
University of Naples “Federico II”

Department of Engineering Management (DIEG)

PhD Program in Science a

AGENT-B

FACILITY

PhD Candidate: Andrea Genovese

PhD Tutor: prof. Giuseppe Bruno

University of Naples “Federico II”

Department of Engineering Management (DIEG)

PhD Program in Science and Technology Management

XXII Cycle

PhD Thesis

BASED METHODOLOGIES FOR

ACILITY LOCATION PROBLEMS

PhD Candidate: Andrea Genovese

Giuseppe Bruno

Department of Engineering Management (DIEG)

nd Technology Management

S FOR

B

Certificate
This is to certify that the thesis titled Agent-Based Methodologies for Facility Location

Problems being submitted by Andrea Genovese for the award of the Doctorate in Science and

Technology Management at University of Naples “Federico II”, is a research work carried out

by him under my supervision.

The results contained in this thesis have not been submitted in part or full to any other

university or institute for the award of any degree/diploma.

Giuseppe Bruno

Associate Professor

Department of Engineering Management (DIEG)

University of Naples “Federico II”

I

Table of Contents

Introduction 1

Chapter 1: Agents and multi-agent systems

1.1 Introduction 3

1.2 Fundamental definitions 3

1.3 Agents’ characteristics 6

1.4 Agents’ categories 6

1.4.1 Standard Agents 6

1.4.2 Purely Reactive Agents 6

1.4.3 Perceptive Agents 8

1.4.4 Agents with state 9

1.5 Hybrid agents’ architectures 10

1.5.1 Belief Desire Intentions agents 10

1.5.2 Layered Architectures 12

1.6 Multi-Agent Systems 14

1.6.1 The need for Coordination 15

1.6.2 Interaction Protocols 17

1.6.3 Communication Protocols 20

1.7 Agents’ societies 22

1.8 Summary 24

1.9 Conclusions 25

Chapter 2: Optimization models and methods: generalities

2.1 Introduction 26

2.2 Mathematical Programming 27

2.3 Mathematical Programming problems classification 28

2.3.1 Constraint-based classification 29

II

2.3.2 Problem dimension classification 30

2.3.2 Variables characteristics classification 30

2.4 Complexity of Mathematical Programming problems 31

2.4.1 A first classification of MP problems 32

2.4.2 P and NP problems 33

2.5 Heuristic Techniques 35

2.4.1 Greedy Algorithms 37

2.4.1 Local Search Algorithms 38

2.6 Metaheuristic Algorithms 40

2.6.1 Simulated Annealing 40

2.6.2 The Tabu Search 41

2.6.3 Evolutionary Algorithms 44

2.6.4 Variable Neighbourhood Search 46

2.6.5 Swarm Intelligence 46

2.7 Some Considerations 49

Chapter 3: Agent-based Approaches for Optimization Problems

3.1 Introduction 51

3.2 Agent-based Approaches vs Classical Approaches 52

3.3 A Literature Review 53

3.3.1 Agent-Based scheduling approaches 58

3.3.2 Agent-Based Supply Chain planning approaches 64

3.3.3 Agent-Based routing approaches 64

3.4 Conclusions 65

Chapter 4: Location Problems: an overview

4.1 Introduction 66

4.2 A historical perspective 66

4.3 Generalities 68

4.3.1 Location Space 69

4.3.2 Demand Space 70

III

4.3.3 Metrics 71

4.3.4 Facilities Characteristics 71

4.3.5 Objective Functions 72

4.4 Classification of Location Problems 73

4.4.1 Continuous Location Problems 74

4.4.2 Discrete Location Problems 76

4.4.3 Network Location Problems 77

4.5 Some well-known models of Location Problems 80

4.5.1 p-Median like problems 80

4.5.2 p-Center like problems 81

4.5.3 Covering problems 83

4.5.3 Equity problems 84

Chapter 5: An agent-based framework for Location Problems

5.1 Introduction 86

5.2 Theoretical Framework 86

5.3 Adaptations of the ABM Framework to several Location Problems 90
5.3.1 The p-Median like problem 90

5.3.2 The p-Maximal Covering like problem 91

5.3.2 The Minimum Variance like problem 91

5.4 Implementation of the Framework 92

5.5 Computational experiences 93

5.5.1 Solving p-Median problem instances 94

5.5.2 Solving p-Maximal Covering problem instances 94

5.5.3 Solving Minimum Variance Problem instances 95

5.6 Framework extension to other classes of Location Problems 96

5.6.1 The Anti-p-Median like problem 97

5.6.2 Location Problems with forbidden regions 97

5.6.3 Location Problems with Existing Facilities 98

5.7 GIS extensions 98

5.8 Benefits of the proposed approach 102

5.9 Conclusions 103

IV

Conclusions 104

Appendix I 106

Appendix II 109

References 157

1

Introduction

The daily work of professionals involves making a series of decisions. In fact, the world relies

on systems designed by engineers and business people. Thus, the quality of decisions made by

these two categories of professionals is of critical importance.

Decisions are made by looking at the relevant data and making judgments. Making decisions

on issues with important consequences has become a highly complex problem due to the

many competing forces under which the world is operating today. Anyone who holds a

technical, managerial, or administrative job these days is faced with making decisions daily at

work. Decisions may involve:

• Determining which ingredients and in what quantities to add to a mixture being made

so that it will meet specifications on its composition;

• Selecting one among a small number of suppliers to order raw materials from;

• Determining the quantities of various products to manufacture in the next period;

• Allocating available funds among various competing agencies;

• Deciding which route to take to go to a given location;

• Selecting an appropriate location for an industrial facility;

• Determining how many check-in desks to open during airport operating hours.

A situation such as one of these requiring some decisions to be made is known as a Decision

Making Problem. Today it is essential to make decisions on a rational basis: the most rational

way for solving decision making problems is through quantitative analysis. This implies the

adoption of the following steps:

• Precise definition of the problem;

• Construction of a mathematical model of the problem;

• Solution of the model

• Implementation of the solution.

The mathematical model associated with a decision making problem is charachterized by the

following basic elements:

• An Objective Function, expressing a decision criterion to be optimized;

• A set of Constraints, limiting the feasible solutions to the problem.

As regards the solution of the mathematical model associated with the problem, several

methods have been developed, according to the different complexity of the problem to be

faced. Traditional approaches to solve these problems can be classified into two main

categories: exact methods and heuristic methods.

2

For a long time, these optimization techniques have represented the only available approach

to solve different types of decision-making problem, both at strategic and tactical levels.

In the last decade, agent-based computing has been suggested as a promising technique for

problem whose domains are distributed, complex and heterogeneous (Weiss, 1999;

Wooldridge, 2002), also thanks to the availability of many commercial and open source codes

including graphical interfaces for the elements of the problem. Application to several classes

of optimization problems have been developed, ranging from scheduling and supply chain

planning to routing.

In this dissertation, a general Agent-Based framework for modeling various location problems

is proposed. The high relevance of location problems in the operations research literature

arises from their wide spectrum of real applications, including decision optimization in

industrial management, logistics and territorial planning. Most of these optimization problems

fall in the class of NP-hard problems, motivating the search for heuristic and approximated

algorithms. Together with the description of an Agent-Based framework, we present some

computational results confirming the suitability and the effectiveness of the proposed

approach.

The thesis is organized as follows: in the first chapter, an overview of Agent-Based Modeling

and its foundations is proposed; then, basic concepts regarding Optimization Problems and

Methods are provided. In the third chapter, a review about Agent-Based Methods for

Optimization Problems is proposed. Given that Agent-Based Models characteristics seem to

be very suitable to Location Problems, chapter four provides an overview of the most

common problems belonging to this class, while in chapter five a framework for modeling

and solving Location Problems is presented, together with computational results and further

directions of research.

3

Chapter 1

Agents and multi-agent systems

1.1 Introduction

Multi-Agent systems (MASs) consist of a set of elements (agents) characterized by attributes,

which interact with each other through the definition of appropriate rules in a given

environment. MASs can be useful to reproduce many systems related to economics and social

sciences, where the structure can be designed through a network (Billari et al. (2006), Conte

et al. (1997)). Through ABMs, it is possible implementing an environment with its features,

forecasting and exploring its future scenarios, experimenting possible alternative decisions,

setting different values for the decision variables and analyzing the effects of these changes

(see Axelrod (1997)).

At an aggregated level, the use of ABMs can help in understanding general properties and

patterns concerning the whole scenario (Billari et al. (2006)) that could not be deduced nor

forecasted by the observation of each agent, due to the complexity of the interactions

occurring among the elements of the system.

Nowadays, the Agent concept is finding wide application in several contexts, ranging from

Artificial Intelligence research to the development of methodologies for complex decision

making problems.

In this introductory chapter the Agent concept with its characteristics and properties is

illustrated. Then, Multi-Agent systems are introduced with a description of interaction and

communication protocols among agents.

1.2 Fundamental definitions

At this moment, the literature is not able to provide a universally accepted definition of the

Agent concept. As this concept is being utilized in several and distinct disciplinary areas,

different characteristics can be considered more relevant according to the specific application

field.

However, a growing number of researchers agree on considering the definition of Wooldridge

and Jennings (1995) that can be stated as follows:

4

“An Agent is a computer system operating in an environment, capable of acting

autonomously in order to achieve some predetermined objectives”.

The elements of this definition can be clarified as follows:

• A Computer System is a set of hardware and software components brought together

in order to perform some tasks;

• The environment is not further defined, as its characteristics can depend on various

factors;

• The agent is defined as autonomous as it acts on the basis of its own objectives. Thus,

it controls its internal state and its behavior.

Figure 1.1 depicts an abstract schema of an agent and its environment. In particular, the agent

acts on the basis of its objectives; the output of these actions can modify the environment. The

action to be performed is selected, among a set of feasible actions, according to a set of data

coming from the environment that the agent is able to interpret and register.

Figure 1.1 – An Agent and its Environment

Thus, the set of actions that an agent can perform depends on the characteristics of the

environment in the instant when the action takes place.

However, in many situations characterized by an high complexity, the agent doesn’t have a

global control vision of the environment, but only a partial one; consequently, it can influence

or be influenced only by a part of the environment. Hence, an agent decisional behavior can

strongly depend on its “position” in the environment.

5

It emerges that the characteristics of the environment can influence the achievement of

agents’ objectives. For this reason, it is relevant to classify environment characteristics

according to a synthetic schema, like the one proposed by Russel and Norvig (1997) based on

the following features:

• Accessibility. A completely accessible environment is an environment in which an

agent is capable of accessing all the information about the state of the environment

itself. This characteristic is not likely to be verified in highly complex environments

(like, for example, the Internet network) that report a lower accessibility level.

• Determinism. In a deterministic environment the action of an agent determines one

and only one effect; thus, there is no uncertainty about the state that an agent can reach

as a result of a given action. For agents operating in non-deterministic environments

behavior predictability is difficult.

• Episodicity. An episodic environment is characterized by the independence of the

actions of each agent on the history of the agent itself. Such an environment is

endowed with a low complexity level, as an agent can decide its behavior without

recalling its past states.

• Staticity. In a static environment, only agents can modify environment characteristics;

on the contrary, in a dynamic environment, environment characteristics change

according to time.

• Continuity. If the environment allows only a limited and fixed number of actions that

can be executed, it can be defined as discrete; otherwise, it is a continuous

environment.

Different degrees of these characteristics correspond to different complexity degrees. It can be

stated that, from a theoretical point of view, the most complex environment is a scarcely

accessible, non-deterministic, non-episodic, dynamic and continuous one.

An elementary example of an agent operating in its environment can be represented by a

simple control system, like a thermostat placed in a room. The objective of the thermostat is

to keep constant the temperature in the room. The agent has two possible courses of action:

switching on or not a heating system. This choice is made on the basis of the temperature of

the room, measured by the agent. The action selected by the agent will influence the state of

the environment (the temperature of the room); at the next iteration, the agent will perceive

another state of the environment and will change, if necessary, its course of action.

6

1.3 Agents’ characteristics

Agents are often defined as intelligent. Also in this case, a widely accepted definition of

intelligence cannot be retrieved in the extant literature. The most widespread one defines an

intelligent agent through the characteristics of autonomy and flexibility.

Having already clarified the meaning of autonomy, it must be highlighted that flexibility

implies the following three features:

• Re-activeness. Agents answer in a precise way to signals coming from the

environment.

• Pro-activeness. Agents are endowed with goal-directed behaviors. They take the

initiative in order to satisfy their design objectives.

• Social ability. Interactions occur among entities through a communication language in

order to satisfy the design objectives.

Usually, the first two characteristics are not present at the same time in an agent. The pro-

activeness implies that agents, on the basis of some inputs, choose, autonomously and

depending on their specific objectives, a course of action.

On the contrary, a reactive agent simply answers to the signals coming from the environment;

it does not have the ability to pursue an objective.

In the following, several classes of agents will be introduced, each of them presenting

different degrees of the characteristics previously introduced.

1.4 Agents’ categories

Four categories of agents, based on different degrees of the previously illustrated

characteristics, will be introduced (Weiss, 1999):

• Standard agents;

• Purely reactive agents;

• Perceptive agents;

• Agents with state.

For each category of agents, properties and characteristics will be described according to the

mathematic formulation introduced by Wooldridge (1999).

1.4.1 Standard Agents

The first category of agents is constituted by the standard agents that can be graphically

represented as in Figure 1.1. The mathematical formulation proposed by Wooldridge (1999) is

7

based on the assumption that the couple agent/environment can be represented by the two

following sets:

• A set � � ���� � � ��	, whose elements are the states of the environment;

• A set
 � ���� � � ��	 whose elements are the actions that an agent can perform.

In each instant the environment is in a given state.

An action can be formalized as:

���������� �

Where �� is a sequence of states from S and A represents the action developed by the agent,

determined by the states of the environment.

Thus, given the configuration reached by the environment, the agent chooses to perform an

action assuming, as input, data coming from the environment itself. On the other hand, the

state reached by the environment will be determined by the result of the action implemented

by the agent at the previous iteration that depends on the environment itself. This process

explains the loop illustrated in figure 1.1.

The behavior of the environment can be modeled as:

�������������� �
 � ����
For each state � � � and for each action � �
 the environment identifies the set of the states

���� that can be reached by performing the action a by an agent in the state s. If one and only

one solution corresponds to each couple state-action, the environment is a deterministic one.

Thus, the interaction between the agent and the environment can be represented as a sequence

of states determined by the series of actions performed by the agent.

For instance, in the sequence

��
 !� ��

 "� �#
 $� �%

 &�� '(")*+ �,
 ')+

�� is the initial environment state (for instance, the state in which the agent starts operating)

�, is the uth action that an agent chooses to perform, �, is the uth state of the environment that

derives from the action �,-� performed by the agent in the state �,-�.

The previous sequence represents the history of the evolution of an agent in its environment,

if the following two conditions are respected:

.�/ � 0� �, � ���������� ��� � � �,��
.�/ � 0 1 �/ 2 3� �, � � �������������,-�� �,-��

The behavior of a standard agent can be tracked through the set of all the sequences that

satisfy these two conditions (Wooldridge, 1999).

8

1.4.2 Purely reactive agents

Some agents decide action to be performed without taking in account their past history. These

agents are defined purely reactive because they just directly answer to changes in the

environment, without pursuing an objective.

Thus, a purely reactive agent can be represented as

������ � �

Hence, actions are just based on the current environment state. It is useful to notice that a

purely reactive agent is a particular standard agent whose environment state sequence just

includes the current state.

The previous example of the thermostat represents a typical example of reactive agent. A

typical action can be depicted as follows:

�������� � 4�5��6�7��88��������������8�� � 7�����7����9����/��
�5��6�7���6��5���

:

1.4.3 Perceptive agents

Perceptive agents are able to perceive changes in the environment (Figure 1.2). This is

formalized through the introduction of the see function that translates the ability of an agent

of observing the environment in which it is placed, while the action is the decision making

process associated with the selection of the course of action to be pursued. For instance, the

see function can be a sensor that perceives the changes happening in the environment.

Figure 1.2 – A Perceptive Agent and its Environment

The see function allows transforming an environment state into an agent’s perception, as

listed below:

������� � ;

9

The action function allows transforming the perception sequence into an action.

��������;� �

If the agent can distinguish as many perceptions as the available states, then it is omniscient

and it has a perfect perception of the environment. If the agent has no perception ability, thus

the agent is not capable of distinguishing between different environment states.

These simple definitions allow us to explore some interesting properties of agents and

perception. Suppose that we have two environment states, s1∈S and s2∈S, such that s1≠ s2 but

see(s1) = see(s2). Then two different environment states are mapped to the same percept, and

hence the agent would receive the same perceptual information from different environment

states. As far as the agent is concerned, therefore, s1 and s2 are indistinguishable.

1.4.4 Agents with state

As represented in figure 1.3, an agent with state memorizes the states it has visited. If I

identifies the set of all the internal states of an agent, it can be introduced a new function,

named next, that links an internal state to a perception in order to reach another internal state:

��<����= � ; � =
while the perception function is:

������� � ;

and the action one:

��������= �

Thus, the agent starts from an initial state �� and analyzes the environment; on the basis of the

environment state s1 it produces a perception; the internal state of the agent is then modified

by the function next(��� ��������. The action selected by the agent will be:

action (next(��� ��������
 Then, the agent restarts the process for a new cycle.

10

Figure 1.3 – An Agent with State and its Environment

1.5 Hybrid agents’ architectures

In this paragraph, other kinds of agents’ architectures will be introduced. These architectures

try to combine characteristics from agents belonging to different classes. In particular, the aim

is to match the capability to react to changes in the environment (typical of purely reactive

agents) and a sufficient degree of pro-activeness (typical of standard deliberative agents), in

order to pursue long-term objectives.

Thus, two more agents categories can be presented:

• Belief-Desire-Intentions agents;

• Layered Architectures.

1.5.1 Belief-Desire-Intentions agents

The architecture of this class of agents derives from a practical reasoning that in each time

instant allows the agent to decide and plan its action on the basis of its own objectives. A BDI

(acronymous of Beliefs-Desire-Intentions) agent makes its evolution depend on:

• Beliefs, representing what the agent knows or believes to know;

• Desires, representing what the agent wants to obtain;

• Intentions, representing what the agent chooses to obtain (a subset of the Desires set).

Figure 1.4 shows the behavior of a BDI agent as described by Bratman et al. (1988). Seven

main components can be identified:

• A set of current Beliefs, reproducing the information on the environment;

11

• A Believe Revision Function (BRF) that receives a perception and the current beliefs

of the agent as input to create a new set of beliefs;

• An Option Generation function that determines the Desires of the agent on the basis

of its own beliefs and its intentions;

• The above introduced Desires set;

• A filter, representing the deliberative part of the process, that determines the intentions

of the agent depending on its beliefs and desires;

• The above introduced Intentions set;

• An execute function, that selects the action to be enacted taking in account current

intentions.

A more formalized structure can be introduced defining the following sets:

• >�?, the set of all the possible beliefs in a given instant;

• @��, the set of all the possible desires in a given instant;

• =���, the set of all the possible intentions in a given instant.

Thus, in a given instant, the state of an agent can be identified with the triple (B,D,I), in which

> A >�?� @ A @��, e = A =��.
The above introduced BRF can be formulated as follows:

���>�? � ;� �� �>�?�
Thus, starting from current beliefs and perceptions (the cartesian product of those sets

representing the domain of the function), �� determines a new beliefs set.

The Option Generation function (�#� is defined as:

�#�>�? � =��� � �@���
�# allows to define, starting from current beliefs and intentions, a new set of desires.

The filter function represents the deliberative process; it produces the new set of intentions,

on the basis of the beliefs and of the previously modified desires, as follows:

�%�>�? � @�� � =��� � =��
The filter function �% requires the respect of the following constraint:

B.�>� � � �>�?�� .�@ � � �@���� .�=� � � �=���C� 8�?�����>� @� =� A �=���D�@�����
This means that the filter function must not introduce any new belief or intention; on the

contrary, the output of the filter function must belong to the union of the previously defined

intentions and desires sets.

Finally, the execute function associates an action with each intention, as follows:

�<�/�� 1 ��E�=��� �

12

Figure 1.4 - BDI agent theoretical working schema

1.5.2 Layered Architectures

Starting from the need for combining reactive and proactive behaviors, Muller (1995)

proposed the idea of agents based on layered architectures. In this kind of agents, several

characteristics (typical of different categories of agents) are reproduced through layer-based

hierarchical structures, in which each layer is representative of a part of the agent

corresponding to a given characteristic.

A layered architecture must include at least two layers: a proactive one and a reactive one.

Two different hierarchical structures can be utilized to manage interactions among layers:

• Horizontal Structure: each layer is connected to both input and output sensors;

therefore, each layer behaves like a single agent;

• Vertical Structure: the input sensor is connected to the first layer, while the output

sensor is connected to the last one.

The horizontal structure (represented in Figure 1.5) is straightforward: if an agent has to

exhibit n different kinds of behaviors, n layers have to be implemented.

13

Figure 1.5 - Horizontal structure

This approach presents some weaknesses: the general behavior of an agent could not be

coherent, as each layer could compete with the other ones. To this aim, a negotiation function

has to be introduced, in order to assign, in a given time instant, the capability of pursuing an

action to a given layer. However, even if this modification can solve the coordination

problems connected to this particular structure, it can cause an increase in the complexity of

the model: if any of the n layers can choose among m actions, the negotiation function has to

choose among �� possible couples layer-action. If m and n are very large, this can be a

serious disadvantage.

In the vertical structure, there are two possible configurations:

• One Pass Architectures, in which control flows sequentially through each layer, until

the final layer generates action output (Figure 1.6);

• Two Passes Architectures, in which information flows up the architecture (the first

pass) and control then flows back down (Figure 1.6).

In both one pass and two pass vertically layered architectures the complexity of interactions

between layers is reduced: since there are n-1 interfaces between n layers, then if each layer is

capable of suggesting m actions, there are at most �#�� F G� interactions to be considered

between layers. This is clearly much simpler than the horizontally layered case.

14

Figure 1.6 - Vertical Structures: one pass (left); two passes (left)

1.6 Multi-agent systems

Agents operate and exist in some environment, which ypically is both computational and

physical. The environment might be open or closed, and it might or might not contain other

agents. Although there are situations where an agent can operate usefully by itself, the

increasing interconnection and networking of computers is making such situations rare, and

usually the agent interacts with other agents. Whereas the previous paragraph defined the

structure and characteristics of an individual agent, the focus of this paragraph is on systems

with multiple agents, in order to learn how to analyze, describe, and design environments in

which agents can operate effectively and interact with each other productively.

But why should we be interested in distributed systems of agents? Indeed, centralized

solutions are generally more efficient: anything that can be computed in a distributed system

can be moved to a single computer and optimized to be at least as efficient. However,

distributed computations are sometimes easier to understand and easier to develop, especially

when the problem being solved is itself distributed. Distribution can lead to computational

algorithms that might not have been discovered with a centralized approach. There are also

times when a centralized approach is impossible, because the systems and data belong to

15

independent organizations that want to keep their information private and secure for

competitive reasons.

The information involved is necessarily distributed, and it resides in information systems that

are large and complex in several senses:

• they can be geographically distributed;

• they can have many components;

• they can have a huge content, both in the number of concepts and in the amount of

data about each concept;

• they can have a broad scope, i.e., coverage of a major portion of a significant domain.

Also, the components of the systems are typically distributed and heterogeneous. The

topology of these systems is dynamic and their content is changing rapidly.

As will be shown in the following, multi-agent systems prove to be a viable approach for

studying systems endowed with these characteristics (Weiss, 1999).

1.6.1 The need for coordination

Within a multi-agent system, each agent has objectives to pursue. Obviously, these objective

can contrast with other agents’ ones. Thus, to pursue their own objectives, agents have to

communicate.

Communication capabilities include the abilities to receive and send messages. This is

necessary to ensure a coordination mechanism among agents themselves, in order to prevent

and avoid conflicts among agents’ objectives.

Coordination mechanisms can be essentially partitioned into two main categories:

• Cooperation, a coordination form among non-competitive agents;

• Competition, a coordination form among competitive agents (agents endowed with

conflicting objectives) that exchange messages in order to get a final agreement.

16

Figure 1.7 - Coordination mechanisms (Weiss, 1999).

Implementing a cooperation-based coordination mechanism means employing planning

approaches to reduce resource contention and to ensure the achievement of global objectives.

These planning approaches can be distinguished into two main categories:

• Distributed approaches, in which agents are endowed with self-organizing approaches

for resource sharing and goal pursuing;

• Centralized approaches, in which a mediator agent is assigned with the task of

regulating and supervise agents’ behaviors.

Implementing a competition-based coordination mechanism means reproducing negotiation

forms among agents.

In order to coordinate their actions, agents employ two different protocols:

• Interaction protocols, that govern the exchange of a series of messages among agents

— a conversation;

• Communication protocols, that rule the way in which a single message is composed.

Communication protocols enable agents to exchange and understand messages. Interaction

protocols enable agents to have conversations, which for our purposes are structured

exchanges of messages.

1.6.2 Interaction Protocols

If the agents have their own objectives to pursue, the interaction protocol is aimed at

maximizing the pay-off of the single agent; otherwise, if agents are endowed with similar

Coordination

Cooperation Competition

Negotiation Planning

Distributed

Centralized

17

objectives, the protocol is oriented to pursue a global objective without the introduction of a

centralized control. In the last case, it is necessary to decide how to:

• Determine shared objectives;

• Determine common tasks;

• Avoid unnecessary conflicts;

• Share knowledge and experience among agents.

As a concrete example of these, a communication protocol might specify that the following

types of messages can be exchanged between two agents:

• Proposal of a course of action;

• Acceptance a course of action;

• Rejection of a course of action;

• Disagreement with a proposed course of action;

• Counterproposal of a course of action.

Given two agents a and b, interaction protocols phases can be synthesized in the following

stages (Weiss, 1999) (Figure 1.8):

• Agent a proposes a course of action to agent b;

• Agent b evaluates the proposal and:

§ sends acceptance to agent a, or

§ sends rejection agent a, or

§ sends disagreement to agent a, or

§ sends counterproposal to agent a.

In the following, two main interaction protocols will be described: the first one based on a

cooperative approach, the second one on negotiation approach, that allows to take in account

competitive agents.

Cooperation-based interaction protocols

A basic strategy shared by many of the protocols for cooperation is to decompose and then

distribute tasks. Such an approach can reduce the complexity of a task: smaller subtasks

require less capable agents and fewer resources. However, the system must decide among

alternative decompositions, if available, and the decomposition process must consider the

resources and capabilities of the agents. Also, there might be interactions among the subtasks

and conflicts among the agents.

18

Task decomposition might be done spatially, based on the layout of information sources or

decision points, or functionally, according to the expertise of available agents. Once tasks are

decomposed, they can be distributed according to the following criteria:

• Avoid overloading critical resources;

• Assign tasks to agents with matching capabilities;

• Make an agent with a wide view assign tasks to other agents;

• Assign overlapping responsibilities to agents to achieve coherence;

• Assign highly interdependent tasks to agents in spatial or semantic proximity. This

minimizes communication and synchronization costs;

• Reassign tasks if necessary for completing urgent tasks.

The following mechanisms are commonly used to distribute tasks:

• Market mechanisms: tasks are matched to agents by generalized agreement or mutual

selection (analogous to pricing commodities);

• Contracting mechanism: announce, bid, and award tasks;

• Multi-agent planning: planning agents have the responsibility for task assignment;

• Organizational structure: agents have fixed responsibilities for particular tasks.

Figure 1.8 - Interaction protocol example (Weiss, 1999).

Agent a proposal

Agent b evaluation

Agent b rejects
agent a proposal

Agent b
formulates a

counterproposal

Agent b
disagrees with

agent a proposal

Agent b
accepts agent

a proposal

19

Negotiation-based interaction protocols:

A frequent form of interaction that occurs among agents with different goals is defined as

negotiation. Negotiation is a process by which a joint decision is reached by two or more

agents, each trying to reach an individual goal or objective (Weiss, 1999). The agents first

communicate their positions, which might conflict, and then try to move towards agreement

by making concessions or searching for alternatives.

Negotiation’s main features can be listed as follows:

• The language used by participant agents;

• The protocol used to represent negotiations;

• The decision making rules each agent utilizes to determine its positions and the

criteria to reach an agreement.

Two approaches can be utilized to set negotiation techniques up:

• Environment-centered;

• Agent-centered.

Environment-centered techniques focus on the following problem: "How can the rules of the

environment be designed so that the agents in it, regardless of their origin, capabilities, or

intentions, will interact productively and fairly?". The resultant negotiation mechanism

should have the following attributes:

• Efficiency: agents have to minimize resource wasting to reach an agreement;

• Stability: no agent should have an incentive to deviate from agreed-upon strategies;

• Simplicity: the negotiation mechanism should impose low computational on the

agents.

• Distribution: there is no central controller;

• Symmetry: the mechanism should not be biased against any agent.

According to Rosenschein e Zlotkin (1999), three environment types can be identified on the

basis of the previously defined characteristics:

• Task-oriented domain: it is characterized by non-conflicting tasks among agents; tasks

can be divided among agents; the object of the negotiation is the distribution of tasks

among agents, in order to achieve an allocation that allows each agent maximizing its

pay-off;

• State-oriented domain: it is characterized by the presence of complex interactions in

agents’ actions. This means that agents’ actions can both help or disturb other agents’

20

plans. Therefore, the negotiation process will be focused on developing shared plans,

in such a way to maximize positive interactions among agents.

• Worth-oriented domain: each agent is endowed with a function that measures the

acceptability degree of the reached state. Thus, each agent can also accept sub-optimal

solutions, if this allows obtaining a better solution at an aggregated level.

Agent-centered negotiation mechanisms focus on the following problem: "Given an

environment in which my agent must operate, what is the best strategy for it to follow?"

(Weiss, 1999). Several mechanisms based on this architecture have been developed; one of

the most utilized ones assumes that agents are economically rational individuals. Agents

formulate a set of courses of actions; a cost function is associated with each course of action.

Each agent is oriented to maximize its utility and to minimize its costs. There are three

possible solutions to rule agents’ interactions:

• Conflict: if there are no plans that are efficient for more agents; thus, agents compete

to get the best plans;

• Compromise: agents try to pursue their own objectives by competing; if no efficient

solutions are possible, they choose to cooperate;

• Cooperation: agents always choose to pursue common objectives.

1.6.3 Communication protocols

Communication protocols aim at creating common languages among agents. There are three

fundamental aspects that have to be defined to create a communication protocol:

• Syntax, regarding how communication symbols are structured;

• Semantics, regarding what the symbols denote;

• Pragmatics, regarding how the symbols are interpreted.

The basic element of a communication protocol is a message that is made up of sequences of

symbols. Messages can be classified according to several dimensions, as reported in table 1.1.

There are two basic message types: assertions and queries. Assertions express actions requests

that agents exchange each other; queries are a more complex message type, as they require the

capabilities both to express and answer questions.

Every agent, whether active or passive, must have the ability to accept information. In its

simplest form, this information is communicated to the agent from an external source by

means of an assertion. In order to assume a passive role in a dialog, an agent must

21

additionally be able to answer questions, i.e., it must be able to accept a query from an

external source and send a reply to the source by making an assertion.

Dimensions Effects
Descriptive vs. Prescriptive

Some messages describe phenomena, while
others prescribe behavior. Descriptions are
important for human comprehension, but are
difficult for agents to mimic. Appropriately,
then, most agent communication languages
are designed for the exchange of information
about activities and behavior.

Personal vs. Conventional Meaning

An agent might have its own meaning for a
message, but this might differ from the
meaning conventionally accepted by the other
agents with which the agent communicates.
To the greatest extent possible, multi-agent
systems should opt for conventional
meanings, especially since these systems are
typically open environments in which new
agents might be introduced at anytime.

Subjective vs. Objective Meaning

Similar to conventional meaning, where
meaning is determined external to an agent, a
message often has an explicit effect on the
environment, which can be perceived
objectively. The effect might be different
than that understood internally, i.e.,
subjectively, by the sender or receiver of the
message.

Speaker's vs. Society's Perspective

Independent of the conventional or objective
meaning of a message, the message can be
expressed according to the viewpoint of the
speaker or hearer or other observers.

Cardinality

A message sent privately to one agent would
be understood differently than the same
message broadcast publicly.

Contexuality

Messages cannot be understood in isolation,
but must be interpreted in terms of the mental
states of the agents, the present state of the
environment, and the environment's history:
how it arrived at its present state.
Interpretations are directly affected by
previous messages and actions of the agents.

Coverage Smaller languages are more manageable, but
they must be large enough so that an agent
can convey the meanings it intends.

Table 1.1 - Messages dimension (Weiss, 1999)

22

In order to assume an active role in a dialog, an agent must be able to issue queries and make

assertions. With these capabilities, the agent then can potentially control another agent by

causing it to respond to the query or to accept the information asserted. This means of control

can be extended to the control of subagents, such as neural networks and databases. An agent

functioning as a peer with another agent can assume both active and passive roles in a dialog.

It must be able to make and accept both assertions and queries.

Table 1.2 summarizes agents’ capabilities and categories.

 Basic Agent Passive Agent Active Agent Peer Agent
Receives Assertions X X X X
Receives Queries X X
Send Assertions X X X
Sends Queries X X

Table 1.2 - Agents’ capabilities and categories (Weiss, 1999)

The data structure of a communication protocol presents five fields:

• Sender;

• Receiver;

• Language in the protocol;

• Encoding and decoding functions;

• Actions to be taken by the receiver.

The protocol is defined as binary if the communication takes place exclusively between two

agents; it is defined as n-ary if the communication is among a sender and more receivers.

1.7 Agents’ societies

As previously illustrated, intelligent agents do not function in isolation. They are part of the

environment in which they operate, and the environment typically contains other such

intelligent systems.

When environments are too large, complex, dynamic, and open to be managed centrally or via

predefined techniques the only feasible alternative is to provide distributed control. A way to

build such control structure is provided by societies of agents.

A group of agents can form a society in which each agent plays a different role. The group

defines the roles, and the roles define the commitments associated with them (Weiss, 1999).

When an agent joins a group, he joins in one or more roles, and acquires the commitments of

that role. Agents join a group autonomously, but are then constrained by the commitments for

the roles they adopt. The groups define the social context in which the agents interact.

23

The basic mechanism that rules agents’ societies is the concept of social commitment. Social

commitments are the commitments of an agent to another agent, and represent a flexible

means through which the behavior of autonomous agents is constrained.

Social commitments enact social dependencies: suppose that an agent x depends (by a social

commitment) on an agent y to complete an action a that allows reaching the state p that

represents the objective of the agent x. If the agent x is not capable of reaching the state p by

itself, the agent x socially depends on the agent y.

Social dependencies are enacted on a voluntary basis, as agents choose to become part of an

agents’ society. Moreover, social dependencies can be mutual if the agent x has to perform the

action ax that is necessary to the agent y and the agent y itself has to perform the action ay that

is necessary to the agent x, being the respective objectives px and py.

Thus, an agent society has the following characteristics:

• All the agents share a common objective;

• Each agent acquires a role as member of the group or of a subgroup;

• Accepting commitments deriving by its role, each agent requires being part of the

society.

The development of the society can be described through three levels, as proposed by Dignum

et al. (2002) and illustrated in figure 1.9:

• Organizational model, that describes society’s structure in terms of roles, relationships

between roles and prescriptive behavioral norms;

• Social model, that allows inserting agents within the organizational structure

previously introduced, by defining contract protocols for establishing commitments;

• Interaction model, that defines the interaction protocol the society is based on.

24

Figure 1.9 - Theoretical model for an agent society

The main difference between multi-agent systems and society of agents relies in the fact that

agents operating in MASs operate to pursue their own objective, even if a coordination

mechanism is provided; in agents’ societies, agents belong to a group and pursue an objective

that is expressed by the whole society.

1.8 Summary

Synthesizing, the development of an Agent-Based Model needs a complete description for a

set of basic building blocks, listed as follows (Billari et al. (2006) and Weiss (1999)).

• The object of the simulation. It has to be specified what is the phenomenon/problem to

be reproduced, defining the environment where the simulation takes place and its

characteristics, following the schema previously depicted.

• The agents’ population. Agents can be grouped in different categories with common

characteristics reproducing the various components of the system.

• The adaptive capability of each agent category. Agents of each category present a

specific adaptive capability, i.e. the degree of re-activeness and pro-activeness.

