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Introduction

"On a graph of groups related to cyclic subgroups" is a dissertation on a
problem related to the so-called cyclic graph associated with a group. The
increasing number in literature of papers on graphs associated with groups
shows that the use of a graphical representation to study group theoretical
properties, became an interesting research topic in last years. Essentially
when we assign a graph to a group we provide a method to visualize it
and we can study algebraic properties using the graph theoretical concepts.
Already in 1878, Cayley associated the so-called Cayley Digraph (see, for
instance, [17]) with a group given by a set of generators and relations.
Another important typical example is given by the Degree Graph (sce, for
instance, [21]) associated with a finite group G, where we consider as set
of vertices the set of all primes dividing some character degree of G and
we join two primes by an edge if their product divides some degree. An
interesting example of graph associated with a non-abelian group is the
non-commuting graph. If G is a non-abelian group and Z(G) is its center,
the non-commuting graph of GG, denoted by Ag, is the graph whose vertex
set is G\ Z(@) and such that two distinct vertices are joined if they do
not commute. This graph has been studied by many group theorists (see,
for instance, [1], [39], [40]).

Paul Erd6s, who was the first to consider the non-commuting graph of a
group, posed the following problem in 1975 (see [40]): Let G be a group

whose non-commuting graph Ag has no infinite clique. Is it true that the



clique number of Ag is finite?

B.H. Neumann, in [40], answered positively Erdds’ question. In fact he
proved that the non-commuting graph Ag of a group G has no infinite
clique if and only if G/Z(G) is finite and the clique number of Ag is
just |G/Z(G)|. It could be natural to consider the graph which is the
complement of the non-commuting graph and call this the commuting
graph. This has been done, for instance, in |26] and [27]. In some other
papers, as [13] and [47|, the commuting graph of a group G has been
defined as the graph whose vertex set is the set of non-identity elements
of G and whose edges are pairs of commuting elements.

Furthermore A. Abdollahi and A. Mohammadi Hassanabadi (see [2] and
[3]) associated a graph I' to a non-locally cyclic group G (called the non-
cyclic graph of G) defined as follows: the vertex set is G \ Cyc(G), where
Cyc(G) ={y € G | (z,y) is cyclic for all x € G} and two vertices are
joined if they do not generate a cyclic subgroup. Anyway, in the third
chapter of this dissertation, the reader can find a summary of some of the
most relevant properties of graphs associated with groups.

In this dissertation we consider the so-called cyclic graph. Let G be a
non-trivial group. The cyclic graph associated with G, denoted by I'(G),
is defined in the following way: the set of vertices of I'((G) is the set of all
non-identity elements of (&; two distinct vertices x and y are joined if they
generate a cyclic subgroup.

Obviously in a locally cyclic group G two vertices are always joined, there-
fore I'(G) is connected and diam (I'(G)) = 1. Conversely, it is easy to see
that if I'(G) is connected and diam (I'(G)) = 1, then G is locally cyclic.
In 3.8 we investigate the connectivity of the cyclic graph. The first result
in this direction is Theorem 3.8.1, in which we show that the cyclic graph
['(G) associated with a finite nilpotent group G is connected if and only

if G is a non-primary group or GG is a cyclic primary group or G is a



generalized quaternion group.

Furthermore we remark that if a and b are non-identity elements of a
group G such that a is periodic and b is not periodic, then a and b are not
connected in the cyclic graph T'(G). Therefore a group G with connected
cyclic graph is either periodic or torsion-free. In the latter case we prove
that I'(G) is connected if and only if, for any finitely generated subgroup
H of G, Z(H) is cyclic and H/Z(H) is periodic (see Theorem 3.8.2).
Consequently we prove in Theorem 3.8.3 that the cyclic graph associated
with a torsion-free solvable group G is connected if and only if G is an
infinite locally cyclic group. It is also remarkable the fact that any finite
group G can be embedded in a finite group H with T'(H) connected.
The investigation on the cyclic graph suggests the definition of the follow-
ing group theoretical property. A group G is said to be cyclic-transitive
if the following condition holds: if z, y, z are elements of G \ {1} such
that (z,y) and (y, z) are both cyclic, then also (z, z) is cyclic. Clearly, in
terms of the cyclic graph associated with GG, the property of cyclic tran-
sitivity means that every its connected component is a complete graph.
In [24] and [25] we studied the influence of this condition on the struc-
ture of a group G belonging to some well-known classes of groups. The
obtained results are essentially collected in Chapter 4 and Chapter 5 of
this dissertation. A first interesting property occurs in the nilpotent case;
we establish that if GG is a nilpotent cyclic-transitive group, then G is ei-
ther periodic or torsion-free (see Proposition 4.3.1). Then, in Proposition
4.3.2, we prove that every torsion-free nilpotent group is cyclic-transitive.
Moreover in Proposition 4.3.3 we prove that if G is a periodic nilpotent
group which is cyclic-transitive, then either G is a p-group or G is locally
cyclic. In order to study the structure of primary nilpotent groups that
are cyclic-transitive, we describe in Theorem 4.3.5 the structure of cyclic-

transitive hypercentral p-groups. In the supersolvable case we observe that



there exist cyclic-transitive supersolvable groups, that are neither torsion-
free nor periodic; moreover we show in Proposition 4.4.3 the structure
of these groups. Furthermore we prove in Lemma 4.4.5 that the class of
torsion-free cyclic-transitive groups is "partially" closed respect to forming
quotients. Then we show that if a group G is torsion free, supersolvable
and cyclic-transitive, then G is nilpotent (see Theorem 4.4.7).

A really remarkable property of the class of cyclic-transitive groups is
the fact that every cyclic transitive group can be seen as partitioned
group; more precisely, in Theorem 5.1.2, we prove that a group G is cyclic-
transitive if and only if it has a partition of locally cyclic subgroups. Then,
using a well-known result of Suzuki that determines the structure of all
non-solvable finite groups with a partition, we obtain a complete classifi-
cation non-solvable finite groups cyclic-transitive (see Theorem 5.1.5). In
order to study the structure of finite cyclic-transitive solvable groups we
consider the case of a finite solvable group of order p®¢®, where p, ¢ are
two distinct primes and «, [ are both positive integers; in Theorem 5.2.6
we obtain a complete characterization of finite solvable groups of this type,
that are cyclic-transitive. Using a well-known result of Baer that describes
the structure of all finite solvable groups with a partition, we finally prove
Theorem 5.3.1, that gives a classification of finite cyclic transitve solvable

groups.



Chapter 1

Some basic topics in Group

Theory

The purpose of this first chapter is essentially recalling some classical
results in Group Theory. Many of the results presented in this first chap-
ter can be studied in a more general context than this considered here.
Anyway this first part provides a summary of the most significant group

theoretic prerequisites needed in the rest of dissertation.

1.1 Finite solvable groups

The purpose of this section is recalling some classical results in the theory
of finite solvable groups. First, we give some basic definitions.

Let GG be a finite group. If 7 is a non-empty set of primes, a m-number
is a positive integer whose prime divisors belong to m. A subgroup H

of G is called a Hall w-subgroup of G if |

is a m-number and |G : H|
is a 7-number, where 7’ is the set consisting of all prime numbers that
do not belong to w. The (possibly empty) set of Hall m-subgroups of G
is denoted by Hall,(G). When 7 is a singleton, say m = {p}, we write
Hall,(G) instead of Hall,(G) and p’ instead of {p}’.



A subgroup H of GG is called a Hall subgroup of G if it is a Hall m-subgroup,
for some set 7 of primes. Clearly H is a Hall subgroup of G if and only
if (|G : H|,|H|)=1; a Hall m-subgroup is a maximal m-subgroup. Notice
that, if p is a prime, then Hall,(G) = Syl,(G), in view of Sylow’s theorem.
Moreover, if p is a prime, P is in Syl,(G) and H is in Hally(G), then
G = HP and HN P = 1. Therefore Hall p'-subgroups are sometimes
called Sylow p-complements. Although by Sylow’s theorem a finite group
G has Sylow p-subgroups, for each prime p dividing its order, G need not
contain a Hall m-subgroup for some set 7w of primes. For example, it is
easy to see that the alternating group As has not Hall {3, 5}-subgroups.
A fundamental theorem of Philip Hall states that Hall m-subgroups
exist in a group G for all set of primes 7 if and only if the group considered
is solvable. In fact, the following theorem is true (for more details see, for

instance, 1.3 of [15]).

Theorem 1.1.1 (P.Hall). If G is a finite solvable group, then every m-
subgroup is contained in a Hall w-subgroup of G. Moreover all Hall -
subgroups of G are conjugate. Conversely, suppose that a finite group G

has Hall mw-subgroups, for every set of primes w. Then G is solvable.

The previous results suggest that in the study of finite solvable groups,

Hall subgroups have an important role. The central concept is that of
Sylow systems, which has been introduced by Philip Hall in 1937 in his
fundamental paper ([19]).
Let G be a finite group and let py, ..., pr be the distinct prime divisors of
|G| Suppose that Q); is a Hall pi-subgroup of G, for i € {1,--- ,k}. Then
the set {Q1, ..., Qx } is called a Sylow system of G. As a direct consequence
of 1.1.1 we get the following result.

Proposition 1.1.2. Let G be a finite group. Then G has a Sylow system
if and only if it is solvable.



It is a remarkable fact that a Sylow system determines a set of permutable
Sylow subgroups (for more details, see, for instance, 9.2.1 in [44]). In fact,

the following result holds.

Proposition 1.1.3. Let G be a finite solvable group and let pq, ..., pr be
the distinct prime divisors of the order of G. Assume that {Q1,...,Qr} is
a Sylow system of G. Then:

(1) If w is any set of primes, then ﬂioi%w Q; is a Hall w-subgroup of G. In
particular P; = ﬂj:i Qj is a Sylow p;-subgroup of G,

(ii) The set {Py,..., Py} is a set of permutable Sylow subgroups, that is,
PLP] = Pj]Diy fOT any Za] € {17 T 7k}

A set of mutually permutable Sylow subgroups, one for each prime dividing
the order of the group, is called a Sylow basis. Then by the previous
proposition, if @ = {Q, ..., Qx} is a Sylow system of a finite solvable group
G, then there exists a corresponding Sylow basis Q* = { P, ..., P}, where
P=N =i Q;. The converse is also true: each Sylow basis determines a
Sylow system. Consequently, if GG is an arbitrary finite solvable groups,
then the function @ — Q* is a bijection between the set of all Sylow
systems of G and the set of all Sylow bases of G (see, for instance, [44],
pag. 262, 9.2.2). Finally, we recall that two Sylow systems {Q1, ..., Qx}
and {Q, ..., Q;} of a group G are said to be conjugate if there exists an
element z in G such that Q¥ = Q;, for every i € {1,2,...,k}. In the same
way we can define conjugate Sylow bases. The importance of the two
introduced notions of conjugacy is given by the following result (for the

proof see, for instance, [44|, pag. 262, 9.2.3).

Theorem 1.1.4. In a finite solvable group G any two Sylow systems are

conjugate, as any two Sylow bases.



1.2 Frobenius groups

The aim of this section is recalling some basic definitions and properties
concerning the so-called Frobenius groups. There are many equivalent
ways to give the definition of Frobenius groups. To introduce one of these,
we recall the following result of Wielandt, which is a famous criterion for

non-semplicity.

Theorem 1.2.1 (Wielandt). Let G be a finite group. Suppose that H and
K are subgroups of G such that K < H and H N H* < K, for every x in
G\ H. Let N be the set of all elements of G which do not belong to any
conjugate of H\ K. Then N is a normal subgroup of G such that G = HN
and HNN = K.

The elegant proof of the above theorem involves character theory (see, for
instance, 44|, pag. 248, 8.5.4). Moreover the most important case is when

K is the identity subgroup, case already studied by Frobenius.

Theorem 1.2.2 (Frobenius). If G is a finite group with a subgroup M
such that MNM® = {1} , for all x in G\ M, then N = (G \ U,cq M*) U
{1} is a normal subgroup of G such that G = MN and M NN = 1.

A group G with a non-trivial subgroup M satisfying the above property
is called a Frobenius group. The subgroup M is called a Frobenius com-
plement and N the Frobenius kernel.

In the next we describe some major results related to the structure of
Frobenius groups. First examples of such groups are some dihedral groups
Da,, precisely Do, is a Frobenius group if and only if n is odd and greater
than 1 (in this case a complement has order 2). More generally if K is any
abelian group of odd order and H is a group of order 2 acting on K by
inversion, then the semidirect product of K and H is a Frobenius group.

