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Introduction

This thesis is focused on problems concerning the modeling of the activity of single neurons in
which stochastic processes of various nature are involved to mimic neuron’s spiking activity. A
central role is played by Gaussian processes and the related first-passage-time (FPT) problem

that, within the present framework, is representative of the neuronal firing times. The Gaussian
processes use of which is made are of a two-fold type: Markov and non Markov. For both an

abridged outline of the main features is provided, and analytic, computation and simulation
methods developed to obtain information on the FPT probabilistic and statistical features are

discussed. For Gaussian processes of Markov type a purely computational approach based on
numerical quadratures for integral equations is presented, which is suitable for FPT probabil-

ity densities determination. The major problem of modeling neuronal activity by means of
Leaky-Integrate-and Fire (LIF) models in the presence of both constant and periodic stimuli is

then approached. Here, essential role is played by previously obtained results on the Ornstein-
Uhlenbeck process and on Markov-Gaussian processes in the presence of asymptotically constant
or asymptotically periodic boundaries (henceforth also called “thresholds”). A totally different

approach to the understanding of the statistical features of FPT probability densities for non
Markov Gaussian processes has been adopted. This consists of direct simulation of the pro-

cess’ sample paths. The implemented simulation techniques, long considered by us, are then
described, and the analysis of the corresponding performances and accuracies is performed. Mo-

tivated by the need of enhanced flexibility of the mathematical models in relation to certain
phenomenological features of neuronal activity, the possibility of varying initial state according

to pre-assigned distributions or of differently specified correlation times and asymptotic behav-
iors are introduced as well. The representation of the simulated data has finally been considered

by resorting to the construction of histograms whose detailed specification is provided jointly
with various other auxiliary results. These include an algorithm for numerical evaluation of
integrals via the construction of certain families of orthogonal polynomials.
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Chapter 1

Gaussian processes: first passage
time problems and neuronal models

1.1 Essentials on the first passage time (FPT)

Let {X(t); t ∈ [t0,∞), t0 ∈ IR} be a stochastic process in IR and let P{X(t0) = x0} = 1, x0 ∈ IR.

Let us define the following functions:

F (x, t | x0, t0) = P{X(t) ≤ x |X(t0) = x0} (1.1.1)

and

f(x, t | x0, t0) =
∂

∂x
F (x, t | x0, t0). (1.1.2)

The former is the distribution function of X(t) conditioned by the initial state x0 = X(t0) at
the initial time t0; the latter is the conditioned probability density function (pdf) of X(t). If

X(t) is Markov, f identifies with the transition pdf. We now define the random variable

T = inf
t≥t0

{t : X(t) > S(t) |X(t0) = x0}, (1.1.3)

representing the first passage time (FPT) of X(t) through the time-dependent boundary (or
barrier or “threshold”), S(t) for x0 = X(t0) < S(t0). Let us denote by

g[S(t), t | x0, t0] =
∂

∂t
P{T ≤ t} (1.1.4)

the FPT pdf of X(t) through S(t). Finally, let us define the conditional pdf of X(t) in the
presence of an absorbing barrier S(t). To this purpose one has to construct the conditional pdf

of the sample paths originating at x0 at time t0 that up to time t did not cross S(t). Denoting
such pdf by αS(t)(x, t | x0, t0), it is easy to convince oneself that the following identity holds:

∫ S(t)

−∞
αS(t)(x, t | x0, t0) dx = 1 −

∫ t

t0

g[S(τ), τ | x0, t0] dτ. (1.1.5)

Hence,

g[S(t), t |x0, t0] = − ∂

∂t

∫ S(t)

−∞

αS(t)(x, t | x0, t0) dx. (1.1.6)

3



One thus understands that the problem of determining the FPT pdf for a stochastic process
offers the same degree of difficulties as the determination of the conditional pdf in the presence of

an absorbing boundary. In the few instances in which the latter can be determined, via equation
(1.1.6) one immediately obtains the function g.

The above definitions can be immediately extended to the case when x0 = X(t0) > S(t0).
Then, one refers to the FPT through a “lower” barrier or threshold. In the sequel we shall

exclusively refer to the case x0 < S(t0), i.e. to FPT problems through “higher” boundaries.

It is finally possible to take into account FPT problems through a pair of boundaries. Indeed,
let S1(t) and S2(t) be continuous functions such that S1(t0) < x0 < S(t0). One can then
define the random variable T + representing the FPT through the higher boundary S2(t) with

the condition that S1(t) has not been previously crossed. Similarly, one can define a random
variable T − denoting the FPT through the lower barrier S1(t) with the condition that S2(t) has

not been crossed before. The FPT pdf’s g+ and g− are correspondingly defined. Their sum,
g = g+ + g−, finally provides the FPT pdf of X(t) through any of the two boundaries, namely

the pdf of the time when first the process X(t), conditioned by X(t0) = x0, leaves the region
{x ∈ IR : S1(t) < x < S2(t)}, ∀t ≥ t0. A rigorous definition of such random variable and of its

corresponding pdf’s can be found in [4].
FPT problems have been extensively studied for continuous Markov processes, i.e. for diffu-

sion processes. The transition pdf f(x, t | x0, t0) is then solution of Kolmogorov equation

∂f

∂t0
+A1(x0, t0)

∂f

∂x0
+

1

2
A2(x0, t0)

∂2f

∂x2
0

= 0, (1.1.7)

with the initial condition

lim
t↓t0

f(x, t | x0, t0) = δ(x− x0), (1.1.8)

where the coefficients are the drift and infinitesimal variance of X(t), respectively:

Ak(x0, t0) = lim
∆t↓0

1

∆t

∫ ∞

−∞
(y − x0)

kf(y, t0 + ∆t | x0, t0) dy, (k = 1, 2). (1.1.9)

The Markov nature of diffusion processes allows one to write down some Volterra-kind inte-
gral equations in the unknown FPT pdf. Here we limit ourselves to recalling Fortet equation

f(x, t | x0, t0) =

∫ t

t0

g[S(τ), τ | x0, t0] f [x, t | S(τ), τ ] dτ, (1.1.10)

where a single boundary S(t), such that S(t0) > x0, has been considered and where x > S(t) is
an otherwise arbitrary real. As proved in Fortet [32], equation (2.10) remains valid in the limit

as x ↓ S(t):

f [S(t), t | x0, t0] =

∫ t

t0

g[S(τ), τ | x0, t0] f [S(t), t |S(τ), τ ] dτ. (1.1.11)

This is a Volterra first kind integral equation whose kernel and left-hand-side term are specified

once the transition pdf has been determined. The main difficulty one faces when looking for
the solution of equation (1.1.11) is due to the singular nature of the kernel for τ = t. This
circumstance has suggested the search for alternative equations possessing continuous kernels.

In previous papers ([3], [5], [40]), it has been proved that this task can indeed be achieved, and
algorithms to obtain numerical solutions in a sufficient rapid fashion have been provided.
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Totally different is the situation when X(t) is a non-Markov process. Indeed, even though
T , the FPT through a boundary S(t), and the random variables T + and T − can be similarly

defined, it does not appear that equations can be obtained in which the corresponding FPT
pdf’s appear as the unknown functions.

Before coming to the problem of evaluating FPT densities for normal processes, we shall
recall the main definitions and the essential properties of the normal processes in a form that

suits our needs.

1.2 Gaussian Processes

1.2.1 Definitions

We start with an outline (see, for instance, [89]) of the essential properties of normal random

variables in IR and IRn (n > 1).
Definition 1.1 A random variable defined in a probability space (Ω,F , P ) is said to be Gaus-

sian, or normally distributed, with mean m and variance σ2 if its pdf f1(x) is given by

f1(x) ≡ f(x;m, σ2) =
exp

{
−1

2 Q1(x;m, σ
2)
}

√
2πσ2

, (x ∈ IR) (1.2.1)

where

Q1(x;m, σ
2) =

(x−m)2

σ2
≡ (x−m)(σ2)−1(x−m), (1.2.2)

with m ∈ IR and σ ∈ IR+.

Definition 1.2 The random vector X = (X1, X2)
T is said to be normally distributed if the

one-dimensional random variables X1 and X2 are defined in the same probability space and if

their joint pdf f2(x1, x2) is

f2(x1, x2)≡f(x; m,Λ) =
exp

{
−1

2 Q2(x; m,Λ)
}

2π
√
|Λ|

, (x ∈ IR2) (1.2.3)

where
Q2(x; m,Λ) = (x −m)TΛ−1(x −m) (1.2.4)

with

m =
[
E(X1), E(X2)

]T
= (m1, m2)

T (1.2.5)

and

Λ = E
[
(X− m)(X− m)T

]
=

(
σ2

1 σ1 2

σ1 2 σ2
2

)
(1.2.6)

in which, for j = 1, 2, σj = var(Xi) > 0, σ12 = cov(X1, X2). Finally, |Λ| ≡ detΛ = σ2
1σ

2
2 −σ2

12 >
0. Denoting by ρ = σ12/σ1σ2 (|ρ| < 1) the correlation coefficient of X1 and X2, one has:

|Λ| = σ2
1σ

2
2(1 − ρ2). (1.2.7)

Furthermore, since |Λ| > 0 the matrix Λ−1 exists and is given by

Λ−1 =
1

|Λ|

(
σ2

2 −σ1σ2ρ
−σ1σ2ρ σ2

1

)
. (1.2.8)

5



Making use of (1.2.4)–(1.2.8), the pdf (1.2.3) of X takes the form:

f2(x; m,Λ) = 1

2πσ1σ2

√
1−ρ2

exp

{

− 1
2(1−ρ2)

[(
x1−m1
σ1

)2
+

−2ρ
(
x1−m1
σ1

)(
x2−m2
σ2

)
+
(
x2−m2
σ2

)2]
}

. (1.2.9)

Hence, the characteristic function of X is

ϕX(u1, u2) ≡ E
[
exp
{
i (u1X1 + u2X2)

}]

= exp

{
i (m1u1 +m2u2) −

1

2
P2(u; Λ)

}
(1.2.10)

where
P2(u; Λ) = uTΛu = σ2

1 u
2
1 + 2 σ12 u1 u2 + σ2

2 u
2
2 . (1.2.11)

Remark 1.1 Definition 1.2 is meaningful as far as Λ is non singular. If |Λ| = 0 the definition

of a normal two-dimensional random variable cannot be given by means of (1.2.3) .
Definition 1.3 If |Λ| = 0 the random variables X1 and X2 are said to be jointly normal if their

characteristic function is given by (1.2.10) . The normal distribution is then said to be singular.
Definition 1.4 A random vector X = (X1, X2, . . . , Xn)

T whose components are defined on the
same probability space is normal, or Gaussian, if its characteristic function has the form

ϕX(u1, u2, . . . , un) ≡ E
[
exp
{
i(u1X1 + u2X2 + · · ·+ unXn)

}]

= exp

{
i
n∑

r=1

mr ur −
1

2
Pn(u; Λ)

}
(1.2.12)

wheremj ∈ IR (j = 1, 2, . . . , n), Λ is a n×n non-negative definite symmetric matrix and Pn(u; Λ)
is the quadratic form associated to Λ:

Pn(u; Λ) = uTΛu =

n∑

r,k=1

ur uk λrk. (1.2.13)

The constants mr in (1.2.12) are the mean values of Xr (r = 1, 2, . . . , n):

m = (m1, m2, . . . , mn)
T =

[
E(X1), E(X2), . . . , E(Xn)

]T
. (1.2.14)

Finally, Λ is the covariance matrix whose elements λjk are defined as follows:

λjk = E
[
(Xj −mj)(Xk −mk)

]
, (j, k = 1, 2, . . . , n). (1.2.15)

Remark 1.2 If |Λ| > 0, from (1.2.12) one obtains the n-dimensional joint pdf fn(x):

fn(x) ≡ f(x; m,Λ) =
exp

{
−1

2 Qn(x; m,Λ)
}

(2π)n/2
√
|Λ|

, (1.2.16)

where

Qn(x; m,Λ) = (x− m)TΛ−1(x− m) =

n∑

j,k=1

ljk(xj −mj)(xk −mk), (1.2.17)
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with ljk (j, k = 1, 2, . . . , n) denoting the (j, k) element in Λ−1.
In view of the forthcoming considerations, let us write down explicitly the conditional pdf

of n+ 1 jointly distributed Gaussian random variables Xr (r = 0, 1, . . . , n), assuming that such
distribution is non-singular and that E(Xr) = 0 (r = 0, 1, . . . , n). From (1.2.1), (1.2.16) and

(1.2.18) one obtains:

fn(x1, . . . , xn|x0) ≡ fn+1(x0, x1, . . . , xn)

f1(x0)

=

exp
{
−1

2

( n∑

j,k=0

lj+1,k+1 xj xk −
x2

0

σ2
0

)}

√
(2π)n|Λ|

(1.2.18)

where, now, the covariance matrix refers to variables X0, X1, . . . , Xn and σ2
0 = λ11.

Definition 1.5 Let T ⊆ IR. A continuous-parameter stochastic process {X(t), t ∈ T} is

normal if the random variables X(t1), X(t2), . . . , X(tn) are jointly normal for all n ∈ N and for
all n-tuples t1, t2, . . . , tn (tr ∈ T ; r = 1, 2, . . . , n).

1.2.2 Some properties

Definition 1.6 A random process {X(t), t ∈ T}, where T is a linear set (i.e. if t, τ ∈ T then

t+τ ∈ T ) is said to be strictly stationary (or, for short, stationary) if its probability law coincides
with that of {X(t+ τ), t ∈ T} for any τ ∈ T .

In other words, for a strictly stationary process one has

fn
(
X(t1), . . . , X(tn)

)
= fn

(
X(t1 + τ), . . . , X(tn + τ)

)
(1.2.19)

for all n ∈ N, for all n-tuples (t1 < · · · < tn) and for all τ ∈ T .

Remark 1.3 For n = 1 and n = 2, (1.2.19) yields

∀t1 ∈ T, f1
(
X(t1)

)
≡ f1(x1, t1) = f1(x1),

∀t1 < t2 ∈ T, f2
(
X(t1), X(t2)

)
≡ f2(x1, t1; x2, t2) = f2(x1, x2, t2 − t1),

respectively.
From Remark 1.3 one sees that, if existing, mean and variance of such a process are time

independent:
E
[
X(t)

]
= µ, E

{
[X(t)− µ]2

}
= σ2. (1.2.20)

Similarly, if existing, the correlation function γ(t1, t2), for t2 > t1, depends only on the difference

t2 − t1 and not on t1 and t2, separately. Hence, for all t1, t2 ∈ T one has:

γ(t1, t2) = E
[
X(t1)X(t2)

]
= E

[
X(t2)X(t1)

]
= γ(|t2 − t1|) (1.2.21)

implying
γ(−t) = γ(t). (1.2.22)

Furthermore,

E
[
X2(t)

]
= γ(0). (1.2.23)

Since γ(t) is an even function, in the sequel we shall limit ourselves to specifying the positive
branch alone.
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By virtue of relations (1.2.20) and (1.2.21) the covariance function

c(t1, t2) ≡ E
{{
X(t1) − E

[
X(t1)

]}{
X(t2) − E

[
X(t2)

]}}

= γ(|t2 − t1|)− E
[
X(t1)

]
E
[
X(t2)

]
= γ(|t2 − t1|) − µ2. (1.2.24)

Definition 1.7 A random process {X(t), t ∈ T}, is weakly stationary (or wide sense stationary,

or covariance stationary) if it possesses finite second order moments
(∣∣E

{
X2(t)

}∣∣ <∞, ∀t ∈ T
)
,

constant mean and correlation function E
[
X(t)X(s)

]
depending on t and s only through their

difference |t− s|.
Remark 1.4 A strictly stationary random process possessing finite second order moments is
wide sense stationary. The converse does not generally hold; the reason is that weak stationarity

only involves first and second order moments.
Note that if X(t) is Gaussian then weak stationarity implies strict stationarity. Indeed its

probability law is completely specified by first and second order moments.
Remark 1.5 It is worth remarking explicitly that if X(t) has finite second order moments

then m(t) = E[X(t)] and the correlation function γ(t, τ) = E[X(t)X(τ)] exists for all t, τ ∈ T .
Furthermore, the covariance function c(t, τ) also exists for all t, τ ∈ T since

c(t, τ) = γ(t, τ)−m(t)m(τ).

Definition 1.8 Let {X(t), t ∈ T} be a continuous parameter stochastic process and let
E{|X(t)|2} < ∞ for all t ∈ T . X(t) is said to be mean square (m.s.) continuous for t ∈ T
if one has

lim
τ→0

E
{[
X(t+ τ) −X(t)

]2}
= 0.

