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ABSTRACT 

Fe65 interacts with the cytosolic domain of the Alzheimer’s amyloid precursor protein 

(APP). The functions of the Fe65 and of the Fe65/APP complex are still unknown. To 

address this point we generated Fe65 knock out mice. These mice do not show any obvious 

phenotype, however, when fibroblasts (MEFs), isolated form Fe65 KO embryos, were 

exposed to low doses of DNA damaging agents, such as etoposide or H2O2, an increased 

sensitivity to genotoxic stress, compared to wild type animals, clearly emerged. 

Accordingly, brain extracts from Fe65 KO mice, exposed to non-lethal doses of ionizing 

radiations, showed high levels of γ-H2AX and p53, thus demonstrating a higher sensitivity 

to X-rays than wild type mice. Nuclear Fe65 is necessary to rescue the observed phenotype 

and, few minutes after the exposure of MEFs to DNA damaging agents, Fe65 undergoes 

phosphorylation in the nucleus. With a similar timing, the proteolytic processing of APP is 

rapidly affected by the genotoxic stress: in fact, the cleavage of the APP C-terminal 

fragments by γ-secretase is induced soon after the exposure of cells to etoposide, in a Fe65-

dependent manner. These results demonstrate that Fe65 plays an essential role in the 

response of the cells to DNA damage. Moreover we found that Fe65 is a chromatin bound 

protein that determines the degree of chromatin condensation both in basal and under 

genotoxic stress conditions. Fe65 association with chromatin is required during DNA 

damage repair. Indeed a known partner of Fe65 is the histone acetyltransferase Tip60. 

Considering the crucial role of Tip60 in DNA repair, we explored the hypothesis that the 

phenotype of Fe65 null cells was dependent on its interaction with Tip60. We 

demonstrated that Fe65 knockdown impaired recruitment of Tip60-TRRAP complex to 

DNA double strand breaks and decreased histone H4 acetylation. Accordingly, the 

efficiency of DNA repair was decreased upon Fe65 suppression. To explore whether APP 

has a role in this mechanism, we analyzed a Fe65 mutant unable to bind to APP. This 

mutant failed to rescue the phenotypes of Fe65 null cells; furthermore, APP/APLP2 
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suppression results in the impairment of recruitment of Tip60-TRRAP complex to DNA 

double strand breaks, decreased histone H4 acetylation and repair efficiency. On these 

bases, we propose that Fe65 and its interaction with APP play an important role in the 

response to DNA damage by assisting the recruitment of Tip60-TRRAP to DNA damage 

sites. 
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INTRODUCTION 

 

1. Familial and sporadic Alzheimer’s disease 

A century ago, Alois Alzheimer first described the neurological disease that bears his 

name. He described typical clinical characteristics with memory disturbances and 

instrumental signs, and he detailed two characteristic pathological features that are 

observed post mortem: amyloid plaques, and neurofibrillary tangles in the cerebral cortex 

and limbic system, which we today know as the hallmarks of the disease. Alzheimer’s 

disease (AD) is a slowly progressive disorder, with insidious onset and progressive decline 

in cognitive and functional abilities as well as behavioral and psychiatric symptoms 

leading to a vegetative state and ultimately death. AD is the most common cause of 

dementia, accounting for 50–60% of all cases (Moller and Graeber 1998). The prevalence 

of dementia is below 1% in individuals aged 60–64 years, but shows an almost exponential 

increase with age, so that in people aged 85 years or older the prevalence is between 24% 

and 33% in the Wester world. AD is very common and thus it is a major public health 

problem. In 2001, more than 24 million people had dementia, a number that is expected to 

double every 20 years up to 81 million in 2040 because of the anticipated increase in life 

expectancy (Ferri, Prince et al. 2005). Besides ageing, which is the most obvious risk 

factor for the disease, epidemiological studies have suggested several tentative 

associations. Some can be linked to brain trauma (Jellinger 2004), vascular diseases 

(Mayeux 2003), dietary life style (Luchsinger and Mayeux 2004), but data so far are not 

conclusive. Although environmental factors might increase the risk of sporadic AD, this 

form of the disease has been shown to have a significant genetic background. A large 

population based twin study showed that the extent of heritability for the sporadic disease 

is almost 80% (Gatz, Reynolds et al. 2006). Alzheimer’s disease is a heterogeneous 

disorder with both familial and sporadic forms. Familial AD is an autosomal dominant 
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disorder with onset before age 65 years. Four genes have been unequivocally implicated in 

inherited forms of AD and mutations or polymorphisms in these genes cause excessive 

cerebral accumulation of the amyloid ß-protein and subsequent neuronal and glial 

pathology in brain regions important for memory and cognition. The first mutation causing 

the familial form of the disease was identified in the amyloid precursor protein (APP) gene 

on chromosome 21 (St George-Hyslop, Haines et al. 1990). In 1988, the APP gene was 

found to reside on chromosome 21, which is triplicated in Down syndrome (trisomy 21). 

Indeed, most Down syndrome patients manifest Alzheimer disease (AD) by the age of 50, 

and post-mortem analyses of those who die young show diffuse intraneuronal deposits of 

Aβ in the absence of any tau pathology, suggesting that Aβ deposition is an early event in 

AD. When investigating other families with the familial disease, several additional APP 

mutations were found. The recent discovery of an extra copy of the APP gene in familial 

AD (Rovelet-Lecrux, Hannequin et al. 2006) provides further support that increased Aβ 

production can cause the disease. However, these mutations explain only a few familial 

cases. Indeed in 1995 mutations in the highly homologous presenilin 1 (PSEN1) and 

presenilin 2 (PSEN2) genes were also linked with early-onset familial AD (Levy-Lahad, 

Lahad et al. 1995) (Rogaev, Sherrington et al. 1995) and they account for most cases of 

familial disease. However, the familial form of the disease is rare, with a prevalence below 

0.1%. In 1993, two groups independently reported an association between the 

apolipoprotein E (APOE) ε4 allele and AD (Poirier, Davignon et al. 1993). Meta-analysis 

showed that the APOE ε4 allele increases the risk of the disease by three times in 

heterozygotes and by 15 times in homozygotes (Dickson, Saunders et al. 1997). The 

mechanism underlying this increased risk is not completely clear, yet mounting evidence 

supports the idea that the ability of apoE to interact with the amyloid-β peptide and 

influence its conformation and clearance plays a major role. In vivo, it has been shown that 

breeding of APP-overexpressing mice with apoE knockout mice completely abolishes 
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amyloid plaque deposition in the brain of hybrid animals, confirming that apoE favours the 

extracellular β-amyloid deposition impairing through still unknown mechanisms the β-

amyloid clearance. Other susceptibility loci have been identified, but the data so far are 

unclear. 

 

2. Pathological features of Alzheimer disease 

At the microscopic level, the characteristic lesions in Alzheimer’s disease are senile or 

neuritic plaques and neurofibrillary tangles (Figure 1) in the medial temporal lobe 

structures and cortical areas of the brain, together with a degeneration of the neurons and 

synapses. These histological lesions can be observed as neuritic plaques or diffuse plaques. 

Neuritic plaques are microscopic foci of extracellular amyloid deposition and associated 

axonal and dendritic injury. The plaques are composed primarily of the 39–43-residue 

amyloid β-peptide (Aβ) (Wolfe 2006). Aβ is released from the amyloid precursor protein 

(APP) by the sequential action of β- and γ-secretases, with the latter cutting relatively 

heterogeneously (Esler and Wolfe 2001). Most of the Aβ produced by γ-secretase is the 

40-residue form (Aβ40); however, the major Aβ species deposited in the plaques is the 42-

residue variant (Aβ42), although this peptide represents only 5–10% of all Aβ produced. 

Such plaques contain extracellular deposits of amyloid β-protein (Aβ) that occur 

principally in a filamentous form, i.e., as star-shaped masses of Amyloid fibrils. 

Dystrophic neurites occur both within this amyloid deposit and immediately surrounding it 

(Poirier 2003). Such plaques are also intimately associated with microglia expressing 

surface antigens associated with activation, such as CD45 and HLA-DR, and they are 

surrounded by reactive astrocytes displaying abundant glial filaments. Diffuse plaques 

show a finely granular pattern, without a clearly fibrillar, compacted center associated with 

little or not detectable neuritic dystrophy. It has been suggested that these plaques might 

represent precursor lesions of neuritic plaques. 

 9



Figure 1 : Plaques and tangles in the cerebral cortex in Alzheimer’s 
disease  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Plaques are extracellular deposits of Aβ surrounded by dystrophic neurites, reactive 

astrocytes, and microglia, whereas tangles are intracellular aggregates composed of a 

hyperphosphorylated form of the microtubule-associated protein tau.  
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The hypothesis that diffuse plaques represent immature lesions that are precursors to the 

plaques with surrounding cytopathology arose from two lines of evidence. First, diffuse 

plaques are the sole form found in the brain regions that largely or entirely lacked neuritic 

dystrophy, glial changes, and neurofibrillary tangles and are not clearly implicated in the 

typical clinical symptoms of AD, e.g.,cerebellum, striatum, and thalamus. Second, healthy 

aged individuals free of AD or other dementing processes often show solely diffuse 

plaques in limbic and association cortices, i.e., in the same regions where Alzheimer 

patients show mixtures of diffuse and neuritic plaques. 

Neurofibrillary tangles are large, non membrane bound bundles of abnormal fibers that 

accumulate in the perinuclear region of cytoplasm. Electron microscopy reveals that most 

of these fibers consist of pairs of 10-nm filaments wound into helices (paired helical 

filaments or PHF), composed of the microtubule-associated protein tau (Brion, Couck et al. 

1985)  (Kosik, Joachim et al. 1986) (Nukina and Ihara 1986) (Wood, Mirra et al. 1986), 

which is present in a hyperphosphorylated form. A variety of kinases have been shown to 

be capable of phosphorylating tau in vitro at various sites (Illenberger, Zheng-Fischhofer et 

al. 1998), that leads to its apparent dissociation from microtubules and aggregation into 

insoluble paired helical filaments. The two classical lesions of AD, neuritic plaques and 

neurofibrillary tangles, can occur independently of each other. Tangles composed of tau 

aggregates that are biochemically similar to or, in some cases, indistinguishable from those 

in AD have been described in more than a dozen of less common neurodegenerative 

diseases, in almost all of which no Aβ deposits and neuritic plaques are present. 

Conversely, Aβ deposits can be seen in the brains of cognitively normal-aged humans in 

the virtual absence of tangles (Terry, Hansen et al. 1987). 

Genetic and pathological evidence strongly supports the amyloid cascade hypothesis of 

AD, which states that amyloid-β42, the proteolytic derivative of APP, has an early and 

vital role in all cases of AD. Indeed APP mutations associated with early-onset dominant 
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AD are located in and around the Aβ region of the encoded type I integral membrane 

glycoprotein. These mutations were soon determined to alter the amount of Aβ produced, 

the ratio of Aβ42 to Aβ40 or the amino-acid sequence of Aβ (Selkoe and Kopan 2003). 

Mutations near the β-secretase cleavage site make APP a better substrate for this enzyme 

and lead to increased production of all forms of Aβ. Mutations near the γ-secretase 

cleavage site lead to increases in the more aggregation-prone Aβ42 relative to Aβ40, and 

mutations in the Aβ region itself change the biophysical properties of the peptide to render 

it more likely to aggregate. These findings provided the first compelling evidence that Aβ 

might be involved in the pathogenesis of AD rather than simply being a marker. Moreover, 

the AD-associated mutations of PS1 and PS2 genes, were soon determined to increase the 

ratio of Aβ42 to Aβ40 (Aβ42/Aβ40) in mice and humans (Borchelt, Thinakaran et al. 

1996) (Citron, Oltersdorf et al. 1992) (Scheuner, Eckman et al. 1996), indicating that 

presenilins might modify the way in which γ-secretase cuts APP. 

 

 

3. APP proteolitic processing : focusing on γ-secretase complex activity 

The purification and partial sequencing of the Aβ protein from meningovascular amyloid 

deposits in AD led to the cloning of the gene encoding the β-APP (Kang, Lemaire et al. 

1987). Aβ is derived from its large precursor protein by sequential proteolytic cleavages. 

APP is an integral membrane protein with a single membrane spanning domain, a large 

extracellular glycosylated N-terminus and a shorter cytoplasmic C-terminus. Aβ is located 

at the cell surface (or on the lumenal side of ER and Golgi membranes), with part of the 

peptide embedded in the membrane. APP (Kang et al. 1987) (Goldgaber, Lerman et al. 

1987) is a member of an evolutionarily conserved family of type I membrane proteins. 

Mammals have two APP-like paralogues, APLP-1 and APLP-2 (Wasco, Bupp et al. 1992), 

which have substantial homology, both within the large ectodomain and particularly within 
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the cytoplasmic tail, but are largely divergent in the Aβ region. The evolutionary 

conservation of the APP gene family also extends to invertebrates, with the Drosophila 

gene product known as APPL and the Caenorhabditis elegans homologue named APL-1. 

APP comprises a heterogeneous group of ubiquitously expressed polypeptides derived 

from alternatively spliced isoforms, yielding 3 isoforms of 695, 751, and 770 residues. The 

most abundant form in brain is APP695, that is produced mainly by neurons, and differs 

from longer forms of APP in that it lacks a kunitz type protease inhibitor sequence in its 

ectodomain (Hardy and Hutton 1995).  

Both during and after its trafficking through the secretory pathway to the cell surface, a 

subset of APP molecules undergoes specific endoproteolytic cleavages to release secreted 

derivatives into vesicle lumens and the extracellular space (Figure 2). Enzyme activities 

involved in cleavage of APP at the α-, β- and γ-secretase sites are being identified 

(Annaert, Levesque et al. 1999). The majority of APP is cleaved by α-secretases within the 

Aβ sequence thus precluding Aβ generation (Ikezu, Trapp et al. 1998). The identity of α-

secretase remains unclear, although metalloproteases as TACE (an enzyme responsible for 

cleavage of members of the TNF receptor family at the cell surface) and ADAM9 and 

ADAM10 are candidates (Hutton, Lendon et al. 1998; Illenberger, Zheng-Fischhofer et al. 

1998). This cleavage results in the release of soluble sAPPα and retention of a C83 

fragment in the membrane. Cleavage of C83 by γ-secretase results in release of a p3 

fragment (approximately 3 kDa) and γ-cleaved C-terminal fragments (γCTF) also known 

as the APP intracellular domain (AICD). Amyloidogenic processing of APP involves 

sequential cleavages by BACE and γ-secretase at the N- and C-termini of Aβ, respectively. 

Cleavage of C99 by γ-secretase generates the AICD and Aβ peptides including Aβ40 and 

the more amyloidogenic Aβ42 (Selkoe 2001). The concept that missense mutations in APP 

cause AD via an amyloidogenic mechanism is strongly supported by the fact that all of the 
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Figure 2: Proteolytic processing of APP 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
APP is a transmembrane protein with a large N-terminal extracellular domain and a short 

cytosolic tail. In the α-secretase pathway, α secretase cleaves APP within the Aβ domain, 

releasing the large soluble APP fragment (α-sAPP). The remaining C-terminal fragment 

(CTF), C83, is cleaved by the γ-secretase releasing the short p3 peptide. The remaining 

APP intracellular domain (AICD) is metabolised in the cytoplasm. In the β-secretase 

pathway, β-secretase cleaves APP upstream of the Aβ domain, releasing soluble βsAPP. 

The remaining CTF, C99, is cleaved by the γ-secretase releasing the free 40 or 42 

aminoacid Aβ peptide. Two further cleavage sites of the γ-secretase, termed ε and ζ, are 

present in the CTF. The remaining AICD is metabolised in the cytoplasm. (Figure 

modified from Sastre et al. Journal of Neuroinflammation 2008 5:25) 
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known mutations occur within the region encoded by Aβ or immediately adjacent to β-and 

γ-secretase cleavage sites (Hardy 1997). Indeed, these mutations alter either the properties 

of Aβ or how much and what type of Aβ is produced. The “Swedish” double mutation 

found at the P2 and P1 sites for ß-secretase causes more efficient processing of APP by this 

aspartyl protease, resulting in a several-fold increase in the production of both Aß40 and 

Aß42 (Citron, Oltersdorf et al. 1992). On the other hand, the several mutations located C-

terminal to the γ -secretase site increase the ratio of peptides ending at Aß42 to those 

ending at Aß40 (De Jonghe, Esselens et al. 2001) (Suzuki, Cheung et al. 1994) (Scheuner, 

Eckman et al. 1996). Because the hydrophobic Aß42 peptide is more prone to self-

assembly (Jarrett, Berger et al. 1993), increases in its relative amount can promote the 

formation of oligomeric intermediates and, eventually, mature amyloid fibrils. Among the 

mutations associated with prominent microvascular deposition, the E22Q (“Dutch”) 

peptide aggregates on the surfaces of smooth muscle and endothelial cells and thus confers 

local toxicity that could lead to necrosis and vessel rupture (Eisenhauer, Johnson et al. 

2000) (Van Nostrand, Melchor et al. 2001) (Wang, Natte et al. 2000). Another major clue 

to Alzheimer pathogenesis involving APP proteolitic processing, came with the discovery 

of two related genes, presenilin-1 (PS1) and presenilin-2 (PS2), likewise associated with 

early-onset disease (Sherrington, Rogaev et al. 1995) (Levy-Lahad, Wasco et al. 1995) 

(Rogaev, Sherrington et al. 1995). PS1 mutations cause the earliest and most-aggressive 

form of AD, commonly leading to onset of symptoms in the fifth decade of life and demise 

of the patient in the sixth. PS2 mutations generally have a slightly later and more-variable 

age of onset. More than 100 such missense mutations have been identified so far and the 

vast majority of those examined in detail skew the proportion of Aβ toward the more 

aggregation-prone 42-residue form (Tanzi and Bertram 2005). Thus, the presenilin 

mutations change the cleavage site specificity of γ-secretase. The knockout of PS1 in mice 

was found to markedly reduce γ-secretase cleavage of APP , and follow-up studies showed 
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that the knockout of both PS1 and PS2 eliminated γ-secretase cleavage completely 

(Herreman, Serneels et al. 2000) (Zhang, Goodyer et al. 2000). Presenilins are therefore 

essential for this proteolytic function. Parallel studies revealed that peptide-substrate 

mimics with classical aspartyl protease-inhibitory motifs could inhibit γ-secretase, 

suggesting that the enzyme belongs to this category of proteases (Wolfe, De Los Angeles 

et al. 1999). This led to the identification of two conserved transmembrane aspartates in 

presenilin that are essential for γ-secretase activity, and the idea that presenilin is the 

catalytic component of the enzyme (Wolfe, Xia et al. 1999). 