Other useful equivalent definitions of Frobenius group can be given by

10



using some theoretical properties, in particular some conditions on cen-
tralizers. If G = M N, where M, N are subgroups of GG such that N < G
and M NN = {1} (i.e. G is the semidirect product of the normal subgroup
N by M), the following conditions are equivalent to G being a Frobenius

group with kernel N and complement M (see [28], pag. 121, problem

(7.1)):

(i) Ca(g) CN,Vge N\ {1}
(i) Cg(h) C M,Vh e M\ {1};
(iii) Oy (9) =1,Vg € N\ {1},

Furthermore we recall the following fundamental result on Frobenius groups
(for more details see also [44], pag. 308, 10.5.6).

Theorem 1.2.3. Let G be a finite Frobenius group with kernel N and

complement M. Then:
(1) the kernel N is always nilpotent (Thompson);

(ii) the Sylow p-subgroups of M are cyclic if p > 2 and cyclic or general-
ized quaternion if p =2 (Burnside).

Moreover the Frobenius kernel N is uniquely determined by G as it is the
Fitting subgroup of G and Frobenius complements are conjugated by the
Schur-Zassenhaus Theorem. Furthermore the center of a Frobenius group
is always trivial (see, for instance, [44], pag. 251, Exercises 8.5) and the
center of a complement of a Frobenius group is always non-trivial (see, for
instance, [22], pag. 506, Satz 8.18 (c¢) ). We can also view a Frobenius
group in term of permutation groups. Suppose that G is a permutation
group on a set X, where (G and X are both finite. Then G is said to be

transitive on X if, chosen any pair of elements z,y of X, there exists a

11



permutation 7 in GG such that the image of = in 7 is equal to y. If Y is
a non-empty subset of X, the stabilizer Stg(Y) of Y in G is the set of
all permutations in GG that leave fixed every element of Y'; of course we
can write Stg({z}) = Stg(x). The permutation group G is said to be
semiregular if Stg(z) = 1, for every x in X. A regular permutation group
is a permutation group G that is both transitive and semiregular. Then

the following result holds (see also, for instance, |44|, pag. 250, 8.5.6).

Proposition 1.2.4. Let G be a transitive but non-regular permutation
group in which no non-trivial element has more than one fized point. Then
G is a Frobenius group, whose Frobenius kernel consists of 1 and all ele-

ments of G with no fized points.

In other words, the above result states that if G is a permutation group
such that no non-trivial element fixes more than one point and some non-
trivial element fixes a point, then G is a Frobenius group. Conversely,
every Frobenius group admits a representation as a transitive non-regular
permutation group in which no non-trivial element has more than one

fixed point (see, for instance, [44], pag. 250, 8.5.6).

1.3 Some topics on the theory of groups with
a partition

The purpose of this section is essentially recalling some fundamental re-
sults in the theory of groups admitting a partition. First of all we give the

definitions of covering and partition of a group.

Definition 1.3.1. Let G be a group and let 2 = {A;};e; be a collection
of subgroups of G' (where [ is a set of indices, eventually infinite). The
A =G.

set 2 is said to be a covering (or cover) of G if | J,,;

12



Probably one of the first results on coverings is contained in the paper [38|

of G. A. Miller. Then, we can recall the following, more general, definition.

Definition 1.3.2. A cover 2 = {A;}ic; of a group G is said to be a
partition if A;NA; =1, for all 2,5 € I, with i = j.
Young in [54] used, for the first time, the terminology partition.

The subgroups A; of % are said to be the components of the partition;
moreover 2 is called non-trivial if every its component is a proper non-
trivial subgroup of G (that is 1 < A; < G, for every index 7). In other

words a partition is non-trivial if it contains more than one component.

Examples 1.3.1. Let G be a finite group, p a prime, N a proper subgroup
of G such that every element in GG\ N has order p. Then any partition of
N together with the set of all cyclic subgroups of G not contained in N
is a non-trivial partition of G.

In particular, if N is a non-trivial normal subgroup such that |G : N| =p
and every element of G\ N has order p, then N together with the set of
all cyclic subgroups of G not contained in NV is a partition of G.

Every Frobenius group is partitioned by its complements and its kernel.
If G = PGL(2,p"), with p™ > 3, then the set of all its maximal cyclic
subgroups is a partition (see, for instance, [22], pag. 185, I1.7 or [46], pag.
145, 3.5.1).

If G is the symmetric group S, on four letters, then the set of all its max-
imal cyclic subgroups of G is a partition (see, for instance, [46], pag.145,
3.5.1).

Also for G = PSL(2,p"), with p" > 3, the projective special linear group
of dimension 2 over the field with p” elements, there exists a non-trivial
partition (see, for instance, [22], pag.191, IL.8).

Another class of finite simple groups with a non-trivial partition is given
by the Suzuki groups Sz(q), with ¢ = 2?"*1 (for more details, see, for
instance [23|, pag. 190).

13



It was shown that every finite group with a non-trivial partition is one of
the above examples. This was proved in 1961 for solvable groups by Baer
and in the general case by Suzuki. This result of Suzuki can be considered
one of the most important contribution to the classification of finite simple
groups, in particular in his use of character theory to show that a finite
non-solvable group with a non-trivial partition has even order.

We recall these fundamental results (for the proofs; the reader can refer,

for instance, to [46], pag. 152, 3.5.10 - 3.5.11).

Theorem 1.3.1 (Baer). Let G be a finite solvable group with a non-trivial

partition 3. Then one of the following occurs:

(a) G is a p-group for some prime p and X contains a component X such

that every element in G\ X has order p.

Furthermore || = 1(mod p);

(b) G has a nilpotent normal sugroup N such that N € ¥, |G : N| is a

prime p and every element in G\ N has order p;
(c) G is a Frobenius group;
(d) =5,

Theorem 1.3.2 (Suzuki). Let G be a non-solvable finite group with a

non-trivial partition. Then one of the following holds:
(a) G is a Frobenius group.

(b) G = PGL(2,q), q a prime power, q > 4;

(c) G= PSL(2,q), q a prime power, q > 4;

(d) G=Sz(q), ¢=2>"" neN;

Finally notice the following corollary of the previous result.

14



Corollary 1.3.3. The only finite simple groups with a non-trivial parti-
tion are the groups PSL(2,p"), p" > 3, and Sz(2*"*1), n € N,

15



Chapter 2
Basic concepts in Graph Theory

This chapter gives an introduction to some of the most basic and useful
terminology of Graph Theory. For more advanced topics the reader can

refer to specific textbooks, for instance [11] or [14].

2.1 First definitions

Before giving the definition of graph we notice that, if V' is a set, the
notation P(V) (or [V]¥) stands for the set of all k-elements subsets of V.
Then we have the following definition of graph.

Definition 2.1.1. A graph I' (or an undirected graph) is a pair I' =
(V, E), where:

e I/ is a set, called the set of vertices of I';

e F is a subset of (V) (in other words, E is a set of two-elements

subsets of V'), called the set of the edges of T".

Given a graph I' = (V, E), if z,y € V and e = {z,y} € E, we say that
the edge e joins the vertices x and y. In this case we say that the vertex

x (or y) and the edge e are incident; we say also that e is an edge at z

16



(or y). The two vertices incident with an edge are called its endvertices
or its ends; therefore we can say that an edge joins its ends. An edge
e = {z,y} € E is usually written as zy (or yz). Two vertices are called
adjacent (or neighbours) if there exists an edge between them; likewise
two edges are adjacent if they have a vertex in common. An equivalent

definition of graph is the following.
Definition 2.1.2. A graph is a triple I' = (V, I, ¢), where:

e V is a set, called the set of vertices of T';
e [ is a set, called the set of the edges of I';

e ¢ is an injective function with domain E and codomain P(V).

Sometimes the function ¢ is said to be the incidence function of the graph.
According to this definition, the two eclements of ¢(x) = {u, v}, for any
edge x in F, are the endvertices of the edge x. The injectivity of the
function ¢ allows the identification of F with a subset of P»(V). Con-
versely, suppose that I' = (V| I)) is graph, defined as in 2.1.1. Define
¢ : E — Py(V) to be the inclusion map. The graph IV = (V| E,¢) is
essentially the same as I'. Notice that in both definitions of graph given
above, the order of the vertices is not of remarkable importance (in the
next we show that this is not true in other notions of graphs, like di-
graphs). A graph with vertex set V is called a graph on V. Sometimes,
given a graph I' = (V. E), the set of vertices V is written as V(T'), the
edge set E as E(I'). Notice that we will not always distinguish between a
graph and its vertex set or its edge set; namely, for example, sometimes
we speak on a vertex v in I' (instead of v in V(I)).

The cardinality of the set of the vertices of a graph I' is its order, denoted
by |T'|. Graphs can be finite, infinite, countable and so on, according to
their order. The empty graph ((,0)) is the graph of order 0; a graph of

order 0 or 1 is called trivial. Now we give some other basic definitions.

17



Definition 2.1.3. Let I' = (V| E) a graph. Given any v € V, then
1. the set of the edges incident with v is written as E(v);

2. the set of vertices adjacent to v is written as N(v) (the letter ” N”

recall the first letter of the word "neighbours").

Definition 2.1.4. A set of vertices (likewise of edges) is said to be inde-

pendent if no two of its element arc adjacent.

Definition 2.1.5. A graph I' is called complete if all its vertices are pair-

wise adjacent.

Usually, a complete graph on n vertices is denoted by K™.

2.2 Isomorphisms of graphs

Let I' = (V,E) and I' = (V', E') be graphs. Then I' and I are said to
be isomorphic (and we write I' = T") if there exists a graph-isomorphism

between them, that is a bijection
WV —V

such that zy € F if and only if ¢ (z)¢(y)€ E’'. Such a map v is also said
shortly to be an isomorphism; if ' = TV | then v is called an automorphism.
For the definition of graph-isomorphism according to the definition 2.1.2,
the reader can refer any Graph Theory textbook.

A graph property is a class of graphs that is closed under isomorphisms.
In general, deciding whether or not two graphs are isomorphic can be very
difficult. Sometimes it is useful using some graph invariants to discover
that two graphs are not isomorphic. Recall that a graph invariant is a map
having graph as arguments and assigning tha same values to isomorphic

graphs.

18



Two easy examples of graph invariants are the number of vertices and the
number of edges of a graph. Other examples of graph invariants are the

minimum degree and the mazrimum degree, that can be defined as follows.

Definition 2.2.1. Let I' = (V, E)) be a graph and v € V' a vertex. The
degree of v, denoted by d(v), is the number of the edges e € F incident

on v. The number

(G) :=min{d(v) | ve V}

is the minimum degree of I', the number
A(G) :=max{d(v) | v eV}
is its mazimum degree.

It can be proved that the number of vertices of odd degree in a graph is
always even.

Furthermore we have the following definition.

Definition 2.2.2. A graph I' = (V| E) is reqular if every vertex in V has
the same degree, i.e. each vertex has the same number of neighbors.

If ' = (V,E) is a regular graph with vertices of degree k, I' is called a
k-reqular graph or regular graph of degree k.

2.3 Subgraphs

Let I' = (V, E) be a graph. A graph IV = (V' E') is a subgraph of I" (and
we write IV C T ) if V' CV and E' C E.

Moreover IV = (V'  E') is called an induced subgraph of T if I” C T" and
if B’ contains all the edges xy € F, for all x,y € V'. We write also
[ := T'[V'] and we say that V' induces or span I in I'. Then, if we
consider a subset of vertices U C V', then I'[U] is the graph on U such
that vy € E(I'[U]), whenever zy € E.

19



Moreover, if H is a subgraph of T' (not necessarily induced), we write
I'[H], rather than I' [V (H)].

Finally if I” = (V’, E’) is a subgraph of I', we say that I" is a spanning
subgraph if V' spans I, i.e. V' = V’. Then we have the following definition.

Definition 2.3.1. Let I' = (V, E) be a graph. A subset X of the vertices
is said to be a clique if the induced subgraph on X is a complete graph.
The clique number of a graph I', denoted by w(I'), is defined as the max-

imum size of a clique (if it exists) in I,

If I' = (V, E) is a graph, we can define the complement of ', denoted by T’
and defined as the graph on the same vertices such that two vertices of T
are adjacent if and only if they are not adjacent in I'. Clearly every clique

in a graph I' corresponds to an independent set in the complement graph

I.

2.4 Paths and connectivity

A path is a non-empty graph of the form P = (V, E), where
V ={xo, x1, ..., 2%}, F = {xox1, 2120, ..., Tp_1Tk }

(the vertices z; are pairwise distinct). The vertices zy and ) are called
the ends of the path P. Usually we say that xg and x; are linked by the
path P. The number of edges of a path P is its length. Often a path P is
denoted by the sequence

To€1L1€2....€TL

whose terms are alternately distinct vertices and distinct edges such that
for any i (1 < i < k) the ends of ¢; are z;_; and z;. We can also refer to

a path by the sequence of its vertices

P = xqxy...24.
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A cycle is a path such that the start vertex and end vertex are the same.
A path in a graph is a sequence of vertices such that from each of its
vertices there is an edge to the next vertex in the sequence. More for-
mally, given a graph I' = (V| F) and two different vertices z,y € V, a
path (in I') between x and y is a sequence = xox;...xx = ¥y, such that
ToT1, 1T, ..., Tp_1x) are edges in the graph I'. If = y, then the above
sequence r = xoxy1...r, =y is a cycle (in I').