Such limit is often denoted as
l.i.m.τ→0X(t+ τ) = X(t).

From

E
{[
X(t+ τ) −X(t)

]2}
= γ(t+ τ, t+ τ)− γ(t+ τ, t)− γ(t, t+ τ) + γ(t, t) (1.2.25)

and since
lim

τ,τ ′→0
E
[
X(t+ τ)X(t+ τ ′)

]
= lim

τ,τ ′→0
γ(t+ τ, t+ τ ′),

one can easily prove (cfr., for instance, [49]) the following results.

Theorem 1.1 The process {X(t), t ∈ T} is mean square continuous for t ∈ T iff the correlation
function γ(t, τ) is continuous at (t, t).

Corollary 1.1 If γ(t, τ) is continuous in each point of the diagonal t = τ it is also continuous
in each point (t, τ).

Note that if X(t) is stationary from (1.2.25) one obtains

E
{[
X(t+ τ) −X(t)

]2}
= 2
[
γ(0)− γ(τ)

]
.

Therefore, the following theorem holds.
Theorem 1.2 A stationary process {X(t), t ∈ T} is m.s. continuous iff its correlation function

γ(t) is continuous at t = 0.
Definition 1.9 A stochastic process {X(t), t ∈ T} admits m.s. derivative at t ∈ T if the limit

l.i.m.τ→0
X(t+ τ)−X(t)

τ
= Ẋ(t)
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exists. In such a case one writes

Ẋ(t) =
dX(t)

dt
.

The following theorems hold (see, for instance, [49]).

Theorem 1.3 If {X(t), t ∈ T} admits m.s. derivative at t ∈ T , then it is there m.s. continuous.
Theorem 1.4 The stochastic process {X(t), t ∈ T} admits m.s. derivative at t ∈ T iff

∂2γ(t, τ)/∂t∂τ exists at (t, t).
Corollary 1.2 If ∂2γ(t, τ)/∂t∂τ exists in each diagonal point (t, t), then it exists in each point

(t, τ).
Theorem 1.5 If {X(t), t ∈ T} is stationary, it admits m.s. derivative iff ∂2γ(t, t)/∂t2 exists at

t = 0.
Theorem 1.6 Let {X(t), t ∈ T} be a stochastic process possessing m.s. derivative in T . Then,

mẊ(t) ≡ E
[
Ẋ(t)

]
=

d

dt
E
[
X(t)

]
≡ ṁX(t),

γẊX(t, τ) ≡ E
[
Ẋ(t)X(τ)

]
=

d

dt
E
[
X(t)X(τ)

]
≡ ∂γXX(t, τ)

∂t
,

γẊẊ(t, τ) ≡ E
[
Ẋ(t)Ẋ(τ)

]
=

d

dt

d

dτ
E
[
X(t)X(τ)

]
≡ ∂2γXX(t, τ)

∂t∂τ
.

Let us now assume that X(t) is a zero-mean stationary normal process. For all t ∈ T the random

variable X(t) is then Gaussian with zero mean and variance γ(0), i.e. its pdf is

f1(x) =
1√

2π γ(0)
exp

{
−1

2

x2

γ(0)

}
, (x ∈ IR).

Proposition 1.1 Let X(t) is a zero-mean stationary normal process having γ(τ) as correlation
function and possessing m.s. derivative. Let Λ2n+1 = ||λj,k|| be the covariance matrix of

X(t0), X(t1), . . . , X(tn), Ẋ(t1), . . . , Ẋ(tn)

with t0 < t1 < . . . < tn. Then, Λ2n+1 is a symmetric matrix whose elements are specified as

follows:

λj+1,k+1 = E
[
X(tj)X(tk)

]
= γ(tj − tk)

(j, k = 0, 1, . . . , n), (1.2.26)

λn+j+1,n+k+1 = E
[
Ẋ(tj)Ẋ(tk)

]
= −γ̈(tj − tk)

(j, k = 1, 2, . . . , n), (1.2.27)

λj+1,n+k+1 = E
[
X(tj)Ẋ(tk)

]
= −γ̇(tj − tk)

(j = 0, 1, . . . , n ; k = 1, 2, . . . , n). (1.2.28)

Proof By definition of covariance for a zero-mean process and from the stationarity of X(t)

relation (1.2.26) follows. Similarly one has

λn+j+1,n+k+1 = E
[
Ẋ(tj)Ẋ(tk)

]
(j, k = 1, 2, . . . , n).

From Theorem 1.6 and (1.2.22) one then easily obtains (1.2.27). Making again use of Theorem
1.6 and of (1.2.22), relation (1.2.28) finally follows. ♦
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Let us now calculate the conditional pdf p2n(x1, . . . , xn; ẋ1, . . . , ẋn | x0) of

X(t1), . . . , X(tn), Ẋ(t1), . . . , Ẋ(tn)

conditional upon X(t0) = x0, when γ(0) = 1 and γ̈(0) ≡ {d2γ(t)/dt2}t=0 exists and is finite.

By virtue of (1.2.18) one can then write

p2n(x1, . . . , xn; ẋ1, . . . , ẋn | x0) =
p2n+1(x0, x1, . . . , ẋn)

p1(x0)

=

exp
{
−1

2

( 2n∑

i,j=0

li+1,j+1 xi xj − x2
0

)}

(2π)n|Λ2n+1|1/2
, (1.2.29)

where for i = 1, . . . , n we have set

xn+i = ẋi, γ(tn+i) = γ̇(ti).

(Recall that any linear operation, such as differentiation or integration, on a normal process
yields a normal process.)

One can see that the following equalities hold:

2n∑

i=0

λi+1,j+1 li+1,k+1 =

2n∑

i=0

λj+1,i+1 li+1,k+1 =






1, j = k

0, j 6= k,
(1.2.30)

2n∑

j=0

λi+1,j+1 lk+1,j+1 =

2n∑

j=0

λj+1,i+1 lk+1,j+1 =






1, i = k

0, i 6= k.
(1.2.31)

Hence,

2n∑

i=0

li+1,j+1 γ(ti) =

2n∑

i=0

li+1,j+1 λi+1,1 =






1, j = 0

0, j 6= 0,
(1.2.32)

2n∑

j=0

li+1,j+1 γ(tj) =

2n∑

j=0

li+1,j+1 λ1,j+1 =






1, i = 0

0, i 6= 0.
(1.2.33)

10



Making use of (1.2.30)-(1.2.33) one has:

2n∑

i,j=0

li+1,j+1 xi xj − x2
0 =

2n∑

i,j=0

li+1,j+1 xi xj − x2
0 − x2

0 + x2
0

=
2n∑

i,j=0

li+1,j+1 xi xj − x0

2n∑

j=0

xj

2n∑

i=0

li+1,j+1 γ(ti)

− x0

2n∑

i=0

xi

2n∑

j=0

li+1,j+1 γ(tj) + x2
0

2n∑

i=0

γ(ti)

2n∑

j=0

li+1,j+1 γ(tj)

=

2n∑

i,j=0

li+1,j+1 xi xj −
2n∑

i,j=0

li+1,j+1 γ(ti) x0 xj

−
2n∑

i,j=0

li+1,j+1 γ(tj) x0 xi +

2n∑

i,j=0

li+1,j+1 γ(ti) γ(tj) x
2
0

=

2n∑

i,j=0

li+1,j+1

[
xi xj − γ(ti) x0 xj − γ(tj) x0 xi + γ(ti) γ(tj) x

2
0

]

=

2n∑

i,j=0

li+1,j+1

[
xi − x0 γ(ti)

][
xj − x0 γ(tj)

]
.

The function p2n given by (1.2.29) thus takes the following form:

p2n = (x1, . . . , xn, ẋ1, . . . , ẋn | x0)

=
1

(2π)n|Λ2n+1|1/2
exp
{
−1

2

2n∑

i,j=1

li+1,j+1

[
xi − x0γ(ti)

][
xj − x0γ(tj)

]}
.

Hereafter t will be identified with the time variable and hence we shall take t ∈ [t0,+∞), with

t0 ≥ 0. In the case of stationary processes, no loss of generality arises by taking t0 = 0, which
will be consistently done in the sequel.

1.3 Introduction to neuronal modeling

The phenomenology of single neurons electrical activity and the understanding of the ultimate
mechanisms responsible for it have been the object of numerous investigations by neurophys-

iologists, physicists and mathematicians during the last four decades. Despite the availability
of some mathematical interesting models based on various assumptions on the type of input to

which the neuron is subject and on possible generation mechanisms of the corresponding output,
a “universal model” to which refer in general instances is still lacking. In addition, the existing

mathematical tools appear to be hardly effective due to the high degree of nonlinearity exhibited
by the neuron input-output behavior. Hence, to focus on the description of neuronal behaviors
corresponding to well-specified input classes should, in our view, deserve higher priority with re-

spect to searching for general methods for describing processing and transmission of information
in neuronal systems.
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The present thesis shall refer to evolution models of neuronal membrane potentials that
fall within the class of Gaussian processes. The cases of Markov and of non-Markov Gaussian

processes are then separately considered. The aim is to make available a summary of analytic,
computational and simulation methods whose implementations appear to be effective for the

mathematical description of neuronal activities, at least in several cases of interest. Hereafter
we shall deal with

(i) analytic methods resting on transformations of Gauss-Markov processes to simpler well-

known processes;

(ii) a study of the role played by the correlation time in determining the probability densities

of neuronal outputs;

(iii) the determination of asymptotic behaviors of the probability densities in (ii) for large
thresholds and/or for large times.

The obtained analytic and numerical results are then systematically compared with the
results of simulations for a twofold purpose: on the one hand to evaluate the goodness of the
simulations, and on the other hand to gather hints, from inspection of simulation results, on

theoretical properties to be explored, proved or rejected.

Despite the massive efforts along the above research directions, it is fair to claim that there
is presently a great need to construct some kinds of “new”mathematics, specifically suited to

quantitatively describe the realm of neural biological processes. Hopefully, such an ambitious,
though very necessary, enterprise will increasingly attract the interests of anyone who aims at a

deep understanding of single neurons activity and of neural networks dynamics.

1.3.1 Neuronal firing and the first passage time problem

In this Section we deal with an outline of procedures and methods for the description of the
dynamics of neuronal firing along a line first discussed in [72].

In a variety of modeling approaches, it is customary to assume that a neuron is subject to

input pulses occurring randomly in time (see, for instance, [37], [76], [90], [91], and references
therein). As a consequence of the received stimulations, the neuron reacts by producing a

response that usually consists of a spike train. The reproduction of the statistical features of
such spike trains has been the goal of many researches that have focused the attention on analysis
of the interspike intervals. Indeed, the relevance of interspike intervals is due to the generally

accepted hypothesis that the information transferred within the nervous system is encoded by
the timing of occurrence of neuronal spikes.

To describe the dynamics of the neuronal firing, we consider a one-dimensional non-singular

stochastic process X(t) representing the change in the neuron membrane potential between two
consecutive spikes. In this context, the threshold voltage is viewed as a deterministic function

S(t), and the instant when the membrane potential attains it (i.e. when a spike occurs) as a first
passage time (FPT) random variable (rv). It is customary to assume that the stochastic process

X(t) originates at a preassigned under-threshold state x0 at the initial time t0. Hereafter, we
shall also consider the FPT upcrossing model in order to include more physiologically significant
features – such as a finite decay constant of the membrane potential, the presence of reversal

potentials, time-dependent firing thresholds – and also in order to refer to wider classes of inputs
as responsible for the observed sequences of output signals. The upcrossing model is viewed as
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a FPT problem to threshold S(t) for the subset of sample paths of the process originating at a
random state X0.

It is worth recalling that the year 1964 marks the beginning of the history of neuronal
models based on continuous time - continuous space stochastic processes. Indeed, in a much

celebrated article [36] invoked a random walk type process as responsible for the fluctuations of
the membrane potential, under the assumption of numerous simultaneously and independently
acting input processes. These authors were able to show that, by suitably choosing the pa-

rameters of the model, the experimentally recorded interspike interval histograms of numerous
units could be fitted to an excellent degree of approximations by means of the FPT probability

density function (pdf) of a Wiener process. Despite the excellent fitting of a variety of data, this
model has been the target of severe criticism on the base of its extreme idealization in contrast

with some electrophysiological evidence: for example, this model does not take into account
the spontaneous exponential decay of the neuron membrane potential. An improved version is

the Ornstein-Uhlenbeck (OU) model ([7], [91]), which includes the presence of the exponential
decay of the neuron’s membrane potential occurring between successive post-synaptic pulses, at

the price, however, of a great increase of analytical complexity. Indeed, the OU model does not
allow to obtain any closed form expression for the FPT pdf, except for some particular cases
of no interest within the context of neuronal modeling. Rather cumbersome computations are

thus required to obtain evaluations of the statistics of the FPT.

Ever since, alternative stochastic models have been proposed in the literature, aiming at

refinements and embodiments of other neurophysiological features. The literature on this subject
is too vast to be recalled here. We limit ourselves to mentioning that a review of most significant

neuronal models can be found in [75], [76], and in the references therein. In particular, in
[75], an outline is offered of mathematical techniques by which to approach the FPT problem
by means of diffusion processes in the neuronal context. In particular for diffusion processes

[3, 17] and for Gauss-Markov (GM) processes [23] it has been proven that the firing pdf is the
solution of a second kind Volterra integral equation. For generally regular thresholds a fast

and accurate numerical procedure for solving such integral equation has been designed, and
successfully implemented, and the obtained approximations have been compared with those

stemming out of standard numerical methods. Furthermore, by adopting a symmetry-based
approach, the exact firing pdf for thresholds of a suitable analytical form has been determined.

Diffusion neuronal models rest on the strong Markov assumption. However, if one deals

with problems involving processes characterized by memory effects, or evolving on a time scale
comparable with that of measurements, such a property does not hold; hence, to face FPT

problems for non-Markov processes becomes unavoidable.

While mathematical models based on non-Markov stochastic processes better describe the
correlated firing activity, their analytic treatment is quite complicated and only rare and frag-

mentary results appear to be available in literature.

Here, by analogy with GM and OU-models, we shall focus on neuronal models rooted on

Gaussian processes. Indeed, we are motivated by the generally accepted hypothesis that the
neuronal firing can often be thought of as being caused by the superposition of a very large

number of synaptic inputs, which is suggestive of the generation of Gaussian distributions by
analogy with central limit theorems. The selection of one of the various methods that are
available to compute the firing pdfs depends on the assumptions made on the membrane potential

X(t). Kostyukov in [54] suggested to approach single neuron modeling by referring to Gaussian
stationary processes and to the construction of upcrossing FPT pdf. The interesting new idea
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was to resort to Stratonovich notion of correlation time as a global characteristic of the process,
so that processes with the same correlation time would have the same upcrossing FPT.

If the Gaussian stochastic process is stationary and mean-square differentiable, in general
one ends up with a very cumbersome series expansion of the FPT pdf, hardly manageable for

any practical purpose [74]. We shall review the terminology and the necessary definitions to
characterize FPT pdf when X(t) is either a Markov or a non Markov Gaussian process. We
shall also briefly review Kostyukov model (henceforth denoted as the K-model) for the purpose

of evaluating the approximations performed therein with respect to other available methods.

A totally different approach has been recently undertaken in order to obtain information

on the behavior of the FPT densities for a class of stationary Gaussian processes with rational
spectral densities in the presence of various types of thresholds. This consists of a simulation
procedure [25] implemented to generate sample paths and to estimate the corresponding FPT

densities. Such simulation procedure originates from Franklin algorithm [33]. In Chapter 3
we give a thorough description of the simulation algorithm and we refer to [20] and [22] for

particular implementations.

In the present context, the goal of the simulation procedure is to sampleN values of the FPT

by a suitable construction of N time-discrete sample paths of the process and then to record the
instants when such sample paths first cross the threshold. In such a way, one is led to obtain
estimates of the firing pdf and of its statistics that can be of use for data fitting.

Within our approaches, the role of the simulation procedure is threefold:

(i) to suggest the theoretical exploration of the behavior of the firing densities in a variety of

different conditions by inspection of qualitative features of the simulation results;

(ii) to permit quantitative evaluation of reliability and precision of the results obtained via
numerical and analytic approximations;

(iii) to offer a viable alternative whenever analytic and computational methods fail.

