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                  CHAPTER 1

General introduction and aims 

Endocrine system exerts relevant effects on multiple organs and tissues. Pleiotropic 

and  redundant  functions  of  circulating  hormones  are  due  to  the  various  receptors 

expressed on multiple target cells. Moreover, receptors of circulating hormones share 

common transducing elements with receptors of many other molecules. Consequently, 

endocrine system participate to an integrated network of mediators that communicate 

and coordinate responsive cells to achive effective functions in an appropriate fashion. 

The  presence  of  such  a  complex  interplay  contribute  to  unravel  previously 

unappreciated functions of circulating hormones and the mechanisms of coordination 

and integration of several pathways.  

An  example  of  this  interplay  is  the  complex  interaction  between  endocrine  and 

immune  system.  Cytokines  and growth  factors,  in  fact,   after  their  binding  to  cell-

surface receptos, activate common intracytoplasmatic signaling molecules. In the recent 

years the description of complex phenotypes, in which immunodeficiency and growth 

failure were associated at a different extent, greatly contributed to define how several 

signaling  molecules  play  a  role  in  both  systems.  As  well  as  immunodeficiency, 

autoimmune diseases represent a unique model to study interactions between endocrine 

and immune systems. 

Cardiovascular  system also represents  a   biological  system higly sensitive  to  the 

effects of circulating hormones as suggested by the presence of several cardiovascular 

and metabolic alterations found in many endocrine diseases. In fact, patient with growth 

hormone deficiency  as well as thyroid dysfunction, may present an increased morbidity 

due to cardiovascular events and an increased incidence of atherosclerosis. 

Aim of this project was to evaluate physiological and pathological implications of 

these  complex  molecular  interactions  on  paediatric  endocrinopathies  starting  from 

complex phenotype involving endocrine and other biological systems. 

To this aim, we started from the study of 3 model of complex diseases: 

• The model of autoimmune diseases
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• The model of Growth Hormone (GH) Deficiency (GHD)

• The model of Congenital Hypothyroidism (CH)

Moreover,  during the study of patients  affected with Growth Hormone  and thyroid 

disorders we also identified new genetic causes of GH deficiency and hyperthyroidism, 

highlithing new insights in the genetics of endocrine diseases,  as described in the last 

chapter of the thesis.  
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CHAPTER 2

THE MODEL OF AUTOIMMUNE DISORDERS  AS COMPLEX DISORDERS 

INVOLVING BOTH IMMUNE AND ENDOCRINE DISEASE: GENETIC AND 

MOLECULAR BASIS

2.1 Introduction

Autoimmune  diseases  represent  a  significant  health  burden  in  the  developed 

world affliciting 5-10% of the population (1), and a sizable percentage of these diseases 

involve  an  untoward  immune  response  against  an  endocrine  organ.  Virtually  any 

endocrine  organ  can  be  targeted  by  the  immune  system as  part  of  an  autoimmune 

response, and frequently responses to multiple organs can occur in the same patient as 

part of a polyglandular autoimmune syndrome. More common endocrine autoimmune 

syndromes  include  Hashimoto’s  thyroiditis,  Graves’  disease,  and  type  1  diabetes, 

whereas  more  rare  syndromes  include  Addison’s  disease,  oophoritis,  lymphocytic 

hypophysitis, and hypoparathyroidism. For years, the etiology and pathogenesis of these 

disorders have remained obscure, but the diseases are generally thought to involve a 

cellular and humoral immune response. Autoimmunity is the result of combinational 

input from multiple genetic loci, breakdown of immunological tolerance mechanisms, 

either at a central and a peripheral level, and enviromental interactions. 

2.2 Genetic Component of Autoimmune diseases

As for genetic component,  it  has been universally recognized for the past  30 

years that most autoimmune diseases have a polygenic basis. There are findings that 

strongly  support  that  common  groups  of  genes  may  contribute  to  development  of 

clinically  distinct  forms  of  autoimmune  disease:  first,  most  autoimmune  disease are 

thought  to  arise  from alterations  in  the  immune  system;   second,  co  association  of 

different autoimmune diseases is often found in families or individuals; third, analysis 

of genome-wide linkage results demonstrate that multiple autoimmune diseases share 

common susceptibility loci (2). Although association between the HLA  specifities and 

autoimmune conditions has been established for a number of diseases, HLA represents 
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only a part of the genetic susceptibility factors, which “per se” is not able to explain the 

occurrence of the disease. 

Recent  progress has been made in identifying  genetic  polymorphism that are 

associated with risk of disease in the common autoimmune disorders. Many of these 

polymorphism highlight the central role of T cells in the breakdown of self-tolerance. 

Genetic risk for autoimmunity has been convincely demonstrated for genes expressed in 

T cells, such as those encoding protein tyrosine phsphatase non-receptor 22 (PTPN22) 

and cytotoxic T lymphocyte associated 4 (CTLA4). Like those associated with the HLA 

locus, the mechanisms by which polymorphism in these genes lead to disease risk also 

remain obscure.  The lack of clear  mechanism for these risk alleles  is  not surprising 

because  genetic  polymorphism in  individual  genes  alone  are  often  not  sufficient  to 

cause disease and reflect the fact that autoimmunity is the result of combinatorial input 

from multiple genetic loci and  environmental interactions (3).  

2.3 Defects in Immune mechanisms involved in autoimmune diseases

      Central and peripheral mechanism maintaining T-cell tolerance

Many autoimmune  diseases  seem to  result  from a  failure  to  maintain  T-cell 

tolerance. There are several levels at which T-cells are prevented from uncontrolled self 

reactivity.  The first of those involves thymic selection. Pre-T-cells undergo a stringent 

process  of  selection,  during  which  95% are  eliminated.  Thymocytes  with  excessive 

reactivity of self  antigens,  which are presented by endogenous MCH molecules and 

activate  thymocytes  through  interactions  with  T-cell  receptors  (TCRs),  die  through 

apoptosis. Surviving thymocytes undergo an additional process of positive selection and 

emerge from the thymus as mature T cells. Most of these T cells are various types of 

effector T cell, generally either CD4+ or CD8+. 

A second major population of T cells, regulatory-T cells (T reg cells),  are also 

produced during thymic selection.  T reg cells have a key role in controlling the self-

reactivity  of  effector  Tcells  in  the  periphery,  because  thymic  selection  does  not 

completely eliminate autoreactive T-cells.  Treg cells can also develop de novo in the 

periphery  from precursors  that  might  not  be  directely  derived  from Treg  cells  that 

emerge from the thymus (4).  

Tregs,  actively  suppress  pathological  and  physiological  immune  response,  thereby 

contributing  to  the  mainteinance  of  immunological  self-tolerance  and  immune 
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homeostasis. These cells constitutively express the interleukin (IL-)-2 receptor α-chain 

(CD25)  and  their  development  and  function  depend  on  the  expression  of  the 

transcription  factor  forkhead  box  P3  (FOXP3)  (5).  The  molecular  basis  of  IL-2 

dependence of T-regs has not yet been addressed. In conventional T cells the effects of 

Il-2 are elicited by at least two major signalling pathways: one leads to the activation of 

the serine/ threonine kinase, AKT, and up-regulation of antiapoptotic molecules such as 

Bcl-2 and Bcl-x , and is required for Tcells survivals; the other leads to the activation 

of STAT5 and is required for Tregs cell proliferation and differentiation: it may also 

stimulate the expression of antiapoptotic molecules (6).  

  Several T-cell accessory molecules such as CTLA-4 (CD152)  and lymphocyte-

activation gene 3 (LAG3), expressed by T-regs, and CD80 and CD86 costimulatory 

molecules expressed by APCs contribute to the suppressive mechanism (5). 

     Genetic defects in central tolerance mechanism

AIRE (AutoImmune REgulator) encodes a transcription factor that regulates the 

thymic expression of a variety of self antigens and is involved in the mechanism of 

central tolerance. In humans mutations of A IRE cause the rare Mendelian autosomal 

recessive disease disorder Autoimmune Polyendocrine Syndrome 1 (APS 1), in which 

autoimmunity is focused largely on endocrine organs. APS-I ( or APECED) represents a 

unique model of monogenic autoimmune disease. Recently it has been shown that a 

remarkably large number of organ-specific self antigens are expressed in the thymus. 

The absence of this expression can result in an escape from thymic deletion and the 

release  of  self-reactive  T  cells  into  periphery.  A  large  number  of  self-antigens  are 

expressed  at  highly  variable  levels  in  the  thymic  epithelium,  and  this  might  be  a 

common underlying risk factor for a variety of complex autoimmune diseases, given the 

quantity nature of the thymic selection process (4). 

In addition to defects in antigen expression and presentation, if thymocytes are unable 

to respond adequately to signals delivered through the TCR they will not be properly 

selected (4). For example, in the mouse it has been shown that a mutation in the gene 

that  encodes  ZAP70,  a  key  TCR  signalling  molecules,  results  in  reduced  negative 

selection  and  subsequent  escape  of  self-reactive  T  cells  into  periphery.  A 

comprehensive  analysis  of  ZAP70  polymorphism  and  related  T-cell  signalling 

molecules has not yet been carried out for human autoimmune disease (4). 
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     Genetic defects in Tregs cells function

Depletion of CD25+CD4+ Tregs that are naturally arising in the immune system 

produces  autoimmune  disease  in  otherwise  normal  animals,  and  their  reconstitution 

prevent the disease (5). 

A  role  for  Treg  cells   in  human  autoimmunity  is  demonstrated  by  the  rare  IPEX 

(immune  dysregulation,  polyendocrinopathy,  enteropathy,  X-linked  syndrome). 

Mutations of the FOXP-3 gene lead to the deficiency or malfunction of natural Tregs 

and,  consequently,  the  development  of  a  similar  autoimmune  and/or  inflammatory 

disorder in mice and humans (5). 

    Genetic defects in T-cell-co-stimulatory 

In addition the part played by Tregs cells, the activation of peripheral T cells is 

also controlled by an array of costimulatory molecules  on the T-cell  surface,  which 

modulate  activation of these cells  through the TCR. CD28, the inducible  T-cell  co-

stimulator (ICOS) and the cytotoxic T-Lymphocyte-associated protein 4 (CTLA-4)  are 

members of the immunoglobulin superfamily that are expressed on T cells and bind 

homologus  ligands  on  APCs.  CD28  and  ICOS   provide  positive  signals  whereas 

CTLA-4  is  generally  a  negative  regulator  of  T  cell  activation.  However,  although 

CTLA-4 is  generally  hinibitory,  it  seems  to  be  activating  for  Tregs  cells.  CTLA-4 

knockout is associated with florid lymphoproliferation. CTLA-4 polymorphisms have 

been associated with a variety of human autoimmune diseases. CTLA-4 seems to be a 

general susceptibility locus for autoimmunity (4). 

    Defects of  Apoptosis in autoimmune diseases

In the immune system, apoptosis encounters the proliferation of lymphocytes to 

achive an homeostatic balance, which allows potent responses to pathogens but avoid 

autoimmunity.  Fas  (CD59)  is  a  transmembrane  molecule  belonging  to  the  tumor 

necrosis factor (TNF) receptor superfamily and interacts with the Fas ligand (FasL), a 

type II transmembrane molecule (7). The Fas receptor triggers lymphocyte apoptosis by 

recruiting   fas-associated  death  –inducing  signalling  complex  (8).  Heterozygous 
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mutations  in CD59, CD59 ligand or caspase-10 underlie  most  cases of autoimmune 

lymphoproliferative  syndrome  (ALPS),  a  human  disorder  characterized  by defective 

lymphocyte  apoptosis,  splenomegaly,  lymphoadenopathy  and  autoimmunity,  with 

expansion of TCR α/β CD4-CD8- double negative (DN) T cells  (9). 

     The role  of  JAK-STAT signaling pathways in cellular  homeostasis  and its 

consequence in autoimmune diseases’ process

The  JAKs  and  other  tyrosine  kinases  activate  STAT  proteins  upon 

phosphorylation of a single, critical tyrosine residue. Tyrosine phosphorylation leads to 

homo-  or  heterodimerization  of  STAT  monomers,  which  results  in  the  subcellular 

relocalization  of  the  STAT  signal  to  the  nucleus  where  they  bind  specific  DNA 

sequences in the promoters of target genes and modulate transcription. Some STATs are 

further modified by phosphorylation on a conserved serine residue, which is thought to 

regulate transcriptional activation and may serve to integrate signals generated by other 

intracellular molecules. Nuclear STAT proteins are subsequently dephosphorylated on 

their  tyrosine  residue,  translocate  back  to  the  cytoplasm,  and  are  targeted  for 

degradation.  STAT proteins  are  unique among signalling  proteins  in  their  ability  to 

transmit  signals  from the  cell  surface  to  the  nucleus  and directly  participate  in  the 

regulation of gene expression. STAT proteins are important in mediating the effects of 

numerous  cytokines,  polypeptide  growth  factors,  hormones,  and  oncoproteins.  By 

modulating the expression of target genes, STAT transcription factors regulate a broad 

range  of  biological  processes,  including  cell  growth,  differentiation,  survival,  and 

development. Seven STAT genes have been identified (STATs 1, 2, 3, 4, 5A, 5B, and 

6), and the corresponding gene products share a high degree of structural  similarity. 