Some authors introduce also the concept of walk (of length k) in a graph
I' = (V, F) as a non-empty alternating sequence zoe;x;€s....e,x) of vertices
and edges in T'; such that the ends of e; are x;_; and x;, for any 7 (1 <i <
k). If xy = xy, the walk is closed. Clearly if the vertices in a walk are all
distinct, it defines a path in I'. Moreover, in general, every walk between
two vertices contains a path between these vertices.

If we consider two different vertices z,y in a graph I' = (V| F) we define
the distance d(z,y) between x and y as the length of the shortest path
between them. If no such path exists, we set d(x,y) := oo. The largest
distance between all pairs of distinct vertices of I' is called the diameter
of I" and is denoted by diam(T"). The following concepts are of crucial

importance.

Definition 2.4.1. Let I' = (V, F) be a non-empty graph. We say that
I' is connected if any two distinct vertices are linked by a path in I'. If
U CV is a subset of vertices, we say that U is connected in I', if I' [U] is
connected (in I'). A maximal connected subgraph of I is called a connected

component (or simply component) of T.

Notice that a component always exists and it is non-empty if I = 0,
otherwise, the graph has no components.
In the next we introduce some definitions that will be useful in the next

chapter.
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Definition 2.4.2. A Hamiltonian path is a path that visits each vertex
exactly once. A graph is Hamilton-connected if for every pair of vertices

there is a Hamiltonian path between the two vertices.

Definition 2.4.3. A Hamiltonian cycle or Hamiltonian circuit is a cycle
that visits each vertex exactly once (except the vertex which is both the
start and end). A graph that contains a Hamiltonian cycle is called a

Hamiltonian graph.
Finally we recall the following notion of connectivity for a graph.

Definition 2.4.4. A closed walk in a graph is called an Fuler tour if it
traverses every edge of the graph exactly once. A graph is Fulerian it

admits an Euler tour.

Theorem 2.4.1 (Euler,1736). A connected graph is Eulerian if and only

if every vertexr has even degree.

Directed graphs

A directed graph (or digraph) is a pair D = (V| E), where V is a set, called
the vertex set, and £ is a set of ordered pairs of vertices (£ C V x V),
called the (directed) edge set.

If e = (z,y) is an edge, then x is the initial vertex of e and y is the
terminal vertex. Sometimes, in the finite case, we also say that a directed
graph is a triple D = (V, E,¢) where V and E are finite sets and ¢ is a
function with domain £ and codomain V' x V . Again, we call E the set
of edges of the digraph D and call V' the set of vertices of D.

We can also define a directed graph as a pair (V, E) of disjoint sets (whose
elements are called respectively the vertices and edges of the directed

graph) together with two maps ¢ : F — V and ¢ : £ — V assigning to
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every edge e an initial vertezr i(e) and a terminal vertex t(e). We say that
the edge e is directed from i(e) to ((e).

Notice that a directed graph may have more than one edge between the
same two vertices. Such edges are said to be multiple edges; moreover
multiple edges are called parallel if they have the same direction. Finally,

if i(e) = t(e), the edge e is called a loop.

Multigraphs

A multigraph is a pair (V, F) of disjoint sets (of vertices and edges) together
with a map from F to VU Py(V) assigning to every edge either one or two
vertices, called its ends. This definition implies that multigraphs too can
have loops and multiple edges: we may view a multigraph as a directed
graph whose edge directions have been ‘forgotten’. To express that z and
y are the ends of an edge e we still write e = zy, though this no longer
determines e uniquely. Finally some authors define a simple graph as an

undirected graph without loops and multiple edges.

2.5 Graph Colouring

In this section we introduce the concept of graph colouring. Graph colour-
ing can be seen as a graph labeling, that is an assignment of labels to the
edges or vertices, or both, of a graph. Under this point of view, graph
colouring is a special case of graph labelings, such that adjacent vertices
and coincident edges must have different labels.

A wertex colouring of a graph I' = (V; F) is a map
c:V—-9

for some set S, such that c¢(v) = c¢(w), if v and w are adjacent vertices.

The set S is called the set of available colours. Typically the size of the
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set S is of relevant interest.

In fact, a colouring using at most k colours is called a (proper) k-colouring
The smallest number of colours needed to colour a graph G is called its
chromatic number; it is denoted by x(I'). A graph I' with x(I') = k is
called k-chromatic; if x(I") < k, we call " k-colourable.

A subset of vertices assigned to the same colour is called a colour class.
Thus, a k-colouring is the same as a partition of the vertex set into k
disjoint sets, so that the terms k-partite and k-colourable have the same
meaning.

An edge colouring of a graph T' = (V; E) is a map
c: B — S

for some set S, such that c(e) = ¢(f), for any adjacent edges e, f. An
edge colouring with &k colours is called a k-edge-colouring.

The smallest number of colours needed for an edge colouring of a graph I' is
the chromatic index, or edge chromatic number; it is denoted by x/(I'). An
edge colouring with k colours is equivalent to the problem of partitioning
the edge sets into k sets of edges without common vertices (such sets are
sometimes called matchings or edge-independent sets).

Finally we refer the reader to [11] (or [14]) for other graph thoretical

concepts.
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Chapter 3

Graphs associated with groups

The main purpose of this section is providing an introduction to the prob-
lem of associating graphs to groups. The use of a graphical representa-
tion to study group theoretical properties is an interesting research topic.
When we assign a graph to a group we provide a method to visualize it
and we can study algebraic properties using the graph theoretical con-
cepts. There are many papers concerning interesting graphs associated
with a group (see, for example, [2]-|4], [8]-[10], [12], [13], |20], |31] and
[33]). Already in 1878, Cayley associated the so called Cayley Digraph

with a group given by a set of generators and a set of relations.

3.1 Cayley Digraph

Let G = (S
relations R. We define a directed graph Cay(S : G), called the Cayley

R) be a presentation of a group G with generators S and

Digraph with generating set S, as follows:
1. The vertex set of Cay(S : G) is identified with G.
2. If x and y are elements of GG, there is an edge between x and y if

and only if xs = y for some s € S.
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In other words, the vertices of the Cayley graph are precisely the elements
of G and two elements of G are connected by an edge if some generator
in S maps the one to the other.

Sometimes it is useful to consider the Coloured Cayley Digraph. In
this case to each generator s of S is assigned a colour ¢(s). Then if z is
an element of G and s is a generator, the directed edge joining = to xs is
coloured with the colour assigned to s. There exist some interesting results
about the connectivity of Cayley Digraph. In the following we state some
of these (for the proofs the reader can refer, for instance, to [17], Chapter

31).

Theorem 3.1.1. The Cayley Digraph of Zy, &2y, is not Hamiltonian when

m and n are relatively prime and greater than 1.

Theorem 3.1.2. The Cayley Digraph of Z,, ® Z, is Hamiltonian when n

divides m.

Theorem 3.1.3. Let G be a finite non-identity abelian group and let S be
any generating set for G. Then Cay(S:G) has an Hamiltonian path.

3.2 Degree Graph

Another important example of graph associated with a group is given by
the Degree Graph (see, for instance, [21]).

Let G be a finite group and let Irr(G) be the set of irreducible characters
of G. Let I'(G) be the graph defined in the following way:

1. The vertices of I'(G) are all primes in p(G), i.e. the primes dividing
some x(1), where x € Irr(G).

2. We connect two distinct primes p,q € p(G) by an edge, if there
exists some x € [rr(G) such that pg divides x(1).
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The graph constructed as above is called the Degree Graph associated to
a finite group G. In the next we recall two deep results on Degree Graph

(for the proof, the reader can refer, for instance, to [21]).

Theorem 3.2.1 (O. Manz). If G is a finite solvable group, then I'(G) has

at most two components.

Theorem 3.2.2 (O. Manz). Suppose that x(1) is a power of some prime
for every x € Irr(G). Then the following statements hold:

a) G is solvable if and only if |p(G)| < 2;
b) If G" =1, then |p(G)| < 2.

There are many results concerning the Degree Graph summarized in [31].

3.3 Prime Graph

Let G be a finite group and let 7(G) be the set of all primes dividing
the order of G. The prime graph of G is the graph denoted by I'(G) and
defined as follows: the vertex set is 7(G) and two primes p, ¢ in 7(G) are
joined by an edge, and we write p ~ ¢, if G contains an element of order
pq. The prime graph of (G is sometimes called Kegel-Gruenberg graph. We
denote the connected components of the graph by m;, fori=1,...,1 and,
if 2 € 7(G), we denote the component containing 2 by 7.

The concept of prime graph appeared in 1975 during the investigation
of certain cohomological problems related to integral representation of
finite groups. In fact, in [18], it turned out that I'(G) is not connected if
and only if the augmentation of G is decomposable as module. The first
classification of groups whose prime graphs have two or more components
is an unpublished result of Gruenberg and Kegel. This deep result was
published by J. S. Williams in [51]. Actually, in this paper, the following

result was proved.
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Theorem 3.3.1. Let G be a finite simple group whose prime graph T'(G)
is disconnected and let A be a connected component of I'(G) whose vertex

set does not cointain 2. Then A is a clique.

This theorem was obtained as a corollary of the following stronger the-
orem, proved by J. S. Williams using the classification of finite simple
groups.

Recall that a subgroup H of a group G is isolated if H N HY = 1 or
H N HY = H, for every element ¢ in G, and Cg(x) < H, for every non-

identity element = in I1.

Theorem 3.3.2. Let G be a finite simple group whose prime graph T'(G)
is disconnected and let A be a connected component of T'(G) whose vertex
set does not cointain 2. Denote the vertex set of A by §. Then G contains

an isolated nilpotent Hall §-subgroup H.

It is easy to see that the existence of such a subgroup H in any finite
group G implies that the corresponding connected component of I'(G) is
a clique.

In [49], M. Suzuki proved Theorem 3.3.2 without using the classification.
Moreover this Suzuki’s paper is among the most influential precursor of
the so-called "Odd Order Theorem" of W. Feit and J. G. Thompson ([16]).
Other results concernig the prime graph are, for instance, [32]|-[35].

In the next we recall a result about the diameter of the prime graph. We
denote by d(p, q) the distance between two elements p, ¢ if they are in the
same connected component of the prime graph I'(G). Then we define the

diameter of I'(G) as follows:
diam(I'(G)) = maz{d(p, q) | p, ¢ in the same connected component of I'(G)}

In [33] (see Theorem 10) it was proved that diam(T'(G)) <5 and
diam(I'(G)) < 3 if (G is solvable.
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3.4 A theorem of B.H. Neumann on
non-commuting graph

Let G be a non-abelian group and let Z(G) be the center of G. The

non-commuting graph of G, denoted by Ag, is defined as follows:

the vertex set is G \ Z(G);

two distinct vertices are joined if they do not commute.

One of the most recent papers on this graph is, for instance, [1].

Paul Erdos, who was the first to consider the non-commuting graph of a
group, posed the following problem in 1975 (see [40]): Let G be a group
whose non-commuting graph A has no infinite clique. Is it true that the
clique number of Ag is finite?

In the above question recall that a subset X of the vertices of a graph T is
said to be a clique if the induced subgraph on X is a complete graph. The
clique number of a graph I', denoted by w(I'), is defined as the maximum
size of a clique (if exists) in I

The following theorem of B.H. Neumann answers positively Erdos’™ ques-

tion .

Theorem 3.4.1 (B.H. Neumann, [40]). The non-commuting graph Ag of
a group G has no infinite clique if and only if G/Z(G) is finite. In this

case, the clique number of Ag is finite.

3.5 Commuting graph associated with a group

In the previous section we introduced the non-commuting graph associ-
ated with a non-abelian group. It could be natural to consider the graph

which is the complement of the non-commuting graph and call this the
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commuting graph (or commutativity graph). This has been done, for in-
stance, in [26] and [27]. In this section we consider the commuting graph
I'(@) associated with a group G defined as in [13] and [47]. In these papers
the commuting graph of a group G has been defined as the graph whose
vertex set is the set of non-identity elements of G and whose edges are
pairs of commuting elements.

Furthermore, in [43|, A. S. Rapinchuck, Y. Segev and G. M. Seitz
showed that there exists a close connection between finite quotients of
the multiplicative group of finite-dimensional division algebras and the
commuting graph of certain finite groups. In the case of the diameter of
['(G) being equal to 1, we have the class of commutative-transitive groups,
that will be discussed in the next section.

