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Introduction 

The daily work of professionals involves making a series of decisions. In fact, the world relies 

on systems designed by engineers and business people. Thus, the quality of decisions made by 

these two categories of professionals is of critical importance.  

Decisions are made by looking at the relevant data and making judgments.  Making decisions 

on issues with important consequences has become a highly complex problem due to the 

many competing forces under which the world is operating today. Anyone who holds a 

technical, managerial, or administrative job these days is faced with making decisions daily at 

work. Decisions may involve: 

• Determining which ingredients and in what quantities to add to a mixture being made 

so that it will meet specifications on its composition; 

• Selecting one among a small number of suppliers to order raw materials from; 

• Determining the quantities of various products to manufacture in the next period; 

• Allocating available funds among various competing agencies; 

• Deciding which route to take to go to a given location; 

• Selecting an appropriate location for an industrial facility; 

• Determining how many check-in desks to open during airport operating hours. 

A situation such as one of these requiring some decisions to be made is known as a Decision 

Making Problem. Today it is essential to make decisions on a rational basis: the most rational 

way for solving decision making problems is through quantitative analysis. This implies the 

adoption of the following steps: 

• Precise definition of the problem; 

• Construction of a mathematical model of the problem; 

• Solution of the model 

• Implementation of the solution. 

The mathematical model associated with a decision making problem is charachterized by the 

following basic elements:  

• An Objective Function, expressing a decision criterion to be optimized; 

• A set of Constraints, limiting the feasible solutions to the problem. 

As regards the solution of the mathematical model associated with the problem, several 

methods have been developed, according to the different complexity of the problem to be 

faced. Traditional approaches to solve these problems can be classified into two main 

categories: exact methods and heuristic methods. 
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For a long time, these optimization techniques have represented the only available approach 

to solve different types of decision-making problem, both at strategic and tactical levels. 

In the last decade, agent-based computing has been suggested as a promising technique for 

problem whose domains are distributed, complex and heterogeneous (Weiss, 1999; 

Wooldridge, 2002), also thanks to the availability of many commercial and open source codes 

including graphical interfaces for the elements of the problem. Application to several classes 

of optimization problems have been developed, ranging from scheduling and supply chain 

planning to routing. 

In this dissertation, a general Agent-Based framework for modeling various location problems 

is proposed. The high relevance of location problems in the operations research literature 

arises from their wide spectrum of real applications, including decision optimization in 

industrial management, logistics and territorial planning. Most of these optimization problems 

fall in the class of NP-hard problems, motivating the search for heuristic and approximated 

algorithms. Together with the description of an Agent-Based framework, we present some 

computational results confirming the suitability and the effectiveness of the proposed 

approach. 

The thesis is organized as follows: in the first chapter, an overview of Agent-Based Modeling 

and its foundations is proposed; then, basic concepts regarding Optimization Problems and 

Methods are provided. In the third chapter, a review about Agent-Based Methods for 

Optimization Problems is proposed. Given that Agent-Based Models characteristics seem to 

be very suitable to Location Problems, chapter four provides an overview of the most 

common problems belonging to this class, while in chapter five a framework for modeling 

and solving Location Problems is presented, together with computational results and further 

directions of research. 
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Chapter 1 

Agents and multi-agent systems 

 

1.1 Introduction 

Multi-Agent systems (MASs) consist of a set of elements (agents) characterized by attributes, 

which interact with each other through the definition of appropriate rules in a given 

environment. MASs can be useful to reproduce many systems related to economics and social 

sciences, where the structure can be designed through a network (Billari et al. (2006), Conte 

et al. (1997)). Through ABMs, it is possible implementing an environment with its features, 

forecasting and exploring its future scenarios, experimenting possible alternative decisions, 

setting different values for the decision variables and analyzing the effects of these changes 

(see Axelrod (1997)). 

At an aggregated level, the use of ABMs can help in understanding general properties and 

patterns concerning the whole scenario (Billari et al. (2006)) that could not be deduced nor 

forecasted by the observation of each agent, due to the complexity of the interactions 

occurring among the elements of the system. 

Nowadays, the Agent concept is finding wide application in several contexts, ranging from 

Artificial Intelligence research to the development of methodologies for complex decision 

making problems.  

In this introductory chapter the Agent concept with its characteristics and properties is 

illustrated. Then, Multi-Agent systems are introduced with a description of interaction and 

communication protocols among agents.  

 

1.2 Fundamental definitions 

At this moment, the literature is not able to provide a universally accepted definition of the 

Agent concept. As this concept is being utilized in several and distinct disciplinary areas, 

different characteristics can be considered more relevant according to the specific application 

field.  

However, a growing number of researchers agree on considering the definition of Wooldridge 

and Jennings (1995) that can be stated as follows:  
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“An Agent is a computer system operating in an environment, capable of acting 

autonomously in order to achieve some predetermined objectives”. 

 

The elements of this definition can be clarified as follows: 

• A Computer System is a set of hardware and software components brought together 

in order to perform some tasks;  

• The environment is not further defined, as its characteristics can depend on various 

factors; 

• The agent is defined as autonomous as it acts on the basis of its own objectives. Thus, 

it controls its internal state and its behavior.   

Figure 1.1 depicts an abstract schema of an agent and its environment. In particular, the agent 

acts on the basis of its objectives; the output of these actions can modify the environment. The 

action to be performed is selected, among a set of feasible actions, according to a set of data 

coming from the environment that the agent is able to interpret and register.  

 

 

 

Figure 1.1 – An Agent and its Environment 

 

Thus, the set of actions that an agent can perform depends on the characteristics of the 

environment in the instant when the action takes place.  

However, in many situations characterized by an high complexity, the agent doesn’t have a 

global control vision of the environment, but only a partial one; consequently, it can influence 

or be influenced only by a part of the environment. Hence, an agent decisional behavior can 

strongly depend on its “position” in the environment.  
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It emerges that the characteristics of the environment can influence the achievement of 

agents’ objectives. For this reason, it is relevant to classify environment characteristics 

according to a synthetic schema, like the one proposed by Russel and Norvig (1997) based on 

the following features: 

• Accessibility. A completely accessible environment is an environment in which an 

agent is capable of accessing all the information about the state of the environment 

itself. This characteristic is not likely to be verified in highly complex environments 

(like, for example, the Internet network) that report a lower accessibility level.  

• Determinism. In a deterministic environment the action of an agent determines one 

and only one effect; thus, there is no uncertainty about the state that an agent can reach 

as a result of a given action. For agents operating in non-deterministic environments 

behavior predictability is difficult.  

• Episodicity. An episodic environment is characterized by the independence of the 

actions of each agent on the history of the agent itself. Such an environment is 

endowed with a low complexity level, as an agent can decide its behavior without 

recalling its past states. 

• Staticity. In a static environment, only agents can modify environment characteristics; 

on the contrary, in a dynamic environment, environment characteristics change 

according to time.  

• Continuity. If the environment allows only a limited and fixed number of actions that 

can be executed, it can be defined as discrete; otherwise, it is a continuous 

environment.  

Different degrees of these characteristics correspond to different complexity degrees. It can be 

stated that, from a theoretical point of view, the most complex environment is a scarcely 

accessible, non-deterministic, non-episodic, dynamic and continuous one.  

An elementary example of an agent operating in its environment can be represented by a 

simple control system, like a thermostat placed in a room. The objective of the thermostat is 

to keep constant the temperature in the room. The agent has two possible courses of action: 

switching on or not a heating system. This choice is made on the basis of the temperature of 

the room, measured by the agent. The action selected by the agent will influence the state of 

the environment (the temperature of the room); at the next iteration, the agent will perceive 

another state of the environment and will change, if necessary, its course of action. 
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1.3 Agents’ characteristics 

Agents are often defined as intelligent. Also in this case, a widely accepted definition of 

intelligence cannot be retrieved in the extant literature. The most widespread one defines an 

intelligent agent through the characteristics of autonomy and flexibility.    

Having already clarified the meaning of autonomy, it must be highlighted that flexibility 

implies the following three features: 

• Re-activeness. Agents answer in a precise way to signals coming from the 

environment. 

• Pro-activeness. Agents are endowed with goal-directed behaviors. They take the 

initiative in order to satisfy their design objectives.  

• Social ability. Interactions occur among entities through a communication language in 

order to satisfy the design objectives. 

Usually, the first two characteristics are not present at the same time in an agent. The pro-

activeness implies that agents, on the basis of some inputs, choose, autonomously and 

depending on their specific objectives, a course of action.  

On the contrary, a reactive agent simply answers to the signals coming from the environment; 

it does not have the ability to pursue an objective.   

In the following, several classes of agents will be introduced, each of them presenting 

different degrees of the characteristics previously introduced. 

 

1.4 Agents’ categories 

Four categories of agents, based on different degrees of the previously illustrated 

characteristics, will be introduced (Weiss, 1999): 

• Standard agents; 

• Purely reactive agents; 

• Perceptive agents;  

• Agents with state. 

For each category of agents, properties and characteristics will be described according to the 

mathematic formulation introduced by Wooldridge (1999). 

 

1.4.1 Standard Agents 

The first category of agents is constituted by the standard agents that can be graphically 

represented as in Figure 1.1. The mathematical formulation proposed by Wooldridge (1999) is 
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based on the assumption that the couple agent/environment can be represented by the two 

following sets: 

• A set � � ���� � � ��	, whose elements are the states of the environment; 

• A set 
 � ���� � � ��	 whose elements are the actions that an agent can perform. 

In each instant the environment is in a given state.  

An action can be formalized as:  

���������� � 
 

Where �� is a sequence of states from S and A represents the action developed by the agent, 

determined by the states of the environment. 

Thus, given the configuration reached by the environment, the agent chooses to perform an 

action assuming, as input, data coming from the environment itself. On the other hand, the 

state reached by the environment will be determined by the result of the action implemented 

by the agent at the previous iteration that depends on the environment itself. This process 

explains the loop illustrated in figure 1.1. 

The behavior of the environment can be modeled as: 

�������������� � 
 � ���� 
For each state � � � and for each action � � 
 the environment identifies the set of the states 

���� that can be reached by performing the action a by an agent in the state s. If one and only 

one solution corresponds to each couple state-action, the environment is a deterministic one.  

Thus, the interaction between the agent and the environment can be represented as a sequence 

of states determined by the series of actions performed by the agent.  

For instance, in the sequence 

��
 !� ��

 "� �#
 $� �%

 &��  '(")*+ �,
 ')+ 

�� is the initial environment state (for instance, the state in which the agent starts operating) 

�, is the uth action that an agent chooses to perform, �, is the uth state of the environment that 

derives from the action �,-� performed by the agent in the state �,-�. 

The previous sequence represents the history of the evolution of an agent in its environment, 

if the following two conditions are respected: 

.�/ � 0� �, � ���������� ��� � � �,�� 
.�/ � 0 1 �/ 2 3� �, � � �������������,-�� �,-�� 

The behavior of a standard agent can be tracked through the set of all the sequences that 

satisfy these two conditions (Wooldridge, 1999). 
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1.4.2 Purely reactive agents 

Some agents decide action to be performed without taking in account their past history. These 

agents are defined purely reactive because they just directly answer to changes in the 

environment, without pursuing an objective.  

Thus, a purely reactive agent can be represented as  

������ � � 
 

Hence, actions are just based on the current environment state. It is useful to notice that a 

purely reactive agent is a particular standard agent whose environment state sequence just 

includes the current state.  

The previous example of the thermostat represents a typical example of reactive agent. A 

typical action can be depicted as follows: 

�������� � 4�5��6�7��88��������������8�� � 7�����7����9����/��
�5��6�7�������������������������������������������������������6��5���

: 

  

1.4.3 Perceptive agents  

Perceptive agents are able to perceive changes in the environment (Figure 1.2). This is 

formalized through the introduction of the see function that translates the ability of an agent 

of observing the environment in which it is placed, while the action is the decision making 

process associated with the selection of the course of action to be pursued. For instance, the 

see function can be a sensor that perceives the changes happening in the environment.  

 
Figure 1.2 – A Perceptive Agent and its Environment 

 

The see function allows transforming an environment state into an agent’s perception, as 

listed below:  

������� � ; 
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The action function allows transforming the perception sequence into an action.  

��������;� � 
 

If the agent can distinguish as many perceptions as the available states, then it is omniscient 

and it has a perfect perception of the environment. If the agent has no perception ability, thus 

the agent is not capable of distinguishing between different environment states. 

These simple definitions allow us to explore some interesting properties of agents and 

perception. Suppose that we have two environment states, s1∈S and s2∈S, such that s1≠ s2 but 

see(s1) = see(s2). Then two different environment states are mapped to the same percept, and 

hence the agent would receive the same perceptual information from different environment 

states. As far as the agent is concerned, therefore, s1 and s2 are indistinguishable.  

 

1.4.4 Agents with state 

As represented in figure 1.3, an agent with state memorizes the states it has visited. If I 

identifies the set of all the internal states of an agent, it can be introduced a new function, 

named next, that links an internal state to a perception in order to reach another internal state: 

��<����= � ; � = 
while the perception function is: 

������� � ; 

and the action one: 

��������= � 
 

Thus, the agent starts from an initial state �� and analyzes the environment; on the basis of the 

environment state s1  it produces a perception; the internal state of the agent is then modified 

by the function next(��� ��������. The action selected by the agent will be:  

action (next(��� �������� 
 Then, the agent restarts the process for a new cycle. 
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Figure 1.3 – An Agent with State and its Environment 

 

1.5 Hybrid agents’ architectures  

In this paragraph, other kinds of agents’ architectures will be introduced. These architectures 

try to combine characteristics from agents belonging to different classes. In particular, the aim 

is to match the capability to react to changes in the environment (typical of purely reactive 

agents) and a sufficient degree of pro-activeness (typical of standard deliberative agents), in 

order to pursue long-term objectives. 

Thus, two more agents categories can be presented: 

• Belief-Desire-Intentions agents; 

• Layered Architectures. 

 

1.5.1 Belief-Desire-Intentions agents 

The architecture of this class of agents derives from a practical reasoning that in each time 

instant allows the agent to decide and plan its action on the basis of its own objectives. A BDI 

(acronymous of Beliefs-Desire-Intentions) agent makes its evolution depend on: 

• Beliefs, representing what the agent knows or believes to know; 

• Desires, representing what the agent wants to obtain;  

• Intentions, representing what the agent chooses to obtain (a subset of the Desires set).  

Figure 1.4 shows the behavior of a BDI agent as described by Bratman et al. (1988). Seven 

main components can be identified: 

• A set of current Beliefs, reproducing the information on the environment; 
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• A Believe Revision Function (BRF) that receives a perception and the current beliefs 

of the agent as input to create a new set of beliefs; 

• An Option Generation function that determines the Desires of the agent on the basis 

of its own beliefs and its intentions; 

• The above introduced Desires set; 

• A filter, representing the deliberative part of the process, that determines the intentions 

of the agent depending on its beliefs and desires; 

• The above introduced Intentions set; 

• An execute function, that selects the action to be enacted taking in account current 

intentions. 

A more formalized structure can be introduced defining the following sets: 

• >�?, the set of all the possible beliefs in a given instant;  

• @��, the set of all the possible desires in a given instant;  

• =���, the set of all the possible intentions in a given instant. 

Thus, in a given instant, the state of an agent can be identified with the triple (B,D,I), in which  

> A >�?� @ A @��, e = A =��.  
The above introduced BRF can be formulated as follows: 

���>�? � ;� �� �>�?� 
Thus, starting from current beliefs and perceptions (the cartesian product of those sets 

representing the domain of the function), �� determines a new beliefs set. 

The Option Generation function (�#� is defined as: 

�#�>�? � =��� � �@��� 
�# allows to define, starting from current beliefs and intentions, a new set of desires.  

The filter function represents the deliberative process; it produces the new set of intentions, 

on the basis of the beliefs and of the previously modified desires, as follows: 

�%�>�? � @�� � =��� � =�� 
The filter function �% requires the respect of the following constraint:  

B.�>� � � �>�?�� .�@ � � �@���� .�=� � � �=���C� 8�?�����>� @� =� A �=���D�@����� 
This means that the filter function must not introduce any new belief or intention; on the 

contrary, the output of the filter function must belong to the union of the previously defined 

intentions and desires sets. 

Finally, the execute function associates an action with each intention, as follows:  

�<�/�� 1 ��E�=��� � 
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Figure 1.4 - BDI agent theoretical working schema 

 

1.5.2 Layered Architectures 

Starting from the need for combining reactive and proactive behaviors, Muller (1995) 

proposed the idea of agents based on layered architectures. In this kind of agents, several 

characteristics (typical of different categories of agents) are reproduced through layer-based 

hierarchical structures, in which each layer is representative of a part of the agent 

corresponding to a given characteristic.  

A layered architecture must include at least two layers: a proactive one and a reactive one. 

Two different hierarchical structures can be utilized to manage interactions among layers: 

• Horizontal Structure: each layer is connected to both input and output sensors; 

therefore, each layer behaves like a single agent; 

• Vertical Structure: the input sensor is connected to the first layer, while the output 

sensor is connected to the last one.  

The horizontal structure (represented in Figure 1.5) is straightforward: if an agent has to 

exhibit n different kinds of behaviors, n layers have to be implemented. 
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Figure 1.5 - Horizontal structure 

 

This approach presents some weaknesses: the general behavior of an agent could not be 

coherent, as each layer could compete with the other ones. To this aim, a negotiation function 

has to be introduced, in order to assign, in a given time instant, the capability of pursuing an 

action to a given layer. However, even if this modification can solve the coordination 

problems connected to this particular structure, it can cause an increase in the complexity of 

the model: if any of the n layers can choose among m actions, the negotiation function has to 

choose among �� possible couples layer-action. If m and n are very large, this can be a 

serious disadvantage. 

In the vertical structure, there are two possible configurations: 

• One Pass Architectures, in which control flows sequentially through each layer, until 

the final layer generates action output (Figure 1.6); 

• Two Passes Architectures, in which information flows up the architecture (the first 

pass) and control then flows back down (Figure 1.6).  

In both one pass and two pass vertically layered architectures the complexity of interactions 

between layers is reduced: since there are n-1 interfaces between n layers, then if each layer is 

capable of suggesting m actions, there are at most �#�� F G� interactions to be considered 

between layers. This is clearly much simpler than the horizontally layered case.  
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Figure 1.6 - Vertical Structures: one pass (left); two passes (left) 

 

1.6 Multi-agent systems 

Agents operate and exist in some environment, which ypically is both computational and 

physical. The environment might be open or closed, and it might or might not contain other 

agents. Although there are situations where an agent can operate usefully by itself, the 

increasing interconnection and networking of computers is making such situations rare, and 

usually the agent interacts with other agents. Whereas the previous paragraph defined the 

structure and characteristics of an individual agent, the focus of this paragraph is on systems 

with multiple agents, in order to learn how to analyze, describe, and design environments in 

which agents can operate effectively and interact with each other productively.  

But why should we be interested in distributed systems of agents? Indeed, centralized 

solutions are generally more efficient: anything that can be computed in a distributed system 

can be moved to a single computer and optimized to be at least as efficient. However, 

distributed computations are sometimes easier to understand and easier to develop, especially 

when the problem being solved is itself distributed. Distribution can lead to computational 

algorithms that might not have been discovered with a centralized approach. There are also 

times when a centralized approach is impossible, because the systems and data belong to 
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independent organizations that want to keep their information private and secure for 

competitive reasons. 

The information involved is necessarily distributed, and it resides in information systems that 

are large and complex in several senses:  

• they can be geographically distributed;  

• they can have many components; 

• they can have a huge content, both in the number of concepts and in the amount of 

data about each concept;  

• they can have a broad scope, i.e., coverage of a major portion of a significant domain.  

Also, the components of the systems are typically distributed and heterogeneous. The 

topology of these systems is dynamic and their content is changing rapidly. 

As will be shown in the following, multi-agent systems prove to be a viable approach for 

studying systems endowed with these characteristics (Weiss, 1999). 

 

1.6.1 The need for coordination 

Within a multi-agent system, each agent has objectives to pursue. Obviously, these objective 

can contrast with other agents’ ones. Thus, to pursue their own objectives, agents have to 

communicate.  

Communication capabilities include the abilities to receive and send messages. This is 

necessary to ensure a coordination mechanism among agents themselves, in order to prevent 

and avoid conflicts among agents’ objectives. 

Coordination mechanisms can be essentially partitioned into two main categories: 

• Cooperation, a coordination form among non-competitive agents;  

• Competition, a coordination form among competitive agents (agents endowed with 

conflicting objectives) that exchange messages in order to get a final agreement. 
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Figure 1.7 - Coordination mechanisms (Weiss, 1999). 

 

Implementing a cooperation-based coordination mechanism means employing planning 

approaches to reduce resource contention and to ensure the achievement of global objectives. 

These planning approaches can be distinguished into two main categories: 

• Distributed approaches, in which agents are endowed with self-organizing approaches 

for resource sharing and goal pursuing; 

• Centralized approaches, in which a mediator agent is assigned with the task of 

regulating and supervise agents’ behaviors. 

Implementing a competition-based coordination mechanism means reproducing negotiation 

forms among agents.  

In order to coordinate their actions, agents employ two different protocols:   

• Interaction protocols, that govern the exchange of a series of messages among agents 

— a conversation; 

• Communication protocols, that rule the way in which a single message is composed. 

Communication protocols enable agents to exchange and understand messages. Interaction 

protocols enable agents to have conversations, which for our purposes are structured 

exchanges of messages.  

 
1.6.2 Interaction Protocols 

If the agents have their own objectives to pursue, the interaction protocol is aimed at 

maximizing the pay-off of the single agent; otherwise, if agents are endowed with similar 

Coordination 

Cooperation Competition 

Negotiation Planning 

Distributed
  

Centralized 
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objectives, the protocol is oriented to pursue a global objective without the introduction of a 

centralized control. In the last case, it is necessary to decide how to: 

• Determine shared objectives; 

• Determine common tasks; 

• Avoid unnecessary conflicts; 

• Share knowledge and experience among agents. 

As a concrete example of these, a communication protocol might specify that the following 

types of messages can be exchanged between two agents: 

• Proposal  of a course of action; 

• Acceptance a course of action; 

• Rejection of  a course of action; 

• Disagreement with a proposed course of action; 

• Counterproposal of a course of action. 

Given two agents a and b, interaction protocols phases can be synthesized in the following 

stages (Weiss, 1999) (Figure 1.8): 

• Agent a proposes a course of action to  agent b; 

• Agent b evaluates the proposal and: 

§ sends acceptance to agent a, or 

§ sends rejection agent a, or 

§ sends disagreement to agent a, or   

§ sends counterproposal to agent a. 

In the following, two main interaction protocols will be described: the first one based on a 

cooperative approach, the second one on negotiation approach, that allows to take in account 

competitive agents. 

 

Cooperation-based interaction protocols 

A basic strategy shared by many of the protocols for cooperation is to decompose and then 

distribute tasks. Such an approach can reduce the complexity of a task: smaller subtasks 

require less capable agents and fewer resources. However, the system must decide among 

alternative decompositions, if available, and the decomposition process must consider the 

resources and capabilities of the agents. Also, there might be interactions among the subtasks 

and conflicts among the agents.  
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Task decomposition might be done spatially, based on the layout of information sources or 

decision points, or functionally, according to the expertise of available agents. Once tasks are 

decomposed, they can be distributed according to the following criteria: 

• Avoid overloading critical resources; 

• Assign tasks to agents with matching capabilities; 

• Make an agent with a wide view assign tasks to other agents; 

• Assign overlapping responsibilities to agents to achieve coherence; 

• Assign highly interdependent tasks to agents in spatial or semantic proximity. This 

minimizes communication and synchronization costs; 

• Reassign tasks if necessary for completing urgent tasks. 

The following mechanisms are commonly used to distribute tasks: 

• Market mechanisms: tasks are matched to agents by generalized agreement or mutual 

selection (analogous to pricing commodities); 

• Contracting mechanism: announce, bid, and award tasks; 

• Multi-agent planning: planning agents have the responsibility for task assignment; 

• Organizational structure: agents have fixed responsibilities for particular tasks. 

 
Figure 1.8 - Interaction protocol example (Weiss, 1999). 
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Negotiation-based interaction protocols:  

A frequent form of interaction that occurs among agents with different goals is defined as 

negotiation. Negotiation is a process by which a joint decision is reached by two or more 

agents, each trying to reach an individual goal or objective (Weiss, 1999). The agents first 

communicate their positions, which might conflict, and then try to move towards agreement 

by making concessions or searching for alternatives. 

Negotiation’s main features can be listed as follows: 

• The language used by participant agents; 

• The protocol used to represent negotiations; 

• The decision making rules each agent utilizes to determine its positions and the 

criteria to reach an agreement. 

Two approaches can be utilized to set negotiation techniques up:  

• Environment-centered; 

• Agent-centered. 

Environment-centered techniques focus on the following problem: "How can the rules of the 

environment be designed so that the agents in it, regardless of their origin, capabilities, or 

intentions, will interact productively and fairly?". The resultant negotiation mechanism 

should have the following attributes: 

• Efficiency: agents have to minimize resource wasting to reach an agreement; 

• Stability: no agent should have an incentive to deviate from agreed-upon strategies; 

• Simplicity: the negotiation mechanism should impose low computational on the 

agents. 

• Distribution: there is no central controller; 

• Symmetry: the mechanism should not be biased against any agent. 

According to Rosenschein e Zlotkin (1999), three environment types can be identified on the 

basis of the previously defined characteristics: 

• Task-oriented domain: it is characterized by non-conflicting tasks among agents; tasks 

can be divided among agents; the object of the negotiation is the distribution of tasks 

among agents, in order to achieve an allocation that allows each agent maximizing its 

pay-off; 

• State-oriented domain: it is characterized by the presence of complex interactions in 

agents’ actions. This means that agents’ actions can both help or disturb other agents’ 
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plans. Therefore, the negotiation process will be focused on developing shared plans, 

in such a way to maximize positive interactions among agents. 

• Worth-oriented domain: each agent is endowed with a function that measures the 

acceptability degree of the reached state. Thus, each agent can also accept sub-optimal 

solutions, if this allows obtaining a better solution at an aggregated level. 

Agent-centered negotiation mechanisms focus on the following problem: "Given an 

environment in which my agent must operate, what is the best strategy for it to follow?" 

(Weiss, 1999). Several mechanisms based on this architecture have been developed; one of 

the most utilized ones assumes that agents are economically rational individuals. Agents 

formulate a set of courses of actions; a cost function is associated with each course of action. 

Each agent is oriented to maximize its utility and to minimize its costs. There are three 

possible solutions to rule agents’ interactions: 

• Conflict: if there are no plans that are efficient for more agents; thus, agents compete 

to get the best plans; 

• Compromise: agents try to pursue their own objectives by competing; if no efficient 

solutions are possible, they choose to cooperate;  

• Cooperation: agents always choose to pursue common objectives. 

 

1.6.3 Communication protocols 

Communication protocols aim at creating common languages among agents. There are three 

fundamental aspects that have to be defined to create a communication protocol:  

• Syntax, regarding how communication symbols are structured; 

• Semantics, regarding what the symbols denote;  

• Pragmatics, regarding how the symbols are interpreted. 

The basic element of a communication protocol is a message that is made up of sequences of 

symbols. Messages can be classified according to several dimensions, as reported in table 1.1.  

There are two basic message types: assertions and queries. Assertions express actions requests 

that agents exchange each other; queries are a more complex message type, as they require the 

capabilities both to express and answer questions. 

Every agent, whether active or passive, must have the ability to accept information. In its 

simplest form, this information is communicated to the agent from an external source by 

means of an assertion. In order to assume a passive role in a dialog, an agent must 



21 
 

additionally be able to answer questions, i.e., it must be able to accept a query from an 

external source and send a reply to the source by making an assertion. 

 

Dimensions Effects 
Descriptive vs. Prescriptive 
 

Some messages describe phenomena, while 
others prescribe behavior. Descriptions are 
important for human comprehension, but are 
difficult for agents to mimic. Appropriately, 
then, most agent communication languages 
are designed for the exchange of information 
about activities and behavior. 

Personal vs. Conventional Meaning 
 

An agent might have its own meaning for a 
message, but this might differ from the 
meaning conventionally accepted by the other 
agents with which the agent communicates. 
To the greatest extent possible, multi-agent 
systems should opt for conventional 
meanings, especially since these systems are 
typically open environments in which new 
agents might be introduced at anytime. 

Subjective vs. Objective Meaning 
 

Similar to conventional meaning, where 
meaning is determined external to an agent, a 
message often has an explicit effect on the 
environment, which can be perceived 
objectively. The effect might be different 
than that understood internally, i.e., 
subjectively, by the sender or receiver of the 
message. 

Speaker's vs. Society's Perspective 
 

Independent of the conventional or objective 
meaning of a message, the message can be 
expressed according to the viewpoint of the 
speaker or hearer or other observers. 

Cardinality 

 

A message sent privately to one agent would 
be understood differently than the same 
message broadcast publicly. 

Contexuality 

 

Messages cannot be understood in isolation, 
but must be interpreted in terms of the mental 
states of the agents, the present state of the 
environment, and the environment's history: 
how it arrived at its present state. 
Interpretations are directly affected by 
previous messages and actions of the agents. 

Coverage Smaller languages are more manageable, but 
they must be large enough so that an agent 
can convey the meanings it intends. 

Table 1.1 - Messages dimension (Weiss, 1999) 
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In order to assume an active role in a dialog, an agent must be able to issue queries and make 

assertions. With these capabilities, the agent then can potentially control another agent by 

causing it to respond to the query or to accept the information asserted. This means of control 

can be extended to the control of subagents, such as neural networks and databases. An agent 

functioning as a peer with another agent can assume both active and passive roles in a dialog. 

It must be able to make and accept both assertions and queries. 

Table 1.2 summarizes agents’ capabilities and categories. 

 
  Basic Agent Passive Agent Active Agent Peer Agent 
Receives Assertions X X X X 
Receives Queries   X   X 
Send Assertions   X X X 
Sends Queries     X X 

Table 1.2 - Agents’ capabilities and categories (Weiss, 1999) 
 
The data structure of a communication protocol presents five fields:  

• Sender; 

• Receiver; 

• Language in the protocol; 

• Encoding and decoding functions; 

• Actions to be taken by the receiver. 

The protocol is defined as binary if the communication takes place exclusively between two 

agents; it is defined as n-ary if the communication is among a sender and more receivers.  

 
1.7 Agents’ societies 

As previously illustrated, intelligent agents do not function in isolation. They are part of the 

environment in which they operate, and the environment typically contains other such 

intelligent systems. 

When environments are too large, complex, dynamic, and open to be managed centrally or via 

predefined techniques the only feasible alternative is to provide distributed control. A way to 

build such control structure is provided by societies of agents. 

A group of agents can form a society in which each agent plays a different role. The group 

defines the roles, and the roles define the commitments associated with them (Weiss, 1999). 

When an agent joins a group, he joins in one or more roles, and acquires the commitments of 

that role. Agents join a group autonomously, but are then constrained by the commitments for 

the roles they adopt. The groups define the social context in which the agents interact. 
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The basic mechanism that rules agents’ societies is the concept of social commitment. Social 

commitments are the commitments of an agent to another agent, and represent a flexible 

means through which the behavior of autonomous agents is constrained. 

Social commitments enact social dependencies: suppose that an agent x depends (by a social 

commitment) on an agent y to complete an action a that allows reaching the state p that 

represents the objective of the agent x. If the agent x is not capable of reaching the state p by 

itself, the agent x socially depends on the agent y. 

Social dependencies are enacted on a voluntary basis, as agents choose to become part of an 

agents’ society. Moreover, social dependencies can be mutual if the agent x has to perform the 

action ax that is necessary to the agent y and the agent y itself has to perform the action ay that 

is necessary to the agent x, being the respective objectives px and py. 

Thus, an agent society has the following characteristics: 

• All the agents share a common objective; 

• Each agent acquires a role as member of the group or of a subgroup;  

• Accepting commitments deriving by its role, each agent requires being part of the 

society. 

The development of the society can be described through three levels, as proposed by Dignum 

et al. (2002) and illustrated in figure 1.9: 

• Organizational model, that describes society’s structure in terms of roles, relationships 

between roles and prescriptive behavioral norms;  

• Social model, that allows inserting agents within the organizational structure 

previously introduced, by defining contract protocols for establishing commitments; 

• Interaction model, that defines the interaction protocol the society is based on. 
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Figure 1.9 - Theoretical model for an agent society 

 

The main difference between multi-agent systems and society of agents relies in the fact that 

agents operating in MASs operate to pursue their own objective, even if a coordination 

mechanism is provided; in agents’ societies, agents belong to a group and pursue an objective 

that is expressed by the whole society.  

 

1.8 Summary 

Synthesizing, the development of an Agent-Based Model needs a complete description for a 

set of basic building blocks, listed as follows (Billari et al. (2006) and Weiss (1999)). 