Presenilin mutations occur in the catalytic subunit of the protease responsible for 

determining the length of Aβ peptides. Presenilin also has non-proteolytic functions (Baki, 

Shioi et al. 2004) (Huppert, Ilagan et al. 2005), the disruption of which might also 

contribute to familial AD pathogenesis. However, presenilin and γ-secretase have other 

substrates besides APP. After interacting with its cognate ligands, the Notch receptor 

undergoes a series of proteolytic events, in a manner similar to APP, ultimately releasing 

the intracellular domain that mediates the expression of genes controlling many types of 

cellular differentiation. We now know that the same γ-secretase cuts the transmembrane 

domain of the APP and Notch families of proteins, as well as a long list of other type I 

integral membrane proteins, including neuregulin and its receptor ErbB4, E-cadherins and 

N-cadherins, CD44, LDL-receptorrelated protein (LRP), nectin-1 and growth hormone 

receptor. 

Cleavage of some of these substrates apparently has a role in cell signalling, but other 

cleavage events might simply be a means of clearing out membrane-bound stubs after 

ectodomain shedding (Schroeter, Ilagan et al. 2003). In parallel with the discovery of 

presenilin as a protease that cleaves APP and Notch, AD-causing mutations in presenilin 

were found to have reduced proteolytic function. Yankner and colleagues first showed this 

effect with a range of mutant presenilins by using a Notch-based luciferase-reporter assay 



(Song, Nadeau et al. 1999). Several other groups have since noted this phenomenon; for 

example, De Strooper and colleagues showed that mutations in presenilin reduced its 

proteolytic function towards several different substrates (Bentahir, Nyabi et al. 2006). 

These findings raise an apparent paradox, in which AD-causing disease mutations cause 

both a ‘gain of function’, an increase in Aβ42/Aβ40, and a ‘loss of function’, a decrease in 

proteolytic activity. These seemingly opposing effects have elicited considerable debate 

over how the presenilin mutations cause AD, with some researchers suggesting that 

reducing Aβ production with candidate therapeutics might even exacerbate or even cause 

the disease. To appreciate the resolution of this purported paradox, it should initially be 

noted that the presenilin-containing γ-secretase complex cuts the transmembrane domain of 

APP, and other substrates, in at least two positions: the γ-site that produces the carboxyl 

terminus of Aβ and the ε-site further downstream that produces the amino terminus of the 

APP intracellular domain (AICD) (Figure3) (Evin and Weidemann 2002). Cleavage at the 

γ-site is heterogeneous, producing Aβ peptides of 39–43 residues, whereas the cut at the ε-

site produces almost exclusively a 50-residue AICD. The same phenomenon occurs with 

Notch, involving heterogeneous cleavage in the middle of the transmembrane domain (the 

S4 site) and homogeneous cleavage further downstream (at the S3 site); (Fluhrer, 

Multhaup et al. 2003). Interestingly, proteolysis at these two sites is affected by AD-

causing mutations in APP and the presenilins, which lead to an increase in the proportion 

of Aβ42 relative to Aβ40 along with an increase in a new 51-residue AICD relative to the 

50-residue product (Sato, Dohmae et al. 2003). These two proteolytic events are therefore 

not completely independent: a change in the cleavage site in one correlates with a change 

in the cleavage site of the other. Recent evidence from Ihara and colleagues indicates that 

the ε-cleavage might occur before proteolysis at the γ-site. Indeed, analysis of intracellular 

Aβ reveals a small but significant amount of longer forms of this peptide, up to Aβ49, 

which is the proteolytic counterpart to the 50-residue AICD 
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Figure 3: γ-secretase cleavage sites and Aβ production 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 

 

This model of processive proteolysis of the amyloid precursor protein transmembrane 

domain by γ-secretase, beginning at the ε-cleavage site and cleaving every three residues 

explains how reduction of proteolytic function due to presenilin mutations might lower 

amyloid β-peptide (Aβ) production but increase the ratio of Aβ42 to Aβ40. Longer forms 

of Aβ, including most of the hydrophobic transmembrane domain, might be more likely to 

be retained in the active site of the protease,whereas the shorter forms are more likely to be 

released. Less catalytically efficient γ-secretase complexes would allow more time for the 

release of longer Aβ peptides. In addition, Alzheimer disease-causing presenilin mutations 

shift the initial ε-cleavage site to produce more Aβ48, which would lead to Aβ42. (Figure 

adapted from Michael S.Wolfe 2007) 
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(Qi-Takahara, Morishima-Kawashima et al. 2005); by contrast, longer AICDs, for example 

AICD counterparts to Aβ40 or Aβ42, have not been detected. Moreover, expression of 

Aβ49 leads to the secretion of Aβ40 and Aβ42 in the same proportion that is produced by 

γ-secretase (Funamoto, Morishima-Kawashima et al. 2004). Swapping tryptophan residues 

into the γ-site within the APP transmembrane domain prevents γ-cleavage but allows ε-

cleavage; however, swapping tryptophans into the ε-site leads to proteolysis between the γ-

site and ε-site, at a so-called ζ-site (Sato, Tanimura et al. 2005). Installing tryptophans into 

the ζ-site prevents any transmembrane cleavage of APP. Therefore, with these tryptophan 

swaps, ε-cleavage can occur without γ-cleavage, but γ-cleavage is not seen without ε-

cleavage or ζ-cleavage. Interestingly, longer Aβ peptides resulting from cleavage at the ζ-

site are seen intracellularly on treatment with one particular γ-secretase inhibitor: a 

dipeptide analogue called DAPT (Yagishita, Morishima-Kawashima et al. 2006). Finally, a 

mutation in PS1, M233T, leads to alternative ε-cleavage, producing the 51-residue AICD 

and its counterpart Aβ48 in a cell-free assay with detergent-solubilized membranes 

(Kakuda, Funamoto et al. 2006). 

One way to explain two major cleavage sites would be the presence of two pairs of 

catalytic aspartates within a presenilin dimer at the core of the γ-secretase complex. Initial  

proteolysis at the ε-site leads to the release of AICD, but the long Aβ products (Aβ49 or 

Aβ48) remain in the active site, and are successively cleaved every three residues upstream 

at the ζ-sites and then again at the γ-sites (Qi-Takahara, Morishima-Kawashima et al. 

2005). Specifically, they propose that Aβ49 is processed to Aβ46, Aβ43 and Aβ40, 

whereas Aβ48 is trimmed to Aβ45, Aβ42 and Aβ39. This model of processing proteolysis 

from the ε-site to the γ-sites elegantly explains how so many presenilin mutations can both 

reduce proteolytic activity causing a loss of function, and increase the Aβ42/Aβ40 ratio, 

causing a gain of function. Mutant versions of the enzyme that are less proteolytically 

efficient also cut proportionately more at the alternative ε-site, producing Aβ48 (Sato et al, 
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2003). The slower mutant enzymes allow proportionately more release of Aβ42 before 

further trimming to Aβ39. The net result might be less total Aβ, including less Aβ40 

(Bentahir, Nyabi et al. 2006), but the ratio of Aβ42 to Aβ40 is elevated. This proposed 

mechanism for γ-seretase activity could explain how the reduction of enzymatic activity 

results in increased Aβ42/Aβ40, but on the other hand it should be taken in account that 

gentation of AICD counterpart could be affected. Indeed the very aggressive FAD 

mutation L166P not only induces an exceptionally high increase of Abeta(42) production 

but also impairs NICD production and Notch signaling, as well as AICD generation 

probably leading to the loss of an intracellular still unknown function (Moehlmann, 

Winkler et al. 2002). 

This same mechanism might also account for the changes in Aβ42/Aβ40 seen with 

Alzheimer-causing APP mutations that are located near the γ-secretase cleavage sites; in 

these cases, the mutant substrates might be processed less efficiently by the wild-type 

protease. The scenario described above, which is supported by numerous reports, also 

provides an explanation for why the deletion of three out of four presenilin alleles in mice 

with only one PS1 allele remaining does not result in elevated Aβ42/Aβ40 (Lai, Chen et al. 

2003)  (Refolo, Eckman et al. 1999): the remaining γ-secretase complexes are wild type, 

have normal proteolytic activity and trim ε-cleaved Aβ efficiently. This is also consistent 

with the fact that although more than 100 missense mutations in PS1 and PS2 have so far 

been associated with AD, none are complete loss-of-function mutations in an allele, for 

example, complete deletion, loss of expression, mutation of one of the catalytic aspartates 

or severe truncations. The overexpression of presenilins does not result in increased 

activity of γ-secretase activity suggesting the presence of possible limiting factors 

participating to the catalytic activity. Indded the γ-secretase activity, involves three 

additional proteins, nicastrin, Aph-1 and Pen-2. The active site of γ-secretase requires the 

aspartyl protease activity of PS1 conferred by aspartate residues in adjacent 
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transmembrane domains of the C- and N-terminal cleavage fragments of PS1. Nicastrin, 

Pen-2 and Aph-1 are each critical components of γ-secretase and each may modify enzyme 

activity in specific ways and in response to physiological stimuli (Hebert, Godin et al. 

2003) (Cervantes, Saura et al. 2004; Nyborg, Kornilova et al. 2004).  

More recently, it has been shown that APP is also a substrate for caspase cleavage. Each of 

the four caspases, 3, 6, 7, and 8, have been shown to cleave APP in in vitro assays, and a 

major caspase site has been identified at Asp-720 (VEVD), resulting in the release of a 

fragment containing the last 31 amino-acids of APP (C31) (Lu, Rabizadeh et al. 2000). 

 

 

4. Gain of function versus loss of function hypothesis in AD : learning 
from mouse models 
 
Although many sophisticated mice APP models exist, none recapitulates AD cellular and 

behavioral pathology. Despite exhibiting a massive and often rapid accumulation of Aβ 

peptides, none of the examined APP Tg mice, carring FAD related mutations, replicated 

the full spectrum of AD pathology. Indeed the morphological resemblance to AD 

amyloidosis is impressive, but fundamental biophysical and biochemical properties of the 

APP/Aβ produced in Tg mice differ substantially from those of humans. The greater 

resilience of Tg mice in the presence of substantial Aβ burdens suggests that levels and 

forms deleterious to human neurons are not as noxious in these models. Notably, these 

animals failed to produce dementia-correlated neurofibrillary talngles (NFT) structures. 

Lack of NFTs and missing neuron loss are the most obvious difference in pathology 

between APP and APP/PS tg mouse models and the AD brain. This observation shows that 

mutated human APP and/or PS1/2 overexpression is not sufficient to induce the entire 

pathological cascade in mice suggests that the presence of Aβ is necessary but not 

sufficient to induce the tau-involved pathological changes typical of sporadic Alzheimer’s 

disease (SAD) and some familial Alzheimer’s disease (FAD) patients (Lamb, Bardel et al. 
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1999). These limitations may mean that with Tg mice, we are studying the direct effects of 

Aβ overproduction and deposition, but not AD. Moreover, eliminating amyloid deposits 

via Aβ immunization (Roher and Kokjohn 2002) may represent a cure in Tg mice, but 

regardless of the apparent total disruption of senile plaques in immunized patients with 

SAD, the successful clearance of these structures could neither reverse nor halt the 

progression of dementia. Indeed transgenic mice were widely used for testing AD 

therapeutic agents, but unfortunately, clinical trials resulted in unforeseen adverse events 

or negative therapeutic outcomes. Transgenic mice may suffer proportionately less 

deleterious effects than do AD patients, and therefore respond to amyloid 

disruption/removal therapies far better in terms of cognitive function recovery than even 

minimally demented humans who are contending with a broader scope of pathology. 

As a consequence, the preeminence of the amyloid cascade hypothesis as a unique 

pathogenic factor in AD is being reexamined.  The triple Tg (3xTg) mice, carrying the 

APP Swedish mutation K670N/M671L, the presenilin-1 M146V mutation, and the tau 

P301L mutation in the C57BL6 mouse background, were developed as an AD model 

(Oddo, Billings et al. 2004). This widely used Tg model develops intracellular Aβ and 

extracellular plaque deposits as well as the tau pathology similar to that observed in AD. In 

addition, these mice demonstrate altered long-term potentiation, synaptic dysfunction, and 

age-related learning deficits, and may have a role in testing therapeutic interventions 

against AD (Pietropaolo, Feldon et al. 2008) (Pietropaolo, Sun et al. 2008). One limitation 

of the 3xTg mouse model is that the key APP/Aβ and tau genes are overexpressed 

simultaneously by transcriptional forcing methods, whereas tau pathology emerges 

subsequent to Aβ production in AD.  The current status of  information from animal 

models suggest that a major scientific need is to understand the normal function of 

amyloid-β precursor protein (APP) and think how this may relate to the cell death in the 

disease process. Indeed a major concern about the amyloid hypothesis is that, despite the 
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fact that it is more than 20 years since the APP gene was cloned (Kang, Lemaire et al. 

1987), we have very little idea of its function and almost no idea as to whether Aβ has a 

function or not. One reason for this lack of knowledge is that APP knockout mice have 

very little overt phenotype (Heber, Herms et al. 2000). 

We also have no idea as to whether Aβ has a function or it is only a metabolic product of 

APP processing. As mentioned before mutations of the two presenilin-encoding genes, 

PSEN1 or PSEN2 which contribute to the onset of FAD, lead to an increase in the 

generation of the more amylodiogenic 42 aminoacid Aβ peptide (Aβ42). This shift in Aβ42 

abundance, coupled with the fact that Aβ42 is more amylodiogenic than the predominant 

Aβ40 species, is believed to accelerate the pathogenesis of AD. Therefore, inhibition of 

presenilin-dependent γ-secretase is considered a potential therapy for Aβ lowering and AD 

intervention according with Amyloid cascade hypothesis but clinical trials based on Aβ 

immunotepy, resulted in unforeseen adverse events, or failed to produce clinically 

beneficial outcomes (Heininger 2000). Neverthless, it should be taken in account that in 

addition to cleaving APP, the presenilins are involved in the intramembranous cleavage of 

numerous type-I integral membrane proteins (Lleo 2008) (Beel and Sanders 2008) (Parks 

and Curtis 2007) . Following receptor ectodomain shedding, the presenilins are involved in 

the cleavage of the membrane-tethered carboxylterminus of more that sixty-six membrane 

proteins, liberating their intracellular domains (ICDs) into the cytosol. In some cases these 

ICDs translocate to the nucleus and regulate the transcription of target genes, but other 

cleavage events are proposed to function as a means of clearing redundant protein 

fragments from the membrane following ectodomain shedding (Kopan and Ilagan 2004). 

Thus, the presenilins are involved in many signalling events independent of previously 

reported AD-associated activities. This has lead to the proposal that disruption of one or 

many of the presenilins activities within signalling complexes may also contribute to the 

pathogenesis of AD, or other disorders (Thinakaran and Parent 2004) (McCarthy 2005). 
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Consistent with these hypotheses, inactivation of PSEN1 gene in mice produced severe 

developmental abnormalities and perinatal lethality (Shen, Bronson et al. 1997) (Wong, 

Zheng et al. 1997) (Handler, Yang et al. 2000), indicating an essential role for PS1 in 

development. Indeed presenilins are widely and differentially expressed in mammalian 

tissues, with a broad cellular distribution suggesting multiple presenilin-dependent 

functions. They are located at the nuclear envelope, endoplasmic reticulum, Golgi 

apparatus, early secretory pathway and the plasma membrane. PS1 and PS2 share a high 

degree of homology (67%) with conservation between some transmembrane domains 

reaching 95% (Tomita and Iwatsubo 1999). Accordingly, there is significant similarity in 

their translated structures. Each of the presenilin genes encodes a multi-transmembrane 

protein and, although it is well over a decade since these proteins were discovered, a 

consensus has yet to be reached as to their precise topology (Laudon, Winblad et al. 2007) 

(Kornilova, Kim et al. 2006). Presenilin 1 plays essential roles in vivo, including neuronal 

differentiation and migration during embryonic development (Shen, Bronson et al. 1997) 

(Handler, Yang et al. 2000) (Wines-Samuelson and Shen 2005). However, PS1 conditional 

knock-out (PS1 cKO) mice, in which PS1 inactivation is restricted to the postnatal 

forebrain, show reduced Aβ generation and only subtle spatial memory impairment (Yu, 

Kim et al. 2001). Nevertheless, complete inactivation of both presenilins in the adult 

cerebral cortex results in hippocampal memory and synaptic plasticity impairments, 

followed by progressive neurodegeneration (Saura, Choi et al. 2004). 

The finding that PS1 mutations devoid of γ-secretase activity are associated with fronto-

temporal dementia ((Raux, Gantier et al. 2000) (Amtul, Lewis et al. 2002) (Dermaut, 

Kumar-Singh et al. 2004) also supports a possible link between loss of PS1 function and 

pathogenic mechanisms of dementia. The requirement of presenilins for synaptic plasticity, 

memory, and neuronal survival is mediated partly by the regulation of the cAMP response 

element-binding protein pathway, likely by γ-secretase dependent Notch cleavage and 
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signalling (Saura, Choi et al. 2004). Therefore, it is unlikely that γ-secretase inhibitors that 

affect Notch signaling will be useful as potential drugs for AD treatment. The hypothesis 

alternative to that of “Amyloid cascade hypothesis” is the “presenilin hypothesis” based on 

several in vivo observations. First, conditional inactivation of PS in the adult mouse brain 

causes progressive memory loss and neurodegeneration resembling AD, whereas mouse 

models based on overproduction of Aβ have failed to produce neurodegeneration. Second, 

whereas pathogenic PS mutations enhance Aβ42 production, they typically reduce Aβ40 

generation and impair other PS-dependent activities. Third, γ-secretase inhibitors can 

enhance the production of Aβ42 while blocking other γ-secretase activities, thus 

mimicking the effects of PS mutations. Finally, PS mutations have been identified in 

fronto-temporal dementia, which lacks amyloid pathology. Based on these and other 

observations, the partial loss of PS function seems to better explain neurodegeneration in 

the pathogenesis of AD. Moreover it has been proposed that Aβ42 may act primarily to 

antagonize PS-dependent functions, possibly by operating as an active site-directed 

inhibitor of γ-secretase. 

 

5. The APP function  
 

The normal functions of APP are not fully understood, but increasing evidence suggests it 

has important roles in regulating neuronal survival, neurite outgrowth, synaptic plasticity 

and cell adhesion (Mattson 1997). One possible function of full-length APP is as a cell 

surface receptor that transduces signals within the cell in response to an extracellular 

ligand (Kimberly, Zheng et al. 2001).  