In [13], C. Delizia and C. Nicotera looked at the cases of the diameter
of I'(G) being 2; they proved that if G is a group whose commutativity
graph I'(G) has diameter 2 and more than one connected component,
then it is either Frobenius or a simple non-abelian group. The case that
I'(G) has only one connected component is more complicated. Notice that
the commutativity graph of every group G having non-trivial center has
diameter 2 and only one component. On the other hand, in [13], it was
showed an example of a finite group G such that Z(G) = 1 and I'(G) is
connected of diameter 2.

It is also easy to prove that the finitary group (i. e. the group of
all permutations with finite support on a countable infinite set) is an
example of locally finite infinite group having trivial center and connected
commutativity graph of diameter 2.

As we remarked above, the case of the diameter of I'((G) being 1 is linked

to the class of commutative-transitive groups (briefly CT-groups).
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3.6 Commutative-transitive groups

A group G is said to be commutative-transitive (briefly CT-group) if
[z,y] = 1 and [y, 2] = 1 imply that [z, 2] = 1, for all non-trivial elements
x,y,z € G. In other words, the relation of commutativity is transitive on
the set of all non-identity elements of G.

Clearly in terms of the commuting graph associated with G, the above
property means that every its connected component is a complete graph.
The structure of commutative-transitive groups has been studied in [52],
[50], [48]. Clearly every abelian group is commutative-transitive. Further-
more, if a group GG having a non-trivial center is commutative-transitive,
then it is abelian. In particular, this implies that if (¢ is a nilpotent group
of class ¢ > 1, then (G is not commutative transitive. The first example
of a non-abelian commutative-transitive group is the symmetric group 53
of degree 3. The class of commutative-transitive groups is clearly closed
under taking subgroups, but it is not closed under taking homomorphic
images, since every free group is a C'T-group. The Tarski groups are also
CT- groups (see [42]). This shows that the structure of CT-groups can
be really complicated.

Suzuki proved, in 1957 (see [48|), by using character theory, that every
non-abelian simple CT-group is isomorphic to some PSL(2,2"), for some
t > 2. The classification of locally finite commutative-transitive groups is

due to Yu-Fen Wu.

Theorem 3.6.1 ([52]). If G is a solvable locally finite CT-group, then
G = H X F, where F' = Fit(GQ) is abelian and H is a locally cyclic group
of fized-point-free automorphisms of F. Moreover, any two complements
of F are conjugate in G. Conversely, if F is an abelian locally finite group
and H is a locally cyclic group of fixed-point-free automorphisms of F, then
G = H x Fis a solvable locally finite C'T-group.
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Theorem 3.6.2 ([52]). A non-solvable locally finite group G is commutative-
transitive if and only if G ~ PSL(2,F) for some locally finite field F of
characteristic 2 with |F| > 4.

Using the above mentioned results, Yu-Fen Wu also proved that the class of
locally finite C'T-groups is closed respect to forming quotients, a property
that does not hold for C'Tgroups in general as noticed before. Moreover
the structure of polycyclic C'T-groups and torsion-free solvable C'T-groups
is explored in [52]. It is interesting to observe that there is a connection
between polycyclic CT-groups and algebraic number fields.

Actually if GG is an abelian-by-finite polycyclic CT-group, then there are
two possibilities: (7 is a split extension of the Fitting subgroup F by a
finite cyclic fixed-point-free group of automorphisms of F' or GG is an ex-
tension of F' by a generalized quaternion group ) in which every extension
of F' by a quaternion subgroup of ) is non-split. Moreover, if G is a non
abelian-by-finite polycyclic C'T-group, then it is a finite extension of an
extension of a free abelian subgroup by another with fixed-point-free ac-
tion. Essentially, every polycyclic CT-group of this sort is constructed
from algebraic number fields.

On the other hand, it is possible to exhibit examples of finitely gener-
ated torsion-free solvable C'T-groups with arbitrary derived length using

standard wreath products; such groups have complicated structure.

3.7 Non-cyclic graph associated with a group

In [2] and |3|, A.Abdollahi and A. Mohammadi Hassanabadi defined the so
called non-cyclic graph associated with a group and studied the properties
of this graph. In this section we recall the most relevant results about this

graph.
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Let G be a group. If x is an element of G we can define the cyclicizer of

x in G, denoted by Cycg(x), as follows

Cyca(z) ={y € G | (x,y) is cyclic}

Then we define the cyclicizer of G, denoted by Cyc(G), as

Cyc(G) ={y € G | (z,y) is cyclic for all x € G}
The reader can find some interesting properties of cyclicizers in the second
scection of [2] or in [41].
Now consider a non-locally cyclic group GG. We define the non-cyclic graph

associated with GG, denoted by I'g as follows:

(i) the set of vertices is G \ Cyc(G);

(ii) two distinct vertices are joined if they do not generate a cyclic sub-
group.

In [2] the authors proved for the non-cyclic graph the following result,

similar to 3.4.1.

Theorem 3.7.1. The non-cyclic graph I'q of a group G has no infinite
clique if and only if G/Cyc(G) is finite. In this case, the clique number of
I'q s finite.

The following theorem establish the regularity of the non-cyclic graph of

a group.

Theorem 3.7.2 (|2]). Let G be a non-cyclic finite group. Then the non-
cyclic graph of G is reqular if and only if G is isomorphic to one of the

following groups:

(1) Qs X Z,, where n is an odd integer and Qg is the quaternion group of

order § ;
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(2) P X Zp,, where P is a finite non-cyclic group of prime exponent p and

m > 0 is an integer such that (m, p) = 1.

It is interesting the fact that the proof of above theorem needs the following

result due to I.M. Isaacs on equally partitioned groups.

Theorem 3.7.3 ([29]). Let A be a finite non-trivial group and let n > 1
be an integer such that {A;|i = 1,...,n} is a set of subgroups of A with
the property that A = \U;_; Ai, |Ai] = |4;] and A, N A; =1 for any two

distinct indices i,j. Then A is a group of prime exponent.

3.8 Cyclic graph associated with a group

The main purpose of this section is introducing the cyclic graph associated
with a group G.
Consider a non-trivial group G. We can define the cyclic graph associated

with G, denoted by I'¢ and constructed by the following positions:
the set of vertices of I'g is the set of all non-identity elements of G

two distinct vertices x and y are joined by an edge if they generate a

cyclic subgroup.

Obviously in a locally cyclic group G two vertices are always joined, there-
fore T'g is connected and diam (I'g) = 1. Conversely, it is easy to see that
if I'¢ is connected and diam (I') = 1, then G is locally cyclic.

If a,b € G\ {1} are directly connected in the cyclic graph, and |a| =
p",|b| = p™, p a prime, n,m > 1, then obviously (a?" ') = (" ').
Furthermore if G is a nilpotent group and |a| = p™, |b| = ¢, where p and
q are different primes, then obviously a,b commute and (a,b) is cyclic,
therefore a,b are directly connected in the cyclic graph. Starting from

these remarks we have the following result.
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Theorem 3.8.1. Let G be a finite nilpotent group. The graph T'g is
connected if and only if one of the following holds: G is not a p-group, or

G is a cyclic p-group, or G is generalized quaternion.

Proof. If G is not a p-group, let a,b € G\ {1}. If |a|, |b| are coprime, then
(a, b) is cyclic, and a, b are directly connected in I'i. If there exists a prime
q dividing |a| and ||, let a; be an element of (a) of order ¢, b; an element
of (b) of order ¢, let r be a prime different from ¢ dividing the order of G
and ¢ be an element of GG of order . Then we have: a connected to a1, a4
connected to ¢, ¢ connected to by, b; connected to b, therefore a and b are
connected in I'g.

If G is a p-group and it is either cyclic or a generalized quaternion
group, then G has only one subgroup of order p, say H = (d). Then if
a,b € G\ {1}, we have H C (a) N (b) and a is connected with d, that is
connected with b; hence a, b are connected.

Conversely, assume I'¢ connected and G a p-group. If a,b € G of
order p, then there exist elements in G, ©; = a,xy,--- , 1, = b, such
that (x;,x;.1) is cyclic, for any i € {1,--- ,n — 1}. Then there exists
exactly a subgroup H of order p contained in (z;, x;11), for any 7. Then
(a) = H = (b). Therefore GG has exactly one subgroup of order p and then

it is either cyclic or a generalized quaternion group. O

Obviously a periodic element different from 1 and a non-periodic ele-
ment are not directly connected in I'g, it follows easily that if a,b € G\{1},
a is periodic and b is not periodic, then a,b are not connected in I'g.
Therefore a group G with connected cyclic graph I'g is either periodic or

torsion-free. In the latter case we have:

Theorem 3.8.2. Let G be a torsion-free group. I'g is connected if and
only if, for any finitely generated subgroup H of G, Z(H) is cyclic and
H/Z(H) is periodic.
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Proof. Assume that I' is connected. First we show that for any a,b €
G \ {1} there exist non-zero integers m,n such that " = bv™. If a,b
are directly connected then (a,b) is cyclic and the result is true. In the
general case, there exist 1, -+, z, € G such that a = x1,b = x,,, (x;, x;11)

is cyclic, for any i € {1,--- ,n — 1}. Then z" = xfjrl, for some non-zero

Br-

integers «y, ;. Hence a® % = z; Bt for any i, and @ on = pBr-Bo-t,
Now let II be a finitely generated subgroup of G, H = (yy, -, ys).
Then, for any a € H, a" centralizes y;, for some non-zero integer 7;. Thus
a7 e Z(H). Therefore H/Z(H) is periodic. Furthermore Z(H) is
cyclic, since (a, b) has rank 1, for any commuting elements a,b € G.
Conversely, assume H/Z(H) periodic and Z(H) cyclic, for every finitely
generated subgroup I7 of G and let a,b € G\ {1}. Then, for suitable non-
zero integer m,n, a™, b" € Z({a,b)) = (d). Then we have: a connected
to a™, a™ connected to d, d connected to b and b" connected to b; hence

a,b are connected, as required. O
In particular, if G is soluble we have the following theorem.

Theorem 3.8.3. Let GG be a torsion-free soluble group. ' is connected

if and only if G is an infinite locally cyclic group.

Proof. Tt I is a finitely generated subgroup of G, from H/Z(I) periodic
it follows H/Z(H) finite, then H’ is finite by a theorem of Schur and H’
is trivial, since G is torsion-free. Then H = Z(H) is cyclic. Therefore G

is locally cyclic. (]

We notice that A. Yu. Ol'shanskii constructed in [42] an infinite torsion-
free group G with Z(G) infinite cyclic and G/Z(G) isomorphic to the
infinite Burnside group B(n,p) of exponent p. Then T'g is connected, by
proposition. Hence the hypothesis of solubility in the previous theorem
cannot be omitted. Notice also that any finite group G can be embedded

in a finite group H with I'y connected, in fact, if |G| = n and ¢ is a
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prime not dividing n, then the group H = G x (c), with (c) of order ¢ has

connected cyclic graph.

3.9 Cyclic-transitive groups

In order to study the cyclic graph associated with a group G, we introduce

the following property.

Definition 3.9.1. Let GG be a group. Then G is said to be cyclic-transitive
if the following condition holds: if x, y, z are elements of G \ {1} such
that (z,y) and (y, z) are both cyclic, then also (x, z) is cyclic.

Clearly, in terms of the cyclic graph associated with G, the property of
cyclic-transitivity means that every its connected component is a complete
graph. The purpose of the next two chapters of the dissertation is studying
the influence of this condition on the structure of groups belonging to some

well-known classes of groups.
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Chapter 4

A first approach to the class of

cyclic-transitive groups

The purpose of this chapter is studying the influence of the condition
defined in 3.9.1 on the structure of a group G in the following cases: G
abelian, more generally GG nilpotent and finally GG supersolvable. The
reader can find the results contained in this chapter in the paper On
a graph associated with a group (sce [24]). The proofs in this chapter
are direct and could be simpler using some results of the next chapter.
Anyway we give them to improve understanding the intrinsic stucture of
cyclic-transitive groups. First recall that, according to Definition 3.9.1, a
group G is said to be cyclic-transitive if the following condition holds: if
x, y, z are elements of G\ {1} such that (z,y) and (y, z) are both cyclic,

then also (x, z) is cyclic.

4.1 Some examples and properties

In this section we first give some examples of cyclic-transitive groups.
Then, we study some properties of these groups. Clearly, every locally

cyclic group is cyclic-transitive. The Hamilton’s quaternions group Qs is
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not cyclic-transitive. More generally, every generalized quaternion group
Qaon (n > 4) is not cyclic-transitive. It is easy to prove that any group of
exponent p, where p is a prime, is cyclic-transitive. Moreover in Proposi-
tion 4.2.4 it will be proved that every abelian torsion-free group is cyclic-
transitive. In the following proposition we give another important class of

examples of such groups.

