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F O RF O R E W O R DE W O R D  

The plants, as sedentary organism, have to ad just to the surrounding environment 

during their life cycle. To compensate for the absence of mobility, plants have developed 

various mechanisms that allow them to interact with the environment, as the emission into 

atmosphere of volatile compounds (VOCs) from flowers, leaves and fruits, and underground 

from roots. To date, 1700 volatile compounds have been described from more than 90 families 

and they are mainly represented by terpenoids, phenylpropanoid/benzenoid, fatty acid and 

amminoacid derived. 

The primary function of VOCs is ensuring to the plant a reproductive and evolutionary 

success, attracting pollinators and seed disseminator through the emission of a blend of VOCs 

species-specific. Moreover, the plants produce VOCs in vegetative tissue in response to damage 

and herbivore attack.  

The chemical composition of VOCs blend emitted from plants and its intensity are 

influenced by physiologic status, for example flower age, pollination status, endogenous diurnal 

rhythms and developmental stage of the plant organs. Compositional changes of volatiles in 

fruit blend during ripening have a primordial role as ecological cues for attracting organisms 

engaged in seed dispersal in the crops’ wild ancestors.  

In addition to an involvement of plant volatiles in defense and reproductive process, 

volatiles isoprenoids are able to protect plants from abiotic stress. In last years many efforts 

were directed to understanding the biology of the plants adaptation to abiotic stress in order to 

identify the key functions of tolerance and transfer them in open field crops through breeding 

approach.  
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The plant response to abiotic stress is rarely stress-specific; more often the stress triggers 

a generic response as the production of reactive oxygen species (ROS). 

The plants have a complex response system of antioxidants and enzymes that protect 

them in condition of excess of ROS; when the defense system is overloaded, the oxidative 

stress occurs. 

The salinity is one of the most critical stress that affect yield and quality in various 

agricultural systems and it is characterized by oxidative stress. 

The tolerance to salt stress is coped by the plants through three interconnected 

mechanism. First, the damage may be prevent or alleviate trough the activity of antioxidant 

compounds and enzymes that protect the cells structures and functions from excess of ROS. 

Then, the homeostatic conditions are re-established by accumulation of osmolytes (i.e proline, 

sucrose). Finally, the plant growth is restored, even though at reduced rate.  

In the last years, the research on antioxidants have focused mainly on non–volatile 

isoprenoids, (i.e. carotenoids and tocopherols), although certain volatile isoprenoids are also 

involved in protective activity against the oxidative stress. 

The recent knowledge on regulation plant volatiles emission and signal transduction 

pathways involved are still at their infancy. To date, less than 10% of the genes responsible for 

volatiles biosynthesis have been identified. Although the transduction signals of defense-

induced volatiles emission has been under investigation, the exact signaling mechanism that 

control the variation of volatiles emission related to environmental and physiologic factors still 

needs more investigation. The identification of the major volatiles compounds in fruits and 

vegetables and the genetic basis of fruit quality trait, as aroma, will provide a useful support to 

development of flavor-targeted breeding programs.  
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The identification of volatile composition at different stages of maturity may facilitate 

producers and industry in selection of fruits and vegetables for the market, and enhance 

agriculture sustainability by reduction of waste.  

Molecular markers for fruit aroma may be useful tools to efficiently create improved 

cultivars with novel combination of volatile compounds. Additionally, knowing the genetic 

control of the major fruit quality traits will provide breeders with a handle to optimize content 

of these compounds to encounter the consumer preference and acceptance. 
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A B S T R A C TTTTTA B S T R A C T  

This PhD Thesis focuses on how aroma profile in crops is affected by agronomic and 

genetic variables. In the first chapter we considered the effects of salt stress on main 

morphological and physiological traits of two cultivars of sweet basil (Genovese and 

Napoletano) Specifically, we focused on compositional changes in aroma profile and their 

possible significance in adaptation and tolerance to the oxidative stress.  

In the second chapter, we considered the aroma profile of two chilli pepper species, 

Habanero (Capsicum chinenese) and Jalapeño (Capsicum Annuum), at different stages of maturity. 

Moreover, preliminary results of genetic mapping process were introduced.  

Part of this research has been conducted at University of California-Davis (USA). 
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R I A S S U N T OR I A S S U N T O  

Nel presente lavoro di tesi sono analizzate le variabili agronomiche e genetiche 

che influenzano il profilo aromatico di specie vegetali. Nel primo capitolo gli effetti dello 

stress salino sui principali tratti morfologici e fisiologici di due cultivar di basilico, 

Genovese e Napoletano, sono stati investigati. In particolare, sono state considerate le 

variazioni del profilo aromatico e la loro possible implicazione nell’adattamento e la 

tolleranza allo stress ossidativo. 

Nel secondo capitolo, è stato caratterizzato il profilo aromatico di due specie di 

peperoncino, Habanero (Capsicum chinenese) and Jalapeño (Capsicum Annuum), a diversi 

staid di maturazione. In fine, alcuni dei risultati reliminari del processo di costruzione 

della mappa genetica sono stati presentati. Parte della ricerca è stata condotta presso 

l’Università della California- Davis (USA) 
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C H A P T E R 1C H A P T E R  1  

SS A L T S T R E S S T O L E R A N C EEEEA L T  S T R E S S  T O L E R A N C E I N B A S I L I N  B A S I L  (( OCIMUM 

BASILICUM L . ) :. ) :  M O R P H O L O G I C A L A N D M EM O R P H O L O G I C A L  A N D  M E T A B O L I CT A B O L I C  

C H A N G E S A N D T H EC H A N G E S  A N D  T H E I R R O L E I N O V E R A L LI R  R O L E  I N  O V E R A L L  

A D A P T A T I O N M E C H A N I S MA D A P T A T I O N  M E C H A N I S M .  

 

INTRODUCTIONINTRODUCTION 

Salinity is one of the most critical abiotic stresses affecting crop yield and quality 

worldwide. Today, about 20% of world’s cultivated land and nearly half of all irrigated lands are 

affected by salinity (Zhu, 2001). Salinization of soils is a natural phenomenon occurring in areas 

of the world where evaporation exceeds precipitation and has been aggravated by agricultural 

practices. In the last decades many efforts have been dedicated to understanding the 

fundamental biology of plant stress adaptation with the ultimate objective of identifying key 

stress tolerance functions that could be transferred via traditional breeding and/or trans-gene 

technology to crop plants.  

Biological systems, however, have shown wide adaptation to environmental stresses 

including salt, and plants can be found growing in saline environments and indeed in seawater. 

High salt stress disrupts homeostasis in water potential and ion distribution both at a 

cellular and at whole plant level. Furthermore, prolonged and extreme salt stress is responsible 

for damages of cellular structures, as well as the inhibition of enzymatic activities, nutrient 
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uptake, photosynthetic functions, growth arrest and even death. Establishing a link between 

basic mechanisms of salt tolerance and functional traits that may actually improve crop 

production in saline environments is a major task. Salt tolerance is achieved in many plants 

through three interconnected mechanisms (Zhu, 2001). To resume growth, homeostatic 

conditions should be re-established in the new stressful environment though the accumulation 

of osmolytes and ion compartmentalization and the damage may be prevented or alleviated by 

antioxidant compounds and enzymes that defend the cell structure against condition of excess 

reactive oxygen species (ROS) (Zhu 2001). 

ROS are important signaling molecules and also serve to initiate defense responses. The 

cellular balance of ROS is normally kept under tight control (Dietz, 2003); however, when this 

control is lost, damage occurs. Plants have a complex response network of lipid-phase and 

aqueous-phase antioxidant compounds and enzymes that defend against condition of oxidative 

stress.  

The implication of isoprenoids in protection against oxidative and other abiotic stress 

has also been investigated. In the past more emphasis has been given to non-volatiles 

isoprenoids, which have many roles in plant cells and act trough different mechanisms. Some 

of them can carry messages throughout the plant and elicit systemic responses as hormonal 

signal (i.e. ABA), whereas others act directly as antioxidant (for example, carotenoids and 

tocopherols). Recent research has revealed that certain volatile isoprenoids also play an 

important role in abiotic stress responses (i.e. isoprene). Volatile isoprenoids are generally 

lipophilic, low-molecular-weight compounds with masses under 300 Da (Dudareva et al., 2006). 

Production of volatile isoprenoids represents a substantial investment for the plant in 

terms of carbon and energy. Constitutive amount of isoprene or monoterpenes produced by 

emitting plants is equivalent to 1-2% of photosynthetic carbon fixation (Sharkey et al., 2001). 
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Under stress conditions, even when the carbon budget becomes negative and photosynthesis is 

severely inhibited, isoprene emission is often sustained (Brilli et al., 2007). This large cost 

suggests the possibility that isoprenoid emission also confers benefit to the plant. 

Change in volatile emission patterns under biotic and abiotic stress conditions suggested 

that volatiles might be linked with stress responses. Subsequent experiments have 

demonstrated that volatile isoprenoids play a role in photoprotection, thermotolerance, and 

they are involved in protection under oxidative and drought stresses (Vickers et al., 2009). 

The VIPs (volatiles isoprenoids) may be involved at different steps of oxidative stress 

response process. They can physically stabilize hydrophobic interaction in membranes, 

reducing lipids peroxidation. In addition, they may have an antioxidant behavior, scavenging 

ROS and prevent further oxidative damage (Vickers et al., 2009). 

Volatile isoprenoids confer protection against abiotic stress and common mechanism 

driving abiotic stress protection may be an antioxidant effect of these compounds (Vickers et 

al., 2009). Numerous studies, including inhibition of the monoterpene-producing methyl 

erythritol phosphate (MEP) pathway by application of fosmidomycin, fumigation of non-

emitting species with exogenous gaseous isoprenoids and use of transgenic plant in which 

terpene synthese genes were inserted or silenced, have provided evidences that volatiles 

isoprenoids confer protective effect to photosynthesis under thermal and oxidative stress 

(Delfine et al., 2000). 

The emission of isoprene appears to be a primitive trait that has been replaced with 

enzymatically controlled light-dependent monoterpene emission in non-isoprene emitting 

plants (Harley et al., 1997). Monoterpenes were suggested to be more effective in scavenging 

antioxidants in the gas phase than isoprene and, because of their lower volatility, form larger 

pools in membranes and intercellular spaces. (Fares et al., 2008).  
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In groups of non-isoprene-emitting taxa, monoterpene and sesquiterpenes may play the 

same role as isoprene in protection against abiotic stress. The taxonomic distribution of 

isoprene emission is broad: mosses (Hanson et al., 1999), ferns (Tingey et al., 1987), 

gymnosperms and angiosperms all have members that produce isoprene but also have 

members that do not (Sharkey et al., 2008). 

According to the literature, some members of Lamiaceae (or Labiatae) family emit 

isoprene, e.g. sage (Salvia sp.), rosemary (Rosmarinus officinalis) and lavander (Lavandula sp.) (see 

http://www.es.lancs. ac.uk/cnhgroup/iso-emissions.pdf for a comprehensive list). 

