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O Rose, thou art sick!  

The invisible worm 

That flies in the night, 

In the howling storm, 
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Introduction 

In this thesis, performed in the framework of the interdisciplinary research of the Italian 

National Institute of Physics (INFN) and within a collaboration with Prof. S. Pospisil at Czech 

Technical University in Prague, Institute of Experimental and Applied Physics, we compared the 

experimental technique of Single Photon Counting (SPC) imaging to the charge integrating 

Flat Panel (FP) detector imaging, for X-ray biomedical imaging applications. In particular, we 

investigated the application of SPC detector for the X-ray micro-imaging and X-ray volumetric 

Computed Tomography (CT) technique. 

The motivation for such a research arises from the potential advantages of the single photon 

counting technology. In fact, this detection modality allows to have an efficient suppression of the 

electronic noise, scatter radiation rejection and immunity for afterglow effect of scintillator-based 

detectors, thanks to a read-out scheme able to discriminate photons with energy above a chosen 

threshold. This means that, during the exposure, the signal increases but not the noise, leading to 

excellent values of the image quality parameters such as the Signal-to-Noise Ratio (SNR) and the 

Contrast-to-Noise Ratio (CNR). In SPC imaging, each interacting photon is counted as one single 

event, independently of its energy, so that soft X-rays are equally weighted compared to the harder 

ones. This results into a high Contrast (C) also for low attenuating objects, such as soft tissues in an 

organism or small biological samples. On the contrary, charge integrating detectors (and FP 

detector among this class of devices) integrate both signal and noise, and high energy photons bring 

a larger weight than low energy ones. These high energy photons, however, contribute less to the 

detectability (SNR) and to the visibility (C) of low contrast samples, since material attenuation 

generally decreases with increasing energy. 

Theoretical models and computer simulations [1]-[3] show that energy sensitive detectors - 

and SPC detectors as particular representatives of this class of devices - may perform better than 

charge integrating systems in terms of SNR, for X-ray 2D and 3D imaging. The significance of such 

result is also related to the possibility of a high image quality for a satisfactory visualization of the 

sample with a lower radiation dose, because the same image SNR can be achieved with a lower 

exposure level. 

The above described aspects of the SPC technology are most important in medical imaging, 

where the patient absorbed dose and the low contrast image quality for the soft tissues detection are 

the fundamental parameters to take into account. In fact, the harder task in X-rays imaging is to 

visualize small and low-attenuating structures in an organism, using X-rays of energies neither too 

low (because they result in a high absorbed dose) or too high (because they result in loss of contrast 

for softer tissues). 
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SPC detectors may provide an accurate representation of the beam hardening effect with 

compared to charge integrating devices [4]. In fact, charge integration decreases the relative weight 

of the low energy part of the spectrum thus giving less importance to the loss of the soft photons as 

the beam is transmitted through the sample. On the other hand, SPC devices assign the same weight 

to all the detected photons, leading to a higher but more correct expression of the beam hardening 

effect. 

The aim of this thesis is to experimentally demonstrate the feasibility of planar, real-time 

and tomographic X-ray imaging utilizing an SPC detector in the field of Medical Physics. Since the 

use of this technology is regarded as an alternative to the more commonly employed charge 

integrating systems, a comparison with an FP detector, in terms of image quality parameters (SNR, 

C, CNR) evaluation has also been done. 

The thesis is organized as follows. 

In the first chapter, the basic concepts of the SPC technology are described, with a particular 

attention to the analysis of advantages and drawbacks of its use in Medical Imaging. The CT 

technique and the more common reconstruction algorithms have also been described in their general 

features. Finally, an overview of the state of the art of the SPC application in CT is presented. 

In the second chapter, the experimental systems employed for the experimental part of this 

work are described, with particular attention to the SPC detector used: the Medipx2 SPC hybrid 

pixel detector, developed within the Medipix2 European Collaboration (designed at CERN, Geneva, 

Switzerland) to which University & INFN Napoli belong [5]. The characterization of the 

measurements setups is presented. Moreover, two kinds of detector pixels efficiency equalizations 

have been described: the standard Flat Field Correction (FFC) and the 

Signal-to-Thickness Calibration (STC) [6] [7]. 

In the third chapter are reported the experimental tests and images relative to the application 

of the Medipix2 SPC detector for planar, tomographic and real-time X-ray imaging of small 

biological samples. Then, its performance in terms of image quality parameters has been compared 

to a commercially available FP charge integrating detector used in the same experimental 

conditions. Moreover, two kinds of detector pixels efficiency equalizations have been compared in 

terms of image parameters, on images of both phantoms and biological samples. 



 4

References 

[1] R. N. Cahn, et al., “Defective quantum efficiency dependence on X-ray energy 

weighting in mammography”, Med. Phys., vol.26, No. 12 (1999); 

[2] J. Giersch, et al., “The influence of energy weighting on X-ray imaging quality”, 

NIM A, vol.531, pp. 68-74 (2004); 

[3] P. M. Shikhaliev, et al., “Photon counting computed tomography: concept and initial 

results”, Med. Phys., vol. 32 (2), pp. 427-36 (2005); 

[4] P. M. Shikhaliev, “Beam hardening artefacts in computed tomography with photon 

counting, charge integrating and energy weighting detectors: a simulation study”, Phys. Med. 

Biol., vol. 50, pp. 5813-27 (2005); 

[5] Medipix collaboration at www.cern.ch/medipix; 

[6] J. Jakubek, “Data processing and image reconstruction methods for pixel detectors”, 

NIM A, vol. 576, 164-170, (2003); 

[7] J. Jakubek, et al., “Quality of X-ray transmission radiography based on single photon 

counting device”, NIM A, vol.546, pp. 113-117 (2005). 



 5

Chapter 1. Application of a Single Photon Counting (SPC) 

detector in the medical imaging field 

In this chapter we introduce the concept of the Single Photon Counting (SPC) detector and we 

examine its usage in the field of medical imaging as an alternative to the commonly used charge 

integrating detectors. In particular, we investigate its application for the Computed Tomography 

(CT) technique. 

The chapter is divided into 3 paragraphs: 

1.1 SPC: how it works, advantages and drawbacks 

1.2 Computed Tomography 

1.3 SPC and CT: state of the art 

1.1 SPC: how it works, advantages and drawbacks 

Most radiological imaging systems consist of direct or indirect digital detector CCD or, 

screen-films. This class of devices works via a charge integrating principle: the sum of the charge 

accumulated in a pixel corresponds to the total X-ray energy absorbed in that pixel in the image. 

Therefore the contribution of the converted photons is weighted by their energy. Image contrast is 

generated by the absorption of photons in different parts of the object. Since the low energy photons 

are attenuated more strongly in the object, they carry more information than the high energy ones; 

for this reason, weighting the photon by its energy implies that image contrast carried by low 

energy photons has a weaker weight and the Poisson noise contributions from high energy photons 

are enhanced. The result is a decrease in the image Signal-to-Noise ratio (SNR). 

The alternative is the photon counting mode that performs counting of single events. 

Quantum imaging has become possible due to the advances in microelectronics, which allows for 

design and fabrication of pixellated chips with pulse processing front-end electronics in each cell. In 

this way a particle signal can be distinguished from the background noise and the discrimination is 

implemented using a noise reducing pre-amplifier circuit and a discriminator in every read-out 

channel to set, when possible, the detecting level safely above the noise. The measured charge pulse 

defines the energy of the absorbed photon, and it is possible to perform spectroscopic 

discrimination in each pixel. Furthermore, is possible to use a few thresholds to select an energy 

window in a continuous spectrum to provide the so-called “colour” X-ray imaging. 

The main advantage of photon counting noise suppression is the resulting large and linear 

dynamic range that improves the image quality for low-contrast objects and allows to lower the 

patient dose [8]. Hence, it is possible to use long continuous data acquisition times to improve the 

image contrast for applications with low photon flux. A photon counting detector would also 
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provide immunity from the afterglow effect, present in scintillator based detector, which causes 

image blurring and degradation of spatial resolution for CT [13]. 

In the medical X-ray imaging field an important requirement is a high count rate capability 

and a fast digital data storage. This necessity has been met thanks to the employment of Application 

Specific Integrated Circuit (ASIC) technologies, able to accommodate the high counting and data 

transfer rates required. 

The density of electronic components per unit area exponentially increases with time, thanks 

to the reduced feature size, allowing increased functionality per unit area and/or reduced pixel size. 

On the other hand, the smaller the pixel area the higher the probability of the charge sharing effect 

(the signal charge from one particle shared between several pixels
1
) that leads to a loss of registered 

hits and, for medical imaging applications, this is turned into a higher patient dose [14]. A number 

of solutions have been studied to overcome this problem, like summing up the charge fractions 

belonging to the charge deposition of one particle and comparing the summed charge to a threshold 

[15]. 

When comparing the integrating technology with the SPC one in the case of a polychromatic 

X-ray source, one can find that the SNR is improved due to the fact that an SPC detector assigns an 

optimal energy-weighting factor w (equal to 1) to the detected photons, as opposed to the charge 

integrating detector, where the energy factor is approximately proportional to the energy of the 

photon (w ~ E), favouring high energy photons. 

In fact, by appropriately selecting the weighting factor w, as a function of the photon energy 

E, the image SNR can be optimized. For a photon energy spectrum passing through two adjacent 

regions, 1 and 2, with different absorption coefficients (different transmission T), the SNR can be 

defined as the difference of the means of two intensity distributions S1 and S2, divided by their 

standard deviations σ2
1 and σ2

2 [16]: 
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where n1 and n2 denote the number of photons recorded in the two adjacent regions. It has been 

shown [1] that the optimal weighting function is given by: 

                                                
1 The photon interaction with the detecting medium convoluted with diffusion gives rise to an extended cloud of charge, whose lateral dimension 

might reach a size comparable to the pixel pitch [15]. 
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with T1 and T2 the transmission through region 1 and region 2 respectively. This optimal weight 

function can only be calculated if the exact composition and thicknesses of the object are already 

known. It can be seen that, in the region dominated by the photoelectric effect (10 - 40) keV, the 

energy weighting, using a weighting factor of 1/E
3
, can result in an SNR

2
 enhancement compared to 

the integrating and the SPC modality. Moreover, with the energy weighting mode it is possible to 

get images with the same quality but with less photons, reducing the dose by a factor of 2.5 [2]. In 

Tab. 1-1a, Tab. 1-1b and Tab. 1-1c we report some Monte Carlo simulated results from ref. [1] in 

which the performances in terms of SNR of the three possible detection modalities have been 

compared: the charge integration, the energy weighting and the single photon counting. Three 

phantoms have been simulated: a low contrast one, a high contrast breast calcifications one and a 

computed tomographic one (see caption relative to Tab. 1-1 for details). As one can see from the 

SNR evaluation, the higher image quality is recovered from the energy weighting modality, 

followed by the single photon counting detection. 

Fig. 1-1 reports the behaviour of the theoretical weighting function, as evaluated from ref. 

[1], for two material combinations and the plot of 1/E
3
, compared to the plot for an integrating 

detector (~ E) and a counting detector (const.). A further consideration must be done on the 

improvements accomplished with optimum energy weighting on single photon counting mode as 

well as with the single photon counting mode on energy integrating mode for two different energy 

spectra [1]: one can see that the SNR enhancements are larger for a molybdenum spectrum than for 

a tungsten spectrum. In fact, the Mo spectrum shows stronger variations with energy, especially in 

the low energy region where the relative differences between the weight factors are larger, therefore 

the gain in weighting the spectrum is larger for molybdenum compared to tungsten. The found 

results are fairly similar for tumours and for micro-calcifications. 

It is worth paying attention also to an important effect of X-ray computed tomography that is 

the “beam hardening”. This effect is caused by the higher absorption from the sample of X-rays 

with lower energy, so that the spectrum traversing the sample looses a huge fraction of its soft 

component, resulting “harder” than the original one. It is interesting to note how different types of 

detector face with this phenomenon.  

 

                                                

2 The Signal-to-Noise ratio as defined in ref. [2] is: SNR = 

S

S

~

~

σ
, where S

~
is the sum of the signals of each channel of an energy sensitive 

detector multiplied for an individual weighting factor wi and 
S
~σ is the noise obtained from the error propagation (assuming that the noise is Poisson 

distributed). 
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(a) 

(b) 

(c) 

Tab. 1-1 Results from SNR evaluation on Monte Carlo simulated data relative to a low contrast phantom 
(a cylinder consisting of breast tissue including five cylinders of adipose tissue and five cylinders of water) (a), 
a breast calcification phantom (a cylinder consisting of 30 mm thick breast tissue, including 35 breast 
calcification of different thicknesses and diameters) (b) and a computed tomography phantom (a phantom 
56 mm diameter including eight low contrast objects: one adipose and one water object and six objects of blood 
with different diameters) (c). The evaluations have been done simulating an integrating detector, a single photon 
counting detector and a weighting detector. [1]  

 

 

Fig. 1-1 Weighting functions for two material combinations and the plot for 1/E3, resulting in the best 
approximation. For comparison also the plot for an integrating detector (~ E) and a counting detector (const) are 
shown. [2] 

 

It has been shown [4] from a simulation study that a charge integrating detector results in 

1.8 % less beam hardening artefacts from bone insert in a 20 cm diameter water phantom compared 



 9

to a photon counting
3
. On the other hand optimal energy weighting, providing the highest SNR, 

results in 7.7 % higher beam hardening artefacts from the same bone insert, compared to the SPC 

detector. These values can be explained as follows: the energy weighting detectors score the 

detected photons with the factor proportional to E
-3

, so that the lower energy photons are scored 

higher than high energy photons; therefore, energy weighting detectors overestimate the beam 

hardening effect. On the other hand, for the same reason, the charge integrating devices 

underestimate this effect. Only the photon counting technology provides an accurate representation 

of the phenomenon because of its flat energy weighting. 

1.2 Computed Tomography 

Among the high number of medical imaging techniques, X-ray Computed Tomography 

(CT) holds, nowadays, the most important role for 3-D morphological investigation of organs and 

tissues both in the human and in the animal diagnostic field. This non-invasive method, in fact, 

allows to visualize the anatomical internal structures of a body and it is commonly combined with a 

functional diagnostic technique (as SPECT, PET or MRI) to get a global functional knowledge of 

the organism. 

The physical principle exploited in CT is the X-ray penetrative nature and the attenuation 

which they undergo when passing through the body. X-rays of given energy are differently 

attenuated from different tissues (soft tissues or bone structures), giving rise to a three-dimensional 

map of the attenuation coefficient of the body. In this way it is possible to get information on 

anatomical structures, on their morphology and position and, consequently, to find anomalies, 

diseases and structural changes. 

The potential of the CT technique has been exploited not only in the diagnostic medical field 

but also in several other applications, like diagnostic of materials, investigation of microelectronics 

components, biology, geophysics, archaeology, cultural heritage, safety in public places or with 

controlled-door (airports, military zones, prisons, etc.) and in all the sectors in which an internal and 

non-destructive investigation of opaque objects is necessary. All the CT systems realized for 

non-clinical purposes go under the definition of “industrial CT”. 

An X-ray CT system is realized by means of three principal components: an X-ray source 

(typically tube), the sample to be analysed and a detection system of the transmitted radiation. 

Moreover, it is necessary to use a mechanical rotation arrangement for the sample or, alternatively, 

for the source-detector system. The image acquisition process consists of the detection of the X-rays 

beam exting from the sample and interacting with a detector placed in the downstream. The images 

                                                
3 The beam hardening has been evaluated as the relative percentage of the average pixel values in the shadow of the bones compared to the average 

pixel values over the periphery of the image [4]. 
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(projections) are acquired at different angular positions of the sample compared to the 

source-detector system, at least, 180° + α (depending on the geometry and on the beam angle), 

where α is the fan angle (aperture angle of the beam). In this way, each angular view corresponds to 

a bi-dimensional projection of the tri-dimensional attenuation properties of the sample. There are 

four generations for the CT geometry, as depicted in Fig. 1-2 (a - d): in the first generation (a) the 

detector-source pair translates through the object’s whole dimension at each angular view; the 

geometry and scanning modality for the second generation (b) is the same as the first, but the beam 

has a given fan angle while the single detector is substituted by a linear array of several detectors to 

increase the sampling. In the third generation (c) the fan beam is wider as well as the detectors array 

so as to avoid the translation. Finally, in the fourth generation (d) only the tubes rotate and the fan 

beam is recorded by an array of static detectors placed all around the sample. Alternatively to these 

geometries, the source-detector couple stands fixed in one position, while the sample rotates. 

 

(a) (b) 

(c)  (d) 

Fig. 1-2 First (a), second (b), third (c) and fourth (d) generation of CT depicted in a schematic way [8]. As 

described in the text, in the first generation (a) the detector-source couple translates through the whole object’s 
dimension at each angular view; the geometry and scanning modality for the second generation (b) is the same as 
the first, but the beam has a fan aperture angle while the single detector is substituted by an array of several 
linear or bent detectors to increase the sampling. In the third generation (c) the fan beam is wider as well as the 
detectors array so as to avoid the translation. Finally, in the fourth generation (d) only the tubes rotate and the 
fan beam is recorded by an array of static detectors placed all around the sample. 
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The projection of an object at a given angle φ is made up of a set of line integrals, 

representing the total attenuation of the X-ray beam traversing the whole object in a straight line. 

The simplest and easiest way to model the phenomenon is by considering the data collected as a 

series of parallel rays, at position ξ, across a projection angle φ and for various angles. 

Attenuation occurs exponentially in tissue: 

)),(exp(0 ∫−= ξµ dyxII  

where µ(x) is the attenuation coefficient at position x along the ray path. Therefore, generally, the 

total attenuation p of a ray at position ξ, on the projection angle φ is given by the line integral: 

)),()/ln(),( 0 ∫−== ξµϕξ dyxIIp , (1) 

and because in polar coordinate the value of ξ onto which the point (x, y) will be projected at 

angle φ can be written as: 

ϕϕξ sincos yx +=  

equation (1) can be rewritten as: 

∫ −+= dxdyyxyxfp )sincos(),(),( ξϕϕδϕξ , 

where f(x, Y) represents µ(x, y), δ is the Dirac delta function and the coordinates x, y, ξ and φ are 

defined in Fig. 1-3. 

 

 

Fig. 1-3 Coordinate system for the Radon transform [9] 

 

The function p(ξ, φ) is the so-called “Radon transform” of the 2-D object and it is often 

referred to as “sinogram” because for an off-center point source it is a sinusoid. A typical slice 

image and its Radon transform are shown in Fig. 1-4. 
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Fig. 1-4 Shepp-Logan phantom and its Radon transform (sinogram) [8] 

 

The task of tomographic reconstruction is to find f(x, y) for given knowledge of p(ξ, φ). 

Mathematically, a backprojection operation defined as: 

∫ += ϕϕϕϕ dyxpyxf BP ),sincos(),(  

is calculated to bring the measured sinogram back into the image space along the projection path. 

Fig. 1-5 shows the backprojection image of the Shepp-Logan phantom of Fig. 1-4. 

 

 

Fig. 1-5 The backprojection image of the Shepp-Logan phantom. [8] 

 
The solution to the inverse Radon transform is based on the “central slice theorem” (CST), 

wich relates F(νx, νy), that is the 2D Fourier transform (FT) of f(x, y), and P (ν, φ), that is the 1D FT 

of p(ξ, φ). Matematically: 

)sin,cos(),( ϕνϕνϕν FP =  

and it states that the value of the 2D FT of f(x, y) along a line at the inclination angle φ is given by 

the 1D FT of p(ξ, φ), the projection profile of the sinogram acquired at angle φ. From the draw of 

Fig. 1-6one can deduce that with enough projections, P (ν, φ) can fill the νx - νy space to generate 

F(νx, νy). 
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Fig. 1-6 Central slice theorem [9] 

 

Once F(νx, νy) is obtained from p(ξ, φ) using the CST, f(x, y) can be obtained by applying 

the inverse FT to F(νx, νy) that converts data back from frequency domain to spatial domain (Fig. 

