
Dottorato di Ricerca in

Scienze Computationali e Informatiche

Ciclo XXII

Consorzio tra Università di Catania, Università di Napoli Federico II,

Seconda Università di Napoli, Università di Palermo, Università di Salerno

Sede Amministrativa:

Università degli Studi di Napoli Federico II

Francesco Donnarumma

A Model for Programmability and Virtuality in

Dynamical Neural Networks

Tesi di Dottorato di Ricerca

Il COORDINATORE

Prof. Luigi M. Ricciardi

This work was partially written while the author was visiting Ecole Normale Su-

périeure De Cachan, supported by ESF GAMES project, short visit grant n. 3014

Contents

1 Introduction 17

1.1 Background and motivation 17

1.2 Programmability in biological systems 19

1.3 A model for programmability in neural networks 22

1.4 Related approaches 24

1.5 Plan of the dissertation 27

2 CTRNNs as models of neuronal networks 29

2.1 CTRNN model 32

2.2 CTRNN biological interpretation 34

2.3 CTRNN and DTRNN 35

2.4 CTRNNs as universal approximators 36

2.5 CTRNN as dynamical systems 38

2.6 Background notions on Dynamical System Theory 38

2.7 Attractor computation 43

3 Virtuality and Programmability 45

3.1 Learning and programmability in fixed neural

structures . 45

5

3.2 A preliminary study: Searching for virtuality in

CTRNNs . 47

3.3 Virtuality and programmability 54

4 Dynamical Multiplication Architecture 63

4.1 Programmability through dynamical multiplica-

tion . 63

4.2 DMA explained 64

4.3 DMA properties 66

5 A theory for comparing DMANs 69

5.1 Background notions in Bifurcation Theory . . . 70

5.2 A formal definition of abstraction 78

5.3 Similarity measures 83

5.4 Application of the method 90

6 Experiments and Results: validation of the model

99

6.1 Ideal mul approximations 100

6.2 Single neuron DMAN 113

6.3 Programmable nand - or DMAN 115

6.4 Programmer Network 128

6.5 Robustness and time scale problem 129

6.6 NetOne on different time scales 131

6.7 NetTwo and NetF ive cases 133

7 Conclusions and Future Work 143

7.1 Results of the dissertation 143

7.2 Virtuality learning for the DMA 145

7.3 DMANs Compositionality 148

A Preliminary Mathematical notions 151

A.1 Topology language 151

B On Turing Virtuality in neural networks 155

B.1 Turing Virtuality in Neural Networks 155

B.2 Rational Neural Network Model 156

B.3 p−stack machine 160

B.4 Rational Neural Network Construction 164

C Analysis of Dynamical System by abstraction 177

C.1 Analysis by abstraction 181

C.2 O−minimal systems 186

C.3 Control in o-minimal dynamical systems 188

C.4 Bisimulation algorithm 190

C.5 O-minimal system and Feed Forward Networks 194

C.6 Bisimulation procedure applied 194

I Bibliography 205

List of Figures

1.1 Searching for a neural network structure pos-

sessing the programmability/virtuality capabil-

ity. In this thesis an original architecture is pro-

posed, DMA, capturing virtuality and in this

sense resulting in a good model for biological

phenomena related to programmability. Note,

as the figure suggests, that this architecture should

be able to process on the same level data ID and

programs IP resembling properties of computa-

tional devices. 26

2.1 A schematization of a biological neuron 30

2.2 A direct graph can in general capture a gen-

eral model for an artificial neural network. The

main difference between models is given by the

implementation of each node of the graph into

a different neuron model. The more biologically

accurate this representation is, the more com-

plex these models become. 31

9

2.3 The RC circuit schematization of the neuronal

membrane. 34

3.1 CTRNN architecture cabled for T−maze task. . 49

3.2 BehaviourRight() and BehaviourLeft() in a sim-

ulated T -maze environment in the software Player/Stage/Gazebo.

As it is possible to see, BehaviourRight() corre-

sponds to a right-wall-follower, and BehaviourLeft()

to a left-wall-follower. 52

3.3 Output of the CTRNN controller together with

switching input versus integration step. We see

after each turn in the T−maze layer L2 force the

behaviour to be performed by L1. 53

3.4 Comparing the topologies of a Liquid State Ma-

chine (on the left) and a DMA (on the right)

which will be defined in Chapter 4. In Liquid

State Machines the universal reservoir formed by

a recurrent network feed an output subsidiary

network. In DMA a Programmable Network

possessing virtuality is fed by a programming

network. 61

4.1 The w-substitution procedure for weights w ∈ij
[0, 1]. For each weight a mul net, fed with the

appropriate program p = wij, is inserted. 66

4.2 The w-substitution procedure for weights wij ∈
[min,max]. For each weight a mul net, fed with

the appropriate program p = (wij−min)/(max−
min), is inserted 67

5.1 Bifurcation Diagram for a saddle node bifurca-

tion. red lines are unstable fixed points, blue

lines are stable fixed points. 73

5.2 Bifurcation diagram for a Pitchfork Bifurcation.

The continuous blue lines are stable fixed points,

the dotted blue lines are unstable fixed points. . 74

5.3 Stability Surface and Cusp point of NetOne . . 75

5.4 The two branches of the cusp for NetOne with

θ = 0 . 76

5.5 D1 dynamical system vector field 92

5.6 Comparing the trajectories of D1and D2 on the

observables y1 and y2. The parameter k = 10

and the initial conditions are y0
1 = y0

2 = 1 and

x0 = 1. 95

5.7 δt error between the observables of D1and D2

in the case of parameter k = 10 and the initial

conditions are y0
1 = y0

2 = 1 and x0 = 1. When t

approaches infinity δt approaches zero showing

how the observables of D1 and D2 computes the

same function in terms of attractor computation. 96

6.1 Ideal mul behaviour 101

6.2 Sigmoid Function σ(x) versus the polynomial

approximations Pol1(x), Pol3(x) and Pol8(x). . 105

6.3 Cusp point learning: fitness plots of runs cor-

responding to the average, worst and best solu-

tions as a function of the generation number. . . 111

6.4 Stability surfaces of the output neuron of mul

and mul∗ as a function of a, b ∈ (0, 1). Stable

equilibrium points of mul are shown as squares,

stable equilibrium points of mul∗are shown as

stars. 113

6.5 The w−substitution applied to NetOne (on the

left) produces NetOnemul∗ (on the right). 114

6.6 In panel (a) of the figure the numerically com-

puted stability surface of NetOne for w = 3 as

a function of I is shown. In this case we have

a global stable equilibrium point. The stability

surface for w = 5 as a function of I is shown

in the panel (b). In this case we have two sta-

ble equilibrium points inside a range of I values,

while for I values outside this range there is a

global stable equilibrium point 116

6.7 The stability surface of NetOne for w = 3 as a

function of I is shown in panel (a). In the lower

part of the figure stability surfaces ofNetOnemul∗

for the programming input pw = 0.3 as a func-

tion of I are shown. In panel (b), the time

constants τi for the neurons of mul∗ have been

set one order of magnitude less than that of

NetOne. In panel (c), the time constants τi
are two orders of magnitude less than that of

NetOne. In both cases, we obtain a single equi-

librium point. Notice that the shape of the sta-

bility surfaces are very similar to that ofNetOne,

indicating that already the first choice of time

scale is satisfactory. 117

6.8 The stability surface of NetOne for w = 5 as a

function of I is shown in panel (a). In the lower

part of the figure stability surfaces ofNetOnemul∗

for the programming input pw = 0.5 as a func-

tion of I are shown. In panel (b), the time con-

stants τi for neurons of mul∗ have been set one

order of magnitude less than that of NetOne. In

panel (c), the time constants τi are two orders

of magnitude less than that of NetOne. In both

cases, we obtain two stable equilibrium points

inside a range of I values, while for I values

outside this range there is a global stable equi-

librium point. Notice that the shape of the sta-

bility surfaces is very similar to that of NetOne,

indicating that already the first choice of time

scale is satisfactory. 118

6.9 The stability surface of NetOne for w = 8 as a

function of I is shown in panel (a). In the lower

part of the figure stability surfaces ofNetOnemul∗

for the programming input pw = 0.8 as a func-

tion of I are shown. In panel (b), the time con-

stants τi for neurons of mul∗ have been set one

order of magnitude less than that of NetOne. In

panel (c), the time constants τi are two orders

of magnitude less than that of NetOne. In both

cases, we obtain two stable equilibrium points

inside a range of I values, while for I values

outside this range there is a global stable equi-

librium point. Notice that the shape of the sta-

bility surfaces is very similar to that of NetOne,

indicating that already the first choice of time

scale is satisfactory. 119

6.10 NetNOT cabling. The choice of b allows the

approximation to be as good as necessary. . . . 122

6.11 The cabling of NetOR. Suitable choices of pa-

rameters c1 and c2 allow steady states closer to

the desired stable equilibrium points 0 and 1. . 126

6.12 The cabling of NetNAND. Suitable choices of

parameters c1 and c2 allow steady states closer

to the desired stable equilibrium points 0 and 1. 126

6.13 The cabling of Boolmul∗ network, obtained by

the pulling out of two connections with respect

toNetNAND andNetOR networks, and adding

twomul∗ networks fed with a program p = [p1, p2].

. 127

6.14 DMA Topology. A Programmer network is able

to send the right program values to a Programmable

one (e.g. Boolmul?) showing qualitative different

behaviours. 130

6.15 w−substitution procedure applied to a neural

network composed of two neurons. 135

6.16 Comparison between sample trajectories ofNetTwo

and NetTwomul?. Continuous and dashed lines

represent the trajectories of neurons of NetTwo.

Circles and squares represent trajectories of the

corresponding neurons of NetTwomul∗. 137

6.17 Mean and standard deviation of the relative dis-

tances between the points of the trajectories of

NetTwo and NetTwomul∗ at the three different

values of the ration r. 138

6.18 Comparison between sample trajectories ofNetF ive

and NetF ivemul∗. Continuous lines represent

the trajectories of neurons of NetF ive. Circles

represent the trajectories of the corresponding

neurons of NetF ivemul∗. At the bottom right

corner the means of the relative distances be-

tween the points of the trajectories of NetF ive

and NetF ivemul∗ at the three different values of

the ratio r. 139

6.19 Means of the relative distances between the out-

puts of NetF ive and NetF ivemul∗ at the three

different values of the ratio r. 141

B.1 4−Cantor-like encoding of binary strings 159

C.1 Single ’feed forward’ neuron 195

C.2 Single Neuron trajectories and partition space. . 197

C.3 Output of a single Neuron trajectories and par-

tition space . 201

16

1
Introduction

1.1 Background and motivation

This thesis work proposes a fixed-weight neural network archi-

tecture, Dynamical Multiplication Architecure (DMA), which

is built on a biologically plausible recurrent Artificial Neural

Networks (ANNs) model - Continuous Time Recurrent Neural

Networks (CTRNNs), which, possessing the virtuality capabil-

ity, we demonstrate to be a suitable architecture in order to

capture neuronal phenomena involving programmability. Note

that:

by ‘programming’ we mean the fact that a fixed struc-

ture – functionally identifiable with an interpreter

– can be conditioned (programmed) by an auxil-

iary (programming) input so as to exhibit a reper-

toire of qualitatively different behaviors.

Natural, i.e. biological, phenomena, controlled by neuronal ac-

tivity, are often modelled by Artificial Neural Network (ANN)

architectures, both in lower level animals as well as in mammals

and humans as attested by a wealth of successful accounts of

17

CHAPTER 1. INTRODUCTION

mental performances of a perceptive, motor, cognitive and, re-

cently, also emotional nature (see, for instance Lambrinos et al.,

2000; Riesenhuber and Poggio, 2002; E. and Oztop, 2002; Tani

et al., 2004; Schindler et al., 2008; Bailu and Sil, 2009; Friston

and Kiebel, 2009; Huo and Murray, 2009).

In most cases these ANN architectures implement “special

purpose systems”. In other words, the ANN is developed in

such a way as to exhibit a unique/special behaviour in response

to the input signals. In general, the behaviour of the ANN is

obtained through the use of an appropriate learning algorithm,

quite independent of the activity of the network that is being

developed, which sets the network structure (e.g., the connec-

tion weights). In this way during the learning phase numerous

different ANN structures are tested resulting in multiple dif-

ferent ANN behaviours. However, when the desired structure

is reached, the ANN is able to perform a unique dynamical be-

haviour only, at the end realizing a specialized special purpose

system.

However it cannot be denied that many, or at least some,

crucial biological phenomena exhibit a substantial/qualitative

change of behaviour in “short time” presumably without in-

volving a neuronal connectivity changing. So these biological

phenomena seem to be clamouring to be interpreted as genuine

computational tasks, and such as to need programming. As is

well known, functional modelling of biological phenomena by

computational, algorithmic means has been the mainstay of

Artificial Intelligence. However the word ‘computation’ is still

being used in a variety of often misleading or poorly under-

stood ways such as occurs within the “computational neuro-

science” where ‘computational’ usually refers to some kind of

18

1.2. PROGRAMMABILITY IN BIOLOGICAL SYSTEMS

ANN used to model some part of the biological nervous system

as mentioned before. Most of these usages are of a metaphori-

cal nature. On the other hand we based the dissertation on a

clearer definition of programmability, summarized above, con-

cerning the possibility of building fixed interpretive structures

exhibiting different shapes of behaviour1 at varying an auxil-

iary input.

In the next Section a number of biological phenomena are

sketched, which are chosen as witnesses to clues of the pro-

grammability phenomenon in neuronal structures.

1.2 Programmability in biological systems

Several biological and behavioural findings suggest that some

kind of programming capability is needed. In order to clarify

the kind of phenomena referred to in this thesis, in this sec-

tion some cases where such capability seems to be needed are

described.

Grid and Place cells in rats. Neuronal circuits constitut-

ing a distributed spatial map of the environment have been

recently found in rats. These circuits are composed of the so-

called ’Grid-cells’ in the dorsocaudal medial entorhinal cortex

and the ’place cells’ in the dentate gyrus and in the hippocam-

pal area CA3 of the rat. These cells exhibit the tendency to

extensive “remapping” in response to changes in the sensory

or motivational inputs. Remapping is expressed under some

conditions as a change of firing rates, while under other condi-

1Here by ‘shape of behaviour’ it is denoted the sum total of the responses or behaviours
of the ANN to external stimuli (data), be they instantaneous or prolonged. Thus, shape of
behaviour can be taken as the overall mapping performed by the network.

19

CHAPTER 1. INTRODUCTION

tions as a complete reorganization of the hippocampal activity.

In (Fyhn et al., 2007) the authors underline the capability of

these circuits to switch from one map to another:

“...to evoke instantaneous global remapping, the

room lights were turned on after 11 min of running in

the dark condition on the test day. In one animal this

caused a sudden reversion to the original hippocampal

map associated with the light condition...”

Natural Language Natural language performance and men-

tal arithmetic involve the production of an a priori unlimited

series of sentences and symbolic processes. The existence of

specific, fixed structure modules responsible for each sentence

or group of sentences as well as for each specific symbolic men-

tal process seems to be out of the question given the increasing

number of such units formed according to need, and, even if by

retrofitting existing units through learning this number could

be limited, still the time delays implied by learning would make

the retrofitting hypothesis implausible. Recently Dehaene (De-

haene, 2005), has argued that the vast symbol processing ca-

pabilities of the human brain, including recursion involved in

doing mental arithmetic, are explained neither in terms of evo-

lutionary adaptation, nor of learning but in terms of some “re-

cycling” of neurons. Moreover the notion that well defined

topographical areas of the cortex are capable of switching “on

the spot”, as it were, between different behaviours – no learn-

ing phase – is marginally expressed in the neurobiological lit-

erature.

20

1.2. PROGRAMMABILITY IN BIOLOGICAL SYSTEMS

Theory of mind. Mind reading, or Theory of Mind, de-

notes the capability of predicting and recognizing the inten-

tions of conspecifics and the consequent determination of their

behaviour. Models for Theory of Mind in cognitive science sup-

pose that prediction of behaviour in conspecifics is performed

either by inferring from a description of their present behaviour

a description of the “next state” of it (Theory theory) or by

internally enacting a simulation (Simulation) of how their be-

haviour evolves. In both cases, some sort of forward or in-

verse model of the “other” is apparently needed, except in the

most stereotyped and instinctual situations. Unless there exist

specific modules dedicated to each behaviour of each individ-

ual, it appears that some definite neuronal areas are capable

of interpreting sensorial data and, especially, of planning the

appropriate ensuing behaviour by altering their functional re-

sponses - without learning - in consequence of the appraisal of

the behaviour of the conspecific (Gallese and Goldman, 1998).

Area F5 in the macaque motor cortex. In the phe-

nomenology of the neuronal activity in the F5 area of the

macaque monkey’s motor cortex, neuronal cells of this area

selectively respond to the type or the modality of an object-

directed action (e.g. “grasping an object”or“grasping an object

by a precision grip”). Moreover some of these neurons show a

clear selectivity for a specific phase of the action. In partic-

ular it has been proposed (Fadiga et al., 2000; Rizzolatti and

Gentilucci, 1988) that a sort of “vocabulary” of movements is

stored in the F5 area. The functional difference between the

activity of F5 neurons and that of strictly involved neurons

of the precentral motor cortex (F1) is that the first one is

21

CHAPTER 1. INTRODUCTION

a coding for object-directed actions (or fragments of object-

directed actions), while the activity of F1 neurons is a coding

for movements regardless of the action context in which they

are performed. Then, in a manner equivalent to that stated

for F5, neurons of area F1 could be defined as a “vocabulary

of elementary movements”. Also in this example, unless there

exist specific F5 neuronal modules dedicated to each specific

instance of an action category (hold, grasp, tear, manipulate),

F5 area seems to be capable of changing its shape of behaviour

“on the fly” and without changing its structure, i.e. without

learning.

It thus appears that these neuronal phenomena do display

a behaviour typical of a multi -, if not altogether general pur-

pose, system and, therefore, should be interpreted as genuine

computational tasks, involving some kind of programming.

1.3 A model for programmability in neural net-

works

So these among other phenomena controlled by neuronal ac-

tivity, seem to suggest the implication of some form of pro-

grammability.

Then, the main original contribution of the thesis work is

to face the following research question: if biological phenom-

ena need programming, how can they be modelled by biological

plausible ANN architectures?

This work reflects the assumption that fixed-structured neu-

ral network models can be used to give an account for these

phenomena; so in order to give an answer to this question

22

1.3. A MODEL FOR PROGRAMMABILITY IN NEURAL NETWORKS

this work proposes an architecture for fixed-weight Continu-

ous Time Recurrent Neural Networks (CTRNNs) which has

the following properties:

a. the ANN variables (neuron output, neuron input, activa-

tion function, etc.) have a direct biological interpretation;

b. the qualitative changes of behaviour are controllable in

a computational sense. By this we mean not only that

the auxiliary input signals causing a change of the shape

of behaviour are in a well-defined and causal relationship

with the change itself, but also that they are physically

homogeneous with the I/O neural activity (see Fig. (1.1));

c. the fixed-weight ANN has the capability to exhibit a wide

repertoire of qualitatively different shapes of behaviours

depending on the auxiliary (programming) inputs.

In standard computational systems (e.g. Turing Machine, Von

Neumann architecture) points b. and c. above are obviously

achieved by the concept of programmability. There the input

can be interpreted as data or programs. And the programs de-

fine the shapes of behaviour of the system. In (Garzillo and

Trautteur, 2009) the authors propose that the concept of pro-

grammability can be expressed, even beyond the context of

algorithmic computability, by the concept of virtuality. Then

the ANN model proposed in this paper possesses the properties

described in points b. and c. because it possesses virtuality.

This is achieved by“pulling out”from the CTRNN the multipli-

cation operation, usually used to model the input of biological

neurons, by using subnetworks providing the outcome of the

multiplication operation between the output coming from pre-

synaptic connected neurons and the weights associated with

23

CHAPTER 1. INTRODUCTION

the connections. As a consequence the weights can be given as

an auxiliary input to the original network augmented with the

multiplication subnetworks, thus creating a neural architecture

with two kinds of input lines : auxiliary (or programming) in-

put lines in addition to standard data input lines. Therefore,

the auxiliary input lines can be fed with a code describing the

original network in a way resembling the code of a virtual ma-

chine in a standard computational architecture or the Gödel

numbers given to a Universal Turing machine. In other words

the code fed to a DMA network is in direct connection with the

structure it simulates and so it can be viewed as an interpreter

for a class of CTRNNs.

1.4 Related approaches

The fixed-weight neural networks rubric is a recent emerging

area of research in the neural network field. The idea of fixed-

weight neural networks seems to originate in (Cotter and Con-

well, 1990). In this work, Cotter and Conwell separate the

concept of learning (on a longer time scale) which implies the

change of the weights, the structure of the network, from that

of adaptation, which is the change of behaviour that the fixed

structure can produce in response to different, or varying, types

of inputs, with no persisting effect after a suitable rest period.

In all the thesis work “fixed-weight networks” denote artificial

neural networks for which the weights - the structure - are

never varied in use. A number of approaches have been pro-

posed which satisfy these definitional requirements (Younger

et al., 1999; Hochreiter et al., 2001; Izquierdo-Torres et al.,

2008; Zegers and Sundareshan, 2003). In some works about

24

1.4. RELATED APPROACHES

fixed-weight neural networks (Hochreiter et al., 2001; Zegers

and Sundareshan, 2003; Ito and Tani, 2004) the authors also

consider two kinds of input lines, one that carries data, which

the network is demanded to respond to, the other which car-

ries information identified as an auxiliary context input, on the

basis of which, the network can correctly respond to the data

presented.

In other works (Maass et al., 2002; Steil, 2004), this clear

separation between two lines is not present, though great em-

phasis is laid on how the use of a fixed structure, a univer-

sal kernel or reservoir, can capture different dynamics and be-

haviours, in a general and robust way. In a similar context

another interesting work (Izquierdo-Torres and Harvey, 2007;

Izquierdo-Torres et al., 2008) tries to teach a fixed structure to

emulate a sort of Hebbian learning rule only by changing the

input current signals, thus intimating questions on whether

this phenomenon should be treated as learning, adaptation or

other, and where the stored information vanishes when non-

input signal is given.

As it will appear clearer in Chapter 3, even though this work

is framed in the fixed-weight rubric, it substantially differs from

these approaches both in its goal and in its implementation.

Moreover in the field of unconventional or alternative com-

puting, a number of systems not immediately computational in

the algorithmic sense, such as neural networks, are shown to be

capable of (at least) simulating , in some well-defined sense, a

generic Turing machine, thus including a Universal Turing ma-

chine which is the theoretical underpinning of virtuality. The

universality property and therefore virtuality is correctly as-

signed to those systems. In particular such is the case for a

25

CHAPTER 1. INTRODUCTION

?

I D

I P

Figure 1.1: Searching for a neural network structure possess-
ing the programmability/virtuality capability. In this thesis
an original architecture is proposed, DMA, capturing virtual-
ity and in this sense resulting in a good model for biological
phenomena related to programmability. Note, as the figure
suggests, that this architecture should be able to process on
the same level data ID and programs IP resembling properties
of computational devices.

dynamical system simulation of algorithmic devices (Graça et

al., 2005; Branicky, 1995) and for a universal ANN implement-

ing a Universal Turing machine (Siegelmann and Sontag, 1995;

Siegelmann, 1999).

However, in this thesis, in the spirit of biologically plausi-

ble modelling, the aim is not to simulate other computational

systems (Turing machines), but rather to search for virtual-

ity within the model itself, which might be called CTRNN or

material virtuality , in the hope that this capability might be

transferred to, or rather discovered in, the biological reality.

26

1.5. PLAN OF THE DISSERTATION

1.5 Plan of the dissertation

In Chapter 2 a step into the CTRNN model chosen for the

substrate of DMA is taken, motivating its choice. Moreover

the possibility of studying its properties in the frame of the

dynamical system theory will pave the way to the analysis of

networks behaviour developed in the rest of the thesis work.

In Chapter 3 the virtuality capability is presented as the

proper strategy to provide a dynamical system with programma-

bility. Inspiring literature is examined and a robotic case study

is driven motivating the recourse to virtuality in our approach.

Chapter 4 is the core chapter in which the original DMA

of fixed-weight neural networks is developed. We explain how

this architecture is endowed with virtuality / programmability,

thus capturing programmability capability in a broader sense.

In Chapter 5 the methods used for comparing DMA net-

works are shown, developing the theoretical background that

will be widely deployed in the realization of the tests. Notice

that some of these theoretical results, necessary for the analy-

sis of DMA, are for the first time in literature introduced for

neural networks studied as dynamical systems, bringing to this

dissertaion a side effect original contribution.

In Chapter 6 a number of experiments is performed, showing

how inside the proposed architecture interpreters can be pro-

grammed with auxiliary inputs in order to reproduce the dy-

namical behaviours of networks coded by the auxiliary input.

On the other hand a study of the robustness of the proposed

architecture with respect to variations of the I/O time scales

is provided.

In Chapter 7 the conclusions on the presented approach are

drawn, together with underlying results, envisaging possible

27

CHAPTER 1. INTRODUCTION

future work on this line of research.

28

2
CTRNNs as models of neuronal networks

In this Chapter a particular model of Artificial Neural Net-

works will be analyzed in order to develop in Chapter 4 the

DMA which this thesis proposes.

Artificial neural networks (ANNs) are computational models

implemented in software or specialized hardware devices that

attempt to capture the behavioural and adaptive features of

biological nervous systems. They are typically composed of

several interconnected processing units, nodes or ‘neurons’ (see

Fig. 2.2) which can have a number of inputs and outputs.

This architecture tries to mimic systems of biological neu-

rons, the basic information processing elements in the Central

Nervous System (CNS). These elements are able to perform at

a high degree of parallelism complex processes that Artificial

Intelligence has been trying to emulate since its birth.

In mathematical terms, an ANN can be seen as a directed

graph where each node implements a neuron model. Several

models have been proposed since the first one of McCulloch and

Pitts (McCulloch and Pitts, 1943). In the simplest case, the

neuron model computation is just a weighted sum of the incom-

ing signals transformed by a (typically nonlinear) static trans-

29

CHAPTER 2. CTRNNS AS MODELS OF NEURONAL NETWORKS

Dendrite

Nucleus

 Soma
(cell body)

Axon

Axon
Terminal

Figure 2.1: A schematization of a biological neuron

fer function; however more sophisticated neuron models involve

discrete-time or continuous-time dynamics (like the model cho-

sen in this work). The connection strengths associated with

the edges of the graph connecting two neurons are referred to

as synaptic weights, and the neurons with connections to or

from the external environment are often called output or input

neurons, respectively. The number and type of neurons and

the set of possible interconnections between them define the

architecture or topology of the neural network.

In this work the underlying model of the DMA consists of

Continuous Time Recurrent Neural Networks (Hopfield and

Tank, 1986).

The choice of continuous time fits the desire of modelling

natural systems, i.e. physical or biological systems, which in-

volve inherently continuous time.

The word recurrent stands for the possibility of the presence

of loops inside the direct graph topology. Unlike static feed

30

Figure 2.2: A direct graph can in general capture a general
model for an artificial neural network. The main difference
between models is given by the implementation of each node of
the graph into a different neuron model. The more biologically
accurate this representation is, the more complex these models
become.

31

CHAPTER 2. CTRNNS AS MODELS OF NEURONAL NETWORKS

forward networks, recurrent neural networks (RNNs) are said

to be dynamic because the presence of feedbacks allows time-

dependent behaviours.

Though this artificial neuron model is more elementary than

other more accurate models (see Abbott and Kepler, 1990;

Izhikevich, 2004), a CTRNN model is a very attractive ab-

straction of the biological network because (Kier et al., 2006):

• the CTRNN neuron has a plausible biological interpreta-

tion;

• it is computationally inexpensive to implement;

• CTRNNs are universal dynamics approximators: any tra-

jectory of a smooth dynamical system can be approxi-

mated to any desired degree of accuracy by these systems

with a sufficient number of nodes(Funahashi and Naka-

mura, 1993).

• the model is a mathematically tractable system: some

works studying their dynamics exist (e.g. Beer, 1995b,

2006);

In the following sections these statements will appear clearly

motivated.

2.1 CTRNN model

Continuous Time Recurrent Neural Networks (CTRNNs) are

networks of biologically inspired neurons described by the fol-

lowing general equations (Hopfield and Tank, 1986; Beer, 1995b):

32

2.1. CTRNN MODEL

τi
dyi
dt

= −yi +
N∑
j=1

wijσ(yi − θi) + Iei i ∈ {1, . . . , N} (2.1)

where N is the number of neurons in the network and for each

neuron i:

• τi is the membrane time constant,

• yi is the membrane potential after the deletion of the action

potential,

• θi is the threshold,

• xi = σ(yi − θi) is the mean firing rate, with σ(x) the acti-

vation function,

• Iei =
∑N+L

j=N+1wijxj is an external input current coming

from L external sources xj

• wij is the synaptic efficacy (weight) of the connection com-

ing from the neuron j

In general the function σ(x) can be any smooth, monotonic

and bounded activation function. For example we could use

the parametric form (Tino et al., 2001)

σa,b,c(x) =
a

1 + e−c·x
+ b

which has the advantage of reducing to the hyperbolic tangent

function with a = 2,b = −1, c = 2

σ2,−1,2(x) =
2

1 + e−2·x−1 =
ex

ex
·1− e

−2·x

1 + e−2·x =
ex − e−x

ex + e−x
= tanh(x)

33

CHAPTER 2. CTRNNS AS MODELS OF NEURONAL NETWORKS

or the standard sigmoid with a = 1, b = 0, c = 1

σ1,0,1(x) =
1

1 + e−x

This choice of sigmoid activation function has been made in

all the applications of Chapter 6. However, the approach is

quite general so that different activation functions respecting

the smoothness, monotonic and boundedness properties could

allow similar results.

2.2 CTRNN biological interpretation

Compared with more biologically-realistic neural models, the

dynamics of an individual CTRNN neuron is quite trivial. How-

ever, small networks of CTRNNs can qualitatively reproduce

the full range of nerve cell phenomenology, including spiking,

plateau potentials, bursting, etc. (Beer, 2006).

Continuous Time Networks were proposed in (Hopfield and

Tank, 1986) deriving their inspiration from considering the neu-

ronal membrana as modelled by an RC circuit (see Fig. 2.3),

and thus obtaining for the membrane potential VM the equa-

tion

Figure 2.3: The RC circuit schematization of the neuronal
membrane.

34

2.3. CTRNN AND DTRNN

CM
dVM(t)

dt
= IR(t)− VM(t)

RM
+ I(t) (2.2)

These equation describes the charging of the membrane ca-

pacity CM by the sum of three sources: postsynaptic currents

IR induced by presynaptic activity directed to the neuron, leak-

age current due to the finite input membrane resistance RM
and input currents I(t) from other neurons external to the cir-

cuits. The analogy with Equation (6.2) is clear, setting the

time constant of the membrane τM = CM ·RM
So the model having a clear direct counterpart in the vari-

able of the biological neurons is still an intriguing one when

creating models of biological neuronal networks, and in various

works the model is considered so accurate as to make predic-

tions on variables of a biologically modelled network, as for

example in (Dunn et al., 2004) where CTRNN connectivity

is used to suggest new functionalities for previously identified

connections in the Caenorhabditis Elegans.