For instance, when the stochastic process is Gaussian, stationary and mean-square differentiable,
a numerically reliable evaluation of the first term of the afore-mentioned series expansion of the

FPT pdf can be obtained. By comparison with the simulated firing densities, one can conclude
that for small times this first term is a good approximation of firing pdf [26]. Moreover, by

comparing the results obtained by computer simulation of sample paths of non-Markov station-
ary Gaussian processes characterized by correlation times identical to those of the K-model,

one can to show that the approximations suggested therein ultimately amount to removing the
non-Markov character of the model [21].

We wish to stress that our endeavors strive to improve simulation techniques, within the

context of stationary Gaussian processes, that are particularly relevant within the neuronal
modeling context. The aim is to design efficient algorithms to simulate Gaussian processes of a

more general type.

Finally, special attention is paid to the asymptotic behavior of FPT pdf, which turns out to
be appropriate for the description of neuronal activities even for small times. This is reasonable

whenever the intrinsic time scale of the microscopic events involved during the neuron’s evolution
is much smaller than the macroscopic observation time scale, or when the asymptotic regime is

exhibited also in the case of firing thresholds not too distant from the resting potential.

The study of the asymptotic behavior of the FPT pdf for Gaussian processes as thresh-
olds or time grow larger originated in [24], [26] and [27]. By computational methods as well
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as by analytic tools we show that the FPT pdf admits an excellent non-homogeneous expo-
nential approximation for large thresholds, and in some cases even when such thresholds are

not very distant from the initial state of the process. Our analysis is a natural extension of
some investigations performed for the OU model [68] and successively extended to the class of

one-dimensional diffusion processes admitting steady state densities in the presence of single
asymptotically constant thresholds or of single asymptotically periodic thresholds [67, 41].

1.3.2 Gaussian neuronal models

Let us consider a real one-dimensional non-singular Gaussian stochastic process {X(t), t≥ t0}
and a threshold S(t) ∈ C1[t0,+∞). We assume P{X(t0) = x0} = 1, with x0 < S(t0), i.e. we
focus our attention on the subset of sample paths of X(t) that originate at a preassigned state

x0 at the initial time t0. Then,

Tx0 = inf
t≥ t0

{
t : X(t) > S(t)

}
, x0 < S(t0)

is the FPT of X(t) through S(t) with pdf

g(t | x0, t0) =
∂

∂t
P (Tx0 < t). (1.3.1)

Henceforth, g(t | x0, t0) will be identified with the firing pdf of a neuron whose membrane

potential is modeled by X(t) and whose firing threshold is S(t).

Now, consider a subset of sample paths ofX(t) that originate at the random stateX0 = X(t0)
having pdf

γε(x0, t0) :=






f(x0)

P{X(t0) < S(t0) − ε} , x0 < S(t0) − ε

0, x0 ≥ S(t0)− ε.

(1.3.2)

Here, ε > 0 is a fixed real number and f(x0) denotes the Gaussian pdf of X(t0). Then,

T
(ε)
X0

= inf
t≥ t0

{t : X(t) > S(t)},

is the ε-upcrossing FPT of X(t) through S(t) and the related pdf is given by

g(ε)
u (t | t0) =

∂

∂t
P (T

(ε)
X0

< t) =

∫ S(t0)−ε

−∞
g(t | x0, t0) γε(x0, t0) dx0 (t ≥ t0),

where g(t | x0, t0) is defined in (1.3.1). Without loss of generality, we set t0 = 0 and x0 = 0, and

for this case we write g(t) := g(t | 0, 0) and g
(ε)
u (t) := g

(ε)
u (t | 0), for fixed values of ε.

1.3.3 Gauss-Markov (GM) processes

Let the random process {X(t), t≥ 0} have the following properties:

(i) the mean m(t) := E[X(t)] is continuous in [0,+∞);

(ii) the covariance c(s, t) := E
{
[X(s)−m(s)] [X(t)−m(t)]

}
is continuous in [0,+∞)× [0,+∞);
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(iii) X(t) is non-singular, except possibly at the end points of [0,+∞) where it could be equal
to m(t) with probability one.

A Gaussian process is Markov if and only if its covariance satisfies (cf., for instance, [58])

c(s, u) =
c(s, t) c(t, u)

c(t, t)
0 ≤ s ≤ t ≤ u. (1.3.3)

Well-behaved solutions of (1.3.3) are of the form

c(s, t) = h1(s) h2(t), s ≤ t, (1.3.4)

where

r(t) :=
h1(t)

h2(t)
(1.3.5)

is a monotonically increasing function by virtue of the Cauchy-Schwarz inequality, and h1(t) ·
h2(t) > 0 because of the assumed non-singularity of the process. The conditional pdf f(x, t | y, τ)
of X(t), with τ < t, is a normal density characterized respectively by conditional mean and

variance

E[X(t) | y, τ ] = m(t) +
h2(t)

h2(τ)
[y −m(τ)] (1.3.6)

Var[X(t) | y, τ ] = h2(t)

[
h1(t) −

h2(t)

h2(τ)
h1(τ)

]
, (1.3.7)

with t > τ ≥ 0. It satisfies the Fokker-Planck equation and the associated initial condition

∂f(x, t | y, τ)
∂t

= − ∂

∂x
[A1(x, t) f(x, t | y, τ)] + 1

2

∂2

∂x2
[A2(t) f(x, t | y, τ)], (1.3.8)

lim
τ↑t

f(x, t | y, τ) = δ(x− y),

with A1(x, t) and A2(t) given by

A1(x, t) = m′(t) + [x−m(t)]
h′2(t)

h2(t)
, A2(t) = h2

2(t) r
′(t),

the prime denoting derivative with respect to the argument.
The class of Gauss-Markov processes, such that f(x, t | y, τ) ≡ f(x, t− τ | y), includes the

Wiener process and the OU process. In particular, any Gaussian process with covariance as in
(1.3.4) can be represented in terms of the standard Wiener process {W (t), t ≥ 0} as

X(t) = m(t) + h2(t) W
[
r(t)

]
, (1.3.9)

and is therefore Markov. This last equation suggests the way to construct the FPT pdf of a
Gauss-Markov process X(t) in terms of the FPT pdf of the standard Wiener process W (t).
Indeed, the following relation is valid

g[S(t), t|x0, t0] =
dr(t)

dt
gW
{
S∗[r(t)], r(t)|x∗0, r(t0)

}
(1.3.10)
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where r(t) is defined in (1.3.5) and gW [S∗(ϑ), ϑ|x∗0, ϑ0] is the FPT pdf of W (ϑ) from x∗0 at time
ϑ0 to the continuous boundary S∗(ϑ), with

x∗0 =
x0 −m[r−1(ϑ0)]

h2[r−1(ϑ0)]
, S∗(ϑ) =

S[r−1(ϑ)]−m[r−1(ϑ)]

h2[r−1(ϑ)]
. (1.3.11)

Hence results on the FPT pdf for the standard Wiener process can thus be used via (1.3.10) to
obtain the FPT pdf of any continuous Gauss-Markov process. For instance, if S∗(ϑ) is linear

in ϑ, gW [S∗(ϑ), ϑ|x∗0, ϑ0] is known and g[S(t), t|x0, t0] can be obtained via (1.3.10). Instead,
if gW [S∗(ϑ), ϑ|x∗0, ϑ0] is not known, a numerical algorithm or a simulation procedure should

be used for the standard Wiener process, and after that one can obtain g[S(t), t|x0, t0] via
the indicated transformation. However, such a procedure often exhibits the serious drawback
of ensuing unacceptable time dilations [23]. (As is well-known, exponentially large times are

involved when transforming the Ornstein-Uhlenbeck process to the Wiener process.).
It is desirable to dispose of a direct and efficient computational method to obtain evaluation of

the FPT pdf. Partly inspired by previous papers dealing exclusively with diffusion processes
(see [3] and references therein), along such direction, one can prove ([23]) that the conditioned

FPT pdf of a Gauss-Markov process can be obtained by solving the non-singular Volterra second
kind integral equation (identifying g[S(t), t|x0, t0] with g(t))

g(t) = −2ψ[S(t), t | x0, t0] + 2

∫ t

t0

g(τ)ψ[S(t), t | S(τ), τ ] dτ (1.3.12)

with S(t0) > x0, S(t), m(t), h1(t), h2(t) ∈ C1[0,+∞) and

ψ[S(t), t | y, τ ] =

{
S ′(t) −m′(t)

2
− S(t)−m(t)

2

h′1(t)h2(τ)− h′2(t)h1(τ)

h1(t)h2(τ)− h2(t)h1(τ)

−y −m(τ)

2

h′2(t)h1(t) − h2(t)h
′
1(t)

h1(t)h2(τ) − h2(t)h1(τ)

}
f [S(t), t | y, τ ], (1.3.13)

where f(x, t | y, τ) is the transition pdf of X(t).
We give some closed form solutions of (1.3.12) in the next Chapter for various families of

thresholds.
Alternatively, g(t) can be numerically obtained by using a fast and accurate computational

method, mainly centered on the repeated Simpson rule, extensively described in the Chapter
2 of this thesis. In all our computations this has yielded by far the most accurate results

with respect to all other methods. The iteration procedure allows one to compute g̃(kp), for
k = 2, 3, ..., with time discretization step p in terms of computed values at the previous times

p, 2p, ..., (k−1)p. The noteworth feature of this algorithm is its being implementable after simply
specifying the functions m(t), h1(t), h2(t) that characterize the process, the threshold S(t) and
the discretization step p. Furthermore, it does not involve any heavy computation, neither it

requires use of any library subroutines, Monte Carlo methods or other special software packages
to calculate high dimension multiple integrals.

Referring to the upcrossing FPT problem, note that for a non singular Gauss-Markov process
the pdf (1.3.2) can be immediately evaluated, (setting t0 = 0) since f(x0) is normal with mean

m(0) and variance h1(0)h2(0) and

P{X(0) < S(0)− ε} =
1

2

{
1 + Erf

[
S(0)− ε −m(0)√

2h1(0)h2(0)

]}
.
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Furthermore, the ε-upcrossing FPT pdf is the unique solution of the second kind Volterra integral
equation:

g(ε)
u (t) = −2ψ(ε)

u [S(t), t] + 2

∫ t

0
ψ[S(t), t | S(τ), τ ] g(ε)

u (τ) dτ (1.3.14)

where

ψ(ε)
u [S(t), t] =

∫ S(0)−ε

−∞
ψ[S(t), t | x0] γε(x0) dx0

and ψ[x, t | y, τ ] is given in (1.3.13). A glance at (1.3.12) and (1.3.14), that possess identical

kernels, immediately suggests to solve integral equation (1.3.14) by the same numerical iterative
procedure pointed out for (1.3.12). If limt↓0 S(t) = +∞, then P{X(0) < S(0) − ε} = 1 for all

ε > 0, and X0 becomes a random variable with pdf γ(x0) ≡ f(x0), that is independent of ε.

1.3.4 Non-Markov processes

Let X(t) be a stationary Gaussian process with mean m(t) = 0 and covariance E[X(t)X(τ)] =

c(t, τ) = c(t−τ) such that c(0) = 1, ċ(0) = 0 and c̈(0) < 0 (this last assumptions being equivalent
to the mean square differentiable property). The following series expansion for the conditioned
FPT pdf was derived in [74]:

g(t) = W1(t) +

+∞∑

i=1

(−1)i
∫ t

0
dt1

∫ t

t1

dt2 · · ·
∫ t

ti−1

dtiWi+1(t1, . . . , ti, t), (1.3.15)

where Wn(t1, . . . , tn) dt1 · · ·dtn, ∀n ∈ N and 0 < t1 < · · · < tn, denotes the joint probability
that X(t) crosses S(t) from below in the time intervals (t1, t1 +dt1), . . . , (tn, tn+dtn) given that

X(0) = 0. By using a straightforward variant of the method proposed by [74], the following
series expansion for the upcrossing FPT pdf is obtained [26]:

g(ε)
u (t) = W

(ε)
1 (t) +

+∞∑

i=1

(−1)i
∫ t

0
dt1

∫ t

t1

dt2 · · ·
∫ t

ti−1

dtiW
(ε)
i+1(t1, . . . , ti, t) (1.3.16)

with

W
(ε)
i+1(t1, . . . , ti, t) =

∫ S(0)−ε
−∞ Wi+1(t1, . . . , ti, t | x0)f(x0) dx0

∫ S(0)−ε
−∞ f(z) dz

·

Due to the complexity of the involved multiple integrals, expressions (1.3.15) and (1.3.16) do

not appear to be manageable for practical uses. Nevertheless, the first terms allow to obtain
some interesting asymptotic results, as outlined in the follows. Since (1.3.15) and (1.3.16) are

Leibnitz series for each fixed t > 0, estimates of the FPT pdf can in principle be obtained as its
partial sum of order n provides a lower or an upper bound depending on whether n is even or
odd. However, also the evaluation of such partial sums is extremely cumbersome.

In conclusion no effective analytical methods, nor viable numerical algorithms are presently
available to evaluate the FPT pdf for this class of Gaussian processes. A simulation procedure

seems to be the only possible resort (see Chapter 3).
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Chapter 2

Closed form solutions and
computational results

2.1 Closed form results for GM processes

2.1.1 A preliminary closed-form result

Let us consider a real one-dimensional non-singular Gauss-Markov stochastic process {X(t), t ∈ T}
with T is a continuous parameter set. Its pdf g[S(t), t|x0, t0] satisfies the equation (1.3.12) with
Ψ[S(t), t|y, τ ] as in (1.3.13). The following theorem provides us with the necessary preliminary

result.

Theorem 2.1.1 Let S(t), m(t), h1(t), h2(t) be C1(T ) functions. One has

Ψ[S(t), t|S(τ), τ ] = 0 ∀τ, t ∈ T with τ ≤ t

iff

S(t) = m(t) + d1h1(t) + d2h2(t) ∀t ∈ T, d1, d2 ∈ R. (2.1.1)

Proof 2.1.1 We have

ΨW

[
S∗[r(t)], r(t)|S∗[r(τ)], r(τ)

]
=
[dr(t)
dt

]−1
Ψ[S(t), t|S(τ), τ ] (2.1.2)

where W refers to the standard Wiener process. It follows that Ψ[S(t), t|S(τ), τ ] = 0 ∀τ, t ∈ T

with τ ≤ t, iff

ΨW

[
S∗[r(t)], r(t)|S∗[r(τ)], r(τ)

]
= 0, ∀τ, t ∈ T, τ ≤ t

i.e., recalling that

ΨW [S∗(ϑ), ϑ|y, ξ] = 1

2

[dS∗(ϑ)

dϑ
− S∗(ϑ)− y

ϑ− ξ

]
fW [S∗(ϑ), ϑ|y, ξ] (2.1.3)

with fW [x, ϑ|y, ξ] denotes the transition pdf for the standard Wiener process, iff

S∗[r(t)] = d1r(t) + d2 ∀t ∈ T, d1, d2 ∈ R. (2.1.4)
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By virtue of the second of (1.3.11), relation (2.1.4) becomes

S(t) −m(t)

h2(t)
= d1r(t) + d2 ∀t ∈ T, d1, d2 ∈ R, (2.1.5)

from which (2.1.1) follows. This completes the proof.

It should be stressed that in the present context the valuable part of Theorem 2.1.1 is that the
kernel of equation (1.3.12) vanishes identically for boundaries (2.1.1), and only for those, rather
than (2.1.5) that also follows immediately from (1.3.9).

The following statement expresses the FPT pdf through the boundary S(t) in terms of the
free transition pdf.

Corollary 2.1.1 Under the assumptions of Theorem 2.1.1, if (2.1.1) holds the FPT pdf is given
by

g[S(t), t|x0, t0] =
S(t0) − x0

r(t) − r(t0)

h2(t)

h2(t0)

dr(t)

dt
f [S(t), t|x0, t0]

(
x0 < S(t0)

)
. (2.1.6)

Furthermore, if T = [a, b] and lim
t→b

r(t) = +∞, then

∫ b

t0

g[S(t), t|x0, t0] dt =






1, d1/h2(t0) ≤ 0

exp

{
−2 d1 [S(t0) − x0]

h2(t0)

}
, d1/h2(t0) > 0.

