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Preface

This thesis concerns with slices of the unitary spread and of the unitary

ovoid. The unitary spread and the unitary ovoid are geometric objects con-

tained in the hyperbolic quadric Q+(7, q), if q ≡ 2 (mod 3) and in the parabolic

quadric Q(6, q), if q ≡ 0 (mod 3); these were introduced by W.M. Kantor in

[14] and J.A. Thas in [22]. A slice of a spread (of an ovoid) of an orthogonal

polar space is the intersection of the spread (of the ovoid) with a hyperplane

of the relevant projective space. In this work, it is proved that the slices of the

unitary spread of Q+(7, q) q ≡ 2 (mod 3) can be divided into five classes. Slices

belonging to different classes are inequivalent with respect to the action of the

subgroup of PΓO+(8, q) fixing the unitary spread. When q is even, there is

a connection between spreads of Q+(7, q) and symplectic spreads of PG(5, q)

originally pointed out by Dillon [7] and Dye [8].

In Chapter 1 we recall all the necessary introductory material about finite

polar spaces. A section is dedicated to review quadrics and hermitian curves

and their projective classification. In the last section is explained some intro-
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ductorial material about spreads and ovoids of PG(2n+1), that will be deeply

considered later for the case n = 3. In Chapter 2 using the construction of

the unitary ovoid of Q+(7, q) due to Kantor ([13]) and some results due to

Lunardon ([16]) on a connection between the ovoids of Q+(7, q), q ≡ 2 (mod 3)

and intersection sets of hermitian curves, we determine all possible inequiva-

lent symplectic spreads arising from the unitary spread of Q+(7, q), q = 22h+1.

Some of these were already discovered in [14]. When q = 3h, the slices of the

unitary ovoid of Q(6, q) with respect to singular hyperplanes and hyperplanes

intersecting Q(6, q) in a hyperbolic quadric were studied in [13]. Here we com-

plete this study by classifying, up to the action of the subgroup of PΓO(7, q)

fixing the unitary ovoid, all slices of the unitary ovoid of Q(6, q) with respect

to non–singular hyperplanes.

I would like to thank my supervisor Prof. G. Lunardon who provided

me with the opportunity to know and then to study the topics of this work

and I would like to express my deep gratitude towards Rocco Trombetti,whose

generous and patient help has been essential to me to overcome the hard times.
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Chapter 1

Introduction

1.1 Polar spaces

Let K be a field and V be a vector space over K. We will denote by

PG(V,K) the projective space defined by the lattice of the vector subspaces of

V . We will say that a projective subspace W has rank t and dimension t− 1 if

W has dimension t as vector space over K. If K has finite order q = ph with

p prime and h > 0, and V is a vector space of finite dimension n + 1, n ≥ 1,

over K, we can write PG(n, q) instead of PG(V,K).

Let g be a bijective function of PG(n, q) on itself; if g preserves the inclu-

sion then it is a collineation; or else if g reverses the inclusions then it is a

correlation. A correlation of order 2 is called a polarity.

Let K = Fq with q = ph. A function f : V × V → K is a sesquilinear form
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if it is linear in the first variable and semilinear in the second and f is called:

• symmetric if f(u, v) = f(v, u), ∀u, v ∈ V :

• alternating if f(v, v) = 0, ∀v ∈ V ;

• hermitian if f(u, v) = σ(f(v, u)), ∀u, v ∈ V , where σ is an automorphism

of the field different from the identity.

Observe that if f is a hermitian form, then the order of K must be a square.

A sesquilinear form f is said to be non-degenerate if f(u, v) = 0 for all

u ∈ V implies v = 0 or, equivalently, f(u, v) = 0 for all v ∈ V implies u = 0;

and it is reflexive if f(u, v) = 0 implies f(v, u) = 0 for all u,v ∈ V . A non-

degenerate sesquilinear form f of V induces a correlation π in PG(V,K), in

particular if f is reflexive then π is a polarity. We have the following important

result:

Theorem 1.1.1. (Birkhoff-Von Neumann)

If dimV ≥ 3 and if π is a polarity of PG(V,K), then π arises from a non-

degenerate reflexive sesquilinear form f which must be alternating, symmetric

or hermitian.

A pair (PG(V,K), π), where π is a polarity of PG(V,K), is a polar geome-

try, known as a symplectic, orthogonal or unitary geometry according as π is

alternating, symmetric or hermitian.

A quadratic form Q : V −→ K is a map which satisfies the following:
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• Q(αv) = α2Q(v), for α ∈ K, v ∈ V ;

• the map fQ : V × V −→ K given by fQ(u, v) = Q(u+ v)−Q(u)−Q(v)

is a symmetric bilinear form, called the polar form associated to Q.

When p 6= 2 symmetric sesquilinear forms and polar forms correspond, other-

wise we are not interested in symmetric sesquilinear forms which don’t arise

from a quadratic form. So we can say that a a polar space is a vector space

equipped with an alternating, hermitian or quadratic form, and it is said to

be symplectic, unitary or orthogonal respectively.

If f is a sesquilinear form on V , we say that a non-zero vector u of V is

isotropic if f(u, u) = 0 and that a vector subspace of V is totally isotropic if all

of its vectors are isotropic with respect to f . Now, consider a quadratic form

Q on V with associated polar form fQ. We say that two points u and v of V

are orthogonal if fQ(u, v) = 0. The polar space is non-degenerate if the polar

form has the property that fQ(u, v) = 0 for all v ∈ V implies u = 0. A vector

u 6= 0 is singular if Q(u) = 0, and a subspace U is totally singular if all of its

vectors are singular. Furthermore, a totally isotropic/singular subspace is said

to be a maximal if it is not properly contained in any totally isotropic/singular

subspace. Note that all maximals of a polar space have the same rank,said the

rank of P . The set of isotropic points of a unitary space is called a hermitian

variety, while the set of singular points of an orthogonal space is called a
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quadric. Because of the importance of quadrics and hermitian varieties in this

work it is useful to introduce them also from another point of view.

1.1.1 Quadrics and hermitian curves

Let (x0, . . . , xn) be the homogeneus projective coordinates of a point X of

P = PG(n, q). Consider the sesquilinear form f , the variety V (f) is the set of

zeros respect to f .

A quadric Q is a variety V (Q), where Q is a quadratic form, that is

Q =
n∑

i,j=0

cijxixj

not all cij equal to zero.

If q is a square, a Hermitian variety H is a variety V (H), where H is a

hermitian form, that is

H =
n∑

i,j=0

aijx
√
q

i xj

with aij ∈ F√q not all zero and such that aqij = aji.

The form and the variety are singular if there is a change of coordinate

system which reduces the form to one in fewer variables; otherwise they are

called non singular.

Two variety V1 and V2 are projectively equivalent if they can be obtained

each other by a change of coordinate system, in this case we will write V1 ∼ V2

Theorem 1.1.2. In P the number of projectively distinct non-singular quadrics
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is one or two according as n is even or odd. They have the following canonical

forms:

• n = 2s, s ≥ 0,

parabolic: Q(2s, q) = V (x2
0 + x1x2 + · · ·+ x2s−1x2s);

• n = 2s+ 1, s ≥ 1

hyperbolic: Q+(2s+ 1, q) = V (x0x1 + x2x3 + · · ·+ x2sx2s+1);

elliptic: Q−(2s + 1, q) = V (f(x0, x1) + x2x3 + · · · + +x2sx2s+1) where f

is an irreducible quadratic form.

Supposed q is a square. For every value of n there exist n+ 1 projectively

distinct hermitian varieties in the projective space PG(n, q); but only one of

these is non-singular.

Theorem 1.1.3. A non singular hermitian variety in PG(n, q), with q square,

has the canonical form

Hn = V (x
√
q+1

0 + · · ·+ x
√
q+1

n ).

Now focus our attention on the hermitian varieties of the projective plane,

the hermitian curves. Let consider the projective plane π = PG(2, q2). A

unital in π is a set U of q3 + 1 points of π such that every line of π meets

U in either 1 or q + 1 points, and it is said to be classical if it consists of all

the self-conjugate points of a unitary polarity of π. A Hermitian curve H is
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the set of zeros in PG(2, q2) of a Hermitian form. A chord of H is a line of π

meeting it in q+1 points. Let now (x0, x1, x2)be the homogeneous coordinates

of a point of π. H is projectively equivalent to one of the following forms:

i) a non singular Hermitian curve H1 : Xq+1
0 +Xq+1

1 +Xq+1
2 = 0 ;

ii) a Hermitian cone H2 : Xq+1
0 −Xq+1

2 = 0

iii) a line repeated q + 1 times H3 : Xq+1
0 = 0

There exists a straight connection between intersections of hermitian curves

(that has been classified by Kestenbandt in [15]) and unitary ovoids, that will

be investigated in the next chapter.

