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Introduction

The aim of this research is the derivation and the analysis of high order efficient
stable methods, both for Ordinary Differential Equations (ODEs) and Stochastic
Differential Equations (SDEs), which are models of many important phenomena in
life science. As an example let us consider two possible type of models in tumour
growth, in which increasing attention has been devoted, as it is one of the main death
causes in our society. Most studies stem out of population growth models mathe-
matically consisting of one or more differential equations. Such models proved to
be appropriate to predict the evolution of numerous biological phenomena. Indeed,
though simple, they often catch the essence of complicate interaction. Among the
proposed models very frequent are those based on Gompertz growth. It models the
growth of population consisting of a group of individuals of one or more similar
species in the absence of migration and interaction with other species. Gompertz
law exhibits an exponential trend around the origin. Such feature is in agreement
with observed tumor growth showing that for small tumors growth speed is such
that immunitary system is not effective, [43]. However, it should be stressed that
quite often discrepancies exist between clinical data and theoretical predictions, due
to more or less intense environmental fluctuations. To disregard such fluctuations
would lead to incorrect predictions which, in some cases, would suggest inadequate
therapies. In order to take into consideration such environmental fluctuations the

notion of growth in random environment has been formulated (see, for instance, [84]
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X Introduction

and references therein). This growth is accomplished in substituting the intrinsic
fertility in the growth equation with a normal delta correlated process whose mean
is taken as representative of population fertility. Thus, the growth process can be
described by a stochastic process, which is the solution of a stochastic differential
equation, [1].

This thesis is mainly divided in two part. The first one is concerned with de-
terministic ODEs of first and second order, while the second part is devoted to the
analysis of numerical approximation of SDEs.

The modeling of continuous time dynamical systems using ordinary differential
equations is widely used in many fields of applications, as celestial mechanics, seis-
mology, molecular dynamics (see for instance [82] and [101]) or in the semidiscretisa-
tion of partial differential equations. So we deal with high dimensional systems and
stiffness. However in some cases more realistic models can be achieved if stochastic
effects are taken into account. Many areas of application including microelectronics,
signal processing and filtering, epidemiology, finance and insurance and several other
fields need to be modeled by continuous time stochastic dynamics. As a result of
this, Stochastic Differential Equations, as a generalisation of Ordinary Differential
Equations, find application in diverse disciplines.

The first part of this thesis is concerned with the numerical approximation of
Ordinary Differential Equations, in particular we consider the classical first order

Initial Value Problem

y'(x) = f(=z,y(x)),

y(7o0) = vo

@
and the second order ODEs of special type

y'(z) = f(z,y(x)),
y(xo) = yo, (II)

y'(@o) = Yo,


mailto:Q@CCLDMPKSJ
mailto:AAMKNJGQFCBGLQS@QRGRSRGLERFCGLRPGLQGA
mailto:L@C
mailto:PM@JCK

Introduction xi

having periodic or oscillatory solutions.

Let us consider the problem (I). For this problem there is a broad literature, [25],
[52], [53], [56], [65], but the necessity of efficient and fast implementations make this
topic still an open research area. We carry on with the derivation of continuous two-
step Runge-Kutta methods, by an extension of the collocation technique. T'wo-step

Runge-Kutta methods (TSRK) of the form

}/Z[n} = UYn—1+ (1 — ui)yn + hi[aijf(xnfl + th, Yj[nil])
j=1
+ b f@a +eh Y], i=1,..m, (I11)
Ynt1 = Oyn—1+ (1 — 0y, + hi[”jf(%q + ¢jh, }/;‘[n_l})
j=1
+wif (g + cih, V), (IV)

n =1,2,..,N — 1, were introduced by Jackiewicz and Tracogna in 1995, [57]; in
the last decades they are further investigated by several scientists as Bartoszewski
[5], [6], [7], [8], [9], [10], Verner [59], Tracogna [97], Welfert [98]. The interest in
TSRK methods is due to the presence of many parameters as well as to the fact
that, advancing from z, to z,y1, we only have to compute Y because Y1l
was already evaluated in the previous step. Thus the computational cost of the
method depends on the matrix coefficient B, while the matrix A adds extra degrees
of freedom, without any need for extra function evaluations.

The collocation technique, introduced by Guillou and Soulé in 1969, [50], provides
a continuous methods (having uniform order) on the whole interval of integration

and not only at the gridpoints {z,}.

As concerning second order differential equations, even if the problem can be
solved by transforming it into a system of first order ODEs of double dimension, the

development of numerical methods for its direct integration seems more natural and
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efficient. The methods we have considered are of the following type

S

}fl[n] = (1+Cz)yn — CiYn—1 —I—hQZan(.Tn—‘r(’Jh7}/J[n]> i=1,..,s (V)
J=1
Yntt = 2n—Yna1+ 02 Y bif(xn+cih, Yj[n])- (VD)
=1

introduced by Coleman in [30]. Also in this case we provide a new class of algebraic
collocation methods. Classical numerical methods for ODEs relied on polynomials
may not be very well-suited to periodic or oscillatory behaviour. In the framework of
exponential fitting many numerical methods have been adapted in order to exactly
integrate basis of functions other than polynomials, for instance the exponential
basis (see [55] and references therein contained), in order to catch the oscillatory
behaviour. The parameters of these methods depend on the values of frequencies,
which appear in the solution. In order to adapt the collocation technique [52], [63]
to an oscillatory behaviour, the collocation function has been chosen as a linear
combination of trigonometric functions [78] or of powers and exponential functions
[31]. Many modifications of classical methods have been presented in the literature
for problem (II): exponentially-fitted Runge-Kutta methods (see for example [46],
[99]), or trigonometrically-fitted Numerov methods [45], [100] and many others (for
a more extensive bibliography see [55] and references in the already cited papers).
The second part of the present thesis is devoted to the numerical approximation

of the solution of stochastic ordinary differential equations (SDEs) in It6 form
¢ t t
X = [rX@)dr+ [ 66X () dW(e). X0) =X, te 0.1), (VI
0 0

where W denotes an s-dimensional Wiener process given on the probability space
(Q, F, P) with a filtration (F;)¢>0. The drift and diffusion functions are given as f :
[0, T]xR? — R? and G = (g1, ...,9s) : [0, T]xR? — RS respectively. It is assumed
that the initial value Xg is Fg-measurable, independent of the Wiener process and

possesses finite second moments. We assume that there exists a path-wise unique
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strong solution X (-) of (VII), see [68]. The aim of this research is to derive a new
class of high order efficient methods of Runge-Kutta type, for strong approximation.
There is a rich literature on stochastic Runge-Kutta schemes. In one of the first
papers on this topic, Riimelin [91] considered the mean-square convergence of explicit
Runge-Kutta schemes, where only increments of the Wiener process were used for
the approximation of the diffusion term. He proved that the stochastic improved
Euler (or Heun) scheme converges in the mean-square sense to the solution of the
Stratonovich version of the SDEs (VII). For SDEs with a scalar Wiener process
or with commutative noise the order of mean-square convergence of this scheme is
1. He also treated scalar SDEs as well as systems of equations driven by a multi-
dimensional Wiener process. In the papers [17], [18], [19], [21], [22] the authors
also have studied classes of stochastic Runge-Kutta methods for Stratonovich SDEs
and have developed schemes up to order 1.5 in the mean-square sense. To obtain
appropriate order conditions in a systematic way they have generalised the theory
of Butcher trees to the stochastic setting.

An approach to approximate It6 and Stratonovich SDEs with a scalar Wiener
process with convergence of order 1 is presented in [72]. For the It6 case this goal
is achieved by including terms into the schemes that involve the square root of the
step-size. Additionally using terms that involve mixed classical stochastic integrals,
schemes with order 1.5 are developed in [86] for It6 SDEs with scalar noise. Fur-
ther, strong convergence of stochastic Runge-Kutta methods and Runge-Kutta-type
methods have been discussed in [15], [62], [71]. In the context of weak approxi-
mations of SDEs stochastic Runge-Kutta methods have been studied, e.g., in [85],
[87], [88], [89], [90]. The starting point in the construction of new methods is the

derivation of order conditions. In this context there are mainly two way to do this:

e Taylor expansions, widely introduced and used by Kloeden [62].

e Butcher trees, extended in the stochastic framework by Burrage and Burrage
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[22]. They expanded the rooted trees theory, well known in the deterministic

context, [25], by the use of bi-coloured nodes for the stochastic setting.

We have extended the classical approach introduced by Albrecht in 1987, [2], in the
deterministic context. Applying Albrecht’s approach to a Stochastic Runge-Kutta
method we are able to linearise it and so we can carry out our analysis as done in
the context of multistep linear methods, [13], [14], [95]. Moreover we are also able

to provide stage order conditions, up to now never considered.

The present thesis is divided into 5 chapters: chapters 1 and 4 are respectively
an introduction to the first and the second part, while the main results in chapters
2, 3 and 4 are original.

In chapter 1 we recall, just for completeness, some preliminary notions on Runge-
Kutta methods, Two-step Runge-Kutta methods and General Linear Methods.

In the second chapter we introduce a new class of two-step collocation methods
for first order ODEs. We derive continuous order conditions, proving that our new
methods have uniform order 2m + 1, where m is the number of stages. We carry
out the linear stability analysis, but we did not found A-stable methods within this
class. In order to improve the stability properties, we relax the collocation technique
and we obtain A-stable and L-stable methods. At the end we give some numerical
experiments, in order to confirm the theoretical properties of the new classes of
methods, [37], [38], [41].

In the third chapter we derive collocation hybrid methods, with constant coef-
ficients, for special second order ordinary differential equations having periodic or
oscillatory solutions. As we done for first order ODEs, we derive continuous order
conditions and analyse the linear stability properties, [39]. Then we adapt the co-
efficients of the two-step hybrid method to an oscillatory behaviour, in such a way
that it exactly integrates linear combinations of power and trigonometric functions

depending on one and two frequencies, which we suppose can be estimated in ad-
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vance. Frequency-dependent methods within this class have already been considered
in [103], where the coefficients of methods were modified to produce phase-fitted and
amplification-fitted methods. We show the constructive technique of methods based
on trigonometric and mixed polynomial fitting and consider the linear stability anal-
ysis of such methods. Then we carry out some numerical experiments underlining
the properties of the derived classes of methods, [40].

The fourth chapter is dedicated to an introduction to stochastic ordinary differ-
ential equations. Since this is quite a new topic, we will recall the It6 calculus and
the properties of multiple stochastic integrals.

The chapter 5 is concerned to the derivation of order conditions for a new class of
Stochastic Runge-Kutta methods, by an extension of Albrecht approach for SDEs.
We rewrite our nonlinear Runge-Kutta method as a composition of linear multistep
methods. We proceed as done in the linear case in order to derive order condi-
tions also for the internal stages. We also show the advantages in the convergence

framework, [12].
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Chapter 1

Preliminary notions

In this chapter we recall some known notions concerning Runge-Kutta methods,
classic collocation technique, multistep Runge-Kutta methods which we need in
the future chapters. Then we discuss about the numerical approximation of second
order Initial Value Problems via Runge-Kutta—Nystrom methods and collocation

methods.
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1.1. Introduction 5
1.1 Introduction

Let us consider the Initial Value Problem

V(@) = f(z,y(@)), (1.1.1)

y(wo) = yo.
Tt is assumed that there exists a unique solution y(z) of the equation (1.1.1), on the
interval [zg, X] of z where zg and X are finite.
All the classical numerical methods are based on the idea of discretization. The
continuous interval [zg, X] is replaced by the discrete grid point {z,} defined by
Ty, =xg+nh, n=0,1,2,..., N; the parameter h is called the steplength. We will

denote by y,, an approximation of the solution y(z,) at x,

y(@n) ~ y(an). (1.1.2)

A numerical method is a difference equation involving the function f and a certain
number of consecutive approximations yn4;, j = 1,...,k, from which it will be
possible to compute sequentially the sequence {y,|n = 1,...,N}. If & = 1 the
method is called one-step method, otherwise multistep method.

Of all existent computational methods for the numerical solution of our initial

value problem the easiest to implement is Euler’s rule

Yn+1 — Yn = hf(xn7yn) (113)

It is an explicit one step method, so it requires no additional starting values and it
is suitable for variable stepsize implementations. From a practical point of view it
is limited because of its low order. In general an higher order can be achieved by
sacrificing one-step nature (see Linear Multistep Methods (LMMs), [52], [53], [64],
[65]) or linearity (see Runge-Kutta methods (RK), [25], [52], [53], [65]). The second
one is the philosophy behind the methods proposed by Runge (1895), subsequently
developed by Kutta (1901) and Heun (1900) and then analysed by Butcher, Burrage,
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6 Chapter 1. Preliminary notions

Hairer, Wanner, Jackiewicz and many other authors . The analysis of Runge-Kutta

methods and the development of new ones are still an open research topic.

1.2 An Ordinary Differential Equations based model in

tumour growth

If we glance through the past decades, we can outright notice a remarkable increase
of interest in the area of mathematical modeling as applied to science, engineering,
business and management, generally expressed through functional equations, which
are the best way to describe evolution in time and space. In fact, the spread of
diseases, the growth of biologic populations, the brain dynamics, elasticity and plas-
ticity, heat conduction, fluid dynamics, scattering theory, seismology, biomechanics,
game theory, control, queuing theory, design of electronic filters and many other
problems from physics, chemistry, pharmacology, medicine, economics can be mod-
eled through systems of ordinary differential equations. In particular, this kind of
models can be found in the context of the following subjects: evolution of biological
populations [73], [104], mathematical models in physiology and medicine [11], in
particular in the context of oncogenesis [54], [96], spread of infections and diseases
[60], economical sciences [44], analysis of signals [74].

We deal with problems whose theoretical investigation has been very wide in
terms of existence, uniqueness, asymptotic analysis and stability of the solutions.
Sometimes it is not possible to compute the analytic solution of a functional equa-
tion: for this reason it gets more and more important to develop numerical methods
in order to solve these problems and make some special requirements on these meth-
ods, such as high order and strong stability properties.

Oncogenesis generally intends a cancer as the result of several mutations, giving
some cells a selective growth advantage. In [96] the tumour growth is reduced to a

simple set of rules according to which a normal cell becomes malignant. This point
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1.2. An Ordinary Differential Equations based model in tumour growth 7

of view has spread out in the field of cancer research, which is very often treated
as a logical science, trying to understand and describe the behaviour of the disease
through some underlying principles. This is the reason why the investigation can be
done using mathematical tools: in this context, the evolutionary model is expressed
through systems of ordinary differential equations that take into account the con-
tribute of different elements to the cancer progression.

Even if many models for oncogenesis are based on stochastic differential equa-
tions, ordinary differential equations can also be a very accurate model for the cancer
progression. In fact, the introduction of a stochastic component would not produce
any change in the rates describing the cancer onset with respect to the ones given
by a deterministic model. Moreover, when the aim is not the creation of a model
that describes the variability of many different types of cancer all at once, ordinary
differential equations are the easiest way to create a generic model to better under-
stand the evolution of the disease.

The evolutionary model considered in [96] is the following

d
d—i’ = (diag(diag(yTk)Tb)M

+diag((b — d)Ty))S(1 — a(y)53t) x (1 — £5%) + myy, (1.2.1)

where y € R!7 is a partitioned vector describing the whole cell populations: y;
is related to normal cells, y2, y3 ... y15 describes the populations undergoing a
mutation, 116 is the number of primary tumour cells and y;7 is the number of
metastatic cells. The vector k describes the mutation rates, i.e. k; is the mutation
rate for the population gy;. The vectors b and d respectively describe the birth
and death rates, while m,, is the metastasis rate vector. The upper triangular
matrix M € R'7*!7 contains the number of genes going from state i to state j,
while the matrix S € R7X17 is related to non-normal, non-metastatic cells, i.e. cells

undergoing mutations, which are denoted by Pnjs, where Pyys = 21-122 y;- The
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0, A >10%,
logistic term a(y), defined as a(y) = v expires when more than

1 otherwise,

the 10% of the non-normal, non-metastatic cells are in angiogenesis mutations (the

number P4 denotes the amount of cells in this situation).

1.3 An Overview on Classical Runge-Kutta Methods

Classical Runge-Kutta methods are non-linear one-step methods. Therefore
there is no difficulty in changing the steplenght, but the structure of the local error
is much more complicated and there exists no easy and cheap error estimate com-
parable with Milne’s device, [25], [52], [53], [64], [65]. With Runge-Kutta methods
it is hard to tell when to change the stepsize, but easy to change it.

A general m-stage Runge-Kutta method, [25], [52], [53], [65], is defined by

yn_H:yn+h2bjf(xn+0jh,}/;[n]), n=01,....,N—1, (1.3.1)
7=1
where
Y =y + Y agfan+ h, YY), i=12. . m, (13.2)
Jj=1

It is convenient to display the coefficients in the following form, known as a Butcher

array
C1 a11 a12 A1m
C2 a21 a22 a2m
c| A
bT
Cm | Aml  Am2 Amm
by b2 bin
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with ¢ = [e1,...,em]T, b= [b1,...,by]T, A = [a;;]. We can do the following cata-

loguing:

1. Ewplicit method: a;; =0, j>1i, 4,j=1,2,...,m <= A is strictly lower
triangular. Each stage Yi[n] is given explicitly in terms of previously computed

stages Yj["], j=1,2,...,i—1,

2. Semi-implicit method: a;; = 0, j >4, 4,7 =1.2,....m <= A is lower
triangular,

3. Implicit method: a;; = 0, j =14, 4,j = 1,2,...,m <= A is not lower
triangular.

As it is known, the structure of the matrix A influences the computational cost of

the method, that is the computational cost of the non linear stage system (1.3.2).

1.3.1 Major Definitions

Here we will list the definitions of the major properties we ask to the numerical

methods for the approximation of solutions of ODEs, [65].

Definition 1.3.1
The method (1.3.1) is said to be convergent if, for all initial value problems such

that the conditions of existence and unigness of the solution are satisfied, it holds

— . 1.3.
oax [[y(@n) = ynll =0 as h—0 (1.3.3)

Note that the starting value, as well as the solution, are required to be convergent.
Now we turn to the question of what conditions a numerical method must satisfy if
it is to be convergent. We would expect that one such condition would be that it
has to be a sufficiently accurate representation of the differential system.

It would be an infinitely accurate representation if the difference equation (1.3.1)

were satisfied exactly when we replaced the numerical solution y,4+1 at x,1 by the
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exact solution y(x,+1). We therefore take as a measure of the accuracy the value of

the residual
m

Rpi1 i =y(wpa1) —y(zy) — hz bif(xn + cjh, y(xn + c;h)), (1.3.4)

j=1

called local truncation error.

Definition 1.3.2

The method (1.3.1) is said to be consistent if, for all initial value problems having

an unique solution, we have that

lim %Rn_i'_l =0. (1.3.5)

h—0
r=xo+nh

Theorem 1.3.1
The necessary and sufficient condition for a general Runge—Kutta method to be

consistent is
Y bi=1 (1.3.6)

Definition 1.3.3

If p is the largest integer such that R, 1 = O(hP*!), we say that the method has
order p.

Remark 1.3.1

Observe that if the method is consistent, it follows that it has at least order 1.

Although, it is known that convergence implies consistency, the converse is not true.
It can happen that the method suffers an in-built instability which persists even in
the limit as A — 0 and prevents convergence. The form of stability concerned with
the stability of the difference system in the limit as h goes to 0 is the zero-stability.
Definition 1.3.4

Let {6,, » = 0,1,...,N} and {6}, n = 0,1,..., N} be any two perturbations of
the method (1.3.1), and let {z,, n = 0,1,...., N} and {z%, n = 0,1,...,N} be the
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resulting perturbed solutions. Then if there exist constants S and hg such that, for

all h € (0, hg], whenever

llzn — 22 || < Se,0 <n <N, (1.3.7)

18, — 8%]| < Se,0 <n < N, (1.3.8)

we say that the method is zero-stable.

Zero-stability is concerned with the roots of the characteristic polynomial of the
difference equation.

Definition 1.3.5

The methods is said to satisfy the root condition if all the roots of the characteristic
polynomial have modulus less than or equal to unity, and those of modulus unity
are simple.

Theorem 1.3.2

The necessary and sufficient condition for the method given by (1.3.1) to be zero-

stable is that it satisfies the root condition.

It is obvious that a Runge-Kutta method always satisfies the root condition.

1.3.2 Linear Stability Theory

For some problems (as stiff problems) it can happen that for all fixed positive
values of h, the errors produced by a convergent method increase step by step.
In such situations, it is clear that the local errors are accumulating in an adverse
fashion: we are dealing with a stability phenomenon. We need a stability theory
which applies when h takes a fixed non-zero value. We can choose as test system
Y = Fy, where F € R4 has distinct eigenvalues {\;,t = 1,2,...,d} lying strictly
in the negative half-plane, a condition which ensures that all solutions of the test
system tend to zero as x tends to infinity. Since the eigenvalues of F' are distinct

there exists a non-singular matrix @ such that Q7 'FQ = A = diag[\1, A2, ..., Ad],
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and by using a transformation y = @z we can show that it was enough to consider
only the scalar test equation y’ = Ay, where A € C and (\) < 0.

Linear stability was concerned with the question of whether or not the numerical
solution of this scalar test equation tended to zero as n tended to infinity. If we apply
the classical Runge-Kutta method (1.3.1) to the scalar test equation we obtain a

one-step difference equation of the form

Yn+1 = R(z)yn, (1-3-9)

where z = hA. We call R(z) the stability function of the method. It is clear that

yYn — 0 as n — oo if and only if
|R(2)[ <1 (1.3.10)

and the method is absolutely stable for whose values of z for which this condition
holds. The region of the complex z-plane for which (1.3.10) holds is the region of
absolute stability of the method.

Definition 1.3.6
A method is said to be A-stable if R4 2 {z: R(z) < 0}.

Definition 1.3.7
A method is said to be A()-stable, a € (0,7/2) if Ry(o) 2 {2 : —a < m—argz < a};
it is said to be A(0)-stable if it is A(a)-stable for some a € (0, 7/2).

Definition 1.3.8

A method is said to be L-stable if it is A—stable and, in addition, when applied
to the scalar test equation y' = Ay, A a complex constant with ®()\) < 0, it yields
Yn+1 = R(h\)yy, where |R(hA)| — 0 as R(hA) — —o0.

For a complete theory on Runge-Kutta methods see [25], [52], [53], [65].
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1.4 Order Conditions: Albrecht’s approach

It is usual to derive order conditions for Runge-Kutta methods by using the
well-established Butcher trees theory, [24], [25], [27]. A quite different approach has
been proposed by Albrecht in 1987, [2]. An interesting feature of Albrecht’s work
is that it applies to Runge-Kutta methods the ideas already developed for linear
multistep methods.

