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RIASSUNTO 

 

PROGETTAZIONE E CARATTERIZZAZIONE DI SCAFFOLD MOLECOLARI 

 

Nell’era post-genomica lo studio delle interazioni tra biomolecole ed in particolare quelle 

proteina-proteina riveste sempre maggiore interesse, in quanto esse sono alla base di 

tutti quei processi fisiologici mediati dalla formazione di complessi fra biomolecole. 

Pertanto, la conoscenza dettagliata dei meccanismi molecolari responsabili di queste 

interazioni, è indispensabile per sviluppare molecole capaci di modulare l’attività 

biologica delle proteine target e quindi dei relativi processi cellulari. 

Attualmente, l’identificazione di molecole capaci di inibire o favorire le interazioni 

proteina-proteina o proteina-acidi nucleici rappresenta una delle maggiori sfide del drug 

discovery. Infatti, diversamente dal tradizionale approccio basato sul design di molecole 

modellate su substrati specifici per siti attivi enzimatici, lo sviluppo di composti capaci di 

modulare le interazioni proteina-proteina è un processo più complesso. 

L’interfaccia molecolare coinvolta è solitamente un’area estesa che comprende più regioni 

non contigue mancanti di tasche adatte al legame con piccole molecole. Inoltre, queste 

regioni spesso presentano elementi di struttura secondaria che una volta isolati dal loro 

contesto proteico non assumono la conformazione nativa. 

Finora, diverse classi di composti sono state utilizzate per modulare le interazioni 

proteina-proteina: anticorpi,  peptidi e miniproteine e raramente piccole molecole 

organiche [1]. Queste ultime, infatti, sebbene costituiscano la maggior parte dei principi 

attivi dei farmaci attualmente in commercio risultano inadatte per interagire con 

superfici proteiche molto ampie. Gli anticorpi presentano un elevata specificità e sono 

ampiamente impiegati ma hanno elevati costi di produzione. I peptidi sono considerati, 

invece, dei buoni candidati per sviluppare nuovi composti che interferiscono con il 

riconoscimento proteina-proteina [2]. I principali approcci attualmente utilizzati per 

sviluppare composti di natura peptidica consistono nello screening di librerie fagiche, 

sintesi parallele di peptidi su membrana e “rational design”. Quest’ultimo richiede che 

siano disponibili le informazioni strutturali e biochimiche su almeno uno dei due partner 

interagenti e che siano stati identificati i residui coinvolti nel legame [3]. Nel caso della 

progettazione di peptidi che mimano l’organizzazione strutturale dei segmenti coinvolti 

nell’interazione è prevista una prima fase in cui si introducano residui in modo da 

stabilizzare la struttura secondaria e una seconda nella quale si devono inserire i residui 

responsabili della interazione nella giusta orientazione spaziale. 

Un approccio alternativo è rappresentato dall’utilizzo di  scaffold [4] molecole 

strutturalmente stabili che già presentano la struttura secondaria desiderata, in cui 

possono essere direttamente introdotti i residui nella giusta orientazione spaziale.  
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L’obiettivo di questo progetto di dottorato è stato quello di progettare e caratterizzare 

scaffold molecolari, quali peptidi e mini-proteine, in grado di modulare interazioni tra 

biomolecole. 

Tale scopo è stato affrontato mediante tre diversi approcci: 

• Lo sviluppo di una nuova strategia sintetica per l’ottenimento di polipeptidi; 

funzionalmente attive mediante expressed protein ligation; 

• La caratterizzazione bio-fisica di uno scaffold peptidico elicoidale; 

• Il trasferimento di epitopi funzionali su uno scaffold proteico noto. 

 

La prima strategia consiste nella messa a punto di una procedura per legare mediante 

legami covalenti stabili l’estremità C-terminale di due frammenti polipeptidici ottenuti 

mediante espressione ricombinante in batteri. Tale strategia permette di ottenere  sistemi 

peptidici modello [5] e mini-proteine che conservano la stessa funzionalità delle proteine 

target ma le cui dimensioni sono notevolmente ridotte. La strategia sintetica prevede la 

reazione di chemical ligation tra due polipeptidi attivati come tioestere al C-terminale ed 

un linker bifunzionale caratterizzato dalla presenza di due cisteine in posizione pseudo 

N-terminale. Il linker è stato sintetizzato a partire dall’etilendiammina alla quale sono 

state legati i due residui di cisteina, mediante un legame peptidico. Le mini-proteine 

tioestere al C-terminale sono state ottenute utilizzando vettori di espressione contenenti 

inteine [6]. La procedura sintetica è stata sviluppata utilizzando come sistema modello 

per le mini-proteine, la sequenza che codifica per il sito di clonaggio del vettore pTrcHisA. 

Il vettore è stato modificato con l’inserimento dell’inteina MxeGyrA (N198A). Il costrutto di 

fusione è stato espresso nelle cellule BL21(DE3) di Escherichia coli e purificato mediante 

cromatografia di affinità su resina di chitina; la mini-proteina tioestere è stata ottenuta in 

seguito allo splicing dell’inteina in presenza di tioli. In seguito la mini-proteina tioestere è 

stata utilizzata in due diverse reazioni di ligation con il linker, per l’ottenimento di 

omodimeri ed eterodimeri. I prodotti puri, caratterizzati mediante LC-MS, sono stati 

ottenuti tutti con buone rese [7]. Tale strategia di sintesi offre la possibilità di unire 

chimicamente due frammenti proteici in modo stabile attraverso l’uso di un linker 

bifunzionale, che può essere opportunamente modificato variandone la lunghezza e la 

rigidità dello spacer tra le cisteine; ciò ha un notevole potenziale per  applicazioni 

biotecnologiche. Questa metodologia può essere utilizzata per combinare catene 

peptidiche vicine nello spazio ma non nella sequenza, per mimare, ad esempio, epitopi 

discontinui, per sintetizzare scaffold di ridotte dimensioni (mini-anticorpi) oppure in 

alternativa  domini di dimerizzazione come ad esempio le leucin zipper. 

 

Per il secondo approccio si è effettuata la caratterizzazione chimico-fisica di un peptide 

per un suo possibile utilizzo come scaffold di motivi strutturali elicoidali. 
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Recentemente è stato descritto un peptide, QK, capace di mimare in vitro ed in vivo 

l’attività biologica del VEGF [8-10] che assume in soluzione acquosa una conformazione 

elicoidale ben definita. L’analisi dei dati di dicroismo circolare e NMR indicano che il 

peptide QK presenta una stabilità termica insolita per un peptide costituito solo da 

aminoacidi naturali. Per valutare i determinanti strutturali di questa stabilità, i dati 

sperimentali sono stati integrati con simulazioni di dinamica molecolare. 

Gli studi teorici hanno indicato che la regione N-terminale ed un contatto idrofobico tra la 

Leu7 e la Leu10 sono importanti per la stabilità termica del peptide. 

Per verificare tali previsioni sono stati sintetizzati 3 peptidi analoghi di QK: QK1-12 che 

manca della parte C-terminale; QK4-15 di quella N-terminale e QK10A, in cui la Leu10 è 

stata sostituita con un’alanina. L’analisi dei peptidi, mediante dicroismo circolare  e 

NMR, ha evidenziato che QK1-12, a differenza di QK4-15, mantiene una struttura 

elicoidale e stabilità termica analoga a QK, QK10A presenta circa la metà del contenuto 

elicoidale e non mantiene l’inusuale stabilità termica [11]. Infine, utilizzando una 

combinazione di tecniche sperimentali quali CD, NMR e MD è stato possibile 

caratterizzare a livello atomico uno dei possibili pathway di formazione dell’elica del 

peptide QK10A e fornire informazioni sull’inusuale stabilità termica del peptide QK 

requisito fondamentale per  il suo impiego come scaffold elicoidale. 

 

Il terzo approccio ha previsto lo sviluppo di una mini-proteina biologicamente attiva a 

partire da uno scaffold noto. Il sistema biologico scelto è stato quello del VEGF ed i suoi 

recettori. Dall’analisi della struttura tridimensionale del complesso tra VEGF/Flt-1D2 e 

da studi di mutagenesi sono stati individuati i residui del VEGF importanti per il legame 

ai recettori [12]; questi dati hanno dimostrato che la regione di binding del VEGF per il 

recettore comprende l’elica 17-25. 

Lo scaffold scelto è stato l’Avian Pancreatic Polipeptide (APP), una miniproteina di 36 

amminoacidi, molto stabile, che possiede un’�-elica esposta al solvente ed un’elica di 

poliprolina di tipo II. Sulla base delle sovrapposizioni dell’elica del VEGF e dello scaffold 

APP sono state progettate due diverse molecole nelle quali sono stati trasferiti i residui 

responsabili dell’interazione con i recettori del VEGF e del peptide QK rispettivamente 

denominate APP1 e APP_QK. Le molecole progettate e quella wilde type sono state 

ottenute per via ricombinante nelle cellule BL21(DE3) di Escherichia coli. 

Le proteine sono state purificate mediante cromatografia di affinità ed analizzate 

mediante LC-MS. Infine, preliminari saggi biologici in vitro hanno evidenziato per la 

molecola APP_QK un’attività analoga a quella del peptide QK. 

In conclusione, questo lavoro provvedendo con diversi approcci contribuisce 

significativamente allo sviluppo di nuovi scaffold per il targeting delle interazioni 

proteina-proteina. 
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SUMMARY 

DESIGN AND CARACTERIZATION OF MOLECULAR SCAFFOLD 

 

In the post-genomic era the study of the interactions between biomolecules and in 

particular protein-protein interactions is of growing interest, since they are the basis of 

all the physiological processes mediated by the formation of complexes between 

biomolecules. Therefore, detailed knowledge of the molecular mechanisms responsible for 

these interactions is essential to develop molecules capable of modulating the biological 

activity of the protein target and then its cellular processes.  

Currently, the identification of molecules that inhibit or promote protein-protein 

interactions or protein-nucleic acids is one of the greatest challenges of drug discovery. 

Unlike the traditional approach based on the design of molecules modeled on specific 

substrates for enzymatic active sites, the development of compounds able to modulate 

protein-protein interactions is a more complex process. The interface molecules involved 

is usually an extended area that includes more non-contiguous regions lacking suitable 

pockets of binding to small molecules. Moreover, these regions often have elements of 

secondary structure that once isolated from their context, not having the protein native 

conformation. So far, several classes of compounds have been used to modulate protein-

protein interactions: antibodies, peptides and small organic molecules and rarely 

miniproteine [1]. The latter, in fact, while constituting the majority of the active 

ingredients currently on the market are unsuitable to work with very large surface 

protein. The antibodies show high specificity and are widely used but have high 

production costs. The peptides are considered, however, good candidates for developing 

new compounds that interfere with protein-protein recognition [2]. The main approaches 

currently used to develop compounds of peptidic nature consists in the screening of 

phage libraries, parallel synthesis of peptides on membrane and rational design. 

Latter requires that the structural and biochemical information available on at least one 

of the two interacting partners and have been identified residues involved in the bond [3]. 

If the design of peptides that mimic the structural organization of the segments involved 

in the interaction is expected to introduce first stage of waste in order to stabilize the 

secondary structure and a second in which you must enter the residues responsible for 

interaction in the right spatial orientation. 

An alternative approach is to use scaffold [4] molecules structurally stable that already 

have the desired secondary structure, which can be directly introduced into the residues 

in the correct spatial orientation. 

The aim of this PhD project was to design and characterize molecular scaffold, such as 

peptides and mini-proteins that can modulate the interactions between biomolecules. 

This aim was addressed by three different approaches: 
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• The development of a new synthetic strategy for obtaining polypeptides, functionally 

active protein expressed by ligation; 

• The bio-physical characterization of a helical peptide scaffold; 

• The transfer of functional epitopes on a scaffold protein known. 

 

The first strategy consists in developing a procedure for binding by stable covalent bonds 

the C-terminus of two polypeptide fragments obtained by recombinant expression in 

bacteria. This strategy allows to obtain peptide model systems [5] and mini-proteins that 

retain the same functionality of the target protein but whose dimensions are considerably 

reduced. The synthetic strategy provides for the chemical ligation reaction between two 

polypeptides activated as the C-terminal thioester and a bifunctional linker is 

characterized by the presence of two cysteines in position pseudo N-terminal. The linker 

was synthesized from dall'etilendiammina which they were linked to two cysteine 

residues via a peptide bond. The mini-protein to the C-terminal thioester was obtained 

using expression vectors containing inteine [6]. The synthetic procedure was developed 

using as a model system for the mini-protein, the sequence coding for the cloning site of 

the vector pTrcHisA. The vector was modified by the insertion dell'inteina MxeGyrA 

(N198A). The fusion construct was expressed in cells BL21 (DE3) of Escherichia coli and 

purified by affinity chromatography on chitin resin, the mini-protein thioester was 

obtained following the dell'inteina splicing in the presence of thiols. Following the mini-

protein thioester was used in two separate ligation reactions with the linker, to obtain 

homodimers and heterodimers. The pure products, characterized by LC-MS, were all 

obtained with good yields [7]. This synthetic strategy offers the opportunity to unite 

chemically two protein fragments in a stable manner through the use of a bifunctional 

linker, which can be suitably modified by varying the length and rigidity of the spacer 

between the cysteine residues and this has considerable potential for biotechnological 

applications . This methodology can be used to combine neighboring peptide chains in 

space but not in sequence, to mimic, for example, discontinuous epitopes, to synthesize 

scaffolds of small (mini-antibody) as an alternative dimerization domains such as Leucin 

zipper. 

 

For the second approach has made the chemical and physical characterization of a 

peptide for its possible use as scaffolds for helical structural reasons.  

It was recently described a peptide, QK, able to mimic in vitro and in vivo biological 

activity of VEGF [8-10] in aqueous solution which assumes a well-defined helical 

conformation. Analysis of circular dichroism and NMR data indicate that the peptide QK 

has a thermal stability is unusual for a peptide composed only of natural amino acids. To 

assess the structural determinants of this stability, the experimental data have been 

supplemented with molecular dynamics simulations.  
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Theoretical studies have indicated that the N-terminal region and a hydrophobic contact 

between the Leu7 and Leu10 are important for the thermal stability of the peptide.  

To test these predictions have been synthesized 3 peptides similar QK: QK1-12 that lacks 

the C-terminal; QK4-15 than the N-terminal and QK10A, in which Leu10 was replaced 

with un'alanina. The analysis of peptides by circular dichroism and NMR showed that 

QK1-12, unlike QK4-15, maintains a helical structure and thermal stability similar to 

QK, QK10A has about half the helical content and does not retain 's unusual thermal 

stability [11]. Finally, using a combination of experimental techniques such as CD, NMR 

and MD was possible to characterize at atomic one possible pathway for formation of the 

peptide helix QK10A and provide information sull'inusuale thermal stability of the 

peptide QK prerequisite for its use as helical scaffold. 

 

The third approach has included the development of a mini-biologically active protein 

from a scaffold known. The biological system chosen was that of VEGF and its receptors. 

An analysis of three-dimensional structure of the complex between VEGF/Flt-1D2 and 

mutagenesis have identified residues important for binding to VEGF receptors [12], these 

data demonstrated that the binding region of VEGF receptor includes the helix 17-25.  

The scaffold was the chosen Avian Pancreatic Polypeptide (APP), a miniproteina of 36 

amino acids, very stable, which owns un'�-helix exposed to solvent and thruster 

poliprolina type II. Based on the overlap of the propeller of VEGF and the APP scaffold 

have been designed in which two different molecules have been transferred to the 

residues responsible for interaction with VEGF receptors and the peptide QK respectively 

named APP1 and APP_QK. Molecules are designed and the wild type were obtained by 

recombinant cells BL21 (DE3) of Escherichia coli.  

The proteins were purified by affinity chromatography and analyzed by LC-MS. Finally, 

preliminary in vitro biological assays have shown for the molecule APP_QK a similar 

activity to that of QK peptide.  

In conclusion, this work by providing different approaches contribute significantly to the 

development of new scaffolds for targeting protein-protein interactions. 
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                                                                                                                                                                                                                             CHAPTER I         CHAPTER I         CHAPTER I         CHAPTER I    

CONTEST 

 

The study of proteins impacts directly on human health. Indeed, enzymes, receptors, and 

key regulator proteins have been targeted for decades for drug discovery. However, a 

recent and exciting development is the exploitation of a better knowledge of  interactions 

between biomolecules. Protein-protein and protein-nucleic acid interactions are central to 

many processes in molecular biology. Through such interactions, translation is initiated 

or terminated, apoptotic signals are stimulated or inhibited, transcription is activated or 

repressed, and a whole host of other cellular processes relying on recognition, regulation, 

and signaling are performed. For this reason, understanding protein-protein and protein-

nucleic acid interactions is critical for gaining insight into signaling and regulation within 

biological systems. Knowledge of these interactions might enable the development of new 

molecules  for therapies that could target a multitude of human diseases, thus 

highlighting the practical importance of understanding and modulate  such interactions.  

Developing modulators of protein–protein interactions is a far more complicated process 

that involves a numerous factors. First, the interfacial surface area necessary for specific 

recognition is typically large (approximately 750–1500 Å2), suggesting that large ligands 

may be required to compete effectively with the natural protein partner, as opposed to 

‘druglike’ small molecules that have been successfully utilized in enzyme inhibition. 

Secondly, interaction surfaces are often shallow and relatively featureless, rather than 

the well-defined binding pockets present in enzyme active sites, making the design of 

selective binders difficult. Thirdly, the binding regions of protein–protein interactions are 

often non-contiguous, so that mimicry of these domains is not possible by simple 

synthetic peptides or peptidomimetics. In addition, the adaptively of the protein surfaces 

involved in protein–protein interactions suggests that there may be binding  

conformations suitable for small molecules that are invisible in a single crystal structure, 

there by the design of suitable and effective binders can be a very difficult task. 