Proposition 4.1.1. Let F be a non-identity free group, F' = 1. Then F

18 cyclic-transitive.

Proof. Let suppose that x,y,z are non-trivial elements of F' such that
(x,y) and (y, z) are both cyclic. Then there exist an element d € G'\ {1}
and non-zero integers «, § such that z = d® and y = d°. Analogously,

y =g, 2= ¢° for suitable g € G, 7,6 = 0. Hence we get

yad . dyo Yo

l_ﬁé — dozﬂ() — dﬂa(‘) — ya() — Z{ )

=9 )

As a consequence, if we write K := (z,y, ), we can deduce that z",y, 2*
are all elements of Z(K), for suitable non-zero integers r,¢. Moreover K
is a free group, by the Nielsen-Schreier Theorem (see, for instance, [44],
pag. 159, 6.1.1). If rank(K)=1, then K = Z and therefore (z, z) is cyclic.
If rank(K)> 1, then K has a trivial center and therefore 2" =1 =y = 2*,

a contradiction. O

Certainly the class consisting of all cyclic-transitive groups is S-closed,
because it is clear that every subgroup of a cyclic-transitive group is also
cyclic-transitive. The class of cyclic-transitive groups is not closed with re-
spect to forming factor groups. A counterexample is given by free groups,
since any group is a quotient of a suitable free group and, for example, Qg
is not cyclic-transitive. The direct product of two cyclic-transitive groups

needs not to be cyclic-transitive, as shown by the following proposition.
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Proposition 4.1.2. Let consider
G=AxB

with A cyclic,
Al =p*|B| =p,
p prime. Then G is not cyclic-transitive.
Proof. Let A = (a) and B = (b). Then (a,a?) and (a?,ab) are cyclic,

while G = (a, ab) is not cyclic. O

Another important example of a cyclic-transitive group is given by the

infinite dihedral group D, as shown by the following proposition.
Proposition 4.1.3. The infinite dihedral group Do s cyclic-transitive.

Proof. Recall that the infinite dihedral group D, can be realized as a
semidirect product

Doo = (b) X (a),

where (b)> Zs, (a)= Z and b maps any element of (a) into its inverse.
Therefore
Dy = {ba’le € {0,1},i € Z} .

First of all, we observe that if g € Dy, \ (a), then |g| = 2. For, g = ba’

and we can write
i (bai) (bai) = (baib) al = (b_laib) at = (ai)bai =a ' =1,

which implies |g| = 2. Now let us consider three different non-identity
elements x,y, z such that (z,y) and (y, z) are both cyclic. Then, z,y, z €

(a), therefore (z, z) is cyclic. O
Arguing similarly we get the following result.

Proposition 4.1.4. The dihedral group Da, (withn > 1) is cyclic-transitive.
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4.2 The abelian case

In this section we investigate the structure of abelian groups belonging to

the class of cyclic-transitive groups. Our first result is a technical lemma.

Lemma 4.2.1. Let G be a cyclic-transitive group. If there exist two per-
mutable elements x,y €G such that |z| = p™ and |y| = p, with p a prime
and n > 1, then (y) < (z).

Proof. Suppose that (y) £ (z), then (z)N(y) = {1} and (z,y) = (z) x (y).
The subgroup (" 2) x (y) is not cyclic-transitive, by Proposition 4.1.2,

a contradiction. O

Notice that if n = 1 the result of the previous Lemma does not hold, since
Vy, is a cyclic-transitive group. More generally, every elementary abelian
p-group is obviously cyclic-transitive. Conversely we have the following

result.

Proposition 4.2.2. Let G be an abelian p-group. Then G is cyclic-
transitive if and only if G is either an elementary abelian p-group or a

locally cyclic group.

Proof. Assume G is cyclic-transitive. If G is not elementary abelian, then
there exists an element a € G of order p?. For every element b € G of
order p, we have (b) < (a), by Lemma 4.2.1 . Then we get that G is
locally cyclic since it has only a subgroup of order p and G ~ Qsn, for any

n > 3. O
In general we have the following proposition.

Proposition 4.2.3. Let G be a group. If G is abelian and cyclic-transitive,

then G is either periodic or aperiodic.
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Proof. By contradiction suppose that there exist in G'\ {1} an element z
of finite order, say n, and an element a of infinite order. Then both (a)

and (az) have infinite order. Moreover

(az)" =a"z" = a",

which implies a" € (az) and (a",az) is cyclic. Obviously (a,a™) is cyclic.
Applying the cyclic-transitivity, from these two statements it follows that

K :=(a,az) is cyclic. But K contains a and z, a contradiction. O
In the torsion-free case we have the following result.
Proposition 4.2.4. Any torsion-free abelian group is cyclic-transitive.

Proof. If we consider a,b,c € G\ {1} such that (a,b) and (b, ¢) are cyclic,
then a = d® and b = dP, for suitable d € G, a, 3 = 0. Analogously, b = ¢”
and ¢ = ¢°, for suitable g € GG, 7,8 = 0. Hence we get that

0’66 — daﬁ& — dﬁa& — ba6 g'yaé — g6'ya — e

So we can deduce that there exists a positive integer s such that the

quotient group

(a,c)
(@)

is finite. Then, if we consider the O-rank of (a,c), we can write

o ({a. ) = ro ((a*)) + 70 <<<>>>

Clearly the O-rank of (a,c)/(a®) is zero, so that

ro ((a,¢)) = 1o ({a”)) -

Hence 1o ({a, c)) = 1. Since (a, c) is a finitely generated torsion-free abelian

group, then
d((a.c)) = ro ((a. <)) = 1.
Therefore (a,c) is cyclic. We deduce that G is a cyclic-transitive group,

as required. O
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Now we are able to prove the following characterization of all cyclic-

transitive abelian groups.

Theorem 4.2.5. Let G be an abelian group. Then G is cyclic-transitive

if and only if one of the following holds:
(1) G is locally cyclic;
(17) G is an elementary abelian p-group;
(i1i) G is torsion-free.

Proof. Suppose that G is a cyclic-transitive group. If GG is a torsion group,
we can write

G = XiGIPi7

where P, is a Sylow p;-subgroup of G. If each P; is locally cyclic, then G is
locally cyclic. Assume now that there exists an index ¢ such that /7% is not
locally cyclic. Then P is an elementary abelian p;-group, by Proposition
4.2.2. If there exists in G an element ¢ of order prime to p;, then, for
any a,b € FP;, we get that (a,c) and (c,b) are both cyclic. Since G is
cyclic-transitive, (a, b) is cyclic. So we can deduce that, for any a,b € P,
the subgroup (a,c) is cyclic; hence P is locally cyclic, a contradiction.

Therefore G = F; is an elementary abelian p;-group, as required. O
An immediate consequence of the Theorem 4.2.5 is the following result.

Corollary 4.2.6. Let G be a periodic abelian group. If G is cyclic-

transitive, then either G is locally cyclic or G is an elementary abelian

p-group.

4.3 The nilpotent case

It is natural trying to extend the results obtained in the abelian case to

the class of nilpotent groups. In order to study the structure of nilpotent
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groups satisfying the property of being cyclic-transitive, first we notice

that the following generalization of Proposition 4.2.3 holds.

Proposition 4.3.1. Let G be a nilpotent group. If G is cyclic-transitive,

then G is either periodic or aperiodic.

Proof. By contradiction suppose that there exist in G\ {1} an element of
finite order and another element of infinite order. Since G is nilpotent, the
center Z (G) of G is not trivial, so there exixts z € Z (G) such that z = 1.
Morecover the subgroup T' of all periodic elements of G has non-trivial
intersection with Z (G). So, without loss of generality, we can suppose
that z is a periodic element of Z(G) \ {1}, say |z|=n. Let a € G be an
element of infinite order. Since z is a central element, z and a commute,

and we get a contradiction as in the proof of Proposition 4.2.3. O

As in the abelian case (see Proposition 4.2.4), any torsion-free nilpotent

group is cyclic-transitive.

Proposition 4.3.2. Let G be a torsion-free nilpotent group. Then G is

cyclic-transitive.

Proof. Suppose that (z,y) and (y, z) are both cyclic, where z, y, z are non-
trivial elements of G. We have to prove that (z. z) is also cyclic. Clearly

2® = y” and y? = 2°, for suitable non-zero integers o, 3,7, . Moreover

Therefore, if we write K := (x,y, z), we get that y* € Z (K), for a suitable
positive integer s. Analogously z*, 2" €7 (K), for suitable positive integers
t,r. Therefore

K -
m:(xZ(K),yZ(K%ZZ(K»

where z, y, z are all elements of finite order modulo Z(K). Thus K/Z (K)

is finite, since it is a finitely generated torsion solvable group. Therefore
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K is a central-by-finite group; thus, by a well-known theorem of Schur,
K’ is finite. Since K is torsion-free, K’ = {1}, which implies that K is
an abelian group. Then K is a torsion-free abelian group and therefore
K is cyclic-transitive, by Lemma 4.2.4. Thus, if (z,y) and (y, z) are both

cyclic, also (z, z) is cyclic, as required. O
Moreover we have the following immediate extension of Corollary 4.2.6.

Proposition 4.3.3. Let G be a periodic nilpotent group. If G is cyclic-

transitive, then either G is a p-group or G is locally cyclic.

In order to study the structure of nilpotent groups which belong to the
class of cyclic-transitive groups, in the next results we consider the class

of hypercentral groups.

Lemma 4.3.4. Let G be a non-abelian hypercentral p-group such that
exp(G) = p. If G is cyclic-transitive, then the center Z (G) of G has
order p, in particular Z (G) = (), where x is a non-central element of
order p*, and is contained in any cyclic subgroup of G of order greater

than p.

Proof. Let G be a cyclic-transitive hypercentral p-group, with exp(G) = p.
Suppose that G is not a group of exponent p. Then there exists an element
of G of order p", with n > 2. Let x € G such that |z| = p?. Suppose that x
lies in the center of (G and consider two elements g, g1 € G. We have (z, g)
and (x, g1) abelian not of exponent p, then (x, g) and (x, g;) are cyclic by
Proposition 4.2.2 and (g, g1) is cyclic, by the cyclic-transitivity. Therefore
g and g; commute. Then G is abelian, a contradiction. Hence in Z (G)
there are no elements of order greater than p. Then, if we consider an
element y € Z (), we have |y| < p and (y) < (z), by Lemma 4.2.1. Thus
we get Z (G) = (2P) and |Z (G) |=p, as required. Moreover, by Lemma
4.2.1 2P € (a), for any a € G such that |a| > p. O
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The following result gives a classification of cyclic-transitive nilpotent p-

groups.

Theorem 4.3.5. Let G be a hypercentral p-group. Then G is cyclic-
transitive if and only if one of the following holds:

(i) G is a group of exponent p;
(i1) G is locally cyclic;

(it1i) G=A x (y),where A is either cyclic or the Prufer 2-group Z(2%),

ly| = 2 and y inverts any element of A.

Proof. Let G be a cyclic-transitive hypercentral p-group. Suppose that G
is not a group of exponent p. First assume that p = 2.

In this case we shall prove that GG is abelian, then locally cyclic. Assume
not. Then, as a consequence of Lemma 4.3.4, there exists an element
r € G\Z (G) such that |z|=p? and Z (@) = (zP) (in particular |Z(G)| = p).
Now we prove that if x € Z(G), then (a)<(z), for any element a € G

such that |a| = p. In fact, certainly we can write

(ax)? = aPa® [z, a}w = 2" [z, a]%

Since z? € Z (G), then |[z,a]| = p.

Moreover, since p = 2, p divides p(p — 1)/2. We can deduce that (az)” =
aP and, applying cyclic-transitivity, we get that (ax,z) = (x) is cyclic,
which implies (a) < (z). Now we shall prove that there is an element in
Z5(G)\ Z (G) of order p. Let us suppose that every element g of Z5(G)
has order p. Then (zg)? = 2P, which implies (zg)=(x) and hence g € (z);
since g has order p, g €(zP); hence g €7 (G), a contradiction. The last

remarks can be summarized in the following properties:

Jx € Zo(G)\ Z (G) such that |z| = p?; (4.3.1)
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(9) < (x),Vg € G such that |g| = p. (4.3.2)

Therefore Z(G) is the only subgroup of order p and G is locally cyclic, a
contradiction.

Finally, suppose p = 2. If exp(G) = 2 and G is not abelian, then, by
Lemma 4.3.4, there exists an element € G\ Z (() such that |z| = 4
and (2?)=Z7 (@) (in particular |Z (G)| = 2). Let A be a maximal abelian
subgroup of G containing (z). Then A is locally cyclic; therefore either
A'is cyclic or A 2 Z(2%). Let y € G\ A. If |y| > 2, then from (y,z?)
abelian we get (y, 2%) cyclic, and (y, a) cyclic for every a € A, since (a, z?)
is cyclic. Then y € Cg (A) = A, a contradiction. Therefore |y| = 2 and
lay| = 2, for any a € A.