2.3 CTRNN and DTRNN

The CTRNN equations form a complex system of differential

equations. In general, a complete quantitative description of

the behaviour of the system is not possible. There are few

cases in which a complete qualitative description is possible, as

it is shown in the Subsection (5.1.2) for a single CTRNN neu-

ron. Even stability analysis of the trajectories defined by the

underlying CTRNN systems provides in many cases accurate

descriptions in Dynamical System Theory as it will be clear in

this Chapter.

However, in order to provide an implementation of CTRNN

35

CHAPTER 2. CTRNNS AS MODELS OF NEURONAL NETWORKS

trajectories a numerical integration of CTRNN equations should

be supplied. Even though there are various accurate numer-

ical integration methods for first order differential equations

(see e.g. Strogatz, 1994), in this work Forward Euler method

is chosen.

For an equation dx/dt = f(x) the Forward Euler method

allows a dicrete approximation of its solution:

xn+1 = xn + f (xn) ∆t

for sufficently small time steps ∆t.

Applying this formula to Equation (6.2) we obtain the fol-

lowing discrete-time version of the neuron update equation

yn+1
i = yni +

∆t

τi

(
−yni +

N∑
j=1

wijσj (yn − θj) + Iei

)

which can be treated as an independent model of Discrete Time

Recurrent Neural Networks (DTRNN).

On the other hand suitable choices of ∆t (Hines and Carnevale,

1998) result in a suitable approximated version of CTRNN. In

the experiments in Chapter 6 all the trajectories were realized

using this discrete approximation.

2.4 CTRNNs as universal approximators

The fact that CTRNNs are universal dynamical approximators

is often cited to evoke the power of the CTRNN model. In fact

the following theorem asserts that any solution of a set of Ordi-

nary Differential Equations can be approximated as accurately

36

2.4. CTRNNS AS UNIVERSAL APPROXIMATORS

as wanted, by a suitable CTRNN with N neurons. The proof

of this theorem can be found in (Funahashi and Nakamura,

1993).

Theorem 2.4.1. (Funahashi - Nakamura) Given a Continu-

ous Autonomous dynamical system D defined by P differen-

tial equations ẋ = f(x) and the initial conditions x(0) = x0

for which a solution flow γD(t,x0) exists, then ∀ε > 0 there

exists a CTRNN of N equations with variables y, a proper

initial condition y0 and P ≤ N “observable” output neurons

yP = {y1, . . . , yP}, such that for the trajectory solution flow

restricted to the output neurons γPCTRNN(t,y0), it stands that

max
t∈T

∥∥γD(t,x0)− γPCTRNN(t,y0)
∥∥ < ε

This powerful approximation theorem (with its extensions,

see e.g. for non-autonomous systems Kambhampati et al.,

2000), has a very interesting machine learning effect: if we are

going to approximate a trajectory of a dynamical system we

can always find a suitable CTRNN structure approximating it.

Notice that as in this thesis we need methods which allow

to compare fixed-weight CTRNN behaviours, this theorem has

some limitations for our purpose: in fact it formulates the dy-

namic equivalence for one solution at a time, while we are in-

terested in the dynamical system in its whole and the family

of solutions which it expresses.

For this reason Bisimulation techniques will be treated in

Chapter 5, where also a reformulation of this theorem will be

given.

37

CHAPTER 2. CTRNNS AS MODELS OF NEURONAL NETWORKS

2.5 CTRNN as dynamical systems

This Section is not meant to be an exhaustive treatment of

dynamical system theory, for which it is possible to consult a

huge literature of books (see e.g. Guckenheimer and Holmes,

1986; Hale and Koçac, 1991; Strogatz, 1994). Some basilar

definition can be found in Appendix A. However a collection of

definitions and specialized results for CTRNN framework are

provided in a self-contained manner in order to pave the way

to the treatment in Chapter 5.

2.6 Background notions on Dynamical System

Theory

This section starts from the formal notion of dynamical system

which brings together continuous and discrete time dynamical

systems. Moreover elements for stability analysis and language

which will be used overall the thesis work are introduced.

Definition 2.6.1. An Autonomous Dynamical System D is a

3-ple (X, γ, T) where

• X is a topological space named State Space

• T is the Time Set

• the Flow γ is an evolution function

γ : (t, x) ∈ T ×X −→ X

(X, γ) satisfies the semigroup properties for X, in fact writing

γt(x0) = γ(t, x0)

38

2.6. BACKGROUND NOTIONS ON DYNAMICAL SYSTEM THEORY

• γ0 = I is the identity (γt(x0) ◦ γ0(x0) = γt(γ0(x0)) =

γt(x0))

• Associativeness: (γt ◦ γs) ◦ γr = γt ◦ (γs ◦ γr) from the

definition γt+s = γt ◦ γs

Definition 2.6.2. A Continuous Autonomous Dynamical Sys-

tem D is a dynamical system (X, γ, T) where γ : (t,x) ∈
T ×X −→ Y is given by the solution of the set of first order

Ordinary Differential Equations (ODE)

dx

dt
= f (x) (2.3)

Theorem 2.6.3. Globally existence and unicity of solutions

(Cauchy - Lipschitz).

The solution of a system of differential equations with given

initial conditions  x (0) = x0

dx

dt
= f (x)

(2.4)

exists, is global and unique if f is uniformly Lipschitz contin-

uous

Proposition 2.6.4. Global Existence and Uniqueness of solu-

tions for a CTRNN.

Proof. A CTRNN system respects definition 2.3. From Equa-

tion (6.2) fi(y) = −yi+
∑N

j=1wijσ(yi−θi)+Iei . As the function

σ is smooth σ ∈ C∞(R,R). Moreover with σ′(y) < 1
4 we cal-

culate

f ′i(y) = −1+
N∑
j=1

wijσ
′(yi−θi)+Iei < −1+

N∑
j=1

wij/4+Iei = Mi

39

CHAPTER 2. CTRNNS AS MODELS OF NEURONAL NETWORKS

resulting in sup {f ′i(y)} < Mi <∞ and sup {f ′(y)} < max(Mi) <

∞. So for Proposition (A.1.14) f is uniformly Lipschitz con-

tinuous and from Theorem (2.6.3) sigmoid CTRNN equations

have a unique global solution.

Definition 2.6.5. The Phase Space of an N dimensional sys-

tem with variables {xi}Ni=1 is the space in RN in which the i-th

coordinate is the value of a variable xi.

Definition 2.6.6. The trajectory through x0 of a solution γ(t,x0)

of a dynamical system D = (X, γ, T) is the set

{(t, γ(t,x0) ∈ T ×X : t ∈ T}

Definition 2.6.7. The orbit through x0 of a solution γ(t,x0)

of a dynamical system D = (X, γ, T) is the set

{(γ(t,x0) ∈ X : t ∈ T}

Definition 2.6.8. The orbit structure of a system is the num-

ber of the orbits and the direction of the flow on the orbits.

Definition 2.6.9. A Fixed (or equilibrium, singular, station-

ary) Point x̄ of a dynamical system (X, γ, T) is a point such

that

γ(t, x̄) = x̄ ∀t ∈ T

Definition 2.6.10. A forward invariant set S for a dynamical

system D = (X, γ, T) is a set for which ∀x ∈ S γ(t,x) ∈ S∀t ∈
T, t ≥ 0

Definition 2.6.11. An invariant set S for a dynamical system

D = (X, γ, T) is a both forward and backward invariant set,

i.e. ∀x ∈ S γ(t,x) ∈ S ∀t ∈ T .

40

2.6. BACKGROUND NOTIONS ON DYNAMICAL SYSTEM THEORY

Definition 2.6.12. A set S ⊆ X is Attracting for a dynamical

system D = (X, γ, T) if it is forward invariant and there exists

a δ > 0 such that ∀x̄ ∈ S,x0 ∈ X such that ‖γ(0,x0)− x̄‖ < δ

then limt→+∞ γ(t,x0) ∈ S.

Note 2.6.13. In other words, any trajectory starting within a

distance δ of a point of an attracting set is guaranteed to con-

verge to the attracting set eventually (Notice that the trajec-

tory can also escape from the neighbourhood of radius δ).

Definition 2.6.14. The Basin of Attraction B of an attracting

set S for a dynamical system D = (X, γ, T) is

B = {x ∈ X : lim
t→+∞

γ(t,x) ∈ S}

Definition 2.6.15. A set S ⊆ X is Globally Attracting for

a dynamical system D = (X, γ, T) if the basin of attraction

B(S) = X

Definition 2.6.16. A set S ⊆ X is Lyapunov Stable for a

dynamical system D = (X, γ, T) if it is forward invariant and

for each ε > 0, there is a δ > 0 such that ∀x̄1 ∈ S,x0 ∈ X such

that ‖γ(0,x0)− x̄1‖ < δ then ∀t > 0∃x̄2 ∈ S ‖γ(t,x0)− x̄2‖ <
ε.

Note 2.6.17. In other words, trajectories that start within a

distance δ from an attracting set remain within a distance ε

from the fixed point for all positive time (Notice that it is not

guaranteed to converge to the attracting set).

Definition 2.6.18. A set S ⊆ X is (Globally) Asymptotically

Stable for a dynamical system D = (X, γ, T) if it is both (glob-

ally) attracting and Lyapunov stable.

41

CHAPTER 2. CTRNNS AS MODELS OF NEURONAL NETWORKS

Definition 2.6.19. A set S ⊆ X is Neutrally Stable for a

dynamical system D = (X, γ, T) if it is Lyapunov stable but

not attracting.

Note 2.6.20. For example the equilibrium point of the simple

harmonic oscillator is neutrally stable.

Definition 2.6.21. An attractor A for a dynamical system

D = (X, γ, T) is an invariant set for which ∀ε > 0, ∀x0 ∈ A

∀x̄ 66= x0, x̄ ∈ A such that ‖γ(0,x0)− x̄‖ < ε then limt→+∞ γ(t,x0) ∈
A (topological transitivity) - an attractor is attracting for a

neighbourhood of itself.

Theorem 2.6.22. For an Autonomous Dynamical system (2.3)

D = (X, γ, T) expressed by a System of ordinary differential

equations the condition for fixed points γ(t, x̄) = x̄ becomes

f(x̄) = 0

Theorem 2.6.23. (Lyapunuv’s indirect method) Stability clas-

sification for a dynamical system (2.3). Given the Jacobian

matrix J(x̄) in a fixed point x̄ and λi the corresponding eigen-

values then the fixed point results

• asymptotically stable if the real parts Re(λi) of all the

eigenvalues of J(x̄) are inferior to zero

• unstable if at least one real part Re(λi) of an eigenvalue

of J(x̄) is superior to zero.

A Hyperbolic Fixed point x̄ is a fixed point for a Dynamical

System D = (X, γ, T) defined as in (2.3) if the eigenvalues of

the Jacobian matrix computed in x̄, J(x̄), have non-zero real

parts.

42

2.7. ATTRACTOR COMPUTATION

Theorem 2.6.24. Maximum CTRNN fixed points number (Beer,

1995b) A CTRNN of N neurons can exhibit a maximum num-

ber of 3N fixed points.

The elements of stability theory introduced so far show how

in some cases short and long term behaviour of CTRNNs can

be studied starting from the weight values.

In the next section it will be exposed how CTRNN systems

can be deployed in order to define mappings by means of the

so-called attractor computation.

2.7 Attractor computation

In literature there are different ways of defining the input-

output mapping of dynamical neural networks and in particular

of CTRNNs (see for example Gupta et al., 2003).

The most common input choices are either the initial con-

dition y(0) = y0 or the external input currents Ie(t). If we

consider the input for a group of neuronal cells correspond-

ing to external signals coming from sensorial processes or from

other neural groups, then, in CTRNNs, it is more biologically

plausible to consider as input only the external input currents

Ie(t). Otherwise the choice of considering as input the initial

condition would imply that the external signals should be able

to “overwrite” the membrane potentials of the neuronal cells.

The most common output choices are the trajectories, solu-

tions of (6.2), or the steady state of the network − sometime

referred to as attractor computing (Hopfield and Tank, 1985;

Siegelmann et al., 2000). In the particular case in which 6.2

is globally stable, i.e. it has a unique stable fixed point in-

dependently of the initial condition y0, considering as output

43

CHAPTER 2. CTRNNS AS MODELS OF NEURONAL NETWORKS

the steady state of the network, the CTRNN implements the

function:

f : Ie ∈ RN −→ f (Ie) ≡ s̄ (Ie) ∈ RN

where s̄(Ie) is the fixed point relative to the input Ie, supposing

that the time scale of the approach to the stable point is so fast

as to make its computational delay negligible with respect to

the time scale of Ie. This approach was followed in building

the CTRNN mul∗ (See Sections 4.1 and 6) which computes a

multiplication function.

44

3
Virtuality and Programmability

In this Chapter the programmability “strategy” which was cho-

sen in order to realize the programmable DMA in Chapter 4

will be presented.

Features which capture the concept of programmability are

needed in order to be “discovered” in continuous time dynam-

ical systems like CTRNNs. So starting from approaches in

literature, and driving a robotic experiment, it is shown how

the properties a., b. and c. exposed in Chapter 1 are di-

rectly related to virtuality; thus virtuality, which is the hall-

mark of programmability, is motivated as the proper capability

needed to implement programmable networks. Consequently

the DMA will let us build programmable networks which are

programmable because they possess the virtuality capability.

3.1 Learning and programmability in fixed neu-

ral structures

The construction of neural networks capable of shaping their

behaviours according to input signals is quite challenging and

45

CHAPTER 3. VIRTUALITY AND PROGRAMMABILITY

interesting in the arena of artificial neural networks with many

potential applications: e.g. in autonomous robotics (Nishide

et al., 2009; Salmen and Plöger, 2005), optical neural hard-

ware (Younger and Redd, 2008), memorizing musical sequences

(Eck, 2006), automatic speech recognition (Skowronski and

Harris, 2007), natural language applications (Tong et al., 2007),

machine learning (Jaeger et al., 2007) and computational mod-

els of biological systems (Yamazaki and Tanaka, 2007; Tani

et al., 2004).

The usual way of deploying artificial neural networks is to

find their structure by some kind of learning, designing what

will be used as a special purpose system cabled for a specific

task. Thus learning is usually associated with slow time scale

synaptic plasticity modifications, but yet a line of research,

which can be summarized as “learning with fixed weights”,

keeps pursuing some kind of non-synaptic plasticity since Ya-

mauchi and Beer in 1994 challenged this view in (Yamauchi and

Beer, 1994), where the authors described the abilities of fixed

synapse continuous time recurrent neural networks (CTRNNs)

to display reinforcement learning-like properties by exploiting

internal network dynamics. Then more works try to develop

fixed-weight networks showing clues to different shapes of be-

haviour: examples can be found in (Blynel and Floreano, 2003),

where a dynamic network capable of “learning” without chang-

ing its weights in order to find food inside a T-maze is evolved

with an evolutionary technique involving different epochs to

perform incremental learning; in (Izquierdo-Torres et al., 2008),

where a fixed-weight dynamic network simulating the adapta-

tion capabilities of the Caenorhabditis elegans (temperature

preference task) is presented; in (Izquierdo-Torres and Harvey,

46

3.2. A PRELIMINARY STUDY: SEARCHING FOR VIRTUALITY IN
CTRNNS

2007), in which a fixed-weight dynamic network which is capa-

ble of performing Hebbian learning-like behaviour is shown. In

this case learning is shown to arise from the interaction between

multiple timescale dynamics :

“Fast-time dynamics alter the slow-time dynamics,

which in turn shapes the local behavior around the

equilibrium points of the fast components by acting

as a parameter to them”.

Although there are differences between learning and programma-

bility, as it will be pointed out in Chapter 7, it is worth driving a

robotic experiment in order to point out the inherent problems

of this approach and envisage a property solution: to endow a

system with virtuality.

3.2 A preliminary study: Searching for virtual-

ity in CTRNNs

First of all in order to explore the possibility of finding pro-

grammability in CTRNNs, we made a preliminary study in

which we created a robotic controller with a system of CTRNNs

resulting in a fixed structure trained in order different shapes

of behaviours.

Analogously to (Younger et al., 1999; Hochreiter et al., 2001)

we explicitly consider two kinds of input lines are considered

in this architecture: one that carries data, which the network

is demanded to respond to, the other which carries informa-

tion the context, that we will identify as the program. This

experiment was presented in (Donnarumma et al., 2007).

Building on (Paine and Tani, 2004) we set up a simula-

47

CHAPTER 3. VIRTUALITY AND PROGRAMMABILITY

tion experiment concerning the switching between different re-

sponse functions using the following scenario:

• a 2D mobile robot with 10 sonars as sensors and controlled

by two parameters: the linear velocity v and the angular

velocity ω around the vertical axis;

• a multiple T−maze as the robot environment;

• a twofold task of the robot: a) go forward along a corridor

while avoiding possible obstacles, and b) turn left (right)

at the next T−junction if a right (left) turn had been

previously chosen. In other words we want the robot to

proceed in the multiple T−maze through an alternation of

turning choices.

Such task can be described by the following simple pseudocode:

BEGIN
leftTurn ← TRUE
WHILE (TRUE)

IF (leftTurn = TRUE)
leftTurn ← behaviour-

Right()
ELSE

leftTurn← behaviourLeft()
ENDIF

END WHILE
END

where behaviourRight() is a function (program) which controls

the robot so as to make it a) go forward avoiding obstacles,

b) turn right at a T−junction and return FALSE value; be-

haviourLeft() acts symmetrically.

Equivalently we give a CTRNN architecture, capable of run-

ning the two different response functions/programs - behaviour-

48

3.2. A PRELIMINARY STUDY: SEARCHING FOR VIRTUALITY IN
CTRNNS

Figure 3.1: CTRNN architecture cabled for T−maze task.

Right() and behaviourLeft() - on a fixed subnetwork, which

controls the robot in order to achieve the above task. Devel-

oping ideas by Tani (Paine and Tani, 2004), we cabled a two

layered network (see Figure 3.1):

First layer. The first layer, L1, is made up of seven neu-

rons, that are initially fully inter-connected to each other. Five

of these neurons directly receive input connections from the

K = 10 sonars (the ID data inputs). Two of these five neurons

control the parameters v and ω, the linear and the angular ve-

locity of the robot respectively. The remaining two receive the

IP program inputs. By setting the values on this last input, this

sub-network is capable of controlling the robot in two different

49

CHAPTER 3. VIRTUALITY AND PROGRAMMABILITY

Type θi wij wik τi IDk IPh Total

Number 7 49 50 7 10 2 125

Table 3.1: Parameters for the first layer L1 neural network
equations

ways, selecting the two different programs : beviourRight() and

behaviourLeft().

The equations of the layers are



dy1
dt = f({yj}N=7

j=1 , τ1, {w11,j}N=17
j=1 , θ11, {IDk }K=10

k=1)
dy2
dt = f({yj}N=7

j=1 , τ2, {w12,j}N=17
j=1 , θ12, {IDk }K=10

k=1)
dy3
dt = f({yj}N=7

j=1 , τ3, {w13,j}N=17
j=1 , θ13, {IDk }K=10

k=1)
dy4
dt = f({yj}N=7

j=1 , τ4, {w14,j}N=17
j=1 , θ14, {IDk }K=10

k=1)
dy5
dt = f({yj}N=7

j=11, τ5, {w15,j}N=17
j=1 , θ15, {IDk }K=10

k=1)
dy6
dt = f({yj}N=7

j=1 , τ6, {w16,j}N=7
j=1 , θ16, {IPh }H=2

h=1)
dy7
dt = f({yj}N=7

j=1 , τ7, {w17,j}N=7
j=1 , θ17, {IPh }H=2

h=1)

(3.1)

The nodes y4 and y5 were chosen to be the output neurons

directly connected with the effectors. Total number of param-

eters are shown in Table 3.1:

These equations identify a family of dynamical systems,

among which the right values suitable for performing the task

have to be chosen.

Second layer. the second layer, L2, is composed of a single

self-connected neuron in such a way as to have two stable equi-

librium points p1 and p2 (see the Section 5.1.2). The output of

L2 is the IP input for Layer L1. The output of the L1 neuron

controlling ω is given as IDto the L2 neuron.

50

3.2. A PRELIMINARY STUDY: SEARCHING FOR VIRTUALITY IN
CTRNNS

In order to set the W matrix of the above CTRNN, we have

trained the layer to implement behaviourLeft() when IP < 0

and behaviourRight() when IP > 0. This is a machine learning

task for which we decided to use an evolutionary approach

starting from (Floreano and Mondada, 1994). We traced the

v values of the robot sensors for a total number of V = 1000

during the robot execution; we construct for each controller a

fitness with three elements:

• a contribute which grows with the distance which of the

robot have from walls (measured by the sonar values Svk ,

k ∈ {1, . . . , 10});

• a contribute which grows with robot linear velocity (linear

velocity values V k
L);

• a contribute which grows inversely with respect to the an-

gular velocity

The goal is to have a controller capable of avoiding walls, be-

ing fast and turning only when necessary. The cost function

(fitness) assumes the form

FFM = (1− Smax) · V̄L ·
(

1−
√
V̄A

)
with

Smax = max {Svk : k ∈ 1, ..., K; i ∈ 1, ..., 10}

V̄L =
1

K

K∑
k=1

V k
L

V̄A =
1

K

K∑
k=1

∣∣V k
A

∣∣
51

CHAPTER 3. VIRTUALITY AND PROGRAMMABILITY

Figure 3.2: BehaviourRight() and BehaviourLeft()
in a simulated T -maze environment in the software
Player/Stage/Gazebo. As it is possible to see, Be-
haviourRight() corresponds to a right-wall-follower, and
BehaviourLeft() to a left-wall-follower.

The second layer L2 has been built so as to select p2 when

ω < Ω1 and p1 when ω > Ω2, where Ω1 < Ω2 are fixed thresh-

olds. In other words the system runs program behaviourLeft()

(behaviourRight()), when it“realizes”that the robot has turned

right (left). This system was tested in the environment sim-

ulator Player/Stage/Gazebo (Koenig and Howard, 2004). ID

is updated about every 102ms (the time scale TF); Layer L1

converges to a good approximation of the stable equilibrium

point in about 10ms (the time scale T); the time between the

switching of the programs is longer than 103−104ms (the time

scale T S). The entire system obtained by the composition of

the two layers L1 and L2 succeeded in controlling the robot

inside various different size multiple T−maze environments.

Analogously to works cited in the previous section two kinds

of high level distinct behaviours were obtained on a fixed ar-

chitecture by merging two layers. The lower layer performs

the two programs by varying the auxiliary/context/program

52

3.2. A PRELIMINARY STUDY: SEARCHING FOR VIRTUALITY IN
CTRNNS

Figure 3.3: Output of the CTRNN controller together with
switching input versus integration step. We see after each turn
in the T−maze layer L2 force the behaviour to be performed
by L1.

53

CHAPTER 3. VIRTUALITY AND PROGRAMMABILITY

input, while the data inputs are the sensory data on a slower

time scale. However this approach gives rise to several ques-

tions to which without a clear model of the phenomenon it is

not possible to answer. How many programs can we insert into

a fixed structure architecture like the one just described? How

can we insert new programs without deleting old ones? How

can we even talk about programs if we do not know the effect

of varying the values of what we call programs?

Notice that those questions could be answered by an archi-

tecture satisfying the properties a., b. and c. of Chapter 1

which resemble the typical programmability capabilities of a

computational system. Thus our strategy will be to provide

our CTRNN system with some features capturing programma-

bility in a broader way, inside CTRNN framework. In order

to do this we will build systems endowed with the virtuality

capability.

3.3 Virtuality and programmability

What is virtuality? By virtuality in computational systems we

understand the well-known capability of interpreting, trans-

forming, and running machines which are present, as it were,

only under their code (program) aspect. We deem a class of

symbol-processing systems, both artificial and biological, to

possess virtuality (Garzillo and Trautteur, 2009) if:

1. there exists an effective encoding of the structure of the

single systems;

2. the codes provided by such encoding can be applied to

specific systems of the class, designated as universal (or

54

3.3. VIRTUALITY AND PROGRAMMABILITY

interpreters), so that the universal system realizes the be-

haviour of the coded ones;

3. the codes can be processed by the systems of the class on

a par with the input and output variables.

While the above definition arises within the Theory of effec-

tive computability, the specific use of the term ‘virtuality’ was

introduced in the context of actual computing practice as in

“virtual memory” or “virtual machine” and conveys an explicit

attention to the discrimination between hardware and software.

Thus a virtual machine is a code which behaves on a given, fixed

material substrate as a different physical machine. Virtuality,

therefore, exempts from the construction of different material

structures in order to obtain different functions or behaviours,

substituting construction with a description, namely the code.

Furthermore Clause (2), allowing the processing of the codes

as running I/O, grants the capability of virtually constructing

or modifying other systems of the class and the modification

of a system by itself.

We maintain that the ANN model proposed in this paper

possesses the properties expounded in a., b., and c. above in

Chapter 1. Property a. is discussed in Chapter 2; in Chap-

ter 4 property c. will be shown to hold because for any N we

will exhibit a CTRNN with a polynomially related number of

neurons universal for all N -neurons CTRNN, while the all im-

portant property b. holds because the ANN model possesses

virtuality. This virtuality is achieved by “pulling out” from

the CTRNN the multiplication operation, commonly used to

model the input of biological neurons, by introducing, for each

connection, a subnetwork providing the outcome of the multi-

plication operation between the output coming from the pre-

55

CHAPTER 3. VIRTUALITY AND PROGRAMMABILITY

synaptic neuron and the weight associated with the connection

itself. As a consequence the weights can be given as auxiliary

inputs to the original network augmented with the multiplica-

tion subnetworks, thus creating a neural architecture with two

kinds of input lines: auxiliary (or programming) input lines

and data input lines. Therefore, the auxiliary input lines can

be fed with a code describing the network structure in a way

resembling the implementation of a virtual machine in stan-

dard computational practice or the Gödel numbers fed into a

Universal Turing machine.

It is easily checked that our proposed architecture satisfies

• Clause (1) – the connectivity pattern is the code

• Clause (2) – the multiplication subnetworks enable the

behaviour of the coded network

• Clause (3) – the weights are the values of the auxiliary

inputs

thus possessing virtuality as will be later stressed in Chapter

6.

Flexibility is the most prominent behavioural consequence of

virtuality and is the requested capability we look for in neural

systems. An entity with virtuality is flexible in the sense that

it may exhibit a variety of different shapes of behaviour in

response to the same sets of environmental data input patterns,

depending on the program it is executing on its fixed basic

structure.

In theoretical parlance, as distinguished from computational

practice, virtuality is equated with universality in the sense

that a single system – a Turing machine, deemed universal –

is able to perform through simulation all computations per-

56

3.3. VIRTUALITY AND PROGRAMMABILITY

formed by any Turing machine: hence the term ‘universality’,

which refers to the universe of the partial recursive, or partially

computable, functions.

Our interest in virtuality does not stem from universality,

but from programmability which allows the flexibility feature

mentioned above. In particular in the chosen domain of CTRNNs

presented in Chapter 2 we do not look for a universal CTRNN

which might simulate the behaviour of any CTRNN, but for

programmable CTRNNs which under different programs can

exhibit any of an appropriate range of shapes of behaviour. A

further step will be the implementation, always as a pointer

to neurobiological research, of (re)programming parts of a NN.

As the “programs” in CTRNNs will be, as we will see in Chap-

ter 4, specifications of the weights of the NN, and these will be

“pulled out” from a structural specification into auxiliary input

variables, it is perfectly conceivable that parts of the NN might

provide, with their output variables, the auxiliary or program-

ming inputs for some other, or the same, parts of the total

NN. This is the reason for including Clause (2) explicitly in

our definition of virtuality.

3.3.1 Virtuality in biological systems

Natural, i.e. biological, symbolic systems have been function-

ally modelled by computational means, both with regard to

lower level animals (see, for instance Lambrinos et al., 2000;

Reeve et al., 2005) and mammals and humans as attested by a

wealth of successful computational accounts of mental perfor-

mances of a perceptive, cognitive and, recently, also emotional

nature.

As is well known, such an approach has been the mainstay

57

CHAPTER 3. VIRTUALITY AND PROGRAMMABILITY

of Artificial Intelligence and the associated synthetic method,

where the actual understanding of the material behaviour of

the nervous system has always been deferred, pending the dis-

covery of the actual implementation of the computational pro-

cess warranted by the multiple realizability hypothesis.

It now appears that the original notion of a biological ner-

vous system actually implementing algorithmic processes has

largely been superseded. Accordingly the dynamical systems

approach to modelling biological control and symbolic behaviour

has superseded Artificial Intelligence methodology. Yet the

word ‘computation’ is still being used in a variety of often mis-

leading or poorly understood ways. As examples we may con-

sider the use of ‘computational’ within the“computational neu-

roscience” where ‘computational’ usually refers to some neural

network (NN) used to model some part of the biological nervous

system (Riesenhuber and Poggio, 2002), or in phrases such as

“Biology is computational” (Fontana, 2006; Regev and Shapiro,

2002). Most of these usages are of a metaphorical nature.

In Chapter 1 high level biological tasks are presented, which

seem to be clamoring to be interpreted as genuine computa-

tional tasks, and such as to need programming, despite the

dynamical systems nature of the underlying, neural, basis. By

‘programming’ we explained that is not meant to design the

NN for predetermined goals, but rather the fact that a fixed

structure – functionally an interpreter – can be conditioned

(programmed) by an auxiliary input so as to exhibit a reper-

toire of different shapes of behaviour.

This is the gist of virtuality, insofar as a single, fixed entity

may be made to behave as a number of different “virtual”, not

materially present, entities.

58

3.3. VIRTUALITY AND PROGRAMMABILITY

These properties seem inexplicable, barring the existence of

algorithmic performance in the nervous system. Indeed Slo-

man (Sloman and Chrisley, 2003; Sloman, 2008) has intro-

duced the notion of virtual machine in the modelling of men-

tal processes, albeit without inquiring about the material re-

alizability of virtuality in the nervous system, while in other

works (Donnarumma et al., 2007; Trautteur and Tamburrini,

2007; Garzillo and Trautteur, 2009) it has been investigated, or

rather formulated, the question whether virtuality is actually

present in biological brains.

The search for such programmable/virtual performance in

artificial, but biologically plausible, neural architectures might

be considered as the first step of a path of research aimed at

detecting actual computing in the brain, as contrasted with

the current trend striving at the identification of topographi-

cal areas associated with unique functionalities via EEG, PET,

fMRI, etc. and at tracking interconnections between those ar-

eas, but largely neglecting the actual symbolic processing of

nervous tissue.

The discovery of neural architectures, at first in artificial

models, later in biological ones, supporting programming/virtuality,

may open the way to an objective, and not merely metaphorical

or functional, interpretation of neuronal activity as computa-

tional.

3.3.2 Turing Virtuality versus Material Virtuality

In the field of unconventional or alternative computing, where

the goal of effective but not recursive symbol processing keeps

being sought after, a number of systems not immediately com-

putational in the algorithmic sense are shown to be capable of

59

CHAPTER 3. VIRTUALITY AND PROGRAMMABILITY

(at least) simulating in some well defined sense a generic Tur-

ing machine, thus including a Universal Turing machine which

is the theoretical underpinning of (Turing) virtuality.

The universality property and therefore virtuality is cor-

rectly assigned to those systems. In particular such is the

case for a dynamical system simulation of algorithmic devices

(Graça et al., 2005; Branicky, 1995), for a universal NN1 im-

plementing a Universal Turing machine (Siegelmann and Son-

tag, 1995; Siegelmann, 1999), for liquid state machines (Maass

et al., 2002; Steil, 2004). This last system, can in particular

be seen from the point of view of the topology of the network

as the dual of our model. In fact in this work a fixed univer-

sal kernel or reservoir recurrent neural networks feeds another

network in order to obtain a multi purpose system. In the

present approach the multi purpose (programmable) network

will be fed by a programming network (see Figure 3.4).