Finally, unlike enzyme activity that may simply be monitored by commercially available 

assays, novel and efficient screening assays must be developed for the interaction 

between proteins [Sillerud L.O. and R.S. Larson, 2005; González-Ruiz D. and H. Gohlke, 

2006; Moreira I.S. et al., 2007]. Even if few notably examples of small molecule targeting 

of protein-protein interactions have been reported, peptides still represent the molecule of 

choice to start to develop new effective protein binders. 

Several approaches are currently used to develop this type of compounds, they consist in 

the screening of phage libraries, parallel synthesis of peptides on membrane and rational 

design. 

Moreover, the identification of peptides based on the amino acid sequences found at 

protein-protein interfaces can be an excellent and straight forward way to obtain new 
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leads for antagonist development. Ather convinient strategies are based on the design of 

molecular scaffolds, protein surface mimetics, alpha-helical mimetics, beta-sheet or beta-

strand mimetics, as well as beta-turn mimetics, have been successfully utilized to 

modulate protein-protein interactions involved in a number of diseases, including cancer 

and HIV [Che Y. et al., 2006; Hershberger S.J. et al., 2007]. 

We focused on the design synthesis and characterization of molecular stable scaffolds to 

address protein-protein interactions conbining three different approaches: 

� develop of a synthetic protocol to obtain polypeptide connected through 

their C-termini; 

� biophysical characterization of a short helix peptide as molecular scaffold 

for targeting of  protein-protein interactions mediated by �-helix; 

� design and synthesis of scaffold mini-proteins to modulate angiogenesis 

targeting VEGF-receptors.  

Firstly, the intention was to develop the conditions of synthesis with higher reaction 

yields and greater biocompatibility, to assemble the fragments peptide in order to apply 

them in the development of molecular scaffolds as mini-antibodies and similar leucine-

zipper. Then we have identified the structural determinants responsible of the unusual 

stability of the QK helical peptide (L.D. D’Andrea et al., 2005, Dudar GK, et al., 2008), for 

use as a scaffold for protein-protein interactions mediated by alpha helices. Finally, we 

described the development of a molecular scaffold  to modulate  the interaction between 

VEGF and its receptors.  
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                                                                                                                                                                                                                                                 CHAPTER II CHAPTER II CHAPTER II CHAPTER II    

SYNTHETIC STRATEGY FOR POLYPEPTIDES ASSEMBLY 

 

II.1 Introduction 

 

Targeting the regions of interaction between proteins is often difficult because these are 

very broad, spanning more binding domain, and lack of pockets suitable for binding 

small molecules. Moreover, protein binding regions, very often, are composed of peptide 

segments with well-defined secondary structures that are distant in sequence but close 

in space. In recent years there have been significant efforts to obtain minimized versions 

of naturally occurring proteins, such as dimeric DNA binding proteins, which include the 

different structural motif for binding and retain their function.  

Polypeptides fragments have been assembled both by covalent and non covalent 

interactions. In the last years chemoselective reactions, such as native chemical ligation, 

Staudinger ligation, Cu(I)-catalyzed azide–alkyne cycloaddition, and imine ligation 

(hydrazone and oxime) have been widely employed as way to covalently connect two 

polypeptides. 

The most representative example of reaction yielding a native peptide bond is that 

between an N-terminal cysteine and a C-terminal �-thioester gives a native peptide bond 

at the site of ligation (figure II.1) (Dawson PE et al., 1994). In a freely reversible first step, 

a transthioesterification occurs to yield a thioester-linked intermediate; this intermediate 

rearranges irreversibly under the usual reaction conditions to form a peptide bond at the 

ligation site. 

 
Figure II.1: Schematic meccanism of the native chemical ligation (NCL) reaction. 
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The most important limitation of native chemical ligation is the fact that a cysteine 

residue must participate in the reaction as nucleophilic reaction partner. To remove this 

restriction, auxiliary groups have been developed that imitate the cysteine structure in 

that they provide a cleavable thiol unit. These auxiliaries are joined synthetically to the 

N-terminus of a peptide. A second peptide is activated at its C-terminus in a manner that 

allows capture of the auxiliary. After the capture step, a Y�N acyl transfer reaction 

produces an amide. The final step is removal of the extraneous atoms of the auxiliary, 

which often involves an additional synthetic step. The first auxiliaries used for peptide 

ligation at noncysteine residues were N�- ethanethiol and N�-oxyethanethiol (Canne L.E. 

et al.,  1996). The use of 
�
-mercaptoamino acids, in place of a cysteine residue, and their 

subsequent desulfurization offers an alternative to the use of auxiliaries. Recently this 

strategy was extendely using a 
�
-mercaptophenylalanine building block which allowed 

the insertion of a phenylalanine at the site of ligation (D. Crich and A. Banerjee, 2007; P. 

Botti and S. Tchertchian, 2006). Until recently, the necessary use of large amounts of 

desulfurization reagent was a critical disadvantage of this strategy. A new metal-free 

method was developed by Danishefky shedding new light onto the coupling– 

desulfurization strategy (B.Wu et al., 2006). 

A powerful extension of native chemical ligation is the expressed protein ligation (EPL) 

which combines protein expression with peptide synthesis (T.W. Muir Annu. Rev. 

Biochem. 2003. 72:249–289) and allow the synthesis of modified proteins with unnatural 

amino acids, biophysical probes, and stable isotopes into specific locations.  

Recently, Bertozzi (Saxon, 2000) and Raines (Nilsson, 2000) independently developed 

modified Staudinger reactions in which a native peptide bond was formed between a 

thioester and an azide-containing peptide, in the presence of phosphinobenzenethiol or 

other suitable thiols (Figure III.2). These strategies, based on the Staudinger reaction, 

although similar to the native chemical ligation reaction described earlier (Dawson, 1994) 

are characterized by the fact that no cysteine residue is required at the ligating site. 
 

 
Figure III.2: Modified Staudinger ligation developed by Nilsson et al., 2000. 
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In the case of reactions yielding a non-native linkage, the imine-ligations and azide–

alkyne cycloaddition reactions are widely used. The imine-ligation reactions involve a 

carbonyl group and a hydrazine or an aminooxy group. They are highly chemoselectives 

and both reacting groups can be straight forwardly introduced in peptides and proteins 

(Cordes EH and Jencks WP., 1962; Dirksen A et al., 2006). However, slow reaction rates 

limited the scope of this ligation method. Instead, the Cu(I)-catalyzed azide–alkyne 

cycloaddition (click chemistry) is more applied in the labeling of biological 

macromolecules rather that in peptide ligation (Kolb HC et al., 2001). 

The chemoselectivity and improved stability of the Cu(I) catalyst in the presence of 

ligands suggest a promising future of the azide–alkyne cycloaddition in peptide ligation 

(Punna S. et al., 2005). Finally, a promising novel approach for amide formation utilizes 

the selective reaction between hydroxylamines and ketoacids.  

We intend to develop a new synthetic strategy to covalently connect polypeptides through 

their C termini. This strategy has potential biochemical and bioorganic applications, for 

obtaining minimized and/or modified natural proteins and for the assembly of 

polypeptides on a same scaffold. The strategy is based on the use of an opportune linker 

and EPL reactions. 

 

II.1.1 Inteins and Expressed Protein Ligation 

 

Inteins, or “protein introns”, are a segment of protein that catalyze a posttranslational 

processing event that involves the precise removal of an internal polypeptide segment, 

from a precursor protein with the concomitant ligation of the flanking polypeptide 

sequences, termed exteins (Perler, F.B et al., 1994). Since its discovery in 1990, more 

than 200 inteins have been identified in all three domains of life (Perler, F.B., 2002). 

The inteins, ranging from 128 to 1650 amino acids, show a set of highly conserved 

sequence motifs. The most part of inteins contains the characteristic motifs of a homing 

endonuclease that confers genetic mobility upon the intein-encoding gene and splits the 

region required for splicing. An other part of inteins are known as mini-inteins because 

they lack an endonuclease-coding region. Of special interest are the naturally occurring 

transsplicing inteins in which a host gene is split into two separate coding regions, each 

fused to either the N-terminal or C-terminal portion of an intein-coding region (Wu, H. et 

al., 1998). Formation of the full-length host protein occurs when the N-terminal and C-

terminal intein regions come together to reconstitute protein splicing activity. Many 

inteins have been shown to self-splice in vitro without the requirement of external energy 

or protein cofactors (Paulus, H., 2000). The mechanism of protein splicing has been 

elucidated by the identification of key catalytic amino acid residues and intermediates. 

Most inteins start with a cysteine or serine residue that is responsible for an acyl shift at 

the N-terminal splice junction. 
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A study of the oceanic nitrogen-fixing cyanobacterium Trichodesmium erythraeum has 

showed the presence of three inteins, including one split intein, in the dnaE gene 

encoding the catalytic domain of DNA polymerase III (Liu, X.Q. and Yang, J., 2003). The 

study of T. erythraeum has also led to the first report of the coexistence of multiple 

inteins and introns in a single gene (Yang, J. et al., 2004; Liu, X.Q. et al., 2003). 

A new example of a viral intein was recently found in Mimivirus (Ogata, H. et al., 2005). 

Most intein properties facilitates their use in diverse protein engineering strategies in 

diverse protein engineering strategies. The steps that underlie protein splicing consist of 

two acyl rearrangements, a transesterification and cyclization of an asparagine. The 

elucidation of the proteinsplicing pathway led to the discovery that catalysis of each of 

the steps is often relatively independent. Thioester formation, for example, which occurs 

after the initial acyl rearrangement, can take place even when the the intein C-terminal 

asparagine is replaced with alanine and the subsequent splicing steps are blocked (Xu, 

M.Q and Perler, F.B., 1996; Chong, S.et al.., 1996). Thioester formation is the basis for 

an intein-mediated purification system in which a target protein is fused to the N 

terminus of an intein and can be released in a thiol-induced reaction. This intein fusion 

system has been extended to produce recombinant proteins possessing a C-terminal 

thioester for ligation with synthetic peptides or recombinant proteins carrying a variety of 

modifications or chemical moieties (Muir, T.W. et al., 1998; Evans, T.C. et al., 1998). 

EPL (Expressed Protein Ligation) is a protein engineering approach in which a 

recombinant protein thioester, generated by thiolysis of an intein fusion protein, is 

reacted with a synthetic or recombinant peptide with an N-terminal cysteine to produce a 

native peptide bond (Figure II.3 ).  
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Figure II.3: Recombinant protein �-thioesters and expressed protein ligation. 

 

Several groups demonstrated that inteins can be cut into two pieces that individually 

have no activity but that when combined will associate non-covalently to give a functional 

protein (Mills, K.IV. et al., 1998; Wu, H. et al., 1998; Yamazaki, T. et al., 1998). Affinity 

tags can be fused to the split site for purification of precursor fragments (Southworth, 

M.W. et al., 1998) and the reconstituted split intein then mediates a normal protein 

splicing reaction.  
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II.2 Results 

 

In order to assembly two polypeptides through their C-termini by means of a covalent 

bond The synthetic strategy we developed consists on the reaction between a bifuncional 

linker and thioester polypeptides. The bifunctional linker contains two cysteines in a N-

terminal- like position, separated by an ethylendiamine spacer; the thioester polypeptides 

are obtained by intein mediated splicing reactions. Thioesters were generated after 

splicing of proteins containing the MxeGyrA intein at the C-terminus of the amino acid 

sequences codified by the multicloning site of vectors such as a modified pTrcHisA 

(protein A) and pTXB1 (protein B), containing as purification tag a hexa-histidine 

sequence and a chitin binding domain respectively. In these constructs the MxeGyrA 

intein contains a single mutation, Asn-198-Ala, which prevents cleavage of the intein–C-

extein peptide bond, without affecting the intein N-terminal splicing reaction. After 

induction of splicing in the presence of thiols, these constructs generate respectively a 36 

and a 16 amino acid polypeptides (respectively protein A and protein B) as thioesters as 

described in materials and methods.  

 

II.2.1 Synthesis of the linker 

 

The linker was obtained reacting ethylendiamine with a two-fold excess of Boc-Cys(Trt)-

OH. After acidic deprotection of the Boc and Trt groups and purification, the desired 

linker was obtained (Figure II.4); its identity was confirmed by ESI-MS and 1H NMR 

spectrum(Figure II.5).  
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Figure II.4: Reagents and conditions 

1: Boc-Cys-(Trt)OH (2eq), NH2CH2CH2NH2 (1eq), PyBOP/HOBT (2eq), DIPEA (6eq), 
DCM for 2 hours at room temperature; 

2: TFA/DCM/TIS (50/49/1) for 5 minutes at room temperature. 
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Figure II.5: 1D Proton spectrum (DMSO d6) of linker 

and chemical shift and assignment of signals 
 

 

II.2.2 Synthesis of dimers 

 

The linker synthetized is suitable for two chemical ligation reactions. Proteins were 

expressed in Escherichia Coli BL21 (DE3) cells, transformed with the appropriate 

plasmid. The homodimer (A-linker-A) was obtained using the construct protein A-

MxeGyrA. The protein was purified by affinity chromatography using a Ni2+ NTA resin. 

The splicing and ligation reactions occurred simultaneously in phosphate buffer 20 mM, 

0.18 mM MESNA, 0.23 mM EDT, pH 7 with 0.5 equivalents of linker (Figure II.6). 

SH

O

O

HS

H2N
H
N

N
H

NH2

N
H

H
N

N
H

H
N

SH

O

O

HS
O

O

Protein A-MxeGyrA

Protein A
Protein A

 
Figure II.6: Reagents and conditions 

EDT 2%, MESNA 3% at room temperature overnight. 

 

The homodimer was obtained after an overnight incubation with a 50% yield. The yield of 

the reaction is strictly dependent on the concentration: when the protein concentration is 

50 �M or lower, only a single protein A unit connected at the C terminus with the linker 

(A-linker), was obtained. At a concentration of 130�M (or higher) the yield of dimer 
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increased up to 50%. When a threefold excess of linker is used at a protein concentration 

higher than 130 �M the yield of the homodimer is always 50%; the unreacted protein is 

converted into the A-linker derivative (Figure II.7). 

 
Figure II.7: Homodimer synthesis. 

A) RP-HPLC profile of the homodimer reaction formation, peak identity are reported. 
B) ESI-MS spectrum of A-linker-A peak. 

 

Reaction did not occur without EDT, probably because the linker easily get oxidized. For 

the synthesis of the heterodimer (A-linker-B) we used the protein A derivatized with the 

linker (A-linker) and reacted it with thioester protein B (Figure II.8). 
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Figure II.8: Reagents and conditions 

a) EDT 2%, MESNA 3% at room temperature overnight; b) EDT 2%, MESNA 3% at 4°C overnight. 
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The A-linker derivative was obtained after the splicing of the protein A-MxeGyrA fusion 

protein (20 �M) with a 3 fold excess of linker. The excess of linker was separated by 

dyalisis and the protein was identified by LCMS, purified by HPLC and lyophilized. 

The A-linker derivative co-elutes with a little amount of Protein A (C terminal carboxyl). 

The protein B-MxeGyrA fusion protein was immobilized on the chitin resin, splicing was 

induced incubating the resin in 20 mM phosphate buffer containing 500 mM NaCl, 50 

mM MESNA and 1 mM EDTA, pH7. 

The thioester was identified by LCMS, purified by HPLC and lyophilized. The purified A-

linker (0.4 mM) derivative was reacted with two equivalents of thioester protein B (0.4 

mM). Reaction was carried out in 20 mM phosphate buffer pH7, in the presence of 

MESNA and EDT overnight. A-linker was all converted into the heterodimer A-linker-B, 

while the excess protein B was converted into the EDT-thioester (Figure II.9). 

 
Figure II.9: Heterodimer synthesis 

A) RP-HPLC profile of the heterodimer reaction formation, peak identity are reported; 
* indicates products by heterodimer oxidation; 

B)  ESI-MS spectrum of A-linker-B peak. 

 

The protein B is very prone to degradation; in the mass spectra of the protein B and the 

heterodimer was finded oxidation products (M+16) and products without the first two 

amino acids (M-202). 
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II.3 Discussions 

 

In recent years there have been significant efforts to obtain minimized versions of 

naturally occurring proteins such as dimeric DNA binding proteins which retain their 

biological function (Lajmi, A. R. et al., 2000; Cuenoud, B. and Schepartz, A., 1993;  

Woolley, G. A. et al., 2006) and to assembly peptides and proteins by covalent and 

noncovalent interactions. (Sato, S. et al., 2002; Morii, T. et al., 1997; Canne, L. E. et al., 

1995). For example, host-guest inclusion complexes of 
�
-cyclodextrin and adamantane 

were used for joining two monomers by non covalent interactions (Ueno, M. et al., 1993) 

and scaffolds were employed for the synthesis of dendrimeric peptides/proteins (Tam, J. 

P. and Yu, Q., 2002; Van Baal, I. et al., 2005; Tam, J. P. et al., 2002).  

In this work we propose a one pot strategy for obtaining protein homodimers covalently 

connected at the C-terminus by Expressed Protein Ligation (EPL). The synthetic strategy 

was also extended to the synthesis of heterodimers. 

EPL is a protein engineering tool for the chemo and regio-selective modification of 

proteins based on the use of intein containing constructs (Dawson, P.E et al., 1994; 

Muir, T.W., 2003; Xu, M.Q. and Evans, T.C.Jr, 2005). Engineered inteins are used today 

for the production of C-terminal thioester and N-terminal cysteine proteins (Xu, M.Q. and 

Perler, F.B., 1996; Chong, S.et al., 1996). Reactive thioesters are used in ligation 

reactions with N-terminal cysteine peptides to give a new protein with all native peptide 

bonds. The ligation reaction proceeds through a trans thioesterification initiated by the 

cysteine thiol, followed by a spontaneous N-S acyl shift which affords the peptide bond 

between the two reacting moieties. EPL allows for the preparation of proteins containing 

natural and artificial modifications (Hahn, M.E. et al., 2007; Chatterjee, C. et al., 2007; 

Schwarzer, D. and Cole, P.A., 2005). 

