]. Several ground-based laser interferometric

detectors are either operated or under deployment in Europe, United States, Japan

and Australia, but gravitational waves have not yet been directly observed because

of many difficulties arising in the detection process. Among them, the weakness of

the gravitational signal and the rarity of the events that produce such waves call for

highly effective data analysis techniques to filter the detector data streams.

Coalescing binary systems of compact objects (neutron stars and/or black holes)

are very promising sources of gravitational waves for ground-based laser interfero-

metric detectors. This is because a model of the emitted waves is available and a

relatively large number of events per year is expected (tens per year within a few

hundred Mpc) [48]. In this case the most widely used detection technique is the gen-

eralized likelihood test, which exploits the waveform of the signal and assumes that

the instrumental noise is a stationary white Gaussian stochastic process. A crucial

issue in this methodology is the solution of a box-constrained global optimization

problem.



2.2. GROUND-BASED LASER INTERFEROMETRIC DETECTORS 22

Figure 2.1: The lines of force associated with the two polarizations of a gravitational

wave.

2.2 Ground-Based Laser Interferometric Detec-

tors

According to the general relativity theory, a gravitational wave has two linear polar-

izations which are called plus (+) and cross (×). Associated with each polarization

there is a gravitational wave field, h+ or h×, which oscillates in time and propagates

with the speed of light. Each wave field produces stretching and squeezing forces

on any object through which it passes. If the object is small compared to the wave-

length of gravitational waves, then the forces have the quadrupolar patterns shown

in Figure 2.1. The names plus and cross are derived from the orientations of the

axes that characterize the force patterns.

A ground-based laser interferometric detector consists of four masses hanging

from vibration-isolated supports as shown in Figure 2.2. Furthermore the detector is

equipped with an optical system for monitoring the separations between the masses.

Two masses are near each other, at the corner of an “L”, and one mass is at the end

of each of the long arms of the L. The arm lengths are nearly equal, L1 ≈ L2 = L.

When a gravitational wave, with the high frequencies compared to the pendulum

frequency of the masses, passes through the detector, it pushes the masses back

and forth as if they were free from their suspension wires. As a result of that the



2.2. GROUND-BASED LASER INTERFEROMETRIC DETECTORS 23

Figure 2.2: Schematic diagram of a ground-based laser interferometric detector.

difference between the lengths of the arms, ∆L ≡ L1−L2, changes over time. Using

techniques of laser interferometry, this change is monitored in such a way that the

variations in the output of the photodiode (the output of detector) are directly

proportional to ∆L(t). Generally the output of the detector is a linear combination

of the two wave fields:

∆L(t)

L
= F+h+(t) + F×h×(t) ≡ h(t).

The coefficients F+ and F× are called antenna pattern of the detector and depend on

both the source and the detector. The combination h(t) is called the gravitational

wave strain that acts on the detector.

The strength of the gravitational waves can be estimated using the quadrupole

formula as follow:

h ∼ 1

c2

4G(Ens
kin/c

2)

r
, (2.1)

where c is the speed of light, G is the Newton’s gravitation constant, Ens
kin is the

nonspherical part of kinetic energy of the gravitational waves and r is the distance

of the source from the Earth. For highly compact, dynamical objetcs that radiate in

the high frequency band, e.g. colliding and coalescing neutron stars and stellar-mass

black holes, the nonspherical kinetic energy Ens
kin/c

2 is of order the mass of the Sun.

In particular, from (2.1) it follows that h ∼ 10−22 for such sources at the Hubble
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distance (3000 Mpc, i.e. 1010 light years), h ∼ 10−21 at 200 Mpc, h ∼ 10−20 at

the Virgo cluster of galaxies (15 Mpc) and h ∼ 10−17 in the outer reaches of our

own Milky Way galaxy (20 kpc). These numbers set the scale of sensitivities that

ground-based laser interferometric detectors seek to achieve: h ∼ 10−21 to 10−22.

The major projects based on ground-based laser interferometric detectors are:

• LIGO. The Laser Interferometer Gravitational wave Observatory [49] consists

of three operating detectors: a detector with four kilometer long arms in Liv-

ingston, Louisiana, as well as a pair of detectors with four and two kilometers

long arms in Handford, Washington.

• Virgo. Virgo is an operating detector with three kilometer long arms built

within a French-Italian collaboration in Cascina, near Pisa, Italy [50]. In

most aspects, Virgo is quite similar to LIGO. A major difference is that Virgo

employs a very sophisticated seismic isolation system that promises extremely

good low frequency sensitivity.

• GEO600. GEO600 is a detector with six hundred meter long arms built

within a German-English collaboration near Hanover, Germany [51]. Despite

its shorter arms, GEO600 achieves a sensitivity comparable to the multi-

kilometer instruments usign advanced interferometry techniques.

• TAMA300. TAMA300 is a detector with three hundred meter long arms

near Tokyo [52]. It has been in operation for several years now and the TAMA

team is currently designing a detector with three kilometer long arms, building

on its experiences with the three hundred meter instrument.

• ACIGA. The Australian Consortium for Interferometric Gravitational wave

Astronomy is currently building a detector with eighty meter long arms near

Perth, Australia [53]. Such a detector would be particularly valuable to de-

termine the location of sources on the sky since it is the only detector in the

southern hemisphere.
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Figure 2.3: The Virgo detector.

The sensitivity of each detector is limited by the presence of noise. There exist

different sources of noise, but fundamentally the frequency band is limited by seismic

noise, which gives a lower bound, and by shot noise, which is quantistic in nature

and gives an upper bound [54]. However, for simplicity we assume that the noise is

a white noise, i.e. a wide-stationary Gaussian stochastic process with mean 0 and

variance 1 [55].

The problem considered in this thesis is connected with the Virgo detector. The

construction of this laser interferometric detector was completed in June 2003 (see

Figure 2.3). Currently, the project is in the “commissioning phase”, i.e. it will run

day and night listening to all gravitational signals which may arrive at any time and

coming from any part of the Universe. The frequency range of Virgo extends from

10 to 6000 Hz. This range, as well as the very high sensitivity, should allow the

detection of the gravitational radiation produced by supernovae and coalescence of

binary systems in the Milk Way and in outer galaxies, for instance from the Virgo

cluster of galaxies.
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2.3 Gravitational Signals from Coalescing Binary

Sistems

One of the most promising sources for ground-based laser interferometric detectors

are coalescing binary systems, which consist of astrophysical compact objects such as

neutron stars and/or black holes. The coalescence is the late stage in the evolution

of a binary system. In this stage compact objects are under the influence of the

strong gravitational fields of each other and are moving at relativistic speeds. For

these reasons the dynamics of the system is very difficult to model. However, in the

early stage it is possible to treat the problem of motion and to expand the general

relativistic equations of motion and the wave generation formulas in a power series

according to the post-Newtonian approximation [56].

For the purpose of detection it suffices to use the so-called restricted post-

Newtonian approximation [57]. In this approximation the Post-Newtonian correc-

tions to the amplitude of the gravitational signal are neglected, while the corrections

to the phase are fully taken into account to the highest order possibile. In particular,

we consider gravitational signals in the second-order restricted post-Newtonian ap-

proximation [58]. These signals represent the strain induced by gravitational waves

at the detector and are modeled as chirp signals [59], i.e. signals in which the

amplitude and the phase are functions increasing over time (see Figure 2.4)

h(t;θ) = A[πf(t− t0;m1,m2)](2/3) cos[ϕ(t− t0) + ϕ0] (2.2)

where

θ = (A,ϕ0, t0,m1,m2)

with A,ϕ0 and t0 denoting the amplitude, the initial phase, and the arrival time

of signal, respectively, and m1 and m2 the masses of the coalescing binary system.

The function f(t−t0;m1,m2) is the istantaneous gravitational wave frequency given

implicitly by

t− t0 = τ0

[
1−

(
f

f0

)−8/3
]
,
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Figure 2.4: A gravitational signal with masses m1 = m2 = 1.4.

where f0 is the lower frequency cutoff of the detector and τ0 is a constant having

the dimension of time:

τ0 =
5

256πf0η
(πMf0)−5/3 (2.3)

where M = m1 + m2 and η = (m1m2)/M2 is the total mass and the mass ratio of

the binary system, respectively. The phase of gravitational signal ϕ(t− t0;m1,m2)

is derived from the solution of a system of ordinary differential equations invonlving

post-Newtonian approximations of the energy and the flux of binary system (see

[60] for details).

2.4 Mathematical Formulation of the Detection

Problem

The detection problem consists in deciding, through observation of the detector

output, if a gravitational signal is present or not. Since the output is affected by

noise, this decision requires the application of methods of the statistical inference

theory. As a problem of decision, the detection problem is equivalent to one which,

in statistical terminology, is called the problem of testing hypotheses : the hypothesis

that the noise alone is present is to be tested, on the basis of the detector output,

against the hypothesis that a gravitational signal is present. Generally the solution

of the problem of testing hypotheses requires the knowledge of a priori information

about the nature of signal and noise. In addition, it is necessary to establish a

criterion with respect to which evaluating the “goodness” of a solution method.
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Figure 2.5: The output of the detector with noise plus gravitational signal with

masses m1 = m2 = 1.4 and signal-to-noise ratio equal to 10.

In practice, the detector output is sampled with a certain time step, thus a

segment of data is analized, which is an N -dimensional vector x = (x[0], . . . , x[N −

1]); the corresponding sampled gravitational signal, if present, is an M -dimensional

vector h = (h[0], . . . , h[M − 1]), with M < N (the dependence on θ has been

neglected for simplicity). In the following, we assume θ = (A,ϕ0, n0,m1,m2), i.e.

we substitute the arrival time t0 with the index n0 of the corresponding sample,

where n0 ∈ {0, . . . , N − M}. The set of detector outputs is a measurable space

(RN ,B) where B is the Borel σ-algebra. This set is called space of observations.