However, in neither of the three models, Clause (2) above

is not fulfilled by the encodings provided in those papers. In-

deed, in the simulation or implementations mentioned there

appear to be two encodings: the explicit encoding of the Turing

machine into the simulating system, and the never alluded-to

encoding of a generic Turing machine, perhaps through cer-

tain Gödel numberings, on the tape of the simulated Univer-

sal Turing machine. The second and crucial encoding does

not seem to be immediately accessible from the level of the

simulating agencies - dynamical systems (Graça et al., 2005;

Branicky, 1995), rational weights NN (Siegelmann and Son-

tag, 1995; Siegelmann, 1999) or universal resevoir NN (Maass

et al., 2002; Steil, 2004)). In the present approach, in the spirit

1See also Appendix B for a detailed treatment.

60

3.3. VIRTUALITY AND PROGRAMMABILITY

W

Universal
Reservoir

Memoryless
Readout

I

ID

Programmer I2

Programmable
DMAN

IP

Figure 3.4: Comparing the topologies of a Liquid State Ma-
chine (on the left) and a DMA (on the right) which will be
defined in Chapter 4. In Liquid State Machines the universal
reservoir formed by a recurrent network feed an output sub-
sidiary network. In DMA a Programmable Network possessing
virtuality is fed by a programming network.

61

CHAPTER 3. VIRTUALITY AND PROGRAMMABILITY

of biologically plausible modelling, we do not simulate other

computational systems (Turing machines). We search for vir-

tuality within the model itself, which we might call CTRNN or

material virtuality, in the hope that this capability might be

transferred, or rather discovered, in biological reality.

Accordingly, in this work we show how in the dynamical

systems of the NN variety, in particular in CTRNNs, the cru-

cial programming feature – virtuality – is realizable and at the

same time we propose and implement examples of a promising

architecture: the dynamical multiplication architecture.

62

4
Dynamical Multiplication Architecture

In this Chapter we introduce the core part of the thesis, the un-

derlying principles and the detailed structure and organization

of the Dynamic Multiplication Architecture. The approach will

allow for the construction of interpreters, Dynamic Multiplica-

tion Architecture Networks (DMAN), possessing virtuality and

thus, resulting programmable. The approach will be developed

inside the CTRNN framework, so DMANs will turn out to be

as interpreters of specific classes of CTRNNs.

4.1 Programmability through dynamical multi-

plication

The input to biological neurons is usually modelled as a sum of

products between output signals coming from other connected

neurons and the weights associated with the connections. So

the evolution of a network is grounded into the sums of the

products between weights and output signals. As indicated in

Section 3.3, in the present approach the role of the weights

is equivalent to programs in standard computational systems.

63

CHAPTER 4. DYNAMICAL MULTIPLICATION ARCHITECTURE

Here we propose to “pull out” the multiplication operation by

using subnetworks providing the outcome of the multiplication

operation between the output and the weight. As a conse-

quence the weights are given as an auxiliary input to the orig-

inal network augmented with the multiplication subnetworks,

thus creating a neural architecture with two kinds of input

lines: auxiliary (or programming) input lines in addition to

standard data input lines. Notice that the newly introduced

auxiliary input lines are fed with a code describing the original

network in a way resembling the code of a virtual machine in

a standard computational architecture or the Gödel numbers

given to a Universal Turing machine.

4.2 DMA explained

Let us suppose we have an ideal CTRNN, mul, composed of

M neurons some of which (input neurons) are fed with inputs

a, b ∈ (0, 1) with appropriate weights, and one is an output

neuron k, with the steady state ȳk so that σ(ȳk) = a · b.
Given a simple network S composed of only two neurons i

and j linked by just one connection with weight wij ∈ (0, 1), it

is possible to build an “equivalent” Dynamical Multiplication

Architecture Network (DMAN) Smul by means of the multipli-

cation network mul according to the following steps (see Figure

4.1):

1. redirect the output of the neuron j as input a of mul

2. set the input b of mul to wij

3. redirect the output of the neuron k of mul as input to the

neuron i with weight 1

64

4.2. DMA EXPLAINED

In this case, supposing that the mul time scale of the approach

to the stable point is so fast as to make completely negligible

its computational delay with respect to the S time scale, the

dynamic behaviour of the constructed DMAN Smul, restricted

to the neurons i and j, is equivalent (identical in case of zero

delay of the mul subnetwork) to the original S.

It is always possible to extend this procedure to a generic

weight wij ∈ (min,max). We have the problem of creat-

ing a network which reproduces the product wij · σ(yj) with

wij ∈ (min,max). We can rescale the parameter wij with the

transformation

wij · σ(yj) = (max−min) · p · σ(yj) +min · σ(yj)

with p ∈ (0, 1).

This means that we can substitute the wij−connection with

a connection with weight min plus a connection with weight

(max − min) coming from the multiplication network mul,

which receives as inputs σ(yj) and the programming input p =

(wij −min)/(max−min) as shown in Fig. 4.2.

In the rest of the paper, each time such procedure will be

applied, we will refer to it as w-substitution.

Now given a generic CTRNN G composed of N neurons,

with inputs x = [xN+1, . . . , xN+L], and weights wij ∈ (min,max),

with i ∈ {1, . . . , N} and j ∈ {1, . . . , N +L}, let us construct a

DMAN Gmul applying the w-substitution uniformly.

In this way, a DMAN Gmul is obtained, composed of N+N ·
M · (N +L) neurons1, with data inputs x = [xN+1, . . . , xN+L],

and auxiliary inputs p = [p1, ..., pN(N+L)], which has the same

1Notice that the number of neurons in a w−substituted DMAN Gmul grows as O(N2),
well within polynomial bounds, with respect to the number of neurons of G.

65

CHAPTER 4. DYNAMICAL MULTIPLICATION ARCHITECTURE

w-substitution

j

i

w ij

j

i

mul

w ij

Figure 4.1: The w-substitution procedure for weights w ∈ij
[0, 1]. For each weight a mul net, fed with the appropriate
program p = wij, is inserted.

dynamic behaviour as G, if restricted to the neurons in G.

As a consequence the network Gmul fed with any auxiliary

inputs ph ∈ (0, 1) has the same behaviour as the network G

with weights2,

wij = (max−min) · ph +min (4.1)

if restricted to the neurons in G.

4.3 DMA properties

Hence, the DMAN Gmul represents an artificial system which

possesses virtuality because it fulfills Clauses (1), (2) and (3)

defined in Section 3.3. In fact, the ph effectively codes an N

neuron, L input CTRNN and gets decoded by Eqn (4.1). The

2i is equal to the result of the integer division (h− 1)/(N + L) plus 1, while j is equal to
the remainder plus 1

66

4.3. DMA PROPERTIES

w-substitution

j

i

w ij

j

i

mul

p=
wij−min
max−min

min

max-min

Figure 4.2: The w-substitution procedure for weights wij ∈
[min,max]. For each weight a mul net, fed with the appropri-
ate program p = (wij −min)/(max−min), is inserted .

code, ph, can be given to Gmul which realizes the behaviour of

the coded one. Also the code can be processed on a par with

the data input variables.

So in this sense we will say that ph auxiliary inputs play

the role of a program which is able to determine the suitable

behaviour of the Gmul as a network G with assigned weights.

Notice that a number of neurophysiologic findings suggests

the presence of biological neurons showing a multiplicative re-

sponse on some input signals3. For example, the multiplication

is thought to play a crucial role in coordinate transformation

(Andersen et al., 1997) or auditory processing (Pena and Kon-

ishi, 2004). The presence of neurons showing as response a

multiplicative operation on some input signals could be pre-
3Recent research on the glia suggests the possibility of modulation of synaptic efficacy by

astrocytes (Haydon and Carmignoto, 2006). If this were the case our proposal of searching
for programmability in biological networks would be corroborated insofar as the glia might be
interpreted as a “programming” unit for grey matter neurons. Here we do not further develop
such hypothesis.

67

CHAPTER 4. DYNAMICAL MULTIPLICATION ARCHITECTURE

sumably explained in two ways (Salinas and Abbott, 1996):

• by the existence of single neurons which are able to per-

form a multiplication operation on their incoming signals

(but biological neurons are usually modelled by a weighted

sum);

• by the interaction of a population of neurons (a subnet-

work), where just one output neuron (or few neurons)

shows a multiplicative response, even if all the individ-

ual neurons sum their synaptic input linearly and are not

able to perform a multiplication operation singularly.

Although a number of abstract models of neurons with multi-

plicative response on their synaptic inputs (known as Σ − Π

units) have been proposed in the field of artificial neural net-

works (Rumelhart et al., 1986; Younger et al., 1999), we con-

sider the subnetwork explanation a corroboration of our theo-

retical introduction of the CTRNN mul.

68

5
A theory for comparing DMANs

In Chapter 4 we presented the DMA model which, starting

from a network G and applying the w−substitution procedure,

allows to construct a DMAN Gmul, which is an interpreter in

the computational sense for specific classes of CTRNNs. How-

ever, as already stated in the previous chapter, the class that a

DMAN captures is well defined only in the presence of subnet-

works mul with an ideal attractor computing behaviour, which

implies an exact approach to their fixed points in a zero time

delay. In a real implentation, of course, this zero time delay

cannot be assumed, and is also biologically implausible. Thus

finite time delay, and not exact approach to the fixed points

should be assumed, and real approximated implementation of

mul, which we will call mul? will be deployed. Of course the

interpreting capability is reduced. In order to measure the

residual interpreting capability and to demonstrate the feasi-

bility of the approach even as far as the actual implementation

is concerned, we need to compare the original G network be-

haviours, to the w−substituted networks Gmul?. As we hinted

in Chapter 2, approaches based on the universal dynamical

69

CHAPTER 5. A THEORY FOR COMPARING DMANS

approximation theorem are not helpful because that theorem

compares one solution at a time of the dynamical systems in-

volved. So in this section, starting from Bifurcation Theory,

we introduced a number of very recent techniques for dynam-

ical systems which take their inspiration from Formal Verifi-

cation Methods and that can be summarized as Bisimulation

Techniques, which will bring us a measure which enables us

to compare CTRNN dynamical systems, and specifically the

DMA network interpreters versus the original CTRNN they

simulate. Notice that these techniques are a very new branch

of research in dynamical system theory and this is the first at-

tempt, to the best of our knowledge, to specialize bisimulation

inside Neural Networks framework.

5.1 Background notions in Bifurcation Theory

In studying dynamical systems, we are not only interested in

specific solutions of a specific system, but we want to clas-

sify dynamical systems according to their general qualitative

shapes of behaviour. One first step in this direction is to com-

pare the number, position and stability of their invariant sets.

This aspect will become especially important in the context of

the DMA when searching for interpreters of classes capable of

simulating classes of CTRNNs.

5.1.1 Topological Equivalence

Definition 5.1.1. Two dynamical systems D1 = (X1, γ1, T1)

and D2 = (X2, γ2, T2) are topologically equivalent if there exist

a homeomorphism h : X1 −→ X2 mapping orbits of the first

system on the second system.

70

5.1. BACKGROUND NOTIONS IN BIFURCATION THEORY

Definition 5.1.2. Two dynamical systems D1 = (X1, γ1, T1)

and D2 = (X2, γ2, T2) are topologically conjugate if they are

topologically equivalent and the trajectories evolve with the

same speed.

Definition 5.1.3. Two dynamical systems D1 = (X1, γ1, T1)

and D2 = (X2, γ2, T2) are topologically Ck equivalent if there

exists a diffeomorphism h : X1 −→ X2 mapping orbits of the

first system on the second system.

Definition 5.1.4. A a family of dynamical systemsD = (X, γr, T)

depending on a parameter k is locally structurally stable in

r = r̄ if any perturbation of γ r̄+ε near to k̄ is topologically

conjugate to γ r̄.

Theorem 5.1.5. Each additive model of continuous time re-

current neural network is topologically conjugate to a sigmoid

CTRNN. Moreover given the equation

τ
dy

dt
= −y + Wσ (y − θ) + I

is topologically equivalent to

τ ′
dy′

dt
= −y′ + W′σa,b,c

(
y′ − θ′

)
+ I′

71

CHAPTER 5. A THEORY FOR COMPARING DMANS

given by the homeomorphism

y′ = c−1y

τ ′ = τ

W′ = (ac)−1W

θ′ = c−1θ

I′ = c−1I + abcW · 1N

where 1N = [1, . . . , 1] is the identity row vector of dimension

N .

This theorem, proved in (Haschke, 2004; Beer, 2006), shows

that all the results obtained in this thesis for the DMA can be

easily transferred to any of the architectures with activation

functions σa,b,c(x) since for each sigmoid CTRNN found it is

possible to construct an equivalent σa,b,c CTRNN.

Theorem 5.1.6. (Grobman - Hartman) If x̄ is a hyperbolic

equilibrium point of a dynamical system D = (X, γ, T), (2.3)

then there is a neighbourhood of x̄ in which D is topologically

conjugate to the linear system x̄ = J(x̄)x.

Thus Bifurcations points are values of a parametric dynam-

ical system γr(t, x) for which small variation of r alters the

structure of its surface stability. In the next section analyzing

the CTRNN neuron we will find two kind of bifurcation points:

Saddle Node bifurcations and Pitchfork bifurcations. Figures

5.1 and 5.2 illustrate the typical bifurcation diagram of these

bifurcations. A bifurcation diagram plots the xixed points as

function of the parameter r of the system. As we can see, a

system which undergoes a saddle node bifurcation detroys its

two fixed points, one stable and one unstable, which annihilate

72

5.1. BACKGROUND NOTIONS IN BIFURCATION THEORY

-2.5

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

-6 -4 -2 0 2 4 6

Stable
Unstable

0 axis

Figure 5.1: Bifurcation Diagram for a saddle node bifurcation.
red lines are unstable fixed points, blue lines are stable fixed
points.

or disappear; on the other hand a system which undergoes a

pitchfork bifurcation split its stable fixed point into three fixed

points: one unstable and two unstable.

5.1.2 Analysis of simple networks: one neuron analysis

The understanding of the dynamical behaviour of a CTRNN

system is a difficult task as much as the number of neurons

constituting the system increases. In Chapter 6 we started

from testing a DMAN in simulating the dynamic behaviour

of only one neuron. In this section we analyze the dynamics

of a CTRNN consisting of only one neuron NetOne, the be-

haviour of which will be compared with the DMAN interpreter

NetOnemul? simulating only one neuron.

Thus let us consider the case of a CTRNN equation written

up for a single neuron with a self-connection. Equation 2.1

73

CHAPTER 5. A THEORY FOR COMPARING DMANS

Figure 5.2: Bifurcation diagram for a Pitchfork Bifurcation.
The continuous blue lines are stable fixed points, the dotted
blue lines are unstable fixed points.

reduces to

ẏ = −y + wσ (y − θ) + I (5.1)

where for simplicity we set the time constant τ = 1. Notice

that no elementary expression for the solution of (5.1) exists.

By contrast, it is possible to achieve a complete qualitative

description of its dynamics (Beer, 1995b). Specifically, one can

describe the limit sets of (5.1), including their stability and

their dependence on the parameters, as well as the bifurcations

that can occur as the parameters are varied (see Fig. 5.3).

Such system has a cusp point (Hale and Koçac, 1991). In

this system the cusp point
(
Ĩ , w̃

)
is the only bifurcation point

in which the system undergoes a pitchfork bifurcations (Hale

and Koçac, 1991). All other bifurcation points are saddle-node

bifurcations.

74

5.1. BACKGROUND NOTIONS IN BIFURCATION THEORY

Figure 5.3: Stability Surface and Cusp point of NetOne

To find the bifurcation point, we recall that Theorem 5.1.6

points out that bifurcation points are non-hyperbolic equilibria

ȳ; thus from Chapter 2 we find the conditions:

f(ȳ) = 0 (5.2)

f ′(ȳ) = 0 (5.3)

Computing these conditions to 5.1

1. ȳ must be a fixed point (condition 5.2):

− ȳ + wσ (ȳ − θ) + I = 0 (5.4)

75

CHAPTER 5. A THEORY FOR COMPARING DMANS

-30

-25

-20

-15

-10

-5

 0

 0 5 10 15 20 25 30

cusp branch r
cusp branch l

Figure 5.4: The two branches of the cusp for NetOne with
θ = 0

2. y − I and wσ (y) have to be tangent in ȳ:

1 = wσ
′
(ȳ − θ) = wσ (ȳ − θ) (1− σ (ȳ − θ)) (5.5)

There are two solutions for this equation: in fact studying the

condition (5.5), we obtain

1

w
= σ (ȳ − θ) (1− σ (ȳ − θ)) =

e−(ȳ−θ)(
1 + e−(ȳ−θ)

)2

and setting

z = e−(ȳ−θ) (5.6)

we have

wz = 1 + z2 + 2z =⇒ 1 + z2 + (2− w) z = 0

76

5.1. BACKGROUND NOTIONS IN BIFURCATION THEORY

with the two solutions

z =


w−2+

√
(w−2)2−4

2

w−2−
√

(w−2)2−4

2

Remembering (5.6) we can write

ȳ =


f1 (w, θ) ≡ − ln

(
w−2+

√
(w−2)2−4

2

)
− θ

f2 (w, θ) ≡ − ln

(
w−2−

√
(w−2)2−4

2

)
− θ

We have found the expression for a fixed point ȳ in function of

the weight w. If we substitute them in (5.4) we obtain the two

curves

I(w, θ) =

f1 (w, θ)− wσ (f1 (w, θ)− θ)
f2 (w, θ)− wσ (f2 (w, θ)− θ)

which are those of the cusp (see Fig. 5.4). These curves inter-

sect only in one point, the cusp point, when the two solutions

are identical, I1 = I2

− ln

(
w−2+

√
(w−2)2−4

2

)
− θ − wσ

(
− ln

(
w−2+

√
(w−2)2−4

2

)
− 2θ

)
=

− ln

(
w−2−

√
(w−2)2−4

2

)
− θ − wσ

(
− ln

(
w−2−

√
(w−2)2−4

2

)
− 2θ

)
(5.7)

Fixing θ we can found solution for the solution for the con-

dition (5.7). Taking, for example, the case in which θ = 0, the

logarithm arguments on the left and on the right have to be

77

CHAPTER 5. A THEORY FOR COMPARING DMANS

equal, so

w−2+
√

(w−2)2−4

2 =
w−2−

√
(w−2)2−4

2 =⇒
(w − 2)

2 − 4 = 0 =⇒
w2 − 4w = 0

One solution is w = 4 (w = 0 is not good because it makes the

logarithm argument inferior to 0). If we substitute w = 4 in

I we obtain I = −2. So the coordinates of the cusp point are(
Ĩ , w̃

)
= (−2, 4).

As far as this analysis show, even the simplest element of

a CTRNN is a complex dynamical system. In Chapter 6 a

DMAN interpreter of this complex dynamical simulation, NetOnemul?,

will be constructed and analyzed.

5.2 A formal definition of abstraction

Theorem 5.1.6 gives us a powerful method in order to analyze

classes of dynamical systems the stability surface of which is

composed only by fixed points, by comparing their behaviour

in proximity of their fixed points. Thus for two systems D1

and D2 with the same number of fixed points, none of them

being non-hyperbolic, we can in theory perform an“equivalence

measure” by:

• computing the eigenvalues λ of the Jacobian for each fixed

point of the systems

• computing for each eigenvalue the multiplicity n− of the

eigenvalues with real part inferior to zero and of eigenval-

ues n+ of the eigenvalues of real part superior to zero.

78

5.2. A FORMAL DEFINITION OF ABSTRACTION

• then comparing if for each fixed point x̄1 in D1 there is

one x̄2 in D2 n
1
− = n2

− and n1
+ = n2

+

Thus if the multiplicity is the same the systems have the same

stability surface and they result to be locally topologically con-

jugate.

However all the approach is based on the assumption that it

is possible to compute the fixed point of nonlinear CTRNN sys-

tems. Unfortunately determining the exact region of attraction

analytically might be difficult or even impossible for a nonlin-

ear dynamic system (Khalil, 2002). Thus in general topological

equivalence is too strong a condition to be deployed in DMANs.

In the subsequent section, starting from Bisimulation def-

inition, which rises from Formal Verification Theory (Clarke

et al., 2000), and which is the homologous definition of topo-

logical equivalence for transition systems, we are able to relax

the equivalency definition and to find a way to systematically

compare CTRNN systems and so the interpreting capability of

DMANs.

5.2.1 Transition systems associated with dynamical sys-

tems

Definition 5.2.1. A transition system T ≡ (Q,Σ,→, Q0) con-

sists of

• A set Q of states

• An alphabet Σ of events

• A transition relation →⊆ Q× Σ×Q

• A set Q0 ⊆ Q of initial states

79

CHAPTER 5. A THEORY FOR COMPARING DMANS

Definition 5.2.2. A bisimulation between two transition sys-

tems G ≡ (Q,Σ,→, Q0) and G′ ≡ (Q′,Σ′ ≡ Σ,→′, Q′0) is an

equivalence relation ∼⊆ Q×Q′ such that,

• ∀q1, q2 ∈ Q, ∀q′1 ∈ Q′∀a ∈ Σ(q1 ∼ q
′

1 and q1
a→γ q2) =⇒

(∃q′2 | q2 ∼ q
′

2 and q
′

1
a→
′
q
′

2)

• ∀q′1, q′2 ∈ Q’, ∀q1 ∈ Q∀a ∈ Σ (q1 ∼ q
′

1 and q
′

1
a→
′
q
′

2) =⇒
(∃q2 | q2 ∼ q

′

2 and q1
a→ q2)

The notion of Bisimulation states when two Transition sys-

tems are equivalent. Bisimulation is formally an equivalence

relation and subsumes a partition of the states of the transi-

tion systems (Zhang, 1994).

On the other hand, looking at the general definition of dy-

namical system 2.6.1, it is possible to associate in a general

way a transition system with them, basing on the flow γ of it

(Brihaye, 2006).

Definition 5.2.3. The (labelled) transition systemGγ ≡ (Q,Σ,→γ

, Q0) associated with a dynamical systems D ≡ (X, γ, T) is de-

fined by the following:

• the set Q of states is Y ;

• the set Q0 = {γ(x0, 0) ∈ Y x0 ∈ X0} with X0 ⊆ X the set

of the initial conditions;

• the set Σ of events is T ;

• the transition relation y1
τ→γ y2 ⊆ Y × T × Y is given by

∃x ∈ X, ∃t1, t2 ∈ T , (t2− t1 = τ ∧γ(x, t1) = y1∧γ(x, t2) =

y2).

Definition 5.2.4. The time abstract transition system GA
γ ≡

(Q,Σ,→γ, Q0) associated to a dynamical systemsD ≡ (X, γ, T)

is defined by the following:

80

5.2. A FORMAL DEFINITION OF ABSTRACTION

• the set Q of states is Y ;

• the set Q0 = {γ(x0, 0) ∈ Y x0 ∈ X0} with X0 ⊆ X the set

of the initial conditions;

• the transition relation y1 →γ y2 ⊆ Y × Y is given by

∃x ∈ X, ∃t1, t2 ∈ T , (t1 ≤ t2∧γ(x, t1) = y1∧γ(x, t2) = y2).

Definition 5.2.5. A (time abstract) bisimulation on a dynam-

ical system (X, γ, T) is an equivalence relation ∼ on Y such

that the following property holds

∀y1, y
′
1, y2 ∈ Y

(y1 ∼ y2)∧ (y1
τ→ y′1)⇒(∃τ ′ ∈ T,∃y′2 ∈ Y, (y′1 ∼ y′2)∧ (y2

τ ′→
y′2))

Time abstract bisimulation gives partitions of the phase

space of the dynamical partition. There always exists a trivial

bisimulation on a dynamical system given by {Y }. However,

non-trivial bisimulations give rise to the definition of the inter-

esting concept of abstraction for the dynamical systems.

5.2.2 Semantics of a continuous system

Building on the definition of the previous section it is possible

to associate a language with a continuous dynamical system.

Definition 5.2.6. A word ωx0 on a partition P of the set Y

from a dynamical system D = (X, γ, T) is the succession of

sets of the partition P

ωx0 : Fx0 −→ P

where Fx0 is a succession of intervals or points of T , determined

by the trajectory γ(t,x0), of the induced partition F on T

constructed as {t ∈ T | γ(t,x0) ∈ P}.

81

CHAPTER 5. A THEORY FOR COMPARING DMANS

Definition 5.2.7. We denote by ΩP the set of words associated

with the dynamical system (X, γ, T) with respect to a partition

P

The set ΩP gives a complete static description of the dy-

namical system

Definition 5.2.8. Given the set of intervals

F(x,t) = {I ∈ Fx | I ≥ It}

the suffix of the world ωx associated with time t is the re-

striction

ω(x,t) = ωx|F(x,t)

Definition 5.2.9. The suffix dynamical type of y ∈ Y with re-

spect to a partition P of V2, given a dynamical system (X, γ, T),

is defined by

SufP(y) = {ω(x,t) | γ(t,x) = y}

Definition 5.2.10. The suffix partition with respect to a par-

tition P of a dynamical system (D, γ, T) is the partition in-

duced by the equivalence relation on the phase space Y between

points having the same suffix dynamical type.

This approach describes how trajectories of a given dynam-

ical system D can be encoded through words on a given parti-

tion associated with D.

This word encoding technique can be used to build a new

symbolic “procedure” for computing bisimulations. Given a

dynamical system D and a partition P of the phase space, it is

possible to build Suf(P). The Bisimulation algorithm shown

in Appendix C ensures that either P ≡ Suf(P) or Suf(P)

82

5.3. SIMILARITY MEASURES

refines P . In the former case we obtain the bisimulation P . In

the latter we iterate the algorithm until Suf i(P).

Lemma 5.2.11. (Brihaye, 2006) Given a dynamical system

D and a partition P of its phase space iterating the partition

induced by Suf we obtain

P ≺ Suf(P) ≺ Suf2(P) ≺ · · · ≺ Sufk(P) ≺ . . .

In cases we know this procedure stops, we could utilized it

to obtain a complete static description of the dynamical system

(see Appendix C).

In general the possibility to exactly replace the dynamical

systems with one which lives on a lower dimensional space is

a practice going under the name of reduction of a dynamical

system (see e.g. Antoulas et al., 2001).

The approach developed in the next section falls in some

degree within this branch of techniques although it does not

give an exact replacement of the starting system, but only an

approximated one (see Tabuada et al., 2008).

5.3 Similarity measures

Exact bisimulations between two labelled transition systems

require that their observations are (and remain) identical as

stated in Definition 5.2.2). However, there are very few cases

in which an exact abstraction of a non linear dynamical system

can be performed.

The Approximate bisimulation approach presented in this

section (see Girard and Pappas, 2005) is less rigid since it only

requires that the observations of both systems are (and remain)

83

CHAPTER 5. A THEORY FOR COMPARING DMANS

arbitrarily close.

We firstly considered extensions of the labelled transition

systems including an observation space H and an observation

map h.

Definition 5.3.1. A Transition System with observables T ≡
(Q,Σ,→, Q0, H, h), where

• (Q,Σ,→, Q0) have the same meaning of definition 5.2.1

• H is the observation space, a metric space equipped with a

metric d

• h : Q → H is an observation map which maps variables

of the system on the observation space

Again we can associate to each dynamical system D =

(X, γ, T) a Transition system with observables T , selecting a

subspace of X and a transfer function h on which to compare

systems. If h is simply a projection of a number of variables of

X we talk about Transition systems with clean observables.

Definition 5.3.2. A Transition system with clean observables

is a transition system with observables T in which the obser-

vation map h : Q→ H being a projection.

In the special case in which we select the entire space X as

observation space together the identity map as h we have a full

observable Transition System.

Definition 5.3.3. A Completely Observable Transition System

is a Transition system with observables T ≡ (Q,Σ,→, Q0, H, h)

in which H = Q and h is the identity function.

Definition 5.3.4. A relation ∼δ is a δ−approximate bisim-

ulation between the transition systems with observables T1 ≡

84

5.3. SIMILARITY MEASURES

(Q1,Σ,→1, Q
1
0, H, h1) and T2 ≡ (Q1,Σ,→1, Q

1
0, H, h1) with com-

mon labels Σ, and a common observation space H, if for all

(q1, q2) ∈ Q1 ×Q2

1. d(h1(q1), h2(q2)) ≤ δ

2. (q1, q2) ∈∼δ ∧q1 →1 q′1 ∈ Q1 ⇒ ∃q′2 ∈ Q2 (q′1, q
′
2) ∈∼δ

∧q2 →2 q
′
2

3. (q1, q2) ∈∼δ ∧q2 →2 q′2 ∈ Q2 ⇒ ∃q′1 ∈ Q1 (q′1, q
′
2) ∈∼δ

∧q1 →1 q
′
1

Note 5.3.5. If δ = 0 the definition in 5.3.4 collapses to exact

bisimulation Definition 5.2.2.

Definition 5.3.6. The transition systems T1 and T2 are said to

be approximately bisimilar with approximation δ (T1 ∼δ T2) if

there exists a ∼δ, δ-approximate bisimulation, such that given

the initial conditions Q0
1, and Q0

2

• ∀q1 ∈ Q0
1 ∃q2 ∈ Q0

2 such that (q1, q2) ∈∼δ

• ∀q2 ∈ Q0
2 ∃q1 ∈ Q0

1 such that (q1, q2) ∈∼δ

The δ−approximate bisimulation between two transition sys-

tems guarantees that the distances between their language is

bounded.

Theorem 5.3.7. (Girard and Pappas, 2007)If two transition

systems T1 and T2 are approximately bisimilar with approxi-

mation δ, then for all observable trajectories of T1 h1(q0
1)

t1→
h1(q1

1)
t2→ there exists a trajectory h2(q0

2)
t1→ h2(q1

2)
t2→ . . . ,

such that ∀i, d(h1(qi1), h2(qi2)) ≤ δ and viceversa.

In the light of this definition it is possible to reformulate the

Funahashi - Nakamura Theorem 2.4.1

85

CHAPTER 5. A THEORY FOR COMPARING DMANS

Theorem 5.3.8. (Funahashi - Nakamura reformulated) For

every Autonomuos Continuous Dynamical System D and an

initial condition x0, with its completely observable transition

system T ≡ (Q,Σ,→γ,xo, Q, id), ∀δ > 0 ∃N such that a

CTRNN DCTRNN with N networks with an associated Tran-

sition System with clean observables TCTRNN such that T and

TDTRNN are δ-approximately bisimilar.

The construction of approximate bisimulations between two

transition systems as well as the evaluation of their preci-

sion can be performed using class of functions called bisim-

ulation functions, which are positive functions defined on Q1×
Q2, bounding the distance between the observations associated

with a couple (q1, q2) and non-increasing under the (nondeter-

ministic) dynamics of the systems.

Definition 5.3.9. A bisimulation function VB is a continuous

function

VB : Q1 ×Q2 → R+

with

1. VB(q1, q2) ≥ d(h1(q1), h2(q2))

2. VB(q1, q2) ≥ max
q1

t→q′1
min

q2
t→q′2

VB(q′1, q
′
2)

3. VB(q1, q2) ≥ max
q2

t→q′2
min

q1
t→q′1

VB(q′1, q
′
2)

Theorem 5.3.10. (Girard and Pappas, 2007) If VB is a bisim-

ulation function, then ∀δ ≥ 0 the set

Bδ = {(q1, q2) ∈ Q1 ×Q2, VB(q1, q2) ≤ δ}

is a δ-approximate bisimulation between T1 and T2.

