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Introduction

Survey data analysis in the marketing research, in the public-opinion
survey and in the social research, are often characterized by different
typologies of variables, measured on interval scale, nominal and ordi-
nal scale, with a prevalence of the last two.

The simultaneous treatment of variables measured on different scale
implies an homogenization problem, that can be solved recoding all
variables, numerical and ordinal, to the lowest information level, that
at the nominal scale levels such an approach usually implies a loss of
information and does not allow to use the more informative quantita-
tive analysis.

A prior quantification of the ordinal and nominal variables based
on external optimal scaling technique is largely used in literature. Al-
ternatively optimal scaling approaches can be integrated inside the
metodology of data anlysis or modeling.

The choice of the scale level to take in consideration depends by the
type of variables that are dominant in the survey and by the method
with which the data are analyzed. Researches on Customer Satis-
faction, scholastic evaluation, healthcare analysis of a population are
typically based on ordinal scale, in this thesis we will refer, especially,
to this kind of variables , exploring an approach that drives at the
quantification inside a Structural Equation Modeling (SEM) context.
The objectives, considered here, are twofold as to identify the latent



Introduction

variables underlying the dimensions explored and their explanation on
the base of outer variables that can be latent or manifest ones.

Our aim to design a model that contrary to the explorative ap-
proaches, as Principal Component Analysis (numerical variables), Mul-
tiple Correspondence Analysis (for nominal variables) and Princals
(for mixed variables, including ordinal variables), proposes a confirma-
tive approach that represents a change of paradigm in respect with the
approach proposed in the sixties by Benzecr̀ı and the French school,
according to which “the models must follow the data”, to an approach
closed to the soft modeling, developed in the recent years by the psy-
chometric school, for which the hypothesis and the a-priori knowledge
of the reality, conceptualized as a model to verify empirically, reversed
the Benzecr̀ı principle for which in this case “the data must follow the
model and no vice versa”.

Unlike the econometric approach in which the models are the prod-
uct of a theory supported by a large knowledge of the topic to face, the
soft modeling calculates at the same time, whether the identification
of the latent variables as in the explorative analysis, or the estimation
of the relationships between them as parameters of a model generally
linear.

In our thesis work we have addressed a particular attention to the
ordinal case, in the perspective to introduce a method of quantification
of these last variables (ordinal), but that can be extended also to the
nominal variables, maintaining unaltered the numerical ones. With
this scope we have developed in the well know framework of Struc-
tural Equation Models estimation, based on the Partial Least Squares
method, an original algorithm that pursues the optimal quantification
of ordinal variables and nominal variables according to an Alternating
Least Squares (ALS) logic.

Our thesis work starts from the quantification problems presented
in a complex survey made by AVSI (Associazione Volontari per il
Servizio Internazionale), to which we have participated [32]. The sur-

2



Introduction

vey has the aim to evaluate the impact on the status of Orphan Vul-
nerable Children (OVC), residents in three Countries of Africa sud-
sahariana (Rwanda, Uganda and Kenya) of the supports given to the
children, during three years, to their school, healthcare and nutritional
aspects as wellas to their family environment. The model supposed on
the base of this survey [32] is reported in figure 5.1. This model was

Figure 1: Status of child model

somministrated to 1155 children, of which the manifest variables are
all ordinal, except for two variables that are nominal and measure the
leaving condition of these children. So the structural model consists

3
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of 8 latent variables (six exogenous and 2 endogenous): three latent
endogenous block summarize the Status of child , Family char-
acteristics, Housing condition (the characteristics of the house
where children live), Avsi intervention that is a super block defined
by three latent variables, that describe the kind of support offered for
the Family, for the School, and Nutritional. An outcome block of
the model is associated to the Guardian satisfaction depending on
the general Status reached by the Child in the year of the Survey.

The manifest variables on which the latent variables rest are quite
all (33) ordinal, but for 2.

This is the applicative background on which centres our method-
ological approach, that has a more general perspective that strictly
applicative. Our vision respect to the statistical research is to develop
a methodology purposive to real problems and that permits to allure
from the reality that lesson based on the integration between methods
and knowledge a-priori, rather than a research formal merely that can
be redundant sometimes in respect to the reality observed, or do not
consider it. In this direction we follow the Tukei’s thought:

Exploratory Data Analysis (EDA) is detective work - numerical
detective work - or counting detective work - or graphical detective
work ... unless exploratory data analysis uncovers indications, usually
quantitative ones, there is likely to be nothing for confirmatory data
analysis to consider ... [it] can never be the whole story, but nothing
else can serve as the foundation stone - as the first step. [Tukey, 1977,
p. 1-3]

John Tukey proposed a new approach to data analysis, based heav-
ily on visualization, as an alternative to classical (mathematical) data
analysis. Being dependent on graphics, this approach only became
practical with the advent of modern computers. However, he pro-
posed the methodology of data exploration, a methodology in which
a model of the phenomena might be inferred instead of pre-imposed.

4
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It is this powerful combination that led him to coin the phrase “ex-
ploratory data analysis”, commonly referred to simply as “EDA”.

The exploratory approach is very appropriate for data analysis be-
cause it allows you to explore your data with an open mind. Tukey
suggests that you think of exploratory analysis as the first step in a
two-step process similar to that utilized in criminal investigations. In
that first step, you search for evidence using all of the investigative
tools that are available. In the second step, that of confirmatory data
analysis, you evaluate the strength of the evidence and judge its mer-
its and applicability. It is in this second step that you would likely
evaluate the model(s) which you have inferred during your exploration
and likely apply the techniques of classical data analysis.

To this philosophy engendered on a soft modeling idea belong our
PALSOS-PM approach: similarly to PLS-PM, our methodology has
two souls, explorative because it starts with the observation of the
data on which one a model is built, and the confermative one because
after the use of a statistical technique it tries to confirm the model
inferred.

The thesis work goes through four chapters.
The first chapter is a presentation of qualitative variables, with a

particular attention to the ordinal ones, and of the methods of exter-
nal quantification of most.

In second chapter two approaches to the estimation of a SEM
model are presented, LISREL and PLS-PM, showing the difference
between them, and for which the problem of ordinal variables is dis-
cussed, pointing out the actual proposals for the quantification in the
literature.

In the third chapter, that represents the core of the thesis, the
PALSOS-PM approach is developped. The first part of this chapter
is dedicated to explain the process of internal quantification adopted
in the ALS algorithms, with the description of Princals and Morals
procedures. The central part of the chapter regards the PALSOS-PM

5
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algorithm, in which the characteristics of the procedure and the val-
idation process are introduced. An application of PALSOS-PM to a
well known customer satisfaction dataset in the literature is estimated,
to evaluate the advantage of our approach with resoect to the classical
PLS-PM with no scaling options.

In the fourth chapter the model and the variables of a the Avsi
model are described. The model, called “The status of child”, is is-
sued by a database of AVSI. The variables collected are ordinal, and
someone are expression of qualitative characteristics (for example the
characteristics of house in which the children live). This model esti-
mated with the PALSOS-PM, allows to evidentiate the property of
our approach to face very complex data.

A Conclusion and perspective ends the thesis to highlight with
the aim the main results achieved, the critical aspects and some fu-
ture development.

6



Chapter 1

The external quantification
of ordinal variables

Hirschfeld, Fisher (with an “appropriate scoring” technique) and Guttman
proposed in the thirties to associate real values to the modalities of
a nominal variable, in such a way to optimize an external criterion
of analysis. The coding of an ordinal variable is the latest and the
first significant work was written by Kruskal (1965) on the analysis of
monotone variance. So with the term “quantification” (or “scaling”
or “scoring”) we indicate a transformation of one or several categori-
cal variables, normally ordinary, into numerical ones. The advantage
of quantifying non numerical variables consists in the possibility to
use classical multivariate techniques such as the Principal Component
Analysis, Multiple Regression or Discriminant analysis.

Optimal Scaling is a multidimensional analysis that is based on the
association of numerical scores to ordinal variables, across a transfor-
mation method. This technique is justified by the necessity to have
metodologies capable to elaborate ordinal variables, taking into acount
their characteristics and exceeding the classical coding in terms of
equidistant intger scores, as collected by the questionnaires.



The external quantification of ordinal variables

Bock (1960), that introduced the term “optimal scaling”, defines:
“The aim of optimal scaling is to assign numerical values to al-

ternatives or categories, so as to discriminate optimally among the
objects, in some sense. Usually it is the least squares sense, and the
values are chosen so that the variance between objects after scaling is
a maximum with respect to that within objects”.

We must choose one of the possible transformations, in order to
satisfy some criterion related to the kind of analysis which will be
performed afterwards: for example in the regression model it is the
maximization of R2. In this way we have an optimal transformation
of variables, taking into account, on the one hand, the aim of analysis,
and on the other hand, the nature and the process that the variables
originated from. The largest use of scaling has been in psycological
and psycometric contest to:

- verify one or more hypothesis on the data

- describe the structure of data, pointing out one or more latent
dimensions

- develop a unidimensional scale to assign a score to each subject,
variables or both, to use then the new variables in successive
analysis

Furthermore, any multidimensional scaling method for qualitative vari-
ables (such as correspondence analysis) which gives coordinates for the
categories of a set of qualitative variables is in fact a multidimensional
quantification technique: the coordinates along an axis are numerical
values (scores) to be assigned to the modalities of a qualitative vari-
able.

The quantification process can regard nominal and ordinal vari-
ables, with a substantial difference on the method adopted, and on

8



1.1. The variables and their classification

the constraints applied on the method of quantification.
In this chapter, starting from the definition of variables and their

classification, we focuse the attention on the methods of quantification
of ordinal variables clearing the positive and negative aspects of each
proposal.

1.1 The variables and their classification

The knowledge of a phenomenon is obtained across a measurement,
that is the allocation of numerical values (mathematical language) to
the characteristics, properties and attributes of an object, according
to predetermined rules. This procedure generates the variable, expres-
sion and measurement of the different aspects of the reality.

In statistics a variable is an operativizied concept, i.e. it is an oper-
ativization property of an object, because it is necessary to associate
a concept with an object. So a biunivocal correspondence does not
exist between the concept and variable, because a concept could be
operativizied in different ways. As a consequence we can have dif-
ferent kinds of variables, that can vary between different modalities,
correspondent to the different property states (for example the vari-
able “gender” or “educational qualifications”).

The social and marketing researches are focused on the study of cus-
tomers/citizens behavior with respect to some assertions or to evaluate
their satisfaction about some services received.

The common scope is to quantify some non quantificable concepts,
which can be expressed across a set of observable variables. An im-
portant distinction is, however, between the “latent variable” and the
“manifest variable”. The difference is in the observability of this vari-
able, i.e. the possibility to measure them empirically. The first is a
non directly measurable variable , because it represents a general or
complex concept, so to operativize it we can use observable variables

9



The external quantification of ordinal variables

Table 1.1: Types of variables
States of property Procedure of operativization Type of variable Characteristics of values Operations applicable

Not ordered Classification Nominal Names =,6=
Ordered Order Ordinal Ordinal properties ≺,�,=,6=

Continuous Measurement-count Numerical Numerical properties four mathematical operations

having a semantic relationship with it.
So a latent variable can be operativizied across some techniques of

data analysis and sometimes is defined by empirical data (for example
the factors of a factorial analysis). The observed variables are inde-
pendent given the unobserved variable. All relationships between the
observed variables can be “ explained” by the latent variable, which
is their common factor. In predictive terminology the variance of the
observed variables can be “ explained” by this common factor. In
other words all variables measure essentially the same property.

These two kinds of variables are the base of the Structural Equation
Models (SEM), in which the aim is exactly the study of the relation-
ships between different latent variables, each expressed by a set of
manifest variables.

The manifest variables, being measurable variables, could be nom-
inal, ordinal or numerical. This classification is based on the type of
mathematical-logical operations that we can do on them, where the
logical operations are the operations of “equal” or “difference”, while
the others are the four mathematical operations.

This classification establishes the statistical analysis applicable to
each kind of variable. This definition also depends on how the mea-
surement of variables, was done.

The variables are essentially distinguished in three classes:

1. Nominal: a variable is nominal when it assumes discrete and non
ordinable states, i.e. it can assume only a series of finite states,

10



1.2. The optimal scaling of subjects and variables

called categories/modalities. The unique operation applicable to
these variables is the classification;

2. Ordinal: a variable is ordinal when it assumes discrete and or-
dinal states (for example the “educational qualifications” that
has ordinal values, or the questionnaire questions in which an
individual must choose between ordered values);

3. Numerical: these variables have the numerical and ordinal prop-
erty. All kinds of statistical analysis are applicable.

In the SEM models we have generally numerical or ordinal manifest
variables, due to the nature of analysis (if the model is created to
evaluate the customers satisfaction, we have ordinal variables), or to
the typology1 technique adopted.

The SEM model is a causal model in which the relationships be-
tween latent variables and manifest variables are estimated, and that
the necessity for numerical variables, as the quantification process for
this kind of analysis, is evident.

1.2 The optimal scaling of subjects and

variables

The scaling models assign scores to subject, variables and both. The
most well known scaling technique is based on the judgements ex-
pressed by N subjects on a set of items, concerning their attitudes
versus a latent continuum. For example in marketing research the
technique that asks N subjects to compare k objects is more frequent,

1In particular in this thesis two techniques are considered, LISREL and PLS-
PM, for which the problem of the presence of ordinal variables is presented and
discussed (see chapter 2).

11



The external quantification of ordinal variables

on the basis of some criterions. In this case the scaling of variables is
used . We have talked in the previous section of latent continuum: in
respect to its characteristic of unidimensionality or multidimensional,
we have a difference in the optimal scaling techniques.
Gordon asserts:
“The theory and the techniques of unidimensional scaling help to select
a series of variables or items that, on the basis of empirical evidence,
correspond and are attached to a single dimension or latent contin-
uum”.

On the base of this definition it is clear that the unidimensional
scaling is a set of techniques that assigns subjects and/or variables a
numerical score, taking into account that the items are a raw mani-
festation and codying of the process that generated the data. If we
assume, instead, that the latent dimensions are major to 1, the scaling
of subjects is Multidimensional, and in this case we have a ranking of
subjects respect to one or more latent dimension.

The optimal scaling techniques are divided in three sections:

- methods of optimal scaling drawn through scale construction
models

- methods of optimal scaling drawn through an objective function

- methods of optimal scaling obtained simultaneously with the
estimation of parameters.

1.2.1 The scale construction

A scale is a set of coherent elements (items 2) that are considered in-
dicators of a concept more general. The element is a single component

2In the attitude scale the elements are assertations or questions.

12



1.2. The optimal scaling of subjects and variables

(question, assertation, behaviour, attribute), while the scale is the set
of these elements.

It is more used in social and psychological research, in which the
objective is the study of attitudes of some individuals, but the scale is
usable also to assign a score to the stimulus taking into account the re-
sponses given by individuals. The scale is applicable also to study the
property of other analysis units, as for example to judge the efficiency
of the institutions (governments, companies, public corporations).

The foundamental questions are: What is the nature of the vari-
ables produced by a scale? Are they nominal, ordinal or numerical?

In the literature and generally also the researcher, it is supposed
that the underling dimension is continuous. This continuous property
does not determine numerical variables, but quasi-numerical variables,
because it is not possible to associate a numerical meaning to the scores
of the scaling.

The first measurements of attitudes was made in the twenties by
Allport and Hartman, Borgadus, Thurstone (CITARE). In particular,
Thurstone made three different proposals (Paired comparison, Rank
order, Equal appearing intervals). His scale provides that each item
has an high number of categories, in which to the central value corre-
sponds a disinterested behaviour, while to the first and last a complete
accord or disaccord. In this scale it is supposed that the latent fac-
tor is Normal distibuted and that the categories are equal appearing,
justifying the codying for them with integer numbers. After the elim-
ination of the redundant items, each subject must choose those items
more choerent with his attitude: the final score will be the mean of
the scores associated to each item choosen.

Instead Likert made a proposal in the 1932 that had a great suc-
cess due to its simplicity, following by the proposal of Guttman in the
1944. For many years these three proposals of Thurstone, Likert and
Guttman, are being the reference of the scaling. In the recent years
it is proposed a new scaling based on a probability approach to mea-

13
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sure a continuous property, that was anticipated by Lazarsfeld (1950),
applied then by Rash (1960) and Mokken (1971).

The Likert scale

The name of this scale derives from the psychometric Renis Likert
that proposed it in the 1932. It is the procedure more used for the
measurement of the attitudes, thanks to its simplicity.
The scale of Likert is composed by a set of assertation (the questions
of a questionnaire) for each of them the individual expresses the degree
of accord or disaccord, assigning a total score across the sum of the
scores of each question (additive scale or summarized rating scale).
In the original proposal the number of alternatives was seven: much
agree, agree, partially agree, unsure, partially opposite, opposite, much
opposite. Now generally five values are used and sometimes also four.
The characteristic of this scale is the partially semantic independence.
The scale is built in four phases:

- formulation of questions: on the base of literature the dimensions
of the attitude studied are individuated, as the assertations to
measure the concept. This phase is important because from it
the capacity derives to take the concept;

- administration of questions: the scale is somministrated to a
group of individuals;

- item analysis, the measurement of the degree of coherence of
the scale: all elements of the scale must be correlated with the
same latent concept to analyze. The control is made across the
computation of two quantity: the correlation element-scale and
Cronbach’s α. In the first case for each individual a correlation
coefficient r is computed between the total score and the score
for each item.

14



1.2. The optimal scaling of subjects and variables

Cronbach’s α is useful to measure the internal coherence of the
scale, that is based on correlation between all elements and on
their number:

α =
nr̄

1 + r̄(n− 1)
(1.1)

It is not a correlation coefficient and ranges between 0 and 1: if
the value is 0.7 the scale is coherent. The value of α is sensible
to the number of items. The elements with a low correlation
element-scale are eliminated, until the value of α increases.

- control of validity and unidimensionality of the scale: the validity
is about the applicability of the scale in different researches;
even if the third phase evaluates the unidimensionality of the
elements, for the unidimensionality of the scale it is necessary
to develops a factorial analysis, that individualizes the common
factors to the elements, to see if behind to the elements there is
a unique concept.

The hypothesises on which is based the scale are:

- the existence of a monotonic relationship between the latent con-
tinuum and the scores of the item category

- the quantification for individual j of the continuum ηij is a linear
combination of p considered item xi with equal weights :
ηij =

∑
i=1,...p xij

The advantages of this scale are its simplicity and applicability, but
the ordinal elements of the scale are treated as cardinal scale and they
are not reproducible (from the score of the scale it is not possible to
obtain the single answers given to the questions) and besides the total
score is not a cardinal variable. Besides it gives only the scaling of
subjects.

15
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The Guttman scale

Guttman’s proposal was created as a solution to the problem of uni-
dimensionality of Likert scale. His scale is a sequence of steps, a
succession of elements with an increase difficulty.
In this way, if the elements of the scale are scaled perfectly, only some
sequences of answers are possible; from this characteristic derives the
name of cumulative scale. This cumulativity gives the possibility to
suppose that a continuum exists of which the elements are indicators.
The scale associates value 1 or 0, respectively, for a positive or a nega-
tive response, and summarizing the scores of each individual, for each
elements, we obtain the total score of each individual on the scale. In
this way from the final result it is possible to go back to the answers
given by the individual to each object (reproducibility).
We can identify, to build the scale, three phases:

- the formulation of the questions: this phase is the same of the
Likert scale, with the difference that the responses must be bi-
nary and the questions must have an increasing difficulty;

- the administrations of questions: the scale of Guttman, being to
binary responses, is more simple and more fast to answer;

- the analysis of results with the elimination of the elements with
more errors and the computation of a global index to accept the
scale: in this phase the scope is to eliminate the elements not
coherent with the model, and to compute an index to accept or
reject the scale. The errors in the responses are individuated
comparing the observed sequence with theoretical sequence: the
Reproducibility Coefficient measures the deviation of observed
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from the theoretical scale:

Cr = 1− n. errors

n.total responses

= 1− n. errors

n.elements× n. of cases

=
n. of correct responses

n.total responses

The scale is accepted if the coefficient is major of 0.9; if the
value is inferior the elements with an high number of errors are
eliminated and for each elimination it is updated the coefficient.
The reproducibility coefficient is a mean of the Reproducibility
Coefficient for the single elements

Edwards (CITARE)proposed to compute an index called Minimal
Marginal Reproducibility :

MMR =

∑
Proportion of responses in the modal class

N
(1.2)

where N is the number of elements in the scale.
This index is useful because it signals the minimum value assumes

by the reproducibility coefficient; so if the Cr is major of 0.9 and at
the same time also of the MMR index, we can claim that the scale
has a good reproducibility due to an optimal scalability. After the
elimination of the not scalability elements, we can claim the score to
each individual, equal to the sum of positive responses, even if there
are some errors in the sequence of responses. Guttman suggested to
use an high number of elements, showing as a scale of four elements
has an high value of Cr even if the elements are all independent.
The Guttman scale is been more important for the development of
the scaling technique, even if it has some problems. In particular, it
accepts only binary value, coding with 0 and 1; this scale produces a
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final value that is ordinal yet and is applicable only when the attitudes
are well specified, this characteristic causes the non applicability of this
scale to measure the Customer Satisfaction, where it is necessary to
investigate the assertion of individuals.
Besides the Guttman scale is a deterministic model, while the reality
is perfectly explained only across probabilistic models.

The Rash scale

The probabilistic approach associates a value between 0 and 1 to the
probability to give a response. So an individual, that has a position
on the continuum of the latent variable, has for example an 80 percent
of probability to answer “yes” to a question and 20 percent to answer
“no”. The model supposes a relationship between the position on the
continuum and the probability of response to a particular element of
the scale, called trace line.

The trace is a curve that describes the probability to answer pos-
itively to a certain element respect to the position on the continuum
underling.

The curve is not linear but logistic: the probability of a positive
response is near to zero, for values of ϑ (the underling dimension) very
low. When ϑ increases the probability before increases slowly, then
quickly until the 50 percent and more, and then it aims to 1 slowly.

The difficulty of a scale is indicated by the parameter b, correspon-
dent to the value of ϑ on the continuum for which the probability of
a positive response is of 50 percent. The traces are not visible so the
aim is to build them using the responses of individuals, classifying
them on the latent dimension. The curve is representable across a
mathematical expression:

P (ϑ) =
eϑ−b

1 + eϑ−b
(1.3)
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where:

- P (ϑ) is the probability of the subject to give a positive response

- b is the difficulty of the element considered

- ϑ is the position of the subject on the property

- e is equal to 2.718, the base of natural logarithm

The formula expresses the probability that an individual, with a po-
sition ϑ, gives a positive response to the elements of difficulty b. The
probability of a positive response depends from the difference (ϑ− b):
if the two quantities coincide the probability is 0.5; if ϑ � b the proba-
bility of a positive response is major than of negative, instead viceversa
if ϑ ≺ b.

To estimate the parameters of the model we can use the Maximum
Likelihood function. This is the logistic model with one parameter,
called also Rash model: in this model we suppose that the difficulty of
the element is due to the characteristic of the element that influences
the response. Other models were been proposed in which the trace can
assume different shapes in the passage from an element to another3.

The advantages of this model are two: it is a more realistic descrip-
tion of the mechanism that bears the answers to the item, in respect
to the deterministic scale; the variables produced by this scale are
numerical, so they have all numerical properties.

1.2.2 The Multidimensional scaling

The Multidimensional Scaling (MDS) starts from a matrix ∆ (N*N)
of raw dissimilarity δij that reproduces the distances of N subjects
evaluated on p variables (stimulus).

3These studies were developed in the eighties, defining the item response theory.
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MDS defines an Euclidean space X(n∗r) r-dimensional (with r ≺ p)
that represents the coordinates of the N points in a space of reduced
dimensions, across r latent dimensions. From X it is possible to build
a new matrix of distances between N points in r dimensions; the
points in the space r-dimensional represent the N subjects, in such a
way that, for each dimension, the distances dij, build in the new space
of reduced dimension, reproduce to the best the real raw distances -
dissimilatiries δij of matrix ∆.

If ∆ elements are Euclidean distances we will talk of metric scal-
ing (or classical scaling, [57]), if instead the δij are only an arbitrary
and approximative of the distance between the objects, without met-
ric properties, we will talk of non metric scaling ([29, 24]), much used
in psycology and marketing researches.

MDS searches simultaneously the r latent continuum, in which
the scores coincides with the coordinates of N subjects in the r-
dimensional space in such a way it is respected the structure (order)
of original distances. So the characteristics of MDS are:

- absence of a statistical causal model

- in the non metric MDS there is a monotonic function I to es-
timate, so that the transformed data dij = I[δij] could be per-
formed as Euclidean distances (metric) but with the same rank
of raw dissimilarities δij (non metric)

- the subject scaling coincides with the configuration X (in r di-
mensions) obtained by the matrix of Euclidean distances D =
dij = I[δij], derived from the similarity matrix ∆

In the non metric scaling the matrix ∆ informs only about the rank
between the couple of objects, and not on the real distances, that
are instead estimated with the dij, obtained by the coordinates of the
objects in the r dimensional space (X). To estimate the matrix X (the
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coordinates of the objects in the r-dimensional space), i.e. the scaling
of subjects in the r-dimensions, a loss function is minimized Ψ ([31]),
with the only constraint that the reproduced distances, expressed in
function of the coordinates of the subjects, respect to the r-dimentions,
give the monotonicity of dissimilarities δij, being measured on a non
metric scale.

dij =

√√√√ r∑
s=1

(xis − xjs) (1.4)

The constraint on the rank permits to find the optimal position for
each subject in the final space (the dimension of the space is choosen
by the researcher) in such a way to minimize a loss function Ψ between
the distances and inequality, respect to X:

Ψ =

√∑
ij(dij − d∗ij)

2∑
ij d2

ij

(1.5)

If X is such that the distances dij reflect the monotonicity of d∗ij
4,

then Ψ = 0.
This technique is generalized also to the case in which m judges

compare between them N subjects: in this case we have in input m
dissimilarity matrixes.

1.2.3 The optimal scaling with an objective func-
tion

The scope of optimal scaling is to transform the nominal and ordinal
variables to apply on them the quantitative techniques. Some of the
techniques of optimal scaling are based on an objective function to
optimize: this function is specific respect to the kind of variables and

4The quantity d∗ij is built in such a way to be more similar to dij .
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respect to the function to maximize.
The methods based on Correspondence Analysis, that are the ma-

jority, have not a causal structure between the variables to quantify.
Starting from an indicator matrix, the optimal scaling obtains the
quantification for the categories ωj for each variable yj, and the scores
z for the subjects.

Consider a population of N subjects described by a set of p vari-
ables y1, ..., yp with kj categories, with k =

∑
j kj; so gikj

is a scalar
that assumes the value 1 (0) if the i-simo individual is or not in the
category j of variable yj. If it is done for each indivual we have
the vector gkj

. Considering all categories (kj) of the variable yj the
columns vectors gkj

originate, drawn between them, the indicator ma-
trix Gj(N ∗ kj). Extending to the p variables, we obtain the indicator
matrix G = (G1, G2, ..., Gp) the complete indicator matrix of order
(N ∗ k).

The vector ωj = (ωj1, ωjkj, ..., ωjKj) parameterizes the categories of
yj, so they are the values that quantify the categories of yj, in such a
way that the vector ωj quantifies the categorical variable hj(h

os
j ):

yj = Gjω
∗
j ⇒ yos

j =
∑
kj

ωjhgjh (1.6)

The matrix Y os = (yos
1 , ..., yos

p ) is the matrix of p quantified variables
(optimal scaled). To obtain unique solutions it is used to standardize
the scaling parameters ωj:

1′kjωj = 0

ωjDjω
′
j = 1

with Dj = G′
jGj the diagonal matrix embraces the frequence of each

category of yj and 1kj a vector of kj one.
The procedure of optimal scaling, according to the analysis choosen,

computes also the vector z (N ∗ 1) for the optimal transformation of
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subjects, respect to the dimension of interest, with the normalization
constraints:

1′Nz = 0

(z′z) = 1

So the methods that estimate ωj and z, across the maximization of
an objective function, are called the optimal scaling methods. Be-
long to this class the methods as Multiple Correspondence Analysis5,
Canonical Correlation, Principal Component Analysis and Anova.

1.2.4 Optimal scaling with a statistical model

According to Bradley et al. and Kruskal [6, 31] the optimal scaling
can not be separated from the model to be estimated. The first an-
alyzes the problem of the scaling of p categorical response variables
y1, ...yp in the context of Anova, in such a way that the coefficients of
experimental factors are significatively different from 0, supposing a-
priori that the categorical data depend by the k experimental factors
gj = (j = 1, ..., k).

In particular it is supposed:

- the existence of a monotone transformation I, that transforms
each categorical variable in quantitative si = I(xi)

- the existence of a linear model in the context of Anova with the
transformed response variables

- the function I is choosen in such a way that maximizes the F sta-
tistic (the significativity of the k treatments of the linear model
on the p response variables

5The Optima Scaling hystorically is always associated to the MCA, that has as
aim the scoring of subjects and the categories of each item.
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The work of Kruskal (CITARE)also searches, in the context of Anova,
a monotonic transformation of the categorical data according to the
mimimun squares criterion: the transformations I are obtained in such
a way that the relationship between gj and si is linear, minimizing the
sum of residuals squares of Anova model.