The new developed protocols are based on the reactions between thioester polypeptides, 

obtained via EPL, and a bis-cisteinyl linker. The main advantages of this semisynthetic 

strategy are its efficency and versatility. Indeed, the reaction spontaneously proceed and 

the obtained products just depend on the peptide sequences and on the linker selected. 

Besides, the linker can be easily modified as needed by changing the length and rigidity 

of the spacer between the cysteines. Another advantage of this strategy, with respect to 

the other chemoselective approaches, is the absence of size restiction on the polypeptides 

dimension as the two fragments are expressed and do not need to be synthesized. 

Moreover, the use of EPL allows easily and with low cost the preparation of labeled 

derivatives, for example for NMR characterization. 

In conclusion, a strategy for the assembly of polypeptides covalently bound through a 

linker at the C-terminus was developed. This strategy based on EPL reactions between 

thioester peptides and a new bifunctional linker affords chemically stable fused proteins 

in a one-pot reaction. The linker can be easily modified as needed by changing the length 
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and rigidity of the spacer between the cysteines. This strategy has potential in 

biochemical and bioorganic applications, for obtaining minimized and/or modified 

natural proteins and for joining two different proteins at the C-terminus. 
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II.4 Experimental Section 

 

II.4.1 Materials and Methods 

 

Protected N-Fmoc-amino acid derivatives, acetic anhydride, ethylenediamine, coupling 

reagents and Rink amide MBHA resin have been purchased from Novabiochem. 

DIPEA is provided from Applied Biosystem. All other solvents are commercially available 

from LabScan. Column chromatography was performed on Fluka silica gel 60 (size: 0.04-

0.063mm). Reagents used for preparation of buffers and growth media of Escherichia coli 

were supplied by Sigma Aldrich, the reagents for polyacrylamide gels electrophoresis 

(Acrylamide, APS, TEMED, SDS, Tris, Glycine) by Applichem. 

Isopropylbeta- D-thiogalactopyranoside (IPTG) is from Inalco. The pTXB1 vector, the 

chitin resin and the modification enzymes were purchased at New England Biolabs; 

pTrcHisA and Ni-NTA resin were from Invitrogen. Escherichia coli BL21(DE3) cells used 

for expression were supplied by Invitrogen. 

Preparative purification was carried out on a Shimadzu LC-8A, equipped with a SPD-M10 

AV diode array detector. Preparative HPLC was performed on a Phenomex Jupiter 10� 

C12 Proteo 90
�

 250 x 10.00 mm column.  

LCMS analyses have been performed on an LC-MS system (Thermo Electron) comprising 

an LCQ Deca XP MAX ion trap mass spectrometer  equipped with an ESI source and a 

complete Surveyor HPLC system (including MS pump, autosampler and photo diode 

array [PDA]). The column used was the Phenomenex Jupiter 5� C4 300
�

, 250 x 2.00mm. 

LCMS analyses of the linker have been performed on a LC-MS system (Thermo Electron) 

comprising an Surveyor MSQ single quadrupole mass spectrometer equipped with a ESI 

source and a complete Surveyor HPLC system (including MS pump, autosampler and 

photo diode array [PDA]). The column used was the Phenomenex Jupiter 5� C18 300
�

, 

150 x 4.6 mm.  

1H- and 13C-NMR spectra were recorded on a Varian Innova instrument (600 MHz) at 

room temperature. All chemical shifts are expressed in ppm with respect to the signals of 

the residual protonated solvents (CDCl3 or DMSO d6). 

 

II.4.2 Synthesis of the linker N-N' bis-cysteinyl- ethylendiamine  

 

To a solution of ethylendiamine (30.1�L, 0.45mmol) and DIPEA (485.5 �L, 2.7 mmol) in 

dry DCM (300 �L) was added a solution of Boc-Cys-(Trt)-OH (500mg, 1.08 mmol), PyBOP 

(467 mg, 0.90 mmol) and HOBT (121.4 mg, 0.90 mmol) in dry DCM (2 mL). The reaction 

was stirred overnight at room temperature. 
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The mixture was extracted with a 5% NaHCO3 aqueous solution. The organic phase was 

dried over MgSO4 and the solvent was evaporated under reduced pressure. The residue 

was purified by silica gel flash chromatography (ethyl acetate/petroleum ether, 7/3 v/v) 

to afford 427 mg of protected linker N-N' bis[N-tert-butyloxycarbonyl-S-triphenylmethyl-

cysteinyl] ethylendiamine as a yellow oil (99% Yield). The Boc/Trt protected linker (159 

mg, 0.16 mmol) was dissolved in CH2Cl2/TFA/TIS 50/47/3 v/v/v (4 mL). Deprotection of 

the Trt and Boc groups was complete after 5 minutes. The solution was concentrated 

under reduced pressure and diluted with cold diethyl ether. The precipitated crude 

product N-N' bis-cysteinyl-ethylendiamine was dissolved in water, analyzed by LCMS and 

purified by preparative HPLC with an increasing gradient of CH3CN (0.1% TFA) in water 

(0.1% TFA) from 1 to 70% in 30 minutes.  

 

 II.4.3 Protein expression and purification 

 

E. coli BL21(DE3) cells, transformed with the appropriate plasmid, were grown to mid-log 

phase at 37°C in LB medium. Protein expression was induced with 0.4 mM 

Isopropylbeta- D-thiogalactopyranoside (IPTG) at 37°C for 5 h, after which cells were 

harvested and lysed by sonication. Protein expression was followed by SDS-PAGE (15%). 

Protein A-MxeGyrA fusion was purified at room temperature by affinity chromatography 

on a Ni2+NTA resin. Protein was eluted in 50 mM NaH2PO4 , 300 mM NaCl, 250 mM 

imidazole pH 8. Protein B-MxeGyrA-fusion was immobilized and purified on chitin resin, 

following standard protocol of IMPACTTM TWIN manual. 

 

 II.4.4 Synthesis of the homodimer (A-linker-A) 

 

Purified protein A-MxeGyrA fusion (150�M) was reacted in Phosphate buffer 50mM, 

0.2mM MESNA, 0.3mM EDT, pH 7 with 0.5 (or 3) equivalents of linker. Splicing and 

ligation reactions were performed simultaneously overnight at room temperature. 

The reaction leads to the homodimer in a 50% yield. 

The crude was analysed by LCMS with an increasing gradient of CH3CN (0.1% TFA), in 

water (0.1% TFA) from 5 to 70% in 30 minutes. Mass spectrum shows the presence of the 

homodimer A-linker-A and the protein A (or protein A-linker derivative). 

 

Protein A sequence: 

MGGSHHHHHH GMASMTGGQQ MGRDLYDDDD KDRWGSGHIE GR  
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II.4.5 Synthesis of the heterodimer (A-linker-B) 

 
Purified protein A-MxeGyrA fusion (50�M) was reacted in Phosphate buffer 20mM, 

0.18mM MESNA, 0.23mM EDT, pH 7 with a three fold excess of linker. Splicing and 

ligation reactions were performed simultaneously overnight at room temperature to give 

the protein A-linker derivative in quantitative yield. The crude was dyalized against 

deionized water; A-linker was  purified by preparative HPLC with an increasing gradient 

of CH3CN (0.1% TFA), in water (0.1% TFA) from 10 to 45% in 38 minutes. Protein B-

MxeGyrA fusion was immobilized on the chitin resin, splicing was induced incubating the 

resin in 20 mM Phosphate buffer containing 300 mM NaCl, 50 mM MESNA and 1 mM 

EDTA, pH7. The thioester was purified by preparative HPLC with an increasing gradient 

of CH3CN (0.1% TFA), in water (0.1% TFA) from 10 to 40% in 30 minutes. The purified 

protein A-linker (0.36mM) derivative was reacted with one equivalent of thioester protein 

B (0.36mM). Reaction was carried out in 20 mM Phosphate buffer containing 0.18 mM 

MESNA and 0.23 mM EDT, pH 7 overnight. The crude was analyzed by LCMS with an 

increasing gradient of CH3CN (0.1% TFA), in water (0.1% TFA) from 5 to 70% in 30 

minutes. Protein A-linker was all converted into the homodimer A-linker-B, while the 

protein B excess was converted into the EDT-thioester. 

 

Protein B sequence:  

MASSRVDGGR EFLEGSS 
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                                                                                                                                                                                                                                             CHAPTER I CHAPTER I CHAPTER I CHAPTER IIIIIIIII    

BIOPHYSICAL CHARACTERIZATION 

OF A �-HELIX SCAFFOLD PEPTIDE 

 

III.1 Introduction 

 

The a-helix is the most abundant secondary structure in proteins and is frequently 

involved in functionally important protein–protein and protein–nucleic acid interactions 

(R.Lavery, 2005; A.Klug, 2005; J. M. Davis et al., 2007). However, the removal of these 

polypeptide recognition motifs, which are typically 15–25 residues in length, from the 

stabilising tertiary structure of proteins generally results in peptides that adopt only 

random coil structures or low populations of conformations containing a-helical 

secondary structure in water. In addition, the efficacy of short polypeptides 

corresponding to the a-helical regions in proteins is compromised in vivo due to an 

increased susceptibility to proteolytic degradation and a reduction in cell wall 

permeability (M. J. Kelso and D. P. Fairlie, 2003).  

Synthetic strategies to develop peptides presenting stable �-helical conformation have 

elicited considerable interest as a means of generating potential therapeutic agents or 

probes for exploring protein–protein interactions (Gamer, J. and Harding, M.M., 2007; 

Henchey, L. K. et al., 2008).  

The majority of the a-helix mimetic-based molecules reported to date can be subdivided 

into two categories. The first includes molecules that adopt helical structures similar to 

natural helices and most commonly include peptidomimetics such as 
�
-peptides and 

peptoids (C. M. Goodman et al., 2007; J. A. Kritzer et al., 2005; J. D. Sadowsky et al.,  

2005; T. Hara et al., 2006). The second ignores the helical structure of natural helices 

and instead uses organic scaffolds to project functionality in a similar spatial 

arrangement to the natural conformation.[ J. M. Davis et al., 2007; Yin H. et al., 2005 a; 

S. M. Biros et al., 2007 ; Yin H. et al., 2005 b; Yin H. et al., 2005 c;  J. Becerril et al., 

2007). In both cases, it is the strategic functionalization of the scaffolds that enables the 

development of compounds that effectively recognize biomacromolecules (Rodriguez JM et 

al., 2009).  

Verdine and its group described the design and synthesis of stabilized peptide helices 

(staple) to bind to a protein–protein interface. In particular, peptide stapling is 

accomplished by synthetic incorporation of two �-methylated amino acids, bearing 

olefinic side-chains of varying length and configured with either R or S stereochemistry, 

along one face of the �-helix, followed by ring-closing olefin metathesis (Schafmeister et 

al., 2000). This strategy find application to inhibit growth of human leukemia xenografts 

(Walensky, L. D et al.,  2004; Kutchukian, P. S. et al.,  2009). 
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Brines et al., instead, developed a peptides mimetic of helix B of the erythropoietin. They 

showed that this peptide simulating the aqueous surface of helix B also exhibits EPO's 

trophic effects by accelerating wound healing and augmenting cognitive function in 

rodents. 

Li et al. reported the interaction of a single short helical segment of the tumor-suppressor 

protein p53 with two regulators of p53 activity, mouse double minute 2 (MDM2) and 

MDMX. In this work, the grafting of four residues of p53 critical for MDM2/MDMX 

binding to  the N-terminal alpha-helix of BmBKTx1, a scorpion toxin isolated from the 

venom of the Asian scorpion Buthus martensi Karsch, converts the miniature protein 

into an effective inhibitor of p53 interactions with MDM2 and MDMX. Additional 

mutations enable the 27-residue miniprotein inhibitor to traverse the cell membrane and 

selectively kill tumor cells in a p53 dependent manner (Li et al., 2008; Li et al., 2009). 

Recently, unnatural oligomers with aromatic repeating units were developed by  Hamilton 

and coworkers, these small molecule scaffolds can mimic the structural and recognition 

binding features of an R-helix (Figure III.1) 

 
Figure III.1: Unnatural oligomers with aromatic repeating units developed by  the group of Hamilton. 

 

A functionalized terphenyl scaffold 1 was found to provide a rigid framework from which 

aryl o-substituents are projected to mimic the side chains at the i, i+4, and i+7 positions 

of an R-helix (Fairlie, D. P. et al., 1998). This design was extended to other closely related 

structures including terpyridine 2 (Davis, J. M., 2005), oligoamide 3 (Ernst, J. T., 2003) 

and terephthalamide 4 derivatives (Yin H. et al., 2005; Yin, H. and Hamilton A., 2004). 

These rationally designed compounds were shown to effectively inhibit protein-protein 

interactions featuring R-helix-mediated binding and recognition including Bcl-xL/Bak 

and p53/HDM2 thus validating the design (A. Shaginian et al., 2009). 

The purpose of this work was the development of a molecular scaffold to be modulate 

biomolecules interactions mediated by �-helix. 

Recently, the design, biological and structural characterization of a short peptide 

mimicking the Vascular endothelial growth factor (VEGF) was described (D’Andrea et al., 

2005). This 15-mer peptide, (named QK), composed only of natural amino acids was 

designed to reproduce  the VEGF helix region 17–25. NMR conformation analysis of QK 

revealed that it adopts a well defined helical conformation in water, moreover, it was 



 38383838     

demonstrated that QK has the same biological properties of VEGF in vitro (D’Andrea et 

al., 2005) and in vivo (Dudar et al., 2008; Santulli et al., 2009). 

This project focus on the biophysical characterization of peptide QK has potential 

peptidic scaffold to modulate interactions mediate by �-helix. 
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III.2 Results 

 

NMR experiments were carried out in collaboration with the laboratory of Prof. R. 

Fattorusso the Second University of Naples. 

MD experiments were performed in collaboration with Dr. G. Colombo CNR. 

 

III.2.1 Analysis of the thermal stability of QK 

 

The thermal stability of the QK peptide was investigated by CD and NMR spectroscopy. In 

particular, the helical content was investigated by monitoring the temperature-dependent 

change in the intensity of the 222 nm band in the CD spectra. The analysis of the spectra 

and the dependence of ellipticity at 222 nm with the temperature showed a gradual 

increase in the signal intensity at 222 nm with the temperature, which indicated helix 

unwinding at high temperature. Nevertheless, QK helix shown a remarkable degree of 

thermal stability, as the peptide retains  79% and 65% of its room temperature helix 

content at 343 K  and 368 K, respectively (Figure III.2). 

 
Figure III.2: CD spectra of the QK peptide at 298K (red), 343K (green) and 368K (blue). 

In the inset the unfolding (blue) and refolding (red) curves are shown. 
[�] is the molar ellipticity per residue. 

 

The analysis of the spectra and the dependence of ellipticity at 222 nm with the 

temperature showed that the peptide loose reversibly part of its helical structure but 

neither at 368K appears to assume a complete random coil conformation. 

Similar experiments were carried out using NMR, the variations of the H� protons with 

the temperature were reported for each amino acid (Figure III.3).  
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Figure III.3: Plot of the backbone protons chemical shifts against temperature 

for  nine representative residues. 
 

The plot of Ha chemical shifts again showed that only minor changes were observed in 

analyzed range suggesting a significant thermal stability. QK structure variations upon 

temperature increase were followed also by 2D TOCSY NMR experiments (Figure III.4). 

 a)                                   b)                                    c) 

 
Figure III.4: Fingerprint region of the 2D [1H, 1H] TOCSY spectra of QK peptide 

at a) 298K, b) 323K, and c) 343K 
 

Table III.I in Appendix III.6 reports the 1H chemical shift assignment of the H� and HN 

protons and clearly shows only minor changes in the 1H chemical shifts for backbone 

protons collected at temperature increments; then, it was possible to track with 

confidence the identities of many peaks (approximately 70%) previously assigned at room 

temperature.  

Subsequently, the temperature dependence of the H� chemical shift deviations from 

random coil values (��H�), which are an indicator of the secondary structure formation, 

were used as a measure of stability at high temperature. The Figure III.5 shows a 

continuous stretch of negative values encompassing residues 4-12, strongly suggesting 

the presence of helical conformation at high temperature. 
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Figure III.5: H� chemical shift deviations from random coil values (��H�) of the QK at 298K and 343K. 
The continuous line represents the CSI threshold for amino acid in helical conformation. 

 

Moreover, QK helix has the property that at higher temperatures ��H� values decrease, 

reflecting a slight reduction in the amount of folded structure present in solution. In 

particular, moving from 298 K to 343 K the peptide retains the 80% of its secondary 

structure. The striking observation is that all residues, in particular 4-12 region of the 

sequence, behave in an analogous manner, reflecting similar temperature changes in the 

population of the folded state. 

 

III.2.2 Molecular Dynamics Analysis 

 

To get insight on the molecular determinant of this unusual thermal stability the 

conformational and dynamic properties of the QK peptide were studied with Molecular 

Dynamics simulations in explicit water. 

Extensive MD simulations were carried out for a total of 2.4 microseconds exploring 

different temperature conditions (300K, 320K, 340K, 380K). 

Five �-helical structures corresponding to five different models present in the NMR 

ensemble were used as starting structures for the simulations, to assess the 

determinants of the stabilization of the helix in solution. Moreover, in order to shed light 

on the possible folding mechanism, four different simulations with lengths ranging from 

50 to 100ns, at 350K, were run from a completely extended structure of the polypeptide. 

All the simulations starting from the helical structures show a clear, unusual stability of 

the helix that is maintained at high temperatures (Figure III.6) for most of the simulation 

time, consistently with NMR observations. 
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Figure III.6: Percentage of time that each residue spends in helical conformation 
at 300 K (black), 320 K (red), 340 K (green) and 380 K (blue). 