Here we give only the idea of Albrecht approach, full details can be found in [2].
Albrecht defined a general class of methods, the A-methods, by

Zpi1 = AZy + hop(xn, Zn, Zpy1; h), (1.4.1)
where
® /i1 € R4, where d is the dimension of the system of differential equations;
e Ais a od x od matrix;

® ¢r € R?? satisfies a Lipschitz condition with respect to its second and third

arguments.

Observe that the class of A-methods is very broad and encompasses. One of the
features of this approach is that analysis in the case of scalar initial value problem
yield all the order conditions for the system case. Thus we consider only the scalar
initial value problem ' = f(z,v), ¥z, = yo. Define Z,,,1 and F(xy, Z,.1;h) € R™H!
by

Znia o= Yy vy )T (1.4.2)

F2n, Zni13h) = [f(@n+ b, V™), f(@n + emh, VI, f(@ni1s ynia)T

and define A and B by
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0 0 01
00 --- 01 0 e
A= - o 7 (1.4.3)
. 0, 1
0 0 01
a1 a2 -+ Gum O
az1  aze -+ azm O
A 0,
B— . — : (1.4.4)
T 0
Gml Gm2 " Gmm 0
by by - by O

where 0, is the m x m null matrix, 0,, is the null vector (column or row) in R™
and e =[1,1,---,1]T € R™.

Thus the Runge-Kutta method can be written as an .4-method
Znt1 = AZy + hBF (xy, Zn; h). (1.4.5)

The essence of Albrecht approach is to observe that each of the m internal stages
and the final stage of a Runge—Kutta method are linear, in the sense that all the
stages can be seen as a linear multistep methods. We can regard each of the m + 1
stages as being a generalized linear multistep method and associate with it a linear
difference operator, in the same way we did for a linear multistep method. Let z(x)
be a sufficiently differentiable arbitrary function and define L;, : = 1,2, ..., m and L
by

&
™
—~
=
=
Il
A
8
_|_
53
D‘
E
%
+
hﬁ

(1.4.6)

t
S
3
=

I
B
+
D‘

\

N
D‘
@‘
N
£}
—+
uﬁ

(1.4.7)
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Proceeding as it is usual for linear multistep methods, we expand z(x+c¢;h), z(x+h)

and 2/'(z + ¢;h) around z and collect powers in h to obtain

Li[z(x);h] = CahzW(x) + Ciph®2® (z) + - -
Liz(z);h] = CihzW(z)+ Coh?2P(z) +--- (1.4.8)
with
C < ! Y el i=1 1,2 (1.4.9)
g = —- — — aic; , t=1,....m, ¢q=1,2,... 4.
a q! (Q* 1)! j=1 T !
. 1 1
C, = ————N"beth g=1,2,.. 1.4.10
! VRIS (1.4.10)

We could define order in the same way as we did for a linear multistep method

and say that the i-th internal stage, Y;, has order p; if Cy1 = Cio = ... = Cyp, =
0, Cip, ., = 0 and the final stage has order p if C’l = C’g =..= ép =0, ép+1 = 0.

Note that the row-sum condition implies that C;; = 0, ¢+ = 1,2, ...,m, so that each

internal stage has order at least 1, that is consistent.

1.5 Classical Collocation Methods

The idea of collocation is old and well known in Numerical Analysis [33], [52],
[53], [65]. In order to advance from x, to x,4+1, it is constructed an algebraic
polynomial P(zx), which interpolates the numerical solution in the step point z,,
and satisfies the ODEs in the points x, + ¢;h, where {c1,ca,...,c} are m real

numbers (typically between 0 and 1), that is

P(xn) = Yn,
v (1.5.1)
P'(xy + cih) = f(xn + cih, P(xy + ¢ih)), i=1,2,...,m.
The solution in x,1 is given by
Ynt+1 = P(nt1). (1.5.2)

Conditions (1.5.1) define P(x) uniquely.
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Theorem 1.5.1 (Wright, 1970)

One-step collocation methods are a subset of implicit Runge-Kutta methods where

Cy 1
A5 = /0 L]'(t)dﬁ, bj = /0 L]'(t)dt, ’i,j = 1,2,...,m (153)
and Lj(t), j =1,...,m, are fundamental Lagrange polynomials
t—
L) =1+ fé (1.5.4)
= ] J v

Proof:
To prove the thesis observe that P’(z) is a polynomial of degree m — 1, which

interpolate the m data point z, + ¢;h, P(x, + ¢;h), ¢ = 1,2,...,m. Define Y;M =

P(xn 4 cih), i =1,...,m, on writing 2 = x,, + th, we have
P'(zp + cih) ZL Fl@n + cih, Y. (1.5.5)
Now integrate with respect to z, from = = x, to x = z,, + ¢;h, i = 1,...,m, and

from x =z, to z = 241, to get
P(xp, + cih) — P(xy) —hZ/ (t)dt f(zy + cjh, Yj[n]), i=1,...,m,
and
P(pi1) — Play) = hZ/ t)dt f(zn + cjh, Y)").
For j =1,....m, define

C; 1
aij = /0 L(t)dt, b, = /O L (#)dt, (1.5.6)

from (1.5.6) and (1.5.6) we derive

Yl.[”] =n,+h Z aij f (xn + cih, Yj[n]),
j=1

Yn+1 = Yn + hzbjf(% + cih, Yj[n])- (1.5.7)
j=1

Thus we have an implicit Runge-Kutta method, with the elements of ¢ being the

collocation points. &
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Remark 1.5.1

Only some implicit Runge-Kutta methods are collocation methods.

Theorem 1.5.2
An implicit Runge—Kutta method, with distinct ¢; and of order at least m is a

collocation method iff

m q
C:
C(s) : agctt =2 i=1,...,m ¢g=1,...,s, (1.5.8)
is true.
Proof:

C(s) determines the a;; uniquely. We write it as

> auplc) = JL (1.5.9)

for all polynomials p of degree < m — 1. a;; = OC" L;(t)dt satisfies the relation
(1.5.9), because with this coefficients it is the Lagrange interpolation formula. <
Moreover the maximum attainable order is at most 2m, and it is obtained by using

Gaussian collocation points [52], [65].

1.6 Two-step Runge—-Kutta Methods

Jackiewicz and Tracogna in 1995, in [57], introduced the Two—Step Runge—
Kutta (TSRK) formulas that depend on stage values at two consecutive step points.

These methods have the form

Y;[n] = UYn-1+ (1 — Ui)yn + hZ[ai]‘f(xn71 + th’ Y][n—l])
j=1
+bij f(zn + cjh, Y N, i=1,.m, (1.6.1)
Ynt1 = Oyp1+(1-0 thj Tp-1+ cjh, Y[” 1})

Jj=
tw; f (2 + cih, Y, (1.6.2)
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n =1,2,..., N — 1. The presence of extra parameters in the formula as compared
to classical Runge-Kutta methods (1.3.1) makes it possible to construct high-order
methods with relatively few stages. This big gain in efficiency makes them attractive
for the solution of large systems of ODEs. To start this method we need in addition
to yo the approximation y; at 1 and stage values Yj[o], j=1,2,...,m on the first step
[0, z1]. These values could be computed, for example, by Runge-Kutta methods of
appropriate orders. As usual it is convenient to represent the method (1.6.2) by the

table of coefficients

up | a1 @12 ... Aim | b1 bz ... bim
ug | a1 @2 ...  G2m | bar Do ... Doy
uw| A B
0| vl wT
Um | Gm1  Am2 - - Amm bml bm2 cee bmm
0 vy vy ... Uy | w1 wy ... W,

with ¢ = (A4 B)e —u, e = [1,...,1]7 € R™. Observe that in advancing from x, to

=1 ere already evaluated in the previous

Tp4+1 We need only compute Yj[n] since Yj
step. Only the matrix B determines the implementation costs of the TSRK method.
Thus we gain extra degrees of freedom associated with a two-step scheme without
the need of extra function evaluations.

In [57] general order conditions are derived using the approach proposed by Al-
brecht, there are also some examples of methods up to the order 5. This general
class of TSRK methods was investigated in [5], [7], [28], [29], [35], [51], [59], [97],
and [98]. These methods belong to the class of General Linear Methods, §1.7, intro-
duced by Butcher [25], with the aim to provide an unifying approach to analyse the
classical subjects of consistency, convergence and stability of numerical methods for

Ordinary Differential Equations, which represents an active and increasing area of

investigation [27], [56].
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1.7 General Linear Methods

?Following the advice of Aristotle, we look for the greatest good as a mean
between extremes. Of the various methods devised as generalizations of the classical
method of Euler, two extreme approaches are usually followed. One is to generalize
the Euler method through the use of multistep methods; the other is to increase
the complexity of one-step methods as in the Runge—Kutta methods. General linear
methods are introduced as a middle ground between these type of generalization”,
Butcher [23].

General linear methods (GLMs) for the numerical solution of ordinary differential

equations are defined by

}/z[n] = hz (lijf(xn + th., Y*]["]) + Zuijy][’n_l]u 1=1,2,...,s, (1'7'1)
j=1 Jj=1

o =Y b flan 4 eh Y Y e =12 (172)
7=1 j=1

n=20,1,...,N. These methods were introduced by Burrage and Butcher in 1980,
[20] (see also [24], [25], [27], [52], [56]). We also refer to a recent article by Butcher,
[26] and to the monography by Jackiewicz, [56], for an extensive review of many
aspects of GLMs such as motivation for these formulas, order conditions, linear and
non-linear stability, special families of methods, and order and stability barriers.
GLMs include as special cases Runge-Kutta methods, linear multistep methods,
e.g. BDF methods, and predictor-corrector methods. As discussed in [26] both RK
methods LMMs have limitations and the class of GLMs offers new possibilities of
constructing new formulas which attempt to combine the advantages of RK methods
(large regions of stability) and LMMs (high stage order) at the same time avoiding
the disadvantages of these methods (low stage order for RK formulas, small regions

of stability for LMMs).
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1.8 Runge-Kutta Nystrom methods

Many differential equations which appear in applications are systems of second

order
y'(x) = f(z,y(2),y (2)),
(1.8.1)
y(w0) = yo, ¥'(z0) = yo-
The general m-stage Runge-Kutta-Nystrom, [52], [102], is defined by
Uni1 = Yn+ by, + 02 b f(an + cih, Yj[n])
j=1
Ynit = Y+ B2y dif(wn+ e Y™
j=1
le[n] = Yn+ czhy; + h2 Z aijf(xn + th, Y][n]), 1= ]., e, (182)
j=1

where yn41, ¥, 4, denote the numerical approximation to y(zn+1), ¥ (zn+1)-
Definition 1.8.1

Let Y (y+c) denote the vector with the components y(x, + c;jh), where y is the
exact solution of (1.8.1), and let be Y[ = [Yl[n], .. .,Y,Ln]]T; let suppose that the

local errors are given by

y(xn+1) —UYn+1 = O(hpl+1)7
y/($n+1) - ?J;L+1 = O(hp2+1)7
Y(2nee) —YM = O(nPtY). (1.8.3)

then the order of accuracy p and the stage order r are respectively defined by

p=min{p1,pe}, 7 =min{p1,p2,ps}. (1.8.4)

For stiff first order ODEs the accuracy reducing effect of order reduction for meth-
ods with low stage orders is well known; collocation methods (which automatically
possess high stage order) are rather accurate integration methods for stiff problems.

A similar phenomenon occurs in the case of stiff second order equations.
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The linear stability of RKN methods is investigated by applying them to the test
equation y” = —\2y, [101], [102]. This leads to recursions of the form

ol oy =] (1.8.5)
hy;, hjp
where v = —A\?h?%, and the matrix M (v) is the amplification matrix. The eigenvalues

wu(v) of the amplification matrix are the roots of the equation

2 —SW)u+ P(v) =0, S(v) := traceM(v), P(v) := det M(v). (1.8.6)

1.9 Collocation methods for y"(z) = f(z,y(z),y' (x))

In the case of second order systems we can distinguish direct and indirect col-

location methods, [102].

1.9.1 Indirect collocation methods

The second order system (1.8.1) can be transformed into a first order differential
equation of doubled dimension by considering the vector (y,4’) as the new variable:
! /
v = Y (1.9.1)
Y fla,y,9)
with y(zo) = yo. ¥'(20) = y{. Indirect collocation methods are generated by ap-
plying a collocation method to the first order representation (1.9.1). Thus applying
the Runge-Kutta method derived by collocation technique defined by the Butcher

array

bT

we obtain the RKN method
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c| A2
brA .
T
Notice that the RKN method has the same order of the original RK method. Now,
let the RK method be a collocation method based on the m collocation points

Ty +cjh, j=1,...,m, then
A= (ai]‘) = ozj(ci), b= bj = Ozj(l), (1.9.2)

aj(z) = fom L;(s)ds, Lj(s):= H?iLi:j .fjic(:ii, i,j=...,m. (1.9.3)

Lj(x) is the j—th Lagrange polynomial associated with the m collocation parameters
¢;. The family of indirect collocation methods has order p = r = m for all collocation
nodes c¢j. By a special choice of the collocation points, it is possible to increase the

order p beyond m.

1.9.2 Direct collocation methods

Direct collocation methods for second order equations approximate the exact solu-
tion of (1.8.1) by polynomials, which satisfy, at the collocation points, the differential
equation and its differentiated form. Let S be the space of real, piecewise continu-
ously differentiable polynomials of degree not exceeding m + 1 associated with the
set of intervals [Tn, Zpt+1]. Thus if P is in S, P(t) is a polynomial of degree < m +1
on each interval [z, Znt1], n=0,..., N —1. For such functions, P” is a polynomial

of degree not exceeding m — 1, so that we may write

P"(xy +th) =Y Li(t)P" (xn + c;h). (1.9.4)
j=1
By integrating we derive
P'(z, +th) = P'(x,) + hZ a;j(t)P"(zn + cjh), (1.9.5)
j=1
P(zn + th) = P(xy) + thP'(za) + h* > B (1) P (@ + cjh) (1.9.6)

J=1
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where a;(z) = [ Lj(r)dr, B;(x) = [ [y Lj(7)drdp.
Next we require that the function P satisfies the (1.8.1) at the collocation points

P"(xp + ¢cjh) = f(zy + cjh, P(xn + cjh)), j=1,..,m. (1.9.7)

Conditions (1.9.5) and (1.9.6) lead to

P(zy + cih) = P(xn) + cihP' (@) + ¢ Y Bi(ci) P (@n + ¢;h), (1.9.8)
J=1

P'(zn + cih) = P'(zn) + by _ aj(ci) P (wn + cjh). (1.9.9)
j=1

Furthermore we derive

P(an + h) = P(an) + P (2n) + B2 (1) P (w0 + ¢;h), (1.9.10)
j=1

P'(zn+h) = Pl2n) +h > aj(1)P"(xn + c;h). (1.9.11)
j=1

The method (1.9.8), (1.9.10) is recognized as an m stage RKN method by introducing

the quantities

Yo 1= P(an), ¥ (20) = P'(2n), V" i= Plan + cih), (1.9.12)

bi = 51'(1), dz = ai(l), Q5 = ﬁ](CZ) (1913)
Theorem 1.9.1 ([102])
The direct RKN collocation method defined above has global step point order and

global stage order p = r = m for all sets of distinct collocation parameters c;.
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Chapter 2

Collocation—based two—step

Runge—Kutta methods for
y'(z) = flz,y(z))

It is the purpose of this chapter to discuss the construction and the analysis of
highly stable two-step continuous methods for the numerical solution of initial value
problem for the system of Ordinary Differential Equations, which turn out to be the
heart of many modern applications of Mathematics to natural phenomena and are

used more and more for the description of complex system.
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2.1 Introduction

In this chapter we introduce a general family of continuous two—step Runge—
Kutta methods for the numerical integration of Ordinary Differential Equations
depending on the stage values at two consecutive step points. This new extension
falls into the class of Two—Step Runge—Kutta methods, Section 1.6. This method
requires the starting procedure to compute the approximate solution on the initial
interval [xg,x1]. For this purpose we can use, for example, the continuous Runge-
Kutta methods constructed by Owren and Zennaro [75], [76], [77]. The special case
of collocation methods provide a continuous approximation to the solution y(x) on
the whole interval of integration, and not only at the gridpoints x,, as is the case for
the methods defined in [57]. Different approach to the construction of continuous
two-step Runge-Kutta methods is presented in [8], [10] and [58]. Continuous two-step
Runge-Kutta methods for delay differential equations are considered in [6], [9] and for
Volterra integral equations in [36]. The reason of interest in these methods lies in the
fact that, advancing from z,, to z,1, we only have to compute Yl because VI~
was already evaluated in the previous step. Therefore it is of interest to investigate
the class of collocation based methods within the class of TSRK methods, in order
to derive continuous methods with higher order of convergence, in comparison with
classical collocation methods. We extend the idea of multistep collocation methods
using two different constructive techniques, [53], [67], considering the two—step case.
By adding some extra collocation conditions, the resulting methods depend on the
stage values at two consecutive step points. We derive the order conditions so that
the method has uniform order p and stage order ¢ = p. We derive the recurrence
relation which are needed to analyse linear stability properties of these methods. In
particular we give the analysis of methods with m = 1 and m = 2, then we try to
achieve stability properties relaxing the collocation technique. In the end we give

examples of A-stable and L-stable methods, [34], [37], [38], [41].
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2.2  Multistep Collocation Methods

The idea behind multistep collocation, introduced by Guillou and Soulé [50],
is to let the collocation polynomial use informations from previous points in the

integration, so that the collocation polynomial is defined by

P(l‘nfz) = Yn—i 1= 0, 1, k‘ - 1,

(2.2.1)
P'(zy, + ¢jh) = f(xn + cjh, P(xy, 4+ cjh)) j=1,...,m.
The numerical solution is given by
Yn+1 = P(Z’n+]). (222)

Hairer and Wanner, in [53], proved that this method is equivalent to a multistep
Runge—Kutta method, [16], and the points which guarantee superconvergence are
called Radau points. Lie and Norsett derived the same methods in a different way

and analysed the order of convergence [67].

2.3 Construction of General TSRK

We carry on the idea of multistep collocation methods, by considering the case
of two—step methods, and by adding some extra collocation conditions, so that the
resulting methods depend on the stage values at two consecutive step points. The

collocation polynomial is defined by the following conditions:

P(xn—l) = Yn—-1,

P(xn) = Yn,

P'(xy—1+ ¢jh) = f(xp_1 + cjh, P(xpn_1 +¢jh)), j=1,2,...,m,

P'(xz,, + ¢jh) = f(xn + cjh, P(xp 4+ ¢;h)), j=1,2,...m.

The previous problem constitutes a Hermite interpolation problem with incomplete

data, because the function values P(xp—1 + ¢jh), P(xzy + cjh), j =1,...,m, are
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missing. We introduce the generalised Lagrange basis

{@( ) X]( ) Ej(l‘)’ 1=0,1, j= 1723"'>m}

in such a way that the collocation polynomial is expressed as follows

P(z) = @o(®)yn-1+P1(7)yn +

+ Y [N (@) P (w1 + ¢ih) + () Pz + ¢ih)]. (2.3.1)
iz

—_

Introducing the dimensionless coordinate ¢ = =%

, the collocation polynomial takes

the form

m

+ b)Y i) P (a1 + cjh) + ;)P (@n + ¢jh)].

Pz, +th) = wo(t)yn—1+ ©1(t)yn + (2.3.2)
j=1

To determine the methods we must exhibit the expression of the basis functions
@i(t), 1 = 0,1, ¥;(t) and x;(t), j = 1,2,...m. They are obtained by applying the

interpolation conditions

wo(to) =1, @o(t1) =0, @1(to) =0, @1(t1) =1,

(2.3.3)
xi(to) =0, xi(t1) =0, ¥i(to) =0, ¥i(t1) =0,
and the collocation ones
C =0, 0(ci) =0, ©i(c;—1)=0 "(c;) =0
©ol( ) wo(ci) o1 ( ) ©1(ci) (2.3.4)
X ((/’L - 1) 62]7 X] ((/l) = Oa lﬁ;(% - 1) =VU, 1 ;‘((/’L) =9

where tp = —1,t1,=0,1=0,1,4,7=1,2,...,m
In order to compute the polynomials ¢;(t), x;(t), 1j(t) we extend the technique used
by Hairer and Wanner in [53].
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Theorem 2.3.1
The method defined by (2.3.1) is equivalent to a two—step Runge—Kutta method,

YZ-["] = UYn-1+ (1 — ui)yn + hi[aijf(:cn_1 +¢jh, Yj[nfl])
j=1
+ b f@a +eh Y], i=1,.,m, (2.3.5)
Un+1 = OYp1+(1—-0)y, + hi[“jf(%& +¢jh, yj[n—l})
j=1
+ wif(an + b, YY), (2.3.6)

where

0=wo(1), vj=x;(1), wj=n1y(1),

U = SDO(CJ')’ Ajs = Xj(cs)a bjs = wj(cs)v Ja‘s = 17 sy .

Proof:

We express the basis polynomials in the following way:

2m+41
pit) = Y a’t,  i=12 (2.3.7)
=0

2m+1 2m+1

ity = Yol ww =Y ¢ j=1..m (238
=0 =0

Imposing the interpolation and collocation conditions (2.3.3), (2.3.4) to the polyno-
mials (2.3.7), (2.3.8) we obtain the following 2m + 2 linear systems:

HdY = Ny, i=1,2, (2.3.9)

D = Ny HgD =Ny i=1...m, (2.3.10)
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where H is the coefficient matrix

0 1 2¢m 3c2,

N1, No, N3 are the following vectors

31

2m+1
tO

2m+1
tl

(2m + 1)(c; — 1)2m

(2m + 1) (¢ — 1)2™

(2m + 1)c2™

(2m + 1)c2m

N1 = [6i1,0i2,0,...,0]7, Ny =10,0,81, ..., m,0, ..., 0]

N3 = [0,..,0,0i1, ..., Oim] "

and d9, p® . ¢ are the unknowns vectors. Each linear system arising in the con-

struction of these methods is nonsingular, because its coefficient matrix is of Vander-

monde type. We omit the details of the proof, simply because it uses the well-known

technique applied in computing the determinant of the Vandermonde matrix [69)].

These linear systems can be solved (apart from some exceptional values of the col-

location abscissa), giving the expressions of the collocation polynomial P(z). &
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Remark 2.3.1
The linear systems (2.3.9), (2.3.10) must be solved exactly. If the stage number m

is big, these systems are not easily solved, because they are ill conditioned.

For this reason, even if the Theorem (2.3.1) it is useful to prove the uniqueness of
the solution, we extend the technique used by Lie and Norsett in [67] in order to
derive general two-step Runge-Kutta methods of collocation type.