Each  STAT protein  has  a  DNA  binding  domain,  a  src-homology  2  (SH2)  domain 

necessary for homo- or heterodimerization, and a conserved tyrosine residue which can 

be phosphorylated by Janus protein kinases (JAKs) and other tyrosine kinases. Some 

STAT proteins also contain a conserved serine residue, which, upon phosphorylation, 

enhances transcriptional activity.  A number of recent studies have defined both pro-

apoptotic  and  anti-apoptotic  signalling  pathways  mediated  by  STAT  transcription 

factors  The studies implicating STAT proteins in proapoptotic signalling have largely 

focused  on  STAT1  in  interferon  (IFN)-mediated  growth  inhibition  andapoptosis; 

however,  several  recent  reports  using  other  effectors  of  STAT  signalling,  such  as 

cytokines  and  ischemia,  have  also  contributed  to  our  understanding  of  the  role  of 
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STATs in promoting apoptosis. Studies implicating STATs in antiapoptotic signalling 

have mostly focused on cytokine signalling via STATs 3 and 5 (10). All these evidences 

suggest how STATs family is involved in many mechanisms of apoptosis. 

STAT1

Recently, Stephanou et al.  (11) demonstrated that STAT1 induces an autocrine 

death pathway by inducing expression of the Fas and FasL genes leading to apoptosis in 

cardiac myocytes exposed to ischemia/reperfusion. Stress-induced apoptosis caused by 

wound  healing  also  appears  to  use  STAT1.  Keratinocyte  apoptosis  in  response  to 

epithelial scrape was reduced in keratinocytes from STAT1-null mice compared to their 

wild-type counterparts These studies indicate a broader role for STAT1 in cell growth 

and survival.

In vitro studies first indicated a role for STAT1 in apoptosis, and more recent data from 

transgenic mice overexpressing fibroblast growth factor receptor 2 (FGF2) support a 

pro-apoptotic role for STAT1 in vivo.  Recent studies indicate that STAT1 can promote 

apoptosis through the upregulation of apoptotic regulatory genes, such as caspases, cell 

death  receptors  and  their  ligands,  and  possibly  p21waf1  and  Bcl-xL.  Most  studies 

linking STAT1 to caspase gene expression have focused on caspases 1 and 11, which 

are important for both cytokine protein processing and induction of apoptosis. STAT1 

can also regulate expression of caspases 3, 7, and 8, which execute pro-apoptotic events. 

Stark  et  al.  have proposed that  STAT1 promotes  apoptosis  through the constitutive 

regulation  of caspase expression.  Analysis  of  caspase family members  revealed that 

caspase 1,2 and 3 mRNA levels were low in STAT-1 deficient cells. In addition STAT1 

activation can also lead caspase induction and activation. Infact, IFN γ induced caspase 

induction may be direct or mediated by STAT1.

STAT1 is also required for upregulation of molecules that directely mediate the death 

process  such  Fas  and  Fas  ligand  (Fas-L).  In  response  to  IFN-  γ.  Ifn  induced  Fas 

expression was severely impaired in microglial cells from STAT1 deficient mice (10). 

STAT3

Evidences   supporting  an anti-apoptotic  role  for  STAT3 comes  from studies 

demonstrating that constitutive activation of STAT3 protects cells from programmed 

cell death. 
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The  mechanism  by  which  STAT3  supports  cell  survival  has  been  linked  to  the 

transcriptional regulation  of  apoptotic  regulatory  proteins  .  Several  studies  have 

reported that the inhibition of  STAT3 activation results in the downregulation of Bcl-

xL and an upregulation of the pro-apoptotic gene, Bax. STAT3 may also promote cell 

survival through upregulation of p21waf1, which, in addition to its role in inhibiting cell 

cycle  progression,  appears  to  have  an  anti-apoptotic  function  through  its  ability  to 

inhibit CDK activity.  STAT3 also downregulates Fas expression through cooperation 

with  c-jun,  effectively  suppressing  apoptosis  in  human  melanoma  cell  lines.  Thus, 

STAT3  can  contribute  to  suppression  of  Fas  transcription,  effectively  inhibit  Fas-

mediated apoptosis, and promote cell survival (10). 

STAT5 

Two highly related genes encode STAT5 proteins, STAT5a and STAT5b. While 

STAT5 is activated by many factors involved in growth  regulation and dfifferentiation, 

including growth hormone, prolactin, erythropoietin, granulocyte macrophage colony-

stimulating  factors  (  GM-CSF),  trombopoietin,   Il2,  -3,  -5  and  6,  recent  evidence 

indicate a prominent role for STAT5 in promoting survival of differentiating progenitor 

hematopoietic  cells.  Studies in STAT5a-/-5b-/-  mice  have demonstrated  that STAT5 

mediates  an  antiapoptotic  effect  in  fetal  red  cells  progenitors  by  directing  inducing 

expression of antiapoptotic genes such as  Bcl-xl.  STAT5 activation is associated with 

survival of some leukemic cells  and likely contributes to their  resistance to undergo 

apoptosis.  Further  evidence  to  support  a role  for  STAT5 in anti-apoptotic  pathways 

comes  from  studies  in  mammary  epithelial  cells.  In  contrast  to  STAT3,  STAT5 

promotes  proliferation,  differentiation  and  possibly  anti-apoptosis  during  mammary 

tissue remodelling (10). 

Recently has been  highlighted the essential  role of STAT5 for cell  homeostasis  and 

tolerance.  Two studies have demonstrated this role for STAT5: in one study authors 

demonstrate  that  TREGS  homeostasis  is  dependent  on  the  activation  of  STAT5, 

demonstrating that STAT5 deficient mice show reduced number of TREGS and that 

transient  activation  of  STAT5  in  IL-2  deficient  mice  increases  the  numbers  of 

CD4+CD25+  Tregs in the periphery. Another study (12) ( J W Snow, J Immunol 03) 

described that a subset of STA5A/5B deficient mice exhibited autoimmune pathology 

very  similar  to  mice  lacking  IL-2   or  its  receptor  components,  characterized  by 

lymphocytic infiltration of multiple organs, including the bone marrow. Affected mice 
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exhibited  a  dramatic  increase  in  the  number  of  memory  CD4+  and  CD8+ T  cells 

infiltrating the bone marrow. In addition, Treg cells from STA5A/5B deficient mice did 

demonstrate  reduced  survival  in  response  to  IL-2  in  vivo.  These  findings  provide 

definitive evidences that STAT5 is crucial for the mainteinance of tolerance in vivo. In 

addition these findings indicate that regulatory T cells require the activation of STAT5, 

most likely by the IL-2R, to mantain their own homeostasis in vivo (12). 

All these evidences hilight the role of STATs proteins as possible determinants of part 

of the process of thed autoimmunity. 

2.4 Enviromental factors and autoimmunity: Infections and autoimmune disease

Virus infections  have been long associated  with autoimmune diseases,  whether  it  is 

multiple  sclerosis,  diabetes,  or  myocarditis.  Three  potential  mechanisms  for  virus-

induced autoimmune disease are invoked: molecular mimicry, bystander activation and 

persistent  virus  infection  (13).  Molecular  mimicry  represents  a  shared  immunologic 

epitope with a microbe and the host. In viral system, viruses have been shown to cross-

reactive with host self proteins (14). 

Bystander activation as a mechanism leading to autoimmune disease has gained support 

through the use of experimental models mirroring some of the features of autoimmune 

disease.  Virus  infections  lead  to  a  significant  activation  of  APCs such as  dendritic 

cells.These activated APCs could potentially activate  preprimed autoreactive T-cells, 

which  can  than  initiate  autoimmune  disease.  In  addition  to  this  mode  of  bystander 

activation of T-cells, virus-specific T-cells also might initiate bystander activation (13)

Persistent  viral  infections  can  lead  to  immune-mediated  injury  due  to  the  costant 

presence of viral antigen driving the immune response. 

2.5 Clustering of Autoimmune Disease (CAD)

Introduction

Even though distinct autoimmune disorders may be associated, only rare patients 

exhibit  a  clear  clustering  of  different  diseases  based on  a  polyreactive  autoimmune 

process. Familial clustering of autoimmune disease within families could be explained 

by shared genotypes, shared  environmental exposures, or some combination of both. 

The existence of a mendelian inheritance for Clustering of Autoimmune Disease (CAD) 

has  been  well  documented  in  several  syndromes  such  as  Autoimmune-

Polyendocrinopathy  Candidiasis  Ectodermal  Distrophy  (APECED), 
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Immunodysregulation Plyendocrinopathy Enteropathy X linked Syndrome (IPEX) AND 

Autoimmune Lymphoproliferative Syndrome (ALPS).  These 3 distinct clinical entities, 

each  caused  by  by  a  single  gene  defect,  have  been  associated  with   multiple 

autoimmune disorders (15).  

IPEX

 IPEX  is  a  rare  X-linked  disorder  of  immune  regulation  resulting  in  the 

expression  of  multiple  autoimmune  disease.  Patients  can  develop  type  1  diabetes, 

enteropathy,  eczema,  variable  autoimmune  phenomena  and  severe  infections.  Older 

patients  may present  sarcoidosis,  arthritis,  glomerulonephritis,  ulcerative colithis  and 

neuropathy.  The gene identified as responsible for this disorder is the transcriptional 

factor FOXP-3. FOXP-3 is mainly expressed in CD4+CD25+ T regulatory cells. Murine 

models with depletion of this T-lymphocyte population spontaneously develop T-cell 

autoimmune  disease.  Although  13  mutations  of  this  gene  have  been  at  present 

identified, no genotype-phenotype correlation has been described  (16). 

ALPS

Autoimmune  lymphoproliferative  syndrome  is  a  disorder  characterized  by 

chronic,  non-malignant  lymphoproliferation  and  autoimmunity,  most  commonly 

involving  cells  of  hematopoietic  origin.  ALPS  is  due  to  a  failure  of  apoptotic 

mechanism that  helps maintain  normal  lymphocytes  homeostasis,  with  a subsequent 

accumulation  of  lymphoid  mass  along  with  the  persistence  of  autoreactive  cells. 

Apoptosis is a mechanism of cell death triggered  by specialized membrane receptors. 

Fas, also known as CD59 or Apo-1 or TNFRSF6 belongs to this family of protein and is 

the  most  efficient  inducer  of  apoptosis  in  lymphocytes.  After  ligand  binding,  three 

molecules of Fas assemble into complexes. Fas signaling occurs through the interaction 

of Fas Associated Death Domain (FADD), a cellular adaptor and, subsequently, with 

procaspases 8 and/or 10 in a death inducing signaling complex (DISC) (17). Several 

forms  of  ALPS have  been  identified,  which  mainly  differ  for  the  molecule  of  the 

Fas/FasL pathway which is altered.
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 CASPASE 8 DEFICIENCY

In the mechanism of apoptosis, the CD59 receptor triggers lymphocyte apoptosis 

by recruiting Fas-associated death domain (FADD), caspase-8 and caspase 10 protein 

into  a  death-inducing  signalling  complex.  Mutations  of  caspase  8  in  mice  cause 

embryonic lethality. A human kindred with caspase 8 deficiency has been described in 

2002 (18) manifesting defective lymphocyte apoptosis and homeostasis and, in addition, 

(unlike  others  affected  by  ALPS),  defects  in  activation  of  T  lymphocytes,  B 

lymphocytes and natural killer cells, which leads to immunodeficiency. 

APECED 

Autoimmune  Polyendocrinopathy-Candidiasis-Ectodermal-Distrophy 

(APECED) is a rare autosomal recessive disease (OMIM 240300) which affects many 

tissues  especially  endocrine  glands.  APECED  is  caused  by  mutations  in  the 

AutoImmune REgulator gene (AIRE), which maps to 21q22.3 and encodes a 55-kDa 

protein that acts as a transcription regulator (19). Over APECED-related mutations of 

the AIRE gene have been described so far (20). 

The diagnosis is primarily based on the presence of two out of the three most common 

clinical features: hypoparathyroidism, Addison’s disease, and chronic mucocutaneous 

candidiasis  (19).  Further  clinical  or  latent  autoimmune  endocrine  diseases  may  be 

associated. They include hypergonadotropic hypogonadism, Type 1 diabetes mellitus, 

and autoimmune thyroid disease. Non-endocrine autoimmune disorders include vitiligo, 

alopecia, urticaria-like erythema, chronic atrophic gastritis with or without pernicious 

anemia,  celiac  disease,  malabsorption,  autoimmune  hepatitis,  rheumatic  diseases. 

Finally,  other clinical  features  such as cholelithiasis,  ectodermal  dystrophy,  acquired 

asplenia,  cancer  of  the  mucosae,  calcifications  of  basal  ganglia  and  tympanic 

membranes may also occur (21). 
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CHAPTER 3 

COMPLEX  DISORDERS  INVOLVING  BOTH  IMMUNE  AND  ENDOCRINE 

SYSTEMS: THE MODEL OF  AUTOIMMUNE DISEASES CAUSED BY AIRE 

DEFICIENCY

3.1  Introduction and aims

Autoimmune Polyendocrinopathy-Candidiasis-Ectodermal-Distrophy (APECED) is a 

rare autosomal recessive disease which affects many tissues, and especially endocrine 

glands(1).  