Several functions have been proposed for this protein. For example, the extracellular 

domain of the protease nexin form of APP (APP751/770) is part of the clotting cascade 

(Xu, Davis et al. 2005). One possibility is that APPs (and possibly Aβ) are damage 

response proteins. While others have argued that Aβ might have some protective role (Lee, 
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Castellani et al. 2005), this possibility has not been rigorously investigated. The concern is 

that APP up regulation (and even perhaps Aβ deposition) is an acute response to damage, 

perhaps vascular damage, (Atwood, Bishop et al. 2002) (Kumar-Singh, Pirici et al. 2005) 

(Cullen, Kocsi et al. 2006) (Weller, Subash et al. 2008), in line with the role of APP in the 

regulation of blood clotting (Xu, Davis et al. 2005). However, neither a ligand nor 

downstream signaling cascades for APP have been clearly established. APP’s evolutionary 

conservation and the existence of APP-like isoforms (APLP1 and APLP2), which lack the 

Aβ sequence, however, suggest that these might have important physiological functions 

that are unrelated to Aβ production. The functional redundancy between mammalian APP, 

APLP-1, and APLP-2 became clear when it was first shown that APP/APLP-2 (von Koch, 

Zheng et al. 1997), and subsequently, APLP-1/APLP-2 double knockouts (Heber, Herms et 

al. 2000) (Wang, Yang et al. 2005), exhibit early postnatal lethality. APP/APLP-2 double 

knockouts have structurally and functionally defective neuromuscular synapses, with 

excessive nerve terminal sprouting, reduced synaptic vesicle numbers at the presynaptic 

compartment, and an observable aberrant apposition of presynaptic markers with 

postsynaptic acetylcholine receptors. APP/APLP-1 double knockouts are viable, but these 

also exhibit early postnatal death in conjunction with a haplodeficiency of APLP-2 (Wang, 

Yang et al. 2005). The triple knockouts are postnatally lethal and exhibit cranial 

abnormalities. These include cortical dysplasias resembling the phenotype found in human 

type II lissencephaly and a partial loss of cortical Cajal retzius (CR) cells (Herms, Anliker 

et al. 2004). These phenotypes of the APP/APLP-1/APLP-2 triple knockout are suggestive 

of defects in the survival of specific central nervous system cell types and the migration of 

neuroblasts. It is therefore clear that the APP and APPLs have important developmental 

and postnatal functions. 

Soluble N-terminal fragments of APP have been known to be neuroprotective. Recent 

findings have brought to light two possible functions of the APP family in the brain-
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regulation of neural progenitor cell proliferation. sAPPα, as does the ectodomain of APLP-

2 (Cappai, Mok et al. 1999), has been shown to be able to stimulate the proliferation of 

neural progenitor cells in vitro (Hayashi, Kashiwagi et al. 1994) (Ohsawa, Takamura et al. 

1999) and in vivo in the subventricular zone (SVZ) (Caille, Allinquant et al. 2004). The 

SVZ is one of two adult CNS sites that harbor neural progenitors that are capable of 

producing neurons in the adult brain (Conover and Allen 2002; Caille, Allinquant et al. 

2004). The results of Caile et al. have important implications for APP and APLP-2 

functioning as rather specific growth factors or co-factors for CNS neuroprogenitors. A 

possible endogenous source of APP or APLP ectodomains at the SVZ has in fact been 

noted in a subpopulation of cells, which expresses astrocytic markers (Yasuoka, Hirata et 

al. 2004). However, any specific sAPPα receptor has been identified and the respective 

proliferative signaling pathways dissected in detail (although MAP kinase activation by 

sAPP has been demonstrated (Greenberg, Koo et al. 1994). In fact, unlike the cytoplasmic 

C-terminus of APP, the N-terminus is surprisingly devoid of known specific neuronal 

interacting proteins. Candidate interacting proteins thus far known include ApoE (Barger 

and Harmon 1997) and the most recently identified F-spondin (Ho and Sudhof 2004). In 

this case, F-spondin binding to APP inhibits its proteolytic cleavage by BACE-1 and 

appears to modulate APP-dependent transactivation of Tip60-mediated transcription. F-

spondin has been shown to promote neurite outgrowth of both CNS (Feinstein, Borrell et 

al. 1999) and peripheral nervous system neurons(Burstyn-Cohen, Frumkin et al. 1998), as 

well as functioning in developmental axonal pathfinding and neuronal regeneration 

(Burstyn-Cohen, Tzarfaty et al. 1999) (Feinstein and Klar 2004).  

Although biochemical interaction studies have identified a plethora of molecules that 

interact with the APP intracellular domain (AICD), concrete evidence for a physiological 

significance of these interactions is often lacking. The cytoplasmic domain of APP is 

characterized by the GYENPTY motif, which is 100% conserved from C. elegans to 
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humans supporting the notion of its importance. This motif contains the consensus 

sequence for clathrin-coated pit internalization. Deletion of the cytoplasmic tail impairs 

internalization of cell surface APP and decreases Aβ secretion into conditioned medium by 

precluding endosomal–lysosomal APP processing (Essalmani, Macq et al. 1996) (Koo and 

Squazzo 1994) (LeBlanc and Gambetti 1994). The GYENPTY sequence is also a 

consensus motif for the binding of adaptor proteins that possess a phosphotyrosine binding 

domain (PTB), such as those in the X11, Fe65, and JIP families (Figure 4). These proteins 

bind the AICD in a phosphotyrosine independent manner and may affect the APP 

processing. Fe65 is an adaptor protein highly expressed in neurons (Fiore, Zambrano et al. 

1995) and is the first PTB-containing protein identified as ligand of the GYENPTY motif 

of the intracellular domain of APP and its hortologues APLP1 and APLP2. Fe65 and its 

hortologues Fe65L1 and Fe65L2 can modulate the APP processing in distinct ways that 

may be cell-type dependent, either promoting sAPP and Aβ secretion (Guenette, Chen et 

al. 1999) (Chang, Tesco et al. 2003) (Sabo, Lanier et al. 1999) either stabilizing immature 

APP and inhibiting sAPP  and Aβ secretion (Ando, Iijima et al. 2001). The same 

GYENPTY motif is implicated in the binding of X11 and mDab1. X11 is an adaptor 

protein (Borg, Yang et al. 1998) (Butz, Okamoto et al. 1998) that inhibits Aβ secretion 

(King, Perez et al. 2003), likely via impaired trafficking of APP to subcellular 

compartments containing active γ-secretase complex (King, Cherian et al. 2004), because 

has no inhibitory effect on γ-cleavage activity in a cell-free system. Indeed, human X11α 

and human APPswe double transgenic mice reveal a significant decline in Αβ40 levels in 

brain homogenates and rescue of age-dependent amyloid plaque deposition in brain 

compared to age-matched human APPswe transgenic control mice (Lee, Lau et al. 2003). 

Disabled-1 (Dab1), which plays a role in neuronal development (Homayouni, Rice et al. 

1999) (Howell, Lanier et al. 1999) has not clear effect on APP processing. Other proteins 

has been shown to interact may with the APP C-terminus, but little is known of their  
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Figure 4: APP Intracellular Domain (AICD) ligands. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The cytosolic tail of APP is reported with the GYENPTY motif in red. Some of the PTB-

containing proteins that interact with AICD are shown. It is rappresented the Tyr residue 

phosphorylated by Abl and involved in the binding with activated Abl and Src tyrosine 

kinases.  
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potential modulatory effects on its processing or the in vivo significance of their 

interaction, such as the JNK-interacting protein 1 (Jip1) (Matsuda, Yasukawa et al. 2001; 

Scheinfeld, Roncarati et al. 2002), Shc (Russo, Dolcini et al. 2002; Tarr, Roncarati et al. 

2002), Numb (Roncarati, Sestan et al. 2002), ARH (Noviello, Vito et al. 2003), Grb2 

(Zhou, Noviello et al. 2004) and AIDA (Ghersi, Vito et al. 2004). 

In our lab it has been shown that the proteolytic processing of APP is induced by activated 

PDGF receptor through a pathway involving the activation of Src and Rac1 (Gianni, 

Zambrano et al. 2003). This mechanism can be modulated by APP interactors. Infact, 

overexpression of Fe65 and Shc induce an increase of the APP processing, but via two 

different mechanisms. Fe65 induces the cleavage by caspase and Shc induce the g-

secretase cleavage. 

 

 

6. The adaptor protein Fe65 

Yeast two-hybrid screens using the APP C-terminus as bait identified the adaptor protein 

Fe65 (Fiore, Zambrano et al. 1995) (Russo, Faraonio et al. 1998) (Zambrano, Buxbaum et 

al. 1997). Fe65 is expressed at high levels in neurons (Bressler, Gray et al. 1996). Human 

and mouse Fe65 genes have an alternatively spliced isoform with an exon present only in 

the neuron-specific transcript(Hu, Hearn et al. 1999). In adult mouse brain Fe65 is highly 

expressed in neurons in the hippocampus, cerebellum, thalamus, and midbrain, with some 

expression in a subset of astrocytes in the hippocampus. Fe65 expression is also 

developmentally regulated, with levels declining after embryonic day 15 and increasing 

again progressively from postnatal day 10 to adulthood (Simeone, Duilio et al. 1994) 

(Kesavapany, Banner et al. 2002).  

Fe65 is a member of a protein family consisting of Fe65, Fe65-like (Fe65L or Fe65L1) 

(Guenette, Chen et al. 1996) and Fe65L2 (Duilio, Faraonio et al. 1998). The members of 
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the Fe65 family share a high grade of sequence homology in the three functional domains 

and all of them can bind the APP family members cytosolic tail although the Fe65-APLP1 

interaction is the most affine.(Guenette, Chen et al. 1996; Duilio, Faraonio et al. 1998). A 

difference between the members of Fe65 family is in the tissue specificity. Fe65 is highly 

expressed in neurons; Fe65L1 is ubiquitously expressed; and Fe65L2 is very abundant in 

testis and brain (Duilio, Zambrano et al. 1991; Simeone, Duilio et al. 1994; Guenette, Chen 

et al. 1996). Genetic models suggest a redundant function of the Fe65 family members. 

Fe65 knock out mice appear normal, but double mutants Fe65-/-/Fe65L1-/- show cortical 

dysplasia, mislocalization of CR neurons, distruption of basal membrane, with a phenotype 

similar to that observed in the triple knock out mice of the APP family and to the PS1 

knock out. A possible explanation of the overlapping phenotype is the impairment of a γ-

secretase-dependent signalling involving the APP-Fe65 interaction, thus implying a role of 

APP-Fe65 signaling as effector of normal neuronal positioning in brain development.  

The Fe65 protein contains three protein interaction domains: a WW domain in the N-

terminus and two PTB domains in the C-terminus, with distinct binding specificities. The 

PTB domains of Fe65 have distinct features compared to those present in proteins as Shc 

and IRS-1. They lack a Phe residue, which is conserved in all known PTBs and in Fe65 is 

replaced by a Cys (Zambrano, Buxbaum et al. 1997) and they can bind the GENPTY motif 

when the tyrosine is not phosphorylated (Margolis, Borg et al. 1999). The WW domain is 

one of the smallest protein domain composed of 40 amminoacids, which is found in a wide 

range of signaling molecules, and binds proteins containing proline-rich motif. The WW 

domain of Fe65 belongs to the II group of WW domains that recognizes a PPPPLP 

consensus sequence (Kay, Williamson et al. 2000).  

In the literature several partners of the three protein interaction domains of Fe65 have been 

described. The WW domain interacts with Mena (mammalian enabled), which binds actin 

and thus links Fe65 and APP to cytoskeletal dynamics and cellular motility and 
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morphology (Ermekova, Zambrano et al. 1997). Indeed, Fe65 and APP colocalize at 

synaptic sites and in distal domains of neuronal growth cones, particularly actin-rich 

lamellopodia (Sabo, Ikin et al. 2003). Another ligand of the WW domain of Fe65 is the 

active form of the tyrosine kinase c-Abl, which mediates the phosphorylation of Fe65 on 

tyrosine 547 within its second PTB domain and modulates its nuclear function (Russo, 

Faraonio et al. 1998). It has been hypothesized that Fe65 might recruit c-Abl to the C-

terminus tail of APP to allow the phosphorylation of the tyrosine Y682 by the c-Abl, which 

can itself bind the phosphorylated AICD through its SH2 domain (Zambrano, Bruni et al. 

2001; Perkinton, Standen et al. 2004). As part of my thesis project I described a new 

complex of Fe65 with the nucleosomal assembly protein SET that requires an overlapping 

region of the WW domain (Telese, Bruni et al. 2005) and is able to modulate its nuclear 

function.  

The PTB1 domain of Fe65 binds the low density lipoprotein receptor related protein (LRP) 

which serves as a receptor for ApoE and α-2 macroglobulin that scavenge secreted Aβ 

(Trommsdorff, Borg et al. 1998). Recently, it has been reported that Fe65 binds with its 

PTB1 domain another member of the LRP family, the ApoER2 (Hoe, Magill et al. 2006). 

The complex between Fe65 and the members of the LDL-related proteins might affect the 

APP processing. The PTB1 domain of Fe65 also binds the transcription factor complex 

CP2–LSF–LBP-1c (Zambrano, Minopoli et al. 1998) and this interaction is implicated in 

the regulation of transcription of GS3Kβ (glycogen synthase kinase−3β) (Kim, Kim et al. 

2003) and timidilate synthase (Bruni, Minopoli et al. 2002). Another nuclear ligand of the 

PTB1 domain of Fe65 is the histone acetyl transferase Tip60 (Cao and Sudhof 2001). 

The PTB2 domain of Fe65 binds the APP C-terminus. This interaction requires the 

GYENPTY motif as well as threonine-668, 14 residues N-terminal to the internalization 

sequence. Phosphorylation of threonine-668 of APP impairs Fe65 interaction, suggesting 
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that the interaction of Fe65 with APP may be differentially regulated by its 

phosphorylation–dephosphorylation status (Ando, Iijima et al. 2001).  

 

7. Neurodegeneration and DNA damage response. 
 

Neurogenerative diseases are a group of pathologies affecting the central nervous system 

whose common feature is the deterioration of neuronal functions. Neuronal cells are fully 

differentiated post-mitotic cells, highly specialized for the processing and transmission of 

cellular signals. The manteinance of genomic integrity has crucial meaning for these cells 

considering their inability to proliferate and substitute damaged cells. Since they are 

irreplaceable and should survive as long as the organism does, they need elaborate, 

stringent defense mechanisms to ensure their longevity. Neurons display high rates of 

transcription and translation, which are associated with high rates of metabolism and 

mitochondrial activity. The amount of oxygen consumed by the brain relative to its size far 

exceeds that of other organs. This high activity coupled with high oxygen consumption 

creates a stressful environment for neurons: damaging metabolic by-products, primarily 

reactive oxygen species (ROS), are constantly attacking neuronal genomic and 

mitochondrial DNA (Barzilai, Biton et al. 2008) (Katyal and McKinnon 2007) (Fishel, 

Vasko et al. 2007) (Weissman, de Souza-Pinto et al. 2007) (Halliwell 2006) (LeDoux, 

Druzhyna et al. 2007) and (Ryter, Kim et al. 2007). Neurons ensure their longevity and 

functionality in the face of these threats by elaborate mechanisms that defend the integrity 

of their genome. The DNA damage response is a key factor in the maintenance of genome 

stability. It is now clear that diverse mechanisms encompassing cell cycle regulation, repair 

pathways, many aspects of cellular metabolism, and cell death are inter-linked and act in 

consort in response to DNA damage. One of the most powerful activators of the DDR is 

the double strand break (DSB) in the DNA (Helleday, Lo et al. 2007). Eukaryotic cells 

employ two major mechanisms to repair DSBs: nonhomologous end-joining (NHEJ), an 
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error-prone ligation mechanism, and a high-fidelity process based on homologous 

recombination (HR) between sister chromatids that operates in the late S and G2 phases of 

the cell cycle (van Gent and van der Burg 2007) (Wyman and Kanaar 2006). But, the 

overall cellular response to DSBs goes far beyond repair. This broad, powerful signaling 

network works to affect chromatin organization and a large number of cellular systems 

(figure 5) (Bakkenist and Kastan 2004) (Shiloh 2003) (Harrison and Haber 2006) (Shiloh 

2006). One of its hallmarks in proliferating cells is the activation of cell cycle checkpoints 

that temporarily halt the cell cycle while damage is assessed and processed (Jeggo and 

Lobrich 2006) (Bartek and Lukas 2007). Defects in the DNA damage response in 

proliferating cells can lead to cancer while defects in neurons result in neurodegenerative 

pathologies (Figure 5). In animal models, ectopic expression of oncogenes in terminally 

differentiated cells, including neurons, has been shown to induce apoptosis rather than 

proliferation. For instance, mice transgenic for the SV40 T antigen, which is normally 

oncogenic in cycling cells, show progressive degeneration of Purkinje neurons to which 

transgene expression was targeted (Klein, Longo-Guess et al. 2002). Other genetic models 

suggest that cell-cycle reactivation in neurons precedes or is at least coincident with 

neuronal apoptosis. 

The cell cycle in a normally cycling cell proceeds through four distinct phases, whereas 

cell-cycle reactivation in a post-mitotic neuron (by a stimulus such as excitotoxicity, 

growth factor withdrawal or overwhelming DNA damage) leads to apoptosis. Several 

genetic deficiencies in enzymes that detect or repair DNA damage can induce the apoptosis 

of specific neuronal populations or further sensitize them to genotoxic stresses. A good 

link  between defects in DNA repair, malignancy and neurodegeneration are seen with 

loss-offunction mutations in ataxia telangiectasia-mutated (ATM), a member of the 

phospatidylinositol-3 (PI3) kinase superfamily with multiple functions and protein targets. 

ATM can activate repair proteins such as the Rad50–Mre11–Nsb1 complex in response to 
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Figure 5: Effects of defective DDR pathways on the central nervous 
system (CNS) . 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Neurons are characterized by elaborate structure and function, perhaps more than any 

other cell type. The combination of their critical function, post-mitotic nature, finite 

number and high oxygen consumption demands a robust DNA damage response. 