In this study, we focused on the response to salt stress of basil in terms of variation in 

volatiles profile and plant morphological and physiological characteristics. Specifically we 

attempted to establish a link between volatiles profile and morpho- physiological adaptation 

features in two basil ecotypes differing in salt stress tolerance.  
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MATERIAL AND METHODSMATERIAL AND METHODS 

Two ecotypes of basil (Ocimum basilicum L.) were exposed to NaCl stress in three 

experiments carried out over a three-year-period (2007-2009). Two experiments were carried 

out at the University of Naples Federico II (40°49’ N, 14° 15’ E, 30 m.a.s.l.) in a cold 

glasshouse, in the summer 2007. The third experiment was carried out at University of 

California-Davis in a glasshouse in the summer 2009. In the following sections, only the results 

of the third experiment will be discussed. 

Two cultivar of sweet basil (Ocimum basilicum), Napoletano and Genovese, were sown 

and grown in a greenhouse. When 4 leaves were fully developed, the plants were transplanted 

in coconut fibre pots filled with sterilised soil and grown in hydroponic system. Each growing 

unit, containing 6 plants, was filled with 15 L of Hoagland half-strength nutrient solution, 

refilled every day and aerated with a pump with air-stones; planting density was 50 plant m-2. 

The cycle was conducted in 3 months from seed-to-full blooming. Starting from 25 DAS (days 

after sowing) to each growing unit different levels of salinity were assigned: 0, 100 or 200 mM 

NaCl. Each treatment was replicated twice (total 12 plants per each salinity level). The growing 

units were randomly distributed on the greenhouse bench. 

Measurements of physiological status were done at plant establishment, 48 hours after 

stress and every week until harvest; the volatile compounds content and plant growth were 

assessed during the balsamic period at full-blooming (maximum yield in essential oils; 

http://www.hort.purdue.edu/newcrop/CropFactSheets/basil, 1995) Leaf area was measured 

with a scanner and the images were analysed using the ImageJ software (Abramoff et al., 2004). 

Fresh and dry yield were measured at harvest and after drying at 60°C, respectively. Stomatal 

conductance, expressed in mmol m-2s-1, was measured 4 times (1, 3, 4, 7 weeks after salt 

application) on the abaxial surface of the youngest fully expanded leaves with a stady-state 
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porometer (Li-Cor LI-1600). Three measurements per plant and 3 measurements per each 

treatment were done. Leaf water potentials (Ψt) were determined using a pressure chamber and 

the osmotic potential (Ψπ) was measured on frozen/thawed leaf samples (1x1 cm) with an 

osmometer (5500 Vapor Pressure Osmometer Wescor). Pressure potential (Ψp) was estimated 

as the difference between Ψt and Ψπ at harvesting, assuming a matrix potential equal to 0.  

The volatile compounds were extracted according to the procedure in Boatright et al. 

(2004) in six replicates per treatment. Leaves were ground in liquid nitrogen and 

dichloromethane was added to 4ml/g of tissue. Tissue was extracted on an Orbit shaker at 170 

rpm for 1 h and the extract was centrifuged at 100,000 rpm for 10 min, followed by filtration 

through a 25 ml syringe with a 0.2µm sterile nylon filter. Anhydrous sodium sulfate was added 

to the filtered extract to remoce traces of water and the extract was evaporated down to 200 µl. 

Then 20 µ l of butanoic acid, 2-methyl 3-methylbutyl ester (1.1 mM) were added as internal 

standard and sample were then analyzed by GC-MS.  

The GC-MS analysis were performed on an Agilent 6890 GC/5975B MSD using a HP-

5-MS non-polar capillary column (30 m X 0.25 mm; film thickness 0.25 µ m), injector 

temperature 220°C, splitless injection volume of 1µl and helium carrier gas flow rate of 1.2 

ml/min. Initial column temperature was 40°C, then heated to 180°C at 6°C min-1. MS analysis 

was performed with a transfer-line temperature of 230°C, a source temperature of 230°C, a 

quadrupole temperature of 150°C, an ionization potential of 70 electron volts, and a 

continuous scan range (m/z) from 40 to 300.  

Spectral deconvolution was performed with the AMDIS software (Styczynsky et al. 

2007) and the analysis of the spectra by MPP (Mass Profile Professional, Agilent). 

The identification of the components was performed by matching their spectra with 

those present in the NIST library. Their occurrence in Ocimum species was confirmed by the 
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literature. Quantitative data were obtained from normalized area values with internal standard 

and fresh weight. The relative abundance of each component is expressed as the ratio on its 

peak area to that of the internal standard’s. 

All measurements were replicated on 5 different randomly selected plants. Data were 

analyzed with ANOVA and means were compared by the LSD test. 
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RESULTSRESULTS 

Growth response and water relations 

Plant growth was affected by the salt concentration of the nutrient solution. The total 

leaf yield, leaf area and number of leaves decreased with increasing salinization in both cultivars 

(Table 1). Non-stressed GEN plants had a leaf number two times higher than NAP (240±10.7 

vs 99±7.2, respectively). At 100 mM NaCl the leaves number in GEN was reduced by 20% 

compared to the control, but it was still double of that of NAP. The two ecotypes had different 

leaf area in absence of salt (Figure 1). The leaf area decreased similarly upon salinization in both 

cultivars. The specific leaf area (SLA) of NAP was three times that measured in GEN in 

absence of stress (Figure 2), and it decreased by 25% and 60% in GEN and NAP respectively 

upon salinization. In general the dry matter percentage increased in both cultivars upon 

salinization.  

In absence of stress plants had the same values for the stomatal conductance (Figure 3). 

However, upon salinization the stomatal conductance was higher in GEN compared to NAP 

plants. At 100 mM, the stomatal conductance was reduced by 30% and 75% in GEN and NAP 

respectively compared to the non-stressed control. The differences between the two cultivars 

were reduced at higher salt level, however the stomatal conductance of GEN was always higher 

than NAP.  

Leaf water and osmotic potentials were reduced upon salinization. Furthermore, the 

pressure potential reached its highest value in GEN at 100 mM NaCl, where it was affected 

more by osmotic component (Table 2). At this concentration, the water potential slightly 

increased with respect to the control. 
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Volatile compounds: effect of cultivars 

Volatile compounds were analyzed for the two cultivars of Ocimum Basilicum, grown 

under salt stress conditions at full blooming stage. The list of all compounds identified, as well 

as their relative abundance, is presented in Table 3. 

The total abundance of volatile compounds per gram of leaf fresh weight was higher in 

GEN than in NAP. Sixty-five components were detected in NAP and GEN leaf samples, 35-

41% of which were monoterpenes; 23-17% were sesquiterpenes; 40% were phenylpropanes; 

0.2-0.7% were aldeydes.  

The main difference between the two cultivars in terms of volatile composition is 

represented by the abundance of two main phenylpropanoids, methychavicol and eugenol.  

On total profile, methylchavicol and eugenol were relatively the most abundant, 

representing 40% and 34% of total compounds in NAP and in GEN, respectively.  

Furthermore, the other components most represented were linalool (17-23%), 

eucalyptol (12-11%), ß-cubebene (6.6-2.3%), himachala-2,4-diene (2-4%), τ-cadinol (4.2-3.5%), 

τ-cadinene (1.5-1.3%), α-caryophyllene (1.1-1.5%) ß-ocimene (0.4-1.3%). 

Differences between the cultivars in total relative abundance of monoterpenes were 

small and non significant. However, the main monoterpenes, such as eucalyptol, α-terpineol 

and ß-myrcene were significantly more abundant in NAP. 

Himachale, ß-cubebene, α-caryophyllene, τ-cadinol were the sesquiterpenes relatively 

more abundant. ß-cubebene and τ-cadinene were significantly more abundant in NAP, while ß-

cedrene was present only in GEN.  

The main aldeydes, known as green leaf volatiles leaf, were 3-hexanal and 2-hexenal. The 

first was 5 times more abundant in GEN than in NAP, while 2-hexenal was not detected in 

NAP. 
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Volatile compounds: effect of salt stress 

Upon salinization, the two cultivars revealed an opposite trend in relative abundance of 

total volatiles compounds per gram of leaf fresh weight: it increased in NAP and decreased in 

GEN. However, the total yield of volatiles per plant on dry weight basis showed similar 

behavior in both cultivars, increasing upon salinization; at highest salt concentration, 200mM 

NaCl, the total volatiles content was two times higher in NAP than in GEN. 

The total yield of the main volatiles compounds, expressed on dry weight basis, is 

shown in Table 4. 

The main phenylpropanoids were significantly affected by the salt treatments. In 

stressed plants, methylchavicol content increased significantly in NAP, whereas in GEN, where 

it was present in traces in the control, methylchavicol was not detected upon salinization. 

Eugenol content did not vary significantly in GEN on fresh weight basis in stress conditions, 

whereas it doubled compared to control when expressed on dry weight basis. In NAP at 100 

mM it was 150 times more abundant relatively to the non-salinized control. 

The relative content of all monoterpenes compared to total volatiles increased in both 

cultivars upon salinization. ß-ocimene, α-pinene and limonene content significantly increased in 

both cultivars, while the other monoterpenes were significantly more abundant in NAP.   

The sesquiterpene pool showed the same trend in the two cultivars, with an increase 

upon salinization. The more representative compounds that have shown a variation in both 

cultivars upon salinization were α-caryophillene, ß-farnesene and α-bergamotene. τ-cadinene, 

τ-cadinol, α-cadinol and α-cubebene were enhanced by the salt stress in NAP. 

The aldeydes were negatively affected by salt stress and they decreased upon salinization. 

3-hexenal was always more abundant in GEN than in NAP, while 2-hexenal was not detected 

in NAP when salt was applied to nutrient solution. 
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Methyl Jasmonate concentration was found more abundant in GEN than NAP and was 

not significantly affected by salt stress. 
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DISCUSSIONDISCUSSION

Salt tolerance in cultivars of basil 

Plant biomass was affected negatively by increasing NaCl concentration of the nutrient 

solution in both cultivars. At 100 mM NaCl, we observed in Napoletano a significant decrease 

in leaf area, specific leaf area and total leaves fresh weight, increase in percentage of dry matter, 

stomatal closure and reduction of leaf transpiration (data not shown). In Genovese the 

reduction in specific leaf area, leaf area and stomatal conductance were less severe and the dry 

matter percentage was not affected by salt stress.  

These finding are supported by results from two previous experiments carried out on 

the same cultivars during summer 2007. The lower ABA accumulation observed at 100 mM 

NaCl in GEN indicates different ability of GEN and NAP plants to respond and adapt to salt 

stress, since ABA is one of the key mediator during plant stress adaptation (Zhu et al., 1997). 

Therefore, the ABA function in the two cultivars may be different since they showed different 

ABA level and stomatal response to the salt stress. Moreover, the reduction in leaf transpiration 

through stomatal closure could also be enhanced by the control of stomatal size and density 

(Woodward et al., 2002), which were significantly reduced in GEN. It has been shown that 

lower stomatal index enhances drought and salt tolerance (Aharoni et al., 2004, Bray and Reid, 

2002). The lower stomatal density of GEN compared to NAP at 100 mM, could have allowed 

the plant to cope with the salt stress more efficiently by optimizing water use efficiency. It has 

been recently demonstrated that the control of stomatal density is one of the genetic 

determinants that may affect water use efficiency (Masle et al, 2005). 