• The object of the simulation. It has to be specified what is the phenomenon/problem to 

be reproduced, defining the environment where the simulation takes place and its 

characteristics, following the schema previously depicted. 

• The agents’ population. Agents can be grouped in different categories with common 

characteristics reproducing the various components of the system. 

• The adaptive capability of each agent category. Agents of each category present a 

specific adaptive capability, i.e. the degree of re-activeness and pro-activeness. 

• The interaction and communication paradigm among agents. Each agent can interact 

with agents of the same or of other categories according to the above listed different 

paradigms. On the base of the selected paradigm, the agents evolve in the simulation 

space in a different way. 

 roles  

 agents  Interaction structure 

Interaction 
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1.9 Conclusions 

In this chapter, an illustration of the agent concept has been provided. In particular, basic 

agents’ characteristics have been depicted.  

Evolution rules of the agents have been described through a mathematical formalism, in order 

to set the stage for the introduction of coordination forms among agents that constitute the 

building blocks for multi-agent systems and agents’ societies. 

In the following of this work, the applicability of multi-agent systems to decision-making 

problems will be surveyed.  
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Chapter 2 

Optimization models and methods: generalities 

 

2.1 Introduction 

The daily work of professionals involves making a series of decisions. In fact, the world relies 

on systems designed by engineers and business people. Thus, the quality of decisions made by 

these two categories of professionals is of critical importance.  

Decisions are made by looking at the relevant data and making judgments.  Making decisions 

on issues with important consequences has become a highly complex problem due to the 

many competing forces under which the world is operating today. Nevertheless, it is still 

usual for professionals to formulate decisions just relying on their own gut feeling. This 

method very often leads to decisions quite far from being optimal. In fact many bad decisions 

are still being made daily due to this. 

Anyone who holds a technical, managerial, or administrative job these days is faced with 

making decisions daily at work. Decisions may involve: 

• Determining which ingredients and in what quantities to add to a mixture being made 

so that it will meet specifications on its composition; 

• Selecting one among a small number of suppliers to order raw materials from; 

• Determining the quantities of various products to manufacture in the next period; 

• Allocating available funds among various competing agencies; 

• Deciding which route to take to go to a given location; 

• Selecting an appropriate location for an industrial facility; 

• Determining how many check-in desks to open during airport operating hours. 

A situation such as one of these requiring some decisions to be made is known as a Decision 

Making Problem. 

As introduced above, in the past decisions were made exclusively on intuitive judgment based 

on past experience. Today it is essential to make decisions on a rational basis. The most 

rational way for decision making is through quantitative analysis which consists of the 

following steps. 
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• Precise definition of the problem. This step requires gathering all relevant data and 

information on the problem itself. In particular, the initial statement of the problem 

may be vague or imprecise, and it can need some refinement.   

• Construction of a mathematical model of the problem. Such a model abstracts the 

essence of the decision problem. The model should express the various quantities 

involved in the problem in the form of mathematical functions of decision variables, 

and express the relationships among them using appropriate equations or inequalities. 

A problem expressed through a mathematical model is said to be in its Mathematical 

Programming form. However, real world problems are usually too complex to be 

captured in a mathematical model; thus, a model is a simplification that provides a 

sufficiently precise representation of the main features such that the conclusions 

obtained from it also remain valid to the original problem to a reasonable degree of 

approximation. 

• Solution of the model. This phase allows deriving the solution, namely the decisional 

outcome for the problem. Depending on the different complexity of the model 

representing the problem, different solution strategies can be adopted. For some of the 

models we have efficient algorithms (namely, a procedure) and high quality software 

systems implementing them. For some others we do not yet have efficient algorithms, 

and when the model is large, applying existing algorithms might take unreasonable 

times. 

• Implementation of the solution. The obtained solution is checked for practical 

feasibility. If it is found to be unfeasible, the model could require some modifications 

before being solved again. If the quality of the solution is not satisfactory, some 

refinements are needed in the solution technique. 

In the following of the chapter, details will be provided about Mathematical Programming 

problems, their complexity, and the different solution procedure that can be adopted.  

 

2.2 Mathematical Programming 

A Mathematical Programming (MP) problem is a problem that can be reduced to the 

following general form:  

The research of the values of the variables (x1, x2, … , xn) that allow to maximize or minimize 

a function z=f(x1, x2, … , xn) respecting the following conditions: 

gi(x1, x2, … , xn) {≤,=,≥} bi (i = 1, … , m) 
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in which bi  represent constant scalars and gi  are scalar functions.  

Variables (x1, x2, … , xn) are usually referred as control or decision variables; they can be 

grouped in a decision variables vector x. A set of n values assigned to vector x components is 

a solution to the problem. It can be represented as a point in a Euclidean n-dimensional space 

En. 

Relationships gi(x) {::} bi have the task to limit the values that decision variables can assume; 

they are usually referred as problem constraints. A solution that respects all the constraints is 

referred as a feasible solution; if the solution does not meet this condition, it is referred as an 

infeasible solution.  

The set Xa (subset of En) including all the feasible solutions to the problem represents the 

feasible domain (also called region, or set) associated with the problem. If the problem has no 

constraints, the feasible domain coincides with En. It is also possible that the constraints 

determine an empty feasible set; in this case, the problem is said to be infeasible.  

The function z=f(x) to be optimized is generally called objective function. Every solution that 

reports the optimal value of z is defined as optimal solution. The optimal value of z can also 

be a not finite value.  

A solution x* is said to be a global maximum [global minimum] for the objective function f(x) 

if the following condition is met: 

f(x*)≥ f(y) [f(x*)≤ f(y)], .y�Xa  

On the other hand, a solution x’ is said to be a local maximum [local minimum] for the 

objective function f(x) if it is possible to identify a neighborhood of x’ of radius ε, Iε, that 

meets the following condition: 

f(x’)≥ f(y) [f(x’)≤ f(y)], .y� Iε 

The formal definition of Mathematical Programming carries on some implicit limitations:  

• Strict inequalities are not allowed; this means that the feasibility region of a 

mathematical programming problem has to be a closed domain; 

• The problem is assumed to be deterministic.  

 

2.3 Mathematical Programming problems classification 

Mathematical Programming problems can be classified according to their characteristics. 

Three main aggregation keys can be defined to this aim:  

• Objective function and constraints characteristics; 

• Problem dimension (i.e. number of variables and constraints); 



 

• Variables characteristics

In the following, possible classification schemes are introduced for each category.

 

2.3.1 Objective function and constraints characteristics classifi

A first classification can be introduced on the basis of the characteristics of the 

functions. This also influences the choice of the algorithms utilized to solve the problems. As 

illustrated in Figure 2.1, this classification mainly separates Mathematical Programming 

problems into Linear Programming

 

Linear Programming 

A Linear Programming (LP) problem is characterized by the fact that all the functions 

involved in the problem (objective function, constraints) are linear. Thus, a LP problem can 

be formulated as follows:  
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• Geometrical Programming problems, whose objective function and constraints are 

expressed by posynomial functions; 

• Quadratic Programming problems, whose objective is expressed by a quadratic 

function, while constraints are linear; 

• Convex Non-Linear Programming problems, whose objective and constraints are 

convex functions; 

• Other Non-Linear Programming problems, not included in the previously stated sub-

categories.  

It is interesting to note that Linear Programming problems are a particular class of convex 

problems.  

 

2.3.2 Problem dimension classification 

Mathematical Programming problems can be grouped into three classes: small, intermediate 

and large scale problems.  

A Mathematical Programming problem is defined as: 

• A small scale problem, if it can be solved in a reasonable time by a pen-and-paper 

algorithm or just utilizing a table calculator; 

• An intermediate scale problem, if it can be directly solved by utilizing available 

solution methods on a personal computer; 

• A large scale problem, if it can be solved with available methods only in presence of 

particular structures that allow finding a solution operating on sub-problems. 

It is easy to understand that small scale problem class does not change over time, while 

between the other two classes there is a frontier depending on personal computers 

performances.  

 

2.3.3 Variables characteristics classification 

Based on variables characteristics, it is possible to distinguish between Continuous 

Mathematical Programming (in which variables can assume any value in a non-enumerable 

set) and Discrete Mathematical Programming (in which variables are constrained to assume 

values in an enumerable set) (Figure 2.2). 
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• The debugging time required to fix programming errors;

• The time required to experimentally evaluate the algorithm performances. 
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computational time evaluated being all the other resources (available memory, platform, 

programming language) the same. The faster the algorithm, the more it is considered to be

efficient. 
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Obviously, computational time depends on the particular instance of the problem under 

consideration, and it increases if the dimension n (defined as data quantity required to 

represent it) of the instance increases too.    

 

2.4.1 A first classification of Mathematical Programming problems 

The computational complexity of an algorithm is defined as the variation of the computational 

time varying the dimensions of the instance of the problem.  

Decidable problems are those problems solvable with a certain algorithms, no matter of its 

complexity. Thus, within this class of problems, it is possible to provide a further 

classification, defining a complexity function f(n) associated with an algorithm related to a 

decidable problem. It represents the number of operations required by the algorithm to solve, 

in the worst case, an instance of dimension n. In other words, f(n) expresses the number of 

operations needed by the algorithm depending on the size of the instance of the problem; this 

function can present different shapes.  

In order to compare functions endowed with different shapes the following notation can be 

introduced: 

f(n)=O(g(n))  

if R n*≥0, c≥1 :  f(n)≤cS g(n) . n≥ n* 

An algorithm that presents a complexity function f(n)=O(nk) requires a number of operations 

that is upper-bounded by a k-order polynomial function; synthetically, it is defined as a 

polynomial algorithm. 

In a similar way,  

f(n)=E(g(n))  

if R n*≥0, c≥1 :  f(n) ≥cS E(n) . n≥ n* 

Practically, O(S) and E (S) allow to define an upper and a lower bound for the complexity 

function of an algorithm.  

On the basis of these definitions, a mathematical programming problem can be defined as a 

tractable problem if there exists a polynomial algorithm capable of solving it; otherwise, the 

problem is said to be intractable.  

The reason of this definition arises from simple considerations: exponential complexity 

algorithms (i.e.  f(n)=an, with a>1) present incredibly high computational times even for 

limited size instances.  
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2.4.2 P and NP problems 

Despite of its apparent simplicity, the previously illustrated classification is not applicable to 

several problems. Indeed, defining a given problem as intractable means being able to show 

that a polynomial algorithm capable of solving the problem itself cannot exist. This proof 

requires showing that any algorithm to solve the problem is lower-bounded by an exponential 

function. Given the difficulty of this process, only a limited number of problems have been 

qualified as intractable.  

On the other hand, given the current state of the art, there are a large number of problems that 

cannot be classified as tractable neither intractable, as: 

• A polynomial algorithm capable of solving the problem has not yet been developed; 

• The intractability proof has not yet been provided. 

Thus, at the moment these problems are considered intractable, even though they could 

become tractable as soon as a polynomial algorithm capable of solving it would be developed.  

In order to overcome limitations of this classification schema, the NP-completeness theory 

has been developed. This theory is referred to the so-called Decision Problems, representing a 

category of problems formulated in such a way that just two answers are allowed: Yes or No. 

Thus, a decision problem presents a different formulation if compared to Mathematical 

Programming problem; yet, it is possible to associate a decision problem with a Mathematical 

Programming problem; indeed, starting from a Mathematical Programming problem π, it is 

possible to define the following Decision Problem:  

“Does the problem π allow for a solution whose value is less or equal to x?” 

It is clear that such a kind of Decision Problem is easier to solve than the corresponding 

optimization problem.  

Decision Problems can be grouped into two classes: P and NP problems. A Decision Problem 

belongs to P class if it is tractable, namely if there exists a polynomial algorithm that can 

provide a Yes or No answer to the problem itself. On the other hand, it belongs to NP class if 

there exists a polynomial algorithm capable of just verifying every Yes solution.  

It is easy to understand that a P problem is also belonging to the NP class: indeed, if there 

exists an algorithm capable of solving the problem, it will also serve as verification procedure 

for every Yes solution.  

Thus PANP. However, given the current state of the art, it is not possible to state if P⊂NP 

and then, PUNP or, on the contrary, P=NP, as no proofs have been provided on this topic. 
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While exact methods (like, for example, Branch and Bound and Cutting Planes methods) 

provide optimal solution, heuristic methods provide the advantage of more reasonable 

computational times but often they fail to provide the optimal solution.  

Thus, it is crucial to estimate the effectiveness of a heuristic technique. First of all, the quality 

of the provided solution has to be assessed. Precisely, given a Mathematical Programming 

problem, an instance I,  a solution of the instance provided by an heuristic algorithm EUR(I) 

and a solution provided by an exact algorithm OPT(I), a measure of the quality of the solution 

provided by the heuristic can be expressed through the following index (percent error): 

�V � WX;Y�=� F Z[\�=�W
WX;Y�=�W  

The above introduced index can be estimated in the average case or in the worst case. To have 

a measure of the percent error in the worst case, an upper bound for the percentage error can 

be introduced, as follows:  

�V � WX;Y�=� F Z[\�=�W
WX;Y�=�W ≤ ] 

In practice, the heuristic algorithm provides a solution that, in the worst case, presents a 

percentage error equal to ]. Some algorithms allow individuating an upper bound for the 

percent error, introducing a kind of warranty on the maximum error they can provide.  

However, it is not always possible to compute the percent error. Indeed, this implies the 

availability of an exact algorithm that provides the optimal solution to the problem. If such an 

algorithm is available, e% is computed by generating instances of the problem characterized 

by different dimensions and evaluating statistics about errors generated by the algorithm for 

each of the considered instances. 

If there is no optimal algorithm available for the problem, the value OPT(I) cannot be carried 

out; thus, to get a value for e% there is the need of obtaining an estimation of the optimal 

solution; this can be done utilizing bounds to the optimal solution in the error evaluation 

process. For example, for a minimizing problem, an estimation of e% can be computed as 

follows: 

�^V � W_>�9��=� F Z[\�=�W
WX;Y�=�W  

where LBopt is a lower bound to the optimal solution of the problem. It is easy to understand 

that:   

W_>�9��=� F Z[\�=�W
WX;Y�=�W ≥ WX;Y�=� F Z[\�=�W

WX;Y�=�W  
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Thus, replacing the optimal solution with estimations produces an overestimation of the error. 

However, though important, the quality of the solution is not the only parameter to be taken 

into account while designing and implementing a heuristic algorithm: computational times are 

also relevant. Usually, there is a strong and positive correlation between the quality of the 

solution that can be obtained and computational times: better solutions can be reached at 

expenses of an increase in computational times, often undesirable. Thus, projecting an 

efficient heuristic algorithm means finding a compromise between the need for solutions very 

close to the optimal one and fast procedures.  

Moreover, other aspects cannot be neglected, like: 

• Easiness of implementation (in terms of complexity of the programming language 

code to be written); 

• Flexibility (in terms of easiness of adaptation of the algorithm to other instances and 

slightly different problems). 

Heuristic algorithms can be classified according to the search philosophy adopted to find a 

solution. In particular, it is possible to distinguish between: 

• Greedy algorithms, that gradually build a solution to the problem, stepping through 

partial solutions;  

• Local Search algorithms, that starts from a solution and try to modify it in order to get 

some benefits in terms of objective function. 

In the following, some principia of each category of algorithms will be illustrated.  

 

2.5.1 Greedy algorithms 

A generic greedy algorithm is made up of the following steps: 

• Initialization: a starting element is chosen (often randomly) and added to the partial 

solution S. 

• Selection: according to a given criterion, a new element is chosen and added to the 

partial solution S.  

• Halt Criterion: if S is a feasible solution, the procedure stops; otherwise, it goes back 

to the selection stage.  

From a mathematical point of view, greedy algorithms build a feasible solution through an 

iterative process. At every step, the algorithm adds to the solution the element that seems to 

be more promising in terms of objective function values, without any evaluation of the whole 
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solution. Thus, solutions provided by greedy algorithms are usually poor from a qualitative 

point of view.  

Moreover, as it can be derived from the description, greedy algorithms strongly depend on the 

choice of the initial element. Therefore, in order to improve the quality of the solution, if 

possible, it can be convenient to run several times the procedure, selecting different starting 

elements. If computational times allow it, it can be even convenient to make the algorithm 

start from each possible starting element.  

  

2.5.2 Local Search algorithms 

Local search algorithms are also called iterative amelioration procedure. This kind of 

algorithm is based on the concept of move, namely and elementary modification to the 

solution. The application of a move produces a neighborhood of the current solution that is a 

set of feasible candidate solutions.  

The building blocks of the algorithm can be listed as follows: 

• Definition of a move; 

• Definition of a new solution selection criterion; 

• Definition of a stopping criterion, that allows the termination of the algorithm.  

The stages of the algorithm can be summed up as follows: 

• Stage 1: an initial solution S has to be provided, in order to enact the procedure. It can 

be obtained randomly or by using a greedy algorithm in a preliminary stage.  

• Stage 2: through the application of the previously defined move, it is possible to 

identify a neighborhood of the current solution N(S), namely a set of candidate 

solutions.  

• Stage 3: a new current solution S’�N(S) is chosen, based on the selection criterion. 

• Stage 4: the stopping criterion is verified. If it is met, the procedure ends; otherwise, it 

goes back to Stage 2.  

If the move at Stage 2 leads to a reduction in the objective function, it is accepted, and the 

configuration S’ obtained is used as the starting point for a new test. In the contrary case, one 

returns to the preceding configuration, before making another attempt.  

The process is made iterative until the stopping criterion is met. However, this algorithm of 

iterative improvement (also indicated as classical method, or descent method) does not lead, 

in general, to the global optimum, but only to a local minimum, which constitutes the best 

accessible solution taking the initial assumption into account. 
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Figure 2.5: Shape of the objective function of an optimization problem 

 

2.6 Metaheuristic algorithms 

To overcome the obstacle of the local minima, an idea was demonstrated to be very 

profitable: the possibility of authorizing, from time to time, moves that produce a worsening 

in the objective function. This principle is the basic core of the most widespread metaheuristic 

algorithms. As the name of this class procedure suggests, they try to overcome heuristic 

algorithms limitations.  

The introduction of mechanisms for controlling the degradations (specific to each 

metaheuristic) makes it possible to avoid the divergence of the process. Thus, it consequently 

becomes possible to be extracted from the trap which represents a local minimum, to leave to 

explore another more promising valley.  

The so-called “distributed” metaheuristics (such as the evolutionary algorithms) are endowed 

with mechanisms allowing the departure of a particular solution out of a local valley of the 

objective function.  

In the following, the most widespread metaheuristic algorithms are depicted.  

 

2.6.1 Simulated Annealing 

The Simulated Annealing method (Kirkpatrick et al., 1983) transposes the process of the 

annealing from physics to the solution of an optimization problem: the objective function of 

the problem, similar to the energy of a material, is minimized, with the help of the 

introduction of a fictitious temperature, which is, in this case, a simple controllable parameter 

of the algorithm. 
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In practice, the technique exploits the Metropolis algorithm, which enables us to describe the 

behavior of a thermodynamic system in “equilibrium” at a certain temperature. On the basis 

of a given configuration (for example, an initial placement of all the components), the system 

is subjected to an elementary modification defined by a move (for example, one relocates a 

component, or one exchanges two components). If this transformation causes a decrease in 

the objective function (or energy) of the system, it is accepted. On the other hand, if it causes 

an increase ∆E of the objective function, it can also be accepted, but with a probability e−∆E/T, 

according to Metropolis acceptance rule.  

This process is then repeated in an iterative manner, by keeping the constant temperature, 

until thermodynamic balance is reached, concretely at the end of a “sufficient” number of 

modifications. Then the temperature is lowered, before implementing a new series of 

transformations: the law of decrease by stages of the temperature is often empirical, just like 

the criterion of program termination. 

The disadvantages of simulated annealing lie on one hand in the “adjustments”, like the 

management of the decrease of the temperature; the user should have the know-how of 

“good” adjustments.  

In addition, the computational time can become very significant, which led to parallel 

implementations of the method. On the other hand, the simulated annealing method has the 

advantage of being flexible with respect to the evolutions of the problem and easy to 

implement. It gave good results for a number of problems, generally of big size. A synthetic 

schema of the simulated annealing schema is illustrated in Figure 2.6.  

 

2.6.2 The Tabu Search 

The method of search with tabus, or simply Tabu Search or Tabu Method, was formalized by 

Glover (1986). Its principal characteristic is based on the use of mechanisms inspired by the 

human memory. The Tabu Method takes, from this point of view, a path opposite to that of 

simulated annealing, which does not utilize memory at all, and thus it is not capable of 

learning from the past. On the other hand, the modeling of the memory introduces multiple 

degrees of freedom.  

The guiding principle of the tabu method is simple: like simulated annealing, the tabu method 

works just on a single current solution, which is updated during successive “iterations”.  

At each iteration the mechanism of current solution update process (from a solution S to a 

solution T) comprises of two stages: 
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• the first one, based on an elementary move, builds the set of the neighbors of S, N(S). 

N(S) is the set of the accessible configurations in only one elementary move of s; 

• the second one evaluates the objective function f of the problem for each solution 

belonging to N(S). The configuration T, which succeeds S in the series of the solutions 

built by the tabu method, is the solution of N(S) in which f takes the minimal value.  

It is worth to note that, this solution T is adopted even if it is worse than S, i.e. if f(T)>f(S): 

due to this characteristic the Tabu Method facilitates to avoid the trapping of f in the local 

minima.  

However, simply adopting the above described procedure does not ensure overcoming 

limitations of classical heuristic algorithms, as there is a significant risk to return to a solution 

already retained at the time of a preceding iteration: this can generate a cycle.  

To avoid this phenomenon, the Tabu Method requires updating exploiting a list of prohibited 

moves, the so-called Tabu List. This list — that gave its name to the method — contains m 

moves (T → S), which are the opposite of the last m moves (S → T) carried out.  

The algorithm models a rudimentary form of memory, the short term memory of the solutions 

visited recently.  

Two additional mechanisms, named intensification and diversification, are often implemented 

to also equip the algorithm with a long term memory. This process does not exploit more the 

temporal proximity of particular events, but rather the frequency of their occurrence, over a 

longer period. The intensification consists in looking further into the exploration of certain 

areas of the solution space, identified as particularly promising ones. On the contrary, 

diversification is the periodic reorientation of the search for an optimum towards areas, 

seldom visited until now. 

For certain optimization problems, the Tabu Method gave excellent results; moreover, in its 

basic form, the method comprises less parameters of adjustment than Simulated Annealing, 

which makes it easier to use.  

However, the various additional mechanisms, like the intensification and diversification, 

bring a notable complexity. A synthetic schema of the algorithm is illustrated in Figure 2.7. 



 

Figure 2.6 - Schema of a Simulated Annealing algorithm 

 

 

Figure 2.

 

Schema of a Simulated Annealing algorithm 

Figure 2.7 - Schema of a Tabu Search algorithm 
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2.6.3 Evolutionary Algorithms 

Evolutionary Algorithms (EAs) are the search techniques inspired by the biological evolution 

of the species and appeared at the end of the 1950s (Fraser, 1957). Among several approaches 

(Holland, 1962; Fogel et al., 1966; Rechenberg, 1965), the genetic algorithms (GAs) are 

certainly the most well known example (Goldberg, 1989).  

The evolutionary methods initially aroused a limited interest, because of their significant cost 

of execution. But they have experienced a considerable development, that can be attributed to 

the significant increase in the computing power of the computers.  

The principle of an evolutionary algorithm can be simply described. A set of N points in a 

search space, chosen a priori at random, constitutes the initial population; each individual x of 

the population has a certain fitness value, which measures its degree of adaptation to the 

objective aimed. In the case of the minimization of an objective function z, the fitness of x 

will be higher, if z(x) is smaller. An EA consists in evolving gradually, in successive 

generations, the composition of the population, by maintaining its size constant. 

During generations, the objective is to overall improve the fitness of the individuals; such a 

result is obtained by simulating the two principal mechanisms which govern the evolution of 

the living beings, according to the theory of C. Darwin: 

• selection, which supports the reproduction and the survival of the fittest individuals; 

• reproduction, which allows mixing, the recombination and the variations of the 

hereditary features of the parents, to form offspring with new potentialities. 

In practice, a representation must be chosen for the individuals of a population. Classically, an 

individual could be a list of integers for combinatorial problems, a vector of real numbers for 

numerical problems in continuous spaces, a string of binary digits for Boolean problems, or 

will be able to even combine these representations in complex structures, if it is required.  

The passage from one generation to the next one proceeds in four phases: a phase of selection, 

a phase of reproduction (or variation), a phase of fitness evaluation and a phase of 

replacement. The selection phase designates the individuals who take part in the reproduction. 

They are chosen, possibly several times, a priori all the more often as they have high fitness. 

The selected individuals are then available for the reproduction phase. This one consists in 

applying variation operators to copies of the individuals previously selected to generate new 

individuals; the operators most often used are crossover (or recombination), which produces 

one or two offspring from two parents, and mutation, which produces a new individual from 

only one individual. The structure of the variation operators depends largely on the chosen 
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2.6.4 Variable Neighborhood Search 

Variable Neighborhood Search (VNS) is a recently developed metaheuristic which exploits 

systematically the idea of neighborhood change as a way to escape from valleys that contain 

local minima. This metaheuristic exploits the following facts (Mladenovic and Hansen, 1997): 

• A local minimum with respect to one neighborhood structure, is not necessarily so for 

another; 

• A global minimum is a local minimum with respect to all possible neighborhood 

structures; 

• For many problems local minima with respect to one or several neighborhoods are 

relatively close each other. 

The last empirical observation implies that often the knowledge of a local optimum can 

provide some information about the global one.  

The basic idea of VNS is to select a series of neighborhood structures Nk (with k=1,…,kmax), 

which define neighborhoods around any point of the feasible domain. The first step of the 

algorithm is to implement a local search procedure that leads to a local optimum x. A point x’ 

is selected at random (thanks to a so-called shaking procedure) within the first neighborhood 

N1(x) of x and a descent from x’ is done with the local search routine this leads to a new local 

minimum x’’. Then three results are possible: 

• x’’= x, i.e. one is again at the bottom of the same valley; in this case, the procedure is 

iterated considering a new neighborhood Nk, k≥2; 

• x’’≠ x, but f(x’’)≥ f(x), i.e. another local optimum has been found, but its objective 

function value is not better the one associated with the current solution; in this case, 

the procedure is iterated using the next neighborhood; 

• x’’≠ x and f(x’’)<f(x), i.e. a local optimum better than the current solution is found; in 

this case, the search procedure is re-centered around x’’ considering the first 

neighborhood structure N1(x’’). 

The procedure runs until a stopping condition, e.g. a maximum number of iterations or a 

maximum number of iterations since the last improvement, is satisfied. 

 

2.6.5 Swarm Intelligence 

Swarm Intelligence is a field of computer science that develops methods for solving complex 

computational problems inspired by behavior of real swarms or insect colonies (Kennedy et 

al., 2001). This class of algorithms starts from simple principles of self-organization and 
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communication observed in the real world of natural swarms; from these principles, it is 

possible to gain insights that can be utilized to understand complex collective behaviors and 

implemented in the design of algorithms and systems. 

In the last decades, two main swarm intelligence methods for solving optimization problems 

have been widely developed and utilized in the OR community: the Ant Colony Optimization 

(ACO), mainly employed to deal with combinatorial optimization problems, and the Particle 

Swarm Optimization (PSO), simply applicable to continuous optimization problems.  

In the following, the details of these two techniques are briefly analyzed. 

 

Ant Colony Optimization 

ACO is a metaheuristic for solving combinatorial optimization problems. It takes inspiration 

from the way ants find shortest paths from their nest to food. The algorithm is essentially 

based on the indirect communication of the ants thanks to the pheromone, a chemical 

compound released by ants in the environment and perceived by individuals belonging to the 

specie. Thus, ants mark their paths to the food sources, and these traces can be followed by 

other ants looking for food.  

 

Figure 2.10 - The Double Bridge experiment 

 

This evidence was confirmed by the so-called Double Bridge experiment (Deneubourg et al., 

1990) (Figure 2.10). In the experiment, two paths are available to ants to reach the food 

sources starting from their nest. The longest path is twice as long as the shortest one. 

Interestingly, it was noticed that, after a few minutes, almost all the ants use the shortest path. 

This is due to the largest pheromone concentration on the shortest path, as ants choosing it are 
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able to go back to the nest earlier. Obviously, if the two paths have the same length, ants will 

chose randomly their way to the food source.  

Inspired by this experiment, Dorigo et al. (1991) designed an algorithm for the Traveling 

Salesperson Problem (TSP) and provided the foundations of the Ant Colony Optimization 

field. The idea is to have a colony of artificial ants and let them construct solutions for a 

combinatorial optimization problem. In practice, each ant is endowed with a greedy algorithm 

that allows building a solution through a sequence of decision. The sequence of decisions for 

constructing a solution can be seen as a decision graph; thus, ants are “walking” through the 

decision graph looking for good solutions. Doing this, artificial ants are endowed with 

communication mechanisms similar to the ones of real ants. Ants that found good solutions 

are allowed to mark the edges of the corresponding path with artificial pheromone that guides 

ants in the following iterations in the search process, similarly to an intensification 

mechanism. In order to implement something similar to diversification mechanisms for 

avoiding the search process being concentrated just on a part of the feasible domain, 

pheromone traces tend to slightly “evaporate” over the time. The process continues until some 

stopping criterion (a maximum number of iterations, a good quality solution) is met. 

A summary of an ACO procedure can be stated as shown in Figure 2.11.  

 

Figure 2.11 - Ant Colony Optimization schema 

 

Nowadays, ACO algorithms have been designed for various combinatorial optimization 

problems, including dynamic and multi-objective problems (see , for instance, Cordon et al., 

2002; Maniezzo et al., 2001) performing good computational results.  
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Particle Swarm Optimization 

The Particle Swarm Optimization is based on the coordinated food search mechanism 

exhibited by swarm of birds. In a PSO algorithm the search process is modeled through a 

population of particles (the swarm) in a multidimensional search space (also called problem 

space).  

Particles start from random locations with a certain velocity and look for improvements in a 

given objective function by moving through the search space, similarly to the process of food 

search in the reality.  

In a typical PSO algorithm, each particle keeps track of the coordinates in the search space 

which are associated with the best solution it has found till so far. At a centralized level, the 

best solution found by all the particles is stored as well.  

A summary of an ACO procedure can be stated as shown in Figure 2.12. 

 
Figure 2.12: Particle Swarm Optimization schema 

 

2.7 Some Considerations 

In the presence of a concrete optimization problem, the principal difficulty with which an 

engineer is confronted, is the choice of an efficient method, able to produce an optimal 

solution (or of acceptable quality) at the cost of a “reasonable” computing time. 

Compared to this pragmatic concern of the user, the theory is not yet of a great help, because 

the convergence theorems are often non-existent, or applicable under very restrictive 

assumptions. Moreover, the optimal adjustment of the various parameters of a metaheuristic 

which can be recommended theoretically is often inapplicable in practice, because it induces a 

prohibitive computing cost.  
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Consequently, the choice of a good method, and the adjustment of the parameters of this one, 

generally calls upon the know-how and the “experience” of the user, rather than the faithful 

application of well laid down rules.  

In the last decade a new direction of research has emerged in the field of hyper-heuristics. The 

key idea is to devise new algorithms for solving problems by combining known heuristics in 

ways that allow each to compensate, to some extent, for the weaknesses of others (Ross, 

2005). Hyper-heuristics can be thought as heuristics to choose the right heuristic for a given 

problem. Differently from heuristic algorithms (that work on a solution space) hyper-

heuristics work with a search space of heuristics. The key intuition underlying them is that 

often there are a number of available straightforward heuristics that can work well for certain 

sort of instances for a given problem; it could be possible that, combining those algorithms in 

a certain way, an algorithm that will work well across a broader range of instances can be 

obtained. Further references can be obtained in Ross (2005). 
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Chapter 3 

Agent-based Approaches for Optimization Problems 

 

3.1 Introduction 

After having described the agent paradigm and some generalities about multi-agent systems in 

Chapter 1 and illustrated an overview of optimization methods in Chapter 2, this chapter will 

be devoted to the illustration of the application of MASs to optimization problems. Indeed, in 

the last decade, growing attention has been addressed towards the development of 

methodologies based on MASs to model and solve classical Operational Research problems.  

In this chapter, a first comparison among MASs-based approaches and classical optimization 

techniques will be provided, followed by an extensive review aimed at evaluating the impact 

of these methodologies in the Operational Research/Management Science (OR/MS) literature.  

 

3.2 Agent-based Approaches vs Classical Approaches 

For a long time, classical optimization techniques have represented the only available 

approach to solve different types of decision-making problem, both at strategic and tactical 

levels. 

In the last decade, agent-based computing has been suggested as a promising technique for 

problem whose domains are distributed, complex and heterogeneous (Weiss, 1999; 

Wooldridge, 2002).  