The hypothesis of Kruskal are:

- the existence of a monotone transformation I, that transforms
each categorical variable in quantitative si = I(xi)

- the existence of a linear model in the context of Anova with the
transformed response variables

- the choice of I that maximize the monotone stress S(I, β) =∑
i[si−si(β)]2, that is the residual deviance of the linear model:

si(β) =
∑

j

gijβ
∗
j + ei (1.7)

The weights β∗
j are estimated with an initial estimation of I in

a previous step. Kruskal was the first to consider the problem
to estimate two separate sets of parameters, scaling and struc-
turals, and he is the first to propose a solution in his algorithm.
The loss function proposed by Kruskal starts to minimize S(I∗, β)
respect to the parameters embrace in β, fixed I, and succes-
sively it estimates I, minimizing S(I, β∗), fixed β. This work has
prompted the ALSOS metodology [10, 67] that is based on the
alternation of these two steps.
The ALSOS procedure consists in obtaining the optimal quan-
tification of the qualitative variables, across an Optimal Scaling
method, and simultaneously to estimate the structural parame-
ters of the statistical model, specified a-priori by the researcher.
This metodology, in particular, is useful in all analysis in which
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the data matrix is composed by mixed variables (numerical, or-
dinal and nominal): for each typology of variable, this method-
ology is able to quantify the qualitative variables separately and
each according its nature. In this way the parameters of the
model specified are estimated, fixed the quantification, taking
into account of all observed variables, and across a unique ob-
jective function, expressed respect the two sets of parameters 6.

1.3 Comparisons on quantification ap-

proaches

In this chapter three different approaches to the quantification of
qualitative/ordinal variables have been presented and discussed.
The first, the scale construction, is characterized and based on
the definition and construction of a scale of values.
Their simplicity and applicability have rendered them the stru-
ments more used to measure and quantify the qualitative vari-
ables. Despite their simplicity, they have some disavantages that
cause the choice, for this work, to use other methods to quan-
tify.
In particular, the Likert and Guttman scales produce respec-
tively ordinal and binary variables: we need, instead, of numeri-
cal variables; the Likert scale is an additive scale, with the prob-
lem of the correctness to consider an equal distance between the
categories of the variable (is equal the distance between 1 and 2
to that 2 and 3, and so on?).
The Guttman scale, proposed as an alternative to the Likert

6In the chapter 3 it is possible to have a more detailed description of the ALSOS
methodology.
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approach, considered deceptive and simplifying, is a method to
control if a set of items and the subjects conform to the ideal
scale supposed, sooner than a method of quantification.
The approach of Rash produces numerical variables, using a
logistic model; this approach does not allow to have a unique
function to optimize, in presence of qualitative and quantitative
manifest variables. The Rash model does not permit, besides,
to estimate simultaneously the quantification and the parame-
ters of the model: the parameters could be estimated only after
the process of quantification and across another algorithm. This
disavantage is a problem common to the scale construction tech-
niques.
The second approach presented is based on the definition of an
objective function coherent with the analysis to develop. This
approach has the advantage to obtain the quantification across
the maximization of a criterion, but the fucntion optimized does
not express a casual model, and so this method does not allow
to estimate in a unique function the parameters of a model and
the optimal quantification.
The third approach, instead, is the ALSOS algorithms, in which,
according to the analysis to develop, the optimal scaling is a
step useful to maximize the relationship between the variables
optimally quantified, and so for example in the case of a linear
regression model, the variables are quantified to maximize the
correlation between the variables.
ALSOS takes ispiration from the Kruskal proposal, that trans-
forms the categorical variables supposing a-priori that the rela-
tionships, between the quantified variables (dependent and in-
dependent), are linear. So this approach has these advantages
and properties:

- the optimal scaling in the ALSOS algorithms is used only to
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quantify the qualitative/ordinal variables, contextualizing
the process in the general analysis to develop

- the estimation of the parameters and the quantification are
two different steps, alternated, that take ispiration from the
non metric ANOVA of Kruskal (1964) and the Factorial
Analisys (Kruskal-Shepard, 1974)

- the starting point is the algorithm HOMALS that devel-
ops a Multiple Correspondence Analysis, from which other
methods are derived, added some constraints on the para-
meters

Summarizing, the choice of this approach, sooner than the other
presented, is due to: i) the possibility to have different kinds of
variables in the model; ii) each variable is quantified according
to its nature and the analysis to develop; iii) the quantification
and the estimation of parameters are two steps of a unique al-
gorithm; iv) we optimize a unique function obtaining as results
the optimal scaled variables and the optimal parameters of the
model.

1.4 Some remarks

In this chapter we have presented at first the concept of variables
and its different typologies (numerical,ordinal and nominal), fo-
cusing the attention on the ordinal variables.
Succesively it is faced the problem of quantification for the or-
dinal variables,that are separable in three categories: the scale
construction (the most simple method to use to quantify an or-
dinal variable), the Multidimensional Scaling and the Optimal
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scaling, the last characterized by an objective function to maxi-
mize.
A discussion is made for these methodologies, justifying the
choice of a method of Optimal scaling to quantify the variables,
in particular the ALSOS approach, in our work.
So this chapter is an introduction to the problem that will be de-
veloped in the next chapters and for which a new methodological
approach is proposed.
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Chapter 2

Estimation of a Structural
Equation Model with
ordinal variables

The study of complex phenomenon is possible across the Struc-
tural Equations Model, because they are based on a system of
linear equations, each of that represents a casual relationship
between two or more latent variables.
These kinds of model are based on the definition of a set of la-
tent variables (concepts non directly measurable) and of a set
of observed manifest variables, that are expression of the latent
concepts. This structure allows to obtain an important result:
the estimation of a variable, through the study of others vari-
ables, relationates with it.
These models are much applied in the marketing and social re-
search, in which typically these kinds of variables are analyzed
(for example the behaviour of a set of individuals respect some
items, or the study of customer satisfaction in respect to a ser-



Estimation of a Structural Equation Model with
ordinal variables

vice received).
As we can see, from these two examples it is clear that the clas-
sical manifest variables used for this analysis, are ordinal, i.e.
variables expressed on a scale of values in a definite interval on
integer numbers.
This chapter is centered on the presentation of two approaches
to the estimation of a SEM model, but in the end, the problem
of the treatment of ordinal variables is discussed, showing the
proposals in the literature for the two techniques.

2.1 SEM definition and estimation

The Structural Equation Modeling (SEM) is a stochastic model
in which each equation represents a casual relationship, and not
a simple association (Goldberger, 1972). With the word SEM
a family of statistical techniques for testing and estimating the
casual relationship between the latent variables is identified, and
in which two concepts are synthesized: the first is the existence of
a model, that is the formalization of a theory and the second the
structure of a model across a system of equations that represent
the casual relationship.

An advantage of the SEM is the possibility to express complex
relationship between the variables, that are characteristics of
the social and marketing research, in which the phenomenons
analyzed are complex and can not be synthesized and explained
by a simple/multiple Regression model.

The structural approach assumes that constructions (latent
variables), non directly measurable, can be measure across a
system of equation, so that they can be expressed by observable
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variables (manifest variables), with big measure errors. This
technique,then, incorporates and integrates the Path Analysis
and the Factor Analysis :

- the Path Analysis, introduced by Sewall Wright in 1921, is
an extension of the regression model, used to test the fit
of the correlation matrix against two or more casual mod-
els which are compared by the researcher. The model is
represented by a path diagram, and a regression is done for
each variable as dependent on others which the path dia-
gram indicates as causes. The regression weights predicted
by the model are compared with the observed correlation
matrix for the variables, and a goodness of fit statistic is
calculated, to individuate the best model. The Path Analy-
sis has the same assumption as a regression model and is
sensitive to model specification, because failure to include
relevant causal variables or inclusion of extraneous variables
affects the estimation of the path coefficients;

- the Factor Analysis introduced by Charles Spearman (1900),
is used to uncover the latent structure (dimensions) of a
set of variables, reducing the attribute space from a larger
number of variables to a smaller number of factors that ex-
plain the variance of original variables. The Factor Analysis
generates a table in which the rows are the observed raw in-
dicator variables and the columns are the factors or latent
variables which explain as much of the variance of these
variables as possible.

The contribution of the Path and Factor Analysis is on the one
hand, the path diagram as a way to represent a model, and on
the other hand the introduction of the concept of latent variable,
as a variable not directly measurable. Both aspects are included
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in the SEM technique and they are the principal characteristics.
So the structural equation modeling process is based on two

steps: validating the measurement model and fitting the struc-
tural model. The former is accomplished primarily through con-
firmatory factor analysis, while the latter is accomplished pri-
marily through path analysis with latent variables. The tech-
nique starts with the specification of the model on the basis of
theory (it is a confirmatory approach: it is suited to theory rather
than theory development), in which each variable is conceptual-
ized as latent variable measured by a set of multiple indicators
(manifest variables).

For the estimation of a SEM it is possible to follow two dif-
ferent approaches: a confirmatory approach, that characterizes
LISREL (Linear Structural Relationship; Joreskog, 197), that
estimates the matrix of covariance, according the method of
Maximum Likelihood, and an exploratory approach, that char-
acterizes the algorithm of Partial Least Square Path Modeling
(H. Wold, 1982), that estimates the best prediction for the latent
variables, maximizing the variance between the variables. The
first technique is a covariance based model, while the second
is a variance based model. Both methods compute simultane-
ously the path coefficients of the model, but respectively with
and without distributional hypothesis on the data, from which
the name hard modeling, for the first, and soft modeling for the
second are derived.

In the next section the two approaches will be presented and
in particular, the problem of the treatment of ordinal variables,
for which an alternative methodology will be proposed and dis-
cussed.
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2.1.1 The process of estimation

A SEM is composed by two parts, the measurement and spec-
ification model, where the first specifies and computes weights
expressed by the relationship between the manifest and latent
variables, and the second specifies and computes the coefficients
of the relationship between the latent variables. The model is
built a-priori, so it is necessary to establish the parameters to
be estimated, finding those values for which the difference is
minimum between the covariance matrix of the model and the
covariance matrix of the original data. The phases are:

- model specification

- identificability of parameters

- estimation of parameters

- model validation

The starting point is the raw data collection on which a matrix
of variance-covariance 1 S is computed, following the estimation
of parameters of the model. The estimation of the structural
parameters is obtained by means of an iterative procedure: the
algorithm starts with arbitrary values for the parameters (posi-
tive and negative) on which the variance-covariance matrix Σ is
based, with the aim to minimize the distance between the matrix
S and the matrix Σ. The algorithm converges when the change
of the values of the parameters does not reduce the distance be-
tween the two matrixes, in respect to the previous iteration.

The validation of the model is based on the computation of
the residuals, obtained by the difference between the two ma-
trixes: if this difference is major than that imputable to the

1In the case of standardized data it is a correlation matrix.
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error, the model is rejected. In this case the phase in which the
model is modified2starts .

The typical path diagram of a SEM (see figure2.1) is com-
posed by three elements: the manifest variables, the latent vari-
ables and the path relationship (covariation3, if the arrows are
bent bidirectional, and a casual relationship if the arrows are
unidirectional).

The manifest variables are distinguished between endogenous
Y , associated to the endogenous latent variable, and exogenous
X, associated to the exogenous latent variable, and they are
represented by rectangles, connected with the unidirectional ar-
rows4 to the latent variables, represented by the ellipses. The
latent variables are called ξ and η , respectively the exogenous
and the endogenous latent variables : the variables ξ are always
independent in the model, so the arrows start from them and go
to the η, that in the model could be a dependent and indepen-
dent variable. The residuals of η variables are ζ, the residuals of
variables X and Y are respectively δ and ε .

The following matrixes of variance-covariance are computed:
i) the matrix Φ ( symmetric and square matrix) between the
variables ξ; ii) the matrix Ψ (symmetric and square matrix) be-
tween the residuals ζ; iii) the matrix of residuals ε and δ called
respectively θε and θδ.

The correspondence between the path diagram and the an-
alytic model so for each variable on which there is an unidi-
rectional arrow there will be a structural equation, and in this

2The changes are based on theoretical hypothesis, and sometimes they are based
on the introduction of new relationship, before not considered in the model.

3It is the simultaneous variation of two variables in absence of a casual rela-
tionship.

4The arrows between manifest and latent variables are only reflective.
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Figure 2.1: Path diagram
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equation the dependent variable will be express as the sum of
independent variables of equation each of them multiplied for
the path coefficient.

The measurement model for the manifest variables Y is:

Y = Λyη + ε (2.1)

where Y is a vector (Q×1), Λy is a matrix (Q×J), η is a vector
(J×1) and ε is a vector (Q×1). while for the manifest variables
X is:

X = Λxξ + δ (2.2)

where Λx is a rectangular matrix (P × M) and embraces the
structural coefficients between the endogenous and exogenous
manifest variables, and the endogenous and exogenous latent
variables; ξ is a vector (M × 1) and δ is a vector (P × 1).

The structural model for the endogenous latent variables is:

η = Bη + Γξ + ζ (2.3)

where η is the vector of endogenous latent variables, Γ is a rec-
tangular matrix (J × M) that embraces the path coefficients
between the endogenous and exogenous latent variables, ξ is the
vector of exogenous latent variables, B is a square matrix (J×J)
that embraces the path coefficients between the endogenous la-
tent variables, with the diagonal elements always zero, ζ is the
vector of errors associated to the endogenous latent variables.

2.1.2 Linear Structural Relationship

LISREL is the acronym of Linear Structural Relationship, a soft-
ware created by Jöreskog [27] in the seventies to estimate the
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structural coefficients with the method of Maximum Likelihood.
The assumptions made in LISREL are:

- the manifest and latent variables and the errors (both mea-
surement and structural model) are centered;

- the covariance between two errors (both measurement and
structural model) is null;

- the covariance between the measurement errors (endoge-
nous and exogenous) and latent variables (exogenous and
endogenous) is null;

- the covariance between the structural errors and the exoge-
nous latent variables is null;

- the structural model must not be redundant.

At this point LISREL computes the structural parameters and
the distance between the covariance matrix S, computes on raw
data, and the covariance matrix Σ, computes by the model. The
matrix of variance-covariance Σ of the population is:

Σ =

[
Σxx

Σyx Σyy

]
(2.4)

where Σxx is the variance-covariance matrix (P ×P ) of manifest
variables X, Σyx is the intercovariance matrix (Q× P ) between
the endogenous and exogenous manifest variables and Σyy is the
variance-covariance matrix (Q×Q) of manifest variables Y . It is
possible to express the matrix Σ in function of the parameters of
the model, rewriting the three matrixes, in such a way that it is
possible, across a method of estimation, to make the comparison
between the matrix S and Σ. So the matrix of the exogenous
manifest variables, in terms of the parameters of the model, is:
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ΣXX(Ω) = E(xx′) = E[(Λxξ + δ)(Λxξ + δ)′]

= ΛxE(ξξ′)Λ′
x + ΛxE(δξ′)Λ′

x + E(δδ′)

assuming that E(ξξ′) = Φ and E(δδ′) = Θδ we obtain that:

ΣXX(Ω) = ΛxΦΛ′
x + Θδ (2.5)

The matrix of the endogenous manifest variables is:

Σyy(Ω) = E(yy′) = E[(Λyη + ε)(Λyη + ε)′] (2.6)

= ΛyE(ηη′)Λ′
y + ΛyE(εη′)Λ′

y + E(εε′)

assuming that E(εε′) = Θε we obtain

Σyy(Ω) = ΛyE(ηη′)Λ′
y + Θε (2.7)

The structural model expresses the endogenous variables as:

η = (I −B)−1(Γξ + ζ) (2.8)

so assuming E(ζζ ′) = Ψ and with some algebraic developments,
the matrix Σyy becomes:

Σyy(Ω) = Λy[(I −B)−1(ΓΦΓ′ + Ψ)(I −B)−1′]Λ′
y + Θε (2.9)

The matrix of intercovariance, that expresses the relation-
ship between the endogenous and exogenous manifest variables,
is rewritable in:

ΣXY (Ω) = E(XY ′) = E[(Λxξ + δ)(Λyη + ε)′] =

= ΛxE(ξη′)Λ′
y + ΛxE(ξε′) + E(δη′) + E(δε′)
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The errors are uncorrelated between them and with the exoge-
nous latent variables, so the equation becomes:

ΣXY (Ω) = ΛxE(ξη′)Λ′
y (2.10)

Substituting the equation (2.8) above the matrix ΣXY is equal to:

ΣXY (Ω) = ΛxΦΓ′(I −B)−1′Λy (2.11)

So the final matrix is:

ΣY X = Σ′
XY = Λy(I −B)−1ΓΦ′Λ′

x (2.12)

At this point we can substitute the equation (2.4) with

Σ(Ω) =
[

ΛxΦΛ′
x + Θδ

Λy(I −B)−1ΓΦ′Λ′
x Λy

[
(I −B)−1(ΓΦΓ′ + Ψ)(I −B)−1′

]
Λ′

y + Θε

]
The method used by LISREL is the Maximum Likelihood5 (ML),that

individualizes, given an observed (in a sample) covariance matrix S,
what is the probability that this matrix derives from a theoretic ma-
trix Σ (in the population), computing the values, to associate at the
free parameters of the model, to obtain the maximum probability
that S derives from Σ.

Assuming that the data follow a multivariate normal distribution
the function to minimize is:

FML = log|C|+ tr(SC−1)− log|S| − (P + Q) (2.13)

where S is the covariance matrix of observed data, C is the var-cov
matrix obtained from the model and (P+Q) is the number of manifest
variables X and Y . The estimators obtained by the ML method
are asymptotically correct, consistent and asymptotically efficient.
Besides for N → ∞ the distribution of the data leans to a Normal

5The ML supposes that the variables has a multivariate normal distribution.
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distribution.
Alternative discrepancy functions are:

- The Unweighted Least Square (ULS):

FULS =
1
2
tr

[
(S − C)2

]
In the case in which N is big, the ULS estimators are similar
to ML estimators, but they are not asymptotically efficient.
For N →∞ the estimators ULS are consistent, without the ne-
cessity to hypothesize a distribution for the manifest variables;

- The Generalized Minimum Square:

FGLS =
1
2
tr(W−1(S − C)−1)

The GLS estimators are consistent and for N →∞ the distrib-
ution leans to a Normal. However this property depends on the
choice of W (for W = I → GLS = ULS). So the matrix W is
choosen with these constraints:

1. the elements of S have to be consistent estimators for the
var-cov matrix;

2. the elements of S have to be asimptotically distributed
as a multinormal with mean equal to the corrsipondent
variance-covariance matrix and an asintotically covariance
between sij and sigh, equal to N−1(σigσih + σihσjg). Gen-
erally we have this identity W = S.

The validation of the model

The measures of the global fit of the model to the data are functions
of the residual, that is the diference between S and C. The problem
is the definition of a known distribution to make inferential tests on
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the model. So the validation is based on the analysis of residuals
of the model, to establish how much of the deviation is due to the
sample errors, and how much is due to the difference between the
two matrixes. So the steps of the validation are:
→ The global fit of the model to the data;
→ Statistical test on the relationship between the variables (manifest
and latent)
It is possible to show that the fitting statistics f (S, C) is distributed
as a χ2 with the degree of freedom equal to:

df =
1
2
(P + Q)(P + Q + 1)− t (2.14)

The test based on the calcolous of the statistic T of χ26 is used for
the global validation of the model; in particular the test allows to
compare the matrix of variance-covariance S with the same matrix
C:whereas if the value of χ2 Statistic is minor to the tabulate one,
the null hypothesis is accepted7 and so is the model. A problem of
statistics, that are based on χ2, is their sensibility to the size of the
sample (N): the value of the statistic increases proportionally to the
size of the sample. If the size is small, it is possible to accept the
model even if it has not a good fit, while if the size is big, it is possible
to reject the model even if it has a good fit to data.
Another consequence is the difficulty to compare two statistics T com-
puted on samples of different size. To exceed these limits different
alternative measures of the fit of model are proposed; in particular:

- The Goodness of Fit Index (GFI):

6The χ2 test is used also to compare two nested models: one model contains a
part of the parameters of the other model. Given a model with a statistic T , if we
fix some parameters (that is their values are zero) the new model has an higher
value of T and of df than the other model.

7The null hypothesis is H0 : S − Σ = 0
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GFI = 1− Ti

max(Ti)

where the value of the statistic T is standardized with its max
value.
This index ranges between 0 and 1, but sometimes it is possible
to observe values outside of this interval. This index is usable
with the discrepancy function ML, ULS and GLS; a model is
accepted if the value of GFI � 0.9. Besides this index allows
comparing models on two different samples of different size, but
it does not take into account the degrees freedom.

A modified version of the GFI index is

- The Adjusted Goodness of Fit index (AGFI):

AGFI = 1− (
k

df
)(1−GFI)

where df are the degree of freedom and k is the number of
variance-covariance in input, equal to 1/2(p + q)(p + q + 1).
It ranges between 0 and 1 and is usable only with the discrep-
ancy function ML, ULS and GLS. The model is accepted if
AGFI � 0.9. It allows comparing two models built on two dif-
ferent samples of different size, taking into account the degrees
of freedom, but its distribution is unknown.

The problem of these two indexes is that the distribution is unknown,
so we can not make any test for the significativity of the model. The
last index computes by LISREL is

- The Root Mean Square Residuals (RMR):

RMR =

√
1
k

∑
(sij − σij)2
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where k is 1/2(p + q)(p + q + 1). This is the mean of the square
of residuals, that becames 0 when S coincides with C, but re-
spect to the other two indexes, RMR does not have an upper
boundary. It has the same problem of the statistic T, so it is
useful only to compare different models computed on the same
data. This index, however, is not sensible to the size of N , and
so in the case of a big sample it is more appropriate to evaluate
the fit of model. The statistical distribution is also unknown
for this measure .

Other indexes for the measurement of the fit of the model are based
on the comparison between two models, the model hypotized in the
case of independence, that has as parameters only the variance of
manifest variables 8 and the estimated model; the indexes are:

1. Comparative Fit Index of Bentler (CFI):

CFI =
[(n− 1)Find − dfind]− [(n− 1)F − df ]

(n− 1)Find − dfind

where FIND is the minimum of the function for the indipen-
dence model and dfind are the degrees of freedom for the inde-
pendence model; the model is accepted if CFI � 0.9;

2. Non-Normed Fit Index of Bentler-Bonnet (NNFI):

NNFI =
Find
dfind

− F
df

Find
dfind

− 1
n−1

the model is accepted if NNFI� 0.9

There are three possible indexes to choose between two models on
the base of information theory; they are:

8In this case it is supposed that there are not the relationship between the
variables, and it has the maximum number of degrees of freedom.
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i AIC = χ2 + 2(n◦ofparameters)

ii ECV I = χ2

n + 2(n◦parameters/n)

iii CAIC = χ2 + [1 + ln(n)] (n◦parameters)

For each model one of these indexes is computed and the model with
the index smaller is accepted.

The improvement of the model

This phase of the LISREL is called the improvement of the model
because, across some indexes, it is possible to improve the fit of the
model to the data.
The model is improvable by: i)exclusion of parameters from the
model; ii) introduction of new parameters; iii) riformulation of the
model.
The first step consist of ceck the significativity of the parameters,
to eliminate those that are not significantly different from zero. In
the case the Normal assumption the null hypothesis is rejected if the
estimated value of the statistic 9 is major than 1.96.
The following procedure is used to decide whether to eliminate a
parameter or not: a parameter is excluded from the model if its sta-
tistic, computed as before, is major than 2 (≈ 1.96). This control
is made one by one for each parameter estimated by the model, and
for each elimination the model is restimated. If a parameter, before
being eliminated, becomes significant as a consequence of changes in
the model, it is lightlighed by the modification index.
Modification indexes are used to include new sgnificant parameters
in the model: for each parameter not included in the model, fixed
to zero, it is computed how much the value of the statistic T of χ2

9The statistic of the parameter is |p|/SE > 1.96, where SE is the Standard
Error.
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decreases respect to the case in which this parameter is estimated.
The modification index is computed as the ratio between the value
of χ2, of the model in which this parameter is fixed, and the value of
χ2 for the model in which it is free. This index has a χ2 distribution
with one degree of freedom. A parameter is included in the model
if the value of the Statistic is � 4; the inclusion of a new parameter
has to have theoretical justification.
The inclusion of new parameters consists on the individuation of the
parameters with a higher value of the modification index, and so the
new model is estimated with new parameters. The parameters are
introduced in the model one at time because the introduction of pa-
rameters causes changes in the values of the modification index of
the other parameters.

The identification of the model

The starting point of LISREL is a covariance matrix between the
observed variables, with the aim to estimation the model parameters.
It can sometimes happen that a model is multi-faceted with different
sets of parameters, i.e. the same model has different solutions, and
this is not admissible: a model has to build in such a way that it has
only one solution. This is the problem of identification, so a model is
identified if its parameters are univocally estimated.
Summarizing we have that:

- a model is perfectly identified when for each parameters , for
which the value is not established a-priori, a unique optimal
value exists → zero degree of freedom. The problem is that this
model has a trivial fit, so the test for the significativity of the
model is not interesting;

- a model is over-estimated if there are more equations than pa-
rameters, so the degree of freedom are major than zero;

The rules to follow in the specification of a model are:
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1. the number of variables excluded from the model in each equa-
tion has to be major or equal to the number of equations minus
one (necessary condition);

2. some constraints on the rank of the coefficients matrix (neces-
sary and sufficient);

3. a structural model is identified if at least three manifest vari-
ables are associated to each latent variables ;

4. a structural model is identified if at least two manifest variables
are associated to each latent variables, and each costruction is
correlated at least with another construction.

The necessary but not sufficient condition is that the degree of free-
dom are major of zero:

df =
1
2
(P + Q)(P + Q + 1)− t ≥ 0 (2.15)

where P and Q are respectively the number of manifest variables X
and Y , while t is the number of parameters of the model.

2.1.3 The Partial Least Squares - Path Mod-
eling

The Partial Least Squares - Path Modeling (PLS-PM) approach [62]
to the SEM models is an iterative algorithm that allows to compute
the estimation of latent variables and the relationship between them,
by means of an interdependent system of alternate elaboration based
on multiple and simple regression. The idea is to determine the scores
of latent variables through a process that iteratively computes first
an outer estimation for them and then an inner estimation.

The way in which this algorithm operates is called soft modelling,
in contrast to hard modeling which identify with the techniques such
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as LISREL. The name soft modeling is due to a set of properties of
this algorithm, due also to its larger applicability; the characteristics
are: i) it is prediction oriented (no model fitting purposes), i.e. the
aim is to obtain the best prediction of the latent variables; ii) it is
not theory oriented; iii) the parameters for each block are estimated
separately, as in the Path Analysis and by simple/multiple regres-
sion; iv) it handles reflective and formative indicators; v) in respect
to the LISREL, the PLS-PM has a better estimation of the measure-
ment model, because optimizes the prediction of the latent variables
and the relationship between the manifest and latent variables; vi)
there is no problem for the identification of the model, because the
algorithm estimates the weights separately for each block; vii) the
estimates became consistent when the sample size gets larger; viii)
it can estimate the model also in presence of multi-collinearity and
missing data; ix) it is possible to estimate the model even when the
number of observation is smaller than the number of the manifest
variables 10.

The absence of distributional hypothesis, different from LISREL,
do not allow inferential tests on the parameters and for the model
validation. The inference approach, in the PLS-PM, is based on on
resampling techniques like Bootstrap and Jacknife. It permits to ob-
tain empirical distributions of the parameters, and the computation
of “empirical indexes” for the global validation of the model.

As in the case of LISREL the PLS-PM also distinguishes between
outer and inner estimation: in the outer estimation or measurement
model the algorithm computes the coefficients of the relationship be-
tween the manifest and latent variables, while in the inner or struc-
tural model it estimates the path coefficients, that express the rela-
tionship between the latent variables. The algorithm performs the

10It is necessary that the number of latent variables is major than the observa-
tions.
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estimation of the first step separately for each block 11 and then it
updates the estimation of the latent variables, by the inner estima-
tion, usually based on OLS.

In the next subsections the outer-inner estimation of PLS-PM and
the validation indexes for the measurement of the fit of the model are
described.

The outer and inner estimation

Consider the matrix X (N×I) of the manifest variables; in the outer
estimation phase the algorithm computes the weights wij , where j
represents the j-mo latent block, associated to each manifest variable
for the estimation of the latent variable. In the first step the weights
are randomly choosen (for example all 1 ) and the first estimation of
a latent variables is equal to the linear combination of its manifest
variables, multiplied for the correspondent weight:

vj =
∑

xijwij

The relationship between the manifest and latent variables could be
of three different typologies:

- reflective: the latent variable is reflected in its manifest vari-
ables. In the path diagram the arrows start from the latent
variable to the manifest variable;

- formative: the latent concept is formed by its manifest vari-
ables. In the path diagram the arrows start from the manifest
variables to the latent variable;

11For this reason it is possible to have a matrix with the number of manifest
variables bigger than the observations number.
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- MIMIC : the latent variable has a formative relationship with
some variables, and reflective with the other.

Figure 2.2: The relationship between variables

After the initial step, the algorithm updates the estimation of the la-
tent variables according to the inner estimation, based on the weights
ejj′ (j′ is a generic latent variable associated to the j-ma latent vari-
able). The algorithm allows to choose, as estimation of these weights,
three different alternatives:

1. centroid scheme, that computes the weight as :

ejj′ = sign
[
cor(vj , vj′)

]
2. factorial scheme, that computes the weights as:
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ejj′ = cor(vj , vj′)

3. path scheme, that computes the weights as:

ejj′ = cor(vj , vj′) if vj′ predicts vj

ejj′ = the regression coefficient if vj′ is predicted by vj

The typology of the relationship is important, for the algorithm, when
it updates the estimation of the weights wij ,in particular if the rela-
tionship is reflective the weights are equal to:

wij = cov(zj , xij)

wij = (Z ′
jZj)−1Z ′

jxij

where Z is the matrix of the latent variables obtained after the inner
estimation. If the variables are standardized, the weights are equal
to the correlation between the variables.
If the relationship is formative, the weights are equal to:

wij = (X ′X)−1X ′zj

In this case the weight is the coefficient of the multiple regression
between the latent and manifest variables.
After the new outer estimation, the algorithm proceeds with the con-
trol of the convergence 12: if the weights of the two outer successive
estimations are equal the algorithm stops, and then computes the
OLS multiple/single regression for the inner estimation of the path
coefficients between the latent variables, according to the supposed

12The convergence of PLS-PM algorithmis demonstrated for two blocks. In case
of more blocks the convergence is demonstrated only empirically.
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relationship between them.
So, in synthesis, the steps of the algorithm are:

Algorithm 1. PLS-PM.