Moreover, a greater increase in pressure potential, at this salt concentration, was 

observed in GEN, but not in NAP, indicating that the former was able to better adjust to the 

hyperosmotic environment. During osmotic adjustment cells tend to compartmentalize most of 
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the absorbed ions in the vacuoles and, at the same time, they synthesize and accumulate 

compatible organic solutes in the cytoplasm in order to maintain the osmotic equilibrium 

between these two compartments and with the external environment (Serrano and Gaxiola, 

1994; Hare et al., 1998; Hasegawa et al., 2000). Our results in the previous experiments have 

assessed higher concentration of ions (Na+, Cl-) in GEN at 100 mM NaCl compared to NAP, 

and increased level of proline, an osmolyte typically involved in osmoregulation (Maggio et al., 

2002). The osmotic regulation contributes to maintain water uptake and cellular turgor, which 

are essential to sustain physiological processes such as cell expansion, stomatal opening, 

photosynthesis, and many others plant functions (Zhang et al., 1999).  

Overall these results indicate that at 100 mM NaCl,  long-term mechanisms of 

adaptation to stressful environments are activated more efficiently in GEN than in NAP. 

 

Antioxidant activity of phenylpropanoid volatiles. 

The effect of salt stress on volatiles abundance per gram of leaf and on total leaves fresh 

weight was significant in both cultivars. Our results indicate that total volatiles yield per plant 

increased upon salinization in both cultivars.  

At 100 mM, total phenylpropanoids content doubled compared to the control in both 

cultivars, but the composition of the pool changed significantly in NAP where, compared to 

GEN, a 40% reduction in methylcahavicol content was replaced by an increase in eugenol 

content.  

Moreover eugenol derivates, such as isoeugenol and eugenol methyl ester, not present in 

the control, were detected at 100 mM NaCl, indicating that salt stress may specifically affect the 

biosynthesis of eugenol and its derivates. A large number of naturally occurring molecules 

having antioxidant properties are known to be phenolic compounds, like eugenol. Several 
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studies have demonstrated the antioxidant capacity of the eugenol and related compounds, like 

isoeugenol, to inhibit the lipidic peroxidation induced by reactive oxygen species (Toda et al., 

1994; Hidalgo et al., 2009). According to Ogata and colleagues (2000), eugenol may inhibit lipid 

peroxidation by trapping active oxygen species, such as O2 or hydroxyl radicals. These 

compounds may protect the membrane lipids from oxidation by scavenging the active oxygen 

species generated from oxidative stress. However, the mechanism of their scavenging reaction 

in vivo is still obscure. 

The higher content of eugenol at the time of stress application may have been a 

constitutive advantage for GEN plants to better cope with the early stage of oxidative stress. 

The existence of a functional link between the Ascorbate-Gluthatione cycle and the 

physiology of stomatal closure and dehydration protection has been documented (Maggio et al., 

2002). An increase of the plant ascorbic acid pool by pretreatment of tomato root systems with 

ascorbate or its precursor L-galactono-1,4-lactone caused a dramatic protection against a 

gradually imposed water stress or severe osmotic shock (Maggio et al., 2002). It has been 

proposed that one component of the ascorbic acid-mediated protective effect was a rapid 

induction of stomatal closure, which in this case appeared to be ABA-independent.  

In our investigation, we observed a reduction in transpiration rate in GEN due a partial 

stomatal closure at 100 mM NaCl. The salt treatment caused a partial stomatal closure before 

any detectable increase in ABA, which may have been caused either by a sub-cellular re-

translocation, rather than ex-novo ABA synthesis (Zhang et al., 2001) or alternative signal 

transduction pathways involving H2O2 as signal molecule. Indeed, Pei et al. (2000) reported that 

H2O2 appears to act directly on guard cell behavior by activating Ca2+ channel through the 

activity of the gac2 gene product, independently, or at least partially independently of ABA. 

Research on essential oil and their antioxidant activity in silico and in vivo have shown that 
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phenolic components can be, after penetrating in the cell, oxidized by ROS and generate 

additional radical species like phenoxil, hydroxyl, superoxide radicals and H2O2 (Bijur et al., 

1997; Young and Lowe, 2001; Lowe et al., 2003). Antioxidants by interacting with ROS are 

converted into prooxidant which are able to oxidize lipids, proteins and DNA (Sakihama et al., 

2002; Barbehenn et al., 2005; Atsumi et al., 2005). Volatile terpenic and phenolic components 

of essential oils can function as prooxidants by affecting the cellular redox status (Bakkali et al., 

2006). In the cell, the redox balance is very sensitive. Probably compounds showing antioxidant 

activity can reduce the main load of oxidative stress but when there is an imbalance between 

oxidizing and reducing equivalents where the former predominates, for example when the 

antioxidant is oxidized and thus converted into a prooxidant, the antioxidant cellular defense 

cannot fully keep up with the oxidative stress and free radical are generated (Bakkali et al., 

2008). In our experiment, the increase of eugenol upon salinization may have generated severe 

imbalance in cellular redox status and consequently enhanced the H2O2 levels in the cells. This 

may have triggered the ABA-independent mechanism of stomatal closure, that in GEN was 

translated in a partial stomatal closure, while in NAP the closure was more drastic, probably 

also supported by an ABA-dependent response.  

  

Functions of Isoprenoids during salt stress: signaling response and ROS 

scavenger 

An increase in total isoprenoids content upon salinization was observed in basil and 

some significant cultivar-specific trends were found.  

The role of isoprenoids in plant response to salt stress is subject of discussion. 

The enhanced biosynthesis of these compounds in the two cultivars of basil may be 

associated with their presumed involvement in stress response mechanisms in basil.  
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Monoterpenes are secondary metabolites formed in chloroplasts from freshly fixed 

carbon (Bohlmann et al., 1998) and their levels may, therefore, depend on CO2 acquisition and 

formation of photosynthesis intermediates (Loreto et al., 1996). Our results show that the salt 

stress increased monoterpene concentrations while the plant dry weight accumulation was 

significantly affected in both cultivars. These contrasting trends were particularly evident when 

expressing monoterpenes concentration on a dry weight basis, suggesting that a larger fraction 

of carbon is allocated to monoterpene formation under stress condition in basil. The high costs 

of isoprenoids biosynthesis in stress condition, in terms of carbon allocated and energy 

indicates that they may have a significant ecological function in plants under oxidative stress 

(Peñuelas et al., 1998; in Delfine et al., 2005). In extreme environmental conditions between 5 

and 40% of fixed carbon may be allocated into the biosynthesis of essential oils (Ross and 

Sombrero, 1991).  

Evidences on isoprene’s ability to protect the plant in abiotic stresses (thermal or 

oxidative stress) have been already shown (Loreto and Velikova, 2001). As in all taxa, also the 

Lamiaceae family comprises isoprene emitting and non-isoprene emitting members, although 

there is no information relative to basil (Ocimum sp.), to our knowledge. Moreover, there are 

strong phylogenic evidences that monoterpenes and sesquiterpenes may play the same role as 

that of isoprene in protection against abiotic stress in non-isoprene emitting plants (Harley et 

al., 1997).  

The increased isoprenoids content increased under salt stress may be functional to 

protect and repair oxidative stress damages. α-pinene, β-ocimene, β-cariophillene and β-

farnesene are some of the isoprenoids found in basil, for which antioxidant properties have 

been observed (Llusia and Pañuelas, 1998); they may act directly by scavenging ROS (Calogirou 

et al., 1999) and protect the cell from oxidative damages. Consistent with the hypothesis that an 
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increase in sesquiterpenes formation is a response to environmental stress (Charles et al., 1990), 

we observed an increase in the relative proportion of total sesquiterpenes upon salinization. As 

for the monoterpens, some compounds increased in both cultivars and no significant 

difference was found between GEN and NAP, with respect to α-caryophilene, β-farnesene and 

α-begamotene. Instead, significantly higher increases in τ-cadinene, α-cadinol and τ-cadinol 

were observed in NAP compared to GEN. 

Even though the two cultivars have shown similar trends of increased total volatile 

content under stress, changes in concentration of some of isoprenoids, as was observed in 

NAP, may have a specific function in stress signaling.  

In the transcriptome of Arabidopsis exposed to monoterpene volatiles several gene 

categories were identified as over- or under-represented. Exogenous application of myrcene or 

ocimene significantly affected the categories of transcripts associated with general, abiotic and 

biotic stress and transcription factors, that were over-represented in the transcriptome of 

treated plant (Godard et al., 2008). 

Our results showed that salt stress conditions influenced myrcene and ocimene content. 

In stressed basil plants, β-myrcene content was positively affected by salt treatments and was 

significantly higher in NAP. The higher content of myrcene in NAP compared to GEN at 100 

mM may be an indicator of more severe perception of salt stress. 

The isoprenoids biosynthesis under stress condition may follow feed-back feed-forward 

mechanism: the stress response could be translated into an increase in VIP content and, in turn, 

an increased VIP content may trigger the stress response. Genes of the octadecanoid pathway 

and genes known to respond to octadecanoids (biosynthesis or response to JA) were among the 

two most prevalent within the stress-gene category both up-regulated by ocimene or myrcene 

(Godard et al., 2008). However, our results showed that increased contents in both of 



 27 

monoterpens did not affect methyl jasmonate concentration upon salinization, while the total 

abundance in GEN was higher than in NAP.  
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CONCLUSIONSCONCLUSIONS 

The reduction of growth, osmoregulation and detoxification are the three responses 

associated to salt stress, which we observed in basil plants exposed to salinity. The Genovese 

plants have shown the ability to grow, even though at lower rate, adapting themselves to 

stressed conditions with reduction of leaf expansion and differentiation, lower stomatal 

conductance and traspiration rate. Increased pressure potential and ion accumulation observed 

in Genovese were representative of their ability to osmotically adjust, which in turn assured 

water uptake in hyperosmotic environment. A constitutively higher concentration of some 

volatile compounds with antioxidant capacity, such as eugenol and some isoprenoids, might 

have helped the plant to activate detoxification mechanisms and protect the photosynthetic 

process from oxidative stress. We also suggested a hypothetical link between increase of 

eugenol and ABA-independent mechanism of stomatal closure: the severe imbalance in cellular 

redox status consequent to increased concentration in eugenol upon salinization may have 

enhanced the H2O2 levels in the cells and triggered a partial stomatal closure in Genovese, 

while in Napoletano the more drastic stomatal closure may has also been supported by an 

ABA-dependent response. 

The two cultivars revealed differences in salt stress tolerance in terms of response 

threshold. Constitutive morphological characteristics (stomatal index), physiological traits 

(growth adaptation) and specific metabolic profile (composition of the volatiles pool) may have 

been critical components for improving stress adaptation in Genovese plants.  