 

Cluster analysis of the trajectories, and the evaluation of stabilizing contacts, show the 

presence of a network of contacts always involving the hydrophobic side chains of 

residues Leu7 and Leu10 (Figure III.7).  

 

Figure III.7: Representative conformations of main cluster obtained from the analysis 
 of all trajectories at different temperatures. 

 

On the other hand, analysis of the refolding simulations shown a higher tendency for 

residues located at the N-terminal or central part of the sequence to adopt a helical 

conformation in the first events of the QK folding. (Figure III.8). 
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Figure III.8: a) Percentage of helical conformation attained by each residue during the refolding process. 

b) Selected structures along the refolding trajectories. Leu7 and Leu10 are highlighted in red. 
 

 

III.2.3 Peptide analogues studies 

 

To confirm experimentally the suggestions coming from MD simulations we designed 

three QK analogues which amino acid sequences are: 

 
QK     Ac-KLT WQELYQLKY KGI-NH2 

QK1-12  Ac-KLT WQELYQLKY    -NH2  

QK4-15  Ac-K   WQELYQLKY KGI-NH2  

QK10A  Ac-KLT WQELYQAKY KGI-NH2 
 
To test the role of the capping regions we synthesized QK1-12 and QK4-15 peptides 

which present the deletion of the C-capping and N-capping sequence respectively. 

In order to verify the importance of the hydrophobic contact between Leu 7 and Leu 10 

for the helix stability, we replaced Leu 10 with Ala (QK10A). 

Peptides were synthesized by SPPS and purified by RP-HPLC. All peptides were efforded 

in good yields, in high pure and homogenous forms as assessed by LC-MS (Figure III.9, 

III.10 and III.11). Following the identity was verified by ESI spectrometry and a 

comparison of experimental and calculated MW is reported below. 

 

Peptide MWTh MWExp 

QK 1-12 1655.8 1655.2 

QK 4-15 1738.9 1738.2 

QK10A 1912.1 1910.9 
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Figure III.9: LC-MS analysis of QK1-12 peptide 

A) RP-HPLC profile revealed at 210nm; B) ESI-MS spectrum of the peak  at RT:14.43 min; 
C) UV absorption spectra of the peak at RT:14.43. 

 

 

 
Figure III.10: LC-MS analysis of QK4-15 peptide 

A) RP-HPLC profile revealed at 210nm; B) ESI-MS spectrum of the peak  at RT:16.37 min; 
C) UV absorption spectra of the peak at RT:16.37 min. 
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Figure III.11: LC-MS analysis of QK10A peptide 

A) RP-HPLC profile revealed at 210nm; B) ESI-MS spectrum of the peak  at RT:13.85 min; 
C) UV absorption spectra of the peak at RT:13.85 min. 

 

The helical content of each peptide was analyzed by means of CD spectroscopy. Peptides 

were dissolved in 10 mM phosphate buffer, pH 7.1 at a concentration of 50 µM and 

spectra were recorded at 5°C (Figure III.12 and III.13). 
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Figure III.12: Overlap of CD spectra of QK, QK 1-12 and QK 4-15 
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Figure III.13:  Overlap of CD spectra of QK and QK10A 

 

All peptides, except QK4-15, showed the two minima at 207nm and 222nm characteristic 

of �-helical conformation. In particular, CD spectra clearly showed that QK4-15 loose 

about half of the QK helicity while QK1-12 entirely retains the helical content; this result 

suggests the importance of the N-terminal in stabilizing the helix conformation. The CD 

spectra in figure III.13 showed that QK10A loose about 50% of the QK helical content. 

This result is quite unusual because alanine is an amino acid that tends to stabilize the 

helical conformation with respect to leucine, whereas for QK10A there was a loss, this 

suggests that the hydrophobic contact between the two leucine is really important for 

stability of helix. 

 

III.2.4 Conformational analysis and thermal unfolding on QK1-12 

 

1H NMR spectra have been fully assigned, using a combination of DQF-COSY, TOCSY 

and NOESY data sets, following the same procedure described in Chapter III.3. 

1H chemical shift assignment and 3JHNH� measured coupling constant values are listed in 

table III.2 in Appendix III.6. DOSY measurements has given a value of 2.30*10-10 m2 s-1, 

which suggested that QK1-12 is monomeric in solution. The 2D NOESY and of the DOSY 

spectra are shown in Figure III.14 and III.15. 
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Figure III.14: 2D [1H, 1H] of 250 ms NOESY spectrum of QK1-12 peptide 

 

 
Figure III.15: 600 MHz 1H-detected DOSY spectrum of 1mM of QK1-12 

in H2O/D2O mixture at 298K 
 ��H� NMR analysis shown a characteristic appearance of a helix, encompassing the 

residue 4-12 (Figure III.16). 
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Figure III.16: : H� chemical shift deviations from random coil values (��H�) of the QK1-12 at 298K. 

The continuous line represents the CSI threshold for amino acid in helical conformation. 
 

The most conclusive evidence for helical folded structure was the observation of a pattern 

of NOEs, HN-HN(i, i+1), H�-HN(i, i+3) and H�-H
�

(i, i+3) , which is well consistent with the �-

helix conformation. A total of 167 NOEs were assigned and quantitated for use in 

structure calculations. The NOEs were broken down into 37 intra-residue, 38 short- and 
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34 medium-range. A total of 71 torsional angle restraints for 
�

 and � angles were 

determined from the 3JHNH� coupling constants. 

The final 20 annealed structures were shown in Figure III.17; the whole range of 

structures was a helix shaped with a good pairwise RMSD from the backbone atoms and 

from all heavy atoms of the mean structure, 0.12 (±0.01)
�

 and 0.98 (±0.02)
�

, 

respectively. 

0.12      Backbone (3..12)  

0.98  Heavy (3..12)  

  AAvvaarraaggee  PPaaii rrwwiissee  RRMMSSDD  ((ÅÅ))  

36                  � (Psi) 

35                  � (Phi) 

71  TToottaall  DDiieehheeddrraall  AAnngglleess  

34                Medium range 

38                 Short range 

37                Intra residue 

167                Total NOE    

109                Distance Constraints 

NNMMRR  DDiissttaannccee  CCoonnssttrraaiinnttss  

NNMMRR  SSttrruuccttuurraall  SSttaattiiccss  ooff  tthhee  QQKK11--1122    

 

 
Figure III.17: Superposition of the backbone of the best 20 QK1-12 structures. 

 

Also for QK1-12 were recovered the variations of the H� protons with the temperature 

were reported for each amino acid (Figure III.18). 
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Figure III.18: Plot of the backbone protons chemical shifts against temperature 

for nine representative residues 
 

The plot of Ha chemical shifts again showed that only minor changes were observed in 

analyzed range suggesting a significant thermal stability as QK peptide. QK1-12 

structure variations upon temperature increase were followed also by 2D TOCSY NMR 

experiments. Table III.3 in Appendix III.6 reports the 1H chemical shift assignment of the 

H� and HN protons and clearly shows only minor changes in the 1H chemical shifts for 

backbone protons collected at temperature increments. 

In addition, the temperature dependence of the H� chemical shift deviations from 

random coil values (��H�), which are an indicator of the secondary structure formation, 

were used as a measure of stability at high temperature. The Figure III.19 shows a 

continuous stretch of negative values encompassing residues 4-12, suggesting, also for 

QK1-12, the presence of helical conformation at high temperature. 

 
Figure III.19: H� chemical shift deviations from random coil values (��H�) of the QK1-12 at 298K and 343K. 

 

III.2.5 Conformational analysis and thermal unfolding on QK10A 

 

To verify the importance for the helix stability of the hydrophobic contact between Leu7 

and Leu10 suggested by the MD simulation, residue Leu10 was replace with Ala. Similar 
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helical propensity of Ala and Leu allowed to relate the changes of the mutant structural 

stability to the absence of the side chains interaction. ��H� NMR analysis (Figure III.20) at room temperature showed that QK10A looses about 

35-40% of the QK helical content. 
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Figure III.20: Plot of ��H� for QK (red) and QK10A (blue) at 298 K 
 

The NMR structure of QK10A in water solution at 298 K were obtained by a careful 

inspection  of a combinations of DQF-COSY, TOCSY and NOESY data sets, following the 

same procedure described in Chapter III.3. 

1H chemical shift assignment and 3JHNH� measured coupling constant values are listed 

in table III.4 reported in Appendix III.6. DOSY measurements has given a value of 

1.98*10-10 m2s-1, the same diffusion coefficient value measured for QK. 

The DOSY and of the NOESY spectra are reported in Figure III.21 and III.22.  

 

 
Figure III.21: 600 MHz 1H-detected DOSY spectrum of 1mM of QK10A 

in H2O/D2O mixture at 298K. 
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Figure III.22: 2D [1H, 1H] of 250 ms NOESY spectrum of QK10A peptide at 298 K. 
 

To calculate the NMR structure of the QK10A mutant, a total of 137 NOE constraints (47 

intra-residue, 54 short- and medium-range) and 71 torsional angle restraints for � and �
 angles were applied. 
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NMR Distance Constraints  

NMR Structural Statics  QK10A at 298 K 

 

The NMR structure of QK10A showed that it is predominantly in helical conformation 

such as the peptide QK (Figure III.23). 
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Figure III.23: Comparison of the NMR-derived structures, as ribbon model, 

of QK (blue) and QK10A (red) in water at 298 K.   
 

To better investigate the helix destabilization, due to the absence of the interaction 

between Leu7 and Leu10, the QK10A thermal unfolding  has been performed via NMR, 

acquiring 2D TOCSY at different temperature. 

Table III.5 in Appendix III.6 showed the lists of the chemical shift of the H� protons at 

increasing temperature. ��H� analysis at 298 K and 343 K clearly indicated that at high temperature QK10A is 

predominantly in random coil conformation, loosing the unusual thermal stability of QK 

(Figure III.24). 

 
 

Figure III.24: Plot of  ��H� for QK10A  at 298 K (blue) and 343 k (red). 
 

Moreover, the variations of the H� protons with the temperature were reported for each 

amino acid. The curves of the amino acids at the N- and C-terminal region present a 

sigmoidal-like behavior, whereas curves of the central region present a bi-phasic 

behavior, suggesting, in both cases, a melting temperature of about 313K (Figure III.25). 
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Figure III.25: Temperature-dependent chemical shifts for H� protons. 

 

Then, to verify the presence of an intermediate structure, the solution structure of 

QK10A at 313K was obtained. Different mixing times were used to evaluate the linear 

build-up of NOE and to find the mixing time appropriate at 313 K; NOESY spectrum 

recorded with a mixing time of 350 ms was chosen for obtaining the distance constraints. 

The complete 1H assignment at 313 K is reported in Appendix III.6 (Table III.6), while a 

section of the 2D NOESY is reported in Figure III.26.  
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Figure III.26: 2D [1H, 1H] of 350 ms NOESY spectrum of QK10A peptide at 313 K. 

 

On the basis of observation of a relatively small number of inter-residue cross peaks in 

the NOESY spectra, it was concluded that QK10A is essentially a random coil 

conformation; however, a grouping of NOEs, dNN (i, i+1), d�N (i, i+3) and  d�� (i, i+3) 

supported the presence of a residual helical structure in central region of peptide (Figure 

III.27). This is also confirmed by CSI analysis. The final input file for the CYANA 

structure calculation software contained 83 meaningful distance constraints (32 intra-

residue, 30short- and 20 medium-range) and 72 angle constraints. 
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Figure III.27: H� chemical shift deviations from random coil values (��H�) of the QK10A 

at 298K (magenta) and at 313 K (cyana). The continuous line represents the CSI threshold 
for amino acid in helical conformation. 
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As expected, the final NMR structure of QK10A at 313 K (Figure III.28) showed that the 

C-terminal region is completely in random coil conformation while the N-terminal region, 

due to the lack of medium range cross peaks and the large 3JHNH�, is not more in helix 

conformation, but presents an open turn. Instead, in the central region is still present a 

characteristic helical turn. 

 
Figure III.28: Converged NMR-derived structures of the residues 4-12 of QK10A peptide 

 at 298 K (red) and 313 K (yellow). RMSD for the mean structures is 0.32 Å (±0.02). 
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III.3 Discussions 

 �-Helical sequences of amino acids make up to the 30% of protein structure, play crucial 

roles in stabilizing tertiary structure, and mediate important biological processes through 

interactions with proteins, DNA, or RNA (Cochran, 2000). However, short peptides 

corresponding to these regions are not stable �-helices in water (Zimm, B. H. and Bragg, 

1959).  In order to develop �-helix mimetics to be to specifically recognize protein target 

helical peptides need to be stabilized.  

Recently, it was described a short peptide, QK, adopting a well-defined helical 

conformation (D’Andrea et al., 2005). We would evaluate if peptide QK has the potential 

to be useful helical scaffold. To this aim we undertook a biophysical characterization of 

QK. To gain a more detailed understanding of the molecular basis of the QK helical 

structure we carried out a QK stability characterization. QK showed an unusual thermal 

stability up to 368 K that prevented us to obtain a structural depiction of the 

folding/unfolding pathway of the helix.  To identify the structural determinants of QK 

thermal stability, we performed a MD analysis which highlighted the contribution to the 

peptide stability of the N-terminal region and the hydrofobic contact between Leu7 and 

Leu10. CD and NMR studies confirmed the theoretical results. Successively, we have 

obtained more information about the structural determinants of QK stability through  

thermal stability analysis  of QK10A mutant. 

In particular, on the basis of the temperature dependencies of QK10A Hα chemical shifts 

we show that the first phase of the thermal helix unfolding, having Tm of 308-309K, 

involves principally  the C-terminal end (residues 10, 11 and 12) and in a minor part also 

the N-terminal end (residues 4). A second phase of the transition comprises the central 

helical turn with Tm of 325-327K. The determination of high resolution QK10A 

conformational preferences in water at 313 K permits to identify, at atomic resolution, 

one intermediate of the folding-unfolding pathway. MD simulations corroborate 

experimental observations, detecting a stable central helical turn, which represents the 

most probable site for the helix nucleation. The data here presented allow to draw a 

folding/unfolding picture for the small peptide QK compatible with the 

nucleation/propagation model. This study, besides contributing to the basic field of 

peptide helix folding, get insights into the design of stable helical peptides which could 

find applications as molecular scaffold to target protein-protein interactions. 
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III.4 Experimental Section 

 

III.4.1 Materials and Methods 

 

Protected N-Fmoc-amino acid derivatives, acetic anhydride, coupling reagents and Rink 

amide MBHA resin have been purchased from Novabiochem. DIPEA is provided from 

Applied Biosystem. All other reagents are commercially available from Sigma-Aldric and 

all solvents are commercially available from  LabScan.  

Preparative purification of synthetic peptides has been carried out on a Shimadzu LC-8A, 

equipped with a SPD-M10 AV detector. The column used was the Phenomex Jupiter 

Proteo 90
�

 10� C12 250 x 10.00 mm. Analytical characterization of synthetic peptides 

was performed on an LC-MS apparatus LCQ Deca XP MAX (Thermo Scientific) 

spectrometer  equipped with an ESI source and ion trap mass completed to a Surveyor 

HPLC system (with photo diode array detector). The column used was the Phenomenex 

Jupiter Proteo C12 4� 90
�

, 50 x 2.00 mm. UV-VIS spectra were performed on a Jasco V-

550 UV-VIS spectrophotometer, using 1 cm length quartz cell (Hellma). 

Far-UV circular dichroism spectra recorded on a Jasco J-810 spectropolarimeter, 

equipped with a PTC-423S/15 Peltier temperature controller, using a 0.1 cm quartz cell 

(Hellma) in the range 190-260 nm. 

To obtain all peptide structures decribed  bi-dimensional homonuclear experiments, such 

as TOCSY and NOESY spectra, were recorded at 298 K on a Varian Unity Inova 600 MHz 

spectrometer, equipped with a cold-probe. 

Thermal unfolding  of peptides was studied by 2D [1H, 1H] TOCSY acquired at 298, 303, 

308, 313, 318, 323, 328, 333, 338 and 343 K, acquiring all the spectra consecutively. 

NMR experiments were carried out on a Varian Inova 400 MHz spectrometer, where the 

probe temperature was regularly calibrated by using methanol and ethylenglycol. 

 

 

III.4.2 Peptide synthesis 

 

 

All peptides were synthesized by solid phase peptide synthesis as C-terminally amidated 

and N-terminally acetylated derivatives following standard Fmoc chemistry protocol. 

A Rink-amide MBHA resin (substitution 0.53 mmol/g). 
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Cycles of coupling for each amino acid involves the following steps: 

 

� Deprotection   of the N-terminal function (2 step by 10 min) with a solution 

to a 30% Piperidine in DMF; 

� Coupling      of 10 equivalents of Fmoc-AA, 9.9 equivalent of HOBT/HBTU 

(0.45 M solution in DMF) and 20 equivalents of DIPEA (2 M 

solution in NMP) compared with 0.1 mmol scale synthesis. 

The reaction time for each pair was 45 min; 

� Acetylation   two treatments of 5 min with the appropriate volume of a 

solution of Acetic anydride (2M)/DIPEA (0.55M)/ HOBt 

(0.06M). 

 

After each module were performed three washes with DMF for 1min. Cleavage from the 

solid support was performed by treatment with a TFA/TIS/water (95:2,5:2,5, v/v/v) 

mixture for 3 hours at R.T.. 

Crude peptides were precipitated in cold diethyl-ether, dissolved in a water/acetonitrile 

(9:1, v/v) mixture and lyophilized. Peptide purification was carried out by RP-HPLC 

applying a linear gradient of acetonitrile (0.1% TFA) from 20% to 80% in 30 min. at 20 

mL/min. Peptide purity and identify were confirmed by LC-MS system previously 

described; with A gradient of solvent B (0.05% TFA in CH3CN) from solvent A (0.08% TFA 

in H2O) of 5% to 70% was applied over 30 min.  