1-7). 

 

 

Fig. 1-7 Flow of direct Fourier reconstruction [9] 

 

The simple backprojection has the problem of the “pattern” artefacts caused by radiation 

from adjacent areas resulting in the blurring of the object. Since the blurring decreases with the 

distance r from the object of interest, it can be described by a 1/r function and can be minimized by 

applying a filter to the acquisition data. Such method is called the filtered backprojection (FBP) and 

the applied filter is the” ramp filter” drawn in Fig. 1-8. The filtered projections are backprojected to 

produce an image that is more representative of the original object: once the Fourier transform 

F(νx, νy) of each row in the sinogram of the 2-D projection data is taken and added together, the 

ramp filter H(ν), in the frequency domain is applied to each profile data: 

F'(ν) = H(ν) · F(ν), 

where F'(ν) is the filtered backprojection which is obtained as the product of H(ν) and F(ν). Finally, 

the inverse Fourier transform is performed to recover the filtered projection data, which are then 

backprojected in the same way as in the simple backprojection. 
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Fig. 1-8 The typical high-pass ramp filter in frequency domain [10] 

 

An undesirable effect of the ramp filter is the amplification of the noise associated with high 

spatial frequencies in the images. To overcome this effect, other types filters can be used. 

The FBP algorithm is an analytic method, but, on the other hand, the reconstruction is 

actually exact only when the noise influence is negligible and when the number of projections is 

infinite. Moreover, it is not an easy task to implement the algorithm taking into account the different 

experimental conditions like the geometry, the presence of scattering radiation or fluorescence from 

the sample, the beam hardening, the phase contrast effect. This limitation leads to the manifestation 

of artefacts in the tomographic slices lowering the image quality. To overcome this problem the 

class of iterative reconstruction algorithms based on the Expectation Maximization (EM) can be 

seen as a good alternative. Their main benefit lies in the possibility of more realistically modelling 

the physics of the data acquisition process, including non-linear detector response compared to 

attenuation line integral caused by beam hardening and scatter, as well as the stochastic properties 

of the measured data. Other advantages include the ease with which they can be adapted to specific 

detector-response models, robust performance in the presence of incomplete data and the possibility 

of incorporating arbitrary constraints. 

Among the iterative algorithms based on the expectation maximization method the more 

widely used ones are the maximum expectation maximization (MLEM) algorithm and the 

Ordered Sub-set Expectation Maximization (OSEM) algorithm. The first one works as follows: the 

projections of the sample are computed by means of a physical model and then compared to the 

measured ones. From the comparison the trial model of the object is updated to recover projections 

closer to the experimental ones. The iterative nature of the algorithm stands in the repetition of 

these steps (Fig. 1-9) – simulation of projections from a trial object, comparison with acquired 

projections and modifications of the trial object to get a new set of projections – until the perfect 

convergence of the simulated and experimental data producing the tri-dimensional image of the 

object. The main disadvantage of the MLEM iterative method is the long computational time. 
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Fig. 1-9 Schematic diagram of the iterative reconstruction methods. 

 

To accelerate the convergence speed of iterative algorithms the technique of 

Ordered Subsets (OS) has been introduced, which, combined with the EM method, takes the name 

of OSEM. The OSEM algorithm splits each iteration in several sub-iterations and, in each 

sub-iteration, just a selected subset of all projections is used for trial object modification. The 

subsequent sub-iteration uses a different subset of projections and so on. One single full iteration is 

complete when all the projections have been exploited. The number of projections in each subset 

can be as low as three or four and the speed of an iterative process results approximately increased 

by the number of subsets used. OSEM algorithm includes the standard EM as a particular case 

when a single sub-set, including all the projection, is used. [11] 

Finally, when the reconstruction is complete, visualization softwares (ImageJ, MicroView, 

etc.) allow to overlap the tomographic slices in a way to recover a tri-dimensional image in which 

the internal sample’s characteristics and their placement in the space are clearly distinguishable.   

1.3 SPC: state of the art 

Nowadays, all of the major imaging systems manufactures (Canon, GE, Hologic, Philips, 

Siemens, Toshiba, Varian) offer Flat Panel based Detectors (FPD), employing indirect or direct 

conversion technology. The pixel sizes of these detectors range from 70 µm x 70 µm to 

200 µm x 200 µm, in arrays up to 14 million pixels and active areas up to 43 cm x 43 cm [18]. The 

alternative SPC technology, although it may show a better image quality than the charge integrating 

one [1], is still not largely spread in laboratories and in clinical systems because of limitations as the 

small sensitive areas and the high costs of production and testing. Anyway, as one can find in 

literature, photon counting imaging has been approached adapting detectors based on Si [19] [20], 

CZT [21] [22], Xe based gas avalanche detectors [23] and Micro-Channel Plate (MCP) detectors 

[24] [25]. Thus, in the medical physics panorama we can find some examples of SPC detectors 

employed for X-ray imaging; in the following we present a short excursus of such devices. 
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1.3.1  XPAD2 and XPAD3 photon counting chip for X-ray PIXSCAN CT 

scanner 

An example of SPC detector employment in CT comes from the collaboration between the 

Centre de Physique des Particules de Marseille (Marseille, France), the Laboratoire de 

Cristallographie (Grenoble, France) and SOLEIL Synchrotron (St. Aubin, France). The CT scanner 

developed by this collaboration employs the X-ray Pixel Chip with Adaptable Dynamics (XPAD3) 

circuit, a photon counting chip, newer version of a XPAD2 [26] [27]. This device is a hybrid 

detector in which the chip is connected to the sensor (Si or CdTe) using the bump bonding and 

flip-chip technologies. The circuit is designed in IBM 0.25 µm technology and contains 9600 square 

pixels, 130 µm x 130 µm in size, arranged in a matrix of 80 x 120 elements. It provides a count rate 

higher than 109 ph/pixel/mm2, a high dynamic range higher than 60 keV, a noise detection level of 

100 e
-/
rms, the possibility of an energy window selection and an image read-out lower than 

2 ms/frame. Each pixel of the chip contains a charge sensitive preamplifier, an operational 

transconductance amplifier followed by a set of current comparators for energy selection. The 

selected pulses feed a 12 bits counter associated with an overflow mechanism. Nine configuration 

bits are available in each pixel for control. The newer version has not yet been tested for 

tomographic acquisition, differently from the older one, XPAD2. This chip includes 600 pixels of 

330 µm x 330 µm. It includes a charge amplifier, a discriminator and a 15 bits counter. Eight 

XPAD2 are bump-bonded on a 65 mm x 8 mm x 0.5 mm silicon sensor. Thanks to a fast read-out 

system, the full detector can be read in less than 2 ms. A table with all the specifications of the two 

chip versions is shown in Tab. 1-2. 

 

 

Tab. 1-2 XPAD2 and XPAD3 chip’s features. “S” stands for “Si”, “C” stands for “CdTe” [27] 
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The CT scanner employing the XPAD2 detector is named PIXSCAN (a photo is shown in 

Fig. 1-10). Tomographies of an anesthetized mouse, placed into a Plexiglas cylinder, were 

performed using a wide conic beam aperture X-ray source (30 W, 60 kV, 0.8 mA; Rontgentek, 

SEPH, France) with an emission spot of 50 µm x 50 µm. Also several black calibration images 

(no object and fixed source) were acquired and averaged to obtain the map of unstable oscillating 

pixels. Similarly several white calibration images (no object but open source) were used to map 

non-working pixels with constant output. All defective pixels (oscillating and non-counting) were 

masked for the tomographic reconstruction calculation. 

 

 

Fig. 1-10 PIXSCAN tomograph, employing the hybrid SPC detectorXPAX2 [26] 

 

Even though 400 cone beam projections were required to get the best possible spatial 

resolution for the tomographic reconstruction of the mouse body, given the detector pixel size, only 

one image per degree (360 images per scan) has been acquired. These images have then been 

processed using a Feldkamp-based reconstruction algorithm for cone beam tomography provided by 

CREATIS (RecFDK). Examples of both one projection and of the resulting mouse tomographic 

images are presented in Fig. 1-11. Although images are still preliminary and can still be improved 

in different ways, a high absorption contrast can be seen between the air-filled lungs (dark) and the 

dense spine and rib bones (white) on the horizontal and coronal slices. 
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(a) 

 (b) 

Fig. 1-11 Projection of an anesthetized mouse (a); tomographic reconstruction of mice images: horizontal slice of 
a mice thorax (left), coronal slice (middle), bone surface image of a mouse head and thorax (right). XPAD2 
detector was employed [26] 

 

1.3.2  Pixel Apparatus for the SLS (PILATUS) [28] 

The PILATUS detector (pixel apparatus for the SLS) is a novel type of X-ray detector, 

which has been developed at the Paul Scherrer Institut (PSI) for the Swiss Light Source (SLS). 

PILATUS detectors are two-dimensional hybrid pixel array detectors, which operate in SPC mode; 

they comprise a preamplifier, a comparator and a counter in each cell. The preamplifier enforces the 

charge generated in the sensor by the incoming X-ray; the comparator produces a digital signal if 

the incoming charge exceeds a predefined threshold and thus, together with the counter, one obtains 

a complete digital storage and read-out of the number of detected X-rays per pixel. PILATUS 

detectors main features include: no read-out noise, superior signal-to-noise ratio, read-out time of 

5 ms, a dynamic range of 20bit, high detective quantum efficiency and the possibility to suppress 

fluorescence by an energy threshold that is set individually for each pixel.  

The PILATUS 100k detector system has been designed for the detection of X-rays from 

synchrotrons or laboratory source. This hybrid pixel SPC detector has 487 x 195 pixels with a pixel 

size of 0.172 mm and an active area of 84 x 34 mm2. The device has a dynamic range of 106 

(20 bits), a read-out time of less than 3 ms and a frame rate of over 200 images/s. The quantum 

efficiency when the sensor is a 0.32 mm thick silicon semiconductor is suitable for experiments in 

the energy range of 3-12 keV, also if the detector can be used for energies of up to 30 keV or more.  

The counting rate higher than 2 ٠ 106 photons/s/pixel allows for detection of elevated flux as from 
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synchrotron light sources. A photo of the PILATUS SPC detector is shown in Fig. 1-12 in which 

the bump-bonding between chip and sensor is visible, while Tab. 1-3 reports its main features. 

 

 
Fig. 1-12  Bump-bonded hybrid PILATUS chip [29] 

 

 

Pixel size  172 x 172 µm
2

 

Format  487 x 195 = 94 965 pixels  

Active area  83.8 x 33.5 mm
2

 

Counting rate  > 2x10
6 

counts/s/pixel  

Energy range  3 – 30 keV  

Readout time  < 2.7 ms  

Framing rate  > 200 Hz  

Power consumption  5W, air cooled  

Dimensions  285 x 146 x 85 mm
3

 

Weight  3.9 kg  
Tab. 1-3 Main features of PILATUS SPC detector [29] 

. 

1.3.3  Multi-Picture Element Counters (MPEC) [30] 

The MPEC read-out chip is a SPC pixel chip realized at Bonn University, 

Physikalisches Institut, with 1 MHz high-count rate capability and energy windowing. The latest 

version of the chip is the MPEC 2.3 for photon energy discrimination. The active area of 

6.4 mm x 6.4 mm is structured into 32 x 32 pixels of 200 µm x 200 µm size. Multichip modules are 

built, arranged with 4 SPC MPEC chips, bump bounded to 1.3 cm x 1.3 cm large semiconductor 

sensor. Every pixel cell of a MPEC 2.3 chip contains a preamplifier, two independent discriminator, 

and two 18 bit counters. A coarse discriminator threshold is set globally and a fine adjustment can 

be applied dynamically for each pixel. An energy window can be set using the two independent 
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discriminators. The hybrid nature of the chip allows to bump bond it either to a silicon 

(300 µm thick) or to a CdTe (500 µm thick) sensor.  

1.3.4  A Large-Area Detector with Incrementor (ALADIN) 

ALADIN is a read-out SPC chip solder bump bonded to a silicon pixel detector developed 

from the collaboration between the Imperial College of London (UK), the Glasgow University (UK) 

and the Rutherford Appleton Laboratory, Chilton (UK). It is provided with 64 x 64 pixels, 

150 µm x 150 µm in size, capable of a max count-rate of 1 MHz per pixel and a read-out speed of 

400 µs. Up to seven detectors have been connected together to get large area modules for X-ray 

diffraction studies. It has been showed that these ALADIN composed modules can image 19 keV 

photons at 200 kHz photons per pixel with 3 keV FWHM noise [31]. The frame-rate speed can 

arrive up to 1000 images per second, independently of the image size. 

 

Finally, we report here a table (Tab. 1-4) with a list of several systems and projects for 

hybrid SPC detectors [32], underlying that the development of this kind of devices had as its first 

aim the application in the High Energy Physics (e.g. ALICE [33], ATLAS [34], CMS [35], 

LHCb [36]) and that, only after a while they have been exploited in the Medical Imaging Field. 

 

 

Tab. 1-4 Systems and projects for hybrid photon counting pixel arrays [32]. 
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Chapter 2. Experimental set-up, system characterization and 

elaboration data procedures 

In this chapter we present the single photon counting detector used in this work and the 

set-ups in which it has been employed. The characterization of the set-ups is reported. 

A comparison of the SPC with a commercial energy integrating flat panel (FP) device has 

been carried out by means of a number of image quality parameters which have been here defined. 

Moreover, two pixel efficiency correction methods, a commonly applied one in Medical Imaging 

field (the Flat Field Correction, FFC) and a novel one (the Signal-to-Thickness Calibration, STC), 

performed on experimental data are here described.    

The chapter is divided in 3 paragraphs: 

1.4 Medipix2 SPC detector 

1.5 Experimental set-up 

1.6 Image quality (evaluation parameters and image correction methods) 

2.1 Medipix2 SPC detector [37] 

Medipix2 is an experimental single photon counting (SPC) detector developed within the 

Medipix2 European Collaboration (designed at CERN, Geneva, Switzerland) for various imaging 

application with X-rays and γ-rays, including synchrotron radiation, nuclear medicine, 

mammography, dental radiography, and radiation monitoring in nuclear facilities. 

The Medipix2 is the second improved generation [38] of a hybrid [39] Application-Specific 

Integrated Circuit (ASIC) consisting of a CMOS read-out chip which is bump-bonded pixel by 

pixel to a matching pixel semiconductor detector. The hybrid nature makes it possible to develop 

separately the read-out board from the sensor, giving the opportunity to choose the semiconductor 

material relatively to the application. The chip is design to accept either positive or negative charge 

input (either electrons or holes collection of the radiation induced ionization charge) in order to 

assure a large choice for the sensor material (Si, GaAs, CdZnTe,...). Detector leakage current gets 

compensate pixelwise at the input. Both the chip-board and the sensor have 256 x 256 square pixels, 

55 µm pitch size, for a sensitive area of 14 mm x 14 mm. A clarifying illustration is depicted in Fig. 

2-1, while a photo of the detector is shown in Fig. 2-2.   

Each cell contains (Fig. 2-3) 

− a charge sensitive preamplifier; 

− a double threshold discriminator, with an upper and lower threshold adjustment 

performed with a 3-bits register in each pixel, which allows threshold adjustment in 

eight steps; 
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− a 13-bit pseudo-random counter (the counter dynamic range can reach 11810 counts 

with overflow for a redesigned Medipix2 version called Mpix2MXR [40]). 

 

 

Fig. 2-1 The Medipix2 ASIC is a high spatial, high contrast resolving CMOS pixel read-out chip working in SPC 
mode. It can be combined with different semiconductor sensors (Si, GaAs, CdZnTe, ...) which convert the X-rays 
directly into detectable electric signals. This hybrid device represents a new solution for various X-ray and 
gamma-ray imaging applications [5]. 
 

The serial read-out can be performed either by a data acquisition card connected to the 

MUROS [41] serial interface circuit board (designed at NIkHEF [42]) or by a USB adapter 

(designed at Institute of Experimental and Applied Physics [43] of Czech Technical University in 

Prague, Czech Republic). The serial read-out speed is of 8.5 ms at 100 MHz with the MUROS 

interface, while the parallel read-out speed is of 266 µs at 100 MHz, allowing for high frame-rate 

real-time imaging [45] [46]. 

 

 

Fig. 2-2 Front and back of the Medipix2 hybrid detector. 
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Fig. 2-3 Scheme of the Medipix2 read-out circuit for each pixel [44] 

 
Each pixel can handle count rates up to about 100 kHz of randomly arriving particles and 

the exposure time can be arbitrarily set by means of the dedicate software Pixelman [43]. 

A summary of the main features of Medipix2 is listed in Tab. 2-1 [47]. 

 

 

Tab. 2-1 Main characteristics of the Medipix2 SPC chip [47] 
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In this work a MUROS2 interface has been used for the serial read-out and control of the 

chip. The sensor material was a 300 µm thick silicon sensor. The efficiency of this semiconductor 

for the mean energy of about 15 keV, in which we were working, results of about 50 %. For the low 

energy range (0 – 40) keV exploited for biological imaging Si is the most common chosen material. 

Obviously, a thicker detector would have a higher absorption efficiency. Fig. 2-4 shows the 

absorption efficiency for different materials (GaAs 200 µm and 300 µm thick, Si 300 µm and 1 mm 

thick and CdTe 300 µm thick) as a function of the photon energy ranging from 5 to 100 keV [48]. 

 

 

Fig. 2-4 Absorption efficiency for different materials (GaAs 200 µm and 300 µm thick, Si 300 µm and 1 mm thick 
and CdTe 300 µm thick) as a function of the photon energy ranging from 5 to 100 keV. [48]  

 

2.2 Experimental set-up 

The radiographic/tomographic systems for this research used alternatively the experimental 

SPC detector Medipix2 and a commercial energy integrating CMOS FP detector (Hamamatsu, mod. 

C7942-02). This device (photo in Fig. 2-5) is an indirect converting pixel detector provided with a 

scintillation layer 150 µm thick made of CsI:Tl coupled to an active photodiode array of 

2240 x 2344 square pixels of 50 µm pitch (sensitive area of 120 x 120 mm
2
). The whole device is 

covered by 1 mm thick Al alloy enclosure. The detector has about 7 lp/mm resolving power at 10 % 

of MTF [49] 
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Fig. 2-5 Flat panel energy integrating indirect detector provided with a scintillation layer 150 µm thick made of 
CsI:Tl coupled to an active photodiode array of 2240x2344 square pixels of 50 µm pitch (sensitive area of 
120 x 120 mm2). 

 
Two different X-ray sources have been employed in two different set-ups: an X-ray tube 

provided with a micro-focus of 5 µm (Hamamatsu, mod. L8601, max voltage 90 kVp, max current 

250 µA, tungsten anode) and an X-ray tube provided with a micro-focus of 35 µm size (Oxford 

Instrument, APOGEE package, series 5000, max voltage 50 kVp, max current 1 mA, molybdenum 

anode). Fig. 2-7 and Fig. 2-9 show the two set-ups with the tungsten anode source and with the 

molybdenum anode source respectively. The first system has been developed by the Institute of 

Experimental and Applied Physics (IEAP) of the Czech Technical University (CTU) of Prague 

(Czech Republic), while the second system has been made-up in the Medical Physics Laboratory of 

the Physical Science Department of “Federico II” University of Napoli, Naples (Italy). The two 

systems are arranged in the same way: the X-ray source, the housing for the sample and the detector 

(either Medipix2 or the FP detector). 