We deduce that (A, y)= A x (y) and y inverts any element of A. Con-
sider now an element g € G'\ (A,y). Then |g| = 2 and ¢ inverts any
element of A. Therefore g7'y € A and g € (A,y), a contradiction. We
obtain that G = (A, y) = Ax(y), where y inverts any element of A. The

converse is clear. O

Since all finite p-groups are hypercentral, as an immediate consequence,

we get the following result.

Proposition 4.3.6. Let G be a finite p-group. Then G is cyclic-transitive
if and only if one of the following holds:

(i) G is a group of exponent p;
(ii) G is cyclic;

(iii) G is a dihedral 2-group.

4.4 The supersolvable case

In the previous section we have proved that if G is a nilpotent cyclic-

transitive group, then G is either periodic or torsion-free (see Proposition
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4.3.1). But there exist supersolvable groups cyclic-transitive which are
neither torsion-free nor periodic.

A first example of such groups is given by the infinite dihedral group D...
Notice that De=(a) > (b), where b is an involution, a is torsion-free and b
inverts any element of (a).

The first result of this section is the following technical lemma.

Lemma 4.4.1. Let G be a cyclic-transitive group and let ¢, x be elements

in G such that c is torsion-free, |x| =2 and (c)<(c,x). Then ¢®=c.

Proof. Since the only automorphisms of an infinite cyclic group are the
identity and the inversion, we have either ¢* = cor ¢* = ¢ If ¢ = ¢!

then (¢ 1)® = ¢ and

Y

(cx)? = cwer = cc'a® = o2

which implies that (cx,2?) is cyclic. Obviously (22, ) is cyclic; since
G is cyclic-transitive, we get that (cx,x)=(c,z) is cyclic; thus (c,z) is
abelian and ¢® = ¢. We can deduce that the only possibility is ¢* = ¢, as

required. O

We can generalize the construction of Dy, to obtain other examples of
supersolvable groups which are cyclic-transitive and neither torsion-free

nor periodic. In fact we can prove the following result.

Proposition 4.4.2. Let A be a finitely generated torsion-free abelian
group and let G be the following group

G=Ax(x)

where z is an involution and a® = a~t, for any a in A. Then G is cyclic-

transitive.
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Proof. As in the case of D, we can prove that for any element g in G'\ A,
the order of ¢ is equal to 2. In fact, g can be written as g = ax, for a

suitable a € A, so that

1

¢* = azaxr = ar 'ax = aa® = aa”t =1,

which implies that |g| = 2. Now let us consider three elements in G'\ {1},
say s, t,v, such that (s,t), (t,v) are both cyclic. If ¢ is torsion-free, then
t € A, moreover s, v are torsion-free too, hence s and v are in A too. Since
any torsion-free abelian group is cyclic-transitive (see 4.2.4), we get that
(s,v) is cyclic. If ¢ is periodic, then ¢ ¢ A; by the above remark, we get
[t] = 2. We deduce that also |s| = |v| = 2; thus (s)=(¢)=(v) and therefore

(s,v) is cyclic. O
The following proposition inverts the previous result.

Proposition 4.4.3. Let G be an infinite supersolvable group neither torsion-
free nor periodic. Then G is cyclic-transitive if and only if G = Ax(z),
where A is a finitely generated torsion-free group, x is an involution and

a® =a"t, for any a in A.

Proof. Let suppose that G is a cyclic-transitive supersolvable group nei-
ther periodic nor torsion-free. Then, there exists in GG an infinite cyclic
normal subgroup, say C. Thus we have C' = (¢) < G, with |¢| = oo, for
a suitable ¢ in G. Write A = C¢ ({¢)) and consider an element a € A.
If a has finite order, then (a,c)=(a)x(c), which implies that G is not
cyclic-transitive. Then A is a torsion-free group.

Therefore A < G and |G : A| = 2. Moreover if z is an element of G of
finite order, then G = A(z), with (z)NA = {1} and |z| = 2. Furthermore,
for every a € A, we have, by Lemma 4.4.1, that ax has order 2. Therefore
(ax)? = 1, which implies that azaxr = 1, so that a® = z7laz = a=!. We
deduce that A is abelian and G has the required structure. The converse

is Proposition 4.4.2. O
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The next step will be considering the case of a torsion-free supersolv-
able group, that is cyclic-transitive. In this case the following lemmas will

be crucial.

Lemma 4.4.4. Let G be a torsion-free cyclic-transitive group. If a € G
and o™ € Z(G), where n is a positive integer, then a € Z(G).

Proof. First we show that if a,b € G are such that [aZ(G)| = |bZ(G)| = p,
where p is a prime, then [a,b] = 1. In fact, if p is odd, then (aZ(G), bZ(G))
is finite, since in a supersoluble group the elements of odd order form a
finite subgroup (see, for instance, [44], pag 151, 5.4.9). Thus (a, b)Z(G) is
finite and (a, b)’ is finite by a well-known theorem of Schur, thus (a,b) =1,
since G is torsion free.

Now assume p = 2, thus (aZ(G),bZ(G)) is a dihedral group. If it is
not finite, then the element abZ(G) is aperiodic and inverted by aZ(G).
Write ¢ = ab, then we have ¢* = ¢z, where z € Z(G), thus (c?)* = ¢722?
and

(®a)? = ac’a = ac ?2*cPa = a*2* = (az)* =1

since G is torsion free and ?Z(G) = aZ(G). Then (c?a, (a2)?) , ((az)?, az)
are both cyclic and therefore (ca, az) is cyclic, thus az centralizes ¢*a and

2

a centralizes ¢?, a contradiction, since ¢*Z((G) is aperiodic and inverted

by aZ(G). Therefore (aZ(G),bZ(G)) is finite, and, arguing as before, we
obtain that [a,b] = 1.

Now assume a" € Z((G); we show that a € Z(G). Obviously we can
suppose that n = p, where p is a prime. Then, for any x € G, we have
af, (a?)* € Z(@), then [a,a”] = 1, hence [a, z] commutes with a; then we

have 1 = [a?, 2] = [a,z]P and [a, 2] = 1, as required. O

Lemma 4.4.5. Let G be a torsion-free cyclic-transitive group and let A

be a central infinite cyclic subgroup of G. Then % 18 cyclic-transitive too.
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Proof. Let consider zA,yA,zA € G/A\ {A} such that (xA,yA) and
(yA, zA) are both cyclic. We want to prove that (A, zA) is cyclic too. If
yA has finite order, then xA and zA are of finite order too. Suppose that

WA has finite order. If we consider the torsion free rank of %

o (<x’j>A> —0,

o(Ggina) <O

Furthermore the group (z,y) is abelian, since (xA,yA) is cyclic and A N

(x,y) C Z ((z,y)), and we have

, we get

which implies that

ro ({(z,y)) =10 (M> + 7o ((z,y) NA).

(x,y)N A

Since 7o ((9&%)22%1) =0, we deduce that ro ((x,y)) < 1 and therefore (z,y)
is cyclic. The same argument shows that (y, z) is cyclic; applying the
cyclic transitivity of G, we get that (x, z) is cyclic and , as a consequence,
(xA, zA) is cyclic.

Suppose now that % has infinite order. Then rg (%) =1 and
(y, Ay = (y) x A. Notice that (x,y) and (y, z) are both abelian, since
(xA,yA) and (yA, zA) are both cyclic. Then, there exist elements b and

¢ such that

(@A ¢4 A pA) WA (A) (54 (FA)

A AT A AT A AT A A
for suitable positive integers 4,j,h,k.
Then 27, 2" € (y) x A C Z((x,y,2,A)). Applying Lemma 4.4.4, we get
x,z € Z({(z,y,z,A)), thus (z,y, z, A) is abelian.
Moreover ro({x,2)AJA) = ro({y)A/A) = 1; consequently (z,z)A/A is
cyclic and (A, zA) is cyclic, as required.

O
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The previous Lemma is of independent interest; in the first section we
have pointed out that the class of cyclic-transitive groups is not closed
with respect to forming factor groups; by Lemma 4.4.5, we can observe

that this class is partially closed with respect to forming quotients.

Lemma 4.4.6. Let G be a torsion-free supersolvable group and let H=(h)
be an infinite cyclic normal subgroup of G. If G is cyclic-transitive, then

the factor group G/H is either torsion-free or periodic.

Proof. Evidently G/H is supersolvable. Moreover H C Z((G') by Lemma
4.4.1. Suppose, by contradiction, that G/H is neither torsion-free nor
periodic. Then, by Proposition 4.4.3, G/II would be of the form

G
- (yiH, ...,y H) 3 (x H)

7

where (y1 H, ....,y:H) is a finitely generated torsion free group, xH is an
involution and inverts any element of (y H, ...,y H).

Clearly, there exists in G/H an infinite cyclic normal subgroup, say
(aH). We deduce that the semidirect product (aH) x (xH), where xH
inverts any element of (aH), is an isomorphic copy of D,. Clearly
|(ax)H| = 2, which implies (az)? € H = (h) where (az)® = h®, for a suit-
able positive integer . Therefore ((az)®,h) is cyclic. Since (az, (ax)?) is
clearly cyclic and G is cyclic-transitive, we conclude that (ax, h) is cyclic.

Morcover |zH| = 2, which implies 22 € H and 2? = h?, for a suitable
non-zero integer 3; thus (z2, h) is cyclic. By a similar argument as above,
we obtain that (z, h) is cyclic. Summarizing, we have proved that (x, h)
and (ax,h) are both cyclic and therefore (ax,x) is cyclic, which implies

that ax and x commute, a contradiction. O

The previous two lemmas allow us to prove the following theorem
on the structure of a torsion-free supersolvable group which is cyclic-

transitive.
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Theorem 4.4.7. Let G be a torsion-free supersolvable group. If G is

cyclic-transitive, then G is nilpotent.

Proof. Since G is supersolvable and torsion-free, by a result of Zappa, (see,

for instance, 5.4.8 in [44]), G has a normal series
l=Hy<H,<..<H,<Hp,1<..H,=G (4.4.1)

in which the first i factors are cyclic infinite and the others are cyclic of
order 2. To show that G is nilpotent it suffices to prove that the infinite
factors of the series above are central. We argue by induction on the
Hirsch number A of G, i.e. the number of the infinite cyclic factors in
(4.4.1).

If h = 1, then M is infinite cyclic and G/H; is finite. Moreover
H, < Z (@) by Lemma 4.4.1. Then, from G/Z (G) finite, we get G’ finite
by a well-known result of Schur and G’ = {1}, since G is torsion-free.
Now assume h > 1. Consider the group G/H;. Then H; < Z(G) by
Lemma 4.4.1, and G/H, is cyclic-transitive, by Lemma 4.4.5. Moreover
GG/ Hy is not periodic, therefore G/ Hy is torsion-free, by Lemma 4.4.6. By

induction we get the required conclusion. O

In the last part of the chapter we investigate the structure of finite
cyclic-transitive supersolvable groups. Before proving a result on the
structure of such groups, in the following proposition we give an example

of cyclic-transitive Frobenius group.

Proposition 4.4.8. Let G be a Frobenius group with a cyclic complement
H and kernel K which is either cyclic or of exponent p, where p is a prime.

Then G is cyclic-transitive.

Proof. Assume that G is a Frobenius with the structure in our hypotheses.
Every element of (G is either in K or in HY for some g € GG. Now, let

x,y,z € G, with (x,y) and (y, z) cyclic. If y € HY, then x,z € 119 since
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every element of HY acts fixed point freely on K, thus =,z € HY and
(x,z) is cyclic. If y € K, then z,z € K since every element of G \ K
acts fixed point freely on K, then again (z, z) is cyclic since K is cyclic-

transitive. O

In the next result we give a futher example of a cyclic-transitive group

related to the class of Frobenius groups.

Proposition 4.4.9. Let consider the following group
G=Z(G) x A,

where | Z(G)| = p, p a prime, A is a Frobenius group with cyclic kernel K

and a cyclic complement H, |H| = p. Then G is cyclic-transitive.

Proof. Suppose that GG has the structure in the above hypotheses. First
notice that every element of G either is in Z(G) K or has order p. Now we
show that if z,y € G\ {1} with (z,y) cyclic, then either z,y € Z(G)K
or |z| = |ly| = p. In fact, if, for example |z| = p and |y| = p, then
(xy)? = 2P = 1, thus z,2y € Z(G)K and y € Z(G)K, as required.
Now, let x,y,z € G with (z,y), (y, z) cyclic, then |z| = |y| = |2| = p or
z,y € Z(G)K or y,z € Z(G)K. In the first case (r) = (y) = (2) and
(x,z) is cyclic, in the second case either z € Z(G)K and (x,z) is cyclic
as Z(G)K is cyclic-transitive or |y| = |z| = p and (y) = (z) is cyclic, and
again (z, z) is cyclic. Similarly we can argue if y, z € Z(G)K. O

Finally we prove the following characterization of finite cyclic-transitive

supersolvable groups.