• The interaction and communication paradigm among agents. Each agent can interact

with agents of the same or of other categories according to the above listed different

paradigms. On the base of the selected paradigm, the agents evolve in the simulation

space in a different way.

 roles

 agents Interaction structure

Interaction

25

1.9 Conclusions

In this chapter, an illustration of the agent concept has been provided. In particular, basic

agents’ characteristics have been depicted.

Evolution rules of the agents have been described through a mathematical formalism, in order

to set the stage for the introduction of coordination forms among agents that constitute the

building blocks for multi-agent systems and agents’ societies.

In the following of this work, the applicability of multi-agent systems to decision-making

problems will be surveyed.

26

Chapter 2

Optimization models and methods: generalities

2.1 Introduction

The daily work of professionals involves making a series of decisions. In fact, the world relies

on systems designed by engineers and business people. Thus, the quality of decisions made by

these two categories of professionals is of critical importance.

Decisions are made by looking at the relevant data and making judgments. Making decisions

on issues with important consequences has become a highly complex problem due to the

many competing forces under which the world is operating today. Nevertheless, it is still

usual for professionals to formulate decisions just relying on their own gut feeling. This

method very often leads to decisions quite far from being optimal. In fact many bad decisions

are still being made daily due to this.

Anyone who holds a technical, managerial, or administrative job these days is faced with

making decisions daily at work. Decisions may involve:

• Determining which ingredients and in what quantities to add to a mixture being made

so that it will meet specifications on its composition;

• Selecting one among a small number of suppliers to order raw materials from;

• Determining the quantities of various products to manufacture in the next period;

• Allocating available funds among various competing agencies;

• Deciding which route to take to go to a given location;

• Selecting an appropriate location for an industrial facility;

• Determining how many check-in desks to open during airport operating hours.

A situation such as one of these requiring some decisions to be made is known as a Decision

Making Problem.

As introduced above, in the past decisions were made exclusively on intuitive judgment based

on past experience. Today it is essential to make decisions on a rational basis. The most

rational way for decision making is through quantitative analysis which consists of the

following steps.

27

• Precise definition of the problem. This step requires gathering all relevant data and

information on the problem itself. In particular, the initial statement of the problem

may be vague or imprecise, and it can need some refinement.

• Construction of a mathematical model of the problem. Such a model abstracts the

essence of the decision problem. The model should express the various quantities

involved in the problem in the form of mathematical functions of decision variables,

and express the relationships among them using appropriate equations or inequalities.

A problem expressed through a mathematical model is said to be in its Mathematical

Programming form. However, real world problems are usually too complex to be

captured in a mathematical model; thus, a model is a simplification that provides a

sufficiently precise representation of the main features such that the conclusions

obtained from it also remain valid to the original problem to a reasonable degree of

approximation.

• Solution of the model. This phase allows deriving the solution, namely the decisional

outcome for the problem. Depending on the different complexity of the model

representing the problem, different solution strategies can be adopted. For some of the

models we have efficient algorithms (namely, a procedure) and high quality software

systems implementing them. For some others we do not yet have efficient algorithms,

and when the model is large, applying existing algorithms might take unreasonable

times.

• Implementation of the solution. The obtained solution is checked for practical

feasibility. If it is found to be unfeasible, the model could require some modifications

before being solved again. If the quality of the solution is not satisfactory, some

refinements are needed in the solution technique.

In the following of the chapter, details will be provided about Mathematical Programming

problems, their complexity, and the different solution procedure that can be adopted.

2.2 Mathematical Programming

A Mathematical Programming (MP) problem is a problem that can be reduced to the

following general form:

The research of the values of the variables (x1, x2, … , xn) that allow to maximize or minimize

a function z=f(x1, x2, … , xn) respecting the following conditions:

gi(x1, x2, … , xn) {≤,=,≥} bi (i = 1, … , m)

28

in which bi represent constant scalars and gi are scalar functions.

Variables (x1, x2, … , xn) are usually referred as control or decision variables; they can be

grouped in a decision variables vector x. A set of n values assigned to vector x components is

a solution to the problem. It can be represented as a point in a Euclidean n-dimensional space

En.

Relationships gi(x) {::} bi have the task to limit the values that decision variables can assume;

they are usually referred as problem constraints. A solution that respects all the constraints is

referred as a feasible solution; if the solution does not meet this condition, it is referred as an

infeasible solution.

The set Xa (subset of En) including all the feasible solutions to the problem represents the

feasible domain (also called region, or set) associated with the problem. If the problem has no

constraints, the feasible domain coincides with En. It is also possible that the constraints

determine an empty feasible set; in this case, the problem is said to be infeasible.

The function z=f(x) to be optimized is generally called objective function. Every solution that

reports the optimal value of z is defined as optimal solution. The optimal value of z can also

be a not finite value.

A solution x* is said to be a global maximum [global minimum] for the objective function f(x)

if the following condition is met:

f(x*)≥ f(y) [f(x*)≤ f(y)], .y�Xa

On the other hand, a solution x’ is said to be a local maximum [local minimum] for the

objective function f(x) if it is possible to identify a neighborhood of x’ of radius ε, Iε, that

meets the following condition:

f(x’)≥ f(y) [f(x’)≤ f(y)], .y� Iε

The formal definition of Mathematical Programming carries on some implicit limitations:

• Strict inequalities are not allowed; this means that the feasibility region of a

mathematical programming problem has to be a closed domain;

• The problem is assumed to be deterministic.

2.3 Mathematical Programming problems classification

Mathematical Programming problems can be classified according to their characteristics.

Three main aggregation keys can be defined to this aim:

• Objective function and constraints characteristics;

• Problem dimension (i.e. number of variables and constraints);

• Variables characteristics

In the following, possible classification schemes are introduced for each category.

2.3.1 Objective function and constraints characteristics classifi

A first classification can be introduced on the basis of the characteristics of the

functions. This also influences the choice of the algorithms utilized to solve the problems. As

illustrated in Figure 2.1, this classification mainly separates Mathematical Programming

problems into Linear Programming

Linear Programming

A Linear Programming (LP) problem is characterized by the fact that all the functions

involved in the problem (objective function, constraints) are linear. Thus, a LP problem can

be formulated as follows:

Figure 2.1 - Objective fun

Subject to:

∑jaij
xj�≥�3

Non-Linear Programming

This class includes all the problems that are not characterized by having both the

function and constraints expressed by linear functions. This second class can be further

partitioned into:

Variables characteristics.

In the following, possible classification schemes are introduced for each category.

Objective function and constraints characteristics classification

A first classification can be introduced on the basis of the characteristics of the

functions. This also influences the choice of the algorithms utilized to solve the problems. As

illustrated in Figure 2.1, this classification mainly separates Mathematical Programming

Linear Programming and Non-Linear Programming problems.

A Linear Programming (LP) problem is characterized by the fact that all the functions

involved in the problem (objective function, constraints) are linear. Thus, a LP problem can

Objective function and constraints characteristics based classification

z�∑jcjxj Max! [Min!]

ijxj�≤���≥	�bi .i=1,2,…,m

≥�3 .j=1,2,…,n

This class includes all the problems that are not characterized by having both the

function and constraints expressed by linear functions. This second class can be further

29

In the following, possible classification schemes are introduced for each category.

cation

A first classification can be introduced on the basis of the characteristics of the f(x) and gi

functions. This also influences the choice of the algorithms utilized to solve the problems. As

illustrated in Figure 2.1, this classification mainly separates Mathematical Programming

problems.

A Linear Programming (LP) problem is characterized by the fact that all the functions

involved in the problem (objective function, constraints) are linear. Thus, a LP problem can

ction and constraints characteristics based classification

This class includes all the problems that are not characterized by having both the objective

function and constraints expressed by linear functions. This second class can be further

30

• Geometrical Programming problems, whose objective function and constraints are

expressed by posynomial functions;

• Quadratic Programming problems, whose objective is expressed by a quadratic

function, while constraints are linear;

• Convex Non-Linear Programming problems, whose objective and constraints are

convex functions;

• Other Non-Linear Programming problems, not included in the previously stated sub-

categories.

It is interesting to note that Linear Programming problems are a particular class of convex

problems.

2.3.2 Problem dimension classification

Mathematical Programming problems can be grouped into three classes: small, intermediate

and large scale problems.

A Mathematical Programming problem is defined as:

• A small scale problem, if it can be solved in a reasonable time by a pen-and-paper

algorithm or just utilizing a table calculator;

• An intermediate scale problem, if it can be directly solved by utilizing available

solution methods on a personal computer;

• A large scale problem, if it can be solved with available methods only in presence of

particular structures that allow finding a solution operating on sub-problems.

It is easy to understand that small scale problem class does not change over time, while

between the other two classes there is a frontier depending on personal computers

performances.

2.3.3 Variables characteristics classification

Based on variables characteristics, it is possible to distinguish between Continuous

Mathematical Programming (in which variables can assume any value in a non-enumerable

set) and Discrete Mathematical Programming (in which variables are constrained to assume

values in an enumerable set) (Figure 2.2).

Figure 2.2 - Variables

Discrete Mathematical Programming

problems, Binary Integer Programming problems and several other classical optimization

problems (i.e. Bin Packing Problem, Traveling Salesman Problem, Chinese Postman

Problem).

2.4 Complexity of Mathematical Programming problems

Solving a Mathematical Programming

a procedure (usually formalized thro

computer) devoted to the resolution of a problem through a sequence of operations.

A problem for which it is not possible to find an algorithm capable of solving it is said to be

unsolvable or undecidable.

Obviously, it is not enough to design an algorithm that just provides a solution to the problem;

algorithms have also to exploit available resources in an efficient way.

Algorithms efficiency can be evaluated on the basis of several criteria, as:

• The length of the code to be written to implement the procedure;

• The time required to an expert programmer to write the code;

• The debugging time required to fix programming errors;

• The time required to experimentally evaluate the algorithm performances.

Among the others, the most utilized criterion to estimate algorithms performances is the

computational time evaluated being all the other resources (available memory, platform,

programming language) the same. The faster the algorithm, the more it is considered to be

efficient.

Variables characteristics based classification

Discrete Mathematical Programming include, for instance, Linear Integer Programming

problems, Binary Integer Programming problems and several other classical optimization

(i.e. Bin Packing Problem, Traveling Salesman Problem, Chinese Postman

Complexity of Mathematical Programming problems

Solving a Mathematical Programming (MP) problem means developing an

a procedure (usually formalized through a programming language and implemented on a

computer) devoted to the resolution of a problem through a sequence of operations.

A problem for which it is not possible to find an algorithm capable of solving it is said to be

bviously, it is not enough to design an algorithm that just provides a solution to the problem;

algorithms have also to exploit available resources in an efficient way.

Algorithms efficiency can be evaluated on the basis of several criteria, as:

of the code to be written to implement the procedure;

The time required to an expert programmer to write the code;

The debugging time required to fix programming errors;

The time required to experimentally evaluate the algorithm performances.

others, the most utilized criterion to estimate algorithms performances is the

computational time evaluated being all the other resources (available memory, platform,

programming language) the same. The faster the algorithm, the more it is considered to be

31

characteristics based classification

include, for instance, Linear Integer Programming

problems, Binary Integer Programming problems and several other classical optimization

(i.e. Bin Packing Problem, Traveling Salesman Problem, Chinese Postman

problem means developing an algorithm, namely

ugh a programming language and implemented on a

computer) devoted to the resolution of a problem through a sequence of operations.

A problem for which it is not possible to find an algorithm capable of solving it is said to be

bviously, it is not enough to design an algorithm that just provides a solution to the problem;

The time required to experimentally evaluate the algorithm performances.

others, the most utilized criterion to estimate algorithms performances is the

computational time evaluated being all the other resources (available memory, platform,

programming language) the same. The faster the algorithm, the more it is considered to be

32

Obviously, computational time depends on the particular instance of the problem under

consideration, and it increases if the dimension n (defined as data quantity required to

represent it) of the instance increases too.

2.4.1 A first classification of Mathematical Programming problems

The computational complexity of an algorithm is defined as the variation of the computational

time varying the dimensions of the instance of the problem.

Decidable problems are those problems solvable with a certain algorithms, no matter of its

complexity. Thus, within this class of problems, it is possible to provide a further

classification, defining a complexity function f(n) associated with an algorithm related to a

decidable problem. It represents the number of operations required by the algorithm to solve,

in the worst case, an instance of dimension n. In other words, f(n) expresses the number of

operations needed by the algorithm depending on the size of the instance of the problem; this

function can present different shapes.

In order to compare functions endowed with different shapes the following notation can be

introduced:

f(n)=O(g(n))

if R n*≥0, c≥1 : f(n)≤cS g(n) . n≥ n*

An algorithm that presents a complexity function f(n)=O(nk) requires a number of operations

that is upper-bounded by a k-order polynomial function; synthetically, it is defined as a

polynomial algorithm.

In a similar way,

f(n)=E(g(n))

if R n*≥0, c≥1 : f(n) ≥cS E(n) . n≥ n*

Practically, O(S) and E (S) allow to define an upper and a lower bound for the complexity

function of an algorithm.

On the basis of these definitions, a mathematical programming problem can be defined as a

tractable problem if there exists a polynomial algorithm capable of solving it; otherwise, the

problem is said to be intractable.

The reason of this definition arises from simple considerations: exponential complexity

algorithms (i.e. f(n)=an, with a>1) present incredibly high computational times even for

limited size instances.

33

2.4.2 P and NP problems

Despite of its apparent simplicity, the previously illustrated classification is not applicable to

several problems. Indeed, defining a given problem as intractable means being able to show

that a polynomial algorithm capable of solving the problem itself cannot exist. This proof

requires showing that any algorithm to solve the problem is lower-bounded by an exponential

function. Given the difficulty of this process, only a limited number of problems have been

qualified as intractable.

On the other hand, given the current state of the art, there are a large number of problems that

cannot be classified as tractable neither intractable, as:

• A polynomial algorithm capable of solving the problem has not yet been developed;

• The intractability proof has not yet been provided.

Thus, at the moment these problems are considered intractable, even though they could

become tractable as soon as a polynomial algorithm capable of solving it would be developed.

In order to overcome limitations of this classification schema, the NP-completeness theory

has been developed. This theory is referred to the so-called Decision Problems, representing a

category of problems formulated in such a way that just two answers are allowed: Yes or No.

Thus, a decision problem presents a different formulation if compared to Mathematical

Programming problem; yet, it is possible to associate a decision problem with a Mathematical

Programming problem; indeed, starting from a Mathematical Programming problem π, it is

possible to define the following Decision Problem:

“Does the problem π allow for a solution whose value is less or equal to x?”

It is clear that such a kind of Decision Problem is easier to solve than the corresponding

optimization problem.

Decision Problems can be grouped into two classes: P and NP problems. A Decision Problem

belongs to P class if it is tractable, namely if there exists a polynomial algorithm that can

provide a Yes or No answer to the problem itself. On the other hand, it belongs to NP class if

there exists a polynomial algorithm capable of just verifying every Yes solution.

It is easy to understand that a P problem is also belonging to the NP class: indeed, if there

exists an algorithm capable of solving the problem, it will also serve as verification procedure

for every Yes solution.

Thus PANP. However, given the current state of the art, it is not possible to state if P⊂NP

and then, PUNP or, on the contrary, P=NP, as no proofs have been provided on this topic.

Practically, it would be necessary to provide a Decision Problem belonging to the NP class

that does not belong to the P

classes would make sense. However, even if, as stated before, no proof has been provided, the

OR/MS community agrees on considering this hypothesis as the most realistic one. A

coherent graphical representation of the two c

Figure 2.3.

Figure 2.

Further studies have allowed introducing another class of problems, the well

complete problems. In order to introduce this class it is necessary to illustrate the

concept. A problem π can be reduced to a problem

in a π’’ instance within a polynomial computational time.

On the basis of this definition, it can be stated that a problem π belongs to

if the following two conditions are met:

• π NP;

• Every NP problem can be reduced to π

In other words, NP-complete problems represent a subset of the

hardest problems (Figure 2.4). The possibility of reducing every

complete problem implies that the discovery of a polynomial algorithm capable of providing a

Yes or No answer for any NP

method for all NP problems; this would provide a proof to the statement

P class. In this case, the distinction between the two problem

classes would make sense. However, even if, as stated before, no proof has been provided, the

OR/MS community agrees on considering this hypothesis as the most realistic one. A

coherent graphical representation of the two classes of Decision Problems is presented in

Figure 2.3 - Representation of NP and P classes

Further studies have allowed introducing another class of problems, the well

complete problems. In order to introduce this class it is necessary to illustrate the

concept. A problem π can be reduced to a problem π’’ if every π instance can be transformed

instance within a polynomial computational time.

On the basis of this definition, it can be stated that a problem π belongs to

if the following two conditions are met:

problem can be reduced to π.

complete problems represent a subset of the NP class,

problems (Figure 2.4). The possibility of reducing every NP problem to any

complete problem implies that the discovery of a polynomial algorithm capable of providing a

NP-complete problem would ensure a polynomial resolution

problems; this would provide a proof to the statement P=

34

tinction between the two problem

classes would make sense. However, even if, as stated before, no proof has been provided, the

OR/MS community agrees on considering this hypothesis as the most realistic one. A

lasses of Decision Problems is presented in

Further studies have allowed introducing another class of problems, the well-known NP-

complete problems. In order to introduce this class it is necessary to illustrate the reducibility

if every π instance can be transformed

On the basis of this definition, it can be stated that a problem π belongs to NP-complete class

class, including the

problem to any NP-

complete problem implies that the discovery of a polynomial algorithm capable of providing a

ynomial resolution

=NP.

Figure 2.4 - Representation of

Starting from NP-completeness definition, to show that a Decision Problem

complete the following steps have to be performed:

• Showing that π* NP

• Showing that there exist another problem,

reduced to π*.

The Satisfiability Problem has been the first problem that has been discovered to be

complete (Cook, 1971). This seminal result has allowed showing that many Decision

Problems associated with common Mathematical Programming problems are

It is interesting to note that the reducibility operation is not commutative: thus, there

problems that are not NP-complete.

A Mathematical Programming problem whose corresponding Decision Problem belongs to

NP-complete class is said to be

opinion that a NP-hard problem has to be considered intractable from a computational point

of view. Thus, in order to solve

reasonable computational times, it is necessary to employ heuristic algorithms that can

provide good (but sub-optimal) solutions.

2.5 Heuristic techniques

The most of combinatorial optimization problems belong to the

before, even if this is not formally proved,

Thus, exact approaches can require extremely high computational times if applied to this kind

of problems. Therefore, heuristic methods are often employed to deal with

problems.

Representation of NP, NP-Complete and P classes

completeness definition, to show that a Decision Problem

the following steps have to be performed:

Showing that there exist another problem, π** NP-complete class, that can be

The Satisfiability Problem has been the first problem that has been discovered to be

complete (Cook, 1971). This seminal result has allowed showing that many Decision

Problems associated with common Mathematical Programming problems are

It is interesting to note that the reducibility operation is not commutative: thus, there

complete.

A Mathematical Programming problem whose corresponding Decision Problem belongs to

complete class is said to be NP-hard. Even if there is no formal proof, it is common

hard problem has to be considered intractable from a computational point

of view. Thus, in order to solve NP-hard problems of significant dimensions within

reasonable computational times, it is necessary to employ heuristic algorithms that can

optimal) solutions.

The most of combinatorial optimization problems belong to the NP-hard class. As stated

before, even if this is not formally proved, NP-hard problems are thought to be intractable.

Thus, exact approaches can require extremely high computational times if applied to this kind

of problems. Therefore, heuristic methods are often employed to deal with

35

classes

completeness definition, to show that a Decision Problem π* is NP-

complete class, that can be

The Satisfiability Problem has been the first problem that has been discovered to be NP-

complete (Cook, 1971). This seminal result has allowed showing that many Decision

Problems associated with common Mathematical Programming problems are NP-complete.

It is interesting to note that the reducibility operation is not commutative: thus, there are NP

A Mathematical Programming problem whose corresponding Decision Problem belongs to

hard. Even if there is no formal proof, it is common

hard problem has to be considered intractable from a computational point

hard problems of significant dimensions within

reasonable computational times, it is necessary to employ heuristic algorithms that can

hard class. As stated

hard problems are thought to be intractable.

Thus, exact approaches can require extremely high computational times if applied to this kind

of problems. Therefore, heuristic methods are often employed to deal with NP-Hard

36

While exact methods (like, for example, Branch and Bound and Cutting Planes methods)

provide optimal solution, heuristic methods provide the advantage of more reasonable

computational times but often they fail to provide the optimal solution.

Thus, it is crucial to estimate the effectiveness of a heuristic technique. First of all, the quality

of the provided solution has to be assessed. Precisely, given a Mathematical Programming

problem, an instance I, a solution of the instance provided by an heuristic algorithm EUR(I)

and a solution provided by an exact algorithm OPT(I), a measure of the quality of the solution

provided by the heuristic can be expressed through the following index (percent error):

�V � WX;Y�=� F Z[\�=�W
WX;Y�=�W

The above introduced index can be estimated in the average case or in the worst case. To have

a measure of the percent error in the worst case, an upper bound for the percentage error can

be introduced, as follows:

�V � WX;Y�=� F Z[\�=�W
WX;Y�=�W ≤]

In practice, the heuristic algorithm provides a solution that, in the worst case, presents a

percentage error equal to]. Some algorithms allow individuating an upper bound for the

percent error, introducing a kind of warranty on the maximum error they can provide.

However, it is not always possible to compute the percent error. Indeed, this implies the

availability of an exact algorithm that provides the optimal solution to the problem. If such an

algorithm is available, e% is computed by generating instances of the problem characterized

by different dimensions and evaluating statistics about errors generated by the algorithm for

each of the considered instances.

If there is no optimal algorithm available for the problem, the value OPT(I) cannot be carried

out; thus, to get a value for e% there is the need of obtaining an estimation of the optimal

solution; this can be done utilizing bounds to the optimal solution in the error evaluation

process. For example, for a minimizing problem, an estimation of e% can be computed as

follows:

�^V � W_>�9��=� F Z[\�=�W
WX;Y�=�W

where LBopt is a lower bound to the optimal solution of the problem. It is easy to understand

that:

W_>�9��=� F Z[\�=�W
WX;Y�=�W ≥ WX;Y�=� F Z[\�=�W

WX;Y�=�W

37

Thus, replacing the optimal solution with estimations produces an overestimation of the error.

However, though important, the quality of the solution is not the only parameter to be taken

into account while designing and implementing a heuristic algorithm: computational times are

also relevant. Usually, there is a strong and positive correlation between the quality of the

solution that can be obtained and computational times: better solutions can be reached at

expenses of an increase in computational times, often undesirable. Thus, projecting an

efficient heuristic algorithm means finding a compromise between the need for solutions very

close to the optimal one and fast procedures.

Moreover, other aspects cannot be neglected, like:

• Easiness of implementation (in terms of complexity of the programming language

code to be written);

• Flexibility (in terms of easiness of adaptation of the algorithm to other instances and

slightly different problems).

Heuristic algorithms can be classified according to the search philosophy adopted to find a

solution. In particular, it is possible to distinguish between:

• Greedy algorithms, that gradually build a solution to the problem, stepping through

partial solutions;

• Local Search algorithms, that starts from a solution and try to modify it in order to get

some benefits in terms of objective function.

In the following, some principia of each category of algorithms will be illustrated.

2.5.1 Greedy algorithms

A generic greedy algorithm is made up of the following steps:

• Initialization: a starting element is chosen (often randomly) and added to the partial

solution S.

• Selection: according to a given criterion, a new element is chosen and added to the

partial solution S.

• Halt Criterion: if S is a feasible solution, the procedure stops; otherwise, it goes back

to the selection stage.

From a mathematical point of view, greedy algorithms build a feasible solution through an

iterative process. At every step, the algorithm adds to the solution the element that seems to

be more promising in terms of objective function values, without any evaluation of the whole

38

solution. Thus, solutions provided by greedy algorithms are usually poor from a qualitative

point of view.

Moreover, as it can be derived from the description, greedy algorithms strongly depend on the

choice of the initial element. Therefore, in order to improve the quality of the solution, if

possible, it can be convenient to run several times the procedure, selecting different starting

elements. If computational times allow it, it can be even convenient to make the algorithm

start from each possible starting element.

2.5.2 Local Search algorithms

Local search algorithms are also called iterative amelioration procedure. This kind of

algorithm is based on the concept of move, namely and elementary modification to the

solution. The application of a move produces a neighborhood of the current solution that is a

set of feasible candidate solutions.

The building blocks of the algorithm can be listed as follows:

• Definition of a move;

• Definition of a new solution selection criterion;

• Definition of a stopping criterion, that allows the termination of the algorithm.

The stages of the algorithm can be summed up as follows:

• Stage 1: an initial solution S has to be provided, in order to enact the procedure. It can

be obtained randomly or by using a greedy algorithm in a preliminary stage.

• Stage 2: through the application of the previously defined move, it is possible to

identify a neighborhood of the current solution N(S), namely a set of candidate

solutions.

• Stage 3: a new current solution S’�N(S) is chosen, based on the selection criterion.

• Stage 4: the stopping criterion is verified. If it is met, the procedure ends; otherwise, it

goes back to Stage 2.

If the move at Stage 2 leads to a reduction in the objective function, it is accepted, and the

configuration S’ obtained is used as the starting point for a new test. In the contrary case, one

returns to the preceding configuration, before making another attempt.

The process is made iterative until the stopping criterion is met. However, this algorithm of

iterative improvement (also indicated as classical method, or descent method) does not lead,

in general, to the global optimum, but only to a local minimum, which constitutes the best

accessible solution taking the initial assumption into account.

In fact, assuming as an example the optimization problem whose objective function is

depicted in Figure 2.5 and S

described procedure (also synthesized in Figure 2.4) will converge to the local minimum

Indeed, if S’ is reached and a further application of the move produces

objective function value of the latter is worse than the one reported in

stops.

To improve the effectiveness of the method, one can, of course, apply it several times, with

arbitrarily selected different initia

minima obtained. However, this procedure

algorithm, and may not find the optimal configuration. The repeated application of descent

method is particularly ineffective when the number of local minima grows exponentially with

the size of the problem.

Figure 2.

In fact, assuming as an example the optimization problem whose objective function is

S1 as starting solution, it is easy to understand that the above

described procedure (also synthesized in Figure 2.4) will converge to the local minimum

is reached and a further application of the move produces the solution

objective function value of the latter is worse than the one reported in S’; thus, the algorithm

To improve the effectiveness of the method, one can, of course, apply it several times, with

arbitrarily selected different initial conditions, and retain as final solution the best local

minima obtained. However, this procedure appreciably increases the computing time of the

algorithm, and may not find the optimal configuration. The repeated application of descent

arly ineffective when the number of local minima grows exponentially with

Figure 2.4: Schema of a Local Search algorithm

39

In fact, assuming as an example the optimization problem whose objective function is

as starting solution, it is easy to understand that the above

described procedure (also synthesized in Figure 2.4) will converge to the local minimum S’.

the solution S1, the

; thus, the algorithm

To improve the effectiveness of the method, one can, of course, apply it several times, with

l conditions, and retain as final solution the best local

appreciably increases the computing time of the

algorithm, and may not find the optimal configuration. The repeated application of descent

arly ineffective when the number of local minima grows exponentially with

40

Figure 2.5: Shape of the objective function of an optimization problem

2.6 Metaheuristic algorithms

To overcome the obstacle of the local minima, an idea was demonstrated to be very

profitable: the possibility of authorizing, from time to time, moves that produce a worsening

in the objective function. This principle is the basic core of the most widespread metaheuristic

algorithms. As the name of this class procedure suggests, they try to overcome heuristic

algorithms limitations.

The introduction of mechanisms for controlling the degradations (specific to each

metaheuristic) makes it possible to avoid the divergence of the process. Thus, it consequently

becomes possible to be extracted from the trap which represents a local minimum, to leave to

explore another more promising valley.

The so-called “distributed” metaheuristics (such as the evolutionary algorithms) are endowed

with mechanisms allowing the departure of a particular solution out of a local valley of the

objective function.

In the following, the most widespread metaheuristic algorithms are depicted.

2.6.1 Simulated Annealing

The Simulated Annealing method (Kirkpatrick et al., 1983) transposes the process of the

annealing from physics to the solution of an optimization problem: the objective function of

the problem, similar to the energy of a material, is minimized, with the help of the

introduction of a fictitious temperature, which is, in this case, a simple controllable parameter

of the algorithm.

41

In practice, the technique exploits the Metropolis algorithm, which enables us to describe the

behavior of a thermodynamic system in “equilibrium” at a certain temperature. On the basis

of a given configuration (for example, an initial placement of all the components), the system

is subjected to an elementary modification defined by a move (for example, one relocates a

component, or one exchanges two components). If this transformation causes a decrease in

the objective function (or energy) of the system, it is accepted. On the other hand, if it causes

an increase ∆E of the objective function, it can also be accepted, but with a probability e−∆E/T,

according to Metropolis acceptance rule.

This process is then repeated in an iterative manner, by keeping the constant temperature,

until thermodynamic balance is reached, concretely at the end of a “sufficient” number of

modifications. Then the temperature is lowered, before implementing a new series of

transformations: the law of decrease by stages of the temperature is often empirical, just like

the criterion of program termination.

The disadvantages of simulated annealing lie on one hand in the “adjustments”, like the

management of the decrease of the temperature; the user should have the know-how of

“good” adjustments.

In addition, the computational time can become very significant, which led to parallel

implementations of the method. On the other hand, the simulated annealing method has the

advantage of being flexible with respect to the evolutions of the problem and easy to

implement. It gave good results for a number of problems, generally of big size. A synthetic

schema of the simulated annealing schema is illustrated in Figure 2.6.

2.6.2 The Tabu Search

The method of search with tabus, or simply Tabu Search or Tabu Method, was formalized by

Glover (1986). Its principal characteristic is based on the use of mechanisms inspired by the

human memory. The Tabu Method takes, from this point of view, a path opposite to that of

simulated annealing, which does not utilize memory at all, and thus it is not capable of

learning from the past. On the other hand, the modeling of the memory introduces multiple

degrees of freedom.

The guiding principle of the tabu method is simple: like simulated annealing, the tabu method

works just on a single current solution, which is updated during successive “iterations”.

At each iteration the mechanism of current solution update process (from a solution S to a

solution T) comprises of two stages:

42

• the first one, based on an elementary move, builds the set of the neighbors of S, N(S).

N(S) is the set of the accessible configurations in only one elementary move of s;

• the second one evaluates the objective function f of the problem for each solution

belonging to N(S). The configuration T, which succeeds S in the series of the solutions

built by the tabu method, is the solution of N(S) in which f takes the minimal value.

It is worth to note that, this solution T is adopted even if it is worse than S, i.e. if f(T)>f(S):

due to this characteristic the Tabu Method facilitates to avoid the trapping of f in the local

minima.

However, simply adopting the above described procedure does not ensure overcoming

limitations of classical heuristic algorithms, as there is a significant risk to return to a solution

already retained at the time of a preceding iteration: this can generate a cycle.

To avoid this phenomenon, the Tabu Method requires updating exploiting a list of prohibited

moves, the so-called Tabu List. This list — that gave its name to the method — contains m

moves (T → S), which are the opposite of the last m moves (S → T) carried out.

The algorithm models a rudimentary form of memory, the short term memory of the solutions

visited recently.

Two additional mechanisms, named intensification and diversification, are often implemented

to also equip the algorithm with a long term memory. This process does not exploit more the

temporal proximity of particular events, but rather the frequency of their occurrence, over a

longer period. The intensification consists in looking further into the exploration of certain

areas of the solution space, identified as particularly promising ones. On the contrary,

diversification is the periodic reorientation of the search for an optimum towards areas,

seldom visited until now.

For certain optimization problems, the Tabu Method gave excellent results; moreover, in its

basic form, the method comprises less parameters of adjustment than Simulated Annealing,

which makes it easier to use.

However, the various additional mechanisms, like the intensification and diversification,

bring a notable complexity. A synthetic schema of the algorithm is illustrated in Figure 2.7.

Figure 2.6 - Schema of a Simulated Annealing algorithm

Figure 2.

Schema of a Simulated Annealing algorithm

Figure 2.7 - Schema of a Tabu Search algorithm

43

Schema of a Simulated Annealing algorithm

44

2.6.3 Evolutionary Algorithms

Evolutionary Algorithms (EAs) are the search techniques inspired by the biological evolution

of the species and appeared at the end of the 1950s (Fraser, 1957). Among several approaches

(Holland, 1962; Fogel et al., 1966; Rechenberg, 1965), the genetic algorithms (GAs) are

certainly the most well known example (Goldberg, 1989).

The evolutionary methods initially aroused a limited interest, because of their significant cost

of execution. But they have experienced a considerable development, that can be attributed to

the significant increase in the computing power of the computers.

The principle of an evolutionary algorithm can be simply described. A set of N points in a

search space, chosen a priori at random, constitutes the initial population; each individual x of

the population has a certain fitness value, which measures its degree of adaptation to the

objective aimed. In the case of the minimization of an objective function z, the fitness of x

will be higher, if z(x) is smaller. An EA consists in evolving gradually, in successive

generations, the composition of the population, by maintaining its size constant.

During generations, the objective is to overall improve the fitness of the individuals; such a

result is obtained by simulating the two principal mechanisms which govern the evolution of

the living beings, according to the theory of C. Darwin:

• selection, which supports the reproduction and the survival of the fittest individuals;

• reproduction, which allows mixing, the recombination and the variations of the

hereditary features of the parents, to form offspring with new potentialities.

In practice, a representation must be chosen for the individuals of a population. Classically, an

individual could be a list of integers for combinatorial problems, a vector of real numbers for

numerical problems in continuous spaces, a string of binary digits for Boolean problems, or

will be able to even combine these representations in complex structures, if it is required.

The passage from one generation to the next one proceeds in four phases: a phase of selection,

a phase of reproduction (or variation), a phase of fitness evaluation and a phase of

replacement. The selection phase designates the individuals who take part in the reproduction.

They are chosen, possibly several times, a priori all the more often as they have high fitness.

The selected individuals are then available for the reproduction phase. This one consists in

applying variation operators to copies of the individuals previously selected to generate new

individuals; the operators most often used are crossover (or recombination), which produces

one or two offspring from two parents, and mutation, which produces a new individual from

only one individual. The structure of the variation operators depends largely on the chosen

representation for the individuals. The fitness of the new individuals

the evaluation phase, from the objective

Lastly, the replacement phase consists in selecting the members of the new generations: one

can, for example, replace the lowest fitness individuals of the population by the best produced

individuals, in an equal number. The algorithm is termi

generations, according to a termination criterion arbitrarily specified by the user.

Because they handle a population of solution instances, the evolutionary algorithms are

particularly indicated to propose a set of various

comprises several global optima. Thus, they can provide a sample of trade

solving problems involving several objectives, possibly contradictory.

an evolutionary algorithm is sh

over operator for a Genetic Algorithm.

Figure 2.8 - Schema of an Evolutionary Algorithm (Siarry and Taillard, 2006)

Figure 2.9 - Schema of a Crossover operator for a Genetic Algorithm

representation for the individuals. The fitness of the new individuals is then evaluated, during

the evaluation phase, from the objectives specified.

Lastly, the replacement phase consists in selecting the members of the new generations: one

can, for example, replace the lowest fitness individuals of the population by the best produced

individuals, in an equal number. The algorithm is terminated after a certain number of

generations, according to a termination criterion arbitrarily specified by the user.

Because they handle a population of solution instances, the evolutionary algorithms are

particularly indicated to propose a set of various solutions, when an objective function

comprises several global optima. Thus, they can provide a sample of trade-

solving problems involving several objectives, possibly contradictory. A general schema for

an evolutionary algorithm is shown in Figure 2.8; Figure 2.9 shows the functioning of a cross

over operator for a Genetic Algorithm.

Schema of an Evolutionary Algorithm (Siarry and Taillard, 2006)

Schema of a Crossover operator for a Genetic Algorithm

45

then evaluated, during

Lastly, the replacement phase consists in selecting the members of the new generations: one

can, for example, replace the lowest fitness individuals of the population by the best produced

nated after a certain number of

generations, according to a termination criterion arbitrarily specified by the user.