The detection problem can be written as

H0 : x[n] = w[n] n = 0, ..., N − 1

H1 : x[n] = w[n] + h[n] n = 0, ..., N − 1
(2.4)

where w = (w[1], . . . , w[N ]) is the noise of the detector. The hypothesis H0 means

that the detector output is just noise, while the hypothesis H1 means that the

detector output consists of gravitational signal plus noise. In Figure 2.5 we show an

example of the output of the detector.

A rule of decision is a partition of the space of observations in two disjoint regions

Γ0,Γ1 ∈ B, Γ0 ∪ Γ1 = Rn, Γ0 ∩ Γ1 = ∅ with Γ0 corresponding to the hypothesis H0

and Γ1 to the hypothesis H1. In practice, a rule of decision can be viewed as a
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function δ : Rn → R such that

δ(x) =


0 if x ∈ Γ0,

1 if x ∈ Γ1,

and we accept the hypothesis Hi if δ(x) = i (i = 0, 1). Four possible choices

correspond to each rule of decision:

1. accept H0 when H0 is true;

2. accept H0 when H1 is true;

3. accept H1 when H1 is true;

4. accept H1 when H0 is true.

The first and third choices correspond to correct decisions; the second and fourth to

incorrect ones. In the context of detection problems, the second and thrid choices

are called false alarm and correct detection respectively.

The determination of a decision rule depends on the characteristics of the signal

and the noise, but also on a priori knowledge about hypotheses. Since we cannot

associate a cost with each possible choice and cannot assign a priori probabilities

to the hypotheses, it is not possibile to use the criteria of Bayes and minimax [61].

In this situation an alternative is represented by the Neyman-Pearson criterion [61],

which is based on the idea of maximizing the probability of correct detection subject

to a chosen probability of false alarm. However, the application of this criterion

requires that either the signal and the noise are completely known or it is possible

to determine a uniformly most powerful test [62]. The first situation corresponds

to the case in which the hypotheses test is simple, i.e. each hypothesis is associated

with a single probability density. When one or both hypotheses are associated

with a family of probability densities, depending on a certain set of parameters,

the hypotheses test is called composed. A uniformly most powerful test has the

property that the probabilities of false alarm and correct detection are independent
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of the parameter set of the families of probability densities associated with the

hypotheses. The determination of a uniformly most powerful test is possible in

cases rarely met in applications. In our case the hypothesis test is composed, since

the hypothesis H1 corresponds to a family of probability densities which depends on

the parameters of the gravitational signal. Furthermore, because it is not possible to

determine a uniformly most powerful test, we use the generalized likelihood ratio test,

which consists of substituting the unknown parameters with a maximum likelihood

estimates of them and of choosing the hypothesis H1 if

L(x; θ̂) =
p1(x; θ̂)

p0(x)
> γ, (2.5)

where θ̂ is the maximum likelihood estimate of θ, p1(x;θ) is the family of proba-

bility densities associated with the hypothesis H1, p0(x) is the probability density

associated with the hypothesis H0, and γ is a suitable treshold which is related to

probabilities of false alarm and correct detection. Since θ̂ is the global minimizer of

the density p1(x;θ) and the density p0(x) is independent of the vector of parameters

and positive, the test (2.5) can be written as

L(x; θ̂) = max
θ

L(x;θ) = max
θ

p1(x;θ)

p0(x)
> γ. (2.6)

The main difficulties related to the application of the generalized likelihood ratio

test are

• the solution of the global optimization problem in (2.6);

• the determination of the threshold γ.

The determination of the threshold is very difficult since, in general, a closed form

expression of the probability density of the decision statistic in both hypothesis

cannot be determined. However experimental considerations may allow to choose a

suitable value of the threshold.

Since we assume that the noise of the detector is a white Gaussian stochastic

process with mean 1 and variance 0, the (2.6) can be written as

max
θ

L(x;θ) = max
θ

exp

[
N−1∑
n=0

(x[n]− h[n])2 −
N−1∑
n=0

x2[n]

]
> γ (2.7)
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It is possible to show that maximum likelihood estimates of the amplitude A and

the initial phase ϕ0 can be analytically computed [57]. Substituting this estimates

and taking the logarithm of each member of test (2.7), we have

logL(x; Â, ϕ̂0,m1,m2, n0) =

max
m1,m2,n0

(N−1∑
n=0

x[n]q0[n− n0]

)2

+

(
N−1∑
n=0

x[n]qπ/2[n− n0]

)2
 > γ′

(2.8)

where γ′ = log γ and q0 = (q0[0], . . . , q0[N − 1]), qπ/2 = (qπ/2[0], . . . , qπ/2[N − 1])

are the sampled versions of the quadrature components of the gravitational signal,

normalized with respect to the Euclidean norm in RN . The quadrature components

of the gravitational signal h(t;θ) are defined as

h0(t;m1,m2) = [πf(t;m1,m2)]2/3 cos[ϕ(t;m1,m2)],

hπ/2(t;m1,m2) = [πf(t;m1,m2)]2/3 cos[ϕ(t;m1,m2) + π/2]

Furthermore, it can be shown that the maximization in (2.8) can be carried out

separately for (m1,m2) and n0 [57], thus the determination of logL(x; θ̂) requires

the solution of the following box-constrained global optimization problem:

maximize
(m1,m2)∈Ω

F (m1,m2), (2.9)

where

Ω = {(m1,m2) ∈ R2 : l ≤ m1,m2 ≤ u}, (2.10)

F (m1,m2) =

√
max

n0∈{0,...,N−M}

(
C2

0(n0,m1,m2) + C2
π/2(n0,m1,m2)

)
, (2.11)

and C0(n0,m1,m2) and Cπ/2(n0,m1,m2) are the correlations between x and the

normalized quadrature components of the gravitational signal q0,qπ/2:

C0(n0,m1,m2) =

n0+M−1∑
k=n0

x[k]q0[k − n0], (2.12)

Cπ/2(n0,m1,m2) =

n0+M−1∑
k=n0

x[k]qπ/2[k − n0] (2.13)

The correlations in (2.12) and (2.13) are carried out through the application of Dis-

crete Fourier Transform (DFT), using the property that the DFT of the correlation
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of two signals is equal to product between the DTF of each signal [63]. We note

that this property is true only we use the zero-padding strategy, which consists of

extending the signals x,q0,qπ/2 with zeros for obtaining signals with length 2N −1.

Following [59] we define the Signal-to-Noise ratio (SNR) as

SNR ≡ E{F (m1,m2)} =√√√√ max
n0∈{0,...,N−M}

(
(

n0+M−1∑
k=n0

s[k]q0[k − n0])2 + (

n0+M−1∑
k=n0

s[k]qπ/2[k − n0])2

) (2.14)

where E{·} is the mean value with respect to infinite realizations of the noise, and

s = (s[0], . . . , s[N − 1]) is the gravitational signal contained in the output of the

detector which masses are (m̄1, m̄2). We note that in (2.14) the output of the

detector x is substituted with the gravitational signal s. In the context of signal

theory the function F (m1,m2) is a matched filter [63], which has the property that

the maximum SNR is obtained when m1 = m̄1 and m1 = m̄2, i.e. the masses of

the signal s are equal to masses of the normalized quadrature components q0,qπ/2

of a gravitational signal h, which is called template. According this property, the

matched filtering technique has been developed which consists of determining the

template that maximize the SNR. We note that this determination is equivalent

to solution of the global optimization problem in (2.9) [57]. In Section 2.5 we will

briefly describe how contructing a finite family of template, i.e. a discretization of

the feasible domain, in such a way that the maximum SNR with respect this family

is not lower than a given percentage of the maximum SNR.

In this thesis we focus on the solution of the optimization problem (2.9), which is

the most critical issue in the application of the generalized likelihood ratio test. The

objective function F is a stochastic function, since the presence of noise. However,

for each realization of the noise, the objective function F becomes a deterministic

function and it can be shown that the problem (2.9) has a solution according to

Theorem 1.2.1. Its solution is a difficult task, because the objective function F is

highly nonlinear and with many local maxima (see Figure 2.6), and its derivatives

are not available. Furthermore, its evaluation is computationally expensive, since it
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Figure 2.6: 3D plot of the objective function F , in case of noise plus gravitational

signal from a binary system with masses m1 = m2 = 1.4 M� (a), m1 = 1.4 M� and

m2 = 10 M� (b), m1 = 5 M� and m2 = 10 M� (c), and in case of noise only (d).

The SNR is equal to 10. M� denotes the solar mass.

requires the solution of two ordinary differential equations (ODEs) to generate the

quadrature components of gravitational signal, and the execution of three FFTs of

length N to compute the correlations of x with them. Common values of N are

O(105); the time for solving the ODEs depends on the masses of the gravitational

signal (the smaller the masses the larger the time), and is highly variable (from

about 2% to 650% of the time for computing the correlations, in our experience).

2.5 Grid Search Method

In the astrophysics community, the most widely used method for solving problem

(2.9) is the grid search. We note the this grid search is different to grid search de-
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scribed in Section 1.3. Indeed, the physical knowledge of problem allows to construct

only one grid of points in the feasible domain for guaranteeing a fixed “accuracy”.

Specifically, we discretizes the feasible domain Ω by using a suitable grid of points

and evaluates the objective function F at each point to determine an approximation

of the global maximum. The search for the maximum can be carried out in half of

the feasible domain, since F is symmetric with respect to m1 and m2. We recall

that the discretization of feasible domain corresponds to choosing a finite family of

template {h(m1,m2)}, where (m1,m2) ∈ K, K ⊂ Ω and the cardinality |K| = k.

If we assume that s = Ās̃ is the gravitational signal contained in the output of the

detector, with amplitude Ā, s̃ normalized with respect to Euclidean norm and with

masses (m̄1, m̄2), we have that [57]

SNR = E{F (m1,m2)} = Ā · O(m1,m2, m̄1, m̄2)

where

O(m1,m2, m̄1, m̄2) =√√√√ max
n0∈{0,...,N−M}

(
(

n0+M−1∑
k=n0

s̃[k]q0[k − n0])2 + (

n0+M−1∑
k=n0

s̃[k]qπ/2[k − n0])2

)
.