Parunak (1999) proposed a first formalization of a set of resources allocation problems using 

MASs.  

Davidsson et al. (2007) proposed a theoretical framework for the comparison of the two 

approaches. The framework is based on a series of dimensions useful to classify decision-

making problems; on the basis of these dimensions, the authors compare characteristics of 

agent-based and classical approaches, determining situation in which one methodology is 

preferred over the other one, with particular reference to a special class of resource allocation 

problems, namely dynamic distributed resource allocation. An adaptation of these considered 

parameters can be listed as reported in Table 3.1. Table 3.2 provides desired properties for 

solution methods according to each dimension. 
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Dimension Description 
Size Number of Decision Variables, Parameters, Constraints 

Modularity Possibility of clearly identifying sub-domains and sub-problems 
Time Scale/Changeability How often the structure of the domain changes 

Solution Quality How important it is to find the optimal or near optimal solution 
Computational Complexity Number of operations required to solve the problem 

Table 3.1 - Optimization problems classification framework 

 

Dimension Desired Properties of Solution Method 
Size Low computational complexity 

Modularity Support for modular decomposition 
Time Scale/Changeability High reactivity and modifiability, short response time 

Solution Quality Ability to find optimal or near optimal solutions 
Computational Complexity Low number of operations, short computational times 

Table 3.2 - Desired Properties of Solution Methods according to each dimension 

 

Comparing the two approaches (MASs-based and classic optimization) according to size, 

since agent-based approaches support the dividing of the global problem into a number of 

smaller local allocation problems, large-sized problems could be handled well in such cases 

the problem is modular. On the other hand, the complexity and the size of the problem may 

affect the solution time dramatically when applying an optimization method. Since 

optimization techniques attempt to achieve global optimality, capitalizing on partial 

modularity in order to handle large-sized problems is difficult. 

Concerning modularity, as agent-based approaches are modular by nature they are very 

suitable for highly modular domains. However, if the modularity of the domain is low they 

may be very difficult to apply.  

Moreover, since agents are able to continuously monitor the state of its local environment and 

typically do not have to make very complex decisions, they are able to react to changes fast, 

providing some advantages if the domain of the problem is characterized by a high 

changeability/time scale  level. On the other hand, optimization techniques often require a 

relatively long time to respond to changes in variables and parameters of the problem, as they 

often need a complete restart. Hence a rather high degree of predictability is required for 

optimization methods to work efficiently if a short response time is required. Sometimes 

methods of re-optimization can be used for lowering the response time.  

From the point of view of the quality of solution, since agent-based approaches are 

distributed, they do not have a global view of the state of the system, which unfortunately 

often is necessary in order to find a truly good solution. Therefore, the quality of the solution 
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suggested by an optimization method often will be of a higher quality. Moreover, it may be 

very difficult (and sometimes even impossible) to estimate the quality of the solution 

provided by an agent-based approach, as it can be difficult to retrieve reference values (i.e., a 

bound of the optimal solution values). 

In terms of computational times, agent-based approaches can provide some advantages thanks 

to their ability to divide problems in several sub-problems; however, computational 

advantages can be offset by the need for frequent interaction in order to coordinate activities 

and decisions among agents; centralized approach present higher computational complexity, 

but no communication costs, as they are characterized by high centralization.  

According to this comparison, agent-based approaches tend to be preferable when:  

• the size of the problem is large;  

• the domain is modular in nature; 

• the structure of the domain changes frequently (i.e., high changeability). 

Classical optimization techniques may outperform MASs-based ones when:  

• decomposing the problem in sub-problems can be costly in terms of computational 

requirements and times;  

• the domain is monolithic in nature;  

• the quality of the solution is very important.  

This analysis indicates that agent-based approaches and classical optimization techniques 

complement each other. This can explain the increasing interests towards approaches 

embedding optimization techniques within a MAS schema. There are several ways to 

integrate MASs-based approaches and classical optimization techniques. The most relevant 

seems to be: 

• Utilizing an optimization technique for strategic planning and MASs for operational 

and tactic re-planning, i.e., for performing local adjustments of the initial plan; 

• Embedding optimization in an agent, by translating search algorithms in agents’ 

behavior. 

The reminder of the chapter will be devoted to verify the impact of MASs based 

methodologies to cope with optimization problems in the OR/MS literature. To this aim, 

an extensive survey of the state-of-the-art will be provided.  

 

3.3 A Literature Review 

To the aim of verifying the presence of a real interest in the literature about MASs-based 
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techniques for optimization problems, an extensive State-of-the-Art survey has been 

performed.  

Through the web-based tool Google Scholar (including the most widespread academic 

search engines), international referred journals in the time interval 2000-2008 have been 

scrutinized, looking for the words agent-based optimization within title, key-words and 

abstract of the papers.  

As it emerges from Table 3.3, 49 papers have been retrieved. From Figure 3.1, it’s 

possible to notice the outstanding increase in publications devoted to the topic.   

  

Year 2000 2001 2002 2003 2004 2005 2006 2007 2008 Totale Papers 
Papers 3 3 1 4 5 5 7 13 8 49 

Table 3.3 - Historical series of MASs-based optimization papers 

 

Figure 3.1 - Historical series of MASs-based optimization papers 

 

As regards journals, 30 publications reported at least a paper. Table 3.4 reports journals 

including at least two papers. They account for 27 total papers out of 51 (53.94% of the 

total number of papers). The top contributor is the journal Engineering Applications of 

Artificial Intelligence, as it has been explained as MASs fall in the field of Artificial 

Intelligence. 

However, it is noticeable that one of the most prominent journal in OR/MS field, 

European Journal of Operational Research, has hosted 7 contributions. This testifies 

that MASs approaches for optimization problems are becoming an accepted tool in the 

OR/MS community.  
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Journal Papers 
Engineering Applications of Artificial Intelligence 8 
European Journal of Operational Research 7 
IEEE Transactions on Systems, Men and Cybernetics 5 
Robotics and Computer-Integrated Manufacturing 3 
International Journal of Advanced Manufacturing Technology 2 
International Journal of Production Economics 2 

Table 3.4 - Journals accounting for at least two papers  

 

The analysis of the journals provides valuable insights: it emerges that MASs 

applications to optimization problems is a multidisciplinary field of study, as papers on 

the topic have been retrieved on journals belonging to different disciplinary areas: the 

above cited Artificial Intelligence and OR/MS, but also Manufacturing (Robotics and 

Computer-Integrated Manufacturing, International Journal of Advanced Manufacturing 

Technology ), Logistics (International Journal of Production Economics) and others. 

Another interesting perspective is offered by the geographical analysis of the papers. 

Table 3.5 classifies papers according to the country where the institution of the first 

author is based. The top contributor is China (6 papers), followed by Canada (5). 

Country Papers 
China 6 
Canada 5 
Japan 4 
UK 4 
France 4 
Germany 4 
USA 4 
Taiwan 4 
Spain 2 
India 2 
Singapore 2 
Netherlands 2 

Table 3.5 - Papers classified by countries of origin 

 

Table 3.6 reports key-words retrieved in the surveyed papers, and the number of 

occurrences for each key-word. It emerges that the words multi-agent system, agent, and 

agent-based system, are the most cited. Very often key-words underline the application 

field of the developed MASs: for example, several papers refer to Supply Chain 

Management, other to transportation problems and to scheduling applications. 

The occurrence of the key-word Ant Colony Optimization can be explained as this 
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technique can be considered as an extension of the MASs paradigm, embedding 

optimizing rules in the definition of agents’ behaviors. The presence of other meta-

heuristics (Tabu Search, Simulated Annealing, Genetic Algorithms) testifies the 

possibility of integrating search algorithms and MASs.  

A further classification is provided in Table 3.7, based on the application field of the 

papers. MASs approaches seem to be particularly suitable to tackle scheduling and 

Supply Chain problems.  

 

KeyWord  Frequency 
Multi-agent system 20 
Supply chain management 6 
Agents 6 
Ant colony optimization 4 
Manufacturing scheduling 3 
Agent-based systems 3 
Scheduling 3 
Heuristics 3 
Optimization 2 
Mobile agent 2 
Holonic manufacturing systems 2 
Negotiation 2 
Integrated process planning and scheduling 2 
Intelligent manufacturing 2 
Dynamic scheduling 2 
Distributed scheduling 2 
Artificial intelligence 2 
Transportation 2 
Simulation 2 

Table 3.6 -  Keywords 
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Application Field Papers 
Scheduling 23 
Supply Chain 9 
Routing 4 
Manufacturing 4 
Logistics 3 
Location 2 
Transportation 2 
Industrial Planning 1 

Table 3.7 - MASs-based approaches application fields 

 

3.3.1 Agent-Based scheduling approaches 

It can be useful to focus the attention on MASs-based approaches for scheduling 

problems, as it appears that this class of problems is particularly suitable to be tackled 

with MAS-based approaches. Extracting from the previously described sample all the 

papers published about scheduling problems, the resulting historical series testifies the 

growing interest towards this application field. 

 

Year 2000 2001 2002 2003 2004 2005 2006 2007 2008 Totale Papers 
Papers 1 2 1 2 2 2 3 7 3 23 

Table 3.8: Historical series of MASs-based scheduling papers 

 

Table 3.9 reports major journal contributors, while table 3.10 classifies papers on the 

basis of institution nationality. 

 

Journal Papers 
Engineering Applications of Artificial Intelligence 6 
IEEE Transactions on Systems, Men and Cybernetics 4 
European Journal of Operational Research 4 
International Journal of advanced manufacturing technology 2 

Table 3.9 - Journals with at least two papers about MASs-based scheduling approaches 
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Paese Papers  
China 3 
USA 3 
Canada 3 
Japan 2 
Germany 2 
Taiwan 2 
Singapore 2 

Table 3.10 - MASs-based scheduling papers classified by countries of origin 

 

As highlighted by Ouelhadj (2008) and shown in the previous section multi-agent systems 

have found wide application to address complex and dynamic environments related to 

scheduling problems.  

Analyzing the literature, two main multi-agent architectures for dynamic scheduling have 

been utilized: autonomous architectures and mediator architectures. They are described in 

more detail in the following sub-sections. For further references, the reader can also refer to 

Shen et al. (2006). 

 

Autonomous architectures  

In autonomous architectures (Figure 3.2), agents representing manufacturing entities such as 

resources and jobs have the ability to generate their local schedules, react locally to local 

changes, and cooperate directly with each other to generate global optimal and robust 

schedules (Ouelhadj, 2008).  

One of the earliest MAS-based scheduling architecture was proposed by Parunak (1987) with  

YAMS (Yet Another Manufacturing System) platform. This system assigns an agent to each 

node in a control hierarchy (factory, cell, workstation, machine, jobs). The main idea of Yams 

is that the job agents negotiate with resource agents to assign tasks to the machine agents 

using the contract net protocol (Smith, 1980). This idea was then utilized also by Shaw (1988) 

in order to develop a dynamic scheduling system in a cellular manufacturing system. Request 

for bid messages are broadcast to cells which evaluate operations specification and submit 

bids. Bids describe the estimation on the earliest finishing time or shortest processing time of 

the operations. The cell that optimizes a predefined criterion is selected to perform the 

operation. 

Goldsmith and Interrante (1998), and Ouelhadj et al. (1998, 1999, 2000) proposed simple 

multi-agent architectures for dynamic scheduling in flexible manufacturing systems which 
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involves only resource agents. The resource agents are responsible for dynamic scheduling of 

the operations and they have no control over each other. They negotiate using the contract net 

protocol to produce a global schedule. Each resource agent performs the following functions: 

scheduling, detection, diagnosis, and error handling. Resource agents are also able to react to 

real-time events (such as machine breakdown), by renegotiating processes.  

Sousa and Ramos (1999) proposed some advances by utilizing a MAS-based architecture that 

involved also jobs agents. The contract net protocol is utilized to model requests coming from 

jobs to be processed directed to the machines. Resource agents are also able to send fault 

messages to job agents to signal temporary unavailability.  

 

 

Figure 3.2 - Autonomous MAS-based scheduling architecture (Ouelhadj, 2008) 

 

Cowling et al. (2003, 2004) and Ouelhadj et al. (2003) proposed an adaptation of MAS-based 

scheduling to dynamic scheduling in steel production process, in which agents representing 

particular stages of the steel production process are introduced as a further level in the 

architecture. Several heuristics are implemented in order to obtain robust schedules in the 

presence of real-time events. 

Sandholm (2000) proposed an extension of the contract net protocol in order to deal with 

negotiation in presence of imprecise information. This extensions allows agents to de-commit 

from previously negotiated contacts in order to deal with real-time events by simply paying a 

de-commitment penalty.     

This architecture can be traced to Lin and Solberg (1992) that proposed an autonomous multi-

agent architecture for shop floor dynamic scheduling based on a currency model that 
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combined the scheduling objectives and price mechanism. Their model represents jobs, 

resources, and parts by agents. Job agents negotiate with resource agents via a contract net 

bidding mechanism to optimize a weighted objective that is a function of due date, price, 

quality, and other user defined factors. The part agent enters the system with a certain 

currency, and solicits and evaluates bids from several resource agents capable of fulfilling the 

processing requirements, and selects the one that optimizes its objective. Each resource agent 

sets its charging price based on its status, then it decides on the basis of the currency offered 

which of the announced jobs to consider more interesting for a possible bid. The job agent 

tries to minimize the price paid, but the resource agent’s goal is to maximize the price 

charged. Each deal is completed once the job and resource agents are mutually committed. 

When a resource agent is in failure, it informs the corresponding job agent, and the latter 

proceeds to a renegotiation process on the operations in failure with the resource agents.  

Other multi-agent based dynamic scheduling systems use learning approaches for dynamic 

scheduling. Aydin and Öztemel (2000) proposed a dynamic job shop scheduling using 

reinforcement learning agents. The agent is trained by an improved reinforcement-learning 

algorithm through the learning stage and then successfully makes the decisions to schedule 

the operations. The scheduling system consists of two parts: the simulator and the intelligent 

agent. The agent selects the most appropriate priority rule to select a job to assign to a 

machine according to the shop conditions, while the simulator performs scheduling activities 

using the rule selected by the agent. Pendharkar (1999) proposed a multi-agent learning 

approach for dynamic scheduling. In the multi-agent architecture, the work areas are 

controlled by agents with a knowledge base containing the dispatching rules. The agents use 

genetic algorithms-based learning to update the rules in the knowledge-base at periodic 

intervals of time. The higher frequency of learning may help an agent to quickly adapt to 

variations on the shop floor. 

Knotts et al. (2000) illustrate eight agent-based algorithms for solving the multimode, 

resource-constrained project scheduling problem, comparing their implementation and their 

results utilizing purely reactive agents or agents with state. 

Chun et al. (2003) developed a architecture for meeting scheduling through performance 

estimation, by implementing a MAS in which two categories of agents (meeting agents, 

representing forthcoming appointments and secretary agents, knowing the schedule and the 

preferences of the potential participants) are involved and negotiate each other to find a 

schedule that maximizes a given performance function. 



61 
 

Frey et al. (2003) developed a MAS for Job-Shop problems and compared it to traditional 

heuristic algorithms using a benchmarking scenario, proving MASs’ superiority in a turbulent 

production environment.  

Chen and Wang (2007a, 2007b) proposed a model that concentrates on solving the dynamic 

scheduling problem of a distributed project for non-cooperative and self-interested 

participants. In this model, the self-interested activity agents possess various negotiation 

tactics and strategies. In order to find fitting negotiation tactics and strategies that are 

optimally adapted for each activity agent, an evolutionary computation approach which 

encodes the parameters of tactics and strategies of an agent as genes in GAs is also utilized.  

Shukla et al. (2006) and Liu et al. (2007) proposed an auction-based MAS in which, like in 

other approaches, each job and each machine are represented by agent. Each machine agent is 

also an auctioneer and each job agent is a bidder. Machine agents host combinatorial auctions 

with proposed prices each time slot of all the machines; bidders construct their bids for the 

wanted time slots. Coordination of bidders and auctioneer is achieved through an iterative 

adjustment of prices.  

Mes et al. (2007) adapted the auction-based MAS schema to some scheduling problems in 

transportation contexts, comparing the results obtained thanks to this approach to the ones 

generated by traditional heuristics.  

Leitao and Restivo (2008) proposed a MAS-based holonic approach to manufacturing 

scheduling, where the scheduling functions are distributed by several entities oriented to fast 

and dynamic re-scheduling using a scheduling mechanism that evolves dynamically to 

combine centralized and distributed strategies, improving its responsiveness to emergence. 

 

Mediator architectures  

Despite the good performance of autonomous architectures, they usually face problems in 

providing globally optimized schedules and predictability in the presence of a large number of 

agents, as also highlighted by Davidsson et al. (2007).  

Thus, several approaches based on mediator architectures have been proposed in order to deal 

with complex scheduling systems aimed at combining robustness, optimality, and 

predictability of the proposed solution.  

The mediator architecture provides computational simplicity, while being quite suitable for 

developing industrial applications based on MASs.  
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Brennan and Norrie (2001), Bongaerts et al. (2000), and Cavalieri et al. (2000) showed that 

mediator MASs architectures allow obtaining significant performance improvements if 

compared to autonomous architectures. 

A mediator-based architecture is composed by a basic structure consisting of autonomous 

cooperating local agents that are capable to negotiate with each other in order to achieve 

production targets (Bongaerts et al. 2000; Shen et al. 2001), extended with mediator agents to 

coordinate the behavior of the local agents to perform global dynamic scheduling (Figure 

3.3).  

 

 

Figure 3.3 - Mediator MAS-based scheduling architecture (Ouelhadj, 2008) 

 

The architecture is such that the local agents maintain their autonomous decision making 

process, but may request advice from the mediator agents. They have the ability to advice, 

impose or update decisions taken by the resource agents in order to satisfy the global 

objectives and resolve potential conflict situations. The mediator agent has an overview of the 

entire system, while the local agents can have a more detailed and up-to-date view of the local 

situations.  

The first basic mediator architecture was proposed by Ramos (1994), composed of task 

agents, task manager agent, resource agents, and resource mediator agent. Task manager 

agent creates the task agents. The resource mediator agent negotiates with the resource agents 

the execution the tasks using the contract net protocol.  

For an increased robustness in complex manufacturing systems, some authors proposed the 

integration of mediator agents to each level of the manufacturing facility (Shen et al., 2000), 
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developing hierarchies of sub-system mediators each responsible for coordinating a part of the 

manufacturing system. 

For instance, Sun and Xue (2001) develope a mediator reactive scheduling architecture for 

responding to changes in jobs and manufacturing resources. Manufacturing resources 

including facilities and resources are represented by agents that are coordinated by two 

mediators, namely a facility mediator and a personnel mediator, using the contract net 

protocol. Reactive scheduling is conducted to modify the created schedule to respond to 

changes of jobs such as cancellation of jobs or insertion of urgent jobs, and manufacturing 

conditions such as machine breakdowns, or a person’s sudden sickness during the production 

process. Match up rescheduling strategy and agent-based collaboration are used to repair only 

part of the originally created schedule for improving the reactive scheduling efficiency, while 

maintaining the scheduling quality. A similar approach is also illustrated by Lim and Zhang 

(2004). 

Archimede and Coudert (2001) develop a multi-agent framework, based on four agents 

categories (Supervisor, Customers, Environment, Producers) with the aim of reaching a high 

level of co-operation. Its two main interests are the following: first it provides a more efficient 

control of the consequences generated by the local decisions than usual systems to each agent, 

then the adopted architecture and behaviour permit an easy co-operation between the different 

scheduling systems, which can represent different production functions. The MAS-based 

framework can be adapted to a great variety of scheduling/planning problems.  

Zhou et al. (2004) apply a mediator-based MAS architecture to a real-life bus scheduling 

problem.  

Through an extension of the contract net protocol, Wong et al. (2006) establish a comparison 

between autonomous and mediator architectures.  

BenHassine and Ho (2007) propose an extension to Meeting Scheduling problem, in which 

two categories of agents are introduced: user agents (proposer or participant in a meeting) and 

interface, that is responsible for the global optimization of the objective function.   

Homberger (2007) presents a restart evolution strategy (RES) for the resource-constrained 

project scheduling problem (RCPSP) integrated in a mediator-based MAS. The approach is 

tested on problem instances for the RCPSP problem taken from the literature; in particular, it 

manages to found better solutions than the best ones found so far.  
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3.3.2 Agent-Based Supply Chain planning approaches 

In order to address the planning of manufacturing and supply chain systems, academics have 

initiated in the middle of the 1980s a new body of approaches and distributed computing 

techniques drifting away from traditional OR-based solutions. Some of these approaches 

utilize MAS-based techniques in order to achieve reactive, reliable, and (re)configurable 

operation management systems. 

An agent-based manufacturing system may be defined as a planning and control system made 

of interdependent software agents designed to:  

• individually handle a part of a manufacturing planning and control problem, such as 

planning a single order or allocating tasks to resources;  

• collectively carry out specific higher functionalities such as planning an entire 

manufacturing system.  

For instance, Karageorgos et al. (2003) illustrated the suitability of MASs in a case study 

concerning optimization of production planning of a virtual manufacturing enterprise in 

relation to sub-contracted logistic services used to transport materials between the enterprise 

units.  

Caridi and Cavalieri (2004) provided a critical analysis of MAS-based approaches applied to 

Supply Chain Management, pointing out the lack of real world applications and the low 

maturity level of agent-based manufacturing technology.  

 

3.3.3 Agent-Based routing approaches 

Barbucha and Jedrzejowicz (2007) proposed one of the first MAS-based routing approach 

through the development of a population based algorithm. 

The approach produces solutions to routing combinatorial optimization problems using a set 

of agents, each representing an improvement algorithm. To escape getting trapped into a local 

optimum an initial population of solutions called individuals is generated or constructed. 

Individuals forming an initial population are, at the following computation stages, improved 

by independently acting agents, thus increasing chances for reaching a global optimum. The 

steps of the procedure:  

• Generating an initial population of solutions; 

• Applying solution improvement algorithms which draw individuals from the common 

memory and store them back after attempted improvement, using some user defined 

replacement strategy; 
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• Continuing reading-improving-replacing cycle until a stopping criterion is met. 

This functionality is realized mainly by two types of agents:  

• OptiAgents – OA, optimizing agents (OptiAgents), each representing a single 

optimizing algorithm; 

• SolutionManagers – SMa , responsible for finding the best solution of a single 

instance of the problem and maintains a single population of solutions of this problem. 

In Hoen and Poutre´ (2004) a MAS is presented for real-time vehicle routing problems. 

Solutions are obtained through an auction-based mechanism including Sandholm (2000) de-

commitment possibility.  

 

3.4 Conclusions 

In this chapter, the application of MASs-based approaches to optimization problems has been 

investigated. Through Davidsson et al. (2007) framework, advantages and risks of MASs-

based optimization approaches have been highlighted. Moreover, a broad literature review has 

been produced, in order to analyze the real impact of these methodologies in the OR/MS 

literature.  

The results of the survey underline that MAS-based approaches are successfully employed to 

cope with a wide spectrum of optimization problems. In particular, MAS-based approaches 

are widely utilized to deal with scheduling problems. A relevant number of application is also 

devoted to Supply Chain planning problems. 

In the following of this work, the applicability of multi-agent systems to another particular 

class of optimization problems will be surveyed. Precisely, a MAS-based approach for 

modeling and solving Location Problems will be developed.  
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Chapter 4 

Location Problems: an overview 
 

4.1 Introduction 

The aim of this chapter is to provide an overview of a relevant class of optimization problems, 

namely Location Problems. Apart from offering an historical perspective of the development 

of the field of Locational Studies, the chapter will provide some generalities about the most 

widespread categories of Location Problems. This introduction will set the stage for the 

development, in the following of this work, of an agent-based framework for Location 

Problems.  

 

4.2 A historical perspective 

Tracking back the origins of Locational Studies is a controversial issue. An excellent 

historical perspective is provided by Kuhn (1973), whose work is based on a previous 

paper published by Zacharias (1913).  

The problem of finding the spatial median, namely the Mini-Sum Euclidean distance point, 

was first roughly formulated in a basic version by the French mathematician Pierre de Fermat 

(1601-1665), who pose the challenge:  

“Let he who does not approve of my method attempt the solution of the following problem: 

given three points in the plane, find a fourth point such that the sum of the distances to the 

three given points is a minimum”.  

Denote the three given points by P1=(a1, b1), P2=(a2, b2) and P3 = (a3, b3), and let Q=(x, y) be 

the fourth point to be found. Being d(Q,Pi) the Euclidean distance between Q and a generic 

point Pi, the sum of the distances from Q to the three given points is given by the following 

function, to be minimized: 

f(Q) = d(Q,P1) + d(Q,P2) + d(Q,P3) 

It is usual to credit the Italian scientist and student of Galileo Galilei, Evangelista Torricelli 

(1608-1647) with the solution. Other sources (Melzak, 1967) credit the Italian mathematician 

Battista Cavalieri (1598-1647) with both the formulation and the solution of the problem. 

Pottage (1983) states that Viviani and Roberval worked on the problem as well.  

Actually, Cavalieri (1647) provided a geometrical method to find the solution to the problem. 

Simpson (1720) provided another graphical/geometrical method for solving this ancestral un-

weighted median problem, also proposing some extensions to it, as, for example, the 
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introduction of different weights for the  points. Steiner, a geometer from the 19th century, 

wrote about the problem, without adding significant contribution to the literature. Chrystal 

(1885) provided the well-known geometrical solution to the un-weighted spatial one-center 

problem, namely the minimum covering circle for n co-planar points. 

In the 20th century, engineers and economists started to consider practical applications and 

implications of the problem. Alfred Weber (1909) considered a three-points weighted version 

of the problem to locate a single warehouse in order to minimize the total travel distance 

between the warehouse and a set of spatially distributed customers. A mathematical appendix 

to the book provided a solution method for more complex cases (more points). Since then, 

this problem has been known as Weber Problem.  

A different early location problem was formulated by Hotelling (1929), an economist who 

considered the problem of locating two competing vendors along a straight line: it was the 

first attempt to investigate facility location taking into account competition. This work was 

later extended by Smithies (1941). 

Later on, the seminal work of Weiszfeld (1937) provided the first attempt to develop an 

iterative algorithm to solve Weber’s problem, based on partial derivatives.  

Hakimi (1964) introduced the network counterpart of Weber’s problem, the p-median 

problem. In his seminal paper, he described the well-known property that for the p-median 

problem on a network, at least one of the alternative optimal solutions will consist entirely of 

vertices of the network. Hakimi (1964) also introduced the p-center problem on a network, 

consisting on locating facilities in such a way to minimize the maximum distance of a demand 

node from the closest facility; Kariv and Hakimi (1979) proved this problem to be NP-hard. 

Drezner and Wesolowsky (1978) developed an ingenious method for the multi-facility 

minimax p-center problem.  

Cooper (1963, 1964 and 1967) introduced the location-allocation problem. In its general 

form, it is similar to the p-median problem. The allocation part of this type of problem implies 

that in addition to being located, new facilities are assigned particular demands that they are 

asked to satisfy. 

Toregas et al. (1971) formulated the set covering problem, consisting in locating the 

minimum number of facilities required to cover a demand expressed in a plane. Also Minieka 

(1970) and Moore and ReVelle (1982) provided seminal contributions to the problem. 

Nowadays, Location Problems are still a relevant sector in Operational Research/Management 

Science. A wide community of researchers and scholars is devoted to the development of new 

models and algorithms. These kinds of problems have gained importance also in real 
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industrial practice, especially in the area of Supply Chain Management, as highlighted by 

Melo et al. (2009).  

In the following of the chapter, the basic elements of Location Theory will be presented. In 

addition, a taxonomy of the most common problems and their formulations will be provided. 

 

4.3 Generalities 

As suggested by Plastria (2002) a location problem can be characterized by the question 

“Where are we going to put things?” from which two more questions derive: 

• Which places are available? 

• On what basis do we choose? 

The answer to the first question determines the location space. As location problems are a 

particular class of optimization problems, the second question requires the definition of the 

demand space and of an objective function, which can concern, for instance, the minimization 

of costs, damages or discomfort or the maximization of profits and quality of services. In 

some contexts, the objective can be defined by a single criterion, while, in more complex 

situations, more criteria must be monitored simultaneously. 

Starting from their first application to industrial systems (Weber, 1909), location problems 

have received an uprising attention, related to the increasing demand of decision-making 

support systems in several application fields.  

Location Problems find a wide range of possible applications. Indeed, it is possible to 

reproduce location decisions related to several facilities and services: industrial sites, 

warehouses, schools, hospitals, supermarkets, transportation facilities (subway stops and 

stations, parking lots).  

The most of the Location Problems fall in the class of punctual Location Problems, namely 

problems in which the aim is to find one or more points to place facilities within a given 

domain. If facilities or services to be located cannot be represented by a punctual shape 

because of their extension, non-punctual Location Problems have to be considered. Network 

Design problems are a subset of this last class of problems.  

Generally, Location Problems are characterized by the following elements:  

• Location Space; 

• Demand Space; 

• Metrics. 

• Facilities Characteristics; 
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• Objective Function; 

Underlying hypothesis for each of these categories define different sub-classes of location 

problems, as stated in the following.   

 

4.3.1 Location Space  

Available locations can be long to three different kinds of sets. If available locations belong to 

an enumerable set, the location space can be defined as a discrete one (Figure 4.1).  

 

 

Figure 4.1 - Discrete Location Space 

 

On the other hand, if facilities can be located in every point of a portion of plane, the location 

space turns out to be a continuous one (Figure 4.2).  

 

Figure 4.2 - Continuous Location Space 
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Another case is represented by a situation in which the location space is defined through a 

network structure (Figure 4.3). Depending on the structure of the problem, location can be 

allowed just on network nodes or at every point on the edges.  

 

 

Figure 4.3 - Network Location Space 

 

4.3.2 Demand Space 

Demand represents the key element in the location choice, as its distribution has a direct 

impact on the positioning decision of the facilities. 

Demand distribution reproduces the distribution of consumers or users in a given domain; 

thus, a demand space can be defined as well. Demand can be organized according to the 

following structures, already introduced for the location space: 

• Discrete demand space, in which the demand is concentrated in an enumerable set of 

points; 

• Continuous demand space, in which the demand is distributed over a continuous 

portion of space; 

• Network demand space, in which the demand is distributed in the nodes or over any 

point in the edges of a graph-structure. 

In the most trivial case, demand can have a uniform distribution, namely each element of the 

demand space is characterized by the same value of service demand. In more complex cases, 

in the demand space areas with different concentrations are defined.  

Generally, demand and location spaces characteristics are independent: thus, it is possible to 

model location problems in which the location space is a continuous one and the demand 

space a discrete one, and vice-versa. 
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4.3.3 Metrics 

Location decisions often depend on objective functions that express some form of 

dependencies on the distances between demand and facilities. Thus, another fundamental 

aspect is represented by the way of measuring these distances, namely the selected metric. 

Given two points Pi = (xi,yi) e Pj = (xj,yj), the distance among them can be expressed as: 

dk(Pi,Pj) = ((xi – xj)k + (yi – yj)k)1/k 

where k=1 defines the linear or Manhattan metric, while if k=2 the Euclidean metrics is 

defined (examples are shown in Figure 4.4). The choice of the metric depends on the specific 

problem to be analyzed.  

Practical experiments have shown the metric that allows to represent in a better way distances 

in real contexts is characterized by 1 < k < 2.  

 

Figure 4.4 - Manhattan metric and Euclidean metric 

 

4.3.4 Facilities Characteristics 

Facilities to be located can be defined according to some distinctive features. Among these, 

we can cite:  

• Number of facilities; in the simplest case, single-facility problem must be faced; 

otherwise, if more than one facility has to be located, a multi-facility problem is 

defined. In particular, the number of facilities to be located can be pre-defined or to be 

determined as an output of the problem itself; 

• Type of the facilities; in the simplest case the facilities to be located are endowed with 

the same characteristics; a more complex case is defined when the facilities are not 

homogeneous, namely they present different forms, capacities, dimensions or 

qualitative characteristics; 
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• Capacity of the facilities, representing the maximum demand amount that can be 

served at the facility; 

• Costs, including fixed costs (connected to the opening of the facilities, depending 

generally on the selected location, namely location costs) and variable costs 

(connected to demand satisfaction, namely allocation costs). 

• Covering radius, representing (once fixed the metrics) the maximum distance that a 

facility located in a given point can reach. The covering radius defines a covering 

neighborhood (Figure 4.5), that will assume a different shape according to the selected 

metrics. Demand points included within the neighborhood will be considered 

reachable (covered) by the facility 

 
Figure 4.5 – Covering radii and neighborhoods in the case of Manhattan (left) 

and Euclidean (right) metrics. 
 

4.3.5 Objective Function 

Facilities are located according to a given objective function, with the aim of optimizing it. In 

the most common cases, an objective function can be expressed by the following criteria: 

• Minimizing location/allocation costs (Mini-Sum objectives); 

• Maximizing the total amount of demand covered by the located facilities (Covering 

objectives); 

• Minimizing the distance of the most disadvantaged customer (Center objectives). 