86

5.3. SIMILARITY MEASURES

Note 5.3.11. The zero set of a bisimulation function is an exact

bisimulation between T1 and T2

Corollary 5.3.12. If VB is a bisimulation function between T1

and T2, if

δ = max{max
q1∈Q0

1

min
q2∈Q0

2

VB(q1, q2), max
q2∈Q0

2

min
q1∈Q0

1

VB(q1, q2)} (5.8)

then T1 and T2 are approximately bisimilar with precision δ

This is an important result which encompass the possibility

of comparing family of solution of Dynamical systems, and so

entirely Dynamical systems parts. To accomplish this task it

is necessary to need methods to sistematically compute bisim-

ulation functions for classes of transition systems.

Consider two non-linear dynamical systems Di with i ∈
{1, 2}

Di =

ẏi = f i(yi, Ii)

ẋi = hi(yi)

where y ∈ Rni, yi(0) ∈ Yi compact subset of Rni, Ii ∈ U i

compact set of Rmi. xi ∈ Rp assuming that D1 and D2 have

the same observation space Rp1 = Rp2 = Rp equipped with the

euclidean distance.

From these dynamical systems we define two transition sys-

tems Ti = (Qi,Σi, γi, Q
0
i , Oi,h

i) with

• Qi = Rni

• Σi = R+

• the transition γi(y
i, t) = y′i stands iff ∀s ∈ [0, t], yi(0) =

yi, and yi(t) = y′i such that ẏi(s) = f i(yi(s), I(s))

87

CHAPTER 5. A THEORY FOR COMPARING DMANS

• Q0
i = Y i

• the set of Observations Oi = Rp

• the observation map hi

Denoting

• y =

[
y1

y2

]

• f(y, I1, I2) =

[
f1(y1, I1)

f2(y2, I2)

]
• h(x) = h1(x1)− h2(x2)

we can express the following important Theorem (Girard and

Pappas, 2005):

Theorem 5.3.13. Let p : Rn1 × Rn2 → R+ be a differen-

tiable function with ∇p its gradient. If for all y ∈ Rn1+n2 p(x)

satisfies

p(x) ≥ h(x)Th(x) (5.9)

max
I1∈U1

min
I2∈U2

∇p(x)T f(y, I1, I2) ≤ 0 (5.10)

max
I2∈U2

min
I1∈U1

∇p(x)T f(y, I1, I2) ≤ 0 (5.11)

then VB =
√
p(x) is a bisimulation function.

If we restrict to the class of autonomous dynamical systems

with fixed inputs, so that f(y, I1, I2) = f(y), it happens that

Conditions 5.10 and 5.11 collapse to one.

88

5.3. SIMILARITY MEASURES

Finding a good candidate function with the condition of be-

ing greater than zero is a difficult task. However, the imposing

of the sum of squares condition makes the problem simpler1,

even though, of course, restricting at the same time the pos-

sible solutions. In fact the a sum of squares condition implies

the positive condition, but the converse is not true.

A multivariate polynomial p(x) is a sum of squares if

p(x) =
i=S∑
i=1

q2
i (x)

where q1(x), . . . , qM(x) are polynomials.

The following theorem gives an even simpler formulation of

Theorem 5.3.13 if we assume that the vector fields f1(x) and

f2(x) are expressed by polynomials. So the task becomes man-

ageable and can be computed in semidefinite programming2.

Theorem 5.3.14. (Girard and Pappas, 2005) It is possible to

search a bisimulation of the form

VB(x) = p(x)

assuming the hypotheses of autonomous vector fields f1 and

f2, and that the observation maps h1 and h2 are vectors of

polynomials, the Proposition 5.3.13 reduces to:

p(x)− h(x)Th(x) is a sum of squares (5.12)

−∇p(x)T f(x) is a sum of squares (5.13)

1It has been shown (see Parrilo, 2003) that the condition “p(x) is a sum of squares” is
computationally more tractable than p(x) ≥ 0.

2In particular to accomplish the algorithm subsumes by Theorem 5.3.14 SOSTOOLS Mat-
lab toolbox (Prajna et al., 2002) will be deployed.

89

CHAPTER 5. A THEORY FOR COMPARING DMANS

The theorem reveals the Bisimulation Function algorithm

used to find a bisimulation functions: given an expression of

the polynomial fixing the terms ai(x)

p(x) = c1a1(x) + c2a2(x) + · · ·+ cmam(x)

If we find coefficients ci satisfying Theorem 5.3.14, we are able

to write a bisimulation function

VB(x) =
√
p(x)

5.4 Application of the method

In this section we show how to apply these techniques on a

toy example before they will systematically be applied in the

experiments of Chapter 6. We consider the two dynamical

systems

D1 =


ẏ1 = k · z − y1

ẋ = −x
z1 = y1

and

D2 =

{
ẏ2 = −y2

z2 = y2

The two systems are easily analyzed. D2 is an equation with

only one global stable fixed point in 0. Each solution starting

on different initial conditions y0
2 will eventually go to 0. Simi-

larly the other system eventually approaches the global stable

fixed point (0, 0). Fig. 5.5 shows the vector field of D1. The

identity function was chosen as transfer function for the observ-

able variables with the aim of comparing the variables z1 = y1

90

5.4. APPLICATION OF THE METHOD

against z2 = y2.

We want to study this toy example with the techniques we

explained in thr previous section.

First of all notice that h1 and h2 are the identities functions

so that the transition system associated to D1 is a transition

system with clean observables, and to one associated to D2 is

a completely observable transition system. This will always

be the case of Chapter 6 when comparing original network be-

haviour against the DMAN interpreter with the corresponding

programming codes.

Now, as we need to systematically find polynomial bisimula-

tion functions, independently of the system in exam, we have to

choose a general form of multivariate polynomial of the M− th
order considering all the possible combinations of the variables.

Thus rewriting these combinations as {Combmk (q1,q2)}Kmk=1 where3

Km =

(
m+ n1 + n2 − 1

m

)
= (m+n1+n2−1)!

(m)!(n1+n2−1)! the multivariate

polynomial assumes the form

VM(q1,q2) =
M∑
m=0

Km∑
k=1

ckmComb
m
k (q1,q2) (5.14)

Specifically for D1 and D2 it assumes for M = 0 the form

V0(y1, x, y2) =
K1∑
k=1

ck0Comb
0
k(y1, z, y2) = c1

0

3It is easy to see that the number combinations of terms of a polynomial of the same degree
is equal to a solution of the positive integer solutions of the equation

x1 + x2 + · · ·+ xN = m

that is given by the binomial coefficient

(
m+N − 1

m

)

91

CHAPTER 5. A THEORY FOR COMPARING DMANS

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Vector field of D
1

y1

z

Figure 5.5: D1 dynamical system vector field

92

5.4. APPLICATION OF THE METHOD

then for M = 1

V1(y1, x, y2) =
1∑

m=0

Km∑
km=1

ckmComb
1
k(y1, z, y2) = c1

0+c1
1y1+c2

1y2+c3
1x

and M = 2

V2(y1, x, y2) = c1
0+c1

1y1+c2
1y2+c3

1x+c1
2(y1)2+c2

2(y2)2+c3
2x

2+c4
2y1y2+c5

2y1x+c6
2y2x

It is clear that polynomial becomes very complex augment-

ing the number of the variables. For our experiments we always

chose V2 polynomials, which let us find good bounds for our

bisimulation functions. Also in this sample experiments, we

found different polynomials varying the variable k. It is clear

from the equation that the higer value k assumes the more dis-

tant D1 and D2 trajectories are distance. On the other hand

for k = 0 the systems are bisimilar. Coherently we find the

coefficients of V2 which satisfy the conditions of Proposition

5.3.14 (see Table 5.2). The values which assume V2 give us

a theoretical bound for the distance of the trajectories of the

two systems. Moreover the maximum of δ gives us a uniform

bound for all the trajectories of D1 and D2 (see Table 5.1).

This means that if the bound is sufficient for the tasks in con-

sideration, the two systems can be acceptably equivalent. Fig.

5.6 shows a sample comparison of observable trajectories for

D1 and D2 for k = 10, with initial conditions y0
1 = y0

2 = 1

and x0 = 1. As we can see the bound is inside the theoretical

bound in Table 5.1. At the same time we executed pointwise

measures of the euclidean distances between trajectories of D1

and D2. This measure, indicated with δt, expresses at the time

93

CHAPTER 5. A THEORY FOR COMPARING DMANS

k δmax

10 7.4822
9 6.8611
8 6.3338
7 5.5777
6 4.8671
5 4.1851
4 3.6782
3 2.8938
2 2.5492
1 2.0142

Table 5.1: Values of the maximum δ relative to the V2 bisimu-
lation multivariate polynomial founds, computed for y1, y2, x ∈
[−1, 1] imposing initial condition y0

1 = y0
2 for variable which we

want to compare. Coherently as we expected δmax decreases
with the values of k.

t how far the points of the observable spaces of D1 and D2 are.

In Fig. 5.7 δt as a function of the time is depicted. It is pos-

sible to notice how for the system D1 and D2, after an initial

increase in distance due the initial perturbation of k, it tends to

decrease going to zero when approaching the stable fixed point.

In general this is the same behaviour we found in measures of

the DMANs interpreting behaviour as it is possible to see in

the next Chapter. Thus, in most cases, even in the presence of

higher δmax, the decreasing of the measure δt for t approach-

ing to infinity, let the system play still good performance in

attractor computation. In the next Chapter combination of

measures δmax and δt are extensively used in the experiments

bringing information on the interpreting capabilities of actual

DMANs implementations.

94

5.4. APPLICATION OF THE METHOD

0 1 2 3 4 5 6
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

t

y

D
1
 vs D

2
 systems, y

1
0=y

2
0=1, x0=1, k=10

y

1

y
2

Figure 5.6: Comparing the trajectories of D1and D2 on the
observables y1 and y2. The parameter k = 10 and the initial
conditions are y0

1 = y0
2 = 1 and x0 = 1.

95

CHAPTER 5. A THEORY FOR COMPARING DMANS

0 1 2 3 4 5 6
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

t

R
oo

t M
ea

n
S

qu
ar

e
E

rr
or

D
1
 vs D

2
 systems observables error

Figure 5.7: δt error between the observables of D1and D2 in the
case of parameter k = 10 and the initial conditions are y0

1 =
y0

2 = 1 and x0 = 1. When t approaches infinity δt approaches
zero showing how the observables of D1 and D2 computes the
same function in terms of attractor computation.

96

5.4. APPLICATION OF THE METHOD

k c10 c11 c21 c31 c12 c22 c32 c42 c52 c62

10 0.14413 · 10−4 −0.57622 · 10−5 0.35332 · 10−5 −0.26582 · 10−4 1 8.7456 32.746 −2 0.67654 · 10−5 −15.491

9 0.12563 · 10−4 −0.55813 · 10−5 0.3802 · 10−5 −0.23336 · 10−4 1 7.7061 26.956 −2 0.66117 · 10−5 −13.412

8 0.11959 · 10−4 −0.59776 · 10−5 0.53081 · 10−5 −0.23241 · 10−4 1 7.0293 22.029 −2 0.71998 · 10−5 −12.059

7 0.94014 · 10−5 −0.53715 · 10−5 0.38464 · 10−5 −0.17275 · 10−4 1 5.7153 16.965 −2 0.55346 · 10−5 −9.4307

6 0.74218 · 10−5 −0.49477 · 10−5 0.37436 · 10−5 −0.13639 · 10−4 1 4.6723 12.672 −2 0.4822 · 10−5 −7.3446

5 0.57541 · 10−5 −0.46037 · 10−5 0.36935 · 10−5 −0.10599 · 10−4 1 3.8162 9.0662 −2 0.43041 · 10−5 −5.6324

4 0.46506 · 10−5 −0.46512 · 10−5 0.40666 · 10−5 −0.87178 · 10−5 1 3.3824 6.3824 −2 0.40637 · 10−5 −4.7647

3 0.30405 · 10−5 −0.40549 · 10−5 0.38205 · 10−5 −0.58479 · 10−5 1 2.531 3.781 −2 0.36616 · 10−5 −3.062

2 0.19501 · 10−5 −0.39019 · 10−5 0.39824 · 10−5 −0.39824 · 10−5 1 2.3746 2.3746 −2 0.3556 · 10−5 −2.7491

1 0.15855 · 10−5 −0.63453 · 10−5 0.63313 · 10−5 −0.31586 · 10−5 1 1.9518 1.2018 −2 0.59228 · 10−5 −1.9036

Table 5.2: Coefficients for V2 bisimulation multivariate poly-
nomial found when varying the perturbation parameter k ∈
{1, . . . , 10}.

97

CHAPTER 5. A THEORY FOR COMPARING DMANS

98

6
Experiments and Results: validation of the

model

In this Chapter we will show significant experimental evidences

exhibiting:

• the possibility of actually obtaining CTRNNs, mul∗, which

approximate the ideal structure mul we introduced in Sec-

tion 4.1;

• the plausibility that a single fixed-weight DMAN Gmul∗

can be programmed with auxiliary inputs ph in order to

reproduce the dynamical behaviours of networks G with

weight values given by (4.1).

• the robustness of the DMAN obtained under variations

of the time scales on which the mul∗ network acts in or-

der to evaluate how such changes affect the interpreting

capability of our architecture.

The experiments were performed on small CTRNNs which were

numerically integrated by means of the forward Euler method

exposed in Section 2.3. The integration step size used is ∆T =

0.2 and the time constants of the neurons assume values τi ≥ 1.

99

CHAPTER 6. EXPERIMENTS AND RESULTS: VALIDATION OF THE
MODEL

6.1 Ideal mul approximations

In Chapter 4 we explain the ideal behaviour of mul (see Fig.

6.1), for which a w−substitution would preserve intact the

interpreting capabilities of DMANs. In this section we present

the approximation of the ideal mul that we are going to deploy

in the experiments.

The first approximation is for the dynamical model of mul

shown in 6.1.1, which provides a time-delayed version of mul

behaviour (the stability surface of the dynamical mul? is the

same as the ideal mul). The approximation is needed for the

application of Theorem 5.3.14 which implies a polynomial ver-

sion of a CTRNN system.

The second approximation is about finding an actual CTRNN

mul?, that is a CTRNN which shows the behaviour of the ideal

mul. This is achieved by a machine learning algorithm which

gives an approximation version of the ideal mul both in time

delay and in the values of the fixed point stability surface.

6.1.1 A dynamical mul? equation

The first dynamical approximation is provided searching for

equations the surface stability of which should be exactly the

multiplication of its input, and its approach to fixed point

should be a non zero time delay. Such a behaviour is given

by the following equation:

τmul ·
dxmul
dt

= −xmul + a · b (6.1)

In fact it is possible to find the solutions of the equation sepa-

rating the variables

100

6.1. IDEAL MUL APPROXIMATIONS

a a **bb

aa bb

mul

Figure 6.1: Ideal mul behaviour

101

CHAPTER 6. EXPERIMENTS AND RESULTS: VALIDATION OF THE
MODEL

dxmul
xmul − a · b

= − 1

τmul
· dt

and then writing

ln

(
xmul − a · b
x0
mul − a · b

)
= − 1

τmul
· t

Thus it is possible to find

xmul − a · b
x0
mul − a · b

= e
− 1
τmul

·t

obtaining

xmul = a · b+ (x0
mul − a · b) · e

− 1
τmul

·t

and the finally solutions of the flow of 6.1

γ(x0
mul, t) = a · b+ (x0

mul − a · b) · e
− 1
τmul

·t

The Jacobian is reduced to −1, so from Theorem 2.6.23 only

one asymptotically stable fixed point exist. From the condition

of Theorem 2.6.22 we obtain.

x̄mul = a · b

Thus the Equation 6.1 simulates for every initial condition

the stability surface of ideal mul, with an approach to its sta-

bility surface regulated by the time constant τmul. For exam-

ple the w−substitution for NetOne equation of this dynamical

model 6.1

102

6.1. IDEAL MUL APPROXIMATIONS

τ · dy
dt

= −y + xmul + I

τmul ·
dxmul
dt

= −xmul + w · σ(y)

6.1.2 A polynomial CTRNN approximation

We have explained the possibility of comparing two CTRNN

systems by using the similarity measure inside bisimulation

techniques explained in Chapters 2 and 4.

However the application of Theorem 5.3.14 gives us an ef-

fective procedure only in the presence of polynomial equations

of the system. The presence of the sigmoid prevents us from

applying the similarity algorithm out of the box. So in this sec-

tion we use regularized least square (see Bishop, 2006) in order

to obtain a polynomial approximation for sigmoid function

σ(x) ≈
M∑
m=0

ci · xm = PolM(x)

thus a polynomial version of CTRNN Equation (2.1) is ob-

tained:

τi
dyi
dt

= −yi +
N∑
j=1

wijPolM(yi − θi) + Iei i ∈ {1, . . . , N}

(6.2)

This procedure, given a suitable polynomial order M , lets us

approximate as good as we want the behaviour of the sigmoid

function in a given interval. We prepare input-output pairs of

sigmoid function σ(x) in a fixed interval [xmin, xmax] in order to

103

CHAPTER 6. EXPERIMENTS AND RESULTS: VALIDATION OF THE
MODEL

M 1 2 3 4 5 6 7 8

c0 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

c1 0.0244 0.0244 0.0455 −1.3603e − 21 0.0656 0.0656 0.0848 0.0848

c2 0 −2.9296e − 20 1.6361e − 19 −3.7452e − 05 8.4580e − 19 3.3302e − 19 3.1874e − 18 −4.6122e − 18

c3 0 0 −3.7452e − 05 1.0589e − 18 −1.3787e − 04 −1.3787e − 04 −3.2361e − 04 −3.2361e − 04

c4 0 0 0 0.0455 −1.0334e − 21 5.2234e − 23 −1.5470e − 20 3.4859e − 20

c5 0 0 0 0 9.6712e − 08 9.6712e − 08 5.3551e − 07 5.3551e − 07

c6 0 0 0 0 0 −1.0049e − 25 1.6259e − 23 −8.5790e − 23

c7 0 0 0 0 0 0 −2.9154e − 10 −2.9154e − 10

c8 0 0 0 0 0 0 0 6.7205e − 26

Table 6.1: Coefficient of PolM(x) found with regularized least
squares method approximating a sigmoid σ(x) in the interval
x ∈ [−30, 30].

M 1 2 3 4 5 6 7 8

Ē 0.1845 0.1845 0.1160 0.1160 0.0831 0.0831 0.0630 0.0630
dev 0.0133 0.0133 0.0077 0.0077 0.0046 0.0046 0.0029 0.0029

Table 6.2: Mean error Ē and standard deviation dev for PolM .

apply the regression algorithm. Table 6.1 shows the coefficients

found for a PolM in an interval [−30, 30]. Figure 6.2 shows the

behaviour of this approximation for M = 1, M = 3, M =

8 compared to sigmoid function σ(x). Table 6.2 shows the

mean errors Ē of the different PolM Ē decreasing with the

order of the polynomial. In the application of the bisimilarity

procedure we chose M = 3 and the corresponding Pol3(x).

Of course the two systems can be considered comparable as

far as the potential y of the CTRNN does not take values

outside [xmin, xmax]. However whenever it happens, it is always

possible to regress a new PolM(x) which approximate σ(x) in

a wider range.

104

6.1. IDEAL MUL APPROXIMATIONS

−30 −20 −10 0 10 20 30
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

x

σ(
x)

Sigmoid function

−30 −20 −10 0 10 20 30
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

x

P
ol

1(x
)

Sigmoid Polynomial regression, M=1

−30 −20 −10 0 10 20 30
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

x

P
ol

3(x
)

Sigmoid Polynomial regression, M=3

−30 −20 −10 0 10 20 30
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

x

P
ol

8(x
)

Sigmoid Polynomial regression, M=8

Figure 6.2: Sigmoid Function σ(x) versus the polynomial ap-
proximations Pol1(x), Pol3(x) and Pol8(x).

105

CHAPTER 6. EXPERIMENTS AND RESULTS: VALIDATION OF THE
MODEL

6.1.3 The learning algorithm: Differential Evolution

The most common techniques for training both feed-forward

and recurrent neural networks are variations of the gradient

descent techniques. Various variations of the backpropagation

have been investigated in approximating the time evolution of a

recurrent neural network as a sequence of static networks using

gradient methods realizing a plethora of approaches (see e.g.

Lapedes and Farber, 1986; Pineda, 1987; Almeida, 1990; Pearl-

mutter, 1995; Steil, 2004). However one of the known prob-

lems of backpropagation is the possibility of entrapping into

local minima during the process of optimization. On the other

hand evolutionary techniques are biologically inspired popula-

tion based machine learning techniques known to be an efficient

and effective means of learning, as much as they provide an in-

trinsically randomness in the search of the solutions. Thus they

allow a wider exploration of the space of the solution values.

Consequently in this thesis we decided to apply, in search-

ing for CTRNN mul∗, an evolutionary technique which can be

viewed as an evolutionary version of gradient descent, called

Differential Evolution (DE) (Price et al., 2005) here briefly de-

scribed, before being applied to CTRNN cases.

DE is a stochastic, population-based evolutionary algorithm.

Fast convergence and ease of use due to few control parame-

ters are distinctive features of this type of algorithm. DE ad-

dresses a generic optimization problem with m real parameters

by starting with a randomly initialized population consisting

of n individuals, each made up of m real values. Subsequently,

the population is updated from a generation to the next one

by means of many different transformation schemes commonly

named as strategies. In all of these strategies DE generates new

106

6.1. IDEAL MUL APPROXIMATIONS

individuals by adding to an individual a number of weighted

difference vectors between couples of population individuals.

The strategy adopted here can be referred to asDE/best/v/bin:

one perturbs the best individual xbest by using v difference

vectors and applies binomial crossover. In greater detail, for

each i-th individual xi, xbest, corresponding to the best one

in the current population, is selected and 2v integer numbers

r1, r2, . . . , r2v in [1, n], differing from one another and different

from i, are randomly generated. Furthermore, another integer

number l in the range [1,m] is randomly chosen. Then, start-

ing from the i-th individual a new trial one x′i is generated, the

generic j-th component of which is given by:

x′i,j = xbest,j +F · [(xr1,j−xr2,j) + · · ·+ (xr2v−1,j−xr2v,j)] (6.3)

provided that either a random real number ρ in [0.0, 1.0] is

lower than a value CR (parameter of the algorithm, in the

same range as ρ) or the position j at issue is exactly l. If

neither condition is verified then a copy process takes place:

x′i,j = xi,j.

F , a real constant factor in [0.0, 1.0], is a parameter of the algo-

rithm which controls the magnitude of the differential variation

F · [(xr1,j − xr2,j) + · · ·+ (xr2v−1,j − xr2v,j)].
This new trial individual x′i is compared with the i-th indi-

vidual in current population and, if it turns out to be fitter, x′i
is substituted in the next population, otherwise the i−th in-

dividual survives and is copied into the new population. This

basic scheme is repeated for a maximum of gmax generations.

In order to clarify how DE/best/v/bin works, we present its

pseudocode. If s is the size of the population Pg at generation g

and the operators ⊕, 	, � respectively denote vector addition

107

CHAPTER 6. EXPERIMENTS AND RESULTS: VALIDATION OF THE
MODEL

Algorithm 6.1 DE/best/v/bin in C-like pseudocode

Initialize and evaluate population P0

for g = 0; g < gmax; g++ do
for i = 0; i < s; i++ do

Select the individual xi
Select as parents xbest and 2v individuals randomly, all
different
{Create an initial candidate:}
x′i = xbest ⊕ F � [

⊕v
k=1(xr2k−1

	 xr2k)]
{Create a final candidate by crossing over the genes of x′i
and xi:}
Randomly select an integer l ∈ [1,m]
for j = 0; j < m; j++ do

Randomly select a real ρ ∈ [0.0, 1.0]
if ρ > CR and j 6= l then
x′i,j = xi,j

end if
end for
Evaluate the candidate x′i
if x′i is fitter then xi then
xi = x′i

end if
end for
{Substitute the old population with the new one}
Pg+1 = Pg

end for

and subtraction and scalar multiplication, then DE algorithm

pseudocode can be written as in Algorithm 6.1.

Cusp Point Learning

The DE technique was introduced for CTRNN parameter learn-

ing in (De Falco et al., 2008; Price et al., 2005). Here we tested

the efficacy of CTRNN training by DE on a sample experi-

ment in which the process finds numerical solutions for the

108

6.1. IDEAL MUL APPROXIMATIONS

cusp point outlined in Section 5.1.2. In what we named cusp

point learning, we show the possibility of finding “exact” solu-

tions, without limitation due to encoding resolution (granular-

ity), finding very sparse solutions, very difficult to reach with

a-priori fixed intervals (boundedness). In both cases, we used a

DE/best/2/bin strategy to train networks. Parameters ruling

DE algorithm (Table 6.3) were assigned experimentally via a

training trial.

Experiment s F CR initial range gmax

Cusp point learning 30 0.5 0.8 (−100, 100) 3000
Sequence generator task 30 0.7 0.8 (−100, 100) 2500

Table 6.3: DE parameter settings

Let us consider a CTRNN made up of a single self-connected

neuron. The equation of the system is given by (5.1) where for

simplicity we set the time constant τ = 1.

Notice that no elementary expression for the solution of (5.1)

exists, but we achieved a complete qualitative description of

its dynamics in 5.1.2 describing its limit sets, including their

stability and their dependence on the parameters, as well as the

bifurcations that can occur as the parameters are varied. For

each θ such system has a cusp point, that is the only bifurcation

point in which the system undergoes a pitchfork bifurcation,

as we explained in Section 5.1.2. All other bifurcation points

are saddle-node bifurcations (cusp curve). The two branches

of the cusp intersect in the cusp point and satisfy:

I = ȳ1 (w, θ)− wσ (ȳ1 (w, θ)− θ)
I = ȳ2 (w, θ)− wσ (ȳ2 (w, θ)− θ)

(6.4)

where ȳ1(w, θ) and ȳ2(w, θ) are fixed point expressions as a

109

CHAPTER 6. EXPERIMENTS AND RESULTS: VALIDATION OF THE
MODEL

function of w and θ that satisfy the two conditions, (5.4) and

(5.5):

To evaluate each candidate (I ′, w′) we let each parametrized

system evolve for a sufficient time T so that we can consider the

approximation y′(T) ≈ ȳ′. Then we choose a fitness function

FCP for the cusp point learning

FCP (y′ (I ′, w′)) = ffixed + ftangent + fcusp

with 3 contributes obtained considering the case θ = 0:

• ffixed = |−ȳ′ + w′σ (ȳ′) + I ′| from condition (5.4);

• ftangent = |w′σ (ȳ′) (1− σ (ȳ′))− 1| from condition (5.5);

• fcusp = |ȳ1(w′, 0)− w′σ(ȳ1(w′, 0))− ȳ2(w′, 0) + w′σ(ȳ2(w′, 0))|
from the intersection of the curves in (6.4).

Average and standard deviation values found for (I, w) in 10

runs using the DE algorithm are reported in Table 6.4. These

values are absolutely close to the coordinates (Ĩ , w̃) = (−2, 4)

of the cusp point which are formally inferred from the condi-

tion of the intersection and putting θ = 0. Furthermore, the

best and the worst values found for the parameters in runs,

respectively,

(Ibest, wbest) = (−2.000016, 4.000061)

and

(Iworst, wworst) = (−2.00056, 4.0011)

indicate that parameter values computed in every run are very

close to each other and this also proves the general efficacy of

the approach. The plots in Figure (6.3) show fitness trend as a

110

6.1. IDEAL MUL APPROXIMATIONS

Parameter Average Standard Deviation

I −2.00015 1.6 · 10−4

w 4.0003 3.1 · 10−4

Table 6.4: Average and standard deviation values of parame-
ters I and w computed in 10 runs for the cusp point learning
experiment.

function of the generation number for average, best and worst

case. It is worth underlining the constant and smooth decrease

which suggests a gradual and continuous learning improvement

as the generation number grows.

Figure 6.3: Cusp point learning: fitness plots of runs corre-
sponding to the average, worst and best solutions as a function
of the generation number.

6.1.4 CTRNN mul∗ network

In order to obtain mul∗ we used the presented differential evo-

lution learning algorithm. This learning algorithm was made

to run on populations of 30 small CTRNNs with τi = 1. We

111

CHAPTER 6. EXPERIMENTS AND RESULTS: VALIDATION OF THE
MODEL

choose as fitness function the distance

d =
1

2K

K∑
i=1

(
σ(yi(Teval)− ai · bi

)2

where ai, bi ∈ (0, 1) areK random input values and σ
(
yi(Teval)

)
is the corresponding network output value calculated at the

evaluation time Teval. The networks we considered are ran-

domly initialized, fed with two data inputs ai, bi ∈ (0, 1), and

their output is read on the output neuron after a number of in-

tegration steps equal to s = 300. This means that we evaluate

networks after a time Teval = s ·∆T . In such a way we reward

networks able to reach the desired stable fixed point ai ·bi inde-

pendently of the initial condition of the internal neurons. We

made different evolution runs on different sized networks. The

procedure is capable of obtaining suitable CTRNN mul∗. The

smallest network with a good approximate behaviour (mea-

sured by the fitness value) that was found is composed of three

neurons. Table 6.5 shows the weights of this CTRNN.

w11 = −2.719 w21 = −22.93 · 104 w31 = 1.119
w12 = −4.132 w22 = 11.49 · 104 w32 = −1.820
w13 = −11.713 w23 = 28.68 · 104 w33 = −1.994
w14 = 8.186 w24 = −6.711 · 104 w34 = 2.988
w15 = 1.796 w25 = 9.887 · 104 w35 = −3.691

Table 6.5: mul∗ network weights. The network is composed of
three neurons numbered with i ∈ {1, 2, 3} fully interconnected
with weights wij with j ∈ {1, 2, 3}. The output neuron is
1. Each neuron i receives two inputs x4 = a and x5 = b
respectively weighted by wi4 and wi5.

In Fig. 6.4 the stability surface closeness of the ideal mul to

112

6.2. SINGLE NEURON DMAN

Figure 6.4: Stability surfaces of the output neuron of mul and
mul∗ as a function of a, b ∈ (0, 1). Stable equilibrium points of
mul are shown as squares, stable equilibrium points of mul∗are
shown as stars.

the experimental mul∗ is shown.

6.2 Single neuron DMAN

As a first case of programmable DMAN we begin our study

considering a single neuron with a self-connection with weight

w ∈ (min = 0,max = 10). Let us call this small network

NetOne; w−substituting NetOne, of course using the actual

mul∗, we construct the DMAN NetOnemul∗ which is fed with

just one programming input pw = (w −min)/(max−min) ∈
(0, 1). In Fig. 6.5 both NetOne and NetOnemul∗ are shown.

NetOne equation is

113

CHAPTER 6. EXPERIMENTS AND RESULTS: VALIDATION OF THE
MODEL

w-substitutiony
w

I

 y 

y

pI

y

mul*
min

max-min

Figure 6.5: The w−substitution applied to NetOne (on the
left) produces NetOnemul∗ (on the right).