The mode of action of isoprenoids during salt stress is still unclear. Isoprenoids can 

have direct and indirect action: protect the cell from oxidative damage scavenging ROS, and 

indirectly inducing transcription of stress-related genes. Volatile isoprenoids biosynthesis under 

stress conditions may follow a self-maintaining mechanism: the stress response is translated 
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into an increase in VIPs content and, in turn, the increased VIPs content may trigger the stress 

response. However, it is still unclear how their stress-induced accumulation in the plant may 

concomitantly act in stress response signaling. 
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Table 1. Effects of NaCl treatments on main morphological indicators: Leaf area, Leaf 
yield, Number of leaves, Dry matter, Stomatal Conductance.  

  
Leaf Area Leaf Yield Number of 

leaves Dry Matter Stomatal 
conductance 

  dm2 plant-1 g plant-1 n° plant-1 %  mmol m-2 s-1 

Cv          

GEN 18,2 51,7 158,4 17,3 199,5 

NAP 21,2 87,6 69,9 12,2 149,5 

Salt      

0 41,1 151,3 169,8 13,5 318,3 

100 13,9 42,4 120,2 14,8 145,8 

200 4,1 15,3 52,5 15,9 59,3 

Significance      

Cv ns * ** ** ** 
  (5,4) (3,1) (2,7) (9,8) 

Salt ** ** ** ns ** 
 (2.3  [1] ) (17,4) (7,1)  (16,1) 

Cv x Salt ns * ** ns ** 
    (18,8) (6,8)   (21,2) 

(Mean values; ns = not significant; * = significant at P≤0.05; ** = significant at P≤0.01; 
lsd = [1] )  
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Table 2. Influence of salt stress (0, 100 and 200 mM NaCl) on plant water 
status in two cultivars of sweet basil, Genovese and Napoletano.  

  water potential osmotic 
potential pressure potential 

  (MPa) 

Cv    

GEN -0,43 -2,33 1,90 

NAP -0,36 -1,83 1,46 

Salt    

0 -0,22 -1,10 0,88 

100 -0,38 -1,99 1,61 

200 -0,59 -3,14 2,55 

Cv x Salt    

GEN 0 -0,25 -1,19 0,95 

GEN 100 -0,30 -2,48 2,17 

GEN 200 -0,75 -3,31 2,57 

NAP 0 -0,20 -1,00 0,81 

NAP 100 -0,46 -1,50 1,05 

NAP 200 -0,44 -2,97 2,54 

Significance    

Cv ns * ns 
  (0,52)  
Salt ** ** ** 
 (1,2  [1])  (0,69) (0,2) 
Cv x Salt * ns ns 

 (1,3)   

  
(Mean values; ns = not significant; * = significant at P≤0.05; ** = 
significant at P≤0.01; lsd = [1]) 
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Figures 1-2. Influence if sal stress (0, 100, 200 mM NaCl) on Number of leaves and specific 
leaf area in the two cultivars of sweet basil, Npoletano (NAP) and Genovese (GEN). 
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Figure 3. Influence of salt stress on stomatal conductance in two cultivars, 
Napoletano (NAP) and Genovese (GEN). 

 

 



Table 3. Volatile compounds relative abundances of basil cultivars Napoletano (NAP) and Genovese (GEN) at different salt 
concentrations (0, 100, 200 mM NaCl).  

Retantion time Compound References N0 N100 N200 G0 G100 G200 

5,33 3-Hexenal (Z)  11,72 1,32 4,17 49,18 24,89 26,61 

6,74 2-Hexenal, (E)-  - - - 4,05 0,39 0,87 

8,04 Heptanal  - - - 0,72 - - 

8,86 α-Pinene a, b, c 11,97 21,31 25,03 12,24 16,06 16,95 

10,00 Sabinene a, b, c 18,55 32,21 35,45 17,51 17,43 23,82 

10,21 1-Octen-3-ol  1,36 - - 4,17 - - 

10,43 ß-Myrcene a, b, c 14,69 27,21 31,76 36,32 33,85 33,14 

10,86 Octanal  - - - 0,59 - - 

11,50 limonene a, b, c 4,23 7,99 11,44 15,75 19,91 17,23 

11,62 Eucalyptol  550,26 904,21 868,99 600,96 670,30 676,99 

11,76 ß-cis-Ocimene a, b, c 10,45 7,66 51,82 71,57 76,76 81,47 

11,95 3-Carene a, b 5,04 - 10,62 14,49 16,33 22,69 

12,34 Mentha-1,4-diene  - - 5,36 - - - 

12,58 ß-cis-Terpineol  32,24 33,73 43,03 17,77 23,70 20,66 

12,88 1-Octanol  - - - 1,02 - - 

13,12 Mentha-1,4(8)-diene  0,82 1,90 4,96 3,66 5,36 3,20 

13,57 ß-Linalool a, b, c 1005,71 1145,73 1031,95 1635,46 1136,33 1304,77 

13,59 Nonanal   4,99 3,73 6,47 10,76 6,70 5,41 
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Table 3. (continued)        

Retantion 
time Compound References N0 N100 N200 G0 G100 G200 

13,77 Octen-1-ol, acetate  - - 0,39 3,22 3,29 3,25 

14,61 Camphor b, c 8,10 14,84 60,08 14,77 7,03 11,69 

15,15 Borneol b - - - 5,57 - - 

15,43 Terpinen-4-ol a, b, c 77,41 34,09 67,65 - 13,19 - 

15,77 α-Terpineol b, c 21,78 55,52 83,20 68,03 74,85 75,93 

16,05 Estragole a, b, c 2282,94 1540,20 1698,55 1,58 - - 

16,21 Acetic acid, octyl ester  2,56 13,41 22,35 17,16 26,20 26,50 

16,95 ß-Citral  - - - - 1,65 - 

17,23 t-Terpineol  - - 7,96 - - - 

17,27 Chavicol  186,05 3,07 134,17 - 2,27 12,01 

17,65 α-Citral  - - - - 2,69 - 

18,02 Bornyl acetate a, b, c 1,69 6,07 25,50 51,99 77,61 86,05 

18,34 Myrtenyl acetate  - - - 0,22 - - 

19,19 Elixene  5,97 10,58 8,34 8,53 6,08 6,68 

19,43 α-copaene a, c 1,69 2,17 7,78 - 0,57 - 

19,55 δ-Elemene b - 4,74 14,58 0,15 0,69 0,80 

19,77 Eugenol a, b, c 22,71 1014,60 293,61 2290,50 1755,64 1971,69 

19,90 cis-Isoeugenol   - 156,50 - 452,92 168,80 146,36 
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Table 3. (continued)        

Retantion 
time Compound References N0 N100 N200 G0 G100 G200 

20,03 Propanoic acid, 2-methyl-, 3-
hydroxy-2,4,4-trimethylpentyl ester 

 4,24 2,45 1,67 4,53 1,42 1,97 

20,09 Copaene  7,81 8,63 9,13 6,54 4,92 4,72 

20,17 Geraniol acetate  - - - - 3,31 - 

20,42 ß-Elemene b 34,38 49,60 41,88 47,65 33,47 35,02 

20,63 Eugenol methyl ester  - 11,75 7,67 11,92 12,06 23,87 

20,85 ß-Bergamotene  2,82 4,00 3,11 3,03 2,79 2,10 

21,14 Himachala-2,4-diene  198,05 192,12 8,95 272,06 146,48 278,64 

21,39 α-Bergamotene  b, c 8,26 8,85 254,73 109,16 10,21 12,30 

21,45 α-Guaiene b, c 14,41 16,86 13,87 17,43 13,63 13,23 

21,47 ß-Sesquiphellandrene c 4,19 6,09 8,11 1,46 1,90 0,46 

21,50 ß-Cubebene   306,74 447,02 484,33 154,24 214,31 36,21 

21,59 Isoledene  - - 1,34 - - - 

21,69 ß-Farnesene c 17,41 6,93 17,53 17,32 13,60 13,39 

22,01 α-Caryophyllene  90,57 84,98 29,62 78,19 77,37 110,70 

22,67 τ-Elemene  108,09 74,28 129,67 40,13 31,37 68,40 

22,80 δ-Guaiene c 28,43 34,78 30,66 45,40 28,60 22,83 

22,89 1H-Cycloprop[e]azulene, 
decahydro-1,1,7-trimethyl-4-
methylene-,1aR-(1a.,4b.,7a.,7b.,7a.)]- 

  25,57 78,36 62,54 10,05 4,94 - 



 41 

 

Table 3. (continued)        

Retantion 
time Compound References N0 N100 N200 G0 G100 G200 

22,92 τ-Cadinene  60,67 88,48 140,46 128,36 79,71 33,92 

23,11 ß-Cedrene  - - - 19,60 13,98 7,72 

23,15 Eugenol acetate  - - - 6,76 17,29 22,86 

23,32 Germacrene D-4-ol  1,07 2,16 6,28 1,21 - - 

23,46 α-Muurolene  - - - 0,65 - - 

23,82 trans-Nerolidol c - 3,15 2,05 1,61 - - 

24,97 Cubenol   27,03 29,51 35,06 33,58 20,97 20,99 

25,06 Dodecanoic acid, 1-methylethyl 
ester  

 0,84 - 0,67 2,96 1,09 3,07 

25,19 Benzophenone  38,34 17,79 11,38 61,58 27,32 21,11 

25,47 τ-Cadinol b, c 227,77 252,94 292,90 272,76 172,70 182,34 

25,53 Methyl jasmonate  2,28 3,48 0,68 7,30 4,57 2,76 

25,67 ß-Eudesmol  - 1,44 1,27 - - - 

25,71 α-Cadinol  3,82 4,00 8,52 4,69 3,05 2,07 

 Total  5495,7 6472,5 6159,3 6771,0 5129,7 5495,5 

The ralative abundance is expressed as the ratio of each compound peak area to that of the internal standard's.   Identification 
confirmed by literature: a, Chalchat et al. (2008); b, Marotti et al. (1996); c, Viña et al. (2003) 
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Compound a b c

Phenylpropanoid

Eugenol 1,4 ± 0,51 219,1 ± 12,9 211,7 ± 6,6 133,8 ± 31 290,2 ± 61,5 685,4 ± 77 ** ** **
Methylchavicol 148 ± 33,8 225,4 ± 15,9 1470 ± 190 0,1 ± 0,0 nd nd ** ** **

Monoterpene

Eucalyptol 27,5 ± 3,9 188,3 ± 38,6 588,4 ± 89 38,8 ± 4 110,8 ± 10,8 241,0 ± 27 ** ** **
camphor 0,6 ± 0,6 3,8 ± 3,85 52,0 ± 13 1,0 ± 0,9 1,2 ± 0,59 4,3 ± 1,8 ** ** **
b-myrcene 0,8 ± 0,1 5,3 ± 1,38 24,7 ± 3,4 2,3 ± 0,3 5,6 ± 0,62 11,6 ± 1,5 ** ** **
sabinene 1,0 ± 0,2 6,9 ± 1,88 26,2 ± 6,7 1,1 ± 0,4 2,9 ± 1,05 7,9 ± 1,9 ** ** *
a-terpineol 1,6 ± 0,7 14,4 ± 5,72 54,9 ± 8,7 4,4 ± 0,5 12,4 ± 1,24 27,8 ± 4,3 * ** **
b-linalool 57,3 ± 8,3 221,2 ± 33,1 654,1 ± 54 101,2 ± 15 187,8 ± 5,1 507,9 ± 46 ns ** *
b-ocimene 0,8 ± 0,1 2,0 ± 0,95 44,8 ± 21 4,9 ± 1,2 12,7 ± 4,32 28,9 ± 8,5 ns ** ns
a-pinene 0,7 ± 0,1 4,5 ± 1,04 33,5 ± 16 0,8 ± 0,1 2,7 ± 0,34 5,9 ± 0,6 ns * ns
limonene 0,2 ± 0,2 2,1 ± 1,06 7,7 ± 4,7 1,1 ± 4,7 3,3 ± 1,09 6,3 ± 1,6 ns * ns

