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Preface

The following work involves the study of electromagnetic properties at the microwave

frequency range of a class of materials called Metamaterials. A metamaterial is an

artificial composite material that exhibits an electromagnetic response unlike any

that have been observed in nature or constituent materials themselves. Usually, the

response results from artificially fabricated, extrinsic or low dimensional inhomo-

geneities. In the last decade, metamaterials have provided scientists with an alter-

native and reliable way to experimentally study effects that could have never been

achieved using conventional materials. The most astonishing of these effects was

the concept of negative refraction, which was first theorized by the Russian scien-

tist Victor Veselago in 1968. Since then, the publications of milestone works by

Eli Yablonovitch and Sajeev John (in 1987), and Sir John Pendry (in 1999),

have triggered enormous interest in metamaterials research, and have resulted in a

tremendous number of theoretical and experimental works in field of metamaterials

worldwide.

This study focuses on how metamaterials can be integrated into the process of mold-

ing the flow of light. This dissertation is divided into two main parts. It will begin

with an introduction to the world of metamaterials and their applications, and will

then branch out into two sections, with each section devoted to a specific type of

periodic metamaterial, Photonic Crystals (PCs), and Split Ring Resonators (SRRs).

The first part of the thesis will investigate Photonic Crystals. Photonic Crystals are

made of a periodic, or quasi-periodic, arrangement of dielectric elements that show

unique properties in a diffraction regime when a wavelength is comparable to the
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unit cell size. For this study, I will investigate, both numerically and experimentally,

the electrodynamic properties of photonic crystals, focusing the attention first, to the

anomalous diffraction phenomena of two-dimensional (2D) PCs proving at microwave

the Pendellösung effect, which is a physical effect of the Dynamical Diffraction The-

ory. Positive agreement between the numerical simulations and measurements carried

out in a parallel plate waveguide have been found. Second, I will focus extensively

on the subwavelength properties of one-dimensional PCs made with slanted dielectric

bars by experimentally demonstrating, for the first time, the superlensing capabilities

of 1D structures in the microwave regime. Finally, I will numerically analyze the

improvement of the focusing capacity induced by the introduction of a proper surface

corrugation.

Part two of the dissertation will focus on Split Ring Resonators (SRRs) which are

made of arrays of metallic resonant elements that show their anomalous properties in

the effective regime when the wavelength is much larger than the unit cell dimension.

I will examine, from the numerical and experimental point of view, the electromag-

netic properties of metamaterial media made with split ring resonators, focusing the

attention on a full comprehension of their transmission properties. I will also discuss

the Slow Light properties of a planar waveguide made with a dielectric core, and a

single negative index cladding made with SRRs. Today, the concept of slowing light

is popular because of the potential benefits it could have on a variety of real life ap-

plications. In fact, low group velocities control light propagation from microwave to

optical frequencies, and could lead to several more applications including delay line

filters and phase shifters. Moreover, the field of slow light, such as those belonging

to the properties of PCs used for manipulating light, is fundamental for the future of

integrated photonic chips.

All the experimental characterizations presented in this dissertation have been

done at microwave wavelengths by sandwiching the samples in a parallel plate waveg-

uide. The characterization of the metamaterials transmission properties was accom-
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plished by using antennas connected to a Vector Network Analyzer that serviced in

measuring the phase and amplitude of the signal. Finally, the slow light properties

were analyzed by measuring the electromagnetic pulse delay using a Microwave Tran-

sition Analyzer. The results outlined in the first part of this dissertation were carried

out at the University of Naples “Federico II” during the first year and a half of my

PhD studies, while the results from part two were made possible at the Electronic

Material Research Institute at Northeastern University in Boston, where I spent the

second half of my PhD. This dissertation is the result of a long term scientific collab-

oration between the two above-mentioned universities, which are both interested in

investigating the properties of metamaterials. As a result of this collaboration, the

scholarship that supported me during the three years of my PhD was co-funded by

both institutions.
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CHAPTER 1

Introduction

1.1 Electromagnetism of Complex Materials:

Metamaterials

The understanding of materials properties has troubled scientists for centuries because

it is not easy to give a detailed picture of what is behind the surface of matter.

Scientific literature has shown extensively the manifold properties of diverse materials,

but still the degree of freedom of the internal structure of materials are so many that

analyzing them all is impossible.

Sometimes the macroscopic properties of a compound can be unexpectedly differ-

ent from that of single elements. This is exemplified well with the simple properties

of ice cream where the taste of the ice and the cream separately are different from

the finished ice cream as a whole.

“Metamaterial” is an appropriate word for artificial materials that show unconven-

tional macroscopic properties. During the past year the field of metamaterials has

attracted large interest from the scientific community, most specifically because of its

connection with the area of electromagnetism. Since the birth of the word “metama-

terial” many attempts have been made to give a proper definition for it, for example

the following:

Metamaterials are a new class of ordered nanocomposites that exhibit

1
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exceptional properties not readily observed in nature. These properties

arise from qualitatively new response functions that are: (1) not observed

in the constituent materials and (2) result from the inclusion of artificially

fabricated, extrinsic, low dimensional inhomogeneities .

However, regardless of the particular definition, which can differ depending on the

given application of the metamaterials they have in common two basic and distinctive

properties:

• they are not observed in the constituent materials,

• they are not observed in nature.

1.2 Classes of Metamaterials

The world of composite materials is so enormous that it can be categorized under

many different classes, involving both natural and artificial materials. The following

sections will identify some of the categories that find applications in the field of

electromagnetism. However it is also worth mentioning that metamaterials have

broader application in the field of acoustics [6] and cosmology [7].

1.2.1 Photonic Crystals

Photonic crystals (PC) are composite materials made of a unit cell obtained by alter-

nating dielectric and/or metallic elements. They can be built by arranging a unit cell

either with a periodic or aperiodic rule. A very straightforward analogy can be made

with the electronic crystals that are made with a periodic arrangement of atoms.

Photonic crystals are composed of elements called “atoms” which are repeated in

space to form crystal lattice. Their physical properties can also be described in terms

of band structures. In fact, as will be shown in the following chapters, their lattice

properties are such that they can either prohibit the propagation of certain waves, or
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allow the transport of energy for other frequencies. These unique features make them

the best candidates for the building of all-optical on a photonic chip, in fact what

makes PCs extremely interesting and attractive for photonic applications is that they

provide a complete control over the propagation of electromagnetic waves. PCs can

be included under the class of metamaterials because their behavior differs from that

of each of the elements that they are assembled with, for example depending on the

wavelength they can act as either a mirror or a transparent block. PCs also posses

qualities that are not observed in nature, for example the negative index of refraction

that will be discussed extensively in the next chapters.

1.2.2 Resonant Structures

A different type of composite material showing features not present in the basic

constituent elements is a structure assembled by arranging resonant elements. What

results from assembling resonant structures is magnetic response regardless of whether

the basic elements are magnetic or not. In fact, the magnetic moment is generated

from the current loops that circulate in each resonant element, whereas the overall

magnetic response of the metamaterial originates from assembling them in a periodic

structure. The highly non linear properties of these elements allow metamaterials

to show negative permeability and act, for example, as an absorber in the same

frequency range where the single “atoms” resonate. A possible way to achieve negative

permeability is by using elements called split ring resonators (SRRs) [8] which take

the shape a metallic ring provided with a gap which allows the necessary condition for

resonance. The extraordinary properties behind these artificial materials have made

them superior candidates for both realizing structures like cloaking devices [9], where

it is necessary to have an overall a magnetic response with negative permeability as

well as slowlight waveguides [10] which will be discussed in the following chapters.
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1.2.3 Cut Wires

Another artificial structure showing extraordinary properties is the counterpart of the

metamaterial made from resonant elements. In fact, if we consider a structure where

the building block is a very thin metallic wire [11], it can been demonstrated, that

the whole material behaves as a plasma characterized by a plasma frequency that is

much lower than that of the bulk metals. And like metals, this metamaterial shows

negative permittivity below the resonance frequency.

By assembling together resonant elements and cut wires, we obtain a metamaterial

that shows negative refractive index, which in turn introduces us to the world of

left handed metamaterials. This world was theorized by Russian physicist, Viktor

Veselago, [12] who in 1967 first asked the question:

What happens in a material when both the permittivity and permeability

are negative?

Veselago proposed that under such negative refractive index condition, the Snell

law still apply, but in a reversed form, where the phase velocity and the group ve-

locity are opposite to each other giving origin to the idea of left handed materials.

Veselago’s work remained unconsidered until recent years when scientists realized

the enormous breakthrough of his work which gave birth to a sector of science of

left-handed metamaterials that today gathers researchers from all over the world.

1.3 Diffractive and non Diffractive Metamaterials

The three types of artificial metamaterials discussed thus far can all be grouped under

the class of metamaterials. Although they all have in common the two main properties

of metamaterials, these being that they are not observed in the constituent materials

and that they are not observed in nature, there are however substantial differences

among them. While photonic crystals are diffractive metamaterials, and are suitable
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for molding the flow of light only at frequencies for which the wavelength is of same

order of magnitude of the unit cell, that is in a diffractive regime λ ≈ a, structures

assembled with resonant elements, cut wires, or both, show their metamaterial-like

properties only in the condition of effective medium regime, when λ >> a, and for

this reason we label them non-diffractive metamaterials.

1.4 Propagation of Waves in Right-Handed and

Left-Handed Substances

The permittivity ǫ, and the permeability µ are the basic entities that determine the

way an electromagnetic wave propagates inside a matter. From the general form of

the dispersion equation it is clear that they appear as the only parameters:

∣

∣

∣

ω2

c2
ǫijµij − k2δij + kikj

∣

∣

∣
= 0 (1.1)

which for isotropic medium becomes

k2 =
ω2

c2
n2 (1.2)

with n being the index of refraction

n2 = ǫµ. (1.3)

We must be very careful taking the square root of equation (1.4). If we neglect

losses, ǫ and µ are both real numbers, and it can easily be seen from (1.2) and (1.4)

that changing the sign to both of them makes no difference from the mathematical
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point of view. As Veselago first pointed out [12], this can give rise to three different

interpretations:

1. that the properties of substances are not affected by a simultaneous change of

sign of ǫ and µ

2. that ǫ and µ both being negative might contradict some fundamental law of

nature with the consequence that no substances with these characteristics can

exist.

3. That ǫ and µ can be simultaneously negative and that substances with such

attribute show unusual properties never seen in material where ǫ and µ are

both positive.

As we will demonstrate in the coming sections, the third case is the one admitted

by nature. To study the effect of ǫ and µ on the propagating waves it is convenient to

start from the Maxwell equations and the constitutive relations in the time domain:

∇×E = −1

c

∂B

∂t
, (1.4)

∇× H =
1

c

∂D

∂t
, (1.5)

B = µH, (1.6)

D = ǫE. (1.7)

For a plane wave in which all the quantities are proportional to ei(kz−ωt) the above

expression reduces to
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k ×E =
ω

c
µH, (1.8)

k ×H = −ω
c
ǫE. (1.9)

We see from (1.8) and (1.9) that if ǫ > 0 and µ > 0 then E, H and k form a

right-handed basis of vectors, whereas if ǫ < 0 and µ < 0 they behave as a left-handed

set.

Moreover, from the expression of the Poynting vector,

S =
c

4π
E ×H (1.10)

we notice that the propagation direction of the vector S does not depend on the

sign of ǫ and µ. This implies that for right-handed materials, S and k share the same

direction of propagation, as shown in Fig.1-1(a), while for left-handed substances,

they travel in opposite directions(Fig.1-1(b)). Furthermore, since the phase velocity

vp = ω
|k|

k̂ propagates in the same way as k we can assume that in the left-handed

case the group velocity vg is opposite to the phase velocity, being vg the velocity at

which the energy flux S propagates.

Figure 1-1: Schematic diagram of the vector basis formed by E, H, k and S when the
propagation occurs in a right-handed(a) and in a left-handed media.
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1.5 Refraction at the Boundary Between Right-

Handed and Left-Handed Media

When a ray travels from one medium to another the following boundary conditions

must be satisfied:

Et1 = Et2 , Ht1 = Ht2 (1.11)

ǫ1En1
= ǫ2En2

, µ1Hn1
= µ2Hn2

. (1.12)

These boundary conditions are valid whether or not the two media have the same

right-ness. The first aspect that we note from (1.11) is that the direction of the

tangential components do not depend on the right-ness of the two substances, whereas

(1.12) shows that normal components have opposite signs if the two media have

different right-ness. It is clear that Snell’s law still holds but it must be given a more

general form,

sin θ

sinα
= n1,2 =

p2

p1

∣

∣

∣

√

ǫ2µ2

ǫ1µ1

∣

∣

∣
, (1.13)

where p1 and p2 are two factors that represent the right-ness of the first and

second medium. Figure 1-2 shows by ray diagram formalism Snell law at the interface

between two media where both have n > 0, and the situation where one medium is

right-handed n < 0 and the other is left-handed n < 0. The positive refracted wave

lays in the opposite half plane with respect to the normal of the interface while in

the second circumstance the negative refracted ray lays in the same half space of the

incoming beam.

Fig. 1-3 shows how rays propagate when they travel, first, from a medium with

positive refractive index +n, then, to a second medium which is long d with a negative
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Figure 1-2: Ray diagram of the refraction effect at the interface between two positive
media and a positive and a negative indexed media. Blue arrows indicate the
phase velocity while the red arrows refer to the energy velocity.

refractive index -n, and then again into a medium with +n.

Figure 1-3: Ray diagram of the electromagnetic waves propagation through a negative
refractive index slab having a width d and with a source located at a distance
l from the first interface.

Under the circumstances where the absolute value of the indexes are the same

and only the sign changes we do not observe any reflection because the reflection
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coefficient is one. Such a system is capable of focusing radiation at a point in the

image plane from a point source located at a distance of l < d from the negative

index slab. Basically, this object acts as a “strange” type of lens since the parallel

rays coming from infinity are not focused on one point as in conventional lenses.

1.6 The Concept of “Perfect Lens”

Thanks to the concept of negative refraction it is now possible to introduce the super-

lens, which is a new class of lenses that have performances capabilities far beyond any

conventional lens. Sir John Pendry first proposed the remarkable idea of superlens

in 2000 [13] as an extention of the work started thirty years earlier by Veselago [12].

Pendry suggested that the imaging capabilities of a lens can be greatly improved by

recovering the evanescent waves that quickly decay in conventional materials. He

discovered that this can be accomplished by means of a thin slab made of negative

index materials. Under these circumstances it is possible to beat the Abbe-Rayleigh

diffraction limit which is approximately the same size of the wavelength. In order

to recognize the limitations of conventional lenses we have to look to the Fourier

spectrum of the electric field excited from an infinitesimal electrical dipole

E(r, t) =
∑

σ,kx,ky

Eσ(kx, ky)e
(ikxx+ikzz+ikyy−iωt) (1.14)

where z coincides with the axis of the lens. From Maxwell’s equations we know

that

kz = +

√

ω2

c2
− k2

x − k2
y for

ω2

c2
> k2

x + k2
y. (1.15)

which represents the propagating component of the wave, while
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kz = +i

√

k2
x + k2

y −
ω2

c2
for

ω2

c2
< k2

x + k2
y . (1.16)

which is the evanescent component of the field that dies in the far field zone

and does not contribute to the imaging formation. Pendry demonstrated that under

the condition of ǫ = −1 and µ = −1 the energy is perfectly transmitted in the +z

direction while in the medium it is required that

k′z = −kz = −
√

ω2

c2
− k2

x − k2
y (1.17)

leading to an overall transmission for both TE and TM polarization [13] equal to

T = e−ikzd. (1.18)

From (1.18) it is clear that for waves traveling through a medium with ǫ = −1

and µ = −1 the evanescent components are amplified, leading to an image which

possesses both the contributions of transmitted and evanescent fields. To summarize,

Fig.(1-4) is drawn schematically to illustrate the differences between a conventional

lens and a superlens. Normally, to have good resolution in a conventional lens we can

adjust the aperture which conveys rays with large θ (see Fig.1-4(a)), however, the

image resolution is still limited to the size of the wavelength because the evanescent

components are totally decayed in the far field (Fig.1-4(b)). With the superlens we can

in principle recover the entire spectrum of information of the source, the transmitted

(Fig.1-4(c)) and the evanescent (Fig.1-4(d)) components, the latter being amplified

and not suppressed as in traditional lenses.