τ
dy

dt
= −y + wσ(y) + I (6.5)

where the threshold θ is set to 0. We performed a study of the

qualitative behaviour of such a small network in Section 5.1.2:

the variation of the two parameters w and I modifies the phase

portrait of the network. Special values of the parameters exist

for which the system undergoes bifurcations. In particular,

a qualitative change in behaviour occurs as w passes through

value 4. While (6.5) exhibits a global stable equilibrium point

when w < 4 (see Fig. 6.6 (a)), it exhibits three equilibria

for a range of I values when w > 4 (see Fig. 6.6 (b)). In

the latter case, for I values outside this range, (6.5) exhibits

a global stable equilibrium point, while for I belonging to this

interval the outer two equilibria are stable and the inner one is

unstable.

Here the interesting point is that the fixed-weight network

114

6.3. PROGRAMMABLE NAND - OR DMAN

NetOnemul∗ can be programmed in order to obtain the two

qualitatively different behaviours by suitably choosing pw. Fig-

ures 6.7, 6.8 and 6.9 show the equilibria of NetOne as a func-

tion of I at three different values of w, w1 = 3 (Figure 6.7 (a)),

w2 = 5 (Figure 6.8 (a)) and w3 = 8 (Figure 6.9 (a)), compared

with the numerically computed equilibria of the fixed-weight

NetOnemul∗ (restricted to the neuron in NetOne) fed with the

auxiliary input pw1 = 0.3, pw2 = 0.5 and pw2 = 0.8 (Figure 6.7,

6.8 and 6.9 (b)), respectively .

Thus, the network NetOnemul∗ exhibits a global stable equi-

librium point when fed with programming input pw1, while it

exhibits three equilibria (one is unstable and two are stable)

when the programming inputs are pw2 or pw3. As a conse-

quence the NetOnemul∗ fed with the programming inputs pw1,

pw2and pw3 behaves as virtual NetOne networks with weights

w1, w2and w3, respectively .

6.3 Programmable nand - or DMAN

In the previous experiment we showed how the qualitative

shape of behaviours can be programmed by means of mul∗ on

a single neuron. Here we show how a more “quantitative” func-

tionality can be programmed, building a fixed-weight network

Boolmul∗ which can be programmed to behave, in turn, as the

standard binary Boolean functions nand : {0, 1} × {0, 1} −→
{0, 1} and or : {0, 1} × {0, 1} −→ {0, 1}, where we interpret

Boolean values as reals.

The first step is to build two networks, NetAND andNetOR,

to implement the Boolean functions respectively nand and or.

This means that if we call yNetNAND and yNetOR the potential

115

CHAPTER 6. EXPERIMENTS AND RESULTS: VALIDATION OF THE
MODEL

Data Input I

Data Input I

NetOne stability surface for w=5

NetOne stability surface for w=5

(b)

(a) y

y

Figure 6.6: In panel (a) of the figure the numerically computed
stability surface of NetOne for w = 3 as a function of I is
shown. In this case we have a global stable equilibrium point.
The stability surface for w = 5 as a function of I is shown
in the panel (b). In this case we have two stable equilibrium
points inside a range of I values, while for I values outside this
range there is a global stable equilibrium point116

6.3. PROGRAMMABLE NAND - OR DMAN

Data Input I

Data Input I

Fast NetOne
mul*

 stability surface for p
w
= 0.3

NetOne stability surface for w = 3

(b)

(a) y

y

Data Input I

Slow NetOne
mul*

 stability surface for p
w
= 0.3

(c) y

Figure 6.7: The stability surface of NetOne for w = 3 as a
function of I is shown in panel (a). In the lower part of the
figure stability surfaces of NetOnemul∗ for the programming
input pw = 0.3 as a function of I are shown. In panel (b), the
time constants τi for the neurons of mul∗ have been set one
order of magnitude less than that of NetOne. In panel (c), the
time constants τi are two orders of magnitude less than that of
NetOne. In both cases, we obtain a single equilibrium point.
Notice that the shape of the stability surfaces are very similar
to that of NetOne, indicating that already the first choice of
time scale is satisfactory.

117

CHAPTER 6. EXPERIMENTS AND RESULTS: VALIDATION OF THE
MODEL

Data Input I

Data Input I

Fast NetOne
mul*

 stability surface for p
w
= 0.5

NetOne stability surface for w = 5

(b)

(a) y

y

Data Input I

Slow NetOne
mul*

 stability surface for p
w
= 0.5

(c) y

Figure 6.8: The stability surface of NetOne for w = 5 as a
function of I is shown in panel (a). In the lower part of the
figure stability surfaces of NetOnemul∗ for the programming
input pw = 0.5 as a function of I are shown. In panel (b),
the time constants τi for neurons of mul∗ have been set one
order of magnitude less than that of NetOne. In panel (c), the
time constants τi are two orders of magnitude less than that
of NetOne. In both cases, we obtain two stable equilibrium
points inside a range of I values, while for I values outside this
range there is a global stable equilibrium point. Notice that
the shape of the stability surfaces is very similar to that of
NetOne, indicating that already the first choice of time scale
is satisfactory.

118

6.3. PROGRAMMABLE NAND - OR DMAN

Data Input I

Data Input I

Fast NetOne
mul*

 stability surface for p
w
= 0.8

NetOne stability surface for w = 8

(b)

(a) y

y

Data Input I

Slow NetOne
mul*

 stability surface for p
w
= 0.8

(c) y

Figure 6.9: The stability surface of NetOne for w = 8 as a
function of I is shown in panel (a). In the lower part of the
figure stability surfaces of NetOnemul∗ for the programming
input pw = 0.8 as a function of I are shown. In panel (b),
the time constants τi for neurons of mul∗ have been set one
order of magnitude less than that of NetOne. In panel (c), the
time constants τi are two orders of magnitude less than that
of NetOne. In both cases, we obtain two stable equilibrium
points inside a range of I values, while for I values outside this
range there is a global stable equilibrium point. Notice that
the shape of the stability surfaces is very similar to that of
NetOne, indicating that already the first choice of time scale
is satisfactory.

119

CHAPTER 6. EXPERIMENTS AND RESULTS: VALIDATION OF THE
MODEL

of the output neurons of NetAND and NetOR, respectively,

and we refer to the inputs of the networks as I1 and I2, then

their behaviours should be as follows:∣∣σ(ȳNetNAND(I1, I2))− nand(I1, I2)
∣∣ < δ∣∣σ(ȳNetOR(I1, I2))− or(I1, I2)

∣∣ < δ
(6.6)

within a threshold δ ≤ 0.5.

Our construction directly follows the theory exposed in Chap-

ter 2.

6.3.1 NetNOT cabling

Firstly we build an auxiliary network of only one neuron, NetNOT ,

which simply computes a Boolean function not. Given the

equation for one neuron:

ẏ = −y + wσ (y) + I · k

the fixed points ȳ in this equation are given by the condition:

−y + wσ (y) + I · k = 0

Building the NOT functions means to find parameters w̃ and

k̃ so that for two inputs I1and I2 there exist ȳ1 and ȳ2

I1 · k̃ − ȳ1 + w̃σ
(
ȳ1
)

= 0 =⇒ σ
(
ȳ1
)
≈ 1

I2 · k̃ − ȳ2 + w̃σ
(
ȳ2
)

= 0 =⇒ σ
(
ȳ2
)
≈ 0

As we want to create a Boolean function it should happen that

I1 = 0 and I2 = 1. Substituting we obtain

120

6.3. PROGRAMMABLE NAND - OR DMAN

ȳ1 = w̃σ (ȳ1)

ȳ2 − k̃ = w̃σ (ȳ2)

It is worth noting that the output of the σ function could not

be exactly 1 or 0 as we expect by a Boolean function; however

we can find two fixed points next to them with the desired de-

gree of approximation. The condition σ (ȳ1) ≈ 1 means that

we want to find and ε1 such that |σ(ȳ1)− 1| ≤ ε1. For exam-

ple if ε1 = 10−3 it is sufficient to have a fixed point ȳ1 ≥ 7

=⇒ σ(ȳ1) ≥ 0.9990889, hence |1− σ(ȳ1)| ≤ 0.0009111 < ε1.

Moreover as ȳ1 ≈ w̃ consequently the parameter to choose

should be w̃ > 7. From the condition σ (ȳ2) ≈ 0 we should

find an ε2 such that |σ(ȳ2)− 0| ≤ ε2, for example ȳ2 ≤ −7 =⇒
σ (ȳ2) ≤ 0.0009111, hence |σ(ȳ2)− 0| ≤ 0.0009111 < ε2. But

the second condition implies ȳ2 ≈ k̃ so the parameter to choose

is k̃ < −7. For symmetry (ε1 = ε2) it is possible to set

w̃ = −k̃ = b obtaining the NetNOT cabling in Fig. 6.10.

6.3.2 NetNAND cabling

We want to find a network of two neurons, NetNAND capable

of showing the properties of the Boolean function nand when

external input I1 and I2 are given to it. We will show how it

can be done with two neurons. Firstly we take a NetNOT as

we explained in subsection 6.3.1:

ẏ2 = −y2 + c2σ(y2)− c2I2

121

CHAPTER 6. EXPERIMENTS AND RESULTS: VALIDATION OF THE
MODEL

2

I

b

−b

Figure 6.10: NetNOT cabling. The choice of b allows the
approximation to be as good as necessary.

122

6.3. PROGRAMMABLE NAND - OR DMAN

Which causes the output of this neuron to invert the value of

the input I2. Thus supposing we choose c2 good enough as we

can approximate σ(ȳ2) ≈ 0 when I2 = 1 and σ(ȳ2) ≈ 1 when

I2 = 0.

Now we can add an output neuron from which the resulting

NetNAND fixed point computation will be read. This neuron

takes a connection from the NetNOT neuron above and gives

the result as a stable fixed point:

ẏ1 = −y1 + w12σ(y2) + k1I1 + I3

In fact the fixed points of this equation are given by

ȳ1 = w12σ(ȳ2) + k1I1 + I3

and we can study the four cases

1. I1 = 0, I2 = 0 implies ȳ00
1 ≈ w12 + I3

2. I1 = 0, I2 = 1 implies ȳ01
1 ≈ I3

3. I1 = 1, I2 = 0 implies ȳ10
1 ≈ w12 + k1 + I3

4. I1 = 1, I2 = 1 implies ȳ11
1 ≈ k1 + I3

We impose I3 as a fictitious static input which allows to have

a positive value of ȳ01
1 good enough in order to have σ(ȳ01

1) ≈
1. Suppose we choose I3 = c1. Then to satisfy the fourth

condition we can choose k1 = −2c1 in order to get ȳ11
1 ≈ −c1

and a good approximation of σ(ȳ11
1) ≈ 0. Then to satisfy

the third condition we choose to get w12 = 2c1 in order to

have ȳ10
1 ≈ c1 so as to have σ(ȳ10) ≈ 1. The last condition

σ(ȳ00) ≈ 1 result satisfied because we have ȳ00
1 = 3c1.

In summary the equations of NetNAND are given by (see

Fig. 6.12):

123

CHAPTER 6. EXPERIMENTS AND RESULTS: VALIDATION OF THE
MODEL

ẏ1 = −y1 + 2c1 · σ(y2)− 2c1I1 + c1

ẏ2 = −y2 + c2 · σ(y2)− c2 · I

As good as we choose the parameters c1 and c2, a better

approximation of the output 0 and 1 of the Boolean function

nand we have.

6.3.3 NetOR cabling

The same reasoning spent for NetNAND can be applied in

order to construct a network of two neurons which approxi-

mately compute as a fixed point computation a Boolean or

function. This is again achieved by letting one neuron realiz-

ing the NetNOT equation

ẏ2 = −y2 + c2σ(y2)− c2I2

and then identically by cabling the second neuron in same man-

ner as the NetNAND case. In this case we achieved the right

parameter values by satisfying the four conditions given in the

previous subsection in order to have an or function.

Again we set I3 as fictitious static input which allows to have

a positive value of ȳ01
1 good enough in order to have σ(ȳ01

1) ≈ 1.

If we choose I3 = c1, then to satisfy the first condition we can

choose w12 = −2c1 in order to get ȳ00
1 ≈ −c1, resulting in a

good approximation of σ(ȳ11
1) ≈ 0. Then to satisfy the third

condition we choose to get k1 = 2c1 in order to have ȳ10
1 ≈ c1

so that σ(ȳ10
1) = 1. The last condition results satisfied with

ȳ11
1 = 3c1.

124

6.3. PROGRAMMABLE NAND - OR DMAN

In summary the equations of NetOR are given by (see Fig.

6.11):

ẏ1 = −y1 − 2c1 · σ(y2) + 2c1I1 + c1

ẏ2 = −y2 + c2 · σ(y2)− c2 · I

As good as we choose the parameters c1 and c2, a better

approximation of the output 0 and 1 of the Boolean function

nand we have.

6.3.4 Boolmul?DMAN construction

We constructed NetNAND and NetOR such that suitable

choices of the parameters c1 and c2 realize good approximation

of the Boolean functions nand and or, respectively. This is

achieved satisfying the Equation (6.6); in particular for our

experiments we set 2c1 = c2 = 5, allowing δ = 0.1.

We built Boolmul∗ by applying the w-substitution on the

only two connections which differ in the two networks as shown

in Fig. 6.13. Then as shown in Table 6.6 when we set the pro-

gramming inputs as pNetNAND = [pNetNAND1 = 0, pNetNAND2 =

1] and pNetOR = [pNetOR1 = 1, pNetOR2 = 0], which according

to (6.6), with min = −5 and max = −10, codify the required

weights −2c1 and 2c1 respectively, Boolmul∗ is able to repro-

duce the behaviour of the networks NetAND and NetOR.

Notice that Boolmul∗ simulates NetNAND and NetOR within

δ = 0.3.

125

CHAPTER 6. EXPERIMENTS AND RESULTS: VALIDATION OF THE
MODEL

2
1

I2

c2
−c2

I1

2c1

−2c1

c1

Figure 6.11: The cabling of NetOR. Suitable choices of param-
eters c1 and c2 allow steady states closer to the desired stable
equilibrium points 0 and 1.

2
1

I2

c2
−c2

I1

−2c1

2c1

c1

Figure 6.12: The cabling of NetNAND. Suitable choices of
parameters c1 and c2 allow steady states closer to the desired
stable equilibrium points 0 and 1.

126

6.3. PROGRAMMABLE NAND - OR DMAN

2
1

I2

c2

−c2

I1

c1

mul*

mul*

p1

p2

max-min

max-min

min

min

Figure 6.13: The cabling of Boolmul∗ network, obtained by the
pulling out of two connections with respect to NetNAND and
NetOR networks, and adding two mul∗ networks fed with a
program p = [p1, p2].

I1 I2 Boolmul∗with pNetNAND NetNAND Boolmul∗ with pNetOR NetOR

1 1 σ(ȳ) '0.26 σ(ȳ) '0.08 σ(ȳ) ' 1.00 σ(ȳ) ' 1.00

1 0 σ(ȳ) ' 0.93 σ(ȳ) ' 0.92 σ(ȳ) ' 0.93 σ(ȳ) ' 0.93

0 1 σ(ȳ) ' 0.96 σ(ȳ) ' 0.93 σ(ȳ) ' 0.99 σ(ȳ) ' 0.92

0 0 σ(ȳ) ' 1.00 σ(ȳ) ' 1.00 σ(ȳ) ' 0.27 σ(ȳ) ' 0.08

Table 6.6: Output of NetNAND and NetOR networks versus
the output of the fixed-weight Boolmul∗ fed with the appropri-
ate programming input pNetNAND and pNetOR. Even in the
presence of slightly different numerical values, the meaning of
the fixed point computation is preserved.

127

CHAPTER 6. EXPERIMENTS AND RESULTS: VALIDATION OF THE
MODEL

6.4 Programmer Network

In this experiment we see a sample deployment of the DMA.

At this purpose we build a network Programmer which is

capable of sending the right programming inputs to Boolmul?

DMAN constructed in 6.3 in order to let it be in turn a nand

and a or Boolean function because it interprets the behaviour

of NetNAND and NetOR networks. We need Programmer

to send the right programs pNetNAND and pNetOR as output

of its attractor computation. In other words we need that

Programmer is able to approximate the function f(I) assuming

the following values:

I f(I)

0 f(0) = (1, 0)

1 f(1) = (0, 1)

The output of the function will be realized by the fixed

points of Programmer. To do this our programmer network

consists of two neurons, one neuron consisting approximating

a not Boolean function, the other one realizing an identity func-

tion on the values 1 and 0.

The first one is realized by the NetNOT network with a

suitable parameter c2.

ẏ2 = −y2 + b · σ(ȳ2)− b · I

The other (identity) neuron is cabled by the equation:

ẏ1 = −y1 + w11σ(y1) + I + k1

k1 is a fixed input on it, and w11 is the weight of the auto-

connection. The fixed point of this equation is given by

128

6.5. ROBUSTNESS AND TIME SCALE PROBLEM

ȳ1 = w11σ(ȳ1) + I + k1

and we can study the cases

1. I = 0 and σ(ȳ0
1) = 0 implies ȳ0

1 ≈ k1

2. I = 1 and σ(ȳ1
1) = 1 implies ȳ1

1 ≈ w11 + k1 + 1

Choosing k1 = −a, (for example a = 7 implies σ(−7) ≈
0.000911) and consequently for symmetry we can impose an

identically (in module) fixed point by setting

a = w11 + k1 + 1 = w11 − a+ 1

so that we obtain w11 = 2a− 1.

In summary the equations of programming will be

ẏ1 = −y1 + (2a− 1) · σ(y1) + I − a

ẏ2 = −y2 + b · σ(y2)− b · I

Suitably choosing the parameters a and b, we can obtain a

Programmer network (see Fig. (6.14)) which implements, as

good as we want, the behaviour of the function f(I).

6.5 Robustness and time scale problem

CTRNN programmability has been illustrated by assuming a

negligible time delay in the stabilization of the multiplication

subnetworks activity with respect to the time scale of the orig-

inal CTRNN network (4.1).

It should be noted that applying the w−substitution on a

129

CHAPTER 6. EXPERIMENTS AND RESULTS: VALIDATION OF THE
MODEL

ID

Programmer I2

Programmable
DMAN

IP

Figure 6.14: DMA Topology. A Programmer network is able
to send the right program values to a Programmable one (e.g.
Boolmul?) showing qualitative different behaviours.

130

6.6. NETONE ON DIFFERENT TIME SCALES

network G we obtain a DMAN Gmul∗ composed of two compo-

nents: one is the set of the multiplicative networks, the other

consists of G’s original neurons. The time scales of the two

components of the system must differ very significantly if the

programming scheme is to succeed. Although a great vari-

ability of biological neuron time scales can be hypothesized on

the basis of neurophysiologic findings La Camera et al. (2006);

Kiebel et al. (2008), in the spirit of biological plausibility we

propose an experimental study to evaluate how changes in the

time scales of the two components of the system affect the in-

terpreting capability of our architecture. In particular we test

the DMAN robustness under variations of the time constant

ratio r = τ/τ ? where τ is the time constant of the neurons be-

longing to the original network G, and τ ? is the time constant

of the neurons belonging to the subnetworks mul?. Indeed the

assumption we made of zero or negligible time delay in the

stabilization of the virtual weights with respect to the time

scale of the original network amounts to treating the virtual

weights, as an adiabatic invariant, in mechanics’ sense, of the

full activity of the w-substituted DMAN Gmul?. In case the

time scales of the two components of the system do not differ

significantly, i.e., when the ratio r becomes small, the Gmul? dy-

namics become much more complex, and our proposed usage

of the multiplication subnetworks as providing an interpreting

capability might well be jeopardized.

6.6 NetOne on different time scales

In the previous case we apply the similarity procedure ex-

plained in Chapter 4 to compare networks to which the w-

131

CHAPTER 6. EXPERIMENTS AND RESULTS: VALIDATION OF THE
MODEL

substitution is being applied. We start from comparingNetOne

and NetOnemul? when varying the ratio r.

To do this we use the approximated version of sigmoid PolM
in order to we firstly introduced we consider D1 as the equation

of one neuron with the approximated sigmoid

τ · dy1

dt
= −y1 + w · PolM(y1) + I

with the identity function selectioning observable variable z1.

z1 = h(y1) = y1

and as D2 the substituted one, i.e.

τ · dy2

dt
= −y2 + xmul + I

τmul ·
dxmul
dt

= −xmul + w · PolM(y2)

again with the identity function

z2 = h2(y2) = y2

The choice of identity function allows us to compare the

values of the potential variables of the two systems y1 and y2.

We used as a standard form for the polynomial in order to

find all the possibly δ−approximate bisimulation functions for

different values of w.

V2(y1, y2, xmul) = c1
0+c1

1y1+c2
1y2+c3

1xmul+c
1
2(y1)2+c2

2(y2)2+c3
2x

2
mul+c

4
2y1y2+c5

2y1x+c6
2y2xmul

(6.7)

We ran three set of experiments on ratio r1 = 5, r2 = 50 and

r3 = 500 with w ∈ [0, 10] and I = 0. Of course we expect that

132

6.7. NETTWO AND NETFIV E CASES

NetOne δ̄max standard deviation

r = 500 0.0311 3.9 · 10−4

r = 50 0.2813 0.0117
r = 5 5.15 1.65

Table 6.7: Comparison table between different NetOne be-
haviours with weights w ∈ [0, 10] and its interpreter in the
DMA, showing δ̄max which measures the maximum mean bound
of δ−approximate bisimulation values. The values are shown
for I = 0 with all variable initial condition y0

1, y
0
2, x

0
mul ∈ [−1, 1]

with same initial condition for the output variables y0
1 = y0

2 to
compare.

for high ratio values the equivalence is more accurate. However

tests show that for all smaller ratios this degradation for smaller

ratios. Table show a significant result. For all parameters val-

ues in a range y0
1, y

0
2, x

0
mul ∈ [kmin, kmax], we were always able

to find a bisimulation function of the type for any a database of

the values randomly drawn from [0, 10]. Table 6.7 shows how

the mean bound δ̄max controls the maximum distance between

all possible trajectories between the two systems. Moreover if

we took the initial conditions for which δ̄ = d with d a thresh-

old, we could control how many behaviours we can simulate

respecting the wanted threshold and how wide is the class of

NetOne with different weights the DMAN NetOnemul? can

δ−approximate bisimulate.

6.7 NetTwo and NetF ive cases

Such experiments also test indirectly the robustness of the

DMANs with respect to the closeness of the multiplication re-

sponse function of the mul∗ subnetworks to a true product:

indeed the value of the multiplication that is returned by the

133

CHAPTER 6. EXPERIMENTS AND RESULTS: VALIDATION OF THE
MODEL

mul∗ subnetworks only becomes acceptable after a setting time

of at least some τ .

We conducted two groups of experiments for this study. In

the first group, we used a CTRNN network composed of only

two nodes, NetTwo. The second one involving a network com-

posed of five nodes, NetFive. In both cases the networks were

numerically integrated and we organized the experiments as

follows:

1. We chose N sets of weights and initial conditions for the

CTRNN network. Each weight wij and initial condition

yi(0) has been chosen in a random way into the intervals

[min,max] and [ymin, ymax], respectively. Thus obtaining

N networks Gi, with i ∈ {1, . . . , N}.The time constants of

the neurons belonging to Gi have been set to τ .

2. We chose three kinds of mul∗ subnetworks that differ only

in time scales: mul∗1, mul∗2 and mul∗3 with time constants

of the neurons equal to τ1 = τ/r1, τ2 = τ/r2 and τ3 = τ/r3,

respectively.

3. For each network Gi we constructed three DMA networks

Gi
mul∗1, G

i
mul∗2 and Gi

mul∗3 applying the w−substitution

uniformly by using mul∗1, mul∗2 and mul∗3, respectively (see

Figure 6.15 in which a depiction of the w−substitution for

NetTwo is shown).

4. For each ratio rk = τ/τk we compared the evolution of

the potentials of the networks Gi
mul∗k with respect to the

networks Gi, with i ∈ {1, . . . , N}: Let us call yi(n) and

ỹi,k(n) the points of the Gi and Gi
mul∗k trajectories, re-

stricted at the neurons into Gi, at the time t = n · τ re-

spectively. Then at each value n we computed the mean

134

6.7. NETTWO AND NETFIV E CASES

Figure 6.15: w−substitution procedure applied to a neural net-
work composed of two neurons.

of the relative euclidean distances

δ̄kn =
1

N

N∑
i=1

∥∥yi(n)− ỹi,k(n)
∥∥

‖yi(n)‖

and the maximum mean bisimulation bound δ̄max. In this

way, the values δ̄kmaxand δ̄kn give a measure of how the be-

haviours of G and Gmul∗ differ when Gmul∗ is obtained ap-

plying uniformly a w−substitution on G by using in turn

the dynamical mul and mul∗ subnetworks acting at a time

scale which is 1/rk times faster than the time scale of the

original network.

5. The parameter used in the two groups of experiments are

summarised in Table (6.8)

135

CHAPTER 6. EXPERIMENTS AND RESULTS: VALIDATION OF THE
MODEL

Parameters Group 1 Experiments Group 2 Experiments

M (number of neurons of the original G) 2 5

Number of neurons of Gmul∗ 14 80

min, max (weight interval) 0, 10 0, 10

ymin, ymax (initial condition interval) −30, +30 −30, +30

r1 = τ/τ∗1 5 5

r2 = τ/τ∗2 50 50

r3 = τ/τ∗3 500 500

N (number of networks) 103 103

Table 6.8: Experimental Parameters

In Figure 6.16 sample trajectories of NetTwo and NetTwomul∗
are shown, restricted to the nodes belonging to NetTwo, when

the time constant ratio assumes the values r1, r2 and r3. Even

in the presence of ratios that make the time constants of mul∗

networks very close to the neurons of NetTwo, the trajectories

are well preserved.

The experimental results show that for each time constant

the mean values of the relative distances δ̄nk between the tra-

jectories of the networks NetTwo and NetTwomul∗ are initially

very high, then they decrease and stabilize at values sufficiently

small (less than 0.20%) (see Figure 6.17), probably in corre-

spondence of the presence of fixed points. Accordingly we were

always able to find bisimulation functions (see Table 6.9) of

the type V2(y1,y2,xmul) with which we can control which be-

haviours we can simulate on the interpreter NetTwomul?. Re-

garding the second set of experiments, in Figure 6.18 sample

trajectories and mean values of the relative distances between

the trajectory points of NetF ive and NetF ivemul∗ are shown.

In this case it is possible to note that, although for greater

ratios the trajectory similarity is still optimal, smaller ratios

136

6.7. NETTWO AND NETFIV E CASES

0 1 2 3 4 5 6 7 8 9 10
−30

−25

−20

−15

−10

−5

0

5

10

15

τ

P
ot

en
tia

l (
y)

NetTwo vs NetTwo
mul

* comparison at ratio 5

neuron 1
neuron 2
emulated neuron 1
emulated neuron 2

0 1 2 3 4 5 6 7 8 9 10
−30

−25

−20

−15

−10

−5

0

5

10

15

τ

P
ot

en
tia

l (
y)

NetTwo vs NetTwo
mul

* comparison at ratio 50

neuron 1
neuron 2
emulated neuron 1
emulated neuron 2

0 1 2 3 4 5 6 7 8 9 10
−30

−25

−20

−15

−10

−5

0

5

10

15

τ

P
ot

en
tia

l (
y)

NetTwo vs NetTwo
mul

* comparison at ratio 500

neuron 1
neuron 2
emulated neuron 1
emulated neuron 2

Figure 6.16: Comparison between sample trajectories of
NetTwo and NetTwomul?. Continuous and dashed lines rep-
resent the trajectories of neurons of NetTwo. Circles and
squares represent trajectories of the corresponding neurons of
NetTwomul∗.

137

CHAPTER 6. EXPERIMENTS AND RESULTS: VALIDATION OF THE
MODEL

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

τ

M
ea

n
D

is
ta

nc
e

NetTwo
mul

* response

mul ratio = 5
mul ratio = 50
mul ratio = 500

1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

NetTwo
mul

* ratio 5

1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

NetTwo
mul

* ratio 50

1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

NetTwo
mul

* ratio 500

Figure 6.17: Mean and standard deviation of the relative dis-
tances between the points of the trajectories of NetTwo and
NetTwomul∗ at the three different values of the ration r.

138

6.7. NETTWO AND NETFIV E CASES

0 1 2 3 4 5 6 7 8 9 10
−30

−20

−10

0

10

20

30

40

τ

P
ot

en
tia

l (
y)

NetFive vs NetFive
mul

* comparison at ratio 5

original neurons
emulated neurons

0 1 2 3 4 5 6 7 8 9 10
−30

−20

−10

0

10

20

30

40

τ
P

ot
en

tia
l (

y)

NetFive vs NetFive
mul

* comparison at ratio 50

original neurons
emulated neurons

0 1 2 3 4 5 6 7 8 9 10
−30

−20

−10

0

10

20

30

40

τ

P
ot

en
tia

l (
y)

NetFive vs NetFive
mul

* comparison at ratio 500

original neurons
emulated neurons

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

τ

M
ea

n
D

is
ta

nc
e

NetFive
mul

* response

mul ratio = 5
mul ratio = 50
mul ratio = 500

Figure 6.18: Comparison between sample trajectories of
NetF ive and NetF ivemul∗. Continuous lines represent the
trajectories of neurons of NetF ive. Circles represent the tra-
jectories of the corresponding neurons of NetF ivemul∗. At the
bottom right corner the means of the relative distances between
the points of the trajectories of NetF ive and NetF ivemul∗ at
the three different values of the ratio r.

139

CHAPTER 6. EXPERIMENTS AND RESULTS: VALIDATION OF THE
MODEL

NetTwo δ̄ standard deviation

r = 500 5.6913 5.8484
r = 50 15.09 16.29
r = 5 54.97 50.01

Table 6.9: Comparison table between NetTwo and its corre-
spondent in the DMA, showing δ̄ which measures the maxi-
mum mean bound of δ−approximate bisimulation. The val-
ues are shown for I = 0 with all variable initial condition
y0

1,y
0
2,x

0
mul ∈ [−1, 1] with same initial condition for the output

variables y0
1 = y0

2 to compare.

NetF ive δ̄ standard deviation

r = 500 23.9024 5.8484
r = 50 83.5085 28.81

Table 6.10: Comparison table between NetF ive and its corre-
spondent in the DMA, showing δ̄ which measures the maximum
mean bound of δ−approximate bisimulation values and the sys-
tem with the dynamical multiplication. The values are shown
for I = 0 with all variable initial condition y0

1,y
0
2,x

0
mul ∈ [−1, 1]

with same initial condition for the output variables y0
1 = y0

2
to compare. For r = 5 it is more difficult to find for a large
database bisimulation function of the form V2(y0

1,y
0
2,x

0
mul). In-

stead for r = 50 we succeeded in finding them in the 50% of
the cases, and the values in the table refer to them.

could cause the distance between the trajectories of the net-

works to be appreciable. Accordingly, Table 6.10 shows no

problem in finding suitable bisimulation functions for ratio

r = 500. However for smaller ratio we were not always to

find bisimulation function, thus limiting the interpreter capa-

bilities of the architecture when the ratio begin too small. the

ability to find bisimulation. However if instead of the potential

we consider the output of neurons, which is the real observable

variables even in the presence of smaller ratio the similarity

140

6.7. NETTWO AND NETFIV E CASES

1 2 3 4 5 6 7 8 9 10
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

τ

M
ea

n
D

is
ta

nc
e

NetFive
mul

* response

mul ratio = 5
mul ratio = 50
mul ratio = 500

Figure 6.19: Means of the relative distances between the out-
puts of NetF ive and NetF ivemul∗ at the three different values
of the ratio r.

seems to be preserved again as the δ̄n measures on the output

show (see Figure 6.19), suggesting that the recourse at output

observable variables could even improve interpreter capability

of the architecture.