Theorem 2.3.2

The method defined by (2.3.1) is equivalent to a two-step Runge-Kutta method

having the following form:

Y = w1 - wi)yn + hi[aijf(an + ¢jh, Yj[n_”)
j=1
+ b f@a +h Y], =1, m, (2.3.11)
Ynt1 = Oyn—1+ (1 — 0y, + th:[Ujf(xn_l + ¢jh, Yj[”_l})
j=1
+ wi f(wn + cih, Y, (2.3.12)

where

R R UL -
1/)](15)—/0 lj(T)dr fEIJW(T)dT/O M(r)dr, j=1,...,m, (2.3.13)

o ['7 S li(ryr o
x; (%) —/0 Li(m)dr — W/O M(r)dr, j=1,...,m, (2.3.14)

B fg M(T)dr .
fEl M(T)dr

_ fg M(r)dr .
ffl M(T)dr

oolt) = (2.3.15)

©1(%) (2.3.16)
with

(2.3.17)

dpmyi = ¢; — 1,

i=1,2,....m
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2m
~ t—e; ei:ci—l
o= 1 == |

em+i = Ci, 1=1,2,....m

Proof:

To prove that the general two—step collocation method defined by (2.3.1) is equiva-
lent to the TSRK method (2.3.11), (2.3.12), again we must exhibit the form of the
basis polynomials ¢;(x), i = 0,1, ¥;(x) and x;(z), j = 1,2,...m. As before, we use
the scaled time variable ¢.

We first consider ¢;(t), j = 1,2,...m. The interpolation and collocation conditions

on®j;, j=1,...,m, are

Pi(—=r) = 0, r=0,1
w;'(cs_l) = 0, s=1,....m
1/);(05) = Jjs, s=1,...,m.

We denote the collocation knots in the following way:

{ di = C;
dm_H':Ci—l, 2':1,2,...,m.
Therefore the previous conditions on ¢; are

Yi(-r) = 0, r=0,1, (2.3.18)

Ui(ds) = Ajs.  s=1,...2m. (2.3.19)

where

dis, Hfl1<s<m
s

0, else.

(2.3.20)

Following [67], the collocation conditions can be satisfied by a polynomial of the

form

Vi) = () + %M(t), j=1,...,m, (2.3.21)
J
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where [;(t) are the Lagrange basis polynomials,

2m d.
NORE | —dj—azl-’

(3

i=1,i=j
2m ! 2m

M@y = JJe—-d) ay= [ @dj—ds), aneR.
j=1 s=1,s=j

Setting ag = ‘;—;?, equation (2.3.21) becomes

1/);-(15) =1i(t) +aoM(t), j=1,...,m. (2.3.22)
Integrating the last equation, we find
t t
Pj(t) :/ lj(T)dTJr(io/ M(T)dr. (2.3.23)
0 0

We impose the interpolation conditions (2.3.18) and we compute @ by solving the

linear equation

ag /0 M(r)dr = — /O li(r)dr. (2.3.24)
For 4);(t) we have
o t ' B f_Ollj(T)dT t
(1) /0 li(r)dr W/@ M(7)dr. (2.3.25)

We then consider x;(t), 7 = 1,2,...m. The proof is the same as above, putting

{ e, =¢ —1

em+i = Ci, =12,...m

instead of d;, 1 =1, ..., 2m.

We now consider ¢;(t),% = 0, 1. Using collocation knots d;, for ¢; we have:

pi(-r) = 1-6r r=0,1, (2.3.26)

gildj)) = 0 j=1,.,m (2.3.27)
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The previous conditions are then verified by
@i(t) o 711) / M(r
where M (t) = H?Zl(t —d;) and 'y(z) € R. First of all we consider ¢g(¢):

po(t) =10 + /°>/ M(r

We know that
NONINU 0
0= go(0) = +m / M(7)dr
0

(0)

so we have v, ' = 0. Moreover, it is

1= go(— >/ M(r)dr = 71(’)/ M(r (2.3.28)
therefore we obtain

(0) 1
W = : 2.3.29
. IO, M(r)dr (2329

To conclude the proof we must exhibit the form of the basis polynomial o;(t). As

for po(t), we impose the interpolation conditions (2.3.26), obtaining
1
1= 1(0) =+
while, applying the collocation ones (2.3.27), it is
1 y [ y [0
0=pi1(-1) = W(() )+ 7§ )/ M(r)dr=1- v§ )/ M(7)dr. (2.3.30)
0 —1

So, we arrive to the following expression of the coefficients of (%)

1
=1, A= (2.3.31)
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2.4 Order conditions

In this section we want to derive order conditions for the method determined by
(2.3.1). As it is a continuous method, it seems advantageous to derive continuous

order conditions for a general continuous methods, defined by

P(xp + sh) = ©o(8)Yn—1 + ¢1(5)yn+
+h 3 G (8)P (01 + ¢ih) + 5(s) P! (zn + ¢;h)], (2.4.1)
Yn+1 = P(:L'n+1>~

We can observe that if the polynomials ¢o(s), p1(s), x;(s),%;(s) satisfy the interpo-
lation and the collocation conditions (2.3.3), (2.3.4) then the method is the colloca-
tion one derived in §2.3. We assume that P(x, + sh) is a uniform approximation to
y(xp + sh), s € [0,1], of order p. As the result the stage values P(x, + cjh) have
stage order ¢ = p. We investigate the local discretisation error &(x,, + sh), which is
defined as the residuum obtained by replacing P(x,, +sh) by y(x, +sh), P(x,+c;h)
by y(zn +cjh), j =1,2,...,m, yp—1 by y(zn—1) and yy, by y(z,), where y(x) is the

true solution. This leads to

§(xn +sh) = y(zn + sh) — po(s)y(zn — h) — p1(s)y(zn)

m 2.4.2
= BY (o @t (5 - D)+ b)), D
=1

s€[0,1],n=1,2,..., N — 1. We have the following theorem.

Theorem 2.4.1
Assume that the function f(y) is sufficiently smooth. Then the method (2.4.1) has

uniform order p if the following conditions are satisfied

990(8) + @1(5) =1,

bl 3 ¢ =) g o 2.4.3
( kll) wo(s) + <Xj($)% + 4 (8) 7 ) _s (2.4.3)

J=1
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sef0,1, k=1,2,...,p.

Moreover, the local discretisation error (2.4.2) takes the form
E@n + sh) = WG, (5)y ™) () + O(W*2), (2.4.4)

as h — 0, where the error function Cy(s) is defined by

gpt1 —1)ptl1 m ¢ — 1) c?
=G ((p+)1)! ZORDY (Xj(s)(T) +¢j(S)H). (2.4.5)

j=1

Proof:
Expanding y(x, + sh), y(z, — h), ¥'(xn + (¢; — 1)h) and y(z,, + ¢;h) into Taylor

series around the point x,, and collecting terms with the same powers of h we obtain

E(an+sh) = (1—go(s) —p1(s))y(an)
ptl ok k
st (=)

+ D (F - T@O(S))hky(k)(xn)
k=1
p+1l m k—1 k—1

(¢~ 1) g

- > > (Xj(s)w +¢;(s) (k:]— 01 nry®) (a,)
k=1 j=1 ’ ’

+ O(hrt2).

Equating to zero the terms of order k, K = 0,1,...,p, we obtain order conditions

(2.4.3). Comparing the terms of order p + 1 we obtain (2.4.4) with error function
Cp(s) defined by (2.4.5). O
Let observe that the condition po(s) + ¢i(s) =1, s € [0,1], is the generalisation
of preconsistency conditions for TSRK methods (1.6), compare [56].

The next result shows that the polynomials ¢o(s), ¢1(s), x;(s), and ¥;(s), j =
1,2,...,m, corresponding to the methods of order p = 2m + 1, derived as the
unique solution of the system of order conditions (2.4.3) satisfy the interpolation
and collocation conditions (2.3.3), (2.3.4).

Theorem 2.4.2

Assume that ¢o(s), v1(s), x;(s), and ¥;(s), j = 1,2,...,m, satisfy (2.4.3) for
p = 2m+ 1. Then these polynomials satisfy the interpolation conditions (2.3.3) and
the collocation ones (2.3.4).
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Proof:
The conditions (2.3.3) follow immediately by substituting s = 0 and s = —1 into
(2.4.3) corresponding to p = 2m + 1. To show (2.3.4) we differentiate (2.4.3) to get

eo(s) + ¢i(s) =0,
—1)* / - / (Cj — 1)kt / C§_1 st (2.4.6)
(k!) ‘PO(SH; (Xﬂ'(s)(k—i)ljwj(s)(kl)!) k— 1)

k=1,2,...,2m + 1. substituting s =¢; and s=¢; — 1,9 =1,2,...,m, into (2.4.6)
we obtain (2.3.4). o

It follows from (2.3.3) that the methods described in Theorem 2.4.2 satisfy the
conditions Cp(—1) = 0 and C,(0) = 0.

2.5 Linear stability analysis

To analyse the stability properties of the methods (2.3.5), (2.3.6) we will use
the standard test equation

y =y, t=>0, (2.5.1)

where A is a complex parameter. Applying (2.3.5), (2.3.6) to (2.5.1) and computing

the resulting expression at the points s =¢;, i =1,2,...,m, and s = 1 we obtain
Yl = go(er)yn1 + o1 (ci)yn + hA > (Xj(ci))/j[n_l] + %(Cz’)yj[n]), (2.5.2)
j=1
Unt1 = Lo(V)¥n-1+01(1)yn +hA> (Xj(l)Y}”‘” + wj(l)Yj["]), (2.5.3)
j=1

i=1,2,....m,n=1,2,..., N — 1. Introducing the notation z = hA,

v/ wo(c1) p1(c1)
U N BT L e

il o(cm) 1(cm)

o — [ x1(1) - xm(D) }T, wl = [ Pi(1) o (1) }T,
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and
A=Dglel'oy . B=Rs(ely,

the relations (2.5.2), (2.5.3) can be written in a vector form
Y = go(e)yn—1 + @1(c)yn + Z<AY["71] + BY["]),
Yn+1 = 00o(1)Yn—1+ p1(1)yn + Z(UTY[”_” + wTY[”]),
n=12,...,N — 1. Hence,
Y = (1—2B)"" (goo(c)yn—1 + o1(c)yn + zAY[”_1]>

and substituting this relation into the equation for y,1 leads to

Ynt1 = {@0(1)+2wT(I*ZB)_1900(C)}yn—1
+ )+ 2" - 2B) i ()| wn

+ =z [7;T + 2w (I - zB)_lA} y=1l,

The relations (2.5.5) and (2.5.6) are equivalent to

Yn+1 M11(Z) M12(Z) M13(Z) Un
Yn - 1 0 0 Yn—1
yl Qei(c) Qpolc)  2QA yin-1]
where
Mi(2) = ¢i(1)+ 20" Qe (c),
Miy(z) = @o(1)+ 2w" Quol(c),
Miz(z) = z(v" +20"QA),
and

Q=(—-zB)teCcmm

39

(2.5.4)

(2.5.5)

(2.5.6)

(2.5.7)

(2.5.8)
(2.5.9)

(2.5.10)

(2.5.11)

The matrix appearing in (2.5.7) is called stability, or amplification, matriz of the

method (2.3.5), (2.3.6), and as usual will be denoted by M(z) € C(m+2)x(m+2) e
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can also define the stability function of the method (2.3.5), (2.3.6) as
p(w, z) = det (w[ - M(z)) (2.5.12)

We will be mainly interested in methods which are A-stable. This means that all
the roots wi,wa,. .., Wnt2 of the polynomial p(w, z) defined by (2.5.12) are in the
unit circle for all z € C such that R(z) < 0. By the maximum principle this will be
the case if the denominator of p(w, z) does not have poles in the negative half plane
C_ and if the roots of p(w, iy) are in the unit circle for all y € R. This last condition
will be investigated using the Schur theorem [94] (see also [64]). This criterion for a

polynomial of any degree k can be formulated as follows. Consider the polynomial

k-1

d(w) = e + 1w+ 4w + oo, (2.5.13)

where ¢; are complex coefficients, ¢ = 0 and ¢y = 0.
¢(w) is said to be a Schur polynomial if all its roots w;, ¢ = 1,2, ..., k, are inside of
the unit circle. Define

~

p(w) = Gow* + awt T -+ G w + &, (2.5.14)

where ¢; is the complex conjugate of ¢;. Define also the polynomial

61(w) = - ($(0)6(w) — H(0)d(w)) (25.15)

of degree at most k£ — 1. We have the following theorem.
Theorem 2.5.1 (Schur [94])

¢(w) is a Schur polynomial if and only if

[6(0)] > |#(0) (2.5.16)
and ¢1(w) is a Schur polynomial.

We will be also interested in methods which are L-stable, i.e., methods which are
A-stable and all the roots of the stability function p(w, z) given by (2.5.12) are equal

to zero as z — —oo. Now we will analyse more in detail one and two stage methods.
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2.5.1 Analysis of methods with m =1

Consider firstly the collocation methods of order p = 2m+1 = 3. We can derive
this family of methods by using Theorem 2.3.1, Theorem 2.3.2 or order conditions
with p=3. We obtain a one parameter family of two-step methods depending on the
abscissa c¢. The coefficients of these methods are

s[6e(c — 1) + 3(1 — 2¢)s + 25%]

po(s) = T 7

o1(s) = (1 + 5)[6¢ —11:3(612— 6c)s + 25 |
o - Lot i
pis) = LT ‘110j63cf;2 + (- 20)3]

and the error constant C3(1) is given by

B 1 —3c—3c2+12¢% — 6¢*
B 6(1 — 6¢2)

Cs3(1)

To investigate stability properties of the resulting class of methods it is more con-
venient to work with the polynomial obtained by multiplying the stability function
(2.5.12) by its denominator. The resulting polynomial, which will be denoted by the

same symbol p(w, z), for this family of methods takes the form
p(w, 2) = p3(2)w? + p2(2)w? + p1(2)w + po(2), (2.5.17)

where the polynomials p;(z), i = 0, 1, 2, 3, assume the form

m(z) = —(c—1)%,

pi(z) = 5—12c+6¢% + (2 - 5c+ 6¢2 — 6% + 3ch)z,
pa(2) = —4+12c—12¢% 4 (4 — 8¢ — 3c® + 6¢ — 3¢z,
p3(2) = —1+46¢%+(1—2c—2¢%+cP)ez.

We will look for A-stable methods in this class of two-step formulas. Let

]5(’LU7 y) = ﬁ(wv iy)7
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42 Chapter 2. Collocation—based two—step RK methods for y' (x) = f(x,y(x))

where p(w, 2) is the stability polynomial (2.5.17). We compute the constant polyno-
mial with respect to w, which will be denoted by pg(y), using the recursive procedure

described above. This polynomial takes the form

Po(y) = alc)y* + Ble)y® + v(e)y®,

where a(c), 8(c) and v(c¢) are polynomials with respect to the abscissa c¢. It follows

from the Schur criterion in Theorem 2.5.1 that the condition

Boly) =0, forall y=>0,

is the necessary condition for A-stability. However, it can be verified that the poly-
nomials a(c), B(c) and 7y(c) are not simultaneously greater or equal to zero for any
c. This proves that A-stable methods do not exist in this class of methods of order
p = 3. In fact the region of stability of such methods is bounded. In Fig. 2.1 we

show an example of stability region. In Fig. 2.2, form =1 and p =2m + 1 = 3, we

Figure 2.1: Stability region of one-stage method for ¢ = 1.

have plotted, in the (¢, z)-plane, the stability interval of the methods corresponding
to each value of ¢, considering ¢ > % in order to satisfy the condition —1 <60 <1

required for zero-stability.
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Figure 2.2: Interval of absolute stability in the (¢, z)-plane for the two-step colloca-

tion methods with m =1 and p = 3.

2.5.2 Analysis of methods with m =2

We consider the methods (2.3.5), (2.3.6) of order p = 2m + 1 = 5. Solving the
order conditions (2.4.3) corresponding to m = 2 and p = 5 we obtain a family of
methods depending on the components of the abscissa vector ¢; and ca. We have
plotted in Fig. 3.1 the contour plots of error constant C5(1) of these formulas for
0<c¢; <1landO0 < <1. Choosing, for example, ¢; = % and ¢ = 1 we obtain

two-step formula of uniform order p = 5 with coefficients given by

[15 — 10s — 3052 + 2453] s>

990(3) = - 29 )
(14 5)[29 — 29s + 445% — 545 + 245%]
301(5) = )
29
s2(1 4 5)[89 — 187s + 9652
) = — (1+9)] ]’

87
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s(1 4+ 5)[29 — 31s — 1652 + 2057

xa(s) = 59 :
s%(1+ s)[19 + 7s — 1652
wly = SR |
s2(1 4 8)[7 — 25 — 1252
sty = ~LrlT |
The error constant of this method is C5(1) = %. The stability polynomial of two

1

09

08

07

06

N 055

s
0.4F

Figure 2.3: Contour plots of error constant C5(1) for two-step collocation methods

od order 2m + 1 = 5.

parameter family of methods takes the form
p(w, 2) = pa(2)w* + p3(2)w® + pa(2)w? + pr(2)w + po(2),

where p;(2), ¢ = 0,1,2,3,4 are quadratic polynomials with respect to z. These
polynomials depend also on ¢; and c3. We have performed an extensive computer
search based on Schur criterion in the two dimensional space (c1,c¢2) looking for
methods with good stability properties but so far we were not able to find methods
which are A-stable. We suspect that such methods do not exist in this class of

formulas with m = 2 and p = 5.


mailto:JM@K
mailto:MOIQLM@J
mailto:G@MCI
mailto:@GJGRWNMJWLMKG
mailto:@JC

2.6. Almost collocation methods 45

Figure 2.4: Stability region of two—stage collocation method with ¢; = % and cp = 1.

2.6 Almost collocation methods

The aim of our research is the derivation of methods having high order as well
as strong stability properties. By using collocation technique we found a class of
methods of order p = 2m + 1, without acceptable stability properties: there are not
A-stable methods within this family, surely for m=1 and almost surely for m=2. We
are still interested in continuous methods of the form (2.3.5), (2.3.6), so we relax
the interpolation or collocation conditions, in order to have some free parameters
which we can use to improve stability properties. In this way we obtain continuous
methods within the TSRK class, but of course the order is less than 2m + 1. We are
mainly interested in methods corresponding to p = m+7r, where r =1,2,... m+1.
The advantage of these methods as compared, for example, with methods of low
stage order, consists of the fact that they provide an uniform approximation P(t) of

order p to the solution y(t) over the entire interval of integration. As a result these
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methods do not suffer from the order reduction phenomenon [24]. This is in contrast
to implicit Runge-Kutta methods with m stages of order p = 2m, p = 2m — 1, or
p = 2m — 2 for which the continuous approximation to y(t) is only of stage order m.
This leads to the reduction of order for stiff systems of ODEs for which the effective
order is equal only to the stage order m.

In general, for the methods of order p =m+r, r = 1,2,...,m, we will choose ¢o(s)
and x;(s), j = 1,2,...,m —r, as polynomials of degree < m + r which satisfy the

interpolation conditions

@o(0) =0, x;(0)=0, j=1,2,...,m—r, (2.6.1)
and the collocation conditions

eo(ci) =0, Xjle) =0, j=1,2,...,m—r. (2.6.2)

This leads to the polynomials ¢g(s) and x;(s), j = 1.2,...,m — r, of the form

wo(s) = s(go+aqs+-+gmyras™ ), (2.6.3)
xj(s) = s(rjo+rjas+-+ Tj,m+r—15m+r_1), (2.6.4)
j=1,2,...,m—r, where

Qo +2qici + -+ (M A+ 1) gmir—1cTTT =0,

—1
rjo +2rjaci+ A (mA )T =0

bl

i=1L2,....m—r,i=1,2,...,m. The methods obtained in this way satisfy some
of the interpolation and collocation conditions (2.3.3) and (2.3.4). We have the

following theorem.

Theorem 2.6.1
Assume that ¢o(s) and x;(s), j =1,2,...,m —r, satisfy (2.6.1) and (2.6.2). Then

the solution ¢1(s), x;(s), j=m—r+1,m—r+2,...,m, and ¢;(s), j =1,2,...,m,
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satisfy the interpolation conditions

01(0) =1, x;(0)=0, j=m-—-r+1l,m—-r+2,...,m, (2.6.5)

Pj(0) =0, j=1,2,...,m, (2.6.6)
and the collocation conditions

@) =0, Xj(ci)=0, j=m-r+lm-r+2,...,m, (2.6.7)
1/);»(67;) = 6/5]', ] = ].,2,. ey, (268)

1=1,2,...,m.

Proof:
Substituting s = 0 into (2.4.3) corresponding to p = m +r, r = 1,2,...,m, and
taking into account that the solution to (2.4.3) is unique the condition (2.6.5) follows.
Differentiating (2.4.3) with respect to s and substituting s = ¢;, i = 1,2, ..., m, into
the resulting relations for k = 1,2,...,m +r, we obtain (2.6.7). This completes the
proof. &
The formulas obtained by imposing the conditions (2.6.1) and (2.6.2) will be then
called almost two-step collocation methods. 1t follows from Theorem 2.6.1 that
the polynomial P(¢) defined by the method (2.4.1) of order p = m+r,r =1,2,...,m,

satisfies the interpolation condition
P(ty) = yn (2.6.9)
and the collocation conditions at the points ¢;, i.e.,
P'(ty +cih) = f(P(tn + cih)), i=1,2,...,m. (2.6.10)
However, in general, these methods do not satisfy the interpolation condition

P(tp-1) = yn-1 (2.6.11)
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and the collocation conditions
P/(tn,1 + Clh) = f(P(tn,1 + Clh)), 1=1,2,...,m. (2612)
In our search for highly stable methods (i.e. A-stability, L-stability) we will be

mainly concerned with methods of order p = 2m and p = 2m — 1.

2.6.1 One stage almost collocation methods

Let us consider the methods (2.4.1) of order p = 2m = 2. We choose the
polynomial ¢g(s) of degree less than or equal to two which satisfies the interpolation

condition (2.6.1) and collocation condition (2.6.2), i.e., the conditions
20(0) =0 and ¢h(c) = 0.
This leads to the polynomial ¢g(s) of the form

1
wo(s) = qos <1 - 2—C<5>, (2.6.13)

where g is a real parameter and ¢ = 0. Solving the order conditions (2.4.3) cor-
responding to m = 1 and p = 2, where ¢o(s) is given by (2.6.13), we obtain a
two-parameter family of two-step methods depending on the parameter gy and the

abscissa c. The coefficients of these formulas are given by

p1(s) =1—qos+ —gisz, (2.6.14)
qo L G ).
s)=lc+—=4cqpl)s—|z+—=+-— )¢ 2.6.1
X(s) ((‘+2+qu)9 (2+2+4C>97 (2.6.15)
(1o ep D 1, o w0
Y(s) = <1 c+ 5 qoc>s—|— <2 + 5 4c>8 , (2.6.16)

and the error constant Cy(1) takes the form

~ 10c — 24¢% 4+ 12¢3 + qo — 2qgoc — 6goc?® + 12¢gc?
N 24c ’

Ca(1) (2.6.17)
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2.6. Almost collocation methods 49
¢ = 0. The stability polynomial of this family of methods is
p(w, z) = wpa(2)w?® + p1(2)w + po(2)], (2.6.18)
where the polynomials pg(2), p1(z) and pa(z) are now given by
po(2) = 2q0 — 4goc + [2¢ — 4¢* +2¢° + qo — 2q0¢ — qoc® + 290¢”]z,

p1(2) = —4c — 2qo + 4qoc — [6¢ — 8¢ + 4¢ — qo + 2q0c — 2q0c® + 4qoc?z,

and

p2(2) = 4c — (4 — 2¢ + qo — 2qoc) 2.