Initialize the algorithm with the matrix X of raw manifest variables
Step1: Compute a first casual vector of weights wij

repeat
Step2: Compute the first estimation of Lvs

for (j in 1:k)
vj =

∑p
i=1 wijxij

endfor
Step3: Update the previous estimation of Lvs

for (j in 1:k)
zj =

∑k
j=1 ejj′vj

endfor
Step4: Update the estimation of weights wij

for (i in 1:p)
for (j in 1:k )

wij = cov(xij , zj)
wij = (X ′

jXj)−1X ′
jzj

endfor
endfor

Ceck the convergence
|wold

ij − wnew
ij | ≺ 10−5 break

The validation PLS-PM process

The validation process of the PLS-PM aims at establishing suitable
inference about the coefficient of the model and calculating some
suitable indexes to measure its predictivity performances and fitting.
Due absence of distribution hypothesis on data the PLS-PM inferen-
tial tools are usually based on resampling techniques. In the following
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we consider the Bootstrap technique that consists in the extraction
with replacement of m sample of size n (the size is equal to the origi-
nal sample), on which the model are computed m times. In this way
it is possible to establish an empirical distribution for the parameters
whose percentile values allow to obtain suitable confidence interval.
This procedure is made for both the parameters of the outer model
(weights and loadings), and both the inner model (path coefficients).
Intervals including the zero suggest to eliminate manifest or latent
variables in the model. To compare the model estimated parameters
and the mean of the bootstrap replications, a ratio between their de-
viation and the standard deviation of the resampling distribution is
computed as a classical test statistics.
Thus:

- the estimation of the latent variables are not consistent, because
a latent variable is a linear combination of its manifest variables;

- for n → ∞ the manifest variables estimations are consistent
(consistent at large).

- as in the PCA and CCA, the coefficients are over or under esti-
mated; when all correlation coefficients ρ among the i manifest
variables are equal to a certain value s, the bias is :

bias(λ) =

√
s + (1− s)/i

s
=

1√
bias(ρij)

the bias of loadings is equal at the reciprocal of bias between
the latent variables: major is the bias of the path coefficient,
minor is the bias of the loadings (it is a compromise between
the measurement and structural model);
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The Goodness of Fit of the model is evaluated by some indexes,
as the validity, communality, structural and redundancy. These in-
dexes are connected between them in this way:

x → ξ︸ ︷︷ ︸
validity

→ η︸︷︷︸
structural

→ y︸︷︷︸
communality︸ ︷︷ ︸

redundancy

The communality is the capacity of a latent variable to explain the
variance of its manifest variables; it is computed as:

AV Ej =

∑
i λ

2
ij × var(ξj)∑

i λ
2
ij × var(ξj +

∑
i var(ξj)

where λij is the loading of the variable i associated to the j-ma la-
tent variable. If the AVE is bigger than 0.5, or if the loadings are all
major than 0.707, or if the null hypothesis of the test H0 : λij = 0
is rejected, the latent variable is considered a good predictor for the
manifest variables.
If the variables are standardized the Communalityj is equal to :

Communalityj =

∑
i λ

2
ij

pj
(2.16)

The R2 measures the variance of an endogenous latent variable ex-
plained by the exogenous latent variables, so this index evaluates the
reliability of the structural model.
The redundancy is the variance of the manifest variables x (con-
nected with the endogenous latent variables),which is explained by
the latent variables of the model, both endogenous and exogenous.

RED2
xlk =

V ar(λijγhξhj)
V ar(yij)

(2.17)

This index is computable only for the manifest variables connected
with an endogenous latent variable. So the redundancy is equal to

53



Estimation of a Structural Equation Model with
ordinal variables

the communality multiplied by the R2, and, for this reason, its value
is small.
The cross validation of the Communality and Redundancy, that are
descriptive indexes, is made across the Stone-Geisser test that follows
a Blindfolding procedure: it repeats (for all data points) omission of
a part of data, by row and column, (instead Jacknife only by row)
matrix estimating parameters, and then reconstruction of the omit-
ted part by the estimated parameters. This procedure results in:

- a generalized cross validation measure that, in case of a nega-
tive value, implies rejection of the related structural equation

- jacknife standard deviations of parameters (but most often this
quantities are small and lead to significant parameters)

H2
j = 1−

∑
h

∑
i(xjhi − x̄jh − π̂jh(−i)vj(−i))2∑

h

∑
i(xjhi − ¯xjh)2

(2.18)

F 2
j = 1−

∑
h

∑
i(xjhi − x̄jh − π̂jh(−i)Pred(vj(−i)))2∑

h

∑
i(xjhi − ¯xjh)2

(2.19)

The validity or the unidimensionality is a property to verify for the
reflective model. In the reflective case it is important to have for the
block the internal consistency, that means that the manifest variables
are an expression of a same latent concept. This property is measur-
able in three different ways:

- by the eigenvalues of a Principal Component Analysis, accord-
ing the Kaiser rule, the number of significant dimensions is given
by the number of eigenvalues greater than one. So for this con-
dition for the unidimensionality of a block we expect that only
the first eigenvalue is major than 1;
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- the Cronbach α, an index based on the calculation of correla-
tion between the manifest and latent variables:

α =

∑
j′ cor(xij , xij′)

pj
∑

j′ cor(xij , xij′)
× pj

pj − 1

- the ρ of Dillon-Goldestein, an index that is based on the corre-
lation computed by the model (loadings):

ρj =
(
∑ji

j=1 λij)2

(
∑ji

j=1 λij)2 +
∑ji

j=1(1− λ2
ij)

To have the unidimensionality, the α and ρ indexes have to be major
than 0.7. This control is not made in the case in which the relation-
ship between the variables are formative 13.
If the block is not unidimensional there are two alternatives: i)the
manifest variables that cause the non-unidimensionality are elimi-
nated from the block; ii) the block is divided into two or more blocks,
increasing the number of latent variables.
The structural prediction is used to understand if an endogenous
latent variable is correctly explained by the endogenous latent vari-
ables, that is the R2 of the inner regression. The change in R2 is
explored to see whether a specific exogenous latent variable has a
substantive impact on the R2(effect size f2):

f2 =
R2

included −R2
excluded

1−R2
included

- if f2 ≈ 0.02 → small impact

13In this case it is possible to have multicollinearity between variables, because
the latent concept is formed by the manifest variables, that measure aspects also
correlated between them.
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- if f2 ≈ 0.15 → medium impact

- if f2 ≈ 0.35 → large impact

The discriminant variability measures if two latent variables ex-
press two different concepts. In this circumstance, the correlation
between two latent variables must be significantly lower than 1:

H0 : cor(ξj , ξj′) = 1against theH1 : cor(ξj , ξj′) ≺ 1

Another rule is to build the interval confidence for the correlation
at 95 percent: if it does not include the value 1, the null hypothesis
is rejected. It is also possible to compare the correlation between two
latent variables with the mean of variance of the block:

(AV EjandAV Ej′) � cor(ξ̂j , ξ̂j′)

this means that the latent variables better explain the manifest vari-
ables than the other latent variables.
This index also exists for the manifest variables, called monofactori-
ality of manifest variables, that have to be more correlated with their
latent variable, than others of the model:

cor(xij , ξj) � cor(xij , ξj′)

The discriminant validity is checkable also across a matrix in which
the average communality for each latent variable, and the R2 are re-
ported : if the value of the average communalities of variable j and
j′ are major than the R2, it means that the two variables express two
different concepts.
The index for the global validation of a SEM model, estimated with
the PLS-PM, is the Goodness of Fit index(Gof):
vuut 1P

j pj

X
j

X
h

cor2(xij , ξj)

| {z }
validation of the outer model

×

vuut 1

Number endogenous LV

X
endogenous LV

R2(ξj ; ξiexplained byYj)

| {z }
validation of the inner model
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Notice that it is a geometrical mean of average communality, multi-
plied by an average R2.

The Gof is a compromise between the quality of the outer model
and the quality of the inner model, so the normalized index is ob-
tained reporting each part to its maximum value. In particular for
the outer estimation (the first part of the formula is the average com-
munality) for each block the maximum is the first eigenvalue, because
the first principal component explains the maximum variability, while
for the inner estimation the maximum is given by the first canonical
correlation squared.
To verify Gof significativity it is possible to build an interval confi-
dence by the Bootstrap technique as also for the R2.

An important issue is that in PLS the signs of the latent variables
are indeterminated. Since arbitrary sign changes in the parameter es-
timates of the various bootstrap samples can increase their standard
error to a substantial degree, procedures have been developed to cor-
rect for sign reversals. The user can choose between two correction
procedures: in the first option (individual sign changes), the sign of
each individual outer weight is made equal to the corresponding sign
in the original sample. Because this procedure does not check for the
overall coherence of the model as would be done if mental “reverse
coding” [8] were performed, this option should be used with special
care.

The second option (construct level changes) compares the load-
ings for each latent variable with the original loadings and reverses
the sign of the weights if the absolute value of the summed difference
between the original and the bootstrap loadings is greater than the
absolute value of the sum of the original loadings and the bootstrap
loadings [55]. However, both procedures do not guarantee that sign
changes are properly handled.
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In this way it is possible to obtain an empirical distribution for
the parameters on which are calculated the values of bounadries for
a Confidence Interval at 95 percent of significant. The T-Statistics is
computed, instead, as the ratio between the mean and the standard
deviation of the replication bootstrap, while for the global validation
it’s considered the Gof index, used in the PLS-PM.

2.2 Some remarks

In this section we highlight the most important characteristics that
differentiate the two approaches, LISREL and PLS-PM, presented in
this chapter. They are two different approaches to solve the system
of equations.

The two techniques estimate a SEM starting from two different
points: the first approach, LISREL, using the Maximum Likelihood
to estimate the structural parameters, is considered a covariance
based approach, because the objective is the minimization of the
distance between the observed and etimated covariance matrix; the
second, PLS-PM, is considered a variance based approach, because
the aim is the maximization of the variance explained by the man-
ifest variables, in order to obtain the best prediction of the latent
variables.

It is clear that the two techniques face the same problem (the
estimation of a SEM), but with two different aims: we can confirm
a theory, and in this case we use the LISREL approach, that allows
to confirm an hypothesis in respect to another, by the inferential
tests, we can explore a theory and in this case we use the PLS-PM
approach, taht gives the best prediction of the latent variables. We
obtain the same results, the estimation of the structural parameters,
but with the best prediction of the latent variables if we use the PLS-
PM.

Besides, they differes for other two important things: the distri-
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butional hypothesis, that are present in the LISREL, but not in the
PLS-PM, and the dimension of the raw data matrix. In LISREL it is
necessary to have a number of observations higher than the number
of variables to can estimate the model, because it estimates the struc-
tural parameters simultaneously, while the PLS-PM does nt have this
problem because it estimates the parameters separately for each la-
tent block and for each manifest variable (we remember that we have,
in the reflective case, simple regression).

These and other differences, explained and presented in this chap-
ter, define our choice to work with the PLS-PM and to introduce in
it an internal iterative procedure to quantify the ordinal variables,
becuase our aim is to explore and not to confirm a prior theory on
the data.
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Chapter 3

Alternating Least Squares
Optimal Scaling
algorithms

The analysis of ordinal data by optimal scaling (see the definition
given in the chapter 1) methods leads to the search for a quantifica-
tion of the categories of the ordinal variables that respects the ordinal
structure and maximizes a suitable criterion [12, 19, 67]. Algorithms
for the search for optimal scaling, called Alternating Least Squares
Optimal Scaling (ALSOS) have been proposed for analysis of variance
[10, 30], multiple regression [65], principal component analysis [66],
canonical analysis [59], generalized canonical analysis [53, 60, 61] as
well as other methods.

The set of scalings of an ordinal variable is a convex polyhedral
cone which thus plays an important role in these algorithms. For
example monotone regression is the projection of a vector into a con-
vex polyhedral cone, under constraints relative to the nature of the
variables.

The monotone regression and the projection into a convex cone are
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on the base, in particular, of two ALSOS algorithms, called Morals
and Princals, that are presented in this chapter and will be used in
our proposal.

The two algorithms allow to obtain two important results: Morals
estimates the parameters of the model according the nature of the
manifest varibles, while Princals can be used to obtain the first esti-
mation of the latent variable,substituting the first step of the classical
algorithm of PLS-PM. In this chapter will be presented the character-
istics of the Alternating Least Squares algorithms and in particular
of Morals and Princals, used in our proposal.

3.1 The ALSOS algorithms

According to the Bock’s definition, reported in the first section of
chapter 1, Young, De Leeuw and Takane have developed a system of
programs to quantify qualitative data (see figure 3.1). The algorithms
allow the data to have a variety of measurement characteristics, and
allow data analysis with different models.

This system is called ALSOS system since it uses the Alternating
Least Squares (ALS) approach to Optimal Scaling (OS). An ALSOS
algorithm can be used to obtain a least squares description of quali-
tative data (having different measurement characteristics).

The ALSOS system includes several programs which quantify qual-
itative data by applying a)the simple additive model, b)the weighted
additive model, c)the multiple regression model, d) the canonical re-
gression model, e) the principal component model or f) the common-
factor model, g) the three-mode factor model, or h) the multidimen-
sional scaling model. The data can be defined at the binary, nominal,
ordinal and interval levels of measurement, and they can be gener-
ated by either a discrete or continuous underlying process.

Each of the ALSOS programs optimizes an objective loss function
by using an algorithm based on the alternating least squares and op-
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Figure 3.1: ALSOS program

timal scaling principles. The ALS principle involves dividing all of
the parameters into two mutually exclusive and exhaustive subsets:
i) the parameters of the model; ii) the optimal scaling parameters.
The algorithm proceeds optimizing the loss function in respect to one
subset, then the other, obtaining the least squares estimates of the
parameters in one subset while assuming that the parameters of the
other subset are constant. This procedure is called conditioned least
squares estimate, because the least squares estimation is conditioned
by the values of the parameters in the other subset. So alternatively
we obtain the conditional estimation for the parameters of the two
subsets, until the convergence.

The characteristics of an ALSOS algorithm are:
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- it not considers distributional hypothesis on the data, in partic-
ular there is not the normal assumption on the latent variables,
that produce the observed variables;

- it is not sensible to the nature of observed variables, that is it
respects both the process that produces the data (discrete or
continuous) and the measurement scale of the data (nominal,
ordinal or interval);

- it is possible to choose the method based on the research pur-
pose;

- it estimates the parameters of the model and the optimal scaled
variables together ;

- it has one objective function, because the same algorithm esti-
mates the model and computes the optimal quantification

3.1.1 The quantification process

The advantage to use ALS with the Optimal Scaling (OS) is that it
is possible to quantify a qualitative variable, apart from the model
to estimate. For the optimal scaling we assume that there is a model
space, represented by a vector whose elements are measured at the
cardinal level, and a data space [64], represented by a vector of data,
and we can assume to know the measurement characteristics of the
data. These two spaces are relevant to obtain the optimal scaling
space.

The goal of OS is to derive an optimal scaling space that satisfies
two characteristics:

- the measurement characteristics of the data space
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Figure 3.2: The quantification process

- it must have a least squares relationship to the model space,
given that the measurement characteristics are perfectly satis-
fied

Now it is possible to define a vector of raw observations as ō with
general element oi, and the model vector z̄, with general element zi,
and the optimal scaling vector z̄∗ with general element z∗j . The vec-
tor ō is the data space ( all observations in a particular category are
contiguous), the vector z̄ and z̄∗ are the model and optimally scaled
spaces (the elements of these spaces are organized in a fashion having
one to one correspondence with ō). The vector z∗j is the parameter
representing the observation oi.
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The OS problem is to obtain a transformation t of the raw obser-
vations which generates optimally scaled observations:

t[ō] = [z̄∗]

where t is a function of the measurement characteristics of the ob-
servations, and is such that a least squares relationship will exist
between z̄ and z̄∗, maintaining the measurement characteristics. The
numerical value assigned to z∗j is the optimal parameter value for the
observation oi.

The constraints applied to the function t are of two different
kinds: measurement level and measurement process. The restrictions
measurement concerns the relationships among all the observations
within a single category, while the level measurement concerns the re-
lationships among all the observations between different categories.
The restrictions are of two types: discrete process and continuous
process; if the process is discrete (for example the female and male)
all observations of a category should be represented by the same real
number obtained across the transformation td, while if the process is
continuous ( for example 97.2 kg), each of the observations of a cat-
egory should be represented by a real number selected from a closed
interval1. The figure (3.3) summarizes measurement implications of
the constraints.

From a mathematical point of view discrete constraints can be
formalized as:

td : (oi ∼ om) → (z−i = z∗m) (3.1)

where ∼ means the empirical equivalence (the observations in the
same category have the same real number). The continuous con-
straints are:

1The discrete nature of the process is reflected by the choice of a single number
(discrete) to represent all observations in the category; the continuous nature of
the process is reflected by the choice of a real number from a closed (continuous)
interval of real numbers.
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tc : (oi ∼ om) → (z−i = z∗m) ≤ {z∗i , z∗m} ≤ (z∗i = z∗m) (3.2)

where z−i and z∗m are the lower and upper bounds of the closed in-
terval of real numbers. The implication of the empirical equivalence
is that the boundaries of all observations in a particular category are
the same. The continuous constraints also imply that, for all the
observations of a category, the parameters of optimal scaling have to
belong to the same interval, but need not be equal.

Figure 3.3: The measurement characteristics for the types of measurement

The level constraints define the function t to obtain the optimal
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transformation. For the nominal level there are not constraints be-
cause they are specified by the process restraints 2.

For ordinal variables beyond the constraints concerning the process
of measurement, it is required that the real numbers, associated to
the observation in different categories, respect the original order:

to : (oi ≺ om) → (z∗i ≤ z∗m) (3.3)

For numerical variables it is required that the real numbers asso-
ciated to the observations be functionally related to the observations,
for example across a polynomial rule:

tn : z∗i =
p∑

p=0

δqo
∗
i (3.4)

If p=2 we have a quadratic relationship between the raw and the
optimally scaled observations, while if p=1 we have the linear rela-
tionship.

The (3.4) represents the relationship between the model, data and
optimal scaling spaces. In the “problem space”, that is composed by
model, data and optimal scaling spaces, of dimension n, the data
problem analysis is characterized and solved. The parameter space,
indeed, is not included in the problem space and it has dimensional-
ity p, one dimension for each of the p parameters, that is much less
than n. The parameter and model space are related by a rule called
a “combination rule”[64].

In this figure we can see that the model space is represented as
vectors while the data space as a cone, and both (vectors and cone)
are intersected in the origin of problem space. The elements of the
vector z̄∗ define a point in the problem space and any point in the op-
timal scaling space is equivalent to any other point. The data space

2It is identifying two types of nominal variables,according to whether the
process is discrete or continuous: in the first case we have discrete-nominal vari-
ables (for example the the sex of a person), while in the second case we have the
continuous-nominal variables (the colors).
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Figure 3.4: Geometrical representation of the ALSOS theory
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has this representation because the cone represents the measurement
characteristics; so the optimal scaling vector must be contained in
the data cone and near the model vector. The model and optimal
scaling spaces are as nearly alike as possible in a least squares sense.

Generally the optimal scaling vector is on the surface of the cone,
that is the part of the cone which is generally closest to the model
space. Instead the angle α represents the goodness of fit between the
two spaces: the more smaller is the angle, the better the fit.

3.1.2 The projection of a vector into a convex
cone

In this section we will discuss and present the properties of a pro-
jection of a vector in a convex cone; some propositions are proved in
the Appendix A. The properties and determination of the projection
of a vector into a convex polyhedral cone play an important role in
optimal scaling algorithm.
A convex polyhedral cone C can be defined as a set of vectors x in
<n verifying the condition that A′x ≤ 0, where A is a matrix with
n rows and m columns and A′ is its transpose. A convex polyhedral
cone C is generated by a finite number of generators: there exist
vectors s1, ...., sk of <n such that any element x of C can be written
as x =

∑
{λisi; i = 1, ..., k}, where λ1, ...., λk are nonnegative. Con-

versely, any cone with a finite number of generators is polyhedral.
We denote by C(S) the conical hull of a set S in <n. The polar cone
Cp of C is the set of vectors y in <n such that x′y is nonpositive for
any vector x of C. The polar cone Cp is polyhedral: it is generated
by the columns of the matrix A.
The properties of the projection of a vector of <n into a closed convex
set in <n can be applied to the particular case of a convex polyhedral
cone.
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Figure 3.5: Projection of a vector y into a closed set K or a convex poly-
hedral cone C

Proposition 3.1. Let y be a vector of <n and K a closed convex set in
<n. There exists a unique vector x of K such that ||y− x|| ≤ ||y− z||
for any vector z of K. This vector x is the projection of y into K.
Furthermore, a vector x is the projection of y into K if and only if
(y − x)′(z − x) ≤ 0 for any vector z of K.

Applying this proposition to the particular case of a convex poly-
hedral cone, results in Proposition 3.2.

Proposition 3.2. Let x be the projection of a vector y of <n into
a convex polyhedral with C = C(S) that is generated by a set S =
s1, ...., sk. Let R be the set of vectors si of S orthogonal to y − x.
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Then the vector x is equal to the projection of y into the subspace
L(R) generated by the vectors of R.

The polar cone plays the same role as the orthogonal subspace.
This is shown by the following proposition.

Proposition 3.3. Let y be a vector of <n and C a convex polyhedral
cone. The orthogonal decomposition y = x + z, where x is in C, z in
Cp, and x′z = 0, is unique and is obtained from the projection x and
z of the vector y into C and Cp respectively.

Corollary 3.1. Let y be a vector of <n and C = C(S) be a convex
polyhedral cone generated by the set S = s1, ...., sk. Let R be a subset
of S. The projection x of y into L(R) is equal to the projection of y
into C if and only if (y− x)′s ≤= 0 for any s of S−R, where S−R
is the set of vectors of S which do not belong to R.

Corollary 3.2. Let C be a convex polyhedral cone. A vector y belongs
to the polar cone Cp if and only if the projection of the vector y
into C is the null vector. The projection of a vector into a convex
polyhedral cone possesses optimal properties often used in optimal
scaling algorithms.

Proposition 3.4. Let C be a convex polyhedral cone, y a vector in
<n which does not belong to Cp, x the projection of y into C, and z
any vector of C. We have the following results:

1. The minimum of ||y − z||/||y|| over z in C is reached at z = x
and is equal to (1− cos2(x, y))1/2

2. The minimum of ||y − z||/||y|| over z in C is reached at z =
(1/cos2(x, y))x and is equal to (1− cos2(x, y))1/2

3. The maximum of cos(y,x) over z in C is reached at any nonnull
vector of C(x). Furthermore, cos(y, x) = cos(y, z) implies that
z is any nonnull vector of C(x)
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Corollary 3.3. Let C be a convex polyhedral cone, y a vector of <n

not belonging to Cp,S the sphere of radius 1, and x the projection of
y into C. Then the projection of y into C ∩ S is equal to x/||x||.

This proposition is useful for the study of the convergence of al-
ternating least squares algorithms.

Proposition 3.5. Let C be a convex polyhedral cone and S the unit
sphere. The projection operator A into C is continuous on<n, and
the projection operator B into C ∩ S is continuous on <n − cp.

Many algorithms have been proposed for the determination of the
projection x of a vector y into the convex polyhedral cone C = C(S)
generated by the vectors of S = s1, ...., sk. Quadratic programming
can be used to minimize ||y −

∑
αisi; i = 1, k|| subject to the con-

straints α1, ..., αk ≥ 0. This is done by using standard computational
routines for regression. Waterman (1974) proposed to calculate all
the possible regressions of y on a subset of S. Deutsch, McCabe and
Phillips (1975) improved this procedure by checking the optimality
of each subset. Armostrong and Frome (1976) proposed a branch-
and-bound algorithm that restrains the number of subsets of S to
be examined. More efficient algorithms were been proposed by Law-
son and Hanson (1974) and Bremner (1982). The Nonnegative Least
Squares algorithm searches the optimal subset R by an iterative mul-
tiple regression. At the initialization step R is empty. During the
current step, we obtain a subset R of S such that the projection
yR =

∑
αisi; si ∈ R of y into L(R) has all its coefficients αi strictly

positive. If (y−yR)′s is nonpositive for any s belonging to S−R, then
yR is the projection of y into C. Otherwise, we add to the subset R
either the vector s that maximizes (y−yR)′s (Lawson and Hanson) or
the t statistic of s in the regression of y on R+ s, the union of sets R
and s (Bremner). Now it is possible to find a subset Q of R such that
the projection yQ+s =

∑
{βisi; si ∈ Q + s} of y into L(Q+ s) has all

its coefficients βi strictly positive and ‖y − yQ+s‖ ≺ ‖y − yR‖. The
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algorithm converges to the optimal subset, because, at each iteration,
the distance between y and yR strictly decreases and the number of
subsets R is finite.
Lawson and Hanson do not explicitly prove the convergence of the
NNLS algorithm to the optimal subset R. This can be done quite
easily, however, by using only geometrical arguments, as is shown
below.

Proposition 3.6. Let R be a subset of S such that the projection
yR =

∑
{αisi; si ∈ R} of y into L(R) has all its coefficients αi strictly

positive. Suppose that there exists a vector s of S-R such that (y −
yR)′s is strictly positive. Then there exists a subset Q of R such that
the projection yQ+s =

∑
βisi; si ∈ Q + s of y into L(Q+s) has all its

coefficients βi strictly positive and such that ‖y − yQ+s‖ ≺ ‖y − yR‖.

3.1.3 Methods of quantification

The aim of an OS algorithm is to obtain the best quantification
across the definition of a function t that depends on the nature of
the process and on the measurement level of the variables, as shown
in the figure(3.6).

The estimation process is easy, and consists of the definition of an
element z∗i as the mean of all zi, that corresponds to observation oi

in a category. So z∗i under the discrete-nominal constraints is:

td : z̄∗ = Ḡ(Ḡ′Ḡ)−1Ḡ′z̄ (3.5)

where Ḡ is a binary matrix, whose elements are:

gij =
{

1 if oi is in category c
0 otherwise

(3.6)

For tc we have one more requirement that all optimally scaled obser-
vations are in the interval, with no restrinction on the determination
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Figure 3.6: Optimal scaling methods

of the interval.
The two ordinal quantifications tdo (discrete-ordinal) and tco (continuous-
ordinal) are defined by Kruskal’s least squares monotonic transfor-
mation. The equation of both transformations is:

to : z̄∗ = Ḡ(Ḡ′Ḡ)−1Ḡ′z̄ (3.7)

where Ḡ is a binary matrix. The tp transformation can be written in
matrix notation as

tp : z̄∗ = Ḡδ̄ (3.8)

where Ḡ is a matrix with a row for each observation and with p + 1
columns, that being an integer power of the vector ō of observations.
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The transformation t may be considered as though we are regressing
the model space z̄ onto the observation space ō in a least squares
sense and under the measurement constraints. In particular each t
can be considered as the projection operator

E = Ḡ(Ḡ′Ḡ)−1Ḡ′ (3.9)

from which → z̄∗ = Ēz̄.
So the least squares function can be written as:

φ2 = (z̄∗ − z̄)′(z̄∗ − z̄) (3.10)

and if we define F̄ = 1− Ē we obtain

φ2 = z̄′F̄ z̄ (3.11)

The transformation can be viewed as optimizing a relationship be-
tween the model space, where the linear combination is determined
by the measurement restrictions. Geometrically the projection oper-
ator projects the model space z̄ onto the nearest surface of the data
space cone.

3.1.4 Normalization

A trivial and undesirable way to minimize the equation (3.10) is to
set the model subspace z̄ equal to zero, but in consequence we have
z̄b and φ2 equal to zero, for all transformations.
So the normalization of the solution is made in the ALSOS algorithm
to avoid solutions represented by the origin of the problem space or
other types of trivial solutions. There are different ways to normalize
the solutions, and two of these are:

φ2
a =

(z̄∗a − z̄)′(z̄∗a − z̄)
z̄′z̄

(3.12)
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or

φ2
b =

(z̄∗b − z̄)′(z̄∗b − z̄)
z̄′z̄

(3.13)

where z̄∗b and z̄∗a are the normalized versions of z̄∗ which optimize φ2
a

and φ2
b , respectively. That is,

z̄a = az̄∗ (3.14)

and
z̄b = bz̄∗ (3.15)

where a and b are two non-negative real numbers.

Figure 3.7: Geometrical representation of the normalization aspects of
ALSOS algorithms

The figure(3.7) presents a portion of the problem space shown
in the figure(3.6). Above the cone’s surface the model vector z∗ is
shown; the orthogonal projection of the model vector onto the surface
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of the cone gives zg the unnormalized optimally scaled data. This
projection is obtain by the operator E which minimizes (3.10), the
unnormalized index of fit.
The angle α, between z̄ and zg has been minimized by orthogonally
projecting z̄ onto the cone’s surface. The projection defines a right
triangle so as follows

sin2α =
r2

z̄2
=

r′r

z̄′z̄
= φ2

a (3.16)

So the orthogonal projection of z̄ onto the cone’s surface requires a
right angle at the surface of the cone.

3.2 Princals and Morals: two ALSOS

algorithms

In the next two sections we will present the Morals and Princals
algorithms that are used in our proposal to estimate a SEM based
on ordinal variables.
Of these two techniques the properties and the steps of algorithms
will be explained.