141

CHAPTER 6. EXPERIMENTS AND RESULTS: VALIDATION OF THE
MODEL

142

7
Conclusions and Future Work

7.1 Results of the dissertation

In the thesis dissertation we questioned how biological phenom-

ena controlled by neuronal activity showing properties typically

of computational devices could be captured in Artificial Neural

Networks.

We have presented a Dynamic Multiplication architecture

(DMA), built on a plausible model of biological neuronal net-

works (CTRNNs). The DMA is conceived in order to show the

virtuality capability as defined in Section 3.3 which captures

features originally associated with algorithmic computability.

Thus DMA allows the building of interpreters of CTRNN Net-

works, called Dynamic Multiplication Architecture Networks

(DMANs) which are special fixed-weight CTRNNs, being pro-

grammable because they possess the virtuality capability.

In a plethora of tests on sample networks we have obtained

successful implementations and outlined a methodology which

might offer biologically plausible modelling of nervous networks

endowed with virtuality.

Specifically, in the experiments in Sections 6.2 and 6.6, the

143

CHAPTER 7. CONCLUSIONS AND FUTURE WORK

results show that it is possible to obtain a programmable single

neuron which, under different programming inputs, exhibits,

“on the fly”, an appropriate range of qualitatively different be-

haviours. Since a single neuron with a self-connection is the

basic building block for any larger network (Beer, 1995b), these

results suggest that virtuality can be built into more complex

DMANs.

Moreover experiments in 6.3 show that it is possible to build

a small fixed-weight DMAN Boolmul? which, under different

programming inputs, behaves as the Boolean functions nand

and or. As a consequence, more complex fixed-weight DMANs

could be built by composing smaller ones, in order to obtain

networks which can be programmed to compute one of a range

of Boolean functions. In correspondence we show in experiment

6.4 how a DMAN can be programmed by a Programmer Net-

work in order to show different shapes of behaviours at varying

programming input on the constructed Boolmul? .

In Chapter 4, reference was made to the necessity of two dif-

ferent time scales in the operation of the CTRNNs expanded

with the multiplicative subnetworks (DMANs). We made the

assumptions of zero or negligible time delay in the stabilization

of the multiplicative subnetworks with respect to the time scale

of the original network. In case the time scales of the two com-

ponents of the system do not differ significantly, the dynamics

might become much more complex and the ensuing behaviour

differ sensibly from the intended one. To check this degenera-

tion, in a third set of experiments (Sections 6.5, 6.6 and 6.7)

we varied in small networks the ratio of the original network

time scale with respect to the mul∗ subnetwork time scale. A

bisimulation measure δ was given in order to measure the resid-

144

7.2. VIRTUALITY LEARNING FOR THE DMA

ual interpreting capabilities of the given DMANs, which allows

to control the class which the interpreter is able to simulate.

Overall encouraging results have been obtained suggesting that

the w−substitution is robust with respect to the preservation

of the behaviour of the original, not substituted networks.

While the modelling of biological nervous systems usually

considers brain areas as special purpose machines and neuronal

activity as data, these experiments suggest that the modelling

of the activity of some brain areas as multipurpose stored-

program machines is a viable hypothesis. In this manner, we

propose a clearer notion what computation consists of in bio-

logical systems, thus hopefully shedding light on neurophysio-

logical evidences. But a number of open issues must be dealt

with before significant modelling and related interaction with

the neurobiological research milieu may take place. In this con-

nection we notice two intertwined problematic areas: the rela-

tion between learning and virtuality and the implementation

of large scale networks through composition of smaller ones.

7.2 Virtuality learning for the DMA

In Section 3.1 we mentioned the fixed-weight line of research

which splits into different threads, all related to learning or

adaptability, and to which the present work partially belongs.

However, our “fixed-weight” approach is very different from

the above threads both in its goal and in its implementation.

The programmability capacity, or virtuality, of our DMANs

does not resort to any kind of learning or adaptation. Indeed,

virtuality is fundamentally different from learning on at least

three counts.

145

CHAPTER 7. CONCLUSIONS AND FUTURE WORK

First. The time scale of learning is the time scale of synaptic

plasticity, usually slower than the time scale of “program

switching” which operates at the time scale of the I/O

reactivity or, in actual biological networks, at the time

scale of the action potential.

Second. The virtuality capability allows an arbitrary (within

a certain range) variation of behaviour according to the

specifications of the auxiliary (programming) input, while

learning occurs as a consequence of the iterated re-enactment

of some specific behaviour.

Third. Learning a new behaviour or a new element of informa-

tion in an ANN generally erases or alters previous mem-

ories consigned to the structure of connection weights of

the network. In a DMAN the outcome of the learning

process is devoted to context data to be assigned to the

auxiliary inputs, thus achieving complete independence of

the different memory traces. This fact, based on the virtu-

ality capability, might suggest a novel outlook at the open

problem of incremental learning.

We observe that with ’programming capability’ we did not pro-

pose the ability to “write” networks in the same way as one

writes programs in some programming language. Rather we

wanted to explore the feasibility of interpretive ANNs leaving

aside for the moment how the specification of the weights which

constitute the “program” would be arrived at.

However, we stress that setting the weights as values of the

auxiliary inputs is very different from putting them by hand

into some platform simulating CTRNNs. Indeed the interpre-

tive architecture of the DMAN carries the setting of the weights

146

7.2. VIRTUALITY LEARNING FOR THE DMA

from a structural (in the biological reality: synaptic efficacy)

level to a dynamic (in the biological reality: current neuronal

activity) level thus allowing the important possibility (see prop-

erty b. and condition (3) as discussed in Section 3.3 and else-

where) that the values of the auxiliary or programming inputs

could be generated by other segments of a larger network.

In this regard, a considerable open problem is the determi-

nation of these values which code the connection weights of a

simulated network with some desired behaviour. At the mo-

ment, as for Boolmul∗ in Section 6.3, our strategy is: firstly, to

determine the structure of a CTRNN network G with a spec-

ified behaviour either by appropriately training it or, in sim-

ple cases, by designing it “by hand”; secondly, to program an

interpretive DMAN Gmul∗ by the programming inputs corre-

sponding to the G structure coming from another Programmer

network as in Section 6.4. However, in the spirit of biological

plausibility, this problem can be splitted into two subproblems.

Where and how to store the programs. That should

happen within the larger network so that they will be avail-

able when needed. This might be met with some reverberant

scheme, but in the end it will certainly require appealing to

synaptic plasticity. However there is an important point to

stress: in traditional learning it is the structural connection

weights that must be altered for memory retention, while in

the dynamic multiplication architecture it is the values of the

connection weights that must be stored.

Learning the programs and recalling them for future

use. We have not yet investigated the interesting vistas on

147

CHAPTER 7. CONCLUSIONS AND FUTURE WORK

the management of memory which open as a consequence of the

interaction between two kinds of learning and training: tradi-

tional structural learning vs. learning by storing programs (sets

of weights dynamically deployable). It is appealing to reflect

on the possibility that “learning by sharing programs” might

be a possible embodiment of procedural memory.

7.3 DMANs Compositionality

The composition of generic CTRNNs is the connection of some

network outputs to inputs of other networks. In addition to the

problems inherent to our asynchronous architecture we have

the further difficulty of the requirement of different time-scales

for the main and mul segments of the network, as discussed in

6.5.

In fact a neural computational structure might well be con-

structed through the composition of a large number of DMANs

by assigning the outputs of the component DMANs to the in-

puts of other (or the same) DMANs. It is clear that the ensuing

structure is still a DMAN, maintaining the fixed-weight fea-

ture. Moreover notice that the provided bisimulation measure

has the important property that can be obtained by the sum

of bisimulation measures given by the composition of networks

which interact in a feed forward manner. However when loops

are enabled, as the output of some component DMANs may

constitute programming inputs to other component DMANs,

it follows that the whole DMAN is not just programmable from

the outside, but can internally generate programs, thus acquir-

ing the capability of self-programming and code processing at

execution time.

148

7.3. DMANS COMPOSITIONALITY

Notice that the w-substitution scheme applied to any N -

neuron CTRNN allows for the simulation of a no larger than N -

neuron network. There are no universal interpreters but only

N -neuron networks interpreters for anyN . We ran experiments

for N = 2 and N = 5 in Section 6.5. This fact conforms to our

distinction between virtuality and universality.

Therefore, a large DMAN composed of interconnected DMANs,

although endowed with virtuality, is not bound to a single pro-

grammable processor, a CPU in standard programming archi-

tectures. Instead many or all component DMANs are pro-

grammable units, each within its own range of behaviours, as

discussed above, thus obtaining a form of distributed virtual-

ity which is closer implementation-wise to biological nervous

tissue than to multiprocessor artificial architectures.

149

CHAPTER 7. CONCLUSIONS AND FUTURE WORK

150

A
Preliminary Mathematical notions

A.1 Topology language

This Appendix contains some of the background nomenclature

and terminology that are needed in order to easily read the

thesis work. This collection is not meant to be an exaustive

mathematical treatment, but is the only the effort to make the

thesis work as self-contained as possible.

Definition A.1.1. Let X be a set and T a family of subset of

X. T is a Topology on X if

• ∅, X ∈ T

• ∀Ui ∈ T
⋃k
i=1 Ui ∈ T with a possibly infinite k

• ∀Ui ∈ T
⋂k
i=1 Ui ∈ T with a finite k

Note A.1.2. Topological terminology

• The sets in T are said open.

• A subset of X is said to be closed if its complement is in

T (i.e., it is open).

• A subset of X may be open, closed, both, or neither.

151

APPENDIX A. PRELIMINARY MATHEMATICAL NOTIONS

Definition A.1.3. A compact set K is a topological space in

which for each open cover

{Uh}h∈H openUh ∈ X
⋃
h∈H

Uh

there exists a finite subset J ⊆ H, X =
⋃
j∈J Uj

Definition A.1.4. The graph of a function f : U ⊆ Rn → Rm

is the set

G ≡ {(x, f(x)) | x ∈ U} ∈ Rm+n

Definition A.1.5. f : X ⊆ RN −→ Y ⊆ RN is a uniformly

continuous function if

∀ε > 0 ∃δ > 0∀x1,x2 ∈ X such that ‖x1 − x2‖ < δ ⇒ ‖f(x1)− f(x2)‖ < ε

Definition A.1.6. C0(RN ,RN) is the set of all the continuous

functions f : RN −→ RN .

Definition A.1.7. Ck(RN ,RN) is the set of all the functions

f : RN −→ RN , k times differentiable and with the k − th

derivative fk : RN −→ RN continuous.

Definition A.1.8. A function f : RN −→ RN is smooth if

f ∈ C∞(RN ,RN)

Definition A.1.9. A Homeomorphism h is a function

h : RN −→ RN

continuous and with a continuous inverse (i.e. h, h−1 ∈
C0(RN ,RN))

152

A.1. TOPOLOGY LANGUAGE

Definition A.1.10. A Diffeomorphism h of class Ck is a func-

tion

h : RN −→ RN

if h, h−1 ∈ Ck(RN ,RN)

Definition A.1.11. A function f : X ⊆ RN −→ Y ⊆ RN is

locally Lipschitz continuous with respect to t ∈ T if

∀x1,x2 ∈ X ⇒ ∃L ≥ 0 ‖ f(x1)− f(x2) ‖≤ L ‖ x1 − x2 ‖

Definition A.1.12. A function f : X ⊆ RN −→ Y ⊆ RN is

(uniformly) Lipschitz continuous

∃L ≥ 0 such that ∀x1,x2 ∈ X ⇒‖ f(x1)− f(x2) ‖≤ L ‖
x1 − x2 ‖

Theorem A.1.13. If f is uniformly Lipschitz continuous then

f is uniformly continuous

Proof. If f is uniformly Lipschitz continuous then ∃L ≥ 0 such

that ∀x1,x2 ∈ X it results ‖ f(x1) − f(x2) ‖≤ L ‖ x1 − x2 ‖.
So ∀ε > 0, taking δ = ε/L, for all ‖ x1 − x2 ‖< δ

‖ f(x1)− f(x2) ‖≤ L ‖ x1 − x2 ‖< L · δ = ε

Proposition A.1.14. If f ∈ C1(RN ,RN) (continuous and dif-

ferentiable), and f ′ is bounded then f is Lipschitz continuous

153

APPENDIX A. PRELIMINARY MATHEMATICAL NOTIONS

154

B
On Turing Virtuality in neural networks

B.1 Turing Virtuality in Neural Networks

In this Thesis we cited different works which assign Turing Uni-

versality to ANNs. One of the most cited is within the so called

Rational Neural Networks (QNNs) proved in (Siegelmann and

Sontag, 1995; Siegelmann, 1999) where the authors show how

to construct a universal neural network of 886 neurons which is

capable of simulating a Universal Turing Machine. Thus these

systems can be considered programmable insofar as they can

simulate any Turing Machine. Their approach differs signifi-

cantly in goals and motivation from the one in this thesis. They

succeeded in simulating inside the network model they chose

the Turing Universality or as we called it Turing Virtualiy. On

the other hand inside the thesis we searched for Material Vir-

tuality, programmability which is not related to third devices

(Turing machines) but is within the model itself.

In this appendix we review in details the proof of Siegelmann

and Sontag, thus clarifying how this approach is different from

ours.

155

APPENDIX B. ON TURING VIRTUALITY IN NEURAL NETWORKS

B.2 Rational Neural Network Model

We briefly describe the Neural Network Model used for the

demonstration. We consider N neurons updated by the law

xi(t+ 1) = σ

(
N∑
j=1

wjixj +
M∑
h=1

bhi Ih + Ci

)
(B.1)

where

• xi terms are the activations of the neurons

• wij terms are the weights connecting the neurons of the

net

• Ih terms are external inputs to the net

• bhi terms are weights to the external inputs

• Ci terms are bias constants

• σS is the saturated sigmoid defined as

σS(x) =


0 if x < 0

x if 0 ≤ x ≤ 1

1 if x > 1

In this way if the inputs and the parameters of the nets are

rational numbers also the neuron values will be rational. In this

sense we referred to this model as a Rational Neural Network

(QNN). Notice that this model is a discrete-time model.

Considering the state this system could reach, a network can

be seen as a functional with M inputs

f : (x, I1, . . . , IM) ∈ QN × {0, 1}M −→ QN

156

B.2. RATIONAL NEURAL NETWORK MODEL

However in the construction of the net we will use a “re-

duced” version

f : (x, ID, IV)QN × {0, 1}2 −→ QN

and so the equation (B.1) will be

xi(t+ 1) = σ

(
N∑
j=1

wjixj + ID(t) + IV (t)

)

The entire state of the network can be seen as a vector of N

neurons

x = (x1, . . . , xN)

The evolution of the network state in time will be denoted

with a superscript value: for example the state of the network

at time t will be denoted with xt.

Actually in these notes we will consider a net without inputs

that starting from an initial state is able to execute every com-

putation of a Turing Machine. It would be possible to add two

inputs to this network in order to let them reach the desired

initial state to start the appropriate computation, anyway this

construction will not be analyzed here.

B.2.1 4−Cantor-like Encoding

The particular encoding of the state of the neurons provided

in the architecure is given by:

Definition B.2.1. 4-Cantor-like encoding δ4 of binary strings

on an alphabet Σ = {0, 1} allows the encoding of stack values.

It is defined as

δ4 : Σ∗ −→ Q

157

APPENDIX B. ON TURING VIRTUALITY IN NEURAL NETWORKS

so that

• δ4(ε) = 0

• δ4(α = α1, . . . , αk) =
∑|α|

i=1
2αi+1

4i

where ε is the empty string,αi ∈ Σ and α ∈ Σ∗.

This encoding allows to write binary strings (e.g. α = 10012)

as rational numbers (e.g. δ4(α) = 3
4 + 1

16 + 1
64 + 3

256). More-

over it has the advantage of creating numerical gaps (see Fig.

(B.1)) which will be used during the construction of the p-stack

Rational Neural Network machine. A string with only one 0

will be encoded as 1/4, while a string with only one 1 will be

encoded as 3/4.

If we consider that the series convergence

δ4(α) =

|α|∑
i=1

2αi + 1

4i
≤ 3·

∞∑
i=1

1

4i
= 3·

(
1

1− 1/4
− 1

)
= 3·1

3
= 1

it is clear that the values of the encoding will be bounded

between 0 (the empty string) and 1 (a string with infinite 1).

Moreover, for each string α0 the first symbol of which is 0 we

obtain

δ4(α0) ≤ 1

4
+ 3 ·

∑
i=2

1

4i
=

1

4
+ 3 ·

(
1

1− 1/4
− 1− 1

4

)
=

1

2

Thus the strings beginning with 0 can assume values in the

interval [1
4 ,

1
2) with 1

2 as the code of the string starting with the

symbol 0 and followed by an infinite sequence of 1. Analogously

with a string α1 starting with the symbol 1 we obtain

158

B.2. RATIONAL NEURAL NETWORK MODEL

Figure B.1: 4−Cantor-like encoding of binary strings

δ4(α1) ≤ 3

4
+ 3 ·

∑
i=2

1

4i
=

3

4
+ 3 ·

(
1

1− 1/4
− 1− 1

4

)
= 1

meaning that strings starting with 1 can assume values in the

interval [3
4 , 1). These properties will be at the basis of the

definition of the operations in the paragraph (B.4.1).

B.2.2 Equivalence between a Turing Machine and a QNN

As a p−stack machine can simulate a Turing machine, it will

be sufficient to prove the following theorem:

Theorem B.2.2. (Siegelmann and Sontag) [Equivalence be-

tween a p − stack and a Rational Neural Network] Given a

function ψ

ψ : {0, 1}+ −→ {0, 1}+

computed by a p−stack Turing machine

T : N −→ N

there exists a Rational Neural Network R which computes ψ(ω)

with ω ∈ {0, 1}+ so that given the initial network state

x0(ω) = (δ4(ω), 1, 0, . . . , 0)

the computation made by R is:

159

APPENDIX B. ON TURING VIRTUALITY IN NEURAL NETWORKS

• undefined if ∀j xj3 = 0

• defined if ∃r : ∀j ∈ {0, . . . , r − 1}xj3 = 0 ∧ xr3 = 1 and

the result is xr1 = δ4(ψ(ω)), so the network state at time

r, when the computation is over, will be something like:

xr(ω) = (ψ(ω), ?, 1, . . . , ?)

This theorem summarizes the result of the work, which is

that a QNN can simulate a p−stack machine.

B.3 p−stack machine

In this section we briefly explain how a p−stack machine works,

before constructing a network respecting the model (B.1) which

will be able to simulate it.

A stack machine can do four operations on a binary valued

stack:

• no− op, which means to leave the stack unaltered

• push0, which means to add a 0 on the top of the stack

• push1, which means to add a 1 on the top of the stack

• pop, which means to delete the first element of the stack

Moreover it is possible to read the top of the stack by an op-

eration

top : stackh −→ top(stackh) = αh ∈ {0, 1}

and to control if the stack is empty by an operation

non− empty : stackh −→ non− empty(stackh) = αh ∈ {0, 1}

160

B.3. P−STACK MACHINE

which returns 1 if the stack is non− empty and 0 otherwise.

Given p stack structures, a p−stack machine M can be de-

fined as (p+ 4)-tuple

M
def
= (Q, qI , qH , θ0, θ1, . . . , θp)

where

• Q is a finite set of states

• qI ∈ Q is the initial state

• qH ∈ Q is the halting (final) state

• θ0 is the next state map

θ0 : Q× {0, 1}2p −→ Q

which maps the current state, the first elements of the

stacks (top1, . . . , topp ∈ {0, 1}p), if present, and (non− empty1, . . . , non− emptyp ∈
{0, 1}p) into the next state the machine will reach.

• θh for h ∈ {1, . . . , p} taking information from stacks simi-

larly as explained before

θh : Q× {0, 1}2p −→ {no− op, push0, push1, pop}

An instant configuration of a p−stack machine is a (p+1)-tuple

(q, stack1, . . . stackp)

with q ∈ Q and stackh the information in the stack.

161

APPENDIX B. ON TURING VIRTUALITY IN NEURAL NETWORKS

B.3.1 2−stack copy machine

As a running example we will show a simple 2−stack machine

which copies the string present at the beginning of the compu-

tation in the first stack, reverted on the second stack:

Copy
def
= (Q, qI , qH , θ0, θ1, . . . , θp)

where

• Q = {q0, q1, q2}

• qI = q0

• qH = q2

• θ0 is defined by the Table (B.1)

q top1 top2 non− empty1 non− empty2 θ0

q0 t1 t2 1 e2 q1

q0 t1 t2 0 e2 q2

q1 t1 t2 e1 e2 q0

Table B.1: Next state transition

where t1, t2, e1and e2 could assume any possible values.

• θ1 is defined in Table (B.2)

q top1 top2 non− empty1 non− empty2 θ1

q0 t1 t2 e1 e2 no− op
q1 t1 t2 e1 e2 pop

Table B.2: Stack 1 transition

162

B.3. P−STACK MACHINE

• θ2 is defined in Table (B.3)

q top1 top2 non− empty1 non− empty2 θ2

q0 0 t2 1 e2 push0
q0 1 t2 1 e2 push1
q0 t1 t2 0 e2 no− op
q1 t1 t2 e1 e2 no− op

Table B.3: Stack 2 transition

It is self-evident how an execution of this machine will reach

its goal. For example, given a string on the first stack α = 001

and the other stack empty, the step by step execution would

be

1. State of the machine: stack1 = (0, 0, 1) stack2 = (), ini-

tial state q0 so State = (q0, stack1, stack2). Applying

θ1(q0, 0, 0, 1, 0) and θ2(q0, 0, 0, 1, 0), 0 is pushed into the

second stack. Applying θ0(q0, 0, 0, 1, 0) the next state will

be q1.

2. State of the machine: stack1 = (0, 0, 1) stack2 = (0), state

q1 so State = (q1, stack1, stack2). Applying θ1(q1, 0, 0, 1, 1)

and θ2(q1, 0, 0, 1, 1), 0 is popped from the first stack. Ap-

plying θ0(q1, 0, 0, 1, 1) the next state will be q0.

3. State of the machine: stack1 = (0, 1) stack2 = (0), state

q0 so State = (q0, stack1, stack2). Applying θ1(q0, 0, 0, 1, 1)

and θ2(q0, 0, 0, 1, 1), 0 is pushed into the second stack. Ap-

plying θ0(q0, 0, 0, 1, 1) the next state will be q1.

4. State of the machine: stack1 = (0, 1) stack2 = (0, 0), state

q1 so State = (q1, stack1, stack2). Applying θ1(q1, 0, 0, 1, 1)

163

APPENDIX B. ON TURING VIRTUALITY IN NEURAL NETWORKS

and θ2(q1, 0, 0, 1, 1), 0 is popped from the first stack. Ap-

plying θ0(q1, 0, 0, 1, 1) the next state will be q0.

5. State of the machine: stack1 = (1) stack2 = (0, 0), state

q0 so State = (q0, stack1, stack2). Applying θ1(q0, 1, 0, 1, 1)

and θ2(q0, 1, 0, 1, 1), 1 is pushed into the second stack. Ap-

plying θ0(q0, 1, 0, 1, 1) the next state will be q1.

6. State of the machine: stack1 = (1) stack2 = (1, 0, 0), state

q1 so State = (q1, stack1, stack2). Applying θ1(q1, 1, 0, 1, 1)

and θ2(q1, 1, 0, 1, 1), 1 is popped from the first stack. Ap-

plying θ0(q1, 1, 0, 1, 1) the next state will be q0.

7. State of the machine: stack1 = () stack2 = (1, 0, 0), state

q0 so State = (q0, stack1, stack2). Applying θ1(q0, 0, 0, 0, 1)

and θ2(q0, 0, 0, 1, 1), no operation is made on the stacks.

Applying θ0(q0, 0, 0, 0, 1) the next state will be the halting

state q2.

B.4 Rational Neural Network Construction

This section constructs the pieces of network to perform the

operation of the p−machine:

• the stack operations,

• the update of the states and the stacks

B.4.1 Simulation of Stack Operations

Given a binary string α (e.g. 01002), and its encoding g = δ4(α)

(e.g. g = 1
4 + 3

42 + 1
43 + 1

44), we can define “clever” sigma opera-

tions that allow us to construct nets simulating the operation

on stacks defined in (B.4.1):

164

B.4. RATIONAL NEURAL NETWORK CONSTRUCTION

• top(g) = σ(4g − 2). In fact

σ(4g − 2) =

0 if g ∈ [1/4, 1/2]

1 if g ∈ [3/4, 1]

• push0(g) = σ(g4 + 1
4). This operation is simply obtained

by dividing all the encoding by 4 and adding the first bit

encoding 1/4

• push1(g) = σ(g4 + 3
4). This operation is simply obtained

by dividing all the encoding by 4 and adding the first bit

encoding 3/4

• pop(g) = σ(4g − (2top(g) + 1)). This operation is ob-

tained by subtracting the first element of the stack and by

multiplying the result by 4

• non− empty(g) = σ(4g). In fact

σ(4g) =

0 if g = 0

1 if g ≥ 1/4

B.4.2 Neural p−Stack Machine

Let us construct the dynamical system N that will simulate a

p−stack machine M = (Q = {q1, . . . , qs}, qI , qH , θ0, θ1, . . . , θp)

N : (x1, . . . , xs, g1, . . . , gp) ∈ Qs+p −→ N(x1, . . . , xs, g1, . . . , gp) ∈ Qs+p

The first step is the encoding of the machine state qi on a

subset of neurons of the network N .

165

APPENDIX B. ON TURING VIRTUALITY IN NEURAL NETWORKS

The activity of the first s neurons x1, . . . , xs codifies the

state of the machine as showed in Table (B.4):

x1 x2 . . . xi . . . xs
q1 1 0 . . . 0 . . . 0
q2 0 1 0 0
...

...
.

...

qi 0 . . . 0 1
. . . 0

...
...

. . .
...

qs 0 . . . 0 . . . 0 1

Table B.4: First s neurons state encoding

The second step is to find functions of the type:

f : {0, 1}2p −→ {0, 1}

Given read = (top(g1), . . . top(gh), non−empty(g1), . . . , non−
empty(gh)) we define

• βij as

βij(read) =

1 if θ0(j, read) = i

0 otherwise
(B.2)

with i, j ∈ {1, . . . , s}

• γ1
hj as

γ1
hj(read) =

1 if θh(j, read) = no− op

0 otherwise
(B.3)

with j ∈ {1, . . . , s} e h ∈ {1, . . . , p}

166

B.4. RATIONAL NEURAL NETWORK CONSTRUCTION

• γ2
hj as

γ2
hj(read) =

1 if θh(j, read) = push0

0 otherwise
(B.4)

with j ∈ {1, . . . , s} e h ∈ {1, . . . , p}

• γ3
hj as

γ3
hj(read) =

1 if θh(j, read) = push1

0 otherwise
(B.5)

with j ∈ {1, . . . , s} and h ∈ {1, . . . , p}

• γ4
hj as

γ4
hj(read) =

1 if θh(j, read) = pop

0 otherwise
(B.6)

with j ∈ {1, . . . , s} and h ∈ {1, . . . , p}

The update of the “state” neurons can be written as

xt+1
i =

s∑
j=1

βij(readt)xtj (B.7)

and the update of the “stack” neurons as

gt+1
h =

∑s
j=1 γ

1
hj(readt) · gth+∑s

j=1 γ
2
hj(readt) · push0(gth)∑s

j=1 γ
3
hj(readt) · push1(gth)∑s

j=1 γ
4
hj(readt) · pop(gth)

(B.8)

This transitions exactly simulate the p−stack machine. The

167

APPENDIX B. ON TURING VIRTUALITY IN NEURAL NETWORKS

only problem left is to find “sigma functions” for (B.2), (B.3),

(B.4), (B.5) and (B.6) in order to achieve this part of the com-

putation by suitable subnetworks.

2−stack CopyNet Machine

Considering the machine Copy defined in (B.3.1) we start build-

ing a subnet with 5 neurons: x1, x2, x3, g1 and g2. The first 3

neurons encode the states as explained in Table (B.4)

x1 x2 x3

q1 1 0 0
q2 0 1 0
q3 0 0 1

Table B.5: Copy Machine state encoding

The appropriate strings with the 4−Cantor like encoding

described in (B.2.1) will be encoded on neurons g1 (first stack)

and g2 (second stack).

The transitions from a state to another is made by the func-

tion βij(read) that can be deducted by (B.1), (B.2) and (B.1).

168

B.4. RATIONAL NEURAL NETWORK CONSTRUCTION

top1 top2 non− empty1 non− empty2 βij(read)

β11 t1 t2 e1 e2 0
β12 t1 t2 1 e2 1
β12 t1 t2 0 e2 0
β21 t1 t2 e1 e2 1
β22 t1 t2 e1 e2 0
β13 t1 t2 1 e2 0
β13 t1 t2 0 e2 1
β23 t1 t2 e1 e2 0
β31 t1 t2 e1 e2 0
β32 t1 t2 e1 e2 0
β33 t1 t2 e1 e2 0

Table B.6: Copy Machine βij(read) transition

The table is completely analogous to Table (B.1), the only

difference is that here also the non-transitions are depicted:

for example for β11 there are no possible transitions (always

0 values whatever values read assumes). If we assume that

the network is in the state (xt1, x
t
2, x

t
3) = (1, 0, 0) and g1 = 1/4

(that is a 0 on the first stack) and g2 = 0 (the empty string on

the second)

xt+1
1 = β11x

t
1 + β12x

t
2 + β13x

t
3 = 0

xt+1
2 = β21x

t
1 + β22x

t
2 + β23x

t
3 = 1

xt+1
3 = β31x

t
1 + β32x

t
2 + β33x

t
3 = 0

So the next state is (xt+1
1 , xt+1

2 , xt+1
3) = (0, 1, 0).