Reduction in DNA repair proteins has been associated with various neurodegenerative 

pathologies such as typical late onset, chronic diseases like Alzheimer’s disease (AD) and 

Parkinson’s disease (PD) or monogenic disorders such as the genomic instability 

syndromes, Ataxia telangiectasia, Nijmegen breakage Syndrome, Cockayne’s syndrome 

(CS) and Trichothiodystrophy (TTD) 
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 DNA double-strand breaks created, for instance, by ionizing radiation, but when the DNA 

repair machinery is overwhelmed, ATM can also activate p53 and Chk1 to induce cell-

cycle arrest or apoptosis. In mouse models deficiency of ATM causes a progressive 

apoptosis of nigral dopamine neurons followed by degeneration of striatal projection 

neurons (Eilam, Peter et al. 2003) (Eilam, Peter et al. 1998). The neurodegenerative 

phenotype early in the human disease ataxia-telangiectasia is restricted to Purkinje and 

granule cells of the cerebellum but broadens considerably with age and may extend to the 

basal ganglia (Gibb and Lees 1989) (Agamanolis and Greenstein 1979). ATM and ATM-

related protein (ATR) function at a nexus of neurodevelopmental and DNA repair 

activities; specific biallelic defects in these lead not only to cerebellar degeneration but 

also to microcephaly (Seckel syndrome) and, in conjunction with p53 inactivation, tumors 

of the central nervous system such as medulloblastoma (Lee and McKinnon 2007). 

A convergence of biochemical, genetic and epidemiologic data has implicated certain 

genes in both oncogenesis and neuronal dysfunction. These include the tumor suppressors 

ATM and PTEN and possibly parkin. Typical late onset, chronic diseases are Alzheimer’s 

disease (AD) and Parkinson’s disease (PD), while monogenic disorders such as the 

genomic instability syndromes are characterized by early onset and acute manifestation. 

There are common denominators between these two groups of diseases, and accumulation 

of DNA damage is one of them (Fishel, Vasko et al. 2007) (Halliwell 2006) (Rutten, 

Schmitz et al. 2007) (Rutten, Korr et al. 2003) (Cotman and Su 1996) (Itzhaki 1994) 

(Robbins 1987). All of these disorders impair “brain functionality” to various degrees, 

defined by total input and output of the brain’s neuronal circuits. Neurodegenerative 

disorders deregulate the activity of specific circuits, affecting their organization, cell 

numbers, cellular functionality, and interactions between cells and circuits. It is reasonable 

to assume that DDR components that affect early onset neurodegenerative diseases can 

also be involved in late onset neurodegenerative diseases such as PD or AD. Increased 
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oxidative stress; accumulation of oxidative  damage; reduced NHEJ; accumulation of 

DSBs and SSBs; reduction in MRN complex components; activation of cell cycle program. 

It will be of clinical interest to determine which of these genes and their molecular partners 

would be useful biomarkers or therapeutic targets and at what stage of disease such 

applications would be most effective. In addition, determining which aspects of cell-cycle 

control in normal neuronal development are recapitulated in neurodegeneration and which 

are unique to each process may help optimize conditions for regenerative therapies based 

on stem-cell differentiation and transplantation. 

 

The aims of the thesis 

Fe65 is a nuclear protein interacting with Tip60, SET, c-Abl and CP2/LSF. Among these 

nuclear partners Tip60 and SET are involved in chromatin remodelling. The high 

sensitivity to genotoxic stress induced by the Fe65 suppression both in vitro and in vivo led 

us to investigate the involvement of Fe65 in chromatin remodelling during DNA repair. 

This hypothesis was supported by the fact that the histone acetyl-transferase Tip60 is a 

component of NuA4 complex involved in the early streps of chromatin decondensation 

during DNA repair. To this aim I investigated the role of Fe65 and its main interactor APP 

in the cellular response to DNA damage. Most of the data shown in this thesis have been 

published in the following papers: (Stante, Minopoli et al. 2009) (Minopoli, Stante et al. 

2007).   
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MATERIALS AND METHODS  
 

1. Generation of Fe65 knock out mouse embryonic fibroblasts (MEFs) 
 
For generation of mouse embryo fibroblast lines, E13.5 embryo bodies devoid of heads 

and liver were tripsynized and plated in DMEM (Invitrogen) supplemented with 10% 

Newborn Calf Serum (HyClone), 1% penicillin and streptomycin, 1% MEM-non-essential 

amino acids (Invitrogen), 1.6 mM 2-mercaptoethanol. Immortalized lines were obtained 

following spontaneous recovery of the primary cultures from proliferation crisis. These 

lines were cultured in DMEM supplemented with 10% fetal bovine serum. 

Three Fe65 knock out (KO) immortalized lines  (# 3, # 8 and # 9) were obtained from three 

independent Fe65 KO mice. 

 

2. DNA damaging agents treatment and irradiation of mice 

Etoposide (VP-16, Calbiochem, 100 mM stock in DMSO) was added to the medium at 

final concentration of 15 µM for comet assay analysis or 40 μM for western blot analysis. 

Cells were then incubated at 37°C and 5% CO2 for 30 minutes before comet assay or for 2 

hours before lysis and protein extraction. H2O2 was diluted from a 30 % w/w (8.8 M 

stock) aqueous solution (Sigma) immediately before cell treatment in complete conditioned 

medium at the final concentration of 10µM. 

Cells were incubated at 37°C and 5% CO2 for 30 min or 1 hourbefore Comet Assay. To 

induce genotoxic stress in mice, these were exposed to 0.5 or 1 Gy doses of 6 MV X-ray 

from a linear accelerator (Primus, Siemens). 
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3. Comet assay 

The neutral comet assay was carried out according to manufacturer’s recommendations 

(Trevigen, Gaithersburg, MD). After treatment described before cells were trypsinized and 

resuspendend in cold PBS at 106 cells/ml. All passages were done on ice. 

For each point 10 µl of resuspended cells were added to 100 µl of melted agarose (37°C) 

and rapidly spread on slides. Agarose was allowed to solidify for 30 min. at 4°C and then 

slides were incubated for 30 min in lysis buffer and for 40 min in alkaline solution 

(pH>13). Comet tails were generated by a 10 min electrophoresis in TBE buffer at 20 V at 

room temperature. Slides were stained with Syber Green and DNA migration was analyzed 

by fluorescence microscopy (Leica DMS 4000B). Tail moment and tail length were 

calculated using the software CometScoreTM (TriTek Corporation). A minimum of 50 

cells per experiment was analyzed. All the experiments were done in triplicate. The 

Student’s t-test was used to measure statistical significance. 

 

4. Cells culture conditions and transfection of shRNAs and siRNAs 

NIH3T3, Hepa 1-6 and murine neuroblastoma cell line N2A were cultured under standard 

conditions and transfected with lipofectamine 2000 (Invitrogen) according to manufacture 

instructions. Fe65 silencing was obtained by transfecting pSM2 retroviral shRNAmir 

vectors (Open Biosystems, cat #RMM1766-9351830) or siRNAs (Dharmacon, cat#LQ-

042929); APP and APLP2 silencing was obtained by transfecting siRNAs (Dharmacon, 

cat#L-043246 and L- 042937, respectively), following the manufacturer’s instructions. 

Non-silencing siRNAs were used as a control (Dharmacon, cat#D-001810-10-20). 48 

hours upon transfection of Fe65 shRNA or non silencing shRNA cells were selected with 

puromycin at final concentration of 5 µg/ml for 2-3 days until cells in non transfected 

control plate were died to enrich the pool of transfected cells.  
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Puromycin resistant cells were then plated at desired confluence to perform following 

experiments. siRNAs transfected cells were used for following experiments 48 hours upon 

transfection. Transfection was carried out using the siRNAs at final concentration of 

100nM using 1:1 Lipofectamine : siRNAs ratio. In all cases the silencing of proteins was 

evaluated by western blot analysis with specific antibodies.  

 

5. Generation of the recombinant constructs in pRcCMV vector 

pRC-CMV-NES-myc and pRC-CMV-mutNESmyc vectors were obtained by cloning in 

the pRC-CMV (Invitrogen) the sequence of NESmyc and mutNES-myc using NotI / ApaI 

restriction sites. NES-myc and mut NES-myc ds DNA were obtained by annealing 

synthetic oligonucleotides (see sequence below) using the following annealing buffer : 

100mM NaCl, 50 mM Hepes pH 7.4.  

3µg of forward oligo and 3µg reverse oligo were added to the annealing buffer in a final 

volume of 50 µl and incubared in a thermal cycler as follow:  

90° C 4 min. 

70° C 10 min. 

37° C 20 min. 

20° C 10 min. 

The Fe65-NES and Fe65-NESm constructs were obtained by cloning into the pRC-CMV-

NESmyc and pRC-CMV-mutNES-myc vectors, respectively, the FE65 cDNA amplified 

by PCR with the primers listed below and digested with appropriate restriction enzymes. 

All the Fe65 mutants were cloned in the pRcCMVmutNES-myc vector using HindIII and 

NotI restriction sites. The sequences of the oligonucleotide primers used in this work to 

build recombinant constructs were: 
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NES-myc 

Forward  

5’GGCCGCGCCCTACAGAAGAAGCTGGAAGAACTGGAACTGGACGAATTCGGCCCGCGGGGCG

AGCAGAAACTCATCTCTGAAGAGGATCTGTAGGGGCC3’   

Reverse  

5’CCTACAGATCCTCTTCAGAGATGAGTTTCTGCTCGCCCCGCGGGCCGAATTCGTCCAGTTCCA

GTTCTTCCAGCTTCTTCTGTAGGGCGC3’ 

 

mutNES-myc 

Forward  

5’GGCCGCGCCGCACAGAAGAAGGCAGAAGAAGCAGAAGCAGACGAATTCGGCCCGCGGGGCG

AGCAGAAACTCATCTCTGAAGAGGATCTGTAGGGGCC3’  

Reverse  

5’CCTACAGATCCTCTTCAGAGATGAGTTTCTGCTCGCCCCGCGGGCCGAATTCGTCTGCTTCTG

CTTCTTCTGCCTTCTTCTGTGCGGCGC3’ 

 

 The following primers were used to amplify  the wild type Fe65 cDNA and the point 

mutation mutants ( C655F and YYW->AAA) using respectively the wild type template or 

constructs carrying the specific mutations. 

 

Fe65-HindIII for : 5’CCCAAGCTTAAGGCCATGTCTGTTCCATCATCCC3’ 

Fe65-Not1 rev : 5’CCCGCGGCCGCTGGGGTCTGGGATCCTAG3’ 

 

Deletion mutants were amplified using Fe65-NotI rev primer and  the following forward 

primers:  
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ΔupWW  Hind III for: 5’CCCAAGCTTAAGGCCATGTCCGATCTACCGGCTG3’ 
 
ΔWW Hind III for: 5’CCCAAGCTTAAGGCCATGCAGGGGAACAGTCCC3’ 
 
 
The ΔPTB1 mutant was amplified by overlapping PCR using the following primers: 
 
ΔPTB1 Hind III for: 5’CATGCCCAGCCCATCGTCAGCCGCTGCTTGGTAAATGGACTC3’ 
 
 
ΔPTB1 Hind III for: 5’GAGTCCATTTACCAAGCAGCGGCTGACGATGGGCTGGGCATG3’ 
 
 
The ΔPTB2 was amplified using Fe65 HindIII for primer and 
 
 ΔPTB2 Not I rev:  5’CCCGCGGCCGCCCTTTGGTGCTGGGAATTC3’ 
 
 
 
 
                                     
6. Immunofluorescence 

Cells were fixed in 4% paraformaldehyde for 10 min, permeabilized for 10 min in 0.2% 

Triton X-100, and blocked in 10% BSA for 1 h at room temperature. The slides were 

incubated with primary antibody for 1 h, washed in PBS, and incubated with Alexa Fluor 

conjugated secondary antibodies (Molecular Probes, Eugene, OR) for 1 h at room 

temperature. Cells were washed in PBS and mounted using Vectashield mounting medium 

with DAPI (Vector Laborator). Images were captured with an inverted microscope 

(DMI4000, Leica Microsystems).  

 

7. Immunoprecipitation , western blot and antibodies 

For the preparation of the cellular extracts, monolayer cultures were harvested in cold 

phosphate-buffered saline and sonicated in lysis buffer (50 mM Tris·HCl, pH 7.5, 150 mM 

NaCl, 0.5% Nonidet P-40, 10% glycerol, 0.4 mM EDTA, 50 mM NaF, 1 mM sodium 

vanadate, 1 mM phenylmethylsulfonyl fluoride, and protease inhibitor tablets). The 

extracts were clarified by centrifugation at 16,000 × g at 4 °C, and the protein 

concentration was determined by the Bio-Rad protein assay according to manufacturer's 
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instructions. For immunoprecipitations, appropriate amount of antibodies was incubated 

with 1.5 mg of protein lysates for 2 h at 4 C, followed by a 1 hour incubation with Protein 

A–Sepharose. Immunoprecipitates were washed three times in lysis buffer. Proteins 

released by boiling in SDS sample buffer were separated by Novex Bis–Tris 4–12% 

polyacrylamide gels (Invitrogen) and analysed by specific antibodies. 50 μg (or the 

indicated amounts) of each extract were electrophoresed on 4-12% SDS-polyacrylamide 

gradient gel under reducing conditions. Western blot experiments were carried out as 

described (Zambrano et al. 1998). For p-ATM western blot, proteins were separated on 5% 

low bis acrylamide gels (acrylamide:bis ratio 5:0,17). The antibodies used and their 

dilutions were: anti-H2AX (Bethyl Laboratories, Inc., 1:1000); anti-p53 (Ab-1) (Upstate 

Biotechnology, 10 μg/ml), antiphospho- p53 (Cell Signaling, 1:1000), anti-Fe65 (9); anti-

γH2AX (Ser139) (Cell Signalling Technology, 1:1000); anti- phospho ATM (Ser 1981) 

(Cell Signaling, 1:1000), anti-APP C-term (A8717 Sigma, 1:4000), anti-NBS (Santa Cruz, 

1:500), anti-lamin B (Santa Cruz, 1:250), anti-β- actin (Sigma, 1:1000), anti-myosin (Santa 

Cruz, 1:1000), anti-tubulin (Sigma, 1:1000) APLP2 (Calbiochem 1:5000). Horseradish 

peroxidase-conjugated goat polyclonal anti-rabbit and anti-mouse IgG were purchased 

from GE Healthcare. The rabbit polyclonal anti-FE65 antibody was described in (Duilio, 

Faraonio et al. 1998) 

 

 

8. Histone Association Assay 

 This procedure is a modification of the earlier described ChIP protocol (Liu, Wang et al. 

2008). Cells were treated with formaldehyde at a final concentration of 1% for 15 min. The 

reaction was quenched with the addition glycine to a final concentration of 125 mM. 

Nuclei were prepared as described in Zambrano et al. 1998, lysed in ChIP lysis buffer 

(50mMHepes-KOH pH 7.5, 150 mMNaCl, 1 mMEDTA, pH 8.0, 1% Triton X-100, 0.1% 
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sodium deoxycholate and protease inhibitors) and chromatin was sheared by sonication to 

_2 kb to 500 bp. The extract was centrifuged for 5 min at 20,000 _ g at 4 °C. For each 

histone H3 immunoprecipitation, _1 mg of nuclear extract (as measured by the Bradford 

assay) was incubated with 8 _g of rabbit polyclonal histone H3 antibody (Upstate). Equal 

amount of Rabbit IgG (Sigma) was used as negative control. Samples were incubated 

overnight at 4 °C with shaking. 20 _g of single-stranded herring spermDNAand 25_L of 

proteinASepharose beads were added and incubated at 4 °C with shaking for 90 min. The 

beads were washed twice in ChIP lysis buffer, once in ChIP lysis buffer with 500 mM 

NaCl, once in ChIP washing buffer (10 mM Tris pH 8.0, 0.25 M LiCl, 0.5% Nonidet P-40 

and 0.5% sodium deoxycholate). The beads were washed once more in ChIP lysis buffer 

and resuspended in 50 _L of Laemmli loading buffer. The input controls and 

immunoprecipitates were boiled for at least 30 min to reverse the cross-links. Chromatin-

associated Fe65 was analyzed by SDS/PAGE and Western blot with Fe65 antibody. 

 

 

9. Chromatin Immunoprecipitation. 

Cells were treated with 1% formaldehyde for 10 min at room temperature and 

formaldehyde was then inactivated by the addition of 125mMglycine. Chromatin was then 

sonicated to an average DNA-fragment length of 200–1,000 bp. Soluble chromatin extracts 

were immunoprecipitated using Tip60, TRRAP, acetyl-histone H4, Fe65 or myc antibodies 

and goat or rabbit IgG as a control. Supernatant obtained without antibody was used as 

input control. The amount of precipitated DNA was calculated by real-time PCR relative to 

total input chromatin, and expressed as percent of total chromatin according to the 

following formula: 2ΔCt x 10, where Ct represents the cycle threshold and ΔCt = Ct(input) 

–Ct(immunoprecipitation) (Frank, Heim et al. 2002). All the experiments have been done 

at least as independent triplicates and the Student’s t-test was used to measure statistical 
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significance. Primer sequences used to amplifying the 0.5, 2 and 10 Kb regions 

downstream I-SceI site in NIH-GS clones (see below) are: 

0.5 Kb F      CCACTACCTGAGCACCCAGTC 
 
0.5 Kb R      GGTCACGAACTCCAGCAGGA 
  
2 Kb F         TCAGGTGCAGGCTGCCTAT 
 
2 Kb R         TTTGTGAGCCAGGGCATTG 
 
10 Kb F        TTCTGATGGAATTAGAACTTGGCAA 
 
10 Kb R       GAACGAGATCAGCAGCCTCTGT 

 

Oligo sequences used to amplifying endogenous loci are listed below: 

 

POLII Start F         5’ GATTCTGGGAACGTCGGAGA 3’ 

POLII Start R        5’AAAGCTGGAGACGGGAAGC 3’ 

POLII 17Kb up F   5’GCTCAGCCAACCACAGTGATT 3’ 

POLII 17Kb up R     5’CCTGTCCGAGCGGTGATG 3’ 

POLII 20Kb down F   5’CCCTTGGCACCTTCTTTGG 3’ 

POLII 20Kb down R     5’ATCAGAGCTAAAACAGAAGTGAGTCAA 3’ 

ALBUMIN Start F         5’TGGCAAAATGAAGTGGGTAACC 3’ 

ALBUMIN Start R         5’CGAAACACACCCCTGGAAAA 3’ 

ALBUMIN 10 Kb up F    5’GCTCCATTTCTCACTGTAATACCATTT 3’ 

ALBUMIN 10 Kb up R     5’CCAGTCACCCAGCTAAAACTTAAAA 3’ 

ALBUMIN 15 Kb down F  5’CTGGAAGAGGAAACTGGGTGAT 3’ 

ALBUMIN 15 Kb down R    5’ GACCCTTTGACCACGCAACT 3’ 

GST Start F  5’CACATCTAAGCGGTCCTGGTCTA 3’ 

GST Start R   5’TGAGACTGAAGCACAGAAAAGCA 3’ 

GST a 5Kb down F          5’CCTTCCTCCACTTTTGAGTCTGA 3’ 

GST a 5Kb down R          5’TCCCTACGGTCATGTCAATCC 3’ 

GST Start F    5’CACATCTAAGCGGTCCTGGTCTA 3’ 

GST Start R   5’ TGAGACTGAAGCACAGAAAAGCA 3’ 

 

All primers were used to a final concentration of 4 µM in a 20 µl Real Time reaction 

containing 10 µl of Syber Green 2X ( Applied Biosystems) and 1 µl DNA.   
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10. MNase ASSAY 
 
Micrococcal Nuclease Digestion was performed as described in ref. 1. Briefly, 106 cells 

were Dounce homogenized in RSB buffer (10 mM Tris_HCl pH 7.4, 10 mM NaCl, 3 mM 

MgCl2, 0.5% Nonidet P-40) containing 1 mM phenylmethylsulfonyl fluoride, 1 mM 

Na3VO4, 1 mM DTT and protease inhibitors mixture, and incubated on ice for 15 min. 