We have performed a computer search based on the Schur criterion using the poly-

-1l.5 =1 -n 5 n 0.5 1 1.5 Z

o

Figure 2.5: Region of A-stability in the (qo, ¢)-plane for the two-step methods (2.3.5),
(2.3.6) with m =1 and p = 2.

nomial p(w, z) given by (2.6.18) with po(z), p1(2) and p2(z) defined above. This
search was performed in the parameter space (go,c) and the results are presented

in Fig. 2.5 for —3 < g9 < 1 and 0 < ¢ < 2, where the shaded region corresponds
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to the A-stable formulas. Choosing, for example, gg = —1 and ¢ = % we obtain the
A-stable two-step method with coefficients given by
25 —3)s 3+ 35 — 252
wo(s) = g, p1(s) = ———, (2.6.19)
3 3
2s —3)s 25+ 3)s
x(s) = 25 3)s s P(s) = 25 13)s. (2.6.20)
6 6
For this method the stability polynomial p(w, z) is given by
27 9 5 5
p(w, z) = w<<3 - Ez)w - (4 + gz)w + <1 + 1—62)), (2.6.21)
the error constant Ca(1) = — 5.

We will look next for L-stable methods, i.e., methods for which all roots of the
polynomial p(w, z)/p2(2)), where p(w, z) is given by (2.6.18), are equal to zero as
z — —o00. Such methods correspond to the solutions of the nonlinear system of

equations
im 2B _g o P22
Z—>—00 pg(z) zZ2—>—00 pg(z)

It can be verified that this system takes the form

= 0. (2.6.22)

(c—1)(2¢ — 2¢% + qo — qoc — 2qoc?) =0,
c—8c® +4c® — qo + 2qoc — 2qoc? + 4qpc® = 0,

and has solutions

qo = —3 c=1 and qo = 9 c=2. (2.6.23)

The coefficients of the method corresponding to the first set of the above parameters
are

_ <2
ools) = B2 o) = 22T =0, w(s) =

(s+1)s
3 3 '

(2.6.24)

The coefficients of the method corresponding to the second set of the parameters qg
and c are

S(S — 8*82
pots) = 2D (s = TER T sy = 202 ) -
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It can be verified that for s = 1 both of the above methods reduce to backward
differentiation method of order p = 2, compare [25], [64].
2.6.2 Two stages almost collocation methods

We consider next the methods of order p = 2m = 4. We choose the polynomial

©o(s) which satisfies the conditions of the form
00(0)=0 and ¢y(c;) =0, i=1,2.
This leads to the polynomial of the form
o(s) = slgo + @15 + @25” + 435°],

where ¢o and ¢3 are given by

70 +6q1 4 = S0+ 20

I ;
Choosing, for example, ¢; = %, co =1, g = q1 = —1, we obtain the method with
coefficients given by
s[27 + 27s — 795 + 393
pas) = 21 | (2.6.26)
27
27 + 27s + 27s% — 79s3 + 39s*
v1(s) = , (2.6.27)
27
25[783 + 10265 — 266952 + 129353
X1(s) = — [ ], (2.6.28)
405
s[783 + 7565 — 2249s% + 111353
x2(s) = [ ], (2.6.29)
162
28[27 + 185 — 97s? + 5753
Yi(s) = — [ 57 ], (2.6.30)
s[837 + 5945 — 2881s% + 185753
Py(s) = [ | (2.6.31)
810
The error constant of this method is Cy(1) = %. The stability polynomial of

the four parameter family of methods of order p = 4 takes the form

p(w, z) = wlps(2)w® + pa(2)w’ + pi(2)w + po(2)], (2.6.32)
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where p;(z), i = 0,1, 2,3 are quadratic polynomials with respect to z. These poly-
nomials depend also on the parameters qg, g1, c1, and co. We have performed an
extensive computer search based on the Schur criterion in the four dimensional space
(g0, 41, c1,¢2) but so far we were not able to find methods which are A-stable. We
suspect again that such methods do not exist in this class of formulas with m = 2

and p = 4.

Figure 2.6: Region of A-stability in the (qo,ro)-plane for the two-step methods
(2.3.5), (2.3.6), with m = 2 and p = 3.

Finally, consider the methods of order p = m+1 = 3. We choose the polynomials
wo(s) and x1(s) of degree less than or equal to three which satisfy the following

conditions

@o(0) =0, x1(0)=0, (i) =0, xjle;)=0, i=1,2.
These polynomials take the form
wo(s) = slgo + @15 + @25°],  x1(s) = s[ro + ris +ras”],
where

(c1+ c2)qo o Q
e — q2 =12 = .
2c1¢9 3cico

q =71 = —
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Solving the order conditions (2.4.3) corresponding to m = 2 and p = 3 we obtain
a four parameter family of methods depending on qq, rg, c1 and co. The stability

polynomial of this family of methods is given by

p(w, z) = wpa(2)w? + p1(2)w + po()],

where p;(z), i = 0,1,2, are polynomials of degree less than or equal to two with
respect to z. These polynomials depend also on ¢, 79, ¢c1 and co. We have performed
again an extensive computer search looking for methods which are A-stable. We have
found such methods only if both components of the abscissa vector are outside of
the interval [0,1]. The results of this search for ¢; = 3 and ¢y =  are presented in
Fig. 2.6 for —0.4 < g9 < 0.1 and 0 < ry < 1, where the shaded region corresponds to
A-stable methods. The coefficients of the resulting methods with m = 2 and p = 3

are given by ¢ =[5, 3],

) = qos[135 — 425 + 452 135 — 135¢ps + 42qos® — 4qps®

J ' 2.6.33
po(s 35 ;o p1(s) 138  ( )
70s[135 — 425 + 45|
s) = 2.6.34
x1(s) 35 : (2.6.34)
[135 + 181qg — 3670][135 — 425 + 45%]s
) = — ; 2.6.
x2(s) T30 , (2.6.35)
(63,21 N (10T, 14 N (1 2L N
Yi(s) = ( 3 + o1 10 3To>s <2+ =10 %0 157”0)5 + (6+810qo 457"())8 . (2.6.36)

35 145 3203 14\, (1 29 40N,
= (24 2 )s— (24 20— = S o g ) $%. (2.6.37
vals) (8 oy “))S (2+108q0 45”’)5 +<6+162q0 135”)8 (2:6.37)

The error constant Cs(1) is

4494825 + 6019723qy — 12291847
N 77760 ‘

Cs(1) (2.6.38)

We have also found methods in this class which are L-stable. Such methods corre-

spond to solutions of the nonlinear system

ni) g (2.6.39)

lim =0, lim
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One such solution is

21225899 113887980

————— ~ 0.2 4 ~————— ~ (.6984 2.64
77647080 0273364, 7o 163068619 0698405, (2.6.40)

qgo =~

and the resulting method is A-stable and L-stable. A faster damping of errors can
be possibly achieved by the stronger property of stiff accuracy, considered in H.

Podhaisky, B.A. Schmitt and R. Weiner [83].

2.7 Numerical Experiments

We present below a selection of results of numerical tests, on many non-stiff and
stiff problems, designed to compare our methods with respect to classical one step
collocation Runge-Kutta methods. The numerical experiments are carried over with
a fixed stepsize, without the usage of strategies to save function evaluations. Even if
our collocation methods have no unbounded stability regions, they can be suitable
to integrate also stiff problems, just by adapting the choice of the step size to the
amplitude of the interval of stability. Indeed, methods having unbounded stability
regions, for example A-stable methods, can integrate stiff problems also with larger
step size, but this kind of integration could highten the error committed too much.

Test 1. We first consider the following linear problem, [65],

yi(x) = —2y1(x) + y2(x) + 2sinz
1 (2.7.1)

yh(x) = y1(x) — 2y2(x) + 2(cos z — sin x)

with = € [0, 10], with the initial condition y(0) = [2,3]?, whose exact solution is

y1(x) =2 7 +sinx
(2.7.2)

ya(z) = 277 4 cosx

We solve this problem using the two—step collocation method with m =1 and ¢ =1

(GTSCOLL) and we compare it with the one step Gauss method with one stage
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(of order 2) and the Radau ITA with 2 stages (of order 3), in order to have a com-
parison between methods having the same number of stages (Gauss) and the same
order (Radau ITA) and also with BDF method of order 3 (BDF), which is usually
considered a standard method for stiff problems [63]. The result of the implementa-
tion is shown in the following tables, where h is the step size used, fe is the number
of function evaluations, cd is the number of correct digits, ge is the global error

committed at the end of the integration interval.

GTSCOLL method, m=1, p=3 Gauss method, m=1, p=2
h fe cd ge h fe cd ge
0.1 2242 | 4.9435 | 1.1387¢-005 0.1 297 | 3.0565 | 8.7792e-004

0.05 3522 | 5.8438 | 1.4328e-006 0.05 597 | 3.6588 | 2.1936e-004
0.025 5866 | 6.7454 | 1.7968e-007 0.025 1197 | 4.2609 | 5.4835e-005
0.0125 9580 | 7.6491 | 2.2430e-008 0.0125 | 2397 | 4.8630 | 1.3708e-005
0.00625 | 18144 | 8.5507 | 2.8133e-009 0.00625 | 4797 | 5.4650 | 3.4270e-006
0.003125 | 31984 | 9.4569 | 3.4917e-010 || 0.003125 | 9597 | 6.0671 | 8.5676e-007

Radau ITA method, m=2, p=3 BDF method, k=3, p=3
h fe cd ge h fe cd ge
0.1 2966 | 4.7535 | 1.7637e-005 0.1 198 | 4.0413 | 9.0920e-005

0.05 4750 | 5.6481 | 2.2484e-006 0.05 398 | 4.9149 | 1.2163e-005
0.025 7904 | 6.5468 | 2.8386e-007 0.025 798 | 5.8036 | 1.5716e-006
0.0125 | 12972 | 7.4478 | 3.5660e-008 0.0125 | 1598 | 6.6996 | 1.9968e-007
0.00625 | 25036 | 8.3497 | 4.4689e-009 0.00625 | 3190 | 7.5992 | 2.5163e-008

0.003125 | 44684 | 9.2523 | 5.5928e-010 || 0.003125 | 3708 | 8.5006 | 3.1579e-009

As shown in fig. 2.7, the method GTSCOLL gives the best accuracy. If we
compare the results obtained by our method and the Gauss one, we can see that
the GTSCOLL method, using the same number of stages, gives a higher order of
accuracy. If compared with the Radau ITA method with same order, but with two
stages, our method gives a better accuracy as well. BDF method gives less accurate

results, by using less function evaluations.


mailto:OG@LD
mailto:F&RJ@LDG
mailto:@HNM
mailto:PGQML@CRUCCLKCRFMBQF
mailto:KCLSK@CPMDQR
mailto:@JCQ
mailto:GQRFCLSK@CP
mailto:GQRFCLSK@CPMDAMPPCARBGEGRQ
mailto:PCRFCPCQSJRQM@R
mailto:GLCB@WMSPKCRFMB
mailto:KCLSK@CPMDQR
mailto:@SRUGRFRUM
mailto:@CRRCP

56 Chapter 2. Collocation—based two—step RK methods for y'(z) = f(z,y(z))

—— GTSCOLL method (m=1, p=31§
— — Radau ll& method (m=2, p=3) []
—*— Gauss method (m=1, p=2)
—%— BOF method (k=3, p=3)

Morm of the global error

1 12 14 16 18 2 22 24 28

Figure 2.7: Comparison between three solvers for the problem (2.7.1).

Test 2. We next consider the well known Van der Pol’s equation [53]. We reduce

this second order ODE to the following first order system of two equations

Yy = Y2
' (2.7.3)

yo = n(l —yf)ye — u1

with 2 € [0,100] and with the initial condition y(0) = [2,0]7. In particular, we
consider the case p = 1000. The parameter pu > 0 hightens the importance of the
nonlinear part of the equation. This problem exhibits a particular phenomenon: the
problem switches from stiff to nonstiff with a very sharp changing solution. This
makes the equation quite challenging for ODEs solvers.

The GTSCOLL method, having a bounded stability region, is able to integrate this
nonlinear stiff problem using a stepsize adapted to the amplitude of the stability

region: in particular, it shows the same behaviour of the Gauss method and it is
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better than the Radau and BDF methods.

GTSCOLL method Gauss method
h fe cd ge h fe cd ge
0.1 | 1889 | 6.8483 | 1.4180e-007 || 0.1 | 2996 | 6.9023 | 1.2520e-007

0.05 | 3098 | 6.8870 | 1.2971e-007 || 0.05 | 5996 | 6.9023 | 1.2520e-007

Radau ITa method BDF method
h fe cd ge h fe cd ge
0.1 | 13010 | 4.1495 | 7.0869e-005 || 0.1 | 1554 | 6.9013 | 1.2509e-007

0.05 | 24010 | 4.4498 | 3.5496e-005 || 0.05 | 3108 | 6.9029 | 1.2510e-007

In many cases, it is possible to give an upper bound for the stepsize, in order to
integrate a stiff system also with methods having a bounded stability interval. We
show an example in which we obtain such an estimation of the stepsize.

Test 3. The following problem is Kramarz’s system [63], which is often used in

numerical experiments on periodic stiffness, [82], on second order ODEs:

., 2498 4998
y'(z) = Ay(z) = y(x), (2.7.4)
—2499 —4999
where A is the matrix of coefficients in (2.7.4), y(z) = [y1(z), y2(2)]T, with y(0) =

[2, —1]T and z € [0, 27]. The exact solution of this problem is

2cosx
y(x) = (2.7.5)
— COoS X.

The eigenvalues of A are Ay = —2500, Ao = —1; then the analytical solution of the
system exhibits the two frequencies 1 and /2500, but the high frequency component
is eliminated by the initial conditions. Notwithstanding this, its presence in the
general solution of the system dictates restrictions on the choice of the stepsize, so

that the system is stiff.
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We transform this problem in a system of 4 ordinary differential equations of the first
order and we integrate it by using the GTSCOLL method, whose stability interval
is [—;—8, |. In order to get stable results, the product hA must be in [—;—8,0], SO
h < % = 0.00158. If we use a stepsize h < 0.00158, the GTSCOLL method
integrates the above problem with a bounded error. The following table shows that
this actually happens. Then we compare these results with the one obtained by the

Gauss method.

GTSCOLL method Gauss method
h fe cd ge h fe cd ge
0.00158 19883 | 2.6095 | 2.4575e-3 0.00158 19873 | 2.6065 | 2.4745e-3
0.00079 39768 | 3.1539 | 7.0154e-4 0.00079 39726 | 3.1513 | 7.0579e-4

0.000395 79533 | 3.1523 | 7.0418e-4 0.000395 79237 | 3.1517 | 7.0523e-4
0.0001975 159068 | 3.5797 | 2.6320e-4 0.0001975 156735 | 3.5793 | 2.6347e-4

0.00009875 | 318138 | 4.3710 | 4.2559e-5 0.00009875 | 298833 | 4.3703 | 4.2624e-5
0.000049375 | 636273 | 4.3706 | 4.2600e-5 || 0.000049375 | 509014 | 4.3704 | 4.2616e-5

BDF method
h fe cd ge
0.00158 6543 2.6070 | 2.4715e-3
0.00079 9694 3.1517 | 7.0504e-4

0.000395 15906 | 3.1517 | 7.0504e-4
0.0001975 31813 | 3.5793 | 2.6342e-4
0.00009875 63627 | 4.3704 | 4.2613e-5

0.000049375 | 127254 | 4.3706 | 4.2607e-5

Actually our collocation method shows the same behaviour of the Gauss method

and BDF method, despite of its bounded stability region.

Test 4. Now we test our almost collocation method (ACOLL) on the so-called
ROBER problem. This problem describes the kinetics of an autocatalytic reaction
given by Robertson (1966). Under some idealised conditions and the assumption

that the mass action law is applied for the rate functions, the following mathematical
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model consisting of a set of three ODEs can be set up

y) = —kiy1 + ksyays

vh = k1y1 — kays — ksvoys (2.7.6)

Y = kays

with (o1, %oz, 03)” = (¥1(0),42(0),y3(0))" = (1,0,0)7, where y1, y2, ys denote the
concentrations of the chemical species involved.

The ROBER problem is very popular in numerical studies and it is often used as a
test problem in the stiff integrators comparisons. The numerical values of the rate
constants used in the test problem are ki = 0.04, ko = 3-107, k3 = 10%.

The large difference among the reaction rate constants is the reason for stiffness. As
is typical for the problems arising in chemical kinetics this special system has a small
very quick initial transient. This phase is followed by a very smooth variation of the
components where a large stepsize would be appropriate for a numerical method.
We solve this problem using our one-stage ACOLL method, with ¢ = % and qo = —1,
and with the one-stage one-step Gauss method. In this way we compare methods
having the same order. In the following tables, where h, cd and ge are the same as

before, we can notice that the ACOLL method gives more accurate results.

ACOLL method Gauss method

h cd ge h cd ge
0.1 4.8156 | 1.5287e-5 0.1 4.3859 | 4.1121e-5
0.05 5.3856 | 4.1161e-6 0.05 4.6268 | 2.3612e-5
0.025 5.8994 | 1.2606e-6 0.025 5.5454 | 2.8482e-6
0.0125 6.2856 | 5.1806e-7 0.0125 6.4036 | 3.9479e-7
0.00625 | 6.4654 | 3.4242e-7 0.00625 | 6.5002 | 3.1602e-7
0.0003125 | 6.5004 | 3.1591e-7 || 0.0003125 | 6.5273 | 2.9692e-7
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Chapter 3

Two—step Hybrid Methods for
y'(x) = flz,y(x))

The purpose of this chapter is to derive two-step hybrid methods for special second
order ordinary differential equations with oscillatory or periodic solutions. Firstly
we consider a new class of two—step collocation methods, discuss the order of the
resulting methods and analyse their stability properties. Then we show the construc-
tive technique of methods based on trigonometric and mixed polynomial fitting and
consider the linear stability analysis of such methods. We carry out some numerical

experiments underlining the properties of the derived classes of methods.
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3.1 Introduction

It is the purpose of this chapter to construct a new class of two—step hybrid

methods for the numerical integration of second order Initial Value Problems

y'(x) = f(z,y(x)),

y(z0) = o, (3.1.1)

y'(z0) = vy,
having periodic or oscillatory solutions. We suppose f smooth enough in order to
ensure the existence and uniqueness of the solution. Even if (3.1.1) can be trans-
formed into a first order system of double dimension, the development of numerical
methods for its direct integration seems more natural and efficient. This problem,
having periodic or oscillatory solutions, often appears in many applications: celestial
mechanics, seismology, molecular dynamics, and so on (see for instance [82], [101]
and references therein contained). In the construction of two—step methods for this
type of problems, different possibilities can be taken into account. First we have
to choose if we want to approximate, in addition to the solution in the step points,
also the derivative of the solution, as for instance Runge-Kutta—Nystrom methods
do in the one step case. Then we can use also stage values which are associated
to the previous step points, in order to highten the order of the resulting method,
without heightening the computational cost too much, as done for instance in [57].
The methods we have considered belong to the class of two—step hybrid methods

introduced by Coleman in [30]

Y;[”] = up_1+ (1 — u;j)yn + h* Z a;j f(xn + cjh, Yj[n}), (3.1.2)
j=1
Yni1 = Oyn_1+ (1 —0)y, +h? Z wj f(xn + cjh, Yj[n]), (3.1.3)
j=1

in which y,—1, y» and y,41 are approximations for y(x, — h), y(z,) and y(z, + h),

respectively. There methods are characterised by two s-dimensional vectors, b and
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c, with elements b; and ¢;, and an m x m matrix A with elements a;;.

Many other methods, though not normally written like this, can be expressed in
the same way by simple rearrangement. Order conditions are relationship between
coefficients of a method which cause successive terms in a Taylor expansion of the
local truncation error to vanish. Coleman expressed the Taylor series as B2-series.
In [30], the methods are formulated as one-step methods, and the local truncation
error is expressed in terms of a set of coefficient functions. There are also tabulated

some order conditions, and the coefficients of some particular classes of methods.

3.2 Two—Step Collocation Hybrid Methods

We derive the parameters of the methods by using a collocation technique based
on algebraic polynomials, then we handle the study of order and stability properties
of the resulting methods, [39]. The development of classical collocation methods
(i.e. methods based on algebraic polynomials) is the first necessary step in order to
construct collocation methods whose collocation function is expressed as linear com-
bination of different functions, e.g. trigonometric polynomials, mixed or exponential

basis (see, for instance, [31], [55]).