In the system developed at IEAP the sample and the detector can be moved along the three 

directions through software controlled motors. Moreover, the sample can be placed on a rotation 

stage so as to perform tomographic acquisitions. The tomographies have been acquired in the 

step-and-shoot mode: at each angular view the sample holder stops and the detector records an 

image. The tube voltage has been fixed at a value of 40 kVp and the mean energy of the beam for 

this setting has been calculated simulating the output tungsten spectrum [50] (Fig. 2-6) as 

Ēsimul = 15.0 keV. The source-to-detector distance (R1 + R2) has been kept fixed at 61 cm. 

In the system assembled at Medical Physics Laboratory in Naples both the sample and the 

detector can be moved along the two x-y directions by means of manually controlled motors or via 

a dedicated software, to enable the system for tomographic acquisitions. The tomographies have 

been acquired both in the step-and-shoot mode (when the FP detector has been employed) and in 

the continuous mode (when Medipix2 has been employed): the sample rotates 360° while the 

detector (Medipix2) records images. This means that the number of angular views on 360° is 

recovered by dividing the time of a complete rotation of the sample for the acquisition time, tacq, set 
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for the detector. The tube voltage has been fixed at a value of 40 kVp and the mean energy of the 

beam for this setting has been calculated simulating the output molybdenum spectrum [50] (Fig. 

2-8) as Ēsimul = 15.75 keV. The source-to-detector distance has been kept fixed at 35.7 cm. 

The Medipix2 detector has always been used setting only the low threshold discrimination 

level at a value of 5 keV. 
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Fig. 2-6 Tungsten spectrum for a radiogen tube with a tube voltage of 40 kVp for 1 mAs exposure. 

 

(a) 

Fig. 2-7 Micro-tomographic system placed in the IEAP laboratory. The system is arranged with an X-ray tube, 
molybdenum anode, provided with a micro-focus spot size (5 µm), a sample-holder, a rotating wheel in which are 
placed aluminium foils used to perform a Signal-to-Thicknesses Calibration that equalizes the detector pixels 
response and the detector (Medipix2 in the photo). Sample and detector can be moved along the three directions 

through software controlled motors. Moreover, the sample has the possibility to rotate to perform tomographic 
acquisitions. 
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Fig. 2-8 Molybdenum spectrum for a radiogen tube with a tube voltage of 40 kVp for 1 mAs exposure. 

 

(b) 

Fig. 2-9 Micro-tomographic system assembled in the Medical Physics laboratory of Physical Science Department 
of Napoli, composed of a radiogenic tube, tungsten anode, provided with a micro-focus (35 µm), a housing for the 
sample and the detector (Medipix2 in the photo). Both the sample and the detector can be moved along the two 
x-y directions by means of manually controlled motors or via a dedicated software, to enable the system for 
tomographic acquisitions. 

 

Fig. 2-10 shows the system spatial resolution versus increasing magnification M for both 

Medipix2 and the FP detector when the 5 µm focal spot source is employed [51]. The resolutions 

have been evaluated imaging a 0.05 mm thick tilted steel edge. The edge spread function (ESF) has 

been fitted with the error function and the Full With at Half Maximum (FWHM) of the amplitude 

has been estimated. For each point, 150 acquisitions of 1 s acquisition time each have been 

averaged. The tube voltage was V = 40 kVp and the tube current was I = 50 µA (to keep the focal 

spot as small as possible). 
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Fig. 2-10 FWHM spatial resolutions achieved with Medipix2 and the FP detector using a steel edge 0.05 mm 
thick at different magnifications M. V = 40 kVp; I = 50 µA. [51] 
 

From Fig. 2-10 it is evident that the limitation to the highest achievable spatial resolution is 

connected with the spot size of the X-ray tube [52]; the system spatial resolution reaches the highest 

value when using Medipix2 (4.2 µm) rather than the FP detector (6.6 µm), although the pixels of 

the two detectors have almost the same size. 

A measure of the exposure (in mAs unit) versus the dose in air at isocenter has been carried 

on for the tomographic system employing the 35 µm focal spot X-ray source; the measurements 

have been done both in the configuration with the Medipix2 and in the configuration with the FP 

detector. The geometrical source-to-detector distance has been kept the same (R1 + R2 = 35.7 cm). 

The plots related to the Medipix2 configuration and to the FP detector configuration are shown in 

Fig. 2-11a and Fig. 2-11b. 
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Fig. 2-11 Calibration of the exposure in mAs unit into the dose in air in Gy units for the set-up utilizing the 
Medipix2 detector (a) and the FP detector (b) for a tube voltage of 40 kVp with the 35 µm focal spot X-ray Mo 
source. 
  

The measurement of the exposure has been done by means of an ionization chamber (Radcal 

Corporation, mod. 2026C, sensor 20x6-6, volume of 6 cm
3
) placed at the isocenter: 
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(R1 + R2 )/2 = Riscenter = 17.8 cm. The exposure rate per minute has been measured in Roentgen (R) 

unit and then converted into Gray (Gy) units.The experimental data have been fitted and the two 

exposure/dose-in-air-calibrations are: 

Dose in air (mGy) = -0.02 + 0.2195 * Exposure (mAs)     for the Medipix2 configuration; 

Dose in air (mGy) = -0.005 + 0.2184 * Exposure (mAs)   for the FP detector configuration. 

A measure of the average counts recorded per pixel as a function of the air dose (evaluated 

from the exposure/dose in air calibration curve) has been done for the two detectors. The two plots 

are shown in Fig. 2-12a and Fig. 2-12b, respectively for Medipix2 and for the FP. The experimental 

data have been fitted and the parameters values of the two average counts per pixel versus 

dose-in-air-curves are: 

Average Counts per Pixel = 7 + 345347 * Air dose (mGy)  for the Medipix2 configuration; 

Average Counts per Pixel = 67 + 52429 * Air dose (mGy)  for the FP detector configuration. 
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Fig. 2-12 Average counts per pixel as a function of the air dose (evaluated from the exposure/dose in air 
calibration for Medipix2 (a) and for the FP detector (b) 

 

2.3 Image quality and pixel efficiency correction methods 

Image quality can essentially be summarized by four main performance characteristics: first, 

the spatial resolution that is the ability to distinguish adjacent features, second, the contrast image 

resolution which measures the ability to differentiate a low-contrast feature from its background. 

Image noise, partly due to random fluctuations of the X-ray photon flux, partially coming from the 

electronics and from the environment contribution, imposes a limiting factor to this parameter. The 

third characteristic is the temporal resolution, determining the ability to capture structures in 

motion. Finally, the fourth one is the quantitative accuracy needed to relate the image pixel values 

to physically meaningful quantities (X-rays attenuation coefficient, CT numbers). The X-ray CT 

research and development aim at major improvements in image quality maximizing these four 

parameters. In this thesis we focus our attention on the study of the second parameter, the contrast 

image resolution. In fact, in medical imaging one of the main tasks for a diagnostic system is the 
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ability to distinguish anomalies, variations and small suspected masses present in an organism from 

the background. In X-ray CT the main problem linked to this task is that these structures have an 

attenuation coefficient similar to the background. Moreover, soft tissues are little absorbing, so that 

they are, of themselves, difficult to be visualized. 

To quantifying the contrast resolution in this thesis we have been using the following 

parameters: 

• Signal-to-Noise Ratio 

BG

obj
SNR

σ

µ
=  

• Contrast 

BG

BGobj
C

µ

µµ || −
=  

• Contrast-to-Noise Ratio 

)(

||

22
BGobj

BGobj
CNR

σσ

µµ

+

−
=  

where 

µobj and µBG are the mean signal values in a region of interest (ROI), chosen, respectively, in the 

imaged object and in the background; 

 σobj and σBG are the standard deviation of the mean pixel values µobj and µBG. 

The SNR parameter compares the signal to the noise level in a ROI and it is generally higher 

than the value expected from the Poisson statistics of N , where N is the mean number of detected 

photons. In fact, several other sources of noise additionally contribute to the inherent fluctuations of 

the photon beam, such as dark current in the detector, secondary quantum noise in indirect detection 

systems, noise generated in the read-out electronics and fixed pattern noise due to beam or detector 

non-homogeneities or variations in detector response. For this reason the SNR does not include 

information about the statistical correlation of the fluctuations. The SNR parameter depends on the 

size of the chosen ROI and on the number of absorbed X-rays: the higher the latter is, the better the 

SNR is, but, evidently, the dose increases as well. Commonly for a signal to be detectable, the SNR 

values must be at least higher than 5 [53]. Besides the absorption efficiency of the detector, the 

SNR depends on the operation mode of the system, if counting or integrating. In fact, it was shown 

that the ideal detector which yields the maximum SNR disregards any energy information and 

simply takes into account the number of photons [54]. This means that energy integrating systems 

can only reach maximum SNR with a mono-energetic photon beam. 



 33

The C parameter, on the opposite, is independent from the ROI size and also of the dose 

(incoming number of photons) but gives an evaluation of the visibility and of the detectability of the 

signal in a ROI compared to the background signal or, analogously, it estimates the detector ability 

in distinguishing between two similarly attenuating materials. 

Also the CNR parameter is related to the visibility of a ROI compared to the background 

signal relatively to the noise. In fact, the noise is the major limiting factor in object detectability and 

a low noise level is therefore a prerequisite for a good image quality at reasonable doses, 

particularly when viewing small, low-contrast objects. The CNR value depends on the ROI size: the 

minimum threshold contrast, indicating the level from which the system is able to visualize, is 

inversely proportional to the square root of the object area and also of the number of incoming 

photons [55]. 

An evaluation of these parameters allows, at least to some extent, to asses the quality of a 

medical image for radiographic/tomographic studies. In Chap. 3 SNR, C and CNR were used both 

to evaluate an SPC detector’s performances in the medical imaging field and to compare the SPC 

image quality to that of a commercially available charge integrating FP detector. 

The low contrast resolution limit of a radiographic system is often determined using objects 

having a very small difference from the background. In this case, because the signal (the difference 

between object and background intensities) is very small, the noise is a significant factor to be 

evaluated.  

Image noise in tomographic slices, in its most simple definition, is measured as the standard 

deviation of voxel values in a homogenous (typically water) phantom and it is influenced by a large 

number of parameters, including: 

• X-ray tube voltage  

• X-ray tube current  

• exposure time 

• focal spot to isocenter distance 

• detector efficiency 

• X-ray beam collimation  

• reconstructed slice thickness 

• reconstruction algorithm or filter 

For this reason in the comparison study between the two detectors technologies 2-D and 3-D 

images have been obtained using the same experimental conditions both in the measurement and in 

the elaboration of the acquired data. 
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Related to the image quality, a further aspect has to be considered. In fact, if on the one hand 

pixel detectors show advantages over non-pixellated devices, on the other hand they have an 

important drawback: the single pixel response varies from one element to the other. In fact, 

although identical in design, non-homogeneities in the sensor material or in the integrated analog 

circuits (e.g. different gains or offsets of the pre-amplifiers), give raise to significant discrepancies 

and need to be taken into account because under uniform irradiation condition their response is not 

uniform. This non-uniformity lowers the contrast resolution in the radiographic images and leads to 

more serious artefacts in the tomographic slices. 

To recover an efficiency map for the detector pixels the commonly performed procedure is 

the so-called “flat field correction (FFC)”. A flood irradiation of the detector (without any object 

between the source and the detector) is recorded in the same experimental condition (geometry, 

tube voltage, tube flux, beam filtration, detector energy threshold) as for the subsequent image of 

the object that will need the correction. If <f> is the mean pixel value of this flat image matrix and 

fij is the value recorded in the ijth pixel, then the correction coefficient for that pixel will be 

cif = <f>/fij. It is clear that this kind of correction does not take into account the theoretical 

exponential trend typical of the X-ray absorption, exp(-µx) and, moreover, it does not take into 

account that the theoretically calculated spectrum out-coming from an attenuating object is not the 

same as the incident one because of the beam hardening effect. Because the detection efficiency is 

different from one pixel to another and it depends in a unique way on the photon energy and on the 

local attenuating properties of the traversed object, it is evident that the flat field correction is just 

an approximate way to equalize the detector response. 

An alternative correction procedure consists in a per-pixel response calibration to differently 

attenuated X-ray spectra [6]. A set of homogenous filters of a given material but of different 

thicknesses is used to acquire a number of flat images in the same experimental conditions as the 

subsequent sample imaging. At changing thickness of the filter the spectrum changes and a given 

pixel records a different value. The experimental data set - filter thicknesses versus per-pixel 

recorded counts - can be locally fitted between two points with an exponential function of the form 

(Fig. 2-13): 

Y = Ak · exp (akX) + Ok 

where k represents the number of experimental points and the parameters Ak, ak and Ok are 

evaluated for each pixel assuming that part of the photons is totally absorbed, part traverses 

undisturbed the sample (harder component) - Ok - and part is attenuated with the exponential trend 

A · exp (aX). In this way one gets a calibration of the pixel response, that, for a given recorded 

number of counts in a pixel, returns an “equivalent thickness”, that is the thickness of the calibration 
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filter used that would have attenuated as the sample has. In the resulting radiography the map of the 

“equivalent thicknesses” substitutes the intensity pixel value. The filter thicknesses used for the 

calibration must lie in a range starting from zero (open beam), up to the filter thickness that gives an 

attenuation slightly higher than the maximum attenuation coming from the sample. 

This Signal-to-Thickness Calibration (STC) overcomes both the pixel efficiency problem 

and the beam hardening effect. 

 

 

Fig. 2-13 Calibration function of a single pixel, evaluated by local interpolation of the exponential function 
Y = Ak · exp (akX) + Ok; in the graph it is also shown how a linear interpolation would lead to significant errors 
in the calibration. [6] 

 
In Fig. 2-14 are shown two images of the same sample, a rose leaf, the raw datum (a) and 

the corresponding STC corrected image, in which the channels network structure is clearly visible. 

The image has been acquired with the Medipix2 SPC detector and with the 5 µm spot-size tungsten 

X-ray source with a tube voltage of 40 kVp and a tube current of 50 µA. The acquisition time was 

Tacq = 100 s. The STC calibration has been performed with a set of aluminium filters, starting from 

a minimum thickness of 50 µm (the leaf equivalent thickness results of 195 µm). 

Fig. 2-15 shows images of a lentil corrected with the two equalization procedures, the 

FFC (a) and the STC (b). The raw image has been acquired with the Medipix2 SPC detector and 

with the 5 µm spot-size tungsten X-ray source with a tube voltage of 50 kVp and a tube current of 

110 µA. The acquisition time was Tacq = 100 s and the magnification factor was M = 3.7x. 

The lentil has an equivalent aluminium thickness of 0.3 mm. 

Because the STC corrected images shows the “equivalent thickness” as pixel values, each 

set of planar projections acquired for the tomographies presented in Chap. 3 have been elaborated in 

a different way compared to the images corrected by means of the FFC when the reconstruction 

algorithm used to get the 3-D slices was the FBP one. First of all, the projections have been 

multiplied by the factor (-µ<E>), where µ<E> is the attenuation coefficient of the calibration filter 
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material used, calculated [48] for the mean energy <E> of the beam. Then, the operation (exp) of 

the whole matrix pixels has been performed. In this way, the new matrix has in each pixel a value 

exp (-µ<E>x), corresponding to the theoretical attenuation of an X-ray beam with mean energy <E> 

when passing through an homogeneous object made of the same material as the one used for the 

STC, with a thickness x. The beam geometry chosen for the 3-D reconstruction was the 

parallel-beam geometry, because, after the described elaboration, the reconstruction software has 

the exact information on the traversed thickness and inserting a cone-beam parameter (as for the flat 

field corrected images) corresponds to fake the geometry. On the contrary, in the cases when the 

iterative OSEM algorithm has been used, the projections have not been elaborated after the STC. 

 

(a) (b) 

Fig. 2-14 Raw image of a rose leaf in which the vein structure is hardly distinguishable and also a bad pixel row 
is visible (a); STC corrected image of the leaf: the structure is clearly observable. The image has been acquired 
with the Medipix2 SPC detector and with a 5 µm spot-size tungsten X-ray source with a tube voltage of 40 kVp 
and a tube current of 50 µA for a Tacq = 100 s (W anode). The STC calibration has been performed with a set of 

aluminium filters, the thinnest one of 50 µm (the leaf mean thickness was of 195 µm). 

 

(a)  (b) 

Fig. 2-15 FFC corrected image of a lentil (a bad pixel row is visible) (a); STC corrected image of the same lentil: 
the internal structure is more clearly observable than for the FFC image. The image has been acquired with the 
Medipix2 SPC detector and with a 5 µm spot-size tungsten X-ray source with a tube voltage of 50 kVp and a 
tube current of 110 µA for a Tacq = 100 s  (W anode). The STC calibration has been performed with a set of 
aluminium filters, the thinnest one of 50 µm (the leaf mean thickness was of 300 µm). 

bbaadd  ppiixxeell  

rrooww  
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Chapter 3. Experiments 

In this chapter we present some experimental results demonstrating the capability of the SPC 

detector Medipx2 for high contrast planar, real-time and tomographic micro-imaging on biological 

samples. We will show also a comparison, in terms of image quality, with a more commonly used 

FP charge integrating detector. The highest performance of the SPC technology compared to a 

charge integrating one in terms of image quality in the field of medical physics for high contrast 

micro-imaging on biological samples is here demonstrated. 

For these purposes we carried on a series of tests and measurements both by means of the 

Medipix2 detector and using either detector in the same experimental conditions. Moreover, we 

compared the two flat field techniques (described in Chap. 2) for the detector pixel equalization: the 

standard Flat Field Correction (FFC) and the novel Signal-to-Thickness Calibration (STC). 

The chapter is divided into 5 paragraphs: 

3.1 2-D µ-imaging with Medipix2 SPC detector
4
 

3.2 real-time µ-imaging with Medipix2 SPC detector on living biological samples
10

 

3.3 3-D µ-imaging on living samples with Medipix2 SPC detector10 

3.4 2-D image quality comparison between Medipix2 SPC and the FP detector by 

means of two pixels equalization techniques 

3.5 3-D image quality comparison between Medipix2 SPC and the FP detector by 

means of two pixels equalization techniques. 

For each of these topics we also present an example from the literature. 

3.1 2-D µ-imaging with Medipix2 SPC detector: 

The planar imaging performed with the Medipix2 and with the µ-focus X-ray source takes 

advantage from the phase shift effect (see Appendix A) as the phase-contrast visibility conditions 

are verified from the used set-up. In fact, the use of the Propagation Based Imaging (PBI) technique 

by means of a common X-ray tube is less common but still possible under the conditions examined 

in Appendix A, in particular: 

− the X-ray source is partially coherent; 

− the object-to-detector distance is suitable to let the refracted rays to diverge from the 

undeviated ones but not too large to avoid the source blurring; 

− the micrometric detector spatial resolution is high enough to detect separately 

refracted and transmitted rays; 

                                                
4 All the presented images have been corrected using the STC calibration procedure described in Chap. 2 when it is not expressly differently 

declared.  
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− the chosen biological and organic samples show high spatial frequencies of details to 

be visualized. 

Here we present some results obtained with the PBI technique with the X-ray µ-focus tube 

provided with a focal spot of 5µm (tungsten anode) and with the experimental detector Medipix2, 

based on the SPC technology. 