In many cases, it is also possible to optimize:  

• a combination of more function;  

• a vector function made up of more components (multi-criteria optimization);  

• one of the functions and translating the others in constraints for the problems. 
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4.4 Classification of Location Problems 

Like in other branches of optimization problems, also in Location Theory emerged the need 

for a precise and concise schema for describing problems in a synthetic way, capable of 

eliminating the ambiguity of verbal model descriptions.  
Available classifications are similar to queuing (Kendall, 1951) and scheduling problems 

(Graham et al., 1979) taxonomies, based on a multiple-position string in which each position 

is representative of a distinctive characteristic of the problem.   

Handler and Mirchandani (1979) suggested a 4-position scheme for network problems with 

center-type objective; Brandeau and Chiu (1989) give a taxonomy to distinguish location 

problems with respect to three criteria (objective, decision variables, system parameters) in 

table format, without providing a formal classification scheme. Eiselt et al. (1993) used a 5-

position scheme specialized on competitive location models.  

Carrizosa et al. (1995) present a 6-position scheme for classifying planar model where both 

demand rates and service times are given by a probability distribution.  

Hamacher and Nickel (1998) designed a 5-position classification scheme to take into account 

every class of location problem in a single framework that represent, at the moment, the most 

detailed attempt to provide a universal classification of Location Problems. 

The classification scheme has five positions written as: 

Pos1/Pos2/Pos3/Pos4/Pos5 

The meaning of each position can be described as follows: 

• Pos1: Information about the number and type of new facilities; 

• Pos2: Type of the location model with respect to the decision space. This information 

should at least distinguish between continuous, network and discrete models; 

• Pos3: A description of particulars of the specific location model, such as information 

about the feasible solutions, capacity restrictions, etc; 

• Pos4: Relation between new and existing facilities. This relation may be expressed by 

a distance function or by assigned costs; 

• Pos5: Description of the objective function. 

If no special assumptions are made, the position is filled by a symbol “•”. For example, a 

symbol “•” in the fifth position means that each possible objective function is considered; a 

symbol “•” in the third position stands for a problem in which no particular restrictions are 

introduced. 
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The classification can be applied successfully to each one of the three main categories of 

location problems (Continuous, Discrete, Network) introduced above, as shown in the 

following.  

 

4.4.1 Continuous Location Problems 

Since continuous location models are the oldest location models and deal with geometrical 

representations of reality, a broad range of different location model types must be taken into 

account. We now describe some possible symbols in each position for continuous location 

models. 

 

Pos1   

It is characterized by a number n�� {1,…,N} expressing the number of facilities to be located 

and by a string of characters that specifies the shape of the facilities themselves, as follows:  

(a void string) to indicate punctual facilities; 

l  to indicate that n lines have to be located; 

p to indicate that n paths (consisting of one or more lines) have to be located;  

A to indicate that n  areas have to be located.  

 

Pos 2  

As stated above, it provides information about the location space. In particular: 

`d  the problem has to be solved in a d-dimensional space; 

P  the problem has to be solved in a plane (d = 2); 

H the problem has to be solved in a Hilbert Space.  

 

Pos 3 

Specifications about particular constraints of the problems can be stated as follows: 

F    the problem presents a feasible region; it is necessary that a solution x is such 

that x�� F. 

B        Barrier, i.e., neither placement of new facilities nor trespassing is allowed. 

Further specifications can be provided about weights associated with demand points. 
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Pos 4 

This position specifies the distance function, for example: 

lp the distance is defined by lp-norm (for example, l2 is the Euclidean norm); 

dnonhom the distance is not the same in the whole domain of the problem. 

 

Pos 5 

As regards the objective function, the default case accounts for an objective function to be 

minimized. The nature of the objective function also provides, intuitively, information on the 

demand space, as follows:  

∑  ordinary Weber objective function (weighted sum of the distances among 

demand and facilities). The symbol ∑ also signifies that the demand space is a 

discrete one; 

max  objective function that expresses the maximum distance from a demand point 

to the closest facility (p-Center problem); 

∫d Weber objective function within a continuous demand space (the weighted sum 

is an integral sum); 

 

Examples 

Given the adaptation of the 5-positions schema to continuous location problems, the most 

common problems can be described adopting it as follows: 

 

1/P/●/l2/ ∑   

Classical Weber problem with Euclidean distance. Just one facility has to be located in a 

planar space with no other constraints.  

 

1/P/●/●/∑   

Class of planar Weber single-facility problems, with any kind of distance.  

 

N/P/(mc)/●/∑  

Class of planar Weber problems, with any kind of distance and any number of facilities. 

Facilities have to satisfy some mutual conditions.  

 

N/P/●/●/max  
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Class of planar center problems, with any kind of distance and any number of facilities. 

 

4.4.2 Discrete Location Problems 

In the following, the meaning of the five positions for Si procederà ora ad illustrare il 

significato delle 5 posizioni proposte da Hamacher per i problemi di localizzazione discreti. 

 

Pos 1 

n  n�� {1,…,N} states the number of facilities to be located; 

#  the number of facilities to be located is unknown and it is part of the problem; 

## two different kind of facilities have to be located; the number of the facilities is 

unknown for both the kind of facilities.  

 

Pos 2 

D  the location space is a discrete one; this is the only option for this kind of 

problems. 

 

Pos 3 

cap  facilities have limited capacities; 

bdg  there is a budget constraint; 

dmax it is assigned a maximum distance constraint between demand and facilities;  

dmin it is assigned a minimum distance constraint between demand and facilities. 

 

Pos 4 

Any restrictions and particulars of given costs cij can be speci®ed (e.g., triangle inequality, 

non-negativity, etc.). 

 

Pos 5 

Any objective function from the continuous case can be adopted,  

∑comp  Competitive location model; 

∑uncov  Coverage objective function; 

∑cov + ∑uncov Covering objective function; 
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Examples 

After having illustrated the classification schema for discrete problems, some examples of 

common problems can be provided.  

 

N/D/●/●/∑ 

Discrete N-Median (Weber) problem without restrictions and distance specification.  

 

#/D/●/●/∑ 

The so-called uncapacitated facility location model, or Simple Plant location problem, in 

which the number of facilities to be located is unknown a-priori. 

 

#/D/dmax,bdg/●/∑uncov 

Coverage model, in which the number of facilities to completely cover the demand is 

unknown a-priori. Facilities have to be placed respecting a maximum distance constraint with 

respect to demand points; there are also restrictions on available budget. 

 

4.4.3 Network Location Problems 

The 5-position schema can be particularized as follows. 

 

Pos 1   

As in the other cases, n�� {1,…,N} states the number of facilities to be located; # indicates that 

the number is unknown and its determination is part of the problem.  

As regards the kind of facilities to be located: 

  (a void string) indicates that n points have to be located  

p   n paths have to be located; 

T  n trees have to be located; 

G  n subgraphs have to be located. 

 

Pos 2 

As the problem is defined on a network, this position clarifies the characteristics of the 

underlying graph:  

G    the problem is defined on an undirected graph; 

GD the problem is defined on a directed graph; 

T the graph is a tree. 
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Pos 3 

Same options from the continuous case.  

 

Pos 4 

In a network, the distance is always measured with reference to the shortest path. Thus, it has 

to be specified from where to where distances are measured.  

In the notation d(-,-) the first element determines conditions to be respected for existing and 

new facilities, as follows: 

d(V,V) both new and existing facilities has to be positioned in graph nodes; 

d(V,G) existing facilities are positioned in graph nodes, while new facilities can be 

positioned in any point of the graph (also on edges); 

 

Figure 4.6 - Problems d(V,V) and d(V,G) 

 

d(G,V) new facilities can be positioned on graph nodes, while existing facilities are 

placed on any point on the graph;  

d(G,G) both kind of facilities can be placed everywhere on the graph. 
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Figure 4.7 - Problems d(G,V) and d(G,G) 

 

Examples of the four kinds of problems above described can be found in Figures 4.6 and 4.7. 

 

Pos 5 

Any of the objective functions listed for the continuous case which are meaningful in the 

network environment. 

 

Examples 

 

1/G/●/d(V,G)/∑  

1-Median network problem, consisting in locating a facility on a non-oriented graph. Existing 

facilities are positioned on nodes, while facilities to be located can be placed everywhere. The 

objective function to be optimized is Weber’s one.  

 

4.5 Some well-known models of Location Problems  

Within the framework of the proposed classification of Location Problems and from an 

analysis of the literature, it can be stated that there exists two predominant objective functions 

in location science: the previously introduced Weber objectives and Center-type objectives. 

These objectives are also known as minisum and minimax problems, respectively.  

Other objective functions are also studied within the location science community, especially 

recently.  

The most notable of these are the set covering and maximal covering objective functions. The 

former of these two objectives attempts to locate the minimum number of new facilities such 
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that a prescribed distance constraint to existing facilities is not violated. In contrast, the latter 

strives to locate a given number of facilities to best meet the (weighted) demands of the 

existing facilities subject to a maximum distance between new and existing facility. It should 

be noted that for the set covering formulation, because all of the demands must be met 

(covered) regardless, the relative weight of the demands generated by the existing facilities 

are inconsequential, whereas in the maximal covering objective some existing facility 

demands may be left unmet (uncovered). 

Objectives that involve equity issues are also investigated, like, for example, minimizing the 

variance or the range of distances between demand points and facilities. 

The diametrics of these objective functions also exist (maxisum, maximin, minimal covering), 

although they are somewhat less studied.  

In the following, a brief review on these classes of location problems will be provided. 

 

4.5.1 p-Median like problems 

The p-Median problem aims at the minimization of the weighted sum of the distances 

between p facilities to be opened and a set of demand points. Several versions of the problem 

have been defined in the literature. 

The version of this problem in which the location space is continuous, often indicated as the 

Multisource Weber Problem (MWP), belongs to the class of NP-hard optimization problems, 

as shown in Megiddo and Supowit (1984). Given a set of demand points i ∈  I, located in 

(xi,yi) and the coordinates (xa,ya) ∈  S ⊂  ℜ  x ℜ  for a number p of facilities, a possible 

formulation for the MWP is the following one (Klose and Drexl, 2005): 
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being di= 22 )()( iaia yyxx −+− in the case of Euclidean metrics. In this model, zia equals 1 

when a demand point i is assigned to a facility a.  
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Fast heuristic methods to cope with the MWP are considered and compared in Brimberg et al. 

(2000) and Hansen et al. (1998), while in Aras et al. (2006) the problem is solved using 

neural networks. As concerns exact algorithms, the first attempt to solve instances of the 

MWP is proposed by Kuenne and Soland (1972). Later, different approaches are proposed by 

Rosing (1992), Chen et al. (1998) and duMerle et al. (1999). A recently developed branch-

and-price algorithm (Righini and Zaniboni (2007)) permits to find the optimal solution on 

instances with some thousands of points and some hundreds of sources in less than three 

hours on a PC.  

The diametrical version of the problem takes into account the necessity of locating obnoxious 

facilities. A facility is called obnoxious when it is desired to locate it as far as possible from 

an inhabited centre. Obnoxious location problems have received significant attention in the 

last decades, due to the increasing environmental and social impact of facilities such as power 

plants and dump sites. Thus, in the case of obnoxious facilities, the p-Median objective can be 

turned into an anti-p-Median objective, in which the aim is to maximize the weighted sum of 

the distances between p facilities to be opened and a set of demand points. 

 

4.5.2 p-Center like problems 

The p-center problem concerns the location of p facilities (centers) so as to minimise the 

maximum of the distances from each customer (demand point) to its nearest facility. This 

problem may address, for instance, the location of public facilities, schools, emergency 

services, where the objective is to design a system in such a way that no customer has to 

travel too far (or each customer could be reached in a reasonable amount of time). 

The p-center problem on a network (Hakimi, 1964) was later addressed by Hakimi (1965), 

Minieka (1970, 1977), Elzinga and Hearn (1972). Kariv and Hakimi (1979b) proved this 

problem to be NP-hard. 

Francis (1967) provided some insight to the p-center problem on a plane. This same problem 

(with slight variations) was later addressed by Wesolowsky (1972) who investigated the 

problem with rectilinear distances. Drezner and Wesolowsky (1978a) developed a solution 

method (which is now often cited as the Drezner-Wesolowsky method) for the multi-facility 

minimax p-center problem. Drezner and Wesolowsky (1978b) researched the problem under 

an arbitrary lp distance metric; Chen (1983) looked at the problem with Euclidean distances; 

Ward and Wendell (1985) formulated the now well-known “block-norm” for the distances 

involved. Masuyama et al. (1981) and Megiddo and Supowit (1984) were able to show that 

the Euclidean and rectilinear cases of this problem are NP-complete, respectively. 
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In the case of a continuous location space, the p-center problem consists in finding a subset A  

Within a region S⊂R2, such that: 

aib
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Subject to: 
||A|| = p 

 
The objective function represents the minimization of the maximum weighted distance 

between each demand point i and the closest facility a. The constraint expresses that exactly p 

facilities are going to be located.  

The diametrical version of the problem is represented by the anti-p-center problem. In this 

problem, the aim is to find p facility locations which will maximize the minimum distance 

between demand points and their respective nearest facilities. Typically, this problem is used 

to model the location of the above defined obnoxious facilities such as incinerator plants, 

hazardous waste sites, unsightly factories.  

In the case of a continuous location space, the anti-p-center problem consists in finding a 

subset A within a region S⊂R2, such that: 
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Subject to: 
||A|| = p 

 

 

4.5.3 Covering problems 

Location Covering Models are another class of problems, in which the objective is to ensure 

coverage to given demand points. A demand point is said to be covered by a certain facility if 

the distance between the two points is lower than a certain threshold, or required distance 

(RD). Models of this type generally address the location of urban public facilities, especially 

emergency facilities. Church and ReVelle (1974) propose the p-Maximal Covering Location 

Problem (MCLP), which seeks to locate p facilities that can cover the maximum amount of 

demand. Given a set of demand points i ∈  I, located in (xi,yi) and the coordinates (xa,ya) ∈  S 

⊂  ℜ  x ℜ  for a number p of facilities, a possible formulation for the the p-Maximal Covering 

Location Problem with facility placement on the entire plane can be derived from Mehrez 

(1983): 
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The variables iζ  and zai are binary. The variable iζ is equal to 1 if a demand wi located in i is 

covered, (0 otherwise) and the variable zai is equal to 1 if the demand concentrated in i is 

covered by a facility located in a. Constraints (5) ensure that a demand point that is 

considered to be covered has at least one facility within the required distance; constraint (6) 

ensures that the variable zai is equal to 1 if the demand located in i can be covered by the 

service located in a within the required distance RD (0 otherwise). The problem is generally 

complex, and several heuristic methods have been developed to deal with it. A survey on this 

topic is presented by Galvao et al. (2000). 

As shown for the previous classes of location problems, also in the case of Covering Location 

Problems, a diametric version regarding obnoxious facilities can be considered. Berman and 

Huang (2008) introduced the Minimum Covering Location Problem with Distance 

Constraints (MCLPDC) that, through locating a fixed number of facilities, aims to minimize 

the number of covered customers (where, as stated above, a customer is considered covered if 

her distance to the closest facility is less than a pre-determined radius) by respecting a 

constraint on the minimum distance among facilities themselves. To motivate the MCLPDC, 

they consider the problem of locating facilities that may pose a serious danger to the 

individuals living nearby. The fewer people “covered” the better. The minimum distance 

constraints express the condition that sometimes, for safety reasons, those facilities should 

also be separated (e.g., if several reactors are clustered in the same region, the problem would 

turn out to be trivial, but facilities may all be attacked by an aggressor). Early versions of this 

objective have been presented by Drezner and Wesolowsky (1994) and by Plastria and 

Carrizosa (1999). 

Moreover, several extensions have been proposed to the basic p-Maximal Covering problems. 

Storbeck (1982) and Benedict (1983) describe a formulation of the problem in which apart 

from the maximization of the demand covered by the facilities, the demand covered by at 

pyx ℜ∈,
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least two facilities has to be maximized. Following the same idea, Daskin et al. (1988) 

establishes a version of the problem in which the back-up coverage has to be maximized. 

Chung et al. (1983) introduce capacity constraints for facilities to be located; in this way, the 

demand concentrated in a given point could also be assigned to a facility other from the 

closest one. Current and Storbeck (1988) the authors introduce the possibility for demand 

points to be served by more than a facility according to a given demand distribution model. 

Pirkul e Schilling (1991) introduce a multi-criteria objective function aimed at re-assigning 

demand points out of covering radius of any located facility to the closest facility, respecting 

capacity constraints. 

Karasakal and Karasakal (2004) develop a more sophisticated coverage concept by 

introducing the concept of partial coverage. Each facility is endowed with two covering 

radius: a minimum covering radius and a maximum covering radius; demand points within 

the minimum radius are considered to be totally covered, while the ones falling in the area 

between the circles described by the two radii are considered to be partially covered. Berman 

et and Huang (2008) propose the covering radius as a variable associated with a cost to be 

minimized. 

  

4.5.4 Equity problems 

Another kind of problems can be defined when the objective is a measure of “equity” from 

the demand points to the set of facilities (Eiselt and Laporte (1995)). Equity is sought by 

minimizing the inequality in the facility-demand points distances. Several objectives have 

been introduced in order to achieve this goal. Among the others, we can cite: minimizing the 

variance of distances (Maimon, 1986), minimizing the Gini Coefficient (Maimon, 1988), 

minimizing the range of distances in the plane (Schöbel, 1999).  

As regards the minimum variance objective, being µ(xa,ya) the average distance among the 

demand points i and the facility a of coordinates (xa,ya) and σ2(xa,ya) the variance of the 

distances, the Single Facility Minimum Variance Location Problem in the Euclidean plane 

aims at defining the position (xa,ya) of the facility which minimizes σ2(xa,ya). Drezner and 

Drezner (2007) solve to optimality large instances of this problem using a Big Triangle Small 

Triangle (BTST) approach. 
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4.6 Conclusions 

In this chapter an overview of a relevant class of optimization problems, namely Location 

Problems, has been proposed. After having offered an historical perspective of the 

development of the field of Locational Studies, the chapter has provided some generalities 

about the most widespread categories of Location Problems.  

This introduction has set the stage for the development, in the following of this work, of an 

agent-based framework for Location Problems.  
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Chapter 5 

An agent-based framework for Location Problems 
 

5.1 Introduction 

The high relevance of location problems in the operations research literature arises from their 

wide spectrum of real applications, including decision optimization in industrial management, 

logistics and territorial planning. Most of these optimization problems fall in the class of NP-

hard problems, motivating the search for heuristic and approximated algorithms. Currently, a 

great interest is being devoted to those optimization approaches yielding a concrete 

integration with spatial analysis instruments (such as Geographical Information Systems), that 

provide the user with an easy visualization of input data and optimization results.  

As shown in Chapter 2, Agent-Based computing was recently proposed as an alternative to 

mathematical programming in order to deal with problems whose domains are concurrently 

distributed, complex and heterogeneous, also thanks to the availability of many commercial 

and open source codes including graphical interfaces for the elements of the problem.  

In this Chapter we propose a general Agent-Based framework for modeling various location 

problems. Together with its description, we present some computational results confirming 

the suitability and the effectiveness of the proposed approach. 

 

5.2 Theoretical Framework 

As it can be derived from Billari et al. (2006) and Weiss (1999), and as it has been recalled in 

Chapter 1, the development of an Agent-Based Model needs a complete description for a set 

of basic building blocks, as follows. 

• The object of the simulation. It has to be specified what is the phenomenon/problem to 

be reproduced, defining the space where the simulation takes place. 

• The agents’ population. Agents can be grouped in different categories with common 

characteristics reproducing the various components of the system. 

• The adaptive capability of each agent category. Agents of each category present a 

specific adaptive capability, i.e. the degree of re-activeness and pro-activeness. 

• The interaction paradigm among agents. Each agent can interact with agents of the 

same or of other categories. In the literature, several interaction paradigms have been 

defined, such as cooperation, competition, negotiation (see for instance Weiss (1999)). 
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On the base of the selected paradigm, the agents evolve in the simulation space in a 

different way. 

Given this peculiarity in dealing with the representation and the simulation of complex 

systems, ABMs have been recently applied to solve optimization problems whose domains 

present several inter-related components in a distributed and heterogeneous environment 

(Weiss (1999), Wooldridge (2002)), sometimes combined to other optimization techniques. 

Some of the characteristics of ABMs suggest the possibility to apply this approach to model 

and solve location problems. The approach appears to be particularly interesting when the 

location space is a planar region (whose points represent available locations) and the demand 

can be represented by an enumerable set of discrete points.  

Suppose that we have to locate p facilities in a continuous space in which n demand points are 

positioned. In order to define an Agent-Based framework, in the following we describe how 

each block previously illustrated can be specified to represent the problem.  

 

The object of the simulation. The object of the simulation is to reproduce all the elements of 

the problem and to define the appropriate rules that agents should follow. The environment of 

the simulation is represented by the location space, i.e. a portion of plane (for instance a 

rectangle of base b and height h) where agents are positioned. We assume that distances 

between elements are defined by an Euclidean metric. Due to the flexibility of the ABMs, the 

adaptation of the model to different metrics is straightforward. 

 

The agents’ population. We distinguish between two main agent categories (see Figure 5.1): 

• a set P of “passive” agents representing the demand points with an associated demand 

wi ∀i∈P; 

• a set A of “active” agents representing the facilities to be located. 

 

The adaptive capability of each agent category. The two agent categories present different 

adaptive capabilities. Passive agents do not change position but they interact with the active 

agents in an autonomous way. They are neither re-active, as they do not react to any signal, 

nor pro-active as they do not pursue any objective. On the other hand, the active agents are 

both re-active, as they answer to the presence of passive agents, and pro-active, as they move 

in the location space searching for positions according to a given objective.  
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Figure 5.1 – Location space and agent categories 

The interaction paradigm among agents. As mentioned before there exist different paradigms 

to define the interaction among agents. In this context, we adopt the Artificial Potential Fields 

(APF) paradigm, based on some concepts from physics and biology (see Ferber (1999), 

Kathib (1986)). The paradigm assumes that the agent behavior is regulated by the action of 

forces. In this context we suppose that two forces operate on each active agent a∈A (Figure 

5.2): 

§ a demand-driven force, Fd
ia, due to the presence of a passive agent i∈P which pushes 

the agent a toward the position of i; 

§ a repulsive force, Fr
ja, determined by the presence of an active agent j∈A which 

pushes the agent a in the opposite direction of j. 

The intensity of the two forces is a function of the distance between the agents as widely used 

in spatial interaction models (see, for instance Fotheringham and O’Kelly (1989), Sen and 

Smith (1995), Serra and Colomè (2001)).  

According to the APF paradigm we suppose that these forces are significant only within a 

given distance from the agent a∈A. In order to define the forces, the paradigm introduces 

some calibration parameters expressing the width of the neighborhood within which each 

force is significant. 

In this way we can define a resulting demand-driven force (Figure 5.3a): 
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(a) the resulting demand-driven force 

Figure 5.3 – The resulting forces operating on an active agent
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Figure 5.2 - Forces operating on an active agent 

is the set of passive agents whose distance from a is within a given radius 

repulsive force is given by (Figure 5.3b): 
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5.3 Adaptations of the ABM Framework to several Location Problems 

The described framework can be particularized to deal with different location problems and to 

consequently solve them through the development of proper procedures to be implemented in 

a given environment. In particular we show how the forces can be specified in relation with 

the problems illustrated in Section 3, according to the specific objective of the problem. In the 

following we define a distance vector dba between two agents b and a as the vector applied to 

the agent a and directed toward the agent b with an intensity equal to the distance ||dba|| 

between the agents. 

 

5.3.1 The p-Median like problem 

We start by describing the adaptation of the proposed ABM framework to solve a class of  

location problems in which it must be minimized an objective function which includes a  

weighted sum of the distances between p facilities to be opened and a set of demand  

points. We refer to this as the "p-Median like problem". 

In this case the demand-driven force can be expressed by 

Fd
ia = wi dia  ∀i∈ Prd,a (8) 

where wi represents the demand associated to i and dia the above mentioned distance vector. In 

practice we suppose that the influence of a demand point i on the facility a decreases the 

closer the facility moves towards such a demand point. Indeed, if the active agent reaches 

exactly the position of the demand point, the demand-driven force becomes zero.  

As regards the distributive force we assume that:  

||||
1

|||| jaja

jar
ja dd

d
F −=   ∀j∈ Arr,a 

The influence of another facility j on the facility a is inversely proportional to the distance 

||dja||: the closer the two facilities, the more intense the force Fr
ja  that will tend to push the 

agent a away from the agent j. 

The proposed adaptation of the ABM framework to the class of p-Median like problems can  

be applied as a heuristic approach to solve instances of the classical p-Median problem 

described in  

Section 3, since, given any instance of that problem, it provides a feasible solution in  

finite computational time, whose quality will be experimentally evaluated in the next  

Section, through the comparison with the results arising from the related literature for  

the p-Median problem. According to Drezner (1987) we also observe that, even if the p-
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Median problem does not explicitly consider mutual distances among facilities, the presence 

of distributive forces allows avoiding facilities overlapping that could yield bad quality 

objective function values. 

The values of the radii rd and rr for the determination of Prd and Arr and α  are calibration 

parameters.  

The value of rd can be set as 








+
=

1
),min(

p
hb

rd  being b and h respectively the base and the 

height of the location space.  

As regards the value of rr a default value of 1 space unit can be considered. In presence of 

possible constraints on the minimum distance among the facilities, rr  can be fixed according 

to this aspect. 

The value of α can be set equal to 0.5, so the resulting forces are supposed to have the same 

relative weight. 

 

5.3.2 The p-Maximal Covering like problem 

We consider now the adaptation of the ABM framework to the class of p-Maximal Covering  

like problems, in which the objective is to ensure the coverage to some demand points  

under threshold constraints. In this case, the demand-driven force is expressed as follows: 

ia
i

id
ia d

p
w

F =   ∀i∈ Prd,a 

where pi is the number of active agents covering the demand point i, i.e. within a distance RD 

from i. In this way we suppose that if a demand point i is covered by more than one facility, 

its demand-driven force is equally shared among those facilities. 

In this case the values of the radii rd and rr can be fixed equal to RD and α=0.5.  

 

5.3.3 The Minimum Variance like problem 

In the adaptation of the ABM framework to the Single Facility Minimum Variance like  

problem, since we deal with a single facility location, the repulsive forces are not  

present. The expression of the demand-driven force is calculated as in (8). 

Due to the absence of repulsive forces, α =1 and rr=0, the only parameter to be calibrated is rd 

whose value can be fixed as already shown for the p-Median like case.  

A summary of the adaptations of the Agent-Based framework to the illustrated location 

problems is reported in Table 1. 
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Problem Demand-driven force Repulsive force Calibration 
parameters 

 p-Median like problem Fd
ia = wi dia ∀i∈ 

Prd,a ||||
1

|||| jaja

jar
ja dd

d
F −=  ∀j∈ 

Arr,a 

α, rd, rr 

 p-Maximal Covering like 
problem ia

i

id
ia d

p
w

F =  ∀i∈ 

Prd,a 
||||

1
|||| jaja

jar
ja dd

d
F −=  ∀j∈ 

Arr,a 

α, rd, rr 

Single Facility Minimum 
Variance like problem 

Fd
ia = wi dia ∀i∈ 

Prd,a 
-------- rd 

Table 5.1 - Summary of the expressions of the forces for the illustrated problems. 

 

5.4 Implementation of the Framework 

The illustrated framework has been implemented within the NetLogo Agent-Based simulation 

environment (http://ccl.northwestern.edu/netlogo, see Appendix I ) using the proprietary 

programming language and its Java architecture. NetLogo allows reproducing the two agent 

categories above introduced. In particular, passive agents are represented by cells in a grid 

network, being each cell identified by a couple of integer coordinates. 

In the implemented procedure (for the detailed code, see Appendix II), whose scheme is 

represented in Figure 5.4, it is possible to distinguish the following steps. 

 

1. Initialization 

The parameters of the problem (number of facilities p, values of the radii rd and rr, α , 

objective function, expression of the forces) are defined. 

2. Individuation of the initial solution 

The position of p active agents in the location space is randomly determined according to a 

uniform distribution with values ranging within the extreme coordinates of the location space. 

3. Evolution of the current solution 

For each active agent a located in the current positions, the total force Ma according to (7) is 

calculated so that the active agents change position on the base of this force and the solution 

assumes a new objective function value.  

4. Diversification 

If a diversification criterion (defined in terms of number of non-improving iterations, fixed a-

priori as a parameter) is satisfied, a diversification move is enacted and the procedure goes 

back to the step 2; otherwise, it goes to step 5. 
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5. Stopping criterion  

If a stopping criterion is satisfied the procedure ends; otherwise it goes back to the step 3. 

  
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

Figure 5.4 – The scheme of the implemented procedure 
 
The procedure behaves as a metaheuristic searching for better solutions thanks to an 

evolutionary mechanism which is performed until a diversification or a stopping criterion are 

satisfied. On the base of a diversification criterion the procedure restarts from a new initial 

solution.  

Possible stopping criteria are represented by a given total number of evolution iterations or a 

fixed running time, to be defined as parameters.  

It is worth to note that in order to store the evolution of the current solution during the run of 

the procedure, two further categories of agents have been implemented. A first category of 

agents stores the evolution of the current local best solution found by the algorithm, by 

following the search process by active agents; another category of agents stores the global 

best solution found in the search process. Both the agentsets have a cardinality p, thus visually 

represent on the plane the position of each facility in the current best local or global solution. 

 

5.5 Computational experiences 

We illustrate some examples of application of the Agent-Based framework to the location 

problems introduced and described in Sections 3 and 5, in order to show the capability of the 

proposed approach to solve these problems and to analyze the provided performances in terms 

of computational times and quality of the solution. The procedure was run on a PC with a 

Initialization  
 

Individuation of the initial solution 

Is the diversification criterion satisfied? 

no 
yes 

Evolution of the current solution 

yes 

End of the procedure 

Is the stopping criterion satisfied? 
no 
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Dual-Core T2250 2.0 GHz CPU and 2 GB of RAM. In all the experiments the calibration 

parameters were set according to the criteria illustrated in Section 5. 

As stopping criterion we fixed a number of 150 iterations while, to start the diversification,we 

considered 10 non-improving iterations. 

In order to evaluate the quality of the provided solution, we calculated the gap from the 

known optimal solution as  

100*






 −
=

utionOptimalSol
utionOptimalSolonBestSolutiABM

Gap  

 

5.5.1 Solving p-Median problem instances 

We applied the proposed framework to solve one of the benchmark problems (Bongartz287) 

available for p-Median problem (the data of the instance are available at the website 

http://ina2.eivd.ch/Collaborateurs/etd/problemes.dir/location.html). This test problem is 

characterized by 287 demand points with variable demand values, whose coordinates assume 

integer values in the range [0,50]. We used a 100x100 grid of passive agents; thus, each grid 

point can be associated or not to a demand point. We solved the problem for p varying from 2 

to 10. 

Results reported in Table 5.2 show that ABM finds near optimal solutions in limited 

computing times. 

 

5.5.2 Solving p-Maximal Covering problem instances 

In absence of benchmark instances for this version of the problem, we generated instances in 

a 100x100 location space (for a total number of 10000 demand points) with known optimal 

solutions according to the following criteria. Once fixed the distance threshold RD (we 

assume RD=4 space units) and given the number p of facilities to be opened, each instance is 

produced through the random generation of 4 sets of p circles of radius R≥RD in the location 

space. The coordinates of the center of each circle were chosen according to a uniform 

distribution. For each set s (s=1..4), we assigned the same demand value ws to the points 

internal to each circle. In particular we fixed w1=1, w2=1/2, w3=1/4, w4=1/8. Points belonging 

to the intersection of more circles were given the maximum demand value. This way the 

optimal solution of the p-Maximal Covering problem on such instances is known in advance, 

as it can be obtained locating the p facilities exactly in the centre of the p circles with unitary 

demand values.  
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For some combination of values (R,RD) and for each value of p varying from 1 to 10, we 

generated 5 different instances. For each instance, the procedure was run 10 times.  

The results indicate the frequency with which the optimal solution is found (calculated as 

[number of times]/50) in the case R=RD and in the case R=2RD (Table 5.3).  

As the procedure always finds the optimal solution, the average running times to find the 

optimal solution are reported for each value of p. The R value does not seem to affect the 

results in terms of final solution but there is a slight variation in the computational times. 

However, the results appear interesting and the optimal solutions are detected in limited 

computing times. 

 

5.5.3 Solving Minimum Variance problem instances 

The adaptation of the ABM framework to the Single Facility Minimum Variance like problem  

was applied to some instances contained in Drezner and Drezner (2007). These instances 

consider a continuous location space and a discrete demand space with demand points of 

equal demand values distributed on the Euclidean plane. 