3.2.1 Derivation of methods

We compute the parameters of the methods extending the technique introduced
by Hairer and Wanner in [53] in the first order case. In order to derive two—step col-
location methods of the form (3.1.2), (3.1.3), we compute the collocation polynomial,

which satisfies the following m + 2 conditions

P(xn-1) = Yn-1, P(xzy) = yn, (3.2.1)

P"(xp +¢jh) = f(xn+ ch, P(x, + cjh)), j=1....,m. (3.2.2)
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which allow us to derive a polynomial of degree at most m + 1. We express the

collocation polynomial as linear combination of polynomials of degree at most m+1:
m

Plan +th) = p1(O)yn—1 + e2(O)tm + 12D x5 (P (w0 + cjh), (3.2.3)
j=1

where t = 52 In order to satisfy (3.2.1), (3.2.2), we impose the following set of

conditions on the basis functions:

@1(_1) =1, 902(_1) =0, Xj(_l) =0, 901(0) =0, @2(0) =1,
x;(0) =0,  ¢f(ci) =0, 5(c;) =0, xj(ci)=70ij,

(3.2.4)

for i,5 = 1,...,m. The coefficients of the unknown basis functions

{301(15), 902(15)7 Xj(t)7 .7: 1, 2, .., m}

are given by the solutions of m + 2 linear systems having the following coefficient

matrix
1 -1 1 ... (1)t (—1)m+t
1 0 0 0 0
H=10 0 2 i(i — 1) 2 m(m+ 1),
0 0 2 ... i(i—1)c72 ... m(m+1)cnt

which is a nonsingular matrix (apart for some exceptional values of the colloca-
tion abscissa) because of Vandermonde type (see [69]). After computing the basis

functions, the class of methods takes the following form

Y = pi(eynat +e2(e)yn +h2 D nje) fan + YY), (3.2.5)
j=1
Unt1 = er(Dyn1+e2(Vyn + 12D xi(1) f @ + cjh, Yj[n})' (3.2.6)
j=1

We list the coefficient functions of the methods:

e one stage @1(t) = —t. xa(t) = Lt(1+1);
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e two-stages

QOl(t) = _ta
]. + 302 C9 2 ]. 3
yi1(t) = — t— t° + t’,
Xl( ) 6(01 - 02) 2(61 - CQ) 6((?1 - Cg)
1+ 3¢ c1 9 1 3
t) = t+ - t7;
X2( ) 6(01 — CQ) 2(61 — CQ) 6(61 — CQ)
e three stages
351(15) = —t,
0 = - —1—2¢2 — 263 — 602c3f n A .2
X N 12(ct — ) (et —c3) 7 2(ct —c2)(ct — ¢3)
o 02 + 03 t3 + 1 t47

6(ct —c?)(c! —¢3) 12(ct — ) (el — ¢3)

1+ 2¢t 4+ 263 + 6163 cled

t) = — t2
xa(t) 12(c! — ¢2)(c2 — 3) 2(ct —e?)(c2 — ¢3)
_1 .3
B c—c Py 1 #,
6(ct —c?)(c® — ) 12(ct — 2)(—c? + 3)
0 = - 1+2¢! +2¢° +6c'¢® cte? 2
8 o 12(ct =) (=24 3) 2t —3)(—c2+c3)

1, .2
B c +c B4
6(ct —3)(c2 —c3)

12(ct —e3) (2 —¢3)
3.2.2 Order conditions

We now derive order conditions, by considering P(x,, + th) as an uniform ap-
proximation of y(xy, + th) on the whole integration interval.
Theorem 3.2.1
Assume that the function f is sufficiently smooth. Then the method (3.2.5), (3.2.6)

has uniform order p if the following conditions are satisfied:

L=@1(t) = a(t) = 0,

t+@i(t) =0, (3.2.1)

tk k2

—1)k m cj
G- M5 - Y Gy =0,
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k=2...,p, te]|0,1].

Proof:

We consider the local discretisation error

m

E(an +th) = y(zn + th) — p1(t)y(zn — h) — pa2(t)y(wn) — h? Z X (Y (zn + cjh),

and expand y(xz, +th), y(z,—h), y"(xn+cjh) in Taylor series around the point

Ty, obtaining

flan +th) = ylzn) +thy'(zn) +- - + (Zl_!y)”(p)(%nwr
() lan) — () 4ot %y@ ()] — o2(t)y(n)
Y O+ et ) + e+ )]+ 00,
i=1 '

We then compare the coefficients of the same power of h, achieving the thesis. <
Theorem 3.2.1 allows us to prove that every two—step collocation method of the type
(3.2.5), (3.2.6) has order p = m on the whole integration interval, and this result is
in keeping with [30]. In the context of General Linear Methods [25], [56], the first
condition of (3.2.1) is the so-called preconsistency condition, while the second one is
the consistency condition.

In order to be the method preconsistent and consistent, it must be ;(t) = —t and
wa(t) = 1+ t, i.e. the methods (3.1.2), (3.1.3) exactly fall in the class of Coleman
hybrid methods [30], as 0 = —1 and u; = ¢;, i = 1,...,m .

3.2.3 Linear Stability Analysis

We handle the linear stability analysis, [82], [101], [102], of the obtained methods.
We apply the class of methods (3.1.2), (3.1.3), to the test problem

Y = —\2y, AeR
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obtaining
m
Yi[”] = UiYn—1 + (1 —u)yn — 2 Zaijyj[n], (3.2.2)
j=1
m
Ynit = O+ (1= 0y — 12> wyy", (3.2.3)
j=1

where 2 = A?h2. In tensor notation,

y' UYp—1 + WY, — I/ZAY[”], (3.2.4)

Ynt1 = Oyn1+ (1 —0)y, — vty (3.2.5)

where Y = (VPym w = (w)y, = (1 )Py, w = (wi)ty, A= (ai)ly.

The following expression for the stage values holds:
VI = Qluyn_1 + yy), (3.2.6)

where Q = [[+v?A]~! and I is the identity matrix of dimension m. If we substitute

this expression in (3.2.5), the following recurrence relation arises:

Ynt1 = [0 — VQwTQu]yn_l +[1—-60— 1/211JTQ71]yn, (3.2.7)
that is
Ynt1 | _ M1 Mo Yn 7 (3.2.8)
Yn 1 0 Yn—1
where

My =1-0-1v*w'Qa,  Mp=0-1v*w"Qu.
The stability matrix takes the form

My M
M= | TR (3.2.9)
10

From [101], [102], we consider the following definitions.
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Definition 3.2.1
(0,3?) is a stability interval for the method (3.1.2), (3.1.3) if Vv € (0,3%) the

spectral radius of M (v?) is such that

p(M (1) < 1.

Definition 3.2.2
The method (3.1.2), (3.1.3) is A—stable if (0, 3%) = (0, +00).

In order to reach A-stability, it must be p(M (v, c)) < 1 where p(M (2, ¢)) is the
spectral radius of the stability matrix, i.e. both the eigenvalues p1, s of M (12, ¢c)
must satisty the condition |u1| < 1, |u2| < 1, for any value of v2. For m = 1,
through an analytical study of the stability matrix (3.2.9), it is possible to prove
the following result which characterises A—stable methods. If the eigenvalues of the
stability matrix (3.2.9) (or in equivalent way, the roots of the stability polynomial)
are on the unit circle, then the interval of stability becomes an interval of periodicity,

according to the following definition.

Definition 3.2.3
(0, H?) is a periodicity interval if Yv* € (0, H3) the roots 71, o of the stability

polynomial 7(p) = det[M (v?) — pl] satisfy
ri = eV py = gmi0W)

Definition 3.2.4
The method (3.1.2), (3.1.3) is P—stable if its periodicity interval is (0, +00).

Theorem 3.2.2

For m =1, the method (3.2.5), (3.2.6) is A—stable if and only if ¢ € (\/ii, 1]

Through a numerical search, it is possible to find nonempty periodicity intervals.

For instance, in the case m = 1, for any ¢ € [0, 5—10), the periodicity interval of the

resulting methods is [0, 4].
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3.3 Hybrid methods with frequency dependent param-

eters

Classical numerical methods for ODEs relied on polynomials may not be very
well-suited to periodic or oscillatory behaviour. In the framework of exponential
fitting many numerical methods have been adapted in order to exactly integrate
basis of functions other than polynomials, for instance the exponential basis (see
[65] and references therein contained), in order to catch the oscillatory behaviour.
The parameters of these methods depend on the values of frequencies, which appear
in the solution. In order to adapt the collocation technique [52], [63] to an oscil-
latory behaviour, the collocation function has been chosen as a linear combination
of trigonometric functions [78] or of powers and exponential functions [31]. Many
modifications of classical methods have been presented in the literature for problem
(3.1.1): exponentially-fitted Runge-Kutta methods (see for example [46], [99]), or
trigonometrically-fitted Numerov methods [45], [100] and many others (for a more

extensive bibliography see [55] and references in the already cited papers).

Our aim is to adapt the coefficients of methods (3.1.2), (3.1.3) to an oscillatory
behaviour, in such a way that it exactly integrates linear combinations of power and
trigonometric functions depending on one and two frequencies, which we suppose
can be estimated in advance. Frequency-dependent methods within the class (3.1.2),
(3.1.3) have already been considered in [103], where the coefficients of methods were

modified to produce phase-fitted and amplification-fitted methods.

We rewrite the hybrid method (3.1.2), (3.1.3) as an .A-method, following the idea
in [2], [65], in order to regard it as a generalized linear multistep method and consider
linear operators associated to it, which will play a crucial rule in the development
of the new methods. Then we derive the methods, by imposing that the internal
and external stages exactly integrate linear combinations of mixed basis functions.

In particular, we construct methods with constant coefficients and methods with
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parameters depending on one or two frequencies. Finally we analyse linear stability

properties of the derived methods, [40].

3.3.1 Two-step hybrid methods as A-methods: order conditions

We show some preliminary and helpful results we will use in the remainder of
this section in order to carry out the construction of numerical methods belonging
to the class of two-step hybrid methods (3.1.2), (3.1.3). In particular, following the
approach introduced by Albrecht, we rewrite the class of two-step hybrid methods
as A-methods. We first define the following vectors in R™*2

Zn+1 = [}/l[n]v .. [n] ynvyn-i-ﬂ ;

F(2n, Znsrih) = [f(@n+cth, YI™), o f@n + ey YIP), (@, tn)s (@0, yni1)]T-

In this way, a two-step hybrid method (3.1.2), (3.1.3) can be expressed as an A-

method of the form

Zns1 = AZy + W2BF (x4, Zny1; ), (3.3.1)
with
0 —c e+c A 00
A=|0 -1 2 |,B=|s" 0 0 | RMFAx(n+), (3.3.2)
0 0 1 0 00

e is the unitary vector of R™. This representation is very useful, because it consti-
tutes an m 4+ 2 linear stages representation, in the sense that each of the m internal
stages and the external stages are linear, so we can look at them as a generalized
linear multistep formula on a non-equidistant grid. For this reason, we can consider

the following m + 1 linear operators

Li[z(z);h] = (m +ch) — (14 ¢)z(z) + ¢z(x — h)
— R? Za” (x+cjh), i=1,..,m (3.3.3)
Liz(z);h] = z(z+h)—2z(x) + 2(x — h) — h? i bi2"(x +cih) (3.3.4)

=1
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where z(x) is a smooth enough function. Expanding in power series of h around z

we obtain
Lilz(@);h] = Ciph?2P(2) 4+ Csh?z® (@) + ..., i=1,...m
Liz(z);h] = Coh?2(x) 4+ C3h®20) () + ..
where
Cia = CCJ_(Zj (ql')q (q12)!j§aijcg oi=1.,m =23,
G A S s

As a consequence, we can give the following definition.

Definition 3.3.1

The i — th internal stage (3.1.3) of a two-step hybrid method has order p; if
Cio=0, Ci3=0, ..., Cipi—i-l =0, CipH_Q =0, (3.3.5)

while the external stage (3.1.2) has order p if

Cy=0,C3=0, ..., Cpu1 =0, Cpin=0. (3.3.6)
We know that necessary condition for a two-step hybrid method (3.1.2), (3.1.3) to
have order p is that the external stage must have order p, i.e.

1+ (—1)7

plrea=2=—_~ 7
q(q—1)

qg=2,3,...,p+1, (3.3.7)

where the vector power is componentwise. In order to look for conditions that are
also sufficient, in line to Albercht’s approach, we need to look at the global error.
We omit the details achieving order conditions, because they can be found in [30].

The table 3.1 shows the set of order conditions up to 4.
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Order | Order conditions

1 Sibi=1

2 Zl biCZ‘ =0

1

3 >oibic; = 6
>0 22, biaij = 13

4 >oibic =0

> Zj biciaij = %
i 2 biaije; =0

Table 3.1: Order conditions for two-step hybrid methods (3.1.2), (3.1.3) of order up
to 4.

3.3.2 Constructive technique of mixed-trigonometrically fitted two-

step hybrid methods

Now we show the construction of some two-step hybrid methods for the nu-
merical solution of second order ODEs, whose solutions depend on one or more
frequencies, which at the moment we suppose can be estimated in advance. In
particular, we require that both the internal and external stages of the resulting

methods exactly integrate linear combinations of the following basis functions:
{1,z,...,29 cos(w;x), sin(w;z), ¢,i=1,2,...} (3.3.8)

depending on the frequencies w;, with 7,q such that the dimension of the basis is
m+42,s02i4+qg=m+ 1.
The case of mixed basis follows the idea of using mixed interpolation of type

m—1
acos(wz) + bsin(wz) + Z it (3.3.9)
=0

presented in [42] and used in [31]. In each case the vector c is considered to be free.

Each ¢;, i = 1,2,...,m can be chosen in order to improve the stability properties of
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the methods or, imposing a special set of constraints in the implicit case, in order
to achieve superconvergence.
Methods with constant coefficients

In order to derive s-stage methods of type (3.1.2), (3.1.3) with constant coeffi-

cients, we annihilate the linear operators (3.3.3)-(3.3.4) on the functional basis
{1,2,2°,...,29} (3.3.10)

with ¢ = s+ 1. It trivially happens that

Li1;h] = L[L;h =0, i=1, 2, .., m,
idesh) = Lkl =0, i=1,2, ..., m,
while, for 2 <k < ¢, it is
k k
k. _ _ ¢ + (_1) G k—2
Lilz";h] = 0,i=1,2,..., m & R = 1) _;awcj
" L+ (D%~ pee
Liz*;n) = =) bl
[%; h] 0 < R = 1) ; e

(3.3.11)

fori=1, 2,..., m and 2 < k < ¢, which is a system of m(m + 1) equations in the
unknowns a;j, b;, for i, j =1, 2,..., m.

Remark 3.3.1

It is easy to verify that the methods obtained by solving the order conditions (3.3.11)
are equal to the methods described in the previous section and in [37], which are
based on collocation through algebraic polynomials, and have been derived by ex-
tending the multistep collocation technique described in [53]. Therefore conditions

(3.3.11) are the order conditions for collocation methods within class (3.1.2), (3.1.3).


mailto:L@CAFMQCLGLMPBCPRMGKNPMTCRFCQR
mailto:@GJGRWNPMNCPRGCQMD
mailto:JM@K
mailto:0OIQLM@JCP
mailto:G@MCI
mailto:TCM@R
mailto:MSNIP@LDASNC
mailto:NNC@G
mailto:@NCI
mailto:SMIFPDHBNC@IL
mailto:@L
mailto:@KO
mailto:FNINC@G
mailto:@NCI
mailto:@M
mailto:DHNC@JL
mailto:@PDIOMM
mailto:@H
mailto:@LDP
mailto:S@R
mailto:N@H
mailto:DHBNC@GOFNDMN
mailto:@J
mailto:@M
mailto:3C@L
mailto:@AIL

3.3. Hybrid methods with frequency dependent parameters 75

Methods with parameters depending on one frequency

In order to derive numerical methods for second order ODEs whose solu-
tion depends on the frequency w, a priori known, we consider the function basis
{1,z,...,2% cos(wz), sin(wz), ¢=1,2,...}.

In particular, to derive two-stage methods, we consider {1, cos(wz), sin(wz)} as
function basis and we impose that the numerical method exactly integrates second
order ODEs whose solution is a linear combination of the basis functions. In this
way we obtain the class of trigonometrically fitted two-step hybrid methods. As it

automatically happens that
Li[l;h] = LA =0, j = 1,2,
we need to impose the following set of conditions

Llcoswz; h] = 0, (3.3.12)

I
o
.
I
—
N

Lj[coswz; hj

Ljsinwz;h] = 0, j=1,2, L[sinwz; h] =0, (3.3.13)

which constitutes a 6 X 6 linear system in the unknowns a1, a2, a21, a2, b1, bo.
In order to construct methods with 3 or more stages, we impose that the nu-
merical method exactly integrates second order ODEs whose solution is a linear

combination of the basis function
{1, 2,22, ..2™ !, cos(wz), sin(wz)}

depending on the frequency w. In this case we obtain mized-trigonometrically
fitted two-step hybrid methods. As also L;[x;h] = Liz;h) =0, j=1,...,m, it is

sufficient to impose that

Ljlz%h] = 0, L[z%hl=0, j=1,..m, ¢=2,...,m—1, (3.3.14)
Ljlcoswz;h] = 0, Llcoswa;h] =0, j=1,2,..,m, (3.3.15)

Ljsinwz;h] = 0, Ll[sinwz;h]=0, j=1,2,..,m. (3.3.16)
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It arises a system of m(m+1) conditions in the unknowns a;;, b;, i,j = 1,2, ...,m.

This system is equivalent to the following set of conditions:

m
_ 14+ (—=1)¢
Zbicg 2 = Ll)’ g=2,..m,
pt q(qg —1)
m
_ 14 (—1)%;
aijcg A ch, =12,...m, q=2,....m,
— q(g = 1)
j_
m
1 —cos6
Zbicos(clﬂ) = 2(0—2),
=1
m
O) L 14c +eicosd
Zaijcos(cjﬁ) = —COS(C% )+ ;;CHLC%COS 1=1,2,...,m,
j=1

Zbisin(ciﬁ) = 0,
i=1

m . .

sin(6) — sin(c;0
> aijsin(c;0) = ¢ sin(6) — sin(ci6) i=1,2,..,m,
=1

92
where 0 = wh. In both cases, the coefficients of the resulting methods are subjected
to heavy numerical cancellation, so it is necessary to represent them through their

expansion in power series of . Now we list the coefficients of some methods.

1. Two-stage methods
The solution of the system (3.3.12) for m = 2 is
(sin((¢1 — ¢2)0) + (1 + ¢1) sin(cef) — ¢y sin((1 + ¢2)0))

ar = 02sin((c1 — c2)0)
v ((1 4 ¢1)sin(e10) — ersin((1 + ¢1)6))
12 02 sin((cy — c9)0)
_ (—((1 4 c2) sin(c28)) + cosin((1 + ¢2)0))
a2 62 sin((cy — ¢9)0)
P (1 + ¢2) sin(c10) — casin((1 + ¢1)0) — sin((c1 — ¢2)0))
02 sin((c1 — ¢2)0)
b 2(—1 4 cos(0)) sin(c20)
! 02 sin((cy — co)0)
b —2(—1+ cos(0)) sin(c10)
2

02 sin((c1 — ¢2)0)
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where § = wh. The coefficients expressed in this form are not of practical utility,

because they are subject to heavy numerical cancellation: this is the reason why

we handle their Taylor series expansion. For brevity, we give only the Taylor series

expansion of the coefficients of the two stage method having ¢ = [3/4, 1]
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This representation of the coefficients is very expressive, because it allows us to easily

consider what follows. First of all we can notice that, for & — 0, these coefficients

tend to the ones of the corresponding polynomial collocation method. Moreover, we

can also easily derive the order of the resulting methods:

b1 + b2
bicy + baca

b C% + by Cg

14 0(6%)
0(6%)

—C1C2 + 0(92)
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Therefore, the method has algebraic order 2. The stability region in the (v, 8)-plane

of the methods corresponding to some values of ¢; and ¢y are drawn in fig. 3.1.

2. Three stage mixed trigonometrically fitted methods depending on
one frequency.

Solving the system of equations for m = 3, we derive the coefficients of three
stage methods depending on one frequency. We omit their expression because it is
huge and it has no practical utility because of the heavy numerical cancellation it is
subject to. In our numerical experiment we have used the Taylor expansion of the

coefficients. We consider the method corresponding to (cq, o, c3) = (%, %, 1):

7 10810% 2517616*  13840216° s
ann = 5 - + - 0(6°)
2 2560 10321920 1651507200

21 N 22936% 1631696 N 2796076° Lo
a = —— -
2 4 " 73840 5160960 275251200
oo 1T 13430 2485901 2936210° )
BT 8T 7680 | 3440640 1651507200
693 781699  4318519*  31637216° s
ag = —— — + —~ 0(6%)
128 122880 | 11796480 2516582400
vy — DLl 184036>  2798516* . 57522836° Lo
27 764 20480 5898240 | 3774873600
413 3224962 N 4261760 20134036° L0
a = — — —
8 128 122880 ' 3932160 7549747200
_ 22 1767 295301 1297676° %)
917 3 T 0 T 60480 77414400
e = 32 66>  38276" N 786476° Lo
27 3 T 5 60480 | 38707200
e = 1B 76> N 4376*  275276° L o6
73 20 T 30240 77414400
2 4 6
b — 221707 205301 1207676° g
3 20 60480 77414400

32 602 38279%  786476°

_ _ 8

b= -3 +925 00180 +7387gg200 +O()
130 7 3 97527 .

bs = 3~ 55 t 30020  7raraaco T O
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We can verify the order of this method, applying the set of order conditions [30]
3
dobio= 1+0(0%)
3
> b = 0O(6?)
> 1
dohd = 240

3 3 1
ZZbaw = ;10

.
—_
.

j=1
3
> hidd = 0(6%).

Therefore, the method has algebraic order 3. The stability region is drawn in fig.

3.2.

Remark 3.3.2

It is possible to prove that, for @ — 0, the coefficients of the resulting trigonometrically
fitted method tend to the coefficient of the corresponding collocation two—step hybrid

methods, derived as shown in section 3.3.2 or in [37]. Therefore the two and three

stage methods, above described, are the trigonometric based collocation methods

within class (3.1.2), (3.1.3).

Methods with parameters depending on two frequencies

We now deal with the case of second order ODEs whose solution depends on
two frequencies wy and ws, both estimated in advance. We require that the methods
must exactly solve the problem when its solution is linear combination of the basis

functions

{1,2,...,2°73, cos(wiz), sin(wiz), cos(waz), sin(wax)}, (3.3.17)
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with s > 4. In order to derive such methods, we impose the following set of condi-

tions

Ljlcoswiz;h] = 0, Llcoswiz; A =0, j=1,...,m
Ljsinwyz;h) = 0, ﬁ[sinwlx;h] =0, j=1,...,m (3.3.18)
Ljlcoswaz;h] = 0, f,[cosng; hl]=0, j=1,...,m
Ljsinwpz;h] = 0, L[sinwyaz;h] =0, j=1,...,m.

Then if we are interested in methods with 4 stages, we only have to solve the system
(3.3.18) in the unknowns a;j,b;, 4,5 = 1,...,4. It has now become clear that, if we

annihilate also
Lj[z%h] = 0, Llz%h] =0, j=1,2,...m, ¢=2,3...,m—3, (3.3.19)

more stages are necessary. The methods derived by solving (3.3.18) have parameters

depending on 61 = wih and 03 = wah.