Furthermore, a superlens does have a significant difference from a conventional
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Figure 1-4: (a) Image formation due to the contribution of the propagating waves and
evanescent waves respectively in conventional lens (a,b) and superlens (c,d) [1]

lens. Imaging by a traditional lens, as described by Newton’s formula, is one in which

the focal length is an important parameter, and also, where the magnification depends

on the relative distance of an object from the lens (see Fig.1-5(b)) resulting only in a

2D image on the focal plane.

Figure 1-5: Schematics of imaging by a negatively-refractive medium(a) and imaging by
a conventional lens(b).

On the contrary, a negative refractive system can produce a 3D image due to the

mirror-inversion transformation (x, y, z) → (x, y,−βz) where β = abs(neff/n0) [14],

which differs from Newton’s formula (see Fig.1-5(a)). Moreover the conventional

lens imaging has a definite principal axis, whereas the imaging by the superlens has
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translational symmetry in the boundary plane which produces a lack of optical axis,

and in this sense, the latter is closer to imaging by a mirror. To this end the apparent

difference between a superlens and a mirror is that the former produces a real image,

but the latter only produces a virtual image.

Fig.1-6 shows an example of an open cavity realized by assembling together right-

handed and left-handed structures. This structure is very interesting because it shows

that in principle negative refraction makes it possible to achieve an open cavity with-

out reflecting walls.

Figure 1-6: Schematic diagram of light propagation in an open cavity made with negative
and positive refractive media.

1.6.1 Dispersion in Negative Refractive Index Metamaterials

An important point that needs to be mentioned is that the simultaneous negative ǫ

and µ can be realized only when there is frequency dispersion. We will demonstrate

that this is a necessary condition that nature imposes in order to achieve negative

refraction.

If we write the following relation
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W = ǫE2 + µH2 (1.19)

we see that when there is neither frequency dispersion nor absorption we cannot

have ǫ < 0 and µ < 0 since the total energy would be negative. However, when there

is frequency dispersion, we can rewrite the previous expression in the following form,

W =
∂(ǫω)

∂ω
E2 +

∂(µω)

∂ω
H2. (1.20)

In order for the energy W to be positive it is required that,

∂(ǫω)

∂ω
> 0,

∂(µω)

∂ω
> 0. (1.21)

The relations (1.21) do not mean that ǫ and µ cannot be simultaneously negative,

but in order for them to hold their property they must be frequency dependent.

1.7 Application with Metamaterials

1.7.1 The Invisible Cloak

The potential of metamaterial based structures cannot be understood without con-

necting them to some real life application. Recently the most intriguing achievement

that scientists have been trying to pursue is the electromagnetic cloak. Nowadays

the possibility to hide objects at optical wavelength is representing one of the most

important results for military applications. Most probably in the near future the

invisible cloak, which now is only in fiction, could become reality.

One of the most promising way to realize a invisibility is by using the concept of
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transformation optics which basically offers the opportunity for the control of the

electromagnetic waves. A wide variety of conventional devices can be designed by

the transformation optical approach, including beam shifters [15], beam bends [16],

beam splitters [15], focusing and collimating lenses [17], and structures that concen-

trate electromagnetic waves [18]. Within all these properties the most compelling one

is without any doubt that of a medium that can conceal objects from detection by

electromagnetic waves. In the transformation optical approach, one imagines warping

space so as to control the trajectories of light in a desired manner. As an example

of this approach, a cloak can be designed by performing a coordinate transformation

that squeezes the space from within a sphere to within a shell having the same outer

radius.

Figure 1-7: Snapshots of time-dependent, steady-state electric field patterns, with stream
lines [black lines in (a)] indicating the direction of power flow (i.e., the Poynt-
ing vector). The cloak lies in the annular region between the black circles and
surrounds a conducting Cu cylinder at the inner radius. The fields shown are
(a) the simulation of the cloak with the exact material properties, (b) the
experimental measurement of the cloaked conducting cylinder.

Waves do not interact with or scatter from the core because it is simply not

part of the transformed space. The form invariance of Maxwell’s equations implies



1.7. APPLICATION WITH METAMATERIALS 16

that the coordinate transformation can instead be applied to the permittivity and

permeability tensors, yielding the prescription for a medium that will accomplish the

desired functionality. The resulting medium is highly complex, being anisotropic and

with spatial gradients in the components of the permittivity and permeability tensors.

In 2006 Smith et al. [9] proofed for the first time that a cylindrical structure made

with split ring resonators can hide an object placed in its center. The experiment

was performed at microwave wavelength placing the sample inside a parallel plate

waveguide and sensing the phase and amplitude of the propagating field all over the

region embedding the sample. Results are shown in Fig. 1-7. The most important

aspect to highlight is that thank to the transformation optics the electromagnetic

field is not influenced by the cylindrical object but it warps around it keeping the

phase unaltered.

Figure 1-8: The transformation optical design for the ground-plane cloak. The metama-
terial cloak region is embedded in a uniform higher index background with
gradients introduced at the edges to form impedance matching regions. (a)
Photograph of the fabricated metamaterial sample. (b) Metamaterial refrac-
tive index distribution. The coordinate transformation region is shown within
the box outlined in black. (c) Expanded view of the transformation optical
region in which the mesh lines indicate the quasi-conformal mapping. Mea-
sured field mapping (E-field) of the ground, perturbation, and ground-plane
cloaked perturbation. The rays display the wave propagation direction, and
the dashed line indicates the normal of the ground in the case of free space
and that of the ground-plane cloak in the case of the transformed space. (d)
Collimated beam incident on the ground plane. Collimated beam incident on
the ground-plane cloaked perturbation.

Cloaking wise the same group also developed a ground plane cloak which thank
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to the non resonant nature of the constitutive elements shows a very broad band

[19]. The principle is still based on the properties of transformation optics where

a conformal coordinate transformation is applied to Maxwell’s equations to obtain

a spatially distributed set of constitutive parameters that define the cloak. Unlike

the previous case where there is a suppression of the scattering at the cylinder to

air interface, here the metamaterial structure is built in a way that the parameters

space distribution eliminates the backscattering due to the presence of the object

to be hidden and restores the reflected waves in the same way as if the object was

not there. In Fig. 1-8(a) is shown the metamaterial structure while in figure (b)

and (c) are shown respectively the effective parameter distributions and the quasi

conformal mapping obtained from the transformations. In the experimental results

in Fig. 1-8(e) they show that a plane wave impinging the object, which is under the

white bump region, is not affected and it gets reflected as there was no object on the

ground plane(Fig. 1-8(d)).

Figure 1-9: (a) Schematic of Cěrenkov radiation in a conventional natural medium with
positive refractive index, in which the radiation falls in a cone in the forward
direction. (b) Schematic of backward Cěrenkov radiation in a left-handed
medium, showing the reversed cone. (c) Schematics of the phased dipole
array. (d) experimental setup with the metamaterial wedge placed on top
of the phased dipole array and next to it is the picture of the metamaterial
array made with split ring resonators and cut wires.
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1.7.2 Inverse Phenomena in Left-Handed Metamaterials

Beside the above applications that find most of their interests in the military field, the

exotic properties of left handed medium leads to inverse phenomena like negative re-

fraction, inverse Doppler effect, backward Cěrenkov radiation and negative radiation

pressure. Very recently Xi et al. [20,21] proofed unambiguously for the first time the

Cěrenkov radiation at microwave frequencies. The Cěrenkov radiation is generated

when charged particles such as electrons travel through a dielectric medium with a

speed greater than the phase velocity of the light in the medium. Hence electromag-

netic radiation is emitted that falls into a cone fanning out in the forward direction

(see Fig. 1-9(a)). Since the phase velocity in a left-handed medium is negative, i.e.,

opposite to the direction of the energy flow, the cone angle is obtuse and hence the

radiation cone is facing toward the backward direction, as shown in Fig. 1-9(b).

Figure 1-10: (a) Radiation power diagram for the Cěrenkov effect observed at 8.5GHz.
The inset show the experimental setup where the source is in port 1. (b)
Sum of the radiation power in each angle in the negative band (solid line)
and positive band (dashed line).

The radiated power of a fast-moving charged particle at microwave frequency is

very small. In order to improve the radiated power, a phased dipole array was used

to model the charged particle. In fact they showed that this modeling is reasonable

and that the current density of a moving charge can be emulated by the current
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density generated by a phased dipole array. The schematic of such array is illustrated

in Fig. 1-9(c) where a parallel plate waveguide provided with a certain number of

rectangular slots on one of the plate is used to model the fast moving charged particles.

The radiated field couples then with a metamaterial wedge placed at the exit of the

slots (see Fig. 1-9(d)). The metamaterials structure is realized by a periodic array

of resonant elements and cut wires deposited on a dielectric substrate. The inverse

Cěrenkov effect is expected to take place in the region where the metamaterial shows

a negative refractive index, while the conventional Cěrenkov radiation happens when

n > 0. For the above metamaterial the measured effective refractive index is positive

in the range [8.1 − 9.5]GHz while being is negative in the range [11 − 14]GHz.

In Fig. 1-10(a) is shown that radiated power measured at f = 8.5GHz exits the

metamaterial wedge at the negative angles resulting in a backward Cěrenkov radia-

tion. In Fig. 1-10(b) are plotted the sums of radiated powers over the corresponding

frequency ranges measured at each angle for the case of a forward and backward ra-

diation. These results unambiguously proof the inverse Cěrenkov effect in negative

index materials.
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CHAPTER 2

Photonic Crystals

2.1 Introduction

Before the advent of photonic crystals a number of phenomena in solid state physics

were analyzed borrowing the formalism from the field of optics and electromagnetism.

By contrast, the opposite situation has rarely occurred, and only on few occasions have

optics and electromagnetism borrowed concepts and theoretical method from solid

state physics. In the same way as the periodicity of solid state crystals determines

the energy bands and the conduction properties of electrons, the periodical structuring

of photonic materials at wavelength scale has turned out to be one of the most viable

approaches toward the control of the energies and the fluxes of photons occurring in

these materials. The analogy between electronic waves and electromagnetic waves

is a mere consequence of the formal relation between the Schrödinger’s equation for

electronic wavefunctions and Maxwell’s equations for electromagnetic waves. Indeed,

leaving aside the spins of the particles, a harmonic electromagnetic wave in a dielectric

lossless medium satisfies Eq. 2.2, which formally is analogous to the equation ruling

the wave function for an electron with massm in a potential V (Eq. 2.1):

21
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∇× [∇× E(r)] =
ω

c2
ǫr(r)E(r) (2.1)

∇2ψ(r) = −2m

~
(E − V(r))ψ(r) (2.2)

The spin difference between the photons, which are bosons, and electrons, which

are fermions, results in different statistics for the energy state populations, and also

explains that these two equations are of a different nature: the equation for photons

is vectorial whereas the equation for electrons is scalar. What is important to note in

order to make the comparison between the two systems more straightforward is that,

by comparing the above two equations, it turns out that the dielectric permittivity

ǫr(r) is for photons the analogue of the potential V (r) for electrons. Furthermore, in

analogy with the electronic band gaps of semiconductors, it then becomes intuitive

that periodic variation of ǫr(r) may result in the formation of photonic band gaps.

This means that for a certain range of wavelength light beam incident on this material

will be totally reflected, regardless the polarization and direction of propagation.

2.2 Photonic Crystals Properties

Photonic crystals are artificial structures assembled by arranging a unit cell according

to a certain periodic or quasi-periodic rule. For this dissertation we will only consider

periodic photonic crystals made out of only dielectrics. A PC is characterized by a

relative dielectric function ǫ(r) assumed to be real and periodic along all the three

directions of space.

Fig. 2-1 shows the three possible types of periodic PCs, one-dimensional, two

dimensional and three dimensional photonic crystals, depending on the properties of

the dielectric function ǫ(r).
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Figure 2-1: Schematic of a 1D, 2D and 3D photonic crystal. The different color in each
drawing indicate different dielectric materials.

When studying the electromagnetic properties of these periodic structures we

assume the following approximation for the dielectric materials

1. the fields strength are small enough so that we are in the linear regime, and

second order effects can be neglected,

2. the material is assumed macroscopic and isotropic so that E(r, ω) = ǫ(r, ω)H(r, ω)

3. the material is not dispersive in frequency, ǫ(r, ω) = ǫ(r)

4. ǫ(r) is considered purely real and positive.

Assuming all this approximation to be valid we can write the following constitutive

relation for the materials,

D(r) = ǫ0ǫr(r)D(r) (2.3)

B(r) = µ0H(r) (2.4)

where µ0 is the vacuum permeability. µ(r) was omitted because for most of the

materials in use the corresponding value is very close to unity. The electric field E and

the magnetic field H satisfy the Maxwell’s equations [22] which here are represented

in the symbolic notation,
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∇× E(r)− iωµ0H(r) = 0 (2.5)

∇× H(r) + iωǫ0ǫr(r)E(r) = 0 (2.6)

∇ · E(r) = 0 (2.7)

∇ · H(r) = 0. (2.8)

We assume for the equations (2.5-2.8) harmonic solutions of the form,

H(r, t) = H(r)e−iωt, E(r, t) = E(r)e−iωt. (2.9)

Inserting (2.9) in (2.5-2.8) we have the fundamental two equations,

∇×
[

1

ǫ(r)
∇×H(r)

]

=
ω2

c2
H(r) (2.10)

with c = 1/
√
ǫ0µ0 and ω/c = k0 = 2π/λ0, where c, k0 and λ0 represent the speed

of light, the wave number, and the wavelength of light in vacuum respectively.

Eq. (2.10) is called the master equation, and together with equations (2.7) and

(2.8), it is possible to retrieve all the information about the magnetic field H, whereas

the electric field E is obtained from Eq. (2.6). The equation (2.10) can be written as

an eigenvalue problem as follows,

Θ̂H(r) =
(ω

c

)2

H(r) (2.11)

where



2.3. SCALING PROPERTIES OF THE MAXWELL EQUATIONS 25

Θ̂H(r) , ∇×
[

1

ǫ(r)
∇×H(r)

]

(2.12)

is an Hermitian operator [22].

2.3 Scaling Properties of the Maxwell Equations

A very interesting feature of Maxwell’s equations is that they are scale invariant.

This means that the same solution is valid in presence of a contraction or expansion

of all the distances. Lets consider for example an eigenmode H(r) of frequency ω

with a dielectric function ǫ(r) and recall the master equation (2.10)

∇×
[

1

ǫ(r)
∇× H(r)

]

=
ω2

c2
H(r). (2.13)

Suppose we want to investigate about the harmonic modes for a dielectric function

ǫ′(r) = ǫ(r/s), which represent a compressed version of the original function and where

s is a scale parameter. If we change the variable in (2.13), using r′ = sr and ∇′ = ∇/s

we get

s∇′ ×
[

1

ǫ(r’/s)
s∇′ × H(r’/s)

]

=
( ω

cs

)2

H(r’/s). (2.14)

But ǫ(r’/s) is none other than ǫ′(r’) which gives the following expression for the

master equation with a compressed version of the dielectric function:

∇′ ×
[

1

ǫ′(r’)
∇′ × H(r’/s)

]

=
( ω

cs

)2

H(r/s). (2.15)
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This is again the master equation but with a mode profile H′(r′) and frequency

ω′ = ω/s. The essence of this new form of the master equation is that the new mode

profile and corresponding frequency can be obtained by simply rescaling the old mode

profile at its frequency. This result is of a considerable practical importance, where the

solution of a problem at a given wavelength provides the solution at all other scales.

In fact, often due to manufacturing limitations is not possible to study the optical

properties of certain structures at the desired wavelength, but considering (2.15) it

is possible to test the same geometry at larger scales, for example, at microwave

wavelengths.