In order to solve the instances we used a 100x100 grid of agents, i.e. 10000 passive agents. 

As, in general, the position of an original discrete demand point did not coincide with any grid 

points, an adaptation of the instances demand data was performed, associating each demand 

point to the closest grid point; thus, each grid point has been weighted with a demand value 

equal to the number of associated demand points. The ABM provides the coordinates of the 

facility to be located with a ten-digit precision in the continuous location space. Then, the 

objective function value was computed as the variance of the distances of the original demand 

points from the located facility. This way, the objective function value includes the effects of 

the aggregation operation and, thus, associated errors (Plastria, 2000). 

Table 5.4 shows the capability of the proposed approach to find good results in reasonable 

computational times. 
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p Optimal Solution ABM Best Solution Gap ABM Runtime (sec) 
2 14427.593010 0.00% 0.50 
3 12095.442160 0.00% 1.50 
4 10661.476590 0.00% 1.50 
5 9715.627471 0.10% 2.30 
6 8787.556817 0.23% 4.10 
7 8160.320284 0.53% 4.20 
8 7564.294907 0.22% 5.40 
9 7088.128333 0.38% 6.00 
10 6705.035556 1.32% 6.00 

Table 5.2: Computational Results on the Bongartz287 instance 

 

R=RD R=2RD 

p 
Optimal Solution 

Frequency 
Average Runtime 

(sec) 
Optimal Solution 

Frequency 
Average Runtime 

(sec) 
1 100.00% 2.1 100.00% 2.1 
2 100.00% 3.2 100.00% 3.4 
3 100.00% 4.0 100.00% 4.3 
4 100.00% 5.4 100.00% 6.1 
5 100.00% 7.2 100.00% 8.3 
6 100.00% 10.4 100.00% 11.6 
7 100.00% 14.9 100.00% 17.9 
8 100.00% 18.3 100.00% 20.8 
9 100.00% 22.2 100.00% 23.4 
10 100.00% 26.3 100.00% 30.5 

Table 5.3: Computational results on the p-Maximal Covering randomly generated 
instances. 

 
 

Demand Points Optimal Solution ABM Best Solution Gap ABM Runtime (sec) 
2000 0.0204669774 0.96% 3.1 
5000 0.0203239336 0.08% 3.1 

10000 0.0205132773 0.19% 4.3 
Table 5.4: Computational results on the instances in Drezner and Drezner (2007) for the  

Single Facility Minimum Variance problem 
 

5.6 Extension of the framework to other classes of Location Problems 

Apart from the above considered Location Problems for which the MAS-based approach has 

been successfully tested against other solution algorithms, several extensions to other classes 

of problems (introduced in Chapter 4) have been produced, though no computational results 

are available at the moment.  
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5.6.1 The Anti-p-Median like problem 

As introduced in Chapter 4, the anti-p-Median location problem deals with the necessity of 

locating p obnoxious facilities in such a way to minimize the damage they can do to a set of 

users distributed on an Euclidean plane.  

The MAS-based framework can be easily adapted to this problem taking into account the 

following simple considerations. As the anti-p-Median location problem is the repulsive 

counterpart of the p-Median one, facilities (represented by active agents in the framework) 

will be not attracted by demand points, represented as passive agents within the MAS-based 

framework. On the contrary, active agents will be “pushed” away by demand points: the 

higher the demand concentration of a demand point, the strongest the force that will push the 

facility away. 

Thus, utilizing the above introduced notation, the demand-driven force will be expressed in 

the following way: 

||||
1

|||| iaia

id
ia dd

w
F −=   ∀i∈ Prd,a 

where, again, wi represents the demand associated to i and dia the above distance vector. In 

practice, we suppose that the influence of a demand point i on the facility a increases the 

closer the facility moves towards such a demand point. The demand-driven force becomes 

zero when the distance between the two agents become infinitive.  

As regards the distributive force, it can be assumed equal to the one defined for the p-Median 

like case.  

 

5.6.2 Location Problems with forbidden regions 

A forbidden region represents an obstacle to the placement of facilities within a location 

space. Forbidden regions can be represented by natural or artificial obstacles. For instance, 

forbidden regions can represent lakes, mountains, national parks. It is worth to note that 

forbidden regions can also express a demand for the service to be located, but cannot host 

facilities.   

The flexibility of the proposed MAS-based approach allows modeling forbidden regions 

endowed with a circular shape in a simple and intuitive way.  

Indeed, a forbidden region can be reproduced by introducing a new class of agents that has to 

be placed within the location space. Within a given neighborhood coinciding with the 

forbidden region (whose radius has to be specified as a parameter), these agents (located at 
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the center of the forbidden region) operate a repulsive force (similar to the one introduced 

among facilities for the other classes of location problems) that allows keeping away facilities 

from the neighborhood itself (Figure 5.5). The agents representing the center of the forbidden 

region can be implemented in any of the location problems previously introduced, 

independently on the specific objective function.  

 

 

 
 
 
 
 

 
 
 
 

Figure 5.5 – Location space and agent categories 
 

5.6.3 Location Problems with Existing Facilities 

Another very common situation in every day real world practice is represented by the 

presence in the location space of a-priori located facilities. Location Problems presenting this 

additional characteristic are referred as Existing Facilities Location Problems. 

In practice, these problems seek for locating p facilities respecting the additional constraint 

that a certain number of k facilities are already located.  

The MAS-based framework allows simply representing also this case. In practice, providing 

the number and the coordinates of existing facilities, the MAS generates agents representing 

them. These agents will operate a repulsive force (similar to the one introduced among 

facilities to be located for the other classes of location problems) on the active agents 

representing facilities to be located. Indeed, as already stated, the presence of distributive 

forces allows avoiding facilities overlapping that could yield bad quality objective function 

values. 

 

5.7 GIS extensions 

Typically, real-life facility location problems can be far more complex than the ones 

illustrated in theoretical OR literature. Indeed, there are many other variables to be considered 

(e.g. availability of suitable sites, cost of sites, size of facility, access to and from sites, 
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(demand 

Active agents 
(facilities) Forbidden 
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regulatory issues, planning controls, availability of suitable labor, timing of developments, 

etc.) and all of these considerations exist within a dynamic environment that affects these and 

core variables such as customer demand patterns, materials supply and changes in the 

technological, commercial and political environment.  

Thus, a straightforward data import process and an interactive visualization and 

contextualization of the output and parameter setting of the optimization process is therefore a 

relevant requirement for a decision support system capable of helping decision makers in the 

field of location analysis. 

Geographic Information Systems (GISs) can be certainly cited as the premiere tool useful in 

dealing with the analysis of spatial related phenomena. A GIS is a set of computerized tools, 

including both hardware and software, for collecting, storing, retrieving, transforming and 

displaying spatial data. GISs are essentially a combination among computerized mapping and 

data base management systems. Anything that can appear on a map can be encoded into a 

computer and then compared to anything on any other map, using longitude-latitude 

coordinates. 

In real world location problems, mainly when a geographical database is available, the 

starting phase of a location decisional process is often the representation and the analysis of 

the problem by means of maps, datasets and geo-statistical analysis tools of GIS software. 

GIS may be considered as a support tool for planners using to make decision in site and 

facility selections at strategic or planning stage in a supply chain. The unique capabilities of 

GIS make it outstandingly useful as an analysis and visualizing tool because it allows capture 

both spatial elements and geographical locations of facilities (Raicu et al., 2002). In the 

literature, several applications have been developed that utilize GIS as a decision tool to 

support logistic decisions about facility sites (see, for instance, Valchopoulou et al., 2001). 

GIS is employed to display results of ranked candidate sites in different scenarios for users to 

select the best sites.  

However, while GISs are regularly used to build complex and interesting spatial models that 

clearly represent the pattern of a phenomenon, these models tend to be static models. 

Moreover, the majority of GISs packages do not provide capabilities to solve location 

problems directly, although many offer basic operations, such as locating a weighted mean 

center in the plane. Attempts to enhance GISs capabilities in order to make them more 

suitable to different classes of location problems, by integrating them with different kind of 

algorithms have been developed in the last decade (see, for instance, Bender et al., 2001). 
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On the other hand, Multi-Agent Systems (MASs) have proved useful in a number of fields. 

As it has widely shown in this work, applications to decision support systems for optimization 

problems are a cutting edge application field for MASs, thanks to their ability to deal with 

complex problems utilizing a decentralized approach. Given the characteristics of both the 

tools, a wide community of scholars is working at integrating GISs and MASs for obtaining 

flexible approaches for spatial-related problems (see, for instance, Brown et al. (2005), Parker 

(2005) and Guo et al. (2008); further references can be obtained at the website 

http://gisagents.blogspot.com/).  

In this work, starting from the need for flexible tools for coping with real-life location 

problems, and acknowledging the presence of a wide interest in the literature for GISs based 

decision support system for location problems, an extension of the above illustrated MASs-

based framework was also developed. 

In the developed approach, through a procedure implemented in NetLogo, it is possible to 

import from a GIS package (for example, Microsoft MapPoint) a map reporting parameters 

related to a given territory (for example, demand for a given product, or population density); 

in the visual representation, a different value of the parameter is associated with each color 

reported on the map (Figure 5.6). Practically, the GIS input can serve as demand space for a 

location problem. In order to make the GIS input employable by the MAS-based framework 

that has been shown above, the developed procedure (available in Appendix 1) applies an 

agentification of the imported GIS demand space, as shown in Figure 5.7.  

 
Figure 5.6 - GIS demand space 



 

 

Practically, a grid schema is overlaid to the GIS map; in this way, the GIS input is partitioned 

in a finite set of squared portions; to each squared portion, a passive agent

demand value is derived from the map. 

Figure 5.7 
 
Obviously, to avoid ambiguity in the assignment of demand values to passive agents, it is 

possible to increase the resolution of the grid, thu

needed to represent the demand space

complex location problem to be solved. 

Figure 5.8 - Refinement of the GIS demand space agentification
 

Practically, a grid schema is overlaid to the GIS map; in this way, the GIS input is partitioned 

finite set of squared portions; to each squared portion, a passive agent 

demand value is derived from the map.  

7 - Agentification of the GIS demand space 

Obviously, to avoid ambiguity in the assignment of demand values to passive agents, it is 

possible to increase the resolution of the grid, thus increasing the number of passive agents 

needed to represent the demand space (Figure 5.8). This, of course, can turn out in a more 

complex location problem to be solved.  

Refinement of the GIS demand space agentification
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After the agentification process, any kind of the above described location problems can be 

solved, providing valuable insights in real life situations. 

Currently, these processes are simplified by the presence of a growing number of ABM 

toolkits that permits a direct access to GIS vector and raster datasets. For instance, the 

NetLogo platform we adopted in this work offers GIS extensions, developed thanks to the 

contribution of the Center for Connected Learning (CCL) and Computer-Based Modeling of 

the Northwestern University, Chicago, and available at  the internet address 

http://ccl.northwestern.edu/netlogo/docs/gis.html. 

 

5.8 Benefits of the proposed approach 

The computational results presented in this chapter showed the effectiveness of the proposed 

ABM approach to solve the considered continuous location problems with discrete demand. 

Even if the approach appears competitive with other heuristics in terms of computational 

performances, the interest in using ABMs for location problems goes far beyond the 

computational efficiency.  

The proposed approach can be viewed as a sort of metaheuristic in which some steps are 

performed through agent-based computation. Even if the approach could be implemented in a 

“traditional” way, the use of an ABM framework provides several additional benefits.  

First of all, the current availability of open source environments for ABMs implementation 

(i.e. NetLogo, JAS, SWARM, REPAST) with dedicated libraries let modelling such heuristics 

easy to perform even for non-specialist users. The presence, within each of the cited toolkits, 

of integrated Graphical User Interfaces (GUIs) allows the immediate graphical representation 

of the elements of the problem together with a visual indication of the evolution of the 

solution.  

These aspects could help users, even not particularly skilled in implementation aspects, in the 

search of adoptable practical solutions, especially in presence of constraints which cannot be 

easily modelled in a mathematical way, such as forbidden regions, obstacles, and minimum 

distance constraints among facilities.    

The framework presents a significant flexibility that matches the huge variety of problems 

arising in the context of location studies. As previously illustrated, versions of the problems 

with variations in the objective function and/or constraints can be tackled through proper 

modifications of the elements of the framework (i.e. expressions of forces, calibration 

parameters) or introducing new characteristics in the paradigm of the model.  
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Among the benefits it should be also mentioned the possibility of an easy and effective 

integration of ABM tools with Geographical Information Systems (GIS), as deeply shown by 

Brown et al. (2005), Parker (2005) and Guo et al. (2008). As suggested above, the use of 

ABM tools allows users to solve problems through continuous interactions between 

optimization framework and GIS applications.. 

 

5.9 Conclusions 

In recent years Agent-Based modeling is becoming more and more frequently used as 

approach for solving complex optimization problems. In this work an Agent-Based 

framework for modeling location problems was proposed and illustrated. The original 

contribution of the work consists mainly in the proposal of an approach that, compared to the 

other heuristic methods in the literature, is easy to implement and appears particularly suitable 

for the integration with GIS based data.  

Moreover it presents characteristics of flexibility as the general framework can be applied, 

with slight modifications, to solve different kind of locations problems (i.e. p-Median like 

problem, p-Maximal Covering like problem, Single Facility Minimum Variance like 

problem). The features of the model suggest also the possibility of immediately adapting the 

approach to take into account constraints (for instance, minimum distance constraints among 

facilities, presence of obstacles or forbidden areas in the location space) whose formulation 

makes the problem hard to solve using mathematical programming based methods. 

The preliminary computational experiences appear encouraging and indicate that the approach 

provides reasonable quality solutions within limited running times. 

Future researches will include an extensive computational experimentation to test the 

scalability of the proposed ABM approach on very large scale instances of the considered 

problems. Moreover, it will be studied the adaptation of the framework to other classes of 

location problems such as the anti-p-Median problem (Erkut and Neuman (1989), Cappanera 

et al. (2003)) and the p-Minimal Covering problem with distance constraints (Berman and 

Huang (2008)). 
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Conclusions 

The daily work of professionals involves making a series of decisions. In fact, the world relies 

on systems designed by engineers and business people. Thus, the quality of decisions made by 

these two categories of professionals is of critical importance.  

Decisions are made by looking at the relevant data and making judgments.  Making decisions 

on issues with important consequences has become a highly complex problem due to the 

many competing forces under which the world is operating today. Anyone who holds a 

technical, managerial, or administrative job these days is faced with making decisions daily at 

work and, thus, is called to solve Decision Making Problems. Today it is essential to make 

decisions on a rational basis: the most rational way for solving decision making problems is 

through quantitative analysis.  

For a long time, classical optimization techniques (exact methods, heuristic methods) have 

represented the only available approach to solve different types of decision-making problem, 

both at strategic and tactical levels. 

In the last decade, agent-based computing has been suggested as a promising technique for 

problem whose domains are distributed, complex and heterogeneous (Weiss, 1999; 

Wooldridge, 2002), also thanks to the availability of many commercial and open source codes 

including graphical interfaces for the elements of the problem. Application to several classes 

of optimization problems, ranging from scheduling and supply chain planning to routing, have 

been developed, as shown in Chapter 3. 

After having verified the presence, in the literature, of a broad set of agent-based approaches 

for optimization problems, in this work an Agent-Based framework for modeling location 

problems was proposed and illustrated. The original contribution of the work consists mainly 

in the proposal of an approach that, compared to the other heuristic methods in the literature, 

is easy to implement and appears particularly suitable for the integration with GIS based data.  

Moreover it presents characteristics of flexibility as the general framework can be applied, 

with slight modifications, to solve different kind of locations problems (i.e. p-Median like 

problem, p-Maximal Covering like problem, Single Facility Minimum Variance like 

problem). The features of the model suggest also the possibility of immediately adapting the 

approach to take into account constraints (for instance, minimum distance constraints among 

facilities, presence of obstacles or forbidden areas in the location space) whose formulation 

makes the problem hard to solve using mathematical programming based methods. 
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The preliminary computational experiences appear encouraging and indicate that the approach 

provides reasonable quality solutions within limited running times. 

Future researches will include an extensive computational experimentation to test the 

scalability of the proposed ABM approach on very large scale instances of the considered 

problems. Moreover, it will be studied the adaptation of the framework to other classes of 

location problems such as the anti-p-Median problem (Erkut and Neuman (1989), Cappanera 

et al. (2003)) and the p-Minimal Covering problem with distance constraints (Berman and 

Huang (2008)). 
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Appendix I 

The NetLogo platform 

 

Generalities 

NetLogo is an open-source software platform that allows modeling complex and dynamics 

systems. It has been developed at the Center for Connected Learning and Computer-Based 

Modeling at Northwestern University. It is a continuously evolving project supported by a 

wide users and developers community. 

NetLogo architecture is based on a Java platform. Thus, it can be run on any compatible 

architecture. NetLogo fundamental characteristics is an intuitive programming language that 

allows even the non-specialist user implementing models. This programming is inspired to the 

well-famous Logo; NetLogo codes are then translated into Java ones through a compiler 

embedded in the architecture.  

Within the simulation environment it is possible to implement three main agents categories: 

• Turtles, representing proactive and reactive agents, as they perform evolutive actions 

among themselves and with the environment. It is also possible to implement 

different turtles categories (or classes), each endowed with particular characteristics. 

• Patches, modeling passive agents. They represent square sections of a continuous 

and bi-dimensional space; they are identified by means of specific coordinates.  

• Observer representing a mediator architecture that inizializes active agents and 

assigns them tasks.  

NetLogo allows creating agentsets NetLogo that are aimed at defining classes of agents 

sharing the same characteristics and behaviors. An agentset can be made up of a set of turtles 

or patches, and it is identified in NetLogo code by using the primitive breed. 

The NetLogo development kit presents three main fields:  

• Procedures (Figure I.1) in which commands describing agents behavior can be 

specified, by utilizing NetLogo primitives; 

• Interface (Figure I.2) where the world in which the simulation takes place can be 

observed. Plots and monitors can be inserted, in order to control the evolution of 

relevant variables. Sliders and switches are designed to change parameter values 

without modifying the underlying code; 

• Information (Figure I.3) in which the main characteristic of the developed model can 

be explained. 
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Figure I.1 - The procedures field 

 

 

Figure I.2 - The interface field 
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Figure I.3 - The information field 

 

NetLogo also provides the user with a broad library of already developed models that can be 

used as starting point for new modeling attempts. The BehaviorSpace tool is aimed at the 

development of experimental plans for the validation of the models.  
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Appendix 2  

NetLogo codes of implemented ABM for Location Problems 
 

 

Introduction 

In the following section, the codes of implemented ABM for Location Problems (described in 

Chapter 5) are listed. All the codes are written in NetLogo programming language.  

 

P-Median model code 
 
breed[locations location] 
breed[existing.locations existing.location] 
breed[aree.baricentrizzazione area.baricentrizzazione] 
breed[aree.repulsione.locations area.repulsione.locations] 
breed[aree.repulsione.utenza area.repulsione.utenza] 
breed[distanze.confine distanza.confine] 
breed[aree.copertura area.copertura] 
breed[aree.repulsione area.repulsione] 
breed[aree.attrazione area.attrazione] 
breed[ombre ombra] 
breed[shadows shadow] 
breed[barriere barriera] 
breed[points point] 
breed[tips tip] 
 
patches-own [densita.media 
             densita.scala 
              distanzia 
              distanza 
              dista 
              dis 
              num.loc.su 
              visita 
              faraway 
              distn 
              densita.patch 
              cov 
              cov1] 
               
ombre-own[n.ombre 
          no.barriere 
          n.patches 
          no.ombre 
          n.ex] 
           
existing.locations-own[val.e]              
                      
tips-own [Tx  
          Ty 
          Ux 
          Uy 
          direction 
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          step]  
 
locations-own[Fx  
              Fy  
              Rx  
              Ry 
              Bx 
              By  
              direzione  
              passo 
              moto 
              val 
              val2 
              val.b 
              num.pat 
              vicini ] 
               
globals[filename  
        fitness 
        contatore 
        iterazioni 
        non.migl 
        corrente 
        globale 
        locale 
        tip.corrente 
        velocita.corrente 
        velocita.locations 
        velocita.tips 
        barriere.vicine 
        number.barriere 
        number.locations 
        number.ombre 
        number.ombre2 
        number.existing 
        number.existing.ombre 
        d 
        covering.loc% 
        covering.el% 
        fac 
        pat1 
        ritorna 
        total 
        differenziazioni 
        number.patches 
        num.pat.loc 
        totale.scala 
        k 
        vicini.glob ] 
 
to startup 
 ca 
 let known-paths 
 [ "./" 
   "./models/" 
   "./images/" 
   "../models/" 
   "../images/" ] 
 let basename "north40thmap.png" 
 let paths-to-try length known-paths 
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 set filename false 
 let index 0 
 while [ index < paths-to-try  ] 
 [ if file-exists? (word (item index known-paths) basename) 
   [ set filename (word (item index known-paths) basename) 
     set index paths-to-try   ] 
   set index index + 1 ] 
 if filename = false 
 [ set filename user-file ] 
 if filename = false 
 [ stop ]   
 import-pcolors filename 
 ask patches [ 
 if pcolor = black [set pcolor white]] 
 migliora 
end 
 
to migliora 
  import-drawing filename 
end 
 
to setup 
clear-turtles 
clear-plot 
if mappa = "avellino" [ask patches[ 
if (pcolor <= 47.5)  and (pcolor >= 46.5)   [set densita.media  2]  
if (pcolor <= 69.5)  and (pcolor >= 67.0)   [set densita.media 10]  
if (pcolor <= 99.0)  and (pcolor >= 97.0)   [set densita.media 15]  
if (pcolor <= 79.0)  and (pcolor >= 77.0)   [set densita.media 15] 
if (pcolor <= 76.9)  and (pcolor > 74.0)    [set densita.media 20]  
if (pcolor <= 85.0)  and (pcolor > 83.0)   [set densita.media 25] 
if (pcolor <= 83.0) and (pcolor >= 81.0)  [set densita.media 50] 
if (pcolor <= 73.5)  and (pcolor >= 72.0)   [set densita.media 50] 
if (pcolor <= 7.0)  and (pcolor >= 4.0)   [set densita.media 30] 
if (pcolor <= 3.8)  and (pcolor >= 2.4)   [set densita.media 40] 
if pcolor = white                           [set densita.media 0.0] 
set densita.scala 1]] 
if mappa = "campania" [ask patches[ 
if (pcolor <= 90.0)  and (pcolor >= 80.0)   [set densita.media 0.0] 
if (pcolor <= 66.9)  and (pcolor >= 63.0)   [set densita.media 2.8]  
if (pcolor <= 56.9)  and (pcolor >= 54.0)   [set densita.media 3.8]  
if (pcolor <= 44.4)  and (pcolor >= 42.0)   [set densita.media 7.6] 
if (pcolor <= 46.9)  and (pcolor > 44.4)    [set densita.media 27.6]  
if (pcolor <= 28.5)  and (pcolor >= 24.0)   [set densita.media 125.1] 
if (pcolor <= 133.5) and (pcolor >= 132.5)  [set densita.media 760.3] 
if (pcolor <= 16.9)  and (pcolor >= 14.0)   [set densita.media 760.3] 
if pcolor = white [set densita.media 0] 
if (pcolor <= 7.5)  and (pcolor >= 7.0)  [set densita.media 0] 
set densita.scala 1]] 
if mappa = "sicilia" [ask patches[ 
if (pcolor <= 47.5)  and (pcolor >= 46.5)   [set densita.media 10] 
if (pcolor <= 19.4)  and (pcolor >= 19.0)    [set densita.media 20]  
if (pcolor <= 18.9)  and (pcolor >= 18.6)   [set densita.media 35] 
if (pcolor <= 18.5) and (pcolor >= 18.1)  [set densita.media 75] 
if (pcolor <= 18.0)  and (pcolor >= 17.4)   [set densita.media 100] 
if (pcolor <= 17.3)  and (pcolor >= 16.5)   [set densita.media 200] 
if (pcolor <= 16.4)  and (pcolor >= 16.1)   [set densita.media 300] 
if (pcolor <= 16.0)  and (pcolor >= 15.5)   [set densita.media 750] 
if (pcolor <= 99.0)  and (pcolor >= 98.5)   [set densita.media 0.0] 
if pcolor = white    [set densita.media 0.0] 
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set densita.scala 1]] 
if mappa = "sardegna" [ask patches[ 
if (pcolor <= 47.5)  and (pcolor >= 46.5)   [set densita.media 10] 
if (pcolor <= 19.4)  and (pcolor >= 19.0)    [set densita.media 25]  
if (pcolor <= 18.9)  and (pcolor >= 18.6)   [set densita.media 50] 
if (pcolor <= 18.5) and (pcolor >= 18.1)  [set densita.media 75] 
if (pcolor <= 18.0)  and (pcolor >= 17.4)   [set densita.media 100] 
if (pcolor <= 17.3)  and (pcolor >= 16.9)   [set densita.media 150] 
if (pcolor <= 16.8)  and (pcolor >= 16.4)   [set densita.media 200] 
if (pcolor <= 16.3)  and (pcolor >= 15.7)   [set densita.media 500] 
if (pcolor <= 99.0)  and (pcolor >= 98.5)   [set densita.media 0.0] 
if pcolor = white [set densita.media 0.0] 
set densita.scala 1]] 
if mappa = "basilicata" [ask patches[ 
if (pcolor <= 47.0)  and (pcolor >= 46.0)   [set densita.media 10] 
if (pcolor <= 58)  and (pcolor >= 57.5)    [set densita.media 20] 
if (pcolor <= 57.4)  and (pcolor >= 57)    [set densita.media 35]   
if (pcolor <= 6.5)  and (pcolor >= 5.5)   [set densita.media 50] 
if (pcolor <= 5.4) and (pcolor >= 5)  [set densita.media 75] 
if (pcolor <= 106)  and (pcolor >= 105.5)   [set densita.media 150] 
if (pcolor <= 99.0)  and (pcolor >= 98.5)   [set densita.media 0] 
if (pcolor <= 7.5)  and (pcolor >= 7.0)  [set densita.media 0] 
set densita.scala 1]] 
if mappa = "nuova.mappa" [ask patches[ 
if (pcolor <= a.01)  and (pcolor >= da.01)   [set densita.media densita.01] 
if (pcolor <= a.02)  and (pcolor >= da.02)    [set densita.media densita.02] 
if (pcolor <= a.03)  and (pcolor >= da.03)    [set densita.media densita.03]   
if (pcolor <= a.04)  and (pcolor >= da.04)   [set densita.media densita.04] 
if (pcolor <= a.05) and (pcolor >= da.05)  [set densita.media densita.05] 
if (pcolor <= a.06)  and (pcolor >= da.06)   [set densita.media densita.06] 
if (pcolor <= a.07)  and (pcolor >= da.07)   [set densita.media densita.07] 
if (pcolor <= a.08)  and (pcolor >= da.08)  [set densita.media densita.08] 
if (pcolor <= a.09)  and (pcolor >= da.09)    [set densita.media densita.09]   
if (pcolor <= a.10)  and (pcolor >= da.10)   [set densita.media densita.10] 
if (pcolor <= a.11) and (pcolor >= da.11)  [set densita.media densita.11] 
if (pcolor <= a.12)  and (pcolor >= da.12)   [set densita.media densita.12] 
set densita.scala 1]] 
set iterazioni 0 
set contatore 0 
set non.migl 0 
set globale 999999999 set locale 999999999 set corrente 999999999 
create-custom-points 1 [set xcor 0 set ycor 0 set shape "dot" set size 0.1 set color white] 
create-custom-barriere numero.barriere [posiziona.barriere set shape "location0" set color blue set label who] 
create-custom-existing.locations numero.existing.locations [posiziona.existing set shape "house" set size 1.0 set 
color blue set label who] 
create-custom-locations numero.locations [posiziona set shape "dot" set size 2.2 set color red set label who] 
create-custom-aree.repulsione numero.locations [setxy xcor-of location (who - numero.locations) ycor-of 
location (who - numero.locations) set shape "location1" set size (((distanza.repulsione) * 2)- 1)set hidden? not 
hidden?] 
create-custom-aree.attrazione numero.locations [setxy xcor-of location (who - (2 * numero.locations)) ycor-of 
location (who - (2 * numero.locations)) set shape "location" set size (((visibilita) * 2)- 1)set hidden? not hidden?] 
create-custom-ombre numero.locations [setxy xcor-of location (who - (3 * numero.locations)) ycor-of location 
(who - (3 * numero.locations)) set shape "house" set size 1.0 set color white set hidden? not hidden?] 
create-custom-shadows numero.locations [setxy xcor-of location (who - (4 * numero.locations)) ycor-of location 
(who - (4 * numero.locations)) set shape "dot" set size 1.6 set color yellow set hidden? not hidden?] 
create-custom-tips numero.locations [setxy xcor-of location (who - (5 * numero.locations)) ycor-of location 
(who - (5 * numero.locations)) set shape "dot" set size 1.6 set color black ask tips [ht]] 
ask aree.repulsione[__tie area.repulsione (who) location (who - numero.locations)] 
ask aree.attrazione[__tie area.attrazione (who) location (who - (2 * numero.locations))] 
end 
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to posiziona 
setxy (random-xcor) (random-ycor) 
if densita.media-of patch-here = 0 [posiziona]  
end 
 
to posiziona.barriere 
if numero.barriere = 1 [set xcor b.xcoord set ycor b.ycoord set size (raggio.barriera * 2)] 
if numero.barriere = 2 [if who = 1 [set xcor b.xcoord set ycor b.ycoord set size (raggio.barriera * 2)] if who = 2 
[set xcor b.xcoord1 set ycor b.ycoord1 set size (raggio.barriera1 * 2)]] 
if numero.barriere = 3 [if who = 1 [set xcor b.xcoord set ycor b.ycoord set size (raggio.barriera * 2)] if who = 2 
[set xcor b.xcoord1 set ycor b.ycoord1 set size (raggio.barriera1 * 2)] if who = 3 [set xcor b.xcoord2 set ycor 
b.ycoord2 set size (raggio.barriera2 * 2)]] 
end 
 
to posiziona.existing 
if numero.existing.locations = 1 [set xcor xcoord set ycor ycoord] 
if numero.existing.locations = 2 [if who = (numero.barriere) [set xcor xcoord set ycor ycoord] if who = 
(numero.barriere + 1) [set xcor xcoord1 set ycor ycoord1]] 
if numero.existing.locations = 3 [if who = (numero.barriere) [set xcor xcoord set ycor ycoord] if who = 
(numero.barriere + 1) [set xcor xcoord1 set ycor ycoord1] if who = (numero.barriere + 2) [set xcor xcoord2 set 
ycor ycoord2]] 
if numero.existing.locations = 4 [if who = (numero.barriere) [set xcor xcoord set ycor ycoord] if who = 
(numero.barriere + 1) [set xcor xcoord1 set ycor ycoord1] if who = (numero.barriere + 2) [set xcor xcoord2 set 
ycor ycoord2] if who = (numero.barriere + 3) [set xcor xcoord3 set ycor ycoord3]] 
if numero.existing.locations = 5 [if who = (numero.barriere) [set xcor xcoord set ycor ycoord] if who = 
(numero.barriere + 1) [set xcor xcoord1 set ycor ycoord1] if who = (numero.barriere + 2) [set xcor xcoord2 set 
ycor ycoord2] if who = (numero.barriere + 3) [set xcor xcoord3 set ycor ycoord3] if who = (numero.barriere + 4) 
[set xcor xcoord4 set ycor ycoord4]] 
end 
 
to go 
  attrai1 
  attrai1.2 
  respingi1 
  respingi1.2 
  calcola.risultante1 
  calcola.risultante1.2 
  muovi.tips1 
  muovi1 
  memorizza 
  mostra.aree1 
  conteggio1 
  conta.barriere1 
  distacca.ombre1 
  distacca.shadows1 
  invisibile1 
  evidenzia 
  plotta  
set iterazioni iterazioni + 1   
set contatore contatore + 1 
if (iterazioni = num.iterazione) [final.set1 stop]  
set totale.scala (sum values-from patches [densita.scala * faraway]) 
ifelse (iterazioni > 1) [set k (94576.22 / totale.scala)] [set k 2] 
set corrente (sum values-from patches [densita.media * distanzia * k]) 
set locale (sum values-from patches [densita.media * distanza * k])  
set tip.corrente (sum values-from patches [densita.media * distn * k]) 
set fitness (sum values-from patches [densita.media * distanzia]) / (sum values-from patches [densita.media]) * k 
ask patches [ ifelse calcolo.f.obiettivo  
             [let x pxcor 
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             let y pycor 
             let distanz values-from (locations)[distancexy x y] 
             let lont values-from (existing.locations)[distancexy x y] 
             let tot distanz + lont 
             set distanzia min tot 
             let distan values-from (shadows) [distancexy x y] 
             let totl distan + lont 
             set distanza min totl 
             let far values-from (points) [distancexy x y] 
             set faraway min far 
             let distnz values-from (tips) [distancexy x y] 
             let distnz1 distnz + lont 
             set distn min distnz1] 
             [let x pxcor 
             let y pycor 
             let distanz values-from (locations)[distancexy x y] 
             set distanzia min distanz 
             let distan values-from (shadows) [distancexy x y] 
             set distanza min distan 
             let far values-from (points) [distancexy x y] 
             set faraway min far 
             let distnz values-from (tips) [distancexy x y] 
             set distn min distnz]]  
if diversifica[ 
torna 
if ritorna = true[ 
ask locations[ 
posiziona] 
ask shadows[posizionamento.shadows1] 
ask tips[posizionamento.tips1] 
set ritorna false]] 
 end 
 