APECED is caused by mutations in the AutoImmune Regulator gene (AIRE), which 

maps to 21q22.3 and encodes a 55-kDa protein (2,3). Recent studies document that 

this protein acts as a transcription regulator (4) and exerts a key role in the regulation 

of  the  central  tolerance  (5).  Current  view  of  Aire’s  major  function  in  thymus  is 

schematized in Fig. 1. 
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Fig. 1 Aire promotes clonal deletion of self-reactive thymocytes.  Aire induces MEC 

expression  of  a  broad  repertoire  of  peripheral  tissue  antigens  (PTAs),  which  are 

processed and then presented on surface-displayed MHC/HLA molecules. Soon after 

the induction of AIRE and PTAs, MECs die by apoptosis. Mature thymocyte percolate 

through  the  medulla,  and,  if  their  TCRs  recognize  an  MHC:PTA  complex  in  the 

appropriate  affinity/avidity  window,  they  will  be  overactivated  and  deletd  from the 

repertoire.  Thymocites  can  recognize  MHC:PTA  complex  directly  on  MECs  or 

indirectly on DCs that engulfed apoptotic MECs or MEC fragment. (5) 
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   There is evidence that AIRE is mainly expressed by macrophages, and dendritic cells 

and is probably involved in the regulation of antigen presentation (6). So far, the exact 

role of AIRE is still unknown. Expression of AIRE by medullary thymic epithelial cells 

is subjected to tight regulation and requires the presence of thymocytes. In particular, it 

has been shown that expression of AIRE in mice is regulated by local production of 

lymphotoxin-alpha (LT-a) (7).  Other TNF family members  are involved in  negative 

selection such as the newly discovered member cellular  ligand for herpesvirus entry 

mediator  and lymphotoxin  receptor  (LIGHT).  LIGHT expression in  transgenic  mice 

induces  apoptosis  of  CD4+/CD8+  double  positive  thymocytes  suggesting  that  it  is 

involved  in  the  mechanisms  of  central  tolerance.

In  inherited  disorders  of  immune  system  that  are  characterized  by  abnormal 

thymopoiesis  such  as  Omenn  syndrome  and  other  severe  combined 

immunodeficiencies, defects of thymocyte proliferation in response to T cell receptor 

(TCR)  engagement  may  impair  lymphotoxin  expression  and  secondarily  the 

mechanisms of central tolerance, thus leading to the autoimmune manifestations that are 

often  observed  in  several  primary  immunodeficiencies.  Furthermore,  it  has  been 

recently  demonstrated  that  thymic  epithelial  cells  of  patients  affected  with  Omenn 

syndrome,  a  rare  combined  immune  deficiency  characterized  by  early  onset  of 

autoimmune  manifestations,  do  not  express  AIRE  protein  (8).  

The  prevalence  of  APECED  worldwide  is  very  low.  At  least  58  APECED-related 

mutations of the AIRE gene have been described to date. In Italy the disease is also very 

rare but three hot spots areas have been identify. In Sardinia the typical AIRE mutation 

is  characterized  by a nonsense mutation on exon 3,  defined as R139X. In Apulia  a 

typical  AIRE mutation is  localized on exon 2 and is  defined as W78R. In northern 

Italian  populations  R257X  is  very  frequent  and  often  associated  with 

1094-1106del113(10).  

The diagnosis of APECED is primarily based on the presence of two of the three most 

common  clinical  features:  hypoparathyroidism,  Addison’s  disease,  and  chronic 

mucocutaneous candidiasis (1). Further clinical or latent autoimmune endocrine signs or 

diseases may be associated.  APECED is characterized by the presence of organ and 

non-organ  specific  circulating  autoantibodies.  Even  if  the  presence  of  certain 
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autoantibodies  is  often associated with specific  signs or symptoms,  their  role  in the 

pathogenesis  of  APECED  is  stillunknown.  

Candidiasis  is  generally  the  first  manifestation  of  the  disease,  usually  appearing  at 

around 5 yrs of age. It is often followed by hypoparathyroidism, before the age of 10 

yrs,  and  later  by  adrenal  insufficiency  (1).  However,  the  expression  of  the  clinical 

phenotype is often partial in infancy. In fact, most of the patients with the classic triad 

of  symptoms  belong  to  the  second  or  third  decade  of  life.  Clinical  complications 

gradually appear over time, culminating in a complete clinical portrait of the disorder 

between the second and third decade of life. Correlation studies have so far failed to 

reveal a correlation between phenotype and genotype and, even among siblings with the 

same  genotype,  clinical  phenotype  can  reveal  wide  heterogeneity.

Furthermore, recent reports highlight the possibility of unusual and peculiar components 

such as chronic respiratory disease and chronic inflammatory demyelinating neuropathy 

(CIDP)  (11,  12).  KCNRG  ,  a  putative  potassium  channel  regulating  protein, 

preferentially  expressed  in  the  epithelial  cells  of  terminal  bronchioles  in  the  lungs, 

represents a target for autoantibodies in APECED (13). Indeed,in CIDP,the responsible 

autoantigens are unclear and the frequency of disease or the correlation with a specific 

phenotype  are  not  reported.  Recent  studies  with  mouse  models  of  autoimmune 

peripheral neuropathy strongly suggest a possible role of Myelin Protein Zero (PO) as 

the  candidate  autoantigen  of  CIDP.

This wide spectrum of the phenotype and the gradual appearance of symptoms over 

time, strongly suggest that, although APECED is the first well-documented example of 

an autoimmune disorder inherited as a monogenic disease, there are several functional, 

environmental or molecular factors which may contribute to the clinical expression of 

the  disease.  Associations  with  specific  HLA  aplotypes  have  been  found  for  trait 

components  like  alopecia,  Addison’s  disease  and  Type-1  Diabetes  in  Autoimmune 

Polyendocrine Syndrome 1 (APS 1).  The associated  haplotypes  are  those associated 

with the common, non-APS-1 related forms of these diseases. Only a weak association 

has  been  observed  between  the  HLA type  and  autoantibody  specificities  in  APS-1 

patients, suggesting that in APS-1 the HLA alleles do not have a strong influence on 

autoantibody  formation(15).

Along with the central tolerance network, which is primarily involved in pathogenesis 

of APECED, several  other peripheral  mechanisms are capable  of contributing to the 

control and regulation of the immune system. These factors are involved in maintenance 
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of the homeostasis of peripheral tolerance of residual autoreactive clones which escape 

negative  selection  within  the  thymus  and  play  a  significant  role  in  preventing  or 

minimizing reactivity to self-antigens. The peripheral tolerance recognizes as possible 

mechanisms  the  induction  of  functional  anergy,  deletion  of  autoreactive  clones  by 

apoptosis and the suppressive action of regulatory T lymphocytes (Treg). Anergy is a 

mechanism that results in functional inactivation of self-reactive T cells. Clonal T-cell 

anergy can be induced upon engagement of the TCR in the absence of costimulatory 

signals.  Apoptosis  takes  place through a  series  of regulated biochemical  events  that 

follow Fas/FasL interaction,  thus  resulting in  cell  death.  Treg cells  arise  during the 

normal process of maturation within the thymus (16,17) and preferentially express high 

levels of CD25, the transcription factor forkhead box P3 (FoxP3) and a considerable 

number of additional activation surface markers, as transferrin receptor and HLA class 

II antigens. These cells exhibit a vast spectrum of autoimmunity-preventive activities 

(18). Treg cells are naturally anergic and, upon TCR activation, potently suppress the 

proliferation  of  CD4+CD25-  T  cells  through  an  antigen-nonspecific  mechanism. 

Moreover, the intimate molecular mechanism by which Treg cells mediate suppression 

still remains unclear (19). An additional mechanism involved in controlling reactivity to 

self  engages  in  the  periphery  is  Natural  Killer  (NK) cells  activity.  There  is  strong 

evidence that clearly shows the association between low levels of NK cells and NK-cell 

activity  and the  development  of  autoimmunity,  attributable  to  failure  in  deletion  of 

autoreactive clones by cytolysis. In this process, a pivotal role is played by protein such 

as Perforin (PRF1). Our group has documented that an alteration of the fine tuning of 

one of these processes is involved in the pathogenesis of autoimmune diseases (20-22). 

Therefore, alterations dependant on one of the peripheral tolerance mechanisms could 

contribute to the wide variability of APECED’s clinical expression. To date, there are 

only few studies on the functionality of these immunological tolerance mechanisms in 

patients with APECED. Recently,  a study has been published evaluating the number 

and  functionality  of  Tregs  in  APECED  patients  (23).  The  authors  reported  an 

impairment of CD4+CD25+ Treg population in APECED patients, thus indicating that a 

Treg defect could be involved in the pathogenesis of APECED. However, the reduction 

in circulating Treg cells might also be secondary to the chronic fungal infection and 

autoimmune inflammation in these individuals. Therefore, performing Treg evaluation 

along with the study of other peripheral tolerance mechanisms at an early stage of the 

disease  (e.g.  in  children)  could  help  to  clarify  the  role  of  these  mechanisms  in  the 
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clinical  phenotype  of  APECED  patients.

Another  interesting  aspect  is  the role  that  mutations  of  the AIRE gene  have  in  the 

heterozygous subjects.  AIRE gene mutations  in a heterozygous state have also been 

identified in patients with hypoparathyroidism associated with Hashimoto’s thyroiditis, 

in  patients  with  systemic  sclerosis  associated  with  Hashimoto’s  Thyroiditis  or  in 

patients  with sporadic  Addison’s disease (24-26).  No data have been reported about 

AIRE status in patients affected with isolated chronic hypoparathyroidism. Furthermore, 

a  recent  study  has  been  conducted  in  relatives  of  patients  affected  with  APECED, 

heterozygous  for  AIRE  mutations  (10).  These  subjects  were  found  to  suffer  from 

various autoimmune and non-autoimmune diseases but not major disease of APECED. 

In conclusion the effects of a slight impairment in the expression and/or function of 

AIRE protein, such as in the presence of heterozygous mutations of the gene, still need 

to be defined.

Aims of our project in this field are the followings:

A. Genotypically and phenotypically characterize  patients affected by Autoimmune 

Polyendrocrine   Syndrome associated with a mutation of the AIRE gene through:

1. Definition  of  the  modality  of  the  disease’s  expression  in  pediatric  age  with 

particular  attention  to  APECED  atypical  clinical  manifestations  including 

neurological involvement.

2. Definition of the genotype-phenotype correlation.

3. Study  of  the  distribution  of  different  genetic  patterns  based  of  the  subjects’ 

geographic area of origin. 

B. Study of environmental (infectivological triggers) and molecular factors that can 

presumably  contribute  to  the  phenotypical  variability  of  the  disease,  with 

particular attention to the study of the peripheral tolerance mechanisms through 

the followings functional and molecular studies: 

1. Evaluation of Natural Killer cells activity

2. Evaluation of Fas-induced apoptosis in peripheral blood. mononuclear cells.

3. Molecular analysis of Perforin gene mutations.

4.  Evaluation  of  T regulatory  cells  functionality  and Foxp3 expression  profile.

To these aims, we have genotipically and phenotypically characterized a population 

of pediatric  patients  affected with APECED originating from Campania.  Within this 

population  we identified a subject with an unusually severe phenotype  of APECED 
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characterized  by  features  never  described  before  in  association  with  the  disease. 

Furthermore, we evalutad in this subject and in his sister, who presented only a mild 

phenotype  despite  the  same  molecular  defect  of  AIRE,  environmental  factors  and 

peripheral tolerance mechanimsms to establish wether these factors could be involved in 

the phenotypic intrafamiliar variability of APECED. 
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3.2  Posterior  Reversible  Encephalopathy  Syndrome  in  a  child  during  an 

accelerated  phase  of  a  severe  APECED  phenotype  due  to  an  uncommon 

mutation of AIRE
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IntroductionContext:  Autoimmune  Polyendocrinopathy  Candidiasis  Ectodermal  Distrophy 

Syndrome (APECED) is an autosomal recessive disease, caused by mutations in 

the  AutoImmune  REgulator  (AIRE)  gene.  Although  APECED  is  a  monogenic 

disease, clinical phenotype can reveal wide heterogeneity. This variability suggests 

that additional factors may influence the expression of the disease. Along with the 

central  tolerance,  primarily involved in pathogenesis of APECED, several other 

peripheral mechanisms contribute to regulation of immune system. So far, only a 

few study have investigated peripheral tolerance in APECED patients.

 Objective: The aim of this study was to evaluate whether genetic, immunological 

and environmental factors may be involved in the modulation of the disease in two 

siblings with identical genotype and different phenotype. 

Patients: Two siblings carrying the same complex homozygous mutation of AIRE 

(exon1: IVS1 + 1G>C; IVS1 + 5delG ), showed a wide variability of phenotype: 

the older child (5 yrs) showed a severe phenotype complicated with uncommon 

manifestations, whereas the younger sister (4 yrs) had only a mild phenotype.

 Methods:  Perforin (PRF1) and HLA genes were amplified by PCR. APECED-

related  autoantibodies  were  performed  by  indirect  immunofluorescence  or 

complement  fixation or ELISA or RIA. The following infectious markers were 

evaluated: Herpes, EBV, HZV, Parvovirus B19. Peripheral tolerance mechanisms 

were evaluated by: resistance to FAS-induced apoptosis on PBMC activated with 

PHA, the number of TCD4+CD25+  regulatory cells (Treg) through cytometer analysis 

and NK activity through the Wallac method.

Results: No  alteration  was  found  in  PRF1. HLA  aplotype  and  exposure  to 

infectious triggers were not apparently associated to the severity of the disease. 

Autoantibodies'  profile paralleled in both siblings to the clinical  manifestations. 

The  evaluation  of  Treg  was  comparable  in  both  children  (1.51  and  1.05%, 

respectively),  but lower as compared to controls (4.33%). The NK activity was 

comparable between the 2 siblings and the controls. FAS-induced apoptosis was 

normal in both children (75 and 80 % respectively, n.v. <82%).

 Conclusions: Peripheral tolerance mechanisms and infectious triggers evaluated 

in  the  current  study,  as  well  as  HLA aplotype,  do not  seem to  play a  role  in 

modulating  the  phenotype  of  the  two  siblings.  Further  studies  are  needed  to 

identify  additional  factors,  other  than  AIRE  gene  mutation,  involved  in  the 

phenotypic variability of APECED.
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The genetic cause of many rare autoimmune diseases have been already identified and 

most of these disorders are a result of an intricate relationship between environmental 

and genetic factors, resultant in a deregulation of central and peripheral tolerance, that 

led to auto reactive pathogenetic T and B clones.  