Typical phase contrast examples are shown in Fig. 3-2a and Fig. 3-3a. The images are phase 

contrast radiographies (100 s acquisition time) of two insects acquired with Medipix2 SPC detector 

placed at a distance of 61 cm from the source (tube current I = 200 µA, tube voltage V = 40 kV, 

mean energy Ē = 15.0 keV), for a magnification factor M, respectively, of 9.1x and 4.7x. From the 

details pointed out (Fig. 3-2b and Fig. 3-3b) it is clearly visible how the bright and the dark fringes 

alternate; this phenomenon corresponds to an under-shoot followed by an over-shoot, as it is clear 

in the linear profile taken in that regions (Fig. 3-2c and Fig. 3-3c). The two samples shown in Fig. 

3-2a and Fig. 3-3b present an attenuation to X-rays around the 15% at 15 keV mean energy, which 

means that in a pure attenuation regime it would be a hard task to visualize details as the anatomic 

tracheal tubes - forming a complex network of vessels in the whole body - in the ant’s arm or the 

complete and clear structure of the beetle’s feeler. The absorbed dose has been calculated from the 

simulated W spectrum [50] and knowing the equivalent thicknesses of the samples (from the STC 

calibration) as about 0.3 µGy. In  Fig. 3-1 the photos of the two samples are shown: the ant (a) and 

the beetle (b).  

 

(a)  (b) 

Fig. 3-1 Photos of the biological samples imaged with Medipix2 SPC detector and X-ray source W anode, 5 µm 
spot size. 

 



 41

(a) (b) 

(c) 

Fig. 3-2 Phase contrast radiography of an ant (a), of a head detail (b) in which the bright and dark fringes 

enhancing the contour are clearly visible; (c) horizontal profile taken along the region pointed out in (b). The 
x-axis is in equivalent Al thicknesses (mm), obtained from the Signal-to-Thickness Calibration (STC). The 
distance between the source and the sample is R1 = 6.65 cm, the distance between the sample and the detector is 
R2 = 54.35 cm, the magnification is M = 9.1x. I = 200 µA; V = 40 kV; focal-spot of 5 µm size, W anode; 
acquisition time Tacq = 100 s. The channel visible in (a) has been evaluated 8 µm in diameter. The calculated 
absorbed dose, obtained simulating the W spectrum [50], is of about 0.3 µGy. 

8 µm 
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(a) (b) 

(c) 
Fig. 3-3 Phase contrast radiography of an insect (a), of a feeler (b) in which the bright and dark fringes 

enhancing the contour are clearly visible; (c) horizontal profile taken along the region pointed out in (b). The 
x-axis is in equivalent Al thicknesses (mm), obtained from the Signal-to-Thickness Calibration (STC). The 
distance between the source and the sample is R1 = 13.15 cm, the distance between the sample and the detector is 
R2 = 48.85 cm, the magnification is M = 4.7x. I = 200 µA; V = 40 kV focal-spot of 5 µm size, W anode; acquisition 
time tacq = 100 s. The FWHM evaluated for the left and right peaks are of FWHMLEFT = 20. 4 µm and 
FWHMRIGHT = 36 µm. The calculated absorbed dose, obtained simulating the W spectrum [50], is of about 
0.3 µGy. 

 
The experimental results can be compared to that of a theoretical calculation that takes into 

account the coherence criterion needed so that the phase shift phenomenon may be revealed 

(Appendix A): if one wants to reveal the bright and dark fringes, typical manifestation of the 

interference, the value of the following ratio [80]: 
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should be either much lower than 1 - to be the field completely coherent along all the sharing 

length - or less than 1 - for the partial coherence of the field. This criterion is always verified when 

applied to an X-ray source provided with a focal spot of size s = 5 · 10-3 mm to visualize 10 µm 

linear size details (corresponding to a spatial frequency |u| = 50 lp/mm) for every magnification 

value. Of course, for details characterized from a higher spatial frequency, e.g. |u| = 250 lp/mm 

(2 µm), a restriction on the M value appears and, for the same s only values M < 5 result suitable. 

The phase shift effect can be quantitatively evaluated directly by measuring the upward and 

the downward over-shoot at different magnifications as the distance in equivalent thickness (e. t.) 

units (result of the STC correction procedure) between the two peaks. In Fig. 3-4 we present 

radiographies of the same ant’s feeler detail acquired with Medipix2 in the same conditions 

(I = 200 µA, V = 40 kV, tacq = 100 s), but at different magnifications and R2 distances 

(M01 = 3.17x, R2_01 = 41.75 cm; M02 = 5.41x, R2_02 = 49.75 cm; M03 = 8.9x, R2_03 = 54.15 cm). 

 

(a)  (b) 

(c) (d) 
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(e)  (f) 

Fig. 3-4 Phase contrast radiographies of an ant feeler detail for a magnification M01 = 3.17x and a 
detector-to-object distance R2-01 = 41.75 (a); M02 = 5.41x, R2-02 = 49.75 (c); M03 = 8.9x e R2-03 = 54.15 (e). In 
correspondence plot profiles of the pointed out area are shown (Fig. b, d, f). The peak-to-peak distance values 
are listed in Tab. 3-1. The y-axis is in equivalent Al thicknesses - e. t. (mm), obtained from the STC. 

 

The upward and the downward over-shoot values are listed in Tab. 3-1. In the table one can 

find the predicted trend of the simulations shown in Fig. A.3 of the Appendix [81]: an initial 

increase of the phase-contrast phenomenon with the magnification up to a certain M value, 

exceeded which the jump in intensity decreases again. 

 

Image 
Left Peak-to-Peak 

Distance (e. t.) 

Right Peak-to-Peak 

Distance (e. t.) 
Magnification M R2 (cm) 

Fig. 3.4 (a) 8.46 5.58 3.17 41.75 

Fig. 3.4 (c) 29.48 24.18 5.41 49.75 

Fig. 3.4 (d) 16.92 11.15 8.9 54.15 

Tab. 3-1 Values of the peak-to-peak distance between the upward and the downward over-shoot for three 
different magnifications M (source-Medipix2 distance = 61 cm), evaluated in correspondence of the plot profile 
of Fig. 3-4b, Fig. 3-4d and Fig. 3-4f. 

 
With the SPC detector we imaged low absorbing samples selected among biological and 

organic object (living insects, small animals, leaves, seeds, shells, fossil, etc.) using the radiographic 

system of Fig. 2-7 (Chap. 2) (source-to-detector distance 61 cm). The tube voltage was set to 

40 kVp (mean energy Ē = 15.0 keV, tungsten anode). 

Fig. 3-5 and Fig. 3-6 show two radiographies of the same dead ant presented above, 

acquired with 20 mAs and a magnification factor of 5.5x and 9.3x respectively. The first image 

shows the front side of the ant body: the two feelers and their structure are clearly discernible. In the 

second image it is better observable the channels of the respiration system (tracheae) that form a 

complex network of gas-filled vessels throughout the body segments and legs. 

Radiographies of Fig. 3-7a and Fig. 3-7b show the already presented beetle imaged with 

2 mAs and 4 mAs at a magnification of 2.6x and 4.6x respectively. The first image shows the entire 
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superior part of the insect’s body, while in the second image two legs are visible, with also the 

attached hair. In particular, Fig. 3-7c shows a zoomed detail of Fig. 3-7b. 

 

 

Fig. 3-5 Radiography of an ant (front side) acquired with an exposure of 20 mAs, a tube voltage of 40 kVp and a 
magnification factor of 5.5x. The two feelers structure is clearly distinguishable. 

 

 

Fig. 3-6 Lateral radiography of an ant: exposure of  20 mAs, tube voltage at 40 kVp and magnification factor of 
9.3x. The complex network of gas-filled vessels is clearly visible throughout the whole body. 
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(a)

(b) (c) 

Fig. 3-7 Radiography of a beetle acquired with an exposure of 2 mAs, a tube voltage of 40 kVp and a 
magnification factor of 2.6x (R1  = 23.45 cm, R2 = 37.55 cm) (a); side part of the beetle’s body, showing two legs, 
thanks to the 4.6x magnification factor (R1  = 13.45 cm, R2 = 47.85 cm); the exposure is 4 mAs (b); zoomed detail 
of the beetle’s leg in which hair is clearly visible. 

zoom 
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In Fig. 3-8a and Fig. 3-8b the sample is a living fly placed on a leaf, on which it is 

distinguishable one leaf channel (as labelled in the figure). The magnification factors are, 

respectively, 9.1x and 7.4x, while the exposure is of 27.5 mAs for the firs image and 11 mAs for the 

second one. 

 

(a)

(b) 

Fig. 3-8 Radiography of a living fly laying on a leaf (outlined with an arrow), acquired with an exposure of 
27.5 mAs, a tube voltage of 40 kVp and a magnification factor of 9.1x (a); low part of the fly body, showing the 

legs, acquired with 11 mAs at M = 7.4 (b). In both radiographies the phase contrast enhancement is fundamental 
for the body structure visualization. 

leaf 

leaf 
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A different type of fly is the target of Fig. 3-9: in (a) the magnification factor of 12x allows 

to visualize the whole sample, while in (b) it is magnified (M = 33x) the back part of the body 

covered with hair, as indicated by the arrow. In (c) the 38x magnification factor allows the 

visualization of part of the body’s coat and of the wing hair. In (d), one filament from the body coat 

is zoomed and a line profile of its section has been shown in (e): the diameter size has been 

evaluated as 5 µm. The sample was imaged alive. 

 

(a)

(b) 

wing 

zoom 
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(c) (d)

 (e) 

Fig. 3-9 Radiography of a fly, imaged at M = 12x (a), back side of the fly body covered with hair, as indicated 
from the arrow, imaged at a magnification of 33x (b). Radiogram of part of the body coat and of the wing hair, 
M = 38x (c); one filament from the body coat is zoomed (d) and a profile (e) of its section has been determined: 

the diameter size has been evaluated as 5 µm. The sample was imaged alive with an exposure of 20 mAs. 

 

Fig. 3-10a and Fig. 3-10b show two radiographies of a rose leaf: in the first image, 5 mAs 

exposure, the structure of channels and of the webbed veining is visualized, while in the second 

one, 0.25 mAs, thanks to the higher magnification (M = 14x), one can distinguish the stomata 

which are pores necessary to the leaf to exchange gas (~ 40 µm diameter size). 

 

wing 

body coat 

zoom 
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(a) (b) 

Fig. 3-10 Radiographies of a rose leaf: in (a), 5 mAs exposure, is visualized the structure of channels and of the 
webbed veining, while in (b), 0.25 mAs, thanks to the higher magnification (M = 14x), it is possible to distinguish 
the stomata which are pores necessary to the leaf to exchange gas (~ 40 µm diameter size). 
 

To the purpose of comparing the above results with best results showed in the literature in 

this field, we will now briefly illustrate some examples from other groups with the use of different 

X-ray set-ups. 

Among the published phase-contrast based works, we present here a very early result of year 

1996, by the pioneer Australian group of S. W. Wilkins [58]. The paper has the merit to first present 

the evidence of the phase-shift phenomenon, using a conventional polychromatic X-ray source 

(instead of the synchrotron radiation), having a high spatial but essentially no chromatic coherence. 

The X-ray tube was provided with a 20 µm focal spot (Kevex model PSX with a Cu anode). The 

following images (Fig. 3-11a and Fig. 3-11b) represent two radiographies of a small aquarium fish 

(fantail) with the source operating at 60 keV, R1 = 300 mm and R2 = 1 (a) and R2 = 1100 mm (b). 

The thickness of the fish was ~ 15 mm. The image for R2 = 1 (a) corresponds essentially to an 

absorption-contrast-only image, while that for R2 = 1100 mm should also contain some 

phase-contrast information. It is very evident that many more details of the weakly absorbing 

features of the fish anatomy are present in the Fig. 3-11b than in Fig. 3-11a. In particular, one can 

note the spinal cord (α), the ligament (β) and the lateral line canals (γ). The fact that the contrast at 

the edges of the organs is negative also points to the presence of the phase-contrast effect in the 

images. 

 

stomata 
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Fig. 3-11 Image of a small aquarium goldfish (fantail) recorded with a source-object distance of R1 = 300 mm 
and an object-detector distance of R2 = 1 mm (2 minutes exposure) (a) and an object-detector distance of 
R2 = 1100 mm (110 minutes exposure). The tube voltage was V = 60 kV. [58] 

 

A more recent example (2007) reported from literature of imaging on small biological 

samples exploiting the phase shift effect, comes from Gundogdu et al., of University of Surrey, 

Guildford [59]. In their paper, they present imaging results obtained from a bench-top X-ray source 

employing the free space propagation method for biological samples imaging with a negligible 

absorption contrast. Fig. 3-12 shows a conventional absorption image (a) and the phase-enhanced 

image (b) of the same wasp, realized using an X-ray source with a focal spot of ~ 3 µm 
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(Hamamatsu L8321) provided with a tungsten target. The exposure time was of 1 minute, the tube 

voltage of 40 kVp and the tube current of 100 µA. For the phase-contrast image (b) the 

source-to-sample distance was R1 = 20 cm, while the sample-to-detector distance was R2 = 65 cm. 

 

 

Fig. 3-12 X-ray image obtained with an X-ray tube provided with a focal spot of  ~ 3 µm at 40 kV and 100 µA, 
with a 1minute exposure time. Absorption image (a) and phase-contrast image (b) obtained at R1 = 20 cm and 
R2 = 65 cm.[59] 

 
All the results showed above take advantage from the phase contrast enhancement provided 

by the micrometric X-ray source focal spot besides the small detector pixel size. Nevertheless, in 

particular conditions of magnification M, tube voltage V and exposure (expressed in mAs unit) it is 

still possible to visualize the dark/bright Fresnel fringes also when the X-ray source has a focal spot 

several times bigger in size than the one used for the above images. To investigate which are the 

limits of the phase contrast effect manifestation, we did some tests on two polymethylmethacrylate 

(PMMA) slabs, one 0.5 cm thick and the other 1 cm thick with the Oxford Instrument APOGEE 

package, series 5000, X-ray source with a mini-focus of 35 µm. For the phase contrast 

measurement we choose to evaluate two parameters [60] [61] [62], the 

Edge Enhancement Index (EEI) and the Edge Enhancement to Noise ratio (EE/N) defined as 

follows (see also the Appendix A): 
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where 

P and T are the peak and through intensity values at the edge; 

H and L represent the intensity average values, respectively, on the higher-intensity side of the edge 

and on the lower-intensity side of the edge; 

σH
 and σL represent the standard deviations of the pixels used to calculate H and L in the EEI 

equation. 
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The two parameters EEI and EE/N have been evaluated at different exposure (in mAs unit), 

at different tube voltages (30 kVp, 40 kVp and 50 kVp) and at different magnifications M, since 

these three variables have been found to be as the crucial factors determining the extent of the phase 

contrast effect. Fig. 3-13a and Fig. 3-13c show, respectively, one radiography of the air/PMMA 

edge for the 0.5 cm thick slab and for the 1 mm thick slab at M = 1.76x (source-to-slab distance 

R1 = 20 cm; source-to-detector distance (R1 + R2) = 35.2 cm), V = 40 kVp, I = 0.35 mA, tacq = 5 s, 

while, Fig. 3-13b and Fig. 3-13d show the relative plot profiles taken across the edge for the two 

PMMA slabs. The profiles are an average of several line profile of a chosen ROI of the interface. 

 

 (a) (b) 

(c) (d) 
Fig. 3-13 Radiograms of two air/PMMA edges made with a PMMA slab 0.5 cm thick (a) and a PMMA slab 1 cm 
thick (c) at a magnification M = 1.76x (source-to-slab distance a = 20 cm; source-to-detector distance 
(R1 + R2) = 35.2 cm), with V = 40 kVp, I = 0.35 mA and tacq = 5 s and the respective plot profiles taken across the 
interfaces (b, c). The images are corrected by means of the standard FFC. The profiles are an average of several 
line profile of a chosen ROI of the interface. 

 

In the two profiles the up-ward and down-ward overshoot are clearly visible also if they are 

not much enhanced. In figures Fig. 3-14 (a) - (d) the results of the tests for the EEI parameter are 

presented. 

As it is defined, the EEI value depends on both the difference (P-T) and the difference 

(H-L). The difference (P-T) is related to the magnitude of the phase contrast effect, while the 

second one depends only on the different attenuation properties of the two interfaced materials. It is 

reasonable to think that for thicker objects (less penetrating) the first term is higher than for thinner 

objects because the magnitude of the phase shift is bigger; similarly the second term is also bigger 
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because the difference in the intensity is higher between air and a thicker material than between air 

and a thinner material. From these considerations, one can gather that the behaviour of Fig. 

3-14a - Fig. 3-14d depends on which effect is predominant. Fig. 3-14b shows that for 40 kVp the 

two effects of phase shift and attenuation are balanced for the two thicknesses but, from Fig. 3-14c 

and Fig. 3-14d, it can be deduced that for a thicker material an increase in the transparency - gained 

at higher voltages - is more significant than the same increase achieved from a thinner material 

compared to the phase effect term (P-T). Both the results of Fig. 3-14c and Fig. 3-14d are interesting 

from the point of view of in vivo imaging, because they show that it may be possible to image 

tissues at higher X-ray energies than for the standard absorption imaging, resulting in a lower 

absorbed dose for the living organism. Moreover, because the EEI parameter does not depend on 

the noise, the increasing exposure (mAs unit) does not correspond to a considerable change in the 

EEI value. Similarly, the phase shift effect is not affected, even if, during exposure, the tube focal 

spot could become larger in size due to the anode heating effect, leading to a worse visibility of the 

phase-shift phenomenon. In any case, the reason for the different trends of EEI at high exposure 

values – increasing for the 1 cm thick slab and decreasing for the 0.5 cm thick slab - is not clear. On 

the other hand, the trend of EEI with magnitude corresponds to the theory’s predictions: it grows at 

larger object-to-detector distance R2, because the refracted rays have a longer pathway to diverge 

from the undeviated ones but, at too high magnification values the source blurring, due to the 

enlarged focal spot dimension, prevails. 

In Fig. 3-14a - Fig. 3-14d the results of the tests for the EE/N parameter are presented. 

On the contrary, the EE/N value depends on both the difference (P-T) and the noise on the H 

and L regions. This fact explains why the EE/N parameter raises at increasing exposures (Fig. 

3-15a), since the noise decreases with increasing exposure (higher number of events recorded in H 

and L regions). Moreover, the higher value of EE/N for the thicker slab (Fig. 3-15a - Fig. 3-15b) 

can be explained with the higher phase shift effect which X-rays undergo when passing through a 

longer path. The EE/N vs M trend has already been explained above, even though it is not clear the 

reason of a successive second increase at high M values (not observable for the EEI parameter). The 

effect of the voltage for EE/N results reversed compared to EEI; in fact, at higher tube voltages the 

contribution of the standard deviations σH and σL in the denominator is superior to the one from the 

(P-T) term. 
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Fig. 3-14 Plots of the EEI values at different exposures (in mAs unit) for M = 2.5x (a) and at different 

magnifications (b) for a 5 mm thick slab and a 1 cm thick slab (V = 40 kVp; I = 350 µA); plots of the EEI values 
at different magnifications and different tube voltage for a 5 mm thick slab (a) and for a 1 cm thick slab 
(tacq = 5 s; I = 350 µA). The focal spot-size is 35 µm. 
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Fig. 3-15 Plots of the EE/N values at different exposures (in mAs unit) for M = 2.5x (a) and at different 
magnifications (b) for a 5 mm thick slab and a 1 cm thick slab (V = 40 kVp; I = 350 µA); plots of the EE/N values 

at different magnifications and different tube voltages for a 5 mm thick slab (a) and for a 1 cm thick slab 
(tacq = 5 s; I = 350 µA). The focal spot-size is 35 µm. 