2.4 Photonic Band Structure

From solid state theory [23] it is well known that the propagation of electronic waves

in periodic crystals obeys the Bloch theorem. The same is true for electromagnetic

waves propagating in periodic photonic crystals. The mode of a three-dimensional

periodic system are Bloch states that can be labeled by a Bloch wave vector k =

k1b1 + k2b2 + k3b3 where k lies in the Brillouin zone (BZ). Each value of the wave

vector k inside the Brillouin zone identifies an eigenstate Θ̂ with frequency ω(k) and

an eigenvector of the form,

Hk(r) = eik·ruk(r), (2.16)

where uk(r) is a periodic function on the lattice: uk(r) = uk(r + R) for all lattice

vectors R. If we now insert the Bloch state (2.16) in to the master equation (2.10)

we have,
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Θ̂Hk(r) =

(

ω(k)

c

)2

Hk(r) (2.17)

∇× 1

ǫ(r)
∇× eik·ruk(r) =

(

ω(k)

c

)2

eik·ruk(r) (2.18)

(ik + ∇) × 1

ǫ(r)
(ik + ∇) × uk(r) =

(

ω(k)

c

)2

uk(r) (2.19)

Θ̂uk(r) =

(

ω(k)

c

)2

uk(r) (2.20)

where we have defined a new Hermitian operator that depends on k:

Θ̂ , (ik + ∇) × 1

ǫ(r)
(ik + ∇) × . (2.21)

From the eigenvalue problem in the Eq.(2.20) we can calculate the function u

and the mode profile subject to the transversality condition (ik + ∇) · uk = 0 and

to the periodicity condition uk(r) = uk(r + R). Thanks to the periodic boundary

conditions we can limit the problem to the single unit cell of the PC. This will lead

to a discrete spectrum of eigenvalue [22]. From the solution of this problem we get

the modes supported by the PC, they are a family of continuous functions ωn(k),

indexed in order of increasing frequency by the band number n and ωn(k) is called

the band structure of the photonic crystal. From the information contained in the

band structure we can predict the propagation of light inside a PC for every k, as will

be shown in the next paragraphs. Fig.2-3(a) shows a schematic of a 2D PC consisting

of dielectric rods embedded in air arranged in a square lattice array, whereas Fig.

2-3(b) shows the corresponding band structures plotted over the irreducible Brillouin

zone for TE and TM polarization.



2.5. WAVE VECTOR DIAGRAM 28

Figure 2-2: 3D schematic of a square photonic crystal realized with dielectric rod in air,
(b) corresponding photonic band structure for the TE and TM mode.

2.5 Wave Vector Diagram

The next step in the study on the propagation of light inside photonic crystals is the

analysis of the wave vector diagram [24]. The diagram is powerful and straightfor-

ward method of calculating the direction of the refracted waves inside PCs. In this

frame we will refer mainly to 2D systems, and in some case, to 1D photonic crystals

because they represent the main types of lattices that have been investigated for this

thesis. The most important part of the wave vector diagram are the equifrequency

surfaces (EFSs) that apply to the frequency of operation. For the 2D case the surface

reduces to a contour (EFC). These contours consist of all allowed propagation modes

in wave vector space that exist in the PC system for a certain frequency. As already

noted in the previous section all of the information about the supported modes are

contained in Eq.(2.20). One, or a multiple set of contours can be relevant for a cer-

tain frequency, depending on the number of bands corresponding to the frequency

of interest. For the sake of simplicity we focus the analysis on case with only one

band corresponding to the frequency of interest. Figure 2-3(a) represents a three

dimensional plot of the function ωn(k) for a triangular lattice over the first Brillouin

zone. Each different surface represents the locus of all the allowed states for single

band number n. Whereas Fig.2-3(b) shows the equifrequency contours in the (kx,ky)
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space corresponding to the first band of the function plotted in Fig.2-3(a).

Figure 2-3: (a)Band surface for a photonic crystal with an triangular unit cell, (b) cor-
responding equifrequency contour limited to the first band only.

The following steps are use to construct the wave vector diagram:

• draw the EFC in the repeated zone scheme

• draw a line perpendicular to the interface that represents the conservation of

the tangential component k// = ω
c

sin θinc, where θinc is the angle respective to

the normal of the air-PC interface. This represent the construction line

• record all intersections between the construction line and the EFC

• fold the intersections which fall outside the first BZ, back to the first BZ, by

adding an appropriate reciprocal lattice vector.

• record all the resulting wave vector values in the first BZ, including, the original

intersections in the first BZ, and those that were folded back from the higher

zones∗.

∗The reason behind the folding process relates to the nature of the Bloch wave [25]. In fact it
can be shown that a Bloch wave that correspond to two wave vectors k1 and k2 are essentially
equivalent if k2 − k1 = G, with G being a reciprocal lattice vector. For consistency the Bloch wave
is expressed in terms of the wave vector k (called fundamental wave vector) lying in the first BZ
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• determine the actual direction of propagation of the refracted wave by deci-

phering the sign of the slope of the frequency band under investigation which

is given by k · ∇ω

The knowledge of the sign of the slope is of fundamental importance in determin-

ing the direction of propagation of the energy and can be retrieved from the direction

of the energy velocity ve. In fact, it can be proved that the ve is equal to the group

velocity vg [24]. Since the group velocity is given by ∇kω this implies that vg is

normal to the EFS at certain point in k space, and points toward increasing frequen-

cies. Moreover, due to the causality constraint, amongst all the possible directions

for the refracted signals, we select only that points away from the source. It should

be noted, that different wave vector intersections that correspond to the same funda-

mental wave vector, yield only to one refracted beam, and for this reason are called

“equivalent”, whereas different wave vector points that result in the first zone after

the folding process, give rise to different beams. Additionally refracted beams can be

categorized according to their order. A beam corresponding to an intersection lying

in the first BZ, which did not need folding, is a zeroth-order beam called a “trans-

mitted” beam, while beams stemming from intersections in the higher zones, which

were subsequently folded back to the first zone, are classified as higher-order beams.

Figure 2-4: (a) FDTD simulation of a plane wave propagating inside a photonic crystals
and experiencing negative refraction. (b) Band structure corresponding to
the PC analyzed in (a), the red dashed line indicate the frequency at which
the plane wave propagates.
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In figure 2-4(a) we see a Finite Difference Time Domain (FDTD) [26] simulation of

the refraction phenomena occurring in a PC made of air holes embedded in a dielectric

matrix, and arranged in a triangular lattice. In Fig. 2-4(b) the corresponding PC

band structure is shown, where the red dashed line indicates the normalized frequency

of the propagating signal at f =0.58. The incident beam (blue arrow) comes with

θinc = 30◦ with respect to the normal of the air-PC interface, while, as it is evident

from Fig.2-4(a) the transmitted beam (indicated by a red arrow), seems to bend the

“wrong” way. The origin of this apparently non-regular behavior is in the diffractive

nature of photonic crystals and can be explained by the use of the wave vector diagram

shown in Fig. 2-5(a). The green dashed line represents the construction line. It

intersects points A and B of the EFC in the first zone (gray hexagon) and also

intersects points A2, B2, A3 and B3 of the EFCs in the higher-order zones. According

to the steps outlined above, we fold points A2, B2, A3 and B3 back to the first zone by

adding Gn = nG0y(where n=−2 for points A2 and B2 and n= +2 for A3 and B3). It

is important to note that they all fold back to points A and B. Since the corresponding

band has a negative slope, (see Fig. 2-4(b)), the wave vector corresponding to point A

has energy velocity ve pointing away from the source, while point B has ve pointing

toward the source implying that only point A contributes to a propagating beam

which is a transmitting beam (indicated with a black arrow in Fig.2-5(a)). This

phenomenon is clear evidence of the negative refraction effect occurring in the PC

structure as the transmitted wave has the fundamental wave vector and the energy

velocity antiparallel: ve · k < 0. The negativeness of the propagating wave is in the

left-handed nature of the vector basis formed by E, H and k.
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Figure 2-5: (a)EFC plotted in the first and repeated Brillouin zones at f =0.58 for a TM
mode (H field parallel to the rod axis) and the corresponding (b) ray diagram
of the diffraction in the corresponding photonic crystal made of air holes (red
colored) arranged in a triangular array and embedded in dielectric having
ǫr = 12.96 (yellow colored).

2.6 Diffraction Phenomena: from Electronic Crys-

tals to Photonic Crystals

As already mentioned earlier there are a variety of phenomena present in Electronic

crystal that have been proved also in the case of PC. One of this is the Pendellösung

effect, which is a relatively well known effect of Dynamical Diffraction Theory (DDT),

a rigorous formalism accounting for multiple scattering effects that are especially

important in Xray, electron and neutron diffraction from perfect crystals [27]. Since

the original formulation of the diffraction theory from Ewald [28], the Pendellösung

effect was predicted as a periodic exchange of energy between interfering wave-fields.

The German term comes from the formal analogy between the mechanical system

composed by coupled pendula and the optical problem, where many waves contribute

to the optical field. In this formal analogy, pendulum is the counterpart of the

wave, whereas the temporal dependence of the mechanical problem corresponds to the

spatial dependence in the considered optical problem [29]. The requirement of high
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quality crystals explains why the first experimental observation of the Pendellösung

effect has been obtained in 1959 only in X-ray measurements [30], and some years later

in neutron diffraction [31, 32]. A decade ago using the coherence of third generation

synchrotron beams, Pendellösung fringes produced by a plane wave exiting a Si crystal

have been recorded [33]. Only recently the Pendellösung effect has been investigated

theoretically also in 2D photonic crystals [34,35], using both analytical and numerical

methods as a function of the PC contrast index, beam incident angle, and light

polarization. Moreover, this study has been extended to opal 3D photonic crystals,

where the dependence of diffraction intensity as a function of the layers number

has been investigated using a scattering matrix approach [36]. On the experimental

side the properties of microwave diffraction in periodic structures have been reported

in literature by measuring the pattern of backscattered waves in two dimensional

artificial dielectric media [37]. Recently, the Pendellösung effect has been detected

also in the optical regime in volume holographic gratings, observing the oscillatory

behavior of the angular selectivity of the diffracted light [38].

2.6.1 The Pendellösung Effect in Photonic Crystals

The Pendellösung effect in PCs can be understood as a beating phenomenon due to

the phase modulation between coexisting plane wave components, propagating in the

same direction. The coexistence is possible because such wavevectors are associated

to two adjacent bands that are overlapped, for a given frequency, in correspondence

of suitably chosen PC parameters.

In our case the 2D PC consists of dielectric cylinders in air (dielectric permit-

tivity ǫr = 8.6) arranged in a square geometry and having r/a = 0.255, where r is

the cylinder radius and a is the lattice constant. If TE polarization (electric field

parallel to the rods axis) is considered, an overlap occurs between the forth and the

fifth mode for a normalized frequency ωn = fa/c = a/λ = 0.722, as shown in Fig. 1.

Moreover, the crystal orientation is fixed such that the normal at its surface is along
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Figure 2-6: The band structure of the square-lattice PC for the TE polarization. The
red line represents the normalized frequency ωn = 0.722 at which the Pen-
dellösung effect takes place

the XM direction. Hence all possible wavevectors excited into the PC will have the

same tangential component lying on XM. The Pendellösung phenomenon is analyzed

in this context for an incident wavevector that satisfies the Bragg law [34,35]. In Fig.

2-7 we show in the reciprocal space the first Brillouin zone and the corresponding

symmetry points for the square lattice PC under study. Considering the reciprocal

lattice vector that enforces the momentum conservation oriented along ΓX in the

first Brillouin zone, the Bragg law is fulfilled when the projection of the incident

wavevector coincides with ΓX, so that kh is the diffracted wavevector whereas ki is

the incident one. Using the dispersion surfaces (or EFSs), that represent the loci of

propagating wavevectors for a fixed frequency, we are then able to evaluate the rele-

vant parameters of the beating effect. The wavevectors inside the PC are determined

by the intersection between each EFS and the XM direction. Amongst the different

intersections, only wavevectors having group velocity oriented inside the crystal - 2-7

in opposite direction respect to the external normal to the incident surface - will be

effectively excited. Consider for instance the contribution of the incident wave: there

is an interference between two excited components, with the respective wavevectors
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pointing in two different directions. This produces a spatial periodic modulation

along the wavevectors difference vector ∆k. The modulation distance in the real

space along the PC normal direction is therefore Λ0 = 2π/∆k.

Figure 2-7: The reciprocal space with the first Brillouin zone (dotted line) and symmetry
points for the square-lattice PC. The contours for the normalized frequency
ωn = 0.722 are plotted. Arrows indicate the directions of group velocity vg,
whereas n̂ shows the normal to the incident surface.

The same effect occurs also for the diffracted wave, giving rise to a spatial mod-

ulation with the same length but 180◦ out-of-phase in respect to the previous case.

As a consequence of the Pendellösung effect, the intensity I at the exit surface is

harmonically modulated as a function of the thickness t [34]. When t is an even

multiple of half the Pendellösung distance, the beam at the exit surface is parallel to

the incident beam, forming a positive angle respect to the PC normal. On the other

hand, when t is an odd multiple of Λ0 the beam at the exit surface is completely

directed along the Bragg diffracted direction, forming a negative angle respect to the

PC normal. Denoting by + and - the two possible directions at the exit surface, this

is summarized by:

t = 2m
Λ0

2
⇒ max(I+) (2.22)

t = (2m− 1)
Λ0

2
⇒ max(I−) (2.23)
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where m = 1,2, . . .. Forcing the Pendellösung distance Λ0 be an even number

of the lattice constant a, Eqs. (2.22) and (2.23) holds for any number n of PC rows.

In particular, Λ0 = 4a ensures that the intensity maxima of the exit waves changes

periodically if n is even, and that the energy beam equally splits between positive and

negative direction if n is odd. From the EFSs analysis, assuming a TE polarization,

we found that an angle θi = 43.8◦ and a normalized frequency ωn = 0.722 for the

incident wave satisfy both the Bragg law and the peculiar condition Λ0 = 4a.

2.6.2 Experimental Observation of the Pendellösung Effect

at

Microwave Frequencies

Experimentally the Pendellösung effect was never studied before at microwave fre-

quencies, and moreover no one has never measured the electric field distribution of

the transmitted field at the exit of the crystal and the field distribution inside the PC.

This work represents part of this PhD research activity and has also been published

on an international journal [39].

Figure 2-8: Schematics of the basic setup used to perform measurements at microwave
frequencies.

In figure 2-8 is shown the basic experimental setup used to perform measurements
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at microwave frequencies. This schematics is very general and is suitable for the study

of every type of planar structure by mean of scattering parameters characterization

[40]. Basically, the sample is treated as a two-ports system and is placed inside

the parallel plates waveguide and is illuminated at one port by a monopole antenna

connected to a Vector Network Analyzer (VNA) whereas the transmitted signal is

measured ad the exit port by a second antenna that moves along the x -y plane thank

to an automatic stage controlled by a computer. The VNA performs the measurement

over a range of frequencies then elaborates the measure and provides the amplitude

and phase of the signal at each frequency.

The experimental results are obtained on 2D PCs having a different number of

rows inserted in a waveguide. First, the electromagnetic wave transmitted by the

periodic structure is measured at the exit of the PC for different crystal thickness

and its spatial distribution is shown. Then, the periodic modulation of the intensity

of the diffracted waves with respect to n is reported. Finally, a comparison along

selected directions inside the photonic crystal between the electric field distribution

measured and simulated using a Finite Difference Time Domain (FDTD) method is

presented. Measurements are carried out by placing alumina rods with nominal per-

mittivity ǫr = 8.6, radius r = 0.4cm and height h = 1cm in a square geometry with

r/a = 0.255 (a = 1.57cm) sandwiched in an aluminum parallel-plate waveguide ter-

minated with microwave absorbers (see Fig. 2-9). Since the loss tangent of alumina

is extremely small at the frequency relevant for this work (tanδ < 10.4), dielectric

losses can be neglected. Due to the presence of metallic plates acting as mirrors,

current lines that are perpendicular to the plates can be considered as infinitely long,

as stated by the well-known mirror theorem. For the same reason the electric fields

produced by these currents are constant along the same direction and thus the whole

system acts as a 2D structure.