3.2.1 The Princals algorithm

Given a data matrix n×m of metric variables, Principal Component
Analysis (PCA) is a common technique to reduce the dimensional-
ity of the data set, projecting variables into a subspace <p where
p � m. The Eckart-Young theorem states that this classical form of
linear PCA can be formulated by means of a loss function.Its mini-
mization leads to a n× p matrix of component scores and an m× p
matrix of component loadings.

The actual computer programs for PCA impose some restrictions
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about the completeness of the data matrix and interval measurement
of variables. In the social sciences the assumption of interval scales is
not usually justified, and often the data matrix is incomplete. In this
case it is possible to use the Nonlinear Principal Component Analysis
(NPCA), where the term nonlinear pertains to nonlinear transforma-
tion of the observed variables [14]. According to the Gifi terminology
the NPCA can be defined as homogeneity analysis with restrictions
on the quantification matrix YJ . The ALS algorithm generalizes the
approach of PCA to general types of variables.

The Non linear PCA in the ALSOS system is derived as homo-
geneity analysis with some constraints; the loss function is

σ(X;Y1, ...., YJ) = J−1
J∑

j=1

SSQ(X −GjYj) (3.17)

= J−1tr(X −GjYj)′(X −GjYj)

with the constraint of rank-one

Yj = qjβ
′
jwithj ∈ J (3.18)

The constraints are imposed on the multiple category quantifica-
tions, with qj a lj-column vector of single category quantifications
for variable j, and βj a p-column vector of weights (component load-
ings). In this way each quantification matrix Yj has to be of rank one,
so that the quantifications in p dimensional space are proportional
to each other. With the introduction of the rank one restrictions it
is possible to have multidimensional solutions for object scores with
a single quantification for the categories of the variables, and it is
possible to introduce the measurement level of the variables in the
analysis.

To minimize (3.17) with the constraints (3.18) the algorithm starts
to compute Yj as

Ŷj = D−1
j G′

jX (3.19)
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where Dj = G′
jGj is the diagonal matrix containing the univariate

marginals of variable j. The loss function σ(X;Y1, ..., YJ) is parti-
tioned as follows:

∑J
j=1 tr(X −Gj [Ŷj + (Yj − Ŷj)])′(X −Gj [Ŷj + (Yj − Ŷj)]) =

∑J
j=1 tr(X −Gj Ŷj)′(X −Gj Ŷj) +

∑J
j=1 tr(Yj − Ŷj)′Dj(Yj − Ŷj)

Imposing the rank one restrictions the loss function to minimize,
respect to qj and βj is:

J∑
j=1

tr(qjβ
′
j − Ŷj)′Dj(qjβ

′
j − Ŷj) (3.20)

The ALS algorithm alternates over qj and βj , which gives for fixed
qj

β̂j = (Ŷ ′
j Djqj)/(q′jDjqj) (3.21)

and for fixed βj

q̂j = Ŷjβj/(β′jβj) (3.22)

At this point it is necessary to take into account the restrictions
imposed by the measurement level of the variables. This means that
we have to project the estimated vector q̂j on the cone Cj : in the
case of ordinal variables the cone Cj is the cone of monotone trans-
formation given by
Cj = {qj |qj(1) ≤ qj(2) ≤ .....qj(lj)}. So the projection is obtained
across a monotone regression in the metric Dj (weights). In the case
of numerical data the corresponding cone is a ray given by
Cj = {qj |qj = γj + δjsj}, where sj is a given vector, for example, the
original variable quantifications. In this case the projection problem
is a regression problem. In the case of nominal variables the cone is
the <l

j space and the projection is done by simply setting qj = q̂j , so
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Ŷj = q̂j β̂
′
j and the algorithm proceeds with the estimation of the ob-

ject scores. This solution is referred in the literature as the Princals
solution [15, 19](principal component analysis by means of alternat-
ing least squares); if the variables are treated as single numerical the
Princals solution corresponds to an ordinary Principal Component
Analysis on the sj variables [15] appropriately standardized, com-
puting the eigenvalues and eigenvectors of the correlation matrix of
the sj variables.

The Princals model allows the data analyst to treat each vari-
able differently; some may be treated as multiple nominal and some
others as single nominal, ordinal or numerical. Moreover, with some
additional effort (see [41]) one can also incorporate in the analysis
categorical variables of mixed measurement level, that is variables
with some categories measured on an ordinal scale (e.g. Likert scale)
and some on a nominal scale (e.g. categories in survey questionnaires
corresponding to the answer “don’t know”).

The steps of Princals are:

Algorithm 2. Princals.

Initialize X so that u′X = 0 and X ′X = NIp

repeat
Step1

for (j in 1:k)
Ŷj = D−1

j G′
jX

endfor
Step2

for (j in 1:k)
β̂j = (Ŷ ′

j Djqj)/(q′jDjq
′
j)

endfor
Step3

for (j in 1:k )
quantification of the jth variable by a monotone
or linear regression
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endfor
Step4

for (j in 1:k )
Update the quantifications Ŷj = q̂j β̂

′
j

endfor
Step5

for (j in 1:k )
X̂ = J−1

∑J
j=1 GjYj

Centering and orthonormalization of the X matrix
endfor

Ceck the convergence
if (the objective function is minimum) break

Generally the most common options in treating variables in Prin-
cals are single ordinal and single numerical; the Gifi loss function can
be partitioned into two parts:

J∑
j=1

tr(X−Gj Ŷj)′(X−Gj Ŷj)+
J∑

j=1

tr(q̂j β̂
′
j− Ŷj)′Dj(q̂j β̂

′
j− Ŷj) (3.23)

The first part of the (3.23) can also be written as
N(p−

∑J
j=1

∑p
s=1 η2

js), called the multiple loss, where p is the number
of manifest variables. The discrimination measure η2

js is called mul-
tiple fit of the variable j in dimension s. Imposing the normalization
restrictions q′jDjqj = N , and using the fact that Ŷ ′

j Djqjβ
′
j = Nβjβ

′
j

from the (3.21) the second part of (3.23) can be written as:

J∑
j=1

tr(Ŷ ′
j Dj Ŷj −Nβjβ

′
j) = N(

J∑
j=1

p∑
s=1

(η2
js − β2

js) (3.24)

called the the single loss. The quantities β2
js, s = 1, ....., p are called

single fit, and correspond to squared component loadings (see chapter
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3.2. Princals and Morals: two ALSOS algorithms

4 in [19]).In the single loss part there are two components: the rank-
one restrictions, that is the fact that single category quantifications
must lie on a straight line in the joint space, and the measurement
level restriction, that is the fact that single quantifications may have
to be rearranged to be either in the right order (ordinal variables) or
equally spaced (numerical variables).

The ALS algorithm is not affected by the presence of missing data,
so the (3.2.1)becomes:

∑J
j=1 tr(X −GjYj)′Mj(X −GjYj) =

∑J
j=1 tr(X −Gj(Ŷj + (Yj − Ŷj)))′Mj(X −Gj(Ŷj + (Yj − Ŷj))) =

∑J
j=1 tr(X −Gj Ŷj)′Mj(X −Gj Ŷj) +

∑J
j=1 tr(Yj − Ŷj)′Dj(Yj − Ŷj)

where Mj is a matrix of 0 and 1: 0 if the data is missing and 1
otherwise.

Cone restricted SVD

The loss function of the Princals can be solved in terms of cone
restricted Singular Value Decomposition. All the transformations are
projections on some convex cone Cj and we look only to the second
term of the partitioned loss function (3.23):

σ(Q,B) = tr(QB′ − Ŷ )′D(QB′ − Ŷ ) (3.25)

over Q, the matrix of the vectors of scaling, and B, the matrix of
the weights, where Ŷ is k × p,Q is k × r, and B is p × r. The first
column Q0 of Q is restricted by Q0 ∈ C, and Q should also satisfy
the normalization condition u′DQ = 0 and Q′DQ = I.
The basic idea of the algorithm is to apply alternating least squares
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with rescaling, minimizing over Q for fixed B and over B for fixed Q.
The algorithm does not impose the normalization conditions when it
minimizes over Q.
Suppose that (Q̂, B̂) is the best solution at present. To improve it we
minimize over the nonnormalized Q, satisfying the cone constraints,
and keeping B fixed at B̂, obtaining Q̃and a corrisponding loss func-
tion value σ(Q̃, B̂). Clearly

σ(Q̃, B̂) ≤ σQ̂, B̂) (3.26)

but Q̃ is not normalized. Using the Weighted Gram-Schmidt solution
Q̃ = Q∗S we update Q with Q∗, where S is the Gram-Schmidt trian-
gular matrix. The first column q̃0 of Q̃ satisfies the cone constraints,
and because of the nature of Gram-Schmidt, so does the first column
of Q∗. It’s possible to have:

σ(Q∗, B̂) � σ(Q̂, B̂) (3.27)

This seems to invalidate the usual convergence proof, which is based
on a non-increasing sequence of loss function values. But now also
adjust B̂ to B̄ = B̂(S−1)′. Then Q̃B̂′ = Q∗B̄′, and thus

σ(Q̃, B̂) = σ(Q∗, B̄) (3.28)

Finally compute B∗ by minimizing σ(Q∗, B) over B. Since σ(Q∗, B∗) ≤
σ(Q∗, B̄) we have the chain

σ(Q∗, B∗) ≤ σ(Q∗, B̄) = σ(Q̃, B̂) ≤ σ(Q̂, B̂) (3.29)

In any iteration the loss function does not increase.

3.2.2 The Morals algorithm

The Morals algorithm [65]optimizes the multiple correlation between
a single criterion variable and a set of predictor variables where any
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of the variables (criterion included) may be nominal, ordinal or inter-
val. The variables do not all have to be measured at the same level
nor does the process, which is assumed to have generated data, may
be either discrete or continuous.

Morals obtains an optimal scaling for each variable within the re-
strictions imposed by the regression model, the measurement level,
and the generating process. The scaling is optimal in the Fisher [16]
sense of optimal scaling: the multiple correlation is maximized. It
is based on the minimization of a quadratic function in respect to
three parameters. The initialization of the algorithm is based on the
assumption that the matrices X and Y (the raw data) are actually
the matrices X∗ and Y ∗ (optimally scaled variables). This is equiv-
alent to assuming, for the initialization process, that the raw data
are measured on an interval scale (we assign arbitrary values to the
observation when a variable is ordinal).

After the initialization step the algorithm proceeds with the esti-
mation phase, in which it computes the regression coefficients. In the
optimal scaling phase, the independent variables (ordinal, nominal or
numerical), are specified as the product between an indicator matrix
Gj (n ∗ kj) and a vector of the scaling parameters qj (kj ∗ 1), that
after estimation defines the variables xos

j = Gjqj . This procedure
is made also for the dependent variable y, that becomes yos = Gyt,
where t is the vector of scaling of the dependent variable y. The loss
function to optimize is:

minβ,q,tSSQ = (Gyt−Gqβ) (3.30)

with the constraints u′Gyt = 0, t′G′
yGyt = 1, qj ∈ Cj , t ∈ Cy, where

u is a vector of 1 and Cj and Cy are the spaces of admissible trans-
formation (they are closed convex cones) for the categories of each
variable, taking into account the level of measurement. In particular
if the variables are nominal there are no constraints on the values of
quantification, while if the variables are ordinal there are order con-
straints between the categories. So the final object of this technique
aim to obtain the best quantification of the qualitative variables and
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to optimize the regression parameters. Having obtained, in fact, the
first estimation of the vectors yos and xos the parameters of multiple
regression are then updated using as variables the ones calculated at
the previous step. The steps are retereited until the convergence.

The function in the equation (3.30) is rewritable as:

SSQ(Gyt− ŷ) + SSQ(ŷ −Gq∗) + DP (3.31)

The first part of equation (3.31) is minimal respect to t projecting ŷ
on the columns of Gy

t = (G′
yGy)−1G′

yŷ (3.32)

So if the variable is nominal the vector of optimal scaling is tos = t,
otherwise if the variable is ordinal, the vector tos of optimal scaling
is obtained though a monotone regression of t [30]. The second part
of the equation (3.31) has to be minimized respect to qj :

qj = (G′
jGj)−1G′

j(Gyt− vj) (3.33)

where vj is the estimation of the independent variable without the
contribution of variable j :

vj =
∑
j∈Jp

(βjGjqj − βjGjqj) (3.34)

Therefore we quantify individually each variable of the regression
model and then we obtain the new variable quantified as the product
between Gjqj . Also in this case, as before, if the variable is nominal
no transformation is required on qj , instead, if it is ordinal there is
the constraint on the order between categories, so it is necessary to
compute a monotone regression.

The final step consists on the substitution of the new variables
(dependent and independent), obtained with the vectors of scaling,
and in the regression model compute, to estimate the optimal paths,
taking into account the previous quantification of variables. Since
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the Morals algorithm accepts all kind of variables, and in the case of
numerical variables it jumps the step of quantification and computes
only the parameters of the regression model.

Summarizing the steps of Morals algorithm are:

Algorithm 3. Morals.

Consider the matrix X and Y of raw data as X∗ and Y ∗

repeat
Step1

for (i in 1:p)
for (j in 1:k)

β = (X∗′X∗)−1X∗Y ∗

endfor
endfor

Step2
for (j in 1:k)

Ŷ = X∗β
Y G = GY (G′

Y GY )−1G′
Y Ŷ

Y ∗ = Y G( ||Ŷ ||
||Y G||)

endfor
Step3

for (i in 1:p )
X̂I = 1

βJ
(Q∗ −

∑
I 6=J βJX∗

J)

xG = GI(G′
IGI)−1G′

IX̂

X∗
I = XG

I ( ||X̂I ||
||XG

I ||)
endfor

Step4
Ceck the convergence

if (the the R2 is not improved ’enough’ from last
iteration) break

The important characteristic of Morals is the division of the quan-
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tification process into two steps: one for the single dependent vari-
able and another for the M independent variables. For each variable
it computes the model’s estimate of the variables, then it uses the
estimate with the appropriate indicator matrix to obtain the unnor-
malized optimally scaled data, and then the normalization, obtaining
the variables rescaled.

To assure convergence and to maintain the ALS aspects of an
algorithm with non-independent partitions we must immediately re-
place the previous scaled data with the newly computed (normalized)
scaled data.

The monotone regression

In linear regression we fit a linear function y = α+βx to a scatter plot
of n points (xi, yi). We find the parameters α and β by minimizing

σ(α, β) =
n∑

i=1

wi(yi − α− βxi)2 (3.35)

where wi are known positive weights. In discussing the regression of
ỹ on x̃, then, ỹ is a random variable whose values are real numbers.
But x̃ may or may not be a random variable. Its values may or may
not be real numbers or vectors (ordered k-tuples) of real numbers.
In general x̃ ranges over an abstract set X. In defining regression of
ỹ on x̃ via least squares, weights w(x) associated with the values of
x̃ must be used. If x̃ is a random variable, w(x) is the probability
that the random variable x̃ will be equal to x, or the density of x̃
at x. In sampling the weights may be proportional to numbers of
observations.
In the more general nonlinear regression problem we fit a nonlinear
function φθ(x) by minimizing

σ(θ) =
n∑

i=1

wi(yi − φθ(xi))2 (3.36)
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over the parameters θ. In both cases, consequently, we select the min-
imizing function from a family of functions indexed by small number
of parameters.
In many situations the researcher has no information regarding the
mathematical specification of the true regression function. Rather,
he can assume a particular shape which can be characterized by cer-
tain order restrictions. Typically, this involves that the yi’s increase
with the ordered zi’s. Such a situation is called isotonic regression;
the decreasing case antitonic regression, and both case are called
monotonic regression (see [13]).
Monotone regression is the projection of a numerical variable y into
the convex polyhedral cone of the scalings of an ordinal variable x.
In data analysis it is used in multidimensional scaling [29, 30] and for
methods which describe ordinal data by cardinal methods [64, 65, 66].
An ordinal variable x is observed on n subjects and takes its values on
a set M = {1, 2, ...,m} of categories provided with the natural order.
A scaling δ of the categories of x is a real non-decreasing function
which associates a real number δj with each category j of M . The
scaling x∗ ofx induced by δ is the numerical variable which associates
the scaling δx(i) with each subject i.
If we denote by xj the dummy variable which is equal to one if
x(i) = j and zero otherwise, the scaling x∗ can be written x∗ =∑
{δjxj ; j = 1,m}. Taking into account the ordinal constraint the

scaling δj can be written δj = α1 +α2 + .....+αj with α2, ...., αm ≥ 0.
Consequently we get x∗ =

∑
{αjzj ; j = 1,m} where zj =

∑
{xh;h = j, m}.

So the set of scalings x∗ of the ordinal variable x is the convex poly-
hedral cone C = L(z1 ⊕ C(z2, ....., zm which is the direct sum of the
subspace generated by z1 and the convex polyhedral cone generated
by z2, ...., zm.
If a numerical variable y and an ordinal variable x are observed on a
set of n subjects, the monotone regression problem consists in look-
ing for the scaling x∗ of the ordinal variable x that is as close as
possible to the numerical variable y. So we are looking for the pro-
jection x∗ of the vector y of <n into the convex polyhedral cone C of
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the scalings of the ordinal variale x. The particular structure of the
cone C allows the construction of fast and simple algorithms based
on assembling of adiacent violators, as the Pool Adjacent Violators
algorithm [3], described successively . Let ȳ(B) denote the mean of
the variable y restricted to the subjects i such that x(i) belongs to
the subset B of M . A block of categories of M is a subset of M
formed by consecutive elements. Let B0, B1, ...., Br be a partition of
M into increasing blocks: the largest element of Bh is smaller than
the smallest element of Bh+1.
By using geometrical arguments, it is possible to show that there ex-
ists a partition of M into increasing blocks B0, B1, ...., Br such that
the optimal scaling δ takes on the value δ(j) = ȳ(Bh) for any category
j in Bh.

Proposition 3.7. 3 There exists a partition of M into increasing
blocks B0, B1, ...., Br, such that the optimal scaling δ of the categories
of x associated with the monotone regression of y on x takes the value
δ(j) = ȳ(Bh) for any category j in Bh.

The search for the optimal partition of M into increasing blocks
B0, B1, ...., Br is equivalent to the search for an optimal subset J =
{1, j1, ...., jr} of M where each jh is the smallest element of Bh. The
Pool Adjacent Violators algorithm gives the optimal blocks B0, B1, ...., Br

in an iterative way. At the first iteration each category j is a block.
We look at the sequence y(j). If y(1) ≺ y(2) ≺ .... ≺ y(m) the
optimal solution has been found. Otherwise, beginning at the first
category, we pool together the categories which constitute a monoton-
ically non-increasing run, and this gives another set of blocks on
which the procedure is iterated. The optimal solution B0, B1, ...., Br

is reached as soon as ȳ(B0) ≺ ȳ(B1) ≺ ȳ(Br).
This algorithm can be interpreted as a backward stepwise multiple
regression of teh dependent variable y on the independent variables

3The proof is in Apendix A
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z2, ....., zm. At each step, the variables zj with a non-positive regres-
sion coefficient are suppressed. The optimal subset J = {1, j1, ...., jr}
is obtained as soon as all the regression coefficients of the variables
zj1, ....., zjr are strictly positive. This interpretation of the Pool Adja-
cent Violators algorithm as a backward stepwise regression comes di-
reclty from the fact that the regression coefficients of the variables zjh

are ȳ(Bh)− ȳ(Bh−1). Pooling Bh−1 and Bh when ȳ(Bh−1) ≥ ȳ(Bh) is
equivalent to ejecting the category jh from J and then to removing
the variable zjh from the regression.

3.3 Some remarks

This chapter was focused on the description of the ALSOS algorithms,
because we consider their approach to the quantification as a good
solution for the problem of the estimation of a SEM.

We have seen that the ALSOS algorithm allow to have simulta-
neously all kind of variables in the data matrix, and are capable to
quantify them separately and each variable according to its nature.

This important characteristics is very useful in the context of a
SEM in which we have different latent block, measured by different
manifest variables, that in this case can be qualitative/ordinal or nu-
merical.

The approach, followed by this class of algorithms, allows to de-
velop any kind of statistical analysis. In particular we have presented
two algorithms Morals and Princals that face two different problems:
the first develops a regression model with mixed variables, so it has
the scope to predict a dependent variable by a set of dependent vari-
able, while the second develops a PCA with the object to obtain the
best synthesis of a set of variables.

Both methods have the characteristics to contestualize the quan-
tification procedure into the scope of the analysis to develop, in
such a way to obtain a non arbitrary quantification for the quali-
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tative/ordinal variables.
This is the approach used in our algorithm, that we will present

in the next chapter, to obtain the best quantification for the qualita-
tive/ordinal variables.
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Chapter 4

The internal approach to
the quantification

Social and market researches are mainly based on collecting qualita-
tive and ordinal indicators.

When the aim of the study is the estimation of a casual model
built on the relationship between latent concepts as in SEM, the use
of qualitative indicators causes some problems due to the meaning-
fulness of the results. This is because this methodology was created
to estimate the relationships between quantitative variables.

The problems are stronger when dealing with Covariance based
models (as LISREL) in which some distributional a priori hypotheses
about the data are assumed and used for inferential scope This is not
the case of Variance based models (as PLS-PM) in which there are no
distributional hypotheses and inferential tests to confirm the theory
developed across the model, and in which the objective is to explore
the data and, when some relationships between latent variables are
assumed, to confirm these casual relationships.

Both methods, however, introducing in the model ordinal vari-
ables, and in particular the PLS-PM accepts also the nominal varia-
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bles; when the variables are ordinal, LISREL has a different proce-
dure in respect to the numerical case.

4.1 The LISREL approach

As recalled in the previous section, the LISREL algorithm is ap-
plicable to metric variables, where metric indicates a variable with a
standard of measurement. So LISREL is not usable with categorical
variables, while for the ordinal variables some alternatives exist that
allow their use for the estimation of the model.

The problem regards Pearson’s correlation coefficient, that is not
computable between two qualitative or qualitative and quantitative
variables, unless they are considered as numerical variables. In the
case of ordinal variables the statistic used is the matrix R, the matrix
of observed correlation, and not the matrix S of covariance-variance,
so the variance of these variables is fixed equal to 1 1.

As an alternative many authors,in literature proposed the use of
tetracoric/policoric/poliserial correlation when working with ordinal
variables , or mixed data. The idea is that an ordinal variable x can
be considered as a raw measurement of an underlying continuous la-
tent variable x∗ exists, in such a way if the ordinal variable assumes
the values between 1 and 4, we imagine that three thresholds points
on the latent variable x∗, called α1, α2 and α3 (where α1 ≺ α2 ≺ α3).
So, if x∗ is ≺ of α1, then x = 1; if x∗ is included between α1 and α2,
then x = 2, and so on.

The tetracoric2 correlation coefficient, introduced by Pearson (1901),
is the estimated correlation coefficient of two continuous variables

1Very often the matrix R is not used , but the matrix with the linear correlation
coefficient of Pearson, making the assumption of the continuity of ordinal variables.

2The correlation between a continuous and dichotomic (polytomic) variable is
called biserial (polyserial) correlation coefficient.
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distributed as a Normal, underlying two ordinal variables. The esti-
mation of this correlation can be made in two ways:

- the first method [7], [43], [?], [42] is based on the estimation of
the thresholds and after of the tetracoric correlation, across an
iterative procedure. Given that

F (α1) =
∫ α1

−∞
f(x)dx = p1. F (α2) =

∫ α2

−∞
f(x)dx = p.1 (4.1)

F is the distribution function and f is the density function. So
the thresholds are equal to α1 = F−1(p1.) and α2 = F−1(p.1).
Having the thresholds (α1,α2), using the bivariate distribution
(x1, x2), we can extract the tetracoric correlation (ρ12), across
an iterative procedure that puts the double integral equal to the
probability to observe the cell (1,1) estimated by the relative
frequencies:

P (x1 ≤ α1, x2 ≤ α2) =
∫ α1

−∞

∫ α2

−∞
F (x1, x2, ρ12)dx1 . . . dx2 = p11

- the second method [43] [28], [?] is based on the simultaneous
maximization of the ML compared to the thresholds and the
tetracoric correlation.

If the observed ordinal variables are two, it is possible to imagine
two underlying continuous latent variables x2

1 and x2
2, that form a

bivariate normal distribution, in such a way that from the observed
ordinal values it is possible to compute the correlation coefficient3,
that have to exist between the two latent variables, to have the joint
distribution of the observed variables.

The correlation coefficient between x2
1 and x2

2, is called polycoric

3The latent variables have mean 0 and variance 1, so we do not speak of co-
variance, but correlation.
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correlation. The polycoric correlation coefficient is not a correla-
tion coefficient between ordinal variables, but the estimation of the
correlation ρ between the metric latent variables x2

1 and x2
2. Its esti-

mation is based on the hypothesis of Normality of underlying latent
variables, of which it is supposed the standardized normal distrib-
ution (x1, x2)∼ N(0, 1; 0, 1; ρ12), to the qualitative indicators. It is
possible to use one of the two procedure for the estimation of the
tetracoric correlation.

For the estimation of the polyserial correlation [44] it is assumed
the continuous normal distribution for the continuous variable x∗

(underlying the ordinal variable x) and for the observed continuous
variable y. The ML function is defined as:

L =
∏

i=1....n

f(yi, xi) =
∏

i=1....n

f(yi)f(xi/yi) (4.2)

The methods for the estimation of polyserial correlation are two:

1. the moments of y are estimated from those samples, the thresh-
olds of X∗ from the marginal of X; the polyserial correlation
coefficient is obtained across the method of ML, conditioned by
the other parameters estimated;

2. the simultaneous estimation of all parameters with the ML,
maximizing L respect to the unknown parameters:

L = log(L) =
∑

i

[logf(yi) + logf(xi/yi)] (4.3)

where f(y) is the density function N(µ, σ), and f(x/y) ≈ N(ρx, (1−
ρ2)), with x = (y − µ)/σ. The distribution f(x/y) is obtained
from:

Prob(x∗ = j/y) = F (x∗j )− F (x∗j−1)

where x∗j = (xj − ρx)/
√

1− ρ2
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The method to estimate the model is no more the ML, but the
Weighted Least Square (WLS), with a suitable weighting matrix,
because in this way we do not obtain bias estimation.

The process of the estimation is composed of two phases:

- in the first phase the aim is the determination of the correlation
matrix of input of LISREL, composed of the policoric-poliserial
correlation on the raw data (now this matrix could contain not
only the Pearson’s coefficient, but also the polyserial correla-
tion coefficient), and after it is computed, also, a covariance
asymptotic matrix, useful to the calculation of the weighting
least square;

- in the second phase the application of LISREL, with the method
of estimation WLS, is considered.

In literature some methods also exist that estimate the parameters of
the first phase (thresholds, polycoric correlation) and the parameters
of the model simultaneously.
In substance there are four different approaches:

1. the first method, composed of three phases, computes at first
the thresholds for each couple of ordinal variables, using the
marginal distribution of ordinal variables,under the hypothe-
sis that the marginal cumulated probabilities are equal to the
relative marginal frequencies:

xi = F−1(Pi.)and xj = F−1(P.j)

where Pi. and P.j are the marginal frequences. Separately for
each couple of variables, the polycoric correlation, across the
ML estimator is estimated:

∂l

∂ρ
=

s∑
j=1

v∑
i=1

nij

πij

∂πij

∂ρ
= 0 (4.4)
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where l is the Log likelihood and πij is the probability that an
observation is in the cell (i, j) of the multinomial distribution.
In the third phase the structural parameters of the model are
estimated, by a loss function in which the S matrix is com-
posed of the correlation estimated in the second step. Muthen
used a slightly different procedure in three steps . His approach
is considered more general then the previous because he does
not use the hypothesis of normal distribution of the latent vari-
ables, and he divides the parameters (thresholds, correlation
and structural coefficients) in three sub models.
So in the first step the thresholds are estimated, while in the
second the correlations and in the latest step the structural pa-
rameters across the Weighted Least Squares (WLS), with the
estimation of the asymptotic covariance matrix R.

2. the second method, consist of only one step by estimating the
structural parameters of the model (correlation matrix, load-
ings) with p dichotomous observed variables; the estimation of
the parameters is obtained simultaneously by the ML function.
The authors suggest to use the GLS function because the ML
computationally problem 4.

3. the third method, consists of two phases. In the first it estimates
simultaneously the parameters of the matrix R(xi, xj , ρ) , across
the ML, solving a system of (v−1)+(s−1)+[(p+q)(p+q+1)]/2
partial derivative respect to ρ and the thresholds xi and xj :

∂l

∂ρ
=

s∑
j=1

v∑
i=1

nij

πij

∂πij

∂πij
= 0

∂l

∂xi
=

s∑
j=1

v∑
i=1

nij

πi

∂πij

∂xi
= 0

∂l

∂xj
=

s∑
j=1

v∑
i=1

nij

πj

∂πij

∂xj
= 0

From this system the estimation of the thresholds and of the

4It is necessary to compute the product of N integral.
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correlation coefficients are obtained. In the second phase it es-
timates the structural parameters, minimizing the loss function

4. the fourth method is proposed by Lee-Poon-Bentler [33] for
the estimation of polyserial and polycoric correlations. This
method is characterized by the simultaneous estimation, for all
variables, of correlation and thresholds, across the ML. In the
second step the structural parameters are estimated minimiz-
ing the GLS loss function. The authors show that the estimates
are efficient asymptotically and the asymptotic distribution of
estimates is multinormal with a covariance matrix equal to the
inverse of information matrix.

In presence of ordinal data we can compute the correlation coefficient,
besides by linear coefficient of Pearson (r), also by the polycoric co-
efficient (ρ), the Spearman’s coefficient (φ) and τ of Kendall. The
studies [43],[7] have demonstrated that the Pearson coefficient under
estimates the real correlation between the continuous variables un-
derlying the ordinal variables, respect to the polycoric coefficient.