1.1.2 Finite classical polar space

In what follows we consider the so called classical finite polar spaces, that

are the only polar spaces we are interested in.

Let ⊥ be a symplectic polarity of PG(n, q), with n odd and n ≥ 3, then the

pointset of PG(n, q) together with its totally isotropic subspaces is a symplectic

polar space of rank r = (n+ 1)/2 denoted by Wn(q).

Let H be a non-singular hermitian variety of PG(n, q2), n ≥ 3, then the

points of H together with the projective subspaces lying on it form a unitary

polar space of rank r = (n+ 1)/2 for n odd otherwise the rank is r = n/2. We

will denote it by U(n, q2).
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Finally let Q be a non-singular quadric of PG(n, q), then the points of Q

together with the projective subspaces lying on it form an orthogonal polar

space. We have three different type of orthogonal polar space, according asQ is

a parabolic, hyperbolic or elliptic quadric and we will use the same notation for

the quadric and the space. In details if n = 2s, s ≥ 0, then Q is a parabolic

quadric so the polar space is denoted by Q(2s, q) and has rank r = s; if

n = 2s + 1 and Q is hyperbolic the polar space is denoted by Q+(2s + 1, q)

and has rank r = s + 1, otherwise if Q is elliptic we will denote the space by

Q−(2s+ 1, q) and the rank is r = s.

It could be useful to remaind the two following theorems about numbers

of points and maximals of classical finite polar spaces.

Theorem 1.1.4. The numbers of points of the finite classical polar spaces are

as follows:

|Wn(q)| = (qn+1 − 1)/(q − 1) ;

|U(n, q2)| = (qn+1 + (−1)n)(qn − (−1)n)/(q2 − 1) ;

|Q(2s, q)| = (q2s − 1)/(q − 1) ;

|Q+(2s+ 1, q)| = (qs + 1)(qs+1 − 1)/(q − 1) ;

|Q−(2s+ 1, q)| = (qs − 1)(qs+1 + 1)/(q − 1).

If a polar space P has rank r, its (r − 1)-subspaces are called generators. Let

G(P) be the set of the generators of P , we have the following:
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Theorem 1.1.5. The numbers of generators of the finite classical polar spaces

are as follows :

|G(Wn(q))| = (q + 1)(q2 + 1) · · · (q(n+1)/2 − 1) ;

|G(U(2s, q2))| = (q3 + 1)(q5 + 1) · · · (q2s+1 + 1) ;

|G(U(2s+ 1, q2))| = (q + 1)(q3 + 1) · · · (q2s+1 + 1) ;

|G(Q(2s, q))| = (q + 1)(q2 + 1) · · · (qs + 1) ;

|G(Q+(2s+ 1, q))| = 2(q + 1)(q2 + 1) · · · (qs + 1) ;

|G(Q−(2s+ 1, q))| = (q2 + 1)(q3 + 1) · · · (qs+1 + 1).

The importance of the classical polar spaces is totally explicated in this theo-

rem due to Tits :

Theorem 1.1.6. All finite polar spaces of rank r ≥ 3 are classical.
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1.2 Spreads and ovoids

A partial spread of P = PG(rt−1, q) is a family S of isomorphic subspaces

of P mutually skew; if S is a partition of the pointset of P we call it a spread.

If all the subspaces of S have the same dimension t − 1 we can say that S is

a (t − 1)-spread. Embedded P as a hyperplane in PG(rt, q) we can define a

point-line geometry A(S) where the points of A(S) are whose of PG(rt, q) not

incident with P, the lines of A(S) are the t-dimensional subspaces of PG(rt, q)

which intersect P in an element of S, and the incidence relation is inherited

from PG(rt, q). If r = 2, A(S) is a translation plane of order qt and a spread

S is desarguesian when the corresponding plane is desarguesian. Let r > 2, a

spread S is said to be normal if S induces a spread in any subspace generated

by two of its elements. A spread S of P is said to be symplectic with respect

to a symplectic polarity of P, if all elements of S are totally isotropic with

respect to this symplectic polarity.

An ovoid of a finite polar space P of rank r ≥ 2 is a set of points of P

which has exactly one point in common with every maximal totally isotropic

subspace or maximal singular subspace of P . A spread of P is a partition of

the pointset of P by maximal totally isotropic subspaces or maximal totally

singular subspaces. Two ovoids O and O′ of P are said isomorphic if there is a

collineation τ of AutP such that Oτ = O. Two spreads S and S ′ of P are said

12



isomorphic if there is a collineation τ of AutP such that S ′ = {Xτ : X ∈ S}.

If P is a polar space, the number of points of an ovoid equals the number of

subspaces constituiting the spreads, as we can observe in the next tabel, where

these number are explained for every type of polar space:

P |O| = |S|

Wn(q) q
n+1

2 + 1

U(n, q2) q2n+1 + 1

Q(2s, q) qs + 1

Q+(2s+ 1, q) qs + 1

Q−(2s+ 1, q) qs+1 + 1

Existence or non-existence of ovoids and spreads are strictly connected to the

rank of the space and the order of the field.

Let P be the polar space W2n−1(q) associated with a symplectic polarity ⊥,

then a spread for it is just a spread of PG(2n − 1, q) symplectic with respect

to ⊥.

Spreads of Q(2n, q) and Q+(2n+1, q) are also called orthogonal. If Q(2n, q)

is obtained intersecting Q+(2n+1, q) with a hyperplane of PG(2n+1, q), then

ovoids of Q(2n, q) are also ovoids of Q+(2n + 1, q). If P = Q+(2n + 1, q) we

have two classes, denoted by M1 and M2, of totally singular subspaces of Q

of rank n, two subspaces belonging to the same class if and only if the rank
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of their intersection has the same parity as n. Observe that no spread exists

when n is even. n characteristic 2 there exists a wonderful connection between

symplectic spreads of PG(2n− 1, q) and spreads of Q+(2n+ 1, q), n odd, that

will be investigated in the next chapter in the special case n = 3.
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Chapter 2

Slicing the unitary ovoids and

the unitary spread of Q(+)(7, q)

2.1 Ovoids and spreads of Q+(7, q)

Let Q = Q+(7, q) be the polar space associated with the hyperbolic quadric

Q+(7, q) of PG(7, q). First of all we want to recall some definitions just seen

in the previous chapter now for the special case n = 3.

An ovoid of Q is a set of points of Q+(7, q) which has exactly one point in

common with every 3–dimensional totally singular subspace ofQ, consequently

an ovoid of Q has q3 + 1 points. Two ovoids O and O′ of Q are said to be

isomorphic if there is a collineation of PΓO+(8, q) mapping O into O′. The

known examples of ovoids of Q+(7, q) with q = 2e are the desarguesian ovoids,
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the unitary ovoids for e odd and the Dye ovoid of Q+(7, 8).

A spread S of Q is a partition of the pointset of Q into disjoint 3–dimensional

totally singular subspaces. There are two classes of totally singular 3-spaces of

Q, denoted by M1 and M2, two subspaces belonging to the same class if and

only if either they are disjoint or they intersect in a line. Then, the spread

S consists of q3 + 1 subspaces of Q belonging either to M1 or to M2. Two

spreads S and S ′ of Q are said to be isomorphic if there is a collineation of

PΓO+(8, q) mapping any element of S into one of S ′.

Let P be the pointset of Q and let L be the set of all lines contained in Q.

A triality map of Q is a map τ that fixes L and τ : P →M1 →M2 → P , such

that τ is of order 3 and preserves incidence on P ∪M1 ∪M2 (see [23, 24]).

Theorem 2.1.1. Let τ be a triality map.

• If O is an ovoid of Q+(7, q) then Oτ is a spread of Q+(7, q);

• If S is a spread of Q+(7, q) with S ⊂ M1 then Sτ2
is an ovoid of S, as

is Sτ if S is a spread of Q+(7, q) with S ⊂M2.

If τ is a triality map, τ̄ is the element of PO+(8, q) induced by conjugating

by τ , and O and S are respectively an ovoid and a spread of Q+(7, q) that

correspond via τ , then we observe that the stabilizer of O is conjugate to the

stabilizer of S under τ̄ .

Let, now, Π be any non–singular hyperplane of PG(7, q) with respect to the
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polarity defined by Q, then the set S ′ = {Π∩S : S ∈ S} defines a spread of the

parabolic quadric Q′ = Q(6, q) = Π∩Q; i.e. a set of q3 + 1 planes partitioning

the points of Q′. We refer to these spreads as the slices of the spread S.