 

III.4.3 CD analysis  

 

Spectra were acquired using a band width of 1 nm, a response of 8 sec, a data pitch of 

0.1 nm and a scanning speed of 10 nm/min. Each spectrum was the average of three 

scans with the background of the buffer solution subtracted. Spectra were performed at 

20°C in 10 mM Sodium phosphate buffer at pH 7.1. CD data were expressed as mean 

residue ellipticity (θ). Spectra processing was obtained by using the Spectra Manager 

software. Thermal denaturation was performed in 10 mM Sodium phosphate buffer, pH 

7.1. The temperature was increased from 5°C to 95°C at a rate of 30°C/h. The CD signals 

were acquired at 1°C intervals at 222 nm.  

 

III.4.4 Nuclear Magnetic Resonance 

 

2D [1H,1H]-TOCSY (Griesinger, C.; Otting, G.; Wuethrich, K.; Ernst, Richard R. Clean 

Journal of the American Chemical Society (1988), 110(23), 7870-2) experiments (1mM in 

aqueous solution at pH 5.5) were acquired at 298, 303, 308, 313, 318, 323, 328, 333, 

338 and 343K, acquiring all the spectra consecutively. Each spectra contained 2048 data 
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points and 64 scans, and had a sweep width of 7000 Hz in both dimensions. Water 

suppression was achieved through Double Pulsed Field Gradient Spin Echo sequences. 

The diffusion-ordered NMR spectroscopy (DOSY) (Morris, Kevin F.; Johnson, Charles S., 

Jr. Journal of the American Chemical Society (1992), 114(8), 3139-41) was carried out at 

298 K using a 5-mm triple resonance xyz-gradient probe. The strength of the 3 ms 

gradient pulses was incremented in 15 experiments, with a diffusion time of 100 ms and 

a longitudinal eddy currents delay of 5 ms. The water resonance was suppressed by low-

power presaturation during the relaxation delay of 1.5 msec. Diffusion coefficient of QK is 

obtained by fitting peaks intensities for most well resolved peaks across the spectra, 

using equation I=I0 exp[-�2g2D�2(�-�/3)], where � is the gyromagnetic ratio and g, �, � are 

the amplitude, duration and separation of the single pair of gradient pulses, respectively. 

For each measurements, a large number of cross peaks of the spectrum was used for the 

fitting and an average value was utilized.  

 

III.4.5 Molecular Dynamics Simulations 

 

Multiple Molecular Dynamics MD simulations of the QK peptide were started from five 

different �-helical NMR-derived models, after fitting to NOE constraints. The five starting 

structures correspond to Models 1, 5, 10, 15 and 20 in the NMR derived structure 

ensemble. Each model was used as a starting structure for four simulations at the four 

different temperatures of 300K, 320K, 340K, and 380K. Each 300K MD simulation was 

200ns long, while all the higher temperature ones were 100ns long. In total 20 MD 

trajectories were generated for a total sampling time of approximately 2.4 microseconds. 

Each simulation was labelled with the first number indicating the NMR model and the 

second one indicating the temperature at which the simulation was run: for instance, 

simulation 5_340 indicates the simulation starting from model 5 from the NMR ensemble 

and run at 340K. Moreover, in order to shed light on the folding mechanism, four 

different simulations with lengths ranging from 50 to 100ns, at 350K, were run from a 

completely extended structure of the polypeptide. In each simulation, the isolated peptide 

structure was first solvated with water in a periodic truncated octahedron, large enough 

to contain the peptide and 0.9 nm of solvent on all sides. The protonation and charge 

states of the sidechains of the ligand and of the receptor were chosen to be consistent 

with the solution conditions of the experiments: NH groups were considered with a +1 

charge and Carboxylic groups were considered to bear a -1 charge. 

The system resulted to have a total charge of +2. All solvent molecules within 0.15 nm of 

any peptide atom were removed. Two Cl- counterions were added to the system. Different 

sets of initial velocities obtained from a Maxwellian velocity distribution at the desired 

temperatures were used to start production runs. In each case, the system was initially 

energy minimized with a steepest descent method for 1000 steps. In all simulations the 
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temperature was maintained close to the intended value of 300K by weak coupling to an 

external temperature bath (Berendsen, H.J.C.; Postma, J.P.M.; van Gunsteren, W.F.; Di 

Nola, A.; Haak, J.R. J. Chem. Phys. (1984), 81; 3684-3690) with a coupling constant of 0.1 

ps. The QK peptide and the rest of the system were coupled separately to the temperature 

bath. The AMBER force field (Cornell, W. D.; Cieplak, P.; Bayly, C. I.; Gould, R. I.; Merz, 

K.M.Jr.; Ferguson, D. M.; Spellmeyer, D. C. ; Fox, T.; Caldwell, J. W.; Kollman, P. A.; J. Am. 

Chem. Soc. (1995), 117; 5179-5197) was used. The TIP3P water model (Jorgensen, W.L.; 

Chandrasekhar, J.; Madura, J.; Impey, R.W.; Klein, M.L.; J. Chem. Phys. (1983) 79; 926-

935) was used. The LINCS algorithm (Hess, B.; Bekker, H.; Fraaije, J. G. E. M.; Berendsen, 

H. J. C. A J. Comp. Chem. (1997) 18; 1463-1472) was used to constrain all bond lengths. 

A dielectric permittivity, �=1, and a time step of 2 fs were used. A cut-off was used for the 

calculation of the non-bonded Van der Waals interactions. 

The cutoff radius was set to 0.9 nm. The calculation of electrostatic forces utilized the 

PME implementation of the Ewald summation method. In each simulation, the density of 

the system was adjusted performing the first equilibration runs at NPT condition by weak 

coupling to a bath of constant pressure (P0 = 1bar, coupling time �_P= 0.5 ps) (Berendsen, 

H.J.C.; Postma, J.P.M.; van Gunsteren, W.F.; Di Nola, A.; Haak, J.R. J. Chem. Phys., (1984) 

81; 3684-3690). All simulations were equilibrated by 50 ps of MD runs with position 

restraints on the protein and ligand to allow relaxation of the solvent molecules. 

These first equilibration runs were followed by other 50 ps runs without position 

restraints on the solute. The production runs using NVT conditions, after equilibration, 

covered the simulation lengths discussed at the beginning of this paragraph. All the MD 

runs and the analysis of the trajectories were performed using the GROMACS software 

package (Lindahl, E.; Hess, B.; van der Spoel, D.; J. Mol. Mod. (2001) 7; 306-317). 

Configurations of the peptide were saved every 4ps for subsequent statistical analysis. 

Conformational cluster analysis of the trajectories was performed using the method 

described in Daura et al. (X. Daura; K. Gademann; B. Jaun; D. Seebach; W. F. van 

Gunsteren; A. E. Mark Angew. Chemie Intl. Ed.; (1999) 38; 236-240): count number of 

neighbors using a cut-off of 0.15 nm RMSD between the optimal backbone superposition 

of different structures, take structure with largest number of neighbors with all its 

neighbors as cluster and eliminate it from the pool of clusters. This procedure is repeated 

for the remaining structures in the pool. This procedure was applied separately to each 

trajectory. To obtain a more global view on the peptide behavior, the clustering analysis 

was performed on a single ensemble obtained from all the structures obtained from all 

the simulations. The representative structure of the most populated cluster, 

representative of the most visited structures in the MD simulations, was used as a 

template for defining which residues to mutate to alanine. 

The trajectories were also analyzed in terms of the time evolution of root mean square 

deviation (rmsd) after backbone-backbone superposition, flexibility (root mean square 

fluctuations, rmsf), secondary structure evolution, and in terms of stabilizing 
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interactions. Trajectories were also analyzed to define the principal components of 

peptide motions. Finally, the first 20 ns of each refolding trajectory were analyzed in 

terms of the percentage of time spent by each residue in a helical conformation, to define 

the presence of a preferred folding direction. 
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III.6 Appendix 

 

TABLE III.I 
Temperature dependence of QK  backbone protons chemical  shift 

Residue Atom  Temperature (K)      
  298 303 308 313 318 323 328 333 338 343 

K1 H� 4,24 4,242 4,245 4,248 4,252 4,254 4,257 4,259 4,26 4,262 

 HN 8,22 8,218 8,215 8,214 8,21 8,208 8,202 8,198 8,189 8,184 
L2 H� 4,22 4,241 4,264 4,268 4,279 4,284 4,295 4,324 4,355 4,36 

 HN 8,19 8,187 8,183 8,18 8,175 8,168 8,161 8,154 8,149 8,146 
T3 H� 4,355 4,355 4,355 4,356 4,358 4,36 4,36 4,36 4,36 4,361 

 HN 8,47 8,464 8,459 8,453 8,447 8,437 8,43 8,425 8,416 8,412 
W4 H� 4,382 4,394 4,404 4,415 4,427 4,438 4,445 4,457 4,461 4,461 

 HN 8,5 8,466 8,375 8,312 8,233 8,192 8,137 8,109 8,023 7,978 
Q5 H� 3,793 3,816 3,836 3,85 3,87 3,885 3,898 3,915 3,923 3,935 

 HN 8,147 8,137 8,064 8,029 7,974 7,96 7,928 7,924 7,903 7,839 
E6 H� 4,001 4,01 4,013 4,021 4,025 4,036 4,037 4,046 4,046 4,047 

 HN 7,773 7,763 7,745 7,734 7,741 7,741 7,735 7,733 7,733 7,688 
L7 H� 4,001 4,01 4,013 4,021 4,025 4,036 4,037 4,046 4,046 4,047 

 HN 8,129 8,115 8,04 7,996 7,932 7,916 7,88 7,871 7,862 7,773 
Y8 H� 4,194 4,208 4,219 4,234 4,245 4,261 4,269 4,278 4,285 4,285 

 HN 8,096 8,095 8,034 8,003 7,946 7,936 7,905 7,901 7,83 7,803 
Q9 H� 4,066 4,072 4,074 4,076 4,085 4,097 4,097 4,097 4,1 4,1 

 HN 7,843 7,837 7,812 7,797 7,756 7,768 7,767 7,769 7,755 7,737 
L10 H� 4,11 4,121 4,121 4,123 4,131 4,14 4,142 4,147 4,147 4,147 

 HN 7,784 7,83 7,771 7,749 7,686 7,728 7,725 7,723 7,715 7,66 
K11 H� 4,035 4,045 4,051 4,057 4,057 4,061 4,066 4,081 4,094 4,107 

 HN 7,782 7,809 7,774 7,763 7,727 7,732 7,738 7,743 7,74 7,722 
Y12 H� 4,445 4,458 4,46 4,461 4,475 4,484 4,485 4,486 4,486 4,486 

 HN 7,851 7,861 7,807 7,782 7,736 7,73 7,704 7,698 7,695 7,626 
K13 H� 4,212 4,217 4,225 4,229 4,236 4,24 4,249 4,258 4,265 4,278 

 HN 7,95 7,947 7,933 7,925 7,904 7,865 7,843 7,75 7,72 7,615 
G14 H� 3,89 3,892 3,897 3,898 3,902 3,905 3,907 3,907 3,91 3,911 

 HN 7,931 7,928 7,907 7,9 7,897 7,855 7,832 7,75 7,72 7,61 
I15 H� 4,128 4,128 4,128 4,128 4,128 4,128 4,129 4,13 4,13 4,13 

 HN 7,854 7,85 7,778 7,696 7,625 7,551 7,458 7,387 7,329 7,284 
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Table III.2: 
1H assignment of the QK1 -12 

Residue Atom 
�
 (ppm)  

3JHNH� 
(Hz) 

    
K1 HA 4.196 6.9 
K1 QD 1.611  
K1 QE 2.944  

    
L2 H 8.197 6.5 
L2 HA 4.463  
L2 HB2 1.551  
L2 HB3 1.433  
L2 QD1 0.792  

    
T3 H 8.151 9.0 
T3 HA 4.396  
T3 HB 4.372  
T3 QG2 1.203  

    
W4 H 8.508 5.5 
W4 HA 4.381  
W4 HB2 3.371  
W4 HB3 3.256  
W4 HD1 7.276  
W4 HE3 7.436  
W4 HE1 10.081  
W4 HZ3 7.008  
W4 HZ2 7.405  
W4 HH2 7.067  

    
Q5 H 8.169 5.1 
Q5 HA 3.786  
Q5 HB2 1.791  
Q5 HB3 1.700  
Q5 QG 2.101  
Q5 HE21 6.670  
Q5 HE22 7.323  

    
E6 H 7.744 5.3 
E6 HA 4.006  
E6 HB2 2.089  
E6 HB3 1.946  
E6 QG 2.319  

    
L7 H 8.147 5.3 
L7 HA 4.002  
L7 HB2 1.607  
L7 HB3 1.485  
L7 QD1 0.793  
L7 HG 1.373  

    
Y8 H 8.109 6.1 
Y8 HA 4.186  
Y8 HB2 2.979  
Y8 HB3 2.730  
Y8 QD 6.999  
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Y8 QE 6.717  
    

Q9 H 7.897 5.9 
Q9 HA 4.049  
Q9 QB 2.047  
Q9 QG 2.367  
Q9 HE21 6.822  
Q9 HE22 7.447  

    
L10 H 7.803 6.0 
L10 HA 4.093  
L10 HB2 1.644  
L10 HB3 1.483  
L10 HG 1.089  
L10 QD1 0.799  
L10 QD2 0.854  

    
K11 H 7.740 5.6 
K11 HA 4.011  
K11 HB2 1.479  
K11 HB3 1.384  
K11 QD 1.449  
K11 QE 2.807  

    
Y12 H 7.915 7.0 
Y12 HA 4.446  
Y12 HB2 3.013  
Y12 HB3 2.493  
Y12 QD 6.916  
Y12 QE 6.709  
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Table III.3 
Temperature dependence of QK 1-12 backbone protons chemical  shift 

                                    
Residue Atom             Temperature (K)      
  298 303 308 313 318 323 328 333 338 343 

K1 H�   4,207 4,223 4,229 4,313 4,312 4,369 4,388 4,400 4,402 4,400 

 HN 8,200 8,136 8,094 8,061 7,953 7,874 7,822 7,777 7,701 7,689 
L2 H�   4,466 4,460 4,449 4,450 4,452 4,454 4,556 4,558 4,558 4,550 

 HN 8,203 8,131 8,096 8,132 7,968 7,893 7,856 7,822 7,791 7,788 
T3 H�   4,316 4,335 4,332 4,337 4,340 4,347 4,353 4,355 4,357 4,358 

 HN 8,129 8,238 8,187 8,180 8,177  8,173 8,167 8,164 8,160 8,161 
W4 H�   4,384 4,414 4,420 4,516 4,552 4,562 4,601 4,605 4,611 4,611 

 HN 8,515 8,409 8,343 8,273 8,146 8,043 8,040 8,036 8,033 8,025 
Q5 H�   3,786 3,833 3,833 3,849 3,886 3,912 3,918 4,010 4,013 4,019 

 HN 8,176 8,082 8,039 8,000 7,902 7,830 7,804 7,774 7,768 7,762 
E6 H�   4,010 4,011 4,032 4,040 4,045 4,048 4,050 4,056 4,058 4,060 

 HN 7,744 7,743 7,739 7,729 7,710 7,694 7,677 7,601 7,592 7,588 
L7 H�   4,007 4,006 4,011 4,016 4,019 4,021 4,026 4,027 4,029 4,031 

 HN 8,156 8,085 8,036 7,990 7,874 7,803 7,753 7,742 7,735 7,731 
Y8 H�   4,191 4,213 4,227 4,229 4,255 4,259 4,260 4,261 4,262 4,300 

 HN 8,109 8,063 8,022 7,982 7,882 7,874 7,869 7,862 7,856 7,848 
Q9 H�   4,050 4,057 4,063 4,067 4,068 4,069 4,051 4,058 4,061 4,068 

 HN 7,902 7,857 7,835 7,811 7,731 7,616 7,582 7,577 7,503 7,488 
L10 H�   4,098 4,023 4,025 4,031 4,031 4,048 4,052 4,057 4,061 4,061 

 HN 7,809 7,783 7,763 7,745 7,667 7,611 7,602 7,588 7,569 7,555 
K11 H�   4,012 4,014 4,019 4,029 4,030 4,048 4,052 4,058 4,065 4,066 

 HN 7,747 7,738 7,732 7,733 7,661 7,651 7,647 7,637 7,630 7,626 
Y12 H�   4,012 4,014 4,019 4,029 4,030 4,048 4,052 4,058 4,065 4,066 

 HN 7,920 7,870 7,840 7,811 7,723 7,651 7,641 7,638 7,627 4,618 
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Table III.4 
1H Assignment of QK10A 

peptide at 298 K 
Residue 

 
Atom 

 

�
 

(ppm) 
3JHNH� 

(Hz) 