So the polycoric correlation is the best choice for normal variables
underlying ordinal variables, especially when the size of sample is
large and also the number of categories (7,9). The disavantage is
that the polycoric correlation overestimates the standard errors of
the estimation and the values of the statistic χ2, but it produces
parameters with the lowest MSE and no bias.

4.2 The PLS-PM approach for ordi-

nal variables

The PLS-PM, as LISREL, was born for the estimation of a SEM
model with metric data, but one of its characteristic is the possibility
to introduce also the nominal and ordinal variables. The basic idea
of the PLS-PM is to assume the continuity for the ordinal variables
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so it is possible to treat them as numerical variables; instead when
the variables are nominal it is used the binary coding: the problem in
this case is that the dimension of the matrix X of manifest variables
increases.

Let us now image to introduce one or more binary-coded nominal
or categorical variables in one or more latent block. The problem lies
in the dimension of the measuring scale which has been adopted for
those variables, being it not wide enough to allow to assume conti-
nuity for those variables.

This fact has an impact on the estimation of the latent concepts.
The risk is to have a final model in which qualitative indicators are
eliminated.
At present the qualitative variables are introduced, when possible,
in the model or with a binary coding, or across an a-priori trans-
formation, as the Thurstone, Rash transformation or it is used the
equidistribution linear normalization, before the model estimation.
In literature a proposal, made by E. Jakobowicz and C. Derquenne
(2006), introduces an algorithm, so called Partial Maximum Likeli-
hood (PML), based on the Generalized Linear Models (GLM), es-
timation. They take into account of variables of different nature
(numerical, nominal or ordinal), with final aim the quantification of
qualitative variables. The analysis then continues by performing the
classical PLS -PM algorithm.

They modify the first step of the PLS-PM algorithm, according
to the nature of manifest variables (nominal or ordinal). The authors
introduce the concept of reference variable as the initial estimation
of the latent variable: it is a manifest variable of any latent block
associated to the j-th block that is supposed to better explain the
latent concept. The vector of the initial weights will be equal to :

w0
jh = cov(xjh, xi1) (4.5)

where xi1 is the reference variable chosen between the blocks associ-
ated to j block. The authors propose a series of statistical method-
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ologies well known in literature, whose differences are related to the
nature of the variable xjh and the reference variable xi1.
In particular:

- if the reference variable is numerical and is adjusted by a nu-
merical variable: this is the classical PLS-PM

- if the reference variable is numeric and the manifest variable
is categorical : an ANOVA model with one effect is used.

yt=0
j =

pj∑
h=1

Lh∑
l=1

wt=0
jhl xjhl (4.6)

where t=0 indicates the first step of the algorithm, xjhl is a
dummy variable with dimension equal to the number of cate-
gories Lh (l = 1, ..., Lh) in xjh, and wt=0

jhl is the mean of xi1 on
category l

- if the reference variable is boolean or ordinal and the manifest
variable is numeric:a simple logit model is used.

yt=0
j =

pj∑
h=1

wt=0
jhl xjh (4.7)

In this case wt=0
jhl is the logistic regression coefficient of xjh on xi1

- the reference variable is boolean or ordinal and the manifest
variable is categorical : it is used a logit model with one effect
(one group)

yt=0
j =

pj∑
h=1

Lh∑
l=1

wt=0
jhl xjhl (4.8)
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where xjhl is a dummy variable and wt=0
jhl is the logistic regres-

sion coefficient

- if the reference variable is nominal and the manifest variable is
numeric: a polytomic logistic model is used

yt=0
j =

pj∑
h=1

wt=0
jh(r)xjh when xi1 takes a value r (4.9)

where wt=0
jh(r) is the generalized simple regression coefficient of

xjh on xi1

- if the reference variable is nominal and the manifest variable is
categorical : it is used a generalized logit model with one effect

yt=0
j =

pj∑
h=1

wt=0
jhl(r)xjhl when xi1 takes a value r (4.10)

where xjhl is a dummy variable of category l and wt=0
jhl(r) is the

logistic regression coefficient

The inner estimation is the same as in the classical PLS-PM algo-
rithm, while for the outer estimation it is important to consider the
nature of the manifest variables; in particular if the manifest variable
xjh is numeric, the algorithm proceeds in the classical way, while if
it is categorical, it is used, to obtain a new estimation of the latent
variable, the variance model:

yt
j =

pj∑
h=1

Lh∑
l=1

wt
jhlxjhl (4.11)

where xjhl is the dummy variable of category l and wt
jhl is the mean

of zi (the inner estimation of the latent variable ξi).
In this case for each category of the manifest variable is computed a
weight, that corresponds to the coefficient of the variance analysis,
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and so the global weight associated to the manifest variable is:

ŵjhl =

√∑L
l=1(ŵjhl − w̄jh)2

Lh
(4.12)

This approach has the advantage to make the quantification of
the qualitative variables by an internal procedure to the classical al-
gorithm of PLS-PM, with respect to the other approaches that make
an external quantification; another important characteristic is the
possibility to introduce all kind of variables, and for the qualitative
ones, each of them quantified according to its nature.
On the other hand we have two problems:

- we left the properties of the algorithm of PLS-PM (absence of
distributional hypothesis, the possibility to apply the technique
to matrixes with a number of individuals minor than of number
of variables

- we do not estimate in the same way the weights of qualitative
and quantitative variables (in the case in which we have mixed
variables, the weights of numerical variables are computed as
the covariance between manifets and latent variables, instead
of the case of rodinal or nominal variables the weights are ei-
ther the means of the values of these variables or the regression
coefficient of logistic regression

Another proposal in the literature is of P.G. Lovaglio (2002), that
proposes an algorithm, as an alternative to LISREL, for the estima-
tion of the structural parameters of a model. The nature of the ob-
served variables can be nominal, ordinal or numerical: the algorithm
computes a regression model in which there are a set of manifest
variables X that are explicative, and a set Y of manifest variables
that are dependent and that define a latent variable. The algorithm
estimates, based on the alternation two steps: the best quantification
for the variables X and Y (in the case in which the sets are composed
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by qualitative variables) and the best estimation of the parameters
of the model.

The steps of this algorithm are:

1. for each yi is adapted q regression model, specifying the quanti-
tative, nominal or ordinal of the variables in each equation. The
output is composed by the regression coefficients, the scores of
p explicative variables Xos

i in each equation (i = 1.....q) and
the optimal quantification of q dependent variables yos

1 , ....., yos
q

that coincides with the prediction obtained from the regression
ŷi, ...., ŷq

2. the principal component Ŷ c∗1 is estimated, where Ŷ has as ele-
ments the prediction of the previous step

3. a regression model is estimated, with as dependent variable Ŷ c∗1
and as explicative variables the p regressors (qualitative and
quantitative); the outputs of this step are the coefficients of
regression b and the optimal transformation of Xos

4. to obtain the new estimation of ŷ∗i , ...., ŷ
∗
q , Ŷ c∗1 is projected on

the space of the columns of the indicator matrix associated to
each dependent variable, across the Non Linear Principal Com-
ponent Analysis (NPCA)

ŷ∗j = GjD
−1
j G′

j Ŷ c∗1 (4.13)

where Gj is the indicator matrix of the variable j and D−1
j is

the is the diagonal matrix containing the univariate marginals
of variable j.

5. with the new estimation of ŷ∗j and the quantification of the re-
gressors Xos

i , the algorithm returns to the step 1, with a new
iteration of the algorithm
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The algorithm proposed belongs to the family of Alternating Least
Square Optimal Scaling (ALSOS), and in particular it is based on
the join between two approaches: one is the Non Linear Regression
of the set Y on X to obtain the optimal quantification for both vari-
ables, and the second is the Principal Component Analysis to obtain
the estimation of the latent variable as the first component of Ŷ ′Ŷ .
These two methods, that forms the two steps are alternated until the
convergence and the results are the estimation of the regression co-
efficients and the optimal quantification for the qualitative variables.
It is obtained the convergence, because at each iteration the residual
is smaller than the previous iteration; the aim is the maximization of
the redundance index and of the multiple R2.
The characteristics of the latent variables estimated according to this
method are:

- they do not require distributional hypothesis

- they have not indeterminacy on the scores, because they are
linear combination

- the simultaneous estimation of the parameters and of the scores
of the latent variables, reach a global optimum

- they have the property of the least square because they are
estimated by Ŷ ′Ŷ

- in presence of categorical variables, they are coherent with the
Kruskal approach, because the algorithm estimates simultane-
ously the optimal scaling parameters and the parameters of the
model

4.2.1 Some observations

The two techniques for the estimation of a SEM allow to cope with
ordinal variables in the data matrix. The LISREL approach shows
that the assumption of the continuity for the ordinal variables, causes
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an under-estimation of the real relationship between the underlying
continuous latent variables, and that the polycoric correlation pro-
duces non biased estimation and with a smaller MSE. The proposal
made for LISREL is also consolidated and many software programs
introduce ordinal variables in the model now. The only drawback is
that it is not possible to use nominal variables.

On the other hand the PLS-PM does not take into constraints,
but this can cause some problems on the estimation of the model,
as the meaning of the parameters associated to a variable, and in
particular the nominal variables cause an increase in the dimension
of the data matrix.

However, for the PLS-PM some approaches based on an external
or internal quantification exist.
The proposal of Jakobowicz and Derquenne is very interesting, but
it referes to by methods based on distributional hypothesis, as the
ANOVA or the logistic model, that is beyond the PLS-PM charac-
teristics. As consequence the properties of the PLS-PM as absence of
distributional hypothesis, the possibility to model flat matrixes with
a number of individuals minor than of number of variables, are lost.
The weights of qualitative and quantitative variables are estimated
in different way (in the case in which we have mixed variables, the
weights of numerical variables are computed as the covariance be-
tween manifest and latent variables, instead of the case of ordinal or
nominal variables the weights are either the means of the values of
these variables or the regression coefficient of logistic regression).

The proposal of Lovaglio [36], instead, is based on the use of the
Alternating Least Squares (ALS) algorithms that, as the PLS-PM,
have the important property of the absence of distributional hypoth-
esis, and an explorative purpose. However, his proposal has as ob-
jective to determine an alternative to the LISREL approach to esti-
mate a latent concept, measured by indicators and causes, using the
Non Linear Principal Component Analysis (NPCA).The fundamen-
tal characteristic of this algorithm is the simultaneous estimation of
the vector of scaling and of the parameters of the model, in this case
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the regression coefficients. So it has the same characteristics of the
PLS-PM with the addition of a unique function to optimize with re-
spect the parameters of the model.

This approach allow to estimate a structural model with mixed
variables, using the NPCA algorithm to estimate the latent variables.

As seen, it is possible to distinguish between two different ap-
proaches for the PLS-PM: the first consists of an external or a-priori
quantification, and the second consists of an iterative quantification
internal to the algorithm for the estimation of the model, in such a
way to compute the optimal quantification and the optimal estima-
tion of the parameters of the model simultaneously.

4.3 PALSOS-PM: a joint between Al-

ternating Least Squares and PLS-PM

The techniques used in the PLS-PM for the treatment of ordinal vari-
ables, we have seen that are oriented on an a-priori quantification,
across the Tursthone or Rash scales or across an equidistributional
normalization, or an iterative quantification, internal to the algorithm
for the estimation of the parameters of the model, as the approach
of Derquenne and Jackobowicz.

Aim of this chapter is the development of a procedure, that, sav-
ing some characteristics of PLS-PM, could optimally quantify the
ordinal manifest variables, and be able to estimate the parameters of
the model.

The algorithm is called Partial Alternating Least Squares- Path
Modeling (PALSOS-PM), because it has the structure of the algo-
rithm of PLS-PM (the split between the outer and inner estimation
and the partial analysis) and it uses, as method of estimation for
the parameters of the model, an Alternating Least Square algorithm
with the Optimal Scaling to obtain the optimal quantification for the
qualitative manifest variables. The principal characteristic of this ap-
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proach is the absence of distributional hypothesis and the possibility
to introduce all kind of variables in the model (in particular ordinal
variables5) that can be quantified according to their nature and their
scale of measurement.

So the PALSOS-PM algorithm has some characteristics of PLS-
PM and some of ALS algorithms: of the first it has the basic structure
(inner and outer estimation and the Path Analysis) and the inner es-
timation of the latent variables, of the second it has the the process
of quantification, modifying the estimation of the outer weights, be-
cause it takes into account the nature of the variables.

So the name PALSOS-PM is due to the presence of:

- the Partial analysis

- the Alternating Least Squares algorithm

- the Optimal Scaling process

- the Path Analysis

Thanks to these caharacteristics, the PALSOS-PM algorithm obtains
the best coefficients of the model and the best quantification for the
variables by the use of Morals algorithm, that computes simultane-
ously the parameters of a regression model and the optimal scaling
vectors for the manifest variables. This procedure is done for each
block of latent variables, separately.

So the join of the two methodologies allows to obtain the same
results of the PLS-PM, solving the problem of the treatment of or-
dinal variables, typical data collected for the customer researches.
The algorithm could start or with an arbitrary quantification of the
manifest variables (the typical coding of a questionnaire), or with a

5This algorithm can estimate a SEM also in presence of nominal variables, but
the aim of this thesis is to show the improvements of the quantification for the
estimation of structural parameters when the variables are ordinal, so we do not
investigate the nominal case.
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quantification obtained by Princals algorithm that develops a Prin-
cipal Component Analysis (PCA). In the latter case we have a first
estimation of the latent variable not arbitrary and in line with the
classical algorithm of PLS-PM.

The algorithm proceeds with the inner estimation of latent vari-
ables, and when returns to the external estimation, it uses Morals to
update the outer estimation. We have choosen to use this iterative al-
gorithm for three reasons: the first is the possibility to estimate the
relationship between variables in the reflective and formative case;
the second is its capability to treat simultaneously different kinds of
variables (numerical, nominal or ordinal), because the quantification
step is individually; the third is the simultaneous estimation of the
relationship between the manifest and latent variables and the best
quantification. In synthesis the steps of PALSOS-PM algorithm are:

Algorithm 4. PALSOS-PM.

Consider the matrix X of manifest variables and define the path di-
agram
Step1
Compute a first casual vector of weights wij

repeat
Step2

for (j in 1:k)
vj =

∑p
i=1 wijxij

or Princals endfor
Step3

for (j in 1:k)
zj =

∑k
j=1 ejj′vj

endfor
Step4
Update the estimation of weights wij by Morals
Consider the matrix X and Z of raw data as X∗ and Z∗

repeat
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Step4.1
for (i in 1:p)

for (j in 1:k)
β = (X∗′X∗)−1X∗Z∗

endfor
endfor

Step4.2
for (j in 1:k)

Ẑ = X∗β
ZG = GZ(G′

ZGZ)−1G′
ZẐ

Z∗ = ZG( ||Ẑ||
||ZG||)

endfor
Step4.3

for (i in 1:p )
X̂I = 1

βJ
(Q∗ −

∑
I 6=J βJX∗

J)

xG = GI(G′
IGI)−1G′

IX̂

X∗
I = XG

I ( ||X̂I ||
||XG

I ||)
endfor

Step.4.4
Ceck the convergence

if (the the R2 is not improved ’enough’ from last
iteration) break

Step5
Ceck the convergence

|wold
ij − wnew

ij | ≺ 10−5 break

When the algorithm returns to the fifth step, a new quantification
is obtained by Morals. The PALSOS-PM algorithm besides to esti-
mate a SEM model with ordinal or qualitative variables, allows to
estimte a model with all quantitative variables: in this case it com-
putes the parameters by the classical PLS-PM algorithm.

The use of Morals with respect to other methods of quantification
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has the advantage to obtain simultaneously the best quantification
and the best estimation of the relations between the manifest and
latent variables.

Another advantage to use Morals is related to the possibility of
estimating the model with both reflective and formative manifest
variables. In fact the Morals algorithm allows to estimate also the
parameters of a multiple regression model.

For the validation of the outer and inner model, we use the boot-
strap technique to create suitable the interval confidence, in fact the
quantification procedure we use: it not rest on any distributional
assumptions. Therefore, information about the variability of the pa-
rameter estimates and hence their significance has to been generated
by means of resampling procedures.

PALSOS-PM takes into acocunt, during the estimation of the pa-
rameters, the problem of the signs and as in the PLS-PM it solves it
using the comparison of the signs of the eigenvectors.

4.4 PALSOS-PM: an application on a

known dataset (ECSI)

The PALSOS algorithm is here applied, for comparative aims, to a
dataset used in the work of Tenenhaus et al. [55], in which they es-
timate an ECSI model to evaluate the customer satisfaction.

The European Costumer Satisfaction Index (ECSI) is an economic
indicator that measures customer satisfaction. A model has been
derived specifically for the ECSI. In this model, seven interrelated
latent variables are introduced. It is based on well-established theo-
ries and approaches in customer behavior and it is to be applicable
for a number of different industries. ECSI is an adaptation of the
Swedish customer satisfaction barometer (Fornell, 1992) and is com-
patible with the American customer satisfaction index.

The entire model is important for determining the main target
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variable, being Customer Satisfaction Index.
The ECSI model is described in figure 4.1. A set of manifest vari-

ables is associated with each of the Latent Variables.
This model is applied to a sample of 250 customers of a mobile

Figure 4.1: The ECSI model

society, to evaluate their satisfaction respect to the services received.
The manifest variables are 24 and are so subdivided in the latent
blocks:
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- five manifest variables for the block Image

- three manifest variables for the block Expectation

- seven manifest variables for the block Perceived quality

- two manifest variables for the block Perceived value

- three manifest variables for the block Customer Satisfaction

- one manifest variable for the block Complaints

- three manifest variables for the block Loyalty

All variables are ordinal and express on a scale of ten values, so
the PALSOS-PM algorithm is used to obtain an optimal quantifica-
tion for these variables and to estimate the structural parameters of
the model.

The same model was estimated with the PLS-PM algorithm by
the software XLSTAT, and with the ML approach by the LISREL
software. LISREL estimates an unidentified model, and it suggests
to increase the number of fixed parameters in the model; besides the
model has a GFI value very low (0.236), so the model supposed is
not confirm by the LISREL approach.

As seen in the previous paragraph, the PALSOS-PM algorithm
applies a monotone regression to obtain the optimal scaling for these
variables. PALSOS-PM algorithm uses some indexes, to validate the
model, as in PLS-PM. A first result regards the unidimensionality
of the latent blocks: this property is used to understand if the man-
ifest variables really explain the latent concepts to which they are
associeted. This is verified by Cronbach’s α, ρ of Dillon-Goldstein
and the first eigenvalue of a Principal Component Analysis. For both
methods this property is verified, being the values of ρ and of first
eigenvalue major of 0.7.

However there is a substantial difference: the values of ρ of Dillon-
Goldstein, computed with the PALSOS-PM, are bigger than of PLS-
PM. This is due to the quantiifcation process that creates mani-
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M.vs Original value Mean B. Std. Err T-Statistic L. Bound U. Bound
imag1 0,235 0,237 0,027 8,695 0,182 0,291
imag2 0,238 0,223 0,032 7,446 0,141 0,271
imag3 0,183 0,226 0,035 5,202 0,130 0,299
imag4 0,226 0,242 0,029 7,875 0,186 0,310
imag5 0,241 0,231 0,027 8,786 0,177 0,283
expe1 0,484 0,387 0,042 11,544 0,282 0,473
expe2 0,442 0,382 0,047 9,445 0,285 0,482
expe3 0,356 0,382 0,044 8,143 0,296 0,476
qual1 0,168 0,163 0,020 8,484 0,112 0,204
qual2 0,156 0,154 0,024 6,428 0,095 0,200
qual3 0,187 0,162 0,021 8,753 0,122 0,206
qual4 0,152 0,163 0,016 9,366 0,122 0,199
qual5 0,157 0,161 0,019 8,441 0,120 0,194
qual6 0,167 0,165 0,014 11,659 0,141 0,196
qual7 0,165 0,163 0,018 8,995 0,124 0,204
val1 0,525 0,529 0,029 18,317 0,503 0,618
val2 0,525 0,529 0,029 18,231 0,503 0,617
sat1 0,365 0,361 0,038 9,601 0,308 0,451
sat2 0,468 0,373 0,036 12,869 0,336 0,472
sat3 0,383 0,370 0,038 10,169 0,326 0,464

comp1 1,000 1,000 0,000 2,004 1,000 1,000
loy1 0,357 0,395 0,042 8,519 0,341 0,506
loy2 0,350 0,358 0,044 7,998 0,281 0,455
loy3 0,387 0,391 0,037 10,459 0,331 0,483

Table 4.1: The bootstrap estimation of weights

fest variables maximally correlated with the latent variables. So the
unique change obtained at this moment is the improvement of the
relationships between the latent variables and the manifets variables.

The two successive tables (4.4 and 4.4) report the results of the
outer estimation of weights and loadings, obtained across the PALSOS-
PM algorithm.

In each table the weight estimated on the original sample, the
mean of bootstrap replications, the Standard Error of the bootstrap
replications, the T-Statistic, computed as the ratio between the orig-
inal value of the parameters and the Standard Error of bootstrap
replication, and the interval for the parameters, built considering the
value at 0.025 and the value at 0.975 percentile, are reported.

Concerning the results of weights, we can see that the intervals
are all positive, however, and significatively different from zero. This
consideration is confirmed also by the values of the T-Statistic that
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M.vs Original value Mean B. Std. Err T-Statistic L. Bound U. Bound
imag1 0,923 0,872 0,083 11,185 0,636 0,978
imag2 0,934 0,826 0,131 7,148 0,451 0,971
imag3 0,720 0,836 0,134 5,358 0,379 0,967
imag4 0,887 0,889 0,074 12,038 0,644 0,976
imag5 0,946 0,851 0,098 9,650 0,563 0,963
expe1 0,870 0,872 0,095 9,162 0,570 0,971
expe2 0,795 0,859 0,102 7,767 0,572 0,972
expe3 0,639 0,859 0,089 7,167 0,608 0,964
qual1 0,882 0,884 0,097 9,071 0,534 0,972
qual2 0,819 0,835 0,134 6,113 0,444 0,970
qual3 0,982 0,877 0,107 9,202 0,629 0,977
qual4 0,800 0,883 0,097 8,269 0,562 0,972
qual5 0,828 0,873 0,101 8,208 0,597 0,970
qual6 0,878 0,895 0,072 12,136 0,776 0,976
qual7 0,867 0,881 0,078 11,105 0,692 0,986
val1 0,952 0,949 0,046 20,752 0,810 0,994
val2 0,952 0,949 0,046 20,806 0,809 0,994
sat1 0,732 0,889 0,094 7,774 0,612 0,976
sat2 0,938 0,915 0,075 12,462 0,661 0,988
sat3 0,767 0,908 0,082 9,380 0,704 0,987

comp1 1,000 1,000 0,000 1,91E+16 1,000 1,000
loy1 0,893 0,898 0,073 12,185 0,709 0,976
loy2 0,876 0,819 0,111 7,872 0,535 0,954
loy3 0,969 0,889 0,075 12,975 0,659 0,973

Table 4.2: The bootstrap estimation of loadings

are high and all positive .
The loadings, that are the correlation between the manifest and

latent variables, also are significatively different from zero. The con-
cordance of the signs between the loadings and weights shows that
all manifest variables are expression of the latent concept to which
are associated.

We have the same results also with the classical algorithm of PLS-
PM, except for the manifest variable CUSL2 that has a negative in-
terval whether for the weights or for the loadings and a low value of
the T-Statistic for both quantities.

Furthermore another aspect to be consider is the values assumed
by the loadings: with the PALSOS-PM algorithm the relationships
between the manifest variables and latent variables are improved.
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The results of the inner estimation

The inner estimation obtained with PALSOS-PM shows a significa-
tive improvement in the values of R2 of regressions, respect to those
of PLS-PM. The table 4.4 reports the results for the parameters of
the model, in particular the path coefficients computed on the orig-
inal sample, the mean computed on the bootstrap replication, the
Standard Error, the t-statistic of the regression and the interval con-
fidence, built with the percentile (as before for weights and loadings).
We can see that three parameters assumes a negative sign for the co-
efficient: Expectation on Perceived value, Perceveid quality
on Customer Satisfaction, and Image on Loyalty. The signs of
these path coefficients are different from the signs of the correlation
between the latent variables, as we can see from the table. This is
due to the fact that the correlation is a simple coefficient only be-
tween two variables, while the path coefficient is a partial coefficient
of regression, in which is present also the interaction with the other
variables in the model.
So the negative interval, that are not centered on the mean value,
are justified by the fact that for some samples the relationship be-
tween the variables are negative, and for other positive, even if the
frequence of the negative values is very low. So if we consider the
value of T-statistic and of p-value we can conclude that are significant
the following path coefficients:

1. the Image on the Expectation (the value of T-Statistic is
14.94, with a p-value 2e−16)

2. the Expectation on the Perceived quality (the value of T-
Statistic is 14.26, with a p-value 2e−16)

3. the Perceived quality on the Perceived value (the value of
T-Statistic is 20.682, with a p-value 2e−16)

4. the Expectation on the Customer Satisfaction (the value of
T-Statistic is 13.190, with a p-value 2e−16)
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5. the Perceived value on the Customer Satisfaction (the value
of T-Statistic is 11.941, with a p-value 2e−16)

In the tables 4.4and 4.4 the results of the inner estimation are re-
ported, allowing to compare the PALSOS-PM with those of the clas-
sical PLS-PM. The relationships that are not significant are:

1. the Expectation on the Perceived value : this latent variable
has a low value of T-Statistic, with associated an high p-value.
We have the same result also in the PLS-PM

2. the Perceived quality on the Customer Satisfaction: this
path coefficient has not an important impact on the satisfac-
tion; maybe its influence is mediated by the latent variable
Perceived value, that, instead, has a good impact on the Cus-
tomer Satisfaction.
Besides, the correlation between the two latent variables Per-
ceived quality and Perceived quality is high (0.871)

3. the Image on the Customer Satisfaction: also this relation-
ship is not significant, and also in this case a multicollinearity
problem can exist (the variable Image has a high correlation
with the variable Expectation, that also impacts on the Cus-
tomer Satisfaction)

4. the Image on the Loyalty: this relationship is not significant
for the low value of T-Statistic and for the high p-value

Respect to the PLS-PM we can see that PALSOS-PM underlines
the problem of multicollinearity between some variables; this effect
produces some not significant parameters. It is important to inves-
tigate on the real nature of the relationships between the variables
(mediator, mediation or direct effect), across other methods as a Par-
tial Least Squares-Regression (PLS).

The PLS Regression is usable in three specific cases in which an
OLS regression fails:
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Endogenous lvs Exogenous lvs Original Mean boot. Std.error T-Statistics P-value L. bound U. bound
Expectation Image 0,688 0,862 0,074 14,943 0,000 0,672 0,955

P. quality Expectation 0,671 0,864 0,071 14,262 0,000 0,670 0,964
P. value Expectation -0,013 0,297 0,465 -0,312 0,755 -0,525 1,004

P. quality 0,878 0,562 0,469 20,682 0,000 -0,340 1,315
C. satisfaction Image 0,074 0,205 0,434 0,611 0,542 -0,804 1,120

Expectation 0,423 0,130 0,320 13,190 0,000 -0,478 0,691
P. quality -0,134 0,467 0,452 -1,375 0,170 -0,350 1,404

P. value 0,677 0,161 0,291 11,941 0,000 -0,469 0,750
Complaints C. satisfaction 0,642 0,751 0,146 13,199 0,000 0,398 0,939

Loyalty C. satisfaction 0,621 0,378 0,409 12,618 0,000 -0,575 1,250
Image -0,084 0,487 0,422 -1,772 0,078 -0,466 1,449

Complaints 0,469 0,074 0,299 14,422 0,000 -0,530 0,616

Table 4.3: Results of inner estimation with PALSOS-PM

Endogenous lvs Exogenous lvs Original Mean boot. Std.error T-Statistics Pr L. b. U. b.
Expectation Image 0,505 0.503 0,052 9,206 0,000 0.382 0,617

P. quality Expectation 0,557 0,555 0,057 10,568 0,000 0,394 0,646
P. value Expectation 0.051 0,056 0,088 0,819 0,414 -0,089 0,234

P. quality 0,557 0,557 0,099 8,982 0,000 0,325 0,730
C. satisfaction Image 0,179 0,175 0,052 3,214 0,001 0,065 0,299

Expectation 0,064 0,068 0,044 1,462 0,145 -0,020 0,182
P. quality 0.513 0,510 0,071 8,413 0,000 0,366 0,651

P. value 0,192 0,199 0,054 4,266 0,000 0,071 0,308
Complaints C. satisfaction 0,526 0,529 0,053 9,742 0,000 0,392 0,628

Loyalty C. satisfaction 0,195 0,209 0,077 2,951 0,003 0,034 0,345
Image 0.483 0,478 0,071 7,056 0,000 0,321 0,602

Complaints 0,071 0,073 0,060 1,269 0,206 -0,040 0,199

Table 4.4: Results of inner estimation for PLS-PM (XLSTAT)
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Latent variable Coefficient Std. Err. Lower bound Upper bound
Image 0,254 0,050 0,156 0,351

Expectation 0,231 0,009 0,212 0,249
P. quality 0,242 0,058 0,128 0,355

P. value 0,260 0,051 0,159 0,361

Table 4.5: Results of PLS

- when we have a matrix with more variables than observations

- when there is multicollinearity between the variables (this is our
case)

- when there are missing values

In all these cases the PLS is desiderable to use, because the algo-
rithm develops simple regressions, solving the problem of the dimen-
sion of the matrix and the problem of multicollinearity, and charges
the missing values as belonging to the regression line. It allows to
use all variables and to estimate the regression coefficients.