Conversely, start from a spread S ′ of a parabolic quadric Q′ = Q(6, q) of

PG(6, q) and embed Q′ as a hyperplane section of the hyperbolic quadric

Q = Q+(7, q) with a non singular hyperplane of PG(7, q). For any spread

element consider the 3–dimensional space of Q, of fixed type, passing through

it. This set of 3–dimensional subspaces is a spread of Q and S ′ is one of

its slices. Let Q′ = Q(6, q) be the polar space associated with the parabolic

quadric of PG(6, q). If N is the nucleus of Q′, then the projection of Q′

from N onto a hyperplane H not incident with N is a symplectic polar space

W5(q). A plane of H is totally isotropic with respect to the symplectic polarity

associated with W5(q) if and only if it is the projection from N of a singular

plane of Q′. Hence any spread S of W5(q) defines a spread S ′ of Q(6, q) and

conversely.Hence when q is even, there is a connection between spreads of the

hyperbolic space Q+(7, q) and spreads of W5(q) which was originally pointed

out by Dillon [7] and Dye [8]. Moreover, if two spreads of W5(q) are isomorphic

(i.e. equivalent under the action of PΓSp(6, q)), then the associated spreads of

Q+(7, q) also are. The converse is not generally true (see [14]). This fact leads

to the following definition in [14]: two spreads of W5(q), q even, are said to be

cousins if the associated spreads in the hyperbolic quadric Q+(7, q), obtained
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as described above, are equivalent. In the light of this fact one can construct all

cousins of a given spread S of W5(q) by slicing a spread of a hyperbolic quadric;

i.e. in the following way: construct the spread S of Q+(7, q) associated with S

as described above, then consider the various slices of S. We are interested only

in those cousins that are inequivalent under the action of the automorphisms

group PΓO+(8, q) of Q+(7, q). This leads to the investigation of the orbits of

non-singular points under the action of the stabilizer of S in PΓO+(8, q).

This process can be performed also starting from an ovoid of Q or an ovoid

of Q′, i.e. a set of points of Q′ = Q(6, q) which has exactly one point in

common with every totally singular plane of Q′ (also in this case an ovoid

of Q′ necessarily has q3 + 1 points). Let O be an ovoid of Q and let P

be a point of Q not belonging to O; the polar hyperplane TP tangent to

Q at P is a cone with vertex P whose projection from P is a hyperbolic

quadric Q+(5, q). The hyperplane TP contains exactly q2 + 1 points of O

whose projection from P defines an ovoid OP of Q+(5, q), called a slice of O

with respect to P . The ovoid OP of Q+(5, q) corresponds, under a triality τ ,

to the spread {P τ ∩M : M ∈ Oτ P τ ∩M 6= ∅} of the 3–dimensional space

P τ . Indeed, in [14] and [13], the author considers the so called unitary spread

and unitary ovoid of Q+(7, q) and Q(6, q), respectively when q ≡ 2(mod 3)

and q ≡ 0(mod 3). The stabilizers of these geometric objects both contain,

up to isomorphism, the group PGU(3, q). In the case q ≡ 2(mod 3), in [13]
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the intersection of the unitary ovoid of Q with some singular hyperplanes of

PG(7, q) which are polar hyperplanes, with respect to the polarity defined by

Q, of points of Q not belonging to the ovoid, is studied. These intersections,

project into ovoids of the parabolic quadric Q(4, q). On the other hand, in the

same paper when q ≡ 0(mod 3), is considered the intersection of the unitary

ovoid of Q′ with hyperpalnes intersecting Q′ in a hyperbolic quadric Q+(5, q).

This gives a ovoid of Q+(5, q) and hence through the Klein correspondence a

translation plane of order q2.

Regarding spreads, the case q = 22h+1 is particularly interesting; indeed,

in [14] the author exhibits three slices of the unitary spread of Q, inequivalent

under the action of PGU(3, q), and hence three symplectic spreads of PG(5, q).

For our pourpose, in the next section we will see in details the construction

of the unitary ovoid and of the unitary spread exhibited by W.M. Kantor in

[13].
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2.2 Kantor’s construction of the unitary ovoids

Let M be the 9–dimensional vector space of all the 3×3–matricesM = (µij),

µij ∈ Fq2 , and for any M ∈M, set M = (µqij) and Tr(M) = Σµii; then denote

by M t the transpose of an element of M. Set J =


0 0 1

0 1 0

1 0 0

 and consider

V the vector subspace of M, of those matrices M such that Tr(M) = 0 and

J−1MJ = M
t
, i.e.

V =




x y c

z a yq

b zq xq

 : x, y, z ∈ Fq2 , a, b, c ∈ Fq and a+ x+ xq = 0


.

Thus, V is an 8–dimensional Fq–vector subspace of M. Let P = PG(7, q) be

the projective space underling V, i.e. the lattice of all vector subspaces of V,

and let

Q(M) = −
∑
i<j

µiiµjj +
∑
i<j

µijµji

So if Tr : x ∈ Fq2 7→ x+xq ∈ Fq and N : x ∈ Fq2 7→ xq+1 ∈ Fq are the trace

and the norm of the field, we can explain

Q(M) = Tr(x)2 −N(x) + Tr(yz) + bc,

. Then, Q(M) = 0 is a quadric of P with associated bilinear form Q(M +

N) − Q(M) − Q(N) = tr(MN). Now, Q(M) = 0 is a hyperbolic quadric
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Q = Q+(7, q) of PG(7, q) if and only if q ≡ 2(mod 3). Moreover, if q = 3h,

the quadric Q(M) = 0 is a cone, say C, of P with vertex 〈I〉, where I is the

identity matrix, having as a base the parabolic quadric Q(6, q).

If q ≡ 2 (mod 3) the set Ω = {〈X〉 ∈ V|X2 = 0} consists of q3 + 1 points

of Q pairwise non–perpendicular, that is Ω is an ovoid of Q, while if q = 3h

it projects onto an ovoid, say Ω′, of the nonsingular parabolic quadric Q(6, q).

The ovoids Ω and Ω′ are called the unitary ovoids ofQ andQ(6, q), respectively.

Precisely, Ω consists of the points
0 0 1

0 0 0

0 0 0

 and


α αβq αq+1

β βq+1 αqβ

1 βq αq


with α, β ∈ Fq2 such that Tr(α) +N(β) = 0.

While Ω′ consists of the points


0 0 1

0 0 0

0 0 0

 and


α + Tr(α) αβq αq+1

β 0 αqβ

1 βq αq + Tr(α)


with α, β ∈ Fq2 such that Tr(α) +N(β) = 0.

Here the parabolic quadric Q(6, q) containing Ω′ has equation

x2 + Tr(yz) + bc = 0;

i.e. Q(6, q) = Π ∩ C where Π is the hyperplane of P with equation Tr(x) = 0.
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Let GU(3, q) be the unitary group of all the non–singular 3 × 3 matrices

A over Fq2 such that JAJ = (A
t
)−1. The group GU(3, q) acts on V by conju-

gation inducing PGU(3, q) on PG(7, q); nevertheless, GU(3, q) preserves the

quadric Q(M) = 0 and acts 2–transitively on the set Ω ([14]).

Let T (X) = {M ∈ V : XM = MX = 0}, where X is a point of Ω. Then,

T (X) is a totally singular plane, and T (X) is disjoint from T (Y ) if X and

Y are distinct points of Ω. If q ≡ 2 (mod 3), we can fix one type of maximal

totally singular subspaces of Q, denote by F (X) the subspace of fixed type

containing T (X) for any matrix X ∈ Ω, and set SU = {F (X) : X ∈ Ω}. The

spread SU is called the unitary spread of Q.

On the other hand, if q = 3h, the projection of any T (X) from the vertex

〈I〉 of C defines a totally singular plane, say T (X)′, of Q(6, q). The set S =

{T (X)′ : X ∈ Ω} is defined in [13] as the unitary spread of Q(6, q).

Moreover, we can embed Q(6, q) in a hyperbolic quadric Q+(7, q) of a

PG(7, q) as intersection ofQ+(7, q) with a non–singular hyperplane of PG(7, q);

the set Ω′ is an ovoid of Q+(7, q) as well and S̃ = {M(X), X ∈ Ω}, where

M(X) is the totally singular 3–dimensional subspace of a fixed type ofQ+(7, q)

containing T (X)′, is a spread of Q+(7, q). It will be useful for our purposes

to consider also this spread and we will refer to it as the unitary spread of

Q+(7, q) when q = 3h.

Remark For q ≡ 1(mod , 3),Q(M) = 0 is an elliptic quadric Q−(7, q) of
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PG(7, q) with Q(M) = Tr(x)2 − N(x) + Tr(yz) + bc; hence the set Ω is a

partial ovoid of Q−(7, q) and the set S = {T (x)X ∈ Ω} is a partial spread of

Q−(7, q).
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2.3 Hermitian curves and unitary ovoids

Let Σ∗ = PG(5, q2) and let (x0, x1, x2, x3, x4, x5) be the projective homoge-

neous coordinates of a point of Σ∗. Denote by σ the involutory collineation of

Σ∗ defined by (x0, x1, x2, x3, x4, x5)σ = (xq3, x
q
4, x

q
5, x

q
0, x

q
1, x

q
2). The set of points

fixed by σ is a canonical subgeometry of Σ∗, i.e.