K1 H 8.132 7.02 

K1 HA 4.256  

L2 H 8.211 7.01 

L2 HA 4.371  

L2 QB 1.412  

L2 HG 1.310  

L2 QD1 0.893  

T3 H 8.044 6.00 

T3 HA 4.375  

T3 HB 4.199  

T3 QG2 1.098  

W4 H 8.310 7.05 

W4 HA 4.414  

W4 HB2 3.238  

W4 HB3 3.133  

W4 HD1 7.206  

W4 HE3 7.425  

W4 HE1 10.027  

W4 HZ3 6.926  

W4 HZ2 7.291  

W4 HH2 7.007  

Q5 H 8.035 - 

Q5 HA 3.856  

Q5 QB 1.653  

Q5 QG 1.991  

Q5 HE21 6.735  

Q5 HE22 7.366  

E6 H 7.767 7.07 

E6 HA 4.030  

E6 HB2 1.908  

E6 HB3 1.827  

E6 QG 2.198  

L7 H 7.706 6.05 



 69696969     

L7 HA 4.052  

L7 HB2 1.354  

L7 HB3 1.175  

L7 HG 1.428  

L7 QD1 0.863  

L7 QD2 0.883  

Y8 H 7.993 6.05 

Y8 HA 4.280  

Y8 HB2 2.818  

Y8 HB3 2.598  

Y8 QD 6.951  

Y8 QE 6.698  

Q9 H 7.933 6.08 

Q9 HA 4.107  

Q9 HB2 1.954  

Q9 HB3 1.851  

Q9 QG 2.255  

Q9 HE21 6.632  

Q9 HE22 7.237  

A10 H 7.897 - 

A10 HA 4.129  

A10 QB 1.486  

K11 H 7.933 6.06 

K11 HA 4.228  

K11 QB 1.327  

K11 HG2 1.204  

K11 HG3 1.095  

K11 QD 1.506  

K11 QE 2.795  

Y12 H 7.829 8.02 

Y12 HA 4.476  

Y12 HB2 2.872  

Y12 HB3 2.672  

Y12 QD 6.971  

Y12 QE 6.683  

K13 H 7.983 9.00 
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K13 HA 4.228  

K13 HB2 1.671  

K13 HB3 1.636  

K13 QD 1.535  

K13 QE 2.868  

G14 H 7.826 7.07 

G14 QA 3.886  

I15 H 7.850 - 

I15 HA 4.130  

I15 HB 1.461  

I15 HG12 1.275  

I15 HG13 1.094  

I15 QD1 0.771  
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Tab III.5 
QK10A temperature dependence of the Ha protons chemical shifts 

    Temperature (K)      

Residue 288 293 298 303 308 313 318 323 328 333 338 343 

K1 4.256 4.256 4.256 4.256 4.256 4.282 4.297 4.301 4.347 4.354 4.355 4.355 

L2 4.371 4.379 4.382 4.394 4.401 4.425 4.438 4.444 4.450 4.459 4.465 4.476 

T3 4.363 4.370 4.375 4.378 4.381 4.380 4.385 4.378 4.375 4.364 4.365 4.365 

W4 4.395 4.395 4.414 4.439 4.525 4.597 4.646 4.665 4.668 4.671 4.673 4.672 

Q5 3.847 3.849 3.856 3.861 3.976 4.045 4.170 4.257 4.334 4.339 4.340 4.342 

E6 4.029 4.031 4.030 4.038 4.124 4.264 4.274 4.287 4.347 4.410 4.412 4.412 

L7 4.044 4.044 4.052 4.056 4.146 4.255 4.261 4.263 4.340 4.347 4.348 4.350 

Y8 4.275 4.278 4.280 4.288 4.397 4.462 4.483 4.516 4.606 4.645 4.648 4.651 

Q9 4.097 4.099 4.107 4.109 4.200 4.219 4.230 4.309 4.315 4.327 4.331 4.331 

A10 4.089 4.111 4.129 4.131 4.191 4.290 4.343 4.348 4.355 4.355 4.355 4.355 

K11 4.050 4.050 4.063 4.077 4.176 4.251 4.289 4.308 4.315 4.329 4.329 4.329 

Y12 4.469 4.469 4.476 4.476 4.576 4.634 4.662 4.671 4.685 4.685 4.686 4.700 

K13 4.180 4.198 4.228 4.257 4.279 4.284 4.297 4.304 4.310 4.310 4.310 4.310 

G14 3.821 3.859 3.886 3.896 3.951 4.010 4.025 4.033 4.036 4.040 4.040 4.040 

I15 4.130 4.130 4.130 4.143 4.150 4.171 4.170 4.179 4.202 4.228 4.234 4.235 
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Table III.6 
1H Assignment of QK10A 

Peptide at 313 K 
Residue 

 
Atom 

 

�
 

(ppm) 
3JHNH� 

(Hz) 

K1 H 8.155 - 

K1 HA 4.329  

L2 H 8.261 8.02 

L2 HA 4.507  

L2 QB 1.641  

L2 HG 1.473  

L2 QD1 -  

T3 H 8.074 8.00 

T3 HA 4.380  

T3 HB 4.402  

T3 QG2 1.284  

W4 H 8.305 8.09 

W4 HA 4.597  

W4 HB2 3.397  

W4 HB3 3.314  

W4 HD1 7.333  

W4 HE3 7.545  

W4 HE1 10.102  

W4 HZ3 7.080  

W4 HZ2 7.447  

W4 HH2 7.153  

Q5 H 8.121 - 

Q5 HA 4.045  

Q5 QB 1.971  

Q5 QG 2.163  

Q5 HE21 6.824  

Q5 HE22 7.451  

E6 H 7.907 8.06 

E6 HA 4.264  

E6 HB2 2.034  

E6 HB3 1.940  

E6 QG 2.287  

L7 H 8.041 6.06 
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L7 HA 4.255  

L7 HB2 1.589  

L7 HB3 1.324  

L7 HG 1.569  

L7 QD1 0.887  

L7 QD2 -  

Y8 H 8.051 6.05 

Y8 HA 4.462  

Y8 HB2 3.060  

Y8 HB3 2.899  

Y8 QD 7.052  

Y8 QE 6.788  

Q9 H 8.000 6.09 

Q9 HA 4.290  

Q9 HB2 2.076  

Q9 HB3 2.011  

Q9 QG 2.425  

Q9 HE21 6.742  

Q9 HE22 7.331  

A10 H 8.009 - 

A10 HA 4.290  

A10 QB 1.379  

K11 H 7.885 6.06 

K11 HA 4.251  

K11 QB 1.480  

K11 HG2 1.431  

K11 HG3 1.206  

K11 QD 1.986  

K11 QE 2.989  

Y12 H 7.978 8.05 

Y12 HA 4.634  

Y12 HB2 3.102  

Y12 HB3 2.933  

Y12 QD 7.076  

Y12 QE 6.791  

K13 H 7.964 9.00 
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K13 HA 4.284  

K13 HB2 1.643  

K13 HB3 1.565  

K13 QE 3.203  

K13 QE -  

G14 H 7.932 7.07 

G14 QA 4.010  

I15 H 7.882 9.02 

I15 HA 4.171  

I15 HB 1.940  

I15 HG12 1.439  

I15 HG13 1.172  

I15 QD1 -  
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                                                                                                                                                                                                                                                    CHAPTER CHAPTER CHAPTER CHAPTER IIIIVVVV    

APPLICATION OF HELICAL SCAFFOLD: 

DESIGN OF VEGF RECEPTOR BINDERS 

 

IV.1 Introduction 

 

There are important classes of proteins whose role lies in the tight complex formation 

with other polypeptides and whose architecture is mainly determined by rigid secondary 

structure. In these cases loop regions play a lesser role in the binding function but often 

adopt regular turn structures and as such ensure the dense packing of secondary 

structural elements. In this manner, several a-helices or �-strands are brought together 

and side chains protruding from two or more of these elements form the interface for 

complex formation with the target protein.  

The de novo design of a peptide sequence adopting a well-defined secondary structure 

includes a first step of introducing residues in order to stabilize the secondary structure 

and a second in which you enter the residues responsible for interaction in the correct 

spatial orientation. An alternative approaches is grafting the interacting residues on 

protein scaffolds that have the desired secondary structure exposed to the solvent. In this 

case the protein scaffold serve to structurally fix the grafted peptide segment and, indeed, 

achievable affinities seem to be higher if compared to the corresponding  

conformationally flexible peptide. Another advantage of the scaffolding approach is the 

possibility to obtain reagents with high physicochemical and possibly proteolytic stability. 

In fact, it is reasonably assumed that the  beneficial properties of a robust wild-type 

scaffold protein will be largely retained in its engineered descendants. Such stability 

aspects may not only include the capability of maintaining a functional conformation 

during various types of ‘environmental stress’ but also relate to the ability of reversibly 

regaining the native structure after potential denaturation.  

Several examples of scaffolds have been reported in the literature: natural scaffolds by 

animal toxins, which present �/� or �-structures cross-linked by several disulfide 

bridges, able to bind different ion channels with high affinity and specificity 

(Kellenberger, E., et al., 1999; Chong Li, et al., 2008); zinc fingers and Leu zippers 

(Domingues, H. et al., 1999), which have �/� or all-� structures, respectively, and 

represent structural modules of more complex protein ensembles that can bind specific 

DNA sequences. (S. E. Rutledge et al., 2003; T. L. Schneider, et al.,  2005; J. A. Kritzer et 

al., 2006) and IgG domain a natural biomolecular scaffold for various applications in 

basic science and medicine. 
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Our intent was engineering an appropriate �-helical scaffold to develop a mini-protein as 

VEGF receptors binder. 

 

IV.1.1 Angiogenesis and VEGF 

 

Angiogenesis is the process of remodeling of the vascular tissue characterized by the 

branching out of a new blood vessel from a pre-existing one. The angiogenesis is 

particularly active during embryogenesis, while during adult life it is quiescent and 

limited to particular physiological phenomena. In the last years, the study of molecular 

mechanisms of angiogenesis has stirred renewed interest due to the recognition of the 

role played by angiogenesis in several pathologies of large social impact, such as tumors 

and cardiovascular diseases, but also to the pharmacological interest rising from the 

possibility of modulating this phenomenon (Carmeliet, 2003). Antibodies, peptides and 

small molecules targeting active endothelial cells (ECs) represent an innovative tool in 

therapeutic and diagnostic fields. In the process of angiogenesis, vascular endothelial 

growth factor (VEGF) is essential for growth, mitogenesis, and tube formation of ECs. 

VEGF binds to two tyrosine kinase receptors, fms-like tyrosine receptor (VEGFR1) and 

kinase insert domain containing receptor (VEGFR2), on the surface of ECs, thereby 

activating signal transduction and regulating physiological and pathological angiogenesis. 

Several VEGF structures have been reported: free (Muller, 1997a and 1997b), bound to 

peptide inhibitors (Wiesmann, C., 1998; Pan, B., 2002), to a neutralizing antibody 

(Muller, 1998) and to the domain 2 of the extracellular region of VEGFR1 receptor, 

VEGFR1D2, (Figure IV.1) (Wiesmann, C., 1997).  

 
Figure IV.1: VEGF (green and red) and the domain 2 of its receptor VEGFR1 (orange); 

in blue the residues involved in the binding to the receptors. 
 

VEGF is an antiparallel homodimer, covalently linked through two disulfide bonds. It is 

characterized by a cystine knot motif. The knot consists of two disulfide bridges, with a 

third disulfide bond passing through them. Domain deletion studies on VEGFR1 have 

shown that the ligand binding site resides within the first three domains. The second 

domain binds VEGF about 60-times less tight than wild type protein, but its removal 
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abolish the binding. VEGFR1D2 is a member of the immunoglobulin family. It consists of 

a sandwich formed by two sheets, one consisting of five strands and the other of three. 

The overall structure of the VEGF/VEGFR1D2 complex possesses approximately a two-

fold simmetry. The VEGF recognition interface is divided about 65% and 35% between 

both monomers. The analysis of structural and mutagenesis data allowed to identify 

residues involved in the binding to the receptors. They are distributed over a 

discontinuous surface which include residues from the Nterminal helix (17-25), the loop 

connecting strand �3 to �4 (61-66) and strand �7 (103-106) of one monomer, as well as 

residues from strand �2 (46-48) and from strand �5 and �6 together with the connecting 

turn (79-91) of the other monomer. The recognition interface is manly hydrophobic, 

except for the polar interaction between Arg224 (VEGFR1) and Asp63 (VEGF). 

VEGFR2 and VEGFR1 share the same VEGF binding region, in fact 5 out of 7 most 

important VEGF binding residues are present in both interfaces (Muller 1997a; Muller, 

1997b; Wiesmann, C., 1997).  
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IV.2 Results 

 

IV.2.1 Molecular Design 

 

The analysis of three-dimensional structure of the complex between VEGF/VEGFR1D2 

showed that the VEGF N-terminal helix (residue 17-25) is involved in receptor 

recognition. The role of this region for interaction with the receptors was also 

demonstrated using a  peptide, QK, mimicking the VEGF helix 17-25 (D’Andrea et al., 

2005). We decided to graft the interacting residues of VEGF helix and QK on a scaffold 

that has a helix exposed to the solvent order to make stable molecules capable of 

interacting with receptors of VEGF with potential applications in vivo. 

The Avian pancreatic polypeptide (APP) was chosen as protein scaffold. It is very stable, 

small in size and also because it has already showed its ability to modulate protein-DNA 

(Zondlo and Schepartz, 1999) and protein-protein interactions. APP is a stable  mini-

protein of 36 amino acids (Blundell et al., 1981), which presents a helix of poly proline 

type II and an �-helix exposed to solvent, which interact to define a small hydrophobic 

core is also present at the interface between the two helices (Figure IV.2). 

 
Figure IV.2: X-ray structure of the Avian Pancreatic Polypeptide (PDB ref). 

 

Based on the structure of the complex VEGF/VEGFR-1D2 receptor we identified the 

VEGF residues those located in the region 17-25 at less than 4.5 Å from the receptor: 

Phe17, Met18, Tyr21 and Gln22 and Tyr25. The corrisponding residue on the peptide QK 

(see Figure IV.3) are Trp4, Gln5, Tyr8, Gln9 and Tyr12. They occupy one face of the helix 

and establish hydrophobic interactions with the receptor.  

 
Figure IV.3: Sequence of VEGF helix 17-25 and QK peptide . 

QK and VEGF helix have only two rounds of helix, while APP has four, so we have made 

all possible structural alignments the helices can align with follow residues of APP: 

Val14, Ile18 e Asn22.  
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In the last two cases occur steric encumbrance between the turn preceding the helix and 

the receptor (Figure IV.4).  

 
Figure IV.4: Overlapping of APP structure (red) with the VEGF helix  17-25 (green) complexed  

to the receptors (yellow); the interacting residue are highlighed in light blue. 
 

Thus, the residues of the wild type sequence (APPwt) replaced are in the first mutated 

scaffold (APP1): V14F, E15M,  I18Y,  R19Q and N21Y; in second scaffold mutated 

(APP_QK): V14W, E15Q,  I18Y,  R19Q  e N21Y (Figure IV.5).  

 
 

Figure IV.5: Alignment of sequences between APP and two helix of VEGF and QK.  
 

In addiction, the Tyr20 was mutated in Ala to avoid the interferences with bond  to 

receptor since in positions 21 was insert the Tyr responsible of interactions with it. Ala 

was choice to not perturb the helix. 

 

IV.2.2 Gene synthesis and cloning 

 

The gene coding for the mini proteins, APPwt, APP1 and APP_QK, were synthesized 

starting from short oligonucleotide sequences (Figure IV.6). 

The full length gene double strand was divided in four short oligonucleotide sequence (A, 

B, C, D) which were ligated, after hybridization, to afford two half gene (AB, CD), a final 

ligation reaction afford the final gene product. Color code refer to oligonucleotide 

sequence reported in paragraf IV.4.2. 
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Figure IV.6: APP gene synthesis startegy; 

the colours were congruent with the sequences reported in paragraph IV.4.2  
 

In figure IV.7 is reported the agarose gel of the costruction of gene APPwt before last 

ligation; the full length APPwt gene purified and analyzed by electrophoresis on a agarose 

gel (Figure IV.8). 

 
Figure IV.7: Partial synthesis of APPwt gene; in red marker band of 100 bp, 

lane 1 annealing A (30bp),  lane 2 annealing B (29bp), lane 3 ligase reactions AB (59bp), 
 lane 4 ligase reaction CD (59bp), lane 5 annealing C (29bp), lane 6 annealing D (30bp). 

 

 
Figure IV.8: APPwt gene (118bp) purified, in red marker band of 100 bp 

 

Succesively, it was amplified by PCR, product and ligated into the expression vectors 

pPROEXHTa between NcoI and XhoI restriction site. 

The APP1 and APP_QK genes were synthetized in following the same procedures as 

APPwt. In figure IV.9 is reported the agarose gel of the costruction of genes before last 

A A D D C C B B

1 1 ANNEALING ANNEALING 

A A D D C C B B

1 1 ANNEALING ANNEALING 

AB AB CD CD 

2 2 Ligation Ligation Ligation Ligation 

AB AB CD CD 

2 2 Ligation Ligation Ligation Ligation 

AB AB CD CD 

2 2 Ligation Ligation Ligation Ligation 

ABCD ABCD 

3 3 Ligation Ligation 

ABCD ABCD 

3 3 Ligation Ligation 

1      2      3       M      4      5       6 

M             APPwt 
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ligation; the full length APP1 and APP_QK genes purified and analyzed by electrophoresis 

on a agarose gel (Figure IV.10). 

 

                  
Figure IV.9: A) Partial synthesis of APP_QK gene; in red marker band of 100 bp, lane 1 annealing A (30bp), lane 

2 ligase reaction AB (59bp), lane 3 annealing B (29bp), lane 4 annealing C (29bp), 
lane 5 ligase reaction CD (59bp), lane 5 annealing D (30bp). 

B) Figure IV.2.4a: Partial synthesis of APP1 gene; in red marker band of 100 bp, lane 1 annealing A (30bp), lane 
2 ligase reaction AB (59bp), lane 3 annealing B (29bp), lane 4 annealing C (29bp), 

lane 5 ligase reaction CD (59bp), lane 6 annealing D (30bp). 
 
 

 
Figure IV.10: APP1 and APP_QK genes (118bp) purified, 

in red marker band of 100 bp, lane C PCR control. 

 

Succesively, it was amplified by PCR, product and ligated into the expression vectors 

pETM11, pETM20 and pETM30 between NcoI and XhoI restriction site. The features of 

expression vectors and the relative maps was reported in paragraf IV.4.3. 