Sesquiterpene

Himachalene 14,5 ± 6,2 31,2 ± 17,7 6,7 ± 0,9 16,8 ± 7,4 24,2 ± 10,4 101,7 ± 14 ** ** **
t-cadinene 4,1 ± 1,7 22,0 ± 10,8 100,6 ± 23 8,1 ± 1,8 13,2 ± 3,34 14,1 ± 9,4 ** ** **
b-cubebene 11,7 ± 7,1 115,7 ± 46,7 330,6 ± 144 10,7 ± 7,8 35,4 ± 19,1 12,8 ± 4,5 ** * *
a-caryophillene 4,1 ± 1,5 18,0 ± 4,84 21,9 ± 9,8 4,8 ± 1,4 12,8 ± 3,28 38,8 ± 6 ns ** ns

b-fanesene 1,1 ± 0,3 1,4 ± 0,46 10,9 ± 5 1,1 ± 0,3 2,2 ± 0,65 5,2 ± 1,7 ns ** ns

a-bergamotene 0,5 ± 0,1 2,0 ± 0,48 219,4 ± 137 7,5 ± 5,1 1,7 ± 0,39 4,4 ± 0,8 ns ** ns

Tab. 4 Major volatiles compounds and their relative abundance on dry weitght basis in basil cultivars Napoletano 
(NAP) and Genovese (GEN) at different salt concentrations (0, 100, 200 mM NaCl).

G100 G200

The ralative abundance is expressed as the ratio of each compound peak area to that of the internal standard's,

normalized on dry weight. nd = not detected. Values are means ± S.E.. c:= differences between cultivars , b=
differences among salt treatments; c =differences among cultivars upon salinization; ns = not significant; * =
significant at P!0.05; ** = significant at P!0.01

N0 N100 N200 G0
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INTRODUCTIONINTRODUCTION 

Capscicum is a genus of plants belonging to the Solanaceae family, native to Mexico but 

now cultivated worldwide, whose fruits are mainly used as spices, food and medicines. Chili 

pepper is used in food preparation for its contribution in color, pungency and aroma 

(Mosquera et. Al, 1997). The main quality parameters considered in breeding programs in the 

past years for Capsicum varieties were color and pungency. However, current research is also 

focusing in the aroma as an important parameter for the quality of fresh fruit and vegetables 

(Luning et al., 1994; Cremer et al., 2000). Fruit aroma is important quality and marketability 

attribute, selected for during domestication and crop improvement (Zamir, 2001). This trait is 

apparently evolved from their primordial roles as ecological cues for attracting organisms 

engaged in seed dispersal in the crops’ wild ancestors (Cipollini and Levey, 1997). There is great 
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variation for this trait in peppers due to a large number of crop types and varieties. The genus 

Capsicum comprises five main species: C. annuum, C. frutescents, C. chinense, C. baccatum and C. 

pubescens (Pruthi, 1980).  

Jalapeño is a cultivar of the species Capsicum annuum originating in Mexico. It is named 

after the town of Xalapa, Veracruz, where it was traditionally produced. Domesticated in 

Central America, it is the most common species in Mexico and North America. The fresh 

market consists of green Jalapeños, and red Jalapeños are considered inferior. This variety is 

mildly pungent and its Scoville units range from 2,500 to 8,000. The Habanero chili (Capsicum 

chinense) is one of the most intensely spicy species of chili peppers of the Capsicum genus, its 

Scoville units range from 100,000 to 350,000. Like all Capsicum, the Habanero pepper originated 

in Meso- or South America, most likely the Yucatán and its coastal regions. Today, the crop is 

most widely cultivated in the Yucatán Peninsula of Mexico. Other modern producers include 

Belize, Panama, Costa Rica, and some U.S. states including Texas, Idaho, and California. While 

Mexico is the largest consumer of this spicy ingredient, Habanero flavor and aroma have 

become increasingly popular all over the world. Most peppers belonging to C. chinense species 

have a characteristic fruity smell, typical of the Habaneros. 

In this study, two of the most popular hot pepper types, Jalapeño and Habanero were 

characterized for their major volatile compounds. Since they can be crossed with each other 

producing fertile hybrid (McLeod et al., 1983), and they have very different flavor, pungency, 

shape and size, these two species were selected to understand the genetic basis and inheritance 

of aroma compounds.  

In general, fruit aroma is composed of a complex mixture of many, sometimes hundreds 

of volatile compounds arising from diverse biochemical pathways. The distinctive flavor of a 

fruit is a result of the relative abundances and interactions among volatiles, sugars and acids. 
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Flavor is therefore a complex fruit quality trait, which has been little investigated genetically. 

Most studies on pepper aroma have been done on bell pepper (C. annuum), where over 200 

volatile compounds have been reported, (Van straten and Maarse, 1991; Lunning et al., 1994; 

Simian et al., 2004). Moreover, more than 125 volatile compounds have been identified in fresh 

and processed chili pepper (Nijssen et al., 1996), but their flavor significance is still unknown. A 

survey in 3 varieties of C. chinense revealed 34 volatiles involved in their aroma (Sousa et al., 

2006).  

The synthesis and emission of plant volatiles is under the control of a variety of factors, 

including developmental stage of the plant organ, diurnal endogenous rhythms and 

environmental conditions (Dudareva et al., 2006). Variations of aroma composition at different 

stages of ripening have also been investigated in chili pepper fruits. Recently, Pino and 

colleagues (2006) have studied the changes of volatile constituents in Habanero chili peppers 

during maturation and it was found that numerous volatile compounds decreased or even 

disappeared, while esters increased at the same time. Volatile constituents in C. annuum var. 

glabriusculum chili pepper have also been studied. Comparing the amount of total volatiles at two 

different stages of maturity, green and red, the authors concluded that green stage is better in 

terms of its flavor than the red stage for its higher content in volatiles (Forero et al., 2009).  

As first step to identify the genes responsible for the synthesis of flavor-related 

chemicals, an attempt was made to identify loci that influence the chemical composition of ripe 

fruits. A few QTL (qualitative trait loci) mapping studies have been reported in Capsicum. 58 

QTLs associated with nine yield-related traits, fruit parameters, flowering and maturity were 

detected in a C. annuum x C. frutescens segregating population (Rao et al., 2003). More recently 

Zygier et al. (2005) detected four QTLs associated with fruit shape, weight and size using 
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introgression lines of C. chinense and C. frutescens. QTLs associated with disease resistance have 

been reported by Ben Chiam et al. (2001).  

As a precedent of QTL analysis for volatiles in Solanaceous crops, Tieman et al. (2006) 

carried out a genome-wide loci analysis of volatiles in tomato. Twenty-five loci were identified 

that significantly altered one or more of 23 different volatiles. However to date there is no 

information available for genetic basis and inheritance of flavor compounds in hot pepper. 

The results presented in this thesis are part of a three-year project, the main goal of 

which is to characterize the major fruit quality determinants of the two most popular hot 

pepper types in USA market, Jalapeño and Habanero, and to understand the genetic basis and 

inheritance of fruit quality traits. 

The long-term goal of this project is to improve fruit quality characteristics in pepper 

and to assist in the development of flavor-targeted breeding programs. The identification of 

molecular markers for pepper fruit quality can be used by breeders to efficiently create 

improved cultivars with novel combination of volatile compounds that could extend the market 

segment of the pepper industry. Additionally, knowing the genetic control of the major fruit 

quality traits (color, hot, flavor) will provide breeders with a handle to optimize content of 

these compounds. The specific objectives of the project are to identify the major fruit volatile 

compounds involved in Habanero and Jalapeño flavors; to determine chromosome segments 

controlling fruit volatile profiles in Capsicum; to analyze the genetic segregation of other fruit 

related traits and plant habit; to develop lines combining fruit traits from the two parental lines 

and to gain insight into the inheritance of these traits. In this thesis, the data on volatile aroma 

profiles of the two parental lines and the hybrid, and the influence of maturity stage on the 

profile composition will be discussed. Moreover, preliminary data of the scoring process to 

identify linkage group will be shown. 
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MATERIAL AND METHODSMATERIAL AND METHODS  

Fruit volatile analysis 

The experiment was carried out at University of California Davis during the years 2008 

and 2009, on Jalapeño line ‘JBS2MS’ (Capsicum annum), Habanero line ‘OR-HB-04IT’ (Capsicum 

chinense), F1 hybrid generated by crossing these two lines; then a F2 population of 240 plants 

was generated in spring 2008. The plants were grown in the greenhouse of Harris Moran 

Experimental Station in Davis, California USA. 

The volatile profiles of the parents, F1 hybrid, and F2 population generated in this study 

were determined as described below. 

Fruit samples consisted of 4 fruits taken from 1 individual plants of the same 

accession/genotype. The fruits were sampled at two different maturity stages, green and 

colored (2 fruits per maturity stage). 

For the sampling of pepper volatiles, the highly sensitive and quantitative closed-loop 

stripping method was used. Pepper fruits were cut in half and placed in an air tight chamber 

and volatiles were collected through a matrix trap (Porapak Q) during continuous circulation of 

headspace air inside the chamber for 1 hour. Trapped volatiles were eluted from the Poropak Q 

filters with 250 µl of dichloromethane (CH2Cl2). Then 20 µl of 3-methylbutyl 2-

methylbutanoate 1.1 mM were added as internal standard and sample were then analyzed by 

GC-MS

The GC-MS analysis were performed with Agilent 6890 gas chromatograph (splitless, 

injector volume of 1µl) coupled to an Agilent 5975B quadrupole mass selective detector. 

Separation was performed on HP-5 non-polar capillary column (30 m X 0.25 mm; film 

thickness 0.25 µm) with column flow rate of 1.2 ml/min and helium as the carrier gas. Initial 
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column temperature was 40°C, then heated to 180°C at 6°C min-1. Mass spectra were obtained 

in scan mode in the range (m/z) from 30 to 300. 

The deconvolution of the spectra was performed by AMDIS and the analysis of the 

spectra by MPP (Mass Profile Profesional, Agilent). 

A tentative identification was based on a search of the NIST library by comparison of 

the spectra of each compound with the spectra present in the library. Their occurrence in 

Capsicum species was confirmed by the literature 

Quantitative data were obtained from normalized area values with internal standard and 

fresh weight. The relative abundance of each component is expressed as the ratio on its peak 

area to that of the internal standard’s. 