    

3.2 Real-time µ-imaging with Medipix2 SPC detector on living 

biological samples [63] [64] [65] 

There are two ways of dealing with biological and organic samples, such as insects or 

parasites, as well as small seeds and leaves, when the aim is a morphological study: an in vitro or an 

in vivo investigation. The in vitro approach has two fundamental drawbacks: first of all, the test 

conditions may not correspond to the condition inside the living organism; the second aspect to take 

into account is the impossibility of longitudinal studies that means studies on the same sample 

during a period of time. The in vivo approach, on the other hand, allows following one sample 

through all the evolution processes of its life cycle, catching its morphologic changes 

(metamorphosis, mutation, growing processes). However, dealing with small biological samples, 

such as insects or parasites, is a challenging task if the aim is a non-invasive inspection that leaves 

the sample alive. Electron microscopes need a preparation of the sample that leads to the 

impossibility of in vivo and longitudinal studies on the same object. Nevertheless, this kind of 

investigation can be possible, to some extent, using X-ray imaging techniques. The requirement for 

this kind of study is a high spatial resolution (micrometer scale) radiographic system made up of an 

X-ray source and an X-ray detector [65]. By means of the SPC detector Medipix2 and the µ-focus 

X-ray source, a temporal study has been carried out by following an entomologic sample through its 

metamorphosis from the larva stage to the pupa stage using the phase contrast enhancement 

technique.  

The chosen sample is the Aesculus hippocastanum (horse chestnut) tree pest 

Cameraria ohridella, a leaf miner belonging to the Lepidopteran family Gracillariidae. It is a well 

known plague of central and southern Europe and its name comes from the mines that it digs into 
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the leaves, where females put their eggs. The larva penetrates from the egg directly into the internal 

part of the leaf, feeding between the upper and the lower surface of it and extending, in this way, the 

mine (up to 5 cm in length). The dimensions of leaf miners in the pupa stage are about 3.5-5 mm. A 

human control which reduces the leaf miner harmful spread is usually hard, but a natural control 

exists: in spring and in summer, nymphs of Cameraria ohridella are attached by a parasitic wasp 

that puts its eggs inside the leaf close to the larva of leaf miner. From each egg a new parasite larva 

emerges and develops, feeding the inner parts of its host [66]. 

The metamorphosis from the larva to the pupa, progressing inside the leaf miner, has been 

imaged during a period of several weeks’ time by means of daily observations.  

For all the measurements performed in this study the X-ray tube voltage was set at 40 kV to 

get a high soft tissues visibility (mean energy Ē = 15.0 keV). The current was set at 200 µA to 

assure a high photon flux maintaining good spatial resolution. The exposure time was of 100 s for 

each image. The distance between the source and the detector was (R1 + R2) = 62 cm, while the 

magnification factor was varied from 4x up to 6x by alternations of the sample position. 

Fig. 3-16a and Fig. 3-16b show, respectively, a photograph and a radiography 

(source-to-sample distance R1 of 15.5 cm for a magnification factor M of 4x), acquired with the 

radiographic set-up, of a living sample of the leaf miner Cameraria ohridella. 

 

(a) (b) 

Fig. 3-16 Photograph (a) and radiography (b) of a living pupa of leaf miner. The radiography has been 
realized with Medipix2 SPC detector and with the micro-focus X-ray source (40 kVp tube voltage, 200 µA tube 

current, 100 s acquisition time). The magnification factor is M = 4x (source-to-sample distance R1 = 15.5 cm). 
The ROIs used for the SNR evaluation are depicted (10 pixels x 10 pixels). The gray scale is in e. t. units. 
 

The sample has a length of 3 mm. From the SNR evaluation on the radiography, a value of 

47 was found. The ROI size was chosen of 10 pixels x 10 pixels (Fig. 3-16b). An estimation of a 
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small detail size of the leaf mine body was also done for a magnification value of 7x. The size of a 

thin detail (Fig. 3-17b) of the living leaf miner body (Fig. 3-17a) was evaluated as 15 µm. 

 

(a) (b) 

Fig. 3-17 Radiography of a living pupa of leaf miner; a circle has been drawn around a small detail of the body 
(a); zoom of the detail (b) for which the dimension has been evaluated as 15 µm. The magnification factor is 7x, 
tube voltage and tube current were, respectively, V = 40 kVp and I = 200 µA. 
 

The target of the temporal study is the parasite vital morphological changes inside the life 

miner. Fig. 3-18a, Fig. 3-18b and Fig. 3-18c show, respectively, a photograph of the larva stage and 

two images from the scanning electron microscope of the pupa and of the imago stage. 

 

(a) (b) 

(c) 
Fig. 3-18 Photograph of the larva stage of Cameraria ohridella parasitic wasp (a), scanning microscope image of 
the pupa stage (b) and scanning microscope image of the imago stage (c). 
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The sequence of radiograms presented in Fig. 3-19 shows the metamorphosis of the parasitic 

wasp of Cameraria ohridella, from the larva stage (Fig. 3-19a, Fig. 3-19b, Fig. 3-19c, Fig. 3-19d), to 

the pupa stage (Fig. 3-19e) and to the imago stage (Fig. 3-19f). Fig. 3-19g shows a radiography of a 

living imago of Cameraria ohridella. The magnification factor is 3.8x for the first six images and 

6x for the last one. 
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Fig. 3-19 In-vivo radiograms of the parasitic wasp of Cameraria ohridella, acquired during a period of several 
weeks. In (a), (b), (c) and (d) the larva is growing in length from a “ball” shape into a worm shape, eating the 

inner tissue of its host. In (e) it is shown the pupa stage and in (f) it is shown the imago stage. In (g) a 
radiography of a living imago of Cameraria ohridella is presented. The magnification factor is 3.8x for images 
a - f and 6x for image g; the acquisition time was 100 s and the tube settings were V = 40 kVp and I = 200 µA. 

 

Fig. 3-20 shows a single radiography of six samples of leaves miner Cameraria ohridella: 

the first two samples, a and b, are alive, while c, d and e are already dead, killed by their host. It is 

possible to notice the inner host in three different stages of the life cycle (different length and body 

shape). The last sample, f, is just the outer skin of a dead Cameraria ohridella, empty also of the 

parasite that, having completed its metamorphosis, has left its host. The samples were acquired with 

a magnification factor of 2.9x, and the radiograph is an average of 100 frames of 1 s each. 

Besides the anatomic information, entomologists and biologists are interested in observing 

also the target behaviour when it is still alive and placed into its natural environment. This kind of 

study can be carried out by acquiring photographs and movies with high resolution cameras, but 

with few and unsatisfactory information about the morphology and the anatomy of the sample. 

Combining the two goals - excellent spatial resolution and visibility of anatomic details - and 

following one sample not only through its life cycle, but also looking at its social life and at its 

real-time behaviour - can be realized by means of an X-ray imaging system, equipped with a 

µ-focus source, a digital X-ray detector and a high speed read-out hardware and software. The 
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system made up with Medipix2 and the µ-focus X-ray source has the needed features to perform 

real-time studies for observations of time-dependent processes inside biological samples. 

 

 

Fig. 3-20 Radiography of six samples leaf miner pupas. The radiography has been realized with Medipix2 SPC 
detector and with the micro-focus X-ray source (40 kVp tube voltage, 200 µA tube current, tacq = 100 s). The 
magnification factor is 2.9x (source to sample distance R1 of 21.4 cm). 

 

The metamorphosis from the larva to the pupa stage we have presented above progresses 

inside the leaf miner during a period of several weeks time. During this period inside its host, the 

parasite is alternating moments of quick movements, mostly when eating, and moments of 

quietness. The behaviour of the parasite inside its host has been caught while moving in different 

phases of its metamorphosis by means of real-time videos: a first one, during the larva stage, while 

it was eating the leaf miner’s inner tissue and a second one, when its metamorphosis was almost 

completed, during its attempt to get out from its host.  

Images were acquired with a frame-rate of 2 frames/s (500 ms each), with a duty cycle of 

96 %, with a tube current of 200 µA and a tube voltage of 40 kVp, for a source-to-detector distance 

of 62 cm and a magnification factor of 3.7x. The acquired images have been stacked together and 

converted into an avi file. Images of the larva stage and of the pupa stage are shown respectively in 

Fig. 3-21 and in Fig. 3-22. The significance of the presented real time X-ray µ-imaging is in the key 
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role of the phase contrast effect; in fact, looking at the image sequence in Fig. 3-21 and Fig. 3-22 it 

is clear that the empty skin of the Cameraria ohridella presents almost no attenuation to X-rays. 

 

 

Fig. 3-21 Sequence of radiograms showing the parasite behaviour inside the leaf miner, when in the larva stage. 
Each image has been acquired for 500 ms corresponding to a frame rate of 2 frames/s. Tube voltage and tube 
current were set at 40 kV and 200 µA respectively. The magnification factor was of 3.7x. 

 

 

Fig. 3-22 Sequence of radiograms showing the parasite behaviour inside the leaf miner when in the pupa stage. 
Each image has been acquired for 500 ms corresponding to a frame rate of 2 frames/s. Tube voltage and tube 
current were set at 40 kVp and 200 µA respectively. The magnification factor was of 3.7x. 

 

In fact, we observe a well defined edge separating the dead insect from the parasite: it 

should be clear that without the contrast enhancement at the interfaces, as a result of the 

interference fringes, we would not be able to visualize the living structure wrapped in the thin layer 

or, in other words, that in the absorption regime this kind of investigation would be not possible. 

The second reason of the significance for the real-time imaging here presented is in the use 

of a polychromatic X-ray commercial tube. In fact, in literature it is possible to find other real-time 

studies on biological samples but realized with a coherent synchrotron radiation. Here we report 

two examples of dynamic imaging on living samples realized by means of the phase contrast in-line 

technique. 
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The first study has been carried on by M. W. Westneat et al [67]. The paper shows the 

capability of the phase contrast imaging technique to observe the previously unknown mechanism 

of respiration in insects, using 15-to-25 keV synchrotron radiation.  

 

 

Fig. 3-23 Dorsoventral (left) and lateral (b) view of the respiration mechanism by tracheal compression in the 
head and in the thorax of a beetle. Tracheal tubes are expanded at rest [(A), arrowed e], and compression (B) 
occurs throughout the anterior region of the insect. Maximal compression [(C), arrowed c] is followed quickly by 
expansion of the tracheae (D). The entire respiratory cycle is completed in less than 1 s. [67] 
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Most insects breath through a system of tubes called tracheae which connect to the air via 

spiracles that can be actively opened or closed. Tracheal tubes are gas-filled vessels (the tiniest one, 

called “tracheoles”, may be 1 µm in diameter), and their function is to exchange gas with tissues of 

the body.  X-ray videos were recorded for different insects - ground beetles, carpenter ants and 

house crickets - while breathing. The respiratory frequency ranged from about 0.4 Hz to 0.7 Hz in 

the beetle and the duration of tracheae compression ranged from about 0.7 to 1.6 s in the three 

species, followed by a period of inactivity. In Fig. 3-23 we report those results on the respiration by 

tracheal compression in the head and thorax of the beetle, with the purpose of a qualitative 

comparison with our results. 

A second example comes from R. A. Lewis et al, [68] that reports on dynamic 

propagation-based phase contrast imaging of lungs function. By means of the synchrotron beam, 

300 mm width and 20 mm long at 25 keV energy (SPring-8, beamline 20B2 of the Biomedical 

Imaging Centre, Japan), they have gained semi-quantitative information on the rate of liquid 

clearance from the lung of rabbit pups. The living pups were continuously imaged at 4 s intervals, 

using a phosphor charge-coupled device (CCD) detector (Hamamatsu, mod.C4742-95H) with 

5.9 µm pixels (spatial resolution of approximately 25 µm) for an active area of (24 x 15.7) mm
2
. 

The time resolution limit was given from the read-out speed of the CCD detector and was no higher 

than 1.7 frames per second. Fig. 3-24 shows selected frames from an X-ray movie of the dynamic 

study recorded during the first hour after birth of a single live rabbit pup. At birth the lungs stop 

secreting liquid as when in placenta and the airways are cleared to allow the entry of air inside with 

the onset of ventilation. The initial images, recorded few minutes after birth, clearly reveal the 

major airways and the branching structures down to the tertiary bronchi because of the animal’s 

shallow breathing. Subsequently, the inspiratory effort becomes visibly more pronounced leading to 

accelerated rates of aeration of the small airways and alveolar structures. It can be seen from the 

images that, as length and the number of inhalations increase, both the visibility and the brightness 

of the speckle pattern of the lungs increase dramatically. 
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Fig. 3-24 Time series of breathing rabbit pup showing selected frames at various times after the onset of imaging. 
Breathing began 30 s earlier. Exposure time: 588 ms. The white boxes measure 0.72x3.30 mm2. [68] 

 

3.3 3-D µ-imaging on living samples with Medipix2 SPC detector 

Common imaging techniques for the study of the internal structure of insects and organic 

objects require a mechanical sectioning of the sample that can be damaging and not fully 

satisfactory, because the sample can not be kept alive. In fact, shapes, compositions and functions 

of organs and tissues in the still state are usually different from the same in the living state. Electron 

and optical microscopic techniques, for example, are able to reach high spatial resolution and to 

detect information of small details, but the sample has to be prepared in a way that does not allow 

for in vivo and longitudinal investigations on the same sample. On the opposite, using the system 

set-up with Medipix2 SPC detector and an X-ray µ-source it is possible to perform in vivo 3-D 

µ-imaging. The chosen sample is, once again, a dead Cameraria ohridella with a living parasite 
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inside. As we did for planar imaging, to enhance image contrast we have operated from two points 

of view: on one hand we provided soft X-rays (40 kVp X-ray tube voltage corresponding to a mean 

energy Ē = 15.0 keV), suitable for thin biological tissues; on the other hand, we took advantage 

from the phase contrast technique. During the tomographic acquisition, both the source and the 

detector were kept fixed, while the sample is placed on a rotating stage. The µ-tomography of living 

sample was realized taking 180 projections over 180°, each of them with an exposure time of 10 s. 

The tube current was set at 250 µA to assure a high photon flux maintaining good spatial resolution 

and the magnification factor was 3x. 

 

 (a)  (b) 

 (c) (d) 

Fig. 3-25 Projection of a leaf miner killed by its parasite living inside its body (a); slices from the tomographic 
reconstruction obtained with the OS-EM algorithm: coronal view (b), sagital view (c), transaxial view (d). The 
voxel size is 17 µm x 17 µm x 21 µm and the total number of voxels is 259 x 259 x 211. The length of the dead leaf 
miner is 3.1 mm and the mean diameter of its body is 800 µm x 800 µm, while the length of the inner parasite is 
2 mm for a thickness going from 68 µm x 170 µm, in the thinnest region, to 700 µm x 500 µm in the thickest 

region. The magnification factor is 3x. 
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The object slices have been reconstructed using the home made statistical Ordered Sub-set 

Expectation Maximization (OS-EM) iterative algorithm [6].  

Fig. 3-25 shows one projection (a), the sagital (b), the coronal (c) and the transaxial (d) 

views, obtained from the 3-D reconstruction of the leaf miner with the parasite living inside its 

body. The tomographic reconstruction is realized by 211 planar slices of 259 x 259 pixels, for a 

voxel size of 17 µm x 17 µm x 21 µm. The empty body of the leaf miner pupa has been estimated 

as 3.1 mm long, with a mean diameter of 800 µm x 800 µm; the living parasite, in the pupa stage at 

the moment of the tomography, had reached a length of 2 mm, while the diameter of its body was 

estimated as 68 µm x 170 µm in the thinnest region and as 700 µm x 500 µm in the thickest part. 

 

3.4 2-D image quality comparison between Medipix2 SPC and the 

FP detector by means of two pixels equalization techniques 

In the first 3 paragraphs (3.1 - 3.3) it was showed that an SPC detector is adequate for 

medical imaging on both ex vivo and in vivo biological samples. Here we want to carry out a 

comparison of image quality, between two different technologies: an FP detector and the 

experimental Medipix2 detector. 

The image quality is evaluated by means of two parameters: the contrast C and the 

contrast-to-noise ratio CNR as defined in Chap. 2. Because the interest of this study is in the 

performance of the two detectors for biological imaging, the experimental tests were carried out on 

polymethylmethacrylate (PMMA) phantoms containing inserts of materials characterized by 

different attenuations to X-rays as in biological tissues. In fact, in the diagnostic energy range 

(20 keV - 80 keV) the PMMA presents a linear attenuation coefficient close to that of water. Filling 

a PMMA phantom with different materials simulates the conditions for the visibility of a number of 

organs and tissues present in an organism having different attenuation to X-rays. 

The first test [51] has been realized with a PMMA filter, 0.1 mm thick, on the X-ray tube 

window, so as to cover a half of it and leaving open the second half. Fig. 3-26 shows two 

radiograms of the filter edge, realized both with the FP (left) and with the Medipix2 (right) detector 

at a tube voltage of 40 kVp and a tube current of 50 µA. Each image is the average of 

150 acquisitions of 1 s exposure time. The ROI chosen for the C and CNR evaluations are of 

60 pixels x 60 pixels. The values found are: CFP = (0.9 ± 0.1) % and CNRFP = 0.25 for the FP 

detector and CMpx2 = (8.93 ± 0.06) % and CNRMpx2 = 1.59 for the Medipix2 detector, showing a 

higher performance of the SPC compared to the charge integrating detector in terms of image 

quality for 2-D imaging. 
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Fig. 3-26 Radiography of an air - PMMA edge realized attaching a 0.1 mm thick filter on one half of the X-ray 
tube window, leaving open the second half. The left image has been acquired with the FP detector while the right 
image with Medipix2 SPC. Each image is the average of 150 acquisitions of 1 s time (7.5 mAs). V = 40 kVp, 
I = 50 µA. The ROI of 60 pixels x 60 pixels chosen for the evaluation of C and CNR are pointed out. The found 
values are: CFP = (0.9 ± 0.1) % and CNRFP = 0.25 for the FP detector and CMpx2 = (8.93 ± 0.06) % and 
CNRMpx2 = 1.59 for the Medipix2 detector. [51]  

 

A second test has been done by measuring the ratio 
signal

signal

σ
µ

versus time on flat field 

images, where 
signalµ  is the mean signal value chosen in a region of interest (ROI) of a fixed area 

inside the flat field image and signalσ  is its standard deviation. In the presence of only Poisson noise, 

this quantity should increase with the square root of the exposure. Fig. 3-27 show the trends for the 

FP detector and for Medipix2. Unfortunately, because of the FP detector limited dynamic range, a 

number of flat fields of 1 second acquisition time have been acquired and summed up to get flat 

field images of higher acquisition times. This means that for each flat field analyzed, the noise is the 

sum of the noises of a number of flat fields of 1 second exposure time. For this reason the noise 

contribution in the plot of FP detector data results to be constant. On the other hand, the Medipix2 

detector flat field have been obtained setting increasing exposure times, so for higher level of 

exposure the noise is increasing at. The Medipix2 curve has been fitted with the function y = a · x
b
 

and the b parameter has been found to have the value bMedipix2 = 0.41 ± 0.02, indicating that there is 

a further contribution other than the Poisson noise. Although the comparison is disadvantageous for 

the Medipix2 detector, one can see that the ratio 
signal

signal

σ
µ

 is increasing for Medipix2 more than 

for the FP detector. 
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Fig. 3-27 Trends of the quantity 
signal

signal

σ
µ

evaluated on a ROI of 213x256 pixels of a flat field image at 

different exposures (I = 250 µA) for a tube voltage of 40 kVp, W anode, for both the FP and the Medipix2 
detectors and the curve fit y = a · xb. The detector pixels have been equalized by means of the standard flat field 
correction FFC. 