Similarly from the definitions (B.3), (B.4), (B.5) and (B.6)

and the Tables (B.2) and (B.3) we can construct the relative ta-

169

APPENDIX B. ON TURING VIRTUALITY IN NEURAL NETWORKS

bles for the γkhj functions with k ∈ {1, 2, 3, 4} (the operations),

h ∈ {1, 2} (the stacks) j ∈ {1, 2, 3} (the states).

top1 top2 non− empty1 non− empty2 γ1
hj(read)

γ1
11 t1 t2 e1 e2 0
γ1

12 t1 t2 e1 e2 1
γ1

21 t1 t2 0 e2 1
γ1

21 t1 t2 1 e2 0
γ1

22 t1 t2 e1 e2 1

Table B.7: Copy Machine γ1
ij(read) - no− op transition

top1 top2 non− empty1 non− empty2 γ2
hj(read)

γ2
11 t1 t2 e1 e2 0
γ2

12 t1 t2 e1 e2 0
γ2

21 0 t2 1 e2 1
γ2

21 1 t2 1 e2 0
γ2

21 t1 t2 0 e2 0
γ2

22 t1 t2 e1 e2 0

Table B.8: Copy Machine γ2
ij(read) - push0 transition

top1 top2 non− empty1 non− empty2 γ3
hj(read)

γ3
11 t1 t2 e1 e2 0
γ3

12 t1 t2 e1 e2 0
γ3

21 1 t2 1 e2 1
γ3

21 0 t2 1 e2 0
γ3

21 t1 t2 0 e2 0
γ3

22 t1 t2 e1 e2 0

Table B.9: Copy Machine γ3
ij(read) - push1 transition

170

B.4. RATIONAL NEURAL NETWORK CONSTRUCTION

top1 top2 non− empty1 non− empty2 γ4
hj(read)

γ4
11 t1 t2 e1 e2 0
γ4

12 t1 t2 e1 e2 1
γ4

21 t1 t2 e1 e2 0
γ4

22 t1 t2 e1 e2 0

Table B.10: Copy Machine γ4
ij(read) - pop transition

B.4.3 Decomposition Theorem

How do we know that it is always possible to build γ and β

functions respecting the given p−stack machine? This section

give us the wanted results:

Lemma B.4.1. For each l1, l2, . . . , lk ∈ {0, 1} it is possible to

write

l1 · l2 . . . lk = σ(l1 + l2 + · · ·+ lk − k + 1)

Theorem B.4.2. ∀f : {0, 1}t −→ {0, 1} ∃v1, . . . ,v2t ∈ Zt+2

and c1, . . . , c2t ∈ Z such that ∀s1, . . . , stx ∈ {0, 1} and g ∈ [0, 1)

it is possible to have

f(s1, . . . , st)xg = σ(g +
2t∑
r=1

crσ(vr · h)− 1)

where h = (1, s1, . . . , st, x)

Proof. It is possible to expand f(s1, . . . , st) in polynomial:

f(s1, . . . , st) = c1 + c2s1 + · · ·+ ct+1st + ct+2s1s2 + · · ·+ c2ts1s2 . . . st(B.9)

171

APPENDIX B. ON TURING VIRTUALITY IN NEURAL NETWORKS

Multiplying by x, using the fact that x = σ(x) and the Lemma

(B.4.1) we can write

f(s1, . . . , st)x = c1σ(x) + c2σ(x+ s1 − 2 + 1) + · · ·+ c2tσ(s1 + s2 + · · ·+ st + x− (t+ 1) + 1) =(B.10)

=
2t∑
1

crσ(vr · h)

Finally reapplying Lemma (B.4.1) to f(s1, . . . , st)xg (where

l1 = f(s1, . . . , st)x and l2 = g), we obtain the desired proof

of the Theorem (B.4.2)

f(s1, . . . , st)xg = σ(g + f(s1, . . . , st)x− 2 + 1) =

= σ(g +
2t∑
1

crσ(vr · h)− 1)

B.4.4 Function Construction in 3 layers

Now in the formulation of the Theorem (B.4.2) substituting g

respectively with 1, gh, push0(gh), push1(gh) and , pop(gh) we

realize how to construct nets computing βij, γ
1
hj, γ

2
hj, γ

3
hj and

γ4
hj.

In fact firstly it is possible to construct a layer L3 of s · 22p

1−neuron subnetworks Lr : N2p+2 −→ N which computes

ojr(read, xj) = σ(v0
r+v

1
rx1+· · ·+vprxp+vp+1

r g1 · · ·+v2p
r gp+v

2p+1
r xj)

and then we can construct

• all the βij for i ∈ {1, . . . , s} with s 1−neuron nets Lβi :

172

B.4. RATIONAL NEURAL NETWORK CONSTRUCTION

N22p −→ N

oβj = σ

 2t∑
r=1

cro
j
r(read, xj)


• all the γ1

hj for h ∈ {1, . . . , p} with p 1− neuron networks

Lγ1
h : N22p+2 −→ N which compute

oγ
1
hj = σ

gh +
2t∑
r=1

cro
j
r(read, xj)− 1


• all the γ2

hj for h ∈ {1, . . . , p} with p 1− neuron networks

Lγ2
h : N22p+2 −→ N which compute

oγ
2
hj = σ

push0(gh) +
2t∑
r=1

cro
j
r(read, xj)− 1


• all the γ3

hj for h ∈ {1, . . . , p} with p 1− neuron networks

Lγ4
hj : N22p+2 −→ N which compute

oγ
3
hj = σ

push1(gh) +
2t∑
r=1

cro
j
r(read, xj)− 1


• all the γ4

hj for h ∈ {1, . . . , p} with p 1− neuron networks

Lγ4
hj : N22p+2 −→ N which compute

oγ
4
hj = σ

pop(gh) +
2t∑
r=1

cro
j
r(read, xj)− 1


173

APPENDIX B. ON TURING VIRTUALITY IN NEURAL NETWORKS

transforming Equation (B.7) into

xt+1
i = σ(

∑s
j=1 o

βj)

= σ
(∑s

j=1 σ
(∑2t

r=1 cro
j
r(read, xtj)

))
= σ

(∑s
j=1 σ

(∑2t

r=1 crσ
(
v0
r + v1

rx1 + · · ·+ vprxp + vp+1
r g1 · · ·+ v2p

r gp + v2p+1
r xtj

)))
and Equation (B.8) into

gt+1
h = σ(

∑s
j=1 σ

(
gh +

∑2t

r=1 cro
j
r(read, xj)− 1

)
+∑s

j=1 σ
(
push0(gh) +

∑2t

r=1 cro
j
r(read, xj)− 1

)
+∑s

j=1 σ
(
push1(gh) +

∑2t

r=1 cro
j
r(read, xj)− 1

)
+∑s

j=1 σ
(
pop(gh) +

∑2t

r=1 cro
j
r(read, xj)− 1

)
)

B.4.5 Neurons needed

It is possible to calculate the total number of neurons needed

for the 3-layer network translation of a p-stack machine:

• First layer L1: s state neurons and p stack neurons: s+ p

neurons

• Second Layer L2: copy of the s states xi and p stacks gh
plus p top and p non-empty: s+ 3p

• Third Layer L3 of Lr nets: s · 22p neurons plus p top and

p non-empty: s · 22p + p

Thus the total number of neurons composing a Rational Neural

Network which implements a p−stack machine with s states is

Tot(s, p) = s+ p+ s+ 3p+ s · 22p + p = 2s+ s · 22p + 4p

174

B.4. RATIONAL NEURAL NETWORK CONSTRUCTION

B.4.6 Input and Output

1. the input Iext ≡ (ID(t), IV (t)) ∈ {0, 1}2 of the network is

constituted of two lines:

• ID(t) is the Data Line, in which there is a binary encoded

sequence of 0 and 1 constituting the binary input of the

network

• IV (t) is the Validation Line, which assumes the value 1

when ID has to be “read” from the network and 0 when

ID is deactivated

1. the output is similarly read on two neuronsO ≡ (OD(t), OV (t))

where the meaning of OD(t) and OV (t) is similar to the

ones in the input

To encode a string s = a1, . . . aK ∈ {0, 1}K ⊆ {0, 1}+ it is

possible to write

Is = (IDs, IVs)

where

IDs(t) =

ak if t ∈ {1, . . . , K}
0 otherwise

and

IVs(t) =

1 if t ∈ {1, . . . , K}
0 otherwise

This encoding will be denoted with IDs = s0∞, and IVs =

1|s|0∞.

A partial function

ψ : s ∈ {0, 1}+ −→ {0, 1}+

175

APPENDIX B. ON TURING VIRTUALITY IN NEURAL NETWORKS

is computed by a net N if ∀s ∈ {0, 1}+ when

• if ψ(s) is undefined OVs = 0∞

• if ψ(s) is defined ∃r ∈ N such that the output validation

line is

OVs(t) =

1 if t ∈ {r, . . . , r + |ψ| − 1}
0 otherwise

and the output data line is

ODs(t) =

ψt−r+1(s) if t ∈ {r, . . . , r + |ψ| − 1}
0 otherwise

B.4.7 Turing Universalityv for QNNs

It is possible to reduce the number of the networks leading to

the p−stack realization

Tot2(s, p) = s+ 12p+ s · 3p + 2p = s+ s · 3p + 14p+ 2

In (Shannon, 1956) it was proved that there exists a p−stack

machine whith 2 stacks and 84 states, which is able to simulate

the Universal Turing Machine.

Moreover Input / output computations needs to add an ex-

tra 16 neurons, thus obtaining a total number of 886 neurons

sufficient for a QNN to implement a Universsal Turing Ma-

chine.

176

C
Analysis of Dynamical System by abstraction

Dynamical systems are a powerful instrument for modelling

in robotic and biological framework. In the seminal work of

Beer in the middle years of the ’90s (Beer, 1995a), it was pro-

posed to consider an entire robotic system (a robot interact-

ing with its environment) as coupled dynamical systems. In

this way a framework in which the entire system results in

a closed system is defined. In each subsystem variables are

strongly coupled, while interactions between systems are cap-

tured by changing the parameters which each system forces on

the other. However dynamical system has become a common

language also in neuroscience and in biological modelling in

general (Sontag, 1990). Distributed and neuron-like phenom-

ena are well-captured in this framework: as it is pointed out

in (Izhikevich, 2004) information processing in neurons can be

studied considering their dynamical properties and modelling

each cell’s bifurcation dynamics. In dynamical systems we are

free to choose the desired level of details, without having to

deal with coarse assumptions: as we sketched before it is pos-

sible to model high level discrete logical phenomena together

with low level continuous dynamics capturing finer grain de-

177

APPENDIX C. ANALYSIS OF DYNAMICAL SYSTEM BY
ABSTRACTION

tails when necessary. In other words dynamical systems allow

one to describe the phenomena in study with the desired level

of abstraction.

A crucial aspect of the designing process is to keep a balance

between:

- flexibility ; trying to capture each detail is the easiest way

to the modelling approach. However the more details we

include the more complex the system becomes;

- rigorousness ; the modelled system has to be parametri-

cally controllable and properties of interest should be veri-

fied in order to gain knowledge on the constructed system.

Known limits on the system could suggest designing im-

provement and capturing of new phenomena.

These two aspects result in an unstable equilibrium, because

the more we let the system explode in complexity, the more

difficult the control and verification of important features be-

come. The increasing model complexity has to be carefully

justified when causing the lacking of controlling capabilities.

Abstraction is a powerful method which allows to deal with

smaller systems simpler to be analyzed. The abstraction method

can be formally applied by means of different kinds of simula-

tion relations present in literature. In computer science sim-

ulation is usually based on the notion of “a machine which

performs the same computation”. However this would imply a

state by state comparison that is not so useful when we want to

abstract simpler systems. In a dynamical system the notion of

simulation is captured by topological equivalence as we showed

in Chapter (5): this allows the definition of different kinds of

simulation relation preserving different kinds of properties in

exam.

178

The study of complex systems needs, however, to find gen-

eral simulation relations which do not turn out to be “homoge-

neous” in the sense that they can be generalized to compare not

only continuous to continuous systems or discrete to discrete

systems, but hybrid to hybrid ones.

When exact simulation properties cannot be established for

the system in case, at least approximate simulation properties

should be established in order that the synthetic abstracted

system results in an ideal set of behaviours to which within a

certain tolerance the real system tends. The distributed aspect

of the system in study guides us to take into account compo-

sitionality and scalability aspects. We would like to construct

systems which, when small (with respect to the total number of

elements) parts of them are removed or added, would not loose

some important properties gained by the initial ones. The aim

is that clever composition of systems results in the possibili-

ties of preserving old properties and acquiring new ones, that

is a stability also in the process of gaining new information

(learning). On the other side this should little affect the com-

putational cost of analysis and synthesis in order to preserve

the tractability of the system.

When the resulting abstraction has the strong property of

being in direct comparison with computational systems (as in

the case of discrete abstractions) the analysis is straightfor-

ward: simulation relations established with subclasses of com-

putational systems result in computational properties of the

starting simulated systems. Such systems could, in some math-

ematically quantified sense, show a finite language by which

they can turn out to be programmable with respect to the class

of systems that they are capable of simulating.

179

APPENDIX C. ANALYSIS OF DYNAMICAL SYSTEM BY
ABSTRACTION

As an ulterior consequence of such a discrete description of

systems, their behavioural properties could be analyzed in an

algorithmic way. This leads to the definition of formal verifi-

cation tools enabling an exhaustive research in the state space

of a suitable model of the system to be analyzed with respect

to the specification of a property ϕ. Different algorithms have

been proposed in order to decide properties of different sub-

classes of dynamical systems. In fact in order to be practically

applied in an automatic way, interesting subclasses have to be

singled out and characterized. Even when in such a general

framework the possibilities of expressing very complex systems

cause many problems to be undecidable, the discovery of im-

portant properties, such as detection of anomalies, could at

least be guided or some modelling restrictions could be sin-

gled out in order to apply algorithmic procedures. This means

that suitable finite abstraction of the continuous part of the

model should carefully be extracted, trying to preserve prop-

erties of the original system which is under investigation. In

robotics and biology different qualitative models can be used

to describe the same system at different levels of detail: the

various levels can formally be related with levels of abstrac-

tion preserving certain kinds of properties of interest. In this

sense formal verification techniques like model checking allow

an effective manner of controlling behavioural properties. In

this appendix we will show how the abstraction of a class of

dynamical systems, O−minimal dynamical systems turns out

to be finitely abstractable, letting us envisage how algorithms

computing these abstractions could allow us in the end to sys-

tematically analyze the behaviour of such systems inside For-

mal Verification Techniques. In particular we show the pos-

180

C.1. ANALYSIS BY ABSTRACTION

sibility that the procedure Bisω described in this appendix

terminates, so that we can obtain a finite abstraction of the

system in exam. However it must be stressed that even though

we do know that the procedure terminates, we do not know a

general algorithm which actually implements the procedure.

C.1 Analysis by abstraction

The concept of abstraction can be made rigorous (see also Sec-

tion 5.2) if it can be related to the concept of simulation and

then equivalence. Intuitively equivalence induces partitions

and partitions induce abstraction (Zhang, 1994).

Definition C.1.1. A binary relation ∼⊆ A2 is an equivalence

relation if it satisfies the properties

• ∀x ∈ A (x, x) ∈ A (riflexivity)

• ∀x, y ∈ A (x, y) ∈∼ ⇐⇒ (y, x) ∈∼ (simmetry)

• ∀x, y, z ∈ A(x, y) ∈∼ ∧(y, z) ∈∼ =⇒ (x, z) ∈∼ (transitivity)

Definition C.1.2. An equivalence class of an element a ∈ A
given by an equivalence relation ∼ is given by [a] = {x ∈ A :

x ∼ a}

An equivalence relation on A induces a partition on the quo-

tient set X/ ∼.

Definition C.1.3. A language equivalence for a transition sys-

tem T ≡ (Q,Σ,→, Q0) is an equivalence relation ∼L on Q such

that ∀q1, q2 ∈ Q

• q1 ∼L q2 =⇒ L(q1) = L(q2)

181

APPENDIX C. ANALYSIS OF DYNAMICAL SYSTEM BY
ABSTRACTION

Definition C.1.4. A partial simulation between two transition

systems T ≡ (Q,Σ,→, Q0) and T
′ ≡ (Q

′
,Σ
′ ≡ Σ,→′, Q′0) is

an equivalence relation ∼⊆ Q×Q′ such that

∀q1, q2 ∈ Q, ∀q′1 ∈ Q′,∀a ∈ Σ

(q1 ∼ q
′

1 and q1
a→ q2) =⇒ (∃q′2 | q2 ∼ q

′

2 and q
′

1
a→
′
q
′

2)

We will say that T partially simulates T
′

Definition C.1.5. A simulation between two transition sys-

tems T ≡ (Q,Σ, φ,Q0) and T
′ ≡ (Q

′
,Σ
′ ≡ Σ, φ

′
, Q
′

0) is an

equivalence relation ∼⊆ Q × Q
′

such that T partially simu-

lates T
′
and ∀q1 ∈ Q there exists p1 such that q1 ∼ p1

We will say that T simulates T
′

Definition C.1.6. A bisimulation between two transition sys-

tems T ≡ (Q,Σ,→, Q0) and T
′ ≡ (Q

′
,Σ
′ ≡ Σ,→′, Q′0) is an

equivalence relation ∼⊆ Q×Q′ such that,

• ∀q1, q2 ∈ Q, ∀q′1 ∈ Q′∀a ∈ Σ(q1 ∼ q
′

1 and q1
a→ q2) =⇒

(∃q′2 | q2 ∼ q
′

2 and q
′

1
a→ q

′

2)

• ∀q′1, q′2 ∈ Q’, ∀q1 ∈ Q∀a ∈ Σ (q1 ∼ q
′

1 and q
′

1
a→ q

′

2) =⇒
(∃q2 | q2 ∼ q

′

2 and q1
a→ q2)

that is T1 simulates T2 and T2 simulates T1.

We will say that T1 and T2 are bisimilar.

Corollary C.1.7. A bisimulation ∼ for a transition transition

system T ≡ (Q,Σ,→, Q0) is an equivalence relation ∼⊆ Q×Q
such that ∀q1, q

′

1q2 ∈ Q

• ∀a ∈ Σ (q1 ∼ q
′

1 and q1
a→ q2) =⇒ (∃q′2|q2 ∼ q

′

2 and q
′

1
a→

q
′

2)

182

C.1. ANALYSIS BY ABSTRACTION

Definition C.1.8. A bisimulation ∼ for a transition transition

system T ≡ (Q,Σ,→, Q0) respects a partition P of Q if

• ∀q1, q2 ∈ Q (q1 ∼ q2) =⇒ (∃P ∈ P with q1, q2 ∈ P)

Definition C.1.9. The identity bisimulation for a transition

systems T is

• ∼= {(q, q) | q ∈ Q}

Theorem C.1.10. Given a transition system T = (Q,Σ,→
, Q0), and a partition of P of Q and a bisimulation β with

respect to P, it is always possible to construct from β a bisim-

ulation β̃ which is an equivalence relation

C.1.1 Logical preliminaries

We put beforehand logical preliminaries that are needed to de-

fine a class of dynamical properties with the stunning property

of being finitely abstractable: O−minimal dynamical systems.

Definition C.1.11. Non-logical symbols:

• constant symbols

• n−ary relations (e.g. ≤)

• n−ary operations (e.g. +, ∗)

Definition C.1.12. Logical symbols (set conn):

• propositional connectives (¬,∨, etc)

• quantifiers (∀, ∃)

• equality (=)

• variables (x)

183

APPENDIX C. ANALYSIS OF DYNAMICAL SYSTEM BY
ABSTRACTION

Definition C.1.13. A structure is an ordered pairA ≡ (|A| , I)

where

• |A| is a nonempty set, called the universe of A;

– I is an interpretation function I ∈ |A| whose domain

is a set of non-logical symbols.

∗ The domain of I is called the signature ofA, sig(A).

∗ To each n−ary relation symbol R ∈ sig(A) we as-

sume that I assigns an n−ary relation R ⊆ |A|n

∗ To each n−ary operation symbol R ∈ sig(A) we

assume that I assigns an n−ary operation o :

|A|n −→ |A|
∗ To each constant symbol c ∈ sig(A) we assume

that I assigns an individual constant c ∈ |A|

Definition C.1.14. A term t of a structure A is defined re-

cursively:

• Every constant c and every variable v is a term

• ∀t1, . . . , tn terms, and n−ary operation symbol o(t1, . . . , tn)

is a term

Definition C.1.15. An atomic formula a of a structure A is

defined recursively:

• ∀t1, t2 terms, t1 = t2 is an atomic formula

• ∀t1, . . . , tn terms, and n−ary relation R(t1, . . . , tn) is an

atomic formula

Definition C.1.16. The set of formulas F (A) of a structure

A is the minimum set satisfying:

• ∀a atomic formula, a ∈ F (A)

184

C.1. ANALYSIS BY ABSTRACTION

• ⊥∈ F (A)

• if φ ∈ F (A), ¬φ ∈ F (A), ∃xφ (with x a variable)

• if φ1, φ2 ∈ F (A), φ1 ∨ φ2 ∈ F (A)

Definition C.1.17. A sentence is a formula with no free vari-

ables.

Definition C.1.18. A formula φ with free variables x̄ = (x1, . . . , xk)

satisfies M, M |= φ(ā), if given ā = (a1, . . . , ak) ∈Mk we ob-

tain:

• if φ = t1 = t2 then M |= φ if tM1 (ā) = tM2 (ā) where

I(t, ā) = tM(ā) is the result of the intepretation of the

term

• if φ = R(t1, . . . , tk) thenM |= φ(ā) if (tM1 (ā), . . . , tMk (ā)) ∈
RM

• if φ = ¬ψ then M |= φ(ā) if M 2 φ(ā)

• if φ = ψ1∨ψ2 thenM |= φ(ā) ifM |= φ1(ā) orM |= ψ2(ā)

• if φ = ∃xψ(x) then M |= φ(ā) if there exists b ∈ M such

that M |= ψ(ā, b)

Definition C.1.19. A Theory Th(A) on a structure A is a set

of sentences produced by formulas on A.

Definition C.1.20. A Model M of a Theory T = Th(A),

M |= T if for all sentences φ in T we have M |= φ.

Definition C.1.21. Two structuresM and N are elementar-

ily equivalent M≡ N if and only if

Th(M) = Th(N)

185

APPENDIX C. ANALYSIS OF DYNAMICAL SYSTEM BY
ABSTRACTION

Theorem C.1.22. Th(M) is invariant under isomorphism

(see Marker, 2002)

C.2 O−minimal systems

In this section a picture of O−minimal systems is sketched. An

exhaustive introduction to O−minimal systems can be found

(Van Den Dries, 1998).

Definition C.2.1. A set A is definable on M if there exists an

n−ary relation R ⊆Mn such that

A = {a1, . . . , an |M � R(a1, . . . an)}

Example C.2.2. Let’s consider the systema11x1 + a12x2 > c1

a21x1 + a22x2 ≤ c2

It is possible to construct the formula

φ (x1, x2, a11, a12, a21, a22, c1, c2) = ∃x1∃x2 ((a11x1 + a12x2 > c1) ∧ (a21x1 + a22x2 ≤ c2))

such that we obtain the definable set A ⊆ R6 on R8

A ≡ {(a11, a12, a21, a22, c1, c2) |R8 |= φ (x1, x2, a11, a12, a21, a22, c1, c2)}

Example C.2.3. Consider the definable set

S ≡ {x ∈ R | sin (πx) = 0}

Note that S = Z

186

C.2. O−MINIMAL SYSTEMS

Definition C.2.4. A function f : A ∈ Rn −→ Rm is definable

if its graph Γ ∈ Rn+m is definable.

Definition C.2.5. Cells are defined inductively as follows

• the cells in R are just the points {r} and the intervals (a, b)

• if C ⊆ Rn is a cell, if f, gC −→ Rn are definable continuous

functions and f < g on C, then

(f, g) ≡ {(x, r) ∈ C × R : f(x) < r < g(x)}

is a cell in Rn+1; also the stes Γ(f), (−∞, f) ≡ {(x, r) ∈
C×R : r < f(x)}, (f,+∞) ≡ {(x, r) ∈ C×R : f(x) < r}
are cells in Rn+1; C × Rn+1 is a cell

Definition C.2.6. Cell decomposition theorem. Each defin-

able set A ⊆ Rn has a finite partition A = C1 ∪ C2 ∪ · · · ∪ Ck
into cells Ci. If f : A −→ Rn is a definable map, this partition

of A can moreover be chosen such that all restriction f |Ci are

continuous.

Definition C.2.7. A totally ordered structure M ≡ (M,<

, . . .) is o-minimal if every definable subset of M is a finite

union of points and open intervals (possibly unbounded)

Definition C.2.8. An o-minimal dynamical system is a pair

D ≡ (M,γ) where

• M = (|M |,+, 0, 1, . . .) is an o-minimal totally ordered

structure

– γ : V1 ×M+ −→ V2 is a definable function in M

where M+ = {m ∈M |m ≥ 0}, V1 ⊆Mk1, V2 ⊆Mk2

187

APPENDIX C. ANALYSIS OF DYNAMICAL SYSTEM BY
ABSTRACTION

The following tables compares different o−minimal theories

together with the trajectories and sets which they subsume.

Theory Definable Sets Definable Trajectories

(R, <,+,−) Polyhedral (Semilinear) sets Linear trajectories

(R, <,+,−, ·) Semialgebraic sets Polynomial trajectories

(R, <,+,−, ·, {f̂}) Subanalytic sets Polynomial trajectories

(R, <,+,−, ·, exp) Semialgebraic sets Exponential trajectories

(R, <,+,−, ·, exp, {f̂}) Subanalytic sets Exponential trajectories

C.3 Control in o-minimal dynamical systems

Definition C.3.1. An o-minimal hybrid game is a tuple G =

(Q,Goal,Σ, δ, γ,G,R) on an o-minimal structureM = (M,+, 0, 1, . . .)

where

• H = (Q,Σ, δ, γ,G,R) is an o-minimal hybrid system

• Goal ⊆ Q is a subset of winning locations

• Σ is partitioned in Σc and Σu corresponding to controllable

and uncontrollable actions.

Remark C.3.2. The game is played between two players, the

controller and the environment ; the goal of the controller is to

reach a winning state whatever the environment does. In every

state s, the controller picks a delay τ and an action c ∈ Σc so

as to hope in a transition s
τ,c−→ s′. The environment has two

choices

• either it waits and executes the transition s
τ,a−→ s′ pro-

posed by the controller

• or it waits τ ′, 0 ≤ τ ′ ≤ τ , and executes a transition s
τ,u−→ s′

188

C.3. CONTROL IN O-MINIMAL DYNAMICAL SYSTEMS

The game evolves in a new state according to the choice of the

environment.

Definition C.3.3. An action (τ, a) ∈ M+ × Σ is enabled in

a state (q, x, t, y) if there exist (q′, x′, t′, y′) and (q′′, x′′, t′′, y′′)

such that (q, x, t, y)
τ−→ (q′, x′, t′, y′)

a−→ (q′′, x′′, t′′, y′′). We

write (q, x, t, y)
τ,a−→ (q′′, x′′, t′′, y′′). The set of all action en-

abled in a state (q, x, t, y) is Enb(q, x, t, y)

Definition C.3.4. A run ρ in H is a (finite or infinite) se-

quence

ρ = (q0, x0, t0, y0)
τ1,a1−→ (q1, x1, t1, y1)

τ2,a2−→ . . .

Definition C.3.5. A position along ρ is a pair (i, τ) ∈ N×M+

such that τ ≤ τi+1

• ρi = (qi, xi, ti, yi)

• ρ[(i, τ)] = (qi, γqi(xi, ti + τ))

• ρ≤(i,τ) = (q0, x0, t0, y0)
τ1,a1−→ . . .

τi−1,ai−1−→ (qi, xi, ti, yi)
τ−→

(qi, xi, ti, γqi(xi, ti + τ))

• ρ≥(i,0) = (qi, xi, ti, yi)
τi+1,ai+1−→

• if ρ is a finite run of length n, last(ρ) = (qn, xn, tn, yn)

Definition C.3.6. Runsf (G) is the set of all finite runs of G

Definition C.3.7. Runs(G) is the set of all finite and infinite

runs of G

Definition C.3.8. A controller (or a strategy) λ is a partial

function

λ : Runsf (G) −→M+ × Σc

189

APPENDIX C. ANALYSIS OF DYNAMICAL SYSTEM BY
ABSTRACTION

such that for all ρ ∈ Runsf (G), if λ(ρ) is defined then λ(ρ) is

enabled in last(ρ)

Definition C.3.9. A run ρ = (q0, x0, t0, y0)
τ1,a1−→ . . . is con-

sistent with a strategy λ, when ∀i, if λ(ρi) = (τ, a) then ei-

ther τi+1 = τ and ai+1 = a or τi+1 ≤ τ and ai+1 ∈ Σu.

Outcome(s, λ) is the set of all the runs starting from the state

s and consistent with the strategy λ.

Definition C.3.10. A run ρ = (q0, x0, t0, y0)
τ1,a1−→ . . . is win-

ning if for some i,qi ∈ Goal

Definition C.3.11. A run ρ is said to be maximal with respect

to a strategy λ if it is either infinite, or λ(ρ) is not defined.

Definition C.3.12. A strategy λ is winning from a state (q, y)

if ∀(x, t) such that γq(x, t) = y all maximal runs consistent with

λ are winning.

Problem C.3.13. Control Problem in o-minimal games. Given

an o-minimal game G and a definable initial state (q, y), deter-

mine if there exists a winning strategy λ starting from (q, y)

Definition C.3.14. An event (q, x, t, , y) can be reached from

(q0, x0, t0, y0) iff there exists a path ρ = (q0, x0, t0, y0)
τ1,a1−→

. . .
τn,an−→ (q, x, t, y). Or equivalently (q0, x0, t0, y0) can be con-

trolled to (q, x, t, , y)

Definition C.3.15. A state (q, y) can be reached from (q0, y0)

iff there exists a path ρ = (q0, x0, t0, y0)
τ1,a1−→ . . .

τn,an−→ (q, x, t, y).

Or equivalently (q0, y0) can be controlled to (q, y)

C.4 Bisimulation algorithm

The bisimulation algorithm is a general procedure in order to

find a bisimulation. (see (C.1)). In this section we will refor-

190

C.4. BISIMULATION ALGORITHM

mulate it for dynamical systems through the computation of

suffix dynamical types (Brihaye, 2006).

Definition C.4.1. Predecessor Set

Pret(P) = {y0 ∈ V2 | ∃y ∈ P ∧ y0
t→ y}

Algorithm C.1 Bisimulation Algorithm

inizialization: Q̃ := P
while ∃t ∈ Σ ∃P, P ′ ∈ Q̃ such that ∅ 6= P ∩ Pret(P ′) 6= P

set P1 = P ∩ Pret(P) and P2 = P\Pret(P)
refine Q̃ := Q̃\{P} ∪ {P1, P2}

Definition C.4.2. Fx = {I | I is an interval maximal for ∃P ∈
P ,∀t ∈ I, γ(x, t) ∈ P}

Definition C.4.3. It is the interval in Fx such that γ(x, t) ∈ It

Definition C.4.4. A word ωx0 on a partition P of the set Y

from a dynamical system D = (X, γ, T) is the succession of

sets of the partition P

ωx0 : Fx0 −→ P

where Fx0 is a succession of intervals or points of T , determined

by the trajectory γ(t,x0), of the induced partition F on T

constructed as {t ∈ T | γ(t,x0) ∈ P}.

Definition C.4.5. We denote by ΩP the set of words asso-

ciated with the dynamical system (X, γ, T) with respect to a

partition P

The set ΩP gives a complete static description of the dy-

namical system

191

APPENDIX C. ANALYSIS OF DYNAMICAL SYSTEM BY
ABSTRACTION

Definition C.4.6. Given the set of intervals

F(x,t) = {I ∈ Fx | I ≥ It}

the suffix of the world ωx associated with time t is the re-

striction

ω(x,t) = ωx|F(x,t)

Definition C.4.7. The suffix dynamical type of y ∈ Y with re-

spect to a partition P of V2, given a dynamical system (X, γ, T),

is defined by

SufP(y) = {ω(x,t) | γ(t,x) = y}

Definition C.4.8. The suffix partition with respect to a par-

tition P of a dynamical system (D, γ, T) is the partition in-

duced by the equivalence relation on the phase space Y between

points having the same suffix dynamical type.

The Bisimulation algorithm ensures that either P ≡ Suf(P)

or Suf(P) refines P . In the former case we obtain the bisimu-

lation P . In the latter we iterate the algorithm until Suf i(P).

This let us write a new version of the bisimulation algorithm,

procedure Bisω (see Algorithm (C.2))

Lemma C.4.9. (Brihaye, 2006) Given a dynamical system

D and a partition P of its phase space iterating the partition

induced by Suf we obtain

P ≺ Suf(P) ≺ Suf2(P) ≺ · · · ≺ Sufk(P) ≺ . . .