Samples were washed twice with RSB buffer and digested with 2.5 units of micrococcal 

nuclease (USB) in digestion buffer (15 mM Tris_HCl pH 7.5, 60 mM KCl, 15 mM NaCl, 1 

mM CaCl2, 3 mM MgCl2, 20% glycerol, 15 mM β-mercaptoethanol) for the indicate 

times. Digestion was stopped by adding 1 volume of stop solution (50mMTris pH 7.5, 

150mMNaCl, 50mMEDTA, 0.3% SDS). DNA was phenol/chloroform extracted, 

precipitated with isopropyl alcohol and separated using 1.2% agarose gel electrophoresis. 

 

11. Cloning of mutants into p-Babe-puro retroviral vector 
 
p-Babe puro retroviral vector was modified by destroying the Hind III restriction site and 

by inserting an artificial polylinker sequence (p-Babe-puroM7). To destroy the original 

HindIII site, the vector was linearized with Hind III restriction enzyme and the sticky ends 

were filled in by using the Klenow large fragment before the ligation reaction with T4 

DNA ligase to obtain a p-Babe-puro NO HINDIII vector. The artificial polilynker 

containing the HindIII and ApaI restriction sites was obtained by annealing in vitro the 

following oligonucleotides : 

poliBamHI forward :   

5’-GATCCACCTGCAGCAAGCTTCTCGAGACGCGTGGGCCCTCGCGAG-3’ 

poliEcoRI reverse : 

5’-AATTCTCGCGAGGGCCCACGCGTCTCGAGAAGCTTGCTGCAGGTG-3’ 

and was cloned into the p-Babe-puro NO HINDIII vector BamHI/EcoRI digested, to obtain 

a p-Babe-puro NO HIND III/poli vector. The resulting vector was used to clone into 
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HindIII/ApaI sites the Fe65 wt and mutants DNA fragments obtained by HindIII/ApaI 

digestion of correspondent pRC-CMV-mutNES-myc construcs described before. 

 

12. Retroviral production and infection 

Fe65wt and Fe65 mutants retroviral vectors were trasfected into LinX packaging cell line 

(Catalog #: LNX1500) by using calcium phosphate method. 48 hours after transfection 

viral supernatants were collected, filtered, supplemented with 8 µg/ml polybrene, and 

combined to infect early Fe65 KO Mefs. Infection was performed twice to ensure high 

efficiency. Incubation of cells with retrovirus containing supernatant was carried out for 5-

6 hours at 37°C and 5% CO2.  

Cells were then incubated with fresh medium and reinfected 24h after the first infction. 48 

hours the first infection, cells were selected with puromycin (2.5 µg/ml) for 4 days and 

used for following experiments. Effective infection was confirmed by Western blot 

analysis. 

 

13. Generation of NIH-GS cells and measurement of repair efficiency. 
 
 
To obtain the NIH-GS clones, NIH3T3 cells were transfected with pDRGFP plasmid (SI 

ref. 2). 48 hours after transfection, cells were selected with puromycin (3 μg/ml) for 5 days. 

Puromycin-resistant colonies were pooled and amplified under puromycin selection to 

obtain NIH3T3-G stable clones. The latter were then transfected with the I-SceI-ER vector 

(see below). 48 hours after transfection, cells were selected for 9 days with 900μg/ml G418 

and 2μg/ml puromycin. Double resistant colonies were pooled and amplified. 

To generate the inducible I-SceI-ER construct, the ER sequence was amplified with 

following primers 

5glyER-For-HindIII: 
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5’-CCCAAGCTTGGAGGTGCAGGAGGTCGAAATGAAATGGGTGCTTCAGGAG-3’ 

ER-rev-NotI: 

 5’-AAGGAAAAAAGCGGCCGCTCAGATCGTGTTGGGGAAGCCCTCTGCTTCC-3’ 

using as template the pBSKS+ER vector kindly provided by Caterina Missero and inserted 

into the HindIII/NotI sites of β-actin promoter vector (Parisi, Passaro et al. 2008) to obtain 

the an ER- β-actin promoter vector. 

The Sce-I cDNA was amplified from pCβASce plasmid kindly provided by prof. 

Avvedimento using the following primers: 

SceI BamHI forward:                                                          

5’-CCCGGATCCAAGGCCATGGGATCAAGATCGCCAAAAAAG-3’ 

 

SceI no stop SmaI reverse: 5’-CCCCCCGGGCTTTCAGGAAAGTTTCGGAGGAG-3’  

 

and was cloned in frame into the BamHI/HindIII filled ER-β-actin promoter vector, to 

obtain a Sce-ER plasmid. 

Sequences of the oligonucleotide pairs used in ChIP experiments are reported before (see 

Chromatin Immunoprecipitation). NIH-GS cells were exposed to 1 µM 4-OH-tamoxifen 

for 6 hours before ChIP experiments. For FACS analysis NIH-GS cells were exposed to 1 

µM 4-OH-tamoxifen for 48 hours to allow cells growth upon I-SceI-ER induction. In both 

cases vehicle was used to treat control plates.  
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14, FACS analysis 

 For FACS analysis NIH-GS clones were transfected with Fe65 or APP+APLP2 siRNAs or 

control siRNA or with Fe65 constructs. 24 hours from transfection cells were treated with 

tamoxifen. 48 hours after I-Sce-I-ER induction, cells were harvested, resuspended in PBS 

at 200,000 cells/ml and GFP positive cells were counted with FACScanto (BD 

Biosciences, San Jose, CA) instrument. Each 

experiment was performed at least in triplicate by counting 30,000 events per sample. The 

Student’s t-test was used to measure statistical significance. 
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RESULTS 

 

1. Fe65 KO MEFs are highly sensitive to DNA damage 
 
To explore the functions of Fe65 and of the Fe65/APP complex we generated Fe65 knock 

out mice. These mice do not show any obvious phenotypes up to 12 months of age. The 

most conceivable explanation of these findings is that Fe65L1 and/or Fe65L2 compensate 

for the absence of Fe65, thus allowing the animal to develop and live normally. However, 

we explored whether in stressful conditions the absence of Fe65 protein in Fe65 knock out 

cells could be not enough to arrange an adequate cellular response and this could result in a 

defect that unmasks the function of the protein. To this aim we generated mouse 

embryonic fibroblasts (MEFs) from Fe65 knock out (KO) mice and from wild type (WT) 

mice as control cell lines. Immortalized cell lines established form them were amplified 

and used as experimental system to evaluate the cellular response to genotoxic agents such 

as etoposide or hydrogen peroxide (H2O2) in the absence of Fe65. 

The first experiment we performed on this cell lines was the Comet Assay, also known as 

Single Cell Gel Electrophoresis, that allows to evaluate the susceptibility to DNA 

damaging agents by measuring the length of the tail (tail length) and the amount of DNA in 

the tail (tail moment) in every single cells upon electrophoresis on a solid support and 

staining with a double-strand DNA binding dye (Sybr Green). In Figure 6A are shown 

Comet Assay fluorescence microscopy images from WT and Fe65 KO MEFs. The 

exposure to 15 μM etoposide or 20 μM H2O2 for 30 minutes, has only marginal effects on 

wild type MEFs whereas three Fe65 KO MEFs, derived from three independent embryos, 

showed high levels of damaged DNA. Wild type MEFs show a dose dependent increase of 

DNA damages upon the exposure for 30 minutes to etoposide or H2O2 indeed the measure 

of tail moment in the comet assay demonstrated that at concentrations of 15 μM, the two 

agents have only marginal effects on these cells (Figure 6B). On the contrary, three Fe65 
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KO MEFs derived from three independent embryos showed at these low concentrations 

high levels of DNA damage (Figure 6B). 
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Figure 6: Fe65 knock MEFs are highly sensitive to DNA damage 
 
 
A 
 
 

WT MEFs Fe65 KO # 3 Fe65 KO # 8 Fe65 KO # 9
 

 
 
 
 
 
B                                                                         C 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
A : Fluorescence microscopy images of cells upon Comet Assay and Sybr Green staining.  

B: The extent of DNA damage in wild type MEFs exposed to various doses of etoposide 

(VP16, squares) or H2O2 (circles) was measured by the comet assay as reported under 

Materials and Methods. C:  WT and Fe65 KO MEFs (cell lines KO3, KO8, KO9) were 

exposed to 15 μM etoposide or 10 μM H2O2 for one hour; thereafter the extent of DNA 

damage was measured by the comet assay. Standard error is reported for each point. 

1155 µµMM eettooppoossiiddee 6600 mmiinn..  
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2. Fe65 knock down (KD) cells have the same phenotype of  KO MEFs 

 

To confirm the phenotype observed in Fe65 KO MEFs we analyzed the sensitivity to 

genotoxic stress in other cellular systems in which Fe65 knockdown was obtained by RNA 

interference strategy. In NIH3T3 cells Fe65 expression was transiently suppressed by 

transfecting a shRNA-encoding vector targeting Fe65. A non silencing (ns) shRNA was 

transfected in control cells. As shown in figure 7 the western blot analysis with a specific 

Fe65 antibody, revealed that Fe65 protein level was reduced of about 80% compared to 

non silencing transfected cells. These cells were exposed to 20 µM etoposide for 1 hour at 

37° C and analyzed by Comet Assay.  

As shown in the graph, the tail moment of NIH3T3 knocked down cells is significantly 

higher than NIH3T3 non silencig transfected cell similar to what observed in Fe65 KO 

MEFs. We performed the same experiment in Neuro2A cells (N2A) in which the 

suppression of Fe65 was obtained by transfecting a pool of Fe65 specific siRNAs. Also in 

this case the western blot analysis shows an 80% reduction of Fe65 protein level compared 

to non silencing siRNA transfected cells. The knock down of Fe65 in N2A cells exposed to 

etoposide, leads to high level of damaged DNA compared to control cells (Figure 7) 

confirming that the absence of Fe65 in different cellular system results in high 

susceptibility to DNA damaging agents.    
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Figure 7: Suppression of Fe65 by RNA interference results in the same 
phenotype observed in Fe65 KO MEFs 
 

 A 
 

 
WT   KO 

 

 

 MEFs

 

 
B 

 

 

NIH3T3 or N2A cells were transfected with an shRNA-encoding vector or with siRNAs 

targeting Fe65, respectively. Western blot analysis demonstrated that the decrease of Fe65 

levels due to RNAi was of about 80%, compared to cells transfected with non silencing 

(ns) shRNA or siRNA. These cells were exposed to 20 µM etoposide for 1 hour and 

analyzed by Comet assay as described under Materials and Methods. The results obtained 

in NIH and N2A KD cells are compared to those obtained in Fe65 null MEFs exposed to 

20 µM VP16. A minimum of 50 cells per experiment were analyzed. All the experiments 

were done in triplicate. 
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3. Fe65 should be present in the nucleus to rescue the hypersensitivity of 
Fe65 KO MEFs to genotoxic stress 
 
It was well demonstrated that the overexpression of Fe65 in different cell lines is 

accompanied by the accumulation of the protein in the nucleus and APP functions as an 

extranuclear anchor preventing Fe65 nuclear translocation (Cao and Sudhof 2001) 

(Minopoli, de Candia et al. 2001). Indeed, when overexpressed alone, Fe65 accumulates in 

the nucleus. Furthermore, the C-terminal fragment of APP resulting from the cleavage 

catalyzed by γ-secretase was found in the nucleus associated with Fe65 (Kimberly, Zheng 

et al. 2001). These observations led to the hypothesis that the processing of APP could be 

involved in the mechanism regulating Fe65 availability in the nucleus. On the other hand, 

APP cytodomain is phosphorylated at Thr668 and this phosphorylation decreases the 

affinity of APP for Fe65 (Nakaya and Suzuki 2006), thus suggesting a second mechanism 

to regulate the nuclear availability of Fe65. Therefore, we addressed the question of 

whether the phenotype we observed in the Fe65 KO MEFs is related to Fe65 functions 

requiring its presence in the nucleus. To test this point we generated two expression 

vectors encoding Fe65 fused at the C-terminus to the nuclear export signal of the MAPKK 

or Fe65 fused to a mutated, non functional, version of this NES, as previously described in 

ref. 27. Moreover both fusion proteins were cloned in frame at the C-terminus with the 

myc tag sequence. Figure 8A shows the imminostaining with an anti-myc monoclonal 

antibody in cells overexpressing Fe65-NES and Fe65-mutNES. As expected the Fe65 

fused to the nuclear export signal accumulates in the cytoplasm and is mostly excluded 

from the nucleus, whereas the mutant NES sequence allows Fe65 nuclear accumulation. 

Fe65 KO MEFs transfected with the two recombinant proteins or with a vector encoding 

the Fe65 protein fused to the C-terminus with the myc  tag sequence were exposed to 

20µM etoposide and subjected to Comet Assay. 

The count of cells with the tail shows that transfection of the Fe65-NES protein was unable 

to rescue of the phenotype of KO MEFs, while the Fe65 fused to the mutant form of the 
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NES had the same effect as the wt Fe65-myc fusion protein (Figure 8 B) thus suggesting 

that nuclear Fe65 is necessary to rescue the high sensitivity to DNA damage observed in 

KO MEFs. 
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Figure 8: Nuclear Fe65 is needed to rescue the phenotype of Fe65 KO 
MEFs upon genotoxic stress. 
 

 

 

A B 

 

 

 

 

Wild type and Fe65 KO MEFs were transfected with empty vector(mock) or with vectors 

encoding wt Fe65 or Fe65 fused to the nuclear export signal of MAPK (Fe65-NES) or 

Fe65 fused to a mutated non-functional version of the NES (Fe65-NESm). Anti-myc 

immunostaining (A) shows the cellular localization of the two recombinant proteins. 36 

hours after transfection, the cells were exposed to 15 μM etoposide for one hour and DNA 

damage was measured by comet assay (B). Expression level of transfected recombinant 

proteins is shown. Standard deviation is reported for each point. The asterisks indicate that 

the mean values are significantly different (p<0.01) from that of mock transfected cells. 
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4. Fe65 KO and KD cells show higher level of phosphorylated H2AX and 
p53 under genotoxic stress condition 
 
 
Comet assay analysis showed that the absence of Fe65 in different cellular systems leads to 

high sensitivity to DNA damage induced by genotoxic agents like VP16 or H2O2. 

To confirm this phenotype we analyzed the amount of phosphorylated H2AX histone and 

p53 upon low doses of etoposide treatment in Fe65 KO MEFs. Indeed both protein are 

early marker of DNA damage response since they are rapidly phosphotylated on specific 

residues by the serin/ threonine kinase ATM. We performed a Western Blot analysis with 

an antibody that specifically recognize phosphorylated H2AX on serin-139 (known as γ-

H2AX) on total protein extracts obtained from Fe65 KO and WT MEFs. As shown in 

figure 9A γ-H2AX was undetectable in non treated or DMSO treated WT MEFs, whereas 

the exposure to etoposide resulted in γ-H2AX accumulation. The amount of γ-H2AX is 

higher in KO than in WT MEFs after etoposide treatment. Moreover a little amount of γ-

H2AX was detectable also in non treated or DMSO exposed Fe65 KO MEFs thus 

confirming that the absence of Fe65 leads to high sensitivity to DNA damage. As shown in 

figure 4B also the phosphorylation of p53 on serin15 residue was higher in KO than in WT 

MEFs as a consequence of a stronger DNA damage response, and according to literature 

this modification leads to the accumulation of the protein as shown by the Western Blot of 

total p53. γ-H2AX is a very well known marker of damaged DNA since it accumulates in 

specific foci representing DNA double strand breaks. We measured the amount of γ-H2AX 

upon etoposide treatments (20 µM and 40 µM for 1 hour) in NIH3T3 cells and N2A cells 

in which Fe65 was knocked down as described before. As shown in figure 9 B and C in 

both cell lines the absence of Fe65 leaded to stronger phosphorylation of H2AX histone 

supporting the idea that the number of etoposide induced double strand breaks is higher in 

KD than in WT cells.  
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Figure 9: Fe65 KO and KD cells show stronger activation of H2AX and 
p53 than WT under genotoxic stress condition  
 
 
 
 
A                                                                      B 
 

VP16 40µM 20µM 
sh    ns     sh    ns 

 
 
 
A : Wild type and KO cells were exposed to 15 μM etoposide and their sensitivity to DNA 

damage was explored by measuring γ-H2AX (ser-139) and phospho-p53 (ser15) and the 

accumulation of total p53, as indicated. The Western blot refers to the experiment made 

with extracts from KO9 MEF line; extracts from two other lines gave the same results. 100 

µg of total protein extract were loaded per line. B and C : The phosphorylated form of 

histone H2AX (γ-H2AX) was measured by Western blot analysis in NIH 3T3 cells 

transfected with non silencing (ns) or Fe65 targeting shRNA and in N2A cells transfected 

with an siRNA targeting Fe65 or with non silencing (ns) siRNA as a control. Cells were 

exposed to two different concentration of VP16 ( 20 and 40 µM)  for 1 h.  

Actin was used to normalize the amount of protein in different samples. 

NNIIHH33TT33  

actin

γγ--  HH22AAXX  

C 
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5. ATM activation and NBS phosphorylation seem to be normal in Fe65 
KO MEFs upon DNA damage induction 
 
 

It is well known that generation of DSBs results in intermolecular modification within 

ATM dimers that leads to their activation via autophosphorylation of Ser-1981. 

Intermolecular phosphorylation subsequently triggers dimer dissociation, and the free 

monomers can phosphorylate several nuclear proteins for recruitment of DNA damage 

response proteins, including the MRN complex (Lukas, Falck et al. 2003). Considering that 

histone H2AX is, possibly, the first protein that is phosphorylated by ATM but also by 

other members of the ATM family (DNA-PK and possibly ATR), we decide to evaluate 

the phosphorylation of ATM in our KO MEFs upon etoposide treatment by Western Blot 

analysis using a ser-1981 phospho specific antibody. As shown in figure 10 the 

phosphorylation of ATM occurred normally in Fe65 KO MEFs compaired to WT 

suggesting that the upstream events during DNA damage response were unaffected in the 

absence of Fe65. 