 

From the plot in Fig. 3-27 it is evident that Medipix2 has a better mean/sigma ratio 

compared to the FP detector. The reason for this different behaviour lays in the different 

technologies behind the two detectors: the FP detector is a charge integration device, which means 

that it integrates the whole signal arriving from all the incoming events impinging on its sensitive 

area, both from the desired and from the undesired radiation (exactly the noise, generally speaking), 

so that, at increasing exposure, both the numerator and the denominator of the ratio increase. On the 

contrary, Medipix2 operates in single photon counting mode, which means that each incoming 

photon is first compared to a discrimination threshold and, only if the signal generated from the 

energy released is higher than this level, the photon is counted, contributing to the “good” 

signal objµ . This is also the reason for the highest values of the CNR parameter evaluated above. 

As already explained in Chap. 2, X-ray images acquired with pixellated detectors need a 

post-correction that flatters the pixel response over the array in order to improve the image quality 

of 2-D radiograms and to avoid artefacts in the 3-D tomographic reconstruction. The most common 

way to perform this is the so called “Flat Field Correction” (FFC), while the novel algorithm we 

want to compare to the FFC is the Signal-to-Thickness Calibration (STC) that takes into account the 

modification of the spectrum in traversing the sample. To compare the two techniques on images 

acquired with both the detectors, we proceeded as follows: 

� two independent flat field measurements were performed in the same conditions using a set 

of aluminium filters with different thicknesses with a tube voltage of 40 kVp and a tube 

current of 250 µA; 
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� one set has been used as data to be corrected, marked as “D” ( “Data”), while the second one 

has been used to perform FFC and SCC on the first set and has been marked as “C” 

(“Correction data”); 

� each image of the first set D has been corrected by FFC, using each image of the second flat 

fields set, C, of different thicknesses; 

� each image of the first set D has been corrected by SCC computed using data of the second 

set C; 

� standard deviations of corrected data matrices have been computed; 

� one comparison has been carried out between Medipix2 and FP detector for the same 

correction method; 

�  one comparison has been carried on between FFC and SCC methods for the same detector. 

Because we were dealing with flat fields of filters images, the aluminium top cover of the FP 

detector has been removed to have the same experimental conditions for both detectors. 

The average counts per frame for Medipix2 detector have been kept constant 

(~ 1500 counts/frame), changing the acquisition time at filter thickness increase; 45 frames have 

been summed up for each thickness value; the number of frames acquired with the FP detector has 

been chosen so that the sum of all of them would have the same statistics as the sum of 45 frames 

acquired by Medipix2 detector has. 

Tab. 3-2 summarizes a detailed report of the measurements described above. 

The plots in Fig. 3-28 (a - h) show four examples of trends for the average pixel standard 

deviation evaluated - as explained above - on flood irradiation images of Al filters (set D) when the 

images are corrected by means of the FFC using, at every turn, flat fields of Al filters in the range 

[0, 8] mm both for the FP (Fig. 3-28b, Fig. 3-28d, Fig. 3-28f and Fig. 3-28h) and for the Medipix2 

(Fig. 3-28a, Fig. 3-28c, Fig. 3-28e and Fig. 3-28g) detector (read caption note for details).  

 

Medipix2 Flat Panel 

filter thickness 

(mm) 
tacq (s) 

number of 

summed 

frames 

tacq (s) 
number of summed 

frames 

0 0.2 45 0.25 24 

0.05 0.3 45 0.25 25 

0.1 0.4 45 - - 

0.25 0.9 45 0.25 31 
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0.5 1.6 45 0.25 37 

1 3.3 45 0.25 52 

2 7.5 45 0.25 85 

4 21 45 - - 

6 42 45 - - 

8 80 45 1.5 100 

Tab. 3-2 List of flat fields acquired for the FP and for theMedipix2 detector for filters of thickness in the range 
[0, 8] mm of aluminium. For Medipix2 45 frames acquired with different acquisition times have been summed 
up so as to have a fixed average number of counts per frame, while for the FP detector a number of frames of 
different acquisition times has been acquired and summed up so as to recover the same average number of 
counts reached with Medipix2. 
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Fig. 3-28 Plots of the standard deviations of the average pixels value evaluated on flood irradiation images of 
aluminium filter with thicknesses in the range [0, 8] mm (data set D) when corrected with the FFC performed 

with different filter thicknesses (from data set C): (a) Medipix2 and (b) FP detector open beam flood irradiation, 
(c) Medipix2 and (d) FP detector, 0.25 mm thick Al filter flood irradiation, (e) Medipix2 and (f) FP detector, 
1 mm Al thick filter flood irradiation, (g) Medipix2 and (h) FP detector, 2 mm thick Al filter flood irradiation. 
The circle marking the first two points in the plots relative to the FP detector points out that for this device the 
FFC correction performed with the open beam is almost the same as the correction with a 0.05 mm filter. 

 
The minimum value of the average pixel values standard deviation is reached when a filter 

of thickness t is corrected with a flat field obtained from a flood irradiation of a filter of the same 

thickness t; this result could have been predicted because this correction well takes into account the 

beam hardening effect, related to the traversed thickness. This trend confirms the inadequacy of the 

FFC when an open beam irradiation is used to correct a sample of a thickness t. In fact, it does not 

take into account the change of the spectrum in traversing the sample that gives rise to a different 

pixel response (pixel efficiency is energy-dependent so it changes as the incoming spectrum is 

modified by the beam hardening effect). 

From the plots it is possible to notice that for the FP detector the standard deviations in 

correspondence of the open beam (0 mm Al filter) and of the 0.05 mm thick filter have always the 

same values: this indicate that this device has not the capability to appreciate the change in 

attenuation coming from thin objects, or, in other words, the fluctuations in the pixel values are 

higher than the difference in attenuation (and thus in the recorded counts) due to the two thicknesses 

(0 mm and 0.05 mm). This means that it makes no difference to correct an image by means of the 

FFC made with either the open beam or the 0.05 mm thick filter. On the other hand, the standard 

deviation values of FP detector data always result to be lower than the Medipix2 ones. To explain 

this phenomenon it is worth observing two radiographies, acquired with the two detectors and 

corrected by means of the FFC. 

In Fig. 3-29 the radiograms of the 0.25 mm thick filter, corrected with a flat field of the 

same filter, show the difference between the FP (Fig. 3-29 left) and Medipix2 (Fig. 3-29 right) 

detector. While the first is a uniform flat image, the latter exhibits a non-homogenous structure that 

can be interpreted as the texture of the surface roughness of the Al foil. In fact, the 0.25 mm thick 

filter has been realized overlapping five 0.05 mm thick filters, so that the texture of all the filters 
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can be distinguished. This explanation proves, once again, the detection superiority of a single 

photon counting, provided with an energy discrimination threshold, to the charge integrating 

technology of an FP detector. 

 

 

Fig. 3-29 On the left: a radiography of a 0.25 mm thick aluminium filter acquired with the FP: the image is 
uniform and flat thanks to the flat field correction (with a flat field of the same 0.25 mm thick Al filter); on the 
right: a radiography of the same 0.25 mm Al filter, acquired in the same conditions and corrected in the same 
way as the left image, but realized with Medipix2 SPC detector. It is possible to distinguish the texture of the five 
0.05 mm thick filters overlapped to make the 0.25 mm thick filter. 

 

The two plots showed in Fig. 3-30 report the average pixels value standard deviations for the 

FP (Fig. 3-30a) and for the Mdipix2 detector (Fig. 3-30b) when the experimental data set D is 

corrected with the STC and when the correction is performed by means of the FFC using a flat field 

of a filter with the same thickness used for the data (best correction condition for the FFC). In other 

words, the graphs are comparing the best FFC correction (the one that gives the standard deviation 

minima) with the STC correction. In both cases the STC performs better that the FFC, even if, for 

the FP detector the difference between the two correction methods appears much more evident. 
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Fig. 3-30 Plots comparing the standard deviation values evaluated on FP detector (a) and Medipix2 detector (b) 

experimental data D corrected either with the STC or with the FFC performed using a flat field of the same 
thickness as the datum thickness. STC performs better than FFC for both the FP and the Medipix2 detector.  

 

FP detector Medipix2 detector 
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The standard deviations evaluated on STC data recorded with the charge integrating device 

are lower than the standard deviations at STC data recorded with the Medipix2. The STC corrected 

data acquired with the two detectors show the same phenomenon seen for the FFC corrected data: 

the FP detector returns an uniform image of the filter imaged, while the Medipix2 is able to detect 

the surface structure of the overlapped filters used to reach the desired thickness, giving rise to a 

non-homogenous image with a higher standard deviation. Images of two filters are presented in Fig. 

3-31 (FP detector image on the left, Medipix2 detector image on the right). 

A comparison that takes into account both the two detectors performances and the two 

corrections effectiveness has been done evaluating the contrast C for planar images of a PMMA 

cylinder provided with a 10 mm diameter size channel filled with a rod of polytetrafluoroethylene 

(PTFE) 6 mm in diameter. The PTFE simulates the same attenuation to X-rays as the trabecular 

bones has. A photo of the PMMA cylinder is shown in Fig. 3-32. 

 

 

Fig. 3-31 On the left: a radiography of a 0.5 mm thick aluminium filter acquired with the FP: the image is 
uniform and flat thanks to the Signal-to-Counts Correction; on the right: a radiography of the same 0.5 mm Al 
filter, acquired in the same conditions and corrected in the same way as the left image, but obtained with 

Medipix2 SPC detector. It is possible to distinguish the surface texture of the ten filters 0.05 mm thick 
overlapped to make the 0.5 mm thick filter. 

 

FP detector Medipix2 detector 
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Fig. 3-32 A set of polymethylmethacrylate cylinders has been used for the 2-D and 3-D image quality tests. The 
dimension chosen - 30 mm in diameter – corresponds to the width of a common laboratory mouse and the 
material simulates the attenuation to X-rays of the water in the diagnostic energy rage (20 - 80) keV. Each 
cylinder is provided with either one (10 mm diameter size) or five (6 mm diameter size) empty channels along all 
its length, filled with different materials and substances simulating the attenuation to X-rays of a number of 
organs and tissues, from the softer ones to the more opaque ones. 

 

The comparison has been carried by imaging the object with both the FP and the Medipix2 

detector and correcting the two radiograms by means of either the FFC or the STC. The four images 

have been compared by evaluating the CNR between the PTFE rod and the external PMMA. The 

four radiographies are showed in Fig. 3-33, while Tab. 3-3 reports the results. 

The images have been acquired for 0.5 seconds with a tube current of 0.91 mA and a tube 

voltage of 40 kVp. The image magnification factor is 1.07x. To evaluate the  CNR two ROIs of 

50 x 100 pixels have been chosen both in the PTFE area and in the PMMA area and the mean 

values have been averaged to get, respectively, µPTFE and µPMMA and their standard deviations. 

(a) (b) 

(c)  (d) 

Fig. 3-33 Radiographies of a polymethylmethacrylate cylindrical phantom (60 mm diameter) containing a PTFE 
rod of 10 mm size in diameter in an internal channel. The four radiographies have been acquired with the FP 
detector (a and b) and with the Medipix2 detector (c and d) and then corrected by means of the two flat field 
corrections, the FFC (a and c) and the STC (b and d). 
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CNR FP Medipix2 

FFC 6.3 6.7 

STC 8.5 11.9 

Tab. 3-3 Table of the CNR values estimated for the PTFE rod enclosed in a PMMA cylinder. The highest value 
of the CNR is achieved using Medipix2 SPC detector and by correcting the raw image with the STC algorithm. 

Also for the FP detector images the STC correction performs better than the FFC one. 

 

A comparison between the two detectors has been made on biological samples, as well as on 

phantoms. The radiographies proposed below have been made with the Hamamatsu X-ray source 

provided with the 5 µm focal spot. In our experimental conditions, phase contrast effects have been 

observed. What we can compare here is the phase contrast visibility of the single photon counting 

and the FP detector. The comparison has been carried by evaluating the intensity jump across the 

interface between air and a detail of a biological sample body. Fig. 3-34 shows the ex vivo insect 

used for the study (a specie of beetle), while Fig. 3-35a and Fig. 3-35b show a detail of the sample 

acquired respectively with the FP and with Medipix2 detector in the same experimental conditions 

(tube voltage, geometry, pixel size) except the exposure which is of 20 mAs for the FP detector and 

of 50 mAs for the Medpix2 detector (0.3 µGy absorbed dose). 

 

 

Fig. 3-34 Radiography of a beetle acquired with the FP detector (without the 1 mm thick Al top cover). 
R1 = 13.05, R2 = 48.95, M = 4.75x, V = 40 kVp, I = 200 µA, texp = 100 s (20 mAs). The calculated absorbed dose, 
obtained simulating the W spectrum [50], is of about 0.3 µGy. 
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(a) (b) 

(c)   (d) 

Fig. 3-35 Radiographic detail of an insect body acquired with the FP detector (a) and with the Medipix2 (b) in 
the same geometrical conditions (R1 = 13.05, R2 = 48.95, M = 4.75x), with a tube voltage of V = 40 kVp, but at 
different exposure levels: I = 200 µA, texp = 100 s for the FP detector and I = 50 µA, texp = 100 s for Medipix2. The 

rectangles illustrate the ROI to evaluate the plot profiles showed in (c) - for the FP detector – and in (d) – for 
Medipix2. The circles on the plots point out the jump due to the interference fringes, resulting from the phase 
shift. The jump for the FP detector is of 4.4 · 10-4, while the jump recorded with Medipix2 is of 5.7 · 10-3, that is 
one order of magnitude bigger. 

The phase contrast effect has been evaluated in the indicated regions as the difference 

between the downward peak due to the dark fringe and the average pixels values in the air region. 

The values found result of 4.4 · 10-4 for the FP detector and 5.7 · 10-3 for Medipx2 detector, 

indicating a superior detection ability of the Medipix2 for the phase shift phenomenon. 

  

3.5 3-D image quality comparison between Medipix2 SPC and the 

FP detector by means of two pixels equalization techniques 

In comparing the two presented detectors we performed tomographic imaging with the 

Molybdenum anode X-ray source, 35 µm focal-spot size. Here we present some tests on 3-D 

imaging on phantoms. The CT scans have been done for a given object by acquiring the projections 

with both the FP detector and the Medipix2 and correcting them, before the reconstruction, either 

with the FFC or the STC. Finally, we get for each sample four CT slices on which the 

Contrast-to-Noise Ratio (CNR) has been evaluated. 
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The test objects are – as already explained in the note to Fig. 3-32 – a set of 

polymethylmethacrylate cylinders, 30 mm in diameter size. Each cylinder is provided, along its 

whole length, with either one single channel (10 mm diameter) or five empty channels (6 mm 

diameter each), filled with different materials and substances simulating the attenuation to X-rays of 

a gamut of organs and tissues, from the softer ones to the more radiopaque ones. 

At a given X-ray tube voltage energy one can associate to each material a so called 

“CT number” that is the effective linear attenuation coefficient of that substance related to that of 

the water, at the same energy. In this way, it is possible to create a scale of units – the Hounsfield 

units – in a range starting from the value -1000, corresponding to the air, up to ~ 4000 for bones and 

metal inserts. The Hounsfield units, or CT numbers, are defined as: 

 

where µ  and waterµ are defined, respectively, as the effective linear attenuation coefficient 

for a given material and for water. Then, the CT number of water is zero. 

In Tab. 3-4 a number of organs’ and tissues’ substitute materials and their constituents and 

composition are listed [69]. 

All the CT scans, realized with the FP, have been done with the same parameters: 

720 projections acquired on over 360°, with an angular step of 0.5° (2 frames/s), for an exposure 

time per view tacq = 0.5 s, with a tube voltage V = 40 kVp (Ēsimul = 15.75 keV) and a tube current 

I = 0.91 mA. The source-to-sample distance was R1 = 33.4 cm, while the tube-to-detector distance 

was (R1 + R2) = 35.8 cm, for a magnification factor of M = 1.072x. All the projections have a size 

of 768 x 256 pixels, while the tomographic slices have a voxel size of 47 µm x 47 µm x 47 µm.   

All the tomographies realized with the Medipix2 detector were realized at a tube voltage 

V = 40 kVp (Ēsimul = 15.75 keV) and a tube current I = 0.91 mA; the tube-to-sample distance was 

R1 = 32.4 cm and the tube-to-detector distance was (R1 + R2) = 35.2 cm, for a magnification factor 

of M = 1.086x. All the tomographic slices have a voxel size of 51 µm x 51 µm x 51 µm. The 

number and the acquisition time tacq of the projections acquired on 360° is slightly different from 

one tomography to another and so also the angular step is not always the same. These parameters 

will be specified for every measurement presented below. 

The complete series of tomographies, from FP detector acquisitions and for Medipix2 

acquisition have been reconstructed by the commercial software “Cobra” [70] which uses the 

Felkamp FBK algorithm [71]. FFC data have bean reconstructed using the fan beam geometry 

while STC data have been reconstructed using the parallel-beam geometry as explained in Chap.2. 

CT# = 
µ – µwater 

µwater 
· 1000 
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For the first test we chose a number of different materials approximately in the CT numbers 

range of [550 - 1800]: olive oil, water, a solution 1 mg/ml of iodixanol5 and PTFE, filling four of 

the five channels in a PMMA phantom and leaving the fifth one empty (air). For all these materials 

we evaluated the CNR compared to the surrounding PMMA. The number of projections acquired 

on 360° for Medipix2 is 683 for an angular step of 0.53° and an acquisition time of 0.8 s per 

projection. Because of the small Medipix2 sensitive area, to image the entire PMMA cylinder the 

detector has been translated laterally by 11 mm two times for each angular step and, successively, 

the three images have been stacked together to recover a projection of 658 pixel x 256 pixels. 

It is worth remembering here that the pixel efficiency corrections have been performed on 

each planar projection before the tomographic reconstruction. 

Tab. 3-5 reports the CT numbers, from the reconstruction procedure, for the four materials, 

while Fig. 3-36 shows the plots of the CNR versus CT numbers for the four materials, evaluated, 

respectively, on the images recorded (a) with the FP detector and corrected by means of either the 

FFC or the STC correction, and (b) with the Medipix2 detector and corrected by means of either the 

FFC or the STC correction. From these figures we conclude that the STC algorithm provides a 

higher CNR than the FFC and that the results are more evident for the highest absolute CT 

numbers. Moreover, the Medipix2 SPC detector gives higher CNR values compared to the charge 

integrating device, demonstrating, also in 3-D imaging the superiority, in terms of image quality, of 

the single photon counting technology. 