The microwave photonic crystal is built in the shape of a 38.5cm wide slab (25
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Figure 2-9: Pictures of the open parallel plate waveguide with the photonic crystal and
the guiding structure made of absorbers used to generate a directive beam.

rod columns), with a thickness that can be varied adding or removing rows. A dipole

antenna is used as source, oriented to produce an electric field parallel to the rods

axis and operating at the frequency of 13.784GHz, in order to reproduce the same

normalized frequency a/ of the theoretical model. Due to the waveguide character-

istics, the TEM mode only can propagate up to 15GHz. The maps of the real part

of the electric field are collected by using a HP8720C Vector Network Analyzer and

another dipole antenna as a detector, that moves along the waveguide plane using an

x -y step motor. The thickness dependence has been investigated based on the obser-

vation of the beams at the exit of the crystal-air interface. We focused our analysis

on structures with a number of rows n ranging from 1 to 10.

Figure 2-10 shows the scheme of the measurement. Particular attention has been

paid to the source characteristics. The incident beam has to be as collimated and

directive as possible, ideally consisting of a single wavevector only. To realize the

experiment, we inserted in the parallel plate waveguide two parallel microwave ab-

sorber stripes, having the role to “guide” the electromagnetic wave. The channel is

50cm long and 10cm wide, with tapered sidewalls in order to ensure a good matching

condition at the air-to-absorber interface. The field generated by the dipole source

is centered into the absorbers channel. To limit the diffraction at the exit of the

waveguide, a phenomenon that strongly reduces the beam directivity, the channel
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Figure 2-10: Schematic layout of the experiment carried out on the square-lattice PC
slab having 25 rods columns and a number of rows n varying from 10 to 1.
The dashed line box represents the scanned area during the measurements

section closer to the PC interface has been shaped into a triangular profile. All these

solutions provide a beam source having transmission properties close to ideal ones.

The incoming beam is then oriented at 43.8◦ respect to the normal to the PC in-

terface, whereas the two arrows exiting the surface in both the forward diffracted

and diffracted directions represent the signals transmitted through the wave guide

and the crystal. Furthermore, the angle that describes the outcoming waves is the

same as the source. In the image plane, a tiny dipole antenna (radius ∼ 0.6mm)

scans an area 20cm long and 40cm wide contiguous to the crystal-air interface, in

steps of 4mm in both x and y direction. As said before, for a fixed frequency and

source orientation the intensities I+ and I− reach a maximum or a minimum value

depending on the difference between the wavevectors inside the crystal and, in turn,

on the crystal thickness.

In Figs.2-12(a)-(e) the real part of the electric field experimentally detected in

different crystal configurations is mapped in the image plane, using a normalized

scale. In Fig.2-12 (a) the spatial distribution is shown for the case n = 10. The

maps for the other cases of crystals with an even number of rows (n = 8,6,4, 2) are

presented in Figs.2-12(b), (c), (d), (e), respectively. Starting the data analysis from
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Figure 2-11: (a)-(e): mapping of the measured electric field (real part) in a normalized
scale for even n; (f)-(j): mapping of the measured electric field (real part)
in a normalized scale for odd n

the crystal consisting of 10 rows, that is an odd multiple of Λ0/2, in this case the

beam, as expected, is fully transmitted in the diffracted direction. On the contrary,

when the PC consists of 8 rows, the beam exits its surface in the forward diffracted

direction (Fig.2-12(b)). By reducing the thickness down to 2 rows for any even n,

the transmitted beam alternatively bends from the negative to the positive direction,

as shown in Figs.2-12(c)-(e). Other beams related to higher order of diffraction are

negligible. Measurements clearly show therefore that for an even number of rows the

involved energy is almost entirely concentrated along one exit direction only. It is

also clear from the images that the transmitted field propagates along regular and

periodic equiphase planes, in agreement with numerical simulations. Let us now

analyze the experimental results for crystals having an odd number of rows. In this

case, according to the periodical modulation predicted for the field intensity at the

exit surface, the thickness is such that at the crystal-air interface the transmitted

energy is equally divided in both positive and negative directions. This is shown in

Fig.2-12(f)-(j): the electromagnetic beam in the image plane actually splits in two

rays having approximately the same intensity, with equiphase planes clearly evident
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in both directions. It is worth noting that the case with n = 1 (Fig.2-12(j)) reduces

to the well known Bragg grating. The fundamental feature of the Pendellösung effect

is the spatial periodic modulation of the transmitted field amplitude with the crystal

thickness.

Figure 2-12: The measured electric field intensity ratio I+/I− for all the crystal con-
figurations considered. The case of 10 rows corresponds to the maximum
thickness t = (10a + 2r) = 16.4cm.

We then compared the electric field maximum intensity measured along the two

different (positive and negative) transmitted directions as a function of the photonic

crystal row number n (thickness). As shown in the Fig.2-12 using a semi-log scale,

the intensity ratio I+/I− changes periodically, being approximately equal to 1 for

any odd n, and exhibiting pronounced maxima and minima alternatively for any

even n. We also evaluated the electromagnetic field distribution inside the PC slab.

FDTD simulations are performed considering a plane monochromatic incident wave

having a rectangular transverse profile. The propagation in the slab is of course

well different from that in free-space since Bloch modes will be excited and therefore

a strong modulation of the electromagnetic field is expected. In particular, in the

Pendellösung phenomenon, the positively and negatively refracted components of

the incident wave interfere each other inside the crystal and give rise to a periodic

exchange of energy. This translates in a spatial modulation of the field intensity,

as it can be clearly seen when the dielectric contrast is not very high [35]. In the
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case discussed here the strong Bloch modulation makes the visualization of the wave

pattern quite difficult. Moreover, when the contrast is high, the intensity maxima

inside the rods mask the distribution in the outside region. Therefore, for the sake of

clarity, we have suppressed the field inside the dielectrics. Results are shown in Fig.

2-13(a). It is worth mentioning that the spatial modulation observed in the crystal

does not affect the energy direction, which remains normal to the PhC interface. To

compare the numerical simulations with experimental data we have then measured

the internal field along selected directions normal to the PhC interface. Particular

attention has been paid to ensure that the detector antenna moves perfectly parallel

to the dielectric rods.

Figure 2-13: (a) FDTD simulation of the propagation pattern inside a crystal consisting
of 10 rows of the 13.784GHz plane wave modulated by a rectangular profile
and incident at an angle of 43.8◦ across the XM interface; (b) and (c):
electric field intensity distribution (blue dashed lines) along line 1 and 2
respectively compared with the experimental results (red solid lines)

Figures 2-13(b) and 2-13(c) shows the simulated longitudinal profile of the field

intensity along two different lines, (1) and (2) respectively, and the corresponding

experimental results properly rescaled. In spite of the strong field modulation, the

presence of peaks and valleys centered in different positions along the PhC normal

direction and corresponding to different minima and maxima in the wave energy

on the two longitudinal lines is evident, as expected by the theory. Besides that,
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the decrease in the intensity as far as the electromagnetic wave propagates inside the

crystal reflects the energy radiated from the finite-size PhC. This can be also observed

in Fig. 2-13(a).

2.6.3 Application: Polarizing Beam Splitter

In Eqs.(2.22) and (2.23) it was shown that the energy at the exit of the PC can

be periodically modulated by varying the crystal thickness t which is a function of

the Pendellösung length Λ0. Given a certain crystal geometry, Λ0 is a function of the

polarization, of the normalized frequency and the PC filling ratio r/a. We can exploit

this properties in order to realize a polarizing beam splitter [35]. In fact since Λ0 is

different for TE and TM polarization if we force the following rule for the thickness

t = 2m
Λ0TE

2
= (2m− 1)

Λ0TM

2
(2.24)

we obtain a behavior where the TE wave is positively refracted while the TM wave

is negatively refracted. In figure2-14 are shown the FDTD simulation for both the

TE(a) and TM(b) mode. The simulations are performed at the normalized frequency

ωn = 0.413 on a PC made of dielectric rods arranged in a square geometry with a

filling ratio r/a = 0.195 while the incoming beam impinges the crystal at 20.6◦.

Figure 2-14: FDTD simulation for TM (a) and TE polarization (b). The incident wave
(ω = 0.413) has a Gaussian profile impinges at an angle 20.6◦ over a PC
square lattice of air holes in silicon with r/a=0.195.



CHAPTER 3

Superlensing in Photonic Crystals

3.1 Introduction

In the second chapter we introduced the concept of John Pendry’s superlens, however,

we did not describe how such a structure could be created in practice. The properties

of photonic crystals make it possible to achieve an arbitrary refractive index for the

control and the propagation of light [14]. In fact, as shown in the previous sections,

by exploiting the diffraction properties of PCs for a fixed frequency of operation, we

can design the shape of the equifrequency surface in order to get the desired angle of

refraction, and also achieve negative refraction. The superlensing properties of PCs

have been studied mostly for the case of 2D photonic crystals, whereas, few efforts

have been made to that of 1D PCs. In the following chapter of this dissertation we

will outline the imaging concepts behind 2D PCs, and then focus our attention to

how this can be achieved in 1D structures.

3.2 Superlensing in 2D Photonic Crystals

To our knowledge, negative refraction in 2D PCs generally occurs under two condi-

tions. The first, as proposed by Notomi [14] is when the EFC of the PC is rounded,

causing its radius to shrink as the frequency nears to the band gap. This is common

for frequencies above the first band located near the Brillouin-zone center ( Γ point),

44
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where the wave vector and the group velocity are antiparallel. The second condition,

lies in frequencies where the EFC is hyperbolic-like, and the normal components of

wave vector and group velocity are parallel, which usually occurs near a Brillouin-zone

corner farthest from the center ( Γ point) [41]. The main differences between these

two approaches have been studied extensively, [42, 43] and here we will highlight the

most important aspects.
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Figure 3-1: Calculated photonic band structures for (a) square 2D PC with air-holes of
radius r = 0.35a , in a dielectric matrix with ǫ = 12 , and (b) triangular 2D
PC with air-holes of radius r = 0.4a , in a dielectric matrix with ǫ = 12.96 .
Insets: equifrequency contours for (a) ω1 = 0.192 and (b) ω2 = 0.305.

Figure 3-1 are represents the shape of the band structure for a square 2D PC

with air-holes in a dielectric matrix (Fig. 3-1(a)), as well as that for a triangular 2D

PC with air-holes in a dielectric matrix (Fig. 3-1(b)). First, let’s investigate how to

achieve negative refraction-like behavior in the case where the 2D PC is square. From

figure 3-1 we see that in the first band, which for convention we can label as the 0th

band, the frequency surface has a convex shape in the vicinity of the M point, and

for this reason the group velocities point inward. Under this condition, when a PC is

oriented with the normal to the surface along the ΓM direction, only one mode will

be excited when an incoming plane wave illuminates the structure (see red bold arrow



3.2. SUPERLENSING IN 2D PHOTONIC CRYSTALS 46

in Fig.3-2), and in this case we have realized negative refraction. Most importantly,

it is necessary to point out that we have achieved negative refraction without having

negative group velocity, since for this band k · ∂ω/∂k > 0.

Figure 3-2: Negatively refracted beam constructed from the wave vector diagram method.
The bold arrow indicate the group velocity direction, while the thin arrow
stand for the phase velocity direction. The gray polygon is the Brillouin zone
while the black lines indicate the boundary of the irreducible Brillouin zone.

Figure 3-3 shows a numerical simulation (based on the FDTD method) of the

imaging capabilities of a photonic crystal slab made of air holes embedded in a di-

electric arranged in a square lattice geometry.

Figure 3-3: FDTD simulation of the real part of the magnetic field obtained performing
the point imaging on a triangular photonic crystal slab made of air holes
embedded in dielectric matrix at the normalized frequency ω = 0.192 under
TE polarization(H field parallel to the holes axis). The radius of the hole is
r = 0.35a while the relative dielectric constant of the matrix is ǫr = 12
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Now, if we focus our attention to the second band of the photonic band structure

in figure 3-1(b) we see that the concavity is negative, which is the condition where

negative group velocity can be achieved. Moreover, if we choose a frequency where

the EFC of the PC is circular, the electromagnetic properties of the crystal can be

assimilated to that of a homogeneous medium [14, 24]. In particular, we choose the

frequency at which the frequency contour of the PC matches with that of the air,

which for the case that we are considering is at ω = 0.305, indicated in Fig.3-1(b)

with ω2. From the analysis of the wave vector diagram in Fig.3-4 it can be seen that

the only intersection of the construction line (green dashed line) with the EFC of the

PCs (blu circle) originating an allowed propagating mode in the structure, is in point

B. In fact because of the negative concavity of the band structure, and because of

the causality requirement this is the only intersection that gives rise to a plane wave

pointing away from the source (indicated with a bold blue arrow in Fig.3-4). The

phase velocity (thin blue arrow) and group velocity (bold blue arrow) of the plane

wave are antiparallel leading to the condition of negative refraction, k · ∂ω/∂k 6 0.

Figure 3-4: Negatively refracted beam constructed from the wave vector diagram method.
The bold arrow indicate the group velocity direction, the thin arrow stand
for the phase velocity direction, the red dashed circle is the air EFC whereas
the blue circle indicates the crystal EFC. The gray polygon is the Brillouin
zone while the black lines indicate the boundary of the irreducible Brillouin
zone.

In figure 3-5 is shown the real part of the electric field (TE mode) for a point
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imaging FDTD simulation performed on a nine row extended PC. There is a clear

difference with this figure the case shown in Fig.3-3, which is in the way the field

propagates inside the crystals. In the case of Fig. 3-3 the distribution is more intense

in the direction perpendicular to the PC. In fact, there is a channel of propagation

perpendicular to the slab surface (ΓM direction), which is evidence the anisotropic

properties of the crystal EFC. On the other hand, the field distribution in the hexag-

onal crystal in figure 3-5 clearly shows that focusing first occurs inside of the slab and

then a second focusing occurs outside the slab, that in turn, forms the image. This

behavior corresponds to that of the Pendry superlens mentioned earlier, where the

field propagation can be described in terms of a ray diagram approach by virtue of

the isotropic properties of the photonic crystal EFC.

Figure 3-5: FDTD simulation of the real part of the electric field obtained performing
the point imaging on a triangular photonic crystal slab made of air holes
embedded in dielectric matrix at the normalized frequency ω = 0.305 under
TE polarization(E field parallel to the holes axis). The radius of the hole is
r = 0.4a while the relative dielectric constant of the matrix is ǫr = 12.96

3.3 Superlensing in 1D Photonic Crystals

The focusing properties of a flat lens made of tilted dielectric elements can be easily

understood from the analysis of its Equi-Frequency Contours (EFCs), calculated using

the transfer matrix method as in [44].

In the following we will assume TE polarization only, that is the electric field E
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perpendicular to the plane of incidence.

Consider a 1D photonic crystal of infinite extension (see inset in Fig. 3-6(b))

consisting of two different alternating dielectric materials having width W1 and W2

and permittivity ǫ1 and ǫ2 respectively. Assume that the layers are parallel to the

y-axis with a period a = W1 + W2 along the x direction.

Figures 3-6(a)-(d) show the band structures and EFCs for the two different cases

that we have experimentally studied in this work: the alumina-air (Figs. 3-6(a) and

3-6(c)) and the alumina-plexiglas case (Figs. 3-6(b) and 3-6(d)) respectively.

When the dielectric layers are all tilted by the same angle θ with respect to the

normal to the lens (see Fig. 3-7(a)), the diffraction inside the structure can give rise

to interesting focusing phenomena. The rotation of the layers in the spatial domain

implies the same amount of rotation for the EFCs in the k -space. In Figs. 3-7(b)

and (c) the wave vector diagrams at two different frequencies for a 1D PC, consisting

of alumina-air alternating layers with W1 = W2 = 0.5cm, are shown. The magenta

curves represent the equi-frequency contour for such structure, plotted in the first

and repeated Brillouin zone (BZ), whereas the red circle is the air EFC. Curves are

plotted at ω = 0.260 (Fig. 3-7(b)) and ω = 0.457 (Fig. 3-7(c)), where ω = a/λ is the

normalized frequency. The two arrows inside the red circles in Figs. 3-7(b) and (c) are

two generic wave vectors impinging the air-PC interface at different incoming angles

γ1 and γ2. The directions of the diffracted wave vectors inside the PC are determined

by imposing the conservation of the tangential component k
//
i = ω/c sin γi, here

represented by the construction line drawn as a dashed line. The two wave vectors

normal to the PC EFCs, k1r and k2r, are the diffracted waves that propagate inside

the crystal. They are both directed perpendicularly to the EFC and point away from

the source.