To further investigate the proper activation of ATM we analyzed the phosphorylation of 

NBS1 that is one of the ATM downstream target phosphorylated in response to DSB-

inducing agents (Wu, Ranganathan et al. 2000) (Gatei, Young et al. 2000). NBS1 is 

recruited to damage sites by binding to MRE11 at the C-terminus in an ATM-independent 

manner, and then recruits/retains the MRN complex by binding to H2AX at the N-terminus 

in an ATM-dependent manner. The Western Blot with as anti-NBS antibody (figure 10) 

shows that the phosphorylation of NBS occurred properly in Fe65 KO MEFs upon 

etoposide treatment as demonstrated by the band migrating slower than unphosphorylated 

protein.     
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Figure 10: ATM activation and NBS phosphorylation are apparently 
normal in Fe65 KO MEFs compaired to WT cells 
 
 
 
 
 
 

                                
 
 
 
 
 
The cell response to genotoxic stress was analyzed in wt and Fe65 KO MEFs exposed to 

40 μM etoposide by exploring the activation of ATM; active, autophosphorylated ATM 

(arrow) was analyzed by western blotting with anti-phospho-ATM (ser-1981) of the 

indicated extracts from untreated, DMSO- or etoposide-treated cells. Phosphorylation of 

NBS, one of the substrates of ATM, was analyzed by western blotting of the same extracts: 

NMS phosphorylation is detected as a band migrating slower than the unphosphorylated 

protein (arrow). 
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6. Effects of DNA damage in Fe65 KO mice 
 

The differences observed between wild type and Fe65 KO MEFs could imply an abnormal 

response of Fe65 KO mice to DNA damage. Therefore, we analyzed the sensitivity of our 

KO mice to X-ray-induced DNA damage. KO male mice of 3 months of age and normal 

mice, sex and age matched and belonging to the same litter, were exposed to non-fatal, low 

doses (0.5and 1 Gy) of ionizing radiations. As shown in Figure 11, 2.5 hours after the 

exposure to ionizing radiations brain extracts from Fe65 KO mice showed higher levels of 

phosphorylated γ-H2AX and a higher p53 accumulation compared to those of wild type 

mice. The latter are clear signs of the high sensitivity of Fe65 KO mice to genotoxic stress, 

thus confirming what observed in in vitro cellular systems.  
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Figure 11: Fe65 knock out mice are highly sensitive to DNA damage. 

 
   
 
 
 
                                               
 
 
 
 
 
 
 
 
 
 
 
                       
 
 
 
 
 
 
 
 
 
 
 
WT andFe65 KO mice were exposed to 0.5 and 1 Gy of X rays as described under 

Materials and Methods. 2.5 hours after irradiation the animals were sacrificed and brain 

extracts were analyzed by western blotting with anti-γ-H2AX histone or with anti p53 

antibodies. Myosin heavy chain is used as a control of load. Controls experiments from 

untreated mice are reported in the last two lanes. 
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7. Fe65 associates with intact and damaged chromatin and undergoes 
rapid phosphorylation in response to DNA damage 
 
The findings that the absence of Fe65 leads to hypersensitivity to DNA damage and that it  

should be present in the nucleus to rescue this phenotype suggested us to investigate the 

possibility that Fe65 is a chromatin bound protein. Therefore we analyzed Fe65 association 

with chromatin at a global genomic level both in basal conditions and in presence of DNA 

damage. To this aim, we immunoprecipitated crosslinked chromatin from N2A cells with an 

histone H3 antibody. This H3 immunoprecipitated chromatin, roughly representing the whole 

chromatin, was de-crosslinked and analyzed by western blot for the presence of Fe65. Figure 

12A shows that Fe65 is indeed associated with intact chromatin and that this association was 

only slightly increased upon genotoxic stress induced by etoposide. Moreover the western blot 

revealed that the protein migration was slower in the sample exposed for 10 minutes to 

etoposide than non treated sample probably as a consequence of protein phosphorylation. To 

further investigate this possibility, we monitored nuclear Fe65 at various times after the 

exposure of wild type MEFs to 40 μM etoposide (figure 12B). We previously 

demonstrated that our polyclonal antibody against Fe65 recognizes several bands in 

nuclear extracts, the slowest migrating ones are erased by the alkaline phosphatase 

treatment (Zambrano, Minopoli et al. 1998). The etoposide treatment induced a rapid 

modification of the pattern of the Fe65 bands after 5 and 10 minutes. Thereafter, the basal 

pattern was restored (20 min) and remained unchanged for several hours. The amount of 

cytosolic Fe65 was not affected by the etoposide treatment. We performed the same 

experiment in NIH-3T3 cells exposed to the radiomimetic agent Neocarzinostatin (NCS). 

As shown in figure 12C the exposure of cells to NCS for 10 minutes resulted in the 

accumulation of a band  with slower migration than non treated cells, supporting the idea 

that Fe65 phosphorylation is an early event during DNA damage response. The association 

to chromatin and the rapid modification of Fe65 as a consequence of the exposure of the 
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cells to DNA damaging agents suggest its involvement in the early steps of the cellular 

response to the genotoxic stress. 
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Figure 12: Endogenous Fe65 associates with chromatin and undergoes 
rapid phosphorylation in response to DNA damage  
 
 
 
 
       
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
A: N2A cells were treated or not with 100 μM etoposide for the indicated times. 

Crosslinked chromatin was immunoprecipitated with histone H3 antibody. De-crosslinked 

chromatin was analyzed by western blot with Fe65 antibody. Input indicates the non 

immunoprecipitated crosslinked extract. B: Normal MEFs were exposed to 40 μM 

etoposide for the indicated times. Nuclear and cytosolic extracts were prepared at the 

indicated intervals and analyzed by western blot with anti-Fe65 antibody (L12 serum 

1:2000). Lamin B and actin were used as control of loading. C: NIH3T3 cells were 

exposed to neocarzinostatin (NCS) 0.5 µg/ml for 10 minutes. Nuclear extracts were 

prepared from untreated (NT) and treated (10’NCS) cells and analysed as in B 
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 We know that after sequential proteolytic processing of membrane-bound APP and release 

of AICD into the cytoplasm, Fe65 can translocate to the nucleus to participate in gene 

transcription events. This role is further mediated by the interactions of Fe65 PTB1 with 

the transcription factors CP2/LSF/LBP1 and Tip60 and the WW domain with the 

nucleosome assembly factor SET although none of proposed Fe65 target genes have yet 

been confirmed. The finding that Fe65 is a chromatin bound protein suggested us to 

explore the possibility that its association with chromatin preferentially occurs at the 

genomic regions that are highly trascribed. To explore this possibility we analyzed in 

NIH3T3 cells, the association of Fe65 with three random genomic loci, i.e. those of RNA 

polymerase II that is a constitutive gene, albumin that is a tissue specific gene and glutathione-

S-transferase that is an inducible gene performing Chromatin Immunoprecipitation (ChIP) 

experiments. To this aim chromatin from NIH-3T3 cells was immunoprecipitated with an anti-

Fe65 antibody or control IgG and immunoprecipitated chromatin was amplified with three 

different oligo pairs surrounding the transcriptional start site, the upstream and the downstream 

regions of each locus. As shown in figure 13 the Fe65 antibody was able to immunoprecipitate 

the endogenous protein at each locus. Moreover this association seems to be independent from 

transcriptional status of chromatin since Fe65 bound to the same extent the analyzed 

transcriptional start sites and the distal upstream and downstream regions. 
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Figure 13: Fe65 is widely associated to chromatin of randomly selected 
loci. 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Chromatin from NIH3T3 cells was immunoprecipitated with Fe65 antibody (black bars) or 

control IgG (grey bars) and amplified with the oligonucleotide pairs reported in SI Table 

III of (materials and methods) , to explore the presence of Fe65 on three genomic loci. The 

oligonucleotides were designed to amplify regions of the RNA polymerase II, serum 

albumin and glutathione-Stransferase genes close to their start sites and at the indicated 

distances upstream or downstream from the start sites. 
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8. Fe65 association with chromatin determines its degree of condensation.  

The finding that the absence of Fe65 rendered the cells more vulnerable to DNA lesions and 

that Fe65 associated with chromatin both in basal and under genotoxic stress conditions, 

suggested us to explore its possible involvement in chromatin condensation state. To this aim 

we analyzed the accessibility of chromatin to micrococcal nuclease digestion in Fe65 KO and 

KD cells compared to WT. We found that chromatin from Fe65 KO MEFs or Fe65 KD cells 

was more accessible to micrococcal nuclease digestion, than chromatin from wt cells 

(figure14), thus demonstrating that Fe65 suppression leads to a significant degree of chromatin 

de-condensation. This phenotype was rescued by Fe65 re-expression in KO MEFs (figure 

15A). 

Moreover Fe65 overexpression in NIH3T3 cells results in highly condensated state (figure 

15B) since chromatin from NIH3T3 overexpressing cells was quite completely undigested 

even after 10 minutes of incubation with micrococcal nuclease. These data revealed that the 

association of Fe65 with chromatin is functionally relevant since it determines the degree of 

chromatin decondensation in basal conditions. 
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Figure 14: Fe65 KO and KD cells have more relaxed chromatin than WT  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chromatin from the indicated cell lines, in which Fe65 was suppressed by gene KO or by 

RNA interference, was digested with 2 mM micrococcal nuclease for the indicated times. 

Digested DNA was examined by agarose gel electrophoresis. Fe65 KO or KD result in the 

accumulation of the smallest bands of nucleosomal ladder (arrows) 
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Figure 15:Fe65 expression in KO cells restore the chromatin 
condensation state whereas its overexpression leads to high condensation 
state 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

A: Retroviral-directed reexpression of wt Fe65 in KO MEFs restored the normal cleavage 

pattern in micrococcal nuclease assay as demonstrated by the absence of small bands even 

after 8 minutes of nuclease digestion. 

B: Chromatin from Fe65 overexpressing NIH3T3 was resistant to micrococcal nuclease 

digestion compared to mock transfected cells as a conseguence of high condensation state.   
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9. Fe65 mutants lacking the WW and the PTB1 domains or carrying 
C655F point mutation are unable to rescue the Fe65 KO MEFs 
phenotype 
 
Fe65 has the three protein-protein interaction domains interacting with several nuclear 

proteins. Among these two lingands are involved in chromatin remodelling functions. 

Indeed Fe65 interacts with the nucleosome assembly protein SET through a region that 

partially overlaps the WW domain and with the histone acetyl-transferase Tip60 and the 

transcription factor LSF through the PTB1 domain. Our findings on Fe65 involvement in 

regulation of chromatin state strongly support a possible mechanism involving SET and 

Tip60 proteins. Moreover Fe65 interacts with APP or AICD through the PTB2 domain. To 

explore the possible involvement of these known partners in the Fe65 nuclear function 

responsible for the phenotype observed in KO and KD cells, we cloned in the pBabe 

retroviral vector (see Materials and Methods) several mutants carrying deletion or point 

mutations in the three domains of the protein. In figure 16A the structural organization of 

wild type protein and its mutants is shown. The ΔupWW mutant completely loses the N-

terminus region of the protein until aminoacid residue 253.  

This region is not involved in any known interaction but it contains a peculiar acidic region 

possibly involved in the association with chromatin.  

The ΔWW loses the entire WW domain starting from aminoacid residue 291. The absence 

of WW domain has a profound effect on the protein since this mutant is unable to reach the 

nucleus. Moreover it is unable to interact with SET protein. The ΔPTB1 mutant loses the 

region of the PTB1 domain between aminoacid 451-510 thus abolishing the interaction 

with Tip60.  

The ΔPTB2 mutant entirely loses the PTB2 domain that is involved in the APP/AICD 

binding. We generated also two mutants carrying specific point mutations. The first 

contains a triple mutation in the WW domain substituting the YYW sequence with AAA. 

This mutation specifically abolishes the interaction with SET protein and the 
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transactivation property of the protein. The second contains a single point mutation in the 

PTB2 domain (C655F) that specifically abolishes the interaction with APP and its 

paralogues APLP1 and APLP2. 

The expression level of wild type protein and its mutants were analyzed by western blot   

in Fe65 KO MEFs upon retroviral infection (figure 16B) using an anti-myc tag antibody or 

an antibody recognizing an epitope in the WW domain. Infected cells were also analyzed 

by immunostaining with an anti-myc antibody to evaluate the cellular localization of each 

Fe65 mutant. As shown in figure 17A, the ΔPTB1, ΔPTB2 and the ΔupWW mutants 

showed the same cellular localization of the wild type protein since they accumulated in 

the nucleus upon overexpression. Also the C655F and the YYW AAA mutants showed a 

proper nuclear localization thus suggesting that the loss of interaction with SET, Tip60 or 

APP/AICD do not alter the Fe65 nuclear localization. As expected, the ΔWW mutant is 

unable to reach the nucleus and accumulates in the cytoplasm confirming that this region is 

necessary for protein nuclear localization. We performed a rescue experiment in Fe65 KO 

MEFs expressing each mutant protein. To this aim infected cells were exposed to 20µM 

etoposide and analyzed by comet assay counting the number of cells with the tail (figure 

17B). As previously shown the wild type protein was able to rescue the phenotype whereas 

the protein fused to the nuclear export signal did not. As expected also the ΔWW mutant 

was unable to rescue the phenotype being excluded from the nucleus. The ΔupWW and the 

ΔPTB2 mutants rescued the phenotype with the same extent of the wild type protein. 

Finally, despite their proper nuclear localization, the ΔPTB1, the YYW AAA and the 

C655F mutants were unable to rescue the phenotype suggesting that Fe65 interaction with 

Tip60, SET and APP/AICD is necessary for its nuclear function in DNA damage response. 

Interestingly the C655F mutant lacking the interaction with APP/AICD was unable to 

rescue the phenotype although the mutant lacking the entire PTB2 domain (ΔPTB2) 

behaved like the wild type protein.      
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Figure 16: Schematic representation and expression of Fe65 mutants 
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A: Structural organization of wild type Fe65 protein and its mutants carrying specific 

deletions or point mutations. The number of aminoacid residues corresponding to deleted 

regions or mutated residues refers to rattus protein sequence. B: Western blots of Fe65 KO 

MEFs after infection with indicated Fe65 mutants were carried out with an antibody 

recognizing an epitope in the WW domain or with an anti-myc tag antibody.    
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Figure 17: Dissection of Fe65 interaction domains necessary to rescue the 
Fe65 KO MEFs phenotype 
 
 

A  
 
 
 
 
 
 
 
 
 
 
 

B   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
A : Fe65 KO MEFs were infected with corresponding mutants as reported under Materials 

and Methods  and stained with an anti-myc tag antibody to  reveal their cellular 

localization. B:  Fe65 KO MEFs expressing indicated proteins and exposed to 20µM VP16 

or to DMSO as a control were analyzed by comet assay counting the number of cells with 

the tail. A minimum of 50 cells per experiment were analyzed. All the experiments were 

done in triplicate.    
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10. Generation of the DR-GFP/ISce-I-ER system to study Fe65 
involvement in chromatin remodelling during DNA repair   
 
 
The finding that the Fe65 mutant unable to bind Tip60 (ΔPTB1) failed to rescue the high 

sensitivity to DNA damage observed in KO and KD cells, suggested us to focus on the 

possible involvement of Fe65/Tip60 complex in the cellular response to DNA damage. 

Indeed Tip60 is a well studied histone acetyl transferase involved in many cellular 

processes including chromatin remodelling during DNA repair of double strand breaks 

(DSBs). It has been sown that the NuA4 complex containing Tip60 and its cofactor 

TRRAP is rapidly recruited at DSBs during DNA repair to drive the acetylation of histone 

H4 in the surrounding region. Tip60 driven histone acetylation results in local chromatin 

decondensation that favours the loading of DNA repair machinery (Murr, Loizou et al. 

2006). To analyze the possible involvement of Fe65 in Tip60 mediated chromatin 

remodelling during DNA damage response, we exploited the DRGFP/I-SceI experimental 

system (Richardson, Elliott et al. 1999) (see figure 18A). To this aim, we generated clones 

of NIH3T3 cells stably transfected with a DNA construct (DR-GFP) containing two non-

functional GFPs. The upstream (5’) GFP is under the control of the β-actin gene promoter 

and contains a single recognition site for the I-SceI endonuclease. Considering that no I-

SceI sites are present in mammalian genomes, the expression of this enzyme results in 

generation of single DNA DSB only at DR-GFP sites (29, and figure 18A). We also 

generated an I-SceI-ER expression vector, in which the ISceI cDNA is fused in frame with 

the cDNA fragment encoding the hormone-binding site of the estrogen receptor alpha 

(ERα). The double stable clones NIH-GS bearing DR-GFP and I-SceI-ER were pooled and 

treated with 4-OH tamoxifen. Figure 18B shows the nuclear translocation of ISce-I-ER 

fusion protein upon 4-OH tamoxifen treatment. We performed chromatin 

immunoprecipitation experiments in our NIH-GS cells to evaluate Tip60/TRRAP 

recruitment and histone H4 acetylation upon I-SceI-ER driven DSBs generation, 
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amplifying with specific oligo pairs three regions located at 0.5, 2 and 10 Kb from I-SceI 

site respectively. 
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Figure 18: The DR-GFP/ISce-I-ER system 
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 B  
 
 
 
 
 
 
 

 
 
A: 5’ GFP sequence was cleaved by I-SceI-ER upon the exposure of the NIH-GS cells to 

1μM 4-Hydroxytamoxifen (tamoxifen) for 6 hours. Upon the cleavage, Tip60-TRRAP-

containing complex was recruited at the DNA and histone H4 was acetylated by Tip60. 

Gene conversion events are able to repair the double strand break induced by I-SceI by 

using the downstream 3′ GFP as donor that allow GFP expression.B: Immunostaining of 

NIH-GS cells with an anti-ERα monoclonal antibody that reveals the cellular localization 

of the ISce-I-ER fusion protein before and after 4-OH-tamoxifen treatment. 
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11. Fe65 suppression prevents the recruitment of Tip60-TRRAP at DNA 
double strand breaks 
 
In agreement with that previously observed by others (Murr, Loizou et al. 2006), the 

cleavage induced by I-SceI-ER in NIH-GS cells resulted in the recruitment of Tip60 to the 

site of DNA damage. In fact, ChIP experiments with Tip60 antibody showed a significant 

enrichment of Tip60 at the 5’ GFP site upon the induction of I-SceI-ER by tamoxifen. This 

enrichment was clearly detectable with oligonucleotide pairs amplifying DNA at 0.5 and 2 

kb downstream of the cleavage site, but not with the control oligonucleotide pair targeting 

the region 10 kb downstream of the DSB (figure 19A). Interestingly, in cells where Fe65 

was knocked down Tip60 recruitment to DSB was strongly decreased (figure 19A). 