The objective of this approach is to find a number of orthogonal
components, maximaly correlated with the dependent variables (pre-
diction) and the most explicative (sinthesis) of the group; then the
algorithm proceeds with the regression of the dependent variables on
the components. So the PLS is a compromise between an OLS mul-
tiple regression and a Principal Component Analysis.

A PLS is used here to investigate if there is a problem of mul-
ticollinearity between the manifets variables. In the table 4.4 the
estimation of parameters are reported.

This table conteins the regression coefficients of the four latent
variables supposed to have an impact on the Customer Satisfac-
tion: we have besides the values of the coefficients, also the interval
confidence estimated with a bootstrap and the standard deviation.
We can see taht using the PLS we obtain positive signs for the path
coefficients, and in particular we can note as the impact is similar for
each variable of the multiple regression.

119



The internal approach to the quantification

Figure 4.2: The VIP index

The VIP index graphic 4.2 confirm that all variables are impor-
tant for the definition of the Customer Satisfaction Index, namely
Percevied value and Image. The R2 of this regression has an
high value: 0.817. In the table 4.4 the validation indexes are re-
ported; in particular we have the R2 of the regressions, the Average
Communality and Redundancy, and the Gof index.
We can see as the quantification has produced an improvement in the
values of R2: the variables are strictly correlated and the latent vari-
ables are the best obtainable from a given set of manifest variables
(the maximization of the correlation coefficients). This improvement
is reflected also in the computation of the Gof index, that, as we have
seen in the chapter 2, depends from the R2 and Communality.
in particular we have a significative improvement for the latent block
Image, for which the value passes from 0.48 to 0.75; for the latent
block Loyalty, for which the value passes from 0.52 to 0.83. For
these latent variables the quantification has producted a significative
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Latent variable R2 A. communality A. redundancy Gof index
Image 0,7850

Expectation 0,4738 0,5988 0,2701
P.quality 0,4506 0,7514 0,5673

P.value 0,7554 0,9055 0,7887
C.Satisfaction 0,8170 0,6679 0,2758

Complaints 0,4125 1,0000 0,8500
Loyalty 0,8505 0,8343 0,6378

0,7095

Table 4.6: Validation indexes for PALSOS-PM

Latent variable R2 A. communality A. redundancy Gof index
Image 0,4780

Expectation 0,2550 0,4800 0,1220
P.quality 0,3110 0,5770 0,1790

P.value 0,3450 0,8490 0,2920
C.Satisfaction 0,6800 0,6930 0,4720

Complaints 0,2770 1,0000 0,2770
Loyalty 0,4570 0,5170 0,2380

0,4710

Table 4.7: Validation indexes for PLS-PM (XLSTAT)

improvement in their definition6.

Concerning the value of the redundance index, its values for each
block, but for the block C. Satisfaction, are higher than the one of
the model estimated with PLS-PM: the manifest variables and the
exogenous latent variables are able to explain more variability of the
manifest variables of endogenous latent blocks.

4.5 A review of the programs soft-

ware for SEM estimation

When it comes to modeling relationships between latent variables,
mainly two different methodological approaches can be distinguished:
Covariance structure analysis on the one hand and PLS path model-

6Remember that a latent variable is obtained as linear combination of its man-
ifest variables with the weights estimation.

121



The internal approach to the quantification

ing (not to be confused with PLS regression) on the other. Although
both methods emerged roughly at the same time, their development
took a rather diverse course. Since the introduction of the first LIS-
REL version in the early 1970s, the software available for covariance
structure analysis has experienced substantial progress with respect
to ease-of-use and methodological capabilities. Graphical interfaces
in programs like AMOS or LISREL have freed the user from having
to specify his/her model in matrix or equation form.

PLS path modeling has,until recently, rarely been applied in mar-
keting although its basic algorithms were developed in the 1970s
and the first software packages were publicly available in the 1980s
(LVPLS [36], PLSPath [49]).Currently, researchers can choose be-
tween several alternative software solutions (PLS-GUI, VisualPLS,
PLS-Graph, SmartPLS, SPAD-PLS, XLSTAT-PM,PLSPM package
of R) which provide a clear improvement especially in terms of user-
friendliness.

Against the background of a growing number of PLS software
packages and an increasing differentiation in the programs’ capabili-
ties, a comprehensive review would help researchers to decide on the
specific PLS program to be used in their studies.

In contrast to the former software, these programs are more or less
self-contained implementations of the algorithms developed in [62],
[63] and [37].It should be noted, that all programs (except LVPLS )
are constantly under development and can therefore be expected to
offer additional features in the future.

1. the DOS-based program LVPLS 1.8 [37] includes two different
modules for estimating path models. Whereas LVPLSC ana-
lyzes the covariance matrix of the observed variables, the LV-
PLSX module is able to process raw data. In order to specify
the input file an external editor is necessary. The input specifi-
cation requires that the program parameters are defined at spe-
cific positions in the file - a format which resembles punchcards.
Results are reported in a plain text file. The program offers
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blindfolding and jackknifing as resampling methods in case raw
data has been analyzed. When analyzing covariance/correlation
matrices, resampling techniques cannot be applied.

2. the Windows-based PLS-GUI [35] provides a graphical interface
for LVPLS which supports both the analysis of raw data (LV-
PLSX) as well as covariance information (LVPLSC). To spec-
ify a model,the user is led through a stepwise procedure which
offers a menu at each step. Additional options (e.g., weight-
ing schemes, missing data code) are to be chosen in a separate
window. The program finally creates an input file which is
processed by the executable file pls.exe of LVPLS. If required,
the input file can be modified by the user. The output is the
same as for LVPLS. The current version offers a bootstrap op-
tion as an additional feature not provided by LVPLS.

3. VisualPLS [17] is a graphical user interface for LVPLS running
in the Windows environment which enables the analysis of raw
data only. The path model is specified by drawing the latent
variables and by assigning the indicators in a pop-up window.
Based on the graphical model, the program produces a separate
LVPLS input file, which is run by LVPLSX (pls.exe). Different
formats of input data are supported. The results are offered
as LVPLS output (plain text file) as well as in HTML/Excel
format. In addition, a path model showing the estimated para-
meters is displayed. Beyond blindfolding and jacknifing, boot-
strapping has been integrated. Special support for specifying
moderating effects and second order factors is offered.

4. PLS-Graph [8] is a Windows-based program which uses modi-
fied routines of LVPLS, but only processes raw data (LVPLSX).
In order to specify the model, a graphical interface can be used
which provides some tools for drawing a path diagram. Differ-
ent options (e. g., weighting scheme, resampling method) can
be chosen from a menu. Although the generated input file is
a text file, it can only be processed by PLS-Graph, but not by
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LVPLS. Estimation results are presented in ASCII format as
well as in a graphical path model; resampling methods include
blindfolding, jackknifing, and bootstrapping. SPAD-PLS: This
program is part of the comprehensive data analysis software
SPAD (running under Windows) which is offered by the French
company Test and Go.
SPAD-PLS [51] does not process covariance information but
needs raw data instead. Models can be specified with a menu
or graphically in a Java applet; the remaining settings may
be adjusted in additional menu windows. Different options for
handling missing data and multicollinearity are provided. Re-
sults are reported both as a path diagram and as text or Ex-
cel file; blindfolding, jackknifing, and bootstrapping (including
confidence intervals) are available. In the non-graphical man-
ual mode transformations of latent variables (squares, cross-
products) can be specified.

5. SmartPLS [46] is a Java software-based. It is independent from
the user’s operating system. Again, only raw data can be ana-
lyzed. The model is specified by drawing the structural model
for the latent variables and by assigning the indicators to the
latent variables via “drag and drop”. The output is provided
in HTML, Excel or Latex format, as well as a parameterized
path model. Bootstrapping and blindfolding are the resam-
pling methods available. Like in VisualPLS, the specification of
interaction effects is supported. A special feature of SmartPLS
is the finite mixture routine (FIMIX). Such an option might be
of interest if unobserved heterogeneity is expected in the data
[39].

6. XLSTAT-PLSPM: The XLSTAT add-in offers a wide variety of
functions to enhance the analytical capabilities of Excel, mak-
ing it the ideal tool for your everyday data analysis and statis-
tics requirements. XLSTAT is compatible with all Excel ver-
sions from version 97 to version 2007, and is compatible with
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the Windows 9x till Windows Vista systems, as well as with
the PowerPC and Intel based Mac systems.The use of Excel
as an interface makes XLSTAT a user-friendly and highly ef-
ficient software. XLSTAT-PLSPM, that is a module of XL-
STAT, implements all methodological features and most recent
findings of the PLEASURE (Partial LEAst Squares strUctural
Relationship Estimation) technology. This technology has been
originally developed as a research tool at the academic level by
Y.M. Chatelin and V. Esposito Vinzi in co-operation with C.
Lauro and M. Tenenhaus. Thanks to an intuitive and flexible
interface, XLSTAT-PLSPM allows to build the graphical repre-
sentation of the model, then to fit the model, display the results
in Excel either as tables or graphical views.

7. PLSPM is a package of the open source language R, more used
by statistician researchers. It is published by G. Sanchez in July
2009 and allows to estimate a SEM model with the algorithm
of PLS-PM. Respect to the other softwares it does not have a
graphical interface, so it is necessary to write the commands,
that define the model, in the prompt of R; for the same reason
(the absence of a graphical interface) it is not possible to see
the path diagram and the results are printed in tables.

Data sets where at least some values of their variables are missing are
ubiquitious in empirical research. In order to deal with missing data,
several alternative approaches have been proposed. LVPLS offers a
specific treatment in the case of missing data which combines mean
value imputation and pairwise deletion in the course of the estima-
tion (Lohm¨oller (1984); for a more comprehensive description see
Tenenhaus et al. (2005)). This missing data treatment is also pro-
vided by the graphical interfaces (PLS-GUI, VisualPLS) as well as
by PLS-Graph and SPAD-PLS. In contrast, SmartPLS offers two op-
tions equivalent to some data pre-processing which either substitute
the mean over all available cases of a variable for the missing values
or which delete those cases with missing data (casewise deletion).
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Since casewise deletion throws away a lot of useful information
and thus leads to lower efficiency, this procedure is not to be recom-
mended. XLSTAT proposes some different solutions, as to use the
NIPALS algorithm, to ignore the problem, to eliminate the observa-
tion with missing values, to substitute the missing values with the
mean or median.

In the package PLSPM of R no proposal is made for the treatment
of missing values.

Multi-collinearity can be a problem both for the estimation of in-
dicator weights in the case of formative constructs (mode B) and for
the estimation of the relationships among latent variables. SPAD-
PLS, XLSTAT and the package PLSPM of R at present are the only
programs which address the problem of multi-collinearity by provid-
ing a PLS regression routine for estimating weights (Mode PLS) and
path coefficients (PLS regression instead of OLS regression).

PLS regression searches for a set of components which decompose
the vector y of the endogenous variable and the matrix X of explana-
tory variables in such a way that the explained covariance between y
and X is maximized. Whereas specifying path models in LVPLS is
rather inconvenient, all recent programs have made a huge step with
respect to ease-of-use, reaching now the same level as the software
used in covariance structure analysis. One main methodological im-
provement is the bootstrap procedure for assessing the significance of
parameter estimates, which is now implemented in all software pack-
ages and supplements the blindfolding and jacknifing resampling rou-
tines of LVPLS. A specific strength of SPAD-PLS, XLSTAT-PLSPM
and the R package is the estimation of bootstrap confidence intervals
for the parameters. Model validation is another important aspect;
although some measures like the goodness-of-fit index [55] are imple-
mented in the recent softwares as SPAD-PLS, XLSTAT-PLSPM and
R package. Multi-collinearity is a problem both for the estimation of
weights in the case of formative constructs and the estimation path
coefficients. To cure this problem, SPAD-PLS,XLSTAT-PLSPM and
the R package have implemented a PLS regression routine.
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Another important characteristic is the possibility to use qualita-
tive data in the model: only XLSTAT-PLSPM allows to estimate a
model with qualitative data, across theri transformation in a binary
coded.

Respect to the software the PALSOS-PM algorithm has the disa-
vantage that it does not have a graphical interface, but it is necessary,
as for the package of Sanchez, to introduce in the prompt of R the in-
ner model and the division for blocks of the data matrix. On the other
hand it allows to estimate the PLSP-PM with numerical variables,
as the other softwares presented, to estimate the model with mixed
variables, to controll the sign changes and to estimate the model in
presence of multicollinearity, across the use of PLS Regression. The
problem of missing values is solved across the substitution with the
mean value.

4.6 Remarks

In this chapter we have presented a new methodological proposal to
estimate a SEM model with ordinal variables, and in general with
mixed variables (numerical, nominal and ordinal).

With respect to the other proposals made in the literature, the
PALSOS-PM algorithm has the important characteristic to estimate
simultaneously the parameters of the model and the vectors of op-
timal scaling for the qualitative variables, quantifying each variable
according to its nature. As the PLS-PM also PALSOS-PM does not
have the distributional hypothesis on the data, so it uses the re-
sampling techniques to obtain the empirical distribution. It uses all
validation indexes of the PLS-PM to verify the correctness of the
supposed model.

PALSOS-PM can be considered as a real alternative to the other
programs because:

- it estimates the model with the classical PLS-PM when all vari-
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ables are numerical;

- it estimates the model with mixed variables;

- for the validation it uses the bootstrap technique (the number
of resampling is choose by the researcher);

- it has no problem for the dimension of data matrix;

- it does the control on the signs changes;

- it gives the possibility to develops a PLS if the OLS fails;

In this chapter two important topics are described, that character-
izy the Morals algorihm: the projection in a convex cone and the
monotone regression,of which the most important properties and the-
orems are enunciated. To demostrate the importance of the quan-
tification process, this algorithm is tested on a known dataset (the
dataset mobile): the results have showed that the process of quan-
tification causes an increase of the values of correlations between the
manifest variables and latent variable, but also between the latent
variables, being these optimally defined by their manifets variables.
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Chapter 5

A model for policy impact
analysis: the case study
AVSI

A characteristic of social research is the observation of qualitative
characteristics on which is not possible to apply the quantitative
statistical methods. When the aim is the estimation of casual re-
lationships between latent variables that are measured by qualitative
indicators, it is necessary to procede with a quantification of these
variables, according the methods described in the previous chapters.
This is the case of AVSI research in which the variables are nomi-
nal and ordinal. It was defined a SEM model with the objective to
measure the impacts of the AVSI program on the status of a child,
regarding scholar performance, nutrition, health and social relation-
ships.
In the next sections will be present the model and the results obtained
with the PALSOS-PM algorithm.



A model for policy impact analysis: the case study AVSI

5.1 The AVSI association

AVSI Foundation is an international, non-profit and non-governmental
organization (NGO) founded in Italy in 1972. AVSI has programs
in over 40 countries in Africa, Latin America, Eastern Europe, the
Middle East, and Asia. AVSI has implemented several programs in
education, healthcare, construction, emergency response, water and
sanitation, food and nutrition, and psychosocial support for children,
adults and even the elderly persons in the community.

AVSI has over 15 years of child support programming, starting
with the distance support program (DSP) that developed as a form of
specific help directed to an individual child within an AVSI program
in developing countries of Africa and beyond. By 2005, AVSI began
implementation of a more integrated and comprehensive five year
project for Orphans and Vulnerable Children (OVC) in the Great
Lakes Region of Uganda, Rwanda, Kenya and recently extended to
Ivory Coast with financial support from PEPFAR1 complemented
with private funds from AVSI.

The project that will end in June 2010 supports over 20,000 OVC
and their family members through a two-pronged approach; directly
support is supplemented with indirect support provided through part-
ners embedded in the community.

AVSI’s methodological approach is focused on the centrality of
the person: the human being is not reduced to the condition of need,
regardless of how great that situation of need might be, but is con-
sidered in his/her holistic dignity. AVSI seeks to accompany the
individual along a path of self-awareness in order to help him maxi-
mize his potential.

This accompaniment requires the figure of an adult who is able to
follow the child, to identify his needs and resources and to engage the
parents or caretaker. For this reason, AVSI intervenes both directly

1PEPFAR is the U.S. President’s Emergency Program for AIDS Relief,
launched in 2004 by Pres. George W. Bush.

130



5.2. A model for the impact evaluation of AVSI intervention

and through local partners. In both cases, trained social workers be-
gin looking at the household level to identify the children and families
in greatest need while putting an emphasis not only on the needs but
also on the resources.

From the onset, AVSI seeks to ensure that there is active family
participation so that the solutions originate from the families and so
that external support can be tailored to the individual child and fam-
ily or community needs, but in way that assists rather than replaces
the family and community responsibility. External support should
remain only part of the answer.

The breadth of services delivered by AVSI or through local partner
organizations includes materials and resources needed for school at-
tendance, inputs to improve the quality of schooling, access to health
care, nutritional and psychosocial support including recreational ac-
tivities, and shelter as needed. In addition, AVSI provides food
assistance and economic empowerment support including small in-
vestments in income generating activities in order to strengthen the
family capacity to care for all their children.

5.2 A model for the impact evalua-

tion of AVSI intervention

The database considered here is relative to an AVSI survey of 2007
done in three Countries of Africa (Uganda, Rwanda and Kenya) to
evaluate the services given to the children of program.

Further to the explorative analysis that describes the condition
of life in which children live in the three countries, we have built a
structural equation model that simultaneously estimates multidimen-
sional concepts, and the path coefficients, that allow to evaluate the
power of the relationship between the relative latent variables.

The objective of a model is to extract useful knowledge and to
provide valid tool for the decision maker for the improvement of the
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services supplied; it is no more a simple description of the status of
the child, but also the estimation of the effects due to AVSI interven-
tion or to external factors. As consequence of the child status and
AVSI intervention the Guardian satisfactionalso evaluates.

The model is build on the basis of a survey-questionnaire where
the variables are measured on different scale: some variables are di-
chotomous, other are expressed on scale of three values, other on
scale of five points.

The questionnaire is submitted to the Guardian of the child, that
is the person that has his legal custody; the Guardian has to evaluate
the serivices received, taking into account the needs of the child.

The model has as central variable the actual status of child, mea-
sured across some variables that compare the status before and after
the beginning of the program. The model has as outcome the satis-
faction of Guardian, so the objective is to study the condition and
the health of the child and as reflex the guardian satisfaction for the
services received.

In this model two important aspects are evaluated: the Status of
child that impacts on the Guardian satisfaction, that depends by
AVSI intervention, Family environment and Housing condi-
tion, where the AVSI intervention is a multiblock, i.e. it derives
from the union of Support for the school, Nutritional support
and Support for family.

Finally the Status of child of child is a driver for the Guardian
satisfaction. It is clear that the aim is to understand what is
the most important support for the Status of child, and as a con-
sequence of Guardian satisfaction, in such a way it is possible to
improve the services given by the organization.

In the figure 5.1 is represented the path diagram of the model.
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Figure 5.1: The model of “Status of child”
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5.2.1 The latent blocks and the manifest vari-
ables

The structural model consists of 8 latent variables (six exogenous
and 2 endogenous): three latent endogenous block summarize the
Status of child , Family characteristics, Housing condition
(the characteristics of the house where children live), Avsi inter-
vention that is a superblock defined by three latent variables, that
describe the kind of support offered for the Family, for the School,
and Nutritional. An outcome block of the model is associated to
the guardian satisfaction depending on the general Status reached by
the Child in the year of the Survey.

So the manifest variables of this model are:

- Housing condition2: Problems related to the area where the
child leaves has the problem of dirtiness, noises, isolation, crim-
inality, House provided of electricity

- Family environment: Guardians health, Guardian affected
by aids, Guardian handicapped,Guardian drinks alcohol, Ef-
fect deseases working capacity, Total income of family,Principal
source of income

- AVSI intervention: Consists of three kind of support to the
children and their families

1. Nutritional Support: Non food items, Healthcare, Nu-
tritional support, Food supply

2. Support for the school: School material, School fees,
Recreational activities,After school activities, Emotional
support,Vocational training

2For this block two manifest variables had a null weights so they were eliminated
from the model (Water obtained from and House made of).
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3. Support for family3 : Healthcare assistance family, Ed-
ucation for parents

- Status of child: measured by School attendance, improvement
of child health, improvement of child nutrition, improvement
of child personality, improvement of the relations with adults,
improvement of the relations with friends

- Satisfaction of guardian: Expected support from AVSI, AVSI
program not adeguacy to the child needs, adeguacy to child
needs change, Guardian not consulted, Guardian knowledge of
the project

The manifest variables in the model are quite all ordinal and some
nominal. In particular the manifest variables of the AVSI interven-
tion, (Nutritional Support, Support for the school, Support
for family) are all expressed on a dichotomic scale (according if a
service has been received or not); the manifest variables of the block
Housing condition are all ordinal and expressed on a scale of five
values, except for the variable that represents the characteristic of
the house (i.e. the presence of the electricity). The blocks Satis-
faction of guardian and Status of child are both composed by
ordinal variables expressed on an ordinal scale at five levels.

Only the block Housing condition is a mixed block and neces-
sity of two different quantifications.

So the quantification process will follow the nature and number
of levels of manifets variables. Notice that dichotomous variables de-
scribing absence/presence can be treated both as nominal or ordinal.
We observed better fitting of the model when considering then as
ordinal quantifications.

We estimate the AVSI model with standardized variables.

3Two manifest variables of this block had a null weight, so they were eliminated
from the model (IGA’s for family andOther children of the same family belong to
the project).
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5.2.2 AVSI outer model estimation

The relationships between the manifest and latent variables are all
reflective. The comparison is done between the results of the algo-
rithm PALSOS and PLS-PM, the last estimated with the XLSTAT
software. In both programs we estimate the model with standardized
variables.

As the relationships between all manifest and latent variables are
supposed to be reflective, it is necessary that the manifest variables
covary.

A first important result regards the unidimensionality of the la-
tent blocks computed by some indexes. The tables 5.2.2 and 5.2.2
report the results of unidimensionality with the two algorithms.

Observing the results of the table 5.2.2 we can see that all blocks
have the property of the unidimensionality, that is all manifest vari-
ables explain well the latent concept, in particular it is important to
note as the relationships between the manifest variables of the block
Support for the family improve (0.3307 against 0.8552) after the
estimation of the model (we compare the value of Cronbach’s alpha
and Dillon-Goldtsein’s rho); we do not have the same results if we es-
timate the model with PLS-PM: in this case many manifest variables
have a negative sign for the weight and correlation with the respec-
tive latent variables. In this case it was been necessary to eliminate
the non significative variables4 from the model and to re-estimate it.

To conclude, the quantification process has caused a significative
improvement of the relationships between the latent and manifest
variables: the latent variable is maximally correlated with its mani-
fest variables.

We continue the interpretation of the results of the model with
the comment of the outer estimation. The weights are normalized
(their sum for block is one) and this allows an easier comparison be-

4If a variable has a negative weight and a negative correlation with the latent
variable means that this variable is not expression of that latent concept.

136



5.2. A model for the impact evaluation of AVSI intervention

Latent variables Mode C.alpha DG.rho F.eigenvalue
Support school Reflective 0,7166 0,9237 3,54

Nutritional support Reflective 0,6714 0,9275 3,05
Support family Reflective 0,3307 0,8552 1,49

AVSI intervention Reflective 0,8554 0,9494 6,94
Family environment Reflective 0,7994 0,9463 5,02

Housing condition Reflective 0,6491 0,8842 3,24
Status of child Reflective 0,8171 0,9842 5,47

Guardian satisfaction Reflective 0,7852 0,9857 4,66

Table 5.1: The unidimensionality for PALSOS-PM

Latent variables Mode C.alpha DG.rho F.eigenvalue
Support school Reflective 1.74

Nutritional support Reflective 1.35
Support family Reflective 0,361 1.22

AVSI intervention Reflective 2.93
Family environment Reflective 1.89

Housing condition Reflective 2.97
Status of child Reflective 0.576 0,745 1.90

Guardian satisfaction Reflective 0.913 0,935 4.97

Table 5.2: The unidimensionality for PLS-PM (XLSTAT)

tween them, and assess their importance in the determination of the
correspondent latent variable.

The results of PALSOS-PM shows that the parameters (weights
and loadings), that express the relationship between a manifest and
latent variable, are all positive, unlike the results of XLSTAT 5.

Considering the outer estimation of PALSOS-PM, we can make
some consideration about the power and importance of the manifest
variables on the latent variable.

In particular, for the block Support for the school the vari-
able School material (0.262) has an impact major than of the other
variables, followed by Recreational activities (0.246); in the block

5In the Support for the school we have an inverse correlation between school
material and support for the school (-0.521); in the block Family environment
the variables Guardian handicapped and Total income of family are negative cor-
related (respectively -0.467 and -0.314); in the block Housing condition three
variables are negative correlated (the problem of dirtiness (-0.564), noises (-0.168)
and criminality (-0.108).
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Nutritional support the variables Healthcare(0.124) and No food
items(0.112) have a weight major than the other. In the block Fam-
ily environment the variables Guardian health, Guardian aids and
Effect deseas have a major impact than the other; for the block
Housing condition the most important variables are those regard
the environment in which the children leave.

For the measurement of the Status of child all manifest variables
have the same importance, while for the Guardian satisfaction the
most important variables are Expected support from AVSI(0.213),
Guardian knowledge the project (0.213), followed by AVSI program
not adeguacy to the child needs (0.210) and Adeguacy to child needs
change (0.206).

The Communality and Redundancy are two indexes that explain
the power of the relations between the manifest variables and the cor-
respondent latent variable, and the variability explained of the mani-
fest variables of endogenous blocks by all variables of the model. The
results obtained with PALSOS-PM shows an increase of these values
due to the quantification process that has optimized the correlation
between the variables. Again we have a result that confirms the fact
that the outer model is well specified.

5.2.3 The PALSOS-PM inner model results

The table 5.2.3 presents the results of the inner model. First of all
we observe that on the block AVSI intervention the latent variable
with a major impact is Support for the school (0.474), followed
by Nutritional support(0.408), being the program of AVSI focused
on these two aspects6, in fact the variable Support for family has
a low impact (0.199) on the AVSI intervention. All relationships
are significant, because the T-Statistic has an high value, the p-value

6The most of assistance is relative to the school and nutritional support for the
child belonging to the program,than the assistance for the family.
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Mvs Normalized Weights Loadings Communality Redundancy
s.fees 0,220 0,781 0,609 0,000

s.material 0,262 0,928 0,861 0,000
recreational.activities 0,246 0,870 0,757 0,000

after s.activities 0,237 0,839 0,704 0,000
emotional support 0,221 0,782 0,611 0,000

no food items 0,297 0,905 0,818 0,000
healthcare 0,300 0,916 0,839 0,000

nutritional support 0,272 0,829 0,688 0,000
food supply 0,275 0,839 0,704 0,000

healthcare family 0,578 0,864 0,747 0,000
educational parents 0,578 0,864 0,747 0,000

s.fees 0,111 0,770 0,592 0,592
s.material 0,121 0,841 0,707 0,707

recreational.activities 0,128 0,889 0,790 0,790
after s.activities 0,101 0,699 0,488 0,488

emotional support 0,111 0,769 0,592 0,592
no food items 0,112 0,776 0,603 0,603

healthcare 0,124 0,860 0,740 0,740
nutritional support 0,117 0,810 0,657 0,657

food supply 0,110 0,766 0,586 0,586
healthcare family 0,120 0,836 0,699 0,699

educational parents 0,101 0,704 0,495 0,495
Guardian health 0,183 0,920 0,847 0,000

Guardian aids 0,183 0,921 0,848 0,000
Guardian handicapped 0,186 0,934 0,872 0,000

Guardian drinks alcohol 0,159 0,797 0,635 0,000
effect deseas 0,165 0,828 0,686 0,000

principal source income 0,159 0,797 0,635 0,000
total income 0,141 0,707 0,500 0,000

dirtiness 0,296 0,959 0,920 0,000
noises 0,297 0,962 0,926 0,000

isolation 0,292 0,948 0,898 0,000
criminality 0,216 0,702 0,492 0,000
electricity 0,020 0,083 0,007 0,000

child attendance 0,159 0,871 0,758 0,703
child health now 0,176 0,964 0,930 0,862

child nutrition now 0,177 0,971 0,943 0,874
child personality now 0,179 0,979 0,959 0,889

child relations adults now 0,177 0,967 0,935 0,867
child relations friends now 0,178 0,975 0,951 0,881

Expected support from AVSI 0,213 0,992 0,984 0,285
AVSI program not adeguacy to the child needs 0,210 0,980 0,961 0,279

Adeguacy to child needs change 0,206 0,958 0,918 0,266
Guardian not consulted 0,194 0,903 0,815 0,237

Guardian knowledge project 0,213 0,992 0,984 0,285

Table 5.3: The outer estimation with PALSOS-PM algorithm
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Endogenous lvs Exogenous lvs Path Std.Err T.Statistics P-value L.bound U.bound
AVSI intervention Support for the school 0,474 0,045 568,876 0,000 0,383 0,541

Nutritional support 0,408 0,043 527,693 0,000 0,310 0,467
Support for family 0,199 0,045 568,876 0,000 0,150 0,229

Status of child -¿ AVSI intervention -0,176 0,380 -8,400 0,000 -0,531 1,031
Family environment 0,726 0,393 29,754 0,000 -0,203 1,420

Housing condition 0,431 0,251 26,891 0,000 -0,472 0,533
Guardian satisfaction Status of child 0,539 0,120 21,734 0,000 0,452 0,895

Table 5.4: The inner estimation with PALSOS-PM algorithm

is 0 and the confidence intervals do not contein the zero.