Σ = {(x0, x1, x2, x
q
0, x

q
1, x

q
2) : x0, x1, x2 ∈ Fq2}.

Let π ⊂ Σ∗ be a plane with equations x3 = x4 = x5 = 0. Then π is disjoint

from Σ and the plane πσ has equations x0 = x1 = x2 = 0. For each point x

of π, let L(x) =< x, xσ >, be the line joining the points x and xσ and put

S∗ = {L(x) : x ∈ π}. Then, S = {L(x)∩Σ: x ∈ π} is a line spread of Σ which

turns out to be a normal spread. It is easy to show that the Grassmannian

map g from the lines of Σ∗ into the points of Λ∗ = PG(14, q2) maps the set

S∗ = {L(x) : x ∈ π} into an 8–dimensional projective subspace ∆∗ of Λ∗.

Precisely ∆∗ has equations p01 = p02 = p12 = p34 = p35 = p45 = 0, and any of

its point has homogenous coordinates (p03, p04, p05, p13, p14, p15, p23, p24, p25).

Now, let V = g(S), i.e. let V be the representation of S on the Grassman-

nian G of the lines of Σ; this is an algebraic variety of a canonical subgeometry

Λ ' PG(14, q) of Λ∗. It is easy to show that ∆∗ is a subspace of Λ as well, i.e.

∆ = ∆∗ ∩ Λ has rank 9; precisely,

∆ := {(x0, x1, x2, x
q
1, x4, x5, x

q
2, x

q
5, x8), x0, x4, x8 ∈ Fq, x1, x2, x5 ∈ Fq2}.
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Also, in [16], it has been proven that V is the complete intersection of the

Grasmannian G with ∆.

Note that the vector space ∆ underlies an 8–dimensional projective space

containing the projective space P associated with V as a hyperplane. Moreover,

a point p of ∆ belongs to V if and only if

p = (a1+q
0 , a0a

q
1, a0a

q
2, a1a

q
0, a

1+q
1 , a1a

q
2, a2a

q
0, a2a

q
1, a

1+q
2 ),

where a0, a1 and a2 ∈ Fq2 .

Now, let m = 〈x, y〉 be a line of π, S∗ = 〈L(x), L(y)〉, S = S∗ ∩ Σ, and

let N be the spread of the 3–dimensional projective space S induced by S,

then the image of N under g is an elliptic quadric Qm = Q−(3, q) complete

intersection of V with a 3–dimensional projective subspace contained in ∆ [16,

Theorem 1]. Hence, the incidence structure having as points the points of V ,

as lines the quadrics Qm contained in V and whose incidence is the natural

one, is isomorphic to PG(2, q2) via the isomorphism β defined by the following

rules x 7→ g(L(x)) and m 7→ Qm, where x and m belong to the pointset and

to the lineset of PG(2, q2), respectively. If H(2, q2) is a non-singular hermitian

curve of PG(2, q2) with equation x0x
q
2 +xq+1

1 +xq0x2, than the image of H(2, q2)

under β is Ω = V ∩ P [16, Theorem 6]. This result was also independently

obtained by B. Cooperstein [5, Lemma 2.3].

Denote by H, both the stabilizer of Ω in the orthogonal group PΓO+(8, q),
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q ≡ 2(mod 3) and the stabilizer of Ω′ in PΓO(7, q), q = 3h. The stabilizer of the

classical unitalH(2, q2) is the group PGU(3, q)oAut(Fq2), induced byGU(3, q)

and, because of the above arguments, it is isomorphic to H. Precisely, by using

the isomorphism β, one can see that the linear part H of H is isomorphic to

PGU(3, q) o C2, where C2 is the subgroup of Aut(Fq2) of order two.

Now, denote by G both the stabilizer of SU , q ≡ 2 (mod 3), and the

stabilizer of S̃, q = 3h, in the orthogonal group associated with the rele-

vant hyperbolic quadrics. Note that when q ≡ 0(mod 3) the stabilizer GΠ

of the hyperplane Π in G coincides with the stabilizer of the spread S of

Q(6, q) = Π ∩ Q+(7, q) in PΓO(7, q). Denote by G and GΠ the linear part of

G and GΠ, respectively. We have the following

Proposition 2.3.1. The group G is isomorphic to PGU(3, q) and the group

GΠ is isomorphic to PGU(3, q) o C2 where C2 is the subgroup of Aut(Fq2) of

order two.

Proof. As seen in 2.1 the unitary ovoid and the unitary spread of Q+(7, q)

are related each other by a triality map, denoted by τ , of Q+(7, q). Suppose

Ω = Sτ2

U (or Ω′ = S̃τ2
). This means that τGτ−1 is a subgroup of H. Also,

by [14, Proposition 6.15 (iii)], the groups G and GΠ, both contain a subgroup

isomorphic to PGU(3, q). This means that G and GΠ are either isomorphic

to PGU(3, q) or to PGU(3, q) o C2. Now, when q ≡ 0(mod 3), consider X =
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0 0 1

0 0 0

0 0 0

, then

T (X)′ =




0 y c

0 0 yq

0 0 0

 | y ∈ Fq2 , c ∈ Fq


.

The group C2, fixes T (X)′. Nevertheless, suppose q ≡ 2(mod 3), then

q = p2h+1 with p a prime number such that p ≡ 2 (mod 3). Hence, since Fq

does not contain primitive cube roots of unity, the polynomial t2 + t + 1 is

irreducible over Fq. Let ω be a root of t2 + t + 1 in Fq2 , then any element

x ∈ Fq2 can be uniquely written as x = x0ω + x1ω
q, where x0, x1 ∈ Fq. So

T (x) = −(x0 + x1) and N(x) = x2
0 − x0x1 + x2

1 and it is easy to show that the

two maximal totally singular subspaces containing T (X) = T (X)′ are

F1(X) =




x0ω y c

0 x0 yq

0 0 x0ω
q

 | y ∈ Fq2 , c, x0 ∈ Fq



F2(X) =




x1ω

q y c

0 x1 yq

0 0 x1ω

 | y ∈ Fq2 , c, x1 ∈ Fq


.

These are mapped one into the other by C2. Since, up to isomorphisms,
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PGU(3, q) acts transitively on the elements SU , on the elements of the spread

S of Q(6, q) and it is normal in PGU(3, q) o C2, the assert follows.

The next proposition can be exstracted from [16] in fact, it slightly gener-

alizes Theorem 4 of that paper:

Proposition 2.3.2. Any hermitian curve (possibly singular) of PG(2, q2) is

isomorphic, via β, to the intersection W ∩ V, where W is a hyperplane of ∆.

Hence, we have the following

Proposition 2.3.3. Let K be any hyperplane of P. Then the intersection

K ∩Ω is isomorphic to the intersection set of a pencil of Hermitian curves of

PG(2, q2), one of them being H(2, q2).

Proof. Remaind that, by [16], Ω = P∩V . Since K is a 6–dimensional subspace

of ∆, K = W1∩W2∩ . . .∩Wq+1, where Wi i = 1, . . . , q+1, is a hyperplane of ∆

and we can put W1 = P. Hence, we have K ∩Ω = W1 ∩W2 ∩ . . .∩Wq+1 ∩Ω =

W1 ∩W2 ∩ . . . ∩Wq+1 ∩ V . By Proposition 2.3.2, K ∩ Ω is then isomorphic

to the intersection set of a pencil of q + 1 Hermitian curves of PG(2, q2) and

P ∩ V corresponds to H(2, q2).