We note that 0 ≤ O(m1,m2, m̄1, m̄2) ≤ 1, and O(m1,m2, m̄1, m̄2) = 1 when

m1 = m̄1 and m2 = m̄2, i.e. when the SNR is maximum. So the function

O(m1,m2, m̄1, m̄2) is the fraction of the maximum SNR reduced when the template

h is used to search the signal s.

The aim is constructing the family {h(m1,m2)} in such a way that

min
(m̄1,m̄2)∈Ω

max
(m1,m2)∈K

O(m1,m2, m̄1, m̄2) ≥MM (2.15)

where 0 ≤MM ≤ 1 is a fixed number, called minimal match. This guarantee that

for each signal s we have

SNR = max
(m1,m2)∈K

E{F (m1,m2)} =

Ā · O(m1,m2, m̄1, m̄2) ≥ Ā ·MM = maxSNR ·MM,
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therefore the mean value of the maximum of F is not lower than a given percentage

(minimal match) of the maximum of SNR.

In order to construct the family of template (grid of points), a metric tensor is

defined in the space of chirp time τ0 and τ3 by the following formula [64]:

gij = −1

2

∂2O
∂τi∂τj

where i, j ∈ {0, 3}. The chirp times can substitute the masses for individuating a

gravitational signal. The value of τ0 is given by (2.3) and τ3 is defined as

τ3 =
1

f0η
(πMf0)−2/3

where the significance of f0, η,M is given in Section 2.3. These chirp time can also

be inverted in terms of the masses:

M =
5

32π2f0

τ3

τ0

, η =
1

8πf0τ3

(
32πτ0

5τ3

)2/3

and the correspondence between the two sets of parameters (m1,m2) and (τ0, τ3) is

illustred in Figure 2.7. The advantage of the space of the chirp times is that the

metric tensor is locally constant in this space. This allow to determine a rectangular

lattice of point which satisfied the relation (2.15) (for details see [57]).

Generally, a minimal match of at least 97% is required, leading to a large number

of templates, i.e. grid points and hence of objective function evaluations; e.g., a grid

of 27379 points is needed to get a minimal match of 97% over the space of masses

[1, 30] × [1, 30], which represents our feasible domain (see Figure 2.8). We also

note that the grid is highly non-uniform, with more points in the regions where the

objective function may have greater variability.

Reducing the computational cost in the solution of problem (2.9), while achieving

a comparable accuracy in the mean value of the maximum, is a main goal in the

application of the generalized likelihood ratio test, since it increases the number of

data segments that can be analyzed. For this reason, hierarchical strategies based

on the grid search have been proposed, where a coarse grid or another optimization

approach is initially applied to identify “promising” sub-domains, and a fine grid
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Figure 2.7: The correspondence between the two sets of parameters (m1,m2) and

(τ0, τ3).

1 10 20 301

10

20

30

m1

m
2

Figure 2.8: Grid ensuring a minimal match of 97% over the domain [1, 30]× [1, 30]

(27379 points).
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is then used on the sub-domains to find a good approximation of the maximum

[48, 59, 65]. However, such strategies might lead to disregard, in the first phase, a

sub-domain containing the solution, thus increasing the probability of missing the

signal even if it is present.



Chapter 3

A Genetic Algorithm for the

Detection Problem

We first provide a general description of genetic algorithms, outlining their struc-

ture and main components. Then we describe a real-coded genetic algorithm that

we developed for the problem under consideration, showing how the information on

the problem has been exploited to design the genetic operators. We report numer-

ical experiments performed on a representative set of test problems, showing that

the developed genetic algorithm allows a strong reduction of the computational cost

with respect to the grid search, which is generally used to solve this problem. A

comparison with other global optimization algorithms show that the genetic algo-

rithm is much more efficient on the most significant and difficult set of problem

instances.

3.1 Introduction

The idea of simulating natural evolution as a tool for modelling and analyzing com-

plex systems becames possible in the 1960s, when relatively inexpensive digital com-

puters started to be available [66]. With different approaches three paradigms have

been developed nearly simultaneously: evolutionary strategies for solving difficult

38
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optimization problem with continuous real variables [67]; evolutionary programming

in the context of artificial intelligence [68] and genetic algorithms for studying the

behaviour of adaptive systems that are capable of dealing with an uncertain and

changing environment [69, 70]. Nowadays these paradigms are considered instances

of a more general class of methods that are called evolutionary methods [66, 71].

The genetic algorithms are the most popular and extended class of evolutionary

methods. They have received increasing attention by researchers and have been

applied with success to many problems in science and engineering [72]. These algo-

rithms are able to compute satisfactory solutions of global optimization problems,

especially when the objective function is a noisy or multiextremal black box for

which little or no additional information, such as derivatives, is available.

A genetic algorithm is an iterative method that operates on a population of in-

dividuals that represent potential solutions to a given problem. Each individual in

the population is assigned a measure of its “goodness” through a fitness function,

which, in the context of optimization, is the objective function. Initially, a popula-

tion of individuals is randomly generated. Then the evolution of this population is

guided through the application of genetic operators, which mimic the corresponding

natural process. In practice these operators are applied iteratively to obtain better

and better populations. In solving optimization problems, a solution is given by the

fittest individual after the last evolution step.

Many issues occur in the development of a genetic algorithm: representations of

individuals, choice of initial population, design of the genetic operators and their

tuning to the problem to be solved. The effectiveness of a genetic algorithm strongly

depends on how these issues are dealt with. Furthermore, incorporation of a priori

information on the specific problem usually leads to improvements in the perfor-

mance of the algorithm. On the other hand, the main disadvantage of genetic

algorithms is the very limited possibility of developing a theory of convergence. In-

deed the study of dynamics of genetic algorithms represent a difficult challenge from

theoretical point of view. Many approaches have been investigated [73], but they
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initialize the population with random potential solu-

tions

while (stopping criterion not satisfied)

select parents

recombine pairs of parents to generate offspring

replace some parents with some offspring

mutate the resulting population

end while

Figure 3.1: Basic structure of a genetic algorithm.

concern a “vanilla” version of a genetic algorithm that does not correspond to many

versions meet in the applications [72]. For this reason an experimental analysis is

needed for evaluating the effectiveness of genetic algorithms.

A detailed description of genetic algorithms is beyond the scope of this thesis.

In the section 3.2 we present briefly a general description of genetic algorithms and

we refer to [74, 75] for a deep description.

3.2 Genetic Algorithms

A genetic algorithm is an heuristic search algorithm based on the principles of nat-

ural evolution and genetics. Basically, a genetic algorithm generates a sequence of

populations Pt = {xt1, . . . ,xtN}, where t = 0, 1, 2, . . . identifies the so-called genera-

tion. The evolution of the populations {Pt}t∈N is guided through genetic operators

such as selection, recombination and mutation, which mimic the corresponding nat-

ural processes. The basic structure of a genetic algorithm is outlined in Figure 3.1.

Optimization is a main application area of genetic algorithms. The reason for this

is the analogy between evolutionary processes and optimization problems. In this

context genetic algorithms belong to class of incomplete methods. The development
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of a genetic algorithm involves the following issues:

• representation of the individuals;

• choice of an initial population;

• mechanism for the selection of parents;

• recombination of parents for producing offspring;

• mechanism for the replacement of parents;

• mutation of individuals;

• choice of the parameters of the algorithm (size of the population, probability

of recombination, probability of mutation, etc.).

Representation of the Individuals

The choice of an appropriate representation of individuals is a fundamental issue

in the development of a genetic algorithm. It is strictly associated with the choice

of genetic operators and for this reason it affects the way in which the algorithm

explores the feasible domain.

In early genetic algorithms each individual was represented with a fixed length

string of symbols from the alphabet A = {0, 1} (binary representation) [76]. In this

case the original problem is transformed into a discrete problem and the connection

between the original and the transformed problem is established by an invertible

function called encoding function:

g : Al → A,

where A is the feasible domain and l is the length of the string. The inverse of

this function, called decoding function, is needed for decoding any individual and

for evaluating its fitness using the objective function. Each component of a string
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is called gene and its possible values are called alleles. The space Al is the genotype

space and A is the phenotype space.

The use of the binary representation has been motivated by an intense research

activity devoted to analyze the dynamics of genetic algorithms. Different approaches

have been investigated that are based on the schema theory [77], the dynamical

system theory [78], the Markov chain theory [79] and statistical mechanics [80].

These approaches have been allowed to obtain some results about convergence of a

“vanilla” version of genetic algorithms. However because this vanilla version does

not provide “good” performance in many problems meet in the applications, several

variants have been developed at which do not apply the previous convergence results.

In particular it has been investigated alternative representations which has been

turned out more adequate for specific class of problems [74]. Among these the real-

coded representation [81], in which every individuals is a feasible point, have been

received very attention in the context of continuous optimization problems. This

representation will take again in the following.

Choice of the Initial Population

The generation of the initial population has been little investigated with respect

to other issues of the genetic algorithms. Generally, each individual of an initial

population P0 is randomly chosen from a uniform distribution, using some pseudo-

random number generator. Just recently a numerical evidence has been provided

that the initial population may strongly affect the behaviour of the algorithm and

that a “good” initial population should combine genetic diversity, i.e. the ability

to reach the whole feasible set during the evolution process, with uniform coverage,

i.e. a spatial distribution in the feasible set which avoids clustering and uncovered

regions [82]. This combination allows to improve both the speed of convergence of

the genetic algorithm and the goodness of the computed solution.
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Selection of the Parents

The selection is one of the main operators used in the genetic algorithms. The

purpose of this operator is to emphasize the best individuals in a population. It

does not produce new individuals, but it choose, from the current population Pt, a

mating pool P ′t of relatively good individuals that will generate offspring through

the recombination. The goodness of each individual is measured through the fitness

function. The basic idea of the selection is that individuals with better fitness must

have a higher probability to be chosen. The choice of an appropriate selection opera-

tors is fundamental for obtaining satisfactory results and depends on characteristics

of considered problem.

Several selection operators have been devised which differ in the way the number

of copies are associated to better individuals. Selection operators can be divided in

two groups [83]:

• deterministic selection operators, which sort the population according to their

fitness and deterministically choose the better individuals;

• stochastic selection operators, which assign a probability of selection to each

individual according to their fitness and choose the best individuals depending

on a probability ditribution.