The  intriguing  evidence  that  the  genetic  background  predisposes  to  the 

autoimmunity, but it doesn’t define the specific target of the disease demonstrate that 

there are several factors that influence the phenotypical characteristics (1-4).

Autoimmune Polyendocrinopathy-Candidiasis-Ectodermal-Distrophy (APECED; 

MIM  240300),  or  autoimmune  polyglandular  syndrome  type  I,  is  a  rare  autosomal 

recessive  disease  characterized  by  a  set  of  three  abnormal  features:  chronic 

mucocoutaneous candidiasis, hypoparathyroidism, and adrenal insufficiency.  However, 

most  patients  also routinely exhibit  a variable number of other autoimmune diseases. 

APECED is caused by mutations of a single gene, named autoimmune regulator (AIRE), 

which maps to 21q22.3 (5) and encodes a 55-kDa protein that acts as a transcription 

factor (6).  Animal models of APECED have revealed that AIRE plays an important role 

in T cell tolerance induction in the thymus, mainly by promoting ectopic expression of a 

large  repertoire  of  transcripts  encoding  proteins  normally  restricted  to  differentiated 

organs residing in the periphery. Thus, the absence of AIRE results in impaired clonal 

deletion of self-reactive thymocytes (7).  Over 60 mutations have by now been localized 

in the AIRE genes of different APECED patients but the different mutations have not to 

date been convincingly associated with particular disease manifestations (7).  

Although the disease is monogenic in transmission, APECED patients show a 

variable range of pathological manifestations, with each patient presenting a different 

constellation of affected organs and autoantibodies (autoAb) specificities.  However, 

certain targets of the autoimmune attack are near constant, such as the adrenal and 

parathyroid  glands,  while  other  manifestations  are  less  frequently  observed  (e.g., 

thyroiditis or T1D, which are present in 2–12% of cases) (8).  Recent analysis have 

revealed that an effect of additional genetic loci, in particular the human leukocyte 

antigen  (HLA)  complex,  is  restricted  only  to  few  disease  manifestations  (9-10). 

Moreover,  recent  evidences  indicate  that  also  a  defect  in  the  regulatory  T  cells 

compartment (Treg) could be involved in the pathogenesis of APECED (11).  So far, 

the reasons of the high phenotypical variability of APECED remain still unclear. 

Our study was aimed to evaluate whether genetic, immunological and environmental 

factors may be involved in the modulation of the disease in two siblings, born from 

36



consanguineous parents, with identical genotype and extremely different phenotype by 

studying  the  exposure  to  infectivological  triggers,  the  HLA  aplotype  and  several 

mechanisms of peripheral tolerance. 

Subjects and Methods

Subjects

Case 1 

    The boy first presented at the age of 5 years with severe asthenia, alopecia, and 

an urticaria-like erythema during a fever.  Physical examination revealed the presence 

of  vitiligo,  alopecia,  nail  dystrophy,  oral  candidiasis   hypertransaminasemia  and 

hepatosplenomegaly.  Autoimmune hepatitis (AIH) was scored as probable (score 12) 

on  the  basis  of  the  recommendation  of  the  international  AIH group.2 Laboratory 

investigations  showed  hypocalcaemia  (1.3  mmol/l)  and  hyperphosphatemia  (2.3 

mmol/l)  with  undetectable  levels  of  PTH,  leading  to  the  diagnosis  of 

hypoparathyroidism.  He was started on calcium and calcitriol therapy.  Over the next 

three  months  the  patient  developed  autoimmune  thyroiditis  with  severe 

hypothyroidism (TSH 251 mIU/L, Free-T4 6.3 pmol/l) and he started L-Thyroxine 

therapy.   An increase  in  plasmatic  renin  levels  (216  pg/ml,  normal  range  1.8-33 

pg/ml) in the presence of adrenal autoantibodies, confirmed the diagnosis of adrenal 

insufficiency.   He  also  presented  gastrointestinal  symptoms  with  abdominal 

distension  accompanied  by  alternating  diarrhea  and  constipation  and  presence  of 

autonatibodies against TPH and AADC, commonly associated with gastrointestinal 

alterations  in  APECED patients.  Atrophic  gastritis  was  diagnosed on the basis  of 

persistently  elevated  levels  of  gastrinemia  (765 pg/ml,  normal  range 0-80 pg/ml), 

presence of parietal cells Abs (PCA) and histological findings of gastric body mucosa 

atrophy. 

Six  months  after  the  onset  of  this  accelerated  phase,  the  patient  suddenly 

developed  a severe neurological  symptomatology with neuroradiological findings 

suggestive  of  Posterior  Reversible  Encephalopathy  Syndrome  (PRES),  a  life-

threatening event never described before in APECED patients. 

 

Case 2
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The  girl,  the  younger  sister  of  case  1,  presented  at  the  age  of  4  years  with 

hypoparathyroidism,  diagnosed  on  the  basis  of  hypocalcaemia, 

hyperphosphatemia and undetectable levels of PTH, and chronic mucocutaneous 

candidasis. No other signs or symptoms of APECED were revealed at physical 

examination or biochemical investaigations. During her follow-up, through  the 

next two years,  she did not develop any other features of the disease. Clinical 

details of the two siblings are shown in Table 1.

Molecular studies

Genomic DNA was extracted from peripheral blood. All 14 exons of the AIRE gene 

and exons 2-3 of the PRF1 gene were amplified with the use of primers located on the 

respective flanking introns (12) and then analysed by direct sequencing using the ABI 

PRISM 3130 sequencer (Applied Biosystems, Foster City, CA). The analysis included 

sequencing of the donor/acceptor sites of all of the introns.  

Methods

The  following  autoantibodies  were  performed  by  classical  indirect 

immunofluorescence  technique  or  complement  fixation  or  ELISA  or  RIA,  as 

appropriate: Thyroglobulin Abs (TgAbs), Thyroid microsomal Abs (TMAbs), TSH-

receptor  Abs,  Thyroperoxidase  Abs (TPOAbs),  Parietal  cells  Abs (PCA), Intrinsic 

factor Abs (IFA), Glutamic acid decarboxylase Abs (GADA), Adrenal cortex Abs 

(ACA),  17  α-hydroxilase  Abs  (17  α-OHAbs),  Side-chain  cleavage  enzyme  Abs 

(sccAbs),  Aromatic-L-Aminoacid  decarboxilase  Abs  (AADCAbs),  Tryptophan 

hydroxylase Abs (TPHAbs).

The  exposures  to  infectivological  triggers,  through  the  evaluation  of  specific 

immunoglobulins (Herpes,  EBV,  HZV,  Parvovirus  B19),  the  study  of  the  HLA 

aplotypes and the analysis of Natural Killer (NK) cells activity were performed by 

standard procedures.

Cell death induced by Fas was evaluated as previously reported on T-cell lines 

obtained  by  activating  peripheral  blood  mononuclear  cells  (PBMC)  with 

phytohemagglutinin (PHA) at days 0 (1 μg/mL) and 15 (0.2 μg/mL) and cultured in 

RPMI 1640 1 10% FCS1recombinant IL-2 (5 U/mL) (Biogen, Geneva, Switzerland). 

Fas function was assessed 6 days after the second stimulation (day-21 T cells).  

38



The  number  of  Treg  cells  was  evaluated  by  flow  cytometry.   Peripheral  blood 

mononuclear  cells  (PBMC) (1*106) were treated  with antibodies  against  CD4-FITC 

(RPA-T4 eBiosciences) and CD25-APC (BC96 eBiosciences) and then analyzed on a 

FACSCalibur flow cytometer using CellQuest software (BD Biosciences).

For the proliferation assay, PBMC (2*105 cell/200 µl well) were cultured triplicate in 

96-well  Ubottom  microtiter  plates  (Falcon;  BD  Biosciences)  with  or  without 

phytohemagglutinin  (PHA)  at  reported  concentrations  for  4  days.  The  proliferative 

response was evaluated by thymidine uptake from cultured cells pulsed with 0.5 µCi of 

[3H]-thymidine (Amersham Biosciences) 8 h before harvesting. 

Results

Direct sequencing of the patients’ AIRE gene revealed in both the siblings the presence 

of  the same complex homozygous mutation in intron 1 consisting of a substitution of 

IVS1 + 1G by C accompanied by a single nucleotide deletion at IVS1 + 5G residue 

(IVS1 + 1G>C; IVS1 + 5delG).  The parents were both heterozygous for the same 

mutation and had no features of autoimmunity.  This mutation represents an uncommon 

mutation of AIRE and, so far, has been described in heterozygous state with the R257X 

in a single individual from Poland. 

As previuosly described,  circulating autoantibodies  paralleleld  in each patient 

the clinical phenotype (Table 2), and strongly supporting the autoimmune mechanism at 

the  basis  of  the  pathogenesis  of  APECED.   Moreover,  the  evaluation  of  specific 

response  to  infectivological  triggers,  showed  no  substantial  differences  that  could 

influence the severity of the disease in that the younger sister, which presented a milder 

phenotype, was more exposed to viral infections. 

To define the possible contribution of distinct peripheral tolerance mechanisms 

in the high variability observe in the two patients, we also analyzed the resistance to 

Fas-induced apoptosis and the number of CD4+CD25+ cells indicative of the presence 

of Treg population.  In particular, cell death assay after Fas stimulation revealed that the 

resistance to Fas-induced apoptosis was comparable between the siblings and normal as 

in the controls.  Flow cytometric assays revealed a comparable number of CD4+CD25+ 

T cells in the two siblings, but in both cases reduced as compared to controls.  

Being NK cells involved in the autoimmunity attributable to failure in deletion 

by cytolitic protein such as Perforin (PRF1), we analyzed NK cells activity that resulted 

comparable to controls in both the cases.  Moreover, no mutations in the coding region 
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of  PRF1 gene were identified in  both the siblings.  It was notable that the molecular 

study of the PRF1 gene disclosed a heterozygous nucleotide substitution in PRF1 exon 

3 resulted in the Ala273Ala silent mutation.  This substitution was only found in the 

Case 1.   

                   Discussion

Here we report the case of two siblings affected with APECED that showed an high 

intra familiar  variability of phenotype despite the same genotype of the AIRE gene. 

Although APECED is generally considered a monogenic disorder, it is characterized by 

a wide variability of expression with each patient presenting a different constellation of 

affected organs and autoAb specificities.

As other autoimmunity disease, APECED is the result of alterations at different 

levels, as demonstrated by the remarkable north/south gradient in the susceptibility to 

autoimmune diseases, that suggests that  environmental factors could be involved (13).  

Studies of  Aire knockout mice have provided direct  evidence that Aire has a 

vital role in preventing autoimmunity.  In particular, APECED animal models revealed 

that Aire plays an important role in T-cell tolerance induction in the thymus, mainly by 

promoting  ectopic  expression  of  a  large  repertoire  of  transcripts  encoding  proteins 

normally restricted to differentiated organs residing in the periphery.  Thus, the absence 

of AIRE results in impaired clonal deletion of self-reactive thymocytes, which escape 

into the periphery and attack a variety of organs (7). 

The extreme variability of APECED presentation,  even between siblings with 

the same genotype, lead to speculate that other mechanisms, beyond aire itself, could be 

involved in the clinical expression of the disease. 

We observed two siblings patients with the same genetic AIRE mutations, but 

with a spectrum of target organs completely different.  Although it is well known that 

APECED  is  characterized  by  extreme  variability  of  phenotype,  the  reasons  of  this 

phenomenon remain still unclear. 

In  particular,  being  the  infectious  agents  represent  a  potent  stimulus  for  the 

immune  system  and  may  contribute  to  select  auto  reactive  T  cells  in  susceptible 

subjects, through molecular mimicry (14-16), bystander activation (17-18) and epitope 

spreading (19), we examined the associated infections in both patients, but they show an 

identical  infective  story.   Moreover,  we analyzed  NK activity  and eventual  genetic 

alterations  in  PRF1 gene.   The  results  of  these  analysis  showed a  comparable  NK 
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activity any alterations in  PRF1 gene for both patients.  It is likely that a nonscreened 

mutation in the intronic or in the promoter region of  PRF1  gene could influence the 

different phenotype observed in the siblings.

Furthermore,  on  the  other  side  of  the  central  tolerance  there  are  other 

mechanisms that maintain tolerance to self, such as the induction of functional anergy, 

deletion  by  apoptosis,  and  the  suppressive  actions  of  Treg.   On the  bases  of  these 

mechanisms we analyzed in particular the resistance to apoptosis by cell death assay 

with Fas, the number and the functionality of Treg, attributable to a normal expression 

of the transcription factor Foxp3.  During this analysis we didn’t note any variations 

between the two sibling patients.  

In summary,  we found a high intrafamiliar variability in two siblings affected 

with the same mutation of AIRE gene.  The results imply that the analyzed mechanisms 

did not influence the phenotypic spectrum of APECED.  
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Table 1 Clinical expression of the disease in the two siblings

Symptoms and signs Case1 Case 2
Hepatitis x -
Hypoparathyroidism x x
Candidiasis x x
Alopecia x -
Vitiligo x -
Ectodermal 
Dystrophy

x -

Addison x -
Urticaria-like 
erythema-fever

x -

Hypothyroidism x -
Atrophic Gastritis x -
Abdominal Bloating x -
PRES x -

Table 2 Autoantibodies profile in the two siblings

Autioantibodies 
against

Case 1 Case 2

21-OH X -
PC X -
Tg X -
TPO X -
StCA X -
17αOH X -
TPH X -
scc X -
CF-m X -
AADC X -
ACA X -
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ABSTRACT

Background:  Autoimmune  Polyendocrinopathy  Candidiasis  Ectodermal  Distrophy 

Syndrome  (APECED)  is  an  autosomal  recessive  disease,  caused  by  mutations  in  the 

AutoImmune REgulator (AIRE) gene. The prevalence of APECED worldwide is very low. 