Lemma 2.3.4. A collineation h ∈ H fixes a hyperplane K of P (a hyperplane

U of Π) if and only if h fixes the intersection K ∩Ω (the intersection U ∩Ω′).
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Proof. We only need to prove the sufficient condition. To this purpose let h

be a collineation of H fixing K ∩ Ω and suppose K 6= Kh. Then,

K = W1 ∩W2 ∩ · · · ∩Wq+1 and Kh = W ′
1 ∩W ′

2 ∩ · · · ∩W ′
q+1,

where Wi and W ′
i i = 1, . . . , q + 1 are the hyperplanes of ∆ = PG(8, q)

containing K and Kh, respectively. We can suppose W1 = W ′
1 = P. Now, by

Proposition 2.3.2 each Wi and W ′
i i = 1, . . . , q+1 corresponds, via the isomor-

phism β, to a hermitian curve (possibly degenerate) of PG(2, q2); moreover

this set of q+ 1 hermitian curves both define a pencil in PG(2, q2), whose base

is (K ∩ Ω)β
−1
. Since K ∩ Ω = Kh ∩ Ω, there exist two pencils of hermitian

curves both containing the curve H(2, q2) with the same base; a contradic-

tion. Hence, if h fixes K ∩ Ω, then h fixes K. The same holds if we start by

considering h fixing U ∩ Ω′ were U is a hyperplane of Π = PG(6, q); indeed,

it is enough to observe that any such 5–dimensional projective space can be

uniquely extended to a hyperplane, say K of P passing through the vertex 〈I〉

of the cone C and that the group H fixes the vertex 〈I〉 of the cone.
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2.3.1 Intersection of Hermitian curves

Let H denote a non singular hermitian curve, i.e. an hermitian curve

with equation H1as described in section 1.1.1 and denote by H′ any other

hermitian curve of PG(2, q2), possibly singular. Also, denote by E = H ∩H′,

the intersection of H and H′, and by |E| the size of E . The set E defines a

pencil of q+1 hermitian curves of PG(2, q2) which is independent of the choice

of H and H′ in the pencil.

The following are all the possible geometric configurations for E as has been

studied by Kestenbandt in [15]:

(I) H′ is a Hermitian cone with vertex V 6∈ H and each of its generator is a

chord of H, so |E| = (q + 1)2;

(II) H′ is a Hermitian cone with vertex V ∈ H and each of its generator is a

chord of H, so |E| = q2 + q + 1;

(III) H′ is a Hermitian cone with vertex V 6∈ H and two of its generator are

tangent to H while all the others are chords, so |E| = q2 + 1;

(IV) H′ is a Hermitian cone with vertex V ∈ H and one of its generator are

tangent to H while all the others are chords, so |E| = q2 + 1;

(V) H′ is a line repeated q + 1 times and is a chord of H, so |E| = q + 1;

(VI) H′ is a line repeated q + 1 times and is tangent to H, so |E| = 1;
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(VII) H′ is a non singular Hermitian curve and so |E| = q2 − q + 1.

In what follows we will denote by Ei, i ∈ {I, II, . . . , V II}, the intersection set

whose geometric structure ensue from (I), (II), . . . , (V II) , respectively.

Lemma 2.3.5. Consider the non–singular hermitian curve H of π. We have

that:

1. there are q3(q2−q+1)(q−1)(q−2)
6

sets of type EI ;

2. there are q2(q3 + 1)(q − 1) sets of type EII ;

3. there are q4(q3+1)
2

sets of type EIII ;

4. there are q(q3 + 1)(q + 1) sets of type EIV ;

5. there are q2(q2 − q + 1) sets of type EV ;

6. there are q3 + 1 sets of type EV I ;

7. there are q3(q+1)3(q−1)
3

sets of type EV II .

Proof. The number of distinct intersection sets EV equals the number of chords

of H, while the number of distinct EV I equals the number of points of H.

These can be easily computed, proving points 5. and 6., respectively. Since

the pencils with intersection sets EII , EIII and EIV contain exactly one cone

H1 of the type described , counting the number of these intersection sets is
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equivalent to counting the number of these cones. On the other hand, since

there are three cones of the same type in a pencil having as intersection set

one of type EI , the number of such intersection sets is the number of the cones

described divided by three. Let V be the vertex of the cone, if V ∈ H and

` is a line of PG(2, q2) not through V , then there exists exactly one point

P ∈ ` such that the line 〈V, P 〉 is a tangent line to H. Hence, the number

of cones defining a sets EII is (q3 + 1)N1 and the number of cones defining

intersection sets EIV is (q3 + 1)N2, where N1 and N2 are the number of the

Baer sublines of ` not through P and the number of the Baer sublines of `

through P , respectively. On the other hand, if V /∈ H, then there exists a

Baer subline of `, say `′, such that the lines joining V with any of the points of

`′ are tangent, the others being chords. Hence, the number of cones defining

intersection sets EI is q2(q2 − q + 1)N3/3 and the number of cones defining

intersection sets EIII is q2(q2 − q + 1)N4, where N3 is the number of the Baer

sublines of ` skew to `′ and N4 is the number of the Baer sublines of ` having

two points in common with `′. Finally, the numbers Ni, i = 1, . . . , 4, can be

easily computed using the isomorphism between the projective line PG(1, q2)

and the elliptic quadric Q−(3, q) (see [10], ch. 15). Finally, as a consequence

of Proposition 2.3.3, we get that the number of remaining intersection sets, i.e.

intersection sets EV II , is q3(q+1)3(q−1)
3

. This concludes the proof.

Now we will determine the subgroup of the unitary group PGU(3, q) asso-
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ciated with the non-singular hermitian curve H(2, q2), fixing each Ei, i ∈

{I, II, . . . , V II}. In what follows we will denote by Zh a cyclic group of order

h. The linear automorphism group Aut(Ei) (i.e. the subgroup of PGL(3, q2)

fixing Ei) has been computed in [9], for all i ∈ {I, II, . . . , V II}. It is easy to see

that, up to isomorphism, Aut(Ei) ≤ PGU(3, q) whenever i ∈ {III, IV, V II}

and we have that Aut(EIII) ' Z2oZq2−1, Aut(EIV ) ' Eq×AGL(1, q), where Eq

is an elementary abelian group of order q, and finally Aut(EV II) ' Z3oZq2−q+1.

By [9, Lemma 2.6], Aut(EII) ∩ PGU(3, q) ' Eq o Zq+1. Also, Aut(EV ) is the

subgroup of PGU(3, q) fixing a chord of H1, and Aut(EV I) is the subgroup

of PGU(3, q) fixing a point of H1. Finally, regarding the stabilizer of EI in

PGU(3, q), we have the following result.

Proposition 2.3.6. Let E be an intersection set of type (I) in H and denote

by E the group Aut(E)∩PGU(3, q). Then, we have the following possibilities:

1. if q = 22h, then either E ' (Zq+1 × Zq+1) o Z3 or E ' Zq+1 × Zq+1;

2. if q = 22h+1, then E ' Zq+1 × Zq+1;

3. if q = 3h, then either E ' (Zq+1 × Zq+1) o Sym3 or E ' Zq+1 × Zq+1.

4. if q = ph and p 6= 3, 2, then either E ' Zq+1 × Zq+1 or E ' (Zq+1 ×

Zq+1) o Z3, or E ' (Zq+1 × Zq+1) o Z2;

Proof. In [9], the author reconstruct the intersection set E with geometric

structure of type (I) using as fixed non–singular hermitian curveH of PG(2, q2)
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containing E , that with equation Xq+1
0 + Xq+1

1 + Xq+1
2 = 0. He proves that

the group Aut(E) is isomorphic to (Zq+1 × Zq+1) o Sym3, where Sym3 is the

symmetric group acting on three elements. It is easy to see that the unitary

group associated withH contains the subgroup of Aut(E) isomorphic to Zq+1×

Zq+1. Now, the subgroup Sym3 is generated by the following collineations of

PG(2, q2)

σ1 : (X0, X1, X2) 7→ (X2, aX0, bX1),

σ2 : (X0, X1, X2) 7→ (cX1, c
−1X0, X2),

where aq+1 = λ(1 − λ), bq+1 = − (1−λ)2

λ
, cq+1 = − 1

λ
. Here λ is an element of

Fq \ {0, 1} such that the hermitian cones Ki, i = 1, 2, 3 with equations

K1 : λXq+1
0 +Xq+1

1 = 0,

K2 : (λ− 1)Xq+1
1 + λXq+1

2 = 0,

K3 : (1− λ)Xq+1
1 +Xq+1

2 = 0

belong to the pencil with base EI . Hence Sym3 ' {1, σ1, σ
2
1, σ2, σ3, σ4}, where

σ3 : (X0, X1, X2) 7→ (caX0, c
−1X2, bX1) and

σ4 : (X0, X1, X2) 7→ (X2, acX1, bc
−1X0).

Now, the collineation σ1 fixes H if and only if λ(1−λ) = − (1−λ)2

λ
= 1, that

is if and only if λ2 − λ + 1 = 0. Moreover, σ2 fixes H if and only if λ = −1.