Because they handle a population of solution instances, the evolutionary algorithms are

solutions, when an objective function

-off solutions, when

A general schema for

own in Figure 2.8; Figure 2.9 shows the functioning of a cross-

Schema of an Evolutionary Algorithm (Siarry and Taillard, 2006)

Schema of a Crossover operator for a Genetic Algorithm

46

2.6.4 Variable Neighborhood Search

Variable Neighborhood Search (VNS) is a recently developed metaheuristic which exploits

systematically the idea of neighborhood change as a way to escape from valleys that contain

local minima. This metaheuristic exploits the following facts (Mladenovic and Hansen, 1997):

• A local minimum with respect to one neighborhood structure, is not necessarily so for

another;

• A global minimum is a local minimum with respect to all possible neighborhood

structures;

• For many problems local minima with respect to one or several neighborhoods are

relatively close each other.

The last empirical observation implies that often the knowledge of a local optimum can

provide some information about the global one.

The basic idea of VNS is to select a series of neighborhood structures Nk (with k=1,…,kmax),

which define neighborhoods around any point of the feasible domain. The first step of the

algorithm is to implement a local search procedure that leads to a local optimum x. A point x’

is selected at random (thanks to a so-called shaking procedure) within the first neighborhood

N1(x) of x and a descent from x’ is done with the local search routine this leads to a new local

minimum x’’. Then three results are possible:

• x’’= x, i.e. one is again at the bottom of the same valley; in this case, the procedure is

iterated considering a new neighborhood Nk, k≥2;

• x’’≠ x, but f(x’’)≥ f(x), i.e. another local optimum has been found, but its objective

function value is not better the one associated with the current solution; in this case,

the procedure is iterated using the next neighborhood;

• x’’≠ x and f(x’’)<f(x), i.e. a local optimum better than the current solution is found; in

this case, the search procedure is re-centered around x’’ considering the first

neighborhood structure N1(x’’).

The procedure runs until a stopping condition, e.g. a maximum number of iterations or a

maximum number of iterations since the last improvement, is satisfied.

2.6.5 Swarm Intelligence

Swarm Intelligence is a field of computer science that develops methods for solving complex

computational problems inspired by behavior of real swarms or insect colonies (Kennedy et

al., 2001). This class of algorithms starts from simple principles of self-organization and

47

communication observed in the real world of natural swarms; from these principles, it is

possible to gain insights that can be utilized to understand complex collective behaviors and

implemented in the design of algorithms and systems.

In the last decades, two main swarm intelligence methods for solving optimization problems

have been widely developed and utilized in the OR community: the Ant Colony Optimization

(ACO), mainly employed to deal with combinatorial optimization problems, and the Particle

Swarm Optimization (PSO), simply applicable to continuous optimization problems.

In the following, the details of these two techniques are briefly analyzed.

Ant Colony Optimization

ACO is a metaheuristic for solving combinatorial optimization problems. It takes inspiration

from the way ants find shortest paths from their nest to food. The algorithm is essentially

based on the indirect communication of the ants thanks to the pheromone, a chemical

compound released by ants in the environment and perceived by individuals belonging to the

specie. Thus, ants mark their paths to the food sources, and these traces can be followed by

other ants looking for food.

Figure 2.10 - The Double Bridge experiment

This evidence was confirmed by the so-called Double Bridge experiment (Deneubourg et al.,

1990) (Figure 2.10). In the experiment, two paths are available to ants to reach the food

sources starting from their nest. The longest path is twice as long as the shortest one.

Interestingly, it was noticed that, after a few minutes, almost all the ants use the shortest path.

This is due to the largest pheromone concentration on the shortest path, as ants choosing it are

48

able to go back to the nest earlier. Obviously, if the two paths have the same length, ants will

chose randomly their way to the food source.

Inspired by this experiment, Dorigo et al. (1991) designed an algorithm for the Traveling

Salesperson Problem (TSP) and provided the foundations of the Ant Colony Optimization

field. The idea is to have a colony of artificial ants and let them construct solutions for a

combinatorial optimization problem. In practice, each ant is endowed with a greedy algorithm

that allows building a solution through a sequence of decision. The sequence of decisions for

constructing a solution can be seen as a decision graph; thus, ants are “walking” through the

decision graph looking for good solutions. Doing this, artificial ants are endowed with

communication mechanisms similar to the ones of real ants. Ants that found good solutions

are allowed to mark the edges of the corresponding path with artificial pheromone that guides

ants in the following iterations in the search process, similarly to an intensification

mechanism. In order to implement something similar to diversification mechanisms for

avoiding the search process being concentrated just on a part of the feasible domain,

pheromone traces tend to slightly “evaporate” over the time. The process continues until some

stopping criterion (a maximum number of iterations, a good quality solution) is met.

A summary of an ACO procedure can be stated as shown in Figure 2.11.

Figure 2.11 - Ant Colony Optimization schema

Nowadays, ACO algorithms have been designed for various combinatorial optimization

problems, including dynamic and multi-objective problems (see , for instance, Cordon et al.,

2002; Maniezzo et al., 2001) performing good computational results.

49

Particle Swarm Optimization

The Particle Swarm Optimization is based on the coordinated food search mechanism

exhibited by swarm of birds. In a PSO algorithm the search process is modeled through a

population of particles (the swarm) in a multidimensional search space (also called problem

space).

Particles start from random locations with a certain velocity and look for improvements in a

given objective function by moving through the search space, similarly to the process of food

search in the reality.

In a typical PSO algorithm, each particle keeps track of the coordinates in the search space

which are associated with the best solution it has found till so far. At a centralized level, the

best solution found by all the particles is stored as well.

A summary of an ACO procedure can be stated as shown in Figure 2.12.

Figure 2.12: Particle Swarm Optimization schema

2.7 Some Considerations

In the presence of a concrete optimization problem, the principal difficulty with which an

engineer is confronted, is the choice of an efficient method, able to produce an optimal

solution (or of acceptable quality) at the cost of a “reasonable” computing time.

Compared to this pragmatic concern of the user, the theory is not yet of a great help, because

the convergence theorems are often non-existent, or applicable under very restrictive

assumptions. Moreover, the optimal adjustment of the various parameters of a metaheuristic

which can be recommended theoretically is often inapplicable in practice, because it induces a

prohibitive computing cost.

50

Consequently, the choice of a good method, and the adjustment of the parameters of this one,

generally calls upon the know-how and the “experience” of the user, rather than the faithful

application of well laid down rules.

In the last decade a new direction of research has emerged in the field of hyper-heuristics. The

key idea is to devise new algorithms for solving problems by combining known heuristics in

ways that allow each to compensate, to some extent, for the weaknesses of others (Ross,

2005). Hyper-heuristics can be thought as heuristics to choose the right heuristic for a given

problem. Differently from heuristic algorithms (that work on a solution space) hyper-

heuristics work with a search space of heuristics. The key intuition underlying them is that

often there are a number of available straightforward heuristics that can work well for certain

sort of instances for a given problem; it could be possible that, combining those algorithms in

a certain way, an algorithm that will work well across a broader range of instances can be

obtained. Further references can be obtained in Ross (2005).

51

Chapter 3

Agent-based Approaches for Optimization Problems

3.1 Introduction

After having described the agent paradigm and some generalities about multi-agent systems in

Chapter 1 and illustrated an overview of optimization methods in Chapter 2, this chapter will

be devoted to the illustration of the application of MASs to optimization problems. Indeed, in

the last decade, growing attention has been addressed towards the development of

methodologies based on MASs to model and solve classical Operational Research problems.

In this chapter, a first comparison among MASs-based approaches and classical optimization

techniques will be provided, followed by an extensive review aimed at evaluating the impact

of these methodologies in the Operational Research/Management Science (OR/MS) literature.

3.2 Agent-based Approaches vs Classical Approaches

For a long time, classical optimization techniques have represented the only available

approach to solve different types of decision-making problem, both at strategic and tactical

levels.

In the last decade, agent-based computing has been suggested as a promising technique for

problem whose domains are distributed, complex and heterogeneous (Weiss, 1999;

Wooldridge, 2002).

Parunak (1999) proposed a first formalization of a set of resources allocation problems using

MASs.

Davidsson et al. (2007) proposed a theoretical framework for the comparison of the two

approaches. The framework is based on a series of dimensions useful to classify decision-

making problems; on the basis of these dimensions, the authors compare characteristics of

agent-based and classical approaches, determining situation in which one methodology is

preferred over the other one, with particular reference to a special class of resource allocation

problems, namely dynamic distributed resource allocation. An adaptation of these considered

parameters can be listed as reported in Table 3.1. Table 3.2 provides desired properties for

solution methods according to each dimension.

52

Dimension Description
Size Number of Decision Variables, Parameters, Constraints

Modularity Possibility of clearly identifying sub-domains and sub-problems
Time Scale/Changeability How often the structure of the domain changes

Solution Quality How important it is to find the optimal or near optimal solution
Computational Complexity Number of operations required to solve the problem

Table 3.1 - Optimization problems classification framework

Dimension Desired Properties of Solution Method
Size Low computational complexity

Modularity Support for modular decomposition
Time Scale/Changeability High reactivity and modifiability, short response time

Solution Quality Ability to find optimal or near optimal solutions
Computational Complexity Low number of operations, short computational times

Table 3.2 - Desired Properties of Solution Methods according to each dimension

Comparing the two approaches (MASs-based and classic optimization) according to size,

since agent-based approaches support the dividing of the global problem into a number of

smaller local allocation problems, large-sized problems could be handled well in such cases

the problem is modular. On the other hand, the complexity and the size of the problem may

affect the solution time dramatically when applying an optimization method. Since

optimization techniques attempt to achieve global optimality, capitalizing on partial

modularity in order to handle large-sized problems is difficult.

Concerning modularity, as agent-based approaches are modular by nature they are very

suitable for highly modular domains. However, if the modularity of the domain is low they

may be very difficult to apply.

Moreover, since agents are able to continuously monitor the state of its local environment and

typically do not have to make very complex decisions, they are able to react to changes fast,

providing some advantages if the domain of the problem is characterized by a high

changeability/time scale level. On the other hand, optimization techniques often require a

relatively long time to respond to changes in variables and parameters of the problem, as they

often need a complete restart. Hence a rather high degree of predictability is required for

optimization methods to work efficiently if a short response time is required. Sometimes

methods of re-optimization can be used for lowering the response time.

From the point of view of the quality of solution, since agent-based approaches are

distributed, they do not have a global view of the state of the system, which unfortunately

often is necessary in order to find a truly good solution. Therefore, the quality of the solution

53

suggested by an optimization method often will be of a higher quality. Moreover, it may be

very difficult (and sometimes even impossible) to estimate the quality of the solution

provided by an agent-based approach, as it can be difficult to retrieve reference values (i.e., a

bound of the optimal solution values).

In terms of computational times, agent-based approaches can provide some advantages thanks

to their ability to divide problems in several sub-problems; however, computational

advantages can be offset by the need for frequent interaction in order to coordinate activities

and decisions among agents; centralized approach present higher computational complexity,

but no communication costs, as they are characterized by high centralization.

According to this comparison, agent-based approaches tend to be preferable when:

• the size of the problem is large;

• the domain is modular in nature;

• the structure of the domain changes frequently (i.e., high changeability).

Classical optimization techniques may outperform MASs-based ones when:

• decomposing the problem in sub-problems can be costly in terms of computational

requirements and times;

• the domain is monolithic in nature;

• the quality of the solution is very important.

This analysis indicates that agent-based approaches and classical optimization techniques

complement each other. This can explain the increasing interests towards approaches

embedding optimization techniques within a MAS schema. There are several ways to

integrate MASs-based approaches and classical optimization techniques. The most relevant

seems to be:

• Utilizing an optimization technique for strategic planning and MASs for operational

and tactic re-planning, i.e., for performing local adjustments of the initial plan;

• Embedding optimization in an agent, by translating search algorithms in agents’

behavior.

The reminder of the chapter will be devoted to verify the impact of MASs based

methodologies to cope with optimization problems in the OR/MS literature. To this aim,

an extensive survey of the state-of-the-art will be provided.

3.3 A Literature Review

To the aim of verifying the presence of a real interest in the literature about MASs-based

54

techniques for optimization problems, an extensive State-of-the-Art survey has been

performed.

Through the web-based tool Google Scholar (including the most widespread academic

search engines), international referred journals in the time interval 2000-2008 have been

scrutinized, looking for the words agent-based optimization within title, key-words and

abstract of the papers.

As it emerges from Table 3.3, 49 papers have been retrieved. From Figure 3.1, it’s

possible to notice the outstanding increase in publications devoted to the topic.

Year 2000 2001 2002 2003 2004 2005 2006 2007 2008 Totale Papers
Papers 3 3 1 4 5 5 7 13 8 49

Table 3.3 - Historical series of MASs-based optimization papers

Figure 3.1 - Historical series of MASs-based optimization papers

As regards journals, 30 publications reported at least a paper. Table 3.4 reports journals

including at least two papers. They account for 27 total papers out of 51 (53.94% of the

total number of papers). The top contributor is the journal Engineering Applications of

Artificial Intelligence, as it has been explained as MASs fall in the field of Artificial

Intelligence.

However, it is noticeable that one of the most prominent journal in OR/MS field,

European Journal of Operational Research, has hosted 7 contributions. This testifies

that MASs approaches for optimization problems are becoming an accepted tool in the

OR/MS community.

0

2

4

6

8

10

12

14

2000 2002 2004 2006 2008

55

Journal Papers
Engineering Applications of Artificial Intelligence 8
European Journal of Operational Research 7
IEEE Transactions on Systems, Men and Cybernetics 5
Robotics and Computer-Integrated Manufacturing 3
International Journal of Advanced Manufacturing Technology 2
International Journal of Production Economics 2

Table 3.4 - Journals accounting for at least two papers

The analysis of the journals provides valuable insights: it emerges that MASs

applications to optimization problems is a multidisciplinary field of study, as papers on

the topic have been retrieved on journals belonging to different disciplinary areas: the

above cited Artificial Intelligence and OR/MS, but also Manufacturing (Robotics and

Computer-Integrated Manufacturing, International Journal of Advanced Manufacturing

Technology), Logistics (International Journal of Production Economics) and others.

Another interesting perspective is offered by the geographical analysis of the papers.

Table 3.5 classifies papers according to the country where the institution of the first

author is based. The top contributor is China (6 papers), followed by Canada (5).

Country Papers
China 6
Canada 5
Japan 4
UK 4
France 4
Germany 4
USA 4
Taiwan 4
Spain 2
India 2
Singapore 2
Netherlands 2

Table 3.5 - Papers classified by countries of origin

Table 3.6 reports key-words retrieved in the surveyed papers, and the number of

occurrences for each key-word. It emerges that the words multi-agent system, agent, and

agent-based system, are the most cited. Very often key-words underline the application

field of the developed MASs: for example, several papers refer to Supply Chain

Management, other to transportation problems and to scheduling applications.

The occurrence of the key-word Ant Colony Optimization can be explained as this

56

technique can be considered as an extension of the MASs paradigm, embedding

optimizing rules in the definition of agents’ behaviors. The presence of other meta-

heuristics (Tabu Search, Simulated Annealing, Genetic Algorithms) testifies the

possibility of integrating search algorithms and MASs.

A further classification is provided in Table 3.7, based on the application field of the

papers. MASs approaches seem to be particularly suitable to tackle scheduling and

Supply Chain problems.

KeyWord Frequency
Multi-agent system 20
Supply chain management 6
Agents 6
Ant colony optimization 4
Manufacturing scheduling 3
Agent-based systems 3
Scheduling 3
Heuristics 3
Optimization 2
Mobile agent 2
Holonic manufacturing systems 2
Negotiation 2
Integrated process planning and scheduling 2
Intelligent manufacturing 2
Dynamic scheduling 2
Distributed scheduling 2
Artificial intelligence 2
Transportation 2
Simulation 2

Table 3.6 - Keywords

57

Application Field Papers
Scheduling 23
Supply Chain 9
Routing 4
Manufacturing 4
Logistics 3
Location 2
Transportation 2
Industrial Planning 1

Table 3.7 - MASs-based approaches application fields

3.3.1 Agent-Based scheduling approaches

It can be useful to focus the attention on MASs-based approaches for scheduling

problems, as it appears that this class of problems is particularly suitable to be tackled

with MAS-based approaches. Extracting from the previously described sample all the

papers published about scheduling problems, the resulting historical series testifies the

growing interest towards this application field.

Year 2000 2001 2002 2003 2004 2005 2006 2007 2008 Totale Papers
Papers 1 2 1 2 2 2 3 7 3 23

Table 3.8: Historical series of MASs-based scheduling papers

Table 3.9 reports major journal contributors, while table 3.10 classifies papers on the

basis of institution nationality.

Journal Papers
Engineering Applications of Artificial Intelligence 6
IEEE Transactions on Systems, Men and Cybernetics 4
European Journal of Operational Research 4
International Journal of advanced manufacturing technology 2

Table 3.9 - Journals with at least two papers about MASs-based scheduling approaches

58

Paese Papers
China 3
USA 3
Canada 3
Japan 2
Germany 2
Taiwan 2
Singapore 2

Table 3.10 - MASs-based scheduling papers classified by countries of origin

As highlighted by Ouelhadj (2008) and shown in the previous section multi-agent systems

have found wide application to address complex and dynamic environments related to

scheduling problems.

Analyzing the literature, two main multi-agent architectures for dynamic scheduling have

been utilized: autonomous architectures and mediator architectures. They are described in

more detail in the following sub-sections. For further references, the reader can also refer to

Shen et al. (2006).

Autonomous architectures

In autonomous architectures (Figure 3.2), agents representing manufacturing entities such as

resources and jobs have the ability to generate their local schedules, react locally to local

changes, and cooperate directly with each other to generate global optimal and robust

schedules (Ouelhadj, 2008).

One of the earliest MAS-based scheduling architecture was proposed by Parunak (1987) with

YAMS (Yet Another Manufacturing System) platform. This system assigns an agent to each

node in a control hierarchy (factory, cell, workstation, machine, jobs). The main idea of Yams

is that the job agents negotiate with resource agents to assign tasks to the machine agents

using the contract net protocol (Smith, 1980). This idea was then utilized also by Shaw (1988)

in order to develop a dynamic scheduling system in a cellular manufacturing system. Request

for bid messages are broadcast to cells which evaluate operations specification and submit

bids. Bids describe the estimation on the earliest finishing time or shortest processing time of

the operations. The cell that optimizes a predefined criterion is selected to perform the

operation.

Goldsmith and Interrante (1998), and Ouelhadj et al. (1998, 1999, 2000) proposed simple

multi-agent architectures for dynamic scheduling in flexible manufacturing systems which

59

involves only resource agents. The resource agents are responsible for dynamic scheduling of

the operations and they have no control over each other. They negotiate using the contract net

protocol to produce a global schedule. Each resource agent performs the following functions:

scheduling, detection, diagnosis, and error handling. Resource agents are also able to react to

real-time events (such as machine breakdown), by renegotiating processes.

Sousa and Ramos (1999) proposed some advances by utilizing a MAS-based architecture that

involved also jobs agents. The contract net protocol is utilized to model requests coming from

jobs to be processed directed to the machines. Resource agents are also able to send fault

messages to job agents to signal temporary unavailability.

Figure 3.2 - Autonomous MAS-based scheduling architecture (Ouelhadj, 2008)

Cowling et al. (2003, 2004) and Ouelhadj et al. (2003) proposed an adaptation of MAS-based

scheduling to dynamic scheduling in steel production process, in which agents representing

particular stages of the steel production process are introduced as a further level in the

architecture. Several heuristics are implemented in order to obtain robust schedules in the

presence of real-time events.

Sandholm (2000) proposed an extension of the contract net protocol in order to deal with

negotiation in presence of imprecise information. This extensions allows agents to de-commit

from previously negotiated contacts in order to deal with real-time events by simply paying a

de-commitment penalty.

This architecture can be traced to Lin and Solberg (1992) that proposed an autonomous multi-

agent architecture for shop floor dynamic scheduling based on a currency model that

60

combined the scheduling objectives and price mechanism. Their model represents jobs,

resources, and parts by agents. Job agents negotiate with resource agents via a contract net

bidding mechanism to optimize a weighted objective that is a function of due date, price,

quality, and other user defined factors. The part agent enters the system with a certain

currency, and solicits and evaluates bids from several resource agents capable of fulfilling the

processing requirements, and selects the one that optimizes its objective. Each resource agent

sets its charging price based on its status, then it decides on the basis of the currency offered

which of the announced jobs to consider more interesting for a possible bid. The job agent

tries to minimize the price paid, but the resource agent’s goal is to maximize the price

charged. Each deal is completed once the job and resource agents are mutually committed.

When a resource agent is in failure, it informs the corresponding job agent, and the latter

proceeds to a renegotiation process on the operations in failure with the resource agents.

Other multi-agent based dynamic scheduling systems use learning approaches for dynamic

scheduling. Aydin and Öztemel (2000) proposed a dynamic job shop scheduling using

reinforcement learning agents. The agent is trained by an improved reinforcement-learning

algorithm through the learning stage and then successfully makes the decisions to schedule

the operations. The scheduling system consists of two parts: the simulator and the intelligent

agent. The agent selects the most appropriate priority rule to select a job to assign to a

machine according to the shop conditions, while the simulator performs scheduling activities

using the rule selected by the agent. Pendharkar (1999) proposed a multi-agent learning

approach for dynamic scheduling. In the multi-agent architecture, the work areas are

controlled by agents with a knowledge base containing the dispatching rules. The agents use

genetic algorithms-based learning to update the rules in the knowledge-base at periodic

intervals of time. The higher frequency of learning may help an agent to quickly adapt to

variations on the shop floor.

Knotts et al. (2000) illustrate eight agent-based algorithms for solving the multimode,

resource-constrained project scheduling problem, comparing their implementation and their

results utilizing purely reactive agents or agents with state.

Chun et al. (2003) developed a architecture for meeting scheduling through performance

estimation, by implementing a MAS in which two categories of agents (meeting agents,

representing forthcoming appointments and secretary agents, knowing the schedule and the

preferences of the potential participants) are involved and negotiate each other to find a

schedule that maximizes a given performance function.

61

Frey et al. (2003) developed a MAS for Job-Shop problems and compared it to traditional

heuristic algorithms using a benchmarking scenario, proving MASs’ superiority in a turbulent

production environment.

Chen and Wang (2007a, 2007b) proposed a model that concentrates on solving the dynamic

scheduling problem of a distributed project for non-cooperative and self-interested

participants. In this model, the self-interested activity agents possess various negotiation

tactics and strategies. In order to find fitting negotiation tactics and strategies that are

optimally adapted for each activity agent, an evolutionary computation approach which

encodes the parameters of tactics and strategies of an agent as genes in GAs is also utilized.

Shukla et al. (2006) and Liu et al. (2007) proposed an auction-based MAS in which, like in

other approaches, each job and each machine are represented by agent. Each machine agent is

also an auctioneer and each job agent is a bidder. Machine agents host combinatorial auctions

with proposed prices each time slot of all the machines; bidders construct their bids for the

wanted time slots. Coordination of bidders and auctioneer is achieved through an iterative

adjustment of prices.

Mes et al. (2007) adapted the auction-based MAS schema to some scheduling problems in

transportation contexts, comparing the results obtained thanks to this approach to the ones

generated by traditional heuristics.

Leitao and Restivo (2008) proposed a MAS-based holonic approach to manufacturing

scheduling, where the scheduling functions are distributed by several entities oriented to fast

and dynamic re-scheduling using a scheduling mechanism that evolves dynamically to

combine centralized and distributed strategies, improving its responsiveness to emergence.

Mediator architectures

Despite the good performance of autonomous architectures, they usually face problems in

providing globally optimized schedules and predictability in the presence of a large number of

agents, as also highlighted by Davidsson et al. (2007).

Thus, several approaches based on mediator architectures have been proposed in order to deal

with complex scheduling systems aimed at combining robustness, optimality, and

predictability of the proposed solution.

The mediator architecture provides computational simplicity, while being quite suitable for

developing industrial applications based on MASs.

62

Brennan and Norrie (2001), Bongaerts et al. (2000), and Cavalieri et al. (2000) showed that

mediator MASs architectures allow obtaining significant performance improvements if

compared to autonomous architectures.

A mediator-based architecture is composed by a basic structure consisting of autonomous

cooperating local agents that are capable to negotiate with each other in order to achieve

production targets (Bongaerts et al. 2000; Shen et al. 2001), extended with mediator agents to

coordinate the behavior of the local agents to perform global dynamic scheduling (Figure

3.3).

Figure 3.3 - Mediator MAS-based scheduling architecture (Ouelhadj, 2008)

The architecture is such that the local agents maintain their autonomous decision making

process, but may request advice from the mediator agents. They have the ability to advice,

impose or update decisions taken by the resource agents in order to satisfy the global

objectives and resolve potential conflict situations. The mediator agent has an overview of the

entire system, while the local agents can have a more detailed and up-to-date view of the local

situations.

The first basic mediator architecture was proposed by Ramos (1994), composed of task

agents, task manager agent, resource agents, and resource mediator agent. Task manager

agent creates the task agents. The resource mediator agent negotiates with the resource agents

the execution the tasks using the contract net protocol.

For an increased robustness in complex manufacturing systems, some authors proposed the

integration of mediator agents to each level of the manufacturing facility (Shen et al., 2000),

63

developing hierarchies of sub-system mediators each responsible for coordinating a part of the

manufacturing system.

For instance, Sun and Xue (2001) develope a mediator reactive scheduling architecture for

responding to changes in jobs and manufacturing resources. Manufacturing resources

including facilities and resources are represented by agents that are coordinated by two

mediators, namely a facility mediator and a personnel mediator, using the contract net

protocol. Reactive scheduling is conducted to modify the created schedule to respond to

changes of jobs such as cancellation of jobs or insertion of urgent jobs, and manufacturing

conditions such as machine breakdowns, or a person’s sudden sickness during the production

process. Match up rescheduling strategy and agent-based collaboration are used to repair only

part of the originally created schedule for improving the reactive scheduling efficiency, while

maintaining the scheduling quality. A similar approach is also illustrated by Lim and Zhang

(2004).

Archimede and Coudert (2001) develop a multi-agent framework, based on four agents

categories (Supervisor, Customers, Environment, Producers) with the aim of reaching a high

level of co-operation. Its two main interests are the following: first it provides a more efficient

control of the consequences generated by the local decisions than usual systems to each agent,

then the adopted architecture and behaviour permit an easy co-operation between the different

scheduling systems, which can represent different production functions. The MAS-based

framework can be adapted to a great variety of scheduling/planning problems.

Zhou et al. (2004) apply a mediator-based MAS architecture to a real-life bus scheduling

problem.

Through an extension of the contract net protocol, Wong et al. (2006) establish a comparison

between autonomous and mediator architectures.

BenHassine and Ho (2007) propose an extension to Meeting Scheduling problem, in which

two categories of agents are introduced: user agents (proposer or participant in a meeting) and

interface, that is responsible for the global optimization of the objective function.

Homberger (2007) presents a restart evolution strategy (RES) for the resource-constrained

project scheduling problem (RCPSP) integrated in a mediator-based MAS. The approach is

tested on problem instances for the RCPSP problem taken from the literature; in particular, it

manages to found better solutions than the best ones found so far.

64

3.3.2 Agent-Based Supply Chain planning approaches

In order to address the planning of manufacturing and supply chain systems, academics have

initiated in the middle of the 1980s a new body of approaches and distributed computing

techniques drifting away from traditional OR-based solutions. Some of these approaches

utilize MAS-based techniques in order to achieve reactive, reliable, and (re)configurable

operation management systems.

An agent-based manufacturing system may be defined as a planning and control system made

of interdependent software agents designed to:

• individually handle a part of a manufacturing planning and control problem, such as

planning a single order or allocating tasks to resources;

• collectively carry out specific higher functionalities such as planning an entire

manufacturing system.

For instance, Karageorgos et al. (2003) illustrated the suitability of MASs in a case study

concerning optimization of production planning of a virtual manufacturing enterprise in

relation to sub-contracted logistic services used to transport materials between the enterprise

units.

Caridi and Cavalieri (2004) provided a critical analysis of MAS-based approaches applied to

Supply Chain Management, pointing out the lack of real world applications and the low

maturity level of agent-based manufacturing technology.

3.3.3 Agent-Based routing approaches

Barbucha and Jedrzejowicz (2007) proposed one of the first MAS-based routing approach

through the development of a population based algorithm.

The approach produces solutions to routing combinatorial optimization problems using a set

of agents, each representing an improvement algorithm. To escape getting trapped into a local

optimum an initial population of solutions called individuals is generated or constructed.

Individuals forming an initial population are, at the following computation stages, improved

by independently acting agents, thus increasing chances for reaching a global optimum. The

steps of the procedure:

• Generating an initial population of solutions;

• Applying solution improvement algorithms which draw individuals from the common

memory and store them back after attempted improvement, using some user defined

replacement strategy;

65

• Continuing reading-improving-replacing cycle until a stopping criterion is met.

This functionality is realized mainly by two types of agents:

• OptiAgents – OA, optimizing agents (OptiAgents), each representing a single

optimizing algorithm;

• SolutionManagers – SMa , responsible for finding the best solution of a single

instance of the problem and maintains a single population of solutions of this problem.

In Hoen and Poutre´ (2004) a MAS is presented for real-time vehicle routing problems.

Solutions are obtained through an auction-based mechanism including Sandholm (2000) de-

commitment possibility.

3.4 Conclusions

In this chapter, the application of MASs-based approaches to optimization problems has been

investigated. Through Davidsson et al. (2007) framework, advantages and risks of MASs-

based optimization approaches have been highlighted. Moreover, a broad literature review has

been produced, in order to analyze the real impact of these methodologies in the OR/MS

literature.

The results of the survey underline that MAS-based approaches are successfully employed to

cope with a wide spectrum of optimization problems. In particular, MAS-based approaches

are widely utilized to deal with scheduling problems. A relevant number of application is also

devoted to Supply Chain planning problems.

In the following of this work, the applicability of multi-agent systems to another particular

class of optimization problems will be surveyed. Precisely, a MAS-based approach for

modeling and solving Location Problems will be developed.

66

Chapter 4

Location Problems: an overview

4.1 Introduction

The aim of this chapter is to provide an overview of a relevant class of optimization problems,

namely Location Problems. Apart from offering an historical perspective of the development

of the field of Locational Studies, the chapter will provide some generalities about the most

widespread categories of Location Problems. This introduction will set the stage for the

development, in the following of this work, of an agent-based framework for Location

Problems.

4.2 A historical perspective

Tracking back the origins of Locational Studies is a controversial issue. An excellent

historical perspective is provided by Kuhn (1973), whose work is based on a previous

paper published by Zacharias (1913).

The problem of finding the spatial median, namely the Mini-Sum Euclidean distance point,

was first roughly formulated in a basic version by the French mathematician Pierre de Fermat

(1601-1665), who pose the challenge:

“Let he who does not approve of my method attempt the solution of the following problem:

given three points in the plane, find a fourth point such that the sum of the distances to the

three given points is a minimum”.

Denote the three given points by P1=(a1, b1), P2=(a2, b2) and P3 = (a3, b3), and let Q=(x, y) be

the fourth point to be found. Being d(Q,Pi) the Euclidean distance between Q and a generic

point Pi, the sum of the distances from Q to the three given points is given by the following

function, to be minimized:

f(Q) = d(Q,P1) + d(Q,P2) + d(Q,P3)

It is usual to credit the Italian scientist and student of Galileo Galilei, Evangelista Torricelli

(1608-1647) with the solution. Other sources (Melzak, 1967) credit the Italian mathematician

Battista Cavalieri (1598-1647) with both the formulation and the solution of the problem.

Pottage (1983) states that Viviani and Roberval worked on the problem as well.

Actually, Cavalieri (1647) provided a geometrical method to find the solution to the problem.

Simpson (1720) provided another graphical/geometrical method for solving this ancestral un-

weighted median problem, also proposing some extensions to it, as, for example, the

67

introduction of different weights for the points. Steiner, a geometer from the 19th century,

wrote about the problem, without adding significant contribution to the literature. Chrystal

(1885) provided the well-known geometrical solution to the un-weighted spatial one-center

problem, namely the minimum covering circle for n co-planar points.

In the 20th century, engineers and economists started to consider practical applications and

implications of the problem. Alfred Weber (1909) considered a three-points weighted version

of the problem to locate a single warehouse in order to minimize the total travel distance

between the warehouse and a set of spatially distributed customers. A mathematical appendix

to the book provided a solution method for more complex cases (more points). Since then,

this problem has been known as Weber Problem.

A different early location problem was formulated by Hotelling (1929), an economist who

considered the problem of locating two competing vendors along a straight line: it was the

first attempt to investigate facility location taking into account competition. This work was

later extended by Smithies (1941).

Later on, the seminal work of Weiszfeld (1937) provided the first attempt to develop an

iterative algorithm to solve Weber’s problem, based on partial derivatives.

Hakimi (1964) introduced the network counterpart of Weber’s problem, the p-median

problem. In his seminal paper, he described the well-known property that for the p-median

problem on a network, at least one of the alternative optimal solutions will consist entirely of

vertices of the network. Hakimi (1964) also introduced the p-center problem on a network,

consisting on locating facilities in such a way to minimize the maximum distance of a demand

node from the closest facility; Kariv and Hakimi (1979) proved this problem to be NP-hard.

Drezner and Wesolowsky (1978) developed an ingenious method for the multi-facility

minimax p-center problem.

Cooper (1963, 1964 and 1967) introduced the location-allocation problem. In its general

form, it is similar to the p-median problem. The allocation part of this type of problem implies

that in addition to being located, new facilities are assigned particular demands that they are

asked to satisfy.

Toregas et al. (1971) formulated the set covering problem, consisting in locating the

minimum number of facilities required to cover a demand expressed in a plane. Also Minieka

(1970) and Moore and ReVelle (1982) provided seminal contributions to the problem.

Nowadays, Location Problems are still a relevant sector in Operational Research/Management

Science. A wide community of researchers and scholars is devoted to the development of new

models and algorithms. These kinds of problems have gained importance also in real

68

industrial practice, especially in the area of Supply Chain Management, as highlighted by

Melo et al. (2009).

In the following of the chapter, the basic elements of Location Theory will be presented. In

addition, a taxonomy of the most common problems and their formulations will be provided.

4.3 Generalities

As suggested by Plastria (2002) a location problem can be characterized by the question

“Where are we going to put things?” from which two more questions derive:

• Which places are available?

• On what basis do we choose?

The answer to the first question determines the location space. As location problems are a

particular class of optimization problems, the second question requires the definition of the

demand space and of an objective function, which can concern, for instance, the minimization

of costs, damages or discomfort or the maximization of profits and quality of services. In

some contexts, the objective can be defined by a single criterion, while, in more complex

situations, more criteria must be monitored simultaneously.

Starting from their first application to industrial systems (Weber, 1909), location problems

have received an uprising attention, related to the increasing demand of decision-making

support systems in several application fields.

Location Problems find a wide range of possible applications. Indeed, it is possible to

reproduce location decisions related to several facilities and services: industrial sites,

warehouses, schools, hospitals, supermarkets, transportation facilities (subway stops and

stations, parking lots).

The most of the Location Problems fall in the class of punctual Location Problems, namely

problems in which the aim is to find one or more points to place facilities within a given

domain. If facilities or services to be located cannot be represented by a punctual shape

because of their extension, non-punctual Location Problems have to be considered. Network

Design problems are a subset of this last class of problems.

Generally, Location Problems are characterized by the following elements:

• Location Space;

• Demand Space;

• Metrics.

• Facilities Characteristics;

69

• Objective Function;

Underlying hypothesis for each of these categories define different sub-classes of location

problems, as stated in the following.

4.3.1 Location Space

Available locations can be long to three different kinds of sets. If available locations belong to

an enumerable set, the location space can be defined as a discrete one (Figure 4.1).

Figure 4.1 - Discrete Location Space

On the other hand, if facilities can be located in every point of a portion of plane, the location

space turns out to be a continuous one (Figure 4.2).

Figure 4.2 - Continuous Location Space

70

Another case is represented by a situation in which the location space is defined through a

network structure (Figure 4.3). Depending on the structure of the problem, location can be

allowed just on network nodes or at every point on the edges.

Figure 4.3 - Network Location Space

4.3.2 Demand Space

Demand represents the key element in the location choice, as its distribution has a direct

impact on the positioning decision of the facilities.