(2.1.7)

Proof 2.1.2 Making use of Theorem 2.1.1, from (1.3.12) one obtains

g[S(t), t|x0, t0] = −2 Ψ[S(t), t|x0, t0] (2.1.8)

where Ψ is defined in (1.3.13). Relation (2.1.6) follows from (2.1.8) by substituting (2.1.1) in
(1.3.13). Moreover, if T = [a, b], then

∫ b

t0

g[S(t), t|x0, t0] dt =
[S(t0) − x0]

h2(t0)

∫ b

t0

h2(t)

r(t)− r(t0)

dr(t)

dt
f [S(t), t|x0, t0] dt

=
[S(t0) − x0]√

2π|h2(t0)|
exp

{
−d1[S(t0) − x0]

h2(t0)

}

×
∫ r(b)−r(t0)

0
y−3/2 exp

{
−d

2
1

2
y − [S(t0) − x0]

2

2h2
2(t0) y

}
dy, (2.1.9)

where the last equality follows by setting r(t) − r(t0) = y. In particular, if lim
t→b

r(t) = +∞,

equation (2.1.7) follows from (2.1.9) by using

∫ ∞

0
exp

{
−py − α

4y

}
y−3/2 dy = 2

√
π

α
exp(−√

αp) (Re α > 0, Re p ≥ 0).

This completes the proof.

It should be stressed that the closed-form result (2.1.6) cannot be employed to test the
accuracy of numerical methods to solve equation (1.3.12) because its kernel is identically zero

for boundaries (2.1.1). Hence, the need to discover another suitable boundary family starting
from (2.1.1), which is being accomplished in the next Section.
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In the following we shall make use of transformation (1.3.10) to obtain a family of boundaries
(the so called ”symmetry curves”) whose role will be to lead us to a second family of boundaries

for which the FPT pdf is obtained in closed-form in the case of Gauss-Markov processes. These
boundaries will be seen to represent a generalization of the boundary

S(t) =
α

2
− t

α
ln

(c1 +
√
c21 + 4 c2 e−α

2/t

2

)
, (2.1.10)

ingeniously determined by Daniels [12], via the method of images, for the standard Wiener
process originated at time t0 = 0 in the state x0 = 0.

The boundaries thus obtained by us will play an essential role to provide a secure test for
the accuracy of the forthcoming numerical computations.

2.1.2 A generalization of Daniels boundary

The closed-form expression of FPT pdf that we shall now determine will allow us to dispose of a

quantitative test of the goodness of the computational procedure that will be provided to solve
equation (1.3.12).

We start remarking that the transition pdf of a Gauss-Markov process characterized by
conditional mean (1.3.6) and variance (1.3.7), possesses the following symmetry properties:

f(x, t|x0, t0) =
φ(x, t)

φ(x0, t0)
f [ψ(x, t), t|ψ(x0, t0), t0] (2.1.11)

and

φ(x, t) f [ψ(x, t), t|x0, t0] = f(x, t|x0, t0) exp

{
− 2 [x− z(t)] [x0 − z(t0)]

h1(t)h2(t0)− h1(t0)h2(t)

}
, (2.1.12)

where

ψ(x, t) = 2z(t) − x

φ(x, t) = exp

{
− 2 d1 [x− z(t)]

h2(t)

}
(2.1.13)

z(t) = m(t) + d1h1(t) + d2h2(t),

with d1, d2 ∈ R. As in a previous work [16], we shall call z(t) a “symmetry curve” with respect
to the symmetry function ψ(x, t). Let now

y(t) = m(t) + d1h1(t) + d2h2(t)

u(t) = m(t) + d∗1h1(t) + d∗2h2(t) (2.1.14)

v(t) = 2 u(t)− y(t)

be symmetry curves such that y(t) < u(t) < v(t) for all t ≥ t0, t, t0 ∈ T and t0 fixed with

d1, d2, d
∗
1, d

∗
2 ∈ R. We denote by ψ1(x, t) and φ1(x, t) the symmetry functions corresponding to

u(t) and by ψ2(x, t) and φ2(x, t) the symmetry functions corresponding to v(t). Being v(t) =
ψ1[y(t), t], the symmetry curve v(t) is the “image” of the symmetry curve y(t) in the “mirror” u(t)

via the symmetry function ψ1. If, for instance, one has y(t) < u(t) < v(t) for all t ≥ t0, conditions
y(t) < x < u(t) amount to requiring ψ1[y(t), t] > ψ1(x, t) > ψ1[u(t), t], i.e. u(t) < ψ1(x, t) < v(t).
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Theorem 2.1.2 Let

S(t; t0) = u(t) − h1(t)h2(t0) − h1(t0)h2(t)

2 [u(t0)− y(t0)]
ln

[
c1 +

√
∆(t; t0)

2

]
(2.1.15)

(
c1 > 0, c2 ∈ R, lim

t→supT
∆(t; t0) > 0

)

with

∆(t; t0) = c21 + 4c2 exp

{
− 4 [u(t)− y(t)] [u(t0) − y(t0)]

h1(t)h2(t0) − h1(t0)h2(t)

}
. (2.1.16)

The transition pdf of X(t) in the presence of the absorbing boundary (2.1.15) is then

α[x, t|y(t0), t0] = f [x, t|y(t0), t0] − c1 φ1(x, t) f [ψ1(x, t), t|y(t0), t0]
−c2 φ2(x, t) f [ψ2(x, t), t|y(t0), t0] (x < S(t; t0), y(t0) < u(t0)). (2.1.17)

Proof 2.1.3 Let α̃[x, t|y(t0), t0] denote the right-hand-side of (2.1.17). Since (2.1.11) holds,
one has

α̃[x, t|y(t0), t0] = f [x, t|y(t0), t0]− c1 φ1[2u(t0) − y(t0), t0] f [x, t|2u(t0)− y(t0), t0]

−c2 φ2[2v(t0)− y(t0), t0] f [x, t|4u(t0) − 3y(t0), t0], (2.1.18)

where

φ1

[
2u(t0) − y(t0), t0

]
= exp

{
− 2 d∗1 [u(t0)− y(t0)]

h2(t0)

}
,

φ2

[
2v(t0) − y(t0), t0

]
= exp

{
−4 [2d∗1 − d1] [u(t0)− y(t0)]

h2(t0)

}
.

Hence, α̃[x, t|y(t0), t0] satisfies Fokker-Planck equation (1.3.8). Furthermore, by virtue of (2.1.12),

α̃[x, t|y(t0), t0] can also be written as

α̃[x, t|y(t0), t0] = −c2 f [x, t|y(t0), t0] exp

{
− 4 [y(t)− u(t)] [y(t0)− u(t0)]

h1(t)h2(t0)− h1(t0)h2(t)

}

×
[
exp

{
− 2 [x− u(t)] [y(t0) − u(t0)]

h1(t)h2(t0) − h1(t0)h2(t)

}
− 2

c1 +
√

∆(t; t0)

]

×
[
exp

{
− 2 [x− u(t)] [y(t0) − u(t0)]

h1(t)h2(t0) − h1(t0)h2(t)

}
− 2

c1 −
√

∆(t; t0)

]
. (2.1.19)

In order for α̃[x, t|y(t0), t0] to be a transition pdf in the presence of the absorbing boundary

S(t; t0), the right-hand-side of (2.1.19) must be zero at x = S(t; t0), non negative for all x <
S(t; t0) and y(t0) < lim

t↓t0
S(t; t0) = u(t0); finally, it must satisfy the initial delta-condition. It is

easy to prove that all these conditions hold iff S(t; t0) is as in (2.1.15) with c1 > 0, c2 ∈ R and

lim
t→supT

∆(t; t0) > 0. Hence, α̃ equals to the pdf α. This completes the proof.

It should not pass unnoticed that (2.1.15) is a generalization of Daniels’ boundary (2.1.10).

Indeed, if Theorem 2.1.2 is applied to the zero-mean Gauss-Markov process with c(s, t) = s
(0 ≤ s ≤ t < +∞), the boundary (2.1.15) generalizes Daniels’ boundary in that the latter
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requires the choice t0 = 0, y(t) ≡ 0, u(t) ≡ α/2 with α 6= 0, whereas the former holds for all
t0 ≥ 0, t > t0, y(t) = d1 t+ d2, u(t) = d∗1 t+ d∗2, with d1, d2, d

∗
1, d

∗
2 ∈ R and such that y(t) < u(t).

The following theorem shows the existence of a closed-form relation of the FPT pdf through
the boundary S(t; t0) in terms of the free transition pdf.

Theorem 2.1.3 Under the assumptions of Theorem 2.1.2, for the boundary (2.1.15) one has:

g[S(t; t0), t|y(t0), t0] =
u(t0) − y(t0)

r(t) − r(t0)

h2(t)

h2(t0)

dr(t)

dt

2
√

∆(t; t0)

c1 +
√

∆(t; t0)

×f [S(t; t0), t|y(t0), t0]
(
y(t0) < u(t0)

)
. (2.1.20)

Furthermore, if T = [a, b] then
∫ b

t0

g[S(t; t0), t|y(t0), t0]dt = 1− lim
t→b

F [S(t; t0), t|y(t0), t0]

+c1 exp

{
− 2d∗1[u(t0) − y(t0)]

h2(t0)

}
lim
t→b

F [S(t; t0), t|2u(t0) − y(t0), t0]

+c2 exp

{
−4 [2d∗1 − d1][u(t0) − y(t0)]

h2(t0)

}
lim
t→b

F [S(t; t0), t|4u(t0)− 3y(t0), t0],(2.1.21)

where F is the distribution function of a normal process with conditional mean (1.3.6) and
variance (1.3.7).

Proof 2.1.4 By integration of both sides of (2.1.18) with respect to x between −∞ and S(t; t0)
one obtains

∫ S(t;t0)

−∞
α[x, t|y(t0), t0] dx = F [S(t; t0), t|y(t0), t0]

−c1 exp

{
− 2d∗1[u(t0) − y(t0)]

h2(t0)

}
F [S(t; t0), t|2u(t0) − y(t0), t0]

−c2 exp

{
−4 [2d∗1 − d1][u(t0) − y(t0)]

h2(t0)

}
F [S(t; t0), t|4u(t0) − 3y(t0), t0]. (2.1.22)

Since ∫ S(t)

−∞
α(x, t|y, τ) dx = 1 −

∫ t

τ
g[S(ϑ), ϑ|y, τ ] dϑ, y < S(τ) (2.1.23)

implies

g[S(t; t0), t|y(t0), t0] = − ∂

∂t

∫ S(t;t0)

−∞
α[x, t|y(t0), t0] dx.

Furthermore we note that

lim
τ↑t

Ψ[S(t), t|S(τ), τ ] =
dr(t)

dt
lim
τ↑t

ΨW

[
S∗[r(t)], r(t)|S∗[r(τ)], r(τ)

]

=
dr(t)

dt
lim
ξ↑ϑ

ΨW

[
S∗(ϑ), ϑ|S∗(ξ), ξ

]
= 0, (2.1.24)

r(t) being a monotonically increasing function in the parameter set T , which also proves the
non-singularity of equation (1.3.12). The relation (2.1.20) immediately follows by making use

of (2.1.24) and (2.1.22). Finally, (2.1.21) follows by taking the limit of (2.1.23) as t goes to b.
This completes the proof.
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We wish to emphasize that for boundaries of family (2.1.15) the FPT pdf’s are provided in closed-
form by (2.1.20) while the kernel of equation (1.3.12) is in general non identically vanishing on

accounts of Theorem 2.1.1. Hence, (2.1.20) provides an exact reference to test the accuracy of
numerical solutions of (1.3.12). With such a goal, we now consider the following special case.

Example 2.1.1 (Brownian Bridge) Let {X(t), t ∈ [0, 1]} be the zero-mean Gauss-Markov pro-

cess with covariance c(s, t) = s (1 − t) (0 ≤ s ≤ t ≤ 1), so that h1(t) = t and h2(t) = 1 − t.
Hence, the transition pdf f(x, t|y, τ) is normal with mean and variance respectively given by

E[X(t)|X(τ) = y] =
1 − t

1 − τ
y Var[X(t)|X(τ) = y] =

1 − t

1 − τ
(t− τ).

The functions y(t) = (d1 − d2)t + d2 and u(t) = (d∗1 − d∗2)t + d∗2, with d1, d2, d
∗
1, d

∗
2 ∈ R and

such that y(t) < u(t) ∀t ∈ [0, 1], are symmetry curves in the above specified sense. Hence, from

Theorem 2.1.3 it follows that the FPT pdf through the boundary

S(t; t0) = u(t)− t− t0
2 [u(t0)− y(t0)]

ln

{
c1 +

√
∆(t; t0)

2

}

, (2.1.25)

with

∆(t; t0) = c21 + 4 c2 exp

{
−4 [u(t)− y(t)] [u(t0) − y(t0)]

t− t0

}
,

is given by

g[S(t; t0), t|y(t0), t0] =
2 [u(t0) − y(t0)]

√
∆(t; t0)

(t− t0)
[
c1 +

√
∆(t; t0)

] f [S(t; t0), t|y(t0), t0] . (2.1.26)

Furthermore, from (2.1.21) it follows

∫ 1

t0

g[S(t; t0), t|y(t0), t0] dt = c1 exp

{
−2 d∗1 [u(t0)− y(t0)]

1 − t0

}

+c2 exp

{
−4 [2d∗1 − d1] [u(t0) − y(t0)]

1 − t0

}
(2.1.27)

if lim
t→1

S(t; t0) > 0, while the left-hand-side is unity if lim
t→1

S(t; t0) < 0.

2.2 A Computational method for GM processes

The present Section is focussed on two main items: (i) to address directly the question of nu-

merical solutions by constructing effective computational procedures to evaluate FPT pdf’s for
Gauss-Markov processes without resorting to the transformation methods, and (ii) to test ac-

curacy and reliability of our computational results, by comparison with the corresponding exact
results and with some examples drawn from the literature. Other computational matters will be

considered with reference to “upcrossing problems”, hitherto ignored by other authors. We shall
describe into some details the procedure to compute g and estimate the related computational
errors by solving Equation (1.3.12) via an algorithm based, for convenience, on the repeated

Simpson rule (cf. [15]), that in all our computations has yielded by far the most accurate results
with respect to various other methods tested by us.

24



For the sake of conciseness, in the sequel the following short-hand notation will be employed:

g(t) := g[S(t), t|x0, t0], t, t0 ∈ T, t0 < t

Ψ(t) := Ψ[S(t), t|x0, t0], t, t0 ∈ T, t0 < t (2.2.1)

Ψ(t |τ) := Ψ[S(t), t|S(τ), τ ], t, τ ∈ T t0 < τ ≤ t,

so that Equation (1.3.12) reads

g(t) = −2Ψ(t) + 2

∫ t

t0

g(τ) Ψ(t |τ) dτ
(
x0 < S(t0)

)
. (2.2.2)

A discretization via step p > 0, after setting t = t0 + k p (k = 1, 2, . . .), yields:

g(t0 + k p) = −2Ψ(t0 + k p) + 2

∫ t0+k p

t0

g(τ) Ψ(t0 + k p |τ) dτ (2.2.3)

(
x0 < S(t0), k = 1, 2, . . .

)
.

To compute g(t0 + k p) (k = 1, 2, . . .) we proceed as follows. Let n be a positive integer. Then,

(i) If k = 2n, the function g(τ) Ψ(t0 +k p|τ) under the integral sign in (2.2.3) is evaluated by a
three-point formula with weights 1/3, 4/3, 1/3, respectively, at t0 + jp, t0 + (j + 1)p, t0 +

(j + 2)p, with j = 0, 1, . . . , 2n− 2;

(ii) If k = 2n+ 1, in (2.2.3) we set:

∫ t0+(2n+1) p

t0

g(τ) Ψ(t0 + k p |τ) dτ =

∫ t0+(2n−2) p

t0

g(τ) Ψ(t0 + k p |τ) dτ

+

∫ t0+(2n+1)p

t0+(2n−2) p
g(τ) Ψ(t0 + k p |τ) dτ.

The first integral on the right-hand-side is calculated as in (i), whereas to the second

integral Simpson’s 3/8 rule with weights 3/8, 9/8, 9/8, 3/8 is applied. (It may be useful
to recall that thus doing the truncation errors of the above numerical evaluations are all

alike, namely O(p5)).

Denoting by g̃(t0 + k p) the numerical evaluation of g(t0 + k p) (k = 1, 2, . . .), we are led to the

following iterative algorithm:

g̃(t0 + p) = −2 Ψ(t0 + p)

(2.2.4)

g̃(t0 + kp) = −2Ψ(t0 + kp) + 2p

k−1∑

j=1

wk,j g̃(t0 + jp)Ψ(t0 + kp |t0 + jp)

(k = 2, 3, . . .)
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where the weights wk,j are specified as follows:

w2n,2j−1 =
4

3
(j = 1, 2, . . . , n; n = 1, 2, . . .)

w2n,2j =
2

3
(j = 1, 2, . . . , n− 1; n = 2, 3, . . .)

w2n+1,2j−1 =
4

3
(j = 1, 2, . . . , n− 1; n = 2, 3, . . .) (2.2.5)

w2n+1,2j =
2

3
(j = 1, 2, . . . , n− 2; n = 3, 4, . . .)

w2n+1,2(n−1) =
17

24
(n = 2, 3, . . .)

w2n+1,2n−1 = w2n+1,2n =
9

8
(n = 1, 2, . . .).