Recombination of the Parents

The aim of recombination operator is to combine the features of the parents to

form offspring, with the possiblity that two good parents may generate a better

individual. The recombination is a function

R : P ′t × P ′t → Ot,

where P ′t is the mating pool of selected individuals at generation t and Ot is the

offspring set. This operator is not applied to all the individuals of the mating pool.

The number of actual parents dependes on a parameter PR ∈ (0, 1), called probability
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of recombination; for each individual in the mating pool, a random number r from

a uniform distribution in (0,1) is generated and, if r < PR, the individual is selected

as parent.

Several recombination operators have been developed which can be divided in

three groups [84]:

• discrete crossover operators. With these operators the value of each gene in

the offspring concides with the value of this gene in one of the parents, i.e. the

values of the genes in the parents are not transformed for obtaining the values

of the genes in the offspring. Example of these operators are simple, two-point

and uniform crossover operators;

• aggregation-based crossover operators which use a deterministic function that

combines the values of the gene of the parents to generate the value of genes of

offspring. The arithmetical, geometrical and LX operators are representatives

of this group;

• neighborhood-based crossover operators which determine the genes of the off-

spring extracting values from intervals definined by neighborhoods associated

with the genes of the parents through probability distributions. Example are

BLX -α, simulated binary crossover and FR operators.

Replacement of the Parents

In order to choose which offspring will survive, two main approaches can be adopted:

the overlapping-generation model and the nonoverlapping-generation model [66]. In

the former case, the parents in the mating pool P ′t and the offspring Ot will compete

with each other for survival producing a new population P ′′t . In the latter, all parents

P ′t die at each generation t and the offspring Ot compete for survival producing a

new population P ′′t .
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Mutation

The mutation operator is asimed at randomly altering some individuals in the pop-

ulation, in order to introduce genetic diversity. It is an unary operator which creates

a new individual by changing an existing individual. Therefore it is a function

M : P ′′t → Pt+1

where P ′′t is the population obtained after the replacement and Pt+1 the mutate

population. Generally the mutation is applied at the end of each generation, so the

mutated population is the population at successive generation, hence the subscript

t + 1. The mutation is applied on single gene of an individual xti. The number of

genes to be mutated depends on a parameter PM called probability of mutation. For

each gene of each individual, a random number r is taken from a uniform distribution

in (0, 1) and the gene is mutated if r < PM .

Several mutation operators have been proposed which differ for the region of the

feasible domain containing the new individual. For example, in uniform mutation

[74] this region is the feasible domain, in real number creep mutation [85] the size of

the region can be changed according to a parameter and nonuniform mutation [74]

the size of the region descreases when the number of generations increases.

3.3 Development of a Genetic Algorithm for the

Detection Problem

In Section 3.2 we described briefly the main components of a genetic algorithm. Now

we present in detail the algorithm that we designed for problem (2.9) In particular

we show how the specific knowledge on the problem has been incorporated into the

developed algorithm.
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3.3.1 Representation of the Individuals

When the genetic algorithms are used to solve continuous optimization problems

the binary representation meets certain difficulties. The main difficulty is known as

Hamming cliff [86]. This happens when the distance between two individuals in the

genotype space is very different to the distance in the phenotype space. Numerical

experiments have shown that this may produce problems under some conditions,

such as the convergence towards no global minimizers [86]. The Hamming cliff can

be solved by using the Gray code [86], however this approach does not improve

the effectiveness of the algorithm. In order to solve this problem, the use of real

representation has been examined. Theoretical investigations have shown that the

good properties of genetic algorithms do not depend on the binary representation.

Specifically, different approaches have been examined to analyze the dynamics of a

genetic algorithm with a real representation, such as generalizations of the schema

theory [87], virtual alphabet theory [88] and stochastic process theory [89, 90]. Fur-

thermore numerical experiments have shown that the use of a real representation

allows to improve both the accuracy of the solution and the efficiency of the ge-

netic algorithms [91]. Indeed, the main advantages of this representation are the

ability of performing a local tuning of the solutions and the possibility of avoiding

the coding/decoding of individuals. For these reasons we choose to use the real

representation in which an individual is a point m = (m1,m2) of Ω and its genes

are the single masses mi, i = 1, 2.

3.3.2 Initial Population

As already observed, a good initial population should combine genetic diversity with

uniform coverage [82]. On the other hand, in our problem, a suitable choice of the

templates for the matched filtering technique leads to a nonuniform discretization

of the feasible set, with points clustered in the areas where the objective function

shows greater variability (see Figure 2.8). This is an a priori specific information on
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the problem which can be included into the selection of the initial population.

The most straightforward way to introduce the information provided by the

grid is to randomly select the individuals from a grid G corresponding to a widely

accepted value of minimal match, such as 97%. In order to foster a uniform coverage,

we combined the previous strategy with a nonaligned systematic sampling (NSS), in

which the feasible box Ω is splitted into b2 elementary boxes with equal side lenghts,

and one individual is selected in each elementary box according to some rule [82]. In

our case, the individual is randomly chosen among the points of G belonging to the

box; furthermore, the algorithm has been slightly modified to handle the (possible)

case that a box does not contain any grid point. Given the size Np of the population,

i.e. the number of its individuals, the NSS is applied first, to select a part of the

initial population; then, the remaining individuals are randomly taken from G. An

example of this stragegy is showed in the figure 3.2. The parameter b is chosen to

guarantee that no large areas of the feasible domain are left uncovered by the initial

population. Note that b = 0 corresponds to an initial population randomly selected

from G, whereas b2 = Np corresponds to an initial population resulting only from

the grid-based NSS. Because of the symmetry of the global optimization problem

with respect to m1 and m2, only the triangle m1 ≥ m2 of Ω, and the elementary

boxes covering this triangle, are actually considered. The random selection of any

individual from G is performed by labelling each point of G with an integer number

from 1 to Np and by using the following formula:

q = 1 + int(rnd(0, 1) ·Np), (3.1)

where rnd(0, 1) is a random number from a uniform distribution in (0, 1) and int(x)

is the integer part of x. The same rule is applied in each elementary box, considering

only the points of G contained into the box.
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Figure 3.2: Example of the devised strategy for the choice of initial population.

3.3.3 Selection of Parents

The selection of parents to form the mating pool is based on the principle of elitism:

the individuals with higher fitness have higher probability to be picked. On the other

hand, population diversity must be kept in order to avoid a premature convergence

of the genetic algorithm, and therefore too much elitism in the selection might result

in a serious drawback, especially when many local solutions exist.

These operators are characterized by the so-called selective pressure, which is

related to the takeover time, i.e. the number of generations needed by the best

individual in the initial population to fill up the whole population, by the application

of the selection operator alone [92]. If the takeover time is large then the selective

pressure is small, and vice versa. The selective pressure provides information on the

number of generations after which the mutation becomes the primary operator of

exploration. For our problem, we choose the binary tournament without replacement,

that has a medium selective pressure with respect to other selection operators [93],

and hence appears suitable for handling the existence of a large number of local

solutions. Furthermore, the binary tournament does not require for the individuals

in the population to be ranked.

This operator randomly picks two individuals from the population and selects
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the one with best fitness as potential parent to be put into the mating pool; the

picked individuals are removed from the population and the process is repeated

again, until no individuals are available. This procedure is repeated twice, to have

a number of parents equal to the size Np of the population. In this way the best

individual is selected at least twice and the worst one is discharged. We also note

that the same individual can be present in the mating pool twice, depending on its

fitness. The random selection of each individual is carried out according to the rule

(3.1), where the current number of individuals is used instead of Np at each step of

the tournament.

3.3.4 Recombination

Once the mating pool is defined, pairs of individuals are randomly taken from it

and mated. The number of actual parents depends on a parameter PR ∈ (0, 1),

called probability of recombination; for each individual in the mating pool, a random

number r from a uniform distribution in (0,1) is generated and, if r < PR, the

individual is selected as parent. The pair of parents are formed by taking two

individuals consecutively selected.

As basic recombination operator we choose the BLX-α one, which is a well

established and studied technique for real-coded genetic algorithms [86, 84]. Each

pair of parents mm,mf generates three offspring, m1,m2,m3. The recombination

is carried out separately on each gene by taking

mj
i = rnd(Ii) (i = 1, 2; j = 1, 2, 3), (3.2)

where the action interval Ii is defined as

Ii = [gi − αMi, Gi + αMi],

with gi = min{mm
i ,m

f
i }, Gi = max{mm

i ,m
f
i }, Mi = Gi − gi, and |α| < 1.

We note that α is related to the size of the region around each parent, and thus

its value controls the degree of “resemblance” to a parent. In particular, α > 0
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fosters exploration, i.e. the tendency to expand the search space, whereas α < 0

fosters exploitation, i.e. the tendency to deepen the knowledge in areas of the search

space that have been already visited. For α = 0 the so-called flat recombination is

obtained, in which mj
i is randomly chosen between the corresponding genes of its

parents. In our problem we considered α = 0.5, a choice which allows to balance

exploration and exploitation [86], since the new gene has the same probability to lie

inside or outside the interval defined by its parents.

However, taking α > 0 might bring to an action interval which is not included in

[l, u], where l and u are defined in (2.10). In order to handle the box constraints, we

devised two variants of the BLX-α strategy. In the former, if Ii 6⊂ [l, u], one considers

as action interval the largest feasible interval ISi ⊂ Ii obtained by symmetrically

shrinking I, i.e.

ISi = [gi − ᾱMi, Gi + ᾱMi],

where ᾱ is the largest value such that ISi is feasible. This strategy is called SBLX-α.

In the latter, a gene mj
i generated according to (3.2), that does not belong to [l, u],

is replaced by its projection onto this interval. This strategy is called PBLX-α. We

observe that SBLX-α is more conservative than PBLX-α since it works on a smaller

action interval; furthermore, the closer is a parent gene to one of its bounds, the

higher is the probability for the generated genes to be equal to the parent one.