Some different mutations have been identified to be peculiar to particular populations. In 

Italy the disease is also very rare but three hot spots areas have been identify. In Sardinia 

the typical AIRE mutation is characterized by a nonsense mutation on exon 3, defined as 

R139X. In Apulia a typical AIRE mutation is localized on exon 2 and is defined as W78R. 

In  northern  Italian  populations  R257X  is  very  frequent  and  often  associated  with 

1094-1106del113  and  in  Sicily  a  typical  mutation  defined  R203X  has  been  recently 

suggested. As regard to the Campania region only one patient has been studied and the 

mutations  identified  are  on  the  exon  11.  

Aim: In this study we carried out mutation analysis of the AIRE gene in 6 patients affected 

with  APECED  originating  from the  region  of  Campania,  an  area  of  Southern  Italy.  

Patients and methods:  Six children, originting from 5 different families of the region of 

Campania, were diagnosed as having APECED on the basis of the presence of at least two 

of  the  three  major  signs  of  the  disease.  Genomic  DNA was estracted from peripheral 

leukocytes and the 14 exons of AIRE were amplified by PCR. A complete assessment of 

APECED-related autoantibodies' was performed by classical indirect immunofluorescence 

technique  or  complement  fixation  or  ELISA  or  RIA,  as  appropriate.  

Results:  In  all  patients  mutational  analysis  confirmed  the  diagnosis  of  APECED.  All 

patients  carried  at  least  one  mutation  on  exon  1:

- two siblings carried a complex homozygous mutation [IVS1 + 1G>C; IVS1 + 5delG] on 

intron  1;

-  two  patients  were  compound  heterozygous  for  [T16M]+[W78R]  (exons  1+2);  

- one patient was compound heterozygous for [A21V]+[C322fs] (exons 1+8);

-  one  patient  was  homozygous  for  [T16M]+[T16M]  on  exon1  

The phenotypic expression of the disease showed wide variability, even between siblings 

with the same genotype. Circulating auto antibodies paralleled to the clinical symptoms in 

each  patient.
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Conclusion: Mutations on exon 1, in homozigosity or compound heterozygosisty, seem to 

be highly frequent in patients originating from Campania region. Although there is not a 

single typical mutation, the exon 1 could be suspected to represent a hot spot  region for 

APECED patients originating from Campania. As already reported, genotype-phenotype 

analysis failed to reveal a clear genotype-phenotype correlation.

INTRODUCTION

Autoimmune  Polyendocrinopathy-Candidiasis-Ectodermal-Distrophy  (APECED)  is  a  rare 

autosomal recessive disease (OMIM 240300) which affects many tissues especially endocrine 

glands (1).  The diagnosis is primarily based on the presence of two out of the three most 

common  clinical  features:  hypoparathyroidism,  Addison’s  disease,  and  chronic 

mucocutaneous  candidiasis  (1).   Chronic  mucocoutaneous  candidiasis  is  often  the  first 

clinical manifestation to appear before the age  of 5 year, followed by hypoparathyroidism 

and  later  by  Addison’s  disease.   APECED  is  caused  by  mutations  in  the  AutoImmune 

REgulator gene (AIRE), which maps to 21q22.3 (2, 3) and encodes a 55-kDa protein that acts 

as a transcription regulator (5). Over 60 mutations have by now been localized in the AIRE 

genes of different APECED patients ( 5).

Even though it occurs through the world, its incidence is higher in some genetically isolated 

populations. The estimated prevalence of APECED is 1:9.000 in Iranian Jewes (6)  1:25.000 

in Finns (7,8) and 1:14.400 in Sardinians ( 9). Some different mutations have been found to 

be peculiar of specific areas. R257 X is the most common mutation among Finnish patients 

(10), 1094-1106del113 (or 967-979del13 bp) is the most common mutation in British (11), 

Irish (13), North America (13, 14) and Norwegian patients (15) and the Y85C mutation is 

more frequent among Iranian Jews (16). 

The different mutations have not to date been convincingly associated with particular disease 

manifestations (5). 

In Italy three hot spots areas can be identified: Sardinia, Apulia and a small town (Bassano 

del  Grappa)  in  the  Venetian region.  Furthermore,  a  peculiar  mutation of  AIRE has  been 

identified in Sardinia  and Apulia: the R139X mutation on exon 3 in Sardinia (17) and the 

W78R mutation on exon 2 in Apulia (18). Recently studying three patients with APS-1 from 

Sicily  (19,  20)  it  was  suggested  the  existence  of  a  typical  mutation  of  this  region 

characterized by R203 X on exon 5. 

So far only one patient with APECED was descry.bed  from Campania having the mutation 

on exon 11 (21). 
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Aim of our study was to characterize the clinical presentation, the autoantibodies’ production 

and the molecular defects of AIRE in 6 pediatric patients affected with APECED originating 

from Campania. 

Patients

Six  patients  affected with  APECED (5  F,  1  M) originating  from Campania,  a  region of 

Southern Italy, were investigated. The patients were originating from 5 unrelated families. 

One of the 5 family have two children affected and all the other families have one affected 

child. Consanguinity between families was documented in two families:  in both families 

parents were third cousins. 

Diagnoses  of  the  different  clinical  manifestations  were  made  accordingly  to  established 

criteria (1). The onset of the disease and the clinical manifestations of for each patient are 

shown in Table 1. 

Mutation detection

Genomic DNA was extracted from peripheral blood. All 14 exons of the AIRE gene 

were amplified with the use of primers located on the respective flanking introns (16) 

and were analysed by direct sequencing using the ABI PRISM 3130 sequencer (Applied 

Biosystems, Foster City, CA). The analysis included sequencing of the donor/acceptor 

sites of all of the introns. 

Autoantibodies’ production

The  following  autoantibodies  were  performed  by  classical  indirect  immunofluorescence 

technique  or  complement  fixation  or  ELISA or  RIA,  as  appropriate:  Thyroglobulin  Abs 

(TgAbs),  Thyroid  microsomal  Abs  (TMAbs),  TSH-receptor  Abs,  Thyroperoxidase  Abs 

(TPOAbs), Parietal cells Abs (PCA), Intrinsic factor Abs (IFA), Glutamic acid decarboxylase 

Abs (GADA), Adrenal cortex Abs (ACA), 17 α-hydroxilase Abs (17 α-OHAbs), Side-chain 

cleavage  enzyme  Abs  (scabs),  Aromatic-L-Aminoacid  decarboxilase  Abs  (AADCAbs), 

Tryptophan hydroxylase Abs (TPHAbs).

RESULTS

Patients

As shown in table 1, in all patients the onset of symptoms was very early.  All patients but 

one had at least two of the three classic symptoms at diagnosis. The one patient with only one 

classic  symptom  presented  at  the  age  of  0.7  years  with  vasculitis,  then  followed  by 

candidiasis  at the age of 2 years.  Only 3 patients presented the classic tryad during follow-
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up. The severity  of the disease was widely different and many patients experienced atypical 

manifestations while in others the phenotype was mild. In particular, one patient developed a 

lifethreatening posterior  reversible  encephalopathy syndrome  (PRES) that  has  never  been 

previously  described  in  the  context  of  APECED  syndromes  (22),  and  another  patient 

presented with only vasculitis at an early age, as above decribed.  Interestingly, in 3 of the 4 

patients with Addison, the disease appeared in early childhood, whereas it is usually reported 

in the second decade.  

AIRE mutation analysis

Four different mutations were detected (Table 2). None of the mutation described was a novel 

mutation  and  the  complex  variant  [IVS1  +  1G>C;  IVS1  +  5delG]  is  uncommon. 

Interestingly, all patients carried at least one mutation on exon 1 and  out of 12 alleles, nine 

(12%) showed a mutation of AIRE localized on the exon 1 (Table 2). Two siblings carried a 

complex homozygous mutation in intron 1, consisting of a substitution of IVS1 + 1G by C 

accompanied in  cis by a single nucleotide deletion at IVS1 + 5G residue [IVS1 + 1G>C; 

IVS1 + 5delG]. Two patients were compound heterozygous for  [T16M]+[W78R] on exons 1 

and  2; one patient was compound heterozygous for [A21V]+[C322fs] on exons 1 and 8 and 

one patient was homozygous for [T16M] +[T16M] on exon 1.  

The sequence variant [IVS1 + 1G>C; IVS1 + 5delG] consists of two mutations, each likely to 

affect the splicing of intron 1. The IVS1 + 1G is 100% conserved in the major-class introns 

so that its change into C must render the splice site nonfunctional. The IVS1 + 5delG is also 

likely to have a negative effect because in the major-class introns at the IVS+5 position only 

G,A or T occur.

Mutations T16M, A21V and W78R are localized in the homogeneously staining region 

(HSR) domain of AIRE, which is the area in which most other missense mutations have 

been located. Missense mutations and also small deletions affecting the HSR domain of 

the AIRE protein lead to the production of a functionally defective protein due to the 

loss of its homodimerization propertie.

Autoantibodies’ profile 

As previuosly described,  circulating autoantibodies paralleleld in each patient  the clinical 

phenotype  (Table  3),  strongly supporting the  autoimmune  mechanism at  the  basis  of  the 

pathogenesis of APECED. 

DISCUSSION

48



In this  study we have delineated the molecular  pathology and the clinical  spectrum of 6 

probands affected with APECED originating from the region Campania of the Southern Italy. 

Our results suggest  that in Campania an hot spots area of mutations of AIRE can be 

identified and it is localized on exon I of the gene. 

World-wide prevalence of APS type 1 is very low; however, among the Iranian Jewish (6), in 

Finland (7,8) and in Sardinia (9) the estimated prevalence is 1/9,000, 1/25,000, and 1/14,000 

respectively. A higher prevalence of APS type 1 among some populations could be related to 

a founder effect gene (1). 

Only a few studies have been conducted to delineate the molecular pathology and phenotype 

of APECED patients originating from Italy. However, recent studies have documented that 

three  hot  spots  area  can be identified in Italy.  The first  is  Sardinia,  where the  APECED 

prevalence is 1:14,400 (9); the second is Apulia with a frequency of 1: 35,000 (18) and the 

third  is  the  Venetian  region  with  a  frequency of  1:4,400  (23).  Moreover,  AIRE  typical 

mutations have been identified both in Sardinia (R139X) (9) and in Apulia (W78R) (18). A 

recent  study  on  Italian  APECED  patients  identified  a  possible  typical  mutation  also  in 

Sicilian patients, named R203X and localized on exon 5, whereas failed to reveal a typical 

mutation in patients originating from North of  Italy or Venice. However, even if a typical 

mutation is not present in the Nothern Italy and Venetian populations, two mutations, already 

described in  European populations characterize the AIRE genetic pattern of this Italian area 

(20). 

Our study suggest that the frequency of AIRE mutations in Campania seems to be relatively 

high. Interestingly,  we found that  mutations  localized on exon 1,  being present  either  in 

compound  heterozygosity  or  homozygosity,  are  relatively  common  in  APECED  patients 

originating from Campania. In fact, out of 12 alleles from 6 different probands,  9 (75%) 

showed mutations on exon 1, suggesting that,  although a single typical mutation cannot be 

identified,  this region of the gene could represent an hot spots area of mutation in this area of 

Southern Italy.  

None of the mutations detected in our patients was novel, however they were all uncommon . 

In  particular  2  siblings  carried  a  complex  homozygous  mutation  that  consists  of  two 

mutations  affecting  the  splicing  in  intron  1.  This  mutation  has  never  been  reported  in 

APECED patients from Italy. So far,  the  IVS1 + 1G>C; IVS1 + 5delG mutation has been 

described in heterozygous state with the R257X in a single individual from Poland (24).  

The  analysis  of  genotype-phenotype  in  our  subjects  correlation  failed  to  reveal  a  clear 

relationship, as previously reported in other series of patients. The presenting symptoms, the 

age of onset and the phenotype at the last visit were extremely different between our patients 

even when the genotype was the same. In particular the 2 siblings carrying the same complex 

homozygous  mutation  showed   a  wide  heterogeneity  of  clinical  expression:  one  patient 
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developed  a  severe  phenotype  culminating  in  a  life-threatening  event,  whereas  his  sister 

presented with only a mild phenotype. Patient 2 and 5, presenting the same mutation also 

widely differed in their phenotype:  the first patient, in fact,   had only a mild phenotype with 

a few symptoms,  whereas the second patient developed a severe phenotype since the first 

decade of life. Moreover, the  early development of Addison disease was also not apparently 

related to the genotype in that the three patients affected with Addison  within the first decade 

of life carried  different mutations of exon I. 