to memorizza 
ask patches[ 
set num.loc.su(num.loc.su + ((count locations-on patch pxcor pycor))) 
if (num.loc.su >= num.max) 
[set visita 1]] 
end 
 
to torna 
ask locations[ 
if (visita-of patch-here = 1) 
[set ritorna true]] 
end 
 
to attrai1 
ask locations [without-interruption[ 
let x xcor 
let y ycor 
let norma ((count patches in-radius visibilita) - 1) 
    let lista.patch remove patch-here values-from patches in-radius visibilita [patch pxcor pycor] 
    let lista.x map [pxcor-of ?] lista.patch 
    let lista.y map [pycor-of ?] lista.patch 
    let lista.densita map[(densita.media-of ?) / norma]lista.patch 
    let lista.distanze map [(distance ?) / norma]lista.patch 
    let x.cor sum(map [?1 * ?2 * sin towardsxy ?3 ?4]lista.densita lista.distanze lista.x lista.y) 
    let y.cor sum(map [?1 * ?2 * cos towardsxy ?3 ?4]lista.densita lista.distanze lista.x lista.y) 
    
    set Fx precision (x.cor) 3 
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    set Fy precision (y.cor) 3 ]] 
end 
 
to attrai1.2 
ask tips [without-interruption[ 
let x xcor 
let y ycor 
let norma ((count patches in-radius visibilita) - 1) 
    let lista.patch remove patch-here values-from patches in-radius visibilita [patch pxcor pycor] 
    let lista.x map [pxcor-of ?] lista.patch 
    let lista.y map [pycor-of ?] lista.patch 
    let lista.densita map[(densita.media-of ?) / norma]lista.patch 
    let lista.distanze map [(distance ?) / norma]lista.patch     
    let x.cor sum(map [?1 * ?2 * sin towardsxy ?3 ?4]lista.densita lista.distanze lista.x lista.y) 
    let y.cor sum(map [?1 * ?2 * cos towardsxy ?3 ?4]lista.densita lista.distanze lista.x lista.y)    
    set Tx precision (x.cor) 3 
    set Ty precision (y.cor) 3]] 
end 
 
to respingi1 
ask locations [without-interruption[ 
let x xcor 
let y ycor 
let norma count locations in-radius distanza.repulsione 
let norma0 count barriere with [who = 1] in-radius raggio.barriera 
let norma1 count barriere with [who = 2] in-radius raggio.barriera1 
let norma2 count barriere with [who = 3] in-radius raggio.barriera2 
let norma.el count existing.locations in-radius distanza.repulsione 
let norma.tot (norma + norma0 + norma1 + norma2 + norma.el)    
    let lista.locations remove self values-from locations in-radius distanza.repulsione [turtle who] 
    let lista.barriere0 remove self values-from barriere with [who = 1] in-radius raggio.barriera [turtle who] 
    let lista.barriere1 remove self values-from barriere with [who = 2] in-radius raggio.barriera1 [turtle who] 
    let lista.barriere2 remove self values-from barriere with [who = 3] in-radius raggio.barriera2 [turtle who] 
    let lista.existing remove self values-from existing.locations in-radius distanza.repulsione [turtle who] 
    let lista.repulsione (lista.locations + lista.barriere0 + lista.barriere1 + lista.barriere2 + lista.existing) 
    let lista.x map [xcor-of ?] lista.repulsione 
    let lista.y map [ycor-of ?] lista.repulsione 
    let lista.distanze map [(1 / (distance ?)) / norma.tot ]lista.repulsione     
    let x.cor sum(map [?1 * sin towardsxy ?2 ?3]lista.distanze lista.x lista.y) 
    let y.cor sum(map [?1 * cos towardsxy ?2 ?3]lista.distanze lista.x lista.y)    
    set Rx precision x.cor 3 
    set Ry precision y.cor 3]] 
end 
 
to respingi1.2 
ask tips [without-interruption[ 
let x xcor 
let y ycor 
let norma count tips in-radius distanza.repulsione 
    let lista.tips remove self values-from tips in-radius distanza.repulsione [turtle who] 
    let lista.x map [xcor-of ?] lista.tips 
    let lista.y map [ycor-of ?] lista.tips    
    let lista.distanze map [(1 / (distance ?)) / norma ]lista.tips     
    let x.cor sum(map [?1 * sin towardsxy ?2 ?3]lista.distanze lista.x lista.y) 
    let y.cor sum(map [?1 * cos towardsxy ?2 ?3]lista.distanze lista.x lista.y)    
    set Ux precision x.cor 3 
    set Uy precision y.cor 3]] 
end 
 
to calcola.risultante1 
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ask locations[ 
let x.ris ((a * Fx) - ((1 - a) * Rx)) 
let y.ris ((a * Fy) - ((1 - a) * Ry)) 
ifelse x.ris != 0 or y.ris != 0 [set passo precision (sqrt ((x.ris ^ 2) + (y.ris ^ 2))) 3][set passo 0] 
if (x.ris + xcor) != xcor or (y.ris + ycor) != ycor[set direzione precision (towardsxy (x.ris + xcor) (y.ris + ycor)) 
3]]                       
 end 
 
to calcola.risultante1.2 
ask tips[ 
let x.ris ((a * Tx) - ((1 - a) * Ux)) 
let y.ris ((a * Ty) - ((1 - a) * Uy)) 
ifelse x.ris != 0 or y.ris != 0 [set step precision (sqrt ((x.ris ^ 2) + (y.ris ^ 2))) 3][set step 0] 
if (x.ris + xcor) != xcor or (y.ris + ycor) != ycor[set direction precision (towardsxy (x.ris + xcor) (y.ris + ycor)) 
3]]                       
 end 
 
to conteggio1 
ifelse auto.differenzia [ifelse corrente >= locale [set non.migl non.migl + 1] [set non.migl 0]] [set non.migl 0] 
if (non.migl = iteraz.auto.differenzia) [differenzia1] 
end 
 
to differenzia1 
set contatore 0 
ask locations [posizionamento1] 
ask shadows [posizionamento.shadows1] 
ask tips [posizionamento.tips1] 
end 
 
to conta.barriere1 
ask locations[ 
let norma0 count barriere with [who = 1] in-radius raggio.barriera 
let norma1 count barriere with [who = 2] in-radius raggio.barriera1 
let norma2 count barriere with [who = 3] in-radius raggio.barriera2 
ifelse ((norma0 > 0) or (norma1 > 0) or (norma2 > 0)) [set val 1] [set val 0]] 
set number.barriere sum values-from locations [val] 
end 
 
to posizionamento1 
setxy (random-xcor) (random-ycor) 
set non.migl 0 
if densita.media-of patch-here = 0 [posizionamento1] 
end 
 
to posizionamento.shadows1 
setxy xcor-of location (who - (4 * numero.locations)) ycor-of location (who - (4 * numero.locations)) 
end 
 
to posizionamento.tips1 
setxy xcor-of location (who - (5 * numero.locations)) ycor-of location (who - (5 * numero.locations)) 
end 
 
to muovi1 
if mappa = "avellino" [ask locations[ifelse pcolor = white [set heading direzione fd 0] 
[ifelse gradiente [ifelse iterazioni = 0 or iterazioni = 1 [set velocita.locations speed] [set velocita.locations (speed 
+ (speed * (((locale / tip.corrente) - 1) * 3)))  
                       ask locations[ 
                       set heading direzione 
                       fd passo + velocita.locations]]] 
    [set velocita.locations speed  
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    ask locations[ 
    set heading direzione 
    fd passo + speed ]]]]] 
if mappa = "campania" [ask locations[ifelse ((pcolor <= 7.5) and (pcolor >= 7.0))  or ((pcolor <= 90.0) and 
(pcolor >= 80.0))[set heading direzione fd 0] 
[ifelse gradiente [ifelse iterazioni = 0 or iterazioni = 1 [set velocita.locations speed] [set velocita.locations (speed 
+ (speed * (((locale / tip.corrente) - 1) * 3)))  
                       ask locations[ 
                       set heading direzione 
                       fd passo + velocita.locations]]] 
    [set velocita.locations speed  
    ask locations[ 
    set heading direzione 
    fd passo + speed ]]] ]] 
if ((mappa = "sicilia") or (mappa = "sardegna")) [ask locations[ifelse ((pcolor <= 99.0) and (pcolor >= 98.5))[set 
heading direzione fd 0] 
[ifelse gradiente [ifelse iterazioni = 0 or iterazioni = 1 [set velocita.locations speed] [set velocita.locations (speed 
+ (speed * (((locale / tip.corrente) - 1) * 3)))  
                       ask locations[ 
                       set heading direzione 
                       fd passo + velocita.locations]]] 
    [set velocita.locations speed  
    ask locations[ 
    set heading direzione 
    fd passo + speed ]]] ]] 
if (mappa = "basilicata") [ask locations[ifelse (((pcolor <= 99.0) and (pcolor >= 98.5)) or ((pcolor <= 7) and 
(pcolor >= 7.0)) or (pcolor = white)) [set heading direzione fd 0] 
[ifelse gradiente [ifelse iterazioni = 0 or iterazioni = 1 [set velocita.locations speed] [set velocita.locations (speed 
+ (speed * (((locale / tip.corrente) - 1) * 3)))  
                       ask locations[ 
                       set heading direzione 
                       fd passo + velocita.locations]]] 
    [set velocita.locations speed  
    ask locations[ 
    set heading direzione 
    fd passo + speed ]]] ]] 
if (mappa = "nuova.mappa") [ask locations[ifelse (((pcolor <= a.11)  and (pcolor >= da.11)) or ((pcolor <= a.12)  
and (pcolor >= da.12))) [set heading direzione fd 0] 
[ifelse gradiente [ifelse iterazioni = 0 or iterazioni = 1 [set velocita.locations speed] [set velocita.locations (speed 
+ (speed * (((locale / tip.corrente) - 1) * 3)))  
                       ask locations[ 
                       set heading direzione 
                       fd passo + velocita.locations]]] 
    [set velocita.locations speed  
    ask locations[ 
    set heading direzione 
    fd passo + speed ]]] ]] 
end 
 
to muovi.tips1 
set velocita.tips velocita.locations * 1.5 
ask tips [set heading direction 
          fd step + velocita.tips]   
end 
 
to distacca.ombre1 
ask ombre [ 
if (iterazioni > 1) and (contatore > 1) and (number.barriere = 0)[if corrente <  globale 
[setxy xcor-of location (who - (3 * numero.locations)) ycor-of location (who - (3 * numero.locations)) set 
globale corrente]]] 
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ask ombre [ 
let norma0 count barriere with [who = 1] in-radius raggio.barriera 
let norma1 count barriere with [who = 2] in-radius raggio.barriera1 
let norma2 count barriere with [who = 3] in-radius raggio.barriera2 
ifelse ((norma0 > 0) or (norma1 > 0) or (norma2 > 0))[set n.ombre 1] [set n.ombre 0] 
set number.ombre sum values-from ombre [n.ombre]] 
ifelse number.ombre > 0 [ask ombre [die] set d 1] [set d 0] 
if d = 1 [create-custom-ombre numero.locations [setxy xcor-of location (who - (3 * numero.locations)) ycor-of 
location (who - (3 * numero.locations)) set shape "house" set size 1.0 set color white set hidden? not hidden?]] 
end 
 
to distacca.shadows1 
ask shadows [ 
ifelse (corrente < locale) 
[setxy xcor-of location (who - (4 * numero.locations)) ycor-of location (who - (4 * numero.locations))] [set xcor 
xcor + 0.0 set ycor ycor + 0.0]] 
end 
 
to mostra.aree1 
ifelse mostra.aree.influenza [ask aree.repulsione[show-turtle]ask aree.attrazione[show-turtle]] 
                               [ask aree.repulsione[ht]ask aree.attrazione[ht]] 
end 
 
to invisibile1 
ifelse set.opt [ask ombre [show-turtle] ask shadows [show-turtle]] 
               [ask ombre [ht] ask shadows [ht]] 
end 
 
to final.set1 
ask locations [die] ask shadows [die] ask aree.repulsione [die] ask aree.attrazione [die] 
ask ombre [set shape "house" set size 1.3 set color violet] 
ask existing.locations [set shape "house" set size 1.3 set color blue] 
if ((number.barriere > 0) and (globale = 999999999)) [ask ombre [die] set globale "nd"] 
end 
 
to plotta  
set-current-plot "valore f.o." 
if iterazioni > 0 [plot  corrente] 
end 
 
to evidenzia 
if mostra.aree.influenza = false 
[  if mouse-inside? [ 
  let min-d min values-from locations [distancexy mouse-xcor mouse-ycor] 
  let chi one-of aree.repulsione with [distancexy mouse-xcor mouse-ycor = min-d] 
  let che one-of aree.attrazione with [distancexy mouse-xcor mouse-ycor = min-d] 
  if chi != nobody and che != nobody 
  [ask chi[show-turtle]ask che[show-turtle]] ] ] 
End 
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Single Facility Minimum Variance model code 
 
breed[locations location] 
breed[aree.repulsion.locations area.repulsione.locations] 
breed[aree.repulsione area.repulsione] 
breed[aree.attrazione area.attrazione] 
breed[ombre ombra] 
breed[tips tip] 
breed[ shadows shadow] 
 
patches-own [densita.media 
              patch-id 
              distanzia 
              dista 
              visita 
              num.loc.su        
              densita.scala 
              distanza 
              dis 
              distn 
              densita.patch] 
               
locations-own[Fx  
              Fy  
              Rx  
              Ry  
              direzione  
              passo] 
 
tips-own [Tx  
          Ty 
          Ux 
          Uy 
          direction 
          step]  
                      
globals[filename   
        corrente 
        fitness 
        globale 
        locale 
        tip.corrente 
        velocita.corrente 
        velocita.locations 
        velocita.tips 
        number.locations 
        number.ombre 
        differenziazioni 
        number.patches 
        non.migl 
        num.pat.loc 
        totale.scala 
        contatore 
        iterazioni 
        mediana 
        ritorna  
        d 
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        best.mediana 
        special-patches 
        varianza 
        avgdis] 
 
to setup 
ca  
ask patches [set patch-id pxcor +","+ pycor] 
let patch-list1[ 
"88,16" 
"36,73" 
"64,95" 
"68,33" 
"15,20" 
"71,92" 
"93,7" 
"41,71" 
"86,69" 
"20,34" 
"23,99" 
"69,77" 
"85,78" 
"59,27" 
"71,94" 
"5,38" 
"32,84" 
"91,71" 
"44,49" 
"47,9"] 
set special-patches patches with [member? patch-id patch-list1] 
 ask special-patches [  
              set densita.media 10  set pcolor 55]           
ask patches[ 
              if pcolor = black [set pcolor white] 
              if pcolor = white [set densita.media 0]] 
set iterazioni 0 
set contatore 0 
set non.migl 0 
set globale 999999999 set locale 999999999 set corrente 999999999 
create-custom-locations numero.locations [posiziona set shape "dot" set size 1.0 set color black set label who] 
create-custom-aree.repulsione numero.locations [setxy xcor-of location (who - numero.locations) ycor-of 
location (who - numero.locations) set shape "location1" set size (((distanza.repulsione) * 2)- 1)set hidden? not 
hidden?] 
create-custom-aree.attrazione numero.locations [setxy xcor-of location (who - (2 * numero.locations)) ycor-of 
location (who - (2 * numero.locations)) set shape "location" set size (((visibilita) * 2)- 1)set hidden? not hidden?] 
create-custom-ombre numero.locations [setxy xcor-of location (who - (3 * numero.locations)) ycor-of location 
(who - (3 * numero.locations)) set shape "dot" set size 0.7 set color white set hidden? not hidden?] 
create-custom-shadows numero.locations [setxy xcor-of location (who - (4 * numero.locations)) ycor-of location 
(who - (4 * numero.locations)) set shape "dot" set size 1.6 set color blue set hidden? not hidden?] 
create-custom-tips numero.locations [setxy xcor-of location (who - (5 * numero.locations)) ycor-of location 
(who - (5 * numero.locations)) set shape "dot" set size 1.6 set color black ask tips [ht]] 
ask aree.repulsione[__tie area.repulsione (who) location (who - numero.locations)] 
ask aree.attrazione[__tie area.attrazione (who) location (who - (2 * numero.locations))] 
end 
 
to posiziona 
setxy (random-xcor) (random-ycor) 
if densita.media-of patch-here = 0 [posiziona]  
end 
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to go 
  attrai1 
  attrai1.2 
  respingi1 
  respingi1.2 
  calcola.risultante1 
  calcola.risultante1.2 
  muovi.tips1 
  muovi1 
  memorizza 
  mostra.aree1 
  conteggio1 
  distacca.ombre1 
  distacca.shadows1 
  invisibile1 
  plotta  
set iterazioni iterazioni + 1 
set contatore contatore + 1 
if iterazioni = num.iterazione [stop] 
set corrente (sum values-from patches [densita.media * distanzia ]) 
set locale (sum values-from patches [densita.media * distanza ])  
set tip.corrente (sum values-from patches [densita.media * distn ]) 
set fitness (sum values-from patches [densita.media * distanzia])/(sum values-from patches[densita.media]) 
ask patches             
             [let x pxcor 
             let y pycor 
             let distanz values-from (locations)[distancexy x y] 
             set distanzia min distanz 
             let distan values-from (shadows) [distancexy x y] 
             set distanza min distan 
             let distnz values-from (tips) [distancexy x y] 
             set distn min distnz] 
              torna 
            if ritorna = true[ 
            ask locations[ 
            setxy (random-xcor) (random-ycor)] 
           ask shadows[posizionamento.shadows1] 
           ask tips[posizionamento.tips1] 
         set ritorna false            ] 
 end 
 
to memorizza 
ask patches[ 
 set  num.loc.su (num.loc.su + ( (count locations-on patch pxcor pycor))) 
if(  num.loc.su >= num.max ) 
 [set visita 1]] 
end 
 
to attrai1 
ask locations [without-interruption[ 
let x xcor 
let y ycor 
let norma ((count patches in-radius visibilita) - 1) 
    let lista.patch remove patch-here values-from patches in-radius visibilita [patch pxcor pycor] 
    let lista.x map [pxcor-of ?] lista.patch 
    let lista.y map [pycor-of ?] lista.patch 
    let lista.densita map[(densita.media-of ?) / norma]lista.patch 
    let lista.distanze map [(distance ?) / norma]lista.patch 
    let x.cor sum(map [?1 * ?2 * sin towardsxy ?3 ?4]lista.densita lista.distanze lista.x lista.y) 
    let y.cor sum(map [?1 * ?2 * cos towardsxy ?3 ?4]lista.densita lista.distanze lista.x lista.y)    
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    set Fx precision (x.cor) 3 
    set Fy precision (y.cor) 3 ]] 
end 
 
to attrai1.2 
ask tips [without-interruption[ 
let x xcor 
let y ycor 
let norma ((count patches in-radius visibilita) - 1) 
    let lista.patch remove patch-here values-from patches in-radius visibilita [patch pxcor pycor] 
    let lista.x map [pxcor-of ?] lista.patch 
    let lista.y map [pycor-of ?] lista.patch 
    let lista.densita map[(densita.media-of ?) / norma]lista.patch 
    let lista.distanze map [(distance ?) / norma]lista.patch     
    let x.cor sum(map [?1 * ?2 * sin towardsxy ?3 ?4]lista.densita lista.distanze lista.x lista.y) 
    let y.cor sum(map [?1 * ?2 * cos towardsxy ?3 ?4]lista.densita lista.distanze lista.x lista.y)    
    set Tx precision (x.cor) 3 
    set Ty precision (y.cor) 3]] 
end 
  
to respingi1 
ask locations [without-interruption[ 
let x xcor 
let y ycor 
let norma count locations in-radius distanza.repulsione 
     let lista.locations remove self values-from locations in-radius distanza.repulsione [turtle who] 
    let lista.x map [xcor-of ?] lista.locations 
    let lista.y map [ycor-of ?] lista.locations    
    let lista.distanze map [(1 / (distance ?)) / norma ]lista.locations     
    let x.cor sum(map [?1 * sin towardsxy ?2 ?3]lista.distanze lista.x lista.y) 
    let y.cor sum(map [?1 * cos towardsxy ?2 ?3]lista.distanze lista.x lista.y)    
    set Rx precision x.cor 3 
    set Ry precision y.cor 3]] 
end 
 
to respingi1.2 
ask tips [without-interruption[ 
let x xcor 
let y ycor 
let norma count tips in-radius distanza.repulsione 
    let lista.tips remove self values-from tips in-radius distanza.repulsione [turtle who] 
    let lista.x map [xcor-of ?] lista.tips 
    let lista.y map [ycor-of ?] lista.tips    
    let lista.distanze map [(1 / (distance ?)) / norma ]lista.tips     
    let x.cor sum(map [?1 * sin towardsxy ?2 ?3]lista.distanze lista.x lista.y) 
    let y.cor sum(map [?1 * cos towardsxy ?2 ?3]lista.distanze lista.x lista.y) 
    
    set Ux precision x.cor 3 
    set Uy precision y.cor 3]] 
end 
 
to calcola.risultante1 
ask locations[ 
let x.ris ((a * Fx) - ((1 - a) * Rx)) 
let y.ris ((a * Fy) - ((1 - a) * Ry)) 
ifelse x.ris != 0 or y.ris != 0 [set passo precision (sqrt ((x.ris ^ 2) + (y.ris ^ 2))) 3][set passo 0] 
if (x.ris + xcor) != xcor or (y.ris + ycor) != ycor[set direzione precision (towardsxy (x.ris + xcor) (y.ris + ycor)) 
3]]                       
end 
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to calcola.risultante1.2 
ask tips[ 
let x.ris ((a * Tx) - ((1 - a) * Ux)) 
let y.ris ((a * Ty) - ((1 - a) * Uy)) 
ifelse x.ris != 0 or y.ris != 0 [set step precision (sqrt ((x.ris ^ 2) + (y.ris ^ 2))) 3][set step 0] 
if (x.ris + xcor) != xcor or (y.ris + ycor) != ycor[set direction precision (towardsxy (x.ris + xcor) (y.ris + ycor)) 
3]]                       
end 
 
to conteggio1 
ifelse auto.differenzia [ifelse corrente >= locale [set non.migl non.migl + 1] [set non.migl 0]] [set non.migl 0] 
if (non.migl = iteraz.auto.differenzia) [differenzia1] 
end 
 
to differenzia1 
set contatore 0 
ask locations [posizionamento1] 
ask shadows [posizionamento.shadows1] 
ask tips [posizionamento.tips1] 
end 
 
to muovi1 
ask locations[ 
ifelse gradiente [ifelse iterazioni = 0 or iterazioni = 1 [set velocita.locations speed] [set velocita.locations (speed 
+ (speed * (((locale / tip.corrente) - 1) * 3)))  
                       ask locations[ 
                       set heading direzione 
                       fd passo + velocita.locations]]] 
    [set velocita.locations speed  
    ask locations[ 
    set heading direzione 
    fd passo + speed]]] 
end 
 
to muovi.tips1 
set velocita.tips velocita.locations * 1.5 
ask tips [set heading direction 
          fd step + velocita.tips] 
end 
 
to torna 
ask locations[ 
if(visita-of patch-here = 1) 
[set ritorna true]] 
end 
 
to posizionamento1 
setxy (random-xcor) (random-ycor) 
set non.migl 0 
if densita.media-of patch-here = 0 [posizionamento1] 
end 
 
to posizionamento.shadows1 
setxy xcor-of location (who - (4 * numero.locations)) ycor-of location (who - (4 * numero.locations)) 
end 
 
to posizionamento.tips1 
setxy xcor-of location (who - (5 * numero.locations)) ycor-of location (who - (5 * numero.locations)) 
end 
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to distacca.ombre1 
ask ombre [ 
if (iterazioni > 1) and (contatore > 1) [if corrente <  globale 
[setxy xcor-of location (who - (3 * numero.locations)) ycor-of location (who - (3 * numero.locations)) set 
globale corrente]]] 
end  
 
to distacca.shadows1 
ask shadows [ 
ifelse (corrente < locale) 
[setxy xcor-of location (who - (4 * numero.locations)) ycor-of location (who - (4 * numero.locations))] [set xcor 
xcor + 0.0 set ycor ycor + 0.0]] 
end 
 
to distacca1 
ask ombre [ 
if mediana <  best.mediana 
[setxy xcor-of location (who - (3 * numero.locations)) ycor-of location (who - (3 * numero.locations))]] 
end 
 
to mostra.aree1 
ifelse mostra.aree.influenza [ask aree.repulsione[show-turtle]ask aree.attrazione[show-turtle]] 
                               [ask aree.repulsione[ht]ask aree.attrazione[ht]] 
end 
 
to evidenzia1 
if mostra.aree.influenza = false[ 
  if mouse-inside? [ 
  let min-d min values-from locations [distancexy mouse-xcor mouse-ycor] 
  let chi one-of aree.repulsione with [distancexy mouse-xcor mouse-ycor = min-d] 
  let che one-of aree.attrazione with [distancexy mouse-xcor mouse-ycor = min-d] 
  if chi != nobody and che != nobody 
  [ask chi[show-turtle]ask che[show-turtle]]] ] 
end 
 
to invisibile1 
ifelse set.opt [ask ombre [show-turtle]] 
               [ask ombre [ht]] 
end 
 
to final.set1 
ask locations [die] ask shadows [die] ask aree.repulsione [die] ask aree.attrazione [die] 
ask ombre [set shape "house" set size 1.3 set color violet] 
end 
 
to plotta  
set-current-plot "mediana" 
plot  locale 
if iterazioni > 0 [plot  corrente] 
end  
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P-maximal covering model codes 

 
Greedy Algorithm 
breed[locations location] 
breed[aree.repulsione area.repulsione] 
breed[aree.repulsione1 area.repulsione1] 
breed[aree.attrazione1 area.attrazione1] 
breed[aree.attrazione area.attrazione] 
breed[ombre ombra] 
breed[ombre2 ombra2] 
breed[shadows shadow] 
breed[espls espl] 
breed[shadows2 shadow2] 
breed[loca loc] 
breed[aree.visibilita area.visibilita] 
 
patches-own [ 
 densita.media 
 densita.patch 
 densita.patch2 
 densita.patch3 
 cov 
 cov2 
 cov3]     
     
loca-own[ 
 Kx 
 Ky 
 Wx 
 Wy 
 direzionel 
 passol 
 motol]     
               
espls-own[ 
 Ex 
 Ey 
 Gx 
 Gy 
 direzione1 
 passo1 
 moto1 ] 
  
locations-own[ 
 Fx  
 Fy  
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 Rx  
 Ry  
 direzione  
 passo 
 moto ] 
               
globals[ 
 filename  
 iterazioni 
 contatore 
 copertura.aum 
 C<=LBC 
 contatore.parziale 
 covering% 
 covering%.locale 
 covering%.loca 
 best.covering%.loca 
 best.covering%.locale 
 local.covering%.loca 
 local.covering%.locale 
 fac 
 iter.migliorative 
 non.meglio 
 num.espl 
 num.messe 
 pat 
 total 
 totale 
 x2 
 y2 
 lx 
 ly 
 num.volte] 
 
 
to startup 
 ca 
 let known-paths 
 [ "./" 
   "./models/" 
   "./images/" 
   "../models/" 
   "../images/" ] 
 let basename "north40thmap.png" 
 let paths-to-try length known-paths 
 set filename false 
 let index 0 
 while [ index < paths-to-try  ] 
 [ if file-exists? (word (item index known-paths) basename) 
   [ set filename (word (item index known-paths) basename) 
     set index paths-to-try   ] 
   set index index + 1 ] 
 if filename = false 
 [ set filename user-file ] 
 if filename = false 
 [ stop ] 
migliora 
 import-pcolors filename 
 ask patches [ 
 if pcolor = black [set pcolor white]] 
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end 
 
to migliora 
  import-drawing filename 
end 
 
to setup 
clear-turtles 
 
ask patches[  
if (pcolor <= 89.0)  and (pcolor >= 85.0)   [set densita.media 1]  
if (pcolor <= 76.0)  and (pcolor >= 72.0)   [set densita.media 10]  
if (pcolor <= 27.0)  and (pcolor >= 25.0)   [set densita.media 30] 
if (pcolor <= 15.0)  and (pcolor >= 10.0)   [set densita.media 100] 
if pcolor = white                           [set densita.media 0.0]] 
set iterazioni 0 
set contatore 0 
set num.espl 1 
set contatore.parziale 0 
set C<=LBC 0 
set covering% 0 
set best.covering%.loca 0 
set best.covering%.locale 0 
set local.covering%.locale 0 
set covering%.locale 0 
set copertura.aum copertura   
set num.messe 0 
set num.volte 0 
 
create-custom-espls num.espl[posiziona set shape "dot" set size 3.2 set color red set label who] 
create-custom-aree.repulsione num.espl[setxy xcor-of espl(who - num.espl) ycor-of espl(who - num.espl)set 
shape "location1" set size (((distanza.repulsione)* 2) - 1) set hidden? not hidden?] 
create-custom-aree.attrazione num.espl[setxy xcor-of espl(who - 2 * num.espl) ycor-of espl (who - 2 * 
num.espl)set shape "location" set size (((copertura)* 2 )- 1) set hidden? not hidden?] 
create-custom-shadows num.espl[setxy xcor-of espl(who - 3 * num.espl)ycor-of espl (who - 3 * num.espl) set 
shape "dot" set size 1.6 set color yellow set hidden? not hidden?]  
create-custom-ombre num.espl[setxy xcor-of espl(who - 4 * num.espl)ycor-of espl(who - 4 * num.espl) set shape 
"dot" set size 1.2 set color green set hidden? not hidden?] 
create-custom-loca num.espl[posiziona set shape "dot" set size 3.3 set color blue set label who] 
create-custom-aree.visibilita num.espl[setxy xcor-of loc(who -  num.espl)ycor-of loc( who -  num.espl) set shape 
"location3" set size(((copertura) * 2  )- 1) set hidden? not hidden?] 
create-custom-ombre2 num.espl[setxy xcor-of loc(who - ( 2 * num.espl)) ycor-of loc(who - (2 * num.espl)) set 
shape"dot"set size 1.6 set hidden? not hidden?]  
create-custom-shadows2 num.espl[setxy xcor-of loc(who - 3 * num.espl)ycor-of loc(who - 3 * num.espl) set 
shape "dot" set size 1.3 set color black set hidden? not hidden?] 
ask aree.repulsione[__tie area.repulsione (who) espl(who - num.espl)] 
ask aree.attrazione [__tie area.attrazione (who) espl(who - (2 * num.espl))] 
ask aree.visibilita [__tie area.visibilita(who )loc(who -  num.espl )] 
end 
 
 
to go 
if num.messe = numero.locations[ 
ask locations[without-interruption[ 
set cov3 sum values-from patches in-radius copertura [densita.patch3] 
set covering%((( sum values-from locations [cov3]) / total * 100))]] 
mostra.aree1 
final.set 
stop] 
attrai 
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attrai1.2 
respingi 
calcola.risultante 
calcola.risultante1.2 
muovi 
muovi1.2 
verifica 
verifica1.2 
diversifica 
ferma 
cambia 
meme 
meme2 
meme.ombre2 
meme.ombre 
copri 
calcola 
mostra.aree2 
set contatore.parziale contatore.parziale + 1 
set iterazioni iterazioni + 1 
ask patch 0 0 [set total sum values-from patches in-radius 100 [densita.media]] 
 
ask espls [without-interruption[ 
set pat count patches in-radius copertura 
set cov sum values-from patches in-radius copertura [densita.patch2] 
set covering%.locale ((( sum values-from espls [cov]) / total)* 100)]] 
ask loca [without-interruption[ 
set pat count patches in-radius copertura 
set cov2 sum values-from patches in-radius copertura [densita.patch] 
set covering%.loca ((( sum values-from loca [cov2]) / total)* 100)]] 
ask locations[without-interruption[ 
set cov3 sum values-from patches in-radius copertura [densita.patch3] 
set covering%((( sum values-from locations [cov3]) / total * 100))]] 
end 
 
to final.set 
ask locations  [set shape "house" set size 1.3 set color red]  
mostra.aree1 
end 
 