3.3.5 Replacement of Parents

The overlapping-generation model is elitist, thus implying a loss of genetic diversity

which is likely to lead to premature convergence to a local maximum. Because of

the specific features of our problem, we decided to use a nonoverlapping-generation

model, in which every pair of parents generates three offspring and the two offspring

with better fitness survive. This simple model is combined with an elitist strategy

guaranteeing that a copy of the best individual in the current population is forced

to be selected into the new one. This individual is not replaced by its offspring.
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3.3.6 Mutation

In order to explore the feasible domain uniformly in the first generations, and locally

in the later generations, we use the non-uniform mutation described in [74]. In this

case, a gene mi to be mutated becomes a new gene mnew
i according to the following

formula:

mnew
i =


mi + ∆(k, u−mi) if r ≥ 0.5,

mi + ∆(k,mi − l) if r < 0.5,

where r is a random number taken from a uniform distribution in (0, 1) and ∆(k, y)

is defined as

∆(k, y) = y ·
(

1− r
“

1− k
NG

”2
)
,

where k is the number of generations obtained so far and NG is the maximum number

of generations of the GA.

The number of genes to be mutated depends on a parameter PM called probability

of mutation. For each gene of each individual, a random number r is taken from a

uniform distribution in (0,1) and the gene is mutated if r < PM . To avoid the best

individual to be lost through the generations, we use an elitist strategy as in the

replacement of parents, i.e. we preserve a copy of the best individual by avoiding

mutating it.

3.4 Numerical Experiments

3.4.1 Evaluation of the Genetic Algorithm

Extensive computational experiments were carried out to evaluate the effectiveness

of our Genetic Algorithm (GA) approach in the solution of the considered problem

and its competitiveness with the grid search. Special attention was devoted to ana-

lyzing the effects of different choices of the initial population and of recombination

strategies handling the box constraints, which are the most distinctive features of

the GA described in the previous section.
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We generated three sets of test problems, in which the detector output consists of

strictly white noise and gravitational signal from three pair of masses, corresponding

to three possible types of configurations of the coalescing binary system [57]:

• m̄1 = m̄2 = 1.4M� (two neutron stars),

• m̄1 = 1.4M� and m̄2 = 10M� (one neutron star and one black hole),

• m̄1 = 5M� and m̄2 = 10M� (two black holes),

where M� denotes the solar mass. For each pair of masses we considered 30 real-

izations of noise, thus obtaining a set of 30 detector outputs to be analyzed. The

length N of such outputs is 131072, while the length M of the signal varies with the

masses (51207 for m̄1 = m̄2 = 1.4, 10823 for m̄1 = 1.4 and m̄2 = 10 and 3216 for

m̄1 = 5 and m̄2 = 10). For all the problems, a SNR equal to 10 was chosen. The

lower bound l and the upper bound u on the masses, defining the feasible domain,

were set to 1 and 30, respectively. All the data were obtained by using the LAL

package [94], which is gaining wide acceptance as a reference tool for gravitational

wave data analysis.

We note that the most significant set of test problems is the one corresponding

to m̄1 = m̄2 = 1.4, since binary systems of neutron stars are known to exist and, for

some of them, general relativistic effects in the binary orbits have been accurately

measured [95]. These problems are also the most difficult to be solved, as shown by

the results of the computational experiments reported in this section. Furthermore,

problems related to the same type of binary configuration show the same level of

difficulty, therefore we do not consider other values for the pair of masses.

Our GA was implemented in the C language, in double precision, using the

Mersenne twister pseudo-random number generator [96], as implemented in the GNU

Scientific Library (version 1.11). The tests were run on a Linux PC with an Intel

Core 2 DUO E7300 processor, clock frequency of 2.66 GHz, 4 GB of RAM, and 3 MB

of cache memory; it runs Linux Ubuntu 8.10, 64 bit version, with kernel 2.6.27. For

each set of test problems, the GA was run using 30 different seeds for initializing
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parameter value

NP (number of individuals) 100

PR (probability of recombination) 0.7

PM (probability of mutation) 0.05

NG (maximum number of generations) 50

Table 3.1: Values of the GA parameters

the above generator. The algorithm was stopped when the maximum number of

generations, NG, was achieved. We note that we did not stop the algorithm as soon

as the detection threshold was exceeded, since in this case the computed maximum

of the objective function may be very far from the actual one, thus providing poor

information on the signal. On the other hand, the algorithm might not be able to

compute a maximum exceeding the threshold. However, the threshold was used to

evaluate the performance of the algorithm, as explained below. A threshold equal to

8 was chosen, which is a typical value in the detection of gravitational wave problem

[97]. We also verified experimentally that other stopping criteria, e.g. based on the

variation of the masses, may halt the algorithm prematurely. The GA parameters,

i.e. the probabilities of recombination and mutation, the size of the initial population

and the maximum number of generations were set as in Table 3.1. These values were

selected mainly on the basis of computational experiments, which are not reported

here for the sake of space; the choice of the values for PR and PM was suggested also

by the literature [98, 99]. Our first experiments were aimed at studying the impact

of the choice of the initial population on the GA behaviour. We compared three

different strategies:

• random generation of individuals from a uniform distribution in [1, 30]× [1, 30]

(RAND);

• NSS with b2 = NP elementary boxes, with a random choice of individuals from

a uniform distribution in each box (RAND-NSS);
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Figure 3.3: Initial populations of 100 individuals generated by using the RAND (a),

RAND-NSS (b) and RAND-GRID (c) strategies.

• combination of random choice of individuals from the grid corresponding to

a minimal match of 97% and of grid-based NSS with b = 4, as explained in

section 3.3.2 (RAND-GRID).

Initial populations generated with these three strategies are shown in Figure 3.3.

Table 3.2 shows the numerical results obtained by running the GA with the three

strategies, using SBLX-0.5 as recombination operator, for each set of test problems.

The mean value of the computed maximum of the objective function F over 900 runs

(30 realizations of noise × 30 seeds for the pseudo-random generator) and the related

standard deviation are reported in the fmean and fstd columns; the percentage of

runs in which the maximum of F exceeds the selected threshold, and hence a signal

detection is stated, is reported in the success column; finally, the absolute value of

the difference between the mean value of the maximum of F computed by the grid
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search and that computed by the GA, divided by the first one, is reported in the

relerr column (this also includes the runs where the maximum computed by the GA

does not exceed the threshold). We recall that the reference value for the mean of

the computed maximum of F is the SNR, i.e. 10.

As expected, a choice of the initial population which provides a uniform coverage

of the feasible domain without taking into account the specific characteristics of

the objective function (RAND-NSS) does not produce any significant improvement

with respect to a uniform random choice of the population in the whole feasible

domain (RAND). On the other hand, a very strong improvement can be observed

for m̄1 = m̄2 = 1.4 when the problem-driven approach (RAND-GRID) is adopted;

indeed, for this set of test problems, neglecting the information provided by the grid

leads to a mean value of the maximum of F that is very far from the SNR and

exceeds the threshold in at most 24% of the runs. The problem-driven approach

produces also a significant improvement in the case m̄1 = 1.4 and m̄2 = 10, whereas

it does not produce any improvement the case m̄1 = 5 and m̄2 = 10. Similar

results hold if PBLX-0.5 is used as recombination operator, as shown in Table 3.3.

However, we note that for m̄1 = m̄2 = 1.4 the use of PBLX-0.5 produces higher

percentages of success when the RAND and RAND-NSS strategies are used (59.9%

and 57.3%, respectively); this is due to the fact that the projection of a gene that

is out of its bounds onto the interval with endpoints the corresponding genes of the

parents produces more individuals close to (1.4, 1.4). The previous results show that

a selection of the initial population based on the a priori knowledge of the problem

is a key issue for the performance of the GA.

Taking into account the previous considerations, we performed a deeper analy-

sis of the GA behaviour with the RAND-GRID strategy, varying the value of the

parameter b in the grid-based NSS, and applying the recombination rules SBLX-0.5

and PBLX-0.5 described in Section 3.3.4. The corresponding results are reported

in Table 3.4 for SBLX-0.5 and in Table 3.5 for PBLX-0.5. By looking at Table 3.4,

we see that b = 0 and b = 4 lead to very close results for all the test sets; their
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m̄1 m̄2 init. population fmean fstd success (%) relerr

1.4 1.4 RAND 6.8133 1.6225 20.9 0.322

RAND-NSS 6.9053 1.6852 24.0 0.312

RAND-GRID 9.8058 1.2655 92.0 0.024

1.4 10 RAND 9.6069 1.5763 87.9 0.065

RAND-NSS 9.5351 1.5918 86.0 0.072

RAND-GRID 10.2358 1.0716 99.0 0.004

5 10 RAND 10.2734 1.0383 99.0 0.001

RAND-NSS 10.2767 1.0319 99.3 0.001

RAND-GRID 10.1993 1.0448 98.7 0.008

Table 3.2: GA behaviour with different strategies for the selection of the initial

population. SBLX-0.5 is used as recombination operator.

m̄1 m̄2 init. population fmean fstd success (%) relerr

1.4 1.4 RAND 8.3385 2.0264 59.9 0.170

RAND-NSS 8.2689 2.0305 57.3 0.177

RAND-GRID 9.7036 1.1397 92.8 0.034

1.4 10 RAND 9.4983 1.1781 92 0.076

RAND-NSS 9.4099 1.2029 92.2 0.085

RAND-GRID 10.0773 1.1449 96.4 0.020

5 10 RAND 10.2667 1.0384 98.8 0.002

RAND-NSS 10.2758 1.0316 99.3 0.001

RAND-GRID 10.1286 1.0717 97.8 0.015

Table 3.3: GA behaviour with different strategies for the selection of the initial

population. PBLX-0.5 is used as recombination operator.
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behaviour is satisfactory, as shown by the mean value of the computed maximum,

which, in the problem at hand, can be considered very close to the mean value of

the maximum over the grid (see the relerr column), and by the high percentage of

success. We note that the lower percentage of success for m̄1 = m̄2 = 1.4 is also due

to the fact that one of the 30 instances of this class of problems has a maximum

value of F lower than the detection threshold (the maximum computed by the grid

search algorithm is 7.02). Therefore, the success cannot exceed 96.7% in this case.