We emphasize that the above outlined algorithm has been conceived with the specific aim of
disposing of an iterative procedure to evaluate g. Indeed, the numerical evaluation of g̃(t0 + kp)

follows from (2.2.4) in terms of the computed values at the previous times t0 +p, t0 +2p, . . . , t0 +
(k − 1)p, a computationally valuable feature that is not always shared by existing alternative

procedures.

The convergence of the above computational method is expressed by the following theorem.

Theorem 2.2.1 Let p be the discretization step, tm = t0 +Np with N ∈ N0, and set

∆kp := g(t0 + kp) − g̃(t0 + kp) (k = 1, 2, . . . , N ). (2.2.6)

Then,

lim
p→0

|∆kp| = 0 (k = 1, 2, . . . , N ) (2.2.7)

for all fixed kp.

Proof 2.2.1 The proof, extensively given in Appendix 2 of [23], is based on a suitable adaptation
of some arguments typical of the numerical analysis realm. It consists of showing that the

absolute error |∆kp| is bounded from above as follows:

|∆kp| ≤ 2Np e8Mkp/3 ω
[
(Ψg)Kp , 2p/3

]
, (2.2.8)

where

M = max
t0≤τ≤t≤tm

∣∣Ψ(t |τ)
∣∣ (2.2.9)

and

ω
[
(Ψg)kp , 2p/3

]
≡ sup

τ1,τ2∈[t0,t0+kp]
|τ1−τ2|<2p/3

∣∣∣g(τ1)Ψ(t0 + kp |τ1)− g(τ2)Ψ(t0 + kp |τ2)
∣∣∣ (2.2.10)

is the modulus of continuity of (Ψg)Kp in [t0, t0 + kp]. Since this continuity modulus tends to

0 as p → 0, (2.2.7) follows, being thus insured the convergence of the devised computational
procedure.
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A noteworthy feature of the above algorithm is its being implementable after simply spec-
ifying the initial data t0, x0, the functions m(t), h1(t), h2(t) that characterize the process, the

boundary S(t) and the discretization step p. Furthermore, it does not involve any heavy com-
putation, neither requires use of any library subroutines, Monte Carlo methods or other special

software packages to calculate high dimension multiple integrals, as for instance required in [73],
[74], [31] and [79].

The following examples are instrumental to indicate the efficacy of our computational pro-
cedures, as well as the extremely high achieved precision.

Example 2.2.1 (Brownian bridge) Let {X(t), t ∈ [0, 1)} be the zero-mean Gauss-Markov pro-
cess with covariance c(s, t) = s (1 − t) (0 ≤ s ≤ t < 1). For the ∩-convex boundary

S(t) = 1 − t

2
ln

{
1 +

√
1 + 8 e−4/t

4

}
(t ≥ 0), (2.2.11)

obtained by setting t0 = 0, d∗1 = d∗2 = 1, d1 = d2 = 0, c1 = c2 = 1/2 in (2.1.25) we have evaluated

g(t) ≡ g[S(t), t|0, 0] via (2.2.4). Tables 2.1 and 2.2 show, for some choices of times, the computed
density g̃(t), the cumulative distribution P̃ (t), the absolute error %a(t) = g(t) − g̃(t) and the

relative error %r(t) = [g(t) − g̃(t)]/g(t), the exact values of g(t) having been obtained from
(2.1.26). The integration step has been taken as 10−3 in Table 2.1, and as 10−4 in Table 2.2.

We note that from (2.1.27) applied to boundary (2.2.11), one has:

P (1) =

∫ 1

0
g[S(t), t|0, 0] dt =

1

2

(
e−2 + e−8

)
= 0.0678353730 (2.2.12)

within the precision range used for our computations. Evidently, this value is very close to
P̃ (0.99) in the case of Table 2.1, while coinciding with P̃ (0.99) in the case of Table 2.2.

Table 2.1: Brownian bridge and boundary (2.2.11). For the integration step 10−3, the computed

FPT pdf g̃(t), absolute error %a(t), relative error %r(t) and cumulative distribution P̃ (t) are
listed for various values of t.

t g̃(t) %a(t) %r(t) P̃ (t)

0.10 0.347459967E-01 -0.124900090E-15 -0.359466132E-14 0.644856704E-03
0.20 0.139954064E+00 -0.297650793E-12 -0.212677492E-11 0.100014935E-01
0.30 0.159385079E+00 -0.785003729E-10 -0.492520212E-09 0.255324243E-01
0.40 0.136708217E+00 -0.794865340E-09 -0.581432019E-08 0.405185953E-01
0.50 0.101835978E+00 -0.223092766E-08 -0.219070681E-07 0.524874424E-01
0.60 0.653465678E-01 -0.310597582E-08 -0.475308203E-07 0.608373477E-01
0.70 0.321204479E-01 -0.243059077E-08 -0.756711414E-07 0.656640738E-01
0.80 0.804695990E-02 -0.799463207E-09 -0.993497291E-07 0.675618836E-01
0.90 0.123300790E-03 -0.141406632E-10 -0.114684300E-06 0.678341757E-01
0.99 0.105579170E-37 -0.127528519E-44 -0.120789484E-06 0.678353740E-01
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Table 2.2: Same as in Table 2.1 but with the integration step 10−4.

t g̃(t) %a(t) %r(t) P̃ (t)
0.10 0.347459967E-01 -0.124900090E-15 -0.359466132E-14 0.644757990E-03
0.20 0.139954064E+00 -0.106026299E-13 -0.757579280E-13 0.100014449E-01
0.30 0.159385079E+00 -0.247568632E-11 -0.155327358E-10 0.255324319E-01
0.40 0.136708216E+00 -0.251180465E-10 -0.183734726E-09 0.405186213E-01
0.50 0.101835976E+00 -0.705221853E-10 -0.692507579E-09 0.524874724E-01
0.60 0.653465648E-01 -0.982059017E-10 -0.150284720E-08 0.608373766E-01
0.70 0.321204455E-01 -0.768602890E-10 -0.239287743E-08 0.656640977E-01
0.80 0.804695913E-02 -0.252824341E-10 -0.314186189E-08 0.675618963E-01
0.90 0.123300777E-03 -0.447208432E-12 -0.362697175E-08 0.678341755E-01
0.99 0.105579158E-37 -0.403327099E-46 -0.382013940E-08 0.678353730E-01

Example 2.2.2 We consider the Brownian bridge of Example 2.2.1 and the ∩-convex bound-

aries

S(t; t0) = d− t− t0
2 d

ln

{
1 +

√
1 + 8 e−4d2/(t−t0)

4

}

(t ≥ t0, d ∈ R). (2.2.13)

Note that these boundaries identify with those of (2.1.25) after setting in it d∗1 = d∗2 = d, d1 =
d2 = 0, c1 = c2 = 1/2. The cumulative distribution P̃ (t) at t = 1, obtained for various values

of d and t0 via (2.2.4), is shown in Table 2.3. Absolute and relative errors, ξa(1) = P (1)− P̃ (1)
and ξr(1) = [P (1) − P̃ (1)]/P (1), are also shown. They have been calculated by making use of

the exact value

P (1) =

∫ 1

t0

g[S(t; t0), t|0, t0] dt =
1

2

[
exp
(
− 2 d2

1 − t0

)
+ exp

(
− 8 d2

1 − t0

)]
, (2.2.14)

It should be pointed out that d = 0.50 and t0 = 0 yields the same problem earlier considered
by Durbin [31]. In Table 1 of [31] the values of the crossing probabilities, obtained by means

of successive approximations, are listed. The most accurate results shown in Durbin [31] were
obtained by truncating the series expansion of the first crossing pdf to the fourth term. The

related absolute error is −2 · 10−8. A better result is obtained via our simple numerical method.
Indeed, the one-order better absolute error ξa(1) = −5 · 10−9 is obtained via (2.2.4) with inte-

gration step 10−4.

Example 2.2.3 Let {X(t), t ∈ [0,∞)} be the standard Brownian motion. As a further ex-
ample of implementation of our numerical procedure, we have evaluated via (2.2.4) the FPT

density and cumulative distribution through boundaries S(t) = 0.5
√
t+ 1 and S(t) =

√
t+ 1

(see Tables 2.4 and 2.5). This has allowed us to compare our computations with those listed

in Table 1 of Ref. [13], that were ingeniously obtained by Daniels via a transformation from
an Ornstein-Uhlenbeck process with a constant boundary, followed by a numerical differentia-

tion of its cumulative FTP distribution ([51]), in order to circumvent the heavy computations
required by Durbin’s method [31]. Our results clearly support Daniels conjecture that his g1-

approximation globally yields better results then those obtained via his g2-approximation or by
the tangent approximation method [13].
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Table 2.3: Brownian bridge and boundaries (2.2.13). For integration step 10−4, the computed
cumulative distribution P̃ (1), absolute error ξa(1) and relative error ξr(1) are listed for various

values of d and t0.

d P̃ (1) ξa(1) ξr(1)
t0 = 0.0 0.25 0.744513827E+00 -0.454947562E-07 -0.611066676E-07

0.50 0.370932977E+00 -0.518469667E-08 -0.139774489E-07
0.75 0.167880733E+00 -0.647733311E-09 -0.385829454E-08
1.00 0.678353730E-01 -0.331178696E-10 -0.488209442E-09
1.25 0.219703301E-01 -0.594121974E-12 -0.270420139E-10
1.50 0.555450588E-02 -0.377562565E-14 -0.679741047E-12
1.75 0.109374557E-02 -0.954097912E-17 -0.872321623E-14
2.00 0.167731314E-03 0.433680869E-18 0.258556890E-14

t0 = 0.2 0.25 0.695303424E+00 -0.456968964E-07 -0.657222413E-07
0.50 0.308673218E+00 -0.465904054E-08 -0.150937637E-07
0.75 0.124333552E+00 -0.355789273E-09 -0.286157091E-08
1.00 0.410651993E-01 -0.789675964E-11 -0.192298096E-09
1.25 0.100579789E-01 -0.474585649E-13 -0.471849915E-11
1.50 0.180328165E-02 -0.724247051E-16 -0.401627250E-13
1.75 0.236539066E-03 -0.116551734E-17 -0.492737777E-14
2.00 0.226999649E-04 0.101643954E-18 0.447771414E-14

t0 = 0.4 0.25 0.623267323E+00 -0.458354389E-07 -0.735405829E-07
0.50 0.235136105E+00 -0.360244176E-08 -0.153206664E-07
0.75 0.769540257E-01 -0.110181100E-09 -0.143177825E-08
1.00 0.178378065E-01 -0.598483069E-12 -0.335513825E-10
1.25 0.273539248E-02 -0.581566045E-15 -0.212607898E-12
1.50 0.276542185E-03 -0.216840434E-18 -0.784113405E-15
1.75 0.184309265E-04 -0.880914265E-19 -0.477954412E-14
2.00 0.809798396E-06 0.370576914E-20 0.457616261E-14

2.3 Approximations for neuronal models by GM processes

Motivated by some unsolved problems of biological interest, such as the description of firing

probability densities for Leaky Integrate-and-Fire (LIF) neuronal models, we consider the first-
passage-time problem for Gauss-Markov diffusion processes along the line of [58]. This is essen-
tially based on a space-time transformation, originally due to [30], by which any Gauss-Markov

process can expressed in terms of the standard Wiener process. Starting with an analysis that
pinpoints certain properties of mean and autocovariance of a Gauss-Markov process, we are led

to the formulation of some numerical and time-asymptotically analytical methods for evaluating
first-passage-time probability density functions for Gauss-diffusion processes. Implementations

for neuronal models under various parameter choices of biological significance confirm the ex-
pected excellent accuracy of our methods.

Using more than one GM process and devoting a special care to the dimensional analysis of
the involved quantities, we slightly change the notation; for this reason, some definitions and

certain properties of Gauss-Markov processes are recalled hereafter. Let t be a parameter, that
in the sequel will be identified with the time, varying in a continuous set T . Let E(X) and
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Table 2.4: Brownian motion and boundary S(t) = 0.5
√
t+ 1. Integration step is 10−3.

t g̃(t) P̃ (t)
0.05 0.129274898E+01 0.223748238E-01
0.10 0.159630708E+01 0.100516304E+00
0.15 0.131926269E+01 0.173736012E+00
0.20 0.105653448E+01 0.232866032E+00
0.25 0.857737843E+00 0.280474807E+00
0.30 0.710190790E+00 0.319493408E+00
0.35 0.599029027E+00 0.352097912E+00
0.40 0.513479093E+00 0.379821327E+00
0.45 0.446245784E+00 0.403749874E+00
0.50 0.392394149E+00 0.424668141E+00
0.60 0.312271725E+00 0.459647598E+00
0.70 0.256190490E+00 0.487915717E+00
0.80 0.215186409E+00 0.511384269E+00
0.90 0.184153285E+00 0.531283251E+00
1.00 0.160002793E+00 0.548443159E+00
1.20 0.125164473E+00 0.576717999E+00
1.40 0.101517303E+00 0.599245664E+00
1.60 0.845937282E-01 0.617768940E+00
1.80 0.719835620E-01 0.633368612E+00
2.00 0.622844596E-01 0.646755302E+00
2.20 0.546308564E-01 0.658418112E+00
2.40 0.484625650E-01 0.668706273E+00

P(E) denote mean of random variable X and probability of the event E, respectively. Let us

consider the Gauss-Markov process
{
G(t), t ∈ T

}
with mean mG(t) := E [G(t)] and covariance

cG(τ, t) := E {[G(τ)−mG(τ)] [G(t)−mG(t)]} such that cG(τ, t) = uG(τ)vG(t) where uG(t) and

vG(t) are continuous functions in T .

Claim 2.3.1 Let x, y be admissible states of G(t) and τ < t, with t ∈ T 0. Then, the transition

probability density function fG(x, t|y, τ) of G(t) is normal with mean

MG(t|y, τ) = mG(t) +
vG(t)

vG(τ)
[y −mG(τ)] (2.3.1)

and variance

D2
G(t|τ) =

vG(t)

vG(τ)
[uG(t)vG(τ) − uG(τ)vG(t)] . (2.3.2)

From fG(x, t|y, τ) the infinitesimal moments of G(t) follow:

A(n)
G

(x, t) := lim
∆t→0

E {[G(t+ ∆t) −G(t)]n |G(t) = x}
∆t

, ∀n ≥ 1.

Claim 2.3.2 If mG(t), uG(t) and vG(t) are C1
(
T
)

class functions, the fourth order infinitesimal

moment A
(4)
G (x, t) vanishes. Hence, G(t) is a diffusion process whose transition pdf is a solution
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Table 2.5: Same as Table 2.3 with boundary S(t) =
√
t+ 1.

t g̃(t) P̃ (t)
0.2 0.222873116E+00 0.154108859E-01
0.3 0.280144236E+00 0.413536801E-01
0.4 0.277181917E+00 0.694873306E-01
0.5 0.255860533E+00 0.962062728E-01
0.6 0.231087153E+00 0.120554235E+00
0.7 0.207638450E+00 0.142471240E+00
0.8 0.186811581E+00 0.162170469E+00
0.9 0.168723835E+00 0.179925222E+00
1.0 0.153118413E+00 0.195998061E+00
1.2 0.127988932E+00 0.223988389E+00
1.4 0.108964682E+00 0.247599006E+00
1.6 0.942514658E-01 0.267860386E+00
1.8 0.826304147E-01 0.285504883E+00
2.0 0.732751189E-01 0.301063046E+00
2.5 0.564636052E-01 0.333179476E+00
3.0 0.454174648E-01 0.358473402E+00
3.5 0.376907849E-01 0.379144148E+00
4.0 0.320260184E-01 0.396504971E+00
4.5 0.277190389E-01 0.411394978E+00
5.0 0.243482807E-01 0.424379222E+00
5.5 0.216474620E-01 0.435854431E+00
6.0 0.194408787E-01 0.446108758E+00

of Fokker-Planck equation with drift and infinitesimal variance given by

A
(1)
G (x, t) = ṁG(t) + [x−mG(t)]

v̇G(t)

vG(t)
, (2.3.3)

A
(2)
G (x, t) = v2

G
(t) ṙG(t) ≡ A

(2)
G (t), (2.3.4)

where the dot over the letter denotes time derivative and rG(t) = uG(t)
vG(t)

.