Due to human’s variable sensitivity to different aroma compounds, not all constituents 

found in the GC-MS analysis contribute to pepper flavor and some compounds with low 

olfactory threshold weren’t detected. To verify the presence of pyrazines in our samples, the 

aroma extract was also subjected to gas chromatography coupled with Olfactometry (GC-O) 

analysis. 2-isobutyl-3-methoxypyrazine was used as standard to monitor the presence of main 

ions. 

A The GC-O analysis were performed with Agilent 6890N gas chromatograph (splitless, 

injector volume of 1µl) coupled to an Agilent 5973 quadrupole mass selective detector, 

equipped with sniffing port. Separation was performed on HP-5 non-polar capillary column (30 

m X 0.25 mm; film thickness 0.25 µm) in constant pressure mode (25.2 psi), with column flow 

rate of 3.4 ml/min. Initial oven temperature was 40°C held for 5 min, then heated to 250°C at 

8°C min-1. Mass spectra were obtained in SIM mode, scanning four different ions: 94, 124, 127, 

154.  
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Using this method, we analyzed the aroma of the parental lines and F1 samples at 

mature green stage. Three panellists sniffed from the sniffing port each extract in duplicate 

recording qualitative and semi quantitative (strong, medium, weak) information for each 

compound perceived in the sample. Panellists were trained to recognize 2-isobutyl-3-

methoxypyrazine with bell pepper-like odour, using authentic standard. 

After the identification of this odour in the samples, peak identification of 2-isobutyl-3-

methoxypyrazine in the samples was performed by comparison of their spectra to that of 

authentic standard. 

 

Genetic map 

DNA was extracted from the leaves of the parental lines, F1 hybrid and 240 plants of F2 

population by CTAB DNA isolation method. 

0.5 g of tissue was ground in a cold 20 ml Eppendorff tube with a mini pestle in liquid 

nitrogen. 0.9 ml of 2% preheated CTAB buffer at 65°C were added to the tube. The tubes were 

placed in water bath at 60°C for an hour. After, the samples were cooled down to room 

temperature and equal volume of chloroform was added; they were mixed for 3 min and 

centrifuged for 5 min at 14,000 rpm. The supernatant was removed and washed three times in 

76% ethanol.  After overnight drying, 200 µl of distilled water was added to each tube. The 

concentration of DNA was measured with a spectrophotometer (NanoDrop 3300 

Fluorospectrometer, Thermo Scientific) on sample size of 1µl, and adjusted to 10 ng/ml. 

The CTAB buffer (100 ml) was prepared as follow: 2.0 g CTAB (Hexadecyl trimethyl-

ammonium bromide),10.0 ml 1 M Tris pH 8.0 , 4.0 ml  0.5 M EDTA pH 8.0 

(EthylenediaminetetraAcetic acid di-sodium salt), 28.0 ml 5 M NaCl , 40.0 ml H2O 1 g PVP 40 

(polyvinyl pyrrolidone (vinylpyrrolidine homopolymer) 40,000 Mw).  
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The pH was adjusted 5.0 with HCl and the solution was made up to 100 ml with H2O. 

SSR primers were synthesized based on the public sequences available at the Sol 

Genomic Network (http://sgn.cornell.edu/), including those reported in various maps (Nagy 

et al 2007, Wu et al 2009). This allowed aligning the linkage groups to those cited above and to 

the Capsicum AC99 and FA03/COII maps at Sol Genomic Network, constructed with over 

900 SSR markers, many of which are publicly available.  

For SRAP markers we follow the procedure reported by Li and Quiros (2001). The 

amplified DNA fragment are separated by denaturing acrylamide gel and detected by 

autoradiography. We used EM2 (5’ GAC TGC GTA CGA ATT CTG C 3’) as the forward 

primer labeled with fluorescent dye IRDye 800, in combination with either ODD50 (5’ GAA 

TGC CAT CTA TCT CTT GA 3’) or GA6 (5’ GAG AGA GAG AGA TCA GC 3’) as reverse, 

unlabelled primers. For band separation we used a LI-COR sequencer IR2 model 4200 

(LICOR, Lincoln, Nebraska). Standard PCR procedures for DNA amplification were used 

depending on the type of marker. 
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RESULTSRESULTS

Volatile profiles of parental lines and their variation at different stages of 

maturity. 

The analysis was conducted on two different stages of maturity, green (MG) and colored 

(MR). In total sixty-six compounds were found in the two stages of maturity. At mature green 

stage, 74-36% of the volatiles are esters and 5-61% are sesquiterpenes, in the Habanero and 

Jalapeño respectively. Instead at mature coloured stage, the 86-42% of the compounds were 

esters while 5-57% were sesquiterpenes, in the Habanero and Jalapeño respectively (Figure 1.) 

Moreover, about 20% of total volatile compounds in Habanero at mature coloured stage 

was represented by a cyclic compound, cyclohexanol, 3,3-dimethyl. At coloured stage, the 

content of this cyclic compound decreased, representing 7% of the total components found in 

Habanero. The list of all compounds, as well as their relative abundance, is presented in Table 

1. The total abundance of volatile compounds per gram of fresh fruit detected in Habanero was 

16 and 50 times higher than in Jalapeño, at green and coloured stage of maturity respectively. 

With regards to the variation of the total volatile content at different stages, opposite trends 

were observed in the two parental lines: the total volatile content increased in Habanero at the 

coloured stage, while it decreased in Jalapeño (Figure 2). 

The composition of the volatile profile differed as the colour changed from green to 

orange/red. Esters increased in the parental lines when the fruit turned colour, from 74 to 86% 

in Habanero and from 36 to 42% in Jalapeño. Aliphatic esters represented 74% of all the esters 

in Jalapeño, while they accounted for only 9% of the total esters in Habanero.  

At the mature coloured stage, sesquiterpene abundance decreased in Jalapeño from 61 to 

57%, while no change was observed in Habanero. Compositional changes in the sesquiterpene 
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pool were observed in Habanero according to maturity stage; 8 new compounds, among which 

α-cubene, longifoliene were identified at orange stage. Moreover, while allo-aromadendrene 

was the main sesquiterpene at MG stage (40%), it was absent from the volatile profile  when 

the fruits turned orange. 

Monoterpenes and noroisoprenoids were not detected in Habanero at mature green 

stage. The norisoprenoid β-ionone was detected only in coloured fruits of Habanero.  

In Jalapeño, the contribution of monoterpenes to the overall aroma profile decreased at 

the coloured stage, while norisoprenoids were not detected in either stage. 

The main volatile component found in Jalapeño was isocaryophillene, which represented 

60% of the total volatile profile. (Z)-3-hexadecene was detected only in Jalapeño. (Z)-3-hexen-

1-ol and pentanoic acid, (2E)-2-hexen-1-yl ester were only detected at the green stage, while 

(E)-2-hexenal, 2-ethyl-hexan1-ol and tetradecane were present when the fruit turned red.  

Three compounds, butanoic acid, 3-methyl-, hexyl ester, cyclohexanol, 3,3-dimethyl, 

isovaleric acid, hexenyl ester, represent 65% of the total volatile profile in Habanero.  

Some compounds such as pentanoic acid, (2E)-2-hexen-1-yl ester and isocaryophillene 

were found only at mature green stage in Habanero, while new compounds such as α-

longipinene and β-ionone were detected in coloured fruits. The compounds α-cubebene, β-

cubebene and β-ionone were found in Habanero but not in Jalapeño.  

 

F1 hybrid 

Pepper fruits from the hybrid plant generated by crossing the Habanero and Jalapeño 

parents had higher total volatile content at both stages compared to the parents; the total 

abundance of volatiles decreased at the mature coloured stage, as was observed in Jalapeño.  
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Esters represented 85% of the total volatile profile, 11% of which were aliphatic esters, 

and 11% were sesquiterpene esters. Butanoic acid, 3-methyl-, hexyl ester, butanoic acid, 2-

methyl-, hexyl ester and isocaryophillene were the most abundant components on the total 

volatiles profile at mature green stage. 

Butanoic acid, 3-methyl, 3-hexen-1-yl ester and cyclohexanol, 3,3-dimethyl- were 

common only to the Habanero parent and the F1, suggesting that they may be inherited from 

Habanero, while heptadecane and ocimene, common only to Jalapeño parent and F1, may be 

inherited from Jalapeño. New compounds, such as (Z)-butanoic acid, 3-hexenyl ester and 

benzoic acid, hexyl ester were found in F1 at mature coloured stages, but no in the parents.  

 

GC/MS-Olfactometry: 2-isobutyl-3-methoxypyrazine identification 

Since pyrazines were not detected in the three lines by GC/MS, volatile samples at MG 

stage were analyzed by GC/MS-Olfactometry (GC-O). The authentic standard of 2-isobutyl-3-

methoxypyrazine was injected and analyzed in SIM mode; it eluted at 15.30 minutes after 

injection. In the volatile samples of the parents and F1, the panel detected the bell pepper-like 

odour in the three samples at the same elution time of the authentic standard. Analysis of the 

MS spectrum of the three samples revealed the presence of 2-isobutyl-3-methoxypyrazine in 

the Jalapeño, Habanero and F1 profiles.  

 

Analysis of polymorphisms  

The hybrid nature of the F1 plant was confirmed using three primer sets of multi-locus 

DNA markers called SRAP. The primer combinations used have shown that the F1 genome 

combined DNA segments of both parents (Figure 3). 
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To identify linkage groups in Habanero, Jalapeño and F1 DNA, 50 SSR primer pairs 

were synthesized based on sequences reported in Nagy et al. (2007) and Wu et al. (2009), and 

were used in the screening of the three lines. Thirteen of them showed single polymorphisms 

and were selected for the screening of 240 plants of F2 population. 

The results of the screening with SO13 marker on Habanero, Jalapeño, F1 and some of 

the F2 plants DNA, are shown in figure 4.  

The position of the SSR marker on Pepper-FAO3v31 map, published on 

http://sgn.cornell.edu/, is 104.02 cM on the chromosome 3. 

This marker showed a difference between the parents in the size of the segments 

amplified, whereas the hybrid combined bands of both parents. Further screening with SSR 

and other markers will be necessary to identify linkage groups.  
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DISCUSSIONDISCUSSION 

Influence of ripening stage on volatile profile in chili peppers 

Earlier studies have shown that during bell pepper ripening, a majority of volatiles 

decreased or even disappeared (Lunning et al., 1994). Until now, changes in volatile 

constituents in Habanero chilli pepper during maturation have been poorly investigated. 

As expected, Habanero and Jalapeño peppers have qualitatively and quantitatively 

different volatile profiles. In Habanero, the amount of total esters, along with most other 

compound classes, increased at the coloured stage, while ester abundance decreased in Jalapeño 

at the coloured stage. Esters, with their fruity odour notes, contributed to 74% of the total 

volatiles profile in Habanero mature orange stage. Consistent with another study (Pino et al, 

2006), Habanero at green stage had high concentration of butanoic acid, 3-methyl-, hexyl ester 

and cyclohexanol, 3,3-dimethyl. Pino and colleagues had also found that cyclohexanol, 3,3-

dimethyl had a tendency to decrease as the colour changed from green to orange, while a 

opposite behaviour was found in C. annuum var. glabriusculum (Forero et al. 2009).  