In conclusion our data demonstrate that mutations on exon I of AIRE gene are common in 

APECED patients from Campania, suggesting that not only in Sardinia, Apulia and Sicily but 

also in Campania  an hot spots area of mutations can be identified. Further studies on large 

number  of  patients  are  needed  to  better  evaluate  the  frequency  of  exon  I  mutations  in 

Campania and its effect on APECED phenotype.
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  Table  1.  Clinical  manifestations  and age  of  onset  of  6  APECED patients  from 

Campania
Patient

1 2 3 4 5 6

Age at onset (yr) 0.7 4 1.5 2 2 6

Age at the last visit 6 7 8 8 28 20

Mucocoutaneous 
Chronic Candidiasis 
(CMC)

+ + + + + -

Hypoparathyroidism 
(HP)

- + + + + +

Addison’s disease 
(AD) 

- - + + + +

Hypogonadism (HH) - - - - + -

Diabetes Mellitus 
(IDDM)

- - - - - -

Autoimmune 
Thyroiditis (AT)

+ - + - + -

Atrophic gastritis 
(AG)

nt nt + nt nt nt

Pernicious anemia 
(PA)

- - - - - -

Chronic hepatitis 
(CH)

- - + - - -

Malabsorption - - + - + -

Keratitis - - - - - -

Alopecia (A) + - + - - +

Vitiligo (V) - - + - - -

Ectodermal 
Distrophy (ED)

- - + - + -

Enamel  hypoplasia - - - - + +

Vasculitis + - - - - -

Parotitis - - + - - -

Pancreatitis - - - - + -

Urticaria-like 
erythema fever

- - + - - -

Abdominal bloating + - + - + -

Posterior Reversible 
Encephalopaty 
syndrome (PRES)

- - + - - -

53



         Table 2. Mutation of AIRE gene in six APECED from Campania

Patient AIRE Genotype Exons
1 47C>T / 232 T>A I/II

2       IVS1 + 1G>C, +5delG / 
IVS1 + 1G>C, +5delG 

I/I

3 IVS1 + 1G>C, +5delG / IVS1 + 
1G>C, +5delG 

I/I

4  62C>T / 967-979 del I/VIII
5 47 C>T / 232 T>C I/II
6 T16M/T16M ? I/I

        
Table 3. Main Autoantibodies screened in the 6 APECED patients from Campania

    nt=not tested

Patient 1 2 3 4 5 6
Thyroglobulin Abs 
(TgAbs)

+ - + - + -

Thyroidmicrosomal 
Abs (TMAbs)

+ - + - + -

TSH-receptor Abs nt nt - nt nt nt
Thyroperoxydase 
Abs (TPOAbs)

- - + - + nt

Parietal cells 
Abs(PCA)

+ - + - - -

Intrinsic factor 
Abs(IFA)

nt - - - - -

Islet-cell  Abs 
(ICA)

nt - - - + -

Glutamicacid 
decarboxylase  Abs 
(GADA)

- - - - nt -

Adrenal cortex Abs 
(ACA)

+ - + - + +

21-hydroxylase Abs 
(21-OHAbs)

nt - + + + +

Steroid-producing 
cells Abs (StCA)

nt - + - + +

17 α-hydroxylase 
Abs (17 α-OHAbs)

nt - + - + -

Side-chain cleavage 
enzyme Abs 
(sccAbs)

nt - - - + +

Aromatic-L-
aminoacid 
decarboxilase Abs 
(AADCAbs)

nt - + - + -

Tryptophan 
hydroxylase Abs 
(TPHAbs)

nt - + - + -

MPCA (melanin-
producing cells 
Abs)

nt - + - - -
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CONCLUSIVE REMARKS

In the context of autoimmune diseases as model of complex diseases involving 

both endocrine and autoimmune systems, we paid particular attention to the study 

of the Polyglandular Autoimmune Syndrome type I or APECED. 

We  characterized  the  molecular  defects  and  the  phenotype  of  a  group  of  6 

pediatric patients originating from the region of Campania.  Our results document 

that  mutations  on   exon  I  of  AIRE  gene  are  common  in  APECED  patients 

originating  from  Campania  and  suggest  that  in  this  region  an  hot  spot  of 

mutations of AIRE  can be identified such as previously described in other regions 

of Italy. As reported for other populations, also in our patients we did not find a 

correlation between phenotype  and genotype  and the clinical  expression of the 

disease wide varies even between patients with the same genotype. We described 

a couple of siblings with same genotype and an extremely different phenotype. 

The  older  brother  was  particularly  interesting  also  because  he  developed  an 

unusually  severe  phenotype  complicated  by  a  life-threatening  encephalopathy 

never described before in APECED patients. Furthermore, we compared in these 

two  siblings  exposures  to  infectivological  (viral  infections)  and  peripheral 

tolerance mechanisms to evaluate wheteher the familial variability of APECED 

could  be  related  to  a  different  infectivological  exposure  or  alterations  in 

immunological  peripheral  tolerance.  We  did  not  find  significative  differences 

between  the  two siblings  and thus  our  preliminary  results  suggest  that   these 

mechanisms are not involved in the modulaton of the severity of the disease. 
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CHAPTER 4

SHARED SIGNALING BETWEEN IMMUNE AND ENDOCRINE SYSTEM

 4.1 Introduction and aims

Endocrine and immune systems participate to an integrated network of soluble 

mediators  that  communicate  and  coordinate  responsive  cells  to  achieve  effective 

functions  in  an  appropriate  fashion.  Cytokines  and  growth  factors  transmit  signals 

through cell-surface  receptors  to  the  nucleus,  activating  intracytoplasmatic  signaling 

molecules, ultimately resulting in the activation of specific transcription factors. In the 

recent years, the description of complex phenotypes, in which immunodeficiency and 

growth failure were associated at a different extent greatly contributed to define that 

several  signaling  molecules  play  a  role  in  both  Growth  Hormone  (GH)-related  and 

cytokines’  signaling  pathways.  In  fact,  mutations  of  gamma  chain  (γc),  Signal 

Transducers and Activators of Transcription 5 b (STAT5b), Nuclear Factor-kB (NF-kB) 

gene have been observed in patients with short stature due to GH insensivity (GHI) and 

immunodeficiences (1-7). 

Recently,  mutations of the STA5b gene have been demonstrated in patients  affected 

with complex phenotypes involving both endocrine and immune systems. STAT5b is a 

shared component between signalling pathways implicated in both immunological and 

endocrine functions and can be activated by many cytokines, IL-2, IL-7, IL-21 and IFN-

γ. 

To date, a total of six cases of growth failure associated with genetic abnormalities of 

STAT5b have been identified  (8-10).   The  clinical  pheotpye  of  these patients  were 

characterized  by  growth  failure  and  immunodeficiency.  Recurrent  pulmonary 

infections, chronic diarrhoea, severe eczema, herpes keratitis, severe varicella, juvenile 

arthritis, lymphoid interstitial pneumonia with fibrosis, were reported in these patients. 

Further  studies  in  these  patients  revealed  several  immune  deficiencies,  such  as 

decreased number and function of CD4+CD25 high regulatory T cells, low numbers of 

NK and  γδ T cells,  and IL-2 signaling abnormalities (11). However, the relationship 

between endocrine and immune dysfunctions in patients with STAT5b alterations are 

not yet completely defined. 
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Moreover,  recently  Adriani  et  al  demonstrated  that  the  common  cytokine 

receptor γc is required for a proper GH mediated STATA5b activation in B cell lines 

(BCLs) (12), suggesting a novel dependence of GH signaling on the common cytokines 

receptor γc in certain cell types. 

Specific aim of this review  was to focus on the multiple roles in haematopoietic 

and  non-hematopoietic  receptors  of  the  gamma  signaling  element  with  a  special 

attention  paid to  the participation  of  gamma to growth  hormone  receptor  signaling, 

confirming the presence of an interplay between endocrine and immune system. 
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 4.2  SHARED  SIGNALING  PATHWAYS  BETWEEN  ENDOCRINE  AND 

IMMUNE SYSTEM RECEPTORS: THE MODEL OF GAMMA CHAIN
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CONCLUSIVE REMARKS

The rapid expansion in the past two decades in the understanding of the molecular basis 

of  a  large  variety  of  novel  congenital  immunodeficiencies  has  provided  valuable 

information on the signal transduction general mechanisms, that goes far beyond the 

comprehension  of  the  individual  disease.  In  most  cases,  the  altered  molecules  are 

axclusively expressed in hematopoietic cells, while in other case they are not restricted 

to a certain cell type. This leads to kore complex clinical phenotypes, which contribute 

to unravel previously unappreciated non-hematopoietic functions of signaling proteins 

and the mechanism of coordination and integration of several pathways. Moreover, this 

knowledge will help define potential new therapeutic strategies through novel molecular 

targets, drive stem cell development into the desired differentiation pat and ameliorate 

our comprehension of tissue engineering. 
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CHAPTER 5

COMPLEX  INTERACTIONS  BETWEEN  ENDOCRINE  AND  OTHER 

BIOLOGICAL SYSTEMS:  THE MODEL OF HYPOTHYROIDISM

5.1 Introduction and aims

Thyroid  hormones  (TH) are key regulators  of metabolism and development  and are 

known to have pleiotropic effects in many different organs. TH act in practically all 

tissues of the body and influence enzyme concentration and activity, the metabolism of 

carbohydrates  and lipids, vitamins and mineral salts, basal metabolism or calorigenesis; 

they also stimulate the consumption of oxygen and act in other endocrine systems (1). 

The influence of TH on growth is related to its activity in synthesis and degradation of 

proteins. Moreover TH are essential for the development of the central nervous system 

(2). 

Clinical conditions resulting from deficiency  in the production or in the activity of TH 

will depend on the degree and duration of the deficiency, and will affect basically all 

tissues  to  a  lower  or  greater  extent.  Thyroxine  is  a  hormone  essential  for  the 

development and functioning of the brain, both in utero and in the postnatal  period. 

Infact, TH play an important role in several neurobiological mechanisms: neurogenesis 

and  neuronal  migration,  formation  of  axons,  synaptogenesis  and  regulation  of 

neurotransmitters. The action of thyroxine in the brain, occurs through interaction with 

a  specific  hormone  receptor.  Recent  studies  have  demonstrated  the  existence  of  4 

different  isoforms  of  this  receptor  that  is  expressed  during  brain  development,  at 

different times, regions such as caudate, hippocampus and cortex, regions involved in 

cognitive activities such as attention and memory, but also the cochlea and retina, with 

important implications on the processes auditory and visual (3). This shows the extreme 

importance of thyroxine on the maturation of the brain and the damage that may result 

from its  absence  during critical  periods  of  development  in  children  with congenital 

hypothyroidism.  Deficiency  of  TH  during  fetal  and  newborn  life  extends  tissue 

immaturity, leads to hypoplasia of cortical neurons, delayed myelinization and reduced 

vascularization.  If  hormone  replacement  therapy is  not  carried  out  soon after  birth, 

lesions will become irreversible, and the child’s neuropsychomotor development will be 

damaged,  leading mental  retardation.  Infact,  Congenital  Hypothyroidism (CH) is  the 

commonest cause of preventable mental retardation, with an incidence in Italy of around 
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one in three thousand live births (4).  However,  there are very few data on long-term 

effect of L-thyroxine treatment on the organs and systems target of TH. In this regard, 

long-term L-T4 therapy in patients with CH is not generally associated with side effects 

at replacement dosages, however,  previous studies have reported common episodes of 

L-T4  overtreatment  and  undertreatment  in  patients  with  CH,  which  are  commonly 

attributed to both the need to maintain serum TSH levels within normal  range even 

though  this  requires  increased  free  T4  (FT4)  concentration  and  to  the  patients’ 

inadequate compliance (5, 6).

Beyond their role on somatic growth and mental development, thyroid hormones exerts 

other important effects on many other organs and tissues. Recent data suggest that the 

cardiovascular  system  is  a  major  target  of  thyroid  hormone  action  (7) and  a  wide 

spectrum  of  cardiovascular  changes  has  long  been  recognized  in  adults  with  overt 

thyroid  dysfunction  (7-9)   and, more  recently,  in subclinical  thyroid  dysfunction (7, 

10,11). In this regard, patients with CH receiving long-term LT-4 replacement therapy 

may present a subset of patients at risk of subclinical dysthyroidism. However, long-

term cardiac  function has  never  been  investigated  in  children  and adolescence  with 

congenital  hypothyroidism detected  by neonatal  screening and treated  from the first 

month life. Few and conflicting data, in fact, have been reported only in neonates with 

congenital hypothyroidism. 

As described above, clinical conditions resulting from deficiency  in the production or 

in the activity of TH will depend on the degree and duration of the deficiency. However, 

consequences of  milder thyroid disfunction are less well characterized than those in 

overt hypothyroidism.

Suclinical  hypothyroidism (SH)  represents  a  condition  of  mild  to  moderate  thyroid 

failure characterized by normal serum levels of thyroid hormones with mildly elevated 

serum TSH levels (12). The prevalence of SH has been reported to be between 4 and 

10%  of  adult  population  samples  (12).  In  adults,  progression  from  mild  to  overt 

hypothyroidism may be related to the cause of thyroid hormone deficiency, the basal 

TSH value and the patient’s age. Moreover SH may be persistent or transient (12). The 

natural course of SH in aged patients has been reported to be characterized by frequent 

normalization  of  TSH  elevation,  whereas  the  risk  of  progression  to  overt 

hypothyroidism was significantly greater in the ones with high TSH concentrations at 

baseline  (13). The  global  prevalence  of  symptoms  in  patients  with  SH  remains 

controversial.  Recent  data  suggest  that  adult  with  subclinical  hypothyroidism  may 

71



present  increased  risk  of  cardiovascular  morbidity  (14,  15),  impaired  lipid  profile  , 

increased inflammatory markers and alterations in coagulation parameters (12), even if 

results are still contrasting. 

In childhood and adolescence Subclinical Hypothyroidism is less frequent than adults 

(16). Data concerning the natural evolution of subclinical hypothyroidism in childhood 

and adolescence are very scanty. All the avalaible reports on the spontaneous evolution 

of SH in both aged and young patients  have been based,  up to  now, on unselected 

populations including patients with either thyroid disorders or other pathological causes 

that are known to be able to affect SH development and evolution. (13, 16). 