The presence of the inserts was tested by PCR screening (Figure IV.11) and confirmed by 

DNA sequencing. 

   
Figure IV.11: A) screening PCR of APPwt; B) screening PCR of APP1; C) screening PCR of APP_QK 

 

A          1      2    3    M      4    5     6 B      1     2    3     M     4    5     6 

M     APP1   APP_QK   C  

A B C 
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IV.2.3 Protein expression 

 

Optimal expression conditions were selected for each recombinant protein, by performing 

a complete screening in BL21(DE3), BL21(DE3)STAR, BL21codon plus(DE3)RIL and  

Rosetta GAMI(DE3) E.coli strains, using different induction time, temperatures and 

inducing agent concentration. The result are summarized in Tables IV.1-7 in Appendix 

IV.6. The optimal conditions selected to obtain the desidered protein soluble in large 

yields were illustrated in table IV.8. 

Table IV.8 STRAIN IPTG 
concentration 

Temperature Induction 
time 

APPwt BL21codon 
plus(DE3)RIL 

1mM 37°C 16 hour 

APP1 BL21(DE3) 0.4mM 22°C 5 hour 

APP_QK BL21(DE3) 0.4mM 22°C 5 hour 

 

Analysis by SDS–PAGE of bacterial lysates showed the presence the high level expression  

of the proteins APPwt, APP1 and APP_QK in the soluble fraction. Molecular weights 

rivealed by gel are comparable with those expected, riported in Table IV.9. 

Table IV.9 MW 

APPwt 7,46 KDa 

APP1 33,15 KDa 

APP_QK 33,19 KDa 

 

The protein over-expression are riported in figure IV.12. 

 

    
Figure IV.12: SDS-PAGE of protein expression:  lane M=marker, lane U=uninduced, lane I=induced. 

A) in magenta His6x-APPwt 7,5Kda, in red marker band of 10KDa; 
B) in magenta His6x-APP1 33 Kda, in red marker band of 29KDa; 

C) in magenta His6x-APP_QK 33 Kda, in red marker band of 29Kda. 
 

 

A      M       U    I      B     M    U   I        C 
M        U     I 
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IV.2.4 Protein purification 

 

The protein 6xHis-APPwt was purified by affinity chromatography on Ni2+-NTA resin. 

The lysate was then loaded in presence of 100 mM NaCl to avoid non-specific binding of 

E. coli contaminants and all fractions were eluted increasing imidazole concentration. 

The analysis of the SDS–PAGE gels revealed that the protein was well purified (Figure 

IV.13).  

 

 
Figure IV.13: Elettrophoresis analysis on SDS-PAGE the affinity purification of His6x-APPwt; 

 lane M marker,  in green band of 10 KDa, FT= flow through, 
W=Wash resine with 20mM Imid., E1= elution to 50mM Imid., E2= elution to 150mM Imid. 

E3 elution to 250 mM Imid.; arrow indicate His6x-APPwt . 
 

Protein samples eluited were dialyzed in buffer of the protease TEV for the subsequently 

reaction. 

The purification of 6xHis-GST-APP1 and 6xHis-GST-APP_QK proteins were loaded on 

His-Trap HP column, equilibrated with buffer A described in paragraf IV.4.4. 

APP1 and APP_QK are eluited at 50% and 70% buffer B, described in paragraf IV.4.4, 

respectively. The chromatography profiles are showed in Figure IV.14. 

   
Figure IV.14: Purification on Histrap column, 

A) His6x-GST-APP1 * indicate the peack of protein elution at 50% buffer B. 

B) His6x-GST-APP_QK  * peack of protein elution at 70% buffer B. 
 
 

All fraction were analyzed by 15% SDS-PAGE (Figure IV.15 and IV.16). 

M   FT        W    W                E1          E2        E3 

B A 
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Figure IV.15: Elettrophoresis analysis on SDS-PAGE the affinity purification of His6x-GST-APP1; 

 lane M marker,  in green band of 29KDa, E= protein extract, FT= flow through, 
W=Wash resine with 20mM Imid., E1= elution to 50mM Imid., E2= elution to 250mM Imid. 

E3 elution to 500 mM Imid.; arrow indicate His6x-GST-APP1. 
 

 
Figure IV.16: Elettrophoresis analysis on SDS-PAGE the affinity purification of His6x-GST-APP_QK; 

 lane M marker,  in green band of 29KDa, E= protein extract, FT= flow through, 
W=Wash resine with 20mM Imid., E1= elution to 50mM Imid., E2= elution to 350mM Imid. 

E3 elution to 500 mM Imid.; arrow indicate His6x-GST-APP_QK. 
 

 

Protein samples eluited were dialyzed in buffer of the protease TEV for the subsequently 

reaction. 

 

IV.2.5 TEV digestion and second purifications 

 

Cleavage reaction was performed adding TEV protease to protein solution in a molar ratio 

of 1:50 the reaction was kept at 30°C for 4 hours. 

TEV-cleaved proteins were analyzed by gel electrophoresis (Figure IV.17). 

     
Figure IV.17:  Elettrophoresis analysis on SDS-PAGE of the TEVproteolysis reaction; 

M marker; C= cut TEV,U= uncut; 
A) in magenta APPwt protein 4,5 KDa; B) in magenta APP1 4,5 KDa; C) in magenta APP_QK protein 4,5 KDa. 

 

 M    E    FT   W          E1       E2        E3 

B        U    C C        M      U         C   A        M      C         U 

M   E  FT    W     E1             E2                 E3 
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The cleaved APPwt and APP1 proteins were purified by affinity chromatografy used a Ni2+-

NTA column in presence of 10mM imidazole; Figure IV.18 showed SDS-PAGE of APPwt 

after purification and Figure IV.19 affinity profile of APP1 on HisTrap column. 

 
Figure IV.18: Elettrophoresis analysis on SDS-PAGE of APPwt. of the elution (lane1-4) by resin. 

 

 
Figure IV.19: Purification of APP1 on Hitrap column by FPLC, eluted at 10mM imidazole; 

chromatografy profile revealed at 280nm. 
 

Instead, APP_QK was purified by gel filtration (Figure IV.20) because on Ni2+-NTA resin it 

was eluted with 6xHis-GST at high imidazole concentration probably because of aspecific 

interactions. The R.T. of  100ml is congruent with molecular weight of protein (4,5 Da). 

 

 
Figure IV.20: Gel filtration purification of APP_QK on Superdex S30 column, 

chromatografy profile revealed at 280nm. 

 

APPwt 

M         1      2     3     4 

APP_QK 

APP1 
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Finally all pure proteins were concentrated until 0.3 mM. 

Purity and identity of all proteins were assessed by liquid chromatography mass 

spectrometry (Figure IV.21a, 21b and 21c). The experimental molecular weights are in 

accordance with theoretical ones as showed in following table IV.9. 

Table IV.9 MWTh MWExp 

APPwt 4497.9 4497.3 

APP1 4526.04 4523.3 

APP_QK 4562.0 4559.4 

 

 

 

 

Figure IV.21a: LC-MS of APPwt purified  
A) RP-HPLC profile revealed at 210nm; B) ESI-MS spectrum of the peak  at RT: 32.10 min; 

C) UV absorption spectra of the peak at RT: 32.10min. 
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Figure IV.21b: LC-MS of APP1 purified  
A) RP-HPLC profile revealed at 210nm; B) ESI-MS spectrum of the peak  at RT: 31.16 min; 

C) UV absorption spectra of the peak at RT: 31.16min. 
 

 

 

Figure IV.21c: LC-MS of APP_QK purified  
A) RP-HPLC profile revealed at 210nm; B) ESI-MS spectrum of the peak  at RT: 30.87min; 

C) UV absorption spectra of the peak at RT: 30.87min. 
 

The three proteins were obteined as a homogeneous product at high purity (Figure 

IV.22a, 22b and 22c). The final expression yields were about 5mg for APPwt and 3mg for 

APP1 and APP_QK. 
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Figure IV.22a: APPwt pure.          Figure IV.22b: APP1 pure.        Figure IV.22c: APP_QK pure. 

 

 

IV.2.6 Caspase 3 fluorimetric Assay 

 

The literature shows that VEGF is able to inhibit approximately 40% induced apoptosis 

(Yilmaz A, Kliche S, Mayr-Beyrle U Fellbrich G, Waltenberger J., Biochem. Biophys. Res. 

2003 306 730 -736), for that reason it has developed a fluorimetric test for an early 

event, the activity of caspase 3, specific enzyme of apoptosis (JMAdams, Genes. DeIV. 

2003, 20 2481-95). 

The APP_QK and APPwtas control were tested with Caspase 3 assay (Figure IV.23). 
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Figure IV.23: Caspase 3 assay on APPwt and APP_QK. 

 

This experiment was show an activity of APP_QK similar to VEGF, while APPwt as 

expected has not activity. 

Caspase 3 experiments with the laboratory of Prof. MC Turco University of Salerno. 
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IV.3 Discussions 

 

There are important classes of proteins whose role lies in the tight complex formation 

with other polypeptides and whose architecture is mainly determined by rigid secondary 

structure. In these cases loop regions play a lesser role in the binding function but often 

adopt regular turn structures and as such ensure the dense packing of secondary 

structural elements. In this manner, several a-helices or �-strands are brought together 

and side chains protruding from two or more of these elements form the interface for 

complex formation with the target protein.  

The de novo design of a peptide sequence adopting a well-defined secondary structure 

includes a first step of introducing residues in order to stabilize the secondary structure 

and a second in which you enter the residues responsible for interaction in the correct 

spatial orientation. An alternative approaches is grafting of the interacting residues on 

protein scaffolds that have the desired secondary structure exposed to the solvent. In this 

case the protein scaffold serve to structurally fix the grafted peptide segment and, indeed, 

achievable affinities seem to be higher if compared to the corresponding  

conformationally flexible peptide. Another advantage of the scaffolding approach is the 

possibility to obtain reagents with high physicochemical and possibly proteolytic stability. 

Infact, a “scaffold” proteins are it is reasonably assumed that the  beneficial properties of 

a robust wild-type scaffold protein will be largely retained in its engineered descendants. 

Such stability aspects may not only include the capability of maintaining a functional 

conformation during various types of ‘environmental stress’ but also relate to the ability 

of reversibly regaining the native structure after potential denaturation.  

In this work we chosen APP as starting scaffold to design an optimized miniprotein able 

to mimic VEGF in the interaction with its membrane receptors. To this aim we mutated 5 

amino acids of the original APP, introducing the interacting residues of the VEGF helix 

17-25 and of QK epitope binding. The new APP proteins expressed in E.coli and 

preliminary biological assay performed on APP_QK demonstrated that it activity is 

comparable with that of native VEGF in terms of inhibition of caspase 3.  
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IV.4 Experimental Section 

 

IV.4.1 Materials and Methods 

 

Reagents used for preparation of buffers and growth media of Escherichia coli were 

supplied by Sigma Aldrich, the reagents for polyacrylamide gels electrophoresis 

(Acrylamide, APS, TEMED, SDS, Tris, Glycine) by Applichem. The molecular weight 

markers for proteins were from Sigma Aldrich. Oligonucleotides were synthesized by 

Sigma-Genosys (Sigma-Aldrich). Pfu Turbo DNA polymerase is from Stratagene. 

Restriction enzymes and the “modification enzymes” (Calf Intestine Phosphatase (CIP), T4 

DNA Ligase, Taq DNA polymerase (5 U/�L) and T4 DNA Polynucleotide Kinase) are from 

New England Biolabs. The molecular weight markers for nucleic acids were supplied by 

NEB and Roche. pETM vectors for the expression of recombinant proteins are from EMBL 

(Heidelberg), while the expression vector pPROEXHTa was supplied by Invitrogen. 

All molecular biology kits are from Qiagen. E.coli TOP10F’ strain, used for cloning, was 

supplied by Invitrogen; E. coli BL21 Codon Plus (DE3) RIL cells, used for over expression, 

were supplied by Stratagene. BL21(DE3) and BL21(DE3) STAR, also used for expression, 

were supplied by Invitrogen while RosettaGAMI(DE3) were from Novagen. 

Isopropylbeta- D-thiogalactopyranoside (IPTG) is from Inalco. Complete Protease Inhibitor 

Cocktail Tablets were supplied by Roche and used as a mixture of protease inhibitors, 

according to manufacturer’s instruction. 

Chromatography columns and AKTA FPLC are from GE HealthCare. Ethanol, propanol 

and acetic acid were supplied by J.T. Baker. TFA was from Fluka. Purity and identity of 

protein samples were assessed by LC-MS system (Thermo Electron) comprising an LCQ 

Deca XP MAX ion trap mass spectrometer  equipped with an ESI source and a complete 

Surveyor HPLC system (including MS pump, autosampler and photo diode array [PDA]). 

UV-VIS spectra were performed by using a Jasco V-550 UV-VIS spectrophotometer, in an 

1 cm quartz cell (Hellma). 

CD spectra were recorded using a Jasco J-810 spectropolarimeter (JASCO Corp) 

equipped with a Peltier-type temperature control system. 

 

IV.4.2 Synthesis of gene 

 

The gene coding for the mini proteins, APPwt, APP1 and APP_QK, were synthesized 

starting from short oligonucleotide sequences showed following. 
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Gene APPwt: 

A1 5’-CGCATATGGGTCCGTCTCAGCCGACC 

A2 5’GGGTAGGTCGGCTGAGACGGACCCATATGCG 

A3 5’-TACCCGGGTGATGATGCGCCGGTTGAAG 

A4 5’-TCAGATCTTCAACCGGCGCATCATCACCC 

A5 5’-ATCTGATCCGTTTCTACAACGATCTGCAG 

A6 5’-TACTGCTGCAGATCGTTGTAGAAACGGA 

A7 5’-CAGTACCTGAACGTTGTTACCCGTCACCGTTAC 

A8 5’-GTAACGGTGACGGGTAACAACGTTCAGG 

 

Gene APP1: 

A1  5’ -CGCATATGGGTCCGTCTCAGCCGACC 

A2  5’ -GGGTAGGTCGGCTGAGACGGACCCATATGCG 

A10 5’ -TACCCGGGTGATGATGCGCCGTTCATG  

A11 5’ -CCCACTAGTACGCGGCAAGTACCTAGA 

A12 5’ -GATCTGTACCAGTTCGCGTACAACCTGCAG 

A13 5’ -CATGGTCAAGCGCATGTTGGACGTCGTCAT 

A7  5’ -CAGTACCTGAACGTTGTTACCCGTCACCGTTAC 

A8  5’ –GTAACGGTGACGGGTAACAACGTTCAGG 

 

Gene APP_QK: 

A1  5’ -CGCATATGGGTCCGTCTCAGCCGACC 

A2  5’ -GGGTAGGTCGGCTGAGACGGACCCATATGCG 

A14 5’ -TACCCGGGTGATGATGCGCCGTGGCAG 

A15 5’ -CCCACTAGTACGCGGCACCGTCCTAGA 

A12 5’ -GATCTGTACCAGTTCGCGTACAACCTGCAG 

A13 5’ -CATGGTCAAGCGCATGTTGGACGTCGTCAT 

A7 5’ -CAGTACCTGAACGTTGTTACCCGTCACCGTTAC 

A8 5’ –GTAACGGTGACGGGTAACAACGTTCAGG 

 

The previous oligonucleotides were used to obtein the fragment as showed in figure 

IV.2.1., the colours were congruent with the picture.  

 
Figure IV.2.1: methods of synthesis gene 

 

The methodology was composed of three steps; in step 1 the complementares 

oligonucleotides before were denatured at the temperature of 95°C for 2 minutes and 

after were annealing at 4°C , in step 2 the dna doble strand generated were ligated with 

T4 DNA Ligase (400 U/�L) 20 U/�g for 1 hours at 16°C and in final step 3 the two 
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fragment were ligated for obtainment the ligase of complete gene with same conditions 

ligase of step two. 

The complete sequence  are : 

 

APPwt 

 
5’-CGCATATGGGTCCGTCTCAGCCGACCTACCCGGGTGATGATGCGCCGGTTGAAGATCT- 
   GCGTATACCCAGGCAGAGTCGGCTGGATGGGCCCACTACTACGCGGCCAACTTCTAGA 
 
  -GATCCGTTTCTACAACGATCTGCAGCAGTACCTGAACGTTGTTACCCGTCACCGTTAC-3’ 
   CTAGGCAAAGATGTTGCTAGACGTCGTCATGGACTTGCAACAATGGGCAGTGGCAATG 
 
APP1 
 
5’-CGCATATGGGTCCGTCTCAGCCGACCTACCCGGGTGATGATGCGCCGTTCATGGATCT- 
   GCGTATACCCAGGCAGAGTCGGCTGGATGGGCCCACTACTACGCGGCAAGTACCTAGA 
 
  -GTACCAGTTCGCGTACAACCTGCAGCAGTACCTGAACGTTGTTACCCGTCACCGTTAC-3’ 
   CATGGTCAAGCGCATGTTGGACGTCGTCATGGACTTGCAACAATGGGCAGTGGCAATG 
 
APP_QK 
 
5’-CGCATATGGGTCCGTCTCAGCCGACCTACCCGGGTGATGATGCGCCGTGGCAGGATCT- 
   GCGTATACCCAGGCAGAGTCGGCTGGATGGGCCCACTACTACGCGGCACCGTCCTAGA 
 
  -GTACCAGTTCGCGTACAACCTGCAGCAGTACCTGAACGTTGTTACCCGTCACCGTTAC-3’ 
   CATGGTCAAGCGCATGTTGGACGTCGTCATGGACTTGCAACAATGGGCAGTGGCAATG 
 

 

IV.4.3 Cloning of gene 

 

The genes after the synthesis were amplified with PCR. All amplification reactions were 

performed in a final volume of 100 �L, using 50 ng of template DNA. 