 

                                                
5 The iodixanol is a commonly used contrast medium for CT because of the high atomic number of the iodine. We used the commercial solution 

Visipaque, GE Healthcare, 320 mg I/ml, active principle: iodixanol. 
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Tab. 3-4 Constituents and composition of biological tissues’ substitutes. [69] 
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Flat Panel Medipix2 
CTnumbers 

FFC STC FFC STC 

OIL -545 ± 39 -346 ± 17 -446 ± 5 -468 ± 5 

WATER 6 ± 30 22 ± 16 4 ± 16 1 ± 10 

IODIXANOL (1 mg/ml) 81 ± 28 67 ± 18 24 ± 13 25 ± 15 

PTFE (TEFLON) 1811 ± 54 1212 ± 24 488 ± 19 1135 ± 15 

 
Tab. 3-5 CT numbers derived from the tomographic reconstruction of the cylindrical phantom for four 
substances simulating the attenuation of different organs and tissues present in a body. Tube current 
I = 0.91 mA, V = 40 kVp, Mo anode. 
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Fig. 3-36 Values of the CNR for different materials - oil, water, 1 mg/ml of iodixanol solution, PTFE (listed in 
increasing order of CT number) – compared to the PMMA. The four substances fill channels hollowed in a 
PMMA cylinder, 30 mm in diameter. Tube current I = 0.91 mA, V = 40 kVp. 

 

Similarly, other two tests have been done by filling the five channels of the PMMA cylinder 

with different concentrations of the iodixanol solution with increasing CT numbers. The first 

phantom was filled with the following iodixanol concentrations: 1 mg/ml, 2 mg/ml, 5 mg/ml, 

8 mg/ml and water, while the second phantom was filled with: 8 mg/ml, 15 mg/ml, 25 mg/ml, 

30 mg/ml and water. 

Fig. 3-37 shows the four tomographic slices, average of 233 slices, obtained, respectively, 

with the FP detector and the FFC correction (a), the FP detector and the STC correction (b), the 

Medipix2 and the FFC correction (c) and the Medipix2 and the STC correction, with the first set of 

iodixanol concentrations [1 - 8] mg/ml. 

The number of projections acquired over 360° for Medipix2 is 685 for an angular step of 

0.52° and an acquisition time of 0.8 s. 
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Fig. 3-37 Average image of 233 tomographic slices of a cylindrical phantom (30 mm in diameter) provided with 
five channels (6 mm in diameter) filled with water and with a solution of iodixanol at different concentrations: 

1 mg/ml, 2 mg/ml, 5 mg/ml and 8 mg/ml.  The voxel size is 47 µm x 47 µm x 47 µm for the FP detector recorded 
slices and 51 µm x 51 µm x 51 µm for the Medipix2 images. The top images have been acquired with the FP 
detector and have been corrected by means of either the FFC (left image) or the STC (right image). Analogously, 
the bottom images have been acquired with the Meipix2 detector and have been corrected by means of either the 
FFC (left image) or the STC (right image) algorithm, respectively. 

 

The CNR evaluation results are in Fig. 3-38 (iodixanol concentration range [1 - 8] mg/ml) 

and in Fig. 3-39 (iodixanol concentrations [8 - 30] mg/ml): the plots of the CNR values versus the 

iodixanol concentration for the two phantoms are relative to the FP detector (Fig. 3-38a and Fig. 

3-39a) and to the Medipix2 (Fig. 3-38b and Fig. 3-39b) detector. 
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Fig. 3-38 Values of the CNR for different concentrations of a iodixanol solution – 1 mg/ml, 2 mg/ml, 5 mg/ml, 
8 mg/ml and water - compared to the PMMA. The five substances fill 6 mm diameter channels hollowed in a 
PMMA cylinder, 30 mm in diameter. The CNR values have been evaluated for FFC and STC corrected data 

acquired with the FP (a) and the Medipix2 (b) detector. 
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Fig. 3-39 Values of the CNR for different concentrations of a iodixanol solution – 8 mg/ml, 15 mg/ml, 25 mg/ml, 
30 mg/ml and water - compared to the PMMA. The five substances fill 6 mm diameter channels hollowed in a 
PMMA cylinder, 30 mm in diameter. The CNR values have been evaluated for FFC and STC corrected data 
acquired with the FP (a) and the Medipix2 (b) detector. 

 

From these figures we deduced that the STC algorithm provides a higher visibility than the 

FFC and the results are more evident for the highest CT number values (with exception of Fig. 

3-38a in which seems there is any increasing discrepancy at increasing CT number values). 

Moreover, the Medipix2 SPC detector gives, generally, CNR values higher compared to the charge 

integrator device (with exception of Fig. 3-39), confirming, also in 3-D imaging, the superiority, in 

terms of image quality, of the single photon counting technology. 

Two more examples of 3-D imaging on phantoms are here presented to show the effect of 

beam hardening on the images taken with the two detectors and by the two equalization corrections. 

The hardening of the spectrum traversing the sample results in the so called “cupping effect”, that 

causes the lowering of the CT numbers in the centre of the reconstructed sample image compared to 

the periphery. 
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The first example demonstrates the quality of the already discussed computer simulation in 

ref. [4]. In the mentioned article, CT images acquired with photon counting, charge integrating and 

energy weighting detectors were simulated to perform a quantitative comparison for beam 

hardening artefacts. It was found that the magnitude of cupping effect was lower by 1% for charge 

integrating and higher by 6.1% for energy weighting acquisition as compared to photon counting. 

Here we show the experimental validation of this simulation by means of the FP detector and of 

Medipix2 SPC: two tomographies of a homogenous cylindrical phantom made of PMMA were 

realized using either of the two detectors and on the averages of 229 CT slices it has been evaluated 

the cupping artefact from the line profile values. 

 

 a b 

c  d 

Fig. 3-40 Average images of 229 tomographic slices of a homogenous cylindrical phantom (30 mm in diameter) 
made of PMMA. The planar projections used for the tomographic reconstruction have been acquired with the 
FP (a) and with the Medipix2 SPC detector (b) detector and then corrected by means of the FFC. The voxel sizes 
are 50 µm x 50 µm x 50 µm (a) and 55 µm x 55 µm x 55 µm (b). In (c) and (d) there are shown the plot profiles 
relative to the rectangular selection depicted across the slices: the Medipix2 shows a cupping effect 1.9% higher 
compared to the charge integrating detector. Tube voltage was 40 kVp and tube current was 0.91 mA. Each 
projection has been acquired for 0.5 seconds in the case of the FP detector and for 0.8 s for the Medipix2. 



 86

The number of projections acquired on 360° for Medipix2 is of 685 for an angular step of 0.52° and 

an acquisition time of 0.8 s. The projection image size were of 652 pixel x 256 pixels, while the 

tomographic slices were reconstructed with 672 x 672 x 672 voxels of 55 µm. Fig. 3-40b and Fig. 

3-40d show the line profiles relative to the rectangular selection depicted across the slices for the 

two detectors. The Medipix2 detector results in 1.9% higher cupping artefact compared to the 

charge integrating detector. This has been explained reflecting on the fact that, differently from the 

charge integrating, the SPC detector provides an accurate representation of the beam hardening 

effect due to its flat energy weighting. 

The second example shows the ability of the STC correction in removing the cupping artefact. Fig. 

3-41 shows two averages of 256 tomographic slices of a PMMA phantom, 30 mm in diameter, with 

a polyethylene rod (10 mm in diameter) inserted in an internal channel [72]. The slices are relative 

to a 3-D tomographic reconstruction from a set of projections acquired with Medipix2 and corrected 

with the FFC (a) and with the STC (b). 

 

(a) (b)

(c) (d) 

Fig. 3-41  Average images of 256 tomographic slices of a cylindrical phantom (30 mm in diameter) provided with 
a channel (10 mm in diameter) filled with a polyethylene rod. The planar projections used for the tomographic 
reconstruction have been acquired with the Medipix2 SPC detector and then corrected with the two algorithms: 
the FFC (a) and the STC (c). The voxel size is 50 µm x 50 µm x 50 µm. (b) and (d) show the line profiles relative 

to the rectangular selection depicted across the slices: the STC provides for the complete removal of the cupping 
effect (4.3 %), differently from the FFC (29 %) that requires a further image correction for the beam hardening. 
Also the contrast has been evaluated, using the ROIs depicted in the images, giving the values of 64 for the FFC 
and 117 for the STC. The tube voltage was 40 kVp and the tube current was 0.91 mA. Each projection has been 
acquired for 0.5 seconds. [72] 



 87

     The voxel size is 50 µm x 50 µm x 50 µm. Fig. 3-41b and Fig. 3-41d show the line 

profiles relative to the rectangular selection depicted across the slices: the STC provides an almost 

complete removal of the cupping effect that results to be only 4.3 %, differently from the FFC 

resulting in a cupping effect level of 29 %. Thus, the FFC requires a further image correction for the 

beam hardening artefact. Also the contrast C has been evaluated, using the ROIs depicted in the 

images, giving the values C = 64 for the FFC and C = 117 for the STC. The reconstruction voxel 

has a size of 50 µm x 50 µm x 50 µm. 

As for the 2-D imaging, a comparison between the two detectors has been done on 

biological samples. We have imaged post mortem the head of a mouse using both devices and 

correcting the data with both corrections. The mouse has been put into a PMMA cylinder with a 

diameter of 30 mm. 

The tomographic reconstruction realized with the FP projections have 

416 x 416 x 128 voxels of 100 µm x 100 µm x 100 µm isotropic resolution; the air dose at the 

sample position for the 720 projections is 1.05 Gy. The reconstruction of the Medipix2 projections 

(angular step 0.53) has been done with 416 x 416 x 128 voxels of size 110 µm x 110 µm x 110 µm; 

the air dose for the 682 projections is of 1.50 Gy. Fig. 3-42 and Fig. 3-43 show projections of the 

mouse head at 0°, 45°, 65° and 85° acquired with the FP detector, on which the FFC and the STC 

algorithm was respectively applied. Fig. 3-44 and Fig. 3-45 show four projections acquired with the 

Medipix2 detector, on which the FFC and the STC algorithm was respectively applied, chosen so to 

have a correspondence of the mouse head position compared to figures Fig. 3-42 and Fig. 3-43. 
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Fig. 3-42 Projections at different angular positions of a mouse head acquired with the FP detector and corrected 
by means of the FFC. 
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Fig. 3-43 Projections at different angular positions of a mouse head acquired with the FP detector and corrected 
by means of the STC.  
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Fig. 3-44 Projections at different angular positions of a mouse head acquired with the Medipix2 detector and 

corrected by means of the FFC.   
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Fig. 3-45 Projections at different angular positions of a mouse head acquired with the FP detector and corrected 
by means of the STC. 
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In Fig. 3-46 a selected tomographic slice has been chosen which visualizes an anatomic 

detail of the head. The four images have been acquired with the FP detector (a and b) and with the 

Medipix2 (c and d) and corrected by means of the FFC (a and c) and of the STC (b and d). 

 

(a) 

(b) 

 

FP - FFC 

FP - STC 

1 

1 

3 

3 

2 

2 
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(c) 

(d) 

Fig. 3-46 Axial slices of the mouse head acquired with the FP detector (a, b) and with the Medipix2 (c, d) and 
corrected either by means of the FFC (a, c) or by means of the STC (b, d). 
 

Qualitatively speaking, in the case of the FP detector the STC algorithm gives a more 

detailed image compared to the FFC, as one can see from the pointed out features labelled with 1, 2 

and 3 in Fig. 3-46 (a) and (b). Also when looking at Medipix2 detector data, if focusing at detailed 

1, 4 and 5, one can notice more clear and detailed visualizations coming from the STC algorithm 

Medipix2 - FFC 

Medipix2 - STC 

1 

1 

4 

4 

5 

5 
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rather than from the FFC one. Comparing the structure arrowed with 1 in all the four slices, one can 

state that the clearer result is obtained with the Medipix2 detector when the STC algorithm is 

applied (d), followed by the slice obtained with the Medipix2 when the projections have been 

corrected by means of the FFC (C). 

Evaluating the CNR in the four slices of Fig. 3-46 both for the soft tissue (top rectangle in 

the images) and for the hard tissue (bottom rectangle in the images) compared to PMMA of the wall 

of the cylinder containing the mouse one can find the results reported in Tab. 3-6. The chosen ROIs 

are of 5 x 5 pixels. Differently from the tomographic tests on phantoms, both for soft tissues and for 

hard tissues the FP detector shows higher CNR values. Moreover, in the case of hard tissue the FFC 

algorithm gives better results compared to the FFC one for both detectors. The reason why, in the 

case of this biological sample, it is difficult to declare which detector and which correction performs 

better in terms of the image quality could be related to the non-real homogeneity of the ROIs into 

the animal body, influencing the standard deviation’s values. In other words it could happen that, 

paradoxically, the detector that is able to achieve a higher resolution (that means Medipix2 detector) 

in the chosen ROIs has to face with non-homogeneities that are invisible to the detector with the 

worst resolution. 

The contrast C has been evaluated as the difference in CT numbers of the average pixel 

value of a ROI in the mouse head and in the PMMA and the results are summarized in Tab. 3-7. 

Analogously, it is not clear how interpret the results. In the case of soft tissue, once again the FP 

detector shows the highest contrast value when coupled with the FFC, while in the hard tissue case 

the Medipix2 detector, coupled with the FFC algorithm performs better. 

 

Fat Panel Medipix2 
CNR 

FFC STC FFC STC 

Soft tissue 6.9 18.9 3.4 1.4 

Hard tissue 7.0 4.9 5.0 4.7 

Tab. 3-6 CNR values for the tomographic slices of Fig. 3-46 of soft and hard tissues compared to PMMA 
evaluated on ROIs of 5 x 5 pixels. 

 

Fat Panel Medipix2 
C 

FFC STC FFC STC 

Soft tissue 139 186 95 54 

Hard tissue 2223 2317 7467 4664 

Tab. 3-7 C values for the tomographic slices of Fig. 3-46 of soft and hard tissues compared to PMMA evaluated 

on ROIs of 5 x 5 pixels. 
 



 95

  Fig. 3-47 shows sagittal views reconstructed from projections acquired with the FP detector 

(a and b) and with the Medipix2 detector (c and d) and corrected by means of the FFC (a and c) and 

of the STC (b and d). 

 

(a)

(b)

(c)

 (d) 

Fig. 3-47 Sagittal slices of the mouse head acquired with the FP detector (a, b) and with the Medipix2 (c, d) and 

corrected either by means of the FFC (a, c) or by means of the STC (b, d). 

FP - FFC 

FP - STC 

Medipix2 - FFC 

Medipix2 - STC 
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Conclusions 

In this thesis we have used a Single Photon Counting (SPC) silicon pixel detector 

(Medipix2) for X-ray planar, real-time and tomographic imaging, with special interest for small 

biological samples, both in vivo and post-mortem. Noise suppression and the assignment of the 

same weight for low and high energy photons make the SPC technique extremely promising for the 

detectability and for the visualization of low attenuating objects such as organic and biological 

samples. The thesis work benefited of collaboration between the group of Medical Physics at 

Federico II University, and the group at Czech Technical University in Prague, Institute of 

Experimental and Applied Physics, with financial support from INFN and from Federico II 

University. The work has been done in the framework of the European Medipix2 Collaboration. 

Planar images of insects, plants, seeds have been acquired at a resolution level of about 4 µm 

with high image quality. Small anatomical and organic structures as insect respiratory system, 

insects’ feelers details, leaf stoma and webbed veining features have been visualized in great detail, 

also taking advantage of phase contrast enhancement effects. In fact, thanks to the favourable 

experimental conditions - micrometric focal spot size, suitable source-to-sample and sample-to-

detector distances and SPC detector pixel size (55 µm) - the X-ray phase shift has been exploited 

jointly with the X-ray absorption, allowing the visualization of low-attenuating samples. 

The Medipix2 detector read-out time, the high acquisition rate (100 kHz count-rate per 

pixel) and the possibility of arbitrarily setting the exposure time, make Medipix2 suitable for 

real-time imaging of moving objects at a reasonable frame-rate of few frames per second. This 

detector represents a non-invasive tool for in vivo investigations of small insects’ life and allows 

entomologists to follow a biological sample through all its evolutional processes for longitudinal 

studies. 

As an example of live X-ray imaging, X-ray planar images of a living parasite, while 

moving in its natural environment (its host’s body), have been acquired with a frame rate of 

2 frames/s, with high contrast resolution. A series of planar images of the same sample, acquired in 

different periods of time, show the living object in several stages of its natural biological evolution, 

making clearly visible the morphological changes in the animal’s body anatomy. 3D X-ray micro-

imaging of the living parasite inside its host has been done with a voxel resolution of 

17 µm x 17 µm x 21 µm. After the study the sample was still alive for further investigations. 

The achieved spatial and contrast resolutions, both in 2D and in 3D images, can be regarded 

as adequate to detect the main morphogenetic changes in outer anatomy, as well as for observation 

of inner anatomy features of small insects and organic samples. The dynamics of biological 

processes, as well as of biological growth and changes can also been satisfactorily followed. The 
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possibility of tomographic imaging enables either to virtually cut the specimen into 2D slices or to 

have a comprehensive visualization of its 3D model for a non-invasive investigation. 

The results obtained are comparable to those achieved with modern integrating systems that 

use large facilities as a synchrotron light source but, in addition, allow for routine and highly 

sensitive investigations in laboratories. 

A comparison study has also been carried on between the experimental SPC detector and a 

commercially available Flat Panel integrating detector (CsI:Tl scintillator coupled to a CMOS flat 

panel), in terms of image quality for planar and tomographic imaging. The two detection 

technologies have been compared on 2D and 3D imaging of both phantoms and biological samples. 

Image quality parameters have been evaluated on images acquired with the two detectors in the 

same experimental conditions (geometry, X-ray tube energy, exposure, etc.), showing in all the 

investigated cases a higher performance of the SPC technology. We observed that the SPC 

technique decreases significantly the fluctuations in the signal noise, permitting a higher image 

quality in a large attenuation range and for low X-ray energies (40 kVp tube voltage), as used for 

micro-imaging on biological samples. 

Two pixel efficiency correction methods have been compared: the standard 

Flat Field Correction (FFC) and the novel Signal-to-Thickness Calibration (STC). A correction 

procedure on raw data is important to account for the non-uniform pixel response. The STC 

calibration results in a more uniform and well contrasted planar and tomographic imaging compared 

to the FFC correction. Moreover, when tomographic projections are corrected by means of the STC, 

the beam hardening cupping artefact is almost recovered. 

To sum up our results, we believe that an SPC detector, when associated to the STC 

technique, permits for high quality X-ray imaging. Moreover, its image quality performance is 

higher when compared to the charge integrating FP detector one, as far as both planar and 

tomographic images are concerned. 
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APPENDIX: 

Phase Contrast Effect: outline of theory 

A special remark has to be done on a phenomenon which X-rays undergo when passing 

through an object under certain conditions of coherence of the beam: the phase shift. 

The X-rays propagation through an object can be described by the complex refractive index: 

βδ in +−= 1 , 

where β is the imaginary part describing the absorption and δ is the refractive index decrement, 

responsible for the phase shift φ, caused by the radiation-matter interaction; β and φ are defined as: 
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where the integral is calculated on the X-ray path, µ/ρ is the mass attenuation coefficient of the 

traversed medium, <λ> is the mean X-ray wavelength and ρ the traversed material density. 

 For the image formation the conventional radiography exploits the differences in the X-ray 

attenuation depending on composition and thickness of the traversed medium and on the different 

covered distance. Low attenuating objects are visualized with low contrast, which hampers a clear 

interpretation of the image. On the other hand, detectors record not only X-rays absorption into an 

object, but also the phase shift effects occurred in the X-rays diffracted from the encountered object. 

Waves with different phase φ, travelling from the object to the detector, under coherence conditions 

can interfere creating bright and dark fringes in the recorded image, as shown in Fig. A. 1. 

 

 

Fig. A. 1 Scheme representing the phase effect formation: a wave impinging on an object is diffracted; the 
diffracted waves, travelling from the object to the detector, when coherent, can interfere giving rise to intensity 

jumps recognisable as bright and dark fringes. 