The Status of child depends by three latent variables: the AVSI
intervention, Family environment and Housing condition. From
these results emergences that AVSI intervention has a negative
impact (we have the same result if we use the PLS-PM (-0.230)):
according to them the most important variable for the Status of
child is the Family environment (0.726), followed by the Hous-
ing condition (0.431), while AVSI intervention has a negative
impact (-0.176))7 on the Status of child, that looks strange being
it different in sign with respect to the correlation coefficient between
the same variables taht is positive. We have to remember that this
is a coefficient of multiple regression so it is the impact of the AVSI
intervention excluding the effect of the other variables: the change
in sign may be consequence of a multicollinearity problem. To ver-
ify this hypothesis we can analyze the matrix of correlation between
the latent variables (see table 5.2.3): all correlation are positive and
high we observe too as the two latent variables AVSI intervention
and Family environment have an high positive correlation (0.924):
this correlation can influence the sign of the path coefficient of AVSI
intervention.

7The model estimated by mean of PLS-PM shows some problems in the outer
estimation, because some manifest variables have negative weights and loadings,
so this cause a bad estimation of the latent variables.
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S.s N.s S.f AVSIi. F.e. H.c. S.c. G.s.
Support school 1,000

Nutritional support 0,759 1,000
Support family 0,801 0,764 1,000

AVSI intervention 0,943 0,920 0,890 1,000
Family environment 0,882 0,794 0,912 0,925 1,000

Housing condition 0,806 0,651 0,860 0,814 0,867 1,000
Status child 0,787 0,739 0,868 0,846 0,937 0,917 1,000

Guardian satisfaction 0,586 0,853 0,570 0,741 0,643 0,423 0,539 1,000

Table 5.5: The correlation matrix between the latent variables

Variables Coefficient St.error Lower bound Upper bound
A. intervention 0,310 0,027 0,256 0,364
F. environment 0,343 0,017 0,309 0,377

H. condition 0,336 0,009 0,317 0,354

Table 5.6: The regression coefficients of PLS-R

This multicollinearity problem can be faced using the Partial Least
Squares regression (PLS), instead of OLS estimation in the algorithm
PALSOS-PM8 (in the a PLS regression we have a set of explicative
variables and one dependent variable to predict).

The results of the PLS are reported in the table 5.2.3. As for
the PLS-PM also in the PLS we do not have distributional hypothe-
sis, so the validation of the coefficients is made across the resampling
techniques as bootstrap or jacknife, obtaining the empirical distrib-
ution for the parameters. From this table we can see that the PLS,
with just one component, solves the problem of multicollinearity, es-
timating, as expected, a positive regression coefficient for the variable
AVSI intervention. Avsi intervention show an impact (0.310)
on the status of child quite similar to the other two factors Family
environment (0.343), and Housing condition (0.336), on which
AVSI could not intervene9.

Concerning the interval confidence built with the resampling tech-

8The algorithm PALSOS-PM gives the possibility to choose between an OLS
or a PLS regression, for the estimation of the path coefficients. The PLS is made
using the package pls, written by Mevik and Wehrens

9We remember that the manifest variables of Housing condition regard the
social environment in which the child leaves and the characteristic of his house.
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nique, we can see that all intervals not include the null value. The
standard deviation asssumes low values, and the coefficients are all
significatively different from zero showing stable path estimation in
the bootstrap.

The last parameter of the table 5.2.3 expresses, instead, the im-
pact of Status of child on the Guardian satisfaction (0.539):
is quite good as we can see it is significatively different from zero
(T-Statistic has an high value and the p-value is very low). As con-
seguence the Guardian gives a good evaluation of the AVSI program
especially if he notes an improvement in the life condition of the child
and in his healthcare, confirming the theory on the base of the pro-
posed model.

The estimation of theregression equations describing the struc-
tural model one10:

1. Avsi intervention = 0.000 + 0,474* Support school + 0,408*
Nutritional support + 0,199* Support for family

2. Evolution of child = 0.000 + 0,336* Housing condition +
0,343* Family environment + 0,310* AVSI intervention

3. Satisfaction of guardian = 0.000 + 0,539* Status of child

The relationships estimated show that AVSI intervention, produce
relevant improvements on the Status of these children. Similarly hap-
pens for Housing condition and Family conditions are good. The
last impact suggests to improve the AVSI support to child Family
due to the strong impact of it on the child status. So we can read an
inderect effect of AVSI.

The next two tables 5.2.3 and 5.2.3 report the results of the 100
bootstrap replications of the weights and loadings. It is worth notic-
ing that due to the high value of the T-Statistic all weights and
loadings are significatively.

10The 0 intercept regression depends on the assumption of standardization for
latent variables.
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Figure 5.2: The results of the model “Status of child”
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The unique exception is the manifest variables Electricity of the
Housing condition block that has a negative confidence interval
with a low value for the T-Statistic: we can see that the weight as-
sociated is near the zero and so the variable could be excluded from
the block.

The standard deviation shows that there is a low variability be-
tween the weights estimated in the 100 bootstrap replications it
means that the estimation of the weights and loadings are stable.

In the tables 5.2.3 and 5.2.3 a summary of the performance for
both PALSOS-PM and PLS-PM are given.

In these tables the latent variables, the type of block (endogenous
or exogenous), the values of R2, the Average communality, Average
redundancy indexes and Gof are given. As regard the values of R2

we can see that for the multiblock it is equal to one, while it assumes
an high value for the regression of Status of child on the three latent
variables, even if we have substitute this regression with a PLS for
the problem of multicollinearity. So for this relationships we consider
the validation indexes of a PLS; in particular we can measure the
importance of an explicative variable in the definition of a component.
The index used for this purpose is the Variable Importance in the
Projection (VIP): if its value is equal or major of 0.8 the explicative
variable is important in the prediction of a dependent variable. In
our case all variables are important in the definition of the dependent
variable, as we can note from the graphical in figure 5.3.
Another important result is the improvement of the Gof index of the
AVSI model that assumes with the PALSOS-PM algorithm the value
0.7482, versus the value 0.345, obtained in the case of non quantified
manifest variables with the classical PLS-PM estimation. This big
change is due to the improvement obtained by the quantification
of the optimal outer estimation. Similarly the R2 (0.891) of the
regression explained the status of child latent variable is high too,
evidentiating the good performance of the model proposed.
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M.vs Original value Mean b. Std,Err T. Statistic L.Bound U. Bound
S.fees 0,220 0,225 0,038 5,845 0,132 0,294

S.material 0,262 0,243 0,038 6,930 0,146 0,314
Recreational activities 0,246 0,256 0,026 9,418 0,206 0,307
After school activities 0,237 0,244 0,035 6,793 0,174 0,314

Emotional support 0,221 0,247 0,029 7,621 0,181 0,312
No food items 0,297 0,301 0,032 9,267 0,254 0,366

Healthcare 0,300 0,306 0,030 9,954 0,258 0,377
Nutritional support 0,272 0,297 0,039 6,992 0,218 0,370

Food supply 0,275 0,290 0,037 7,451 0,231 0,364
Healthcare family 0,578 0,558 0,032 17,837 0,517 0,641

Educational parents 0,578 0,558 0,032 17,837 0,517 0,641
S.fees 0,111 0,104 0,020 5,562 0,049 0,137

S.material 0,121 0,111 0,017 6,935 0,076 0,139
Recreational activities 0,128 0,118 0,013 10,248 0,089 0,140
After school activities 0,101 0,113 0,015 6,550 0,071 0,138

Emotional support 0,111 0,115 0,015 7,587 0,078 0,140
No food items 0,112 0,111 0,015 7,489 0,080 0,144

Healthcare 0,124 0,120 0,010 12,149 0,098 0,141
Nutritional support 0,117 0,112 0,018 6,340 0,062 0,145

Food supply 0,110 0,110 0,015 7,192 0,078 0,139
Healthcare family 0,120 0,117 0,012 9,714 0,088 0,143

Educational parents 0,101 0,110 0,014 7,432 0,078 0,135
Guardian health 0,183 0,184 0,018 9,994 0,148 0,221

Guardian aids 0,183 0,179 0,023 8,038 0,124 0,216
Guardian handicapped 0,186 0,170 0,024 7,778 0,113 0,215

Guardian drinks alcohol 0,159 0,180 0,020 8,056 0,140 0,219
Effect deseas 0,165 0,186 0,023 7,058 0,120 0,227

Principal source income 0,159 0,179 0,028 5,747 0,109 0,216
Total income 0,141 0,175 0,026 5,458 0,127 0,230

Dirtiness 0,296 0,305 0,025 11,927 0,264 0,360
Noises 0,297 0,308 0,027 11,078 0,270 0,373

Isolation 0,292 0,243 0,040 7,380 0,126 0,307
Criminality 0,216 0,296 0,026 8,380 0,261 0,355

House with electricity 0,020 0,000 0,011 1,831 -0,023 0,023
Child attendance 0,159 0,186 0,023 7,043 0,129 0,223
Child health now 0,176 0,192 0,023 7,659 0,148 0,233

Child nutrition now 0,177 0,197 0,020 8,898 0,147 0,232
Child personality now 0,179 0,199 0,026 6,913 0,156 0,250

Child relations adults now 0,177 0,201 0,021 8,512 0,166 0,239
Child relations friends now 0,178 0,201 0,020 8,901 0,167 0,235

Expected support from AVSI 0,213 0,222 0,018 11,638 0,193 0,281
AVSI program and child needs 0,210 0,218 0,016 13,114 0,190 0,258

Adeguacy to child needs change 0,206 0,215 0,014 14,518 0,198 0,249
Guardian not consulted 0,194 0,215 0,013 14,706 0,194 0,255

Guardian knowledge the project 0,213 0,217 0,014 14,947 0,195 0,268

Table 5.7: The bootstrap results for the weights (PALSOS-PM)
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M.vs Original value Mean B. Std.Err T-Statistic L. Bound U. Bound
S.fees 0,781 0,753 0,130 5,991 0,406 0,923

S.material 0,928 0,810 0,120 7,749 0,453 0,944
Recreational activities 0,870 0,852 0,079 11,028 0,679 0,947
After school activities 0,839 0,812 0,108 7,790 0,531 0,934

Emotional support 0,782 0,825 0,095 8,266 0,555 0,927
No food items 0,905 0,837 0,083 10,886 0,608 0,950

Healthcare 0,916 0,851 0,073 12,644 0,696 0,950
Nutritional support 0,829 0,827 0,111 7,454 0,514 0,950

Food supply 0,839 0,807 0,100 8,414 0,613 0,942
Healthcare family 0,864 0,900 0,049 17,514 0,780 0,967

Educational parents 0,864 0,900 0,049 17,514 0,780 0,967
S.fees 0,770 0,729 0,135 5,721 0,324 0,893

S.material 0,841 0,781 0,123 6,827 0,497 0,927
Recreational activities 0,889 0,828 0,085 10,427 0,603 0,951
After school activities 0,699 0,791 0,102 6,860 0,506 0,926

Emotional support 0,769 0,805 0,106 7,233 0,523 0,947
No food items 0,776 0,779 0,100 7,798 0,533 0,912

Healthcare 0,860 0,844 0,076 11,258 0,626 0,946
Nutritional support 0,810 0,787 0,127 6,396 0,384 0,928

Food supply 0,766 0,771 0,106 7,244 0,535 0,917
Healthcare family 0,836 0,822 0,083 10,132 0,590 0,927

Educational parents 0,704 0,770 0,098 7,151 0,509 0,904
Guardian health 0,920 0,811 0,082 11,184 0,604 0,937

Guardian aids 0,921 0,790 0,101 9,122 0,514 0,929
Guardian handicapped 0,934 0,748 0,109 8,602 0,488 0,905

Guardian drinks alcohol 0,797 0,793 0,093 8,569 0,613 0,921
Effect deseas 0,828 0,814 0,088 9,407 0,547 0,938

Principal source income 0,797 0,786 0,119 6,676 0,429 0,919
Total income 0,707 0,770 0,111 6,390 0,538 0,920

Dirtiness 0,959 0,905 0,056 17,171 0,768 0,972
Noises 0,962 0,914 0,042 23,056 0,809 0,972

Isolation 0,948 0,726 0,135 7,022 0,358 0,899
Criminality 0,702 0,880 0,080 8,831 0,690 0,963

House with electricity 0,083 0,001 0,043 1,949 -0,088 0,085
Child attendance 0,871 0,801 0,103 8,467 0,525 0,954
Child health now 0,964 0,828 0,086 11,162 0,646 0,948

Child nutrition now 0,971 0,847 0,078 12,401 0,659 0,945
Child personality now 0,979 0,858 0,105 9,365 0,633 0,954

Child relations adults now 0,967 0,866 0,090 10,762 0,651 0,954
Child relations friends now 0,975 0,866 0,074 13,180 0,721 0,950

Expected support from AVSI 0,992 0,936 0,050 20,014 0,771 0,985
AVSI program and child needs 0,980 0,918 0,067 14,579 0,731 0,980

Adeguacy to child needs change 0,958 0,909 0,070 13,747 0,711 0,987
Guardian not consulted 0,903 0,909 0,065 13,845 0,702 0,972

Guardian knowledge the project 0,992 0,916 0,054 18,488 0,781 0,986

Table 5.8: The bootstrap results of loadings (PALSOS-PM)

Latent variables Type variable R squared Average communality Average Redundancy Gof index
Support school Exogenous 0,000 0,709 0,000

Nutritional support Exogenous 0,000 0,762 0,000
Support family Exogenous 0,000 0,747 0,000

AVSI intervention Endogenous 1,000 0,632 0,632
Family environment Exogenous 0,000 0,718 0,000

Housing condition Exogenous 0,000 0,649 0,000
Status child Endogenous 0,927 0,912 0,846

Guardian satisfaction Endogenous 0,290 0,932 0,270
0,748

Table 5.9: The summary of the model performances with PALSOS-PM
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Latent variables Type variable R squared Average communality Average redundancy Gof index
S. school Exogenous 0,345

N. support Exogenous 0,319
F. support Exogenous 0,592

A. intervention Endogenous 1,000 0,251 0,251
H. condition Exogenous 0,196

F. environment Exogenous 0,204
S. of child Endogenous 0,151 0,371 0,055

G. satisfaction Endogenous 0,032 0,386 0,012
0,345

Table 5.10: The summary of the model performances with PLS-PM (XL-
STAT)

Figure 5.3: The VIP index
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The Decision Support Matrix

The Structural Equation Modeling aim at estimating the impact that
the exogenous variables, assumed as causes, have on the endogenous
ones. In particular in the proposed model we measured the impact
of some latent factors such as House condition, AVSI interven-
tion and Family environment, exercise on the Status of child as
measured by its manifest variables referred to quality of life, health,
behaviour and school performance of OVCs. It is worth noticing that
to make a decisional use of the SEM, together with the identification
of the latent factors having major impacts on the child status in defin-
ing such concepts, we have to take into account the averages scores
of the latent variables.
Only a joint lecture of both the information (path coefficients/impacts
and average scores) allow to detect the drivers for the Status improve-
ment identifying the critical area on which to intervene, the degree
of urgency as well as the set aspects.
A Decision Support Matrix (see the figure 5.4) consists of a suitable
Cartesian map reporting on the abscissas axis the average scores of
the exogenous latent variables affecting the latent variable measuring
the Status of the Child and on the ordinates axis the correspon-
dent path coefficients. The reference point (barycentre) of the map
is located in the point having as coordinates the mean latent score
and the mean path coefficient. By means of this map we can per-
form a so called swot analysis (strengths - weaknesses - opportunities
- threats) by identifying four characteristic areas described as: the
area of weakness, were variables have an high path coefficient and
at the same time a high mean value require immediate intervention;
the area of threats on which variables have a low value for both the
path coefficient and for the mean requires just to be monitored; the
area of opportunities is the area to promote or to increase, because
variables have already an high mean value but a low path coefficient
that might be more important in the future; the last area regard the
strengths as variables have an high value for the mean and for the
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path coefficient, is the area to be maintained. In the following (see

Figure 5.4: The Decision Support Matrix

figure 5.5) we report the map built to identify the critical factors
among the ones measured to improve the Status of Child.

We observe that Housing condition in order to improve the
Status of Child is perceived as the factor that requires an imme-
diate intervention as it has an high impact whereas its score is quite
low.
The AVSI intervention has a low mean, even if it is due in part
to the dichotomic nature of the scale of the correspondent manifest
indicators and a low path coefficient, so it is in the Area to monitor.

The latent variable Family environment, instead is located in
the strengths area, nevertheless according a vision of a continuous
improvement it might be a concept to increase too.

As we decide to pay more attention to the AVSI intervention,
a similar map based on the average optimal score for the manifest
variables and their weight affecting the multiblock latent variable
that is the AVSI intervention, can be built (see figure 5.6).

We observe that Support for the school in order to improve
the AVSI intervention is perceived as the factor that requires an
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Figure 5.5: The drivers for the Status of child

Figure 5.6: The drivers for the AVSI intervention
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immediate intervention as it has an high impact whereas its score is
quite low.
The Support for family has a low mean, which corresponds a low
path coefficient: this variable is yhe Area to monitor, so AVSI has to
increase the support given to the family of children belonging to the
program.

The latent variable Nutritional support, instead is located in
the strengths area, nevertheless according a vision of a continuous
improvement it might be a concept to increase too.

5.3 A discussion

The analysis presented offers a lot of interesting information issued
by the use of a multivariate approach to exploit the actual survey
data in view of an original evaluation exercise.

The achieved results suggest their potential use in decision mak-
ing. In conclusions we prefer to mention, among the achieved results,
the ones that have a perspective added value, especially in view of
the third OVC survey. An important lesson learned from this ex-
ercise, different from the data analysis French School view point is
that: The data should follow the model and not vice versa.

This imply that a correct and most performing use of research
tools should follow a proper design of the survey questionnaire accord-
ing a conceptual model and the correspondent technology adopted.

For this reason even if the obtained results are very interesting we
do not consider them as definitive, but useful in the perspective of
the next survey in view of preparing a new questionnaire aimed not
only at an explorative description the OVC phenomenon, but also at
defining a causal model able to identify the factors having the high-
est impact on children general status and evolution so to improve the
performance of the AVSI intervention in terms of quality, efficacy and
efficiency.
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From the results of the model is evident that Avsi must improve
its support, especially the assistance to the family of children that
belong to the program. In fact we have seen as the Family en-
vironment is the factor most important in the evolution of child
condition.

This SEM model toghether with PALSOS-PM algorithm reveal
itself as an important tool to take decision. In fact it allows to fac-
tors that have a significant impact on the outputs and outcome of an
intervention aimed at improving OVCs conditions.

Another important result that we have obtained is the improve-
ment of the estimation performance of the model: the quantification
process has produced a better estimation of the latent variables.

On the basis of these two variable results we have also validated
questionnaire variables.

This is a social research in which the quantification process was
an important tool to reach the objective of the analysis.
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Conclusion and future
perspectives

In the expression Structural Equation Modeling (SEM) two con-
cepts are synthesized: the existence of a model, a formal expression
of a theory and analytic methods described by means of a system of
equations that represent the casual relationships away latent multi-
dimensional concepts that is structures.

The two approaches for the estimation of this model, LISREL
and PLS-PM, are considered as the so called second generation ;
they allow to express complex relationships involving non observable
variables by a observable or manifest variables.

We can perceive that the SEM was born for the analysis of quan-
titative variables: the aim of the present thesis is centered on the
problem of the treatment of manifest qualitative/ordinal variables.

Both the estimation methods (LISREL and PLS-PM) allow to
introduce in the model nominal and ordinal variables, with a sub-
stantial difference that LISREL does not accept nominal variables
but only ordinal, for which it computes the tetracoric correlations,
substituting the Pearson’s correlation coefficient. On the other hand
the PLS-PM permits to consider for the estimation of the model all
kind of variables, nominal and ordinal: for the nominal variables the
algorithm builds the dummy variables (in this way the number of
manifest variables in the block increases, causing some problems in
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the estimation of latent variable), while for the ordinal variables there
is the assumption of the continuity.

The last hypothesis is very strong and is not correct, in particu-
lar, when in the model we have manifest variables with different scale
(three, five or ten values): in this case it would be better to quantify
the variables in such a way to obtain numerical variables to justify
the use of the quantitative technique.

In particular this problem it was faced with a data set composed
by only ordinal and nominal variables where the aim was to estimate
a SEM model to evaluate the impacts of some variables on a vari-
able of outcome. This is the AVSI model presented in the chapter
four: estimating the model considering the variables as numerical
we obtain that the path coefficients are not significant as also many
manifest variables, because they have negative signs for the weights
and loadings.

From this practical problem we have started to develop an algo-
rithm that estimates a SEM model as the PLS-PM, but with the
possibility, if it is necessary, to quantify the qualitative variables, in-
troducing them as numerical in the analysis. This is PALSOS-PM
algorithm that uses as method of quantification the ALS approach.

In the first chapter of the present thesis the methods of quantifica-
tion proposed in the literature are discussed with respect to the type
of variables produced after the quantification and the objective func-
tions used with the aim to get the optimal quantification. According
to the nature of variables and also the objective of the analysis in the
fourth chapter after the evolution of the quantification methods that
are developed with respect to the technique of analysis used (chapter
2), we propose an original algorithm based on ALSOS (presented in
the third chapter) that aims to optimize the estimation of the latent
variables and their relationship toghether with an optimal quantifi-
cation of non numerical manifest variables.

Therefore this approach allow to obtain, in the sense of least
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squares11, the best quantification, the best estimation of the para-
meters of the model, according to the quantified variables, and in
our case the best prediction of the latent variables.

The proposed system , PALSOS-PM, seems to be a good solution
in all cases in which we have an eterogeneous set of manifest vari-
ables, and in which our objective is to estimate a casual model in
presence of reflective or formative relationships whereas alternatives
present just consider reflective relationships.

In particular with respect to the proposal of Jakobowicz and
Derquenne, in our algorithm we use a unique function to obtain both
the weights and the vector of scaling; no matter the nature of the
variable be numerical, ordinal or nominal, weight in all cases is the
covariance between the latent and the manifest variables.

It has been proved that iteratively PALSOS-PM reduces the sum
of squares of residuals of the regression in the SEM model until they
reach the minimum. It uses all the validation indexes of the PLS-PM
to verify the correctness of the supposed model.

Summarizing the most important characteristics of our proposal
are:

- the absence of distributional hypothesis on the raw data and in
the process of quantification;

- it estimates the model with the PLS-PM algorithm when all
variables are numerical, both in case of reflective or formative
relationships;

- it estimates the model with mixed variables (nominal, ordinal
and numerical) being in this respect more general that algo-
rithms in the literature;

- for the validation it uses the bootstrap technique, the number
of resampling is choosen by the researcher: 100 replications is
a sufficient replications size;

11We remember that it minimizes the squares of the sum of residuals.
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- it has no problem for the dimension of data matrix (we can
have more variables than observation, without problem in the
estimation of the model);

- it allows the control on the signs changes, as made in the XL-
STAT and SPAD-PLSPM software;

- it gives the possibility to move to PLS estimators if the classical
OLS fail for multicollinearity;

- it computes the best prediction of the latent variables according
to the typology of the manifest variables;

- the process of quantification works for typology of relationships
between the manifest and latent variables reflective and forma-
tive nature;

The results obtained for the Avsi model show the excellent perfor-
mances of PALSOS-PM approach to cope with very complex situa-
tion consisting of an high number of heterogenous variables for their
nature, nominal and ordinal, as well as for theri number of categories.

To conclude we remark our thesis was mainly focused on the devel-
opment of quantification procedures to en in the PLS-PM algorithm
capabilities.

In this perspective some questions in future works such as the se-
lection problems regarding the manifets variables,of latent variables
as well as the number of components for non unidimensional blocks
or in case of multicollinearity. A t the same time the influence of the
number of levels for ordinal variables and the number of categories
for nominal ones should be particularly investigated as they affect
the robustness of both quantifications and model estimations.

Finally the role of the latent variable in a SEM model should
be furtherly discussed. It is necessary not only to define the role
of the variables (mediator or mediation), but also have to introduce
esistence information in the estimation of the model, in such a way
that the path coefficients can benefit of such knowledge.
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Such situations rise very frequentlyin practical data analysis, espe-
cially in social and surveys, tehy require suitable and robust methods
to be faced.
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Appendix A

The proof of some
theorems

In this appendix is reported the proof of the propositions enunciated
in the Chapter 3,about the Projection in a Convex Cone.

A.1 Proposition 3.4

The vector x is nonnull since y does not belong to Cp. Result (1)
is obvious. We now prove (3). The maximum of cos(y,z) over z in
C is reached for some vector z = x1 and is strictly positive since y
does not belong to Cp. The cosine being independent of the norm,
we may choose a vector x1 with the same norm as that of x. We
then have ‖y − x1‖ ≤ ‖y − x‖ and the unicity of the projection into
C implies that x1 = x. The same argument is used to show that
cos(y, z) = cos(y, x) implies that z belongs to C(x). We now prove
(2). The minimum of ‖y − z‖ / ‖z‖ is reached for some vector z = x2.
We denote by x3 a vector of C(x) with the norm of x2. From
‖y − x3‖ / ‖x3‖ ≥ ‖y − x2‖ / ‖x2‖ we get cos(y, x3) ≤ cos(y, x2),
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so x2 belongs to C(x). Let us calculate the scalar λ such that
x2 = λx. The ratio ‖y − λx‖ / ‖λx‖ being equal to the minimum
of ‖x− αy‖ / ‖x‖ with respect to α, we conclude that λ = ‖y‖2 /x′ =
1/cos2(x, y). We can deduce (2) from the equalities

‖y − x2‖2

‖x2‖2
=
‖x‖2 − λ−2 ‖y‖2

‖x‖2
andcos(x, y) =

‖x‖
‖y‖

A.2 Corollary 3

The minimum of ‖y − u‖ for u belonging to C ∩ S is reached for a
unit vector that maximizes cos(y,u).

A.3 Proposition 3.5

This proposition is deduced from the following inequalities:

‖Au−Av‖ ≤ ‖u− v‖ for any u and v in<n

and

‖Bu−Bv‖ ≤ 2
‖Au‖

‖u− v‖ for any u and v in<n − Cp

A.4 Proposition 3.6

Let yR+s =
∑

βisi; si ∈ R + s. If all the βi are strictly positive,
then Q=R and the proposition is proved. Otherwise there exists at
least one βi ≤ 0. However, the coefficient β of s is strictly positive,
since ‖y − yR‖2 ≺ ‖y − yR+s‖2 = 2β(y − yR)′s − ‖yR − yR+s‖2 � 0.
Now consider the vector x of the segment [yR, yR+s] which belongs
to C and is as close as possible to y. This vector x is equal to
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λyR + (1 − λ)yR+s with λ = Maxβi/(βi − αi);βi ≤ 0. We denote
by I the set of vectors si such that λαi + (1 − λ)βi = 0. As λ ≺ 1
and β � 0 the vector s does not belong to I. Since vector x belongs
to C(R + s − I) we get ‖yR − yR+s−I‖ ≤ ‖y − x‖ ≺ ‖y − yR‖. Let
yR+s−I =

∑
β′isi; si ∈ R + s− I be the projection of y into L(R+s-

I). If all the β′i are strictly positive, then Q=R-I. Otherwise, we
iterate the described procedure with x playing the role of yR and
yR+s−I that of yR+s, excluding from R another subset I ′ such that
‖yR − yR+s−I−I′‖ ≺ ‖y − yR‖. After a finite number of iterations we
obtain a subset Q of R with the desired property.