3. Four stage methods depending on two frequencies.
We now consider four stage methods of order 4 depending on two frequencies.
The following method comes out setting (cy, ¢z, ¢z, ¢4) = (0, 1, 2,1). We report some

terms of the Taylor series expansion of its coefficients.

al; = 0
alp = 0
a1y = 0
a4 = 0
13676040 — 65885402  6?(355781160 — 648027063) . .
= - 6 o(b
421 16533720 8928208800 +0(01) + 0(0;)
71 83302  62(510095880 — 35167230602
apm = 7L, 83388 6K( 2) 4 001 + 0(63)

54 9720 5952139200
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26 763 92_(1_;,5) + (53363)
27 135 1 367416

asgy = +0(67) + 0(63)

—8368920 + 19845062 62(21432600 — 10362662)

agqy = + +0(67) + 0(63)

33067440 3571283520

539 92003 e + (2744363) . .
981 = 351 Tie6d T issoseso T O\0) +O(%)

137 3762  62(203915880 — 1406176263)

2 = TEr T 916 1190427840

62 (246781080 — 690935463)
2380855680

ass = 42661080 — 228501002 —

67(21432600 — 10362663)

= —8368920 + 19845002
34 + 2t 1785641760
5 4363  6%(—8777160 + 16011063) A 1
o 2 00 +0(p
as 2 360 73483200 +0(01) +0(62)

15 3763 62(7552440 — 52072263) \ )
a2 = Tt T 20393280 +0(01) + 0(9;)

763 67(—5T15360 + 16011065)
45 36741600

a3 = 3 +0(6)) + O(63)

3 1302  0%(2653560 — 1269003)

- 2 06} + O(62

G 170 T 146966400 +0(01) + 0(%;)
o O 4302 03(—8777160 + 160110603) +0@Y) + 08

L7 97 7360 73483200 1 2
N N 3763 N 62 (7552440 — 52072263) +0@Y) + 06
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Figures 3.3 and 3.4 show the stability region of this method and other methods,

obtained in correspondence of different values of the abscissa.

Remark 3.3.3

Also in this case, for 81 — 0 and 0 — 0, the coefficients of the derived methods tend
to the coefficients of the two—step collocation hybrid methods, derived in section 3.3.2
and [37]. Therefore the four stage method derived by (3.3.18) is the two frequencies

trigonometric based collocation methods within class (3.1.2), (3.1.3).

3.3.3 Linear stability analysis

We handle the linear stability analysis [79], [101], [102] of the obtained meth-
ods. We consider the cases of methods with coeflicients depending on one or two

frequencies.

Methods depending on one frequency

We now analyse the stability properties of mixed trigonometrically fitted meth-
ods depending on one frequency. In [32] the authors discussed the modifications
introduced in the linear stability analysis, when the parameters depend on one fit-
ted frequency w. As a consequence of the presence of the fitted frequency w, the
interval of stability now becomes a two-dimensional region for the one parameter
family of methods.

In this analysis, we denote the stability matrix as M (v?, ) and
1
R(%,0) = Etmce(M(VQ,O)), P(v?,0) = det(M(1?,0)), (3.3.20)

because it depends not only on 2 = A\2h? but also on 6 = wh.

The eigenvalues of the stability matrix M (12, 0) satisfy the following equation

€2 —2R(12,0)¢ + P(1%,0) = 0. (3.3.21)
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It is known in literature (see [31], [32], [63]) that methods such that
|P(v%,0)| =1, (3.3.22)

i.e. the roots of (3.3.21) lie on the unit circle, are of particular interest. For example,

Runge-Kutta Nystrom methods based on polynomial approximations with symmet-

ric abscissas ¢; in [0, 1], have an interval of periodicity, but they are not P—stable, if

collocation based. If (3.3.22) holds, the study of periodicity can be developed just

looking at the stability function R(v2,0), in agreement with the following definition,

[32].

Definition 3.3.2

For a trigonometrically fitted method of the type (3.1.2), (3.1.3) satisfying |P(v?,0)| =
1, we define the primary interval of periodicity as the largest interval (0, ho) such that

|R(v%,0)| < 1, for all steplengths h € (0,hg). If, when hg is finite, |R(v?,0)| < 1

also for v < hd, where v > hy, then the interval (v,d) is a secondary interval of

periodicity.

Exponentially fitted linear multistep methods in [32] verify (3.3.22), but only for few
methods in the literature condition (3.3.22) holds. In our analysis, we found that for
two-stage methods (3.1.2), (3.1.3) the values of the abscissas such that |P(v2,0)| = 1
are only ¢; = 0,cp = 1. We relax the definition 2 of region of stability in [32], in
order to consider also methods for which P(v2,6) < 1, in the following way [45]:
Definition 3.3.3

A region of stability Q is a region of the (v,6) plane, such that ¥(v?,0) € Q

P(%0) <1, |R(%0) < %(P(Z/Q,Q) +1). (3.3.23)

Any closed curve defined by P(v?,0) = 1 and |R(v2,0)| = L(P(1?,6) + 1) is a
stability boundary.

Fig. 3.1 and fig. 3.2 show some examples of stability regions for one—frequency

depending methods, in the cases m = 2 and m = 3.
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Figure 3.1: Regions of stability in the (v, 6)—plane for the two-step methods for

l/',‘
— 9 wi 16y (L 9y (3 :
m = 2 with nodes (0,1), (%,%), (55, 75)> (1,1) respectively.

Methods depending on two frequencies

We now consider the linear stability analysis of methods depending on two
frequencies. As stated before, for methods with constant coefficient, the stability
region is an interval on the real axis, while methods depending on one frequency
have bidimensional stability region. At the best of our knowledge this is the first

time in which the bidimensional stability region are considered.

In the case of methods depending on the values of two frequencies, wy,ws, op-
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Figure 3.2: Regions of stability in the (v, 6)—plane for the two-step methods for

m = 3 with nodes (0, %, ), (;11, %, %), (%, %, g), (%, %, 1) respectively.

portunely adapting the approach that Coleman and Ixaru in [32] introduced for one
frequency depending methods, the stability region becomes tridimensional. We now
denote the stability matrix of the methods as M (12,61, 65), with v? = \2h2%,6; =

wih, B2 = woh. Its eigenvalues satisfy the following equation
€2 —2R(V2,01,02)€ + P(V2,61,02) = 0, (3.3.24)

where R(1v?%,61,0;) = Strace(M(v2,601,6)) and P(v?, 61,62) =det(M(v2,61,6,)) are

rational functions of v2. The definition of stability region for two frequencies de-
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pending methods can now be adapted as follows, [45]:

Definition 3.3.4
A three dimensional region § of the (v%,01,0s) space is said to be the region of

stability of the corresponding two-frequencies depending method if V(v?,01,05) € Q
P(2,61,65) < 1, |R(01,00)] < %(P(y2,91,02) +1). (3.3.25)
Any closed curve defined by
P(2,01,60) =1, |R(2,01,05) = %(P(u2,91,02) +1). (3.3.26)
is a stability boundary for the method.

Fig. 3.4 shows an example of three dimensional stability region, while fig. 3.3 shows

the projection of three dimensional regions on a particular plane.

3.4 Numerical Results

We now show some numerical results we have obtained applying our families of
solvers to some linear and nonlinear problems depending on one or two frequencies,
in order to test the accuracy of the derived methods and also to compare them with
ones already considered in literature for second order ODEs.

Test 1. We consider the following test equation

y'(z) = —25y(z), = €]0,2n],

y'(0) = yh, (3.4.1)

whose exact solution is y(z) = cos(5x), so it depends on the frequency w = 5. We

solve this problem using the following solvers:
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Figure 3.3: Regions of stability in the (v,60;)-plane for the two-step methods for

m = 4 with nodes (0,3,3.1), (0,55, 151, (0.3.3.1), (0.5, 5.1, (1., 3:3)

respectively.
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12

Figure 3.4: Region of stability in the (v2, 0y, 6,)-plane for the two-step methods for
m = 4 with nodes (0, 5, 5,1).

COLEM: two-step hybrid method, [30]

B B I ERV/ R
NG 2
6
_\/Lé _% L (3.4.2)
L1
2 2
L]

TRIGFIT1: trigonometrically fitted two—step hybrid method, with 2 stages
and order 2, ¢ = [0, 1], derived in 3.3.2,

TRIGFIT2: trigonometrically fitted two—step hybrid method, with 2 stages
and order 2, ¢ = [0, 3/4], derived in 3.3.2,

TRIGFITS3: trigonometrically fitted two—step hybrid method, with 2 stages
and order 2, ¢ = [3/4, 1], derived in 3.3.2,

POL: two—step hybrid method derived in 3.3.2, with 2 stages and order 2;
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o MTRIGFIT: mixed-trigonometrically fitted two—step hybrid method, with 3
stages and order 3,c = [1/3,1/2,1], derived in 3.3.2,

e TRIGFIT4S: trigonometrically fitted two—step hybrid method, with 4 stages
and order 4, ¢ = [0,1/3,2/3,1], derived in 3.3.2,

The tables shows the global error in the final point of the integration interval,

while cd is the number of the correct digits. Table 2 compares the new methods

Method h=m/64 cd h=m/128 cd
COLEM 0.07313 1.1358 0.0042 2.3698
TRIGFIT1 | 4.21885e-15 | 14.3748 | 4.44089¢-16 | 15.3525
TRIGFIT2 | 4.44089e-15 | 14.3525 | 4.44090e-16 | 15.3530
TRIGFIT3 | 2.88658e-15 | 14.539 | 8.88178e-16 | 15.0515
POL 0.00286835 | 2.54236 | 0.0006948 | 3.158135
MTRIGFIT | 2.22045e-15 | 14.6536 | 1.11466e-13 | 13.9529

Table 3.2: Numerical results for the problem (3.4.1).

with classical ones, having constant coefficients. Trigonometrically fitted methods
would solve this kind of problem exactly, of course, in exact arithmetic. The errors

are the effect of the accumulation of round off errors in finite precision calculation.

Test 2. The Prothero-Robinson problem

y" 4+ 2y — cos(10z)]® = —100y, = € [0,207], (3.4.3)

with v >> 0, y(0) = 1, ¥/(0) = 0, whose exact solution is y(z) = cos(10zx), is an
example of nonlinear equation, depending on the frequency w = 10.
Numerical results show that trigonometrically fitted methods and mixed-trigonometrically

fitted ones are both exact also for this nonlinear problem. Small differences in nu-
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Method h=m/8 cd h=m/16 cd h=m/32 cd
TRIGFIT1 | 4.4409e-16 15.35 8.8818e-15 14.05 6.2172e-15 14.21
TRIGFIT2 | 1.7745e-15 14.75 4.2188e-15 14.37 6.8834e-15 14.16
TRIGFIT3 | 1.9984e-15 | 14.6993 | 4.21885e-15 | 14.3748 | 6.88338e-15 | 14.1622
MTRIGFIT | 9.4058e-13 | 12.066 | 1.48992¢-13 | 12.8268 | 2.18714e-14 | 13.6601

Table 3.3: Numerical results for the problem (3.4.3).

merical errors are due to the round-off errors.

Test 3. We test our methods also on a well known example of stiff system, from

63, 79]

w—2 2u—2 ; 2
1—p 1-2u -1 0

y'(t) = , te[0,207),

(3.4.4)
where p is an arbitrary parameter. The exact solution is yi(t) = 2cost, ya(t) =
—cost, i.e. it is independent on p. When g = 2500, then (3.4.4) is Kramarz’s system
[63], which is often used in numerical experiments on stiffness in second order ODEs.

The eigenvalues of the coefficient matrix of the system (3.4.4) are —1 and —p, so
that the analytical solution of the system exhibits the two frequencies 1 and /z, but
the initial conditions eliminate the high frequency component, which corresponds to
Vit when p >> 1. Notwithstanding this, its presence in the general solution of the
system dictates strong restrictions on the choice of the stepsize, so that the system
exhibits the phenomenon of periodic stiffness [82].

The behaviour of our class of solvers is still similar to the one shown in the
previous cases. The choice of the stepsize is such that the methods result stable,

and it is possible to integrate this problem with a large stepsize. On the contrary,
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Method h=m/2 cd h=m/4 cd
TRIGFIT3 | 2.33916e-10 | 9.63094 | 1.95534e-9 | 8.70878
MTRIGFIT | 1.44983e-8 | 7.83868 | 5.01173e-8 | 7.30001
TRIGFIT4S | 3.80591e-10 | 9.41954 | 9.65342e-8 | 7.01532

Table 3.4: Numerical results for the problem 3.4.4.

methods with constant coefficients are stable only for small values of the stepsize.
Anyway Table 4 shows that here we are in the presence of an unstability effect. A
natural conclusion is that the advantage of using versions based on trigonometrically
fitted coefficients is that they allow obtaining highly accurate results at values of the

stepsize which are still big, well before that the unstability effect becomes severe.
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DIFFERENTIAL EQUATIONS






Chapter 4

Preliminary notions for
Stochastic Differential

Equations

This chapter provides a short introduction to the numerical treatment of Stochastic
Ordinary Differential Equations (SDEs). First we supply some basic notions of
probability theory and stochastic calculus, then we give an overview on numerical

treatment of stochastic differential equations.
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4.1 Introduction

The general form of a stochastic ordinary differential equation (SDE) that will

be considered in this thesis is
dX(t) = f(t, X(t))dt + G(t, X (t))dW (t) (4.1.1)

where W denotes an s-dimensional Wiener process given on the probability space
(Q, F, P) with a filtration (F¢)¢>0. The drift and diffusion functions are given as
f:00,7] x RY = R and G = (g1,---,9s) : [0,T] x RT — RI*5 respectively.

The SDE (4.1.1) is an abbreviation of the stochastic integral equation

X (1)l /Of(T,X(T))dT+/O G(r, X (7))dW (1), (4.1.2)
X(0) = Xo. tel0,T],

where the first integral is a regular Riemann or Lebesgue integral and the second
one is a stochastic integral, which can be interpreted in many ways. In this thesis
we work with Ito stochastic differential equations.

It is because analytical solutions are rare for differential equations systems that
numerical approximations, equipped with an error estimation, have been developed.

To make this thesis ’self-contained’ we recall the basic notions of probability
theory and stochastic processes, then we proceed to define the stochastic integral
with respect to a Wiener process and to give the Ito formula. Finally we give a brief

overview on numerical approximation of the solution of SDEs.

4.2 A general model of two interacting populations

A stochastic differential equation is an important model in science and engineer-
ing when noise affects behavior. In this section we will briefly introduce a model of

two interacting populations, for more details see [4]. We will follow this procedure:
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e a discrete stochastic model for the process is developed by listing the possible

changes along with the corresponding probabilities for a short time step At,

e the expected change and covariance matrix of the change is calculated for the

discrete stochastic process,

e the stochastic differential equation system is obtained by letting the expected
change divided by At be the drift coefficient and the square root of the covari-

ance matrix divided by At be the diffusion coefficient.

This procedure provides in a natural manner an It6 stochastic differential equation
model, rather than a Stratonovich stochastic differential equation model.

The approach is applicable to populations of the same species or different species.
Let the sizes of the two populations at time ¢ denoted by z1(¢) and xa(t). Impor-
tant parameters of the populations are denoted by by, di, b2, do, mis, mai. The
parameters b; and d; are per capita birth and death rates, respectively, for popu-
lation ¢ and m;; is the rate of population 4 which is transformed to population j.
For geographically isolated populations, m;; may represent the migration rate of
population ¢ to j. For a population undergoing an epidemic, mi2 may represent
the rate a susceptible becomes infected and mso; may represent the rate an infected
recovers. Each parameter may depend on population sizes 1 and x2 and time ¢,
ie. b; =bi(x1,x2,t), d;i =di(x1,22,t) and mi; = my;(x1, x2,t), where it is assumed
that each parameter is a smooth function of x1, x2, and ¢. For notational simplicity,
the dependence of the parameters on x1, xo and t is often not explicitly written.
In a small time interval At, there are seven possibilities for a population change Ax
neglecting multiple births, deaths or transformations in time At which have proba-

bilities of order (At)2. For example Axy = [0, 1]7 represents a birth in population x5
7
with probability ps = boaxoAt. Notice that Z p; = 1. In the following table we show

i
the possible changes in the population system, with the corresponding probabilities.
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Axg = 1,0]T pe = biz1 At
070]T pr=1- Z?:1 Di

It is now of interest to find the mean change E[Azx| and the covariance matrix

Change Probability
Az = [—1,O]T p1 = diz1 At
Azy = [-1,1]T | po = migz1 At
Azg = [0,-1]T | p3 = dama At
Azy = [0,1])T Py = bgxo At
Azs = [1,-1]T | p5s = morza At

[

[

E[Az(Az)T] for the time interval At. Neglecting terms of (At)2,

7
bix1 — dix1 — miax1 + marx

m]:ijij: 121 — d121 1221 ar2| (4.2.1)
= boxo — doxs — Ma17T2 + M1271

and

E[Az(Az)T ijij Azj)T

7=1
biry + dyzy + mi2xy + M21T2 —M12T1 — M21L2
= At. (4.2.2)
—M12L1 — Ma1Lo boxo + doxo + moi1xe + misy

As the product E[Az](E[Ax])T is of order (At)2, the covariance matrix V is set
equal to E[Az(Az)T]/At. It is simple to show that V is positive definite and hence

has a positive definite square root B. The vector p and the matrix V are defined as

bix1 — dix1 — mi2z1 + Ma122
E[Ax]/At = Zp]A:EJ (4.2.3)
boxy — doxa — Ma12T2 + M1271
bizy + dix1 + miax1 + mo1x2 —M12T1 — M21T2
- (4.2.4)
—M12%1 — M21T2 baza + dazo + Mma1T2 + Mi271

Following the discussion in [4], the stochastic differential equation model for the

dynamics of two interacting populations has the form

de = p(t, x1, z2)dt + B(t, x1, z2)dW (1), (4.2.5)
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with 2(0) = z and where W (t) is the two-dimensional Wiener process. The equation
(4.2.5) is a stochastic differential equation system that describes the population
dynamics; notice that if the matrix B is set equal to zero, then (4.2.5) reduces to a

standard deterministic model for population dynamics.

4.3 Some basic notions of probability theory

Now we state only those definitions which are of direct relevance to this thesis,

for further details see for example [61], [62], [68].

Definition 4.3.1
A probability space (Q, F, P) consist of the sample space Q, which is the set of all
possible outcomes, a og-algebra F of subset of ), called events, and a probability

measure P on F.

Definition 4.3.2

A o-algebra F of subsets of ) satisfies the following properties:
1. Qe F,
2 AcF=2A={we st. w¢g A} € F,

3. {An}nz1. AneF, n>1=J A, e F.

Definition 4.3.3

A probability measure P on F must satisfy
1. P(Q) =1,
2. Ae F=P(A) >0,
3. P(A°) =1— P(A),

4. A;NA; = O fori=j= P(UZO:1 Ap) = Z?zozl P(A,).
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Definition 4.3.4
A filtration {F;}+>0 is a family of sub o-algebras of F with Fy C F; for 0 < s <t <

0.

Definition 4.3.5
A random variable X (w), w € Q is a Gaussian random variable if it has the Gaussian

(or Normal) density function

1 —(z —p)?
€exX
P—Hs

f(x)zo_\/%

where 1 is the mean and o2 the variance of the Normal Distribution N'(p1,0?). If

(4.3.1)

w =0, o =1, the distribution is called standard Normal distribution.

Let X and X}, k > 1, be random variables. The following four convergence modes

are very important:

Almost Sure Convergence (X +% X): the sequence {X}} converges almost

surely (a.s.) or with probability 1 to X if

P{w € Q: limg—ooXi(w) = X(w)}) = 1;

e Convergence in Probability (X}, Pox ): the sequence { X} converges in prob-

ability to the random variable X if for all positive € the relation

P(| X, — X|>¢€)— 0,k — oo holds;

o LP-Convergence (Xy, L X): let p > 0, the sequence {X}} converges in L or

in p-th mean to X if E[| X |P+| X |P] < oo for all k and E|X;—X [P — 0, k — oo;

e Convergence in Distribution (X 4, X): the sequence {X} converges in
distribution, or converges weakly to the random variable X if for all bounded,

continuous functions f, E[f(Xy)] — E[f(X)], k — oo.
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Observe that (X; 2% X) = (X, - X) = (Xx -& X).
(X, -5 X) = (X -2 X) if and only if X is constant.
(Xk Fox ) % (Xp “% X) but there always exists a subsequence k; such that

(X 5 X) = (Xp, &5 X).

4.4 The theory of stochastic differential equations

4.4.1 Stochastic processes

Definition 4.4.1
Let be in the probability space (2, F,P), and let consider an arbitrary set I. A
family {X (t)}te; of R%-valued random variables is called a stochastic processes with

parameter set I and state space R%.

Observe that for each fixed ¢ € I we have a random variable w € Q — X (t,w) € R9.
In the other hand, for each fixed w € Q we have a function t € I — X(t,w) € R,

which is called a sample path (or trajectory) of the process.

Definition 4.4.2
A stochastic process X (t) is adapted to a filtration {F;}+>¢ if, for every t > 0, X (t)

is Fs-measurable.

Brownian motion is the name given to the irregular movement of particles, suspended
in a fluid, observed by the Scottish botanist Robert Brown in 1828. Louis Bachelier
(1900), Albert Einstein (1905) and Nobert Wiener (1923) began developing the
mathematical theory of Brownian motion, but Wiener was the first to put Brownian
motion on a firm mathematical basis.

Definition 4.4.3

Let (2, F,P) be a probability space with a filtration {F;}+>9. A standard one-
dimensional Wiener process is a real-valued {F;}-adapted process W (t)¢>¢ with the

following properties:
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1. W(0) = 0 almost surely;

2. for 0 < s <t < oo, the increment W (t) — W (s) is normally distributed with

mean zero and variance t — s (W (t) — W(s)) = N(0,t — s));
3. for 0 < s <t < oo, the increment W (t) — W(s) is independent of F;.

If W(t) is a Wiener process and 0 < tg < t; < --- <t < 00, then the increments
W(t;) — W(ti—1), 1 < i < k are independent and we say that it has independent
increments. Moreover, the distribution of W(t;) — W(t;—1) depends only on the
difference t; — t;_1 and we say that the Wiener process has stationary increments.
Definition 4.4.4

An s-dimensional Wiener process W (t) is a vector (Wi(t), Wa(t),...,Ws(t)) of s

independent one dimensional Wiener process.

4.4.2 Stochastic Integrals

Now we shall introduce the stochastic integral

/0 G, X (r))dW (7) (4.4.1)

with respect to an s-dimensional Wiener process W (t) for a class of d x s matrix val-
ued stochastic processes {G(7, X (7))}. For almost all w € Q, the Wiener trajectory is
nowhere differentiable. The variance of the Wiener process satisfies Var(W(t)) = t,
so this increases as time increases even though the mean stays at 0. Because of
this, typical sample paths of a Wiener process attain larger values in magnitude as
time progresses, and consequently the sample paths of the Wiener process are not
of bounded variation; hence the integral can not be defined as a Riemann-Stieltjes
integral in the classical calculus way.

An approximation of the stochastic integral by the sums

N
> G, X (7)) W (1) — W (ti 1)) (4.4.2)
i=1
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converges in the mean square sense to different values of this integral, for various
Ti € [ti—1,ti].

In particular for 7; = ¢;_1 the integral is known as the It6 integral and this leads to
a calculus based on It6 chain rule.

Ifr; = % then the resulting integral is the Stratonovich integral.

In order that the It6 stochastic integral fot X (t)dW (t) be defined, for X (t) a real-
valued stochastic process with respect to the Wiener process W (t), it is necessary
that X (t) and W (t) are both defined on the same probability space (Q2, F, P). It is
also necessary that X (t) be non-anticipating, by which it is meant that information
about X (t) does not depend on event occurring after time ¢t. The stochastic 1t6
integral has some nice properties.