Theorem 4.4.10. Let G be a finite supersolvable group. Then G is cyclic-
transitive if and only if one of the following holds:

(1) G is a nilpotent cyclic-transitive group;
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(2) G is a Frobenius group with cyclic complements and kernel which is

either cyclic or of exponent p, where p is a prime;

(3) G =Z(G)x A, where |Z(G)| = p, p a prime, A is a Frobenius group

with cyclic kernel and cyclic complements of order p.

Proof. Clearly any group G with the structure either (2) or (3) is cyclic-
transitive, by Proposition 4.4.8 and Proposition 4.4.9. Conversely, let
(G be a finite supersolvable cyclic-transitive group. Write F' the Fitting
subgroup of G. Then F' is nilpotent, hence, by Proposition 4.3.3, either
F is cyclic or F is a p-group (with p prime). First assume that F' is
a p-group. Then p is odd and F' is a Sylow p-subgroup of G, since G
is supersolvable. Moreover either [ is cyclic or F' has exponent p, by
Theorem 4.3.5. Furthermore, by Schur-Zassenhaus Theorem, G = H x F
and p does not divide |H|. We show that every non-identity element of
acts fixed-point-freely on F'. Assume in fact that there exist an element
a € F'\ {1} of order p and an element h € H of order ¢ (where p and p
are prime and p = q) such that a® = a. Then (a, h) is cyclic.

If = {c) is cyclic, then, from (c,a) cyclic, it follows (¢, h) cyclic and
h € Cq (F) < F, a contradiction. If F' has exponent p and it is not cyclic,
then we can choose b € F'\ (a) such that [b,a]=1 (for , if a ¢ Z (F) we
can take any b € Z (F)\ {1}). If b" = b, then (b, h) is cyclic; also (a, h)
is cyclic, thus (a,b) is cyclic and (a)=(b), a contradiction. Hence b" = b.
Then (a,bh) is abelian and it is not a p-group; since |a| = p, (bh)? € F,
thus (a,bh) is cyclic. But (a, h) is cyclic, thus (bh, h)=(b, h) is cyclic, a
contradiction. Notice that G’ is nilpotent, therefore ¢/ < F and H is
abelian. Moreover, since H is a Frobenius complement, H has all Sylow
subgroups cyclic. We get that H is cyclic and G is a Frobenius group with
the required structure.

Now assume that F' is not a p-group. Then F is cyclic, say F' = (c).
First we show that if @ € "\ {1} is an element of prime order and y € G\ I
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is an element of prime-power order, say |y| = ¢ (g prime), and [a,y] = 1,
then |a| = ¢. In fact, if |a| = p, with p = ¢, then (a,y) is cyclic; but (a, c)
is also cyclic, thus (c,y) is cyclic and y € Cg (F) < F, a contradiction.
Then |a| = ¢q. Assume that there exists y € G\ F' of prime-power order
and a € F'\ {1} such that [a.y] = 1. Then (a,y) is either cyclic or a group
of exponent prime. If we suppose that (a,y) is cyclic, arguing as in the
first part of the proof, we reach a contradiction. Then (a,y) is a group of
exponent prime, which implies |a| = |y| = ¢, a Sylow g-subgroup of G has
exponent ¢, a Sylow g-subgroup of F' has order ¢ and F' = (a) x S, where
q does not divide |S|, (a) <G and S 4 G.

Every element t € G \ F acts fixed-point-freely on S, otherwise there
exist b € S, t € G\ I" such that [b,t] = 1 and |b] = p = |t

, with p
prime and p = ¢. If we assume, without loss of generality, p < ¢, then
we have that |G/Cq ((b))| divides p — 1 and y € Cg ({(b)), thus p = ¢, a
contradiction. Then, for any s € S of prime order, we have C¢ ((s)) < F,
|S| odd and G/Cq ((s)) cyclic. Therefore G/F is cyclic, say G/F = (gF).

Write G = F'(g). Clearly we can assume (y) < (g) and (g) = (y) x V,
where (|V].q) = 1. If V = {1}, let v be a non-identity element of Vand
write |v| = n. Then [a,v] = 1, since g does not divide n, and (a, v) = (v) X
(a) is not abelian, in particular |av| = |v| = n. Moreover we have (y,v)
cyclic, (y,av) abelian and then cyclic, since |y| = ¢, |av| = n and ¢ does
not divide n; hence (v, av) = (a, v) is cyclic, a contradiction. Consequently
V ={1}, G = F(y), (a) < Z(G) and G = (a) x S(y) has the required
structure. Therefore we can assume that every y € G'\ I’ of prime power
order acts fixed-point-freely on F'. In particular (|F7|,|G/F|) = 1 and
G = F x H, for some H, by Schur-Zassenhaus Theorem. Every element
of H acts fixed-point-freely on F', so G is a Frobenius group with the

required structure. O
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Chapter 5

Finite cyclic-transitive solvable

groups

In this chapter we investigate the structure of finite solvable groups that
are cyclic-transitive. The reader can find the results contained in this
chapter in the paper A condition in finite solvable groups related to cyclic
subgroups (see [25]). We first remark some useful properties of an arbitrary

cyclic-transitive group.

5.1 Cyclic-transitive groups as partitioned
groups

If G is a cyclic-transitive group, then it is easy to see that we get an
equivalence relation on G\ {1} by saying two elements are equivalent if
they generate a cyclic subgroup. Our first result is a lemma on partitioned

groups.

Lemma 5.1.1. Let G be a group. Suppose that there exists a partition
S of G. Then G 1is cyclic-transitive if and only if every subgroup of § is

cyclic-transitive.
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Proof. Suppose that every subgroup of § is cyclic-transitive. Consider
three non-identity elements z, y, z of G such that (x,y) and (y, z) are both
cyclic; we must show that (z,z) is cyclic. Say, for instance, (z,y)=(a)
and (y,z)=(b). By hypothesis § is a partition of G, hence there exist
two subgroups H and K in § such that (a)< H and (b)< K. Then y €
(a)n(b) € H N K. Since § is a partition, the only possibility is H = K
and therefore (x, z) is cyclic, as required. The converse is clear since the

class of cyclic-transitive groups is S-closed. O

In our next result we prove that any cyclic-transitive group has always

a partition.

Theorem 5.1.2. Let G be a group. Then G is cyclic-transitive if and

only if it has a partition of locally cyclic subgroups.

Proof. Assume G is cyclic-transitive. Then we get an equivalence relation
on G\ {1} by saying a and b equivalent if (a, b) is cyclic. For every element
a € G\ {1}, let [a] be the equivalence class of a.

We claim that [a] U {1} forms a subgroup of G. Obviously, a~' € [d]
since (a,a™t) = (a). If a, b lie in [a], then (a, ab) = (a, b) is cyclic so either
ab =1 or ab € [a]. In any case, ab € [a] U {1}. Therefore [a] U {1} is
a subgroup of Gi. Now, either [a] = [b] or [a] N [b] is empty. Thus, G is
partitioned by the subgroups given by these equivalence classes together
with {1}.

Moreover [a|U{1} is locally cyclic, for any a € GG. In fact, for every x,y
in [a], we get that (x,a) and (y,a) are both cyclic and therefore, since G is
cyclic-transitive, (x,y) is cyclic. Conversely, if G has a partition consisting

of locally cyclic subgroups, then is cyclic-transitive by Lemma 5.1.1. [

As an immediate application of Lemma 5.1.1, we have that every pro-

jective special linear group of type PSL(2,q) is cyclic-transitive because,
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as we recalled in 1.3, it has a partition consisting of cyclic-transitive sub-
groups. If G = PGL(2,p™), with p™ > 3, then the set of maximal cyclic
subgroups of G is a partition (see also 1.3). Consequently G is cyclic-
transitive, by Lemma 5.1.1. Analogously the symmetric group on four
letters Sy is cyclic-transitive, since it is partitioned by all its maximal
cyclic subgroups, as we recalled in 1.3.

In 1.2 we recalled some useful properties of Frobenius groups. In par-
ticular, we know that every Frobenius group is partitioned by an its com-
plement and its kernel; so that, as immediate corollary of Lemma 5.1.1,

we get the following result.

Proposition 5.1.3. Let G be a Frobenius group with Fobenius complement
M and Frobenius kernel N. If M and N are both cyclic-transitive, then G

18 cyclic-transitive.

Moreover we have the following result on Frobenius groups that are

cyclic-transitive.

Corollary 5.1.4. Let G be a Frobenius group. If G is cyclic-transitive,

then G is solvable.

Proof. 1f G is a non-solvable Frobenius group, then a Frobenius comple-
ment of G has a subgroup isomorphic to SLs(5) (see, for instance, [21],
pag. 605, 46.7). Now, SLo(5) has a unique involution. Since it has more
than one Sylow 2-subgroup, it cannot be partitioned. Thus, SLs(5) is not

cyclic transitive and G is not cyclic-transitive. (]

In the first chapter (see Theorem 1.3.2) we recalled a result of Suzuki
that determines the structure of non-solvable groups with a partition. If
we notice that Suzuki groups are not cyclic-transitive, the above theorem

implies immediately the following result.

Theorem 5.1.5. Let G be a non-solvable finite group. Then G is cyclic

transitive if and only if one of the following occurs:
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(1) G = PGL(2,q), q a prime power, q > 4;

(2) G = PSL(2,q), q a prime power, q > 4.

5.2 Some properties of finite cyclic-transitive

{p, ¢}-groups

In this section we show some properties of finite {p, ¢}-groups, which be-
long to the class of cyclic-transitive groups. We recall that a finite group
G is a {p, ¢}-group if its order is a {p,¢}-number, i.c. |G| = p*¢®, a,
0 integers. Since in 4.3.6 we have given a complete characterization of
finite cyclic-transitive p-groups, we assume that |G| = p®¢”, with a and 3
both greater than zero. To study the structure of such groups under the
condition of cyclic-transitivity, we will argue on the center of G and we

will distinguish the following two cases:

Z(G) =1 (5.2.1)

Z(G) =1 (5.2.2)

First we study the case Z(G) = 1. Without loss of generality, in this case
we can assume that p divides |Z(G)|. The first result in this case is the

following lemma.

Lemma 5.2.1. Let G be a finite {p, q}-group such that p divides the order
of the center Z (G) of G. If G is cyclic-transitive and not cyclic, then the

following statements hold:

1. G has a unique normal cyclic Sylow g-subgroup Q;

2. Cq (a)=1, for every element a of p-power order such that (x,a) is not

cyclic, where x is a central element of order p;
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3. A Sylow p-subgroup P of G is not cyclic.

Proof. By the hypothesis, we can choose an element x in the center Z (G)
of G such that |z|=p. Let y and z be two elements of G of g-power
orders. Then (x,y) and (x,z) are cyclic because [x,y] = 1 = [y, 2] and
(|z|,|ly])=1=(|z|,|z|). Since G is cyclic-transitive, we get that (y,z) is
cyclic. Furthermore, since y and z are arbitrary elements of G of g-power
order, we obtain that G has a unique normal cyclic Sylow g-subgroup Q).
Write @ = (y).

Suppose now that there exists in G an element a with p-power order
such that (z,a) is not cyclic. We shall prove that Cg (a)=1. In fact, if
Co (a)= 1, since Q = (y), y* €Cq (a), for a suitable integer a. Then
(y*,a) and (y*, z) are both cyclic and therefore (a,x) is cyclic, that is a
contradiction. Thus Cg (a)=1. Now let P a Sylow p-subgroup of G. If P
is cyclic, then P = (a), for suitable a €G. Clearly G = (a,y). Now = € P;
therefore (a,z)(=(a)) and (x,y) are both cyclic, which implies (a,y) is
cyclic and thus G is cyclic, that is a contradiction.

O

Proposition 5.2.2. Let G be a finite {p, q}-group such that p divides the
order of the center Z (G) of G. If G is cyclic-transitive, then one of the

following occurs:
1. G is cyclic;

2. G can be written in the following form G = (x) x (Q % {(a)), where
Q is a cyclic Sylow g-subgroup of G, x| = la| =p > 2, (z) = Z ()
and a acts fized-point-freely on Q);

8. G is dihedral.

Proof. Suppose that GG is not cyclic. By the hypothesis we can choose an

element x in the center Z (G) of G such that |z|p. Applying Lemma
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5.2.1, we get that GG has a unique normal cyclic Sylow g-subgroup @, say
Q) = (y), and Cg (a) = 1, for every element a in GG of p-power order such
that (x,a) is not cyclic.