Nevertheless, σ3 fixes H if and only if 2λ = 1 and finally, σ4 fixes H if and only
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if λ = 2. If q is even, then σ2, σ3 and σ4 /∈ E. Moreover, if q = 22h+1, then

σ1 /∈ E as well; while if q = 22h, then σ1 ∈ E if and only if λ2−λ+1 = 0. This

proves points 1. and 2. If q = ph and p 6= 3, 2, then there are three possibilities

according to λ2−λ+1 = 0, λ ∈ {−1, 2, 1
2
} or λ2−λ+1 6= 0 and λ /∈ {−1, 2, 1

2
}

and, as a consequence, we have three stated forms for the group E. Finally, if

q = 3h then E has the described form according with λ = −1 or λ 6= −1.
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2.4 Slices of the unitary spread

2.4.1 The case q ≡ 2(mod 3)

Let q ≡ 2 (mod 3) and let SU and Ω be the unitary spread and the unitary

ovoid of the hyperbolic quadric Q = Q+(7, q) of P defined by the Quadratic

form Q, respectively. Let K be a non–singular hyperplane of P; the slice of

SU with respect to K is the 2–spread induced by SU in the parabolic quadric

obtained intersecting Q with K. Note that the stabilizer GK of K in G coin-

cides with the stabilizer, in the orthogonal group associated with the parabolic

quadric, of the slice determined by K. As observed in the previous section,

any hyperplane of P intersects Ω in a set of points isomorphic, via the map

β, to a set Ei, where i varies in the set {I, II, III, IV, V, V I, V II}. We say

that a hyperplane K of P, is of type i for i ∈ {I, II, III, IV, V, V I, V II}, if

(Ω ∩K)β
−1

= Ei. We prove the following

Proposition 2.4.1. Let Q = Q+(7, q), q ≡ 2 (mod 3); there are five disjoint

classes of slices of the unitary spread SU ⊂ Q. These are obtained intersecting

SU with hyperplanes of P of types i, where i ∈ {I, II, III, V, V II}. Slices

obtained intersecting Q with hyperplanes of different types are not equivalent

under the action of the group G.

Proof. By Proposition 2.3.1, we have that the linear part G of G is isomorphic

to the unitary group PGU(3, q). Let K be any hyperplane of P. By Lemma
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2.3.4, the stabilizer in the group G of K, i.e. the linear stabilizer of the slice

determined by K, coincides with the stabilizer in PGU(3, q) of K ∩ Ω and

by Proposition 2.3.2, it is isomorphic to the stabilizer in the relevant projec-

tive unitary group of one of the intersection sets Ei i ∈ {I, II, . . . , V I, V II}.

These groups and their orders have been described and discussed in Sec-

tion 2. In what follows we will determine which intersection sets Ei, i ∈

{I, II, III, IV, V, V I, V II}, correspond, through the map β, to the intersec-

tion of Ω with non–singular hyperplanes of P. To this aim, we first observe

that if K is a singular hyperplane polar of a point P ∈ Ω, then K ∩ Ω = P .

Hence, the hyperplane K corresponds, via the isomorphism β, to an inter-

section set EV I . This provides an orbit of such hyperplanes of length q3 + 1

under the action of G. On the other hand, if K is a singular hyperplane polar

of a point P /∈ Ω, then K ∩ Ω projects into an ovoid of a Q+(5, q) [13]. So,

|K ∩ Ω| = q2 + 1. There are two types of intersection sets of this size namely,

the EIII ’s and the EIV ’s, (see Table 1). Now, let P =


0 1 0

0 0 1

0 0 0

; then

P ∈ Q+(7, q) \ Ω and K = P⊥ has equation Tr(z) = 0. So, we have

K ∩ Ω =
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0 0 1

0 0 0

0 0 0

 ,


α αβq αq+1

β βq+1 αqβ

1 βq αq

 | Tr(β) = 0 and Tr(α) +N(β) = 0


.

It is easy to show that, K ∩ Ω is isomorphic to the intersection, in PG(2, q2),

between the hermitian curve H1 and the hermitian cone K with equation

X1X
q
2 +Xq

1X2 = 0. The cone K has vertex V = 〈(1, 0, 0)〉Fq , hence V ∈ H1 and

so the hyperplane K = P⊥ corresponds to a subset EIV ofH1. The subgroup of

PGU(3, q) fixing such intersection has order q2(q−1) (see [9]), hence the orbit

of K under the action of this group has length q3(q3+1)(q2−1)
q2(q−1)

= q(q3 + 1)(q+ 1).

There are q3(q3+1) remaining singular points; since the subgroup of PGU(3, q)

fixing a intersection set EIII has order 2(q2 − 1), the orbit of any of this

point, under the action of the mentioned group, has length q3(q3+1)
2

. So, by

Lemma 2.3.5, we conclude that there are two orbits of singular hyperplanes

and q−2 orbits of non–singular hyperplanes intersecting Ω in a set correspond-

ing through β to an intersection set of type EIII in H1. The above arguments

show that non–singular hyperplanes correspond to intersection sets of type Ei,

i ∈ {I, II, III, V, V II} and, naturally, hyperplanes corresponding to different

intersection sets are not equivalent under the action of G.

Note that a slightly different version of the above theorem is stated in [5]

(Theorem 3.9, page 194) where the author says that under the same hypothesis

of Proposition 2.4.1, the possibility |Ω ∩ K| = 1 does occur for some non–
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singular hyperplane K of P while |Ω∩K| = q2 + 1 does not. This would mean

that there exist slices of the unitary spread SU with respect to non–singular

hyperplanes of P of type V I and none with respect to non–singular hyperplanes

of type III. The argument used in the prof of Proposition 2.4.1 shows that

this can not be the case.

As mentioned in 2.1.1, when q is even, i.e. when q = 22h+1, there is a

connection between spreads of Q+(7, q) and spreads of W (5, q).

In [13] the author exhibits three slices of SU ⊂ Q+(7, 22h+1) non isomorphic

with respect to G ' PGU(3, q). Precisely they are defined by the following

non singular point of P

i. N =


1 0 0

0 0 0

0 0 1

, in this case the stabilizer in PGU(3, q) of the corre-

sponding slice is Zq+1 × PGU(2, q);

ii. N ′ =


a 0 1

0 1 0

1 0 aq

 with a ∈ Fq2 such that Tr(a) = 1, in this case the

stabilizer in PGU(3, q) of the corresponding slice is Zq+1 × Zq+1;

iii. all points of an anisotropic line `, in this case the slices corresponding to

any point of ` has as stabilizer a cyclic group of order q2 − q + 1.

The translation planes arising from these spreads are also investigated.
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According to the terminology used in [14], referred to the Desarguesian

spread of Q+(2n + 1, q), we say that spreads of W (5, q) obtained from the

unitary spread SU of Q+(7, q) are cousins. We are here mainly interested

in those cousins that are non–equivalent under the action of the stabilizer in

PΓO+(8, q) of SU . In what follows we will use the same symbol S to denote

both the slices and the symplectic spreads of PG(5, q) they produce. Moreover,

we denote by Sp(6, q)S the stabilizer of S in the group Sp(6, q) associated with

the symplectic polarity of PG(5, q). As a consequence of Proposition 2.4.1, we

have the following

Theorem 2.4.2. There are five classes of non–isomorphic symplectic spreads

of PG(5, q) which can be obtained from the unitary spread of Q+(7, q) q =

22h+1; precisely

1. Sp(6, q)S ∼= Zq+1 ×Zq+1; there are at least q−2
6

d
2h+1

cousins in this class,

where d is a divisor of 2h+ 1;

2. Sp(6, q)S ∼= Eq o Zq+1 where Eq is an elementary abelian group of order

q; there is a unique cousin in this class;

3. Sp(6, q)S ∼= Z2oZq2−1; there are at least (q−2) d′

2h+1
cousins in this class,

where d′ is a divisor of 2h+ 1;

4. Sp(6, q)S ∼= SL(2, q)× Zq+1; there is a unique cousin in this class;
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5. Sp(6, q)S ∼= Z3 o Zq2−q+1; there are (q + 1) d′′

2h+1
cousins in this class,

where d′′ is a divisor of 2h+ 1.

Proof. In [13] the slices of SU defined by the non–singular points of P

N =


1 0 0

0 0 0

0 0 1

 and N ′ =


a 0 1

0 1 0

1 0 aq

 with Tr(a) = 1,

have been studied. Regarding point N it is proven that the stabilizer in

G ' PGU(3, q) of the corresponding slice S is isomorphic to Zq+1 × SL(2, q).

Indeed, it is easy to show that N⊥ ∩ Ω is isomorphic to an intersection set

EV . Moreover, these slices form a unique orbit under the action of the full

stabilizer G of SU . Nevertheless, regarding point N ′, in [13] it is proven that the

stabilizer in G of the corresponding slice S is isomorphic to Zq+1×Zq+1, indeed

straightforward calculation show that N ′⊥∩Ω is isomorphic to an intersection

set EI . These slices are partitioned into q−2
6

orbits under the action of G (see

point 1. of Lemma 2.3.5).