Demand distribution reproduces the distribution of consumers or users in a given domain;

thus, a demand space can be defined as well. Demand can be organized according to the

following structures, already introduced for the location space:

• Discrete demand space, in which the demand is concentrated in an enumerable set of

points;

• Continuous demand space, in which the demand is distributed over a continuous

portion of space;

• Network demand space, in which the demand is distributed in the nodes or over any

point in the edges of a graph-structure.

In the most trivial case, demand can have a uniform distribution, namely each element of the

demand space is characterized by the same value of service demand. In more complex cases,

in the demand space areas with different concentrations are defined.

Generally, demand and location spaces characteristics are independent: thus, it is possible to

model location problems in which the location space is a continuous one and the demand

space a discrete one, and vice-versa.

71

4.3.3 Metrics

Location decisions often depend on objective functions that express some form of

dependencies on the distances between demand and facilities. Thus, another fundamental

aspect is represented by the way of measuring these distances, namely the selected metric.

Given two points Pi = (xi,yi) e Pj = (xj,yj), the distance among them can be expressed as:

dk(Pi,Pj) = ((xi – xj)k + (yi – yj)k)1/k

where k=1 defines the linear or Manhattan metric, while if k=2 the Euclidean metrics is

defined (examples are shown in Figure 4.4). The choice of the metric depends on the specific

problem to be analyzed.

Practical experiments have shown the metric that allows to represent in a better way distances

in real contexts is characterized by 1 < k < 2.

Figure 4.4 - Manhattan metric and Euclidean metric

4.3.4 Facilities Characteristics

Facilities to be located can be defined according to some distinctive features. Among these,

we can cite:

• Number of facilities; in the simplest case, single-facility problem must be faced;

otherwise, if more than one facility has to be located, a multi-facility problem is

defined. In particular, the number of facilities to be located can be pre-defined or to be

determined as an output of the problem itself;

• Type of the facilities; in the simplest case the facilities to be located are endowed with

the same characteristics; a more complex case is defined when the facilities are not

homogeneous, namely they present different forms, capacities, dimensions or

qualitative characteristics;

72

• Capacity of the facilities, representing the maximum demand amount that can be

served at the facility;

• Costs, including fixed costs (connected to the opening of the facilities, depending

generally on the selected location, namely location costs) and variable costs

(connected to demand satisfaction, namely allocation costs).

• Covering radius, representing (once fixed the metrics) the maximum distance that a

facility located in a given point can reach. The covering radius defines a covering

neighborhood (Figure 4.5), that will assume a different shape according to the selected

metrics. Demand points included within the neighborhood will be considered

reachable (covered) by the facility

Figure 4.5 – Covering radii and neighborhoods in the case of Manhattan (left)

and Euclidean (right) metrics.

4.3.5 Objective Function

Facilities are located according to a given objective function, with the aim of optimizing it. In

the most common cases, an objective function can be expressed by the following criteria:

• Minimizing location/allocation costs (Mini-Sum objectives);

• Maximizing the total amount of demand covered by the located facilities (Covering

objectives);

• Minimizing the distance of the most disadvantaged customer (Center objectives).

In many cases, it is also possible to optimize:

• a combination of more function;

• a vector function made up of more components (multi-criteria optimization);

• one of the functions and translating the others in constraints for the problems.

73

4.4 Classification of Location Problems

Like in other branches of optimization problems, also in Location Theory emerged the need

for a precise and concise schema for describing problems in a synthetic way, capable of

eliminating the ambiguity of verbal model descriptions.
Available classifications are similar to queuing (Kendall, 1951) and scheduling problems

(Graham et al., 1979) taxonomies, based on a multiple-position string in which each position

is representative of a distinctive characteristic of the problem.

Handler and Mirchandani (1979) suggested a 4-position scheme for network problems with

center-type objective; Brandeau and Chiu (1989) give a taxonomy to distinguish location

problems with respect to three criteria (objective, decision variables, system parameters) in

table format, without providing a formal classification scheme. Eiselt et al. (1993) used a 5-

position scheme specialized on competitive location models.

Carrizosa et al. (1995) present a 6-position scheme for classifying planar model where both

demand rates and service times are given by a probability distribution.

Hamacher and Nickel (1998) designed a 5-position classification scheme to take into account

every class of location problem in a single framework that represent, at the moment, the most

detailed attempt to provide a universal classification of Location Problems.

The classification scheme has five positions written as:

Pos1/Pos2/Pos3/Pos4/Pos5

The meaning of each position can be described as follows:

• Pos1: Information about the number and type of new facilities;

• Pos2: Type of the location model with respect to the decision space. This information

should at least distinguish between continuous, network and discrete models;

• Pos3: A description of particulars of the specific location model, such as information

about the feasible solutions, capacity restrictions, etc;

• Pos4: Relation between new and existing facilities. This relation may be expressed by

a distance function or by assigned costs;

• Pos5: Description of the objective function.

If no special assumptions are made, the position is filled by a symbol “•”. For example, a

symbol “•” in the fifth position means that each possible objective function is considered; a

symbol “•” in the third position stands for a problem in which no particular restrictions are

introduced.

74

The classification can be applied successfully to each one of the three main categories of

location problems (Continuous, Discrete, Network) introduced above, as shown in the

following.

4.4.1 Continuous Location Problems

Since continuous location models are the oldest location models and deal with geometrical

representations of reality, a broad range of different location model types must be taken into

account. We now describe some possible symbols in each position for continuous location

models.

Pos1

It is characterized by a number n�� {1,…,N} expressing the number of facilities to be located

and by a string of characters that specifies the shape of the facilities themselves, as follows:

(a void string) to indicate punctual facilities;

l to indicate that n lines have to be located;

p to indicate that n paths (consisting of one or more lines) have to be located;

A to indicate that n areas have to be located.

Pos 2

As stated above, it provides information about the location space. In particular:

`d the problem has to be solved in a d-dimensional space;

P the problem has to be solved in a plane (d = 2);

H the problem has to be solved in a Hilbert Space.

Pos 3

Specifications about particular constraints of the problems can be stated as follows:

F the problem presents a feasible region; it is necessary that a solution x is such

that x�� F.

B Barrier, i.e., neither placement of new facilities nor trespassing is allowed.

Further specifications can be provided about weights associated with demand points.

75

Pos 4

This position specifies the distance function, for example:

lp the distance is defined by lp-norm (for example, l2 is the Euclidean norm);

dnonhom the distance is not the same in the whole domain of the problem.

Pos 5

As regards the objective function, the default case accounts for an objective function to be

minimized. The nature of the objective function also provides, intuitively, information on the

demand space, as follows:

∑ ordinary Weber objective function (weighted sum of the distances among

demand and facilities). The symbol ∑ also signifies that the demand space is a

discrete one;

max objective function that expresses the maximum distance from a demand point

to the closest facility (p-Center problem);

∫d Weber objective function within a continuous demand space (the weighted sum

is an integral sum);

Examples

Given the adaptation of the 5-positions schema to continuous location problems, the most

common problems can be described adopting it as follows:

1/P/●/l2/ ∑

Classical Weber problem with Euclidean distance. Just one facility has to be located in a

planar space with no other constraints.

1/P/●/●/∑

Class of planar Weber single-facility problems, with any kind of distance.

N/P/(mc)/●/∑

Class of planar Weber problems, with any kind of distance and any number of facilities.

Facilities have to satisfy some mutual conditions.

N/P/●/●/max

76

Class of planar center problems, with any kind of distance and any number of facilities.

4.4.2 Discrete Location Problems

In the following, the meaning of the five positions for Si procederà ora ad illustrare il

significato delle 5 posizioni proposte da Hamacher per i problemi di localizzazione discreti.

Pos 1

n n�� {1,…,N} states the number of facilities to be located;

the number of facilities to be located is unknown and it is part of the problem;

two different kind of facilities have to be located; the number of the facilities is

unknown for both the kind of facilities.

Pos 2

D the location space is a discrete one; this is the only option for this kind of

problems.

Pos 3

cap facilities have limited capacities;

bdg there is a budget constraint;

dmax it is assigned a maximum distance constraint between demand and facilities;

dmin it is assigned a minimum distance constraint between demand and facilities.

Pos 4

Any restrictions and particulars of given costs cij can be speci®ed (e.g., triangle inequality,

non-negativity, etc.).

Pos 5

Any objective function from the continuous case can be adopted,

∑comp Competitive location model;

∑uncov Coverage objective function;

∑cov + ∑uncov Covering objective function;

77

Examples

After having illustrated the classification schema for discrete problems, some examples of

common problems can be provided.

N/D/●/●/∑

Discrete N-Median (Weber) problem without restrictions and distance specification.

#/D/●/●/∑

The so-called uncapacitated facility location model, or Simple Plant location problem, in

which the number of facilities to be located is unknown a-priori.

#/D/dmax,bdg/●/∑uncov

Coverage model, in which the number of facilities to completely cover the demand is

unknown a-priori. Facilities have to be placed respecting a maximum distance constraint with

respect to demand points; there are also restrictions on available budget.

4.4.3 Network Location Problems

The 5-position schema can be particularized as follows.

Pos 1

As in the other cases, n�� {1,…,N} states the number of facilities to be located; # indicates that

the number is unknown and its determination is part of the problem.

As regards the kind of facilities to be located:

 (a void string) indicates that n points have to be located

p n paths have to be located;

T n trees have to be located;

G n subgraphs have to be located.

Pos 2

As the problem is defined on a network, this position clarifies the characteristics of the

underlying graph:

G the problem is defined on an undirected graph;

GD the problem is defined on a directed graph;

T the graph is a tree.

78

Pos 3

Same options from the continuous case.

Pos 4

In a network, the distance is always measured with reference to the shortest path. Thus, it has

to be specified from where to where distances are measured.

In the notation d(-,-) the first element determines conditions to be respected for existing and

new facilities, as follows:

d(V,V) both new and existing facilities has to be positioned in graph nodes;

d(V,G) existing facilities are positioned in graph nodes, while new facilities can be

positioned in any point of the graph (also on edges);

Figure 4.6 - Problems d(V,V) and d(V,G)

d(G,V) new facilities can be positioned on graph nodes, while existing facilities are

placed on any point on the graph;

d(G,G) both kind of facilities can be placed everywhere on the graph.

79

Figure 4.7 - Problems d(G,V) and d(G,G)

Examples of the four kinds of problems above described can be found in Figures 4.6 and 4.7.

Pos 5

Any of the objective functions listed for the continuous case which are meaningful in the

network environment.

Examples

1/G/●/d(V,G)/∑

1-Median network problem, consisting in locating a facility on a non-oriented graph. Existing

facilities are positioned on nodes, while facilities to be located can be placed everywhere. The

objective function to be optimized is Weber’s one.

4.5 Some well-known models of Location Problems

Within the framework of the proposed classification of Location Problems and from an

analysis of the literature, it can be stated that there exists two predominant objective functions

in location science: the previously introduced Weber objectives and Center-type objectives.

These objectives are also known as minisum and minimax problems, respectively.

Other objective functions are also studied within the location science community, especially

recently.

The most notable of these are the set covering and maximal covering objective functions. The

former of these two objectives attempts to locate the minimum number of new facilities such

80

that a prescribed distance constraint to existing facilities is not violated. In contrast, the latter

strives to locate a given number of facilities to best meet the (weighted) demands of the

existing facilities subject to a maximum distance between new and existing facility. It should

be noted that for the set covering formulation, because all of the demands must be met

(covered) regardless, the relative weight of the demands generated by the existing facilities

are inconsequential, whereas in the maximal covering objective some existing facility

demands may be left unmet (uncovered).

Objectives that involve equity issues are also investigated, like, for example, minimizing the

variance or the range of distances between demand points and facilities.

The diametrics of these objective functions also exist (maxisum, maximin, minimal covering),

although they are somewhat less studied.

In the following, a brief review on these classes of location problems will be provided.

4.5.1 p-Median like problems

The p-Median problem aims at the minimization of the weighted sum of the distances

between p facilities to be opened and a set of demand points. Several versions of the problem

have been defined in the literature.

The version of this problem in which the location space is continuous, often indicated as the

Multisource Weber Problem (MWP), belongs to the class of NP-hard optimization problems,

as shown in Megiddo and Supowit (1984). Given a set of demand points i ∈ I, located in

(xi,yi) and the coordinates (xa,ya) ∈ S ⊂ ℜ x ℜ for a number p of facilities, a possible

formulation for the MWP is the following one (Klose and Drexl, 2005):

iaaa
Ii

p

a
ii zyxdw),(min

1
∑∑
∈ =

subject to

1

1

=∑
=

p

a
iaz Ii∈∀

}{ 1,0∈iaz paIi ,...,1, =∈∀

being di= 22)()(iaia yyxx −+− in the case of Euclidean metrics. In this model, zia equals 1

when a demand point i is assigned to a facility a.

pyx ℜ∈,

81

Fast heuristic methods to cope with the MWP are considered and compared in Brimberg et al.

(2000) and Hansen et al. (1998), while in Aras et al. (2006) the problem is solved using

neural networks. As concerns exact algorithms, the first attempt to solve instances of the

MWP is proposed by Kuenne and Soland (1972). Later, different approaches are proposed by

Rosing (1992), Chen et al. (1998) and duMerle et al. (1999). A recently developed branch-

and-price algorithm (Righini and Zaniboni (2007)) permits to find the optimal solution on

instances with some thousands of points and some hundreds of sources in less than three

hours on a PC.

The diametrical version of the problem takes into account the necessity of locating obnoxious

facilities. A facility is called obnoxious when it is desired to locate it as far as possible from

an inhabited centre. Obnoxious location problems have received significant attention in the

last decades, due to the increasing environmental and social impact of facilities such as power

plants and dump sites. Thus, in the case of obnoxious facilities, the p-Median objective can be

turned into an anti-p-Median objective, in which the aim is to maximize the weighted sum of

the distances between p facilities to be opened and a set of demand points.

4.5.2 p-Center like problems

The p-center problem concerns the location of p facilities (centers) so as to minimise the

maximum of the distances from each customer (demand point) to its nearest facility. This

problem may address, for instance, the location of public facilities, schools, emergency

services, where the objective is to design a system in such a way that no customer has to

travel too far (or each customer could be reached in a reasonable amount of time).

The p-center problem on a network (Hakimi, 1964) was later addressed by Hakimi (1965),

Minieka (1970, 1977), Elzinga and Hearn (1972). Kariv and Hakimi (1979b) proved this

problem to be NP-hard.

Francis (1967) provided some insight to the p-center problem on a plane. This same problem

(with slight variations) was later addressed by Wesolowsky (1972) who investigated the

problem with rectilinear distances. Drezner and Wesolowsky (1978a) developed a solution

method (which is now often cited as the Drezner-Wesolowsky method) for the multi-facility

minimax p-center problem. Drezner and Wesolowsky (1978b) researched the problem under

an arbitrary lp distance metric; Chen (1983) looked at the problem with Euclidean distances;

Ward and Wendell (1985) formulated the now well-known “block-norm” for the distances

involved. Masuyama et al. (1981) and Megiddo and Supowit (1984) were able to show that

the Euclidean and rectilinear cases of this problem are NP-complete, respectively.

82

In the case of a continuous location space, the p-center problem consists in finding a subset A

Within a region S⊂R2, such that:

aib
c⊂d

e�
�

e�
� �� �aax
f�g

5faib �c
7��� ��

Subject to:
||A|| = p

The objective function represents the minimization of the maximum weighted distance

between each demand point i and the closest facility a. The constraint expresses that exactly p

facilities are going to be located.

The diametrical version of the problem is represented by the anti-p-center problem. In this

problem, the aim is to find p facility locations which will maximize the minimum distance

between demand points and their respective nearest facilities. Typically, this problem is used

to model the location of the above defined obnoxious facilities such as incinerator plants,

hazardous waste sites, unsightly factories.

In the case of a continuous location space, the anti-p-center problem consists in finding a

subset A within a region S⊂R2, such that:

aax
c⊂d

e�
�

e�
� �� �aib
f�g

5faib �c
7��� ��

Subject to:
||A|| = p

4.5.3 Covering problems

Location Covering Models are another class of problems, in which the objective is to ensure

coverage to given demand points. A demand point is said to be covered by a certain facility if

the distance between the two points is lower than a certain threshold, or required distance

(RD). Models of this type generally address the location of urban public facilities, especially

emergency facilities. Church and ReVelle (1974) propose the p-Maximal Covering Location

Problem (MCLP), which seeks to locate p facilities that can cover the maximum amount of

demand. Given a set of demand points i ∈ I, located in (xi,yi) and the coordinates (xa,ya) ∈ S

⊂ ℜ x ℜ for a number p of facilities, a possible formulation for the the p-Maximal Covering

Location Problem with facility placement on the entire plane can be derived from Mehrez

(1983):

83

max i
Ii

iw ζ∑
∈

 (4)

subject to:

i

p

a
aiz ζ≥∑

=1

, Ii∈∀

RDyxdz aaiai ≤),(paIi ,...,1, =∈∀

}{ 1,0, ∈iiaz ζ paIi ,...,1, =∈∀

The variables iζ and zai are binary. The variable iζ is equal to 1 if a demand wi located in i is

covered, (0 otherwise) and the variable zai is equal to 1 if the demand concentrated in i is

covered by a facility located in a. Constraints (5) ensure that a demand point that is

considered to be covered has at least one facility within the required distance; constraint (6)

ensures that the variable zai is equal to 1 if the demand located in i can be covered by the

service located in a within the required distance RD (0 otherwise). The problem is generally

complex, and several heuristic methods have been developed to deal with it. A survey on this

topic is presented by Galvao et al. (2000).

As shown for the previous classes of location problems, also in the case of Covering Location

Problems, a diametric version regarding obnoxious facilities can be considered. Berman and

Huang (2008) introduced the Minimum Covering Location Problem with Distance

Constraints (MCLPDC) that, through locating a fixed number of facilities, aims to minimize

the number of covered customers (where, as stated above, a customer is considered covered if

her distance to the closest facility is less than a pre-determined radius) by respecting a

constraint on the minimum distance among facilities themselves. To motivate the MCLPDC,

they consider the problem of locating facilities that may pose a serious danger to the

individuals living nearby. The fewer people “covered” the better. The minimum distance

constraints express the condition that sometimes, for safety reasons, those facilities should

also be separated (e.g., if several reactors are clustered in the same region, the problem would

turn out to be trivial, but facilities may all be attacked by an aggressor). Early versions of this

objective have been presented by Drezner and Wesolowsky (1994) and by Plastria and

Carrizosa (1999).

Moreover, several extensions have been proposed to the basic p-Maximal Covering problems.

Storbeck (1982) and Benedict (1983) describe a formulation of the problem in which apart

from the maximization of the demand covered by the facilities, the demand covered by at

pyx ℜ∈,

84

least two facilities has to be maximized. Following the same idea, Daskin et al. (1988)

establishes a version of the problem in which the back-up coverage has to be maximized.

Chung et al. (1983) introduce capacity constraints for facilities to be located; in this way, the

demand concentrated in a given point could also be assigned to a facility other from the

closest one. Current and Storbeck (1988) the authors introduce the possibility for demand

points to be served by more than a facility according to a given demand distribution model.

Pirkul e Schilling (1991) introduce a multi-criteria objective function aimed at re-assigning

demand points out of covering radius of any located facility to the closest facility, respecting

capacity constraints.

Karasakal and Karasakal (2004) develop a more sophisticated coverage concept by

introducing the concept of partial coverage. Each facility is endowed with two covering

radius: a minimum covering radius and a maximum covering radius; demand points within

the minimum radius are considered to be totally covered, while the ones falling in the area

between the circles described by the two radii are considered to be partially covered. Berman

et and Huang (2008) propose the covering radius as a variable associated with a cost to be

minimized.

4.5.4 Equity problems

Another kind of problems can be defined when the objective is a measure of “equity” from

the demand points to the set of facilities (Eiselt and Laporte (1995)). Equity is sought by

minimizing the inequality in the facility-demand points distances. Several objectives have

been introduced in order to achieve this goal. Among the others, we can cite: minimizing the

variance of distances (Maimon, 1986), minimizing the Gini Coefficient (Maimon, 1988),

minimizing the range of distances in the plane (Schöbel, 1999).

As regards the minimum variance objective, being µ(xa,ya) the average distance among the

demand points i and the facility a of coordinates (xa,ya) and σ2(xa,ya) the variance of the

distances, the Single Facility Minimum Variance Location Problem in the Euclidean plane

aims at defining the position (xa,ya) of the facility which minimizes σ2(xa,ya). Drezner and

Drezner (2007) solve to optimality large instances of this problem using a Big Triangle Small

Triangle (BTST) approach.

85

4.6 Conclusions

In this chapter an overview of a relevant class of optimization problems, namely Location

Problems, has been proposed. After having offered an historical perspective of the

development of the field of Locational Studies, the chapter has provided some generalities

about the most widespread categories of Location Problems.

This introduction has set the stage for the development, in the following of this work, of an

agent-based framework for Location Problems.

86

Chapter 5

An agent-based framework for Location Problems

5.1 Introduction

The high relevance of location problems in the operations research literature arises from their

wide spectrum of real applications, including decision optimization in industrial management,

logistics and territorial planning. Most of these optimization problems fall in the class of NP-

hard problems, motivating the search for heuristic and approximated algorithms. Currently, a

great interest is being devoted to those optimization approaches yielding a concrete

integration with spatial analysis instruments (such as Geographical Information Systems), that

provide the user with an easy visualization of input data and optimization results.

As shown in Chapter 2, Agent-Based computing was recently proposed as an alternative to

mathematical programming in order to deal with problems whose domains are concurrently

distributed, complex and heterogeneous, also thanks to the availability of many commercial

and open source codes including graphical interfaces for the elements of the problem.

In this Chapter we propose a general Agent-Based framework for modeling various location

problems. Together with its description, we present some computational results confirming

the suitability and the effectiveness of the proposed approach.

5.2 Theoretical Framework

As it can be derived from Billari et al. (2006) and Weiss (1999), and as it has been recalled in

Chapter 1, the development of an Agent-Based Model needs a complete description for a set

of basic building blocks, as follows.

• The object of the simulation. It has to be specified what is the phenomenon/problem to

be reproduced, defining the space where the simulation takes place.

• The agents’ population. Agents can be grouped in different categories with common

characteristics reproducing the various components of the system.

• The adaptive capability of each agent category. Agents of each category present a

specific adaptive capability, i.e. the degree of re-activeness and pro-activeness.

• The interaction paradigm among agents. Each agent can interact with agents of the

same or of other categories. In the literature, several interaction paradigms have been

defined, such as cooperation, competition, negotiation (see for instance Weiss (1999)).

87

On the base of the selected paradigm, the agents evolve in the simulation space in a

different way.

Given this peculiarity in dealing with the representation and the simulation of complex

systems, ABMs have been recently applied to solve optimization problems whose domains

present several inter-related components in a distributed and heterogeneous environment

(Weiss (1999), Wooldridge (2002)), sometimes combined to other optimization techniques.

Some of the characteristics of ABMs suggest the possibility to apply this approach to model

and solve location problems. The approach appears to be particularly interesting when the

location space is a planar region (whose points represent available locations) and the demand

can be represented by an enumerable set of discrete points.

Suppose that we have to locate p facilities in a continuous space in which n demand points are

positioned. In order to define an Agent-Based framework, in the following we describe how

each block previously illustrated can be specified to represent the problem.

The object of the simulation. The object of the simulation is to reproduce all the elements of

the problem and to define the appropriate rules that agents should follow. The environment of

the simulation is represented by the location space, i.e. a portion of plane (for instance a

rectangle of base b and height h) where agents are positioned. We assume that distances

between elements are defined by an Euclidean metric. Due to the flexibility of the ABMs, the

adaptation of the model to different metrics is straightforward.

The agents’ population. We distinguish between two main agent categories (see Figure 5.1):

• a set P of “passive” agents representing the demand points with an associated demand

wi ∀i∈P;

• a set A of “active” agents representing the facilities to be located.

The adaptive capability of each agent category. The two agent categories present different

adaptive capabilities. Passive agents do not change position but they interact with the active

agents in an autonomous way. They are neither re-active, as they do not react to any signal,

nor pro-active as they do not pursue any objective. On the other hand, the active agents are

both re-active, as they answer to the presence of passive agents, and pro-active, as they move

in the location space searching for positions according to a given objective.

88

Figure 5.1 – Location space and agent categories

The interaction paradigm among agents. As mentioned before there exist different paradigms

to define the interaction among agents. In this context, we adopt the Artificial Potential Fields

(APF) paradigm, based on some concepts from physics and biology (see Ferber (1999),

Kathib (1986)). The paradigm assumes that the agent behavior is regulated by the action of

forces. In this context we suppose that two forces operate on each active agent a∈A (Figure

5.2):

§ a demand-driven force, Fd
ia, due to the presence of a passive agent i∈P which pushes

the agent a toward the position of i;

§ a repulsive force, Fr
ja, determined by the presence of an active agent j∈A which

pushes the agent a in the opposite direction of j.

The intensity of the two forces is a function of the distance between the agents as widely used

in spatial interaction models (see, for instance Fotheringham and O’Kelly (1989), Sen and

Smith (1995), Serra and Colomè (2001)).

According to the APF paradigm we suppose that these forces are significant only within a

given distance from the agent a∈A. In order to define the forces, the paradigm introduces

some calibration parameters expressing the width of the neighborhood within which each

force is significant.

In this way we can define a resulting demand-driven force (Figure 5.3a):

|P| ard,

,

∑
∈

= ardPi

d
ia

d
Ra

F

F

Location
space

Passive agents
(demand points)

Active agents
(facilities)

Figure 5.2

where Prd,a is the set of passive agents whose distance from

the same way the resulting repulsive

where Arr,a is the set of active agents whose distance from

The movement of the agent a

convex combination of the two forces:

being α a parameter, 0≤α ≤1, expressing the relative weight of each resulting demand

and distributive forces.

(a) the resulting demand-driven force

Figure 5.3 – The resulting forces operating on an active agent

i

a

i2

Fd
i2a

Fd
i3a

i3

i4

i1

Fd
i1a

F

Fd
Ra

Prd,a={i1, i2, i3, i4

Figure 5.2 - Forces operating on an active agent

is the set of passive agents whose distance from a is within a given radius

repulsive force is given by (Figure 5.3b):

|A| arr,

,

∑
∈

= arrAj

r
ja

r
Ra

F

F

is the set of active agents whose distance from a is within a given radius

a is finally determined by the total force M

convex combination of the two forces:
r
Ra

d
Raa FFM)1(αα −+=

, expressing the relative weight of each resulting demand

driven force (b) the resulting repulsive force

The resulting forces operating on an active agent

a

j
Fd

ia

Fr
ja

F

Fr
Ra

Arr,a={j1,

rd
Fd

i4a

4} |P| ard,

89

is within a given radius rd. In

is within a given radius rr.

Ma, calculated as a

 (7)

, expressing the relative weight of each resulting demand-driven

(b) the resulting repulsive force

The resulting forces operating on an active agent

Passive agents
(demand points)

Active agents
(facilities)

a

Fr
j1a

rr

j2

j1

Fr
j2a

, j2}

90

5.3 Adaptations of the ABM Framework to several Location Problems

The described framework can be particularized to deal with different location problems and to

consequently solve them through the development of proper procedures to be implemented in

a given environment. In particular we show how the forces can be specified in relation with

the problems illustrated in Section 3, according to the specific objective of the problem. In the

following we define a distance vector dba between two agents b and a as the vector applied to

the agent a and directed toward the agent b with an intensity equal to the distance ||dba||

between the agents.

5.3.1 The p-Median like problem

We start by describing the adaptation of the proposed ABM framework to solve a class of

location problems in which it must be minimized an objective function which includes a

weighted sum of the distances between p facilities to be opened and a set of demand

points. We refer to this as the "p-Median like problem".

In this case the demand-driven force can be expressed by

Fd
ia = wi dia ∀i∈ Prd,a (8)

where wi represents the demand associated to i and dia the above mentioned distance vector. In

practice we suppose that the influence of a demand point i on the facility a decreases the

closer the facility moves towards such a demand point. Indeed, if the active agent reaches

exactly the position of the demand point, the demand-driven force becomes zero.

As regards the distributive force we assume that:

||||
1

|||| jaja

jar
ja dd

d
F −= ∀j∈ Arr,a

The influence of another facility j on the facility a is inversely proportional to the distance

||dja||: the closer the two facilities, the more intense the force Fr
ja that will tend to push the

agent a away from the agent j.

The proposed adaptation of the ABM framework to the class of p-Median like problems can

be applied as a heuristic approach to solve instances of the classical p-Median problem

described in

Section 3, since, given any instance of that problem, it provides a feasible solution in

finite computational time, whose quality will be experimentally evaluated in the next

Section, through the comparison with the results arising from the related literature for

the p-Median problem. According to Drezner (1987) we also observe that, even if the p-

91

Median problem does not explicitly consider mutual distances among facilities, the presence

of distributive forces allows avoiding facilities overlapping that could yield bad quality

objective function values.

The values of the radii rd and rr for the determination of Prd and Arr and α are calibration

parameters.

The value of rd can be set as

+
=

1
),min(

p
hb

rd being b and h respectively the base and the

height of the location space.

As regards the value of rr a default value of 1 space unit can be considered. In presence of

possible constraints on the minimum distance among the facilities, rr can be fixed according

to this aspect.

The value of α can be set equal to 0.5, so the resulting forces are supposed to have the same

relative weight.

5.3.2 The p-Maximal Covering like problem

We consider now the adaptation of the ABM framework to the class of p-Maximal Covering

like problems, in which the objective is to ensure the coverage to some demand points

under threshold constraints. In this case, the demand-driven force is expressed as follows:

ia
i

id
ia d

p
w

F = ∀i∈ Prd,a

where pi is the number of active agents covering the demand point i, i.e. within a distance RD

from i. In this way we suppose that if a demand point i is covered by more than one facility,

its demand-driven force is equally shared among those facilities.

In this case the values of the radii rd and rr can be fixed equal to RD and α=0.5.

5.3.3 The Minimum Variance like problem

In the adaptation of the ABM framework to the Single Facility Minimum Variance like

problem, since we deal with a single facility location, the repulsive forces are not

present. The expression of the demand-driven force is calculated as in (8).

Due to the absence of repulsive forces, α =1 and rr=0, the only parameter to be calibrated is rd

whose value can be fixed as already shown for the p-Median like case.

A summary of the adaptations of the Agent-Based framework to the illustrated location

problems is reported in Table 1.

92

Problem Demand-driven force Repulsive force Calibration
parameters

 p-Median like problem Fd
ia = wi dia ∀i∈

Prd,a ||||
1

|||| jaja

jar
ja dd

d
F −= ∀j∈

Arr,a

α, rd, rr

 p-Maximal Covering like
problem ia

i

id
ia d

p
w

F = ∀i∈

Prd,a
||||

1
|||| jaja

jar
ja dd

d
F −= ∀j∈

Arr,a

α, rd, rr

Single Facility Minimum
Variance like problem

Fd
ia = wi dia ∀i∈

Prd,a
-------- rd

Table 5.1 - Summary of the expressions of the forces for the illustrated problems.

5.4 Implementation of the Framework

The illustrated framework has been implemented within the NetLogo Agent-Based simulation

environment (http://ccl.northwestern.edu/netlogo, see Appendix I) using the proprietary

programming language and its Java architecture. NetLogo allows reproducing the two agent

categories above introduced. In particular, passive agents are represented by cells in a grid

network, being each cell identified by a couple of integer coordinates.

In the implemented procedure (for the detailed code, see Appendix II), whose scheme is

represented in Figure 5.4, it is possible to distinguish the following steps.

1. Initialization

The parameters of the problem (number of facilities p, values of the radii rd and rr, α ,

objective function, expression of the forces) are defined.

2. Individuation of the initial solution

The position of p active agents in the location space is randomly determined according to a

uniform distribution with values ranging within the extreme coordinates of the location space.

3. Evolution of the current solution

For each active agent a located in the current positions, the total force Ma according to (7) is

calculated so that the active agents change position on the base of this force and the solution

assumes a new objective function value.

4. Diversification

If a diversification criterion (defined in terms of number of non-improving iterations, fixed a-

priori as a parameter) is satisfied, a diversification move is enacted and the procedure goes

back to the step 2; otherwise, it goes to step 5.

93

5. Stopping criterion

If a stopping criterion is satisfied the procedure ends; otherwise it goes back to the step 3.

Figure 5.4 – The scheme of the implemented procedure

The procedure behaves as a metaheuristic searching for better solutions thanks to an

evolutionary mechanism which is performed until a diversification or a stopping criterion are

satisfied. On the base of a diversification criterion the procedure restarts from a new initial

solution.

Possible stopping criteria are represented by a given total number of evolution iterations or a

fixed running time, to be defined as parameters.

It is worth to note that in order to store the evolution of the current solution during the run of

the procedure, two further categories of agents have been implemented. A first category of

agents stores the evolution of the current local best solution found by the algorithm, by

following the search process by active agents; another category of agents stores the global

best solution found in the search process. Both the agentsets have a cardinality p, thus visually

represent on the plane the position of each facility in the current best local or global solution.

5.5 Computational experiences

We illustrate some examples of application of the Agent-Based framework to the location

problems introduced and described in Sections 3 and 5, in order to show the capability of the

proposed approach to solve these problems and to analyze the provided performances in terms

of computational times and quality of the solution. The procedure was run on a PC with a

Initialization

Individuation of the initial solution

Is the diversification criterion satisfied?

no
yes

Evolution of the current solution

yes

End of the procedure

Is the stopping criterion satisfied?
no

94

Dual-Core T2250 2.0 GHz CPU and 2 GB of RAM. In all the experiments the calibration

parameters were set according to the criteria illustrated in Section 5.

As stopping criterion we fixed a number of 150 iterations while, to start the diversification,we

considered 10 non-improving iterations.

In order to evaluate the quality of the provided solution, we calculated the gap from the

known optimal solution as

100*

 −
=

utionOptimalSol
utionOptimalSolonBestSolutiABM

Gap

5.5.1 Solving p-Median problem instances

We applied the proposed framework to solve one of the benchmark problems (Bongartz287)

available for p-Median problem (the data of the instance are available at the website

http://ina2.eivd.ch/Collaborateurs/etd/problemes.dir/location.html). This test problem is

characterized by 287 demand points with variable demand values, whose coordinates assume

integer values in the range [0,50]. We used a 100x100 grid of passive agents; thus, each grid

point can be associated or not to a demand point. We solved the problem for p varying from 2

to 10.

Results reported in Table 5.2 show that ABM finds near optimal solutions in limited

computing times.

5.5.2 Solving p-Maximal Covering problem instances

In absence of benchmark instances for this version of the problem, we generated instances in

a 100x100 location space (for a total number of 10000 demand points) with known optimal

solutions according to the following criteria. Once fixed the distance threshold RD (we

assume RD=4 space units) and given the number p of facilities to be opened, each instance is

produced through the random generation of 4 sets of p circles of radius R≥RD in the location

space. The coordinates of the center of each circle were chosen according to a uniform

distribution. For each set s (s=1..4), we assigned the same demand value ws to the points

internal to each circle. In particular we fixed w1=1, w2=1/2, w3=1/4, w4=1/8. Points belonging

to the intersection of more circles were given the maximum demand value. This way the

optimal solution of the p-Maximal Covering problem on such instances is known in advance,

as it can be obtained locating the p facilities exactly in the centre of the p circles with unitary

demand values.

95

For some combination of values (R,RD) and for each value of p varying from 1 to 10, we

generated 5 different instances. For each instance, the procedure was run 10 times.

The results indicate the frequency with which the optimal solution is found (calculated as

[number of times]/50) in the case R=RD and in the case R=2RD (Table 5.3).

As the procedure always finds the optimal solution, the average running times to find the

optimal solution are reported for each value of p. The R value does not seem to affect the

results in terms of final solution but there is a slight variation in the computational times.

However, the results appear interesting and the optimal solutions are detected in limited

computing times.

5.5.3 Solving Minimum Variance problem instances

The adaptation of the ABM framework to the Single Facility Minimum Variance like problem

was applied to some instances contained in Drezner and Drezner (2007). These instances

consider a continuous location space and a discrete demand space with demand points of

equal demand values distributed on the Euclidean plane.

In order to solve the instances we used a 100x100 grid of agents, i.e. 10000 passive agents.