A.5 Proposition 3.7

Proposition 2 implies the existence of a subset R of {z1, z2, ...., zm}
such that the projection x∗of y into C = L(z1)⊕ C(z1, z2, ...., zm) is
equal to the projection of y into the subspace L(R). The vector z1

belongs to R since −z1 and z1 belong to C. Let J denote the set of
indices j such that zj belongs to R : J = {1, j1, ...., jr}. This set J in-
duces a partition of M into increasing blocks: {Bh = {jh, ..., j(h + 1)− 1} , h = 0, ...., r}
with j0 = 1 and j(r + 1) = m + 1. The indicatory variables i(Bh =∑
{xj ; j ∈ Bh}of the blocks Bh verify i(Bh) = zjh − zj(h+1) for h =

0, ..., r − 1 and i(Br) = zjr. Since the subsets R = {z1, zj1, ..., zjr}
and {i(Bh), h = 0, ...., r} generate the same subspace, we may deduce

x∗ =
∑

{ȳ(Bh)i(Bh);h = 0, r} (A.1)

= ȳ(B0)z1 +
∑

{(ȳ(Bh)− ȳ(Bh−1)zjh;h = 1, r}
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Appendix B

The code of PALSOS-PM
algorithm

In this appendix is reported the R routine. Starting from a matrix in
which there are p variables and n units, and partitioned in k latent
blocks, the algorithm starts to compute a first estimation of the la-
tent variables as a linear combination of manifest variables multiplied
for a casual vector of weights.
Successively the algorithm updates the estimation of the latent vari-
ables across the inner weights eij that are or the correlation between
the latent variables, or the signs of these correlations.
Then the last step is the new outer estimation in which the quali-
tative variables are quantified across Morals. The algorithm stops
when the estimation of latent variables is stable.
After the convergence the algorithm develops the inner multiple/single
regression and it calculates the validation index used by the PLS-PM
algorithm.
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The code of PALSOS-PM algorithm

B.1 PALSOS-PM algorithm

PALSOS-PM<- function (mat, inner,epsilon,maxiterations)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% %

% PALSOS-PM estimates a SEM model based on numerical, ordinal and %

% nominal manifest variables %

% %

% INPUT PARAMETERS: %

% mat: the matrix of the manifest variables. Columns represent p %

% variables, while rows contain n individuals %

% inner: the matrix in which the relationships between the latent %

% variables are expressed %

% epsilon: is the criterio of stop for the algorithm, a positive %

% value near zero %

% maxiterations: the number of max iteration %

% %

% OUTPUT PARAMETERS: %

% weights, loadings: the coefficients of correlation and of %

% covariance that express the relationships between %

% the manifest and latent variables %

% %

% correlation: the correlation between %

% the manifest and latent variables %

% %

% path coefficients: the regression coefficients of %

% the inner estimation. They express the relationships %

% between the latent variables %

% %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

PALSOSPM <- function(mat, inner, epsilon, maxIterations)

{

weights <- list();

loadings<-list();

w.norm<-list();

l.finali<-list();

v.nostand<-list();

matq<-list();

% These are the commands for the initialization of the vector of weights,

% loadings, normalized weights and standardized loadings

% The matrix matq has the same dimension of the initial

% matrix and will contain the quantified variables

% The v.nostand is the matrix of latent variables not standardized

sigma<-numeric()

iteraz <- 0;
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B.1. PALSOS-PM algorithm

% Inizialization of the iterations

convergenza<-0;

iniz <- initialstep(mat);

%This function computes the first estimation of the latent variables,

%across a casual vector of weights multiplied for the manifest variables

v<-as.matrix(iniz$v);

% v is the first estimation of the latent variables

v <- as.matrix(scale(v));

vmq<-iniz$vmq;

repeat

%This is the repeat routine in which the algorithm alternates

%the inner and outer estimation until the convergence

{

iteraz <- iteraz +1;

z <- innerestimation(v,inner);

%This function estimates the inner weights to update the estimation of

%latent variables

zeta<-as.matrix(z$zeta);

%Zeta is the matrix of the latent variables after the inner estimation

zeta <- scale(zeta);

stimaEst <- morals(mat,zeta,100,0.0001,natura);

%This is the Morals algorithm that quantifies the qualitative variables

if(stimaEst$conv!= -1)

{

%This condition is relative to the convergence of Morals algorithm

%It converges it is possible to proceeds with a new inner estimation

weights[[iteraz]] <- stimaEst$weights;

loadings[[iteraz]]<-stimaEst$loadings;

v <- as.matrix(stimaEst$vardip);

sigma<-stimaEst$sigma;

v<-scale(v);

v.nostand<-stimaEst$vindosnostand;

if(iteraz != 1)

{

%At this step the algorithm verifies if the estimation

%of latent variables (inner and outer) is stable.
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diffBeta <- betaVet(weights, iteraz) - betaVet(weights, (iteraz -1));

if(max(abs(diffBeta)) <= epsilon)

{

convergenza<-convergenza+1;

break;

%At this point the algorithm stops

}

}

}

if(iteraz==maxIterazioni |stimaEst$conv== -1)

{

convergenza<--1;

}

if( convergenza == -1) break;

}

if(convergenza != -1)

{

%The algorithm after the convergence computes the normalized

%weights and the standardized loadings

w<-weights[[iteraz]];

zeta<-v

matq<-stimaEst$varind;

for(i in 1:dim(zeta)[2])

{

w.norm[[i]]<-array(0, dim(matq[[i]])[2]);

l.finali[[i]]<- array(0, dim(matq[[i]])[2]);

for(j in 1:dim(matq[[i]])[2])

{

w.norm [[i]] [j]<-as.numeric(w[[i]] [j])/sigma[i];

l.finali[[i]] [j]<-cor(zeta[,i],matq[[i]][,j]);

}

}

}

#==============Inner model=============================================#

% After the convergence the PALSOS-PM function estimates, across

% other functions the final inner estimation and all indexes

% for the validation of the model

% The first function computes the path coefficients and the values of
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% T-Statistic, p-value and confidence intervals to verify the significativity

% of the parameters

modi<-modelloInterno(zeta);

r2<-modi$R2;

beta<-modi$beta;

R2<-modi$r2;

t.statistics<-modi$t.statistics;

p.value<-modi$p.value

Corrlv<-modi$corr.latent

Inner.model<-data.frame(Path.coefficients=beta, T.statistics=t.statistics,

P.value=p.value);

rownames(Inner.model)<-path.coefficients;

#==============Communality==============================================#

% This function computes the communality index based on the correlation

% between the latent and manifest variables

com<-com(matq,zeta);

Communality<-unlist(com$communalità,recursive=TRUE);

Average.communality<-com$average.communality;

#=============Redundancy================================================#

% This index is used to measure the part of variability of the manifest

% variables associated to endogenous latent variables explained by the

% other variables of the model

red<-redundancy(matq,modi$R2,com$communalità);

Redundancy<-unlist(red$redundancy,recursive=TRUE);

Average.redundancy<-red$average.redundancy;

#===================Weights-Loadings====================================#

% This is the table of the outer estimation

W<-unlist(w.norm,recursive=TRUE);

L<- unlist(l.finali,recursive=TRUE);

Outer_model<-data.frame(Normalized.Weights=W,Loadings=L,

Communality=Communality, Redundancy=Redundancy);

rownames(Outer_model)<-manifest.names;

#=========================Summary of model==============================#

% In this table there are a summary of the results of previous indexes

Summary.inner_model<-data.frame( Latent.variables= latent.names,

Type.variable =type.variable, R.squared=r2,

Average.communality= Average.communality,

Average.Redundancy=Average.redundancy);

rownames(Summary.inner_model)<-latent.names;
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#=============================Unidimensionality=========================#

%This function computes the indexes to verify the

%unidimensionality of the blocks

Uni<-unidimensionality(matq,zeta);

Unidimensionality<-data.frame(Mode=Uni$Mode, C.alpha=Uni$Alpha,

DG.rho=Uni$Rho, F.eigenvalue=Uni$first.eigen, S.eigenvalue=Uni$second.eigen)

rownames(Unidimensionality)<- latent.names;

#===============================Correlation=============================#

Corr.mv<-data.frame(com$correlazioni);

rownames(com$correlazioni)<-manifest.names;

colnames(com$correlazioni)<- latent.names;

output <- list(w.norm=w.norm,l.finali=l.finali,convergenza=convergenza,

zeta=zeta, beta=beta,R2=R2,t.statistics= t.statistics, p.value=p.value,

r2=r2,Outer_model=Outer_model,Summary.inner_model=Summary.inner_model,

Unidimensionality=Unidimensionality,Corr.mv=Corr.mv, Inner.mode=Inner.model,

Corrlv=Corrlv);

output;

}
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B.2 The functions used in PALSOS-

PM

initialstep<-function(mat)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% %

% initialstep computes the first estimation of the latent variables %

% This step is equal to the first step of PLS-PM algorithm %

% %

% INPUT PARAMETERS: %

% mat: the original matrix of raw data %

% %

% %

% %

% OUTPUT PARAMETERS: %

% v: the first estimation of the latent variables %

% %

% %

% %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

initialstep<-function(mat){

weight<-list();

% This is the initialization of the casual vector to multiply for

% the manifest variables

vdo<-list();

n <- dim(mat[[1]])[1];

numLat <- length(mat);

v <- matrix(0, n,numLat);

for(i in 1:numLat)

{

weight[[i]]<-array(1,dim(mat[[i]])[2]);

vdo[[i]]<-matrix(0,dim(mat[[i]])[1],dim(mat[[i]])[2]);

for(j in 1:dim(mat[[i]])[2])

{

vdo[[i]][,j]<-as.numeric(mat[[i]][,j])*as.numeric(weight[[i]][j]);

v[,i]<-rowSums(vdo[[i]]);

}

}

v;
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output<-list(v=v);

}

%--------------------------------------------------------------------------%

Innerestimation <- function(v, inner, scheme=1)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% %

% Innerestimation is the function that updates the %

% outer estimation of the latent variables %

% %

% %

% INPUT PARAMETERS: %

% v: the outer estimation of the latent variables %

% %

% inner: the matrix with the inner relationships %

% %

% scheme: it indicates how we want computes the inner weights %

% It assumes two values: 1 if we use the centroid scheme and 2 %

% if we use the factorial scheme %

% %

% OUTPUT PARAMETERS: %

% zeta: the matrix of latent variables updated %

% %

% %

% %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Innerestimation <- function(v, inner, scheme=1)

{

zeta <- matrix(0, dim(v)[1], dim(v)[2]);

vet<-0;

for(i in 1:dim(v)[2]) {

idx <- trovaLegami(inner,i);

if(schema==1){

vet<- as.numeric(sign(cor(v[,i],v[,idx])));

}

else{

vet <- as.numeric(cor(v[,i], v[,idx]));

zeta[,i] <- rowSums(v[,idx] * vet);

}

zeta;

output<-list(zeta=zeta)

}
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%---------------------------------------------------------------------------%

Morals<-function(mat,zeta,itermax,epsilon,natura)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% %

% Morals is the function that quantifies the qualitative %

% manifest variables and the weights of the outer estimation %

% %

% %

% %

% INPUT PARAMETERS: %

% mat: the original matrix of raw data %

% %

% zeta: the matrix of latent variables after inner estimation %

% %

% itermax: max number of iterations %

% %

% epsilon: is the criterio of stop for the algorithm, %

% a positive value near zero %

% natura: the vector that explains the %

% typology of variables %

% %

% OUTPUT PARAMETERS: %

% weights: the matrix of latent variables updated %

% loadings: the correlation between the manifest %

% and latent variables %

% matq: the matrix of quantified variables %

% %

% %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Morals<-function(mat,zeta,itermax,epsilon,natura)

{

% This function develops the als algorithm to obtain the optimal quantification

% of qualitative variables

varind<-mat;

vardip<-as.matrix(zeta);

ios<-numeric();

sigma<-numeric();

weights<-list();

loadings<-list();

vdo<-list();

vindos<-list();

vmqs<-list();

%These are the initialization of the quantities computed in this routine

n<-dim(vardip)[2];
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residui<-numeric(n);

vstim<- matrix(0,dim(vardip)[1],dim(vardip)[2]);

iteraz<-0

varianza<-0;

conv<-0;

for(i in 1:dim(zeta)[2])

{

vmqs[[i]]<-scale(varind[[i]]);

}

repeat

{

iteraz<-iteraz+1

for(i in 1:dim(vardip)[2])

{

weights[[i]] <- array(, dim(varind[[i]])[2]);

vdo[[i]]<-matrix(0,dim(varind[[i]])[1],dim(varind[[i]])[2]);

loadings[[i]]<- array(, dim(varind[[i]])[2]);

for (j in 1:dim(varind[[i]])[2])

{

weights[[i]] [j]<- cov( varind[[i]][,j],vardip[,i])/var(vardip[,i])

loadings[[i]][j]<-cor(varind[[i]][,j],vardip[,i]);

vdo[[i]][,j]<-as.numeric(varind [[i]][,j])*as.numeric(weights[[i]][j]);

}

vstim[,i]<-rowSums(vdo[[i]]);

}

vstim<-scale(vstim);

for(i in 1:dim(vardip)[2])

{

weights[[i]]<- array(, dim(varind[[i]])[2]);

loadings[[i]]<- array(, dim(varind[[i]])[2]);

vindos[[i]]<-matrix(0,dim(varind[[i]])[1],dim(varind[[i]])[2]);

for (j in 1:dim(varind[[i]])[2])

{

%This is the quantification process: natura is the vector that establishes the

%type of variables

if (natura [[i]][j] == 1)

{
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tempo<-as.matrix(varind[[i]] [,j]);

G<-acm.disjonctif(tempo);

G<-as.matrix(G);

temp<-solve(t(G)%*%G)%*%t(G);

temp<-temp%*%vstim[,i];

temp<-t(temp);

ios<-rowSums(as.matrix(G)*as.numeric(temp));

vindos[[i]] [,j]<-as.numeric(ios);

}

if (natura[[i]] [j] == 2)

{

ios<-pava(mat[[i]][,j]);

vindos[[i]] [,j]<-ios;

}

if (natura [[i]] [j]==3)

{

ios<-varind[[i]] [,j];

vindos[[i]] [,j]<-as.numeric(ios);

}

vindosnostand<-vindos;

vindos[[i]] [,j]<-scale(vindos [[i]] [,j]);

weights[[i]] [j]<-cov(vindos[[i]][,j],vardip[,i])/var(vardip[,i]);

loadings[[i]][j]<-cor(vindos[[i]][,j],vardip[,i]);

}

contr<- controllo.segni(weights,vardip,varind);

%This function makes the control of the signs of weights

for(k in 1:length(weights))

{

if(contr$w.sum[k] == length(weights[[k]]))

{

weights[[k]]<-weights[[k]]*(-1);

}

}

for (j in 1:dim(varind[[i]])[2])

{

vdo[[i]] [,j]<-as.numeric(vindos[[i]][,j])*as.numeric(weights[[i]][j]);

}

vardipe<-vardip;

vstim[,i]<-rowSums(vdo[[i]]);

sigma[i]<-sqrt(var(vstim[,i]));

vstim<-scale(vstim);
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residui[i]<- sum((vardip[,i]-vstim[,i])^2);

}

vardip<-vstim;

varind<-vindos;

vtemp<-0;

for(i in 1:dim(vardip)[2])

{

for (j in 1: dim(varind[[i]])[2])

{

varianza<-var(vindos[[i]] [,j]);

if(is.na(varianza) == T )

{

conv<--1;

print(conv)

}

}

}

if(conv!= -1)

{

for( i in 1:dim(vardip)[2])

{

if (residui[i]<= epsilon)

{

vtemp<-vtemp+1;

}

}

}

%This is the criterion of convergence for Morals algorithm

if(vtemp == dim(vardip)[2]|iteraz==itermax |conv== -1) break;

}

output<-list(varind=varind,vardip=vardip,weights=weights,loadings=loadings,

residui=residui,iteraz=iteraz,vardipe=vardipe,sigma=sigma,

vindosnostand=vindosnostand, conv=conv);

}

%----------------------------------------------------------------------------------------%

trovaLegami <- function(inner, idx)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% %

% trovaLegami is the function that founds the relationships between %

% the latent variables %

% %

% %

% INPUT PARAMETERS: %

174



B.2. The functions used in PALSOS-PM

% inner: the matrix with the inner relationships %

% %

% idx: indicates the presence of the relationship %

% between two latent variables %

% %

% %

% OUTPUT PARAMETERS: %

% we have the relationships between the variables on which %

% base the path coefficients are computed %

% %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

trovaLegami <- function(inner, idx)

{

output <- c(which(inner[,idx] == 1), which(inner[idx,] == 1));

output;

}

%-------------------------------------------------------------------------%

betaVet <- function(weights, iterazione)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% %

% betavet is used to verify the convergence of PALSOS-PM algorithm %

% In particular it identifies the weights associated to last iteration %

% and the previous to compute the difference between them %

% %

% %

% INPUT PARAMETERS: %

% weights: the covariance between latent and manifest variables %

% %

% iterazione: the number of iteration %

% %

% %

% OUTPUT PARAMETERS: %

% we have the weights of i-ma iteration to compare with %

% the weights of last itration to verify the convergence %

% %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

betaVet <- function(weights, iterazione)

{

output <- numeric();

nBlocchi <- length(weights[[iterazione]]);

for (i in 1:nBlocchi)

{

output <- c(output, weights[[iterazione]][[i]]);
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}

output;

}

%----------------------------------------------------------------------%

controllo.segni<-function(weights,vardip,varind)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% %

% controllo.segni is the function that makes the control on the signs %

% of weights in the outer estimation %

% %

% %

% INPUT PARAMETERS: %

% weights: the covariance between latent and manifest variables %

% %

% vardip: the matrix of dependent variables in Morals %

% %

% varind: the matrix of explicative variables in Morals %

% %

% OUTPUT PARAMETERS: %

% we change the signs of weights if it is verify %

% the condition imposed %

% %

% %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

controllo.segni<-function(weights,vardip,varind)

{

w.temp<-list();

w.sum<-numeric(dim(vardip)[2]);

for(i in 1:dim(vardip)[2])

{

w.temp[[i]]<-array(0, dim(varind[[i]])[2]);

for (j in 1:dim(varind[[i]])[2])

{

if( sign(weights[[i]][j])== -1 |is.na(weights[[i]][j]))

{

w.temp[[i]][j]<- 1;

}

else

{

w.temp[[i]][j]<- 0;

}

}
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w.sum[i]<- sum(w.temp[[i]]);

}

output<-list(w.sum=w.sum);

output;

}

%---------------------------------------------------------------------------------%

com<-function(matq,zeta)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% %

% com is the function that estimates the Communality and %

% the Average Communality %

% %

% %

% INPUT PARAMETERS: %

% matq: the matrix of quantified variables %

% %

% zeta: the matrix of latent variables %

% %

% %

% OUTPUT PARAMETERS: %

% this function returns the values of Communality for each block %

% and the value of Average communality and the correlation matrix %

% %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

com<-function(matq,zeta)

{

communalità<-list();

numLat <- length(matq);

average.communality<-rep(1,numLat);

ptot <- 0;

average<-0

somma<-0;

sommacom<-0;

% p is the total number of manifest variables

p <- array(,numLat);

for (j in 1:numLat)

{

p[j] <-dim(matq[[j]])[2];

ptot <- ptot + p[j];

}

correlazioni <- matrix(,ptot, numLat);

cp <- c(0,cumsum(p));

for(j in 1:numLat)
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{

for(k in 1:numLat)

{

for(i in 1: p[j])

{

correlazioni[cp[j]+i, k] <- cor(matq[[j]][,i],zeta[,k]) ;

}

rownames(correlazioni)<-manifest.names;

colnames(correlazioni)<- latent.names;

}

}

for (j in 1:numLat)

{

communalità[[j]]<-array(0,dim(matq[[j]])[2]);

ptemp <-dim(matq[[j]])[2];

for (i in 1:ptemp)

{

communalità [[j]] [i]<-round((cor(matq[[j]][,i],zeta[,j])^2),4);

}

average.communality[j]<-sum(communalità[[j]])/ptemp;

}

average<-average+sum(average.communality)/length(average.communality);

output<-list(average.communality=average.communality, communalità=communalità,

correlazioni=correlazioni,average=average);

output;

}

%------------------------------------------------------------------------------------------%

redundancy<-function(matq,R2,communalità)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% %

% redundancy is the function that estimates the Redundancy and %

% the Average Redundancy %

% %

% %

% INPUT PARAMETERS: %

% matq: the matrix of quantified variables %

% %

% R2: the R squared of the inner regression %

% %

% communalità: the values of communality for each block %

% %

% OUTPUT PARAMETERS: %
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% this function returns the values of Redundancy for each block %

% and the value of Average redundancy %

% %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

redundancy<-function(matq,R2,communalità)

{

redundancy<-list();

numLat<-length(matq);

average.redundancy<-rep(1,numLat);

for(j in 1:numLat)

{

redundancy[[j]]<-array(0,dim(matq[[j]])[2]);

ptemp <-dim(matq[[j]])[2];

for (i in 1:ptemp)

{

if(endo[j]==1)

{

redundancy[[j]] [i]<-round(communalità[[j]] [i]*R2[j],4);

}

else

{

redundancy[[j]]<-rep(0, dim(matq[[j]])[2]);

}

}

average.redundancy[j]<-round(sum(redundancy[[j]])/ptemp,4);

}

output<-list(redundancy=redundancy,average.redundancy=average.redundancy);

}

%-------------------------------------------------------------------------------%

unidimensionality<-function(matq,zeta)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% %

% unidimensionality is the function that verifies if the block %

% are unidimensional %

% %

% %

% INPUT PARAMETERS: %

% matq: the matrix of quantified variables %

% %

% zeta: the matrix of latent variables %

% %

% OUTPUT PARAMETERS: %

% this function returns the values of Cronbach’s Alpha , %
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% Rho of Dillon-Goldstein and the first and second eigenvalues %

% %

% %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

unidimensionality<-function(matq,zeta)

{

numLat<-length(matq);

Alpha<-rep(1,numLat);

Rho<-rep(1,numLat);

first.eigen<-rep(1,numLat);

second.eigen<-rep(1,numLat);

Mode<-rep("Reflective",8);

for(j in 1:numLat)

{

acp<-princomp(matq[[j]]);

gof.om<-round(mean(cor(matq[[j]],acp$scores[,1])^2),4);

a.numerator<-2*sum(cor(matq[[j]])[lower.tri(cor(matq[[j]]))]);

a.denominator<- var(rowSums(matq[[j]]));

Alpha[j]<-round((a.numerator/a.denominator)*(ncol(matq[[j]])/ncol(matq[[j]]-1)),4);

rho.numerator<- colSums(cor(matq[[j]], acp$scores[,1]))^2;

rho.denominator<- rho.numerator+(ncol(matq[[j]])-colSums(cor(matq[[j]],acp$scores[,1])^2));

Rho[j]<-round(rho.numerator/rho.denominator,4);

first.eigen[j]<- round(acp$sdev[1]^2,2);

second.eigen[j]<- round(acp$sdev[2]^2,2);

}

output<-list(Alpha=Alpha, Rho=Rho, first.eigen= first.eigen,

second.eigen=second.eigen,Mode=Mode);

}

%--------------------------------------------------------------------------------------------%

Gof<-function(matq, zeta, average.communality)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% %

% Gof is the function that computes the Goodness of Fit Index %

% %

% %

% INPUT PARAMETERS: %

% matq: the matrix of quantified variables %

% %

% zeta: the matrix of latent variables %

% %

% average.communality: the average communality %

% computes by the com function %

% %

% OUTPUT PARAMETERS: %

% this function returns the values of Gof index %

% %
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% %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Gof<-function(matq, zeta, inner, average.communality){

numLat<-length(matq);

gof.absolute<-round(sqrt(mean(com$average.communality)*sum(modi$r2)/sum(endo)),4);

gof.outer<-round(mean( com$average.communality/uni$gof.om),4);

Gof<-data.frame(Gof=c("Absolute", "Outer.model"),

value=c(gof.absolute,gof.outer))

output<-list(Gof=Gof);

output;

}

%---------------------------------------------------------------------------------%

modelloInterno <- function(zeta)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% %

% modellointerno is the function that estimates the path coefficients %

% According to the model it is different, and this is an example %

% %

% %

% INPUT PARAMETERS: %

% %

% zeta: the matrix of latent variables %

% %

% OUTPUT PARAMETERS: %

% It returns the path coefficients, %

% the R squared, the p-value and the T-Statistic %

% %

% %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

modelloInterno <- function(zeta) {

z2 <- lm(zeta[,2] ~ zeta[,1]);

z3 <- lm(zeta[,3] ~ zeta[,2]+ zeta[,1]);

z4 <- lm(zeta[,4] ~ zeta[,2] + zeta[,3]);

z5 <- lm(zeta[,5] ~ zeta[,1] + zeta[,2]+ zeta[,3]+ zeta[,4]);

z6 <- lm(zeta[,6] ~ zeta[,5]+zeta[,1]);

beta <- array(,11);

r2 <- array(,5);

beta[1] <- z2$coefficients[-1];

beta[2:3] <- z3$coefficients[-1];

beta[4:5] <- z4$coefficients[-1];

beta[6:9] <- z5$coefficients[-1];

beta[10:11] <- z6$coefficients[-1];
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r2[1] <- summary(z2)$r.squared;

r2[2] <- summary(z3)$r.squared;

r2[3] <- summary(z4)$r.squared;

r2[4] <- summary(z5)$r.squared;

r2[5] <- summary(z6)$r.squared;

R2<-c(0,r2);

output <- list(beta=beta, r2=r2,R2=R2);

output;

}
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B.3 The bootstrap validation

bootstrap.validation<-function(mat,m)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% %

% bootstrap.validation is the function that develops m %

% resampling of the initial matrix. On each resampling %

% the model is estimated. In this way we obtain an empirical %

% distribution of the structural parameters %

% %

% %

% INPUT PARAMETERS: %

% %

% mat: the original matrix %

% m: the number of resampling %

% %

% OUTPUT PARAMETERS: %

% The confidence intervals for outer and inner %

% structural parameters, the values of T-Statistics %

% %

% %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% bootstrap.validation<-function(mat,m){

replboot<-m;

numLat<-length(mat);

n<-0

matb<-as.matrix(mat[[1]]);

weigths.boot<-numeric();

matlista<-list();

convergenza<-0;

sample<-0;

correlation<-list();

for (i in 2:numLat){

matrice<-as.matrix(mat[[i]]);

matb<-cbind(matb,matrice);

}

W.boot<-matrix(NA,m,ncol(matb));

L.boot<-matrix(NA,m,ncol(matb));

P.boot<-matrix(NA,m,7);

R2.boot<-matrix(NA,m,3);

for (i in 1:numLat){

for (j in 1:dim(mat[[i]])[2]){

while(n<m){

boot.obs<-sample(1:nrow(matb), nrow(matb), replace=TRUE);

matboot<-as.matrix(matb[boot.obs,]);
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matlista<- creazionelista(matboot)$matlista;

risultati.boot<-alspmRifl(matlista,inner,0.00001,100);

if(risultati.boot$convergenza==1 ){

n<-n+1

w.boot<- unlist(risultati.boot$w.norm[[1]]);

l.boot<- unlist(risultati.boot$l.finali[[1]]);

sample<-sample + 1;

for (i in 2:numLat){

weigths.boot<-unlist(risultati.boot$w.norm[[i]]);

w.boot<- c(w.boot, weigths.boot);

loadings.boot<- unlist(risultati.boot$l.finali[[i]]);

l.boot<- c(l.boot, loadings.boot);

}

W.boot[n,]<-w.boot;

L.boot[n,]<- l.boot;

mI<- modelloInterno(risultati.boot$zeta);

P.boot[n,] <- mI$beta;

correlation[[sample]]<-mI$corr.latent;

R2.boot[n,] <- mI$r2;

}

}

}

}

t.pb <- matrix(NA, 7, 2);

t.lb <- matrix(NA,ncol(L.boot), 2);

l.original<- unlist(prova$l.finali,recursive=TRUE);

w.original<-unlist(prova$w.norm,recursive=TRUE);

t.wb <- matrix(NA,ncol(W.boot), 1);

t.rb <- matrix(NA, 3, 1);

for (j in 1:ncol(W.boot)){

t.wb[j,] <- round((w.original[j]/sd(W.boot[,j])),4)

Weights<-data.frame(Original=w.original,

Mean.Boot=round(apply(W.boot,2,mean), 4),

Std.Err=round(apply(W.boot,2,sd),4),t.statis=t.wb[,1],

intconf.025=round(apply(W.boot,2,function(x) percentili(x, 0.025)) , 4),

intconf.975=round(apply(W.boot,2,function(x) percentili(x, 0.975)) , 4))

rownames(Weights)<-manifest.names;

}

for (j in 1:ncol(L.boot)){

t.lb[j,] <- round((l.original[j]/sd(L.boot[,j])),4)

Loadings <- data.frame(Original=l.original,

Mean.Boot=round(apply(L.boot,2,mean), 4),

Std.Err=round(apply(L.boot,2,sd),4), t.statis=t.lb[,1],

intconf.025=round(apply(L.boot,2,function(x) percentili(x, 0.025)) , 4),

intconf.975=round(apply(L.boot,2,function(x) percentili(x, 0.975)) , 4))

rownames(Loadings)<-manifest.names;
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}

for (j in 1:ncol(P.boot)){

Path.coefficient<- data.frame(Original=prova$beta,

Mean.Boot=round(apply(P.boot,2,mean), 4),

Std.Err=round(apply(P.boot,2,sd),4), T.Statistics= prova$t.statistics,

Pr = prova$p.value,

intconf.025=round(apply(P.boot,2,function(x) percentili(x, 0.025)) , 4),

intconf.975=round(apply(P.boot,2,function(x) percentili(x, 0.975)) , 4))

rownames(Path.coefficient)<-path.coefficients;

}

for (j in 1:ncol(R2.boot)){

t.rb[j,] <- round((prova$r2[j]/sd(R2.boot[,j])), 4)

R2<- data.frame(Original=prova$R2,

Mean.Boot=round(apply(R2.boot, 2, mean), 3),

Std.Err=round(apply(R2.boot,2,sd),3), t.statis=t.rb,

intconf.025=round(apply(R2.boot,2,function(x) percentili(x, 0.025)) , 4),

intconf.975=round(apply(R2.boot,2,function(x) percentili(x, 0.975)) , 4))

}

par(mfrow=c(4,4));

hist(P.boot[,1])

hist(P.boot[,2])

hist(P.boot[,3])

hist(P.boot[,4])

hist(P.boot[,5])

hist(P.boot[,6])

hist(P.boot[,7])

output<-list( Weights=Weights, Loadings=Loadings,

Path.coefficient=Path.coefficient,R2=R2);

output;

}
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B.4 The construction of the model

%These are the commands to write in the prompt of R to specify the model,

%the latent blocks and the suddivision of the manifest variables in these blocks.

%It is also specified the names of latent and manifets variables,

%the nature of the manifest variables

%and the type of latent variable (endogenous or exogenous).

mat<- read.table(".txt", header=T,sep="\t")

%This is the data matrix to read and it must be in a txt format

l1<- data.frame(mat[,""].....)

l2<-data.frame(mat[,""],....)

l3<-data.frame(mat[,""],....)

% This is the specification of the latent blocks (for example three):

%in this command it is necessary to specify the

$manifest variables of the mat matrix

mat<- list();

mat[[1]] <- l1;

mat[[2]] <- l2;

mat[[3]] <- l3;

%This is the matrix subdivides in latent blocks

inner <- matrix(0,number of latent variables,number of latent variables);

inner[2,1] =1;

inner[3,2] =1;

%This is the inner matrix in which there are

%specified the relationships between the latent variables

natura<-list()

%The list in which there is specified the nature of

%each manifest variable

latent.names<- c("", .....)

manifest.names<- c("‘"’,....)

path.coefficients<- c("", .....)

type.variable<- c(rep("Exogenous",..), rep("Endogenous",..))

endo<-c(....)
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%These commands are: the vector of names of latent and manifest varisbles,

%the names of pathe coefficients, the typology of latent variables and

%the specification across 0 (exogenous) and 1 (endogenous)

of the typology of the latent variables
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