 
 
to calcola 
ask patches [ 
set densita.patch2 densita.media] 
ask patches[ 
let num.fac count locations in-radius (copertura - 1) 
ifelse num.fac > 0 
[set densita.patch3 (densita.media / num.fac)] 
[set densita.patch3 densita.media]] 
end 
 
to meme 
ask shadows[ 
if iterazioni > 1[ 
ifelse covering%.locale > local.covering%.locale 
[setxy xcor-of espl (who -( 3 * num.espl)) ycor-of espl (who -( 3 * num.espl)) set local.covering%.locale 
covering%.locale][set xcor xcor + 0.0  set ycor ycor + 0.0]]] 
end 
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to meme2 
ask shadows2[ 
if contatore.parziale > 1[ 
ifelse covering%.loca > local.covering%.loca 
[setxy xcor-of loc (who -( 3 * num.espl)) ycor-of loc (who -( 3 * num.espl)) set local.covering%.loca 
covering%.loca][set xcor xcor + 0.0  set ycor ycor + 0.0]]] 
end 
 
to posiziona 
setxy (random-xcor)(random-ycor) 
if densita.media-of patch-here = 0 [posiziona] 
end 
 
to attrai 
ask espls[without-interruption[ 
let x xcor 
let y ycor 
let norma ((count patches in-radius copertura) - 1) 
let lista.patch remove patch-here values-from patches in-radius copertura [patch pxcor pycor] 
let lista.x map [pxcor-of ?] lista.patch 
let lista.y map [pycor-of ?] lista.patch 
let lista.densita map [(densita.patch-of ?) / norma]lista.patch 
let lista.distanze map [ (distance ?) / norma]lista.patch 
let x.cor sum (map[?1 * ?2 * sin towardsxy ?3 ?4]lista.densita lista.distanze lista.x lista.y) 
let y.cor sum (map[?1 * ?2  * cos towardsxy ?3 ?4] lista.densita lista.distanze lista.x lista.y) 
set Ex precision (x.cor) 3 
set Ey precision (y.cor) 3]] 
end 
 
to respingi  
ask espls[without-interruption[ 
let x xcor 
let y ycor 
let norma count espls in-radius distanza.repulsione 
let norma1 count locations in-radius distanza.repulsione 
let norma.tot (norma + norma1) 
let lista.espls remove self values-from espls in-radius distanza.repulsione [turtle who] 
let lista.locations  values-from locations in-radius distanza.repulsione [turtle who] 
let lista.repulsi(lista.espls + lista.locations) 
let lista.x map[xcor-of ?]lista.repulsi 
let lista.y map[ycor-of ?]lista.repulsi 
let lista.distanze map[(1 / (distance ?))/ norma.tot]lista.repulsi 
let x.cor sum(map[?1 * sin towardsxy ?2 ?3 ]lista.distanze lista.x lista.y) 
let y.cor sum(map[?1 * cos towardsxy ?2 ?3]lista.distanze lista.x lista.y) 
set Gx precision x.cor 3 
set Gy precision y.cor 3]] 
end 
 
to respingi1.2  
ask loca[without-interruption[ 
let x xcor 
let y ycor 
let norma1 count locations in-radius distanza.repulsione 
let lista.locations values-from locations in-radius distanza.repulsione [turtle who] 
let lista.x map[xcor-of ?]lista.locations 
let lista.y map[ycor-of ?]lista.locations 
let lista.distanze map[(1 / (distance ?))/ norma1]lista.locations 
let x.cor sum(map[?1 * sin towardsxy ?2 ?3 ]lista.distanze lista.x lista.y) 
let y.cor sum(map[?1 * cos towardsxy ?2 ?3]lista.distanze lista.x lista.y) 
set Wx precision x.cor 3 
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set Wy precision y.cor 3]] 
end 
 
to muovi 
ask espls[ 
set heading direzione1 
fd passo1 + speed] 
end 
 
to verifica 
ask espls[ 
let locat count locations in-radius (copertura - 1) 
if locat >= 1 [ 
posiziona 
attrai  
respingi 
calcola.risultante 
muovi 
meme]] 
end 
 
to verifica1.2 
ask loca[ 
let locat count locations in-radius (copertura - 1) 
if locat >= 1[ 
posizionamento.loca 
attrai1.2 
calcola.risultante1.2 
muovi1.2]] 
end 
 
to calcola.risultante 
ask espls[ 
let x.ris((a * Ex) - ((1 - a) * (Gx))) 
let y.ris((a * EY) - (( 1 - a) * (Gy ))) 
ifelse x.ris != 0 or y.ris != 0 [set passo1 precision (sqrt((x.ris ^ 2) +( y.ris ^ 2)))3][set passo1 0] 
if (x.ris + xcor) != xcor or (y.ris + ycor) != ycor [ set direzione1 precision (towardsxy (x.ris + xcor)(y.ris + 
ycor))3]] 
end 
 
to ferma 
ifelse covering%.locale  <=  local.covering%.locale [set C<=LBC C<=LBC + 1][ set C<=LBC 0] 
if (C<=LBC = iteraz.auto.differenzia)[ 
differenzia1.2 
set num.volte num.volte + 1 ] 
end 
 
to cambia 
if num.volte = valore.num.volte[ 
ask ombre[ 
set x2 xcor-of ombra(who)  
set y2 ycor-of ombra(who)] 
ask ombre2[ 
set lx xcor-of ombra2(who) 
set ly ycor-of ombra2(who)] 
ifelse best.covering%.locale <= best.covering%.loca 
[set non.meglio 1] 
[set non.meglio 0] 
ask espls [die]  
ask aree.repulsione [die] 
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ask aree.attrazione [die] 
ask shadows [die] 
ask ombre[die]  
scompare 
ifelse ( non.meglio = 0) 
[ricrea1] 
[ricrea2] 
contra] 
end 
 
to ricrea1 
create-custom-locations 1 [setxy x2 y2 set shape "house" set size 1.6 set color pink set label who] 
create-custom-aree.repulsione1 1[setxy xcor-of location (who - 1) ycor-of location (who - 1) set shape 
"location1" set size (((distanza.repulsione) * 2) - 1) set hidden? not hidden?] 
create-custom-aree.attrazione1 1[setxy xcor-of location (who - 2)ycor-of location (who - 2) set shape "location" 
set size ((copertura * 2)- 1)set hidden? not hidden?] 
ask aree.repulsione1[__tie area.repulsione1 (who) location(who - 1)] 
ask aree.attrazione1 [__tie area.attrazione1 (who) location(who - (2))] 
end 
 
to contra 
set num.messe num.messe + 1 
if ( num.messe < numero.locations )[ 
ricrea 
copri] 
end 
 
to mostra.aree1 
ifelse mostra.aree.influenza  
[ask aree.repulsione1[show-turtle]ask aree.attrazione1[show-turtle]] 
[ask aree.repulsione1[ht]ask aree.attrazione1[ht]] 
end 
 
to mostra.aree2 
ifelse mostra.aree.influenza  
[ask aree.repulsione[show-turtle]ask aree.attrazione[show-turtle]ask aree.visibilita[show-turtle]] 
[ask aree.repulsione1[ht]ask aree.attrazione1[ht]ask aree.visibilita[ht]] 
end 
 
to ricrea2 
create-custom-locations 1 [setxy lx ly set shape "house" set size 1.6 set color pink set label who] 
create-custom-aree.repulsione1 1[setxy xcor-of location (who - 1) ycor-of location (who - 1) set shape 
"location1" set size (((distanza.repulsione) * 2) - 1) set hidden? not hidden?] 
create-custom-aree.attrazione1 1[setxy xcor-of location (who - 2)ycor-of location (who - 2) set shape "location" 
set size ((copertura * 2)- 1)set hidden? not hidden?] 
ask aree.repulsione1[__tie area.repulsione1 (who ) location(who - 1)] 
ask aree.attrazione1 [__tie area.attrazione1 (who ) location(who - (2))] 
end 
 
to copri 
ask patches[ 
let locat count locations in-radius (copertura - 1) 
ifelse( locat >= 1 )  
[ set densita.patch 0] 
[set densita.patch densita.media]] 
end 
 
to ricrea 
create-custom-espls num.espl[posiziona set shape "dot" set size 3.2 set color red set label who] 
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create-custom-aree.repulsione num.espl[setxy xcor-of espl(who - num.espl ) ycor-of espl(who - num.espl )set 
shape "location1" set size (((distanza.repulsione)* 2) - 1) set hidden? not hidden?] 
create-custom-aree.attrazione num.espl[setxy xcor-of espl(who - (2 * num.espl) ) ycor-of espl (who - 2 * 
num.espl )set shape "location" set size (((copertura)* 2 )- num.espl) set hidden? not hidden?] 
create-custom-shadows num.espl[setxy xcor-of espl(who - (3 * num.espl) )ycor-of espl (who - (3 * num.espl) ) 
set shape "dot" set size 1.6 set color yellow set hidden? not hidden?]  
create-custom-ombre num.espl[setxy xcor-of espl(who - ( 4 * num.espl)) ycor-of espl(who - (4 * num.espl)) set 
shape"dot"set size 1.6 set hidden? not hidden?]  
create-custom-loca num.espl[posiziona set shape "dot" set size 3.3 set color blue set label who] 
create-custom-aree.visibilita num.espl[setxy xcor-of loc(who -   num.espl)ycor-of loc( who -  num.espl) set 
shape "location3" set size(((copertura.aum) * 2  )- 1) set hidden? not hidden?] 
create-custom-ombre2 num.espl[setxy xcor-of loc(who - 2 * num.espl)ycor-of loc(who - 2 * num.espl) set shape 
"dot" set size 1.2 set color green set hidden? not hidden?] 
create-custom-shadows2 num.espl[setxy xcor-of loc(who - 3 * num.espl)ycor-of loc(who - 3 * num.espl) set 
shape "dot" set size 1.3 set color black set hidden? not hidden?] 
ask aree.repulsione[__tie area.repulsione (who ) espl(who - num.espl )] 
ask aree.attrazione [__tie area.attrazione (who ) espl(who - ((2 * num.espl)))] 
ask aree.visibilita [__tie area.visibilita(who )loc(who -  num.espl )] 
set C<=LBC 0 
set local.covering%.locale 0 
set local.covering%.loca 0 
set covering%.locale 0 
set covering%.loca 0 
set best.covering%.loca 0 
set best.covering%.locale 0 
set copertura.aum copertura.aum + copertura * incremento 
set num.volte 0 
ask locations[without-interruption[ 
set cov3 sum values-from patches in-radius copertura [densita.patch3] 
set covering%((( sum values-from locations [cov3]) / total * 100))]] 
end 
 
to attrai1.2 
ask loca[without-interruption[ 
let x xcor 
let y ycor 
let norma ((count patches in-radius copertura.aum) - 1) 
let lista.patch remove patch-here values-from patches in-radius copertura.aum [patch pxcor pycor] 
let lista.x map [pxcor-of ?] lista.patch 
let lista.y map [pycor-of ?] lista.patch 
let lista.densita map [(densita.patch-of ?) / norma]lista.patch 
let lista.distanze map [ (distance ?) / norma]lista.patch 
let x.cor sum (map[?1 * ?2 * sin towardsxy ?3 ?4]lista.densita lista.distanze lista.x lista.y) 
let y.cor sum (map[?1 * ?2  * cos towardsxy ?3 ?4] lista.densita lista.distanze lista.x lista.y) 
set Kx precision (x.cor) 3 
set Ky precision (y.cor) 3]] 
end 
 
to muovi1.2 
ask loca[ 
set heading direzionel 
fd passol + speed * 1.5] 
end 
 
to calcola.risultante1.2 
ask loca[ 
let x.ris((a * Kx) - ((1 - a ) * Wx)) 
let y.ris((a * KY) - ((1 - a)* Wy)) 
ifelse x.ris != 0 or y.ris != 0 [set passol precision (sqrt((x.ris ^ 2) +( y.ris ^ 2)))3][set passol 0] 
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if (x.ris + xcor) != xcor or (y.ris + ycor) != ycor [ set direzionel precision (towardsxy (x.ris + xcor)(y.ris + 
ycor))3]] 
end 
 
to scompare 
ask loca[die] 
ask aree.visibilita[die] 
ask ombre2[die] 
ask shadows2[die] 
end 
 
to meme.ombre 
ask ombre[ 
if (contatore.parziale > 1)[ 
if best.covering%.locale < covering%.locale 
[setxy xcor-of espl (who - (4 * num.espl))ycor-of espl(who - (4 * num.espl))set best.covering%.locale 
covering%.locale]]] 
end 
 
to meme.ombre2 
ask ombre2[ 
if (contatore.parziale > 1)[ 
if best.covering%.loca < covering%.loca 
[setxy xcor-of loc (who - (2 * num.espl))ycor-of loc(who - (2 * num.espl))set best.covering%.loca 
covering%.loca]]] 
end 
 
to diversifica 
ifelse covering%.loca <= local.covering%.loca[ 
set iter.migliorative iter.migliorative + 1][set iter.migliorative 0] 
if (iter.migliorative = iter.miglio)[differenzia] 
end 
 
to differenzia 
set local.covering%.loca 0 
set covering%.loca 0 
ask loca[ posizionamento.loca] 
ask shadows2[posizionamento.shadows2] 
end 
 
 
to posizionamento.loca 
setxy(random-xcor)(random-ycor) 
set iter.migliorative 0 
if densita.media-of patch-here = 0 
[posizionamento.loca] 
end 
 
to posizionamento.shadows2 
setxy xcor-of loc(who - (3 * num.espl)) ycor-of loc(who - (3 * num.espl)) 
end 
 
to differenzia1.2 
set local.covering%.locale 0 
set covering%.locale 0 
ask espls[posizionamento.espls] 
ask shadows[posizionamento.shadows] 
set C<=LBC 0 
end 
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to posizionamento.espls 
setxy (random-xcor)(random-ycor) 
if densita.media-of patch-here = 0 
[posizionamento.espls] 
end 
 
to posizionamento.shadows 
setxy xcor-of espl(who - (3 * num.espl)) ycor-of espl(who - (3 * num.espl)) 
end  
 
Il codice per l’algoritmo costruttivo-migliorativo 
 
breed[locations location] 
breed[loca loc] 
breed[espls espl] 
breed[aree.repulsione area.repulsione] 
breed[aree.repulsione1 area.repulsione1] 
breed[aree.attrazione area.attrazione] 
breed[aree.attrazione1 area.attrazione1] 
breed[shadows shadow] 
breed[ombre2 ombra2] 
breed[shadows3 shadow3] 
breed[ombre3 ombra3] 
 
 
patches-own [  
 densita.media 
 densita.patch 
 densita.patch2 
 densita.patch3 
 cov 
 cov2 
 cov3 ] 
           
espls-own[ 
 Ex 
 Ey 
 Gx 
 Gy 
 direzione1 
 passo1 
 moto1] 
 
loca-own[ 
 Sx 
 Sy 
 Hx 
 Hy 
 direzione4 
 passo4 
 moto4] 
 
aree.repulsione1-own[ 
 vero.a] 
 
aree.attrazione1-own[ 
 vero.b] 
 
locations-own[ 
 Fx 
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 Fy  
 Rx  
 Ry  
 direzione  
 passo 
 moto 
 cop.sing.loc 
 vero.loc] 
               
globals[ 
 filename  
 iterazioni 
 contatore 
 C<=LBC 
 contatore.parziale 
 covering% 
 covering%.locale 
 fac 
 num.espl 
 num.messe 
 pat 
 total 
 totale 
 x2 
 y2 
 x4 
 y4 
 best.covering% 
 best.covering%.locale 
 local.covering% 
 local.covering%.locale 
 covering%.loca 
 velocita.corrente 
 num.volte 
 lista.ord 
 lista.ord.rid 
 num.giri 
 x3 
 y3 
 bynary] 
 
to startup 
 ca 
 let known-paths 
 [ "./" 
   "./models/" 
   "./images/" 
   "../models/" 
   "../images/" ] 
 let basename "north40thmap.png" 
 let paths-to-try length known-paths 
 set filename false 
 let index 0 
 while [ index < paths-to-try  ] 
 [ if file-exists? (word (item index known-paths) basename) 
   [ set filename (word (item index known-paths) basename) 
     set index paths-to-try   ] 
   set index index + 1 ] 
 if filename = false 
 [ set filename user-file ] 
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 if filename = false 
 [ stop ] 
 migliora 
 import-pcolors filename 
 ask patches [ 
 if pcolor = black [set pcolor white]] 
end 
 
to migliora 
  import-drawing filename 
end 
 
to setup 
clear-turtles 
 
ask patches[  
if (pcolor <= 89.0)  and (pcolor >= 85.0)   [set densita.media 1]  
if (pcolor <= 76.0)  and (pcolor >= 72.0)   [set densita.media 10]  
if (pcolor <= 27.0)  and (pcolor >= 25.0)   [set densita.media 30] 
if (pcolor <= 15.0)  and (pcolor >= 10.0)   [set densita.media 100] 
if pcolor = white                           [set densita.media 0.0]] 
set iterazioni 0 
set contatore 0 
set num.espl 1 
set contatore.parziale 0 
set C<=LBC 0 
set covering% 0 
set local.covering% 0 
set covering%.locale 0 
set best.covering% 0 
set local.covering%.locale 0 
set best.covering%.locale 0  
set num.messe 0 
set num.volte 0 
set num.giri 0 
create-custom-espls num.espl[posiziona set shape "dot" set size 3.2 set color red set label who] 
create-custom-aree.repulsione num.espl[setxy xcor-of espl(who - num.espl) ycor-of espl(who - num.espl)set 
shape "location1" set size (((distanza.repulsione)* 2) - 1) set hidden? not hidden?] 
create-custom-aree.attrazione num.espl[setxy xcor-of espl(who - 2 * num.espl) ycor-of espl (who - 2 * 
num.espl)set shape "location" set size (((copertura)* 2 )- 1) set hidden? not hidden?] 
create-custom-shadows num.espl[setxy xcor-of espl(who - 3 * num.espl)ycor-of espl (who - 3 * num.espl) set 
shape "dot" set size 1.6 set color yellow set hidden? not hidden?]  
create-custom-ombre2 num.espl[setxy xcor-of espl(who - ( 4 * num.espl)) ycor-of espl(who - (4 * num.espl)) set 
shape"dot"set size 1.6 set hidden? not hidden?]  
ask aree.repulsione[__tie area.repulsione (who) espl(who - num.espl)] 
ask aree.attrazione [__tie area.attrazione (who) espl(who - (2 * num.espl))] 
end 
 
to go 
ask locations[without-interruption[ 
set cov3 sum values-from patches in-radius copertura [densita.patch3] 
set covering%((( sum values-from locations [cov3]) / total * 100))]] 
ifelse num.messe = numero.locations[ 
  if num.giri = 0[ 
    memorizza 
    sposta] 
  final.set1.3 
  ask locations[without-interruption[ 
  set cov3 sum values-from patches in-radius copertura [densita.patch3] 
  set covering%((( sum values-from locations [cov3]) / total * 100))  ]] 
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  ask loca[without-interruption[ 
  set cov2 sum values-from patches in-radius copertura [densita.patch] 
  set covering%.loca((( sum values-from loca [cov2]) / total * 100)) ]] 
  if num.giri = num.iterazioni[ 
    ask locations[without-interruption[ 
    set cov3 sum values-from patches in-radius copertura [densita.patch3] 
    set covering%((( sum values-from locations [cov3]) / total * 100)) ]] 
    mostra.aree1 
    final.set 
    stop] 
  set num.giri num.giri + 1 
  attrai1.3 
  respingi1.3 
  calcola.risultante1.3 
  muovi1.3 
  distanziare1.3 
  distacca.ombre1.3 
  distacca.shadows1.3 
  conteggio1.3 
  ask locations[without-interruption[ 
  set cov3 sum values-from patches in-radius copertura [densita.patch3] 
  set covering%((( sum values-from locations [cov3]) / total * 100)) ]]] 
[ attrai 
  respingi 
  calcola.risultante 
  muovi 
  verifica 
  ferma 
  cambia 
  meme 
  meme.ombre 
  copri 
  calcola 
  mostra.aree1 
  set contatore.parziale contatore.parziale + 1 
  set iterazioni iterazioni + 1 
  ask patch 0 0 [set total sum values-from patches in-radius 100 [densita.media]] 
  ask espls [without-interruption[ 
  set pat count patches in-radius copertura 
  set cov sum values-from patches in-radius copertura [densita.patch2] 
  set covering%.locale ((( sum values-from espls [cov]) / total)* 100)]] ] 
ask locations[without-interruption[ 
set cov3 sum values-from patches in-radius copertura [densita.patch3] 
set covering%((( sum values-from locations [cov3]) / total * 100))]] 
end 
 
to final.set 
ask locations  [set shape "house" set size 1.3 set color red]  
mostra.aree1 
end 
 
to calcola 
ask patches [ 
set densita.patch2 densita.media] 
ask patches[ 
let num.fac count locations in-radius (copertura - 1) 
ifelse num.fac > 0 
  [set densita.patch3 (densita.media / num.fac)] 
  [set densita.patch3 densita.media]] 
end 
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to meme 
ask shadows[ 
if iterazioni > 1[ 
  ifelse covering%.locale > local.covering%.locale 
  [setxy xcor-of espl (who -( 3 * num.espl)) ycor-of espl (who -( 3 * num.espl)) set local.covering%.locale 
covering%.locale] 
  [set xcor xcor + 0.0  set ycor ycor + 0.0]]] 
end 
 
to posiziona 
setxy (random-xcor)(random-ycor) 
if densita.media-of patch-here = 0 [posiziona] 
end 
 
to attrai 
ask espls[without-interruption[ 
let x xcor 
let y ycor 
let norma ((count patches in-radius copertura) - 1) 
let lista.patch remove patch-here values-from patches in-radius copertura [patch pxcor pycor] 
let lista.x map [pxcor-of ?] lista.patch 
let lista.y map [pycor-of ?] lista.patch 
let lista.densita map [(densita.patch-of ?) / norma]lista.patch 
let lista.distanze map [ (distance ?) / norma]lista.patch 
let x.cor sum (map[?1 * ?2 * sin towardsxy ?3 ?4]lista.densita lista.distanze lista.x lista.y) 
let y.cor sum (map[?1 * ?2  * cos towardsxy ?3 ?4] lista.densita lista.distanze lista.x lista.y) 
set Ex precision (x.cor) 3 
set Ey precision (y.cor) 3]] 
end 
 
to respingi  
ask espls[without-interruption[ 
let x xcor 
let y ycor 
let norma count espls in-radius distanza.repulsione 
let norma1 count locations in-radius distanza.repulsione 
let norma.tot (norma + norma1) 
let lista.espls remove self values-from espls in-radius distanza.repulsione [turtle who] 
let lista.locations  values-from locations in-radius distanza.repulsione [turtle who] 
let lista.repulsi(lista.espls + lista.locations) 
let lista.x map[xcor-of ?]lista.repulsi 
let lista.y map[ycor-of ?]lista.repulsi 
let lista.distanze map[(1 / (distance ?))/ norma.tot]lista.repulsi 
let x.cor sum(map[?1 * sin towardsxy ?2 ?3 ]lista.distanze lista.x lista.y) 
let y.cor sum(map[?1 * cos towardsxy ?2 ?3]lista.distanze lista.x lista.y) 
set Gx precision x.cor 3 
set Gy precision y.cor 3]] 
 end 
 
to muovi 
ask espls[ 
set heading direzione1 
fd passo1 + speed] 
end 
 
to verifica 
ask espls[ 
let locat count locations in-radius (distanza.diff - 1) 
if locat >= 1 [ 
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  posiziona 
  set C<=LBC 0]] 
end 
 
to calcola.risultante 
ask espls[ 
let x.ris((a * Ex) - ((1 - a) * (Gx))) 
let y.ris((a * EY) - (( 1 - a) * (Gy ))) 
ifelse x.ris != 0 or y.ris != 0 [set passo1 precision (sqrt((x.ris ^ 2) +( y.ris ^ 2)))3][set passo1 0] 
if (x.ris + xcor) != xcor or (y.ris + ycor) != ycor [ set direzione1 precision (towardsxy (x.ris + xcor)(y.ris + 
ycor))3]] 
end 
 
to ferma 
ifelse covering%.locale  <=  local.covering%.locale [set C<=LBC C<=LBC + 1][ set C<=LBC 0] 
if (C<=LBC = iteraz.auto.differenzia)[ 
differenzia1.2 
set num.volte num.volte + 1 ] 
end 
 
to cambia 
if num.volte = valore.num.volte[ 
  ask ombre2[ 
  set x2 xcor-of ombra2(who)  
  set y2 ycor-of ombra2(who)  ] 
  ask espls [die]  
  ask aree.repulsione [die] 
  ask aree.attrazione [die] 
  ask shadows [die] 
  ask ombre2[die]  
  ricrea1 
  contra] 
end 
 
to ricrea1 
create-custom-locations 1 [setxy x2 y2 set shape "house" set size 1.6 set color pink set label who] 
create-custom-aree.repulsione1 1[setxy xcor-of location (who - 1) ycor-of location (who - 1) set shape 
"location1" set size (((distanza.repulsione) * 2) - 1) set hidden? not hidden?] 
create-custom-aree.attrazione1 1[setxy xcor-of location (who - 2)ycor-of location (who - 2) set shape "location" 
set size ((copertura * 2)- 1)set hidden? not hidden?] 
ask aree.attrazione1 [__tie area.attrazione1 (who) location(who - (2))] 
end 
 
to contra 
set num.messe num.messe + 1 
if ( num.messe < numero.locations )[ 
  ricrea 
  copri] 
end 
 
to mostra.aree1 
ifelse mostra.aree.influenza  
  [ask aree.repulsione1[show-turtle]ask aree.attrazione1[show-turtle]] 
  [ask aree.repulsione1[ht]ask aree.attrazione1[ht]] 
end 
 
to copri 
ask patches[ 
let locat count locations in-radius (copertura - 1) 
ifelse( locat >= 1 ) [ set densita.patch 0][set densita.patch densita.media]] 
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end 
 
to ricrea 
create-custom-espls num.espl[posiziona set shape "dot" set size 3.2 set color red set label who] 
create-custom-aree.repulsione num.espl[setxy xcor-of espl(who - num.espl ) ycor-of espl(who - num.espl )set 
shape "location1" set size (((distanza.repulsione)* 2) - 1) set hidden? not hidden?] 
create-custom-aree.attrazione num.espl[setxy xcor-of espl(who - (2 * num.espl) ) ycor-of espl (who - 2 * 
num.espl )set shape "location" set size (((copertura)* 2 )- num.espl) set hidden? not hidden?] 
create-custom-shadows num.espl[setxy xcor-of espl(who - (3 * num.espl) )ycor-of espl (who - (3 * num.espl) ) 
set shape "dot" set size 1.6 set color yellow set hidden? not hidden?]  
create-custom-ombre2 num.espl[setxy xcor-of espl(who - ( 4 * num.espl)) ycor-of espl(who - (4 * num.espl)) set 
shape"dot"set size 1.6 set hidden? not hidden?] 
ask aree.repulsione[__tie area.repulsione (who ) espl(who - num.espl )] 
ask aree.attrazione [__tie area.attrazione (who ) espl(who - ((2 * num.espl)))] 
set C<=LBC 0 
set local.covering%.locale 0 
set covering%.locale 0 
set best.covering%.locale 0 
set num.volte 0 
ask locations[without-interruption[ 
set cov3 sum values-from patches in-radius copertura [densita.patch3] 
set covering%((( sum values-from locations [cov3]) / total * 100))]] 
end 
 
to meme.ombre 
ask ombre2[ 
if (contatore.parziale > 1)[ 
  if best.covering%.locale < covering%.locale[ 
    setxy xcor-of espl (who - (4 * num.espl))ycor-of espl(who - (4 * num.espl))set best.covering%.locale 
covering%.locale]]] 
end 
 
to differenzia1.2 
set local.covering%.locale 0 
set covering%.locale 0 
ask espls[posizionamento.espls] 
ask shadows[posizionamento.shadows] 
set C<=LBC 0 
end 
 
to posizionamento.espls 
setxy (random-xcor)(random-ycor) 
if densita.media-of patch-here = 0 
[posizionamento.espls] 
end 
 
to posizionamento.shadows 
setxy xcor-of espl(who - (3 * num.espl)) ycor-of espl(who - (3 * num.espl)) 
end  
 
to memorizza 
ask locations[without-interruption[ 
set cop.sing.loc ((sum values-from patches in-radius copertura [densita.patch3] )/ total)* 100]] 
set lista.ord sort-by [cop.sing.loc-of ?1 < cop.sing.loc-of ?2] locations 
set lista.ord.rid sublist lista.ord 0 1 
set vero.loc-of one-of lista.ord.rid 1 
end 
 
to sposta 
ask locations[without-interruption[ 
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if vero.loc-of location (who) = 1[ 
  set x3 xcor-of location(who) 
  set y3 ycor-of location(who) 
  set vero.a-of area.repulsione1 (who + 1) 1 
  set vero.b-of area.attrazione1 (who + 2) 1 ]]] 
create-custom-loca 1 [posiziona set shape "dot" set size 1.6 set color pink set label who] 
create-custom-shadows3 1[setxy xcor-of loc(who - 1 )ycor-of loc (who - (1 ) ) set shape "dot" set size 1.6 set 
color yellow set hidden? not hidden?]  
create-custom-ombre3 1[setxy xcor-of loc(who - 2 ) ycor-of loc(who - (2)) set shape"dot"set size 1.6 set hidden? 
not hidden?]  
end 
 
to attrai1.3 
ask loca [without-interruption[ 
let x xcor 
let y ycor 
let norma ((count patches in-radius copertura) - 1) 
    let lista.patch remove patch-here values-from patches in-radius copertura [patch pxcor pycor] 
    let lista.x map [pxcor-of ?] lista.patch 
    let lista.y map [pycor-of ?] lista.patch 
    let lista.densita map[(densita.patch-of ?) / norma]lista.patch 
    let lista.distanze map [(distance ?) / norma]lista.patch     
    let x.cor sum(map [?1 * ?2 * sin towardsxy ?3 ?4]lista.densita lista.distanze lista.x lista.y) 
    let y.cor sum(map [?1 * ?2 * cos towardsxy ?3 ?4]lista.densita lista.distanze lista.x lista.y) 
    set Sx precision (x.cor) 3 
    set Sy precision (y.cor) 3 ]] 
end 
 
to respingi1.3 
ask loca [without-interruption[ 
let x xcor 
let y ycor 
let norma count locations in-radius distanza.repulsione 
    let lista.locations remove self values-from loca in-radius distanza.repulsione [turtle who] 
    let lista.x map [xcor-of ?] lista.locations 
    let lista.y map [ycor-of ?] lista.locations 
    
    let lista.distanze map [(1 / (distance ?)) / norma ]lista.locations     
    let x.cor sum(map [?1 * sin towardsxy ?2 ?3]lista.distanze lista.x lista.y) 
    let y.cor sum(map [?1 * cos towardsxy ?2 ?3]lista.distanze lista.x lista.y)    
    set Hx precision x.cor 3 
    set Hy precision y.cor 3]] 
end 
 
to calcola.risultante1.3 
ask loca[ 
let x.ris ((a * Sx) - ((1 - a) * Hx)) 
let y.ris ((a * Sy) - ((1 - a) * Hy)) 
ifelse x.ris != 0 or y.ris != 0  
  [set passo4 precision (sqrt ((x.ris ^ 2) + (y.ris ^ 2))) 3] 
  [set passo4 0] 
if (x.ris + xcor) != xcor or (y.ris + ycor) != ycor[ 
  set direzione4 precision (towardsxy (x.ris + xcor) (y.ris + ycor)) 3]]                 
end 
 
to distanziare1.3 
ask loca[without-interruption[ 
set fac count locations in-radius distanza.diff;] 
if contatore < 2 
  [if fac > 1 [differenzia1.3]]]] 
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end 
 
to conteggio1.3 
if num.giri > 1[ 
  ifelse auto.differenzia [ 
    ifelse covering%.loca <= local.covering%  
      [set C<=LBC C<=LBC + 1] 
      [set C<=LBC 0]] 
    [set C<=LBC 0] 
  if (C<=LBC = iteraz.auto.differenzia) [ 
    differenzia1.3 ]] 
end 
 
to differenzia1.3 
set contatore 0 
set C<=LBC 0 
set local.covering% 0 
ask loca [posiziona] 
ask shadows3 [posizionamento.shadows1.3] 
end 
 
to posizionamento.shadows1.3 
setxy xcor-of loc (who - (1)) ycor-of loc (who - (1)) 
end 
 
to muovi1.3 
ask loca[ 
set heading direzione4 
fd passo4 + speed] 
end 
 
to distacca.ombre1.3 
ask ombre3 [ 
if (num.giri > 1) [if best.covering% < covering%.loca 
  [setxy xcor-of loc (who - (2)) ycor-of loc (who - (2)) set best.covering% covering%.loca]]] 
end 
 
to distacca.shadows1.3 
ask shadows3 [if num.giri > 1[ 
ifelse covering%.loca > local.covering% 
  [setxy xcor-of loc (who - (1)) ycor-of loc (who - (1)) set local.covering% covering%.loca]  
  [set xcor xcor + 0.0 set ycor ycor + 0.0]]] 
end 
 
to final.set1.3 
if num.giri = num.iterazioni - 1[ 
  ask locations[ 
  if vero.loc = 1 
    [ifelse cop.sing.loc-of location(who) < best.covering% [ 
       ask ombre3[ 
       set x4 xcor-of ombra3(who)  
       set y4 ycor-of ombra3(who)] 
       set bynary 1 ] 
   [set bynary 0] ] ] 
  if bynary = 1 [ 
   create-custom-locations 1 [setxy x4 y4 set shape "house" set size 1.6 set vero.loc 0 set color pink set label 
who] 
   create-custom-aree.repulsione1 num.espl[setxy xcor-of location(who - num.espl) ycor-of location(who - 
num.espl)set shape "location1" set size (((distanza.repulsione)* 2) - 1) set hidden? not hidden?] 
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   create-custom-aree.attrazione1 num.espl[setxy xcor-of location(who - 2 * num.espl) ycor-of location (who - 2 
* num.espl)set shape "location" set size (((copertura)* 2 )- 1) set hidden? not hidden?] 
   ask aree.repulsione1[__tie area.repulsione1 (who) location(who - num.espl)] 
   ask aree.attrazione1[__tie area.attrazione1 (who) location(who - (2 * num.espl))] 
   ask ombre3[die] 
   ask locations[ 
   if vero.loc = 1[ 
     die ]] 
 ask aree.repulsione1[ 
 if vero.a = 1[ 
   die ]] 
 ask aree.attrazione1[ 
   if vero.b = 1[ 
   die ]] ] 
 ask locations[without-interruption[ 
 set cov3 sum values-from patches in-radius copertura [densita.patch3] 
 set covering%((( sum values-from locations [cov3]) / total * 100)) ]]] 
if num.giri = num.iterazioni 
   [ask loca[die]] 
 end 
 