As, in general, the position of an original discrete demand point did not coincide with any grid

points, an adaptation of the instances demand data was performed, associating each demand

point to the closest grid point; thus, each grid point has been weighted with a demand value

equal to the number of associated demand points. The ABM provides the coordinates of the

facility to be located with a ten-digit precision in the continuous location space. Then, the

objective function value was computed as the variance of the distances of the original demand

points from the located facility. This way, the objective function value includes the effects of

the aggregation operation and, thus, associated errors (Plastria, 2000).

Table 5.4 shows the capability of the proposed approach to find good results in reasonable

computational times.

96

p Optimal Solution ABM Best Solution Gap ABM Runtime (sec)
2 14427.593010 0.00% 0.50
3 12095.442160 0.00% 1.50
4 10661.476590 0.00% 1.50
5 9715.627471 0.10% 2.30
6 8787.556817 0.23% 4.10
7 8160.320284 0.53% 4.20
8 7564.294907 0.22% 5.40
9 7088.128333 0.38% 6.00
10 6705.035556 1.32% 6.00

Table 5.2: Computational Results on the Bongartz287 instance

R=RD R=2RD

p
Optimal Solution

Frequency
Average Runtime

(sec)
Optimal Solution

Frequency
Average Runtime

(sec)
1 100.00% 2.1 100.00% 2.1
2 100.00% 3.2 100.00% 3.4
3 100.00% 4.0 100.00% 4.3
4 100.00% 5.4 100.00% 6.1
5 100.00% 7.2 100.00% 8.3
6 100.00% 10.4 100.00% 11.6
7 100.00% 14.9 100.00% 17.9
8 100.00% 18.3 100.00% 20.8
9 100.00% 22.2 100.00% 23.4
10 100.00% 26.3 100.00% 30.5

Table 5.3: Computational results on the p-Maximal Covering randomly generated
instances.

Demand Points Optimal Solution ABM Best Solution Gap ABM Runtime (sec)
2000 0.0204669774 0.96% 3.1
5000 0.0203239336 0.08% 3.1

10000 0.0205132773 0.19% 4.3
Table 5.4: Computational results on the instances in Drezner and Drezner (2007) for the

Single Facility Minimum Variance problem

5.6 Extension of the framework to other classes of Location Problems

Apart from the above considered Location Problems for which the MAS-based approach has

been successfully tested against other solution algorithms, several extensions to other classes

of problems (introduced in Chapter 4) have been produced, though no computational results

are available at the moment.

97

5.6.1 The Anti-p-Median like problem

As introduced in Chapter 4, the anti-p-Median location problem deals with the necessity of

locating p obnoxious facilities in such a way to minimize the damage they can do to a set of

users distributed on an Euclidean plane.

The MAS-based framework can be easily adapted to this problem taking into account the

following simple considerations. As the anti-p-Median location problem is the repulsive

counterpart of the p-Median one, facilities (represented by active agents in the framework)

will be not attracted by demand points, represented as passive agents within the MAS-based

framework. On the contrary, active agents will be “pushed” away by demand points: the

higher the demand concentration of a demand point, the strongest the force that will push the

facility away.

Thus, utilizing the above introduced notation, the demand-driven force will be expressed in

the following way:

||||
1

|||| iaia

id
ia dd

w
F −= ∀i∈ Prd,a

where, again, wi represents the demand associated to i and dia the above distance vector. In

practice, we suppose that the influence of a demand point i on the facility a increases the

closer the facility moves towards such a demand point. The demand-driven force becomes

zero when the distance between the two agents become infinitive.

As regards the distributive force, it can be assumed equal to the one defined for the p-Median

like case.

5.6.2 Location Problems with forbidden regions

A forbidden region represents an obstacle to the placement of facilities within a location

space. Forbidden regions can be represented by natural or artificial obstacles. For instance,

forbidden regions can represent lakes, mountains, national parks. It is worth to note that

forbidden regions can also express a demand for the service to be located, but cannot host

facilities.

The flexibility of the proposed MAS-based approach allows modeling forbidden regions

endowed with a circular shape in a simple and intuitive way.

Indeed, a forbidden region can be reproduced by introducing a new class of agents that has to

be placed within the location space. Within a given neighborhood coinciding with the

forbidden region (whose radius has to be specified as a parameter), these agents (located at

98

the center of the forbidden region) operate a repulsive force (similar to the one introduced

among facilities for the other classes of location problems) that allows keeping away facilities

from the neighborhood itself (Figure 5.5). The agents representing the center of the forbidden

region can be implemented in any of the location problems previously introduced,

independently on the specific objective function.

Figure 5.5 – Location space and agent categories

5.6.3 Location Problems with Existing Facilities

Another very common situation in every day real world practice is represented by the

presence in the location space of a-priori located facilities. Location Problems presenting this

additional characteristic are referred as Existing Facilities Location Problems.

In practice, these problems seek for locating p facilities respecting the additional constraint

that a certain number of k facilities are already located.

The MAS-based framework allows simply representing also this case. In practice, providing

the number and the coordinates of existing facilities, the MAS generates agents representing

them. These agents will operate a repulsive force (similar to the one introduced among

facilities to be located for the other classes of location problems) on the active agents

representing facilities to be located. Indeed, as already stated, the presence of distributive

forces allows avoiding facilities overlapping that could yield bad quality objective function

values.

5.7 GIS extensions

Typically, real-life facility location problems can be far more complex than the ones

illustrated in theoretical OR literature. Indeed, there are many other variables to be considered

(e.g. availability of suitable sites, cost of sites, size of facility, access to and from sites,

Location
space

Passive agents
(demand

Active agents
(facilities) Forbidden
Region

99

regulatory issues, planning controls, availability of suitable labor, timing of developments,

etc.) and all of these considerations exist within a dynamic environment that affects these and

core variables such as customer demand patterns, materials supply and changes in the

technological, commercial and political environment.

Thus, a straightforward data import process and an interactive visualization and

contextualization of the output and parameter setting of the optimization process is therefore a

relevant requirement for a decision support system capable of helping decision makers in the

field of location analysis.

Geographic Information Systems (GISs) can be certainly cited as the premiere tool useful in

dealing with the analysis of spatial related phenomena. A GIS is a set of computerized tools,

including both hardware and software, for collecting, storing, retrieving, transforming and

displaying spatial data. GISs are essentially a combination among computerized mapping and

data base management systems. Anything that can appear on a map can be encoded into a

computer and then compared to anything on any other map, using longitude-latitude

coordinates.

In real world location problems, mainly when a geographical database is available, the

starting phase of a location decisional process is often the representation and the analysis of

the problem by means of maps, datasets and geo-statistical analysis tools of GIS software.

GIS may be considered as a support tool for planners using to make decision in site and

facility selections at strategic or planning stage in a supply chain. The unique capabilities of

GIS make it outstandingly useful as an analysis and visualizing tool because it allows capture

both spatial elements and geographical locations of facilities (Raicu et al., 2002). In the

literature, several applications have been developed that utilize GIS as a decision tool to

support logistic decisions about facility sites (see, for instance, Valchopoulou et al., 2001).

GIS is employed to display results of ranked candidate sites in different scenarios for users to

select the best sites.

However, while GISs are regularly used to build complex and interesting spatial models that

clearly represent the pattern of a phenomenon, these models tend to be static models.

Moreover, the majority of GISs packages do not provide capabilities to solve location

problems directly, although many offer basic operations, such as locating a weighted mean

center in the plane. Attempts to enhance GISs capabilities in order to make them more

suitable to different classes of location problems, by integrating them with different kind of

algorithms have been developed in the last decade (see, for instance, Bender et al., 2001).

100

On the other hand, Multi-Agent Systems (MASs) have proved useful in a number of fields.

As it has widely shown in this work, applications to decision support systems for optimization

problems are a cutting edge application field for MASs, thanks to their ability to deal with

complex problems utilizing a decentralized approach. Given the characteristics of both the

tools, a wide community of scholars is working at integrating GISs and MASs for obtaining

flexible approaches for spatial-related problems (see, for instance, Brown et al. (2005), Parker

(2005) and Guo et al. (2008); further references can be obtained at the website

http://gisagents.blogspot.com/).

In this work, starting from the need for flexible tools for coping with real-life location

problems, and acknowledging the presence of a wide interest in the literature for GISs based

decision support system for location problems, an extension of the above illustrated MASs-

based framework was also developed.

In the developed approach, through a procedure implemented in NetLogo, it is possible to

import from a GIS package (for example, Microsoft MapPoint) a map reporting parameters

related to a given territory (for example, demand for a given product, or population density);

in the visual representation, a different value of the parameter is associated with each color

reported on the map (Figure 5.6). Practically, the GIS input can serve as demand space for a

location problem. In order to make the GIS input employable by the MAS-based framework

that has been shown above, the developed procedure (available in Appendix 1) applies an

agentification of the imported GIS demand space, as shown in Figure 5.7.

Figure 5.6 - GIS demand space

Practically, a grid schema is overlaid to the GIS map; in this way, the GIS input is partitioned

in a finite set of squared portions; to each squared portion, a passive agent

demand value is derived from the map.

Figure 5.7

Obviously, to avoid ambiguity in the assignment of demand values to passive agents, it is

possible to increase the resolution of the grid, thu

needed to represent the demand space

complex location problem to be solved.

Figure 5.8 - Refinement of the GIS demand space agentification

Practically, a grid schema is overlaid to the GIS map; in this way, the GIS input is partitioned

finite set of squared portions; to each squared portion, a passive agent

demand value is derived from the map.

7 - Agentification of the GIS demand space

Obviously, to avoid ambiguity in the assignment of demand values to passive agents, it is

possible to increase the resolution of the grid, thus increasing the number of passive agents

needed to represent the demand space (Figure 5.8). This, of course, can turn out in a more

complex location problem to be solved.

Refinement of the GIS demand space agentification

101

Practically, a grid schema is overlaid to the GIS map; in this way, the GIS input is partitioned

 is assigned, whose

Obviously, to avoid ambiguity in the assignment of demand values to passive agents, it is

s increasing the number of passive agents

. This, of course, can turn out in a more

Refinement of the GIS demand space agentification

102

After the agentification process, any kind of the above described location problems can be

solved, providing valuable insights in real life situations.

Currently, these processes are simplified by the presence of a growing number of ABM

toolkits that permits a direct access to GIS vector and raster datasets. For instance, the

NetLogo platform we adopted in this work offers GIS extensions, developed thanks to the

contribution of the Center for Connected Learning (CCL) and Computer-Based Modeling of

the Northwestern University, Chicago, and available at the internet address

http://ccl.northwestern.edu/netlogo/docs/gis.html.

5.8 Benefits of the proposed approach

The computational results presented in this chapter showed the effectiveness of the proposed

ABM approach to solve the considered continuous location problems with discrete demand.

Even if the approach appears competitive with other heuristics in terms of computational

performances, the interest in using ABMs for location problems goes far beyond the

computational efficiency.

The proposed approach can be viewed as a sort of metaheuristic in which some steps are

performed through agent-based computation. Even if the approach could be implemented in a

“traditional” way, the use of an ABM framework provides several additional benefits.

First of all, the current availability of open source environments for ABMs implementation

(i.e. NetLogo, JAS, SWARM, REPAST) with dedicated libraries let modelling such heuristics

easy to perform even for non-specialist users. The presence, within each of the cited toolkits,

of integrated Graphical User Interfaces (GUIs) allows the immediate graphical representation

of the elements of the problem together with a visual indication of the evolution of the

solution.

These aspects could help users, even not particularly skilled in implementation aspects, in the

search of adoptable practical solutions, especially in presence of constraints which cannot be

easily modelled in a mathematical way, such as forbidden regions, obstacles, and minimum

distance constraints among facilities.

The framework presents a significant flexibility that matches the huge variety of problems

arising in the context of location studies. As previously illustrated, versions of the problems

with variations in the objective function and/or constraints can be tackled through proper

modifications of the elements of the framework (i.e. expressions of forces, calibration

parameters) or introducing new characteristics in the paradigm of the model.

103

Among the benefits it should be also mentioned the possibility of an easy and effective

integration of ABM tools with Geographical Information Systems (GIS), as deeply shown by

Brown et al. (2005), Parker (2005) and Guo et al. (2008). As suggested above, the use of

ABM tools allows users to solve problems through continuous interactions between

optimization framework and GIS applications..

5.9 Conclusions

In recent years Agent-Based modeling is becoming more and more frequently used as

approach for solving complex optimization problems. In this work an Agent-Based

framework for modeling location problems was proposed and illustrated. The original

contribution of the work consists mainly in the proposal of an approach that, compared to the

other heuristic methods in the literature, is easy to implement and appears particularly suitable

for the integration with GIS based data.

Moreover it presents characteristics of flexibility as the general framework can be applied,

with slight modifications, to solve different kind of locations problems (i.e. p-Median like

problem, p-Maximal Covering like problem, Single Facility Minimum Variance like

problem). The features of the model suggest also the possibility of immediately adapting the

approach to take into account constraints (for instance, minimum distance constraints among

facilities, presence of obstacles or forbidden areas in the location space) whose formulation

makes the problem hard to solve using mathematical programming based methods.

The preliminary computational experiences appear encouraging and indicate that the approach

provides reasonable quality solutions within limited running times.

Future researches will include an extensive computational experimentation to test the

scalability of the proposed ABM approach on very large scale instances of the considered

problems. Moreover, it will be studied the adaptation of the framework to other classes of

location problems such as the anti-p-Median problem (Erkut and Neuman (1989), Cappanera

et al. (2003)) and the p-Minimal Covering problem with distance constraints (Berman and

Huang (2008)).

104

Conclusions

The daily work of professionals involves making a series of decisions. In fact, the world relies

on systems designed by engineers and business people. Thus, the quality of decisions made by

these two categories of professionals is of critical importance.

Decisions are made by looking at the relevant data and making judgments. Making decisions

on issues with important consequences has become a highly complex problem due to the

many competing forces under which the world is operating today. Anyone who holds a

technical, managerial, or administrative job these days is faced with making decisions daily at

work and, thus, is called to solve Decision Making Problems. Today it is essential to make

decisions on a rational basis: the most rational way for solving decision making problems is

through quantitative analysis.

For a long time, classical optimization techniques (exact methods, heuristic methods) have

represented the only available approach to solve different types of decision-making problem,

both at strategic and tactical levels.

In the last decade, agent-based computing has been suggested as a promising technique for

problem whose domains are distributed, complex and heterogeneous (Weiss, 1999;

Wooldridge, 2002), also thanks to the availability of many commercial and open source codes

including graphical interfaces for the elements of the problem. Application to several classes

of optimization problems, ranging from scheduling and supply chain planning to routing, have

been developed, as shown in Chapter 3.

After having verified the presence, in the literature, of a broad set of agent-based approaches

for optimization problems, in this work an Agent-Based framework for modeling location

problems was proposed and illustrated. The original contribution of the work consists mainly

in the proposal of an approach that, compared to the other heuristic methods in the literature,

is easy to implement and appears particularly suitable for the integration with GIS based data.

Moreover it presents characteristics of flexibility as the general framework can be applied,

with slight modifications, to solve different kind of locations problems (i.e. p-Median like

problem, p-Maximal Covering like problem, Single Facility Minimum Variance like

problem). The features of the model suggest also the possibility of immediately adapting the

approach to take into account constraints (for instance, minimum distance constraints among

facilities, presence of obstacles or forbidden areas in the location space) whose formulation

makes the problem hard to solve using mathematical programming based methods.

105

The preliminary computational experiences appear encouraging and indicate that the approach

provides reasonable quality solutions within limited running times.

Future researches will include an extensive computational experimentation to test the

scalability of the proposed ABM approach on very large scale instances of the considered

problems. Moreover, it will be studied the adaptation of the framework to other classes of

location problems such as the anti-p-Median problem (Erkut and Neuman (1989), Cappanera

et al. (2003)) and the p-Minimal Covering problem with distance constraints (Berman and

Huang (2008)).

106

Appendix I

The NetLogo platform

Generalities

NetLogo is an open-source software platform that allows modeling complex and dynamics

systems. It has been developed at the Center for Connected Learning and Computer-Based

Modeling at Northwestern University. It is a continuously evolving project supported by a

wide users and developers community.

NetLogo architecture is based on a Java platform. Thus, it can be run on any compatible

architecture. NetLogo fundamental characteristics is an intuitive programming language that

allows even the non-specialist user implementing models. This programming is inspired to the

well-famous Logo; NetLogo codes are then translated into Java ones through a compiler

embedded in the architecture.

Within the simulation environment it is possible to implement three main agents categories:

• Turtles, representing proactive and reactive agents, as they perform evolutive actions

among themselves and with the environment. It is also possible to implement

different turtles categories (or classes), each endowed with particular characteristics.

• Patches, modeling passive agents. They represent square sections of a continuous

and bi-dimensional space; they are identified by means of specific coordinates.

• Observer representing a mediator architecture that inizializes active agents and

assigns them tasks.

NetLogo allows creating agentsets NetLogo that are aimed at defining classes of agents

sharing the same characteristics and behaviors. An agentset can be made up of a set of turtles

or patches, and it is identified in NetLogo code by using the primitive breed.

The NetLogo development kit presents three main fields:

• Procedures (Figure I.1) in which commands describing agents behavior can be

specified, by utilizing NetLogo primitives;

• Interface (Figure I.2) where the world in which the simulation takes place can be

observed. Plots and monitors can be inserted, in order to control the evolution of

relevant variables. Sliders and switches are designed to change parameter values

without modifying the underlying code;

• Information (Figure I.3) in which the main characteristic of the developed model can

be explained.

107

Figure I.1 - The procedures field

Figure I.2 - The interface field

108

Figure I.3 - The information field

NetLogo also provides the user with a broad library of already developed models that can be

used as starting point for new modeling attempts. The BehaviorSpace tool is aimed at the

development of experimental plans for the validation of the models.

109

Appendix 2

NetLogo codes of implemented ABM for Location Problems

Introduction

In the following section, the codes of implemented ABM for Location Problems (described in

Chapter 5) are listed. All the codes are written in NetLogo programming language.

P-Median model code

breed[locations location]
breed[existing.locations existing.location]
breed[aree.baricentrizzazione area.baricentrizzazione]
breed[aree.repulsione.locations area.repulsione.locations]
breed[aree.repulsione.utenza area.repulsione.utenza]
breed[distanze.confine distanza.confine]
breed[aree.copertura area.copertura]
breed[aree.repulsione area.repulsione]
breed[aree.attrazione area.attrazione]
breed[ombre ombra]
breed[shadows shadow]
breed[barriere barriera]
breed[points point]
breed[tips tip]

patches-own [densita.media
 densita.scala
 distanzia
 distanza
 dista
 dis
 num.loc.su
 visita
 faraway
 distn
 densita.patch
 cov
 cov1]

ombre-own[n.ombre
 no.barriere
 n.patches
 no.ombre
 n.ex]

existing.locations-own[val.e]

tips-own [Tx
 Ty
 Ux
 Uy
 direction

110

 step]

locations-own[Fx
 Fy
 Rx
 Ry
 Bx
 By
 direzione
 passo
 moto
 val
 val2
 val.b
 num.pat
 vicini]

globals[filename
 fitness
 contatore
 iterazioni
 non.migl
 corrente
 globale
 locale
 tip.corrente
 velocita.corrente
 velocita.locations
 velocita.tips
 barriere.vicine
 number.barriere
 number.locations
 number.ombre
 number.ombre2
 number.existing
 number.existing.ombre
 d
 covering.loc%
 covering.el%
 fac
 pat1
 ritorna
 total
 differenziazioni
 number.patches
 num.pat.loc
 totale.scala
 k
 vicini.glob]

to startup
 ca
 let known-paths
 ["./"
 "./models/"
 "./images/"
 "../models/"
 "../images/"]
 let basename "north40thmap.png"
 let paths-to-try length known-paths

111

 set filename false
 let index 0
 while [index < paths-to-try]
 [if file-exists? (word (item index known-paths) basename)
 [set filename (word (item index known-paths) basename)
 set index paths-to-try]
 set index index + 1]
 if filename = false
 [set filename user-file]
 if filename = false
 [stop]
 import-pcolors filename
 ask patches [
 if pcolor = black [set pcolor white]]
 migliora
end

to migliora
 import-drawing filename
end

to setup
clear-turtles
clear-plot
if mappa = "avellino" [ask patches[
if (pcolor <= 47.5) and (pcolor >= 46.5) [set densita.media 2]
if (pcolor <= 69.5) and (pcolor >= 67.0) [set densita.media 10]
if (pcolor <= 99.0) and (pcolor >= 97.0) [set densita.media 15]
if (pcolor <= 79.0) and (pcolor >= 77.0) [set densita.media 15]
if (pcolor <= 76.9) and (pcolor > 74.0) [set densita.media 20]
if (pcolor <= 85.0) and (pcolor > 83.0) [set densita.media 25]
if (pcolor <= 83.0) and (pcolor >= 81.0) [set densita.media 50]
if (pcolor <= 73.5) and (pcolor >= 72.0) [set densita.media 50]
if (pcolor <= 7.0) and (pcolor >= 4.0) [set densita.media 30]
if (pcolor <= 3.8) and (pcolor >= 2.4) [set densita.media 40]
if pcolor = white [set densita.media 0.0]
set densita.scala 1]]
if mappa = "campania" [ask patches[
if (pcolor <= 90.0) and (pcolor >= 80.0) [set densita.media 0.0]
if (pcolor <= 66.9) and (pcolor >= 63.0) [set densita.media 2.8]
if (pcolor <= 56.9) and (pcolor >= 54.0) [set densita.media 3.8]
if (pcolor <= 44.4) and (pcolor >= 42.0) [set densita.media 7.6]
if (pcolor <= 46.9) and (pcolor > 44.4) [set densita.media 27.6]
if (pcolor <= 28.5) and (pcolor >= 24.0) [set densita.media 125.1]
if (pcolor <= 133.5) and (pcolor >= 132.5) [set densita.media 760.3]
if (pcolor <= 16.9) and (pcolor >= 14.0) [set densita.media 760.3]
if pcolor = white [set densita.media 0]
if (pcolor <= 7.5) and (pcolor >= 7.0) [set densita.media 0]
set densita.scala 1]]
if mappa = "sicilia" [ask patches[
if (pcolor <= 47.5) and (pcolor >= 46.5) [set densita.media 10]
if (pcolor <= 19.4) and (pcolor >= 19.0) [set densita.media 20]
if (pcolor <= 18.9) and (pcolor >= 18.6) [set densita.media 35]
if (pcolor <= 18.5) and (pcolor >= 18.1) [set densita.media 75]
if (pcolor <= 18.0) and (pcolor >= 17.4) [set densita.media 100]
if (pcolor <= 17.3) and (pcolor >= 16.5) [set densita.media 200]
if (pcolor <= 16.4) and (pcolor >= 16.1) [set densita.media 300]
if (pcolor <= 16.0) and (pcolor >= 15.5) [set densita.media 750]
if (pcolor <= 99.0) and (pcolor >= 98.5) [set densita.media 0.0]
if pcolor = white [set densita.media 0.0]

112

set densita.scala 1]]
if mappa = "sardegna" [ask patches[
if (pcolor <= 47.5) and (pcolor >= 46.5) [set densita.media 10]
if (pcolor <= 19.4) and (pcolor >= 19.0) [set densita.media 25]
if (pcolor <= 18.9) and (pcolor >= 18.6) [set densita.media 50]
if (pcolor <= 18.5) and (pcolor >= 18.1) [set densita.media 75]
if (pcolor <= 18.0) and (pcolor >= 17.4) [set densita.media 100]
if (pcolor <= 17.3) and (pcolor >= 16.9) [set densita.media 150]
if (pcolor <= 16.8) and (pcolor >= 16.4) [set densita.media 200]
if (pcolor <= 16.3) and (pcolor >= 15.7) [set densita.media 500]
if (pcolor <= 99.0) and (pcolor >= 98.5) [set densita.media 0.0]
if pcolor = white [set densita.media 0.0]
set densita.scala 1]]
if mappa = "basilicata" [ask patches[
if (pcolor <= 47.0) and (pcolor >= 46.0) [set densita.media 10]
if (pcolor <= 58) and (pcolor >= 57.5) [set densita.media 20]
if (pcolor <= 57.4) and (pcolor >= 57) [set densita.media 35]
if (pcolor <= 6.5) and (pcolor >= 5.5) [set densita.media 50]
if (pcolor <= 5.4) and (pcolor >= 5) [set densita.media 75]
if (pcolor <= 106) and (pcolor >= 105.5) [set densita.media 150]
if (pcolor <= 99.0) and (pcolor >= 98.5) [set densita.media 0]
if (pcolor <= 7.5) and (pcolor >= 7.0) [set densita.media 0]
set densita.scala 1]]
if mappa = "nuova.mappa" [ask patches[
if (pcolor <= a.01) and (pcolor >= da.01) [set densita.media densita.01]
if (pcolor <= a.02) and (pcolor >= da.02) [set densita.media densita.02]
if (pcolor <= a.03) and (pcolor >= da.03) [set densita.media densita.03]
if (pcolor <= a.04) and (pcolor >= da.04) [set densita.media densita.04]
if (pcolor <= a.05) and (pcolor >= da.05) [set densita.media densita.05]
if (pcolor <= a.06) and (pcolor >= da.06) [set densita.media densita.06]
if (pcolor <= a.07) and (pcolor >= da.07) [set densita.media densita.07]
if (pcolor <= a.08) and (pcolor >= da.08) [set densita.media densita.08]
if (pcolor <= a.09) and (pcolor >= da.09) [set densita.media densita.09]
if (pcolor <= a.10) and (pcolor >= da.10) [set densita.media densita.10]
if (pcolor <= a.11) and (pcolor >= da.11) [set densita.media densita.11]
if (pcolor <= a.12) and (pcolor >= da.12) [set densita.media densita.12]
set densita.scala 1]]
set iterazioni 0
set contatore 0
set non.migl 0
set globale 999999999 set locale 999999999 set corrente 999999999
create-custom-points 1 [set xcor 0 set ycor 0 set shape "dot" set size 0.1 set color white]
create-custom-barriere numero.barriere [posiziona.barriere set shape "location0" set color blue set label who]
create-custom-existing.locations numero.existing.locations [posiziona.existing set shape "house" set size 1.0 set
color blue set label who]
create-custom-locations numero.locations [posiziona set shape "dot" set size 2.2 set color red set label who]
create-custom-aree.repulsione numero.locations [setxy xcor-of location (who - numero.locations) ycor-of
location (who - numero.locations) set shape "location1" set size (((distanza.repulsione) * 2)- 1)set hidden? not
hidden?]
create-custom-aree.attrazione numero.locations [setxy xcor-of location (who - (2 * numero.locations)) ycor-of
location (who - (2 * numero.locations)) set shape "location" set size (((visibilita) * 2)- 1)set hidden? not hidden?]
create-custom-ombre numero.locations [setxy xcor-of location (who - (3 * numero.locations)) ycor-of location
(who - (3 * numero.locations)) set shape "house" set size 1.0 set color white set hidden? not hidden?]
create-custom-shadows numero.locations [setxy xcor-of location (who - (4 * numero.locations)) ycor-of location
(who - (4 * numero.locations)) set shape "dot" set size 1.6 set color yellow set hidden? not hidden?]
create-custom-tips numero.locations [setxy xcor-of location (who - (5 * numero.locations)) ycor-of location
(who - (5 * numero.locations)) set shape "dot" set size 1.6 set color black ask tips [ht]]
ask aree.repulsione[__tie area.repulsione (who) location (who - numero.locations)]
ask aree.attrazione[__tie area.attrazione (who) location (who - (2 * numero.locations))]
end

113

to posiziona
setxy (random-xcor) (random-ycor)
if densita.media-of patch-here = 0 [posiziona]
end

to posiziona.barriere
if numero.barriere = 1 [set xcor b.xcoord set ycor b.ycoord set size (raggio.barriera * 2)]
if numero.barriere = 2 [if who = 1 [set xcor b.xcoord set ycor b.ycoord set size (raggio.barriera * 2)] if who = 2
[set xcor b.xcoord1 set ycor b.ycoord1 set size (raggio.barriera1 * 2)]]
if numero.barriere = 3 [if who = 1 [set xcor b.xcoord set ycor b.ycoord set size (raggio.barriera * 2)] if who = 2
[set xcor b.xcoord1 set ycor b.ycoord1 set size (raggio.barriera1 * 2)] if who = 3 [set xcor b.xcoord2 set ycor
b.ycoord2 set size (raggio.barriera2 * 2)]]
end

to posiziona.existing
if numero.existing.locations = 1 [set xcor xcoord set ycor ycoord]
if numero.existing.locations = 2 [if who = (numero.barriere) [set xcor xcoord set ycor ycoord] if who =
(numero.barriere + 1) [set xcor xcoord1 set ycor ycoord1]]
if numero.existing.locations = 3 [if who = (numero.barriere) [set xcor xcoord set ycor ycoord] if who =
(numero.barriere + 1) [set xcor xcoord1 set ycor ycoord1] if who = (numero.barriere + 2) [set xcor xcoord2 set
ycor ycoord2]]
if numero.existing.locations = 4 [if who = (numero.barriere) [set xcor xcoord set ycor ycoord] if who =
(numero.barriere + 1) [set xcor xcoord1 set ycor ycoord1] if who = (numero.barriere + 2) [set xcor xcoord2 set
ycor ycoord2] if who = (numero.barriere + 3) [set xcor xcoord3 set ycor ycoord3]]
if numero.existing.locations = 5 [if who = (numero.barriere) [set xcor xcoord set ycor ycoord] if who =
(numero.barriere + 1) [set xcor xcoord1 set ycor ycoord1] if who = (numero.barriere + 2) [set xcor xcoord2 set
ycor ycoord2] if who = (numero.barriere + 3) [set xcor xcoord3 set ycor ycoord3] if who = (numero.barriere + 4)
[set xcor xcoord4 set ycor ycoord4]]
end

to go
 attrai1
 attrai1.2
 respingi1
 respingi1.2
 calcola.risultante1
 calcola.risultante1.2
 muovi.tips1
 muovi1
 memorizza
 mostra.aree1
 conteggio1
 conta.barriere1
 distacca.ombre1
 distacca.shadows1
 invisibile1
 evidenzia
 plotta
set iterazioni iterazioni + 1
set contatore contatore + 1
if (iterazioni = num.iterazione) [final.set1 stop]
set totale.scala (sum values-from patches [densita.scala * faraway])
ifelse (iterazioni > 1) [set k (94576.22 / totale.scala)] [set k 2]
set corrente (sum values-from patches [densita.media * distanzia * k])
set locale (sum values-from patches [densita.media * distanza * k])
set tip.corrente (sum values-from patches [densita.media * distn * k])
set fitness (sum values-from patches [densita.media * distanzia]) / (sum values-from patches [densita.media]) * k
ask patches [ifelse calcolo.f.obiettivo
 [let x pxcor

114

 let y pycor
 let distanz values-from (locations)[distancexy x y]
 let lont values-from (existing.locations)[distancexy x y]
 let tot distanz + lont
 set distanzia min tot
 let distan values-from (shadows) [distancexy x y]
 let totl distan + lont
 set distanza min totl
 let far values-from (points) [distancexy x y]
 set faraway min far
 let distnz values-from (tips) [distancexy x y]
 let distnz1 distnz + lont
 set distn min distnz1]
 [let x pxcor
 let y pycor
 let distanz values-from (locations)[distancexy x y]
 set distanzia min distanz
 let distan values-from (shadows) [distancexy x y]
 set distanza min distan
 let far values-from (points) [distancexy x y]
 set faraway min far
 let distnz values-from (tips) [distancexy x y]
 set distn min distnz]]
if diversifica[
torna
if ritorna = true[
ask locations[
posiziona]
ask shadows[posizionamento.shadows1]
ask tips[posizionamento.tips1]
set ritorna false]]
 end

to memorizza
ask patches[
set num.loc.su(num.loc.su + ((count locations-on patch pxcor pycor)))
if (num.loc.su >= num.max)
[set visita 1]]
end

to torna
ask locations[
if (visita-of patch-here = 1)
[set ritorna true]]
end

to attrai1
ask locations [without-interruption[
let x xcor
let y ycor
let norma ((count patches in-radius visibilita) - 1)
 let lista.patch remove patch-here values-from patches in-radius visibilita [patch pxcor pycor]
 let lista.x map [pxcor-of ?] lista.patch
 let lista.y map [pycor-of ?] lista.patch
 let lista.densita map[(densita.media-of ?) / norma]lista.patch
 let lista.distanze map [(distance ?) / norma]lista.patch
 let x.cor sum(map [?1 * ?2 * sin towardsxy ?3 ?4]lista.densita lista.distanze lista.x lista.y)
 let y.cor sum(map [?1 * ?2 * cos towardsxy ?3 ?4]lista.densita lista.distanze lista.x lista.y)

 set Fx precision (x.cor) 3

115

 set Fy precision (y.cor) 3]]
end

to attrai1.2
ask tips [without-interruption[
let x xcor
let y ycor
let norma ((count patches in-radius visibilita) - 1)
 let lista.patch remove patch-here values-from patches in-radius visibilita [patch pxcor pycor]
 let lista.x map [pxcor-of ?] lista.patch
 let lista.y map [pycor-of ?] lista.patch
 let lista.densita map[(densita.media-of ?) / norma]lista.patch
 let lista.distanze map [(distance ?) / norma]lista.patch
 let x.cor sum(map [?1 * ?2 * sin towardsxy ?3 ?4]lista.densita lista.distanze lista.x lista.y)
 let y.cor sum(map [?1 * ?2 * cos towardsxy ?3 ?4]lista.densita lista.distanze lista.x lista.y)
 set Tx precision (x.cor) 3
 set Ty precision (y.cor) 3]]
end

to respingi1
ask locations [without-interruption[
let x xcor
let y ycor
let norma count locations in-radius distanza.repulsione
let norma0 count barriere with [who = 1] in-radius raggio.barriera
let norma1 count barriere with [who = 2] in-radius raggio.barriera1
let norma2 count barriere with [who = 3] in-radius raggio.barriera2
let norma.el count existing.locations in-radius distanza.repulsione
let norma.tot (norma + norma0 + norma1 + norma2 + norma.el)
 let lista.locations remove self values-from locations in-radius distanza.repulsione [turtle who]
 let lista.barriere0 remove self values-from barriere with [who = 1] in-radius raggio.barriera [turtle who]
 let lista.barriere1 remove self values-from barriere with [who = 2] in-radius raggio.barriera1 [turtle who]
 let lista.barriere2 remove self values-from barriere with [who = 3] in-radius raggio.barriera2 [turtle who]
 let lista.existing remove self values-from existing.locations in-radius distanza.repulsione [turtle who]
 let lista.repulsione (lista.locations + lista.barriere0 + lista.barriere1 + lista.barriere2 + lista.existing)
 let lista.x map [xcor-of ?] lista.repulsione
 let lista.y map [ycor-of ?] lista.repulsione
 let lista.distanze map [(1 / (distance ?)) / norma.tot]lista.repulsione
 let x.cor sum(map [?1 * sin towardsxy ?2 ?3]lista.distanze lista.x lista.y)
 let y.cor sum(map [?1 * cos towardsxy ?2 ?3]lista.distanze lista.x lista.y)
 set Rx precision x.cor 3
 set Ry precision y.cor 3]]
end

to respingi1.2
ask tips [without-interruption[
let x xcor
let y ycor
let norma count tips in-radius distanza.repulsione
 let lista.tips remove self values-from tips in-radius distanza.repulsione [turtle who]
 let lista.x map [xcor-of ?] lista.tips
 let lista.y map [ycor-of ?] lista.tips
 let lista.distanze map [(1 / (distance ?)) / norma]lista.tips
 let x.cor sum(map [?1 * sin towardsxy ?2 ?3]lista.distanze lista.x lista.y)
 let y.cor sum(map [?1 * cos towardsxy ?2 ?3]lista.distanze lista.x lista.y)
 set Ux precision x.cor 3
 set Uy precision y.cor 3]]
end

to calcola.risultante1

116

ask locations[
let x.ris ((a * Fx) - ((1 - a) * Rx))
let y.ris ((a * Fy) - ((1 - a) * Ry))
ifelse x.ris != 0 or y.ris != 0 [set passo precision (sqrt ((x.ris ^ 2) + (y.ris ^ 2))) 3][set passo 0]
if (x.ris + xcor) != xcor or (y.ris + ycor) != ycor[set direzione precision (towardsxy (x.ris + xcor) (y.ris + ycor))
3]]
 end

to calcola.risultante1.2
ask tips[
let x.ris ((a * Tx) - ((1 - a) * Ux))
let y.ris ((a * Ty) - ((1 - a) * Uy))
ifelse x.ris != 0 or y.ris != 0 [set step precision (sqrt ((x.ris ^ 2) + (y.ris ^ 2))) 3][set step 0]
if (x.ris + xcor) != xcor or (y.ris + ycor) != ycor[set direction precision (towardsxy (x.ris + xcor) (y.ris + ycor))
3]]
 end

to conteggio1
ifelse auto.differenzia [ifelse corrente >= locale [set non.migl non.migl + 1] [set non.migl 0]] [set non.migl 0]
if (non.migl = iteraz.auto.differenzia) [differenzia1]
end

to differenzia1
set contatore 0
ask locations [posizionamento1]
ask shadows [posizionamento.shadows1]
ask tips [posizionamento.tips1]
end

to conta.barriere1
ask locations[
let norma0 count barriere with [who = 1] in-radius raggio.barriera
let norma1 count barriere with [who = 2] in-radius raggio.barriera1
let norma2 count barriere with [who = 3] in-radius raggio.barriera2
ifelse ((norma0 > 0) or (norma1 > 0) or (norma2 > 0)) [set val 1] [set val 0]]
set number.barriere sum values-from locations [val]
end

to posizionamento1
setxy (random-xcor) (random-ycor)
set non.migl 0
if densita.media-of patch-here = 0 [posizionamento1]
end

to posizionamento.shadows1
setxy xcor-of location (who - (4 * numero.locations)) ycor-of location (who - (4 * numero.locations))
end

to posizionamento.tips1
setxy xcor-of location (who - (5 * numero.locations)) ycor-of location (who - (5 * numero.locations))
end

to muovi1
if mappa = "avellino" [ask locations[ifelse pcolor = white [set heading direzione fd 0]
[ifelse gradiente [ifelse iterazioni = 0 or iterazioni = 1 [set velocita.locations speed] [set velocita.locations (speed
+ (speed * (((locale / tip.corrente) - 1) * 3)))
 ask locations[
 set heading direzione
 fd passo + velocita.locations]]]
 [set velocita.locations speed