There is however a fundamental difference between the diffracted wavevectors

depicted in Fig. 3-7(b): k1r corresponds to an intersection between the construction

line and the EFC lying in the 1st BZ whereas k2r derives from the intersection in the
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Figure 3-6: Band structure along the off-axis direction for a 1D PC with a unit cell
realized using alumina and air (a) or alumina and plexiglas (b) respectively.
(c) and (d): EFCs at different frequencies for the same structures.

repeated BZ and therefore is subjected to the folding back process. As it is easily

seen in the plot of Fig. 3-7(b), k1r and k2r are positively and negatively refracted

respectively. This phenomenon is a direct consequence of the equi-frequency contours

shape shown by the 1D structure at the chosen normalized frequency.

At ω = 0.457, although the shape of the EFC (see Fig. 3-7(c)) is very different

from the one at ω = 0.260, it is still possible to obtain the conditions for negative

refraction due to the convex nature of the EFC with only 0th order diffracted waves

involved.

These remarkable diffraction properties can be exploited to realize superlensing,

since using a simple ray-diagram it is easy to show that an appropriately designed

slab made of this kind of 1D PC will have an off-axis focusing. The performance

of a flat superlens made of tilted dielectric elements has been already presented and

discussed numerically by Wang et al. [45].

The focusing properties strongly depend on the orientation of the surface termina-

tion via the rotation angle θ. Off-axis subwavelength focusing is achieved in [45] for a
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high index contrast (Si−SiO2) layered structure, with the best FWHM of 0.164λ for

θ = 44°. In this work we chose θ = 45° since this gives us the best resolution for the

index contrast structures presented here, consisting of layered elements of alumina-air

and alumina-plexiglas.

Figure 3-7: (a) Sketch of the slab obtained rotating, by an angle θ, a one dimensional PC
having a unit cell made of two different dielectric materials ǫ1 = 8.6 and ǫ2 =
1. (b) and (c) equi-frequency contours at ω = 0.260 (1st band) and ω = 0.457
(2nd band) respectively, plotted in the first and in the repeated Brillouin zone,
relatively to the crystal in (a); k1 and k2 are two wave vectors impinging the
air-PC interface at two generic different angles γ1 and γ2, whereas k1r and
k2r are the wave vectors diffracted inside the crystal.

3.3.1 Study of the Focusing Properties and Effect of Surface

Corrugation

We also show, by means of Finite-Difference Time-Domain (FDTD) simulations that

the surface corrugation coming from the simple rigid rotation of the dielectric layers

can dramatically improve the performance of this flat lens.
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The discretization grid for the simulation domain is a/30 along the x and y direc-

tion. A point source is located on the slab axis and centered 1cm far from the PC

interface without corrugation. The source holds the same position also for the case

with corrugation.

In Fig. 3-8(a) a detail of the lens we simulated (ǫ1 = 8.6, ǫ2 = 2.5), with and with-

out corrugation on both surfaces, is shown. For the case under study, this particular

kind of corrugation yields two evident benefits. First, it increases the transmission

efficiency (Fig. 3-8(b)) by about 50%, because of the reduced impedance mismatch

with the surrounding medium. Then, it produces also a significant improvement in

both the transversal and lateral resolution (about 11% and 36% respectively), as

shown in Figs. 3-8(c) and (d).
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Figure 3-8: (a) Detail of the photonic crystal surface termination for the case with and
without corrugation. (b) Comparison of the focus profiles (calculated via
FDTD) produced by the slab with corrugation (blue line) and without cor-
rugation (red line). (c) and (d) Transversal and lateral profiles respectively
of the transmitted energy in a normalized scale. All the above profiles are
taken along the lines (parallel and perpendicular to the PC surface) where
the focused image exhibits its maximum.

These enhancements are usually related to the presence of surface states intro-

duced by the surface corrugation [46]. The benefits to the imaging quality introduced

by the surface states are a well known property of photonic crystals [47, 48]. It
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has been proved both numerically [49] and experimentally [50, 51] that choosing the

appropriate corrugation can increase the imaging resolution performance of a PC su-

perlens. Furthermore, surface states can be exploited as well to realize beam shaping

with using waveguide made of 2D photonic crystal with corrugated surface [52].

We also numerically evaluated how the frequency at which the lenses show the

maximum peak intensity for the focused image varies with the finite width ratio

α = W1/(W1+W2). A parametric study for different values of the dielectric constants

ǫ1 and ǫ2 was carried out. Results show (see Fig. 3-9(a)) that within a relatively

wide range centered at α = 0.55 the frequency linearly decreases with increasing α.

Moreover, the curves that fit different sets of data, including the cases of alumina-air

and alumina-plexiglas based PCs, are approximately parallel.

The lens performance severely degrades, with no focusing observed at all outside

the range [0.47, 0.63]. For a fixed value of α, the focusing frequency linearly de-

creases also by increasing the permittivity of one of the two materials (Fig. 3-9(b)).

The square-dotted line represents the case where the elements with the highest per-

mittivity are kept constant (ǫ1=12.5), letting ǫ2 to vary from 1 to 5.5, whereas the

circle-dotted line represents the case with ǫ2 = 1, and ǫ1 is let to vary from 5 to 12.5.

We think that it is possible to use these findings as simple “rule of thumb” to design

a flat 1D PC superlens consisting of tilted dielectric elements.

3.3.2 Experimental Results

Experimental results are carried out by sandwiching the PCs in an aluminum parallel-

plates waveguide terminated with microwave absorbers and measuring the amplitude

and phase of the electric field transmitted by the crystals in the image plane. Since

the loss tangent of both alumina and plexiglas are extremely small at the frequency

of interest for this work (tan δAl < 10−3, tan δP l < 10−2), dielectric losses can be

neglected.

A dipole antenna (radius = 0.6mm) is used as a source, oriented to produce an
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Figure 3-9: Plot of the normalized frequencies at which slabs made of different materials
show the maximum transmission for the focused image as a function of the
finite width ratio α (a) and dielectric constants ǫ1, ǫ2 (b) of the tilted elements
( θ = 45°).

electric field z -oriented (TE mode) and operating in the range of frequencies that

spans from 5GHz to 15GHz, in order to reproduce the same normalized frequency

a/λ of the theoretical model. Due to the waveguide characteristics, the TEM mode

only can propagate up to 15GHz. The maps of the amplitude and phase of the

electric field are collected by using a HP8720C Vector Network Analyzer. Another

dipole antenna with the same characteristics of the source is used as a detector that

moves along the waveguide plane using an x-y step motor. Details of this technique

has already been presented in [39].

We have conducted point imaging experiments on two different structures using, in

the first case a unit cell made of alumina and plexiglas, in the second case alumina and

air. It is straightforward that the latter structure comes as the natural consequence

of the first one, since it is obtained by the simple removal of all plexiglas layers.

For this reason the two PCs have the same lattice properties but a different index

contrast. The PC slabs before rotation, are built with a lattice constant a = 1cm,

length L = 30cm and width w = 5.65cm. We chose dielectric elements having the

same width, therefore the corresponding layer widths in the unit cell are 0.5a for both

structures under study.

When all layers are rotated by the same angle θ, the PC can be seen as a 2D
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structure having lattice constants along x and y directions given by ax = a/ sin θ and

ay = a/ cos θ respectively, length Ls = 30a/ cos θ and width ws = w sin θ + 0.5a cos θ,

where the width is defined including the corrugation.

Figure 3-10: (Color online) 3D spatial mapping of the point source signal transmitted by
the alumina-air slab at 13.7175GHz.

For the sake of clarity, in Fig. 3-10 is shown the 3D map of the measured point

source imaged by the slab.

Measurements are performed scanning an area 10cm wide and 10cm long adjacent

to the PC-air interface, in steps of 2mm in both x and y direction. The point source

is positioned 1cm far from the lens in x = 0cm, according to our reference system.

Figure 3-11: In-plane spatial mapping of the measured electric field intensity ((a),
(c), (e)) and phase ((b), (d), (f)) for the alumina-air PC at 7.800GHz,
9.0825GHz and 13.7175GHz respectively.
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In Figs. 3-11(a)-(f) the complete experimental results for the alumina-air lens are

illustrated. This structure exhibits subwavelength imaging in three different bands,

BW1 = [7.6200 − 7.8200]GHz, BW2 = [8.4700 − 9.2200]GHz, BW3 = [13.4500 −

14.2300]GHz. The signals imaging are clearly off-axis as evident from the electric

field intensity maps in Figs. 3-11(a), (c), (e), and as also predicted by [45].
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Figure 3-12: Normalized transversal (a) and lateral (b) experimental profiles, taken at
13.7175GHz along the lines where the focused image exhibits its maximum,
for the alumina-air superlens.

In these three bands, the best achieved resolutions (FWHM) are 0.29λ at 7.8000GHz

(ω = 0.260), 0.32λ at 9.0825GHz (ω = 0.300) and 0.29λ at 13.7175GHz (ω = 0.457).

Since in Figs. 3-11(a), (c), (e) we use a normalized scale, it is worthwhile to mention

that the maximum transmitted intensity decreases with increasing frequency. This

is because for higher frequencies the amount of wavevectors collected and focused is

lower due to the different shape of the EFCs. It is also worth noting that the measured

values of the FWHM well agree with numerical simulations within 30%. In all three

cases the focused images are clearly visible, as shown by the spatial mapping of the

electric field intensity detected in the image plane and reported in Figs. 3-11(a), (c),

and (e). The absence of noticeable aberration is confirmed by the respective phase

maps in Figs. 3-11(b), (d), (f), that exhibit a pattern typical of circular waves. In

Figs. 3-12(a) and (b) the transversal and lateral profiles respectively for the alumina-

air case are shown, as measured at f = 13.7175GHz. In Figs. 3-13(a) and (b) the

transversal and lateral profiles respectively for the alumina-plexiglass case are shown,

measured at f = 7.3505GHz (ω = 0.245). At this frequency, we obtain the best lens

resolution (FWHM) of 0.27λ.



3.3. SUPERLENSING IN 1D PHOTONIC CRYSTALS 57

0 2 4 6 8 10
0.0

0.2

0.4

0.6

0.8

1.0
(a)

x [cm]

|E
y|2 no

rm

0 2 4 6 8 10
0.0

0.2

0.4

0.6

0.8

1.0

y [cm]

|E
y|2 no

rm

(b)

Figure 3-13: Normalized transversal (a) and lateral (b) experimental profiles, taken at
7.3505GHz along the lines where the focused image exhibits its maximum,
for the alumina-plexiglas superlens.

We also measured the spatial shift of the focused image changing the source posi-

tion along the y direction (normal to the PC surface). In Figures 3-14(a) and (b) the

simulated and measured lateral profiles respectively of the electric field intensity (in

the normalized scale) for the alumina-plexiglass slab are reported. Experimental data

(Fig. 3-14(b)) clearly show that the image focus moves closer to the PC superlens as

long as the point source moves away, strictly following the behavior predicted by the

numerical analysis (Fig. 3-14(a)), and in accordance also with what expected from a

simple ray-diagram.
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Figure 3-14: Simulated (a) and measured (b) lateral profiles respectively for the focused
image of a point source changing its position (dsource) normal to the surface
of the alumina-plexiglass PC superlens
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CHAPTER 4

Thin-Wires and Split Ring

Resonators

4.1 Introduction

In chapter one we introduced a class of non-diffractive metamaterials that showed

their unusual properties only when their “atom” sizes were much smaller than the

wavelength. For this reason these metamaterials can be modeled by means of an

effective medium theory where the whole structure can be described by an effective

permittivity ǫeff for the case of cut wires, and an effective permeability µeff in the

case of a split ring resonators (SRRs) array. These two geometries currently represent

the most suitable way to build structures with negative effective properties from

the microwave [1] to the optical range [53]. It is also worth mentioning that today

considerable efforts are being made to manufacturing metamaterials for terahertz

applications which are very promising for medical applications and homeland security

imaging. In fact, unlike the X-Ray, THz radiation is not invasive and can more easily

be used for the detection of a variety of chemical substances, drugs, explosives, and

weapons, and in addition also for tomography.
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4.2 Thin-Wire Medium

Periodically arranging thin cut wires can lead to an artificial material which can be

modeled in terms of the Drude model [11,54,55], where the effective permittivity can

be written as,

ǫeff = 1 −
ω2

p

ω(ω + iγ)
(4.1)

It is important to note that ωp depends on the geometry of the lattice rather

then by the charge, the effective mass, and the density of electrons, as in the case of

naturally occurring media. Furthermore from the above equations, when ω < ωp the

effective permittivity is negative. Another interesting point of this structure, beside

its effective medium properties, is that the plasma frequency is shifted down by six

order of magnitude. Moreover, as will soon be discussed, the ωp can be further shifted

by making the wires thinner.

Figure 4-1: Periodic structure composed of infinite wires having radius r arranged in a
cubic lattice of period a

Periodic structures built from very thin wires dilute the average concentration of

electrons and considerably enhance the effective electron mass through self-inductance.
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The conduction electrons of a metal interact with the electromagnetic field to form

what is called a surface plasmon, a collective oscillation of electron density. Trying to

restrict electrons to move along thin wires has two consequences: the first one is that

the average electron density neff is reduced because only part of the space is filled

by the metal, leading to,

neff = n
πr2

a2
(4.2)

where n is the density of electrons in the wires, r is the radius of the wire and

a is the cell side of the square lattice on which the wires are arranged. The second

consequence is an enhancement of the effective mass of the electrons caused by mag-

netic effects. Suppose a current flows in the wire creating a magnetic field circling

the wire, then,

H(R) =
I

2πR
=
πr2nve

2πR
(4.3)

where R is the distance from the wire center and v is the mean electron velocity.

We can thus write the magnetic field in term of a vector potential:

H(R) = µ−1
0 ∇×A (4.4)

where

A(R) =
µ0πr

2nve

2π
ln(a/R) (4.5)
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where a is the lattice constant.

From Classical Mechanics, electrons in a magnetic field have an additional contribu-

tion to their momentum of eA, and thus the momentum per unit length of the wire

is given by:

eπr2nA(r) =
µ0e

2(πr2n)2v

2π
ln(a/r) = meffπr

2nv (4.6)

and thus the new effective mass of the electrons becomes:

meff =
µ0e

2πr2n

2π
ln(a/r) (4.7)

Then from the classical formula for the plasma frequency we can write

ω2
p =

neffe
2

ǫ0meff
=

2πc2

a2ln(a/r)
. (4.8)

4.3 Split Ring Resonators

Following John Pendry’s theory that a periodic arrangement of thin wires could mimic

the response of a dilute plasma, the next step was to find a magnetic analogue of an

electric conductor. Pendry again offered a solution to this problem by proposing that

a periodic arrangement of rings provided with a gap could behave like a magnetic

material and support magnetic resonance. He suggested that if we are able to induce

an electric current to circulate in a closed loop this will generate a magnetic dipole

having a moment m (see Fig.4-2(a))
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m =
1

2

∫

r × jdV. (4.9)

In addition if we are also able to introduce resonance, negative permeability can

be achieved. By borrowing the idea from the formalism of circuit theory we can model

the closed ring as an inductor having inductance L and then introduce a resonance

by adding a capacitor C. This can be accomplished by introducing a small gap of

width g along the ring, as shown in Fig.4-2(b).

Figure 4-2: Schematic of a closed ring (a) and split ring resonator (b).

Under this condition, a time varying magnetic field parallel to the ring axis can

induce a current density in to the LC circuit-like element. Thanks to the gap the split

ring can now prevent the current to circulate around the ring, sustaining a resonance

condition that, for frequencies within the resonance band, gives rise to the negative

permeability behavior.

Fig. 4-3 illustrates an SRR made with two concentric split rings. The purpose of

the second ring, whose split is oriented opposite to the first, is to generate a large

capacitance in the small gap region between the rings, lowering the resonant frequency

and concentrating the electric field.

By arranging the split ring resonators in the shape of a periodic medium where
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Figure 4-3: Schematic of a split ring resonator made of two concentric rings.

there is a strong magnetic coupling between the resonators, unique properties emerge

from the composite. Each SRR responds to an incident magnetic field behaving like

a single “atom” with its own magnetic dipole moment. The structure as a whole,

behaves like an effective medium having an effective permittivity µeff given by [8]:

µeff = 1 −
πr2

a2

1 + 2lρ
ωrµ0

i− 3l
π2ω2µ0Cr3

(4.10)

where ρ is the resistance per unit length of the rings measured around the circum-

ference, ω is the frequency of the incident radiation, l is the distance between layers,

a is the lattice parameter, w is the ring width and r and d are defined in Fig.4-3.