192

C.4. BISIMULATION ALGORITHM

Algorithm C.2 Suffix Procedure

inizialization: P := P0

continue:=TRUE
do

compute the set of the words ΩP
associate SufP(y) with each y ∈ V2 and Build

Suf(P)
if P = Suf(P)

then continue:=FALSE;
else P := Suf(P)

while (continue)
return P

Example C.4.10. Consider the system

dx

dt
= −x

Calculating the transition system∫ x(t)

x0

dx

x
= .

∫ t

t0

dt

then

ln(x(t))− ln(x0) = −(t− t0)

from which

x(t) = x0e
t0e−t

γx0(x, t) = x0e
t0e−t

Given the partition P = {A = {x ∈ R : x < 1}, B = {x ∈
R : x ≥ 1}}

193

APPENDIX C. ANALYSIS OF DYNAMICAL SYSTEM BY
ABSTRACTION

SufP(y ∈ A) = {A}, SufP(y ∈ B) = {B,A}

Suf(P) = {A,B}

C.5 O-minimal system and Feed Forward Net-

works

Using arguments from model theory in (Sontag, 1996) it is

proved that for a functional quadratic loss between a dataset

of N labelled examples and the output of different types of

Neural Networks find an upper bound for the number of critical

points, local minima of the functional, assuming that N ≥
2K(m+ 2) + 3 (i.e. enough samples to make the problem not

undetermined). Now we use the same arguments from Model

Theory to study the possibility of applying Bisω algorithm to

neural networks.

C.6 Bisimulation procedure applied

We will find bisimulation for increasing complex systems in

order to understand how the Bisimulation procedure could be

applied.

C.6.1 Single ’feed forward’ Neuron

Let us firstly consider a simple network (see Figure C.1) of only

one neuron with a single input. So let us consider the equation:

γsingle(x,w, θ) = w · σ(x+ θ) (C.1)

194

C.6. BISIMULATION PROCEDURE APPLIED



x

y

Figure C.1: Single ’feed forward’ neuron

where σ = 1/(1+e−x). If we consider the order-minimal theory

(R,≤,+, ·, ex, 0, 1) we are able to build an o-minimal dynamical

system:

Lemma C.6.1. Let R = (R,≤,+, ·, ex, 0, 1) and γsingle(x,w, θ) =

w·σ(x+θ). Then (R, γsingle) is an o-minimal dynamical system

Proof. The graph of γ is the set

G = {(x,w, θ, γ(x,w, θ)}

As we can write

G = {(x,w, θ, y) ∈ R4 : y · (ex+θ + 1) = w · ex+θ}

in fact we can write

y = w · σ(x+ θ) = w · 1

1 + e−x−θ

195

APPENDIX C. ANALYSIS OF DYNAMICAL SYSTEM BY
ABSTRACTION

and then

y · (1 + e−x−θ) = w

from which

y · e
+x+θ

e+x+θ
(1 + e−x−θ) = y · (e+x+θ + 1)

e+x+θ
= w

and finally

y · (ex+θ + 1) = w · ex+θ

Thus

φ(x,w, θ, y) = y · (ex+θ + 1) = w · ex+θ

is clearly definable and is clearly a formula in the o-minimal

theory (R,≤,+, ·, ex, 0, 1).

C.6.2 Bisimulation for a single neuron

Let us consider the simplified equation γ : R× R −→ R

γ(x, t) = (x, γsingle(x, t))

with γsingle(x, t) = x · σ(t). Let us consider the order-minimal

theory R = (R,≤,+, ·, ex, 0, 1). The system (R, γ) is clearly an

o-minimal dynamical system.

Then, to start with, consider the partition (see Figure C.2)

of R2, P0 = {P 0
1 , P

0
2 } with

• P 0
1 = {(−∞,∞)× [2, 3]}

• P 0
2 = {R2\P 0

1 } = {(−∞,∞) × (−∞, 2) ∪ (−∞,∞) ×
(3,∞)}

Let us apply by hand the procedure of suffix partition.

196

C.6. BISIMULATION PROCEDURE APPLIED

P1

Figure C.2: Single Neuron trajectories and partition space.

197

APPENDIX C. ANALYSIS OF DYNAMICAL SYSTEM BY
ABSTRACTION

Suffix partition for a single neuron

Let us apply the Bisω procedure. Having the partition P0 =

{P 0
1 , P

0
2 }, let us assign the simbol a to states in partition P 0

1

and symbol b to states in partition P 0
2 .

• Fx = {I | I is an interval maximal for ∃P ∈ P0, ∀t ∈ I, γsingle(x, t) ∈
P}

– e.g. Fx0=5 = {(−∞, σ−1(2/5)), [σ−1(2/5), σ−1(4/5)], (σ−1(4/5),∞)}

• It is the interval in Fx such that γsingle(x, t) ∈ It

– e.g. in Fx0=5 we have It=0.5 = [σ−1(2/5), σ−1(4/5)]

• F(x,t) = {I | I ∈ Fx ∧ I ≥ It}

– e.g. F(x0=5,t=0.5) = {[σ−1(2/5), σ−1(4/5)], (σ−1(4/5),∞)}

• associating to each Pi ∈ P a symbol ai we obtain ωx(I) =

ai with I ∈ Fx

– e.g. associating a with P 0
1 and b with P 0

2 , ωx0=5((−∞, σ−1(2/5)) =

b

• Given Fx = {I1, . . . , In}, with n ∈ N, ωx = b1 . . . bn with

bi = ωx(Ii)

– e.g. ωx0=5 = bab

• the suffix of the world ωx associated wih time t is the

restriction ω(x,t) = ωx|F(x,t)

– e.g. ω(x0=5,t=0.5) = ba

• SufP0(y) = {ω(x,t) | γsingle(x, t) = y} induces an equivalent

relation of points of the output space having the same

suffix dynamical type:

198

C.6. BISIMULATION PROCEDURE APPLIED

It is possible to see that the space can be partition into six

zones

• P 1
1 = (−∞,∞) × (−∞, 0] ∪ ∪(−∞,∞) × {(t, y) | y ≤ 2 ·
σ(t) ∧ y ∈ (0, 2)} ∪ ∪(−∞,∞)× (4,∞)

• P 1
2 = (−∞,∞) × {(t, y) | y > 2 · σ(t) ∧ y ≤ 4 · σ(t) ∧ y ∈

(0, 2)}

• P 1
3 = (−∞,∞)× {(t, y) | y > 4 · σ(t) ∧ y ∈ (0, 2)}

• P 1
4 = (−∞,∞)× {(t, y) | y ≤ 4 · σ(t) ∧ y ∈ [2, 4]}

• P 1
5 = (−∞,∞)× {(t, y) | y > 4 · σ(t) ∧ y ∈ [2, 4]}

In fact it happens that

• SufP0(P 1
1) = b

• SufP0(P 1
2) = ba

• SufP0(P 1
3) = bab

• SufP0(P 1
4) = a

• SufP0(P 1
5) = ab

The system satisfies the hypothesis of suffix determinism, i.e.

only one word is associated with each point of the phase space

(see Brihaye, 2006). We can go on denoting P1 = Suf(P0) =

{P 1
1 , P

1
2 , P

1
3 , P

1
4 , P

1
5 }, assigning to each partition a symbol ai −→

P 1
i .

It happens that

• SufP1(P 1
1) = a1

• SufP1(P 1
2) = a2a4

• SufP1(P 1
3) = a3a5a1

199

APPENDIX C. ANALYSIS OF DYNAMICAL SYSTEM BY
ABSTRACTION

• SufP1(P 1
4) = a4

• SufP1(P 1
5) = a5a1

so we find Suf(P1) = P1 or equivalently, as we expected from

the property of suffix determinism, Suf2(P1) = Suf(P1) and

the procedure stops.

C.6.3 Output of a single neuron

Let us consider the equation γ : R× R −→ R

γ(x, t) = (x, γout(x, t))

with γout(x, t) = σ(x1 ·σ(t)). Let us consider the order-minimal

theory R = (R,≤,+, ·, ex, 0, 1). The system (R, γ) is clearly an

o-minimal dynamical system. Note that this can be considered

as the “output” of the one-neuron equation previously consid-

ered.

Then, to start with, consider the partition (see Figure C.3)

of R2, P0 = {P 0
1 , P

0
2 } with

• P 0
1 = (−∞,∞)× [0.7, 0.9]

• P 0
2 = R2\P 0

1 = (−∞,∞)×(−∞, 0.7)∪(−∞,∞)×(0.9,∞)

Reasoning in the same manner as for the single neuron case,

we obtain

•

P 1
1 = (−∞,∞)× (−∞, 0] ∪
∪ (−∞,∞)× {(t, y) | y ≤ σ(σ−1(0.7) · σ(t)) ∧ y ∈ (0, 2)} ∪
∪ (−∞,∞)× (4,∞)

200

C.6. BISIMULATION PROCEDURE APPLIED

0

0.2

0.4

0.6

0.8

1

-3 -2 -1 0 1 2 3

y

t

Output of Single Neuron

Figure C.3: Output of a single Neuron trajectories and parti-
tion space

201

APPENDIX C. ANALYSIS OF DYNAMICAL SYSTEM BY
ABSTRACTION

• P 1
2 = (−∞,∞) × {(t, y) | y > σ(σ−1(0.7) · σ(t)) ∧ y ≤
σ(σ−1(0.9) · σ(t)) ∧ y ∈ (0, 2)}

• P 1
3 = (−∞,∞)×{(t, y) | y > σ(σ−1(0.9)·σ(t))∧y ∈ (0, 2)}

• P 1
4 = (−∞,∞)×{(t, y) | y ≤ σ(σ−1(0.9) ·σ(t))∧y ∈ [2, 4]}

• P 1
5 = (−∞,∞)×{(t, y) | y > σ(σ−1(0.9) ·σ(t))∧y ∈ [2, 4]}

As we can see the

C.6.4 Network with monotonic condition

Given a network model

xout(xin) = γ(whout, . . . , w
h
H , w

in
1 , . . . , w

in
H , xin) =

H∑
h=1

whout · σ(xh) =

=
H∑
h=1

whout · σ(winh · σ(xin)︸ ︷︷ ︸
θ1

)(C.2)

∂xout
∂xin

=
H∑
h=1

whout ·
∂σ(θ1)

∂xin
=

H∑
h=1

whout ·
∂σ(θ1)

∂θ1
· ∂θ1

∂xi
=

=
H∑
h=1

whout ·
∂σ(θ1)

∂θ1
· winh

To ensure monotonicity of xoutwith respect to xin, the function

has to respect
∂xout
∂xin

≥ 0

202

C.6. BISIMULATION PROCEDURE APPLIED

and as ∂σ(θ1)
∂θ1

= σ(θ1) · (1 − σ(θ1)) ≥ 0, the only condition to

satisfy is
H∑
h=1

whout · winh ≥ 0 (C.3)

A simpler suffcient condition to obtain the same thing is to

have

whout, w
in
h ≥ 0 ∀h ∈ {1, . . . , H}

The condition (C.4) can be generalized to multiple layers where

we have (Lang, 2005)

LH∑
lH=1

wlHout · · ·
L2∑
l2=1

wl2l3

L1∑
l1=1

wl1l2 · w
in
h ≥ 0 (C.4)

This condition can be considered in order to look for a gen-

eral procedure to apply Bisω to Networks. The monotonicity,

in fact, allows to refine partitions checking the edges of the

intervals.

C.6.5 Single CTRNN neuron

Considering the equation for a single CTRNN neuron:

ẏ = −y + w · σ(y + θ) + I

We do not know if the solutions of this equations are all

o-minimal. In general we do not have a way to distinguish

the o-minimal solution. However if we consider the DTRNN

approximation:

yk+1 = yk + ∆t(−yk + w · σ(yk + θ) + I)

203

APPENDIX C. ANALYSIS OF DYNAMICAL SYSTEM BY
ABSTRACTION

we can write

f(y;w, θ, I) = −y + w · σ(y + θ) + I

y1 = y0 + ∆t · f(y0)

then

y2 = y1 + ∆t · f(y1) =

= y0 + ∆t · f(y0) + ∆tf(y0 + ∆t · f(y0))

and

y3 = y2 + ∆t · f(y2) =

= y0 + ∆t · f(y0) + ∆tf(y0 + ∆t · f(y0)) +

+ ∆t · f(y0 + ∆t · f(y0) + ∆tf(y0 + ∆t · f(y0)))

We can write a transfer function bounding the number of iter-

ations N

γCTRNN(y0, t) ≈
N∑
k=0

yk−1 + ∆t · f(y0, I)

This transfer function considered in a bounded time interval

is still o-minimal. Thus also this equation admits a finite ab-

straction.

204

Part I

Bibliography

205

Bibliography

Abbott, L. F., Kepler, T. B., 1990. Model Neurons: From

Hodgkin-Huxley to Hopfield. In: Garrido, L. (Ed.), Statis-

tical Mechanics of Neural Networks. XI Sitges Conference,

Springer-Verlag, Berlin, pp. 5–18.

Almeida, L. B., 1990. A learning rule for asynchronous percep-

trons with feedback in a combinatorial environment, 102–111.

Andersen, R., Snyder, L., Bradley, D., Xing, J., 1997. Multi-

modal representation of space in the posterior parietal cortex

and its use in planning movements. Annual review of neuro-

science 20, 303–330.

Antoulas, A. C., Sorensen, D. C., Gugercin, S., 2001. A survey

of model reduction methods for large-scale systems. Contem-

porary Mathematics 280, 193–219.

Bailu, Sil, T. A., 2009. The role of competitive learning in the

generation of dg fields from ec inputs. Cognitive Neurody-

namics 3 (2), 177–187.

207

Beer, R. D., 1995a. A dynamical systems perspective on agent-

environment interaction. Artificial Intelligence 72, 173–215.

Beer, R. D., 1995b. On the dynamics of small continuous-time

recurrent neural networks. Adaptive Behavior 3 (4), 469–509.

Beer, R. D., 2006. Parameter space structure of continuous-

time recurrent neural networks. Neural Computation 18 (12),

3009–3051.

Bishop, C. M., 2006. Pattern Recognition and Machine Learn-

ing (Information Science and Statistics). Springer-Verlag

New York, Inc., Secaucus, NJ, USA.

Blynel, J., Floreano, D., 2003. Exploring the T-Maze: Evolving

Learning-Like Robot Behaviors using CTRNNs. In: 2nd Eu-

ropean Workshop on Evolutionary Robotics (EvoRob’2003).

Branicky, M. S., 1995. Universal computation and other capa-

bilities of hybrid and continuous dynamical systems. Theo-

retical Computer Science 138 (1), 67–100.

Brihaye, T., 2006. Verification and control of o-minimal hybrid

systems and weighted timed automata. Ph.D. thesis, Univer-

sité de Mons-Hainaut.

Clarke, E. M., Grumberg, O., Peled, D. A., January 2000.

Model Checking. The MIT Press.

Cotter, N. E., Conwell, P. R., June 1990. Fixed-weight net-

works can learn. pp. 553–559 vol.3.

De Falco, I., Della Cioppa, A., Donnarumma, F., Maisto, D.,

Prevete, R., Tarantino, E., 2008. CTRNN parameter learning

using DIfferential Evolution. In: Ghallab, M., Spyropoulos,

208

C. D., Fakotakis, N., Avouris, N. (Eds.), ECAI 2008, 18th

European Conference on Artificial Intelligence. pp. 783–784.

Dehaene, S., 2005. Evolution of Human Cortical Circuits for

Reading an Arithmetic: The “Neuronal Recycling” Hypothe-

sis. From Monkey Brain to Human Brain. A Fyssen Founda-

tion Symposium. Bradford MIT Press, Ch. 8, pp. 133–157.

Donnarumma, F., Prevete, R., Trautteur, G., March 2007. Vir-

tuality in neural dynamical systems. In: International Con-

ference on Morphological Computation. Venice Italy.

Dunn, N. A., Lockery, S. R., Pierce-Shimomura, J. T., Conery,

J. S., 2004. A neural network model of chemotaxis predicts

functions of synaptic connections in the nematode caenorhab-

ditis elegans. Journal of Computational Neuroscience 17 (2),

137–147.

E., Oztop, A. M., 2002. Schema design and implementation of

the grasp-related mirror neuron system. Biological Cybernet-

ics 87 (2), 116–140.

Eck, D., 2006. Generating music sequences with an echo state

network. In: NIPS 2006 workshop on Echo State Networks

and liquid state machines.

Fadiga, L., Fogassi, L., Gallese, V., Rizzolatti, G., 2000. Visuo-

motor neurons: ambiguity of the discharge or ’motor’ percep-

tion? International Journal of Psychophysiology 35, 165–177.

Floreano, D., Mondada, F., 1994. Automatic creation of an

autonomous agent: Genetic evolution of a neural-network

driven robot. In: Proceedings of the Conference on Simu-

lation of Adaptive Behavior. MIT Press, Cambridge, MA,

USA, pp. 421–430.

209

Fontana, W., 2006. Pulling Strings. Science 314 (5805), 1552–

1553.

Friston, K., Kiebel, S., 2009. Cortical circuits for perceptual

inference. Neural Networks In Press, Corrected Proof, –.

Funahashi, K., Nakamura, Y., 1993. Approximation of dynam-

ical systems by continuous time recurrent neural networks.

Neural Networks 6 (6), 801–806.

Fyhn, M., Hafting, T., Treves, A., Moser, M.-B., Moser, E. I.,

March 2007. Hippocampal remapping and grid realignment

in entorhinal cortex. Nature 446 (7132), 190–194.

Gallese, V., Goldman, A., December 1998. Mirror neurons and

the simulation theory of mind-reading. Trends in Cognitive

Sciences 2 (12), 493–501.

Garzillo, C., Trautteur, G., 2009. Computational virtuality in

biological systems. Theoretical Computer Science 410 (4-5),

323–331.

Girard, A., Pappas, G. J., 2005. Approximate bisimulations for

nonlinear dynamical systems. In: Decision and Control, 2005

and 2005 European Control Conference. CDC-ECC ’05. 44th

IEEE Conference on. pp. 684–689.

Girard, A., Pappas, G. J., May 2007. Approximation met-

rics for discrete and continuous systems. Automatic Control,

IEEE Transactions on 52 (5), 782–798.

Graça, D. S., Campagnolo, M. L., Buescu, J., 2005. Robust

simulations of turing machines with analytic maps and flows.

New Computational Paradigms, 167–179.

210

Guckenheimer, J., Holmes, P., 1986. Nonlinear Oscillations,

Dynamical Systems, and Bifurcations of Vector Fields.

Springer-Verlag.

Gupta, M. M., Homma, N., Jin, L., 2003. Static and Dynamic

Neural Networks: From Fundamentals to Advanced Theory.

John Wiley & Sons, Inc., New York, NY, USA.

Hale, J. K., Koçac, H., 1991. Dynamics and Bifurcations.

Springer-Verlag.

Haschke, R., 2004. Input space bifurcation manifolds of recur-

rent neural networks. Ph.D. thesis, Bielefeld University, Neu-

roinformatics Group, Faculty of Technology, Bielefeld, Ger-

many.

Haydon, P. G., Carmignoto, G., 2006. Astrocyte control of

synaptic transmission and neurovascular coupling. Physiolog-

ical Reviews 86 (3), 1009–1031.

Hines, M., Carnevale, N. T., 1998. Computer modeling meth-

ods for neurons. The Handbook of Brain Theory and Neural

Networks, 226–230.

Hochreiter, S., Younger, S. A., Conwell, P. R., 2001. Learn-

ing to learn using gradient descent. In: ICANN ’01: Pro-

ceedings of the International Conference on Artificial Neural

Networks. Springer-Verlag, London, UK, pp. 87–94.

Hopfield, J. J., Tank, D. W., 1985. Neural computation of deci-

sions in optimization problems. Biological Cybernetics 52 (3),

141–152.

Hopfield, J. J., Tank, D. W., 1986. Computing with neural

circuits: A model. Science 233, 625–633.

211

Huo, J., Murray, A., 2009. The adaptation of visual and au-

ditory integration in the barn owl superior colliculus with

spike timing dependent plasticity. Neural Networks 22 (7),

913–921.

Ito, M., Tani, J., 2004. Generalization in learning multiple

temporal patterns using RNNPB. In: ICONIP: International

Conference on Neural Information Processing. pp. 592–598.

Izhikevich, E. M., 2004. Which model to use for cortical spik-

ing neurons? IEEE Transactions on Neural Networks 15 (5),

1063–1070.

Izquierdo-Torres, E., Harvey, I., 2007. Hebbian learning us-

ing fixed weight evolved dynamical ‘neural’ networks. IEEE

Symposium on Artificial Life, ALIFE, 394–401.

Izquierdo-Torres, E., Harvey, I., Beer, R. D., 2008. Associa-

tive learning on a continuum in evolved dynamical neural

networks. Adaptive Behavior 16, 361–384.

Jaeger, H., Lukosevicius, M., Popovici, D., Siewert, U., 2007.

Optimization and applications of echo state networks with

leaky- integrator neurons. Neural Networks 20 (3), 335–352.

Kambhampati, C., Garces, F., Warwick, K., 2000. Approxima-

tion of non-autonomous dynamic systems by continuous time

recurrent neural networks. Neural Networks, IEEE - INNS -

ENNS International Joint Conference on 1, 1064.

Khalil, H. K., December 2002. Nonlinear systems. Prentice

Hall.

Kiebel, S. J., Daunizeau, J., Friston, K. J., 11 2008. A

hierarchy of time-scales and the brain. PLoS Comput Biol

212

4 (11), e1000209.

URL http://dx.doi.org/10.1371%2Fjournal.pcbi.

1000209

Kier, R. J., Ames, J. C., Beer, R. D., Harrison, R. R., 2006. De-

sign and implementation of multipattern generators in analog

vlsi. IEEE Transactions on Neural Networks 17 (4), 1025–

1038.

Koenig, N., Howard, A., September 2004. Design and use

paradigms for gazebo, an open-source multi-robot simula-

tor. In: IEEE/RSJ International Conference on Intelligent

Robots and Systems. Sendai, Japan, pp. 2149–2154.

La Camera, G., Rauch, A., Thurbon, D., Luscher, H.-R., Senn,

W., Fusi, S., 2006. Multiple Time Scales of Temporal Re-

sponse in Pyramidal and Fast Spiking Cortical Neurons. J

Neurophysiol 96 (6), 3448–3464.

Lambrinos, D., Möller, R., Labhart, T., Pfeifer, R., Wehner,

R., 2000. A mobile robot employing insect strategies for nav-

igation. Robotics and Autonomous Systems 30, 39–64.

Lang, B., 2005. Monotonic multi-layer perceptron networks as

universal approximators. In: Artificial Neural Networks: For-

mal Models and Their Applications - ICANN 2005. pp. 31–37.

Lapedes, A., Farber, R., 1986. A self-optimizing, nonsymmet-

rical neural net for content addressable memory and pattern

recognition. Phys. D 2 (1-3), 247–259.

Maass, W., Natschläger, T., Markram, H., 2002. Real-time

computing without stable states: a new framework for neural

computation based on perturbations. Neural Computation

14 (11), 2531–2560.

213

http://dx.doi.org/10.1371%2Fjournal.pcbi.1000209
http://dx.doi.org/10.1371%2Fjournal.pcbi.1000209

Marker, D., 2002. Model Theory: an introduction. Springer.

McCulloch, W. S., Pitts, W. H., 1943. A logical calculus of the

ideas immanent in nervous activity. Bulletin of Mathematical

Biophysic 5, 115–133.

Nishide, S., Ogata, T., Yokoya, R., Tani, J., Komatani, K.,

Okuno, H. G., 2009. Autonomous motion generation based on

reliable predictability. Journal of Robotics and Mechatronics

21 (4).

Paine, R. W., Tani, J., 2004. Motor primitive and sequence

self-organization in a hierarchical recurrent neural network.

Neural Networks 17 (8-9), 1291–1309, new Developments in

Self-Organizing Systems.

Parrilo, P. A., December 2003. Structured semidefinite pro-

grams and semialgebraic geometry methods in robustness

and optimization. Ph.D. thesis, California Institute of Tech-

nology, Pasadena, CA.

Pearlmutter, B. A., September 1995. Gradient calculations for

dynamic recurrent neural networks: A survey. IEEE Trans-

actions on Neural Networks 6 (5), 1212–1228.

Pena, J., Konishi, M., 2004. Robustness of multiplicative pro-

cesses in auditory spatial tuning. The Journal of Neuroscience

24 (40), 8907–8910.

Pineda, J. A., 1987. Generalization of back propagation to re-

current and higher order neural networks. In: NIPS. pp. 602–

611.

Prajna, S., Papachristodoulou, A., Parrilo, P. A., 2002. Intro-

ducing sostools: a general purpose sum of squares program-

214

ming solver. In: Decision and Control, 2002, Proceedings of

the 41st IEEE Conference on. Vol. 1. pp. 741–746 vol.1.

Price, K. V., Storn, R. M., Lampinen, J. A., 2005. Differential

Evolution: A Practical Approach to Global Optimization.

Natural Computing Series. Springer-Verlag.

Reeve, R., Webb, B., Horchler, A., Indiveri, G., Quinn, R.,

2005. New technologies for testing a model of cricket phono-

taxis on an outdoor robot. Robotics and Autonomous Sys-

tems 51 (1), 41–54.

Regev, A., Shapiro, E., 2002. Cellular abstractions: Cells as

computation. Nature 419 (6905), 343.

Riesenhuber, M., Poggio, T., 2002. Neural mechanisms of ob-

ject recognition. Current Opinion in Neurobiology 12 (2),

162–168.

Rizzolatti, G., Gentilucci, M., 1988. Motor and visual-motor

functions of the premotor cortex. Neurobiology of Neocortex,

269–284.

Rumelhart, D., Hinton, G., McClelland, J., 1986. Parallel Dis-

tributed Processing: Explorations in the Microstructure of

Cognition. Vol. 1. MIT Press Cambridge, MA, USA, pp. 605–

636.

Salinas, E., Abbott, L., 1996. A model of multiplicative neural

responses in parietal cortex. In: PNAS. Vol. 93. pp. 11956–

11961.

Salmen, M., Plöger, P. G., April 2005. Echo state networks used

for motor control. In: Robotics and Automation, 2005. ICRA

2005. Proceedings of the 2005 IEEE International Conference

on. pp. 1953–1958.

215

Schindler, K., Gool, L. V., de Gelder, B., 2008. Recognizing

emotions expressed by body pose: A biologically inspired

neural model. Neural Networks 21 (9), 1238–1246.

Shannon, C., 1956. A universal turing machine with two inter-

nal states. Automata Studies, 157–165.

Siegelmann, H. T., 1999. Neural Networks and Analog Com-

putation Beyond the Turing Limit. Birkäuser.

Siegelmann, H. T., Ben-Hur, A., Fishman, S., 2000. Comments

on attractor computation. International Journal of Comput-

ing Anticipatory Systems.

Siegelmann, H. T., Sontag, E. D., 1995. On the computational

power of neural nets. Journal of Computer and System Sci-

ences 50 (1), 132–150.

Skowronski, M. D., Harris, J. G., 2007. Automatic speech

recognition using a predictive echo state network classifier.

Neural Networks 20 (3), 414–423.

Sloman, A., 2008. The well-designed young mathematician. Ar-

tificial Intelligence 172 (18), 2015–2034.

Sloman, A., Chrisley, R., 2003. Virtual machines and con-

sciousness. Journal of Consciousness Studies 10, 4–5.

Sontag, E. D., 1990. Mathematical control theory: determinis-

tic systems. Springer-Verlag New York, Inc., New York, NY,

USA.

Sontag, E. D., 1996. Critical points for least-squares problems

involving certain analytic functions, with applications to sig-

moidal nets. In: Advances in Computational Mathematics

216

(Special Issue on Neural Networks. Publications, pp. 245–

268.

Steil, J. J., July 2004. Backpropagation-decorrelation: online

recurrent learning with o(n) complexity. Vol. 2. pp. 843–848

vol.2.

Strogatz, S. H., 1994. Nonlinear dynamics and chaos. Addison

Wesley, New York.

Tabuada, P., Ames, A. D., Julius, A., Pappas, G. J., 2008. Ap-

proximate reduction of dynamic systems. Systems & Control

Letters 57 (7), 538–545.

Tani, J., Ito, M., Sugita, Y., 2004. Self-organization of dis-

tributedly represented multiple behavior schemata in a mir-

ror system: reviews of robot experiments using rnnpb. Neural

Networks 18 (1), 103–104.

Tino, P., Horne, B. G., Giles, C. L., 2001. Attractive peri-

odic sets in discrete time recurrent networks (with emphasis

on fixed point stability and bifurcations in two-neuron net-

works). Neural Computation 13, 1379–1414.

Tong, M. H., Bickett, A. D., Christiansen, E. M., Cottrell,

G. W., 2007. Learning grammatical structure with echo state

networks. Neural Networks 20 (3), 424–432.

Trautteur, G., Tamburrini, G., 2007. A note on discreteness

and virtuality in analog computing. Theoretical Computer

Science 371, 106–114.

Van Den Dries, L., 1998. Tame Topology and O-minimal Struc-

tures. Cambridge University Press.

217

Yamauchi, B. M., Beer, R. D., 1994. Sequential behavior and

learning in evolved dynamical neural networks. Adaptive Be-

havior 2 (3), 219–246.

Yamazaki, T., Tanaka, S., 2007. The cerebellum as a liquid

state machine. Neural Networks 20 (3), 290–297.

Younger, A., Conwell, P., Cotter, N., 1999. Fixed-weight on-

line learning. IEEE Transactions on Neural Networks 10 (2),

272–283.

Younger, A. S., Redd, E., 2008. Learning at the speed of light:

A new type of optical neural network. In: Optical SuperCom-

puting. Vol. 5172. Springer Berlin / Heidelberg, pp. 104–114.

Zegers, P., Sundareshan, M. K., May 2003. Trajectory gener-

ation and modulation using dynamic neural networks. IEEE

Transactions on Neural Networks 14, 520–533.

Zhang, Y., September 1994. A foundation for the design and

analysis of robotic systems and behaviors. Ph.D. thesis, Uni-

versity of British Columbia.

218

	Introduction
	Background and motivation
	Programmability in biological systems
	A model for programmability in neural networks
	Related approaches
	Plan of the dissertation
	CTRNNs as models of neuronal networks
	CTRNN model
	CTRNN biological interpretation
	CTRNN and DTRNN
	CTRNNs as universal approximators
	CTRNN as dynamical systems
	Background notions on Dynamical System Theory
	Attractor computation
	Virtuality and Programmability
	Learning and programmability in fixed neural structures
	A preliminary study: Searching for virtuality in CTRNNs
	Virtuality and programmability
	Dynamical Multiplication Architecture
	Programmability through dynamical multiplication
	DMA explained
	DMA properties

	A theory for comparing DMANs
	Background notions in Bifurcation Theory
	A formal definition of abstraction
	Similarity measures
	Application of the method

	Experiments and Results: validation of the model
	Ideal mul approximations
	Single neuron DMAN
	Programmable nand - or DMAN
	Programmer Network
	Robustness and time scale problem
	NetOne on different time scales
	NetTwo and NetFive cases

	Conclusions and Future Work
	Results of the dissertation
	Virtuality learning for the DMA
	DMANs Compositionality

	Preliminary Mathematical notions
	Topology language
	On Turing Virtuality in neural networks
	Turing Virtuality in Neural Networks
	Rational Neural Network Model
	p-stack machine
	Rational Neural Network Construction
	Analysis of Dynamical System by abstraction
	Analysis by abstraction
	O-minimal systems
	Control in o-minimal dynamical systems
	Bisimulation algorithm
	O-minimal system and Feed Forward Networks
	Bisimulation procedure applied
	I Bibliography