117

 ask locations[
 set heading direzione
 fd passo + speed]]]]]
if mappa = "campania" [ask locations[ifelse ((pcolor <= 7.5) and (pcolor >= 7.0)) or ((pcolor <= 90.0) and
(pcolor >= 80.0))[set heading direzione fd 0]
[ifelse gradiente [ifelse iterazioni = 0 or iterazioni = 1 [set velocita.locations speed] [set velocita.locations (speed
+ (speed * (((locale / tip.corrente) - 1) * 3)))
 ask locations[
 set heading direzione
 fd passo + velocita.locations]]]
 [set velocita.locations speed
 ask locations[
 set heading direzione
 fd passo + speed]]]]]
if ((mappa = "sicilia") or (mappa = "sardegna")) [ask locations[ifelse ((pcolor <= 99.0) and (pcolor >= 98.5))[set
heading direzione fd 0]
[ifelse gradiente [ifelse iterazioni = 0 or iterazioni = 1 [set velocita.locations speed] [set velocita.locations (speed
+ (speed * (((locale / tip.corrente) - 1) * 3)))
 ask locations[
 set heading direzione
 fd passo + velocita.locations]]]
 [set velocita.locations speed
 ask locations[
 set heading direzione
 fd passo + speed]]]]]
if (mappa = "basilicata") [ask locations[ifelse (((pcolor <= 99.0) and (pcolor >= 98.5)) or ((pcolor <= 7) and
(pcolor >= 7.0)) or (pcolor = white)) [set heading direzione fd 0]
[ifelse gradiente [ifelse iterazioni = 0 or iterazioni = 1 [set velocita.locations speed] [set velocita.locations (speed
+ (speed * (((locale / tip.corrente) - 1) * 3)))
 ask locations[
 set heading direzione
 fd passo + velocita.locations]]]
 [set velocita.locations speed
 ask locations[
 set heading direzione
 fd passo + speed]]]]]
if (mappa = "nuova.mappa") [ask locations[ifelse (((pcolor <= a.11) and (pcolor >= da.11)) or ((pcolor <= a.12)
and (pcolor >= da.12))) [set heading direzione fd 0]
[ifelse gradiente [ifelse iterazioni = 0 or iterazioni = 1 [set velocita.locations speed] [set velocita.locations (speed
+ (speed * (((locale / tip.corrente) - 1) * 3)))
 ask locations[
 set heading direzione
 fd passo + velocita.locations]]]
 [set velocita.locations speed
 ask locations[
 set heading direzione
 fd passo + speed]]]]]
end

to muovi.tips1
set velocita.tips velocita.locations * 1.5
ask tips [set heading direction
 fd step + velocita.tips]
end

to distacca.ombre1
ask ombre [
if (iterazioni > 1) and (contatore > 1) and (number.barriere = 0)[if corrente < globale
[setxy xcor-of location (who - (3 * numero.locations)) ycor-of location (who - (3 * numero.locations)) set
globale corrente]]]

118

ask ombre [
let norma0 count barriere with [who = 1] in-radius raggio.barriera
let norma1 count barriere with [who = 2] in-radius raggio.barriera1
let norma2 count barriere with [who = 3] in-radius raggio.barriera2
ifelse ((norma0 > 0) or (norma1 > 0) or (norma2 > 0))[set n.ombre 1] [set n.ombre 0]
set number.ombre sum values-from ombre [n.ombre]]
ifelse number.ombre > 0 [ask ombre [die] set d 1] [set d 0]
if d = 1 [create-custom-ombre numero.locations [setxy xcor-of location (who - (3 * numero.locations)) ycor-of
location (who - (3 * numero.locations)) set shape "house" set size 1.0 set color white set hidden? not hidden?]]
end

to distacca.shadows1
ask shadows [
ifelse (corrente < locale)
[setxy xcor-of location (who - (4 * numero.locations)) ycor-of location (who - (4 * numero.locations))] [set xcor
xcor + 0.0 set ycor ycor + 0.0]]
end

to mostra.aree1
ifelse mostra.aree.influenza [ask aree.repulsione[show-turtle]ask aree.attrazione[show-turtle]]
 [ask aree.repulsione[ht]ask aree.attrazione[ht]]
end

to invisibile1
ifelse set.opt [ask ombre [show-turtle] ask shadows [show-turtle]]
 [ask ombre [ht] ask shadows [ht]]
end

to final.set1
ask locations [die] ask shadows [die] ask aree.repulsione [die] ask aree.attrazione [die]
ask ombre [set shape "house" set size 1.3 set color violet]
ask existing.locations [set shape "house" set size 1.3 set color blue]
if ((number.barriere > 0) and (globale = 999999999)) [ask ombre [die] set globale "nd"]
end

to plotta
set-current-plot "valore f.o."
if iterazioni > 0 [plot corrente]
end

to evidenzia
if mostra.aree.influenza = false
[if mouse-inside? [
 let min-d min values-from locations [distancexy mouse-xcor mouse-ycor]
 let chi one-of aree.repulsione with [distancexy mouse-xcor mouse-ycor = min-d]
 let che one-of aree.attrazione with [distancexy mouse-xcor mouse-ycor = min-d]
 if chi != nobody and che != nobody
 [ask chi[show-turtle]ask che[show-turtle]]]]
End

119

Single Facility Minimum Variance model code

breed[locations location]
breed[aree.repulsion.locations area.repulsione.locations]
breed[aree.repulsione area.repulsione]
breed[aree.attrazione area.attrazione]
breed[ombre ombra]
breed[tips tip]
breed[shadows shadow]

patches-own [densita.media
 patch-id
 distanzia
 dista
 visita
 num.loc.su
 densita.scala
 distanza
 dis
 distn
 densita.patch]

locations-own[Fx
 Fy
 Rx
 Ry
 direzione
 passo]

tips-own [Tx
 Ty
 Ux
 Uy
 direction
 step]

globals[filename
 corrente
 fitness
 globale
 locale
 tip.corrente
 velocita.corrente
 velocita.locations
 velocita.tips
 number.locations
 number.ombre
 differenziazioni
 number.patches
 non.migl
 num.pat.loc
 totale.scala
 contatore
 iterazioni
 mediana
 ritorna
 d

120

 best.mediana
 special-patches
 varianza
 avgdis]

to setup
ca
ask patches [set patch-id pxcor +","+ pycor]
let patch-list1[
"88,16"
"36,73"
"64,95"
"68,33"
"15,20"
"71,92"
"93,7"
"41,71"
"86,69"
"20,34"
"23,99"
"69,77"
"85,78"
"59,27"
"71,94"
"5,38"
"32,84"
"91,71"
"44,49"
"47,9"]
set special-patches patches with [member? patch-id patch-list1]
 ask special-patches [
 set densita.media 10 set pcolor 55]
ask patches[
 if pcolor = black [set pcolor white]
 if pcolor = white [set densita.media 0]]
set iterazioni 0
set contatore 0
set non.migl 0
set globale 999999999 set locale 999999999 set corrente 999999999
create-custom-locations numero.locations [posiziona set shape "dot" set size 1.0 set color black set label who]
create-custom-aree.repulsione numero.locations [setxy xcor-of location (who - numero.locations) ycor-of
location (who - numero.locations) set shape "location1" set size (((distanza.repulsione) * 2)- 1)set hidden? not
hidden?]
create-custom-aree.attrazione numero.locations [setxy xcor-of location (who - (2 * numero.locations)) ycor-of
location (who - (2 * numero.locations)) set shape "location" set size (((visibilita) * 2)- 1)set hidden? not hidden?]
create-custom-ombre numero.locations [setxy xcor-of location (who - (3 * numero.locations)) ycor-of location
(who - (3 * numero.locations)) set shape "dot" set size 0.7 set color white set hidden? not hidden?]
create-custom-shadows numero.locations [setxy xcor-of location (who - (4 * numero.locations)) ycor-of location
(who - (4 * numero.locations)) set shape "dot" set size 1.6 set color blue set hidden? not hidden?]
create-custom-tips numero.locations [setxy xcor-of location (who - (5 * numero.locations)) ycor-of location
(who - (5 * numero.locations)) set shape "dot" set size 1.6 set color black ask tips [ht]]
ask aree.repulsione[__tie area.repulsione (who) location (who - numero.locations)]
ask aree.attrazione[__tie area.attrazione (who) location (who - (2 * numero.locations))]
end

to posiziona
setxy (random-xcor) (random-ycor)
if densita.media-of patch-here = 0 [posiziona]
end

121

to go
 attrai1
 attrai1.2
 respingi1
 respingi1.2
 calcola.risultante1
 calcola.risultante1.2
 muovi.tips1
 muovi1
 memorizza
 mostra.aree1
 conteggio1
 distacca.ombre1
 distacca.shadows1
 invisibile1
 plotta
set iterazioni iterazioni + 1
set contatore contatore + 1
if iterazioni = num.iterazione [stop]
set corrente (sum values-from patches [densita.media * distanzia])
set locale (sum values-from patches [densita.media * distanza])
set tip.corrente (sum values-from patches [densita.media * distn])
set fitness (sum values-from patches [densita.media * distanzia])/(sum values-from patches[densita.media])
ask patches
 [let x pxcor
 let y pycor
 let distanz values-from (locations)[distancexy x y]
 set distanzia min distanz
 let distan values-from (shadows) [distancexy x y]
 set distanza min distan
 let distnz values-from (tips) [distancexy x y]
 set distn min distnz]
 torna
 if ritorna = true[
 ask locations[
 setxy (random-xcor) (random-ycor)]
 ask shadows[posizionamento.shadows1]
 ask tips[posizionamento.tips1]
 set ritorna false]
 end

to memorizza
ask patches[
 set num.loc.su (num.loc.su + ((count locations-on patch pxcor pycor)))
if(num.loc.su >= num.max)
 [set visita 1]]
end

to attrai1
ask locations [without-interruption[
let x xcor
let y ycor
let norma ((count patches in-radius visibilita) - 1)
 let lista.patch remove patch-here values-from patches in-radius visibilita [patch pxcor pycor]
 let lista.x map [pxcor-of ?] lista.patch
 let lista.y map [pycor-of ?] lista.patch
 let lista.densita map[(densita.media-of ?) / norma]lista.patch
 let lista.distanze map [(distance ?) / norma]lista.patch
 let x.cor sum(map [?1 * ?2 * sin towardsxy ?3 ?4]lista.densita lista.distanze lista.x lista.y)
 let y.cor sum(map [?1 * ?2 * cos towardsxy ?3 ?4]lista.densita lista.distanze lista.x lista.y)

122

 set Fx precision (x.cor) 3
 set Fy precision (y.cor) 3]]
end

to attrai1.2
ask tips [without-interruption[
let x xcor
let y ycor
let norma ((count patches in-radius visibilita) - 1)
 let lista.patch remove patch-here values-from patches in-radius visibilita [patch pxcor pycor]
 let lista.x map [pxcor-of ?] lista.patch
 let lista.y map [pycor-of ?] lista.patch
 let lista.densita map[(densita.media-of ?) / norma]lista.patch
 let lista.distanze map [(distance ?) / norma]lista.patch
 let x.cor sum(map [?1 * ?2 * sin towardsxy ?3 ?4]lista.densita lista.distanze lista.x lista.y)
 let y.cor sum(map [?1 * ?2 * cos towardsxy ?3 ?4]lista.densita lista.distanze lista.x lista.y)
 set Tx precision (x.cor) 3
 set Ty precision (y.cor) 3]]
end

to respingi1
ask locations [without-interruption[
let x xcor
let y ycor
let norma count locations in-radius distanza.repulsione
 let lista.locations remove self values-from locations in-radius distanza.repulsione [turtle who]
 let lista.x map [xcor-of ?] lista.locations
 let lista.y map [ycor-of ?] lista.locations
 let lista.distanze map [(1 / (distance ?)) / norma]lista.locations
 let x.cor sum(map [?1 * sin towardsxy ?2 ?3]lista.distanze lista.x lista.y)
 let y.cor sum(map [?1 * cos towardsxy ?2 ?3]lista.distanze lista.x lista.y)
 set Rx precision x.cor 3
 set Ry precision y.cor 3]]
end

to respingi1.2
ask tips [without-interruption[
let x xcor
let y ycor
let norma count tips in-radius distanza.repulsione
 let lista.tips remove self values-from tips in-radius distanza.repulsione [turtle who]
 let lista.x map [xcor-of ?] lista.tips
 let lista.y map [ycor-of ?] lista.tips
 let lista.distanze map [(1 / (distance ?)) / norma]lista.tips
 let x.cor sum(map [?1 * sin towardsxy ?2 ?3]lista.distanze lista.x lista.y)
 let y.cor sum(map [?1 * cos towardsxy ?2 ?3]lista.distanze lista.x lista.y)

 set Ux precision x.cor 3
 set Uy precision y.cor 3]]
end

to calcola.risultante1
ask locations[
let x.ris ((a * Fx) - ((1 - a) * Rx))
let y.ris ((a * Fy) - ((1 - a) * Ry))
ifelse x.ris != 0 or y.ris != 0 [set passo precision (sqrt ((x.ris ^ 2) + (y.ris ^ 2))) 3][set passo 0]
if (x.ris + xcor) != xcor or (y.ris + ycor) != ycor[set direzione precision (towardsxy (x.ris + xcor) (y.ris + ycor))
3]]
end

123

to calcola.risultante1.2
ask tips[
let x.ris ((a * Tx) - ((1 - a) * Ux))
let y.ris ((a * Ty) - ((1 - a) * Uy))
ifelse x.ris != 0 or y.ris != 0 [set step precision (sqrt ((x.ris ^ 2) + (y.ris ^ 2))) 3][set step 0]
if (x.ris + xcor) != xcor or (y.ris + ycor) != ycor[set direction precision (towardsxy (x.ris + xcor) (y.ris + ycor))
3]]
end

to conteggio1
ifelse auto.differenzia [ifelse corrente >= locale [set non.migl non.migl + 1] [set non.migl 0]] [set non.migl 0]
if (non.migl = iteraz.auto.differenzia) [differenzia1]
end

to differenzia1
set contatore 0
ask locations [posizionamento1]
ask shadows [posizionamento.shadows1]
ask tips [posizionamento.tips1]
end

to muovi1
ask locations[
ifelse gradiente [ifelse iterazioni = 0 or iterazioni = 1 [set velocita.locations speed] [set velocita.locations (speed
+ (speed * (((locale / tip.corrente) - 1) * 3)))
 ask locations[
 set heading direzione
 fd passo + velocita.locations]]]
 [set velocita.locations speed
 ask locations[
 set heading direzione
 fd passo + speed]]]
end

to muovi.tips1
set velocita.tips velocita.locations * 1.5
ask tips [set heading direction
 fd step + velocita.tips]
end

to torna
ask locations[
if(visita-of patch-here = 1)
[set ritorna true]]
end

to posizionamento1
setxy (random-xcor) (random-ycor)
set non.migl 0
if densita.media-of patch-here = 0 [posizionamento1]
end

to posizionamento.shadows1
setxy xcor-of location (who - (4 * numero.locations)) ycor-of location (who - (4 * numero.locations))
end

to posizionamento.tips1
setxy xcor-of location (who - (5 * numero.locations)) ycor-of location (who - (5 * numero.locations))
end

124

to distacca.ombre1
ask ombre [
if (iterazioni > 1) and (contatore > 1) [if corrente < globale
[setxy xcor-of location (who - (3 * numero.locations)) ycor-of location (who - (3 * numero.locations)) set
globale corrente]]]
end

to distacca.shadows1
ask shadows [
ifelse (corrente < locale)
[setxy xcor-of location (who - (4 * numero.locations)) ycor-of location (who - (4 * numero.locations))] [set xcor
xcor + 0.0 set ycor ycor + 0.0]]
end

to distacca1
ask ombre [
if mediana < best.mediana
[setxy xcor-of location (who - (3 * numero.locations)) ycor-of location (who - (3 * numero.locations))]]
end

to mostra.aree1
ifelse mostra.aree.influenza [ask aree.repulsione[show-turtle]ask aree.attrazione[show-turtle]]
 [ask aree.repulsione[ht]ask aree.attrazione[ht]]
end

to evidenzia1
if mostra.aree.influenza = false[
 if mouse-inside? [
 let min-d min values-from locations [distancexy mouse-xcor mouse-ycor]
 let chi one-of aree.repulsione with [distancexy mouse-xcor mouse-ycor = min-d]
 let che one-of aree.attrazione with [distancexy mouse-xcor mouse-ycor = min-d]
 if chi != nobody and che != nobody
 [ask chi[show-turtle]ask che[show-turtle]]]]
end

to invisibile1
ifelse set.opt [ask ombre [show-turtle]]
 [ask ombre [ht]]
end

to final.set1
ask locations [die] ask shadows [die] ask aree.repulsione [die] ask aree.attrazione [die]
ask ombre [set shape "house" set size 1.3 set color violet]
end

to plotta
set-current-plot "mediana"
plot locale
if iterazioni > 0 [plot corrente]
end

125

P-maximal covering model codes

Greedy Algorithm
breed[locations location]
breed[aree.repulsione area.repulsione]
breed[aree.repulsione1 area.repulsione1]
breed[aree.attrazione1 area.attrazione1]
breed[aree.attrazione area.attrazione]
breed[ombre ombra]
breed[ombre2 ombra2]
breed[shadows shadow]
breed[espls espl]
breed[shadows2 shadow2]
breed[loca loc]
breed[aree.visibilita area.visibilita]

patches-own [
 densita.media
 densita.patch
 densita.patch2
 densita.patch3
 cov
 cov2
 cov3]

loca-own[
 Kx
 Ky
 Wx
 Wy
 direzionel
 passol
 motol]

espls-own[
 Ex
 Ey
 Gx
 Gy
 direzione1
 passo1
 moto1]

locations-own[
 Fx
 Fy

126

 Rx
 Ry
 direzione
 passo
 moto]

globals[
 filename
 iterazioni
 contatore
 copertura.aum
 C<=LBC
 contatore.parziale
 covering%
 covering%.locale
 covering%.loca
 best.covering%.loca
 best.covering%.locale
 local.covering%.loca
 local.covering%.locale
 fac
 iter.migliorative
 non.meglio
 num.espl
 num.messe
 pat
 total
 totale
 x2
 y2
 lx
 ly
 num.volte]

to startup
 ca
 let known-paths
 ["./"
 "./models/"
 "./images/"
 "../models/"
 "../images/"]
 let basename "north40thmap.png"
 let paths-to-try length known-paths
 set filename false
 let index 0
 while [index < paths-to-try]
 [if file-exists? (word (item index known-paths) basename)
 [set filename (word (item index known-paths) basename)
 set index paths-to-try]
 set index index + 1]
 if filename = false
 [set filename user-file]
 if filename = false
 [stop]
migliora
 import-pcolors filename
 ask patches [
 if pcolor = black [set pcolor white]]

127

end

to migliora
 import-drawing filename
end

to setup
clear-turtles

ask patches[
if (pcolor <= 89.0) and (pcolor >= 85.0) [set densita.media 1]
if (pcolor <= 76.0) and (pcolor >= 72.0) [set densita.media 10]
if (pcolor <= 27.0) and (pcolor >= 25.0) [set densita.media 30]
if (pcolor <= 15.0) and (pcolor >= 10.0) [set densita.media 100]
if pcolor = white [set densita.media 0.0]]
set iterazioni 0
set contatore 0
set num.espl 1
set contatore.parziale 0
set C<=LBC 0
set covering% 0
set best.covering%.loca 0
set best.covering%.locale 0
set local.covering%.locale 0
set covering%.locale 0
set copertura.aum copertura
set num.messe 0
set num.volte 0

create-custom-espls num.espl[posiziona set shape "dot" set size 3.2 set color red set label who]
create-custom-aree.repulsione num.espl[setxy xcor-of espl(who - num.espl) ycor-of espl(who - num.espl)set
shape "location1" set size (((distanza.repulsione)* 2) - 1) set hidden? not hidden?]
create-custom-aree.attrazione num.espl[setxy xcor-of espl(who - 2 * num.espl) ycor-of espl (who - 2 *
num.espl)set shape "location" set size (((copertura)* 2)- 1) set hidden? not hidden?]
create-custom-shadows num.espl[setxy xcor-of espl(who - 3 * num.espl)ycor-of espl (who - 3 * num.espl) set
shape "dot" set size 1.6 set color yellow set hidden? not hidden?]
create-custom-ombre num.espl[setxy xcor-of espl(who - 4 * num.espl)ycor-of espl(who - 4 * num.espl) set shape
"dot" set size 1.2 set color green set hidden? not hidden?]
create-custom-loca num.espl[posiziona set shape "dot" set size 3.3 set color blue set label who]
create-custom-aree.visibilita num.espl[setxy xcor-of loc(who - num.espl)ycor-of loc(who - num.espl) set shape
"location3" set size(((copertura) * 2)- 1) set hidden? not hidden?]
create-custom-ombre2 num.espl[setxy xcor-of loc(who - (2 * num.espl)) ycor-of loc(who - (2 * num.espl)) set
shape"dot"set size 1.6 set hidden? not hidden?]
create-custom-shadows2 num.espl[setxy xcor-of loc(who - 3 * num.espl)ycor-of loc(who - 3 * num.espl) set
shape "dot" set size 1.3 set color black set hidden? not hidden?]
ask aree.repulsione[__tie area.repulsione (who) espl(who - num.espl)]
ask aree.attrazione [__tie area.attrazione (who) espl(who - (2 * num.espl))]
ask aree.visibilita [__tie area.visibilita(who)loc(who - num.espl)]
end

to go
if num.messe = numero.locations[
ask locations[without-interruption[
set cov3 sum values-from patches in-radius copertura [densita.patch3]
set covering%(((sum values-from locations [cov3]) / total * 100))]]
mostra.aree1
final.set
stop]
attrai

128

attrai1.2
respingi
calcola.risultante
calcola.risultante1.2
muovi
muovi1.2
verifica
verifica1.2
diversifica
ferma
cambia
meme
meme2
meme.ombre2
meme.ombre
copri
calcola
mostra.aree2
set contatore.parziale contatore.parziale + 1
set iterazioni iterazioni + 1
ask patch 0 0 [set total sum values-from patches in-radius 100 [densita.media]]

ask espls [without-interruption[
set pat count patches in-radius copertura
set cov sum values-from patches in-radius copertura [densita.patch2]
set covering%.locale (((sum values-from espls [cov]) / total)* 100)]]
ask loca [without-interruption[
set pat count patches in-radius copertura
set cov2 sum values-from patches in-radius copertura [densita.patch]
set covering%.loca (((sum values-from loca [cov2]) / total)* 100)]]
ask locations[without-interruption[
set cov3 sum values-from patches in-radius copertura [densita.patch3]
set covering%(((sum values-from locations [cov3]) / total * 100))]]
end

to final.set
ask locations [set shape "house" set size 1.3 set color red]
mostra.aree1
end

to calcola
ask patches [
set densita.patch2 densita.media]
ask patches[
let num.fac count locations in-radius (copertura - 1)
ifelse num.fac > 0
[set densita.patch3 (densita.media / num.fac)]
[set densita.patch3 densita.media]]
end

to meme
ask shadows[
if iterazioni > 1[
ifelse covering%.locale > local.covering%.locale
[setxy xcor-of espl (who -(3 * num.espl)) ycor-of espl (who -(3 * num.espl)) set local.covering%.locale
covering%.locale][set xcor xcor + 0.0 set ycor ycor + 0.0]]]
end

129

to meme2
ask shadows2[
if contatore.parziale > 1[
ifelse covering%.loca > local.covering%.loca
[setxy xcor-of loc (who -(3 * num.espl)) ycor-of loc (who -(3 * num.espl)) set local.covering%.loca
covering%.loca][set xcor xcor + 0.0 set ycor ycor + 0.0]]]
end

to posiziona
setxy (random-xcor)(random-ycor)
if densita.media-of patch-here = 0 [posiziona]
end

to attrai
ask espls[without-interruption[
let x xcor
let y ycor
let norma ((count patches in-radius copertura) - 1)
let lista.patch remove patch-here values-from patches in-radius copertura [patch pxcor pycor]
let lista.x map [pxcor-of ?] lista.patch
let lista.y map [pycor-of ?] lista.patch
let lista.densita map [(densita.patch-of ?) / norma]lista.patch
let lista.distanze map [(distance ?) / norma]lista.patch
let x.cor sum (map[?1 * ?2 * sin towardsxy ?3 ?4]lista.densita lista.distanze lista.x lista.y)
let y.cor sum (map[?1 * ?2 * cos towardsxy ?3 ?4] lista.densita lista.distanze lista.x lista.y)
set Ex precision (x.cor) 3
set Ey precision (y.cor) 3]]
end

to respingi
ask espls[without-interruption[
let x xcor
let y ycor
let norma count espls in-radius distanza.repulsione
let norma1 count locations in-radius distanza.repulsione
let norma.tot (norma + norma1)
let lista.espls remove self values-from espls in-radius distanza.repulsione [turtle who]
let lista.locations values-from locations in-radius distanza.repulsione [turtle who]
let lista.repulsi(lista.espls + lista.locations)
let lista.x map[xcor-of ?]lista.repulsi
let lista.y map[ycor-of ?]lista.repulsi
let lista.distanze map[(1 / (distance ?))/ norma.tot]lista.repulsi
let x.cor sum(map[?1 * sin towardsxy ?2 ?3]lista.distanze lista.x lista.y)
let y.cor sum(map[?1 * cos towardsxy ?2 ?3]lista.distanze lista.x lista.y)
set Gx precision x.cor 3
set Gy precision y.cor 3]]
end

to respingi1.2
ask loca[without-interruption[
let x xcor
let y ycor
let norma1 count locations in-radius distanza.repulsione
let lista.locations values-from locations in-radius distanza.repulsione [turtle who]
let lista.x map[xcor-of ?]lista.locations
let lista.y map[ycor-of ?]lista.locations
let lista.distanze map[(1 / (distance ?))/ norma1]lista.locations
let x.cor sum(map[?1 * sin towardsxy ?2 ?3]lista.distanze lista.x lista.y)
let y.cor sum(map[?1 * cos towardsxy ?2 ?3]lista.distanze lista.x lista.y)
set Wx precision x.cor 3

130

set Wy precision y.cor 3]]
end

to muovi
ask espls[
set heading direzione1
fd passo1 + speed]
end

to verifica
ask espls[
let locat count locations in-radius (copertura - 1)
if locat >= 1 [
posiziona
attrai
respingi
calcola.risultante
muovi
meme]]
end

to verifica1.2
ask loca[
let locat count locations in-radius (copertura - 1)
if locat >= 1[
posizionamento.loca
attrai1.2
calcola.risultante1.2
muovi1.2]]
end

to calcola.risultante
ask espls[
let x.ris((a * Ex) - ((1 - a) * (Gx)))
let y.ris((a * EY) - ((1 - a) * (Gy)))
ifelse x.ris != 0 or y.ris != 0 [set passo1 precision (sqrt((x.ris ^ 2) +(y.ris ^ 2)))3][set passo1 0]
if (x.ris + xcor) != xcor or (y.ris + ycor) != ycor [set direzione1 precision (towardsxy (x.ris + xcor)(y.ris +
ycor))3]]
end

to ferma
ifelse covering%.locale <= local.covering%.locale [set C<=LBC C<=LBC + 1][set C<=LBC 0]
if (C<=LBC = iteraz.auto.differenzia)[
differenzia1.2
set num.volte num.volte + 1]
end

to cambia
if num.volte = valore.num.volte[
ask ombre[
set x2 xcor-of ombra(who)
set y2 ycor-of ombra(who)]
ask ombre2[
set lx xcor-of ombra2(who)
set ly ycor-of ombra2(who)]
ifelse best.covering%.locale <= best.covering%.loca
[set non.meglio 1]
[set non.meglio 0]
ask espls [die]
ask aree.repulsione [die]

131

ask aree.attrazione [die]
ask shadows [die]
ask ombre[die]
scompare
ifelse (non.meglio = 0)
[ricrea1]
[ricrea2]
contra]
end

to ricrea1
create-custom-locations 1 [setxy x2 y2 set shape "house" set size 1.6 set color pink set label who]
create-custom-aree.repulsione1 1[setxy xcor-of location (who - 1) ycor-of location (who - 1) set shape
"location1" set size (((distanza.repulsione) * 2) - 1) set hidden? not hidden?]
create-custom-aree.attrazione1 1[setxy xcor-of location (who - 2)ycor-of location (who - 2) set shape "location"
set size ((copertura * 2)- 1)set hidden? not hidden?]
ask aree.repulsione1[__tie area.repulsione1 (who) location(who - 1)]
ask aree.attrazione1 [__tie area.attrazione1 (who) location(who - (2))]
end

to contra
set num.messe num.messe + 1
if (num.messe < numero.locations)[
ricrea
copri]
end

to mostra.aree1
ifelse mostra.aree.influenza
[ask aree.repulsione1[show-turtle]ask aree.attrazione1[show-turtle]]
[ask aree.repulsione1[ht]ask aree.attrazione1[ht]]
end

to mostra.aree2
ifelse mostra.aree.influenza
[ask aree.repulsione[show-turtle]ask aree.attrazione[show-turtle]ask aree.visibilita[show-turtle]]
[ask aree.repulsione1[ht]ask aree.attrazione1[ht]ask aree.visibilita[ht]]
end

to ricrea2
create-custom-locations 1 [setxy lx ly set shape "house" set size 1.6 set color pink set label who]
create-custom-aree.repulsione1 1[setxy xcor-of location (who - 1) ycor-of location (who - 1) set shape
"location1" set size (((distanza.repulsione) * 2) - 1) set hidden? not hidden?]
create-custom-aree.attrazione1 1[setxy xcor-of location (who - 2)ycor-of location (who - 2) set shape "location"
set size ((copertura * 2)- 1)set hidden? not hidden?]
ask aree.repulsione1[__tie area.repulsione1 (who) location(who - 1)]
ask aree.attrazione1 [__tie area.attrazione1 (who) location(who - (2))]
end

to copri
ask patches[
let locat count locations in-radius (copertura - 1)
ifelse(locat >= 1)
[set densita.patch 0]
[set densita.patch densita.media]]
end

to ricrea
create-custom-espls num.espl[posiziona set shape "dot" set size 3.2 set color red set label who]

132

create-custom-aree.repulsione num.espl[setxy xcor-of espl(who - num.espl) ycor-of espl(who - num.espl)set
shape "location1" set size (((distanza.repulsione)* 2) - 1) set hidden? not hidden?]
create-custom-aree.attrazione num.espl[setxy xcor-of espl(who - (2 * num.espl)) ycor-of espl (who - 2 *
num.espl)set shape "location" set size (((copertura)* 2)- num.espl) set hidden? not hidden?]
create-custom-shadows num.espl[setxy xcor-of espl(who - (3 * num.espl))ycor-of espl (who - (3 * num.espl))
set shape "dot" set size 1.6 set color yellow set hidden? not hidden?]
create-custom-ombre num.espl[setxy xcor-of espl(who - (4 * num.espl)) ycor-of espl(who - (4 * num.espl)) set
shape"dot"set size 1.6 set hidden? not hidden?]
create-custom-loca num.espl[posiziona set shape "dot" set size 3.3 set color blue set label who]
create-custom-aree.visibilita num.espl[setxy xcor-of loc(who - num.espl)ycor-of loc(who - num.espl) set
shape "location3" set size(((copertura.aum) * 2)- 1) set hidden? not hidden?]
create-custom-ombre2 num.espl[setxy xcor-of loc(who - 2 * num.espl)ycor-of loc(who - 2 * num.espl) set shape
"dot" set size 1.2 set color green set hidden? not hidden?]
create-custom-shadows2 num.espl[setxy xcor-of loc(who - 3 * num.espl)ycor-of loc(who - 3 * num.espl) set
shape "dot" set size 1.3 set color black set hidden? not hidden?]
ask aree.repulsione[__tie area.repulsione (who) espl(who - num.espl)]
ask aree.attrazione [__tie area.attrazione (who) espl(who - ((2 * num.espl)))]
ask aree.visibilita [__tie area.visibilita(who)loc(who - num.espl)]
set C<=LBC 0
set local.covering%.locale 0
set local.covering%.loca 0
set covering%.locale 0
set covering%.loca 0
set best.covering%.loca 0
set best.covering%.locale 0
set copertura.aum copertura.aum + copertura * incremento
set num.volte 0
ask locations[without-interruption[
set cov3 sum values-from patches in-radius copertura [densita.patch3]
set covering%(((sum values-from locations [cov3]) / total * 100))]]
end

to attrai1.2
ask loca[without-interruption[
let x xcor
let y ycor
let norma ((count patches in-radius copertura.aum) - 1)
let lista.patch remove patch-here values-from patches in-radius copertura.aum [patch pxcor pycor]
let lista.x map [pxcor-of ?] lista.patch
let lista.y map [pycor-of ?] lista.patch
let lista.densita map [(densita.patch-of ?) / norma]lista.patch
let lista.distanze map [(distance ?) / norma]lista.patch
let x.cor sum (map[?1 * ?2 * sin towardsxy ?3 ?4]lista.densita lista.distanze lista.x lista.y)
let y.cor sum (map[?1 * ?2 * cos towardsxy ?3 ?4] lista.densita lista.distanze lista.x lista.y)
set Kx precision (x.cor) 3
set Ky precision (y.cor) 3]]
end

to muovi1.2
ask loca[
set heading direzionel
fd passol + speed * 1.5]
end

to calcola.risultante1.2
ask loca[
let x.ris((a * Kx) - ((1 - a) * Wx))
let y.ris((a * KY) - ((1 - a)* Wy))
ifelse x.ris != 0 or y.ris != 0 [set passol precision (sqrt((x.ris ^ 2) +(y.ris ^ 2)))3][set passol 0]