Remark 2.3.1 Equations (2.3.3) and (2.3.4) show that for Gauss-diffusion processes the drift
is in general time-dependent and dependent on x at most linearly. The infinitesimal variance

depends at most on t.

Remark 2.3.2 Note that the non-uniqueness of the product form of the covariance of GM

processes is absent for MG(t|y, τ), D2
G(t|τ), A(1)

G (x, t) and A
(2)
G (x, t). Moreover, since rG(t) rep-

resents time and the product uG(t)vG(t) has dimension of the variance of G(t), there follows that
vG(t) has dimension of the square root of the infinitesimal variance.

Table 2.6 lists the functions of the interest for two well-known GM processes, namely the
standard Wiener {W (t), t ≥ 0} and Ornstein-Uhlenbeck {U(t), t ≥ 0} processes, henceforth

denoted by W (t) and U(t), respectively. Note that the dimensions of ς > 0 and ϑ > 0 are square
root of infinitesimal variance and time, respectively. For these processes they are both unity.
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Table 2.6: Notation and some properties of standard Wiener and Ornstein-Uhlenbeck processes. Here it is

assumed τ ≤ t, κ is a dimensionless arbitrary positive parameter, and ς and ϑ are both unity but with different

dimensions, which will play a role in the sequel.

Wiener: W (t) Ornstein-Uhlenbeck: U(t)

TW = [0,+∞[ TU = [0,+∞[

mW(t) = 0 mU(t) = 0

cW(τ, t) = ς2τ cU(τ, t) =
(
eτ/ϑ − e−τ/ϑ

)
e−t/ϑς2ϑ/2

uW(t) =
√
κςt uU(t) =

(
et/ϑ − e−t/ϑ

)√
κςϑ/2

vW(t) = ς/
√
κ vU(t) = e−t/ϑς/

√
κ

MW(t|y, τ) = y MU(t|y, τ) = ye−(t−τ )/ϑ

D2
W(t|τ) = ς2(t− τ) D2

U(t|τ) =
[
1− e−2(t−τ )/ϑ

]
ς2ϑ/2

A
(1)
W (x) = 0 A

(1)
U (x) = −x/ϑ

A
(2)
W (t) = ς2 A

(2)
U (t) = ς2

However, for dimensional considerations they will be denoted by these symbols in all formulas
concerning W (t) and U(t). Note that since cW(0, 0) = cU(0, 0) = 0, both W (t) and U(t) are

singular at t = 0 where they vanish with probability 1 (w.p. 1).

2.3.1 The Ornstein-Uhlenbeck process as a GM process

We shall now turn to the FPT problem in connection with the Ornstein-Uhlenbeck process. We
start by re-writing the relation (1.3.9).

Claim 2.3.3 The GM process
{
G(t), t ∈ [t0,+∞[

}
, having mean mG(t) and autocovariance

cG(τ, t) = uG(τ)vG(t) for τ ≤ t, such that G(t0) = mG(t0) w.p. 1, admits the following represen-
tation:

G(t) = mG(t) + ϕG,W(t) W [ρG,W(t)], t ∈ [t0,+∞[ (2.3.5)

where W (t) is the standard Wiener process, and

ϕG,W(t) =
vG(t)√
κς
, (2.3.6)

ρG,W(t) = κrG(t) (2.3.7)

with κ > 0 an arbitrary constant.

The central rule will be instead played by the following more suitable and general form of the
above relation involving the Ornstein-Uhlenbeck process.

Proposition 2.3.1 Let
{
G(t), t ∈ [t0,+∞[

}
be a GM process with mean mG(t), G(t0) = mG(t0)

w.p. 1 and autocovariance cG(τ, t) = uG(τ)vG(t) (τ ≤ t). Then,

G(t) = mG(t) + ϕG,U(t) U [ρG,U(t)], t ∈ [t0,+∞[ (2.3.8)
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where U(t) denotes the Ornstein-Uhlenbeck process of Table 2.6, and

ϕG,U(t) =
vG(t)√
κς

√
1 +

2κ

ϑ
rG(t), (2.3.9)

ρG,U(t) =
ϑ

2
ln

[
1 +

2κ

ϑ
rG(t)

]
(2.3.10)

with κ > 0 an arbitrary constant.

Since m0 = mG(t0) < SG(t0) and vG(t0) > 0, [SG(t0)−m0]/ϕG,U(t0) > 0, for the FPT pdf of the

GM process G(t) originating at m0 at time t0 through the threshold SG(t), one has

gG[SG(t), t] = ρ̇G,U(t) gU

[
SG(t) −mG(t)

ϕG,U(t)
, ρG,U(t)

]
(2.3.11)

where on the right hand side appears the FPT pdf of the Ornstein-Uhlenbeck process U(t)

originating at 0 at time 0 through transformed threshold SU[ρG,U(t)] = [SG(t) −mG(t)]/ϕG,U(t)
at the transformed time ρG,U(t).

Following [41], Eq. (2.3.11) can be seen to be of particular interest in the case of asymptoti-
cally constant and asymptotically periodic thresholds SU[ρG,U(t)], due to certain features of the
transition pdf as will be seen hereafter. In order to obtain our results in a form that will be di-

rectly implemented by us in the sequel, we shall restrain from a mathematically more rigorously
formulation and rely on the evident intuitive meaning of our formulas.

Claim 2.3.4 ([41]) Let SU(t) be an asymptotically constant threshold:

lim
t→+∞

SU(t) = SU,

and let θS be a constant representing the “relaxation” time of SU(t) on SU. Setting

hU := −ϑ lim
t→+∞

ψU[SU(t), t|y, τ ] =
SU√
πς2ϑ

e
− S2

U

ς2ϑ , (2.3.12)

for t� max{θS, ϑ} and for SU > 2
√
ς2ϑ one has

gU[SU(t), t] ' hU

ϑ
e−hU t/ϑ. (2.3.13)

Claim 2.3.5 ([41]) Let SU(t) be an asymptotically P -periodic threshold:

lim
n→∞

SU(nP + t) = sU(t)

with
sU(nP + t) = sU(t), n = 0, 1, . . . .

Then, setting

hU(t) := −ϑ lim
n→∞

ψU[SU(t+ nP ), t+ nP |y, τ ] = [sU(t) − ϑṡU(t)]
1√
πς2ϑ

e
−s

2
U(t)

ς2ϑ , (2.3.14)
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SU =

∫ P

0
sU(t)dt, ∆sU = max

0≤t≤P
sU(t) − min

0≤t≤P
sU(t),

and defining θs in analogy with θS of Claim 2.3.4, for t � max{θs, ϑ} and for SU − ∆sU/2 >
2
√
ς2ϑ one has:

gU[SU(t), t] ' hU(t)

ϑ
e
−
∫ t

0

hU(τ) dτ/ϑ
. (2.3.15)

In conclusion, whenever the transformed threshold SU[ρG,U(t)] approaches a constant or a peri-

odic function as the transformed time ρG,U(t) diverges, Claim 2.3.4 or Claim 2.3.5 can be used,
as appropriate.

2.3.2 An inverse problem

In a variety of applied fields, as a result of suitable hypothesis, one is led to models based on
stochastic differential equations such as

dX = f(X, t)dt+
1

ς

√
g(X, t)dW (2.3.16)

whose coefficients are defined in a domain I × T of plain x, t and where W (t) is the standard
Wiener process. The associated initial condition is customarilyX(t0) = x0 w.p. 1, t0 ∈ T . Then,
under suitable regularity conditions, the solution

{
X(t), t ∈ T

}
of (2.3.16) is a diffusion process

that, within Ito’s theory of stochastic integrals, has drift f(x, t) and infinitesimal variance g(x, t).
If X(t) has to be a diffusion Gaussian process, the coefficients of Eq. (2.3.16) must be such that

f(x, t) = xb1(t) + b2(t), (2.3.17)

g(x, t) = b3(t), (2.3.18)

with functions b1(t), b2(t) and b3(t) to be specified accordingly. As outlined in the foregoing,

the mean mX(t) and the autocovariance cX(τ, t) of
{
X(t), t ∈ T

}
play an essential role within

the FPT problem. In the following Proposition we can specify the GM diffusion process that is

solution of equation (2.3.16).

Proposition 2.3.2 Let bi(t), i = 1, 2, 3, be defined in [t0,+∞[ such that functions

B1(t) =

∫ t

t0

b1(τ) dτ,

∫ t

t0

b2(τ)e
−B1(τ ) dτ,

∫ t

t0

b3(τ)e
−2B1(τ ) dτ

exist in [t0,+∞[. Then, the solution of equation

dX = [Xb1(t) + b2(t)] dt+
1

ς

√
b3(t)dW (2.3.19)

with condition X(t0) = x0 w.p. 1 is the GM process
{
X(t), t ∈ [t0,+∞[

}
having mean

mX(t) =

[
x0 +

∫ t

t0

b2(τ)e
−B1(τ ) dτ

]
eB1(t), t0 ≤ t < +∞ (2.3.20)

and autocovariance

cX(τ, t) = eB1(t)eB1(τ )

∫ τ

t0

b3(ξ)e
−2B1(ξ) dξ, t0 ≤ τ ≤ t < +∞. (2.3.21)
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Proof 2.3.1 Recalling (2.3.3) and (2.3.4), we require that

A
(1)
X (x, t) = xb1(t) + b2(t),

A
(2)
X (t) = b3(t),

namely 




v̇X(t)/vX(t) = b1(t)
ṁX(t) −mX(t)v̇X(t)/vX(t) = b2(t)

v2
X(t)ṙX(t) = b3(t).

(2.3.22)

System (2.3.22) in the unknown mX(t), vX(t) and rX(t) must be solved under initial conditions
rX(t0) = 0 (and hence uX(0) = 0), and mX(t0) = m0.

Taking v(t0) as a positive real number, the first of Eqs. (2.3.22) immediately yields vX(t) =
v(t0)e

B1(t). After setting it in the third equation one then obtains

rX(t) =
1

v2(t0)

∫ t

t0

b3(τ)e
−2B1(τ ) dτ.

The autocovariance is thus expressed as rX(τ)vX(τ)vX(t). Finally, substituting b1(t) in place of
v̇X(t)/vX(t) in the second equation, one is led to a first order linear differential equation with

right hand side b2(t) and initial condition mX(t0) = m0, whose solution is readily seen to be
given by (2.3.20).

2.3.3 Leaky Integrate-and-Fire (LIF) neuronal model

In the sequel, the implications of Proposition 2.3.2 and of Claims 2.3.4 will be used to shed
light on a much discussed but still poorly understood features of the LIF neuronal model for the

release of action potentials of neurophysiological relevance. For brevity, we shall refer to [76] for
the relevant electrophysiological background and for some of the customary notation.

2.3.4 LIF model with constant stimulus

Let V (t) = ∆V (t) − ρ, where ∆V (t) denotes the electric potential difference (inside minus
outside) across the neuronal membrane, and ρ the resting potential to which in the absence of

stimulations ∆V (t) exponentially tends with a time constant θ. Therefore, in the absence of
stimulations, V (t) exponentially tends to zero with the same time constant θ. Further, let v0
denote the constant value that we assume to be instantaneously achieved by V (t) after each
firing, namely after the release of each action potential. Hereafter, we shall refer to V (t) simply

as to the membrane potential, and to v0 as to the reset potential. In view of the very large
number of excitatory and inhibitory synapses that are activated as a result of endogenous and

exogenous signals impinging on neurons, it is often legitimate to assume that V (t) undergoes
some kind of random changes after starting at v0. Since the much celebrated paper [36] in which

the evolution of V (t) was viewed as a random walk leading to the neuronal firing whenever
it reaches a preassigned threshold value, numerous paper have appeared to achieve a higher
degree of adherence of the mathematical models to the physiological reality. Some of these stem

out of phenomenological equations of type (2.3.19), as discussed for instance in [76] and in the
references indicated therein. In summary, the neuron’s firing is assumed to occur whenever V (t)
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attains the so-called firing threshold,1 which is instantaneously followed by the reset of V (t) to
v0. Here the neuron’s refractoriness arising after each firing is not taken in to account. This

is an approximation that should be acceptable whenever the firing frequency is not very high.
Within such a framework, the neuron’s firing pdf is modeled by the FPT pdf of the random

process modeling V (t) through the neuron’s threshold. Without loss of generality, in the sequel
we shall denote by t0 = 0 the instant when a firing is released and the membrane potential resets

at the initial value V (0) = v0.
Let θ and σ positive parameters with dimension of time and square root of infinitesimal

variance, respectively, and let µ denote a real parameter having dimension of drift. The LIF
model with constant stimulus is obtained from (2.3.16) by setting

f(v, t) = −v
θ

+ µ, g(v, t) = σ2 (2.3.23)

or, in the form (2.3.19), by setting

b1(t) = −1/θ, b2(t) = µ, b3(t) = σ2. (2.3.24)

Note that the functions in (2.3.24) denote, respectively, the inverse of the time constant of the
spontaneous decay of V (t) to the resting potential in the absence of stimuli, a constant stimulus

(or endogenous or exogenous origin) and the intensity of the random perturbation originating
from the overall action of excitatory and inhibitory potentials. By virtue of Proposition 2.3.2,{
V (t), t ∈ [0,∞[

}
is a GM process having mean

mV(t) = v0 e
−t/θ + µθ(1 − e−t/θ), 0 ≤ t < +∞ (2.3.25)

and autocovariance

cV(τ, t) =
σθ

2

(
eτ/θ − e−τ/θ

)
· σe−t/θ, 0 ≤ τ ≤ t < +∞

which implies

uV(t) =
σθ

2

(
e t/θ − e−t/θ

)
and vV(t) = σe−t/θ.

After setting κ = ϑ/θ, from (2.3.9) and (2.3.10) one obtains2:

ϕV,U := ϕV,U(t) =

√
σ2θ√
ς2ϑ

, t′ := ρV,U(t) =
ϑ

θ
t. (2.3.26)

Let now SV(t) ≡ SV be the firing threshold that we assume to be time-independent and

SU(t′) =

√
ς2ϑ√
σ2θ

[
SV − v0e

−t′/ϑ − µθ
(
1 − e−t

′/ϑ
)]

the transformed threshold obtained via (2.3.8), (2.3.25) and (2.3.26). By means of Eq. (2.3.11)
we are thus led to:

gV(SV, t) =
ϑ

θ
gU

[
SU(t′), t′

]
. (2.3.27)

1In the present notation, the firing threshold considered hereafter is the difference between the neurophysio-
logically defined neuronal threshold and the resting potential.

2Note the necessity of introducing the parameters ϑ and ς2 to make all quantities dimensionally correct.
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Since

lim
t′→+∞

SU(t′) =

√
ς2ϑ√
σ2θ

(SV − µθ)

by virtue of the Claim 2.3.4, the right hand side of (2.3.27) admits the approximation (2.3.13)
as far as √

ς2ϑ√
σ2θ

(SV − µθ) > 2
√
ς2ϑ⇔ (SV − µθ) > 2

√
σ2θ (2.3.28)

holds. From (2.3.27) we finally obtain:

gV(SV, t) '
ϑ

θ

hU

ϑ
e−hU t′/ϑ =

hV

θ
e−hV t/θ (2.3.29)

for t′ � ϑ ⇔ t� θ, where we have set

hV := −θ lim
t→+∞

ψV[SV, t|y, τ ] =
SV − µθ√
πσ2θ

e
−(SV − µθ)2

σ2θ = hU. (2.3.30)

2.3.5 LIF model with periodic stimulus

Recently (see [81, 82]) the problem of determining the pdf of the interspike intervals (ISI), namely

of the time intervals elapsing between pairs of successive firings, has been again raised. This is
of interest in order to ultimately arise to the information carried by the neuron’s spike trains.

While referring to [6] for some more detailed considerations and for a discussion concerning
the differences between ISI and FPT pdf’s, here we limit ourselves to pointing out that the

determination of the FPT pdf is the first unavoidable step towards the characterization of ISI
pdf3. In [82] the LIF model is considered under the assumption that the neuron is subject to

a deterministic periodic sinusoidal stimulus as well. See also [57] and reference therein. Hence,
a substantial difference now emerges with respect to the case of the LIF model with a constant

stimulus, in that in (2.3.24) one must take b2(t) = µ cos(ωt + ϕ), with µ assumed hereafter to
be a positive quantity. As a consequence, by virtue of Proposition 2.3.2, for all 0 ≤ t < +∞ the
GM process modeling the time course of the membrane potential has mean

mV(t) = v0 e
−t/θ +

µθ
[
cos(ωt+ ϕ) + ωθ sin(ωt + ϕ) − (cosϕ+ ωθ sinϕ) e−t/θ

]

1 + ω2θ2
. (2.3.31)

With analogous meanings of cV(τ, t), uV(t), vV(t), ϕV,U(t), ρV,U(t) ≡ t′ and SV as in Sect. 2.3.4,
Eq. (2.3.11) yields

gV(SV, t) =
ϑ

θ
gU

[
SU(t′), t′

]

where

SU(t′) =

√
ς2ϑ√
σ2θ

{
SV − v0e

−t′/ϑ − µθ

1 + (ω′ϑ)2
[

cos(ω′t′ + ϕ) + ω′ϑ sin(ω′t′ + ϕ)

−
(
cosϕ+ ω′ϑ sinϕ

)
e−t

′/ϑ
]}

with ω′ = ωθ/ϑ.