Now, let N ′′ =


0 a 1

1 0 aq

0 1 0

 with a ∈ Fq2 such that the polynomial

x3 + Tr(a)x + 1 is irreducible over Fq; we observe that it is always possible

to chose an element in Fq2 with this property, in fact this is equivalent to the

existence of an element u ∈ Fq3 \ Fq whose trace and norm over Fq are 0 and
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1, respectively and, indeed, such an element exists for any prime power q (for

instance, see[17]).

The hyperplane (N ′′)⊥ has equation Tr(az) + Tr(y) + b = 0. Hence,

(N ′′)⊥ ∩ Ω = {X}∪


α αβq αq+1

β βq+1 αqβ

1 βq αq

 : Tr(αβq) + 1 + Tr(aβ) = 0 and Tr(α) +N(β) = 0


Since q = 22h+1, the polynomial t2 + t+ 1 = 0 is irreducible over Fq.

Let i ∈ Fq2 such that i2 + i+ 1 = 0 and let {i, iq} be a normal basis of Fq2 over

Fq. Any element α ∈ Fq2 can be uniquely written as follows α = α1i + α2i
q,

where α1, α2 ∈ Fq; hence we have Tr(α) = α1 +α2 and N(α) = α2
1 +α2

2 +α1α2.

So, the system 
Tr(αβq) + 1 + Tr(aβ) = 0

Tr(α) +N(β) = 0

can be written as follows
α1β2 + α2β1 + 1 + aβ + aqβq = 0

α1 + α2 = N(β).

This system has solutions only when β ∈ Fq2 \Fq; this implies that |(N ′′)⊥∩

Ω| = q2 − q + 1. Hence, (N ′′)⊥ ∩Ω is isomorphic to an intersection set EV II of

H1. The stabilizer of the corresponding slice is then isomorphic to Z3oZq2−q+1.

We note that the slice corresponding to the non-singular point N ′′ is one of the

42



examples stabilized by a cyclic group of order q2 − q + 1 discussed by Kantor

in [14, Example 7.6]. These slices are partitioned into q + 1 orbits under the

action of G (see point 7. of Lemma 2.3.5).

Let N
′′′

=


a 0 1

0 1 0

0 0 aq

 with Tr(a) = 1. The polar hyperplane (N ′′′)⊥

has equation Tr(aqx) + b = 0. Hence,

(N ′′′)⊥ ∩ Ω = {X}∪


α αβq αq+1

β βq+1 αqβ

1 βq αq

 : Tr(aqα) + 1 = 0 and Tr(α) +N(β) = 0


.

It is easy to show that (N ′′′)⊥∩Ω is isomorphic to the intersection between the

hermitian curve H1 and the hermitian cone with equation Tr(aqX0X
q
2)+Xq+1

2 .

Hence it corresponds to an intersection set of type EIII in H1 and the stabilizer

of the corresponding slice is isomorphic to Z2 oZq2−1. We have already showed

that there are q − 2 orbits of such non–singular hyperplanes under the action

of G.

Finally, let N iv =


1 0 1

0 0 0

0 0 1

. The polar hyperplane (N iv)⊥ has equation

Tr(x) + b = 0. Hence,

(N iv)⊥ ∩ Ω = {X}∪
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α αβq αq+1

β βq+1 αqβ

1 βq αq

 : Tr(α) = 1 and Tr(α) +N(β) = 0


.

It is easy to show that (N iv)⊥ ∩ Ω is isomorphic to a intersection set EII and

the stabilizer of the corresponding slice is isomorphic to Eqo Zq+1. By Lemma

2.3.5 we have that there is a unique orbits of such non–singular hyperplanes.

This concludes the proof.

We end the section with the following remark

Remark 2.4.3. In [13], it is proven that the intersection of the unitary ovoid

Ω with a singular hyperplane gives arise to spreads and hence to translation

planes. Indeed, if P is a singular point not in Ω, then P⊥ ∩ Ω projects into

an ovoid of Q+(5, q); via the Klein map, an ovoid of Q+(5, q) corresponds to

a spread of PG(3, q) and hence to a translation plane of order q2. In [13]

some subgroups of the automorphism group of such a spread are studied. By

the arguments used in the proof of Theorem 2.4.1, we can see that indeed these

subgroups are isomorphic to subgroups of PGU(3, q) fixing intersection sets of

types EIII and EIV of H.
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2.4.2 The case q = 3h

Let V be the 8–dimensional vector space described in 2.2. If q = 3h, then

the quadratic form Q on V, defines a cone of the associated projective space

P with vertex the point 〈I〉Fq where I is the identity matrix, and with base a

parabolic quadric Q′ = Q(6, q). We can choose as base of the cone the quadric

contained in the hyperplane Π with equation Tr(x) = 0; i.e. Q′ has equation

−N(x) + Tr(yz) + bc = 0.

The set Ω then projects into an ovoid say Ω′ of Q′, indeed


0 0 1

0 0 0

0 0 0

 and


α + Tr(α) αβq αq+1

β 0 αqβ

1 βq αq + Tr(α)


with α, β ∈ Fq2 such that Tr(α) +N(β) = 0.

In this section we classify the slices of the unitary spread S = {T (X)′ : X ∈

Ω} of Q′ with respect to hyperplanes of Π intersecting Q′ in elliptic quadrics,

up to the action of GΠ ' PGU(3, q) o C2. First, we prove the following

Theorem 2.4.4. Let U be a hyperplane of Π ' PG(6, q), then the following

possibilities can occur:

1. U is the polar hyperplane of a point of Ω′. There is a unique orbit of
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such hyperplanes; also, U ∩ Ω′ is isomorphic to an intersection set EV I .

2. U is the polar hyperplane of a singular point not belonging to Ω′. There

is a unique orbit of such hyperplanes; also, U ∩ Ω′ is isomorphic to an

intersection set EIV .

3. U is a non–singular hyperplane intersecting the Q(6, q) in a Q+(5, q);

such hyperplanes form a unique orbit; also, U ∩ Ω′ is isomorphic to an

intersection set EIII .

4. U is a non–singular hyperplane intersecting the Q(6, q) in a Q−(5, q);

there are two orbits of such hyperplanes, say O1 and O2, the first of

length q3(q2−q+1)(q−1)
6

and the second one of length q3(q+1)2(q−1)
3

, such that

for any U ∈ O1, U ∩Ω′ is isomorphic to an intersection set EI , while for

any U ∈ O2, U ∩ Ω′ is isomorphic to a intersection set EV II .

Proof. By Proposition 2.3.3, we know that the intersection K ∩Ω (K a hyper-

plane of P) is isomorphic to the intersection of two hermitian curves. Also, any

hyperplane U of Π can be uniquely extended as a hyperplane K of Π passing

through the vertex of C and K ∩ Ω is isomorphic to U ∩ Ω′.

If U is a hyperplane polar of the point P ∈ Ω′, then we have that U ∩

Ω′ is isomorphic to a subset EV I of H1. Consider, on the other hand, P =
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0 1 0

0 0 1

0 0 0

 and denote by ⊥ the polarity defined by the parabolic quadric

Q(6, q), then P ∈ Q(6, q) \ Ω′ and P⊥ has equation Tr(z) = 0. Arguing as in

the proof of Theorem 2.4.1 we can prove that the intersection of this hyperplane

with Ω′ is isomorphic to an intersection set EIV in H1. The subgroup of

PGU(3, q) fixing such an intersection has order q2(q − 1) (see [9]), hence the

orbit of U under the action of GΠ has length q3(q3+1)(q2−1)
q2(q−1)

= q(q3 + 1)(q + 1).

So, we can state that any singular hyperplane which is the polar hyperplane

of a point not in Ω′ intersects Ω′ in a set isomorphic to a set of type EIV in H1.

Slicing the unitary ovoid Ω′ with one of these singular hyperplanes we obtain

a set of points which projects into a Kantor ovoid of Q(4, q) as already proven

in [13]. Consider, now, the hyperplane U of PG(6, q) defined by the following

points 


0 y c

z 0 yq

b zq 0

 : y, z ∈ Fq2 , b, c ∈ Fq


.

The intersection of Q with such a hyperplane is the hyperbolic quadric
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Q+(5, q) of equation Tr(yz) + bc = 0. The points of Ω′ ∩ U are:
0 0 1

0 0 0

0 0 0

 and


0 β2q+1 β2(q+1)

β 0 β2+q

1 βq 0

 ,

with β ∈ Fq2 . Hence |Ω′ ∩ U | = q2 + 1; since the unique orbit of hyperplanes,

with respect to the action of GΠ, intersecting Ω′ in a set isomorphic to a EIV

consists of singular hyperplanes, the only possibility is that U∩Ω′ is isomorphic

to a set of type EIII and such hyperplanes form a unique orbit as well [13].

Let, now,

U =




x y −b

z 0 yq

b zq xq

 : x, y, z ∈ Fq2 , x+ xq = 0, b ∈ Fq


.