Theorem 4.4.1

Let f,g € M?(|a,b];R), where M?([a, b]; R) is the space of all real-valued measurable
{Fi}-adapted stochastic processes f € L?*([a,b],R) such that E(ff|f|2ds) < o0

almost surely; and let o, 8 be two real numbers. Then
1. [P f(t)dW (t) is Fy-measurable,
2. E [ f(t)aw (1) =0,
3. E| [} ()W ®)]? = E [ ()|t
4. [lef(0) + Bg(0)]dW (t) = a [} FR)dW () + 5 [} g(t)dW (¢).

In this thesis we will deal with SDEs in It6 form, for this reason we will introduce

only the It6 calculus; for more details on It6 and Stratonovich calculus see [47], [68].

4.4.3 1Ito’s formula

We have introduced the It6 stochastic integrals, however as for classical Lebesgue
integrals, the basic definition of the integrals is not very convenient in evaluating a

given integral. We shall now establish the stochastic version of the chain rule for It6
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integrals, the It6 formula, that plays a key role in stochastic analysis.

Consider the stochastic differential equation (4.1.2), then, for a given function F and
with certain smoothness, measurability and boundedness properties on F', f and
g in (4.1.2) to guarantee the existence, pathwise uniqueness and bounded second

moments, the multi-dimensional stochastic chain rule gives

OF OF 1 r O*F oF
dF(t, X) = (E ol tmce(GG 8X2))dt + o GAW. (443)
In the scalar case we have
8F O’F oF
aF(t,X) = (5, f + - (OXQ 2) )t + S 9dW. (4.4.4)

4.4.4 Ito6 or Stratonovich?

There is much discussion in the literature about when to use the Itd instead of the
Stratonovich interpretation of the integral, [22], [62], and while both approaches
are appropriate, the choice depends on the modeling process that leads to the SDE
formulation. As stated before in this thesis we are interested in It6 SDESs, to distin-
guish the Stratonovich form of the SDEs, we use the symbol o. Indeed, it is possible
to convert from one interpretation to the other in order to take advantage of the

particular features of one of the approaches as appropriate.

Theorem 4.4.2
If X (t) satisfies the Ité SDE

dX (1) = f(t, X (£)dt + C(t, X (£))dW (¢), (4.4.5)

then it is also a solution of the Stratonovich SDE

10G

5o (b X ()G, (t)))dt—i—G(t,X(t))odW(t). (4.4.6)

ax(t) = (f(t. X (1) -
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4.4.5 Stochastic Differential Equations

Definition 4.4.5

A process X = {X (t) }+eo,r, on (Q, F, {Fi}, P), with values in RY, is called a strong
solution of the stochastic differential equation (4.1.2), with respect to the fixed
Wiener process W and the initial condition Xy, if the following properties hold:

1. X is adapted to the filtration {F¢}c(0.1);
2. X has continuous sample paths;
3. the integrals in (4.1.2) exist, X is Fi-measurable and independent of W';

4. for all t € [0,T]

t t
X(t) = Xo + / (s, X(s))ds + / s, X ())dW (s), (4.4.7)
0 0
holds almost surely.

Let the initial condition and the Wiener process be given. Then the solution X ()

of the SDE should be determined in a non-ambiguous way.

Theorem 4.4.3
Suppose that the drift coefficient f, and the diffusion one G, satisfy the global

Lipschitz and linear growth conditions:

F @t 2) = F(E )] + |G 2) = G )] < Ellz =y, (4.4.8)

1/ (2|2 + G D)7 < K21+ ||=]), (4.4.9)

for every t € [0,T], x,y € R?, where k is a positive constant. Let Xy be a R%-valued
random vector, independent of the Wiener process W and with E(||X,||?)% < oo,
for some | € N. Then there exists a continuous, adapted process X = X(-) which is

a unique strong solution of SDE relative to W, with initial condition Xj.
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4.5 Stochastic Multiple Integrals

Now we shall introduce some notations in order to allow us to formulate It6
Taylor (and analogously Stratonovich-Taylor) expansions in a way that will simplify

the presentation. A multiple It6 integral is defined as
b1t to S1 Si—1
Ij1,’j2,m,jl(f) = /tl /t1 /t1 f(s1, X (51))dWy, (s1) ... dWj,(s1) (4.5.1)

where dWy(s) =ds. If f =1 then we write Ijtlljtzjl

Similarly we can define a multiple Stratonovich integral as

to S1 "S1—1
T (f) = /tl /t1 /tl Fls1, X(s1)) 0 dWj, (s1) -+ 0 dWj (s7). (4.5.2)

Example:
Itl,t2 _ 2 AW, _ .
0o = 0(s) =t2 — t1; (4.5.3)
t1
to
It = / AW, (s) = Wy(ta) — Wir(t1) ~ V2 — 0N(0,1).  (4.5.4)
t1

Some multiple stochastic integrals can be expressed in terms of lower multiple inte-
grals, while other must be approximated.

There are also some relationships between stochastic integrals; for example

I, = Ior+ 10 (4.5.5)
JE
I, = TO (4.5.6)
I, = J, (4.5.7)
JoJr = Jor+ Jro (4.5.8)
J2
Jw = 2 (4.5.9)
I
L = Jp 5" (4.5.10)

It is also necessary, when studying the order of convergence of numerical methods,

to be able to determine the expected value of multiple stochastic integrals. The
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following lemma, see [70] and [71], provides a means of calculating these expected

values.

Lemma 4.5.1
For every function f € [0,T] x R = R? such that |f(t,z)| < k(1 + |ac|2)%, it holds
for all t,t + h € [0,T] that:

t+h e
E(I(tji';%“’jl)(f)) = 0, if jp =0 for at least one k=1,...,], (4.5.11)

t+h X N
|Ifji,+jz,...,jl)(f)| = O3,

where 11 is the number of null indices while ly is the number of non zero indices.

In the implementation of the numerical method, these integrals have to be simulated

together with the Wiener increments, this can be done following [49], [62], [70], [71].

4.6 Ito Taylor Expansions

In order to derive the expansions, the It6 formula is applied successively to the
SDE (4.1.2).
Let C*~1* denote the class of all functions, F' from [0, T] x R¢ to R? having contin-
uous partial derivatives up to order k — 1 with respect to the first variable and, in
addition, continuous partial derivatives of order k£ with respect to the second vari-
able. We introduce operators Ag and A,, r = 1,...,s, defined on C*? and C%!,

respectively, by
1 S
AoF = F 4+ FL[f] + 5 > Fllgngl, MF=F]g], r=1,..5 (46.1)

r=1

Here and subsequently the square brackets are used to denote elementary differ-
entials, see, e.g., [27]. Using the operators (4.6.1) and the notation for multiple
stochastic integrals (4.5), the Itd formula for a function F' in C2 and the solution
X of (4.1.2) reads
m
F(t,X(1) = F(u, X(u) + I (AF) + > I¥'(AF), 0<u<t<T. (462)

r=1
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Applying the Tt6 formula to the drift and diffusion coefficients f, g, which are as-
sumed to be in C12) and inserting the results into the SDEs (4.1.2) leads to the
first terms of the Tt6-Taylor (or Wagner-Platen) expansion of the solution X (t) for

0<u<t<T:

X(t) = X+ () + Y 1 (gr) (4.6.3)
r=1
= X(u) + fu, X()Ig" + Y g-(u, X (u) 1
r=1
g (Mo f) + > (L6 (M) + I (Aogr)) + D Tt (Aggy) -
r=1 r,q=1

4.7 An Overview on Numerical Methods for Stochastic

Differential Equations

Unfortunately explicitly solvable SDEs are rare in practical applications. Over
last decades an increasing number of numerical methods for the approximation of
the solution of a stochastic differential equation have been developed. Obviously
such methods should be implementable on digital computers. They often involve
the simulation of a large number of different sample paths in order to estimate
various statistical features of the solution.

The most efficient and widely applicable approach to solving SDEs seems to be
the simulation of sample paths of time discrete approximations on digital computers.
This is based on a finite discretization of the sample paths step by step at the
discretization times. The simulated sample paths can then be analysed by usual
statistical methods to determine how good the approximation is and in what sense
it is close to the exact solution. An advantage of considerable practical importance
of this approach is that the computational costs such as time and memory required
increase only polynomially with the dimension of the problem.

Simulation studies and theoretical investigations showed that not all heuristic time
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discrete approximations of a SDE converge in a usual sense to the solution process
as the maximum step size tends to zero. In particular, it was found that one cannot
simply use a deterministic numerical methods for ordinary differential equations.
So a careful and systematic investigation of different methods is needed in order to
select a sufficiently efficient method for the task at hand.

Now we introduce the Euler-Maruyama scheme and we give the definitions of strong
and weak approximations.

Let us consider a SDE (4.1.1) and a discretisation 0 < t; < --- < t,, = T of the time

interval [0,T]. The Euler-Maruyama scheme is defined by

vo = Xo (4.7.1)

Untr = Un+ hof(tn,yn) + Gtn, yn) [ tn,

with hy, = tg1 — b, I = Wi(t1) — W(tn), n=0,1,...,N — 1. In order to
determine the order of accuracy of a discrete time approximation we need a crite-
rion. We can distinguish between situations where a good pathwise approximation
is required and situations we are interested in approximating expectations of func-
tionals of the Ito process. If we are interested in pathwise approximations required
in direct simulations, we follow the concept of strong convergence.

Definition 4.7.1

We say that a discrete time approximation Y converges strongly with order p at
time T if there exists a positive constant C, which does not depend on the maximum

stepsize h, and a hg such that
E[||X(t) - Y(t)]]] < ChH? (4.7.2)
holds for each h €]0, hg|.

In contrast to deterministic schemes we have to point out that the strong order of
convergence needs not to be integer valued in the stochastic setting.

On the other hand, if we are interested in the approximation of some higher moment
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or of the expectation of some functional f : R x R™ — R"™ of the solution, we need
to consider the rate of weak convergence. Let C'%(R,R") denote the space of d
times continuously differentiable functions f € C?4(R,R") for which all the partial

derivatives up to order d have polynomial growth.

Definition 4.7.2
We say that a discrete time approximation Y with maximum stepsize h converges
weakly with order p to X at time T, as h goes to 0, if for each f € C’IQD(pH)(R,Rd)

there exist positive constant C, which does not depend on h, and hg such that
E[f(X7)] - E[f(Yr)]| < Ch” (4.7.3)

holds for each h €]0, hg|.

It is possible to prove that the Euler-Maruyama method converges with weak order
p =1 in contrast to the strong order 0.5.
It is easy to construct schemes of higher order of convergence than this scheme. It is
possible to calculate strong and weak schemes of arbitrarily high order of convergence
using stochastic Taylor expansions. However these methods are not very handsome
for high orders p. We have to calculate the partial derivatives appearing in the
expansion and we have to simulate the multiple stochastic integrals.

As a result of this, the development of efficient numerical methods focuses on
schemes where we are able to approximate multiple stochastic integrals by random

variables in a simple way and we are interested in derivatives free schemes.
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Chapter 5

Analysis of SRK methods using
Albrecht’s approach

We consider stochastic methods of Runge-Kutta type (SRK) for It6 stochastic or-
dinary differential equations (SDEs) and introduce Albrecht’s approach for their
analysis. We show its advantages in the convergence analysis and in the derivation

of order conditions for the method as well as for the internal stages.
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5.1 Introduction

There is a rich literature on stochastic Runge-Kutta schemes. In one of the first
papers on this topic, Riimelin [91] considered the mean-square convergence of ex-
plicit Runge-Kutta schemes, where only increments of the Wiener process were used
for the approximation of the diffusion term. He proved that the stochastic improved
Euler (or Heun) scheme converges in the mean-square sense to the solution of the
Stratonovich version of the SDEs (4.1.2). For SDEs with a scalar Wiener process
or with commutative noise the order of mean-square convergence of this scheme is
1. He also treated scalar SDEs as well as systems of equations driven by a multi-
dimensional Wiener process. In the papers [17, 18, 19, 21, 22] the authors also have
studied classes of stochastic Runge-Kutta methods for Stratonovich SDEs and have
developed schemes up to order 1.5 in the mean-square sense. To obtain appropriate
order conditions in a systematic way they have generalised the theory of Butcher
trees to the stochastic setting.

An approach to approximate It6 and Stratonovich SDEs with a scalar Wiener
process with convergence of order 1 is presented in [72]. For the Itd case this goal
is achieved by including terms into the schemes that involve the square root of the
step-size. Additionally using terms that involve mixed classical stochastic integrals,
schemes with order 1.5 are developed in [86] for It6 SDEs with scalar noise. Fur-
ther, strong convergence of stochastic Runge-Kutta methods and Runge-Kutta-type
methods have been discussed in [15, 62, 71]. In the context of weak approximations of

SDEs stochastic Runge-Kutta methods have been studied, e.g., in [85, 87, 88, 89, 90].

5.2 The methods and Albrecht’s idea, stochastic ver-

sion.

Let us consider a deterministic grid ty < t; < ... <ty =T with stepsizes
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hp = tpy1 — tn, we denote by Y, the numerical approximation of the exact solution

value X (t,) at the time-point ¢, generated by a numerical scheme of the form

v = Xo, . .

Uikl = Yt Y Bif (b + i, YIS ity + &g, Y1ttt
=1 i=1

}/z[n] = Yo+ hn Z aijf(tn + ¢jhn, Y'J[n]) + Z \I’j(tn + &b, f/j[”])ltn,tn-&-cjhn’
j;l j=1

Vo= gt b > f b+ gl YY) i= 1, m (5.2.1)
j=1

The weights ¢;, & are chosen as ¢ = Ae, ¢ = Ae, with e = (1,--- ,1)T. The functions

T and ¥ are finite sums of appropriate terms

s S tn,tnthn
niytn h’VL j— . nytn h’VL .
Tyt )ttt =S g (b a) [ g () T+ (5.22)
r=1 r=1
S S tn,tn+cihn
- tnytn+ ihn — e tnatn+ ihn - 0
\Ifj(t, ’I)I ¢ = 7; bijgr(ta .I,)IT ¢ + 7; dijQT(ta q)rh—n 4+ .-

Itntnthn denotes a collection of multiple stochastic integrals Iﬁ;ﬂ’ﬁ;ﬁf}} over the subin-

terval [t,,t, + hy] C [0,T], or also terms involving combinations of stochastic inte-
grals. Further, we denote by |- | the Euclidean norm in R?, by || - || the correspond-
ing induced matrix norm and by ||Z||z, := (E|Z|?)'/? the norm of a vector-valued
square-integrable random variable Z € Ly(0,RY).

We use this generic notation in order to cover all Runge-Kutta methods consid-
ered in this thesis. The methods that we analyse could be also drift-implicit. In
that case one has to consider the solvability of the implicit equation to arrive at a
method that can be described by (5.2.1). The required techniques are analogous to
those in the deterministic setting as described, e.g., in [52, Thm. I1.7.2].

The starting point in the construction of new methods is the derivation of order

conditions. In this context there are mainly two way to do this:

e Taylor expansions, widely introduced and used by Kloeden [62].
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e Butcher trees, extended in the stochastic framework by Burrage and Burrage
[22]. They expanded the rooted trees theory, well known in the deterministic

context, [25], by the use of bi-coloured nodes for the stochastic setting.

We have extended the classical approach introduced by Albrecht in 1987, [2], in the
deterministic context. Applying Albrecht’s approach to a Stochastic Runge-Kutta
method we are able to linearise it and so we can carry out our analysis as done in
the context of multistep linear methods, [13], [14]. Moreover we are also able to
provide stage order conditions, up to now never considered.

Remember that we denote by X(t), the value of the exact solution of the SDEs

(4.1.2) at time ¢ that satisfies the initial condition X (0) = X,. We define

Zopr o= YLyl oyl vl T (5.2.3)
Fltn, Znitihn) = [Fltn+ cthn, YI™) 0 f(tn 4 b, YT,
Ftn + b, V), F b+ b, V), £ (gt )]
Gltn, Znstihn) = [Gltn + cthn, Y™, . G(tn + cmhn, Y,

Gty + erhn, V™), . Gtn + b, VI, Gltnt, s )]

We can rewrite the Runge-Kutta method as a linear multistep method

Zy = Xo,
Zpir = AZn+ haBFE(ty, Znit; ha) + Dltn, Zng1; hy) Iiotnthe
+E(tn, Zny1; b ) Intntehn (5.2.4)

where I' and = are the tensorial version of T and ¥

T(tn, Znat; o) I tin = C1G(ty, Zpgrs ) It Hin

+ CQg(tm Zn41; hn)TOh—
n

Etn, Znr; ) 0T = DyG(tn, Znas ) It

Itn7tw,+0hn
+ D2g(tm Zn+1§ hn)mh—
n

+--- (5.25)
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and A, B, C, Dy, are block matrices of dimension (2m+ 1) x (2m + 1). For example

Omm  Omm € A Omm  Om
A=|0Omm Opm e|>B=[A4 Opm On (5.2.6)

Om O 1 Y 0, 0
with A = (a;;)7"%_1, A= (aij)i%=1, B=[B1s- -, Bm], Omm is the m x m null matrix
and 0,, is the m null vector. The matrices Cr, Dy, k = 1,2,..., depend on the

particular method, in the sense that they depend on how many and which multiple
integrals we use. As Albrecht did for deterministic ODEs, we can associate with the

method (5.2.4) some linear differential operators. We define

m

'C[X(tn)a hn] = X(tn + hn) - X(tn) - hn Z ﬁzf(tn + Cihna X(tn + Czhn))
=1
— Y X(tn o+ ity X (b + Eiliy)) Tt (5.2.7)
i=1
LiX(tn)ihn] = X(tn+ cihn) = X(tn) — hn Y _ aij f(tn + jhm, X (tn + cjhn))
j=1
= Wt + G, X (b + ) R (5.2.8)
j=1
LilX(tn)ihn] o= X(tn+ &iln) — X(tn) = hn Y _ @i f(tn + ¢jhn, X (tn + ¢jhn)).
j=1

(5.2.9)

5.3 Convergence framework

We list now some definitions we use in the following section.
Definition 5.3.1
We call the stochastic Runge-Kutta method (5.2.1) for the approximation of the
solution of the SDEs (4.1.2) mean-square convergent if the global error X (t,,) — X,
satisfies

max | X (tn) — Xel|l, — 0 as h — 0, (5.3.1)
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we say it is mean-square convergent with order v (v > 0) if the global error satisfies

ax [ X(te) = Xellr, < C- 17, (5.3.2)
with a grid-independent constant C' > 0.

We aim to conclude mean square convergence from local properties of the method
by means of numerical stability in the mean-square sense. Numerical stability con-
cerns the influence of perturbations of the right-hand side of the discrete scheme
on the global solution of that discrete scheme. Sources of perturbations may be
the local error, round-off errors or defects in the approximate solution of implicit
schemes. The mean-square stability estimate of the global error is based on the mean
square norm and on the conditional mean of the perturbations. Thus we consider

the following discrete system, the perturbed form of (5.2.4),

Zy = Xo+do

ZnJrl = AZn + hnBF(tna ZnJrl; hn) + r(tna ZnJrl; hn)-[tmthrhn
+ E(tn, Zpy1; hy)Iiminten L5 (5.3.3)
we suppose that the perturbations é,, n = 0,--- ,N — 1 are F; -measurable and

that 6, € Ly(Q,R™).

Remark 5.3.1
Sometimes it is useful to represent the perturbations in the form §, = R, + Sh,

where S, is Fy, -measurable with E(S,|F, ,) = 0.

We state the following definitions.

Definition 5.3.2
A function F : [0,T] x R" — R" satisfies a uniform Lipschitz condition with respect

to its second variable if there exists a positive constant L such that

|F(t,x) = F(t.y)| < Lple —y| V o,y eR", t€[0,T]. (5.3.4)
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A function T : [0, T]xR™ — R™** satisfies a uniform Lipschitz condition with respect

to its second variable if there exists a positive constant L such that

Let CH'=1 denote the class of all functions from [0, T] x R" to R" having continuous
partial derivatives up to order | — 1 and, in addition, continuous partial derivatives
of order | with respect to the first variable.

Let CK denote the class of function z : [0, T] x R* — R™ that satisfy a linear growth

condition in the form
l2(t, )| < K(1+ |z[2)2, Vo € Rt € [0,T). (5.3.6)

Now we give the formal definition of mean square stability and consistency.

Definition 5.3.3

We call the stochastic Runge-Kutta method (5.2.1) numerically stable in the mean-
square sense if there exist constants hg > 0 and S > 0 such that for all stepsizes
h < ho and for all F;,-measurable perturbations d,, € La(Q2,R™) (n=0,...,N) and

all their representations, the following inequality holds

g 5 [Bnllz, | 10|z,

where (X,)N_, and (X,,)_, are the solutions of the (5.2.4) and the perturbed dis-

crete system (5.3.3), respectively.

We refer to S as the stability constant and to (5.3.7) as the stability inequality.
Definition 5.3.4

We call the stochastic Runge-Kutta method (5.2.1) for the approximation of the
solution of the SDEs (4.1.2) mean-square consistent if the local error L[X (t,); hy]

satisfies

h=YE(LIX (tn); ha)| Fe )L, — O for b — 0,  and
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h=V2 | L[X (tn); hn] ||, — O for b — 0. (5.3.8)

We call the Runge-Kutta method (5.2.1) for the approximation of the solution of
the SDEs (4.1.2) mean-square consistent of order +~ (v > 0), if the local error
L[X (tn); hy] satisfies

IE(LIX (tn); hnl| P, ), < - R7FY, and
IL[X (tn):hnlllL, <c-B7T2 . m=1,... N, (5.3.9)

with constants ¢, ¢ > 0 only depending on the SDEs and its solution.

We remind the reader that consistency is only concerned with the local error. In the
case that we disregard other sources of errors in (5.3.3) we only have to deal with
perturbations &, = L[X (t,); hy]. Following [65], we can consider the general class
of multistep methods

k

Z AjYn4j5 = hq)f(tna YnsYn+1y -+ - Yn+k; hn) + q)T(tnvynyyn—&-h s Yntks hn)
=1

Itnytn+hn

Let us notice that our stochastic Runge-Kutta method (5.2.1) falls in the previous

class for k=1, ap = —1, a3 =1 and

(I)f(tna Yns> Yn+1s -« - » Yntks hn) = Z 6zf(tn + Cihn7 Yl[n]) (5310)

=1
O (tr Yo Yt Yk Bn) = O Viltn + o, V). (5.3.11)
=1

Now we can state the following definition, [13].