Greedy Algorithm with two improving stages 
 
breed[locations location] 
breed[aree.repulsione area.repulsione] 
breed[aree.repulsione1 area.repulsione1] 
breed[aree.attrazione area.attrazione] 
breed[aree.attrazione1 area.attrazione1] 
breed[aree.repulsione12 area.repulsione12] 
breed[aree.attrazione12 area.attrazione12] 
breed[espls espl] 
breed[shadows shadow] 
breed[ombre2 ombra2] 
breed[loca loc] 
breed[shadows3 shadow] 
breed[ombre3 ombra3] 
breed[loca2 loc2] 
breed[shadows32 shadow32] 
breed[ombre32 ombra32] 
 
patches-own [ 
 densita.media 
 densita.patch 
 densita.patch2 
 densita.patch3 
 cov 
 cov2 
 cov22 
 cov3]      
   
aree.repulsione1-own[ 
 vero.a] 
 
aree.attrazione1-own[ 
 vero.b] 
           
espls-own[ 
 Ex 
 Ey 
 Gx 
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 Gy 
 direzione1 
 passo1 
 moto1] 
 
loca-own[ 
 Sx 
 Sy 
 Hx 
 Hy 
 direzione4 
 passo4 
 moto4] 
 
loca2-own[ 
 Sx2 
 Sy2 
 Hx2 
 Hy2 
 direzione42 
 passo42 
 moto42] 
 
locations-own[ 
 Fx 
 Fy  
 Rx  
 Ry  
 direzione  
 passo 
 moto 
 cop.sing.loc 
 vero.loc 
 dead] 
               
globals[ 
 filename  
 iterazioni 
 contatore 
 C<=LBC 
 contatore.parziale 
 fac 
 num.espl 
 num.messe 
 pat 
 total 
 totale 
 x2 
 y2 
 x3 
 y3 
 x4 
 y4 
 x42 
 y42 
 covering% 
 covering%.locale 
 best.covering% 
 best.covering%.locale 
 best.covering%2 
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 local.covering%2 
 local.covering% 
 local.covering%.locale 
 covering%.loca 
 covering%.loca2 
 num.volte 
 lista.ord 
 lista.ord.rid 
 lista.ord2 
 lista.ord.rid2 
 num.giri 
 num.giri2 
 bynary 
 bynary2] 
 
to startup 
 ca 
 let known-paths 
 [ "./" 
   "./models/" 
   "./images/" 
   "../models/" 
   "../images/" ] 
 let basename "north40thmap.png" 
 let paths-to-try length known-paths 
 set filename false 
 let index 0 
 while [ index < paths-to-try  ] 
 [ if file-exists? (word (item index known-paths) basename) 
   [ set filename (word (item index known-paths) basename) 
     set index paths-to-try   ] 
   set index index + 1 ] 
 if filename = false 
 [ set filename user-file ] 
 if filename = false 
 [ stop ] 
 migliora 
 import-pcolors filename 
 ask patches [ 
 if pcolor = black [set pcolor white]] 
end 
 
to migliora 
  import-drawing filename 
end 
 
to setup 
clear-turtles 
ask patches[  
if (pcolor <= 89.0)  and (pcolor >= 85.0)   [set densita.media 1]  
if (pcolor <= 76.0)  and (pcolor >= 72.0)   [set densita.media 10]  
if (pcolor <= 27.0)  and (pcolor >= 25.0)   [set densita.media 30] 
if (pcolor <= 15.0)  and (pcolor >= 10.0)   [set densita.media 100] 
if pcolor = white                           [set densita.media 0.0]] 
set iterazioni 0 
set contatore 0 
set num.espl 1 
set contatore.parziale 0 
set C<=LBC 0 
set covering% 0 
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set best.covering% 0 
set best.covering%2 0 
set best.covering%.locale 0 
set local.covering% 0 
set local.covering%2 0 
set local.covering%.locale 0 
set covering%.locale 0 
set num.messe 0 
set num.volte 0 
set num.giri 0 
set num.giri2 0 
create-custom-espls num.espl[posiziona set shape "dot" set size 3.2 set color red set label who] 
create-custom-aree.repulsione num.espl[setxy xcor-of espl(who - num.espl) ycor-of espl(who - num.espl)set 
shape "location1" set size (((distanza.repulsione)* 2) - 1) set hidden? not hidden?] 
create-custom-aree.attrazione num.espl[setxy xcor-of espl(who - 2 * num.espl) ycor-of espl (who - 2 * 
num.espl)set shape "location" set size (((copertura)* 2 )- 1) set hidden? not hidden?] 
create-custom-shadows num.espl[setxy xcor-of espl(who - 3 * num.espl)ycor-of espl (who - 3 * num.espl) set 
shape "dot" set size 1.6 set color yellow set hidden? not hidden?]  
create-custom-ombre2 num.espl[setxy xcor-of espl(who - ( 4 * num.espl)) ycor-of espl(who - (4 * num.espl)) set 
shape"dot"set size 1.6 set hidden? not hidden?]  
ask aree.repulsione[__tie area.repulsione (who) espl(who - num.espl)] 
ask aree.attrazione [__tie area.attrazione (who) espl(who - (2 * num.espl))] 
end 
 
to go 
ask locations[without-interruption[ 
set cov3 sum values-from patches in-radius copertura [densita.patch3] 
set covering%((( sum values-from locations [cov3]) / total * 100))]] 
continua 
final.set1.3 
continua2 
final.set1.32 
if num.giri2 = (num.iterazioni + num.iterazioni2) 
  [ask locations[without-interruption[ 
  set cov3 sum values-from patches in-radius copertura [densita.patch3] 
  set covering%((( sum values-from locations [cov3]) / total * 100)) ]] 
  final.set 
  stop] 
if num.giri2 = (num.iterazioni + num.iterazioni2 - 1) 
  [set num.giri2 num.giri2 + 1] 
attrai 
respingi 
calcola.risultante 
muovi 
verifica 
ferma 
cambia 
meme 
meme.ombre 
copri 
calcola 
mostra.aree1 
set contatore.parziale contatore.parziale + 1 
set iterazioni iterazioni + 1 
ask patch 0 0 [set total sum values-from patches in-radius 100 [densita.media]] 
ask espls [without-interruption[ 
set pat count patches in-radius copertura 
set cov sum values-from patches in-radius copertura [densita.patch2] 
set covering%.locale ((( sum values-from espls [cov]) / total)* 100)]] 
ask locations[without-interruption[ 
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set cov3 sum values-from patches in-radius copertura [densita.patch3] 
set covering%((( sum values-from locations [cov3]) / total * 100))]] 
end 
 
to final.set 
ask locations  [set shape "house" set size 1.3 set color red]  
mostra.aree1 
end 
 
to calcola 
ask patches [ 
set densita.patch2 densita.media] 
ask patches[ 
let num.fac count locations in-radius (copertura - 1) 
ifelse num.fac > 0 
[set densita.patch3 (densita.media / num.fac)] 
[set densita.patch3 densita.media]] 
end 
 
to meme 
ask shadows[ 
if iterazioni > 1[ 
  ifelse covering%.locale > local.covering%.locale 
    [setxy xcor-of espl (who -( 3 * num.espl)) ycor-of espl (who -( 3 * num.espl)) set local.covering%.locale 
covering%.locale] 
    [set xcor xcor + 0.0  set ycor ycor + 0.0] ]] 
end 
 
to posiziona 
setxy (random-xcor)(random-ycor) 
if densita.media-of patch-here = 0 [posiziona] 
end 
 
to attrai 
if num.giri2 < (num.iterazioni + num.iterazioni2 - 1)[ 
  ask espls[without-interruption[ 
  let x xcor 
  let y ycor 
  let norma ((count patches in-radius copertura) - 1) 
  let lista.patch remove patch-here values-from patches in-radius copertura [patch pxcor pycor] 
  let lista.x map [pxcor-of ?] lista.patch 
  let lista.y map [pycor-of ?] lista.patch 
  let lista.densita map [(densita.patch-of ?) / norma]lista.patch 
  let lista.distanze map [ (distance ?) / norma]lista.patch 
 
  let x.cor sum (map[?1 * ?2 * sin towardsxy ?3 ?4]lista.densita lista.distanze lista.x lista.y) 
  let y.cor sum (map[?1 * ?2  * cos towardsxy ?3 ?4] lista.densita lista.distanze lista.x lista.y) 
  set Ex precision (x.cor) 3 
  set Ey precision (y.cor) 3 ]]] 
end 
 
to distanziare1.32 
if num.giri2 < (num.iterazioni + num.iterazioni2 - 1)[ 
  ask loca2[without-interruption[ 
  set fac count locations in-radius distanza.diff;] 
  if contatore < 2 
    [if fac > 1 [differenzia1.32]]]]] 
end 
 
to respingi  
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if num.giri2 < (num.iterazioni + num.iterazioni2 - 1)[ 
  ask espls[without-interruption[ 
  let x xcor 
  let y ycor 
  let norma count espls in-radius distanza.repulsione 
  let norma1 count locations in-radius distanza.repulsione 
  let norma.tot (norma + norma1) 
  let lista.espls remove self values-from espls in-radius distanza.repulsione [turtle who] 
  let lista.locations  values-from locations in-radius distanza.repulsione [turtle who] 
  let lista.repulsi(lista.espls + lista.locations) 
  let lista.x map[xcor-of ?]lista.repulsi 
  let lista.y map[ycor-of ?]lista.repulsi 
  let lista.distanze map[(1 / (distance ?))/ norma.tot]lista.repulsi 
  let x.cor sum(map[?1 * sin towardsxy ?2 ?3 ]lista.distanze lista.x lista.y) 
  let y.cor sum(map[?1 * cos towardsxy ?2 ?3]lista.distanze lista.x lista.y) 
  set Gx precision x.cor 3 
  set Gy precision y.cor 3 ]]] 
end 
 
to muovi 
if num.giri2 < (num.iterazioni + num.iterazioni2 - 1)[ 
ask espls[ 
set heading direzione1 
fd passo1 + speed]] 
end 
 
to verifica 
if num.giri2 < (num.iterazioni + num.iterazioni2 - 1)[ 
 ask espls[ 
 let locat count locations in-radius (distanza.diff - 1) 
 if locat >= 1 [ 
 posiziona 
 set C<=LBC 0 ]]] 
end 
 
 
to calcola.risultante 
if num.giri2 < (num.iterazioni + num.iterazioni2 - 1)[ 
  ask espls[ 
  let x.ris((a * Ex) - ((1 - a) * (Gx))) 
  let y.ris((a * EY) - (( 1 - a) * (Gy ))) 
  ifelse x.ris != 0 or y.ris != 0 [set passo1 precision (sqrt((x.ris ^ 2) +( y.ris ^ 2)))3][set passo1 0] 
  if (x.ris + xcor) != xcor or (y.ris + ycor) != ycor [ set direzione1 precision (towardsxy (x.ris + xcor)(y.ris + 
ycor))3]]] 
end 
 
to ferma 
if num.giri2 < (num.iterazioni + num.iterazioni2 - 1)[ 
  ifelse covering%.locale  <=  local.covering%.locale  
    [set C<=LBC C<=LBC + 1] 
    [set C<=LBC 0] 
  if (C<=LBC = iteraz.auto.differenzia)[ 
    differenzia1.2 
    set num.volte num.volte + 1 ]] 
end 
 
to cambia 
if num.giri2 < (num.iterazioni + num.iterazioni2 - 1)[ 
  if num.volte = valore.num.volte[ 
    ask ombre2[ 
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    set x2 xcor-of ombra2(who)  
    set y2 ycor-of ombra2(who) ] 
    ask espls [die]  
    ask aree.repulsione [die] 
    ask aree.attrazione [die] 
    ask shadows [die] 
    ask ombre2[die]  
    ricrea1 
    contra ]] 
end 
 
to ricrea1 
create-custom-locations 1 [setxy x2 y2 set shape "house" set size 1.6 set color pink set label who set dead 0] 
create-custom-aree.repulsione1 1[setxy xcor-of location (who - 1) ycor-of location (who - 1) set shape 
"location1" set size (((distanza.repulsione) * 2) - 1) set hidden? not hidden?] 
create-custom-aree.attrazione1 1[setxy xcor-of location (who - 2)ycor-of location (who - 2) set shape "location" 
set size ((copertura * 2)- 1)set hidden? not hidden?] 
ask aree.attrazione1 [__tie area.attrazione1 (who) location(who - (2))] 
end 
 
to contra 
set num.messe num.messe + 1 
if ( num.messe < numero.locations )[ 
  ricrea 
  copri] 
end 
 
to mostra.aree1 
ifelse mostra.aree.influenza [ask aree.repulsione1[show-turtle]ask aree.attrazione1[show-turtle]] 
                               [ask aree.repulsione1[ht]ask aree.attrazione1[ht]] 
end 
 
to copri 
ask patches[ 
let locat count locations in-radius (copertura - 1) 
ifelse( locat >= 1 )  
  [ set densita.patch 0] 
  [set densita.patch densita.media]] 
end 
 
to ricrea 
create-custom-espls num.espl[posiziona set shape "dot" set size 3.2 set color red set label who] 
create-custom-aree.repulsione num.espl[setxy xcor-of espl(who - num.espl ) ycor-of espl(who - num.espl )set 
shape "location1" set size (((distanza.repulsione)* 2) - 1) set hidden? not hidden?] 
create-custom-aree.attrazione num.espl[setxy xcor-of espl(who - (2 * num.espl) ) ycor-of espl (who - 2 * 
num.espl )set shape "location" set size (((copertura)* 2 )- num.espl) set hidden? not hidden?] 
create-custom-shadows num.espl[setxy xcor-of espl(who - (3 * num.espl) )ycor-of espl (who - (3 * num.espl) ) 
set shape "dot" set size 1.6 set color yellow set hidden? not hidden?]  
create-custom-ombre2 num.espl[setxy xcor-of espl(who - ( 4 * num.espl)) ycor-of espl(who - (4 * num.espl)) set 
shape"dot"set size 1.6 set hidden? not hidden?]  
ask aree.repulsione[__tie area.repulsione (who ) espl(who - num.espl )] 
ask aree.attrazione [__tie area.attrazione (who ) espl(who - ((2 * num.espl)))] 
set C<=LBC 0 
set local.covering%.locale 0 
set covering%.locale 0 
set best.covering%.locale 0 
set num.volte 0 
ask locations[without-interruption[ 
set cov3 sum values-from patches in-radius copertura [densita.patch3] 
set covering%((( sum values-from locations [cov3]) / total * 100))]] 
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end 
 
to meme.ombre 
ask ombre2[ 
if (contatore.parziale > 1)[ 
  if best.covering%.locale < covering%.locale 
    [setxy xcor-of espl (who - (4 * num.espl))ycor-of espl(who - (4 * num.espl))set best.covering%.locale 
covering%.locale] ]] 
end 
 
to differenzia1.2 
set local.covering%.locale 0 
set covering%.locale 0 
ask espls[posizionamento.espls] 
ask shadows[posizionamento.shadows] 
set C<=LBC 0 
end 
 
 
to posizionamento.espls 
setxy (random-xcor)(random-ycor) 
if densita.media-of patch-here = 0 
  [posizionamento.espls] 
end 
 
to posizionamento.shadows 
setxy xcor-of espl(who - (3 * num.espl)) ycor-of espl(who - (3 * num.espl)) 
end  
 
to memorizza 
ask locations[without-interruption[ 
set cop.sing.loc ((sum values-from patches in-radius copertura [densita.patch3] )/ total)* 100]] 
set lista.ord sort-by [cop.sing.loc-of ?1 < cop.sing.loc-of ?2] locations 
set lista.ord.rid sublist lista.ord 0 1 
set vero.loc-of one-of lista.ord.rid 1 
end 
 
to memorizza2 
ask locations[without-interruption[ 
set cop.sing.loc ((sum values-from patches in-radius copertura [densita.patch3] )/ total)* 100 
if vero.loc = 1 
  [set cop.sing.loc 100]]] 
set lista.ord2 sort-by [cop.sing.loc-of ?1 < cop.sing.loc-of ?2] locations  
set lista.ord.rid2 sublist lista.ord2 0 1 
set vero.loc-of one-of lista.ord.rid2 1 
end 
 
to sposta 
ask locations[without-interruption[ 
if vero.loc-of location (who) = 1[ 
  set x3 xcor-of location(who) 
  set y3 ycor-of location(who) 
  set vero.a-of area.repulsione1 (who + 1) 1 
  set vero.b-of area.attrazione1 (who + 2) 1  ]]] 
create-custom-loca 1 [posiziona set shape "dot" set size 1.6 set color pink set label who] 
create-custom-shadows3 1[setxy xcor-of loc(who - 1 )ycor-of loc (who - (1 ) ) set shape "dot" set size 1.6 set 
color yellow set hidden? not hidden?]  
create-custom-ombre3 1[setxy xcor-of loc(who - 2 ) ycor-of loc(who - (2)) set shape"dot"set size 1.6 set hidden? 
not hidden?]  
end 
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to sposta2 
ask locations[without-interruption[ 
if vero.loc-of location (who) = 1[ 
  set x3 xcor-of location(who) 
  set y3 ycor-of location(who) ]]] 
create-custom-loca2 1 [posiziona set shape "leaf" set size 1.6 set color black set label who] 
create-custom-shadows32 1[setxy xcor-of loc2(who - 1 )ycor-of loc2 (who - (1 ) ) set shape "dot" set size 1.6 set 
color yellow set hidden? not hidden?]  
create-custom-ombre32 1[setxy xcor-of loc2(who - 2 ) ycor-of loc2(who - (2)) set shape"dot"set size 1.6 set 
hidden? not hidden?]  
end 
 
 
to attrai1.3 
ask loca [without-interruption[ 
let x xcor 
let y ycor 
let norma ((count patches in-radius copertura) - 1) 
    let lista.patch remove patch-here values-from patches in-radius copertura [patch pxcor pycor] 
    let lista.x map [pxcor-of ?] lista.patch 
    let lista.y map [pycor-of ?] lista.patch 
    let lista.densita map[(densita.patch-of ?) / norma]lista.patch 
    let lista.distanze map [(distance ?) / norma]lista.patch 
    let x.cor sum(map [?1 * ?2 * sin towardsxy ?3 ?4]lista.densita lista.distanze lista.x lista.y) 
    let y.cor sum(map [?1 * ?2 * cos towardsxy ?3 ?4]lista.densita lista.distanze lista.x lista.y) 
    set Sx precision (x.cor) 3 
    set Sy precision (y.cor) 3 ]] 
end 
 
to attrai1.32 
ask loca2 [without-interruption[ 
let x xcor 
let y ycor 
let norma ((count patches in-radius copertura) - 1) 
    let lista.patch remove patch-here values-from patches in-radius copertura [patch pxcor pycor] 
    let lista.x map [pxcor-of ?] lista.patch 
    let lista.y map [pycor-of ?] lista.patch 
    let lista.densita map[(densita.patch-of ?) / norma]lista.patch 
    let lista.distanze map [(distance ?) / norma]lista.patch 
    let x.cor sum(map [?1 * ?2 * sin towardsxy ?3 ?4]lista.densita lista.distanze lista.x lista.y) 
    let y.cor sum(map [?1 * ?2 * cos towardsxy ?3 ?4]lista.densita lista.distanze lista.x lista.y) 
    set Sx2 precision (x.cor) 3 
    set Sy2 precision (y.cor) 3 ]] 
end 
 
to respingi1.3 
ask loca [without-interruption[ 
let x xcor 
let y ycor 
let norma count locations in-radius distanza.repulsione 
    let lista.locations remove self values-from loca in-radius distanza.repulsione [turtle who] 
    let lista.x map [xcor-of ?] lista.locations 
    let lista.y map [ycor-of ?] lista.locations 
    let lista.distanze map [(1 / (distance ?)) / norma ]lista.locations 
    let x.cor sum(map [?1 * sin towardsxy ?2 ?3]lista.distanze lista.x lista.y) 
    let y.cor sum(map [?1 * cos towardsxy ?2 ?3]lista.distanze lista.x lista.y) 
    set Hx precision x.cor 3 
    set Hy precision y.cor 3]] 
end 
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to respingi1.32 
ask loca2 [without-interruption[ 
let x xcor 
let y ycor 
let norma count locations in-radius distanza.repulsione 
    let lista.locations remove self values-from loca in-radius distanza.repulsione [turtle who] 
    let lista.x map [xcor-of ?] lista.locations 
    let lista.y map [ycor-of ?] lista.locations 
    let lista.distanze map [(1 / (distance ?)) / norma ]lista.locations 
    let x.cor sum(map [?1 * sin towardsxy ?2 ?3]lista.distanze lista.x lista.y) 
    let y.cor sum(map [?1 * cos towardsxy ?2 ?3]lista.distanze lista.x lista.y) 
    set Hx2 precision x.cor 3 
    set Hy2 precision y.cor 3]] 
end 
 
to calcola.risultante1.3 
ask loca[ 
let x.ris ((a * Sx) - ((1 - a) * Hx)) 
let y.ris ((a * Sy) - ((1 - a) * Hy)) 
ifelse x.ris != 0 or y.ris != 0  
  [set passo4 precision (sqrt ((x.ris ^ 2) + (y.ris ^ 2))) 3] 
  [set passo4 0] 
if (x.ris + xcor) != xcor or (y.ris + ycor) != ycor[ 
  set direzione4 precision (towardsxy (x.ris + xcor) (y.ris + ycor)) 3 ]]                 
end 
 
to calcola.risultante1.32 
ask loca2[ 
let x.ris ((a * Sx2) - ((1 - a) * Hx2)) 
let y.ris ((a * Sy2) - ((1 - a) * Hy2)) 
ifelse x.ris != 0 or y.ris != 0  
  [set passo42 precision (sqrt ((x.ris ^ 2) + (y.ris ^ 2))) 3] 
  [set passo42 0] 
if (x.ris + xcor) != xcor or (y.ris + ycor) != ycor[set direzione42 precision (towardsxy (x.ris + xcor) (y.ris + 
ycor)) 3] ]                 
end 
 
to distanziare1.3 
ask loca[without-interruption[ 
set fac count locations in-radius distanza.diff;] 
if contatore < 2[ 
  if fac > 1 [differenzia1.3]]]] 
end 
 
to conteggio1.3 
if num.giri > 1[ 
  ifelse auto.differenzia [ifelse covering%.loca <= local.covering%  
  [set C<=LBC C<=LBC + 1]  
  [set C<=LBC 0]] [set C<=LBC 0] 
    if (C<=LBC = iteraz.auto.differenzia) [ 
      differenzia1.3]] 
end 
 
to conteggio1.32 
if  num.giri2 > 1[ 
  ifelse auto.differenzia [ifelse covering%.loca2 <= local.covering%2 [set C<=LBC C<=LBC + 1] [set C<=LBC 
0]] [set C<=LBC 0] 
      if (C<=LBC = iteraz.auto.differenzia) [ 
        differenzia1.32]] 
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end 
 
to differenzia1.3 
set contatore 0 
set C<=LBC 0 
set local.covering% 0 
ask loca [posiziona] 
ask shadows3 [posizionamento.shadows1.3] 
end 
 
to posizionamento.shadows1.3 
setxy xcor-of loc (who - (1)) ycor-of loc (who - (1)) 
end 
 
to posizionamento.shadows1.32 
setxy xcor-of loc2 (who - (1)) ycor-of loc2 (who - (1)) 
end 
 
to muovi1.3 
ask loca[ 
set heading direzione4 
fd passo4 + speed ] 
end 
 
to differenzia1.32 
set contatore 0 
set C<=LBC 0 
set local.covering%2 0 
ask loca2 [posiziona] 
ask shadows32 [posizionamento.shadows1.32] 
end 
 
to muovi1.32 
ask loca2[ 
set heading direzione42 
fd passo42 + speed ] 
end 
 
to distacca.ombre1.3 
ask ombre3 [ 
if (num.giri > 1) [if best.covering% < covering%.loca 
[setxy xcor-of loc (who - (2)) ycor-of loc (who - (2)) set best.covering% covering%.loca]]] 
end 
 
to distacca.ombre1.32 
ask ombre32 [ 
if (num.giri2 > 1) [if best.covering%2 < covering%.loca2 
[setxy xcor-of loc2 (who - (2)) ycor-of loc2 (who - (2)) set best.covering%2 covering%.loca2]]] 
end 
to distacca.shadows1.32 
ask shadows32 [ 
if num.giri2 > 1[ 
  ifelse covering%.loca2 > local.covering%2 
    [setxy xcor-of loc2 (who - (1)) ycor-of loc2 (who - (1)) set local.covering%2 covering%.loca2] 
    [set xcor xcor + 0.0 set ycor ycor + 0.0] ]] 
end 
 
to distacca.shadows1.3 
ask shadows3 [ 
if num.giri > 1[ 
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  ifelse covering%.loca > local.covering% 
    [setxy xcor-of loc (who - (1)) ycor-of loc (who - (1)) set local.covering% covering%.loca]  
    [set xcor xcor + 0.0 set ycor ycor + 0.0] ]] 
end 
 
to mostra.aree1.3 
ifelse mostra.aree.influenza [ask aree.repulsione1[show-turtle]ask aree.attrazione1[show-turtle]] 
                               [ask aree.repulsione1[ht]ask aree.attrazione1[ht]] 
end 
 
to final.set1.3 
if num.giri = num.iterazioni [ 
  ask locations[ 
    if vero.loc = 1[ 
      ifelse cop.sing.loc-of location(who) < best.covering% [ 
         ask ombre3[ 
         set x4 xcor-of ombra3(who)  
         set y4 ycor-of ombra3(who)] 
         set bynary 1 
         ask ombre3 [ 
         ask patches in-radius copertura[ 
         set densita.patch 0]] 
         ask locations[ 
         if vero.loc = 1[ 
           set dead 1 ]]] 
       [set bynary 0]]]] 
 end 
 
to final.set1.32 
if num.giri2 = (num.iterazioni2 + num.iterazioni - 1 )[ 
  memorizza2 
  ask locations[ 
  if vero.loc = 1 and dead = 0  
    [ifelse cop.sing.loc-of location(who) < best.covering%2 [ 
       ask ombre32[ 
       set x42 xcor-of ombra32(who)  
       set y42 ycor-of ombra32(who)] 
       set bynary2 1 
        set vero.a-of area.repulsione1 (who + 1) 1 
        set vero.b-of area.attrazione1 (who + 2) 1 ] 
     [set bynary2 0]]] 
  
 if bynary2 = 1 [ 
   create-custom-locations 1 [setxy x42 y42 set shape "house" set size 1.6 set vero.loc 0 set color green set label 
who set dead 0] 
   create-custom-aree.repulsione1 num.espl[setxy xcor-of location(who - num.espl) ycor-of location(who - 
num.espl)set shape "location1" set size (((distanza.repulsione)* 2) - 1) set hidden? not hidden?] 
   create-custom-aree.attrazione1 num.espl[setxy xcor-of location(who - 2 * num.espl) ycor-of location (who - 2 
* num.espl)set shape "location" set size (((copertura)* 2 )- 1) set hidden? not hidden?] 
   ask aree.repulsione1[__tie area.repulsione1 (who) location(who - num.espl)] 
   ask aree.attrazione1[__tie area.attrazione1 (who) location(who - (2 * num.espl))]] 
  ask locations[without-interruption[ 
 set cov3 sum values-from patches in-radius copertura [densita.patch3] 
 set covering%((( sum values-from locations [cov3]) / total * 100)) ]] 
    if bynary = 1 [ 
   create-custom-locations 1 [setxy x4 y4 set shape "house" set size 1.6 set vero.loc 0 set color blue set label who] 
   create-custom-aree.repulsione1 num.espl[setxy xcor-of location(who - num.espl) ycor-of location(who - 
num.espl)set shape "location1" set size (((distanza.repulsione)* 2) - 1) set hidden? not hidden?] 
   create-custom-aree.attrazione1 num.espl[setxy xcor-of location(who - 2 * num.espl) ycor-of location (who - 2 
* num.espl)set shape "location" set size (((copertura)* 2 )- 1) set hidden? not hidden?] 
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   ask aree.repulsione1[__tie area.repulsione1 (who) location(who - num.espl)] 
   ask aree.attrazione1[__tie area.attrazione1 (who) location(who - (2 * num.espl))] 
   ask ombre3[die] 
   ask locations[ 
   if dead-of location(who)= 1[ 
     die]] 
   ask aree.repulsione1[ 
   if vero.a = 1[ 
     die ]] 
 ask aree.attrazione1[ 
   if vero.b = 1[ 
     die ]] 
  ask locations[without-interruption[ 
  set cov3 sum values-from patches in-radius copertura [densita.patch3] 
  set covering%((( sum values-from locations [cov3]) / total * 100)) 
  ]]]] 
if bynary2 = 1 
[ask ombre32[die] 
   ask locations[ 
   if vero.loc = 1[ 
       die ]] 
     ask aree.repulsione1[ 
   if vero.a = 1[ 
     die ]] 
   ask aree.attrazione1[ 
   if vero.b = 1[ 
     die ]]] 
  ask loca2[die] 
ask shadows3[die] 
ask shadows32[die] 
ask loca[die] 
end 
to continua 
if num.messe = numero.locations[ 
  if num.giri = 0[ 
    memorizza 
    sposta ] 
while [num.giri < num.iterazioni] [ 
  ask locations[without-interruption[ 
  set cov3 sum values-from patches in-radius copertura [densita.patch3] 
  set covering%((( sum values-from locations [cov3]) / total * 100)) ]] 
  ask loca[without-interruption[   
  set cov2 sum values-from patches in-radius copertura [densita.patch] 
  set covering%.loca((( sum values-from loca [cov2]) / total * 100)) ]] 
  set num.giri num.giri + 1 
  set num.giri2 num.giri + 1 
  attrai1.3 
  respingi1.3 
  calcola.risultante1.3 
  muovi1.3 
  distanziare1.3 
  distacca.ombre1.3 
  distacca.shadows1.3 
  conteggio1.3 ]] 
end 
 
to continua2 
if num.messe = numero.locations[ 
  if num.giri2 = num.iterazioni + 1[ 
    sposta2 ] 
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  while [num.giri2 < (num.iterazioni2 + num.iterazioni  - 1)] [ 
    ask locations[without-interruption[ 
    set cov3 sum values-from patches in-radius copertura [densita.patch3] 
    set covering%((( sum values-from locations [cov3]) / total * 100)) 
    ]] 
    ask loca2[without-interruption[ 
    set cov22 sum values-from patches in-radius copertura [densita.patch] 
    set covering%.loca2((( sum values-from loca2 [cov22]) / total * 100)) 
    ]] 
    set num.giri2 num.giri2 + 1 
    attrai1.32 
    calcola.risultante1.32 
    muovi1.32 
    distanziare1.32 
    distacca.ombre1.32 
    distacca.shadows1.32 
    conteggio1.32 ]] 
end 
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