In this case, the intersection U ∩Q is the elliptic quadric Q−(5, q) of equation

x2 + Tr(yz)− b2. The points of Ω′ ∩ U are


α + Tr(α) αβq −1

β 0 αqβ

1 βq αq + Tr(α)

 ,

with α, β ∈ Fq2 such that Tr(α) + N(β) = 0 and αq+1 = −1. So, |U ∩ Ω′| =

(q + 1)2 and by Proposition 2.3.6 the stabilizer of U ∩ Ω′ is isomorphic to

((Zq+1×Zq+1)oSym3)oC2; indeed if this was not the case then we would have
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an orbit of such hyperplanes of length grater then the number of elliptic quadric

in Q(6, q). Hence, we have one orbit of length q3(q2−q+1)(q−1)
6

, with respect to

the action of GΠ, of hyperplanes containing a Q−(5, q) and intersecting Ω′ in a

set isomorphic to a set EI . There are, then, q
3(q+1)2(q−1)

3
hyperplanes containing

a Q−(5, q) left and, by Lemma 2.3.5, the only possibility is that they form one

orbit and they intersect Ω′ in a set isomorphic to a EV II .

Let U be a hyperplane of Π intersecting Q′ in a Q+(5, q), then the set

Ω′∩Q+(5, q) is an ovoid of Q+(5, q) and, by Theorem 2.4.4 and [16], it consists

of q − 1 pairwise disjoint conics and two special points. This set corresponds,

via the Klein map, to a spread of the 3–dimensional projective space PG(3, q)

containing q − 1 disjoint reguli and two special lines. In what follows, we

explicitly describe such a spread. To this aim, consider the elliptic quadric

Q+(5, q) with equation Tr(yz) + bc = 0 and note that the set Ω′ ∩ Q+(5, q)

consists of the points:
0 0 1

0 0 0

0 0 0

 and


0 β2q+1 β2(q+1)

β 0 β2+q

1 βq 0


with β ∈ Fq2 . Let ξ be a fixed non–square element in Fq. Then any element

x of F2
q can be uniquely written as x0 + x1σ, where σ2 = ξ. Consider the

following isomorphism (y, z, b, c) ∈ F2
q×F2

q×Fq×Fq 7→ (y0, y1, b, c,−z1ξ,−z0) ∈
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F6
q. Then, the equation Tr(yz) + bc = 0 can be written in the following way

−y0z0 − y1z1ξ + bc = 0, and applying the above isomorphism it is isomorphic

to the klein quadric of equation x1x6 + x2x5 + x3x4 = 0.

In this setting, Ω′ ∩ Q+(5, q) = {P∞, Pβ} where P∞ = (0, 0, 0, 1, 0, 0) and

Pβ = (βq+1β0,−βq+1β1, 1, β
2(q+1),−β1ξ,−β0), β ∈ Fq2 . Applying the inverse

of the Klein map, we get: P∞ 7→ `∞ =< (0, 1, 0, 0), (0, 0, 1, 0) >Fq and Pβ 7→

`β = 〈(1, β1ξ,−β0, 0), (0, β0β
q+1,−β1β

q+1, 1)〉Fq . The set L = {`∞, `β}, β ∈

Fq2 , is a spread of PG(3, q). Consider the hyperbolic quadrics Qd := Q+(3, q)

of equation x2
1ξd+ x2

2 − x2
3ξ − x2

4d
3 = 0, where d is an element of F∗q. The line

`β is contained in Qd if and only if βq+1 = d, and hence the spread L contains

q − 1 disjoint reguli. The lines `0 and `∞ are not contained in any of the

q− 1 quadrics but they are pairwise polar with respect to the polarity defined

by Qd ∀ d ∈ F∗q. This spread is spawned by a regular hyperbolic fibration of

PG(3, q). Hyperbolic fibrations were introduced in [1] and in fact they consist

of q − 1 hyperbolic quadrics and two lines such that they form a partition of

the point–set of PG(3, q); if the two lines are pairwise polar with respect to

the polarity induced by any of the hyperbolic quadric, then the hyperbolic

fibration is said to be regular. Choosing one regulus in each quadric, we get a

line–spread of PG(3, q).

In [1, Theorem 2.2], the authors exhibit three families of regular hyperbolic
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fibrations. One of these is the following

J0 = {V [t, 0,−ωtpi

, 1, 0,−ω] : t ∈ Fq} ∪ {l0, l∞} i ∈ {0, 1, 2, . . . , h}

where ω is a fixed non–square element in Fq and for any t ∈ F∗q

V [t, 0,−ωtp , 1, 0,−ω] = tx2
1 − ωtp

i

x2
2 + x2

3 − ωx2
4.

Straightforward computation show that the hyperbolic fibration spowned

by the spread L is isomorphic to the hyperbolic fibration J0 when p = 3 and

i = 1.

In [25] the authors also find a linear automorphism group G in the stabilizer

of J0; the group G has order 4(q2 − 1) and is proven to be the semidirect

product of a cyclic group of order q2 − 1 and a Klein 4–group. The subgroup

G ′ of G fixing L has order 2(q2 − 1), since G ′ does not contain the collineation

of order two interchanging the two reguli of each hyperbolic quadric belonging

to J0. Also, the authors state that MAGMA computations for q = 9 show

that the full linear stabilizer of J0 has order 8(q2 − 1). As a consequence of

Theorem 2.4.4 we have that the full linear stabilizer of J0 has always order

at least 8(q2 − 1). Indeed, by Theorem 2.4.4, the automorphism group of L

is isomorphic to (Aut(EIII) ∩ PGU(3, q)) o C2, where Aut(EIII) ∩ PGU(3, q)

is the semidirect product of a group of order two permuting the two special

lines l0 and l∞ and leaving the remaining invariant and a cyclic group of order

q2 − 1, acting regularly on the lines of the spread different from l0 and l∞.
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The group C2 fixes the lines l0 and l∞ and fixes each regulus of the fibration.

Moreover, C2 fixes `β if and only if β ∈ Fq and this is possible if and only if d is

a square in Fq; so, in q−1
2

reguli there are no fixed lines while in the remaining

ones two fixed lines. Hence, the full linear stabilizer of L has size 4(q2 − 1)

and we can conclude that for any q = 3h, the full linear stabilizer of a regular

fibration which belongs to the family J0 has order at least 8(q2 − 1).

Now, let U be a non-singular hyperplane intersecting Q in an elliptic quadric

Q−(5, q): the intersection U ∩ Ω′ is a partial ovoid of Q−(5, q); on the other

hand the intersection U ∩S, where S = {T (X)′ : X ∈ Ω}, induces a spread say

S ′ of Q−(5, q). Lemma 2.3.4 can be applied to see that the partial ovoid and

the spread S ′ have the same stabilizer. Also, in the previous Theorem, we have

pointed out that there are two type of non–singular hyperplane intersecting

Q(6, q) in a Q−(5, q). Let U ∩Ω′ be isomorphic to a set EI in H1; the set U ∩Ω′

consists of q + 1 pairwise disjoint conics. More precisely, taking into account

the structure of the pencil of hermitian curve of PG(2, q2) with intersection set

EI , one can see that there are three different possible partitions of U ∩Ω′ into a

set of q+ 1 disjoint conics, say {P1,P2,P3}. The subgroup of H fixing this set

is isomorphic to ((Zq+1 × Zq+1) o Sym3) o C2, where Sym3 is the symmetric

group over three objects and Zq+1 is a cyclic group of order q + 1; for any

i ∈ {1, 2, 3} one of the two copies of Zq+1 acts regularly on the conics of Pi,

the other one acts regularly on the points of the conics of Pi. Moreover, the
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group Sym3 acts on the set {P1,P2,P3}. Now, looking at the action of this

group on the spread S ′ we have that it has one orbit of length (q + 1)2, which

is in fact formed by the lines of S ′ containing the points of Q−(5, q) ∩ Ω′.

Finally, let U be a hyperplane of Π containing Q−(5, q) such that U ∩Ω′ is

isomorphic to an intersection set of type EV II . In this case |U ∩Ω′| = q2−q+1

and this set of points has the property that never three of them are contained

in a conic. The automorphism group is isomorphic to Aut(EV II) oC2 and acts

transitively on the points of this partial ovoid and hence on the lines of the

induced spread containing these points.

It is worth mentioning that since the generalized quadrangle Q−(5, q) is

isomorphic to the dual of the generalized quadrangle H(3, q2) (for more de-

tails we remind to [18]), these two classes of spreads of Q−(5, q) produce two

non–isomorphic classes of ovoids of the hermitian surface H(3, q2) admitting

((Zq+1 × Zq+1) o Sym3) o C2 and (Z3 o Zq2−q+1) o C2.
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