  
The fringes appear in the zones in which the change of refractive index is sudden, that 

means on edges and interfaces between objects which are different in thickness or compositions, 

resulting in an enhanced image contrast. The “phase contrast imaging” (PCI), when exploited in the 
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medical imaging field, results in an appreciable gain in the visualization of tissues and structures 

with a similar attenuation coefficients. Among the most interesting biological objects, commonly 

not visible or not distinguishable from the surrounding background with a conventional 

radiography, one can mention: 

− soft breast tissues (with similar attenuation coefficients); 

− articular cartilages (normally not visible); 

− blood vessels (normally visible only with contrast medium); 

− small and incomplete bone fractures. 

The advantage of this imaging technique can be appreciated by comparing the imaginary 

and the real part values of the refractive index n (Fig. A.2): in the diagnostic energy range of 

(10-100 keV), δ values are generally three orders of magnitude higher than β values; besides, at 

increasing energy, δ decreases less than β. 

  

 

Fig. A.2 The real and the imaginary parts, δ [73] and ββββ [74] of the complex refractive index for breast tissue. 
 

From this datum it is possible to get two important remarks: first, the phase contrast can be 

much higher than the attenuation contrast in a radiographic image; a second observation is that it is 

possible to work at higher energies compared to the conventional radiographies energies, still 

keeping a more elevated contrast, which means that the absorbed dose from the organism will be 

lower. 

The physical/geometric conditions necessary for the phase shift phenomenon manifestation can be 

summarized as follows: 

− the X-rays source must present a high spatial coherence degree to give raise to the 

interference phenomenon; 
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− the detector-to-object distance, R2, must be long enough to let diffracted rays diverge from 

undeviated ones to a sufficient extent to be separately detected (refractive angles are of few 

arcseconds). At the same time, the distance R2 has to be kept not too long to avoid the 

blurring effect due to the focal spot contribution; 

− the detector resolution must be high enough to separately detect the refracted rays from the 

undeviated ones; 

− high frequencies details are preferably detected. 

Typically, the phase enhanced contrast imaging is realized by means of the totally coherent 

synchrotron light. There are several studies based on this monochromatic radiation making use, 

basically, of two techniques: the diffraction enhanced imaging (DEI) also called the analyzer-based 

imaging (ABI) and the propagation-based imaging (PBI), alternatively called the 

refraction-enhanced imaging (REI). These techniques are often exploited for medical imaging, in 

particular for all the biological samples showing a low attenuation to X-rays as insects [75] or for 

mammographic studies on breast phantoms and excised tissue samples [76] [77], for investigation 

of degenerative joint diseases (bone is clearly visualized in conventional radiography, while 

cartilage is not) and lung imaging [78] [79]. In the latter case, because of the difference in X-ray 

phase shift caused by blood and soft tissues, blood vessels can be revealed with phase-contrast 

image without the use of any contrast agent.  Both techniques, therefore, improve the image quality 

over absorption contrast radiography. 

The use of the PBI technique by means of an X-ray tube is less common but still it is 

possible under the partial coherence conditions. In fact, typically, in a clinical radiographic system 

the source is a polychromatic X-ray tube (almost total absence of temporal coherence) with a spatial 

coherence degree. The smaller the focal spot is the higher the coherence degree is. The partial 

coherence of the waves emitted by a source of finite size s can be described in terms of lateral 

coherence length, Lcoh, defined as [80]: 

s
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where <λ> represents the mean wavelength of the beam, as above, and R1 is the source-to-object 

distance. The lateral coherence length is the linear size of a region over which the wavefield is 

strongly correlated, and it is roughly the maximal separation of two points for which the 

interference occurs. Besides the coherence length, what determines the phase contrast visibility is 

the modulus of the coherence degree for a certain structural component of spatial frequency u. This 

parameter is difficult to calculate, so that an alternative criterion to evaluate the coherence level 

reached in certain experimental conditions involves the so-called “shearing length”, Lsheear [79]. 
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This latter quantity represents the linear dimension necessary to the waves superposition, 

conditio sine qua non for the phase contrast phenomenon to manifest: 

M

uR ||
L 2

shear

⋅><
=

λ
, 

where M is the geometrical magnification factor defined as: 
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and R1 is the source-to-object distance. Finally, the criterion for the coherence conditions for the 

phase contrast effect is the value of the ratio: 
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This ratio does not depend on the X-ray wavelength λ. For 1
L

L
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shear <<  values the wavefield is 

almost fully coherent over the sharing length and that the phase contrast is clearly visible. 

For 1
L

L

coh

shear ≥ , the wavefield is totally incoherent and the phase contrast can not manifest itself. In 

intermediate cases, ( 1
L

L

coh

shear < ), the wavefield is partially coherent and the phase contrast visibility 

increases with decreasing shearL . 

The phase shift effect can be evaluated quantitatively. From Wu and Liu work [81] the 

expected trend is shown in Fig. A.3, where the RPF (Relative Phase contrast Factor) parameter is 

defined as: 
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where 

c: light speed; 

h: Planck constant; 

λ, R2, M, u: defined as before; 

E: beam energy; 
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u
, that is the complex degree of partial coherence that corresponds to the 

Optical Transfer Function (OTF) of the geometric unsharpness associated with a small focal spot; 

OTFdet: detector Optical Transfer Function, the module of which represents the 

Modulation Transfer Function (MTF); 

SExit: the spectrum outgoing from the object. 
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The |RPF| parameter represents a quantitative measure of the coherence and visibility of the 

phase-contrast phenomenon for a fixed spatial frequency u (20 lp/mm for the simulations of Fig. 

A.3), for a given spectrum (molybdenum anode with 30 µm inherent filtration in Fig. A.3). The 

larger this parameter is, the more the phase-shift manifests. In correspondence, the overshoot of the 

profile across an edge where the fringes appear will be more visible. 

 

 

Fig. A.3 Simulated trend of the |RPF(u)| value at increasing M, for a system composed of an X-ray source 
provided with a focal spot of 25 µm or 50 µm and a detector with 25 µm or 40 µm pixel size. The spatial 
frequency is set to 20 lp/mm and the spectrum has been simulated for a molybdenum anode with 30 µm inherent 
filtration [81] 

 

Similarly it can be directly evaluated the upward and the downward overshoot due to the 

presence of the dark and bright fringes as the distance between the two peaks. For the phase contrast 

extent evaluation two parameters can be defined [82][83][84] the Edge Enhancement Index (EEI) 

and the Edge Enhancement to Noise ratio (EE/N) defined as follows: 
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where 

P and T are the peak and trough intensity values at the edge; 

H and L represent the intensity average values, respectively, on the higher-intensity side of the edge 

and on the lower-intensity side of the edge; 

σH
 
and σL represent the standard deviations of the pixels used to calculate H and L in the EEI 

equation. 

A clarification drawing is depicted in Fig. A.4. 
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 (a) (b) 

Fig. A.4 Dark and bright fringes along an interface between two different materials - object 1 and object 2 – as a 
result of the interference of the diffracted waves, averaged by the finite detector resolution (a); correspondingly, 
the intensity profile across the edge demonstrates an upward (P) and a downward (T) overshooting. H and L 
represent, respectively, the higher and the lower intensity sides of the edge. 

  

  EEI measures the relationship of the edge-enhancement effect relative to the absolute 

change in intensity from absorption differences across the edge between two interfaces, while EE/N 

measures the magnitude of the edge enhancement effect relative to the presence of noise within the 

image. It should be made clear that the EEI and EE/N parameters are conceptually different from 

the RPF factor defined above. In fact, while the first two parameters can only provide information 

relative to the degree of absorption contrast in an image and quantify an observable effect, the RPF 

is a figure of merit that indicates which parameters for a given imaging system will maximize the 

degree of phase contrast.  



 106

References 

[73] M. Sanchez-del-Rio, R. J. Dejus, R J XOP www.ersf.fr/computing/scientific/xop 

(2003); 

[74] C. T. Chantler, et al., “X-ray Form Factor, Attenuation and Scattering Tables”, 

version 2.0, D S, http://physics.nist.gov/ffast (National Institute of Standards and Technology, 

Gaithersburg, MD)  (2003); 

[75] J. Jakubek, et al., "Phase Contrast Enhanced High Resolution X-Ray Imaging and 

Tomography of Soft Tissue”, NIM A, vol. 571, p. 69-72 (2007); 

[76] S. Fiedler, et al., “evaluation of two phase contrast techniques: diffraction enhanced 

imaging and propagation”, Proc. SPIE, 5030, p. 266-273 (2003); 

[77] E. Pagot, et al., “Quantitative comparison between two phase contrast techniques: 

diffraction enhanced imaging and phase propagation imaging”, Phys. Med. Biol., 50, p. 709-724 

(2005); 

[78] M. J. Kitchen, et al, “Phase contrast X-ray imaging of mice and rabit lungs: a 

comparative study”, Br. J. Radiol., vol.78, p. 1018-1027 (2005); 

[79] N. Yagi, et al, “Refraction-enhanced X-ray imaging of mouse lung using synchrotron 

radiation source”, Med. Phys., vol. 26, p. 2190-2193 (1999); 

[80] X. Wu, H. Liu, “Clarification of aspects in in-line phase-sensitive X-ray imaging”, 

Med. Phys., vol. 34 (2), pp. 737-743 (2007); 

[81] X. Wu, H. Liu, “ A new theory of phase-contrast X-ray imaging based on Wigner 

distributions”, Med. Phys. 31 (9), 2378-2384 (2004); 

[82] E. F. Donnelly, R. R. Price, “Quantification of the effect of kVp on 

edge-enhancement index in phase-contrast radiography”, Med. Phys. 29, 999-1002 (2002); 

[83] E. F. Donnelly, et al., “Experimental validation of the Wigner distributions theory of 

phase-contrast imaging”, Med. Phys. 32 (4), 928-931 (2005); 

[84] E. F. Donnelly, et al., “Characterization of the phase-contrast radiography 

edge-enhancement effect in a cabinet X-ray system”, Phys. Med. Biol. 51, 21-30 (2005). 



 107

List of Selected Figures 

 

(a) (b) 

Fig. 2-14 Raw image of a rose leaf in which the vein structure is hardly distinguishable and also a bad pixel row 
is visible (a); STC corrected image of the leaf: the structure is clearly observable. The image has been acquired 
with the Medipix2 SPC detector and with a 5 µm spot-size tungsten X-ray source with a tube voltage of 40 kVp 
and a tube current of 50 µA for a Tacq = 100 s (W anode). The STC calibration has been performed with a set of 
aluminium filters, the thinnest one of 50 µm (the leaf mean thickness was of 195 µm). 

 

(a)  (b) 

Fig. 2-15 FFC corrected image of a lentil (a bad pixel row is visible) (a); STC corrected image of the same lentil: 
the internal structure is more clearly observable than for the FFC image. The image has been acquired with the 
Medipix2 SPC detector and with a 5 µm spot-size tungsten X-ray source with a tube voltage of 50 kVp and a 
tube current of 110 µA for a Tacq = 100 s  (W anode). The STC calibration has been performed with a set of 
aluminium filters, the thinnest one of 50 µm (the leaf mean thickness was of 300 µm). 

bbaadd  ppiixxeell  

rrooww  
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(a) 

Fig. 3-2 Phase contrast radiography of an ant (a), of a head detail (b) in which the bright and dark fringes 
enhancing the contour are clearly visible; (c) horizontal profile taken along the region pointed out in (b). The 
x-axis is in equivalent Al thicknesses (mm), obtained from the Signal-to-Thickness Calibration (STC). The 
distance between the source and the sample is R1 = 6.65 cm, the distance between the sample and the detector is 

R2 = 54.35 cm, the magnification is M = 9.1x. I = 200 µA; V = 40 kV; focal-spot of 5 µm size, W anode; 
acquisition time Tacq = 100 s. The channel visible in (a) has been evaluated 8 µm in diameter. 

 

(a) (b) 

Fig. 3-3 Phase contrast radiography of an insect (a), of a feeler (b) in which the bright and dark fringes 
enhancing the contour are clearly visible; (c) horizontal profile taken along the region pointed out in (b). The 
x-axis is in equivalent Al thicknesses (mm), obtained from the Signal-to-Thickness Calibration (STC). The 
distance between the source and the sample is R1 = 13.15 cm, the distance between the sample and the detector is 
R2 = 48.85 cm, the magnification is M = 4.7x. I = 200 µA; V = 40 kV focal-spot of 5 µm size, W anode; acquisition 
time tacq = 100 s. The FWHM evaluated for the left and right peaks are of FWHMLEFT = 20. 4 µm and 
FWHMRIGHT = 36 µm. 

11 µm 



 109

 

Fig. 3-5 Radiography of an ant (front side) acquired with an exposure of 20 mAs, a tube voltage of 40 kVp and a 
magnification factor of 5.5x. The two feelers structure is clearly distinguishable. 
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Fig. 3-6 Lateral radiography of an ant: exposure of  20 mAs, tube voltage at 40 kVp and magnification factor of 
9.3x. The complex network of gas-filled vessels is clearly visible throughout the whole body. 
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(a)

(b) (c) 

Fig. 3-7 Radiography of a beetle acquired with an exposure of 2 mAs, a tube voltage of 40 kVp and a 
magnification factor of 2.6x (R1  = 23.45 cm, R2 = 37.55 cm) (a); side part of the beetle’s body, showing two legs, 
thanks to the 4.6x magnification factor (R1  = 13.45 cm, R2 = 47.85 cm); the exposure is 4 mAs (b); zoomed detail 

of the beetle’s leg in which hair is clearly visible. 

zoom 
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(a)

(b) 

Fig. 3-8 Radiography of a living fly laying on a leaf (outlined with an arrow), acquired with an exposure of 
27.5 mAs, a tube voltage of 40 kVp and a magnification factor of 9.1x (a); low part of the fly body, showing the 
legs, acquired with 11 mAs at M = 7.4 (b). In both radiographies the phase contrast enhancement is fundamental 
for the body structure visualization. 

leaf 

leaf 
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(a)

(b) 

wing 

zoom 
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Fig. 3-9 Radiography of a fly, imaged at M = 12x (a), back side of the fly body covered with hair, as indicated 
from the arrow, imaged at a magnification of 33x (b). Radiogram of part of the body coat and of the wing hair, 

M = 38x (c); one filament from the body coat is zoomed (d) and a profile (e) of its section has been determined: 
the diameter size has been evaluated as 5 µm. The sample was imaged alive with an exposure of 20 mAs. 

 

(a) (b) 

Fig. 3-10 Radiographies of a rose leaf: in (a), 5 mAs exposure, is visualized the structure of channels and of the 
webbed veining, while in (b), 0.25 mAs, thanks to the higher magnification (M = 14x), it is possible to distinguish 
the stomata which are pores necessary to the leaf to exchange gas (~ 40 µm diameter size). 

wing 

body coat 

stomata 
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(a) (b) 

Fig. 3-16 Photograph (a) and radiography (b) of a living pupa of leaf miner. The radiography has been 
realized with Medipix2 SPC detector and with the micro-focus X-ray source (40 kVp tube voltage, 200 µA tube 

current, 100 s acquisition time). The magnification factor is M = 4x (source-to-sample distance R1 = 15.5 cm). 
The ROIs used for the SNR evaluation are depicted (10 pixels x 10 pixels). The gray scale is in e. t. units. 

 

 

Fig. 3-17 Radiography of a living pupa of leaf miner; a circle has been drawn around a small detail of the body 
(a); zoom of the detail (b) for which the dimension has been evaluated as 15 µm. The magnification factor is 7x, 
tube voltage and tube current were, respectively, V = 40 kVp and I = 200 µA. 
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Fig. 3-19 In-vivo radiograms of the parasitic wasp of Cameraria ohridella, acquired during a period of several 
weeks. In (a), (b), (c) and (d) the larva is growing in length from a “ball” shape into a worm shape, eating the 

inner tissue of its host. In (e) it is shown the pupa stage and in (f) it is shown the imago stage. In (g) a 
radiography of a living imago of Cameraria ohridella is presented. The magnification factor is 3.8x for images 
a - f and 6x for image g; the acquisition time was 100 s and the tube settings were V = 40 kVp and I = 200 µA. 

 

 

Fig. 3-20 Radiography of six samples leaf miner pupas. The radiography has been realized with Medipix2 SPC 
detector and with the micro-focus X-ray source (40 kVp tube voltage, 200 µA tube current, tacq = 100 s). The 
magnification factor is 2.9x (source to sample distance R1 of 21.4 cm). 
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Fig. 3-21 Sequence of radiograms showing the parasite behaviour inside the leaf miner, when in the larva stage. 
Each image has been acquired for 500 ms corresponding to a frame rate of 2 frames/s. Tube voltage and tube 
current were set at 40 kV and 200 µA respectively. The magnification factor was of 3.7x. 

 

 

Fig. 3-22 Sequence of radiograms showing the parasite behaviour inside the leaf miner when in the pupa stage. 
Each image has been acquired for 500 ms corresponding to a frame rate of 2 frames/s. Tube voltage and tube 
current were set at 40 kVp and 200 µA respectively. The magnification factor was of 3.7x. 
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(a) (b) 

(c) (d) 

Fig. 3-25 Projection of a leaf miner killed by its parasite living inside its body (a); slices from the tomographic 
reconstruction obtained with the OS-EM algorithm: coronal view (b), sagital view (c), transaxial view (d). The 
voxel size is 17 µm x 17 µm x 21 µm and the total number of voxels is 259 x 259 x 211. The length of the dead leaf 
miner is 3.1 mm and the mean diameter of its body is 800 µm x 800 µm, while the length of the inner parasite is 
2 mm for a thickness going from 68 µm x 170 µm, in the thinnest region, to 700 µm x 500 µm in the thickest 
region. The magnification factor is 3x. 
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Fig. 3-34 Radiography of a beetle acquired with the FP detector (without the 1 mm thick Al top cover). 
R1 = 13.05, R2 = 48.95, M = 4.75x, V = 40 kVp, I = 200 µA, texp = 100 s (20 mAs). 

 

(a) (b) 

Fig. 3-35 Radiographic detail of an insect body acquired with the FP detector (a) and with the Medipix2 (b) in 
the same geometrical conditions (R1 = 13.05, R2 = 48.95, M = 4.75x), with a tube voltage of V = 40 kVp, but at 
different exposure levels: I = 200 µA, texp = 100 s for the FP detector and I = 50 µA, texp = 100 s for Medipix2. 
The rectangles illustrate the ROI to evaluate the plot profiles showed in (c) - for the FP detector – and in (d) – for 
Medipix2. The circles on the plots point out the jump due to the interference fringes, resulting from the phase 
shift. The jump for the FP detector is of 4.4 · 10-4, while the jump recorded with Medipix2 is of 5.7 · 10-3, that is 
one order of magnitude bigger. 
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Fig. 3-42 Projections at different angular positions of a mouse head acquired with the FP detector and corrected 
by means of the FFC. 
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Fig. 3-44 Projections at different angular positions of a mouse head acquired with the Medipix2 detector and 
corrected by means of the FFC.   
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(a) 

(b) 
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(c) 

(d) 

Fig. 3-46 Axial slices of the mouse head acquired with the FP detector (a, b) and with the Medipix2 (c, d) and 
corrected either by means of the FFC (a, c) or by means of the STC (b, d). 
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(a)

(b)

(c)

 (d) 

Fig. 3-47 Sagittal slices of the mouse head acquired with the FP detector (a, b) and with the Medipix2 (c, d) and 
corrected either by means of the FFC (a, c) or by means of the STC (b, d). 
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