Definition 5.3.5

The characteristic polynomial of (5.2.1) is given by
p(¢) = ar¢™ 4+ ™ 4+ o (5.3.12)

The stochastic Runge—Kutta method (5.2.1) is said to fulfill Dahlquist’s root condi-

tions if
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1. the roots of p(¢) lie on or within the unit circle,

2. the roots on the unit circle are simple.

Lemma 5.3.1 (A discrete version of Gronwall’s lemma)

Let ap, £ =1,...,N, and C;, Cy be non-negative real numbers and assume that the
inequalities
1 (-1
a5§01+02ﬁzai7 ¢=1,...,N, (5.3.13)

=1

are valid. Then we have

maxa < Cr exp(Ca). (5.3.14)

e

5.3.1 Results

A this point we will prove the main results about consistency and convergence.

Theorem 5.3.2

The stochastic Runge—Kutta method is mean-square consistent of order ~y if
1
1Rullp, < c1-h3Y and [|Sallp, <c-hm' 2, n=1,...,N (5.3.15)

for any representation of the local error L[ X (t,); hy).

Proof:

To prove the first part, we consider, as we say in Remark 5.3.1, the following rep-
resentation of the local error L[X (t,); hn] = Ry + Sy, with E(S,|F;, ,) = 0, such
that

~al
1Rallp, < c1-hyth, and ||Sall, <c-hn' 2, n=1,...,N. (5.3.16)
With these hypotheses we have

[E(LIX (t0); hnl| Fe, )|, = [ERalFe, )], < IRll, < e h3T (5.3.17)
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Now let us consider the Euclidian norm of the local error, where, for h < 1,

I1£1X (tn); Al ||

IRy + Sullz, < I1Rallz, + 1Snllr,
~ L
R 4 ek < (o + )T =2 bl 2. (5.3.18)

A

Theorem 5.3.3

The stochastic A-method (5.2.4) is numerically stable in the mean-square sense for
every continuous f, I'; and E; satisfying the uniform Lipschitz condition (5.3.2)
if and only if its characteristic polynomial p(¢) satisfies Dahlquist’s root condition

given in Definition 5.3.5.

Proof:

Necessity: This part can be proved as in the deterministic case, i.e., we take the
equation X'(t) = 0, then the functions f, I'; and =; satisfy obviously the uniform
Lipschitz condition. Then we follow the proof of Thm 6.3.3 in [48].

Sufficiency: Let us define ey 11 = Z41 — Zp41, where Z,41, Zp41 are the solutions

of (5.2.4) and (5.3.3), respectively. Then

entl = Znt1 — Znpl
= AZ, - Z,) +
+ haBIF(tn, Zni1;hn) = F(tn, Zngr; o)) +
+ CiC(tn, Zng1she) — D(tn, Zpgr; b )| Tt 4

+ CZ[E(tna Znt1; hn) - E(tn7 Z~n+1§ hn)]Itmtn-‘rChn — Op-
For simplicity of notation, we set

AF, = [F<tm Zn41; hn) - F(tna Z~n+ﬁ hn)]»

AT, [C(tns Zns13 hn) — Tltn, Znga; )],

=Zn [E(tm ZnJrl; hn) - E(tm Zn+l§ hn)]a
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and obtain, after iterating once the above equation for e, 1,

ent1 = A{A[Zn 1 — Zoo1] + hp 1 BAF, | + CI AT,y [tn-tin-1thn

_|_

CQAEnilltnfl7tn71+Chn71 _ 5n71}

+  hBAFE, + CiAT, I'minthn 4 Co A, [imintehn 5
After n iteration steps, e,+1 takes the form

n n
enp1 = Alco+ Y hiATIBAF; + Y AVIC AL I
j=0 7=0
n

- zn:A"_jCQAEthj’tj"’Chj =) Ag;
Jj=0 j=0
Let us consider now a norm || - ||«, such that [|.A"||2 < 1 (see [52]). This is possible
if the eigenvalues of the Frobenius matrix A lie inside the unit circle of the complex
plane and they are simple if their modulus is equal to 1. The eigenvalues of A are the
roots of the characteristic polynomial p and due to the assumption that Dahlquist’s
root conditions holds they have the required property.

We now apply || - ||? to estimate ||e,11]|? and then E(||ens1]]?).

n n
llenall2 < 5|14 ol |2+ 11 Y B A" IBAF|[Z+]] ) ATICLAT IS |2

term 1 J=0 J=0
term 2 term 3
n n
+ 1D AMTICAR T T — ||y A2 )
j=0 J=0
term 4 term 5

Term 1: As we assume that Dahlquist’s root condition is satisfied, we immediately

get

1A% eol[2 = [1A"]ZleolZ < lleol 3.
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Term 2: From the Lipschitz condition (5.3.2) on the function f, we can easily get

the uniform Lipschitz condition on F' and the following inequalities

1> hAIBAF|Z < (n+1)) [l A" TBAF|Z < Sy ) ||h AR
j=0 j=0 Jj=0

n n
Soh? L3 " [les|2 < Sah® > |leylI2,
7=0 7=0

IN

where S3 is a constant involving all the constants and h is the maximum stepsize.
Term 3: As before, from the hypotheses on I';, we have

I3 ATICAT T2 < (4 1) D AT IC AT I+ 2
§=0 j=0

n
Sy ||AT I+ 12,
j=0

IN

where S3 is a constant. Term 4: Using the (5.3.2) hypothesis on E, we obtain

n n
|| ZAn_jCQAEthj,tj—&-cthz < (TL + 1) ||An_jC2AEj]tjytj+chj||z
§=0 =0
n
< S ||AZ It eh 2,
§=0
Term 5:
n n i
D AIGE < (m+1) 3 IA™I05112 < 85 > 11y 12
j=0 3=0 =
So we have

A

n n
lensill < 5{[leoll? + S2h Y " [lej|lf + S5 ) ||AT 194+ 2
j=0 j=0

n n
+ Suy AZTTE 485 Y 15117}
J=0 j=0
Let consider now E[-]:

n n
Elllens1llZ] < 5{Ellleol|?] + S2h> Y Ellle;][2] + S5 > E[||AT; 1% +hs|2)
=0 §=0

Term *
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+ S EIJAT 2] 455 S B4} (53.19)
7=0 j=0

Term **

Term %: As AL'j is Fy,-measurable and E[AT;|F,_,] = 0, we have

S5y B[[|AT; I (2] < 83 ) T E[||AT;|2|7454 ) < S3h ) Ellle;|135.3.20)
§=0

j=0 Jj=0

Term «x: We proceed as for the term x

n n

Sa ) E[AZ; 793 < 84 ) EJAS[F[195 2] < Sih Yy Ellles |12

=0 3=0 §=0

Inserting these into the intermediate result (5.3.19), we get
ElllentallZ] = 5{E[lleol|Z + [Sah® + (S5 + Sa)h ZE [llejl1% + 5 ZE 116511}

We set [Soh? + (S5 4 Sy)h] = %, so the previous inequality become

EflenrilZl < SE[leoll) +5—ZE||eJ|| +5S5ZE

We apply now the discrete Gronwall Lemma (5.3.1) and we obtain the intermediate

result

s, EllenallF < S{Elolls] + 85 3 B 121}
]:

where S = 5exp (55). We decompose the perturbations d; in §; = R; + S, where
Sj is Fi,-measurable with E[S;|F;;] =0, j =0,...,N. So

n

D ENIGIE = Y EllIR; + S512] Z [1R;11] + E[I1S;11213,
7=0

i=0 j=
and
: " BRI | ElS1E
2 yALES J 1%
jmx Blllensal) < S{EllolF + 0 [FIEHE + 2R
7=0
i Rl2 | 1S3
< 2 17 LS
< S{Bleol) + max [FEH + 122}
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¢

With the powerful notion of numerical stability in the mean-square sense, together
with mean-square consistency the mean-square convergence follows almost immedi-

ately.

Theorem 5.3.4

A mean-square consistent stochastic Runge-Kutta method (5.2.1) for the approxi-
mation of the solution of SDEs (4.1.2) is mean-square convergent for all continuous
f, I'; and Z; satisfying a uniform Lipschitz condition (5.3.2), if and only if it is
numerically stable in the mean-square sense. If, in addition, it is mean-square con-

sistent with order v > 0, then the method is mean-square convergent with order

v.

5.4 Order Conditions

To estimate the multiple integrals (4.5.1) we will use Lemma 4.5.11 To analyse

the local error of Runge-Kutta schemes we shall use the notation

1 a1 b1 a1b;

1 am bm Ambm

We will calculate the deterministic multivariate Taylor expansion of the stochastic
Runge-Kutta approximation (5.2.1) and we consider the Ité-Taylor expansion of the
solution process X (t) of (4.1.2). Then we insert the two expansions into the expres-
sion of the local error (5.2.7), and we obtain the conditions which annihilate the

corresponding terms. Now we will apply this approach to some particular methods.
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5.4.1 Stochastic Runge-Kutta methods with mixed stochastic inte-

grals

Let us consider the class of stochastic Runge-Kutta methods with mixed stochastic

integrals introduced in [15],

Yo = Xo (5.4.1)
m S
Yn+l = UYUn+ Z 61 t + cihy, Y[n Iy + Z Z “/igr(tn + Cihn, Yi[n]))lﬁmtn-i_hn
i=1 i=1r=1
m s tn,tn-‘rhn
F3S i+ a3 H
i= 17‘ 1 n
[n] [ } Itn;tn+h7l
Y;‘ = yn'i‘Z%,jf t +C]hnay h +Zzbugr TLC]h'n7Y )) hn
Jj=1 j=1r=1
V= g Y aif (e + e, Y,
j=1
form=1,---,N—1and i = 1,--- ,m. The linear operators associated with the

method (5.4.1) are

m
LIX(tn);ha] = X(tn + hy) — X(tn) — hy, Zﬁjf(tn + ¢jhn, X(tn + thn))
j=1
Z Z Vi (b + il X (b + b)) It
j=1r=1
m S t7L7t7L+h’VL
SN 0igr(tn + Ehn, Xt + éjhn))mh—, (5.4.2)
j=1r=1 n
LiX(tn)ihn] = X(tn+cihn) = X(tn) — hn Y aijf(tn + cihn, X (tn + cjhn))
=1
m S ! tn,tn"!‘hn
D bijge(tn + éihn, X (tn + éjhn))roh—, (5.4.3)
j=1r=1 "
LilX(tn)ihn] == X(tn+&hn) = X(tn) = hn Y aij f(tn + ¢jhn, X (tn + ¢jhn)).
j=1
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In the following calculations all the functions and their derivatives are evaluated at
the point (t,, X (¢,)), this argument is usually omitted for simplicity of notation.

We consider the Ito6-Taylor expansion of the solution process of the given SDE

X(tn + hn) - X(tn)

S
f]‘tnytn"l‘h + fx[f] tnytn+h + Zngf‘nytn+hn

r=1
S
YA fo g
r=1
+ p (5.4.5)
where
S 1 S
nytn h’l’l nytn hn " nytn hn
po= fl" T+ Y o Aot 5 D Flor o Ig ™
r=1 r=1

nyln hn n,ln n nsyln h

T 3 Z 91 194> 4] Moy + Z Iﬁqt T (Argq) + Iogy " (AoAo f)
7"(1 1 r,q=1
S
+ ZligétnﬂLhn(A AOf +Zjég;tn+hn AOAOgr)
r=1
S
+ Zzg:gﬂ*h" (MoAvf) + D TrogI'™ "t (A Aogy)
r,q=1

+ Z It (A, Ay f). (5.4.6)

r,q=1

Let us calculate now the expansion of the numerical approximation at time t,, + h,,

tt-&-hn
Y(tn+hn) = haflef +n267 Aef![f] +ZﬂTBefz (9] h
n
S
+ Y Aeg a4 Z v Aeg, [flhn It
"5 Jhi+hn i Lty
0 T A/ 0
+ Z” T " +;n Acgy, [f]hn =3~
,u, (5.4.7)
where
tt+hn

p o= higlef +ZVT69L hp I 4 Zrz &gy, hn
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ST A 4 AT AAe 1AL

s t,t+hn
+ b Y B ((Be) x (Ae)l i lor, 1%
T ' It t+hn
+ b ZﬁTABcfx[fx[gr]] B
s . It t+hn
+@;fmmmw%7

tt+hy yttthn
Lo g "

1 : 1! 7
# gt X 0118+ (BNl 0= — 5

1oo ;
+ §hi;£;vT<c4e> Ae))gr [f, fIIp"

+ b YAt Adeg, [Fl A

i 1 tit+hn
+ hp Z 7" ABeg,, [filg 1P 5 — (5.4.8)
r,q=1 n
1.8 A It t+hn
+ —hiZUT((Ae) Ae))g! [f, 17—
T It t+hn
hZ AA o
+ ;n egr. [falf]]= hn
s R It t+hn, It t+hy,
+ B Y 0" ABeg, [[ilog) "5—~— (5.4.9)
qu::l n n

Finally we insert both our expansions into the expression of the local error

LIX(t);hy] = flén,tn+hn +f;[f]f(t)8’t"+h"

_|_ Z grlf‘nytn"‘hn _|_ Z g:nl [f]]’é:ytn"rhn
+ 3 frlg gttt < hypTef — h2BT Aefy[f]
=1

Z vLeg, It t+hgy,
It t+hn

T A/ tit+hn r0
——XhA%JhI ;m@rm

s t t+h

— Y BT Befy[g]h

r=1
s
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It t+hy
E 0" Aeg,. [f] h . (5.4.10)
n

The corresponding terms vanish if the following equations are satisfied

hafiTef = It
Bt Acfilf] = LlfG) Iyt

t,t+hn

I o
> 57 Be Ll = > _filelrg™
p
r=1 n -1
m m
ZVTeg [t = Zngﬁn,thrhn
-1
tt-‘rh "
ZU egr—— TO =0 (5.4.11)
n
It,t-i—hn
Z’VTAeg, I“+hn+znTAegT [l =— = Z oL [Tt
r=1 n

So we obtain the order conditions for the coefficient of the stochastic Runge-Kutta

method (5.4.1)

gle=1, yle=1, nTe =0, (5.4.12)
1

BT Ae = 3 BT'Be =1, (5.4.13)

TA=1, plde=—-1. (5.4.14)

[n] 7

Now we consider the expansions in £, +c;hy, to derive stage order conditions for Y;

and in t, + ¢;h, to have order conditions for f’i[n}. We have for the exact solution

X (b + cihn) — X(t,) = fIimtntetn ) (5.4.15)
where

p1 = ft [tn:tn“!‘czhn + f/ [f] Itnyt7L+Cihn

+ Zg Itn,tn+clhn _l_zg” Itn,tn+c1

n,ytn ihn nytn ihn
+ Zgiz [ gyt et 4 Zfé[gr]fio e
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1 & b st +Cilin tnstn+cihn
+ 5> fhlon gl Ig T 4 5 Z 97, (94, 9al I "¢
r=1 Tq 1
m
nsytn zhn "
+ > Ittt (g + Tigy T (Ao Ao f)
'r,q 1

+ Zfiazf"“z (A Aof) +Zféa;f““l " (AoAogy)

I Z Ié:()thrCihn (AOArf) + Z ITOthn,tn+c1'hn(ATAogq)

r= 1 r,qg=1
+ Z It el (A Ag f). (5.4.16)
r,q=1

Then, for the numerical approximation, we have

Y(zy + cihn) = hpdef + pu, (5.4.17)
with
tn,tn+h
w1 = hiAcf] + h2AAefl[f ZABe A [/ [ —
r=1 hn
t’VL)t’fL+hn t’V‘L)tn+h”l
4 ZBgr rO + ZB% ——nh,
tn,tn+hn
+ Z BAegr hn = h,

+ —h AAef”[f fl+ hy AAAef, [ £,15]]

It,t+hn
+ hQZA Be ] ;m:[graf] T(;Ln
It t+hn
2
+ 2 ;AABef A u—hn
m It,t-}-hn
R2S " ABAef![d. [f]]=—
+ ; efalor, 1IN

tit+hn Thit+h
I,+ n IqO n

1 m
+ 5hn D AlBe) x (Be)lfrolr 94 75—
rq 1 " "

t,t+hn

L ZA ((Ae) = (Ae))gr 1, /17—

t,t+hn

b2y AdAceg, [fx[f]]l—

h
r=1 n

n
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9 m It,t+hn ItbtJrhn
A It r0 q
+ 13 AABeg [ilal) = (5.4.18)
Finally
Li{X(t);hy] = fInTem —h, Aef. (5.4.19)

So, from the annihilation of £;[X (t); hy,], we obtain the following stage order condi-

tion
Ae = e (5.4.20)

Analogously when we annihilate £;[X (t); h,] we have Ae = ¢.

5.4.2 First-order Runge-Kutta method involving the It6 coefficient
(“FRKI” method)

In order to derive in a systematic way order and stage order conditions, we refor-
mulate the First-order Runge-Kutta method, introduced by Nigel Newton in [72],
using our notation. Newton showed that this kind of method is asymptotically ef-
ficient in the sense that it minimises the leading coefficient in the expansion of the
mean-square errors as power series in the sample step size. Observe that Newton
considers only SDEs with a scalar Wiener process. The method, in our formulation,

is

v = Xo (5.4.21)

Ynir = Yo+ Bf(tn + b, YI) = g1 (b, + ch, YI)VR
+ gi(tn + eh, YOO [t 4 /],

1
Yn + 591 (tn + Ch, Y[n]) [I{”’tn+h _ \/ﬁ]7

~<o
=X
|

forn=1,--- ,N — 1, only for a scalar Wiener process.
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Remark 5.4.1

We consider a more general class which contains the FRKI method:
Yo = Xo (5.4.22)
m
Unil = Yn Y 0 f(tn + i, V)
7j=1
+ Zﬁjgl +Cj n:Y[n])\/ hn

+ Z Y91 (tn + Ejhn, HA’j["])I{’“t“hn

+ ) gt + éjhnrffj[n])\/h_ny

j=1
A m
P = gt S agg(tn + by, VI It
j=1

+ Z Bz’jg(tn + cjhn, Yi[n])\/h_n-
j=1

The FRKI method hasm =1, a=18=-1, v=1,6=1, a= 3, b=—1.

D=
D=

As usual we define the following operators, where X(t) is the solution of our SDE,

E[X(tn>§ hn] X(tn + hn) - X(tn)

— Y0 ftn + €ihn, X (tn + ¢jhn))
j=1

_ Zﬁjg(tn + thm X(tn + cjhn))\/h_n
j=1
= D9t + i, X (b + &R I
= D 039 (tn + Ehn, X (b + &)V (5.4.23)

LiX(t)ihn] = X(tn+ cihy) — X (tn), (5.4.24)

Li[X(tn);hn] = X(tn+ éhn) — X(tn)
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S
— > gt + b, X (tn + cjhy)) I

j=1
— Y bigg(tn + b, X (b + i)V B (5.4.25)
J=1

Let us consider now the It6-Taylor expansion of the exact solution
X(tn+h) — X(t,) = fItthe pgpintnth g g (gt 4y (5.4.26)
where ps is the truncation term. For the numerical approximation we have

Y(tn +hn) = hpolef + 8Tegy/hy + VTeng”’t"Jrh”
1 nytn h’n. ® nytn hTL
+ T Aegy o)1) 4 4T Begy [T By
+ 0Teg/hn + 67 Aeg [g)V hn I 4 67 Beg! [g)hn + (5:4.27)
again o is the truncation term. By inserting both expansions in L£[X (t,); hy], we

obtain

LIX(tn); b = fIinthn o gpininth o or pintnth
hnOlTef — /BTeg\ [y, — ’VTeng"’t”Jrh“

—_ 'YTAEQ; [g} (Iiﬁn,thrhn)Q _ ’)/TB(ig; [g]Iin,trﬁ»hn \/E

5Teqg\/Tom — 7 Acgl[g]/Tn I — 6T Beg! [glhn(5.4.28)

The corresponding terms vanish if the following equations are satisfied

hnalef = fly
BT egv/hn + ’yTeng"’t"Jrh" + 6T egy/hy, = g]fnytn‘i‘h
T Aeg [g) (1t Thm)2 4 4T Beg! [Tt /Ry
6T Aeg! [g]V/RmIi"Hn 4 6T Beg! [glhn = gL It th,
(5.4.29)

So we get the order conditions for the coefficient of the stochastic Runge-Kutta

method (5.4.22)
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vTe=1, fle+6Te=0
vTBe +~TAe = 0, 4T Ae = %, vI'Be = —%. (5.4.30)

We can easily notice that the coefficients of the FRKI method (5.4.21), introduced

by Newton verify the above order conditions.
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Conclusions

We devoted this thesis to the numerical treatment of Ordinary Differential
Equations and Stochastic Differential Equations. The problem of the numerical
approximation of ODEs could be considered quite old and well known: indeed a
rich literature exists. On the other hand the necessity of efficient methods and fast
implementations of them, for high dimensional stiff problem make this topic still
an open research area, especially the field of multistep Runge—Kutta and General
Linear Methods, in order to design efficient and robust mathematical software, with

reliable error estimate and variable stepsize implementation.

In this thesis we proposed a new class of continuous two-step m-stage methods
for the numerical solution of ordinary differential equations. These methods have
uniform order in any point of the integration interval, and stage order equal to the
step point order. As a result, they do not suffer from order reduction phenomenon
persistent with methods of low stage order. They are constructed using the colloca-
tion approach but by relaxing some of the collocation conditions to obtain methods
with desirable stability properties. The construction of high order methods which
are A-stable and L-stable is a highly nontrivial task. We hope these methods will

constitute building blocks of modern software for stiff differential systems.

As concerning the numerical approximation of second order initial value prob-
lems, we present new trigonometrically fitted hybrid methods with parameters de-

pending on one and two frequencies and analyse the linear stability properties. We
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138 Conclusions

think that the used technique can be extended to adapt the coefficients of general
linear methods to an oscillatory behavior, especially in the context of collocation
methods, by modifying the choice of the collocation functions, as done in the con-
text of exponential-fitting. In this context, the parameters of the methods depend
of an estimate of the frequencies appearing in the solution. In our approach, at the
moment we have considered that a good estimate of the frequencies is a priori known
with enough accuracy. An open problem still remains, concerning the choice of the
parameters in the basis of functions, that is a good predictions of the frequencies,
when they are not known from the knowledge on the problem.

In the second part we have considered numerical methods for Stochastic Dif-
ferential Equations. This is quite a new topic, in the sense that there exist some
numerical methods in general of low order. Only for particular classes of SDEs
there are quite efficient methods. Our aim is to derive in a systematic way numeri-
cal methods for general s-dimensional SDEs in It6 form. The first step has been to
derive order conditions, extending the classical Albrecht approach, already used in
the deterministic case. In this way we carry out our analysis as done in the context
of multistep linear methods. Moreover we are also able to provide stage order con-
ditions, up to now never considered. This approach seems to us very promising for

the analysis and derivation of new numerical methods for SDEs.
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