133

if (x.ris + xcor) != xcor or (y.ris + ycor) != ycor [set direzionel precision (towardsxy (x.ris + xcor)(y.ris +
ycor))3]]
end

to scompare
ask loca[die]
ask aree.visibilita[die]
ask ombre2[die]
ask shadows2[die]
end

to meme.ombre
ask ombre[
if (contatore.parziale > 1)[
if best.covering%.locale < covering%.locale
[setxy xcor-of espl (who - (4 * num.espl))ycor-of espl(who - (4 * num.espl))set best.covering%.locale
covering%.locale]]]
end

to meme.ombre2
ask ombre2[
if (contatore.parziale > 1)[
if best.covering%.loca < covering%.loca
[setxy xcor-of loc (who - (2 * num.espl))ycor-of loc(who - (2 * num.espl))set best.covering%.loca
covering%.loca]]]
end

to diversifica
ifelse covering%.loca <= local.covering%.loca[
set iter.migliorative iter.migliorative + 1][set iter.migliorative 0]
if (iter.migliorative = iter.miglio)[differenzia]
end

to differenzia
set local.covering%.loca 0
set covering%.loca 0
ask loca[posizionamento.loca]
ask shadows2[posizionamento.shadows2]
end

to posizionamento.loca
setxy(random-xcor)(random-ycor)
set iter.migliorative 0
if densita.media-of patch-here = 0
[posizionamento.loca]
end

to posizionamento.shadows2
setxy xcor-of loc(who - (3 * num.espl)) ycor-of loc(who - (3 * num.espl))
end

to differenzia1.2
set local.covering%.locale 0
set covering%.locale 0
ask espls[posizionamento.espls]
ask shadows[posizionamento.shadows]
set C<=LBC 0
end

134

to posizionamento.espls
setxy (random-xcor)(random-ycor)
if densita.media-of patch-here = 0
[posizionamento.espls]
end

to posizionamento.shadows
setxy xcor-of espl(who - (3 * num.espl)) ycor-of espl(who - (3 * num.espl))
end

Il codice per l’algoritmo costruttivo-migliorativo

breed[locations location]
breed[loca loc]
breed[espls espl]
breed[aree.repulsione area.repulsione]
breed[aree.repulsione1 area.repulsione1]
breed[aree.attrazione area.attrazione]
breed[aree.attrazione1 area.attrazione1]
breed[shadows shadow]
breed[ombre2 ombra2]
breed[shadows3 shadow3]
breed[ombre3 ombra3]

patches-own [
 densita.media
 densita.patch
 densita.patch2
 densita.patch3
 cov
 cov2
 cov3]

espls-own[
 Ex
 Ey
 Gx
 Gy
 direzione1
 passo1
 moto1]

loca-own[
 Sx
 Sy
 Hx
 Hy
 direzione4
 passo4
 moto4]

aree.repulsione1-own[
 vero.a]

aree.attrazione1-own[
 vero.b]

locations-own[
 Fx

135

 Fy
 Rx
 Ry
 direzione
 passo
 moto
 cop.sing.loc
 vero.loc]

globals[
 filename
 iterazioni
 contatore
 C<=LBC
 contatore.parziale
 covering%
 covering%.locale
 fac
 num.espl
 num.messe
 pat
 total
 totale
 x2
 y2
 x4
 y4
 best.covering%
 best.covering%.locale
 local.covering%
 local.covering%.locale
 covering%.loca
 velocita.corrente
 num.volte
 lista.ord
 lista.ord.rid
 num.giri
 x3
 y3
 bynary]

to startup
 ca
 let known-paths
 ["./"
 "./models/"
 "./images/"
 "../models/"
 "../images/"]
 let basename "north40thmap.png"
 let paths-to-try length known-paths
 set filename false
 let index 0
 while [index < paths-to-try]
 [if file-exists? (word (item index known-paths) basename)
 [set filename (word (item index known-paths) basename)
 set index paths-to-try]
 set index index + 1]
 if filename = false
 [set filename user-file]

136

 if filename = false
 [stop]
 migliora
 import-pcolors filename
 ask patches [
 if pcolor = black [set pcolor white]]
end

to migliora
 import-drawing filename
end

to setup
clear-turtles

ask patches[
if (pcolor <= 89.0) and (pcolor >= 85.0) [set densita.media 1]
if (pcolor <= 76.0) and (pcolor >= 72.0) [set densita.media 10]
if (pcolor <= 27.0) and (pcolor >= 25.0) [set densita.media 30]
if (pcolor <= 15.0) and (pcolor >= 10.0) [set densita.media 100]
if pcolor = white [set densita.media 0.0]]
set iterazioni 0
set contatore 0
set num.espl 1
set contatore.parziale 0
set C<=LBC 0
set covering% 0
set local.covering% 0
set covering%.locale 0
set best.covering% 0
set local.covering%.locale 0
set best.covering%.locale 0
set num.messe 0
set num.volte 0
set num.giri 0
create-custom-espls num.espl[posiziona set shape "dot" set size 3.2 set color red set label who]
create-custom-aree.repulsione num.espl[setxy xcor-of espl(who - num.espl) ycor-of espl(who - num.espl)set
shape "location1" set size (((distanza.repulsione)* 2) - 1) set hidden? not hidden?]
create-custom-aree.attrazione num.espl[setxy xcor-of espl(who - 2 * num.espl) ycor-of espl (who - 2 *
num.espl)set shape "location" set size (((copertura)* 2)- 1) set hidden? not hidden?]
create-custom-shadows num.espl[setxy xcor-of espl(who - 3 * num.espl)ycor-of espl (who - 3 * num.espl) set
shape "dot" set size 1.6 set color yellow set hidden? not hidden?]
create-custom-ombre2 num.espl[setxy xcor-of espl(who - (4 * num.espl)) ycor-of espl(who - (4 * num.espl)) set
shape"dot"set size 1.6 set hidden? not hidden?]
ask aree.repulsione[__tie area.repulsione (who) espl(who - num.espl)]
ask aree.attrazione [__tie area.attrazione (who) espl(who - (2 * num.espl))]
end

to go
ask locations[without-interruption[
set cov3 sum values-from patches in-radius copertura [densita.patch3]
set covering%(((sum values-from locations [cov3]) / total * 100))]]
ifelse num.messe = numero.locations[
 if num.giri = 0[
 memorizza
 sposta]
 final.set1.3
 ask locations[without-interruption[
 set cov3 sum values-from patches in-radius copertura [densita.patch3]
 set covering%(((sum values-from locations [cov3]) / total * 100))]]

137

 ask loca[without-interruption[
 set cov2 sum values-from patches in-radius copertura [densita.patch]
 set covering%.loca(((sum values-from loca [cov2]) / total * 100))]]
 if num.giri = num.iterazioni[
 ask locations[without-interruption[
 set cov3 sum values-from patches in-radius copertura [densita.patch3]
 set covering%(((sum values-from locations [cov3]) / total * 100))]]
 mostra.aree1
 final.set
 stop]
 set num.giri num.giri + 1
 attrai1.3
 respingi1.3
 calcola.risultante1.3
 muovi1.3
 distanziare1.3
 distacca.ombre1.3
 distacca.shadows1.3
 conteggio1.3
 ask locations[without-interruption[
 set cov3 sum values-from patches in-radius copertura [densita.patch3]
 set covering%(((sum values-from locations [cov3]) / total * 100))]]]
[attrai
 respingi
 calcola.risultante
 muovi
 verifica
 ferma
 cambia
 meme
 meme.ombre
 copri
 calcola
 mostra.aree1
 set contatore.parziale contatore.parziale + 1
 set iterazioni iterazioni + 1
 ask patch 0 0 [set total sum values-from patches in-radius 100 [densita.media]]
 ask espls [without-interruption[
 set pat count patches in-radius copertura
 set cov sum values-from patches in-radius copertura [densita.patch2]
 set covering%.locale (((sum values-from espls [cov]) / total)* 100)]]]
ask locations[without-interruption[
set cov3 sum values-from patches in-radius copertura [densita.patch3]
set covering%(((sum values-from locations [cov3]) / total * 100))]]
end

to final.set
ask locations [set shape "house" set size 1.3 set color red]
mostra.aree1
end

to calcola
ask patches [
set densita.patch2 densita.media]
ask patches[
let num.fac count locations in-radius (copertura - 1)
ifelse num.fac > 0
 [set densita.patch3 (densita.media / num.fac)]
 [set densita.patch3 densita.media]]
end

138

to meme
ask shadows[
if iterazioni > 1[
 ifelse covering%.locale > local.covering%.locale
 [setxy xcor-of espl (who -(3 * num.espl)) ycor-of espl (who -(3 * num.espl)) set local.covering%.locale
covering%.locale]
 [set xcor xcor + 0.0 set ycor ycor + 0.0]]]
end

to posiziona
setxy (random-xcor)(random-ycor)
if densita.media-of patch-here = 0 [posiziona]
end

to attrai
ask espls[without-interruption[
let x xcor
let y ycor
let norma ((count patches in-radius copertura) - 1)
let lista.patch remove patch-here values-from patches in-radius copertura [patch pxcor pycor]
let lista.x map [pxcor-of ?] lista.patch
let lista.y map [pycor-of ?] lista.patch
let lista.densita map [(densita.patch-of ?) / norma]lista.patch
let lista.distanze map [(distance ?) / norma]lista.patch
let x.cor sum (map[?1 * ?2 * sin towardsxy ?3 ?4]lista.densita lista.distanze lista.x lista.y)
let y.cor sum (map[?1 * ?2 * cos towardsxy ?3 ?4] lista.densita lista.distanze lista.x lista.y)
set Ex precision (x.cor) 3
set Ey precision (y.cor) 3]]
end

to respingi
ask espls[without-interruption[
let x xcor
let y ycor
let norma count espls in-radius distanza.repulsione
let norma1 count locations in-radius distanza.repulsione
let norma.tot (norma + norma1)
let lista.espls remove self values-from espls in-radius distanza.repulsione [turtle who]
let lista.locations values-from locations in-radius distanza.repulsione [turtle who]
let lista.repulsi(lista.espls + lista.locations)
let lista.x map[xcor-of ?]lista.repulsi
let lista.y map[ycor-of ?]lista.repulsi
let lista.distanze map[(1 / (distance ?))/ norma.tot]lista.repulsi
let x.cor sum(map[?1 * sin towardsxy ?2 ?3]lista.distanze lista.x lista.y)
let y.cor sum(map[?1 * cos towardsxy ?2 ?3]lista.distanze lista.x lista.y)
set Gx precision x.cor 3
set Gy precision y.cor 3]]
 end

to muovi
ask espls[
set heading direzione1
fd passo1 + speed]
end

to verifica
ask espls[
let locat count locations in-radius (distanza.diff - 1)
if locat >= 1 [

139

 posiziona
 set C<=LBC 0]]
end

to calcola.risultante
ask espls[
let x.ris((a * Ex) - ((1 - a) * (Gx)))
let y.ris((a * EY) - ((1 - a) * (Gy)))
ifelse x.ris != 0 or y.ris != 0 [set passo1 precision (sqrt((x.ris ^ 2) +(y.ris ^ 2)))3][set passo1 0]
if (x.ris + xcor) != xcor or (y.ris + ycor) != ycor [set direzione1 precision (towardsxy (x.ris + xcor)(y.ris +
ycor))3]]
end

to ferma
ifelse covering%.locale <= local.covering%.locale [set C<=LBC C<=LBC + 1][set C<=LBC 0]
if (C<=LBC = iteraz.auto.differenzia)[
differenzia1.2
set num.volte num.volte + 1]
end

to cambia
if num.volte = valore.num.volte[
 ask ombre2[
 set x2 xcor-of ombra2(who)
 set y2 ycor-of ombra2(who)]
 ask espls [die]
 ask aree.repulsione [die]
 ask aree.attrazione [die]
 ask shadows [die]
 ask ombre2[die]
 ricrea1
 contra]
end

to ricrea1
create-custom-locations 1 [setxy x2 y2 set shape "house" set size 1.6 set color pink set label who]
create-custom-aree.repulsione1 1[setxy xcor-of location (who - 1) ycor-of location (who - 1) set shape
"location1" set size (((distanza.repulsione) * 2) - 1) set hidden? not hidden?]
create-custom-aree.attrazione1 1[setxy xcor-of location (who - 2)ycor-of location (who - 2) set shape "location"
set size ((copertura * 2)- 1)set hidden? not hidden?]
ask aree.attrazione1 [__tie area.attrazione1 (who) location(who - (2))]
end

to contra
set num.messe num.messe + 1
if (num.messe < numero.locations)[
 ricrea
 copri]
end

to mostra.aree1
ifelse mostra.aree.influenza
 [ask aree.repulsione1[show-turtle]ask aree.attrazione1[show-turtle]]
 [ask aree.repulsione1[ht]ask aree.attrazione1[ht]]
end

to copri
ask patches[
let locat count locations in-radius (copertura - 1)
ifelse(locat >= 1) [set densita.patch 0][set densita.patch densita.media]]

140

end

to ricrea
create-custom-espls num.espl[posiziona set shape "dot" set size 3.2 set color red set label who]
create-custom-aree.repulsione num.espl[setxy xcor-of espl(who - num.espl) ycor-of espl(who - num.espl)set
shape "location1" set size (((distanza.repulsione)* 2) - 1) set hidden? not hidden?]
create-custom-aree.attrazione num.espl[setxy xcor-of espl(who - (2 * num.espl)) ycor-of espl (who - 2 *
num.espl)set shape "location" set size (((copertura)* 2)- num.espl) set hidden? not hidden?]
create-custom-shadows num.espl[setxy xcor-of espl(who - (3 * num.espl))ycor-of espl (who - (3 * num.espl))
set shape "dot" set size 1.6 set color yellow set hidden? not hidden?]
create-custom-ombre2 num.espl[setxy xcor-of espl(who - (4 * num.espl)) ycor-of espl(who - (4 * num.espl)) set
shape"dot"set size 1.6 set hidden? not hidden?]
ask aree.repulsione[__tie area.repulsione (who) espl(who - num.espl)]
ask aree.attrazione [__tie area.attrazione (who) espl(who - ((2 * num.espl)))]
set C<=LBC 0
set local.covering%.locale 0
set covering%.locale 0
set best.covering%.locale 0
set num.volte 0
ask locations[without-interruption[
set cov3 sum values-from patches in-radius copertura [densita.patch3]
set covering%(((sum values-from locations [cov3]) / total * 100))]]
end

to meme.ombre
ask ombre2[
if (contatore.parziale > 1)[
 if best.covering%.locale < covering%.locale[
 setxy xcor-of espl (who - (4 * num.espl))ycor-of espl(who - (4 * num.espl))set best.covering%.locale
covering%.locale]]]
end

to differenzia1.2
set local.covering%.locale 0
set covering%.locale 0
ask espls[posizionamento.espls]
ask shadows[posizionamento.shadows]
set C<=LBC 0
end

to posizionamento.espls
setxy (random-xcor)(random-ycor)
if densita.media-of patch-here = 0
[posizionamento.espls]
end

to posizionamento.shadows
setxy xcor-of espl(who - (3 * num.espl)) ycor-of espl(who - (3 * num.espl))
end

to memorizza
ask locations[without-interruption[
set cop.sing.loc ((sum values-from patches in-radius copertura [densita.patch3])/ total)* 100]]
set lista.ord sort-by [cop.sing.loc-of ?1 < cop.sing.loc-of ?2] locations
set lista.ord.rid sublist lista.ord 0 1
set vero.loc-of one-of lista.ord.rid 1
end

to sposta
ask locations[without-interruption[

141

if vero.loc-of location (who) = 1[
 set x3 xcor-of location(who)
 set y3 ycor-of location(who)
 set vero.a-of area.repulsione1 (who + 1) 1
 set vero.b-of area.attrazione1 (who + 2) 1]]]
create-custom-loca 1 [posiziona set shape "dot" set size 1.6 set color pink set label who]
create-custom-shadows3 1[setxy xcor-of loc(who - 1)ycor-of loc (who - (1)) set shape "dot" set size 1.6 set
color yellow set hidden? not hidden?]
create-custom-ombre3 1[setxy xcor-of loc(who - 2) ycor-of loc(who - (2)) set shape"dot"set size 1.6 set hidden?
not hidden?]
end

to attrai1.3
ask loca [without-interruption[
let x xcor
let y ycor
let norma ((count patches in-radius copertura) - 1)
 let lista.patch remove patch-here values-from patches in-radius copertura [patch pxcor pycor]
 let lista.x map [pxcor-of ?] lista.patch
 let lista.y map [pycor-of ?] lista.patch
 let lista.densita map[(densita.patch-of ?) / norma]lista.patch
 let lista.distanze map [(distance ?) / norma]lista.patch
 let x.cor sum(map [?1 * ?2 * sin towardsxy ?3 ?4]lista.densita lista.distanze lista.x lista.y)
 let y.cor sum(map [?1 * ?2 * cos towardsxy ?3 ?4]lista.densita lista.distanze lista.x lista.y)
 set Sx precision (x.cor) 3
 set Sy precision (y.cor) 3]]
end

to respingi1.3
ask loca [without-interruption[
let x xcor
let y ycor
let norma count locations in-radius distanza.repulsione
 let lista.locations remove self values-from loca in-radius distanza.repulsione [turtle who]
 let lista.x map [xcor-of ?] lista.locations
 let lista.y map [ycor-of ?] lista.locations

 let lista.distanze map [(1 / (distance ?)) / norma]lista.locations
 let x.cor sum(map [?1 * sin towardsxy ?2 ?3]lista.distanze lista.x lista.y)
 let y.cor sum(map [?1 * cos towardsxy ?2 ?3]lista.distanze lista.x lista.y)
 set Hx precision x.cor 3
 set Hy precision y.cor 3]]
end

to calcola.risultante1.3
ask loca[
let x.ris ((a * Sx) - ((1 - a) * Hx))
let y.ris ((a * Sy) - ((1 - a) * Hy))
ifelse x.ris != 0 or y.ris != 0
 [set passo4 precision (sqrt ((x.ris ^ 2) + (y.ris ^ 2))) 3]
 [set passo4 0]
if (x.ris + xcor) != xcor or (y.ris + ycor) != ycor[
 set direzione4 precision (towardsxy (x.ris + xcor) (y.ris + ycor)) 3]]
end

to distanziare1.3
ask loca[without-interruption[
set fac count locations in-radius distanza.diff;]
if contatore < 2
 [if fac > 1 [differenzia1.3]]]]

142

end

to conteggio1.3
if num.giri > 1[
 ifelse auto.differenzia [
 ifelse covering%.loca <= local.covering%
 [set C<=LBC C<=LBC + 1]
 [set C<=LBC 0]]
 [set C<=LBC 0]
 if (C<=LBC = iteraz.auto.differenzia) [
 differenzia1.3]]
end

to differenzia1.3
set contatore 0
set C<=LBC 0
set local.covering% 0
ask loca [posiziona]
ask shadows3 [posizionamento.shadows1.3]
end

to posizionamento.shadows1.3
setxy xcor-of loc (who - (1)) ycor-of loc (who - (1))
end

to muovi1.3
ask loca[
set heading direzione4
fd passo4 + speed]
end

to distacca.ombre1.3
ask ombre3 [
if (num.giri > 1) [if best.covering% < covering%.loca
 [setxy xcor-of loc (who - (2)) ycor-of loc (who - (2)) set best.covering% covering%.loca]]]
end

to distacca.shadows1.3
ask shadows3 [if num.giri > 1[
ifelse covering%.loca > local.covering%
 [setxy xcor-of loc (who - (1)) ycor-of loc (who - (1)) set local.covering% covering%.loca]
 [set xcor xcor + 0.0 set ycor ycor + 0.0]]]
end

to final.set1.3
if num.giri = num.iterazioni - 1[
 ask locations[
 if vero.loc = 1
 [ifelse cop.sing.loc-of location(who) < best.covering% [
 ask ombre3[
 set x4 xcor-of ombra3(who)
 set y4 ycor-of ombra3(who)]
 set bynary 1]
 [set bynary 0]]]
 if bynary = 1 [
 create-custom-locations 1 [setxy x4 y4 set shape "house" set size 1.6 set vero.loc 0 set color pink set label
who]
 create-custom-aree.repulsione1 num.espl[setxy xcor-of location(who - num.espl) ycor-of location(who -
num.espl)set shape "location1" set size (((distanza.repulsione)* 2) - 1) set hidden? not hidden?]

143

 create-custom-aree.attrazione1 num.espl[setxy xcor-of location(who - 2 * num.espl) ycor-of location (who - 2
* num.espl)set shape "location" set size (((copertura)* 2)- 1) set hidden? not hidden?]
 ask aree.repulsione1[__tie area.repulsione1 (who) location(who - num.espl)]
 ask aree.attrazione1[__tie area.attrazione1 (who) location(who - (2 * num.espl))]
 ask ombre3[die]
 ask locations[
 if vero.loc = 1[
 die]]
 ask aree.repulsione1[
 if vero.a = 1[
 die]]
 ask aree.attrazione1[
 if vero.b = 1[
 die]]]
 ask locations[without-interruption[
 set cov3 sum values-from patches in-radius copertura [densita.patch3]
 set covering%(((sum values-from locations [cov3]) / total * 100))]]]
if num.giri = num.iterazioni
 [ask loca[die]]
 end

Greedy Algorithm with two improving stages

breed[locations location]
breed[aree.repulsione area.repulsione]
breed[aree.repulsione1 area.repulsione1]
breed[aree.attrazione area.attrazione]
breed[aree.attrazione1 area.attrazione1]
breed[aree.repulsione12 area.repulsione12]
breed[aree.attrazione12 area.attrazione12]
breed[espls espl]
breed[shadows shadow]
breed[ombre2 ombra2]
breed[loca loc]
breed[shadows3 shadow]
breed[ombre3 ombra3]
breed[loca2 loc2]
breed[shadows32 shadow32]
breed[ombre32 ombra32]

patches-own [
 densita.media
 densita.patch
 densita.patch2
 densita.patch3
 cov
 cov2
 cov22
 cov3]

aree.repulsione1-own[
 vero.a]

aree.attrazione1-own[
 vero.b]

espls-own[
 Ex
 Ey
 Gx

144

 Gy
 direzione1
 passo1
 moto1]

loca-own[
 Sx
 Sy
 Hx
 Hy
 direzione4
 passo4
 moto4]

loca2-own[
 Sx2
 Sy2
 Hx2
 Hy2
 direzione42
 passo42
 moto42]

locations-own[
 Fx
 Fy
 Rx
 Ry
 direzione
 passo
 moto
 cop.sing.loc
 vero.loc
 dead]

globals[
 filename
 iterazioni
 contatore
 C<=LBC
 contatore.parziale
 fac
 num.espl
 num.messe
 pat
 total
 totale
 x2
 y2
 x3
 y3
 x4
 y4
 x42
 y42
 covering%
 covering%.locale
 best.covering%
 best.covering%.locale
 best.covering%2

145

 local.covering%2
 local.covering%
 local.covering%.locale
 covering%.loca
 covering%.loca2
 num.volte
 lista.ord
 lista.ord.rid
 lista.ord2
 lista.ord.rid2
 num.giri
 num.giri2
 bynary
 bynary2]

to startup
 ca
 let known-paths
 ["./"
 "./models/"
 "./images/"
 "../models/"
 "../images/"]
 let basename "north40thmap.png"
 let paths-to-try length known-paths
 set filename false
 let index 0
 while [index < paths-to-try]
 [if file-exists? (word (item index known-paths) basename)
 [set filename (word (item index known-paths) basename)
 set index paths-to-try]
 set index index + 1]
 if filename = false
 [set filename user-file]
 if filename = false
 [stop]
 migliora
 import-pcolors filename
 ask patches [
 if pcolor = black [set pcolor white]]
end

to migliora
 import-drawing filename
end

to setup
clear-turtles
ask patches[
if (pcolor <= 89.0) and (pcolor >= 85.0) [set densita.media 1]
if (pcolor <= 76.0) and (pcolor >= 72.0) [set densita.media 10]
if (pcolor <= 27.0) and (pcolor >= 25.0) [set densita.media 30]
if (pcolor <= 15.0) and (pcolor >= 10.0) [set densita.media 100]
if pcolor = white [set densita.media 0.0]]
set iterazioni 0
set contatore 0
set num.espl 1
set contatore.parziale 0
set C<=LBC 0
set covering% 0

146

set best.covering% 0
set best.covering%2 0
set best.covering%.locale 0
set local.covering% 0
set local.covering%2 0
set local.covering%.locale 0
set covering%.locale 0
set num.messe 0
set num.volte 0
set num.giri 0
set num.giri2 0
create-custom-espls num.espl[posiziona set shape "dot" set size 3.2 set color red set label who]
create-custom-aree.repulsione num.espl[setxy xcor-of espl(who - num.espl) ycor-of espl(who - num.espl)set
shape "location1" set size (((distanza.repulsione)* 2) - 1) set hidden? not hidden?]
create-custom-aree.attrazione num.espl[setxy xcor-of espl(who - 2 * num.espl) ycor-of espl (who - 2 *
num.espl)set shape "location" set size (((copertura)* 2)- 1) set hidden? not hidden?]
create-custom-shadows num.espl[setxy xcor-of espl(who - 3 * num.espl)ycor-of espl (who - 3 * num.espl) set
shape "dot" set size 1.6 set color yellow set hidden? not hidden?]
create-custom-ombre2 num.espl[setxy xcor-of espl(who - (4 * num.espl)) ycor-of espl(who - (4 * num.espl)) set
shape"dot"set size 1.6 set hidden? not hidden?]
ask aree.repulsione[__tie area.repulsione (who) espl(who - num.espl)]
ask aree.attrazione [__tie area.attrazione (who) espl(who - (2 * num.espl))]
end

to go
ask locations[without-interruption[
set cov3 sum values-from patches in-radius copertura [densita.patch3]
set covering%(((sum values-from locations [cov3]) / total * 100))]]
continua
final.set1.3
continua2
final.set1.32
if num.giri2 = (num.iterazioni + num.iterazioni2)
 [ask locations[without-interruption[
 set cov3 sum values-from patches in-radius copertura [densita.patch3]
 set covering%(((sum values-from locations [cov3]) / total * 100))]]
 final.set
 stop]
if num.giri2 = (num.iterazioni + num.iterazioni2 - 1)
 [set num.giri2 num.giri2 + 1]
attrai
respingi
calcola.risultante
muovi
verifica
ferma
cambia
meme
meme.ombre
copri
calcola
mostra.aree1
set contatore.parziale contatore.parziale + 1
set iterazioni iterazioni + 1
ask patch 0 0 [set total sum values-from patches in-radius 100 [densita.media]]
ask espls [without-interruption[
set pat count patches in-radius copertura
set cov sum values-from patches in-radius copertura [densita.patch2]
set covering%.locale (((sum values-from espls [cov]) / total)* 100)]]
ask locations[without-interruption[

147

set cov3 sum values-from patches in-radius copertura [densita.patch3]
set covering%(((sum values-from locations [cov3]) / total * 100))]]
end

to final.set
ask locations [set shape "house" set size 1.3 set color red]
mostra.aree1
end

to calcola
ask patches [
set densita.patch2 densita.media]
ask patches[
let num.fac count locations in-radius (copertura - 1)
ifelse num.fac > 0
[set densita.patch3 (densita.media / num.fac)]
[set densita.patch3 densita.media]]
end

to meme
ask shadows[
if iterazioni > 1[
 ifelse covering%.locale > local.covering%.locale
 [setxy xcor-of espl (who -(3 * num.espl)) ycor-of espl (who -(3 * num.espl)) set local.covering%.locale
covering%.locale]
 [set xcor xcor + 0.0 set ycor ycor + 0.0]]]
end

to posiziona
setxy (random-xcor)(random-ycor)
if densita.media-of patch-here = 0 [posiziona]
end

to attrai
if num.giri2 < (num.iterazioni + num.iterazioni2 - 1)[
 ask espls[without-interruption[
 let x xcor
 let y ycor
 let norma ((count patches in-radius copertura) - 1)
 let lista.patch remove patch-here values-from patches in-radius copertura [patch pxcor pycor]
 let lista.x map [pxcor-of ?] lista.patch
 let lista.y map [pycor-of ?] lista.patch
 let lista.densita map [(densita.patch-of ?) / norma]lista.patch
 let lista.distanze map [(distance ?) / norma]lista.patch

 let x.cor sum (map[?1 * ?2 * sin towardsxy ?3 ?4]lista.densita lista.distanze lista.x lista.y)
 let y.cor sum (map[?1 * ?2 * cos towardsxy ?3 ?4] lista.densita lista.distanze lista.x lista.y)
 set Ex precision (x.cor) 3
 set Ey precision (y.cor) 3]]]
end

to distanziare1.32
if num.giri2 < (num.iterazioni + num.iterazioni2 - 1)[
 ask loca2[without-interruption[
 set fac count locations in-radius distanza.diff;]
 if contatore < 2
 [if fac > 1 [differenzia1.32]]]]]
end

to respingi

148

if num.giri2 < (num.iterazioni + num.iterazioni2 - 1)[
 ask espls[without-interruption[
 let x xcor
 let y ycor
 let norma count espls in-radius distanza.repulsione
 let norma1 count locations in-radius distanza.repulsione
 let norma.tot (norma + norma1)
 let lista.espls remove self values-from espls in-radius distanza.repulsione [turtle who]
 let lista.locations values-from locations in-radius distanza.repulsione [turtle who]
 let lista.repulsi(lista.espls + lista.locations)
 let lista.x map[xcor-of ?]lista.repulsi
 let lista.y map[ycor-of ?]lista.repulsi
 let lista.distanze map[(1 / (distance ?))/ norma.tot]lista.repulsi
 let x.cor sum(map[?1 * sin towardsxy ?2 ?3]lista.distanze lista.x lista.y)
 let y.cor sum(map[?1 * cos towardsxy ?2 ?3]lista.distanze lista.x lista.y)
 set Gx precision x.cor 3
 set Gy precision y.cor 3]]]
end

to muovi
if num.giri2 < (num.iterazioni + num.iterazioni2 - 1)[
ask espls[
set heading direzione1
fd passo1 + speed]]
end

to verifica
if num.giri2 < (num.iterazioni + num.iterazioni2 - 1)[
 ask espls[
 let locat count locations in-radius (distanza.diff - 1)
 if locat >= 1 [
 posiziona
 set C<=LBC 0]]]
end

to calcola.risultante
if num.giri2 < (num.iterazioni + num.iterazioni2 - 1)[
 ask espls[
 let x.ris((a * Ex) - ((1 - a) * (Gx)))
 let y.ris((a * EY) - ((1 - a) * (Gy)))
 ifelse x.ris != 0 or y.ris != 0 [set passo1 precision (sqrt((x.ris ^ 2) +(y.ris ^ 2)))3][set passo1 0]
 if (x.ris + xcor) != xcor or (y.ris + ycor) != ycor [set direzione1 precision (towardsxy (x.ris + xcor)(y.ris +
ycor))3]]]
end

to ferma
if num.giri2 < (num.iterazioni + num.iterazioni2 - 1)[
 ifelse covering%.locale <= local.covering%.locale
 [set C<=LBC C<=LBC + 1]
 [set C<=LBC 0]
 if (C<=LBC = iteraz.auto.differenzia)[
 differenzia1.2
 set num.volte num.volte + 1]]
end

to cambia
if num.giri2 < (num.iterazioni + num.iterazioni2 - 1)[
 if num.volte = valore.num.volte[
 ask ombre2[

149

 set x2 xcor-of ombra2(who)
 set y2 ycor-of ombra2(who)]
 ask espls [die]
 ask aree.repulsione [die]
 ask aree.attrazione [die]
 ask shadows [die]
 ask ombre2[die]
 ricrea1
 contra]]
end

to ricrea1
create-custom-locations 1 [setxy x2 y2 set shape "house" set size 1.6 set color pink set label who set dead 0]
create-custom-aree.repulsione1 1[setxy xcor-of location (who - 1) ycor-of location (who - 1) set shape
"location1" set size (((distanza.repulsione) * 2) - 1) set hidden? not hidden?]
create-custom-aree.attrazione1 1[setxy xcor-of location (who - 2)ycor-of location (who - 2) set shape "location"
set size ((copertura * 2)- 1)set hidden? not hidden?]
ask aree.attrazione1 [__tie area.attrazione1 (who) location(who - (2))]
end

to contra
set num.messe num.messe + 1
if (num.messe < numero.locations)[
 ricrea
 copri]
end

to mostra.aree1
ifelse mostra.aree.influenza [ask aree.repulsione1[show-turtle]ask aree.attrazione1[show-turtle]]
 [ask aree.repulsione1[ht]ask aree.attrazione1[ht]]
end

to copri
ask patches[
let locat count locations in-radius (copertura - 1)
ifelse(locat >= 1)
 [set densita.patch 0]
 [set densita.patch densita.media]]
end

to ricrea
create-custom-espls num.espl[posiziona set shape "dot" set size 3.2 set color red set label who]
create-custom-aree.repulsione num.espl[setxy xcor-of espl(who - num.espl) ycor-of espl(who - num.espl)set
shape "location1" set size (((distanza.repulsione)* 2) - 1) set hidden? not hidden?]
create-custom-aree.attrazione num.espl[setxy xcor-of espl(who - (2 * num.espl)) ycor-of espl (who - 2 *
num.espl)set shape "location" set size (((copertura)* 2)- num.espl) set hidden? not hidden?]
create-custom-shadows num.espl[setxy xcor-of espl(who - (3 * num.espl))ycor-of espl (who - (3 * num.espl))
set shape "dot" set size 1.6 set color yellow set hidden? not hidden?]
create-custom-ombre2 num.espl[setxy xcor-of espl(who - (4 * num.espl)) ycor-of espl(who - (4 * num.espl)) set
shape"dot"set size 1.6 set hidden? not hidden?]
ask aree.repulsione[__tie area.repulsione (who) espl(who - num.espl)]
ask aree.attrazione [__tie area.attrazione (who) espl(who - ((2 * num.espl)))]
set C<=LBC 0
set local.covering%.locale 0
set covering%.locale 0
set best.covering%.locale 0
set num.volte 0
ask locations[without-interruption[
set cov3 sum values-from patches in-radius copertura [densita.patch3]
set covering%(((sum values-from locations [cov3]) / total * 100))]]

150

end

to meme.ombre
ask ombre2[
if (contatore.parziale > 1)[
 if best.covering%.locale < covering%.locale
 [setxy xcor-of espl (who - (4 * num.espl))ycor-of espl(who - (4 * num.espl))set best.covering%.locale
covering%.locale]]]
end

to differenzia1.2
set local.covering%.locale 0
set covering%.locale 0
ask espls[posizionamento.espls]
ask shadows[posizionamento.shadows]
set C<=LBC 0
end

to posizionamento.espls
setxy (random-xcor)(random-ycor)
if densita.media-of patch-here = 0
 [posizionamento.espls]
end

to posizionamento.shadows
setxy xcor-of espl(who - (3 * num.espl)) ycor-of espl(who - (3 * num.espl))
end

to memorizza
ask locations[without-interruption[
set cop.sing.loc ((sum values-from patches in-radius copertura [densita.patch3])/ total)* 100]]
set lista.ord sort-by [cop.sing.loc-of ?1 < cop.sing.loc-of ?2] locations
set lista.ord.rid sublist lista.ord 0 1
set vero.loc-of one-of lista.ord.rid 1
end

to memorizza2
ask locations[without-interruption[
set cop.sing.loc ((sum values-from patches in-radius copertura [densita.patch3])/ total)* 100
if vero.loc = 1
 [set cop.sing.loc 100]]]
set lista.ord2 sort-by [cop.sing.loc-of ?1 < cop.sing.loc-of ?2] locations
set lista.ord.rid2 sublist lista.ord2 0 1
set vero.loc-of one-of lista.ord.rid2 1
end

to sposta
ask locations[without-interruption[
if vero.loc-of location (who) = 1[
 set x3 xcor-of location(who)
 set y3 ycor-of location(who)
 set vero.a-of area.repulsione1 (who + 1) 1
 set vero.b-of area.attrazione1 (who + 2) 1]]]
create-custom-loca 1 [posiziona set shape "dot" set size 1.6 set color pink set label who]
create-custom-shadows3 1[setxy xcor-of loc(who - 1)ycor-of loc (who - (1)) set shape "dot" set size 1.6 set
color yellow set hidden? not hidden?]
create-custom-ombre3 1[setxy xcor-of loc(who - 2) ycor-of loc(who - (2)) set shape"dot"set size 1.6 set hidden?
not hidden?]
end