Therefore, the aim of this phase of the project are the followings: 

• Evaluate  whether  long-term  LT4  replacement  therapy  in  young  adults  with  CH  is 

associated  with  cardiovascular  abnormalities.  To  this  aim cardiac  function,  exercise 

capacity,  intima-media  thickness  and  endothelial  function  were  evaluated  in  young 

adults with congenital hypothyroidism, compared with healthy controls. 

• To  evaluate,  through  a  multicenter  study,  the  natural  course  of  subclinical 

hypothyroidism in children and adolescents with no chronic diseases and no risk factors 

that interfere with the progression of subclinical hypothyroidism. 
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5.2  LONG-TERM  CARDIOVASCULAR  EFFECTS  OF  LEVOTHYROXINE 

THERAPY IN YOUNG ADULTS WITH CONGENITAL HYPOTHYROIDISM
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5.3  Effects  on  long  term  L-Thyroxine  treatment  on  endothelial  function  and 

arterial distensibility in young adults with congenital hypothyroidism
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5.4  Prospective  evaluation  of  the  natural  course  of  idiopathic  subclinical 

hypothyroidism in childhood and adolescence
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CONCLUSIVE REMARKS

Thyroid  hormones  can  have  pleiotropic  effects  on  multiple  organ  and  tissues.  The 

cardiovascular system is very sensitive to thyroid hormones and a wide spectrum of 

cardiovascular  changes  has  long  been  recognized  in  overt  and,  more  recently,  in 

subclinical dysfunction. Our results document for the first time that young adults  with 

congenital hypothyroidism may have  abnormalities of cardiovascular system including 

an  impairment  of  diastolic  function,  a  reduction  of  exercise  capacity  and 

cardiopulmonary performance, increased IMT and impaired endothelial function. Such 

abnormalities  occur  despite  careful  replacement  therapy  and  appear  related  to 

unphysiological  fluctuations  of  TSH  levels,  with  attendant  episodes  of  subclinical 

hyperthyroidism  and,  more  frequently,  subclinical  hypothyroidism.  Thus,  a 

cardiovascular follow-up should be performed, and future studies will clarify whether 

these abnormalities may result in clinically relevant cardiovascular diseases. 

With regard to the prospective evaluation of children with subclinical hypothyroidism, 

we found that this condition in our group showed a progressive decrease over time and 

the  majority  of  patients  normalized  or  maintained  unchainged  their  TSH  values. 

Moreover, TSH changes were not associated with either FT4 values or clinical status or 

auxological parameters.  A future perspective in this  field will be to evaluate  wether 

subclinical hypothyroidism in childhood is associated to increased incidence of markers 

of cardiovascular risk as well as in adulthood. 
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CHAPTER 6  COMPLEX  INTERACTIONS  BETWEEN  ENDOCRINE  AND 

OTHER BIOLOGICAL SYSTEMS:  THE MODEL OF GROWTH HORMONE 

DEFICIENCY

6.1 Introduction and aims

The major function of GH in children is to promote linear growth, but GH has 

other important physiological effects which influence several key metabolic processes, 

including body composition,  muscle  strength, bone mineral  density and reproductive 

capacity (1). Epidemiological studies suggest that adults with hypopituitarism have a 

reduced life expectancy compared to healthy controls, with increased mortality from 

cardiovascular disease even after thyroid, adrenal and hormone replacement (2;3). In 

fact, adults with untreated GH deficiency (GHD) may present important cardiovascular 

risk  factors,  such  as  hypercoagulability,  abdominal  obesity,  insulin  resistance, 

dyslipoproteinemia,  reduced cardiac  size  and function  and premature  atherosclerosis 

with increased intima-media thickness (IMT) (4,5).

Recent  data  confirm that  overall  mortality and the rate of myocardial  infarction are 

elevated in patients who have not undergone GH replacement (6). Untreated isolated 

GHD has also been reported to be associated with a significantly reduced life span. GH 

replacement exerts a beneficial effect on cardiovascular abnormalities by normalizing 

cardiac size and improving endothelial function, and on lipid profile in that it reduces 

fasting and postprandial lipoproteins and the atherogenic index. In addition, GH therapy 

decreases serum Hcy (7) and other inflammatory markers as well (8). These changes are 

likely to be beneficial in terms of cardiovascular risk. 

 Altogether, these results indicate that GH, directly or indirectly through IGF-I, is not 

only involved in the regulation of somatic growth in children but also in cardiac size 

and  function,  probably  through  the  modulation  of  the  size  and  function  of 

myocardiocytes,  endothelial  structure  and  function,  lipid  profile  and  markers  of 

inflammation. 

Only a few studies have investigated cardiovascular risk in children affected by GHD. 

However, there is preliminary evidence that GHD also in children and adolescence may 

be associated with tith detrimental and cardiovascular and metabolic abnormalities such 

as reduced Left Ventricular (LV) mass (9), low flow-mediated endothelium dependent 

vasodilatation (10), abnormal lipid profile (11), increased serum Homocystein (Hcy) (7) 
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and inflammatory markers (12) which, although mild, may place them at higher risk of 

cardiovascular disease at an early age. 

Aim of this phase of the project was to focus on metabolic and cardiovascular 

alterations associated to GH deficiency and evaluate whether these abnormalities are 

associated to GHD also in childhood. 
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6.2 Improvement of cardiac performance and cardiovascular risk factors in 

children with GH deficiency after two years of GH replacement therapy: an 

observational, open, prospective,case-control study
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Abstract

Adults with severe GH deficiency (GHD) may develop a cluster of cardiovascular risk 

factors that may contribute to a reduced life expectancy with an increased mortality due 

to  cardiovascular  disease.  Also  in  adolescents  with  severe  GHD there  is  increasing 

evidence  which  suggests  that  the  discontinuation  of  GH  replacement  therapy  at 

completion of linear growth may result in adverse effects on body composition, lipid 

profile, cardiac morphology and performance. In contrast, relatively few studies have 

investigated whether or not children with GH deficiency have metabolic and cardiac 

abnormalities that may place them at a higher risk of cardiovascular disease at an early

age. This review focuses on the effect of both GH deficiency and GH replacement on

cardiovascular risk factors in children and adolescents with GHD.

Introduction

The major role of GH treatment in children and adolescents with GH deficiency (GHD) 

is to promote linear growth and to normalize final height to within or above the genetic 

target. In adults severe GHD has been shown to be associated with reduced quality of 

life, decrease bone mineral density, reduced muscle mass, increased fat mass and with 

several metabolic abnormalities contributing to increased cardiovascular risk 1-3

Epidemiological data suggest that adults with hypopituitarism who are on conventional 

thyroid, adrenal and gonadal hormone replacement,  but not GH, have a reduced life 

expectancy with a twofold increase in mortality from cardiovascular  disease  4,5.  The 

markers of cardiovascular risk associated with untreated GHD include unfavorable lipid 

profile, increased body fat, decreased fibrinolytic activity, increased peripheral insulin 

resistance, reduced cardiac size and function, premature atherosclerosis with increased 

carotid intima-media thickness 6,7.

In  adolescents  with  severe GHD, the  discontinuation  of  GH replacement  therapy at 

completion of linear growth may result in adverse effects on body composition, lipid 

profile, cardiac morphology<and performance 8-10.
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Atherosclerosis  begins  to  appear  with  greater  frequency  in  childhood  and  young 

adulthood and the extent of atherosclerotic lesions increases markedly in young people 

with multiple risk factors 11.

Relatively few studies have investigated whether GH deficiency in children may have

cardiovascular and metabolic effects which may place these patients at a higher risk of

cardiovascular disease at an early age. As such, the aim of this article is to review the 

effect of both GH deficiency and GH replacement in children and adolescents.

Metabolic effects of GHD and GH replacement during the transition phase

The  appropriate  management  of  GHD  patients  during  transition  from childhood  to 

adulthood  is  still being  debated.  Discontinuation  of  GH  therapy  for  1  year  in 

adolescents with severe GHD results in the accumulation of cardiovascular risk factors 

such as increase  of total  body and abdominal  fat,  decrease  of lean body mass,  and 

increase of total cholesterol (TC) with a decrease in high-density lipoprotein cholesterol 

(HDL-C)  8.  Moreover,  Colao  et  al  10  have  shown that  in  severe  GHD adolescents, 

triglycerides, low-density lipoprotein cholesterol (LDL-C), the total/HDL-C ratio and

fibrinogen levels significantly increase six months after GH withdrawal and return to 

the levels measured before GH cessation six months after restarting GH replacement. In 

addition,  GH  discontinuation  remarkably  reduces  IGF-I  levels  and  modifies  heart 

morphology and function. Using echocardiography, left ventricular mass index (LVMi) 

decreases  significantly  6  months  after  GH withdrawal  and significantly  improves  6 

months  after  GH  resumption.  Systolic  function,  measured  as  LV  ejection  fraction 

(LVEF)  is  not  significantly  modified,  however  a  trend  toward  impairment  at  GH 

discontinuation  and  improvement  after  GH  resumption  can  be  observed.  The  ratio 

between the maximal early (E) and maximal late (A) diastolic flow velocity (an index of

ventricular filling) is also significantly decreased by GH withdrawal. Other studies did 

not find any striking changes either with continuation or cessation of GH replacement in 

adolescents with severe GHD 12,13. No significant changes in body composition,

LV  mass  and  function,  lipids  and  carbohydrate  metabolism  were  observed  in 

adolescents with severe GHD treated with GH compared to controls and those treated 

with placebo during a 2-year double blind, placebo-controlled study 12. Continuation of 

GH treatment was associated with gain in lean body mass (LBM), but no significant 

change was found during a year of observing adolescents with severe GHD who had 

ceased GH treatment  13. Conversely, Hulthen et al  14  demonstrated that the increase in 
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LBM and muscle performance observed in healthy adolescents between the age of 17 

and 21 did not occur in adolescents with GHD when GH treatment was discontinued for 

2 years. Patients with childhood-onset or adult-onset GHD have been shown to have an 

increased  number  of  atheromatous  plaques  in  the  carotid  and femoral  arteries,  with 

increased intima-media thickening (IMT) of the carotid arteries, increased stiffness of 

the  carotid  wall  and  impaired  flow-mediated  endothelium-dependent  dilation  of  the 

brachial  artery  15,16.  To  investigate  the  risk  of  early  atherosclerosis,  Colao  et  al  17 

measured  IMT  at  the  common  carotid  arteries  in  GHD  adolescents  during  GH 

replacement  and  withdrawal.  Before  GH  discontinuation,  IMT  at  common  carotid 

arteries in adolescents with severe GHD was similar to age and gender matched controls 

and did not change 6 months after GH withdrawal or 6 months after GH treatment was 

resumed,  thus  suggesting  that  short-term  withdrawal  of  GH  replacement  is  not 

associated with vascular abnormalities during the transition phase.

The management of adolescents with GHD during the transition phase in terms of GH 

replacement remains a difficult challenge.  It seems, however, that GH withdrawal in 

patients with reconfirmed GHD may lead to several unfavorable changes that can be 

reversed by restarting GH treatment.

Metabolic  effects  of  GHD and GH replacement  during in  childhood and early 

adolescence

In adults  with GHD, cardiovascular  and metabolic  alterations  have been extensively 

documented, while  metabolic  changes  in  GHD children  and  adolescents  have  only 

recently begun to be investigated. Some studies have shown that serum levels of TC, 

LDL-C, Lp (a), apolipoprotein B (ApoB)  18,19  and triglycerides (TG)  20  are raised in 

untreated GHD children and adolescents when compared to both GH treated adolescents 

and  healthy controls.  Conversely,  in  other  studies  no striking  abnormalities  in  lipid 

profile were detected at baseline in children with GHD 21-27; however TC, LDL-C, and 

the atherogenic index were above the upper limits in several untreated GHD patients

21,25,27.

In the majority of studies, both short and long-term GH replacement therapy in GHD 

children induced a beneficial effect on lipid profile 21-24,27. In our study on 30 children 

with  GHD  22  no  significant  differences  were  observed  at  baseline  between  GHD 

children  and  healthy  controls;  however,  2  years  of  GH  replacement  induced  a 
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significant decrease in total-cholesterol and the atherogenic index compared to both pre-

treatment and control values. The decrease in the atherogenic index was significantly 

correlated with the increase in IGF-I levels. Similar results were also reported by Van 

der  Sluis  et  al  27  in  a  6-year  follow-up study.  During GH replacement  therapy,  the 

atherogenic index and LDL- cholesterol decreased significantly and HDL- cholesterol

improved  27. Beside the atherogenic index, which represents one of the most reliable 

predictors  of  coronary  heart  disease  in  adults  28,  postprandial  TG  and  TG-rich 

lipoprotein  particles,  have  been  found  to  play  a  role  in  the  atherogenic  process. 

Abnormal postprandial lipids have been reported in adults with GHD 29 and in untreated 

GHD adolescents as well 20 however GH therapy significantly improve both the fasting 

and the postprandial  atherogenic lipoprotein profile  20,30.  The exact mechanisms that 

underlie lipoproteins abnormalities are not fully understood. The expression of several 

hepatic surface receptors such as LDL and LDL-related protein receptors is lower in GH 

deficiency and increases with GH treatment 31. Thus, the accumulation of atherogenic

lipoproteins may be the result of a decrease in their removal from circulation via hepatic 

lipoprotein receptors. Inflammation as well plays an essential role in the initiation and 

progression of atherosclerotic lesions. Elevated levels of inflammatory markers such as 

C- reactive protein (CRP), interleukin-6 (IL-6), fibrinogen, homocysteine (Hcy), have 

been  found to  be  associated  with  increased  cardiovascular  risk  32.  Plasma  levels  of 

inflammatory markers such as IL-6 and TNF-, are increased during the postprandial 

period  and  are  related  to  the  presence  of  elevated  levels  of  lipoprotein  remnants, 

suggesting that these lipoproteins may induce an inflammatory response in endothelial 

cells and macrophages through specific receptors on their surface 31.