Similar to Tip60, its partner TRRAP was recruited to DNA breaks in wt cells. Fe65 KD 

resulted again in a significant decrease of TRRAP recruitment (figure 19B). As a 

consequence of the impairment of Tip60-TRRAP recruitment to DNA strand breaks, ChIP 

experiments with an anti-acetyl-H4 antibody demonstrated that while in wt cells I-SceI-

driven cleavage induced the histone H4 acetylation at the I-SceI site, the concomitant 

suppression of Fe65 significantly decreased H4 acetylation (figure 20) both at 0.5 and 2 Kb 

downstream regions. 
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Figure 19: Fe65 suppression affects Tip60 and TRRAP recruitment at 
DNA double strand breaks. 
 
 
  A 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 B 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fe65 knockdown is accompanied by a decreased recruitment of Tip60 at DNA double 

strand breaks. NIH-GS cells, stably transfected with the inducible form of I-SceI-ER 

restriction enzyme and with DR-GFP construct (see Materials and Methods) bearing a 

single I-SceI cleavage site, were treated with 1 µM tamoxifen for 6 hours. ChIP was 

performed with Tip60 antibody (+) or control IgG (-). Immunoprecipitated chromatin was 

analyzed by real time PCR using three oligonucleotide pairs located at approximately 0.5, 

2 and 10 Kb downstream of the I-SceI cleavage site. *: p<0.01. (C) TRRAP recruitment at 

DNA break induced by I-SceI was analyzed as described in panel B, by 

immunoprecipitating chromatin with TRRAP antibody.  
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Figure 20: Fe65 suppression affects H4 acetylation at DNA double strand 
breaks  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chromatin, immunoprecipitated with an antibody recognizing acetylated histone H4, was 

analyzed in Fe65 KD NIH-GS cells before and after 4OH-tamoxifen induction of ISce-I-

ER amplifying DNA regions located at approximately 0.5, 2 and 10 Kb downstream of the 

I-SceI cleavage site. Non silencing (NS) trasfected NIH-GS cells were used as control.  *: 

p<0.01. 
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12. The ΔPTB1 mutant overexpression decreases Tip60 recruitment and 
histone H4 acetylation at DNA breaks.  
 
ChIP experiments in NIH-GS cells demonstrated that Fe65 is necessary for proper 

recruitment of Tip60 and its cofactor TRRAP at DNA double strand break suggesting that 

Tip60 could directly interact with the chromatin associated Fe65 in early steps of DNA 

repair. To further explore the role of Fe65/Tip60 interaction during DNA repair we 

analyzed the loading of Tip60 at DNA double stand break in NIH-GS cells expressing the 

ΔPTB1 mutant by chromatin immunoprecipitation experiments. As shown in figure 21A 

the expression of Δ-PTB1 mutant had a dominant negative effect strongly reducing Tip60 

loading both at 0.5 and 2 Kb downstream regions. Accordingly H4 acetylation level was 

strongly reduced in ΔPTB1 expressing NIH-GS cells compared to mock or wild type Fe65 

transfected cells (figure 21B). 
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Figure 21: The overexpression of ΔPTB1 mutant impairs Tip60 loading 
and histone H4 acetylation at DNA double strand breaks  
 
 
 
 A 
 
 
 
 
 
 
 
 
 
 
 
 
 B 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
A: NIH-GS cells were transfected with Δ-PTB1 expression vector. After 24 hours, they 

were treated with 1 µM tamoxifen or with vehicle (-) for 6 hours. ChIP was performed 

with Tip60 antibody or control IgG. Immunoprecipitated chromatin was analyzed by Real 

time PCR using three oligonucleotide pairs located at approximately 0.5, 2 and 10 Kb 

away from I-SceI cleavage site. *: p<0.01 Overexpression of the Fe65 mutant Δ-PTB1 

decreases histone H4 acetylation at DNA breaks. NIH-GS cells were transfected with the 

indicated vector. ChIP experiments were performed as described in panel A.  **: p<0.05 
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13. The ΔPTB1 dominant negative effect depends on its interaction with 
chromatin 
 
To explain the dominat negative effect of ΔPTB1 mutant on Tip60 loading and 

consequently on histone H4 acetylation at DNA double strand break, we analyzed the 

capability of this mutant to interact with intact and damaged chromatin using NIH-GS 

cellular system. We had previously demonstrated that endogenous Fe65 is widely 

associated with chromatin both in basal conditions and upon DNA damage induction 

(figure 12A and figure 13). To confirm these data we performed ChIP experiments in NIH-

GS cells treated with vehicle or 4-OH tamixifen for 6 hours. Chromatin was 

immunoprecipitated with an anti-Fe65 antibody or control IgG and immunprecipitated 

DNA was amplified by Real time PCR with the three oligo pairs described before. The 

endogenous Fe65 associated with chromatin in the regions surrounding the ISce-I site (0.5 

and 2 Kb downstream regions). Moreover Fe65 was still detected 10 Kb downstream from 

I-SceI site confirming that it is widely associated with chromatin.  

I-SceI-ER induction of double strand breaks did not alter the amount of associated protein 

at three analyzed sites confirming that Fe65 interacts both with intact and damaged 

chromatin (figure 22A).  

ChIP experiments were carried out in NIH-GS cells transfected with the Fe65-myc 

encoding vector in which the wild type protein is fused to the myc tag. Chromatin was 

immunoprecipitated with an anti-myc tag antibody or control IgG  and amplified with the 

three oligo pairs described before (figure 22B).  

Similar to the endogenous protein, ectopically expressed Fe65-myc fusion protein was still 

able to interact with intact and damaged chromatin at three analyzed sites. Chromatin from 

NIH-GS cells expressing the ΔPTB1-myc mutant was immunoprecipitated with an anti 

myc antibody or control IgG. The amplification of immunoprecipitated chromatin with the 

three oligo pairs described before, revealed that the ΔPTB1 mutant was still able to interact 

with chromatin (figure 22C) thus explaining its dominant negative effect. Indeed the 
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ΔPTB1 mutant associated with chromatin could compete with the endogenous protein for 

the binding of some other partners of Fe65, which may be necessary for Fe65 proper 

function during chromatin remodelling associated to DNA repair.  
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Figure 22: The ΔPTB1 mutant is able to interact with intact and 
damaged chromatin   
 
 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
A: Chromatin form NIH-GS cells were treated with 1 µM tamoxifen or with vehicle (-) for 

6 hours. ChIP was performed with an Fe65 antibody or control IgG. Immunoprecipitated 

chromatin was analyzed by Real time PCR using three oligonucleotide pairs located at 

approximately 0.5, 2 and 10 Kb away from I-SceI cleavage site. B: NIH-GS cells were 

transfected with an expression vector encoding the wild type Fe65 fused to the C-terminus 

with the myc tag. 48 hours upon transfection cells were treated with tamoxifen as in panel 

A and ChIP was carried out with an anti myc tag antibody or control IgG. 

Immunaprecipitated chromatin was amplified as in panel A. C: NIH-GS cells were 

transfected with  an expression vector encoding the ΔPTB1 mutant fused to the C-terminus 

with the myc tag. 48 hours upon transfection cells were treatedwith tamoxifen as in panel 
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A and B. ChIP was carried out with an anti myc tag antibody or control IgG. 

Immunaprecipitated chromatin was amplified as in panel A and B. 

 

  

14. Fe65 is necessary for efficient DNA repair 

Chromatin immunoprecipitation experiments in NIH-GS cells clearly demonstrated the 

relevance of Fe65 in Tip60/TRRAP loading at DNA double stand breaks. As a 

consequence of Tip60/TRRAP decreased loading, acetylation of histone H4 was impaired 

in Fe65 KD cells or in ΔPTB1 expressing cells compaired to wild type.  

To address the relevance of the Fe65 in DSB repair we measured the efficiency of repair in 

the same NIH-GS experimental system described before. These cells are stably transfected 

with DR-GFP and I-SceI-ER. The DR-GFP DNA fragment contains two non-functional 

GFPs. Indeed the 5’ GFP gene in the DR-GFP sequence is under the control of the β-actin 

gene promoter, but it is mutated in order to generate two in-frame stop codons that 

terminate translation, thereby inactivating the GFP gene. The downstream (3′) GFP is 

inactivated by upstream and downstream truncations, leaving only about 500 bp of the 

GFP sequence (see figure 18A).  

When NIH-GS cells were treated with tamoxifen, the I-SceI-ER nuclear translocation 

results in DSBs generation. One possibility to repair these lesions is the homologous 

recombination repair that in this system induces intra chromosomal gene conversion 

leading to the reactivation of the 5’ GFP gene. Indeed when the DSB is correctly repaired 

the frame of 5’ GFP gene is restored allowing GFP expression. Thereby the extent of repair 

by homologous recombination was measured by counting GFP positive cells by FACS (see 

figure 23). In NIH-GS cells treated with 4-OH-tamoxifen the percentage of GFP positive 

analyzed 48 hours upon treatment, was about 3.5% whereas only few cells in the control 

expressed GFP. Under these conditions, we analyzed the effect of Fe65 KD on DNA repair 
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efficiency. To this aim NIH-GS cells were transfected with a pool of specific Fe65 siRNA 

or with non silencing siRNA as control. We measured the number of GFP positive cells by 

FACS analysis 48 hours after 4-OH tamoxifen exposure. As shown in figure 24 the Fe65 

KD is accompanied by a significant decrease in GFP positive cells, thus clearly indicating 

that Fe65 KD reduced the efficiency of DNA repair. In agreement with ChIP experiments, 

a significant reduction of repair efficiency was also observed by transfecting NIH-GS cells 

the cells with the Δ-PTB1 mutant, thus confirming the dominant negative effect of this 

protein (figure 25). 
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Figure 23: Measurement of repair efficiency in NIH-GS cells by FACS 
analysis  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The upstream 5’ GFP gene of DR-GFP construct, is under the control of the β-actin gene 

promoter, but it contains two in-frame stop codons that terminate translation, thereby 

inactivating the gene. The recombination event leads to the reactivation of the GFP gene, 

because the donor 3′ GFP does not contain the above-mentioned stop codons. Therefore, a 

functional GFP is expressed in the cells where a successful repair takes place and the 

extent of repair can be measured by counting GFP positive cells by FACS. Two examples 

of FACS analyses are reported: in NIH-GS cells treated with vehicle the number of GFP 

positive cells was of about 0.5%, while it was of about 3.5% in the cells where I-SceI-ER 

was activated by tamoxifen. 
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Figure 24: Fe65 suppression decreases DNA repair efficiency 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
DNA repair efficiency in NIH-GS cells was measured by counting the percentage of GFP-

positive cells 48 hours after the exposure of the cells to tamoxifen, which activates I-SceI 

ER. Representative FACS output of one experiment is shown: the upper panels refer to 

cells transfected with non-silencing control siRNA or Fe65 targeting siRNA and exposed 

to vehicle. The lower panels show the results obtained in cells treated with tamoxifen. The 

histogram reports the mean values of three independent experiments. Grey bars indicate 

the mean values obtained in the presence of vehicle. The difference between the two black 

bars is significant with a p< 0.01. 
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Figure 25: ΔPTB1 mutant overexpression impairs DNA repair efficiency 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

A 
B 

C 

 
 
A: DNA repair efficiency in NIH-GS cells transfected with Δ-PTB1 was measured by 

counting the percentage of GFP positive cells, 48 hours after the exposure of cells to 

tamoxifen or to vehicle for 6 hours. Representative FACS outputs of one experiment are 

shown: the upper panels refer to cells exposed for 6 hours to vehicle. The lower panels 

show the results obtained in cells treated with tamoxifen. B: The histogram reports the 

mean values of three independent experiments. Grey bars indicate the mean values 

obtained in the presence of vehicle. The difference between the two black bars is 

significant with a p<0.01. C: Western blot analysis of ΔPTB1 expression in NIH-GS cells. 

Actin was used for control of loading.  
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15. APP processing is induced by genotoxic stress in a γ-secretase  
dependent manner 
 

The finding that Fe65 is a chromatin associated protein involved in Tip60 driven chromatin 

remodeling during DNA repair suggested us to explore the possibility that APP and its 

proteolitic processing could be involved in this nuclear function. Moreover we found that 

Fe65 undergoes rapid phosphorylation upon DNA damage induction suggesting that its 

phosphorylation could be the mechanism triggering NuA4 proper localization. Similar to 

Notch the final step of APP proteolitic processing involves the γ-secretase cleavage that 

generates the short C-terminal fragment AICD. Several data suggest that γ-secretase 

cleavage of APP could be a mechanism triggering the Fe65/AICD nuclear localization. We 

first analyzed the effect of etoposide treatment on APP proteolitic processing monitoring 

by western blot analysis the amount of the APP C-terminal fragments (CTF) derived from 

the cleavage of APP by α - or β-secretase, C83 and C99, respectively. To this aim we used 

an APP antibody recognizing the C-terminal region of the protein that is able to detect both 

APP holoprotein and its CTFs. As shown in figure 26A, in the wild type, untreated MEFs, 

only the C83 band is clearly visible accordingly with the notion that APP ectodomain 

shedding is mainly due to α-secretase cleavage. The treatment with 40 μM etoposide 

resulted in a drastic decrease of the APP-CTF amount within few minutes and returned to 

basal levels two hours later. The observed decrease suggested us a possible induction of γ-

secretase cleavage upon genotoxic stress induction. To asses this point we performed the 

same experiment in wild type MEFs pretreated with the γ-secretase inhibitor DAPT. As 

shown in figure 26B DAPT treatment prevents the decrease of APP-CTF clearly 

demonstating that it depends on the induction of γ-secretase. Furthermore, both APP and 

APP-CTF in cells pretreated with DAPT and exposed to etoposide seemed to accumulate 

up to levels higher than those present in cells treated only with DAPT. 
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Figure 26: Modifications of APP-CTF upon DNA damage  

 
A 

 

 

 
 
 
 
 
 
 
 
 

B  
 
 
 
 
 
 
 
 
 
 
APP and APP-CTF were analyzed by western blot in wild type MEFs used an antibody 

recognising an epitope in the C-terminal fragment of the protein (see Materials and 

Methods) A: Protein extracts were obtained from wild type MEFs exposed to 40µM 

etoposide for indicated time or to DMSO in control cells. 100µg of total protein extract 

was loaded per lane and tubulin was used for control of loading. The cartoon shows the 

APP-CTF stub in the membrane and the γ-secretase cleavage site (arrow).  

B: Protein extracts were obtained from wild type MEFs pretreated chronically with 2µM 

DAPT for 24 hours and then exposed to 40µM etoposide for indicated time or to DMSO in 

control cells. As in A tubulin was used for control of loading. The cartoon shows the APP 

oloprotein, the first cleavage site that determines the shedding of the ectodomain and the 

inhibition of γ-secretase site by DAPT treatment.                                                       
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These finding suggested a relationship between Fe65 modifications and the cleavage of the 

APP-CTF in response to DNA damage. To explore this point we analyzed the cleavage of 

APP-CTF in Fe65 KO MEFs. As shown in figure 27, in these cells the treatment with 

etoposide does not induce any changes in the amount of APP-CTF, thus further supporting 

that APP processing is dependent on Fe65 modification induced by genotoxic stress. 

Genotoxic stress induced activation of γ-secretase complex occurred with a little delay 

respect to Fe65 nuclear modification and Fe65 was necessary for the induction of γ-

secretase cleavage of APP in response to etoposide treatment. Moreover the Fe65 mutant 

unable to interact with APP (C655F) did not rescued the Fe65 KO MEFs phenotype (figure 

17B).  

These data suggest that Fe65/APP interaction could be a crucial event in Fe65 nucler 

function during DNA repair. 

 

16. The interaction with APP is required for Fe65 function in DNA repair 
 
To better explore the molecular mechanism involving APP in Fe65 nuclear function during 

DNA repair we analyzed the effect of C655F mutant expression in NIH-GS cells.  

Chromatin immunoprecipitation experiments in NIH-GS cells expressing C655F mutant 

demonstrated a strong decrease of Tip60 loading in the region surrounding the DSB (figure 

28A) compared to control cells.  

Accordingly the acetylation level of histone H4 was strongly reduced in C655F expressing 

cells (figure 28B). 

We further evaluated the effect of C655F mutant on DNA repair efficiency by FACS 

analysis counting the number of GFP positive cells (figure 29). As expected the expression 

of C655F mutant resulted in a strong dominant negative effect on DNA repair efficiency. 

These results suggest that the interaction with APP/AICD is necessary to allow Fe65 to 

adequately function during DNA repair. 
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Figure 27: Genotoxic stress induced γ-secretase cleavage of APP depends 
on the presence of Fe65 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
APP-CTF were analysed by western blot with an anti APP C-terminal antibody in Fe65 

KO MEFs treated with etoposide at indicated time or with DMSO as control. 100µg of 

protein extract was loaded per lane. Tubulin was used for control of loading. 
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Figure 28: Fe65 mutant unable to bind APP shows a dominant negative 
effect on Tip60 loading and histone H4 acetylation at DNA DSBs. 
 
 

A 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 B  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
A: NIH-GS cells were transfected with C655F mutant or empty vector and exposed to 

tamoxifen as indicated. Chromatin was immunoprecipitated with an anti-Tip60 antibody 

and analyzed with the three oligo pairs described before. 

B: ChIP experiments were performed as described in A using an anti-acetyl histone H4 
 
 **: p<0.001 
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Figure 29: C655F mutant has a dominant negative effect on DNA repair 
efficiency. 
 
 
    
                
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

A B 

C 

 
A: DNA repair efficiency in NIH-GS cells transfected with C655F mutant was measured 

by counting the percentage of GFP positive cells, 48 hours after the exposure of cells to 

tamoxifen or to vehicle for 6 hours. Representative FACS outputs of one experiment are 

shown: the upper panels refer to cells exposed for 6 hours to vehicle. The lower panels 

show the results obtained in cells treated with tamoxifen. B: The histogram reports the 

mean values of three independent experiments. Grey bars indicate the mean values 

obtained in the presence of vehicle. The difference between the two black bars is 

significant with a p<0.01. C: Western blot analysis of C655F mutant expression in NIH-GS 

cells. Actin was used for control of loading.  
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17. The dominant negative effect of C655F mutant depends on its 
inability to interact with chromatin. 
 