C is the capacitance between the two elements of the split ring. If we assume the

following constraints,

r ≫ w, r ≫ d, l < r and ln
w

d
≫ π (4.11)

the capacitance between the unit length of two parallel sections of metallic strips

reads
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C =
ǫ0
π

ln 2wd =
1

πµ0c20
ln

2w

d
. (4.12)

Substituting the (4.12) in (4.10) leads to the following expression for the effective

permeability,

µeff = 1 −
πr2

a2

1 + 2lρ
ωrµ0

i− 3lc2
0

πω2 ln( 2w
d

)r3

, (4.13)

which can be also written in the following form,

µeff = 1 − Fω2

ω2 + iωΓ − ω2
0

, (4.14)

where Γ is the dissipation factor, and while F is the fractional area of the unit

cell occupied by the interior of the split ring. It is also interesting to note that the

expression (4.2) carries that same dependence from F. As example, figure 4-4 plots

both the real and the imaginary part of the µeff(ω). There are two the important

parameters to highlight: the resonance frequency ω0

ω0 =

√

3lc20
π ln 2w

d
r3

(4.15)

and the magnetic plasma frequency ωmp which in the lossless case is related to the

resonant frequency by the following relation,

ωmp =
ω0√
1 − F

. (4.16)
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Figure 4-4: Real part (continuous line) and imaginary part(dashed line) of the µeff (ω)

The important point to note is that for ω0 < ω < ωmp the effective permeability

is negative and the band (ωmp − ω0) is inversely proportional to the square root of

the factor (1 − F ) which is the fraction of the unit cell not occupied by the interior

of the split ring. This means that increasing the radius r of the internal SRR shifts

the frequency ωmp to higher values.

4.3.1 Circuit Modeling of SRRs

Previously we mentioned that the electromagnetic response of a split ring resonator

can be described by means of the electric circuit theory formalism. In Fig. 4-5 the

equivalent circuit models for the case of a single split ring resonator and a double

split ring resonator are shown.

By applying the Kirkoff’s law to the circuit mesh in Fig.4-5(a) we have

L
d2q

dt2
+R

dq

dt
+
q

C
= −dB

dt
πr2

0 (4.17)

where the right-hand side term of the previous equation is the contribution of the
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Figure 4-5: Equivalent circuital model for the single split ring (a) an the double split ring
(b).

induction law. By switching to the frequency domain the Eq.(4.16) becomes

−ω2Lq + iωqR+
q

c
= −iωBπr2

0 (4.18)

where we have simply made the substitution d
dt
→ iω.

From the (4.17) the current induced in the SRR is

I = iωq =

Bπr2

0

L
ω2

ω2 − iR
L
ω − 1

LC

. (4.19)

The magnetization M can be expressed in term of the circuit parameters as

M = NIπr2
0 = −

NB(πr2

0
)2ω2

L

ω2 − iR
L
ω − 1

LC

, (4.20)

as M can also be written as
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M =
1

µ0

µ− 1

µ
B (4.21)

by comparing the (4.20) and (4.19) we have the following form for the µ

µ =
ω2 − iR

L
ω − 1

LC

ω2

(

1 +
Nµ0(πr2

0
)2

L
− iR

L
ω − 1

LC

)

= 1 −
Γ

1+Γ
ω2

ω2 − iωR/L
1+Γ

− 1
LC(1+Γ)

(4.22)

where

Γ = 1 +
Nµ0(πr

2
0)

2

L
. (4.23)

Equation (4.22) has the same resonant form as equation (4.14), to proof that the

circuital approach is in agreement with the approach followed by Pendry in [8].

4.4 Effective Parameters Retrieval Technique

The design of a metamaterial structure made from either cut wires, or SRRs, or both,

involves two main steps. The first step is to start from the analytical model, such

as the Pendry’s model described in Eqs. (4.13 - 4.16) where SRRs are utilized. The

second step is to use numerical tools to confirm that the actual design works. For this

purpose, we have used HFSS software from Ansoft, based on the Finite-Integration-

Technique (FIT), to compute the electromagnetic problem. For this study, we will

focus solely on the design of structures made of SRRs, bearing in mind that the guide

lines for periodic media made with cut wires, SRRs or both are the same. The first
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question that needs to be answered when designing a metamaterial structure is, how

to compute the effective permeability and the effective permittivity. The Snell law

does not offer assistance here because it can only provide the real part of the effective

index at a single frequency, while, in our case we want a rapid and reliable method

for obtaining the parameters ǫ(ω) and µ(ω), which are complex function of frequency.

The approach that we have used to calculate numerically the effective parameters of

an array of split ring resonators, has been deeply investigated in literature by Smith,

Soukoulis et al.( [56–58]), and is based on the assumption that electromagnetic meta-

materials should respond to electromagnetic radiation as continuos materials at least

in the long wavelength limit [8,11]. Moreover, the hypothesis that certain metamate-

rials configuration can exhibit scattering properties consistent with the approximate

form of ǫ and µ has also been proved experimentally by Smith et al. [55,59]. This ap-

proach utilizes the transmission and reflection coefficients (S-parameters) calculated

for a wave that is normally incident on a finite slab of metamaterial. Assuming that

the slab is characterized by an index n and an impedance z, simple analytic expres-

sions can be found by inverting the S-parameters, that relate n and z to S. Finally,

we retrieve µeff and ǫeff from the relations ǫ = n/z and µ = nz upon the satisfaction

of certain physical requirements based on causality.

Figure 4-6: Wave incident on a slab of thickness d. The meaning of the S-parameters
(i.e. the complex transmission and reflection coefficients) is illustrated.

The transmission and reflection coefficients for waves normally incident on the

face of a one-dimensional slab of continuous material having length d, and traveling

rightward along the x direction, as shown in Fig.4-6, are related to n and z by
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1

T
=

[

cos(nkd) − i

2

(

z +
1

z

)

sin(nkd)

]

eikd (4.24)

R

T
=

[

− 1

2
i

(

z − 1

z

)

sin(nkd)]eikd. (4.25)

where k = ω/c is the wave number of the incident wave. From the inversion of

the equations (4.24) and (4.25) we have the following expressions for the material

parameters

z = ±
√

(1 + S11)2 − S2
21

(1 − S11)2 − S2
21

(4.26)

Im(n) = ±Im
(

cos−1( 1
2S21

[1 − (S2
11 − S2

21)])

kd

)

(4.27)

Re(n) = ±Re
(

cos−1( 1
2S21

[1 − (S2
11 − S2

21)])

kd

)

+
2πm

kd
(4.28)

where m is an integer number, and where the scattering parameters can be ex-

pressed as S11 = R and S21 = Tejkd. The ambiguities related to the signs of equations

(4.26-4.28) are fixed by imposing the following physical constraints: the material must

be passive, which leads to the following choice for the sign of Re(z) > 0, whereas,

enforcing Im(n) > 0 results in an unambiguous sign for Im(n), and also, uniquely

identifies the sign of Re(n). It is important to make clear that the Eqs.(4.26-4.28)

are valid for the case of a slab made of homogeneous material. When the unit cell is

inhomogeneous, the validity of these equations becomes questionable since the sym-

metry along the propagation direction is broken, and S11 and S22 can no longer be

considered equal. This implies that the dispersion relation for the refractive index

has to be defined either by
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cos(nkd) =
1

S21
(1 − S2

11 + S2
21) (4.29)

or by,

cos(nkd) =
1

S21
(1 − S2

22 + S2
21) (4.30)

which, since S11 6= S22, gives different values depending on the propagation direc-

tion.

However, it was shown [58] that if the unit cell is repeated infinitely a unique value

of the index can be recovered, while the dispersion relation for n becomes

cos(nkd) =
1 − S22S11 + S2

21

2S21
. (4.31)



CHAPTER 5

Theory of Slow-Light in

Metamaterials Structures

5.1 Introduction

Since the speed of photonic systems is much larger than that of electronic systems, the

synergy between optics and photonics represents the most promising way to achieve

faster communications and data processing rates. Contrary to many research fields

in the area of photonics, which are focused on developing communication systems

designed to handle continually increasing speeds, there is a branch of the photonic

community in which scientists are working to slow down the speed at which light

propagates, and in principle to even stop it. The velocity of light in vacuum c0, is

approximately 3 × 108s−1, fast enough to travel around the world for 7.5 times in

just one second. The speed of light is that high that some times is it very difficult

to control light propagation in the time domain. For this reason, the control of light

is a fundamental step toward the goal of all-optical on chip. As illustrated in figure

5-1, where is shown a schematic model of a photonic circuit, the ability of processing

information traveling under the form of light is related to the possibility of realizing

devices that can modulate the velocity of the information and also store data, exactly

like the building blocks of a basic electronic digital circuit.
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Figure 5-1: Example of a PC based chip provided with all the functions typical of a
conventional electronic chip.

5.2 State of the Art

The definition of velocity that is most meaningful in Slowlight applications is the

group velocity vg, which describes the speed at which a pulse envelope propagates. In

general, vg is greatly reduced by a large first-order dispersion arising from an optical

resonance within the material or structure.

In the past years slowlight has been proven in different ways.

One of the first attempts was via a quantum mechanical interference effect called

electromagnetic induced transparency (EIT) [60, 61]. Using quantum interference

effects involving coherence between the two atomic ground-levels of a three level

Lambda-system, an initially absorbing medium can be rendered transparent to a res-

onant weak probe laser when a strong coupling laser is applied to the other optical

transition. This effect has gained enormous importance recently because of a variety

of possibilities in nonlinear optics and quantum information science, as it leads to

the fascinating phenomena of slow light, stopped light, or enhancement of nonlinear

effects. However, although it was shown that EIT can allow very long delay it is not

suitable for integration purposes because of the large facilities that are needed.
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Currently, the most promising candidates to achieve slow-light are engineered

structures such as left-handed materials. Because of the dispersion properties shown

by their photonic band structure, photonic crystals show region of frequency where in

principle it is possible to stop light. Unfortunately, the ineluctable fluctuations of the

crystal parameters arising from the manufacturing process reflect in the variability of

the photonic band structure properties, making the light trapping almost impossible.

However, as shown at microwave frequencies by Di Gennaro et al. [2] a light pulse

propagating in a bulk photonic crystal can be slowed down by a factor of ten with

a resulting group velocity vg = c0/10 (see Fig.5-2(a)). They also showed that better

results can be obtained in left-handed material slabs made of SRRs and cut-wires

(composed metamaterial (CMM)), where vg = c0/50 (see Fig.5-2(b)) was measured.

Figure 5-2: (a) Group velocity along ΓM direction versus frequency for three different
lengths of PC sample. Solid black line represent the predicted behavior from
band structure calculation. (b) Left y axis - group velocity dispersion of a
CMM in a waveguide for different sample lengths compared with cw experi-
ment result (red dot line). Slowest vg of c/50 is obtained at 10.3 GHz in this
configuration. Right y axis - Experimental and theoretical empty waveguide
group velocity dispersion [2].

A different idea was proposed by Baba et al. They investigated the slow-light

properties of photonic crystal waveguides (see Fig.5-3) at optical frequencies [3] and

reported a group velocity delay of about vg = c0/70. This result is important be-

cause it is obtained on a small volume structure suitable for integration and easy to

manufacture with the present technologies.
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Figure 5-3: (a) Scanning electron microscope image and, (b), schematic band and group-
index spectrum of a silicon PCW with respect to the absolute frequency [3].

Outstanding performance has been obtained by Tanabe et al. [4], using high-Q

cavity made with PCs, where they show a slowdown factor that brings the group

velocity of a pulse envelope down to vg = 2× 10−5c0. This result is excellent because

it caters to the small volume of the device, making PCs the best candidates for

slowlight applications and eventually for light trapping.

Figure 5-4: Photonic-crystal nanocavity with a locally modulated waveguide width. (a)
The design parameters, where a is the lattice constant, r is the hole radius and
t is the slab thickness. (b) A SEM image of the device fabricated in a silicon
photonic-crystal slab. (c) A near-field image acquired using a near-infrared
camera from the top of the sample when a resonant wavelength light was
injected through the input waveguide. The waveguide regions are indicated
by the red squares [4]
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A different approach was followed by Tsakmakidis et al [5] who first proposed

theoretically a wave guide having a core with ǫ < 0 and µ < 0 and a positive index

cladding made of dielectric, as shown in Fig.5-5(a). This waveguide supports degen-

erate modes at which, for an opportune core thickness d, the propagating rays inside

the core experience negative Goos-Hächen phase shift that traps them inside the core.

Figure 5-5: (a) Schematic of the waveguide structure made up of an ordinary waveguide
part and a tapered waveguide part having a metamaterial core. A wave packet
is efficiently injected in from the ordinary waveguide to the left-handed part
experiencing a spatial decomposition in to its frequency constituents. (b) Ray
diagram of the light inside the tapered metamaterial core when experiencing
the Goos-Hächen phase shift [5]

.

5.3 Slow-Light Theory

Before we carry on with the description of the slowlight phenomena in metamaterials

structures, it is important to first highlight the useful physical parameters used in

characterizing the propagation of a pulse envelope in a generic dielectric waveguide.

Together with the group velocity vg = dω/dk, another important parameter is the

Group Delay τg, which represents the time it takes for a pulse to travel a unit distance,

for example, the group delay in vacuum is 3.336 nsec/m. By definition, the group

delay is the inverse of the group velocity

τg =
1

vg

=
dk

dω
(5.1)



5.3. SLOW-LIGHT THEORY 77

which can be related to the material refractive index, or the modal index n(ω),

by the following equation [62]

τg =
d(n(ω)ω/c)

dω
=

(n(ω) + ω dn(ω)
dω

)

c
. (5.2)

By inverting the (5.2) we obtain a new expression that resembles the form of the

phase velocity vp = c/n

vg =
c

(n(ω) + ω dn(ω)
dω

)

=
c

ng

(5.3)

where ng is called the Group Index, and which is defined as

ng = n(ω) + ω
dn(ω)

dω
, (5.4)

where the second term in Eq.(5.4) accounts for the dispersion in the waveguide.

Another important quantity is the delay-bandwidth product (DBP). When ng is much

larger than n(ω) it can be approximated as

∆t∆f ∼= L∆n

λ
and ng

∆f

f
∼= ∆n, (5.5)

where ∆t is the time delay at λ over the propagation distance L, ∆f is the fre-

quency bandwidth centered at f and ∆n is the change that n experiences inside ∆f .

ng represents the basic constraint when dealing with slowlight applications because

it fixes the maximum achievable delay for a defined bandwidth. To give a better
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idea for practical applications, the delay-bandwidth product indicates the maximum

buffering capacity of a slowlight device.

In the following sections we will discuss about the slowlight properties of a planar

waveguide with a cladding made of single negative index metamaterial and a dielectric

core. We will first analyze the problem of the theoretical modeling and then discourse

of the design, the realization and the experimental characterization in the microwave

region of frequencies.

5.3.1 Slow-Light in Single Negative Metamaterial Waveg-

uides

We consider a two-dimensional (2D) structure which is formed by a parallel plate

waveguide (PPW). The vertical direction or the normal to the PPW is along the

y-direction. If the thickness of the PPW is h, then for frequency below c/2h, the

waveguide can only support TE waves whose electric field is in the y-direction. For

example for h = 1 cm, microwaves below 15 GHz will be only TE waves.

Figure 5-6: A sketch of a slab waveguide inside a parallel plate waveguide.

We thus only need to consider TE wave propagation in the xz-plane. We now con-

sider a slab waveguide made of a dielectric with εD cladded by a negative permeability

metamaterial with µM < 0 and εM > 0 as shown in Fig. 5-6. The dielectric core
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layer has a thickness d. We only consider a symmetric cladding and the guided mode

travels along the z-direction with the phase ei(kzz−ωt) while the transverse direction

of the waveguide is along the x-axis.