In contrast to previous study which showed predominance of aliphatic esters in the 

aroma profile and an increase in their content at orange stage (Pino et al, 2006), our results 

showed that ripening from green to orange had no effect on this class of volatiles which 

represented only 9% of the total esters.  

The abundance of aliphatic esters has been not reported in other Capsicum species 

(Nijssen et al., 1996). Interestingly, the highest level of such esters was identified in Jalapeño in 

both stages and their amount increased as the fruits turned red, from 65 to 83% of the total 

esters.  

Moreover, isoprenoids increased at maturity and formation of 8 new compounds was 

observed in Habanero. Among the compounds newly formed in Habanero at MR stage, the 
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norisoprenoids β-ionone and β-ciclocitral were identified. The norisoprenoids or apocarotenals 

are aroma compounds derived from breakdown of carotenoids (tetraterpenes). These two 

norisoprenoids are apparently oxidative breakdown products of β-carotene (Lewinsohn et al., 

2005). The carotenoid degradation pathway is considered a key route for the formation of 

aroma compounds in many plant and plant products. In this pathway, carotenoids serve as 

substrates, but the nature of the biochemical mechanism (whether enzymatic or non-enzymatic) 

mediating this oxidative degradation is still to be elucidated in each particular case (Lewinsohn 

et al., 2005).  

Moreover, allo-aromadendrene was the main sesquiterpene at MG stage (40%) in 

Habanero, but it was not detected when the fruits turned orange. This compound has not been 

identified in Capsicum chinense (Sousa et al., 2006; Pino et al., 2006), while it has already been 

detected in Capsicum annuum var. glabriusculum at green and red stages (Forero et al., 2009). 

Contrarily to this result, we did not observe it in our Jalapeño line in either stage.  

At green stage, volatiles responsible of green notes, such as 3-hexen-1-ol and hexanal 

were not detected in Habanero, while they were identified in Jalapeño and F1 fruits.  

In both parents and F1 fruits, (E)-2-hexenal was detected at the coloured stage of 

maturity, while 3-hexen-1-ol was found only at the mature green stage. These results are in 

agreement with the study of evolution of volatiles in varieties of C. annum (Lunning et al., 1994; 

Mazida et al., 2005). In fresh Capsicum fruits, these compounds, as well hexanal, are typically 

produced by enzymatic action upon tissue disruption (Wu et al., 1986). As assessed in 

tomatoes, the activity of several enzymes changed during ripening of chilli pepper, especially 

the ones involved in formation of these lipid-degraded products (Gaillard et al., 1977). 

The amount of green descriptors such as hexanal and 2-isobutyl-3-methoxypyrazine has 

been shown to decrease upon maturation in other investigations (Chitwood et al., 1983; Luning 



 57 

et al., 1994), and it was suggested that these compounds are responsible for green aroma in 

chilli pepper. These two compounds have extremely low aroma threshold of 0.0045 and 

0.000002 ppm, respectively (Buttery et al., 1969), so they may be present in very low 

concentration and still contribute to the perceived aroma. Hexanal and (Z)-3-hexenal were 

detected only in F1 fruits at both stages, even though their content decreased at MR stage. 2-

isobutyl-3-methoxypyrazine could not be detected in the samples by GC/MS. Further analysis 

using GC-O was conducted at MG stage to assess its presence in the samples. The result will 

be discussed in detail successively. 

The total volatile content in F1 hybrid was five fold higher than in Habanero. The 

profile was characterized by high level of esters and, similar to the Habanero parent, aliphatic 

esters accounted for only 13% of the total esters content. As in the Jalapeño parent, 

isocaryophilene was the main sesquiterpene identified in the hybrid and it represented 98% of 

the total sesquiterpenes.  

 

2-isobutyl-3-methoxypyrazine 

In general, although pyrazines are present in minute quantities in natural samples, their 

contribution to flavour is considerable (Luning, 1994) due to their extremely low odor 

threshold. For example, the pyrazine compound 2-isobutyl-3-methoxypyrazine exhibits a 

characteristic bell-pepper-like odor, associated with an olfactory threshold of 2 ppt (Buttery et 

al., 1969).  

2-isobutyl-3-methoxypyrazine was not detected in our samples by analysis on GC/MS. 

Samples of the three lines at MG stage were then analyzed using GC-O and presence of the 

pyrazine was detected in the Jalapeño, Habanero and F1 samples. This compound has 

previously been found in bell pepper (Buttery et al., 1969), Jalapeño (Kollmannsberger et al., 
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2007) and Habanero (Pino et al., 2006) is also likely an important constituent of chili pepper 

aroma.  

 

QTL mapping  

The process of genetic mapping can be defined as the determination of the linear order 

of molecular markers or genes along a stretch of DNA. The result is a genetic map, which may 

be described as a graph depicting the relative positions of markers along so-called linkage 

groups, based on their frequency of crossover or recombination during meiosis (Weising et al, 

2005). The steps involved in genetic map construction are: selection of parent plants and 

population size; selection of molecular markers; scoring process; linkage analysis. 

In this study, the parents were selected on the basis of their divergences in fruit quality 

characteristics, such as flavor, shape, size and pungency. In absence of any polymorphism 

neither segregation analysis nor linkage mapping is possible (Kang et al, 2002). In order to 

exhibit a sufficient polymorphism, parents have to be divergent but not so distant as to cause 

sterility of the progeny. If knowledge about the map position of a certain trait is wanted (e.g. 

volatiles compounds), the parents should be polymorphic for that trait. 

Although the taxonomics boundaries of Capsicum are still uncertain, based on crossing 

relationship and biochemical markers, two species lineages can be resolved. Most of the 

Capsicum species are self-compatible and facultative in-breeders. According to Mcleord et al. 

(1983), the species we selected, C. annuum and C. chinense, are in the same gene pool and can be 

crossed with each other producing fertile hybrids.  

Moreover, the resolution of the map and the ability to determine marker order largely 

depend on this size of the mapping population. A lower threshold that can localize QTL is a 
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size of 100 individuals (Weising et al, 2005), but generally, the larger the mapping population is, 

the better. 240 plants composed our mapping population, generated from F1 hybrid. 

Then, SSR markers that had shown polymorphism in parents and F1 were selected and 

we started the scoring process: DNA from each progeny was isolated and tested for the state of 

those DNA sequence polymorphism that distinguished the parents.  

To date, we are carrying out the scoring process on the mapping population; more 

detailed results will be available in the future. Additionally, we will add enough SRAP markers 

to construct a map of approximately 500 markers using the procedure of Li and Quiros (2001). 

All the data accumulated from scoring the mapping population sequentially with a series 

of markers will be used to construct the linkage map. The linear arrangement of linked loci will 

represent the so-called linkage group; all of the linkage groups will represent the genetic map. 
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CONCLUSIONSCONCLUSIONS 

The fruit aroma is important quality and marketability attribute, selected for during 

domestication and crop improvement. Fruit aroma is composed of a complex mixture of tens, 

sometimes hundreds of volatile compounds arising from diverse biochemical pathways.  

The understanding of the key chemical, enzymatic and molecular mechanisms that 

control the formation of the aroma volatiles in crop plants has still been little investigated. To 

date more than 125 volatile compounds have been identified in fresh and processed chili 

pepper, but their flavor significance is still unknown. The synthesis and emission of plant 

volatiles is under the control of a variety of factors, including developmental stage of the plant 

organ. Compositional changes of volatiles in fruit blend during ripening have a primordial role 

as ecological cues for attracting organisms engaged in seed dispersal in the crops’ wild 

ancestors.  

The individuation of those compounds involved in formation of fruit aroma profile at 

maturity may help, with a support a new technologies of quality assessing, to harvest the fruit at 

their peak maturity or ripeness to provide the best possible flavor to consumers. 

In our study, we characterized the major volatiles determining Habanero and Jalapeño 

chili pepper aroma at two different stage of ripeness. In Habanero the total volatiles content 

enhanced during maturation, and esters, with their fruity aroma, were the compounds that 

more characterized the fruit profile at maturity. Fruit maturation in Jalapeño negatively affected 

the aroma profile; the total volatile content decreased, many compounds disappeared and 

weren’t replaced by other detectable compounds. The identification of volatile composition at 

different stages of maturity may facilitate producers and industry in selection of fruits and 

vegetables for the market, and enhance agriculture sustainability by reduction of waste. 
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The identification of the major volatiles compounds in fruit and vegetable and the 

genetic basis of fruit quality trait, as aroma, will provide a useful support to development of 

flavor-targeted breeding programs. Molecular markers for pepper fruit quality may be useful 

tool for breeders to efficiently create improved cultivars with novel combination of volatile 

compounds that could extend the market segment of the pepper industry.  

Additionally, knowing the genetic control of the major fruit quality traits (color, hot, 

flavor) will provide breeders with a handle to optimize content of these compounds to 

encounter the consumer preference and acceptance.  
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Table 1. Volatile compounds relative abundances of Habanero, Jalepeño and F1 hybrid at two different stage of maturity, mature 
green (MG) and mature colored (MR) in order of their retentian time (RT).  

RT Compound Ref. MG   
Hab 

MG       
Jal 

MG       
F1 

MR   
Hab 

MR      
Jal 

MR       
F1 

4,92 3-Hexenal, (Z)-  - - 2,67 - - 0,72 
4,95 Hexanal a,c,d - - 1,24 - - 0,22 
5,91 4-methyl-1-Pentanol  - - 1,90 0,27 - 2,07 
6,33 2-Hexenal, (E)- a,c,d - - - 0,59 0,03 2,15 
6,40 3-Hexen-1-ol, (Z)- c,d - 0,08 1,22 - - - 
10,50 Butanoic acid, 3-methyl-, 2-methylpropyl ester a,b,c 0,61 - - 0,72 - 0,11 
10,68 Propanoic acid, 2-methyl-, 3-methylbutyl ester  - - 2,02 - - 2,19 
11,10 2-ethyl-1-Hexanol   - - 2,66 - 0,02 - 
11,61 Ocimene a,d - 0,37 30,74 - 0,01 25,11 
11,72 Butanoic acid, pentyl ester a - - 10,23 - - 5,65 
11,92 Butanoic acid, 4-pentenyl ester  - - - - - 0,67 
12,22 Propanoic acid, hexyl ester  - - - - - 0,23 
13,02 Butanoic acid, 2-methyl-, 3-methylbutyl ester b,c - - - 0,44 - - 
13,10 Butanoic acid, 3-methyl-, 2-methylbutyl ester  5,78 0,09 15,21 7,12 0,02 8,40 
13,31 Propanoic acid, 2-methyl-, hexyl ester a,b 3,04 0,63 237,88 6,83 0,12 188,17 
14,09 Butanoic acid, 2-methyl-, pentyl ester a,d - - 84,18 5,96 - 52,96 
14,88 1,3,5,8-Undecatetraene  - - 1,70 - - - 
15,05 Butanoic acid, 3-hexenyl ester, (Z)- d - - - - - 0,85 
15,51 Butanoic acid, 2-methyl-, hexyl ester a,b,c 8,17 0,82 321,91 13,70 0,23 216,04 
15,63 Butanoic acid, 3-methyl-, hexyl ester a,b,c 120,71 0,69 467,18 231,83 0,24 501,45 
15,82 Isopentyl hexanoate a - - 0,75 0,14 - 1,64 
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Table 1. (Continued)        