The reaction mixture contained the 2 primers (0.25 �M each), dNTPs (0.25 mM each) and 

the Pfu turbo polymerase (5U) with its buffer 1X. 

PCR was performed using an Eppendorf Mastercycler personal apparatus, following the 

protocol indicated below: 

 
� Initial denaturation (step 1)   3 min at 95°C 

� Denaturation (step 2)    1 min at 95°C 

� Annealing (step 3)   1 min at the appropriate temperature for 

each gene amplified 

� Elongation (step 4)   1 min at 72°C for 30 cycles, from step 2. 

 
All amplification products were analyzed by 2% agarose gel electrophoresis performed in 

TAE buffer (18.6 g/L EDTA, 242 g/L Tris base, add acetic acid until pH 7.8). 
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IV.4.3.1 APPwt in pPROEX-HTa 

 

The amplification was performed by using the following couples of primers: 

 

FORWARD 

A-NcoI   5’-C ATC GCC ATG GGT CCG TCT CAG CCG ACC TAC CCG    34mer    (NcoI)  

 

REVERSE 

A-XhoI  5’- AA CAA TGG GCA GTG GCA ATG ATC ACT GAGCTC ATA   35mer   (XhoI)  

 

The forward primers indicated above contained the NcoI restriction site, while the reverse 

primers were designed with the XhoI restriction site positioned downstream to two stop-

translation codons (bold in the sequences). This cloning strategy was used to obtain the 

gene products fused (at the N-terminal) with the 6x-Histidine-tag of the pPROEXHTa 

expression vector. The pPROEXHTa plasmid is designed to allow inducible, high level 

intracellular expression of genes; it contains a tac promoter for chemical induction, a 

multiple cloning site (MCS), an internal lac Iq gene compatible to any E. coli  host and a 

TEV protease recognition site for cleaving the fusion protein (Figure IV.2.2).  

 
Figure IV.2.2 :Structural organization of pPROEXHTa expression vector 

 

PCR products were purified by using the QIAquick PCR Purification Kit, and digested with 

NcoI (20 U/�L) and XhoI (10 U/�L) restriction enzymes. 

Each amplified fragment (1�g) was digested with 3U of restriction enzymes for 2 hours at 

37ºC in a buffer containing 50 mM NaCl, 10 mM Tris-HCl, 10 mM MgCl2, 1mM DTT pH 

7.9 supplemented with BSA 100 �g/mL. Following the digestion, each fragment was 
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cloned into the corresponding sites of the pPROEXHTa expression vector, downstream to 

the His-tag sequence. 

To this purpose, the expression vector was previously digested with the same restriction 

enzymes (3 U/�g), and treated with CIP enzyme (10 U/�g) for 30 min at 37ºC. CIP was 

then inactivated at 75°C for 10 min. After digestion, PCR amplifications were purified by 

QIAquick PCR Purification Kit, while the NcoI/XhoI pPROEXHTa was purified by QIAquick 

Gel Extraction Kit. For ligation reactions was used a 1:6 molar ratio (vector/insert DNA). 

The reactions were performed using 20 U/�g DNA of the T4 DNA Ligase (400 U/�L), in a 

final volume of 10 �L, for 1 hours at 16°C. The identity of the inserts in the resulting 

recombinant plasmids was confirmed by DNA sequencing (MWG-Biotech). E. coli TOP 

F’10 strain was used for cloning.  

 

IV.4.3.2 APP1 and APP_QK in pETM 

 

APP1 and APP_QK amplified gene were cloned initially in pETM11 and pETM20 

expression vectors and subsequently in pETM30 (figure IV.2.3, IV.2.4 and IV.2.5).  

 
Figure IV.2.3: Structural organization of pETM11 expression vector 

 

 

 



 96969696     

 
Figure IV.2.4: Structural organization of pETM20 expression vector 

 

 
Figure IV.2.5: Structural organization of pETM30 expression vector 

 

 

pETM11 contains a 6x-Histidine-tag, the pETM20 system contains a 6x-Histidine-TrxA 

fusion-tag for the increase of the solubility of gene products, while pETM30 system 

contains a 6xHistidine-GST fusion-tag for the increase of the solubility of gene products. 

The primers used for amplification by PCR of gene in these systems were the same used 

for the amplification of APPwt gene; digestions and purifications of plasmids were 

performed in the same way as the APPwt in pPROEX-HTa. 

For ligation reactions was used a 1:6 molar ratio (vector/insert DNA). The reactions were 

performed using 20 U/�g DNA of the T4 DNA Ligase (400 U/�L), in a final volume of 10 �L, for 1 hours at 16°C. The identity of the inserts in the resulting recombinant plasmids 

was confirmed by DNA sequencing (MWG-Biotech). E. coli TOP10F’ strain was used for 

cloning.  
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IV.4.4 Determination of the concentration and Electrophoretic analysis 

 

The concentration of the proteins in solution was determined according to the Bradford’s 

method (Bradford, 1976). The Coomassie Brilliant (Bio-Rad) reagent was added to the 

samples and the absorbance at 595 nm was monitored. 

A solution of 1 �g/�L of bovine serum albumin (BSA) was used as standard. Protein 

concentration was also measured by UV spectroscopy, reading the tryptophan 

absorbance at 280 nm, using a Jasco V-550 UV-VIS spectrophotometer, in an 1 cm 

quartz cell. The electrophoresis on polyacrylamide gel in the presence of SDS (SDS-PAGE) 

was performed according to Laemmli’s protocol (Laemmli, 1970). The samples were 

denaturized at 95°C for 10 min in 1% SDS (Applichem), 5% �-mercaptoethanol (Sigma), 

0.001% bromophenol blue (ICN Biomedicals) and 10% glycerol (Applichem). The samples 

were then loaded on a 15% or 18% polyacrylamide gel and electrophoresed in 0.025 M 

Tris-HCl, 0.2 M glycine pH 8.3 and 0.1% SDS. The electrophoresis was performed at 30 

mA for ~60 minutes. The proteins were then revealed by Coomassie Brilliant-Blue 

(Applichem) staining; the gel was submerged in the staining solution (0.1% Coomassie 

Brilliant-Blue R250, 25% isopropilic alcohol and 10% acetic acid) for ~30 min with gentle 

agitation. The gel was washed in a solution containing 30% ethanol and 10% acetic acid 

to remove the excess of Coomassie and then stored in 10% acetic acid. 

 

IV.4.5 Protein expression and purification 

 

The host strain chosen for the expression of 6xHis-APPwt was the BL21 Codon plus (DE3) 

RIL strain. BL21 Codon Plus (DE3) RIL competent cells are efficient for the high-

expression of eukaryotic proteins in E. coli since they are engineered to contain extra 

copies of the genes that encode the tRNAs that most frequently limit translation of 

heterologous proteins in E. coli. In fact, these strains supply tRNAs for AGG, AGA, AUA, 

CUA, CCC and GGA on a compatible chloramphenicol-resistant plasmid. 

 

100 ng of expression vector were chemically transformed into E. coli competent cells from 

the following E. coli strains: Bl21 (DE3), Bl21 (DE3)star, Bl21 codon plus (DE3)RIL and 

Rosetta GAMI (DE3). Recombinant colonies were grown in 5 mL LB medium. 

Single clones, previously transformed with each recombinant expression vector and 

grown at 37ºC on LB agar containing antibiotics (100 �g/mL ampicillin for pPROEXHTa 

recombinant vectors or 50 �g/mL kanamycin for pETM recombinant vectors), were 

inoculated in 20 mL of LB medium, containing the same antibiotics. The overnight 

cultures were inoculated into 1L of prewarmed LB medium supplemented with 

antibiotics; the culture was grown up to 0.7 OD/mL at 37°C this is achieved, the 

expression was induced with different IPTG concentrations (0.3 mM, 0.5 mM, 0.7 mM 
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and 1 mM) for different times (3 hours and 16 hours) and temperature (22°C and 37°C). 

So the cells were harvested by centrifugation (7000 rpm, 15 min, 4°C). 

Cell pellets were resuspended in 50 mM Tris–HCl, pH 8 containing protease inhibitors, to 

avoid proteins degradation, and the suspension was sonicated in ice using 30” on/30” off 

cycles for 10 min, by using a Misonix Sonicator 3000 apparatus with a macro tip probe 

and an impulse output of 4.5/5 (=40/55 Watt). Bacterial lysates were then centrifuged 

(18000 rpm, 45 min, 4°C). 15 �L total and soluble fractions from the lysates were re-

suspended in 5 �L SDS loading buffer (Tris-HCl 50 mM, SDS 1%, blue bromophenol 

0.1%, glycerol 10%, pH 6.8) and analyzed on SDS-PAGE.  

For batch purification of 6xHis-tagged APPwt, the surnatant was added to 50% Ni2+-NTA 

agarose slurry resin (Qiagen) for the affinity chromatography purification. The binding 

capacity of Ni2+-NTA resins is between 5-10 mg/mL for 6xHis-tagged proteins. Before 

loading the protein extract, the resin was extensively washed with water and finally 

equilibrated in the lysis buffer. The lysate was then loaded in presence of 100 mM NaCl 

to avoid non-specific binding of E. coli contaminants and the column was gently shaken 

for 45 min-1h. Then, the flow-through (F.T.), containing all unbound proteins, was 

collected and the resin was washed three times with the lysis buffer containing 100 mM 

NaCl, and finally the His-tagged proteins were eluted with concentrations of imidazole 

(50/100 mM). All fractions eluted from the resin (flow-through, washes and elutions) 

were analyzed on SDS–PAGE gels and stained with Coomassie Brilliant Blue R-250. 

Protein samples were dialyzed at 20°C by using Spectra/Por membranes with the 

appropriate MWCO in 50 mM Tris-HCl, 150 mM NaCl, 1 mM DTT and 0.5 mM EDTA pH 

8. buffer. For purification of fusion proteins APP1 and APP_QK with both Trx than with 

GST, instead the supernatant was loaded on a 5 mL His-Trap HP column, previously 

equilibrated with buffer A (50 mM Tris-HCl, 300 mM NaCl, pH 8.0), using an AKTA FPLC 

chromatography system. The column was washed with buffer 1 and the bound protein 

was eluted using a gradient to step of imidazole from 0 mM to 500 mM in buffer B (50 

mM Tris-HCl, 300 mM NaCl, 500 mM imidazole,  pH 8) in 4 steps. Protein elution was 

monitored by measuring the absorbance at 280 nm and 214 nm. The proteins were 

eluted at 70% buffer B (350 mM imidazole). The total cell protein fraction, the soluble 

fraction (supernatant of cell lysate) and the purified fraction were analyzed by 15% SDS-

PAGE. The proteins recovered were dialyzed at 4°C in 50 mM Tris-HCl, 150 mM NaCl, 1 

mM DTT and 0.5 mM EDTA pH 8 buffer by using Spectra/Por membranes with the 

appropriate MWCO. 

 

IV.4.6 TEV digestion 

 

All 6xHis-tagged fusion proteins, after purification by affinity chromatography were 

dialyzed overnight against TEV buffer. To protein substrates was added TEV protease, 



 99999999     

using a molar ratio (protease:substrate) of 1:50 and the cleavage was allowed to proceed 

at 30°C for 4 hours. Cleaved products were analyzed by 18% polyacrylamide gel 

electrophoresis performed in Laemmli buffer, then, mixture was loaded onto a Ni2+-NTA 

affinity column equilibrated in binding buffer (the same employed for digestion reaction) 

containing 10 mM imidazole; the proteins without His-tag were collected in the flow-

through, while His-tag costruction and TEV protease remained bound to the column.  

TEV protease was expressed and purified in our laboratory, after transforming the BL21 

pLysisS cells (Invitrogen) with the pET24a-TEV recombinant vector kindly provided by 

Dr. Nina Dathan.  

LC-MS analyses were performed to estimate the protein purity and assess the molecular 

weight. For this analysis, 0.5 �g of protein were loaded on a 300 Å narrow bore 250x2mm 

C18 Jupiter column (Phenomenex) coupled to the LC-MS system previously described. A 

gradient of solvent B (0.05% TFA in CH3CN) from solvent A (0.08% TFA in H2O) of 5% to 

70% was applied over 30 min. Mass spectra were recorded continuously in the mass 

interval 400-2000 amu, (LC-MS, condition 1). 

 

IV.4.7 Casapase 3 fluorimetric assay 

 

Determination of caspase-3 activity was performed by a fluorometric assay based on the 

proteolytic cleavage of the AMC-derived substrate N-acetil- DEVD-AMC, which yields a 

fluorescent product. 

HUVEC cells were plated in 6-well dishes at 1x105 cells/cm2. On the next day, cells were 

treated, in starvation medium (EBM-2, heparin 0.1%, BSA 0.1%), with APPwt ( 25-100 

ng/ml) or  APP_QK (25-100 ng/ml) peptides for 8h at 37°C. VEGF165 (R & D Systems, 

Minneapolis, MN, USA), 25 ng/ml, was used as positive control. 

After 8h the cells were processed with 150 �l of Caspase-3 reaction buffer (HEPES pH 7.5 

50 mM, EDTA 0.1 mM, NP-40 0.1%, CHAPS 0.1%, DTT 1 mM) and cell proteins collected 

after centrifugation at 13000 rpm for 15 min at 4°C. Protein concentrations were 

determined by Bradford method (Bio-Rad, Hercules, CA) and 20 �g of lysates were 

incubated in 96-well plates with 20 �M N-acetil-DEVD-AMC at 37°C for 3h.   

Samples  were analyzed using a microplate reader (L55 Luminescence Spectometrer 

Perkin Elmer Instruments) (excitation: 360 nm, emission: 440 nm). 
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                                                                                                                                                                                                                                                  CHAPTER V  CHAPTER V  CHAPTER V  CHAPTER V    

 CONCLUSIONS 

 

One of frontiers of the drug discovery is the capacity to develop new molecules able to 

modulate protein-protein interaction. One promising approach concerns to the use of 

scaffold where to graft the functional groups required for the molecular interaction. 

Our intent was to contribute to this exciting fild with several approaches. 

In new easy and one-pot synthetic procedure to covalent link two polypeptides through 

their C-termini was developed. This method relies on the use of EPL an appropiete linker. 

This methodology will allow to easily synthetize, without any restrictions on the 

molecular size, molecules composed of polypeptide fragments belonging to the 

discontinous recognition interface which are closed in the space but distance in sequence 

or prepare minimized version of known scaffold as antibody or as alternative dimerization 

such as leucin zipper. 

In the case of protein interaction mediated by secondary structure motif, such as �-helix, 

it will be useful to dispose of stable helical peptides or mini-proteins. This as been the 

topic of the other two approaches described in this work. 

Starting from a 15-mer peptide, QK, which adopts in water a well-defined helical 

conformation, we performed a chemico-physical characterization to evaluate if QK could 

be a suitable helical scaffold. The biophysical characterization showed that peptide QK 

presents an unusual thermal stability and combining experimental and theoretical 

techniques we understand, at molecular level, the structural determinants of this extra 

stability. This study suggests that peptide QK is a potential helical scaffold and furnishes 

structural information about the role of each residue of the amino acid sequence. This 

information is a fundamental for the scaffold purification. 

Finally, we provide an example functional scaffold. The �-helix of the mini-protein APP 

was modified introducing amino acid belonging to the VEGF receptor binding epitopes of 

VEGF and peptide QK. The new generated mini-protein showed a promising biological 

activity. 

In conclusion, this work, providing chemical tools to target protein-protein interactions, 

contributes to the development of new scaffold for potential application in chemical 

biology or medicine. 
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                                                                                                                                                                                                                                                 CHAPTER VI CHAPTER VI CHAPTER VI CHAPTER VI    

 ABBREVIATIONS 

 �
 Epsilon 

APS ammonium persulfate 

Bp base pair 

BSA  albumin from bovine serum 

CD circular dichroism  

DCM:  dichloromethane 

DIPEA diisopropil-etilendiammina 

DMF  N,N-dimethylformamide 

DNA deoxyribonucleic acid 

dNTP deoxy nucleotide tri-phosphate 

DTT Dithiothreitol 

E. coli Escherichia coli 

EDTA ethylene-diamino-tetraacetic acid 

ESI electron spry ionization source 

Flt-1 fms-like tyrosine kinase-1 

F.T. flow-through 

h Hour 

HPLC high performance liquid chromatography 

HUVEC Human umbilical vein endothelial cell 

IPTG isopropyl-beta-D-thiogalactopyranoside 

KDa Kilo Dalton 

KDR kinase domain region 

LB Luria-Bertani Broth (10g/L bacto-triptone, 5g/L 
                                yeast exstract, 10 g/L NaCl) 

LC-MS Liquid Chromatography Mass Spectrometry 

MCS multi cloning site 

min Minute 

ms Millisecond 

MWCO molecular weight cut off 

nm Nanometer 

NMR Nuclear Magnetic Resonance 

NOESY Nuclear Overhauser Effect SpectroscopY   

Ni-NTA nickel-nitrilotriacetic acid 

O.D. optical density 

orf open reading frame 
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PBS phosphate buffer saline 

PCR polymerase chain reaction 

pI isoelectric point 

RT room temperature 

SDS-PAGE 
Sodium Dodecyl Sulfate 

Polyacrylamide Gel Electrophoresis 

sec Second 

TAE Tris acetate EDTA 

TE 10 mM Tris/HCl pH 8, 1 mM EDTA pH 8 

TEMED N,N,N’,N’-tetramethyl ethylene diamine 

TEV tobacco etch virus 

TFA trifluoroacetic acid 

TIC total ion current 

TIS  Triisopropylsilane 

Tris Tris (hidroxy methyl) amino methane 

trxB thioredoxin reductase gene 

TrxA thioredoxin A 

U Units 

UV ultra violet 

VEGF Vascular Endothelial Growth Factor 

VEGFR VEGF receptor 

 

 

 

The one letter code is used for amino acids. 
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