In untreated adolescents with GHD, fasting CRP, TNF- and fibrinogen concentrations 

were higher compared to healthy control, but similar to those of patients treated with 

GH; moreover, fasting and postprandial TG of untreated adolescents with GHD were 

positively associated with fasting and postprandial  CRP levels and with postprandial 

TNF- and IL-6  concentrations  30.  Fasting  fibrinogen  levels  were  elevated  in  both 

treated  and untreated  adolescents  with  GHD when  compared  to  controls,  and  were 

positively  correlated  with  fasting  TG  levels  30.  No  differences  were  observed  as 

concerned  PAI-1  concentrations  20.  Conversely,  abnormalities  in  coagulation  factors 

suggestive of a defective fibrinolytic system have been reported in adults with GHD 

with beneficial effects of GH replacement on fibrinogen levels  33, on PAI-1 activity, 

PAI-1  antigen  and  tissue  plasminogen  activator  (t-PA)  antigen  levels  34.  Thus, 
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adolescents with GHD seem to have a pronounced inflammatory response but the role 

of GH treatment in the reduction of inflammatory markers seems less clear since CRP, 

TNF- and fibrinogen were elevated in both treated and untreated GHD adolescents. 

Elevated plasma Hcy levels are actually considered to be an independent risk factor for 

atherosclerosis  and  thromboembolism and  thus  also  for  cardiovascular  disease  3.  In 

children  moderate  hyperhomocisteinemia  is  related  to  an increased  risk of  ischemic 

stroke  35.  The  mechanism  of  Hcy  action  on  the  cardiovascular  system  is  not  still 

completely  understood,  however,  elevated  plasma  Hcy  levels  increase  collagen 

production, decrease the availability of NO and have a direct endotelial cytotoxicity 36.

In a cross-sectional study, plasma Hcy levels were found to be elevated in untreated 

GHD adolescents compared to both treated GHD and controls  20. We confirmed these 

findings in a longitudinal prospective study  26  on prepubertal children with GHD. At 

study entry plasma Hcy levels were significantly higher than in healthy age and sex 

matched children, although the absolute values were within normal range. After 1 year 

of  GH  replacement  therapy,  Hcy  levels  decreased  significantly,  reaching  values 

comparable to controls. In addition to dyslipidemia, inflammation and a prothrombotic 

state, an increased IMT of both common carotid arteries represents one of the earliest 

morphological changes in the arterial wall in the process of atherogenesis; it is also an 

independent predictor of acute myocardial infarction in men 3. It is now established that 

silent  atherosclerotic  disease  with  atheromatous  changes  in  blood  vessels  begins  to 

develop during childhood and progresses with age 37.

The GH/IGF-I axis also plays an important role in vascular disease. Endothelial cells 

possess receptors for IGF-I and circulating IGF-I levels have a direct stimulatory effect 

on endothelial  properties  through induction of nitric  oxide (NO). A decrease in NO 

activity  in  GHD  patients  is  associated  with  impaired  arterial  vasodilator  capacity, 

increased platelet aggregability and intimal thickening 6. In adults with GHD short and 

long-term GH replacement  therapy has been recognized to have either  an inhibitory 

effect  on  IMT progression  or  induce  a  significant  improvement  of  the  vasodilatory 

function of the endothelium 3.

Carotid artery IMT measurements were significantly increased in 25 untreated children 

and adolescents  with GHD compared to healthy controls  19.  Conversely,  in a recent 

study, Lanes et al 38 were unable to find a significant increase in the IMT of the carotid 

arteries in untreated GHD adolescents when compared with that of those treated with 

GH and controls, however in the GHtreated group, a trend toward a decrease in IMT 
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values  could  be  observed.  Moreover,  the  flowmediated  endothelium-dependent 

vasodilatation was lower in untreated GHD adolescents than in GHD treated and control 

groups.  Thus,  an  improvement  in  endothelial  function  and  a  reduction  in  arterial 

stiffness  appears  to  occur  after  GH replacement.  In  addition,  the  epicardial  adipose 

tissue  on  the  right  ventricle,  which  seems  to  be  a  good  marker  for  increased 

cardiovascular risk in adults, is significantly increased in untreated GHD adolescents

as measured by echocardiography,  whereas in the GHD treated group the epicardial 

adipose  tissue  is  comparable  to  controls  38.  Finally,  GHD in  children  affects  heart 

morphology  by  inducing  a  significant  decrease  in  cardiac  size  without  modifying 

cardiac function  21,22,38,39. Clinical and experimental studies have shown that GH and 

IGF-I are involved in the regulation of heart function and morphology  6,7. Moreover, 

IGF-I  directly  causes  cardiac  hypertrophy  of  cultured  rat  cardiomyocytes,  increases 

myocardial  contractility  by  enhancing  the  calcium  sensitivity  of  myofilaments  in 

cardiomyocytes and delays cardiomyocytes apoptosis. In our study  22, a group of 30 

children  with GHD and another  group of 30 healthy children  matched by age,  sex, 

pubertal status, body surface area, body mass index (BMI), were each studied before

and after 1 and 2 years of GH replacement (at a mean dose of 30  g/kg/day) or no 

treatment. Heart rate, systolic and diastolic blood pressure were normal at study entry 

and remained unchanged throughout years 1 and 2 of GH therapy. Echocardiography 

showed  that  LV  posterior  wall  thickness  (LVPWT),  LV  end-diastolic  diameter 

(LVEDD),  and  LVMi  were  significantly  reduced  in  GHD  children  before  GH 

replacement therapy compared to controls, and significantly increased during the first 

year of GH therapy compared to pre-treatment values. They remained unchanged during 

the second year of GH replacement. The increase in LVMi was significantly correlated 

with  the  increase  of  IGF-I  levels.  LV systolic  function  and diastolic  function  were 

similar  in  GHD children  and  control  subjects  at  baseline  and  did  not  significantly 

change  during  2  years  of  treatment  22.  Conversely,  in  a  group  of  children  and 

adolescents with partial GHD, 5 years of GH therapy at a relatively high dose of GH (44 

g/kg/day) resulted in an increase in LV mass and a mild impairment in LV diastolic 

function, as evaluated by 2-dimensional M-mode echocardiography, thus indicating a 

sub-clinical morpho-functional alteration of the left ventricle in some of them after

long-term GH treatment with relatively large doses 40.
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CONCLUSIONS

Taken as a whole these results indicate that GH deficiency in children and adolescents 

may be associated with detrimental cardiovascular and metabolic abnormalities such as 

abnormal lipid profile, increased serum inflammatory markers, reduced LV mass and a 

mild  endothelial  dysfunction.  GH replacement  therapy exerts  a  beneficial  effect  on 

cardiovascular abnormalities, on lipid profile, and serum Hcy as well. These changes 

are likely to be beneficial in terms of cardiovascular risk, however, long-term clinical 

studies are necessary to definitively clarify these issues. Meanwhile the evaluation of 

cardiovascular  and metabolic  changes  should be added to  the management  of  GHD 

patients during childhood and adolescence.
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6.4 Subtle alterations of cardiac performance in children with GH deficiency: 

results of a two years prospective, case-control study
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CONCLUSIVE REMARKS

Adults with GH deficiency present a cluster of risk factors that may place them to a 

higher rate of morbidity for cardiovascular events.  Although recent evidence suggest 

that  atherosclerosis  begin  in  childhood,  only  a  few  studies  have  investigated 

cardiovascular  risk  in  children  affected  by  GHD.  However,  there  is  preliminary 

evidence  that  GHD  also  in  children  and  adolescence  may  be  associated  with 

cardiovascular and metabolic abnormalities. 

Our data on children affected with GHD, confirmed that this condition is associated also 

in childhood with a mild cardiovascular alteration. In particular, we found that children 

with GHD have impaired cardiac mass, compared with healthy controls. Moreover, for 

the first time, we documented a subtle alteration of systolic cardiac function in GHD 

children,  although  cardiac  global  function  is  not  altered.  Replacement  therapy  with 

growth hormone exerts a beneficial effects on these risk factors. In fact GH is able to 

normalize both cardiac size and performance. Further studies are needed to clarify how 

these subtle abnormalities predispose to increased risk of cardiac disease in adulthood. 

135



CHAPTER 7

 NOVEL PATHOGENETIC MECHANISMS OF ENDOCRINE DISEASES: 

NEW  INSIGHTS  IN GENETICS  OF  HYPERTHYROIDISM  AND  GH 

DEFICIENCY 

7.1 Introduction and aims

Genetic forms of GH deficiency

Short stature associated with GH deficiency (GHD) has been estimated to occur in 

about 1 in 4,000 to 1 in 10,000 in vatrious studies (1-3). Although most cases are 

sporadic  and  are  believed  to  result  from  environmental  cerebral  insult  or 

developmental  abnormalies,  3% to 30% of  cases  have  an affected  first-degree 

relative suggesting a genetic  etiology.  Because MRI examination identify only 

about 12% to 20% anomalies of either hypothalamus or pituitary gland in isolated 

growth hormone deficiency (IGHD), it can be higher proportion of sporadic cases 

may have indeed a genetic cause (4). Familial IGHD, hawever, is associated with 

at least four mendelian disorders (5). 

With regard to combined pituitary hormone deficiency, it can be associated with 

alterations  in  various  transcription  factors  of  the  pituitary  gland.  At  the  very 

beginning, the GH deficiency (GHD) might be the only hormonal deficiency and 

these factors should be take into account when examining and following-up these 

patients.  In  this  context  the  two  most  important  transcription  factors  to  be 

described are PROP 1 and POU1F1. 

PROP-1

In mice, Prop1 gene mutation primarily causes GH, PRL and TSH deficiency and 

in humans PROP 1 gene mutations also seem to be a major cause of combined 

pituitary hormone deficiency.  In agreement with the model of Prop1 playing a 

role in commitment of dorsal lineages (GH, PRL, and TSH), Prop1 mutant mice 

exhibit a dorsal expansion of gonadotrophs that normally arise on the ventral. 

To date, many different missense, frameshift and splice site mutations heve been 

reported,  The  clinical  phenotypes  varies  even between  siblings  with  the  same 

genetic mutation (6). The affected patients are not only GH, Prolactin (PRL) and 

Thyroid-stimulating  hormone  (TSH)  deficient  but  also  gonadotropin  deficient. 
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The  three  tandem repeats  of  the  dinucleotides  GA at  location  296-302 in  the 

Prop1 gene represent a hot spot for combined pituitary hormone deficiency (6-8).

POUF1 (PIT1)

The  pituitary  transcription  factor  PIT-1  is  a  member  of  the  POU-family  of 

homoproteins, which regulates important steps during embryologic development 

of  the  pituitary  gland  and regulates  target  gene  function  during  postnatal  life. 

Because PIT1 is confined to the nuclei of somatotropes, thyrotrops and lactotrops 

in the anterior pituitary gland, the target genes of PIT1 include the GH, PRL  and 

TSH. The defects in the human POU1F1 result in a total deficiency of GH and 

PRL, whereas a variable hypothyroidism caused by insufficient TSH secretion, at 

least during childhood, has been described. Although it is important to stress that 

the clinical  variability is caused by other factors than the exact location of the 

mutation reported, the type of inheritance, however, seems to correlate well with 

the genotype (9). The first mutation within the POU1F1 was identified by Tastumi 

(10). Most of the mutations reported so far are recessive: however, a number of 

heterozygous point mutations have been reported (11). 

Of those the amino acid substitution R271W seems to be a hot spot. Further, the 

dominant-negative  effect  of  the  R271W  POUF1  form  has  been  recently 

challenged by Kishimoto and co-workers (12).

Although most cases with R271W are sporadic and present with an autosomal-

dominant mode of inheritance, Okamoto and co-workers (13) reported a family 

with normal family members who were clearely heterozygous for thet mutation. 

Further in vitro expression studies were performed, which could not confirm its 

dominant negative effect that is well in contrast with the original report (5, 12). 

Genetic forms of Hyperthyroidism 

Familial  Nonautoimmune Hyperthyroidism (FNAH) or hereditary toxic  thyroid 

hyperplasia is a clinical  entity originally described by Thomas et  al  (14). This 

condition  is  clinically  characterized  by  thyroid  autonomy  in  two  or  more 

generations with a variable age of onset (from infancy to adulthood) as well as 

frequent  relapses  of  hyperthyroidism  after  thyrostatic  therapy  withdrawal  or 

partial  thyrodectomy.  Thyroid-stimulating  hormone  (thyrotropin)  receptor 

(TSHR)  antibodies  are  always  absent  (15).  This  is  a  rare  disorder  with  an 
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incidence of less than 1% in patients with juvenile hyperthyroidism, and with a 

frequency of 6% in patients with thyrotoxicosis without thyroid antibodies (16). 

Since the condition is dominantly autosomal inherited, molecular diagnostics and 

genetic counselling are advocated in the affected families. 

  Aim  of  this  phase  of  the  project  was  to  describe  new  genetic  mutations 

underlying  GH  deficiency and hyperthyroidism,  respectively.  In particular  we 

described a new mutation in POUF1 causing multiple GHD and a new mutation in 

the TSHR causing familial nonautoimmune hyperthyroidism. 
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7.2 A  Novel  recessive  splicing  mutation  in  the  POU1F1  Gene  causing 

Combined Pituitary Hormone Deficiency
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7.3 A new case of familial nonautoimmune hyperthyroidism caused by the M463V 

mutation in the TSH receptor with anticipation of the disease across generations: a 

possible role of iodine supplementation
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