RT Compound Ref. MG   
Hab 

MG       
Jal 

MG       
F1 

MR   
Hab 

MR      
Jal 

MR       
F1 

15,94 α-Citronellol  - - - 3,76 - 1,60 
16,00 Propanoic acid, 2-methyl-, heptyl ester b,c - - 0,50 - - 1,73 
16,08 β-Cyclocitral d - - 3,02 0,23 - 1,04 
16,30 n-Valeric acid cis-3-hexenyl ester   1,00 - 63,97 39,58 - 32,71 
16,34 Butanoic acid, 3methyl 3 hexen-1-yl ester  33,01 - 81,41 135,75 - 6,61 
16,46 Pentanoic acid, (2E)-2-hexen-1-yl ester  53,85 0,10 54,23 - - 2,29 
16,71 Pentanoic acid, hexyl ester  - - 49,11 0,67 - 51,79 
17,66 Cyclohexanol, 3,3-dimethyl-  a,b,c,d 72,86 - - 42,37 - 0,30 
18,08 Hexanoic acid, hexyl ester a,b,c,d 1,65 0,41 46,76 10,41 0,17 69,40 
18,50 Butanoic acid, 2-methyl-, heptyl ester a,c 3,89 - 0,54 6,44 - 0,27 
18,65 Hexanoic acid, 3-hexenyl ester, (Z)- c,d 0,57 - 4,14 - - - 
19,22 2-methyl-Tridecane  6,74 1,29 71,89 13,18 0,85 36,25 
19,51 Ylangene  2,62 0,08 - 0,33 0,08 - 
19,59 Copaene  0,30 0,04 2,34 0,29 - 1,35 
19,82 Butanoic acid, 3-methyl-, phenylmethyl ester a 1,79 - 13,34 0,74 - 3,06 
19,82 β-Cubebene c,d 1,28 - - 1,85 - - 
19,99 Tetradecane a,b 0,74 - 8,24 0,03 0,02 7,21 
20,01 α-Cubebene  - - - 4,73 - - 
20,04 Butanoic acid, 3-methyl-, octyl ester  b 5,66 - - 0,77 - - 
20,69 Thujopsene  0,34 - - - - - 
20,76 Butanoic acid, 2-methyl-, octyl ester  c,d 0,63 - - 0,31 - - 
20,99 E-2-Hexadecacen-1-ol  9,44 1,07 58,07 18,43 0,73 26,36 
21,22 α-Himacalene  a,c,d 0,26 0,02 - 0,83 0,03 0,35 
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Table 1. (Continued)        

RT Compound Ref. MG   
Hab 

MG       
Jal 

MG       
F1 

MR   
Hab 

MR      
Jal 

MR       
F1 

21,22 β-Farnesene a,c,d 0,55 0,02 - 1,69 0,01 0,16 
21,34 Tetradecane, 2-methyl- b,c,d 5,02 1,07 50,29 12,61 0,78 30,73 
21,67 Longifoliene  4,76 0,02 5,60 1,18 0,01 2,58 
21,83 Allo-Aromadendrene  a 7,82 - - 0,55 - - 
21,88 β-Ionone  a,c,d - - - 0,17 - - 
21,97 (Z)-β- caryophyllene c,d 0,77 12,88 276,88 - 6,24 102,67 
22,07 Pentadecane a,b,d 1,21 0,11 15,69 2,65 0,07 8,87 
22,21 α-Longipinene  - 0,04 - 19,51 0,03 0,20 
22,44 γ-Cadinene c,d - - - 0,22 - - 
22,91 Benzoic acid, hexyl ester a,c,d - - - - - 0,31 
22,97 Octanoic acid, hexyl ester  0,63 - - - - - 
23,10 3-Hexadecene,  (Z)-  - 0,02 - - 0,01 - 
23,37 2-methyl-Pentadecane  0,34 0,54 9,36 0,80 0,49 3,60 
23,68 Squalene  - - - 0,09 - - 
23,91 2-(2-Methyl-propenyl)-cyclohexanone  0,94 - 6,43 3,24 0,01 4,78 
23,99 Hexadecane a,d - 0,19 11,58 0,38 0,05 4,97 
24,46 Longifolenaldehyde   - - - - 0,01 - 
24,96 2-Methyl-Z-7-hexadecene  - 0,16 - - 0,17 - 
25,24 2-Methyl-Hexadecane  - 0,44 2,84 0,05 0,44 1,25 
25,45 Pentadecanal a,c,d - 0,04 - 0,11 0,11 0,19 
25,89 Heptadecane a - 0,20 1,95 - 0,17 1,12 
26,04 Decanoic acid, hexyl ester a,d - - - - 0,01 - 
  Total   357,0 21,4 2019,7 591,5 11,2 1412,3 

 The ralative abundance is expressed as the ratio of each compound peak area to that of the internal standard's.   Identification 
confirmed by literature: a, Forero et al., 2009; b, Sousa et al., 2006; c, Pino et al., 2007; Pino et al., 2006.                 
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Figure 1. Changes of the major chemical classes in two ripening stages, mature green (MG) and 
mature colored (MR), of Habanero, Jalapeno and F1 hybrid chili peppers. Percentage on total 
volatile content. (MCC= miscellaneous of cyclic compounds; others= monoterpenes, 
norisoprenoids, aldeydes, alcohols). 

 
Figure 2.Volatile compounds relative abundances of Habanero, Jalepeno and F1 hybrid 
at two different stage of maturity, mature green (MG) and mature colored (MR). The 
ralative abundance is expressed as the ratio of each compound peak area to that of the 
internal standard's. Values normalized are expressed in log scale. 
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Figure 4. Results of the scoring process with SO13 SSR marker. On right: DNA marker (200 
base pairs), Habanero, Jalapeno, F1 hybrid bands. On left: some of the results of F2 progeny.  
Forward primer: 5' ATTGTGATAGCAACCCCTGG 3';  
Reverse primer 5' CACAGATGAGGGCACAAATG 3'. 
 

200 bp 
200 bp 

Odd50   Ga23      GA6 

  H J F1      H J F1     H J F1 

 

Figure 3. Confirmation of hybrid nature of F1 
with multi-locus SRAP markers. Primer 
combination with Em2-ODD50, Em2-Ga23and 
Em2GA6. H= Habanero; J= Jalapeno; F1= 
hybrid. The arrows indicated bands in F1 from 
both parent. 
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CCCCCC H A P T E RH A P T E R  33  

C O N C L U S I O N SC O N C L U S I O N S  

Compositional changes in volatiles profile in fruit and vegetables play a fundamental role 

in sedentary life of plants. Volatiles involvement in plant reproduction and defense in biotic 

stress has been widely assessed, while the understanding of their protective effect against 

abiotic stress is still at its infancy. In first chapter of this thesis we focused on volatile 

involvement in abiotic stress and their role as antioxidant and/or stress signaling in salt stress 

adaptation mechanism. Isoprenoids can have direct and indirect modality of action: protect the 

cell from oxidative damage scavenging reactive oxygen species, and indirectly inducing 

transcription of stress-related genes. Volatile isoprenoids biosynthesis under stress conditions 

may follow a feedback-feed forward mechanism, where the stress response is translated into an 

increase in VIPs content and, in turn, the increased VIPs content may trigger the stress 

response.  

However, it is still unclear how their stress-induced accumulation in the plant may 

concomitantly act in stress response signaling. Furthermore, we discussed the role of eugenol as 

prooxidant and its hypothetical involvement in ABA-independent mechanism of stomatal 

closure by generating severe imbalance in cellular redox status and consequently enhancing the 

H2O2 levels in the cells. The two cultivars of basil have shown differences in salt stress 

tolerance in terms of response threshold. We can assume that constitutive morphological 

characteristics (stomatal index and growth adaptation) and metabolic profile (composition of 

the volatiles pool) may have been critical component for improving stress adaptation in 

Genovese plants.  
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In the second chapter we characterized the aroma profile of two of the most common 

chili peppers and the influence of the ripening stage in determination of the total profile. Fruit 

maturation and turning in color have different effects on volatile flavor of the two species. In 

Habanero the total volatiles content enhanced during maturation, and the profile at orange 

stage is richer in esters with their fruity notes. On contrary, fruit maturation in Jalapeño 

negatively affected the aroma profile; the total volatile content decreased, many compounds 

disappeared and weren’t replaced by other detectable components.  

The identification of volatile composition at different stages of maturity may facilitate 

producers and industry in selection of fruits and vegetables for the market, and enhance 

agriculture sustainability by reduction of waste. Moreover, based on polymorphism in aroma 

profile we have chosen these two species to identify loci affecting flavor volatiles in chili 

pepper. Molecular markers for pepper fruit quality may be useful tool for breeders to efficiently 

create improved cultivars with novel combination of volatile compounds that could extend the 

market segment of the pepper industry.  

Additionally, knowing the genetic control of the major fruit quality traits will provide 

breeders with a handle to optimize content of these compounds to encounter the consumer 

preference and acceptance. 



 72 

Acknowledgements 

I would like to thank Albino Maggio, for his precious suggestions, his support during 

these three years and for the way he instilled in me passion for science. Thanks to Professors 

Giancarlo Barbieri and Stefania de Pascale for their supervision and guide in my education 

process, and their enthusiastic support in my decisions. Thanks to Florence Zakharov to hail 

me in her aromatic lab, with her great availability, kindness and precious teaching. Thanks to 

Kenneth Shackel to kindly lend me the “bomb”, receiving me in his lab, and for the interesting 

discussions on water relations. Thanks to Oliver Fiehn to allow me to reconnoitre in MPP 

world, and Mine Palazoglu for her smile and her golden advises.  

Thanks to Rosario for the unforgettable time spent together. And I wish to thank 

Viviana, Gustavo, Piero, Nunzio, Antonella, Emilio, Roberta e Francesco for their great 

company and precious friendship that had make this PhD experience a memorable three-years 

trip with a great view. Thanks to Anna and Daniela for their welcome to Davis, the funny time 

spent together and their great friendship. Thanks to Annarella and all the auletta-guys for their 

company and sympathy. Thanks to Minmin, Mario, Kyung Hwan, Eleonore and the 

undergrads for the friendly lab atmosphere.  

My special thanks goes to Nathan that helped me to survive at freak of Francesca, and 

for the last three months with his unique patience and cares, for the exercise-break, and his 

sincere love.  

Finally, I would like to thank my family, mom, dad, Pietro, Ale e Armando for their love, 

support, encouragement and their presence in my life. 

Thanks to all of you, 

 

Simona 


	Tesi Vallone_2009
	Tesi Vallone_2009.2
	Tesi Vallone_2009.3
	Tesi Vallone_2009.4
	Tesi Vallone_2009.5
	Tesi Vallone_2009.6