3Note that in the case of constant stimuli, the FPT pdf and the ISI pdf coincide.
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Let now P ′ = 2π/ω′. Then,

sU(t′) := lim
n→∞

SU(t′ + nP ′) =

√
ς2ϑ√
σ2θ

{
SV − µθ

1 + (ω′ϑ)2
[

cos(ω′t′ + ϕ)

+ω′ϑ sin(ω′t′ + ϕ)
]}
.

Hence, whatever frequency of the stimulus, use of Claim 2.3.5 can be made, provided

inf
ω′>0

min
t′>0

sU(t′) > 2
√
ς2ϑ ⇔

√
ς2ϑ√
σ2θ

(SV − µθ) > 2
√
ς2ϑ

⇔ (SV − µθ) > 2
√
σ2θ. (2.3.32)

Let us now note that from (2.3.14) in this case one has:

hU(t′) =

{
SV − µθ

1 + (ω′ϑ)2
[
(1− (ω′ϑ)2) cos(ω′t′ + ϕ) + 2ω′ϑ sin(ω′t′ + ϕ)

]}

× 1√
πσ2θ

e
−

{
SV − µθ

1+(ω′ϑ)2
[cos(ω′t′ + ϕ) + ω′ϑ sin(ω′t′ + ϕ)]

}2

σ2θ

(2.3.33)

=

{
SV − µθ

1 + ω2θ2
[
(1 − ω2θ2) cos(ωt+ ϕ) + 2ωθ sin(ωt + ϕ)

]}

× 1√
πσ2θ

e
−

{
SV − µθ

1+ω2θ2
[cos(ωt+ ϕ) + ωθ sin(ωt+ ϕ)]

}2

σ2θ

= −θ lim
n→∞

ψV[SV(t+ nP ), t+ nP |y, τ ] =: hV(t).

Hence, for t′ � ϑ ⇔ t� θ, if (2.3.32) holds, one obtains:

gV(SV, t) '
ϑ

θ

hU(t′)

ϑ
e
−
∫ t′

0
hU(τ ′) dτ ′/ϑ

=
hV(t)

θ
e
−
∫ t

0
hV(τ) dτ/θ

. (2.3.34)

2.3.6 Some approximations

In particular now we shall obtain some numerical and analytical approximations to the FPT
pdf. We shall also test the validity ranges of the approximations of the FPT pdf for the LIF
model based on Eq. (2.3.29). As pointed out, these are valid for t � θ and γ ≥ 1, where we

have now set

γ :=
SV − µθ

2
√
σ2θ

. (2.3.35)

Note, that the condition γ ≥ 1 is equivalent to (SV−µθ) > 2
√
σ2θ required in (2.3.28). We shall

finally design a correction procedure that for γ ≥ 1 yields a new approximation to the FPT pdf
valid for t ∈ [0,+∞[.
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We note that Eq. (1.3.12), valid for the FPT pdf of the GM process, can be thrown in the
form

g(t) = −ψ0(t) +

∫ t

t0

ψ(t, τ)g(τ)dτ (2.3.36)

with

ψ0(t) = ψG[SG(t), t|m0, t0], ψ(t, τ) = ψG[SG(t), t|SG(τ), τ ], g(t) = gG[SG(t), t].

We set
ti = t0 + i∆t, i = 0, 1, . . . (2.3.37)

with ∆t a suitable small positive real number, and denote by g0(t) the approximation to g(t)
obtained by solving Eq. (2.3.36) by the numerical method of [3]:

g0(ti) =






0, i = 0;

−ψ0(ti) + ∆t

i−1∑

j=0

ψ(ti, tj)g0(tj), i ≥ 1.
(2.3.38)

Approximation g0(t) will be used as a reference to evaluate the goodness of the new approx-

imations that will be discussed within the context of the LIF models.

Approximation for LIF model with constant stimulus

In the case of the LIF model with constant stimulus, the only characteristic time to be considered
is the decay constant θ of membrane potential V (t). Hence, we shall set ∆t = θ/M , with
M a suitable integer number. The validity of the approximation g0(t) to the FPT pdf g(t) is

manifested by the data of Table 2.7. These have been obtained by two methods: (i) by numerical
integration via (2.3.38) and (ii) by simulations of the sample paths of the membrane potential

via Eqs. (2.3.16) and (2.3.23) after discretizing it by Euler method. Further details are given in
the caption of Table 2.7.

We shall now proceed by sketching various approximations to g(t).
Let g1(t) be the approximation to g(t) provided by (2.3.29) for γ ≥ 1 and t ≥ tm � θ, where

m denotes a suitably chosen integer number. Setting

a :=
hV

θ
, (2.3.39)

at the times ti of (2.3.37), Eq. (2.3.29) yields:

g1(ti) = a e−ati , i ≥ 0. (2.3.40)

Parameter a can be expressed in terms of γ. Indeed, from (2.3.30), (2.3.35) and (2.3.39) there

follows:

a =
2γ

θ
√
π
e−4γ2

. (2.3.41)

We shall now obtain an extension of the approximation g1(t) for small times and to improve

the approximation level as well. To this purpose, we make use of the circumstance that in the
present model the kernel ψ(t, τ) of Eq. (2.3.36), due to (2.3.30), is such that:

lim
t→+∞

ψ(t, τ) = −a (2.3.42)
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Table 2.7: Percent relative differences of mean (A), standard deviation (B), coefficient of variation (C) and

skewness (D) of FPT for LIF model with constant stimulus. The indicated values have been obtained by evaluating

these quantities via the numerical method (2.3.38) and via the results of 105 sample path simulations. Parameters

have been chosen as follows: S = 10 mV, v0 = 2 mV, θ = 5 ms, γ = 0.5 (this choice having been suggested in order

not to make the simulation time exceedingly large), σ2 as in the first column and µ as indicated in the second

column and calculated via Eq. (2.3.35). The numerical approximation has been performed by setting ∆t = θ/100

in the interval [0, 50θ]. The sample path simulations have been computed via Eqs. (2.3.16) and (2.3.23) with

dt = θ · 10−4.
σ2 µ A B C D

2.000 1.368 1.09% 1.18% 0.09% 2.56%

4.000 1.106 1.27% 1.07% 0.19% 2.16%
6.000 0.905 1.35% 0.90% 0.44% 1.01%

8.000 0.735 1.36% 0.93% 0.42% 0.83%
10.000 0.586 1.47% 1.06% 0.41% 0.96%

12.000 0.451 1.51% 1.07% 0.44% 1.02%
14.000 0.327 1.47% 1.03% 0.43% 1.10%

16.000 0.211 1.56% 1.11% 0.44% 1.08%

1. Denote by l < m an integer number such that the function −ψ0(t) is an approximation to

g(t) in [0, tl] with a requested precision, and set:

g(t) :=

{
0, 0 ≤ t < tl;

ĝ(t) = ae−(t−tl)a, t ≥ tl;

ψ(t, τ) :=

{
ψ(t, τ), 0 ≤ t− τ < tm;

ψ̂(t, τ) = −a, t− τ ≥ tm.

2. We partition the time axis as follows:

0 ≤ t < tl, tl ≤ t < tl+m, t ≥ tl+m. (2.3.43)

3. For each t, the numerical algorithm is based on the following substitutions on the right-
hand-side of Eq. (2.3.36):

g(t) −→ g(t), ψ(t, τ) −→ ψ(t, τ). (2.3.44)

For the sake of brevity, we shall outline this procedure only for the (most cumbersome) case,
namely for t ≥ tl+m. Similarly, one proceeds in the other two cases specified in (2.3.43).
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Figure 2.1: For the LIF model with constant stimulus, approximations g0(t), g1(t) and g2(t) to the FPT pdf g(t)

normalized to a — namely to the inverse of the mean FPT of the asymptotic exponential approximation (2.3.29)

— are plotted for the following choice of parameters: S = 10 mV, v0 = 2mV and θ = 5ms. The values of σ2 and

µ are indicated for each plot. Times are expressed in units of θ. Having chosen γ = 0.8, µ is obtained via (2.3.35)

and parameter a of g1(t), due to (2.3.41), takes the value 0.01396 ms−1. For the numerical algorithm we have

taken ∆t = θ/100, tm = 8θ; tl = 2θ (when σ2 = 1mV2/ms) and tl = θ for the other two values of σ2. Largest

relative and absolute errors between g0(t) and g2(t) in the considered time interval 50θ are also indicated.

Performing substitutions (2.3.44) in Eq. (2.3.36), for t ≥ tl+m one obtains:

g(t) ' −ψ0(t) +

∫ tl

0

ψ(t, τ)g(τ) dτ +

∫ t−tm

tl

ψ(t, τ)g(τ) dτ +

∫ t

t−tm

ψ(t, τ)g(τ) dτ

= −ψ0(t) +

∫ t−tm

tl

ψ̂(t, τ)ĝ(τ) dτ +

∫ t

t−tm

ψ(t, τ)ĝ(τ) dτ

= −ψ0(t) − a

∫ t−tm

tl

ae−(τ−tl)a dτ +

∫ t

t−tm

ψ(t, τ)ĝ(τ) dτ

= −ψ0(t) − a+ ĝ(t− tm) +

∫ t

t−tm

ψ(t, τ)ĝ(τ) dτ.
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Figure 2.2: As in Figure 2.1, but with γ = 1.2 and consequently a = 0.00085 ms−1.

Hence, a new approximation g2(t) to g(t) at the times ti defined in (2.3.37) is finally obtained4:

g2(ti) =






−ψ0(ti), 0 ≤ i ≤ l;

−ψ0(ti) +
∆t

2
aψ(ti, tl) + ∆t

i−1∑

j=l+1

ψ(ti, tj)ĝ(tj), l < i ≤ l+m;

−ψ0(ti) − a+ ĝ(ti−m)

[
1 +

∆t

2
ψ(ti, ti−m)

]

+∆t

i−1∑

j=i−m+1

ψ(ti, tj)ĝ(tj), i > l+m.

(2.3.45)

Figures 2.1–2.3 show approximations g0(t), g1(t) and g2(t) to g for the values of parameters

indicated in the captions. In all of them the three parameters SV, v0 and θ have been fixed,
while in each figure, γ is a constant. Thus, due to (2.3.41), a is also a constant. The graphs show
that as γ increases, g2(t) yields an excellent approximation to g0(t) for all t ≥ 0. For instance,

for γ = 1.6, the largest relative error is 5%, while the largest absolute error is 2.30 · 10−6 ms−1.
It should be pointed out that largest errors occur around time tl, namely around the time when

the approximation is obtained by use of the function ψ0(t) alone. Hence, it is expected that
largest absolute and relative errors can be minimized by suitably choosing tl.

Finally, it must be explicitly noted that approximation g0(t) given by (2.3.38) requires that
at each instant ti all previously computed values of g0(t) be memorized and used, which makes

4Here a sum is taken as zero whenever the upper limit is less than the lower limit.
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Figure 2.3: Same as Figure 2.1, but with γ = 1.6 and consequently a = 0.00013 ms−1. Note that for such value

of γ approximations g2(t) and g0(t) are excellent.

the computation time grow quadratically with the number of iterations. However, for t−τ ≥ tm,

ψ(t, τ) can be approximated by −a. This suggests that a new numerical approximation g3(t)
can be constructed on the considered mesh as follows:

g3(ti) =






0, i = 0;

−ψ0(ti) + ∆t

i−1∑

j=0

ψ(ti, tj)g3(tj), 1 ≤ i < m;

−ψ0(ti) − a∆t

i−m∑

j=1

g3(tj) + ∆t

i−1∑

j=i−m+1

ψ(ti, tj)g3(tj), i ≥ m.

(2.3.46)

Hence, the calculation of g3(t) at each instant ti only needs to make use of its values at most

of previous m − 2 instants tj. This reduces the complexity of the numerical algorithm from
quadratic to linear. In addition, the computed values of g3(tj) at all instants tj preceding
ti−m+1 after contributing to the second sum in the third line of (2.3.46) are eliminated, with

consequent saving of storage space. Table 2.8 shows the largest absolute and relative errors
between g0(t) and g3(t) for all nine cases of Figures 2.1–2.3.

It should be stressed that approximation g3(t) is not an extension of approximation g2(t).

Indeed, g3(t) does not rely on the approximation (2.3.40), whereas it is a direct development of
g0(t), and thus unrelated to g1(t) and g2(t).
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Table 2.8: Maximum absolute and relative errors, ea and er , of g3(t) with respect to g0(t) are indicated for the

LIF model with constant stimulus. The listed parameters γ, σ2 and µ, as well as all other parameters, have been

chosen as in Figures 2.1–2.3 and it has been taken tm = 40 ms.

γ σ2 µ max ea max er

0.8 1.000 1.284 6.29·10−6 1.55·10−3

0.8 2.000 0.988 6.45·10−6 1.59·10−3

0.8 3.000 0.761 6.79·10−6 1.62·10−3

1.2 1.000 0.927 3.70·10−8 5.08·10−5

1.2 2.000 0.482 3.72·10−8 5,10·10−5

1.2 3.000 0.141 4.21·10−8 5.72·10−5

1.6 1.000 0.569 1.20·10−11 9.89·10−7

1.6 2.000 -0.024 1.64·10−11 1.35·10−6

1.6 3.000 -0.479 3.79·10−11 3.11·10−6

LIF Model with periodic stimulus

Let P the period of the stimulus. Set:

aV(t) =
hV(t)

θ
(2.3.47)

and

AV(t) =

∫ t

0
aV(τ)dτ, (2.3.48)

with hV(t) defined in (2.3.33). It is not difficult to prove that, if γ ≥ 1, hV(t) is non-negative.
Hence, AV(t) is also non-negative. In addition, it is strictly increasing, vanishes at t = 0, diverges

for t→ +∞ and satisfies AV(t+ nP ) = AV(t) + nAV(P ) for all (positive) integer n.

Recalling that θ is the characteristic time for the relaxation of SU(t′) on sU(t′) and that sU(t′)

is also P periodic, we set ∆t = min{θ/M, P/M} with M an integer to be specified in such a
way that a suitable time parsing is obtained in the numerical computations.

Let now denote by g4(t) the approximation to g(t) obtained via (2.3.34) under the assump-
tions γ ≥ 1 and t ≥ tm � θ, with m a suitable integer. Then, at the instants representing the

considered mesh (2.3.37), one has:

g4(ti) = aV(ti) e
−AV(ti), i ≥ 0. (2.3.49)

In order to obtain an extension of g4(t) we make use of the algorithm implemented for g2(t),

with the proviso that now ψ̂(t, τ) and ĝ(t) are given by:

ψ̂(t, τ) = −aV(t)

and

ĝ(t) = aV(t)e−[AV(t)−AV(tl)],

44



-6.0E-04

4.4E-03

9.4E-03

1.4E-02

1.9E-02

2.4E-02

2.9E-02

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

g 0(t ) g 4(t ) g 5(t )

t / P

g
t

/
(

)
w

max = 9.87 · 10 ms ; max = 1.62 · 10e er

-2 -1

a

-5

= 1 mV /ms, = 1.2845 mV/mss m
22

Þ= 0.8g
tl = 10 ms

-8.0E-04

9.2E-03

1.9E-02

2.9E-02

3.9E-02

4.9E-02

5.9E-02

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

g 0(t ) g 4(t ) g 5(t )

= 2 mV /ms, = 0.9881 mV/mss m
22

Þ= 0.8g
tl = 7.5 ms

g
t

/
(

)
w

max = 7.25 · 10 ms ; max = 1.92 · 10e er

-2 -1

a

-4

-2.0E-03

8.0E-03

1.8E-02

2.8E-02

3.8E-02

4.8E-02

5.8E-02

6.8E-02

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

g 0(t ) g 4(t ) g 5(t )

max = 8.60 · 10 ms ; max = 3.85 · 10e er

-2 -1

a

-4

tl = 6 ms
= 3 mV /ms, = 0.7606 mV/mss m

22
Þ= 0.8g

g
t

/
(

)
w

t / P

t / P

Figure 2.4: The approximations g0(t), g4(t) and g5(t) to FPT pdf g(t), normalized by angular frequency ω,

are plotted in the time scale t/P for the LIF model with P -periodic stimulus. Here, γ = 0.8 and S = 10 mV,

v0 = 2 mV, θ = 5 ms, P = 10θ, ϕ = 0. The values of σ2 and µ are also indicated. The numerical algorithms have

been implemented with ∆t = θ/100, tm = 8θ. The values of tl are indicated in next to each plot. The maximum

relative and absolute errors between g0(t) and g5(t) in the time interval of duration 50θ are also shown.

respectively. At the considered discrete instants ti, we thus obtain:

g5(ti) =






−ψ0(ti), 0 ≤ i ≤ l

−ψ0(ti) +
∆t

2
aV(tl)ψ(ti, tl) + ∆t

i−1∑

j=l+1

ψ(ti, tj)ĝ(tj), l < i ≤ l +m

−ψ0(ti) − aV(ti) + ĝ(ti−m)

[
hV(ti)

hV(ti−m)
+

∆t

2
ψ(ti, ti−m)

]

+∆t

i−1∑

j=i−m+1

ψ(ti, tj)ĝ(tj), i > l +m.