The transverse components of the TE modes inside the core of the waveguide and

the decay constant outside the core of the waveguide are kD =
√

εDk2
0 − k2

z , κM =
√

k2
z − εMµMk2

0, respectively. For simplicity, we consider the core layer to be nonmag-

netic. We introduce a free parameter ξ which gives κM =
√
εD − εMµMξ/

√

1 + ξ2.

After matching the continuity condition for the tangential electric and magnetic field,

the eigenmodes equation is obtained as

√
εDk0d = fTE(ξ), (5.6)

where

fTE(ξ) =

√

1 + ξ2

√
1 + σ

(mπ − 2 arctan ξ/̺). (5.7)

with σ = −εMµM/εD and ̺ = −µM . Here the index m denotes the parity of the

TEm modes with m ≥ 1. In terms of ξ, the phase index np ≡ kz/k0 is given by

np =

√
εD

√

ξ2 − σ
√

1 + ξ2
. (5.8)

To support guided TE modes which are of our interest, one has ξ ≥ ξmin = σ1/2 so

that np is real.

For ordinary waveguides, the phase index np is a monotonically increasing function

of the waveguide thickness d. Thus, the waveguide will only support one forward-

wave TEm mode for a fixed m, at the most. However, if the following condition is

satisfied [63]

̺√
σ

1 + σ

̺2 + σ
+ arctan

√
σ

̺
≥ 1

2
mπ, (5.9)

Eq. (5.6) will provide two solutions for a fixed m that are for a particular d. At a

critical thickness dc, these two modes will merge into one single mode that will carry
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zero total energy flow and also have a zero group velocity. One can prove that the

total energy flow Pz is indeed zero at the critical thickness [63]

Pz = −
∫ ∞

−∞

EzH
∗
xdx = P in

z + P out
z (5.10)

with

P in
z =

kzd

2k0

[

1 + (−1)msinc kDd
]

,

P out
z =

kzd

2k0

[1 + (−1)m cos kDd

µMκMd

]

. (5.11)

The parameter space for stopping TE2 modes is shown in Fig. 5-7. From this plot

we see that a maximum σmax = 0.2775 exists. For σ < σmax there is a finite range

of µM that sets the condition for waveguide to stop light. For example, if µM = −1,

and σ < 0.1277, the waveguide can trap TE2 mode waves.

Figure 5-7: Parameter space (shaded area) for stopping light in a waveguide with (a)
dielectric core (εD) and cladded with a negative permeability metamaterial
(µM < 0 and εM > 0) and (b) dielectric core with εD = 8.6 and cladded with
a negative permeability metamaterial.

We note that the above condition is also valid for cladding with anisotropic per-

meability, such that one has µMx, µMz < 0 and µMx 6= µMz. For this cladding, one

has σ = −µMxεMy/εD and ̺ =
√
µMxµMz. which can be used to model the TE modes
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in line defect waveguides in photonic band gap materials [3].

For waves propagating inside the waveguide structure, one has np = np(k0, d) with

k0 representing the free space wave number, and d representing the waveguide dimen-

sion. For a planar waveguide, d is the thickness while for a cylindrical waveguide, d

is the diameter. The group refractive index is ng = np + k0∂k0
np, thus the divergence

of ∂k0
np will lead to stopping light. In this situation, the coupling of light to the

waveguide structure is very weak, however for waves in a waveguide, ∂k0
np and ∂dnp

can share the same divergence. Thus in certain waveguide structures the divergence

of ∂dnp will also lead to stopping light. In this case light with certain wavelength will

be stopped at certain waveguide dimension d.

As a comparison, we consider the TE modes in a dielectric waveguide cladded

with a perfect electric conductor (PEC). Only PEC cladding allows for 〈Pz〉 = 0

at the band cutoff thickness dc = π/
√
εDk0, therefore, np =

√

εD − (π/k0d)2 and

ng = np + (π/k0d)
2/np. Furthermore when d = dc, we have np = 0 and ng = ∞, and

due to the vanishing of np = 0, we have Pz = 0 at d = dc. This waveguide does not

support degenerate modes. For a dielectric waveguide cladded by a metal with finite

conductivity such as copper in the microwave range, the group velocity of TE modes

is always positive. However, for our waveguide, the presence of losses will give rise

to a small imaginary part to the energy flow, thus with moderate material losses our

waveguide is able to trap light.

5.4 Negative Permeability with SRRs

The subsequent step in the study of the slowlight properties of the above mentioned

planar waveguide is to understand the best way to achieve, in practice, the condition

µ < 0 and ǫ > 0. There are many ways in which negative effective permeability can

be achieved, for example by varying the temperature of 3D dielectric composites con-

sisting of dielectric ceramic cube arrays [64]. It has been proven that strong subwave-
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length magnetic resonance can be excited in dielectric cubes corresponding to the first

Mie resonance mode, and can be continuously and reversibly adjusted from 13.65 to

19.28GHz with the temperature changing from −15 to 35◦C. Negative permeability

can be also obtained in millimeter waves regime, at cryogenic temperatures utilizing

a multilayer stack of ferromagnetic and superconducting thin films [65]. Still, another

possible way to achieve negative effective permeability is with polaritonic photonic

crystals [66] made of LiTaO3, where negative µ is realized in the micron wavelength

range. For our purpose, the most suitable candidate for realizing µ < 0 is using a split

ring resonator array. This is the best metamaterial to use because it does not require

low temperature systems to control the magnetic response, as the case of dielectric

ceramic cube arrays and superconductor metamaterials. Moreover, photonic crystals

are not suitable because TM polarization (H field out of plane) is required to obtain

µ < 0, and experimentally it cannot be realized in a parallel plate waveguide. In [10]

we showed that making the cladding with a square geometry SRRs array can lead to

the negative permeability condition.

Figure 5-8: (a) SRR layout. (b) SRR unit cell. The dimensions are w = 3mm, d = c =
g = 0.33mm. The unit cell size is

In figure 5-8(a) is shown the layout for a split ring resonator geometry, while in Fig.

5-8(b) is shown the 3D unit cell used for the computation of metamaterial effective

parameters using the procedure illustrated in the previous chapter. The structure is

arranged in a cubic lattice geometry with a period of a = 5mm. The lateral size of the

SRR is w = 3mm, whereas the remaining parameters are d = c = g = 0.33mm, and



5.4. NEGATIVE PERMEABILITY WITH SRRS 83

a 0.25mm thick copper SRR is deposited on a 0.45mm thick Epoxy (FR-4) dielectric

substrate (ǫ = 4.4, tan δ = 0.01 at 1GHz). In Fig. 5-9(a) are shown the simulated

transmission and reflection coefficient under normal incidence condition.
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Figure 5-9: (a) Computed transmission and reflection coefficients. (b)-(c) The retrieved
effective parameters ǫ and µ for SRR shown in Fig. 5-8

For this design the resonance frequency is at 8.27GHz. The retrieved effective

parameters (see Figs. 5-9(b) and 5-9(c)) show, as theoretically predicted, a positive

imaginary part for the permeability and a negative imaginary part for the permittivity.

The reason that the imaginary part of the permittivity can be negative is due to the

finite lattice period associated with the metamaterial structure, as discussed in [57].

This effect is called antiresonance, in contrast to the resonance shown by the positive

imaginary part of µM .

The next step of the slow light waveguide design is to find the most appropriate

values of ǫM and µM to meet the condition in Eq. (5.9) for TE2. This requires that

the magnitudes of both ǫM and µM be small. From our simulations we fixed our

choice at f = 8.57GHz, where µM = −0.22 + i0.27 and ǫM = 4.4 − i0.14.

For the lossless case the phase index for the TEm modes is calculated and plotted in

Fig. 5-10 for a waveguide with core layer ǫD = 8.6 and cladded with ǫM = 4.4 and

µM = 0.22 at 8.57GHz. The critical thickness is dc = 0.781cm.

When we introduce losses the condition for trapping light is lost, and the np curve
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Figure 5-10: Phase index np as a function of thickness d for waveguide with core layer
ǫD = 8.6 and cladded with ǫM = 4.4 and µM = 0.22 at 8.57 GHz in the
lossless case. The circle marks the location of zero group velocity

plotted in Fig. 5-10 changes, as shown in Fig. 5-11. The np curve splits in two

branches, one accounting for a forward wave (red line) traveling in the core and the

other corresponding to a backward wave (blue line) which is exists in the cladding

with µM < 0.

Figure 5-11: Phase index np as a function of thickness d when losses are introduced. The
cladding has µM = −0.22 + i0.27 and ǫM = 4.4 − i0.14.

In [10] the waveguide design was made considering a dielectric core made of alu-

mina (ǫD = 8.6). Our goal now is to build a structure having a core made of air. There

are two reasons to justify this choice, the first is due to the negligible dielectric losses

related to the air while the second is because the scanning of the electromagnetic field
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inside the core by using antennas would be easier and more accurate. Unfortunately

there is a drawback. When the permittivity inside the core lowers there is a drastic

reduction of the allowed values for Re(µM) and Re(ǫM) that satisfy Eq. (5.9). The

new parameter space is shown in Fig. 5-12. We see that the constraint ǫD = 1 makes

the design more complicated since it is obtained at the expense of very small values for

ǫM and µM . This represents a serious restriction, more for the design of the effective

permeability function then for the permittivity.
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Figure 5-12: Parameter space for stopping light in a waveguide with a dielectric core
made ǫD = 8.6 (red area) and a core made of air ǫD = 1 (blue area)

In fact, when the Re(µM) approaches the crossing point between the negative

and positive region its absolute value becomes comparable to the Im(µM) causing

an enlargement of the gap between the two branches of np (See Fig. 5-11) and a

corresponding recession from the slow light condition. This is not an issue regarding

ǫeff since generally the Re(ǫM)≫Im(ǫM ).

For this reason a new design for the split ring resonator is required. We found

that the geometry shown in Fig. 5-13(a) can fulfill our requirements. This is the

same geometry used by Smith et al. to experimentally prove the electromagnetic

cloak at microwaves [9]. In order to further reduce the losses contribution due to

the supporting medium another material was chosen. This new dielectric substrate

consists of Duroid, which has ǫr = 2.2 and tan δ = 0.001 at 10GHz. Today, Duroid

represents one of the best material for microwave applications because of low dielectric
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losses. In Fig. 5-13(c) are shown the transmission and reflection curves obtained

from the numerical simulation performed under normal incidence on a single cubic

unit cell (see Fig. 5-13(b)) having a = 10/3cm, w = 0.1mm, l = 3mm, s/l = 0.6 and

g = 0.4mm.

Figure 5-13: (a) Layout and (b) 3D unit cell of the SRR geometry used to in the exper-
iment. (a) Transmission and reflection, (b) effective permeability and (c)
effective permittivity parameters corresponding to the unit cell in (b).

Unlike the previous SRR geometry, where the main resonance is determined by the

capacitances between the internal and external rings, here the capacitance depends

on two factors: the gap width g, and the ratio s/l. In general the electromagnetic

response can be tuned by varying the the values of g, s/l, and the radius of curvature

r [9]. The corresponding retrieved effective parameters are shown in Fig. 5-13(d)-(e)

where at first glance it can be observed that the new SRR shape provide a magnetic

and electric response sharper than that obtained from the two rings systems.

The main advantage of this design is in the larger resonance bandwidth and the

reduced magnetic losses. Numerical simulations have demonstrated that the single

split ring resonator has a resonant bandwidth of about 1.6 GHz, a value that is

almost four times larger than two split rings case, and which is also in agreement with

Pendry’s results shown in equation 4.16. The result of this is that the new design

shows a larger µ′/µ′′ ratio, which is exactly the goal that we wanted to accomplish.
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Figure 5-14: (a) Comparison of the effective permeability for (a) the double split ring
resonators shown in Fig. 5-8 and (b) the single SRR in Fig. 5-13. (c)
Plot of the ratio of the real part and the imaginary part of the effective
parameters shown in (a) and (b).

For this reasons we pick this as the final design for the metamaterial based cladding,

where we expect, according to the parameter space shown in Fig. 5-12, that the

slowlight conditions will be achieved in the frequency band [9 − 9.2] GHz.

Figure 5-15: Real part of the effective permeability (a) and permittivity (b) for different
values of the gap g.

Figure 5-15 shows how the resonance properties of the SRR response can be mod-

ulated by the gap width g. As expected, the resonance frequency increases with

increasing the distance g between the two capacitors plates of length s.

Further characterizations of the SRR are shown in figure 5-16 where a parametric

analysis of the magnetic and electric response is made by varying the parameters

s/l, w and r. The ratio s/l strongly modulates the resonant frequency ω0 because
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it modifies the value of the capacitance C, while, the radius r can be used to tune

the real part of the effective permittivity ǫ in the regions of frequency above the

resonance.

Figure 5-16: Real part of the effective permeability and permittivity for different values
of the (a)-(b) ratio s/l, (c)-(d) metal with w and (e)-(f) radius of curvature
r.



CHAPTER 6

Waveguide Realization and

Experimental Results

6.1 Microfabrication of SRRs Based Metamateri-

als

The metamaterial structures using periodic arrangement of SRRs were made in house,

using the clean room facilities at Northeastern University in Boston. Each side of the

cladding was designed in the shape of rectangular slab having height hM = 1cm,

length lM = 40cm and width wM = 3cm while the size of each unit cell were a =

10/3cm, w = 0.1mm, l = 3mm, s/l = 0.6 and g = 0.4mm.

Figure 6-1: 3D illustration of the slow-light structure. The SRRs and the dielectric core
(grey) are placed between two parallel metal plates. The top plate is not
shown here.

89
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Moreover, the slab is obtained by orthogonally assembling the SRRs deposited on

rectangular stripes along the direction of propagation z and along the direction nor-

mal to the wave guide axis x, as shown in figure 6-1. The material that we have used is

high frequency laminate made of a 0.5mm thick Duroid (ǫr = 2.2 and tan δ = 0.001 at

10GHz) dielectric layer with two copper layers 8µm thick which have been deposited

on the two sides. To create the SRRs we have used the traditional micro-fabrication

techniques, as listed below:

1. Spin Coating,

the AZ9260 photoresist was deposited on a 14cm × 14cm square wafers. The

spinning was done at 1000rpm for 1 minute in order to obtain a 17µm thick

photoresist layer.

2. Soft Bake for 25 minutes at 125◦ in oven.

3. Photolithography,

the process was made by using a Quintel4000 Optical Aligner exposing the

sample for 160s with a dose of 2240mJ/cm2

4. Resist Development was performed for 3mins with solution AZ400K:H20 (1:1)

5. Wet Etching,

the copper was removed using the APS-100 copper etchant at 70◦C for 2 minutes

6. Resist Stripping,

the resist was removed by dipping the sample in a AZ400T stripper for about

2 minute.

Fig.6-2(a)-(e) illustrate the above steps. In Fig.6-2(a) is shown the equipment used

to make the spin coating, while Fig.6-2(b) shows the picture of the mask. Figs.6-2(c)

and (d) show the photolithography and wet etching steps respectively and Fig.6-2(e)

shows the last step of resist stripping.
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Figure 6-2: (a) Spin coater with the wafer ready to be processed. (b) Mask and (c)
machine used for the photolithography. (d) Wet etching step. (e) Stripping

Figs. 6-3(a)-(c) display in order a wafer with the layout of the copper SRRs, the

Duroid stripe retrieved from the wafer using a laser cut and the final slab assembled

with the stripes orthogonally interlaced with each other.

Figure 6-3: (a) Wafer sample with the SRRs layout, (b) single stripe provided with gaps
used to assemble the metamaterial slab in (c).
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6.2 Experimental Characterization of the SRRs

The first step in order to experimentally characterize the SRRs medium is to check

if a resonance dip is visible in the transmission curve. If this check is positive and

a gap in the transmission band is present, we can move to the second step which

is to prove that the gap is the result of the magnetic resonance. In order to test

this we have manufactured a wafer made entirely of closed ring resonators (CRRs)

which due to the lack of the aperture in the ring we expect will destroy the magnetic

response without affecting the electric resonance. As also shown in [67], the presence

of a frequency gap in the scattering parameter S21 of the SRR slab, but not in the

CRR slab is a proof that µeff < 0 in the frequency band.

Figure 6-4: (a) Wafers with a CRR and SRR copper layout. (b) Transmission curve
for the CRR slab (blue line) and SRR slab (red line), the inset shows a
magnification of the curves around the magnetic resonance.