The choice b = 8, in which more than one third of the population is generated by the

grid-based NSS, degrades the GA performance for m̄1 = m̄2 = 1.4, while slightly im-

proves it for m̄1 = 5 and m̄2 = 10. The previous comments apply also to the results

in Table 3.5, concerning PBLX-0.5. However, we see that SBLX-0.5 leads to slightly

greater mean values of the maximum of F ; it generally gives also greater percentages

of success (about 99%) for the problems with larger masses. This suggests that a

more conservative strategy to handle the constraints should be preferred. It is worth

noting that computational experiments carried out by using the BLX-0 operator,

which never violates the box constraints, led to poor percentages of success.

We finally observe that the mean and the maximum number of objective function

evaluations over all the experiments, in NG generations of the GA, are 5821 and

5914, respectively, i.e. less than 22% of those required by the grid search (27379).

Furthermore, the actual number of objective function evaluations to achieve the

computed optimal solution is generally lower, as shown by its mean value (evmean)

and standard deviation (evstd) reported in Tables 3.4 and 3.5. Therefore, the GA

approach allows a significant saving of the computational time with respect to the

grid search.

3.4.2 Comparison with other Global Optimization Algorithms

The GA was compared with three global optimization algorithms: Price’s controlled

random search (CRS) [100], particle swarm pattern search (PSwarm) [101], and DI-
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SBLX-0.5

m̄1 m̄2 b fmean fstd success (%) relerr evmean evstd

1.4 1.4 0 9.8617 1.2057 93.7 0.018 4202 1404

4 9.8058 1.2655 92.0 0.024 4206 1454

8 9.6272 1.4666 87.2 0.041 4232 1465

1.4 10 0 10.2529 1.0399 99.4 0.003 3992 1476

4 10.2358 1.0716 99.0 0.004 4046 1448

8 10.1993 1.1088 98.3 0.008 4021 1522

5 10 0 10.1592 1.0421 98.8 0.012 3608 1589

4 10.1993 1.0448 98.7 0.008 3577 1663

8 10.2669 1.0361 98.9 0.002 3638 1615

Table 3.4: GA behaviour with the RAND-GRID strategy, varying the parameter b

in the grid-based NSS, and with the SBLX-0.5 recombination operator.

RECT [40]. CRS and PSwarm are population-based, i.e. they maintain a population

of candidate solutions evolving toward an optimal solution. DIRECT generates a

sample of points that, as the number of iterations goes to infinity, form a dense

subset of the search space. A description of the previous algorithms is beyond the

scope of this thesis; for details the reader is referred to the above references. We

only note that CRS is “fully” heuristic, in the sense that no convergence results

are available for it (at least for its original version); PSwarm, under appropriate

assumptions, is globally convergent with probability 1 to first-order critical points;

finally, DIRECT is deterministic, since its so-called “everywhere dense” convergence

property guarantees that the algorithm is able to generate points arbitrarily close

to a global optimum.

CRS was implemented in C, using the same pseudo-random number generator

chosen for our GA. The following stopping criterion was applied: the difference

between the maximum and the minimum value of F in the current population is

lower than a specified tolerance, or the maximum number of objective function
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PBLX-0.5

m̄1 m̄2 b fmean fstd success (%) relerr evmean evstd

1.4 1.4 0 9.7514 1.0979 93.6 0.029 3865 1568

4 9.7036 1.1397 92.8 0.034 3827 1615

8 9.5714 1.2943 88.4 0.047 3885 1616

1.4 10 0 10.1143 1.1139 96.8 0.016 3654 1660

4 10.0773 1.1449 96.4 0.020 3579 1660

8 10.0442 1.1221 96.4 0.023 3559 1692

5 10 0 10.1344 1.0571 98.0 0.014 3437 1698

4 10.1286 1.0717 97.8 0.015 3480 1682

8 10.2434 1.0449 99.4 0.004 3682 1648

Table 3.5: GA behaviour with the RAND-GRID strategy, varying the parameter b

in the grid-based NSS, and with the PBLX-0.5 recombination operator.

evaluations is achieved. In our experiments the previous tolerance and maximum

number were set to 10−4 and 30000, respectively. A C implementation of PSwarm

was downloaded from http://www.norg.uminho.pt/aivaz/pswarm/. It combines

different stopping criteria, based on various concepts (the norm of the velocity vector,

the mesh size parameter and the clustering of the particles); default values were used

for the related tolerances, as well as for the various parameters of the algorithm (see

[101] for details). A maximum number of 30000 objective function evaluations was

also imposed, as for CRS. Finally, a Fortran 90 implementation of DIRECT was

provided by G. Liuzzi, S. Lucidi and V. Piccialli, who developed it as a part of the

work described in [102]. A maximum number of 30000 function evaluations was used

to stop this algorithm too. The parameter ε, used to identify the so-called potentially

optimal hyperintervals, was set to 10−4 [40]. The possibility of choosing between an

initial population randomly extracted from a uniform distribution (default choice)

or generated using the RAND-GRID strategy was added to CRS and PSwarm.

A further stopping criterion was introduced in the three previous implementa-
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tions, which was combined with the other criteria through a logical “or”:

FGA − FMAX < FGA · TOL, (3.3)

where, for each problem instance in a test set, FGA is the mean value of the maxima

of F computed by the GA (with the SBLX-0.5 recombination operator) over the

corresponding 30 runs, FMAX is the maximum value of F at the current iteration

of the algorithm under consideration, and TOL is a tolerance, set to 10−3 in our

experiments. Note that, in CRS and PSwarm, FGA refers to the GA using the same

initial population, while in DIRECT it refers to the GA with the RAND-GRID

strategy, using the best value of b for each test set (b = 8 for m̄1 = 5 and m̄2 = 10,

b = 0 for the remaining problems). This criterion was introduced to compare the

three solvers with the GA in terms of the number of objective function evaluations

performed to compute a solution “close” to the GA solution.

The previous optimization solvers were run on all the test problems described

in Section 3.4.1. An initial population of 100 individuals was chosen for CRS and

PSwarm, using both the default and the RAND-GRID strategy. Like the GA, the

two non-deterministic algorithms were run 30 times for each problem instance. CRS

and PSwarm generally perform better with the RAND-GRID initial population,

therefore we discuss the results obtained with this strategy.

As shown by the results in Table 3.6, CRS and DIRECT are more efficient

than the GA on the test set corresponding to m̄1 = 5 and m̄2 = 10, since they

satisfy criterion (3.3) on 100% of the problems, and hence achieve 100% of success,

with a number of objective function evaluations smaller than the GA. PSwarm is

less efficient, since it gets at most 97.3% of success, with criterion (3.3) satisfied

in 40.7% of the cases (actually, this is the only case where the RAND strategy

produces better results than the RAND-GRID one, showing 97.9% of success with

criterion (3.3) satisfied in 64.4% of the cases). For m̄1 = 1.4 and m̄2 = 10, CRS

and DIRECT do not outperform the GA (see Table 3.7). CRS achieves a high

percentage of success, i.e. 98-99%, with criterion (3.3) satisfied in more than 91%

of the cases; the number of objective function evaluations has a mean value ranging
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m̄1 = 5, m̄2 = 10

algorithm b fmean fstd success (%) stop (%) evmean evstd

CRS 0 10.2268 1.0160 100 100 789 524

4 10.2518 1.0208 100 100 940 614

8 10.2915 1.0247 100 99.8 1331 893

PSwarm 0 9.7705 1.2621 92 34.1 694 834

4 9.8434 1.1879 93.7 35 722 539

8 10.0475 1.0658 97.3 40.7 794 1016

DIRECT – 10.2900 1.0414 100 100 851 602

Table 3.6: Performance of CRS, PSwarm and DIRECT for m̄1 = 5, m̄2 = 10. The

RAND-GRID strategy, with different values of the parameter b, is used by CRS and

PSwarm.

from 3312 to 3926 (depending on the value of b in the RAND-GRID strategy), but

its largest value varies between 15332 and 16359, resulting much greater than for

the GA. DIRECT gets 100% of success, with 90% of runs satisfying (3.3), but the

mean value of the number of objective function evaluations is 12438; furthermore

the algorithm stops in 10% of the cases because the maximum number of objective

function evaluations has been reached. As for m̄1 = 5 and m̄2 = 10, PSwarm is less

effective than the GA, since it achieves a smaller percentage of success, i.e. at most

95.9%, with criterion (3.3) satisfied in about 20% of the cases. The performance

of CRS, PSwarm and DIRECT strongly deteriorates for m̄1 = m̄2 = 1.4, as shown

by the results reported in Table 3.8 (the stop column reports the percentage of

runs where the algorithm stops by satisfying criterion (3.3)). The percentage of

success of the three algorithms is very low (at most 43.4% with PSwarm), as well as

the percentage of cases where criterion (3.3) is satisfied (at most 27% with CRS),

showing that the three algorithms are not able to compute solutions as good as the

GA ones. Actually, the mean of the computed optimal values is smaller than 8, i.e.

it does not reach the threshold used to measure the success of the algorithms. The
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m̄1 = 1.4, m̄2 = 10

algorithm b fmean fstd success (%) stop (%) evmean evstd

CRS 0 10.2604 1.0464 99.4 95.3 3312 2014

4 10.2285 1.0991 98.3 94.3 3612 2334

8 10.1921 1.1192 98.2 91.2 3926 2607

PSwarm 0 9.6536 1.0676 93.4 17.4 609 680

4 9.6855 1.0542 95.9 20.1 741 990

8 9.6342 1.0798 93.0 21.6 809 672

DIRECT – 10.2483 1.0424 100 90 12438 7797

Table 3.7: Performance of CRS, PSwarm and DIRECT for m̄1 = 1.4, m̄2 = 10. The

RAND-GRID strategy, with different values of the parameter b, is used by CRS and

PSwarm.

m̄1 = m̄2 = 1.4

algorithm b fmean fstd success (%) stop (%) evmean evstd

CRS 0 7.7629 1.9030 40.3 24.1 5478 3828

4 7.5542 1.8758 35.3 22.1 5839 3888

8 7.4862 1.9000 31.6 27.0 5977 3912

PSwarm 0 7.8202 2.0224 43.2 21.6 1783 3948

4 7.8268 2.0145 43.4 22.8 2258 4660

8 7.7596 2.0119 40.9 23.9 3039 5838

DIRECT – 7.2031 1.8919 23.3 10.0 28029 6562

Table 3.8: Performance of CRS, PSwarm and DIRECT for m̄1 = m̄2 = 1.4. The

RAND-GRID strategy, with different values of the parameter b, is used by CRS and

PSwarm.
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worst results are obtained with DIRECT, which achieves only 23.3% of success and

a mean of the optimal values equal to 7.2031. On the other hand, we verified that

DIRECT, according to its convergence properties, is able to get solutions comparable

to those obtained with the GA if a number of objective function evaluations much

larger than 30000 is allowed. Of course, in this case DIRECT is far from being

competitive with the GA and the grid search.