151

to sposta2
ask locations[without-interruption[
if vero.loc-of location (who) = 1[
 set x3 xcor-of location(who)
 set y3 ycor-of location(who)]]]
create-custom-loca2 1 [posiziona set shape "leaf" set size 1.6 set color black set label who]
create-custom-shadows32 1[setxy xcor-of loc2(who - 1)ycor-of loc2 (who - (1)) set shape "dot" set size 1.6 set
color yellow set hidden? not hidden?]
create-custom-ombre32 1[setxy xcor-of loc2(who - 2) ycor-of loc2(who - (2)) set shape"dot"set size 1.6 set
hidden? not hidden?]
end

to attrai1.3
ask loca [without-interruption[
let x xcor
let y ycor
let norma ((count patches in-radius copertura) - 1)
 let lista.patch remove patch-here values-from patches in-radius copertura [patch pxcor pycor]
 let lista.x map [pxcor-of ?] lista.patch
 let lista.y map [pycor-of ?] lista.patch
 let lista.densita map[(densita.patch-of ?) / norma]lista.patch
 let lista.distanze map [(distance ?) / norma]lista.patch
 let x.cor sum(map [?1 * ?2 * sin towardsxy ?3 ?4]lista.densita lista.distanze lista.x lista.y)
 let y.cor sum(map [?1 * ?2 * cos towardsxy ?3 ?4]lista.densita lista.distanze lista.x lista.y)
 set Sx precision (x.cor) 3
 set Sy precision (y.cor) 3]]
end

to attrai1.32
ask loca2 [without-interruption[
let x xcor
let y ycor
let norma ((count patches in-radius copertura) - 1)
 let lista.patch remove patch-here values-from patches in-radius copertura [patch pxcor pycor]
 let lista.x map [pxcor-of ?] lista.patch
 let lista.y map [pycor-of ?] lista.patch
 let lista.densita map[(densita.patch-of ?) / norma]lista.patch
 let lista.distanze map [(distance ?) / norma]lista.patch
 let x.cor sum(map [?1 * ?2 * sin towardsxy ?3 ?4]lista.densita lista.distanze lista.x lista.y)
 let y.cor sum(map [?1 * ?2 * cos towardsxy ?3 ?4]lista.densita lista.distanze lista.x lista.y)
 set Sx2 precision (x.cor) 3
 set Sy2 precision (y.cor) 3]]
end

to respingi1.3
ask loca [without-interruption[
let x xcor
let y ycor
let norma count locations in-radius distanza.repulsione
 let lista.locations remove self values-from loca in-radius distanza.repulsione [turtle who]
 let lista.x map [xcor-of ?] lista.locations
 let lista.y map [ycor-of ?] lista.locations
 let lista.distanze map [(1 / (distance ?)) / norma]lista.locations
 let x.cor sum(map [?1 * sin towardsxy ?2 ?3]lista.distanze lista.x lista.y)
 let y.cor sum(map [?1 * cos towardsxy ?2 ?3]lista.distanze lista.x lista.y)
 set Hx precision x.cor 3
 set Hy precision y.cor 3]]
end

152

to respingi1.32
ask loca2 [without-interruption[
let x xcor
let y ycor
let norma count locations in-radius distanza.repulsione
 let lista.locations remove self values-from loca in-radius distanza.repulsione [turtle who]
 let lista.x map [xcor-of ?] lista.locations
 let lista.y map [ycor-of ?] lista.locations
 let lista.distanze map [(1 / (distance ?)) / norma]lista.locations
 let x.cor sum(map [?1 * sin towardsxy ?2 ?3]lista.distanze lista.x lista.y)
 let y.cor sum(map [?1 * cos towardsxy ?2 ?3]lista.distanze lista.x lista.y)
 set Hx2 precision x.cor 3
 set Hy2 precision y.cor 3]]
end

to calcola.risultante1.3
ask loca[
let x.ris ((a * Sx) - ((1 - a) * Hx))
let y.ris ((a * Sy) - ((1 - a) * Hy))
ifelse x.ris != 0 or y.ris != 0
 [set passo4 precision (sqrt ((x.ris ^ 2) + (y.ris ^ 2))) 3]
 [set passo4 0]
if (x.ris + xcor) != xcor or (y.ris + ycor) != ycor[
 set direzione4 precision (towardsxy (x.ris + xcor) (y.ris + ycor)) 3]]
end

to calcola.risultante1.32
ask loca2[
let x.ris ((a * Sx2) - ((1 - a) * Hx2))
let y.ris ((a * Sy2) - ((1 - a) * Hy2))
ifelse x.ris != 0 or y.ris != 0
 [set passo42 precision (sqrt ((x.ris ^ 2) + (y.ris ^ 2))) 3]
 [set passo42 0]
if (x.ris + xcor) != xcor or (y.ris + ycor) != ycor[set direzione42 precision (towardsxy (x.ris + xcor) (y.ris +
ycor)) 3]]
end

to distanziare1.3
ask loca[without-interruption[
set fac count locations in-radius distanza.diff;]
if contatore < 2[
 if fac > 1 [differenzia1.3]]]]
end

to conteggio1.3
if num.giri > 1[
 ifelse auto.differenzia [ifelse covering%.loca <= local.covering%
 [set C<=LBC C<=LBC + 1]
 [set C<=LBC 0]] [set C<=LBC 0]
 if (C<=LBC = iteraz.auto.differenzia) [
 differenzia1.3]]
end

to conteggio1.32
if num.giri2 > 1[
 ifelse auto.differenzia [ifelse covering%.loca2 <= local.covering%2 [set C<=LBC C<=LBC + 1] [set C<=LBC
0]] [set C<=LBC 0]
 if (C<=LBC = iteraz.auto.differenzia) [
 differenzia1.32]]

153

end

to differenzia1.3
set contatore 0
set C<=LBC 0
set local.covering% 0
ask loca [posiziona]
ask shadows3 [posizionamento.shadows1.3]
end

to posizionamento.shadows1.3
setxy xcor-of loc (who - (1)) ycor-of loc (who - (1))
end

to posizionamento.shadows1.32
setxy xcor-of loc2 (who - (1)) ycor-of loc2 (who - (1))
end

to muovi1.3
ask loca[
set heading direzione4
fd passo4 + speed]
end

to differenzia1.32
set contatore 0
set C<=LBC 0
set local.covering%2 0
ask loca2 [posiziona]
ask shadows32 [posizionamento.shadows1.32]
end

to muovi1.32
ask loca2[
set heading direzione42
fd passo42 + speed]
end

to distacca.ombre1.3
ask ombre3 [
if (num.giri > 1) [if best.covering% < covering%.loca
[setxy xcor-of loc (who - (2)) ycor-of loc (who - (2)) set best.covering% covering%.loca]]]
end

to distacca.ombre1.32
ask ombre32 [
if (num.giri2 > 1) [if best.covering%2 < covering%.loca2
[setxy xcor-of loc2 (who - (2)) ycor-of loc2 (who - (2)) set best.covering%2 covering%.loca2]]]
end
to distacca.shadows1.32
ask shadows32 [
if num.giri2 > 1[
 ifelse covering%.loca2 > local.covering%2
 [setxy xcor-of loc2 (who - (1)) ycor-of loc2 (who - (1)) set local.covering%2 covering%.loca2]
 [set xcor xcor + 0.0 set ycor ycor + 0.0]]]
end

to distacca.shadows1.3
ask shadows3 [
if num.giri > 1[

154

 ifelse covering%.loca > local.covering%
 [setxy xcor-of loc (who - (1)) ycor-of loc (who - (1)) set local.covering% covering%.loca]
 [set xcor xcor + 0.0 set ycor ycor + 0.0]]]
end

to mostra.aree1.3
ifelse mostra.aree.influenza [ask aree.repulsione1[show-turtle]ask aree.attrazione1[show-turtle]]
 [ask aree.repulsione1[ht]ask aree.attrazione1[ht]]
end

to final.set1.3
if num.giri = num.iterazioni [
 ask locations[
 if vero.loc = 1[
 ifelse cop.sing.loc-of location(who) < best.covering% [
 ask ombre3[
 set x4 xcor-of ombra3(who)
 set y4 ycor-of ombra3(who)]
 set bynary 1
 ask ombre3 [
 ask patches in-radius copertura[
 set densita.patch 0]]
 ask locations[
 if vero.loc = 1[
 set dead 1]]]
 [set bynary 0]]]]
 end

to final.set1.32
if num.giri2 = (num.iterazioni2 + num.iterazioni - 1)[
 memorizza2
 ask locations[
 if vero.loc = 1 and dead = 0
 [ifelse cop.sing.loc-of location(who) < best.covering%2 [
 ask ombre32[
 set x42 xcor-of ombra32(who)
 set y42 ycor-of ombra32(who)]
 set bynary2 1
 set vero.a-of area.repulsione1 (who + 1) 1
 set vero.b-of area.attrazione1 (who + 2) 1]
 [set bynary2 0]]]

 if bynary2 = 1 [
 create-custom-locations 1 [setxy x42 y42 set shape "house" set size 1.6 set vero.loc 0 set color green set label
who set dead 0]
 create-custom-aree.repulsione1 num.espl[setxy xcor-of location(who - num.espl) ycor-of location(who -
num.espl)set shape "location1" set size (((distanza.repulsione)* 2) - 1) set hidden? not hidden?]
 create-custom-aree.attrazione1 num.espl[setxy xcor-of location(who - 2 * num.espl) ycor-of location (who - 2
* num.espl)set shape "location" set size (((copertura)* 2)- 1) set hidden? not hidden?]
 ask aree.repulsione1[__tie area.repulsione1 (who) location(who - num.espl)]
 ask aree.attrazione1[__tie area.attrazione1 (who) location(who - (2 * num.espl))]]
 ask locations[without-interruption[
 set cov3 sum values-from patches in-radius copertura [densita.patch3]
 set covering%(((sum values-from locations [cov3]) / total * 100))]]
 if bynary = 1 [
 create-custom-locations 1 [setxy x4 y4 set shape "house" set size 1.6 set vero.loc 0 set color blue set label who]
 create-custom-aree.repulsione1 num.espl[setxy xcor-of location(who - num.espl) ycor-of location(who -
num.espl)set shape "location1" set size (((distanza.repulsione)* 2) - 1) set hidden? not hidden?]
 create-custom-aree.attrazione1 num.espl[setxy xcor-of location(who - 2 * num.espl) ycor-of location (who - 2
* num.espl)set shape "location" set size (((copertura)* 2)- 1) set hidden? not hidden?]

155

 ask aree.repulsione1[__tie area.repulsione1 (who) location(who - num.espl)]
 ask aree.attrazione1[__tie area.attrazione1 (who) location(who - (2 * num.espl))]
 ask ombre3[die]
 ask locations[
 if dead-of location(who)= 1[
 die]]
 ask aree.repulsione1[
 if vero.a = 1[
 die]]
 ask aree.attrazione1[
 if vero.b = 1[
 die]]
 ask locations[without-interruption[
 set cov3 sum values-from patches in-radius copertura [densita.patch3]
 set covering%(((sum values-from locations [cov3]) / total * 100))
]]]]
if bynary2 = 1
[ask ombre32[die]
 ask locations[
 if vero.loc = 1[
 die]]
 ask aree.repulsione1[
 if vero.a = 1[
 die]]
 ask aree.attrazione1[
 if vero.b = 1[
 die]]]
 ask loca2[die]
ask shadows3[die]
ask shadows32[die]
ask loca[die]
end
to continua
if num.messe = numero.locations[
 if num.giri = 0[
 memorizza
 sposta]
while [num.giri < num.iterazioni] [
 ask locations[without-interruption[
 set cov3 sum values-from patches in-radius copertura [densita.patch3]
 set covering%(((sum values-from locations [cov3]) / total * 100))]]
 ask loca[without-interruption[
 set cov2 sum values-from patches in-radius copertura [densita.patch]
 set covering%.loca(((sum values-from loca [cov2]) / total * 100))]]
 set num.giri num.giri + 1
 set num.giri2 num.giri + 1
 attrai1.3
 respingi1.3
 calcola.risultante1.3
 muovi1.3
 distanziare1.3
 distacca.ombre1.3
 distacca.shadows1.3
 conteggio1.3]]
end

to continua2
if num.messe = numero.locations[
 if num.giri2 = num.iterazioni + 1[
 sposta2]

156

 while [num.giri2 < (num.iterazioni2 + num.iterazioni - 1)] [
 ask locations[without-interruption[
 set cov3 sum values-from patches in-radius copertura [densita.patch3]
 set covering%(((sum values-from locations [cov3]) / total * 100))
]]
 ask loca2[without-interruption[
 set cov22 sum values-from patches in-radius copertura [densita.patch]
 set covering%.loca2(((sum values-from loca2 [cov22]) / total * 100))
]]
 set num.giri2 num.giri2 + 1
 attrai1.32
 calcola.risultante1.32
 muovi1.32
 distanziare1.32
 distacca.ombre1.32
 distacca.shadows1.32
 conteggio1.32]]
end

157

References

Aras N., Ozkisacik K.C., Altinell I.K. (2006). Solving the uncapacitated multi-facility Weber

problem by vector quantization and self-organizing maps. The Journal of the

Operational Research Society, vol. 57(1), pp. 82-93.

Archimede B., Coudert T. (2001). Reactive scheduling using a multi-agent model: the SCEP

framework. Engineering Applications of Artificial Intelligence, vol.14, pp. 667-683.

Aydin M. E., Öztemel E. (2000). Job-shop scheduling using reinforcement learning agents.

Robotics and Autonomous Systems, vol. 33(2–3), pp. 169–178.

Barbucha D., Jędrzejowicz P. (200). An Agent-Based Approach to Vehicle Routing Problem.

International Journal of Applied Mathematics and Computer Science, vol. 4(2), pp.

538 – 543.

Bender T., Hennes H., Kalcsics J., Melo M.T., Nickel S. (2001). Location Software and

Interface with GIS and Supply Chain Management. Berichte des Fraunhofer ITWM,

Nr. 23.

Benedict J.M. (1983). Three hierarchical objective models which incorporate the concept of

excess coverage to locate EMS vehicles or hospital. Master’s thesis, Department of

Civil Engineering, Northestern University, Evanston, Illinois.

BenHassine A., Ho T.B. (2007). An agent-based approach to solve dynamic meeting

scheduling problems with preferences. Engineering Applications of Artificial

Intelligence, vol. 20(6).

Berman O., Huang R. (2008). The minimum weighted covering location problem with

distance constraints, Computers & OR, vol. 35(2), pp. 356-372.

Billari F.G., Fent T., Prskawetz A., Scheffran J. (eds.) (2006). Agent-Based Computational

Modelling: Applications in Demography, Social, Economic and Environmental

Sciences (Contributions to Economics). Physica-Verlag, Heidelberg.

Bongaerts L., Monostori L., McFarlane D., Kadar B. (2000). Hierarchy in distributed shop

floor control. Computers in Industry, vol. 43(2), pp. 123–137.

Bozkaya B., Zhang J., Erkut E. (2002). An Efficient Genetic Algorithm for the p-Median

Problem, in Drezner Z., Hamacher H. (eds.). Facility Location: Applications and

Theory, pp. 179-205, Springer, Berlin.

Brandeau, M.L., Chiu, S.S. (1989). An overview of representative problems in location

research. Management Science, 35, 645-674.

158

Bratman M. E., Israel D. J., Pollack M. E. (1988). Plans and resource-bounded practical

reasoning. Computational Intelligence, vol. 4(3), pp. 349-355.

Brennan R.W., Norrie D. H. (2001). Evaluating the performance of reactive control

architectures for manufacturing production control. Computers in Industry, vol. 46(3),

235–245.

Brimberg J., Hansen P., Mladenovic N, Taillard E.D. (2000). Improvements and Comparison

of Heuristics for solving the Multisource Weber Problem. Operations Research, vol.

48(3), pp. 444-460.

Brown D., Riolo R., Robinson D.T., North M., Rand W. (2005). Spatial Process and Data

Models: Toward Integration of Agent-Based Models and GIS. Journal of

Geographical Systems, vol. (7)1, pp. 25-47.

Cappanera P., Gallo G., Maffioli F. (2003). Discrete facility location and routing of

obnoxious activities. Discrete Applied Mathematics, vol. 133(1-3), pp. 3 - 28.

Caridi M., Cavalieri S. (2004). Multi-agent systems in production planning and control: an

overview. Production Planning and Control, vol. 15(2), pp. 106–118, Taylor&Francis.

Carrizosa E.J., Conde E., Munoz M., Puerto J. (1995). The generalized weber problem with

expected distances. RAIRO vol. 29, pp. 35-57.

Cavalieri, B. (1647). Exercitationes geometricae. Bologna.

Cavalieri S., Garetti M., Macchi M., Taisch M. (2000). An experimental benchmarking of

twomulti-agent architectures for production scheduling and control. Computers in

Industry, vol. 43(2), 139–152.

Chen R. (1983). Solution of Minisum and Minimax Location–Allocation Problems with

Euclidean Distances. Naval Research Logistics Quarterly, vol. 30, pp. 449–459.

Chen P., Hansen P., Jaumard B., Tuy, H. (1998). Solution of the multisource Weber and

conditional Weber problems by DC programming, Operations Research, vol. 46(4),

pp.548-562.

Chen Y. M., Wang S. C. (2007a). An agent-based evolutionary strategic negotiation for

project dynamic scheduling. International Journal of advanced manufacturing

technology, vol. 35(3-4).

Chen Y. M., Wang S. C. (2007b) Framework of agent-based intelligence system with two-

stage decision-making process for distributed dynamic scheduling. Applied Soft

Computing, vol. 7(1), pp. 229-245.

Chrystal G. (1885). On the Problem to Construct the Minimum Circle Enclosing n Given

Points in the Plane. Proceedings of the Edinburgh Mathematical Society, 3, 30–33.

159

Chun A., Wai H., Wong R.Y.M. (2003). Optimizing agent-based meeting scheduling through

preference estimation. Engineering Applications of Artificial Intelligence, vol. 16(7-8),

pp. 727-743.

Chung C.H., Schilling D.A, Carbone R. (1983). The capacitated Maximal Covering Problem:

A Heuristic, in Proceedings of the Fourteenth Annual Pittsburgh Conference on

Modeling and Simulation, pp. 1423-1428, Pittsburgh, Pennsylvania.

Church R.L., ReVelle C.S. (1974). The maximal covering location problem. Papers of the

Regional Science Association, vol. 32(1), pp. 101-118.

Cooper L. (1963). Location-allocation problems. Operations Research, vol. 11, pp. 37-52.

Cooper L. (1964). Heuristic methods for location-allocation problems. SLAM Review, vol. 6,

pp. 37-53.

Cooper L. (1967). Solutions of generalized locational equilibrium models. Journal of

Regional Science, vol. 7, pp. 1–18.

Cowling P. I., Ouelhadj D., Petrovic S. (2003). A multi-agent architecture for dynamic

scheduling of steel hot rolling. Journal of Intelligent Manufacturing, vol. 14, 457–470.

Cowling P. I., Ouelhadj D., Petrovic S. (2004). Dynamic scheduling of steel casting

andmilling using multi-agents. Journal of Production Planning and Control, vol. 15,

1–11.

Current J., Storbeck J. (1988). Capacitated Covering Models. Environment and Planning B:

Planning and design, vol. 15(2), pp. 153-163.

Daskin M.S., Hogan K., Revelle C. (1988). Integration of multiple, excess, backup, and

expected covering models. Environment and Planning B: Planning and Design

vol.15(1), pp. 15- 35.

Davidsson P., Holmgren J., Persson J.A. (2007). On the Integration of Agent-Based and

Mathematical Optimization Techniques. Lecture Notes In Artificial Intelligence, vol.

4496, pp. 1-10.

Dignum V., Weigand H., Xu L. (2002). Agent societies: Toward frameworks-based design. In

M.J. Wooldridge M.J., Wei G., Ciancarini P., (ed), Agent-oriented software

engineering II, Proceedings of the Second International Workshop (AOSE-2001),

Lecture Notes in Articial Intelligence, Vol. 2222, Springer-Verlag, Berlin, Germany.

Drezner Z. (1987). A Heuristic Procedure for the Layout of a Large Number of Facilities.

Management Science, vol. 33(7), pp. 907-915.

Drezner Z., Wesolowsky G.O. (1978). Facility location on a sphere. Journal of the

Operational Research Society, vol. 29, pp. 997-1004.

160

Drezner Z., Wesolowsky G.O. (1978a). A New Method for the Multifacility Minimax

Location Problem. Journal of the Operational Research Society, vol. 29, pp. 1095–

1101.

Drezner Z., Wesolowsky G.O. (1978b). A Trajectory Method for the Optimization of the

Multifacility Location Problem with lp Distances. Management Science, vol. 24, pp.

1507–1514.

Drezner Z., Wesolowsky G.O. (1994). Finding the circle or rectangle containing the minimum

weight of points. Location Science, vol. 2, pp. 83-90.

Drezner Z., Hamacher H. W. (2002). Facility Location: Application and theory, Springer-

Verlag, Berlin.

Drezner T., Drezner Z. (2007). Equity Models in Planar Location. Computational

Management Science, vol. 4(1), pp. 1-16.

duMerle O., Villeneuve D., Desrosiers J., Hansen P. (1999). Stabilized column generation,

Discrete Mathematics, vol. 194(1), pp.229-237.

Eiselt, H.A., Laporte, G., Thisse, J-F., 1993. Competitive location models: A framework and

bibliography. Transportation Science, 27 (1), 44-54.

Elzinga D.J., Hearn D.W. (1972). The Minimum Covering Sphere Problem. Management

Science vol. 19, pp. 96–104.

Erkut E., Neuman S. (1989). Analytical Models for Locating Undesirable Facilities. European

Journal of Operational Research, vol. 40(3), pp. 275-291.

Ferber J. (1999). Multi-Agent System: An Introduction to Distributed Artificial Intelligence,

Addison Wesley Longman, Redwood City.

Fotheringham A.S., O’Kelly M.E. (1989). Spatial interaction models: Formulation and

applications. Kluwer Academic, Dordrecht.

Francis R.L. (1964). On the Location of Multiple New Facilities with Respect to Existing

Facilities. The Journal of Industrial Engineering, vol. 15, pp. 106–107.

Frey D., Nimis J., Worn H., Lockemann P. (2003). Benchmarking and robust multi-agent-

based production planning and control. Engineering Applications of Artificial

Intelligence, vol. 16(4), pp. 307-320.

Galvao R.D., Espejo L.G.A., Boffey B. (2000). A comparison of Lagrangean and surrogate

relaxations for the maximal covering location problem. European Journal of

Operational Research, vol. 124(2), pp. 377-389.

161

Goldsmith S. Y., Interrante L. D. (1998). An autonomous manufacturing collective for job

shop scheduling. In proceedings of AI & manufacturing research planning workshop,

pp. 69–74, AAAI Press.

Graham R.E., Lawler E.L., Lenstra J.K., Rinnoy Kan A.H.G. (1979). Optimization and

approximation in deterministic sequencing and scheduling: a survey. Annals of

Discrete Mathematics 4, 287-326.

Guo D., Ren B., Wang C. (2008). Integrated Agent-Based Modeling with GIS for Large Scale

Emergency Simulation, Lecture Notes in Computer Science, vol.5370, pp.618-625.

Hakimi S.L. (1964). Optimal location of switching centers and the absolute centers and

medians of a graph. Operations Research, vol.12, pp. 450–459.

Handler G.Y., Mirchandani P.B. (1979). Location on Networks Theory and Algorithms. MIT

Press, Cambridge.

Hansen P., Mladenovic N., Taillard E. (1998). Heuristic solution of the multisource Weber

problem as a p-Median problem, Operation Research Letters, vol. 22(2-3), pp. 55-62.

Homberger J. (2007). A multi-agent system for the decentralized resource-constrained multi

project scheduling problem. International transactions in operational research, vol.

14(6), pp. 565-589.

Hotelling H. (1929). Stability in competition. The Economic Journal, vol. 39, pp. 41-57.

Kariv O., Hakimi S.L., (1979). An Algorithmic Approach to Network Location Problems. II:

The p-medians. SIAM – Journal on Applied Mathematics, vol. 37(3), pp. 593-560.

Kariv O., Hakimi S.L. (1979a). An Algorithmic Approach to Network Location Problems. I:

The p-centers. SIAM Journal on Applied Mathematics, vol. 37, pp. 513–538.

Karageorgos A., Mehandjiev N., Weichhart G., Hammerle A. (2003). Agent-based

optimisation of logistics and production planning. Engineering Applications of

Artificial Intelligence, vol. 16(4), pp. 335-348.

Karasakal O., Karasakal E.K. (2004). A maximal covering location model in the presence of

partial coverage. Computers & Operations Research, vol. 31(9), pp. 1515-1526.

Kathib O. (1986). Real time obstacle avoidance for manipulators and mobile robots.

International Journal of Robotics Research, vol. 5(1), pp. 90-99.

Kendall D. (1951). Some problems in the theory of queues. Journal of the Royal Statistical

Society, 13, 151-153.

Klose A., Drexl A. (2005). Facility location models for distribution system design, European

Journal of Operational Research, vol. 162(1), pp. 4-29.

162

Knotts G., Dror M., Hartman B.C. (2000). Agent-based project scheduling, IIE Transactions,

vol. 32(5), pp. 387-401.

Kuenne R., Soland R. (1972). Exact and approximate solutions to the multisource Weber

problem, Mathematical Programming, vol. 3(1), pp. 193-209.

Kuhn H. (1973). A note on Fermat’s problem. Mathematical Programming, vol. 4, pp. 98–

107.

Kuhn K., Kuenne R. (1962). An efficient algorithm for the numerical solution of the

generalized Weber problem in spatial economics. Journal of Regional Science, vol. 4,

pp. 21–33.

Leitao P., Restivo F. (2008). A holonic approach to dynamic manufacturing scheduling.

Robotics and Computer-Integrated Manufacturing, vol. 220, pp. 37-46.

Lim M.K., Zhang D.Z. (2004). An integrated agent-based approach for responsive control of

manufacturing resources. Computers & Industrial Engineering, vol. 46(2), pp. 221-

232.

Lin G. Y., Solberg J. J. (1992). Integrated shop floor control using autonomous agents. IIE

Transactions, vol. 24(3), pp. 57–71.

Liu N., Abdelrahman M.A., Ramaswamy S. (2007). A complete multiagent framework for

robust and adaptable dynamic job shop scheduling. IEEE Transactions on Systems,

Man and Cybernetics, vol. 37(5).

Maimon O. (1986) The variance equity measure in locational decision theory. Annals of

Operations Research, vol. 6, pp. 147–160.

Maimon O. (1988). An algorithm for the Lorenz measure in locational decisions on trees.

Journal of Algorithms, vol. 9, pp. 583–596.

Masuyama S., Ibaraki T., Hasegawa T. (1981). The Computational Complexity of the m-

Center Problems on the Plane. The Transactions of the Institute of Electronics and

Communication Engineers of Japan, vol. 64E, pp. 57–64.

Megiddo N., Supowit K.J. (1984). On the Complexity of Some Common Geometric Location

Problems. SIAM Journal of Computing, vol. 13(1), pp.182-196.

Mehrez A. (1983). A note on the linear integer formulation of the maximal covering location

problem with facility placement on the entire plane. Journal of Regional Science, vol.

23(4), pp.553-555.

Melo M.T., Nickel S., Saldanha-da-Gama F. (2009). Facility location and supply chain

management – A review. European Journal of Operational Research, vol. 196(2), pp.

401-412.

http://www.sciencedirect.com/science/journal/03772217

163

Melzak Z.A. (1967). On the problem of Steiner. Canada Mathematics Bullettin, vol. 10, pp.

431-450.

Mes M., van der Heijden M., van Harten A. (2007). Comparison of agent-based scheduling to

look-ahead heuristics for real-time transportation problems. European Journal of

Operational Research, 181(1), pp. 59-75.

Minieka E. (1970). The m-Center Problem. SIAM Review, vol. 12, pp. 138–39.

Moore G.C., ReVelle C.S. (1982). The hierarchical service location problem. Management

Science vol. 28, pp. 775-780.

Muller J. P., Pischel M., Thiel M. (1995). Modelling reactive behaviour in vertically layered

agent architectures, in Wooldridge M., Jennings N. R., (eds.), Intelligent Agents:

Theories, Architectures, and Languages, Lecture Notes In Artificial Intelligence, vol.

890, pp. 261-276, Springer-Verlag, Berlin, Germany.

Nickel S., Hamacher H. (1998). Classification of Location Models. Location Science, 6, 229-

242.

Ouelhadj D., Hanachi C., Bouzouia B. (1998). Multi-agent system for dynamic scheduling

and control in manufacturing cells. In Proceedings of the IEEE international

conference on robotics and automation, pp. 1256–1262.

Ouelhadj D., Hanachi C., Bouzouia B., Farhi A., Moualek A. (1999). A multi-contract net

protocol for dynamic scheduling in flexible manufacturing systems. In Proceedings of

the IEEE international conference on robotics and automation, pp. 1114–1120.

Ouelhadj D., Hanachi C., Bouzouia B. (2000). Multi-agent architecture for distributed

monitoring in flexible manufacturing systems (FMS). In Proceedings of the IEEE

international conference on robotics and automation, pp. 1120–1126.

Ouelhadj D., Cowling P. I., Petrovic S. (2003). Contract net protocol for cooperative

optimisation and dynamic scheduling of steel production. In Ibraham A., Franke K.,

Koppen M., Intelligent systems design and applications, pp. 457–470, Springer,

Berlin.

Parker D.C. (2005). Integration of Geographic Information Systems and Agent-Based Models

of Land Use: Challenges and Prospects. In: Maguire, D.J., Batty, M., Goodchild, M.

(eds.) GIS, Spatial Analysis and Modelling, pp. 403–422. ESRI Press, Redlands.

Parunak H.V.D., Kindrick J., Irish B.W. (1987). A Conservative Domain for Neural

Connectivity and Propagation. In Huhns M.N. (ed.) Distributed Artificial Intelligence,

pp. 307-311, Pitman, London.

164

Parunak H.V.D (1999). Industrial and practical applications of DAI. In: G. Weiss, Editor,

Multiagent Systems — A Modern Approach to Distributed Artificial Intelligence, MIT

Press, Cambridge MA (1999), pp. 79–120.

Pendharkar P. C. (1999). A computational study on design and performance issues of multi-

agent intelligent systems for dynamic scheduling environments. Expert Systems with

Applications, vol. 16(2), pp. 121–133.

Pirkul H., Schilling D.A. (1991). The maximal covering location problem with capacities on

total workload. Management Science, vol. 37(2), pp.233-248.

Plastria F., Carrizosa E. (1999). Undesirable facility location with minimal covering

objectives. European Journal of Operational Research, vol. 119(1), pp.158-180.

Plastria F. (2002). Continuous Covering Location Problems. In Drezner Z. and Hamacher H.

W. (eds.) Facility Location: Application and theory, pp. 37-80, Springer-Verlag,

Berlin, Germany.

Pottage J. (1983). Geometrical Investigations. Addison-Wesley, Reading, MA.

Raicu R., Taylor M.A.P., Zito R. (2002). An evaluation of logistics network modelling tools

available to South Australian companies: Literature review and initial evaluation.

Transport Systems Centre Technical Report, University of South Australia, Adelaide.

Ramos C. (1994). An architecture and a negotiation protocol for the dynamic scheduling of

manufacturing systems. In Proceedings of IEEE international conference on robotics

and automation, pp. 8–13.

Righini G., Zaniboni L.(2007). A branch-and-price algorithm for the multi-source Weber

problem, International Journal of Operation Research, vol. 2(2), pp. 188-207.

Rosenschein J.S., Zlotkin G. (1994) Rules of Encounter. The MIT Press, Cambridge,

Massachussets.

Rosing K.E. (1992). An optimal method for solving the (generalized) multi-Weber problem.

European Journal of Operation Research, vol. 58(3), pp. 414-426.

Russell S., Norvig P. (1995). Artificial Intelligence: A Modern Approach, Prentice-Hall, New

Jersey.

Sandholm T. W. (2000). Automated contracting in distributed manufacturing among

independent companies. Journal of Intelligent Manufacturing, vol. 11(3), pp. 271–

283.

Schöber A. (1999). Locating lines and hyperplanes: theory and algorithms, Kluwer,

Dordrecht.

http://www.amazon.com/exec/obidos/ASIN/0201057336/ref=nosim/weisstein-20

165

Sen A., Smith T.E. (1995). Gravity models of spatial interaction behaviour. Springer-Verlag,

Berlin.

Serra D., Colomé R. (2001). Consumer choice and optimal location models: formulations and

heuristics. Papers in Regional Science, vol. 80 (4), pp. 425-438.

Shaw J.M. (1988). Dynamic scheduling in cellular manufacturing systems: a framework for

Network decision making. Journal of Manufacturing Systems, vol. 7(2), pp. 83–94.

Shen W., Maturana F., Norrie D. H. (2000). MetaMorph II: an agent-based architecture for

distributed intelligent design and manufacturing. Journal of Intelligent Manufacturing,

11(3), pp. 237– 251.

Shen W., Norrie D. H., Barthes J. P. A. (2001). Multi-agent systems for concurrent intelligent

design and manufacturing. London: Taylor & Francis.

Shukla S. K., Tiwari M. K., Son Y. J. (2008). Bidding-based multi-agent system for

integrated process planning and scheduling: A data-mining and hybrid Tabu-SA

algorithm-oriented approach. International Journal of Advanced Manufacturing

Technology, vol. 38, 163–175.

Simpson T. (1750). The Doctrine and Application of Fluxions. London.

Smith R. (1980). The contract net protocol: high level communicationand control in

distributed problem solver. IEEE Transactions on Computers, vol. 29(12), pp. 1104–

1113.

Smithies A. (1941). Optimal location in spatial competition. Journal of Political Economy,

vol. 49, pp. 423-439.

Sousa P., Ramos C. (1999). A distributed architecture and negotiation protocol for scheduling

inmanufacturing systems. Computers in Industry, vol. 38(2), pp. 103–113.

Storbeck J.E. (1982). Slack, natural slack and location covering, Socioeconomic Planning

Sciences, vol. 16(3), pp. 99-105.

Sun J., Xue D. (2001). A dynamic reactive scheduling mechanism for responding to changes

of production orders and manufacturing resources. Computers in Industry, vol. 46(2),

pp. 189–207.

Toregas C., Swain R., Revelle C., Bergman L. (1971). The Location of Emergency Service

Facilities. Operations Research, vol. 19, pp. 1363-1373.

Valchopoulou M., Silleos G., Manthou V. (2001). Geographic information systems in

warehouse site selection decisions. International journal of production economics, vol.

71, pp. 205-212.

166

Ward J.E., Wendell R.E. (1985). Using Block Norms for Location Modeling. Operations

Research, vol. 33, pp. 1074–1090.

Weber, A. (1909). Über Den Standort Der Industrien, 1. Teil: Reine Theorie Des Standortes,

Tübingen, Germany. English Translation: On the Location of Industries, University of

Chicago Press, Chicago, IL, 1929. (English Translation by C.J. Friedeich (1957),

Theory of the Location of Industries, Chicago University Press, Chicago.).

Weiss G. (1999). Multiagent Systems, a modern approach to distributed artificial

intelligence, MIT Press, Cambridge.

Weiszfeld E. (1937). Sur le point pour lequel la somme des distances de n points donnes est

minimum. Tohoku Mathematical Journal, vol. 43, pp. 355-386.

Wesolowsky G.O. (1972). Rectangular Distance Location Under the Minimax Optimality

Criterion. Transportation Science, vol. 6, pp. 103–113.

Wooldridge M. (2002). An Introduction to Multiagent Systems, John Wiley and sons, New

York.

Zacharias M. (1913). Maxima und minima. Section 28 in Elementargeometrie, in

Encyklopddie der Mathematischen Wissenschaften (W. F. Meyer & H. Mohrmann,

Leipzig, Eds), 3. Band, 1. Teil (1914-1931). Pp. 1118-1137.

Zhou R., Fox B., Lee H.P., Nee A.Y.C. (2004). Bus maintenance scheduling using multi-

agent systems, Engineering Applications of Artificial Intelligence, vol. 17(6), pp. 623-

630.

	4.5.1 p-Median like problems
	4.5.3 Covering problems
	5.3.1 The p-Median like problem
	5.3.2 The p-Maximal Covering like problem
	5.3.3 The Minimum Variance like problem
	p-Median like problem
	5.5.2 Solving p-Maximal Covering problem instances
	5.5.3 Solving Minimum Variance problem instances
	Appendix I
	Generalities

	Appendix 2