Fig. 6-4(b) confirms the evidence of the presence of a magnetic resonance. The

red and blue curves in Fig. 6-4(a) show the measured scattering parameters S21

respectively for the SRR and CRR media. The measurements have been performed on

a single wafer in free space using two horn antennas placed at the same distance from

the object under test. The wafer was oriented parallel to the propagation direction

with the ring axis parallel to the H field. Moreover, it is worth noting that at higher

frequencies an additional resonance of electrical nature becomes present, which true

of both samples, and which was also reported in [67]. Further characterizations of the
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slab with SRRs consist to study the transmission properties under different orientation

of the ring axis.

Figure 6-5: (a) Transmission curves for corresponding to the different ring orientation
showed in (b).

Experimental data are shown in Fig. 6-5(a) where each different curve corresponds

to the transmission under a different orientation of the SRRs in respect to the electro-

magnetic field, as illustrated in Fig. 6-5(b). As expected, there is no resonance (black

line) when the SRR plane is parallel to the H field since no current can be induced in

the ring. However, there is a difference in the response when the SRR is symmetric

or not in the propagation direction. The transmission curves for the two different

orientations differ to each other as shown in Fig. 6-5(a), where the blue curve refers

to the symmetric case, and where the red line corresponds to the asymmetric case.

The breaking of the symmetry induces a shift of the absorption to lower frequencies,

as also studied numerically by Markoš et. al. [68]. This phenomenon is evidence of

the bianisotropic behavior shown by a medium made of SRRs [69].

To conclude the first part of the spectral characterization of the SRR metamaterial

we have measured the transmission properties of the rectangular slab in Fig. 6-3(c).

Unlike the above results, this measure was carried out in a parallel plate waveguide

using two dipole antennas: one to transmit, and the other to pick up the signal.

The antennas we placed opposite to each other, 1cm apart from the sample. The

measured transmission curve is plotted in Fig. 6-6. An excellent agreement with

the transmission obtained from numerical design (red line) is found. Comparing the
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band gap width of the present slab with that in the inset of Fig. 6-4 corresponding

to the transmission from a single planar wafer where the SRRs are replicated along

the wafer plane only, it is evident that the latter has a larger resonance bandwidth

of approx. 1GHz when compared to the former which has a resonance bandwidth

of approx. 300MHz. It is worth mentioning that a similar result was also found,

both numerically and experimentally by Weiland et.al. [70]. This proves that the

resonance bandwidth of a metamaterial structure made of SRRs increases with an

increasing number of “atoms” elements that forms the array.
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Figure 6-6: Measured (blue line) and simulated (red line) scattering parameter S21 in
a normalized scale, corresponding to the metamaterial slab showed in Fig.
6-3(c).

For a better understanding of the band gap properties of arrays of an SRRs we

have conducted more systematic measurements in a parallel plate waveguide under

normal incidence. This is a useful step in order to study the effect of the density

at which the interlaced stripes shown in Fig. 6-3(b) and (c) are assembled. In Fig.

6-7(a) are plotted the scattering parameters for three rectangular slabs where the

stripes containing the SRRs are arrayed only along the direction x perpendicular to

the propagation axis z. The length of these stripes are always the same and equal to

8a, where a is the unit cell period as shown in Fig. 5-13. The parameters lx and lz

represent the period at which each stripe is replicated respectively along the x and

z directions. Clearly the resonance band broadens when increasing the density of
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the parallel elements by reducing the distance between the stripes. This also has the

effect of pulling down the resonance frequency which is in agreement with Pendry′s

prediction [8], and also reported in equation (4.15).

Figure 6-7: (a) Measured scattering parameters for the case of parallel stripes arrayed
along the x direction only with period lxequal to a(green), 2a (red) and 3a
(black). Scattering parameters measured for lz = 6a (b), lz = 2a (c) and
lz = a (d). In the insets are the schematics of the arrayed slabs realized with
interlaced stripes.

Figs. 6-7(b)-(d) illustrate the influence of the SRRs stripe density along the z

direction for each of the examples analyzed in 6-7(a) . The results are very interesting.

In fact, when lz = 6a as in Fig. 6-7(b) variations are visible only for the case with

lx = 3a (black line) where a slightly broader resonance bandwidth is measured. No

other substantial distinctions from the examples in Fig. 6-7(a) are noticed meaning

that the interaction between the orthogonal elements becomes effective only for the

lowest density case, lx = 3a and lz = 6a. When lz = 2a (see Fig. 6-7(c)) a split

in the resonance is very obvious when lx = 3a (black line), which weakens when
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lx = 2a(red line). On the other hand, the case lx = a (green line) shows no resonance

splitting, and no significant variation in terms of resonance band. The last case that

was investigated was lz = a (see Fig. 6-7(d)), under this condition the magnetic

resonance splitting becomes more evident than in the case of lz = 2a, but only when

lx = 2a(black line) and lx = 3a(red line), whereas the resonance bifurcation is still

absent when lx = a. Hence, we can say that by fixing the number of stripes arrayed

in the x direction the split in the resonance appears by reducing the density of stripes

arrayed along the propagation direction z, but only when lx > a. When lx = lz = a

the resonance band does not split, but instead becomes more broad than in the case

shown in Fig. 6-7(a) by approx. 300MHz.

Figure 6-8: (a) Scattering parameters obtained measuring the transmission from a slab
made with lx = lz = a illuminated with a plane wave impinging the sample at
different angles. (b) and (c) magnification of the resonance band highlighted
in (a) respectively with red and green dotted lines.

It is also interesting to note the transmission properties for the different angles

of incidence of the source. We have performed measurements for six different angles,

from 30◦ to 90◦, on a slab with lx = lz = a, and found that large resonant deeps appear

at frequencies below the main resonance frequency of approx. 8.5GHz. As shown

in Fig. 6-8(a) when the beams arrive at 90◦ only the main resonance is present,

however when the slab is tilted additional resonances start to appear: the first at
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7.85GHz (green dotted line) and then at 7GHz (red dotted line). In the former case

the largest deeps are for 15◦ and 75◦, whereas for the latter case the resonance is

stronger only when the incident angles are very far from the orthogonal condition, at

15◦ and at 30◦. Except for the small angles the properties of the principal resonant

bands are almost unchanged. This result demonstrates that when the slab is arranged

with lx = lz = a the structure can be assimilated to a homogeneous medium as the

transmission properties around the resonant frequency remain practically the same.

6.3 Experimental Characterization of the Slowlight

Waveguide

6.3.1 Experimental Setup

After ascertaining that the measured resonance is of magnetic nature it is now possible

to carry on with the study of the slow light properties of a planar waveguide structure

having a dielectric core, and a cladding made with a periodic array of SRRs. As

displayed in Fig. 6-9, each side of the cladding is made with a rectangular slab of

the following size: length lM = 40cm, width wM = 2.3cm and 1cm hight. The slab

width wM corresponds to 7 unit cells which from our calculation is a distance large

enough to ensure that the mode inside the metamaterial is decayed at the interface

with the air. The choice of the length lM is the result of several trials showing that

longer cladding fits the requirements of the experiment better.

The planar waveguide has been sandwiched between two aluminum parallel plates,

and microwave absorbers have been used to kill reflections and to assure a perfect

matching condition for the electromagnetic field. A dipole antenna has been used to

excite the propagation mode inside the metamaterial waveguide, while another dipole

antenna acted as a receiver.

The experimental setup (shown in Fig. 6-10) consists of an HP-70820A microwave
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Figure 6-9: Pictures of the planar waveguide having a cladding made of metamaterial
cladding (lM = 40cm, wM = 2.3cm and height 1cm) and a core made of air.
T and R indicate the position of the transmitting and receiving antenna.

transition analyzer (MTA) connected to an HP-8341B synthesized sweeper (SS). The

internal modulator of the MTA generates a pulse width of 100ns. The pulse thus

generated with a carrier frequency in the microwave region is made to pass through

two transmission lines A and B using a splitter. A represents the line containing

the sample, while B serves as the reference channel consisting of a microwave coaxial

cable. Two isolators are connected to the beam splitter to prevent reflected signals

from interfering with the signals feeding the reference and sample transmission lines.

The two signals exiting from A and B are then analyzed by the two MTA input

channels. In all measurements, the background time delay caused by the transmission

lines is well accounted in order to obtain the time delay due to the sample only. The

group velocity is obtained using the formula

vg =
L

tm − L
vw

(6.1)

where L is the sample length, tm is the measured time delay (due to the waveguide

plus the sample), and vw is the dispersion velocity in the parallel plate waveguide

without the metamaterial sample.
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Figure 6-10: Schematic of the experimental setup used to perform the pulsed measure-
ments. A computer controlled microwave transition analyzer MTA modu-
lates the signal generated from the synthesized sweeper SS and feeds, by a
rectangular shaped pulse, two lines: A containing the metamaterial sample,
and B which is used as a reference. The source is sent to A and B using a
power beam splitter. Two isolator are inserted to avoid kill reflections. The
two signals from A and B are then sent in the two MTA ports.

6.3.2 Pulsed Measurements

Based on the effective parameters retrieved in the previous chapter, we expect the

slowlight effect to take place very close to the metamaterial bandgap edge where

the real part of the permeability is extremely small. We performed a set of pulse

delay measurements for different values of the waveguide core thickness d over a

certain frequency range centered at 9.1GHz. The measured value of the group index

ng = c0/vg are displayed in Fig. 6-11 for different values of d, where c0 is the speed

on the light in vacuum, and vg is related to the measured delay by Eq. (6.1). Data

show that when the core thickness is fixed to d = 1.8cm the ng(f) has the largest

amplitude in the band f = [9 − 9.15]GHz.

Fixed the frequency, if we plot ng as a function of the parameter d we obtain

the results shown in Fig. 6-12, plotted only for selected carrier frequencies f =

9.04GHz(gree), f = 9.45GHz(blue) and f = 9.06GHz(red). The measured values of

the group index are lower than the theoretical one by a factor of about two. Further

investigations of this remains ongoing, however we think that this difference could

be related either to a larger magnetic losses or to a larger value of the real part of

the effective permittivity. In fact both can contribute to pulling down the group
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Figure 6-11: Measured values of the group index ng over a range frequencies f . The
different color of the curves correspond to different value of the core thickness
d.

index value of this device. Many questions remain answered at the conclusion of this

research. The first question is whether or not the present structure could be made

more efficient considering different unit cell designs. Another question is related to

the design method itself. More accurate numerical simulations, where the study of

effective parameters is made considering more than a single unit cell, would explain

better the intrinsic limitations related to the present approach. The main obstacle

here is the computational capacity that would be required to simulate a large array

of SRRs, where reliable results can only be obtained using an adequate mesh size

to describe the resonant elements. As a third point to question is the influence of

the losses by performing an experiment at cryogenic temperatures where the sample

can be dipped in liquid nitrogen, and where the losses due to the copper can be

reduced. Even if the performance results shown by the present structure are a stretch

from those present in literature, they are still significant in confirming that slowlight

phenomena can be achieved in planar waveguide structures under the condition of a

single negative index cladding. Moreover, the present results can in principle also be

applied at near infrared and optical frequencies, where gain can be introduced to the
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material to recover for the losses [63].
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Figure 6-12: Group index plotted versus the core thickness d for fixed frequencies.(a) ng

profile predicted by the model, (b) experimental values.



Conclusions and Perspectives

The results shown in this dissertation reflect my research activities that were con-

ducted during the three years of my PhD studies both at the University of Naples

“Federico II”, and at Northeastern University in Boston Massachusetts. While at the

University of Naples“Federico II” I worked on two main projects which were both at

the microwave frequency range. The first, was the experimental demonstration of the

Pendellösung effect, which was done in collaboration with the IMM-CNR research

group in Naples, and the second, was on the superlensing properties of 1D dielectric

PCs, which was entirely done with the mentorship of my advisor, Prof. Andreone,

and with the support of his research group. Both projects led to papers that were

published in Optics Express [39, 71].

The Pendellösung effect is a relatively well known phenomenon of the Dynamical

Diffraction Theory (DDT), which is a rigorous formalism that accounts for multiple

scattering effects that are especially important in X-ray, electron and neutron diffrac-

tion from perfect crystals. The Pendellösung effect states that the energy transmitted

at the exit-point of a crystal can be periodically modulated by varying the crystal

thickness. Measurements were carried out by placing alumina rods with nominal

permittivity ǫr = 8.6, radius r = 0.4cm, and height h = 1cm, in a square geometry

with r/a = 0.255 (a = 1.57cm) sandwiched in an aluminum parallel-plate waveguide

terminated with microwave absorbers, and where the intensity of the transmitted

signal was measured by an HP8720c wave vector analyzer. The results of these ex-

periments showed that the ratio of the energy transmitted in the positive direction

to that transmitted in the negative direction is a periodic function of the number of

102
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rows in the PC confirming that the Pendellösung effect also exists in PCs.

The superlensing properties of 1D PCs represents the first experimental proof of

the subwavelength imaging properties achieved with 1D periodic dielectric structures.

For this dissertation, I demonstrated point imaging measurements using two different

lenses, each having the same lattice properties but with different index contrast. The

results showed that the flat lens, not only acts as a superlens, but can easily be

focused at different frequency bands. It should be mentioned that these properties

are difficult to achieve in 1D PCs, in comparison with 2D PCs superlenses.

During my studies at Northeastern University I worked in the laboratory of Prof.

S. Sridhar in the field of slowlight. As of late, the concept of slow light is attracting

large interest from the scientific community, most notably because of its promising

capabilities in the area of telecommunications. The ability to slow down and even

stop light is crucial in order to achieve all-optical integrated circuitry. My study

in slow light consisted of the design, realization and experimental investigation, at

a microwave wavelength, of a planar waveguide made of a conventional dielectric

core layer cladded with negative permeability material. Such a structure supports

degenerate propagating modes for which the group velocity, and total energy flow,

can be zero if the media are lossless. My research plan for this study consisted of

four different steps. The first stage studied the problem of finding the most suitable

material to realize a cladding with µ < 0 and ǫ > 0. Step two was to consider the

design and modeling of the structure by using commercial computational software.

For the third phase, I created the samples using micro-fabrication techniques made

possible by Northeastern Universitys clean room facilities. The last step consisted

of the full electromagnetic characterization of the metamaterial medium sandwiched

inside a microwave parallel plate waveguide. I performed an accurate study of the

spectral properties of the bulk metamaterial analyzing the resonance properties for

different incident angles of the source, as well as for different spatial densities of the

constituent elements. Here I found an excellent agreement between the numerical and
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experimental results. Finally, I studied the slow light properties of a planar waveguide

made with a single negative metamaterial cladding from SRRs with core made of air.

I found that the results agreed with the theoretical model.

Regarding my studies on photonic crystals, the results that I have obtained can

be extended to the design of photonic devices working at frequencies which were not

investigated in this work, such as near infrared and optics . Both the Pendellösung

effect and superlensing in 1D PCs can be used to build structures suitable for in-

tegration onto photonic chips by means of micro and nano-fabrication techniques.

For example, in near infrared regime, the silicon on insulator (SOI) support is the

traditional material used. The Pendellösung effect can now be used to build new

types of polarizing beam splitters which are crucial for the manipulation of light. In

addition, the superlensing effect can be used for applications such as nanolithography

where it is fundamental to use systems capable of resolving features smaller than the

wavelength, beating the diffraction limit.

In the diffractive metamaterials field, structures like SRRs and cut wires are con-

tinually proving their potential as basic building blocks for composite metamaterials.

Beside the current applications in the microwave regime, which are very attractive for

military based applications like the invisible cloak, today, there is increasing interest

in the design and realization of metamaterial structures at terahertz frequencies. Un-

til recently, the terahertz region was the only unexplored spectrum region because of

the lack of adequate emitters and detectors necessary to bridge the terahertz gap [72].

Thanks to their astonishing properties, SRRs based metamaterials have proved to be

the best candidates for making possible modulators and absorbers [73–75]. But one

of the biggest challenge remaining will be the building of THz image sensors, for

homeland security purposes, that are capable of capturing pictures using the same

method of conventional optical cameras. This will drastically reduce the delay time

of current THz imaging systems based on raster-scan approach. Again, it is here that

metamaterials have the most promise.
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