 
To better explore the mechanism by which the C655F mutant exerted a dominat nagative 

effect on DNA repair we analyzed the capability of this protein to interact with Tip60. To 

this aim we performed co-immunoprecipitation experiments in NIH3T3 cells expressing 

both the Tip60-HA fusion protein and Fe65-myc in control cells or both Tip60-HA and 

C655F mutant. Nuclear protein extract from these cells were immunoprecipitated with an 

anti-HA tag antibody and immunoprecipitated protein were analyzed by western blot with 

an anti-myc tag antibody. As shown in figure 30A the C655F mutant binds Tip60 with the 

same extent of wild type protein. This result suggested that Fe65 interaction with APP is 

dispensable for Fe65 proper binding to Tip60.  

Moreover, we analyzed the ability of C655F mutant to interact with chromatin before and 

after DNA damage induction in NIH-GS cellular system.  

NIH-GS cells expressing the C655F-myc protein were exposed for 6 hours to tamoxifen or 

control vehicle. Chromatin was immunoprecipitated with an anti-myc tag antibody or 

control IgG. The amplification of immunoprecipitated chromatin with the three oligo pairs 

located at respectively 0.5, 2 and 10 Kb from I-Sce-I site revealed that C655F mutant was 

unable to interact with both intact and damaged chromatin (figure 30C).  

These data suggested that C655F mutant exerts its dominat negative effect on DNA repair 

process sequestering NuA4 complex for the loading on chromatin associated Fe65 (figure 

30B).  
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Figure 30: The dominant negative effect of C655F mutant depends on its 
inability to interact with chromatin. 
 
 

A  B 
 
 
 
 
 
 
 
 
 
 
 C 
 
 
 
 
 
 
 
 
 
 
 
A: NIH3T3 cells were transfected with both Fe65-myc and Tip60-HA expression vectors 

or with both C655F-myc and Tip60-HA. Nuclear protein extract were obtained from these 

cells 48 hours upon transfection and immunoprecipitated with an anti-HA tag antibody or 

with control IgG. Immunoprecipitated protein were resolved by SDS page and analysed by 

western blot with an anti-myc tag antibody. B: Association of C655F mutant with 

chromatin was analyzed as in figure 12A. The experiment shown in the upper panel 

demonstrated that C655F mutant was not associated to chromatin either in cells treated 

(VP16) or not treated (DMSO) with 100 µM etoposide. The lower panel (re-blot of the 

filter shown in the upper panel) shows that endogenous Fe65 is associated with chromatin. 

C: ChIP experiments were carried out in NIH-GS cells expressing C655F-myc mutant as 

described in figure 21.  
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18. Fe65 interaction with APP is essential for its association with 
chromatin and in turn for its proper function in DNA repair. 
 
 
The finding that C655F mutant was unable to interact with chromatin suggested the 

possibility that Fe65 interaction with APP is necessary for its association with chromatin.  

To better explore this point we evaluated the effect of APP/APLP2 KD on Fe65 function in 

DNA repair. NIH-GS cells were transfected with non silencing siRNA (NS) or with two 

siRNAs targeting APP and it paralogue APLP2 respectively. 48 hours upon transfection 

the level of both proteins was strongly reduced in APP/APLP2 double knock down cells 

(DKD) compared to NS (figure 31A). We first evaluated in these cells the association of 

Fe65 with chromatin by ChIP experimets (figure 31B).  

APP/APLP2 KD abolished the association of Fe65 with chromatin at three analyzed sites 

thus clearly indicating that the interaction of Fe65 with APP/APLP2 is necessary to allow its 

association with chromatin. As expected the loading of Tip60 and TRRAP and the acetylation 

of histone H4 were drastically decreased in APP/APLP2 KD cells compared to non silencing 

cells (figure 32 A, B, C). Accordingly, DNA damage repair was less efficient in APP/APLP2 

KD cells than in cells transfected with non-silencing siRNA (figure 33) as demonstrated by 

FACS analysis. 
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Figure 31: APP/APLP2 KD impairs the association of Fe65 with 
chromatin.  
 
 
 

A  
 
 
 
 
 
 
 
 

B  
 
 
 
 
 
 
 
 
 
 
 
 
 
A: NIH-GS cells were transfected with non-silencing (NS) siRNA or with siRNAs 

targeting APP and APLP2 (double knock down; DKO). Western blot with APP or APLP2 

antibodies was performed 48 hours upon transfection. 

B: Chromatin from non silencing (NS) and APP/APLP2 knock down (KD) NIH-GS cells 

were immunoprecipitated with anti-Fe65 antibody and analyzed as described before.   
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Figure 32: APP/APLP2 KD impairs the loading of NuA4 complex and 
histone H4 acetylation at DSBs  
 

 
 

 
 
 
 
 
 
 

 
 

A 
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C 

 
 
 
 
 
 
 
 
 
 
 
 
Chromatin immunoprecipitation experimets were carried out as described before, in 

APP/APLP2 KD NIH-GS cells using anti-Tip60 (A), anti-TRRAP (B) and anti-acetyl H4 

(C) antibodies. 
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Figure 33: APP/APLP2 KD decreases the DNA repair efficiency in NIH-
GS cells. 
 
 
 A B 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
A: DNA repair efficiency in NIH-GS cells transfected with both APP and APLP2 targeting 

siRNAs was measured by counting the percentage of GFP positive cells, 48 hours after the 

exposure of cells to tamoxifen or to vehicle for 6 hours. Representative FACS outputs of 

one experiment are shown: the upper panels refer to cells exposed for 6 hours to vehicle. 

The lower panels show the results obtained in cells treated with tamoxifen. B: The 

histogram reports the mean values of three independent experiments. Grey bars indicate 

the mean values obtained in the presence of vehicle. The difference between the two black 

bars is significant with a p<0.01.  
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DISCUSSION 

The phenotype of Fe65 KO cells and mice we observed at the beginning of my PhD project 

suggested us to explore the possible link between the function of this protein and the 

cellular machinery devoted to protect from and/or respond to DNA damages. Previous 

results suggested that Fe65 could have some nuclear functions, considering its presence in 

the nucleus and its interaction with several nuclear proteins. These results supported the 

hypothesis that Fe65 could be involved in the regulation of transcription, although most of 

them rely on the use of reporter gene assays. Fe65 appears to function as a key regulator of 

signals received and integrated at the membrane by APP holoprotein which modulates 

Fe65 nuclear localization and functions. Starting from the observation that the absence of 

Fe65 results in vivo and in vitro in high vulnerability to DNA damaging agents we tried to 

understand the molecular mechanism involving Fe65 and the Fe65/APP complex in this 

new biological function. We found for the first time that Fe65 is a chromatin bound protein 

that modulates the degree of chromatin condensation and is necessary for Tip60 proper 

function during DNA repair. Indeed the knockdown of Fe65 provokes a significant 

decrease in the recruitment of Tip60 and TRRAP to DNA double strand breaks. 

Accordingly, Fe65 suppression also provokes a dramatic decrease of histone H4 

acetylation of lesioned chromatin and, in turn, the impairment of DNA repair efficiency. 

Furthermore, we demonstrated that the interaction of Fe65 with APP is necessary to allow 

Fe65 to associate with chromatin and therefore to play its role in the response to DNA 

damage. Based on these results we propose the hypothesis that Fe65 and its interaction 

with APP play a crucial role in the association of the NuA4 complex containing Tip60 and 

TRRAP to DNA lesion. Although further studies are necessary to definitively address the 

mechanisms of the Fe65 involvement in DNA repair and chromatin remodeling, available 

knowledge allow us to propose the model reported in Figure 34. The first step of this 

model is the interaction of Fe65 with APP. Our results demonstrate that a Fe65 mutant  
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Figure 34: Fe65 involvement in chromatin remodelling during DNA 
damage repair. 
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Available results support the hypothesis that Fe65 exists in two conformations. The 

interaction with the cytodomain of APP induces Fe65 from a “close” (a) to an “open” (b) 

conformation. The cleavage of APP or its phosphorylation may cause the release of Fe65 

from the membrane anchor (c) thus allowing its association with chromatin (d). In basal 

conditions, chromatinized Fe65 appears to have a general role in favoring chromatin 

condensation. Chromatin associated Fe65 is necessary for the recruitment of Tip60-

TRRAP-containing complex at DNA double strand breaks (e). Loss of function of the 

Fe65-APP machinery induces a significant decrease of DNA repair efficiency. 
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unable to interact with APP fails to rescue the phenotype induced by Fe65 KO. Moreover, 

the same mutant has a clear dominant negative effect on the recruitment of Tip60-TRRAP 

at the DNA lesion and, in turn, on the DNA repair efficiency of the cells (see figure 34). 

One possible explanation of the loss of function of the C655F mutant could be based on the 

model proposed by Cao and Sudhof (Cao and Sudhof 2004). This model suggests that the 

interaction of Fe65 with APP induces a conformational change leading Fe65 from a 

“closed” to an “open” conformation. The “closed” conformation could be due to an 

intramolecular interaction between the WW domain-containing region and the PTB 

domain region (Cao and Sudhof 2004). The APP cytodomain opens this structure by 

competing for the binding of the WW domain with the PTB2. A Fe65 deletion mutant, 

lacking the entire PTB2 domain, is, similarly to the C655F mutant, completely unable to 

interact with APP. However, this mutant protein, rescues the phenotype of Fe65 KO cells 

(data not shown). On this basis it could be speculated that this ΔPTB2 mutant is in a 

constitutive “open” conformation, thus rescuing the absence of Fe65. On the contrary, the 

C655F mutant could be in a constitutive “closed” conformation, therefore being unable to 

rescue the effects of Fe65 suppression. The loss of the function of this C655F mutant is 

likely due to the fact that, opposite to what observed with wild type Fe65, it is unable to 

interact with the chromatin, while it is still able to interact with Tip60 (see figure 30), thus 

explaining why it exerts a strong dominant negative effect. Further evidence supporting the 

involvement of APP in the nuclear function of Fe65 comes from the results showing that 

the suppression of APP/APLP2 leads to the impairment of Fe65 functions. In fact, in 

APP/APLP2 KD cells the association of Fe65 to chromatin is strongly reduced and 

accordingly the recruitment of Tip60-TRRAP to damaged DNA, histone H4 acetylation 

and DNA damage repair are decreased. The second step of our model is the translocation 

of “active” Fe65 from its APP anchor site to the chromatin. One possible mechanism for 

this event implies the proteolytic processing of APP followed by the release of AICD-Fe65 
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from the membrane. This possibility is supported by the induction of γ-secretase cleavage 

observed in response to DNA damaging agents (see figure 26). Another possibility is that 

post-translational modifications of APP and/or Fe65 cause the release of Fe65 and its 

nuclear translocation. For example, the phosphorylation of Thr668 of APP is an interesting 

candidate as a trigger mechanism inducing the release of Fe65 (Ando, Iijima et al. 2001). 

Our results indicate that, in basal conditions, nuclear Fe65 is associated to chromatin. As 

mentioned before, this association requires the interaction with APP, because a mutant 

Fe65 unable to interact with APP is not associated to chromatin and APP/APLP2 

suppression decreases the association to chromatin of endogenous Fe65. The Fe65 KO or 

KD leads to a decondensation of the chromatin structure, therefore, at least in basal 

conditions, Fe65 seems to favor a condensed state of the chromatin. This Fe65 function 

remains to be studied in details. However, it seems to be distinct from that involved in the 

response of the cells to DNA damage and in the repair of the lesions. Chromatin fiber 

decompaction could be dependent at least in part on histone H4 acetylation, likely 

catalyzed by Tip60 (Shogren-Knaak, Ishii et al. 2006), thus Fe65 could also negatively 

regulate, via its interaction with Tip60, global histone acetylation and in turn the chromatin 

state. However, it is not expected that the phenotype observed in Fe65 KD cells, i.e. 

reduced efficiency of DNA repair, is a consequence of chromatin decompaction, 

considering that, at least in principle, decompacted chromatin should favor and not hamper 

DNA repair. This paradox could be explained by hypothesizing that Fe65 has two related 

but distinct effects on chromatin: on intact chromatin Fe65 favors the compaction of the 

chromatin, while, upon DNA double strand break, it stimulates the recruitment of Tip60, 

the acetylation of histone H4 and in turn the local relaxation of the chromatin. This 

possibility is reasonable if we consider that Fe65 is an adaptor molecule, which can 

interact with several different ligands. The ΔPTB1 mutant has also a strong dominant 

negative effect. This dominant effect is in part due to the fact the this mutant was found 
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associated with chromatin (see figure 22) and could be the consequence of the titration of 

some other partners of Fe65, which may be necessary for the proper function of Fe65. 

Among these Fe65 partners, possibly involved in the phenomena we have described, there 

are the Set protein and the Abl tyrosine kinase. Both of them interact with the WW domain 

of Fe65 (Telese, Bruni et al. 2005) (Zambrano, Bruni et al. 2001) and could be involved in 

the nuclear functions of Fe65. Set is, in fact, a component of the INHAT complex 

(inhibitor of histone acetyl transferase) (Seo, McNamara et al. 2001) and nuclear Abl has a 

well-known role in the cellular response to DNA damage (Kharbanda, Ren et al. 1995). 

The third step concerns with the mechanisms through which Fe65 favors the recruitment of 

Tip60-TRRAP to the damaged DNA. Since Fe65 is associated to chromatin in basal 

conditions, one hypothesis is that Tip60-TRRAP containing complex is recruited to DNA 

lesion by binding Fe65 that is already on the chromatin. This hypothesis implies a signal 

inducing the interaction between Fe65 and Tip60- TRRAP. This signal could be the 

phosphorylation of Fe65, which was demonstrated to take place few minutes after the 

genotoxic stress (see figure 12). However, it cannot be definitively excluded that Fe65 

suppression is affecting repair events upstream of the recruitment of Tip60-TRRAP, 

considering that Tip60 is involved in many different steps of DNA repair, either dependent 

or independent from NuA4 (Squatrito, Gorrini et al. 2006). For example, it is known that 

Tip60 associates with and acetylates ATM, thus promoting its activation (Sun, Jiang et al. 

2005). The possibility that Fe65 suppression alters these events seems to be excluded by 

the finding that Fe65 KO does not affect ATM activation upon DNA damage (figure 10). 

The study of APP has tried to address the possible role of dysfunction of this molecule in 

the pathogenesis of AD. Our results suggest that the involvement of the Fe65-APP 

complex in the response of the cells to DNA damage and in the DNA repair machinery 

should be taken into account as a possible mechanism contributing to neuronal dysfunction 

observed in AD pathology.  
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In the Fe65; Fe65L1 double KO mice the phenotype observed (Guenette, Chang et al. 

2006), mainly characterized by focal heterotopias of neurons likely due to the pial 

basement membrane disruption and intriguingly similar to that observed in APP; APLP1; 

APLP2 mice (Herms, Anliker et al. 2004), is very likely due to the impairment of an 

unknown Fe65 function different from that responsible for the phenotype we are 

describing. However, it should be considered that numerous human genetic diseases due to 

mutations of the DNA damage response machinery are also characterized by marked 

neurological defects (Rolig and McKinnon 2000). This close association has been 

interpreted either by hypothesizing a particular sensitivity of the neuronal cells to DNA 

damage or to the possibility that proteins involved in the response to DNA damage and cell 

cycle control also have additional and distinct functions in neurons. There are several 

observations that suggest exploring whether an altered processing of APP, and in turn a 

modification of its functions, could negatively affect the response of the neurons to DNA 

damage in AD brain, thus leading to chronic accumulation of DNA damages that could 

significantly contribute to the neuronal loss characteristics of AD pathology. In agreement 

with this possibility, it was reported that AD brains show high incidence of nuclei 

containing DNA strand breaks (Adamec, Vonsattel et al. 1999) and fibroblasts and 

lymphocytes from AD patients, exposed to DNA damaging agents, show more DNA strand 

breaks than the cells from normal subjects (Parshad, Sanford et al. 1996). Numerous results 

indicate that the neurotoxic effects of Aβ could be dependent on its prooxidant activity 

(Reddy 2006), which could favour oxidative DNA damage. An altered response of neurons 

to DNA damage in AD is also suggested by the reexpression of cell cycle proteins 

observed in AD brain (Herrup, Neve et al. 2004). This reexpression occurs long time 

before the death of the neuron, thus it is hard to be considered part of a suicide mechanism 

to eliminate damaged cells. On the contrary, it could represent part of a mechanism to 

protect the cell by favoring the repair of DNA damages, also considering that cell cycle 
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reentry also occurs in neurons treated with DNA damaging agents (Kruman, Wersto et al. 

2004). This possibility deserves further attention, also considering that numerous studies 

have pointed to the accumulation of DNA lesions, including double strand breaks mostly 

due to oxidative damage, in mild cognitive impairment and in AD. These observations 

indicate that DNA damage occurs in all the steps of the disease progression and DNA 

repair defects could significantly contribute to neurodysfunction and neurodegeneration 

observed in dementia (Lovell and Markesbery 2007). This hypothesis is in agreement with 

a new model proposed for Alzheimer disease pathogenesis. Indeed despite the unsolved 

questions linked to the “amyloid hypothesis”, emerging hypothesis such as the “dual 

pathways model” (Figure 35) (Small and Duff 2008) seems to better explain the 

relationship between Aβ and tau abnormalities in Alzheimer disease. The ‘‘amyloid 

hypothesis’’ suggests a serial model of causality in which abnormal tau phosphorylation is 

a secondary disfunction due to the accumulation of Aβ that leads to synaptic loss and 

neuronal death. The weakness of this hypothesis is mainly unmasked by the observation 

that although the lowering of Aβ was achieved during anti-Aβ immunotherapy trials, tau 

pathology, neuronal loss and cognitive impairment were still present in immunized AD 

patients. On the other hand the “dual pathways model” links the elevations of Aβ peptide 

and tau hyperphosphorylation through common upstream molecular defects implicated in 

Alzheimer’s disease. Although many question remain to be addressed and many efforts are 

needed to demonstrate the causative role of DNA damage defects in Alzheimer disease 

neurodegeneration, our results open the possibility to explore the involvement of DNA 

damage response as the molecular defect contributing to the pathogenesis of Alzheimer’s 

disease.  
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Figure 35: Two hypothesized models linking core features of Alzheimer’s 
Disease 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

The amyloid hypothesis assumes a serial model of causality, whereby abnormal elevations 

in Aβ drive tau hyperphosphorylation and other downstream manifestations of the disease. 

According to the dual pathway hypothesis, Aβ elevations and tau hyperphosphorylation 

can be linked by separate mechanisms driven by a common upstream molecular defect 

(from Scott A. Small 2008). 
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