Chapter 4

A Parallel Version of the Genetic

Algorithm

4.1 Introduction

Parallel genetic algorithms have been extensively investigated since they are easy

to implement and can achieve significant gains not only in terms of efficiency, but

also of effectiveness with respect to sequential genetic algorithms [103, 104]. There

several approach to parallelize a genetic algorithm. These depends on the following

issues:

• how the fitness is evaluted;

• if the genetic operators are applied locally or globally with respect to feasible

domain;

• if single or multiple subpopulations are used;

• how individuals are exchanged if multiple subpopulations are used.

The simplest approach for parallelizing a genetic algorithm is to execute multiple

copies of the same genetic algorithm. Each copy starts with a different initial pop-

ulation and evolve independently. When all the copies halt the individual with best

64
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whle the main loop of the GA is executed in a master processor. This parallel 
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except for time. This paradigm is illustrated in Figure 5.4, where the master proces- 
sor sends parameters (those necessary for the objective function evaluations) to the 
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Fig. 5.4 Master-Slave model. 

The master processor controls the parallelization of the objective function eval- 
uation tasks (and possibly the fitness assignment andor transformation) performed 
by the slaves. This model is generally more efficient as the objective evaluation be- 
comes more expensive to compute, since the communication overhead is negligible 
with respect to the fitness evaluation time. 

5.4.2.3 DistributedModel. In this model, the population is structured into smaller 
subpopulations relatively isolated one from the others, so it is well-suited for imple- 
menting dGAs. Parallel GAS based on this paradigm are sometimes called multi- 
population or multi-deme GAS. Besides its name, the key characteristic of this kind 
of algorithm is that individuals within a particular subpopulation (or island) can oc- 
casionally migrate to another one. This paradigm is illustrated in Figure 5.5. Note 
that the communication channels shown are notional; specific assignments are made 
as a part of the GA's migration strategy and are mapped to some physical network. 

Fig. 5.5 Distributed model. 

Figure 4.1: A schematic of a master-slave parallel genetic algorithms.

fitness among the copies is assumed as solution. The advantage of this approach

is the reduction of the possibility that all copies converge prematurely to the same

local solution. Another approach consists of considering several populations that

evolve independently, but exchange some individuals among the populations. This

allows to avoid a premature convergence and improve the accuracy of the solution

through the share of high quality solutions. A different approach is to partition

the feasible domain into disjoint subset and to execute a genetic algorithm in each

subset. The previous approaches led four main classes of parallel genetic algorithm

that are discussed in the following subsections.

4.1.1 Master-Slave Parallel Genetic Algorithms

Master-slave parallel genetic algorithms have a single population with a panmictic

structure, i.e. they use global selection, recombination and replacement operators.

This means that any individual may compete and mate with any other (see Fig-

ure 4.1). Usually, only the evaluation of the fitness is carried out in parallel: a

master process stores the population, applies the genetic algorithm operators and

distributes the individuals among the slaves, which compute the fitness values and

return them to the master. This parallel approach does not change the behaviour of

the sequential algorithm, unless an asynchronous master-slave model is used, where

the next generation step can be started even if all the fitness values of the cur-
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Fig. 5.6 Cellular model. 

monoprocessor machines [7, 241. This issue may be stated clearly, since many 
researchers still hold in their minds the relationship between massively parallel GAS 
and cellular GAS, which nowadays represents an incorrect link. 

5.4.1.5 Other Models. It is possible to find many implementations of a difficult 
classification in the literature. In general, they are called hybrid algorithms since 
they implement characteristics of different models. 

(b) 

Fig. 5.7 Hybrid models. 

For example, Figure 5.7 shows three hybrid architectures in which a two-level 
approach of parallelization is undertaken. In the three cases the highest level of 
parallelization is a dGA. In Figure 5.7a, the basic islands perform a cGA, thus trying to 
get the combined advantages of the two models. In Figure 5.7b, we have many global 
parallelization farms connected in a distributed fashion, thus exploiting parallelism for 
making fast evolutions and for obtaining separate population evolutions at the same 
time. Finally, Figure 5 . 7 ~  presents several farms of distributed algorithms with a still 
higher level of distribution, allowing migration among connected farms. Although 
these combinations may give rise to interesting and efficient new algorithms, we 
have the drawback of needing some additional new parameters to account for a more 
complex topology structure. 

Figure 4.2: A schematic of a cellular parallel genetic algorithm.

rent population have not yet been received by the master. Master-slave parallel

genetic algorithms are well suited for symmetric multiprocessors, but can be easily

implemented on distributed-memory systems.

4.1.2 Cellular Parallel Genetic Algorithms

Cellular (or fine-grained) parallel genetic algorithms use a single spatially-structured

population. The structure is often a toroidal grid, with each individual assigned

to a grid cell. The cells are grouped into small neighbourhoods and the genetic

operators are applied within each neighbourhood (see Figure 4.2). The evaluation

of the fitness is performed concurrently for all the individuals. The overlap among

neighborhoods allows some interaction among the individuals, so that the best one

may be (slowly) diffused in the whole population. These parallele genetic algorithms

are called cellular for their analogy to cellular automata with stochastic transition

rules. They naturally fit massively parallel processor systems.
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comes more expensive to compute, since the communication overhead is negligible 
with respect to the fitness evaluation time. 

5.4.2.3 DistributedModel. In this model, the population is structured into smaller 
subpopulations relatively isolated one from the others, so it is well-suited for imple- 
menting dGAs. Parallel GAS based on this paradigm are sometimes called multi- 
population or multi-deme GAS. Besides its name, the key characteristic of this kind 
of algorithm is that individuals within a particular subpopulation (or island) can oc- 
casionally migrate to another one. This paradigm is illustrated in Figure 5.5. Note 
that the communication channels shown are notional; specific assignments are made 
as a part of the GA's migration strategy and are mapped to some physical network. 

Fig. 5.5 Distributed model. 
Figure 4.3: A schematic of a multiple-deme parallel genetic algorithm.

4.1.3 Multiple-Deme Parallel Genetic Algorithms

Multiple-deme parallel genetic algorithms use several subpopulations (demes) that

evolve independently, but exchange individuals occasionally, thus resembling the is-

land model in population genetics (see Figure ). The genetic operators are separately

applied to each deme; the exchange of individuals is performed through the so-called

migration operator at certain steps of the evolution. Since the size of the demes is

generally smaller than the population used by the corresponding sequential genetic

algorithm, one expects that the parallel algorithm converges faster. On the other

hand, the migration is applied reinject diversity into the demes, to avoid premature

convergence to low-quality solutions. The migration operator depends on several

parameters, that may significantly affect the behaviour of the parallel genetic algo-

rithm and produce strong changes with respect to its sequential counterpart (more

details on these parameters are given later). Therefore, an intensive research ac-

tivity is devoted to understand the complex effects of this operator. Multiple-deme

parallel genetic algorithm are usually implemented on MIMD distributed-memory

systems.
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4.1.4 Hierarchical Parallel Genetic Algorithm

Hierarchical parallel genetic algorithms combine different algorithms of the previ-

ous classes in a two-level structure, therefore they are also called hybrid. Most of

these algorithms apply multiple-deme parallel genetic algorithms at the upper level

and master-slave or cellular ones at the lower level, i.e. on each deme, but other

combinations have been also considered. The hierachical approach adds a degree of

complexity to the study of parallel genetic algorithms, but appears promising for

the implementation on modern multi-core and many-core architectures.

4.2 A Multi-Deme Parallel Genetic Algorithm for

the Detection Problem

We choose the multiple-deme approach because it allows a great flexibility in the

design of the parallel genetic algorithm and hence a better adaptation to the prob-

lem [105]. Furthermore, we are interested in running the algorithm on distributed-

memory systems. We note that, since the evaluation of the objective function in (1.1)

is expensive, the cost for the migration of individuals is negligible. By using a SPMD

programming model and assuming that each processor is associated to a deme, the

structure of our parallel genetic algorithm can be described as shown in Figure 4.4.

The choice of the initial deme and the genetic operators acting on it, except the

migration, are the same as in the sequential genetic algorithm.

As previously observed, the choice of the migration strategy is fundamental for

the behaviour of a multiple-deme parallel genetic algorithm. In the following we

describe the main issues characterizing the migration [103, 104]. and the choices

made in our algorithm.

• Topology. It defines the interconnections among the demes, i.e. the neighbours

to/from which a deme can send/receive individuals. The topology affects the

diversity of the demes; the higher the connectivity, or the shorter the diameter,
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on each processor

initialize the deme

while (stopping criterion not satisfied)

select the parents

recombine pairs of parents to generate offspring

replace some parents with some offspring

mutate the resulting population

if (this is a migration step)

exchange some individuals with other demes,

i.e. migrate

end if

end while

Figure 4.4: Basic structure of the multiple-deme PGA (SPMD model).

the faster the best individuals are diffused among the demes, thus leading to

more homogeneous subpopulations. To keep genetic diversity we choose a ring

topology, in which the large diameter allows the generation of significantly

different best individuals in the various demes. Specifically, each deme sends

individuals to the right and receives them from the left.