Now let P be a Sylow p-subgroup of G. By Lemma 5.2.1, P is not
cyclic, thus P is either a group of exponent p or a dihedral 2-group. Then
there exists an element a € P\ (x) such that (a,z) is not cyclic, and, by
above remark, C (a) = 1, which implies that Z (G) < P. We deduce that
Z (G)=(x) and |Z (G)|= p. By previous remark, Cp (Q)=(z)=Z (G) and
therefore Cg (Q)=Z (G)Q. Moreover, since () is a normal subgroup of G,
Ng (Q) = G and therefore

G
Ce (Q)
If ¢ is odd, since @ is cyclic, then Aut(Q) is cyclic. If ¢ is even, then p

< Aut(Q)

is odd and a Sylow p-subgroup of Aut(Q) is cyclic. Applying well-known

results on isomorphisms of groups, we obtain that

G P

Ca(Q)  Z(G)

is a cyclic group of order p. Therefore G = @ x ({x) x (a)). Since

Z (G)=(x), we can also write
G = (z) x (@ x {a))

where |a| = p. Moreover () x (a) is a Frobenius group, since Cq (a) = 1,
as we proved in the first part of the proof. Finally, if p is even we can

easily deduce that G is dihedral. O

Our next purpose will be investigating the structure of a group of order
p“q®, which is cyclic-transitive and such that |Z(G)| = 1.
First recall that if G is a group of order p®¢”,then, by the so-called "Burn-
side’s p®¢°-theorem", G is a solvable group, so that we can consider the

Fitting subgroup F' = Fit(G) of G. Obviously we suppose that G is not
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trivial, thus also F' is not trivial. In the following two lemmas we prove
that under our hypotheses the structure of Fitting subgroup is deeply

conditioned.

Lemma 5.2.3. Let G be a cyclic-transitive group such that |G|=p*q® and
Z(G) = {1}. Write F=Fit(G). Assume that p divides |F|. Then F is a

p-group either cyclic or of exponent p.

Proof. Assume that F' is not a p-group. Since F' is nilpotent and cyclic
transitive, F' is cyclic, by Proposition 4.3.1. Now write F' in the following
way

F=AxDnB

where |A| = p? > 1 and |B| = ¢°>1. Write r = min{p, ¢}. Clearly there
exists a subgroup S of I such that |S| = r. Since the Fitting subgroup of
G is characteristic in GG, we have that S < G and therefore S < Z(G), a
contradiction since Z(G) = {1}. Furthermore F' is not a dihedral group,
otherwise Z(F) < G and |Z(F')| = 2, which implies Z(F) < Z(G), a
contradiction. Thus by Proposition 4.3.6 F' is a cyclic p-group or a group

of exponent p. O

The following theorem determines the structure of the group in the

case that the Fitting subgroup is a cyclic p-group.

Theorem 5.2.4. Let G be a cyclic-transitive group such that |G|=p*q®
and Z(G) = {1}. Let Fit(G) the Fitting subgroup of G and write F=Fit(G).
Suppose that F is cyclic and p divides |F|. Then one of the following oc-

curs:
(1) G s cyclic;

(2) Fis a Sylow p-subgroup of G and G is a Frobenius group with Frobe-

nius kernel I
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(3) G is dihedral.

Proof. We can assume that F' is a cyclic p-group and p > 2. If |F| = p,
then (G is either cyclic or a Frobenius group with F' as its Frobenius kernel.
In fact, if G is not cyclic, we can write G = H X F', where H is a ¢-
subgroup of G. Suppose that there exists a non-identity element z in F
and an element y in H such that 2¥ = x; then (z,y) is cyclic. Since F
is cyclic, say F' = (a), applying cyclic-transitivity, we obtain that (a,y)
is cyclic, which implies y € Cg (F') and therefore y € F, a contradiction.
We deduce that G is a group of type (2).

Now assume that p? divides |F|. Let P be a Sylow p-subgroup of G.
Since F' is cyclic and p? divides |F|, P has a cyclic subgroup of order
divisible by p?. This implies that P does not have exponent p, so that P
is cyclic since p is odd. Take x such that P = (x). Notice

P<Cq(F)<F

which implies F' = P = (z). Since F is cyclic, we know that F' < Cg(x).
Remark that, under our hypotheses, C¢ () is a p-group, thus C¢ (z) = P.
Therefore Cg (z) = Cq (F) = F. Now we know that F' is a p-group and
F = (z), with |z| > p?. Consider a non-identity element y in F' such that ¢
divides |Cg(y)|. Then there exists an element ¢ in Cg(y) such that |¢| = ¢.
We obtain that (r,y) (that is equal to (x)) and (y,c) are both cyclic
and therefore, by cyclic-transitivity, (x,c) is cyclic, which implies that
¢ € Cg(x), a contradiction (Cg (x) is a p-group). We deduce that Cg(y)
is a p-group, for every non-identity element y in F'. As a consequence, we
obtain that GG is a Frobenius group, whose Frobenius kernel is P = I and
a Frobenius complement is @ € Syl,(G). This completes the proof when
F' is cyclic. O

Now we assume that F' is not cyclic, and so it must have exponent p.

In this case we have the following result.
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Proposition 5.2.5. Let G be a cyclic-transitive group and assume |G| =
p*q°®, where p and q are primes, o > 0,8 > 0. Assume that F' = Fil(G)

s a non-cyclic group of exponent p. Then one of the following holds:
(l) G ~ 84,'

(ii) I is a Sylow p-subgroup of G, and G is a Frobenius group with the

kernel F and a cyclic complement Q of order ¢”.

Proof. Let P be a Sylow p-subgroup of GG and () a Sylow ¢ subgroup of
G. Then F' C P, therefore P cannot be cyclic, thus either P has exponent
p, or P is dihedral and [ is elementary abelian of order 4. In this latter
case G/F is a subgroup of S35 and G is either Sy or Ay, then either (i) or
(ii) holds. Then we can assume that P has exponent p. First we show
that Cg(z) has a non-cyclic Fitting subgroup, for any z € F'\ {1}. In
fact, if x € Z(F'), then F' C Cg(z), then F' is contained in the Fitting
subgroup of Cg(x) and we have the result. Now suppose x ¢ Z(F). Then
() < Fit(Cg (x)). Since z € F, we have Z(F) < Cg (z). Moreover,
since Z(F') is normal and nilpotent in G, we get Z(F) < Fit(Cq (2));
thus Z(F){x) C Fil(Cg (x)), which implies that Fit(Cg(x)) is not cyclic.
This completes the proof of the claim.

By Proposition 5.2.2, Cg(z) must be a p-group for all z € F'\{1}. Since
F' is the normal Sylow p-subgroup of F'Q, this implies that Crg(z) C F
for all z € F'\ {1}. Therefore F(Q is a Frobenius group with kernel F.
In particular @) is a cyclic group. Now we show that F'() is normal in (.
In fact, if F1/F = Fit(G/F), then we have Fy/F = {1}, and obviously
p does not divide |F/F|, otherwise there exists a non-trivial p-subgroup
S/F normal in G/F, and S would be a normal p-subgroup of GG, which is
impossible since F' C S.

Thus I/ Fis a g-group, and QF/F C Cg/p(F1/F) C I/ F. Therefore
Fy = FQ and F@ is normal in G. Obviously G/FQ is a p-group. We
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show that |G/FQ| divides p. We have G/FQ@ cyclic, since G/FQ ~
(G/F)/Cqp(FQ/F) is a subgroup of Aut(F'¢)/F) which is cyclic. Then
|G/FQ)| divides p since P has exponent p.

Now we show that G = F'Q). Assume not. Then there exists a € G\ F'Q)
such that |a| = p, since P has exponent p. If there is an element y € F\ F'Q
of order pq, then, if @) is a Sylow g-subgroup of G containing y”, we have
(Q1,y") and (yP,y) cyclic, hence (Q1,y) is cyclic and y € Cg(Q1) C FQ.

Therefore every element of G\ FQ has order p. Then 1 = (ca™)? =

2

e 1, for any ¢ € F(Q, thus a acts regularly on F@Q and FQ

cc®

is nilpotent by a famous theorem of Hughes, Kegel, Thompson (see [22],
pag 502, Hauptsatz 8.13). Then FQ = F, a contradiction. Therefore
G =FQ, I'= P and (77) holds. O

The previous results can be summarized in the following theorem.

Theorem 5.2.6. Let G be a finite group and assume |G| = p®q®, where
p and q are primes, o > 0,08 > 0. Then G is a cyclic-transitive group if

and only if one of the following holds:
(1) G is a cyclic group;

(ii) G is a dihedral group;

(iil) G ~ Sy;

(iv) G is a Frobenius group with cyclic complements and kernel which is

either cyclic or of prime exponent;

(v) G ={a) x H, where (a) has prime order r > 2 and H is a Frobenius

group with complements of order r and cyclic kernel.

Proof. 1f G is cyclic-transitive and Z(G) = {1}, then, by Proposition 5.2.2,
G satisfies (i) or (i7) or (iv). If G is cyclic-transitive and Z(G) = {1}, then

F = Fit(Q) is either cyclic or is a primary group of prime exponent. In
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the first case, G is either dihedral or has the structure (#i7) by Proposition
5.2.4, in the latter case GG has the structure in (zii) by Proposition 5.2.5.
Conversely, assume that (i) or (i7) or (i) or (iv) or (v) holds. If G
is either cyclic or dihedral, then we know that G is cyclic-transitive. If
G ~ S4, then G has a partition consisting of cyclic subgroups and G is
cyclic-transitive, by Theorem 5.1.2.

If (iv) holds, then the kernel has a partition consisting of cyclic sub-
groups which, together with all the complements, form a partition of G
of cyclic subgroups. Therefore G is cyclic-transitive, by Theorem 5.1.2. If
(v) holds, then G has a non-trivial normal cyclic subgroup N of index r
such that every element of G\ N has order r, then (see Examples 1.3.1)
again GG has a partition of cyclic subgroups and G is cyclic-transitive, by

Theorem 5.1.2. O

5.3 Finite solvable cyclic-transitive groups

In this section we use the results of the previous section to investigate
the structure of the finite solvable groups, which are cyclic-transitive. We

prove the following result:

Theorem 5.3.1. Let G be a finite soluble non-primary group. Then G is

a cyclic-transitive group if and only if one of the following holds:
(1) G is a cyclic group;

(ii) G is a dihedral group;

(iil) G =~ Sy;

(iv) G is a Frobenius group, whose complements are cyclic and kernel is

either cyclic or of prime exponent;
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(v) G = (a) x H where (a) has prime order p =2 and H is a Frobenius

group with cyclic kernel and complements of order p.
In order to prove theorem 5.3.1 we show the following proposition.

Proposition 5.3.2. Let G be a finite solvable group, let p1, ..., p, denote
the distinct prime divisors of |G| and let {Py,..., P} be a correspond-
ing Sylow basis. If G is cyclic-transitive, then every Sylow subgroup of

{Py, ..., P,} is cyclic except at most one.

Proof. Suppose |G| = p{* - - p%~. Suppose that Py is not cyclic. We want
to prove that P; is cyclic, for every i € {2,...,n}. Consider an arbitrary i
in {2,...,n} and the corresponding subgroup P; in the Sylow basis. Since
Py and P, commute, then P, FP; is a cyclic-transitive {p, p; }-group, with
p; = p1. Then the result follows immediately from 5.2.6 O

Now we can prove theorem 5.3.1

Proof. (of Theorem 5.3.1) Assume G cyclic-transitive. Then G has a
partition consisting of cyclic groups by Theorem 5.1.2. We can apply
a famous result of Baer, recalled in 1.3.1, and therefore G ~ Sy, or G
is a Frobenius group, or there exists a normal nilpotent subgroup N of
G with G/N of prime order. In this latter case, G is supersoluble and
GG has the required structure by Theorem 4.4.10. Thus we can assume
that G is a Frobenius group. Then I' = Fit(G) is the kernel of GG and
G has a complement H, whose all Sylow subgroups are cyclic. If every
Sylow subgroup of G is cyclic, then G is supersoluble (see [44] , pag.
290, 10.1.10), and either G is cyclic or it is a Frobenius group with cyclic
complements and cyclic kernel, by Theorem 4.4.10.

Hence we can assume that there exists a Sylow subgroup P; which
is not cyclic. Then P; C F and ' = Py, since a finite nilpotent cyclic-

transitive group is either a primary group or is cyclic. Notice that F' is
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not a dihedral 2-group, otherwise Z(F') = 2, and Z(F) C Z(G), a contra-
dicton, since GG is a Frobenius group. Therefore I is of prime exponent.
Moreover H is either cyclic or a Frobenius group. Since H is a Frobe-
nius complement of G, Z(H) =1 (see [22], pag. 506, Satz 8.18 (c) ) and
therefore H cannot be a Frobenius group. Consequently H is cyclic, as

required.

O
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