• Selection/Replacement of migrants. This is the strategy used to select the

individuals of the deme that must migrate and those that must be replaced

by the immigrants. We apply a strategy consistent with the basic principles

of our sequential GA: keeping genetic diversity while ensuring that the best

individual is preserved. Therefore, the set of individuals that migrate consists

of a copy of the best one plus a group of individuals selected by using a discrete

uniform distribution. The individuals that must be replaced are also chosen

randomly; the best individual is not replaced even if it is selected.

• Migration rate. This is the number of individuals that migrate, RM . Generally,
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the larger the migration rate, the lower the diversity among the demes. RM

can be set as a fixed value or as percentage of the size of the deme. We use

the second approach in our algorithm.

• Migration interval. This is the number of generations between two consecutive

migrations. Large migration intervals generally imply more diversity. The

migration interval is usually set to a fixed constant value IM (synchronous

migration), as in our algorithm. However, it can be also dynamically set for

each deme, e.g. using a given probability to decide if the migration will take

place in the deme (asynchronous migration).

4.2.1 Numerical Experiments

The Parallel Genetic Algorithm (PGA) was implemented in the C language, in

double precision, using MPI [106] for the inter-process data communication, and

the Mersenne Twister algorithm [96] for generating pseudo-random numbers from a

uniform distribution.

Different sets of test problems, representative of different configurations of a

coalescing binary system, were generated using the LAL library [94], as explained in

Chapter 3. The experiments reported here concern the most significant and difficult

to solve among these test sets, which corresponds to a gravitational signal emitted

by a binary system with masses m̄1 = 1.4M� and m̄2 = 1.4M� (M� denotes the

solar mass); 30 instances of strictly white noise were added to this signal, obtaining

30 sequences to be analysed. The length of each sequence is N = 131072, while the

length of the signal is M = 51072. The SNR was set to 10 and the lower and upper

bounds on the masses, l and u, were set to 1 and 30, respectively. We recall that

the SNR is the reference value for the mean of the computed maximum of F .

The total population of the PGA was divided into equal-sized demes and each

deme was associated to a single processor.1 The algorithm was stopped when each

1When NP was not divisible by the number of processors, the remainder was uniformly dis-

tributed among the processors.
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deme reached the maximum number of generations, NG. As for the sequential GA,

a threshold equal to 8 was used to evaluate the robustness of the algorithm, i.e. its

ability to detect a signal. The probabilities of recombination and mutation and the

maximum number of generations were chosen as in the sequential algorithm, i.e.

PR = 0.7, PM = 0.05 and NG = 50. The first experiments were performed with

the same population size used in Chapter 3, i.e. NP = 100; further experiments

were executed with NP = 200 to analyse the (possible) gain in the accuracy of the

solution versus the computational cost. By numerical experiments we found that

the PGA, in our problem, is not significantly affected by the value of the migration

rate MR and the migration interval MI (note that MR is expressed as a fraction of

NP ). For each instance of the test problem the PGA was run 30 times, varying the

seed for the initialization of the pseudo-random number generator.

For comparison purpose, we applied also a parallel version of the grid-search

algorithm, obtained by dividing the grid into subgrids and by assigning a subgrid

to each processor. Since the grid was generated by the LAL library as a sequence

of points, each subgrid was formed by uniformly dividing the sequence among the

processors.

The test were run on a Linux cluster with 8 dual-core nodes, available at the De-

partment of Mathematics of the Second University of Naples. Each node comprises

an Intel Core 2 DUO E7300 processor, with clock frequency of 2.66 GHz, 4 GB of

RAM, and 3 MB of cache memory; it runs Linux Ubuntu 8.10, 64 bit version, with

kernel 2.6.27. The nodes are connected by a Fast Ethernet network. The PGA code

was compiled by using gcc v. 4.3.2, using the implementation of MPI provided by

mpich v. 1.2.7, the Mersenne Twister available in the GNU Scientific Library v. 1.1,

and the LAL library v. 5.2.

In Tables 4.1 and 4.2 we report the results obtained by the PGA varying the

number of processors (procs), with NP = 100 and NP = 200, respectively; for

NP = 100 we did not consider more than 8 processors to avoid too small demes.

The tmean and tstd columns contain the mean execution times, in seconds, over
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900 runs (30 realizations of noise × 30 seeds for the initialization of the pseudo-

random number generator) and the corresponding standard deviations, respectively;

the speedup column contains the speedup values related to the mean execution

times; finally, fmean and succ show the mean values of the computed maximum of

the objective function F and the percentage of successes, i.e. of runs in which the

maximum of F exceeded the detection threshold. We recall that this percentage

cannot be greater than 96.7, since for one of the 30 instances of the problem the

maximum value of F is below the threshold (the maximum computed with the grid

search is 7.02). In Table 4.3 we show the execution times (sec.) and the speedup

values obtained with the parallel grid search on the same grid used by the PGA in

the generation of the initial demes (27379 points). Note that, for each number of

processors, all the 30 instances of the problem have about the same execution time,

since the cost of a single function evaluation basically depends on the grid point

(m1,m2), and the same grid is used for all the experiments.

We see that, for both the population sizes, the PGA requires an execution time

that is much smaller than the time for the grid search on the same number of

processors. Specifically, for NP = 100 the PGA time is less than 1/3 of the grid-

search time, while for NP = 200 it is less than 2/3 (about 2/5 on 16 processors).

The speedup of the PGA is always satisfactory, while the speedup of the grid-search

significantly deteriorates on 16 processors. This is due to the fact that the time

for a function evaluation is highly variable (from 0.03 sec. to 0.3 sec.) and hence

a uniform distribution of the grid points among the processors may lead to load

imbalance. The variability of the time for a function evaluation produces also some

load imbalance in the PGA. By looking at the values of the computed maxima,

we see that the use of multiple demes along with the migration strategy generally

enhances the mean value of the maximum of F with respect to the sequential GA,

even when the size of the demes is very small (12-13 individuals). It also improves

the success of the algorithm for NP = 200, while slightly reduces it on 4 and 8

processors for NP = 100. We note that the PGA with NP = 200 can compute a
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MR MI procs tmean tstd speedup fmean succ (%)

— — 1 403.63 62.10 — 9.8617 93.7

0.1 5 2 223.92 27.52 1.80 9.9181 93.9

4 119.59 15.24 3.38 9.8680 91.2

8 60.68 6.28 6.65 9.9129 92.4

0.1 10 2 222.41 24.42 1.81 9.9584 94.3

4 118.06 12.40 3.42 9.9414 92.7

8 60.01 5.92 6.73 9.9165 92.7

0.3 5 2 223.80 28.62 1.80 9.9161 93.4

4 119.77 14.95 3.37 9.8684 91.7

8 61.55 6.37 6.56 9.9383 93.2

0.3 10 2 219.49 28.26 1.84 9.9130 93.7

4 117.89 13.07 3.42 9.9349 92.8

8 60.46 6.05 6.68 9.9574 92.8

Table 4.1: Performance of the PGA with NP = 100.



4.2. A MULTI-DEME PARALLEL GENETIC ALGORITHM FOR THE DETECTION PROBLEM 74

MR MI procs tmean tstd speedup fmean succ (%)

— — 1 774.84 116.89 — 9.9719 95.6

0.1 5 2 436.58 45.42 1.77 10.05 96.4

4 236.36 15.71 3.28 10.09 96.6

8 125.84 8.25 6.16 10.10 95.7

16 62.86 4.01 12.33 10.11 96.3

0.1 10 2 433.58 45.27 1.79 10.01 96.0

4 233.69 15.08 3.32 10.09 96.7

8 123.81 7.02 6.26 10.12 96.4

16 62.25 4.75 12.45 10.11 96.2

0.3 5 2 431.10 48.27 1.80 10.04 96.3

4 235.26 17.60 3.29 10.09 96.7

8 127.58 7.58 6.07 10.11 96.4

16 63.84 4.46 12.14 10.10 96.0

0.3 10 2 428.90 49.42 6.57 10.03 96.3

4 232.42 16.35 3.33 10.09 96.4

8 124.74 7.29 6.21 10.13 96.4

16 62.77 4.93 12.34 10.11 96.4

Table 4.2: Performance of the PGA with NP = 200.

fmean = 10.0424, succ = 96.7%

procs time speedup

1 1382.46 —

2 692.64 1.99

4 426.65 3.24

8 226.03 6.11

16 156.15 8.85

Table 4.3: Performance of the parallel grid search.
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maximum value of F that is greater than the one obtained by the grid search, with

a percentage of successes which is very close to the maximum one.



Conclusions

The aim of the research activity described in this thesis was the design and the

development of numerical methods to solve a global optimization problem in the

context of gravitational wave detection.

We developed a real-coded genetic algorithm tailored to the optimization prob-

lem under consideration. Our algorithm is able to compute solutions that are com-

parable, in terms of accuracy, to those obtained by the grid search, which is widely

used for solving the optimization problem. On the other hand, we found that our

algorithm allows a strong reduction of the computation cost with respect to the

grid search, thus providing a more powerful tool in the analysis of the noisy data

of detectors. The genetic algorithm resulted also much more efficient than other

well-established global optimization algorithms (controlled random search, particle

swarm pattern search and DIRECT) on the most significant and difficult set of prob-

lem instances. The key issue in designing our algorithm was the choice of the initial

population by taking into account characteristic features of the problem. This idea,

coupled with suitable genetic operators and a careful handling of the contraints, led

to a quite efficient and robust algorithm for our problem.

In order to reduce the execution time of our genetic algorithm and to improve

its effectiveness, we developed a parallel version of it for MIMD distributed memory

systems. The parallel algorithm is based on the multiple-deme approach, in which

many subpopulations (demes) evolve separately, but exchange individuals through

a migration operator. We selected a suitable migration strategy according to the

characteristics of the problem. Computational experiments on the most significant

76
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and difficult instances of the problem showed that the parallel algorithm allows to

increase the accuracy and the reliability of the sequential genetic algorithm. Fur-

thermore the results are comparable, in terms of accuracy, with a parallel version of

the grid search, but are obtained with a lower computation time.
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