(2.3.50)
Figures 2.4–2.6 show the results of the computations with fixed γ and the following choices of
parameters: σ2 = 1, 2, 3 (mV2/ms). The approximations to g(t) are normalized by the threshold

angular frequency ω, and time is expressed in units of P . As before, µ is uniquely determined
by the pairs (γ, σ2).

Remark 2.3.3 Note that the terms depending on y and τ in ψV[SV(t), t|y, τ ] go to zero as fast
as e−(t−τ )/θ. Hence, approximating ψV[SV(t), t|y, τ ] by −a is acceptable as far as the difference
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Figure 2.5: As in Fig. 2.4 but with γ = 1.0.

between t and τ exceeds a few units of θ, thus being overcome the a priori requirement that such

an approximation only holds after some multiples of period P .

Use of this remark has been made in constructing the algorithms for obtaining Figures 2.4–2.6

in which tm = 8θ and P = 10θ have been taken.

Remark 2.3.4 In the case of the LIF model including a periodic stimulus, for the validity of

Eq. (2.3.34) condition γ ≥ 1 sometimes can be relaxed. Indeed, the minima of the periodic
transformed threshold depend on angular frequency ω, as shown for instance by (2.3.32), thus

being always larger than their infimum 2γ
√
ς2ϑ, see (2.3.32).

This remark leads one to the following conclusion. For very low-frequency stimuli, the asymptotic

periodicity of the threshold does not play a significant role, so that the considered LIF model
does not relevantly differ from that with a constant stimulus. In such cases, condition γ ≥ 1

remains essential for the validity of approximation (2.3.49). Such an approximation may instead
turn out to be very satisfactory for large values of the stimulus frequency even for values of γ less

than unity. This is shown for instance in Fig. 2.4 in which γ = 0.8, θ = 5 and P = 10θ, implying
ω = π/25. The excellent agreement of g4(t) with g0(t) for large times is indeed evident. We
point out that in Figures 2.4–2.6 the period of the asymptotic threshold has been taken rather

large (P = 10θ) to avoid total overlapping of the considered approximations to g0(t) in the
various plots.
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Figure 2.6: As in Fig. 2.4 but with γ = 1.2.

Similarly to the case of the LIF model with constant stimulus, the algorithm for determining
g0(t) can be improved by substituting ψ(t, τ) with −aV(t) whenever t − τ ≥ tm. The resulting

approximation, g6(t) is then:

g6(ti) =






0, i = 0;

−ψ0(ti) + ∆t

i−1∑

j=0

ψ(ti, tj)g6(tj), 1 ≤ i < m;

−ψ0(ti)− aV(ti)∆t

i−m∑

j=1

g6(tj) + ∆t

i−1∑

j=i−m+1

ψ(ti, tj)g6(tj), i ≥ m.

(2.3.51)

Table 2.9 lists the absolute and relative largest errors between approximations g0(t) and g6(t)

in the cases of the nine graphs of Figures 2.4–2.6. The advantages offered by approximation
g6(t) are similar to those of the previously considered approximation g3(t), namely linearity and

storage savings.
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Table 2.9: For the LIF model with periodic stimulus, maximum absolute and relative errors, ea and er, of g6(t)

with respect to g0(t) are indicated. The listed parameters γ, σ2 and µ, as well as all other parameters, have been

chosen as in Figures 2.4–2.6 and it has been taken tm = 40 ms.

γ σ2 µ max ea max er

0.8 1.000 1.284 3.51·10−8 2.23·10−4

0.8 2.000 0.988 4.36·10−7 4.17·10−4

0.8 3.000 0.761 1.31·10−6 5.28·10−4

1.0 1.000 1.106 3.21·10−9 5.84·10−5

1.0 2.000 0.735 5.71·10−8 1.25·10−4

1.0 3.000 0.451 2.16·10−7 1.69·10−4

1.2 1.000 0.927 1.83·10−10 1.22·10−5

1.2 2.000 0.482 5.09·10−9 3.07·10−5

1.2 3.000 0.141 2.71·10−8 4.95·10−5
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Chapter 3

Simulation algorithms and
comparing analysis

3.1 A simulation procedure

Let us consider a stationary normal process X(t) with zero mean and correlation function γ(t).

The spectral density Γ(ω) is defined as the Fourier transform of the correlation function γ(t):

Γ(ω) =

∫ ∞

−∞
γ(t) e−iω tdt. (3.1.1)

The inverse Fourier transform then provides the correlation function if the spectral density is
known. In this Section we shall outline a method, essentially proposed by J.N. Franklin [33],

to simulate sample paths of a stationary normal process originating from a given state X(0).
In the sequel we shall assume X(0) = 0; furthermore, we shall take γ(0) = 1, implying that

the variance of the process is unity. The pdf f [X(t) |X(0) = 0] is normal with zero mean and
variance 1 − γ2(t):

f(x, t | 0, 0) =
1√

2π[1− γ2(t)]
exp
{
− x2

2[1− γ2(t)]

}
. (3.1.2)

Hereafter we shall refer to various functions that we shall interprete as covariance functions.

Any such function γ(t) will then have to satisfy the following condition:

γ(0) = 1, |γ(t)|< 1 for t 6= 0. (3.1.3)

Let us now consider a linear filter whose output X(t) is given by

X(t) =

∫ t

−∞
g(t− s)W (s) ds =

∫ ∞

0
g(s)W (t− s) ds. (3.1.4)

Equation (3.1.4) can be viewed as a transformation induced by the convolution of the input
signal W with the characteristic function of the filter, e.g. its impulse response. The output
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signal X(t) at the current time t is thus the sum of the input signals weighted by g up to time t.
As is well known, g is said to be the impulse response because if an impulse signal W (s) = δ(s)

(where δ is the Dirac delta function) is the input to the system described by (3.1.4), then the
output is g(t):

X(t) =

∫ ∞

0
g(s) δ(t− s) ds = g(t). (3.1.5)

Of course, g(s) = 0 for s < 0, because for physically realizable systems, such as those that we

refer to, the output at any given time cannot depend on inputs at previous times.
Since the convolution operation is linear, if in (3.1.4) the input signal is stationary and

normal then also the output X(t) is stationary and normal. Moreover, if g is a real function
such are also X(t) and W (t).

Let us denote by ΓW (ω) and ΓX(ω) the spectral densities of input W (t) and output X(t)
respectively, and let us denote by G(ω) the Fourier transform of g(t). One can then prove that
the following relation holds:

ΓX(ω) = |G(ω)|2 ΓW (ω). (3.1.6)

Indeed, recalling (1.2.21) and (3.1.1) one obtains:

ΓX(ω) =

∫ ∞

−∞
e−i ω τ γX(τ) dτ =

∫ ∞

−∞
e−i ω τ E[X(t)X(t− τ)] dτ,

where by γX(t) we have denoted the covariance of X(t). Making use of (3.1.4) one then has:

ΓX(ω) =
∫∞
−∞e

−i ω τE
[∫∞

0 g(s)W (t− s) ds
∫∞
0 g(σ)W (t− τ − σ) dσ

]
dτ

=
∫∞
−∞e

−i ω τ dτ
∫∞
0 g(s) ds

∫∞
0 g(σ)E[W (t− s)W (t− τ − σ)] dσ.

Making then use of (1.2.21) one finds:

ΓX(ω) =

∫ ∞

0
g(s) ds

∫ ∞

0
g(σ) dσ

∫ ∞

−∞
e−i ω τ γW (τ + σ − s) dτ,

where in the last integral on the right hand side γW denotes the covariance of the process W .

Finally, making use of the transformation τ = u− σ + s and recalling (3.1.1) we obtain

ΓX(ω) =
∫∞
0 e−i ω s g(s) ds

∫∞
0 ei ω σ g(σ) dσ

∫∞
−∞ e−i ω u γW (u) du

=
∫∞
0 e−i ω s g(s) ds

∫∞
0 e−i ω σ g(σ) dσ ΓW (ω)

=
∫∞
0 e−i ω s g(s) ds

∫∞
0 e−i ω σ g(σ) dσ ΓW (ω)

= G(ω)G(ω) ΓW (ω) = |G(ω)|2 ΓW (ω).

Equation (3.1.6) is suggestive of a method to construct a normal process X(t) having a
preassigned spectral density ΓX(ω) ≡ Γ(ω). It is indeed sufficient to make use of (3.1.4) for the
case when the input signal W (t) is a normal process having spectral density ΓW (ω) ≡ 1, and

then select g(t) in such a way that its Fourier transform G(ω) satisfies |G(ω)|2 = Γ(ω). Hence,
substituting ΓW (ω) = 1 and |G(ω)|2 = Γ(ω) in (3.1.6), ΓX(ω) = Γ(ω) is immediately obtained.
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By such a procedure we have therefore obtained a process X(t) that is normal due to the
linearity of (3.1.4). Moreover, its spectral density ΓX(ω) is equal to the spectral density Γ(ω)

corresponding to the preassigned covariance γ(t).
The process W (t) whose spectral density has been assumed to be unit, is a zero-mean

stationary normal process. Furthermore, its covariance γ(τ) is the Dirac-delta function δ(τ), as
is immediately seen from the following relation:

ΓW (ω) =

∫ ∞

−∞
e−i ω τ γ(τ) dτ = 1. (3.1.7)

The process W (t), that henceforth we shall denote by Λ(t), identifies with the white noise.
Hence, it is an ideal process, which is not physically realizable because its variance is infinity at

all instants:
E[Λ2(t)] = γ(0) = δ(0) = ∞.

Furthermore, no matter how close (t1 6= t2) are the instants t1 and t2, the random variables

Λ(t1) and Λ(t2) are uncorrelated.
We are now left with the problem of determining the Fourier transform G(ω) such that

|G(ω)|2 = Γ(ω). This can be done by making use of a result due to Davenport and Root [14].
Namely, if Γ(ω) is a rational function satisfying the condition:

0 ≤ Γ(ω) ≤ ∞, Γ(ω) = Γ(−ω), lim
ω→±∞

Γ(ω) = 0, (3.1.8)

then it can be written in the form:

Γ(ω) =
∣∣∣
P (i ω)

Q(i ω)

∣∣∣
2
, (ω real), (3.1.9)

where P (z) and Q(z) are polynomials with real coefficients such that the degree of P is less
than the degree of Q and with the zeroes of Q(z) laying in the complex half-plain <(z) < 0. It
is thus evident that if we take

G(ω) =
P (i ω)

Q(i ω)
, (3.1.10)

the relation Γ(ω) = |G(ω)|2 immediately follows. Substituting (3.1.10) in (3.1.6) we thus obtain:

ΓX(ω) =
∣∣∣
P (i ω)

Q(i ω)

∣∣∣
2
ΓW (ω). (3.1.11)

If we now denote by D the operator d/dt, recalling that we have identified the input W (t) with

the white noise Λ(t), from (3.1.11) we obtain:

X(t) =
P (D)

Q(D)
Λ(t). (3.1.12)

Equation (3.1.12) should be interpreted in the following way: first we solve the differential
equation

Q(D) φ(t) = Λ(t) (3.1.13)

to obtain the stationary solution φ(t); the required output

X(t) = P (D) φ(t) (3.1.14)
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is then expressed as a linear combination of the derivatives of φ(t) whose order is less than the
degree of Q. Assume that P has degree m and the Q has degree n:

P (z) =
∑m

i=0 bi z
m−i = b0 z

m + b1 z
m−1 + . . .+ bm, (3.1.15)

Q(z) =
∑n

i=0 ai z
n−i = zn + a1 z

n−1 + . . .+ an, (a0 = 1). (3.1.16)

By virtue of (3.1.15) and (3.1.16) equations (3.1.13) and (3.1.14) become (n > m):

φ(t)n(t) + a1 φ(t)n−1(t) + . . .+ an φ(t) = Λ(t), (3.1.17)

X(t) = b0 φ(t)m(t) + b1 φ(t)m−1(t) + . . .+ bm φ(t) (3.1.18)

respectively. To calculate the desired input signal X(t) it is thus necessary to calculate the
derivative of φ(t) by means of the stochastic equation (3.1.17).

Let us now remark that if we introduce the state vector

v(t) =





φ(t)
φ′(t)

...
φ(n−1)(t)



 , (3.1.19)

then equation (3.1.17) can be re-written in the following compact form:

d

dt
v(t) = Av(t) + y(t). (3.1.20)

Here, matrix A is in canonical form:

A =





0 1 0 · · · 0

0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1

−an −an−1 −an−2 · · · −a1




(3.1.21)

and the input vector y(t) is given by

y(t) =





0
0
...

0
Λ(t)




. (3.1.22)

The simulation procedure aims at constructing sample paths of the process X(t) at the
instants t = 0,∆t, 2∆t, . . . where ∆t is a constant positive time increment. To this purpose it is

necessary to calculate the components of vector v(t) at the same instants. This can be achieved
by solving the system (3.1.20) of linear differential equations. Denoting by v(0) the vector of
the initial conditions, from (3.1.20) one obtains:

(3.1.23)
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Hence,

v(t+ ∆t) = eA(t+∆t) v(0) +
∫ t+∆t
0 eA(t+∆t−τ ) y(τ) dτ

= eA∆t

[

eAt v(0) +
∫ t
0 e

A(t−τ ) y(τ) dτ

]

+
∫ t+∆t
t eA(t+∆t−τ ) y(τ) dτ

= eA∆t v(t) +
∫∆t
0 eA(∆t−τ ) y(t+ τ) dτ. (3.1.24)

If we set

r(t) =

∫ ∆t

0
eA(∆t−τ ) y(t+ τ) dτ, (3.1.25)

one is led to the following relation:

v(t+ ∆t) = eA∆t v(t) + r(t). (3.1.26)

By calculating the matrix eA∆t and the vector r(t) it is possible to obtain from v(t) the state
vector v(t+ ∆t). By means of (3.1.26) one can then calculate by iteration the components of

the state vector v(t) at time t = k∆t (k = 1, 2, . . .).
We still have to show how one can calculate the state vector v(t) at initial time t = 0 and

how r(t) it can be determined at times t = k∆t (k = 1, 2, . . .). However, it is first necessary
to indicate how one can generate a sequence of n-dimensional normal vectors z(0), z(1), z(2), . . .

with mean equal to the null vector and covariance matrix M . This can be done by making use
of a sample of progressively increasing size generated by a sequence of i.i.d. standard normal
random variables Λ̃1, Λ̃2, Λ̃3, . . .. Setting

Λ̃(0) =




Λ̃1
...

Λ̃n



 , Λ̃(1) =




Λ̃n+1

...

Λ̃2n



 , Λ̃(2) =




Λ̃2n+1

...

Λ̃3n



 , . . . (3.1.27)

one obtains samples of independent, n-dimensional normal random variables having zero mean
and covariance matrix consisting of the identity matrix. Let now us recall that a real, positive-

definite symmetric square matrix M can be factorized as follows:

M = B BT , (3.1.28)

where B is a lower triangular matrix with positive elements on the diagonal (cf., for instance,
[44]). If we then set

z(i) = B Λ̃(i) (i = 0, 1, 2, . . .) (3.1.29)

it turns out that vectors z(i) are the required vectors. Due to the linearity of the mean value
operator and because of (3.1.28) the vectors defined by (3.1.29) are normal, with mean and

covariance given by

E
[
z(i)
]

= B E
[
Λ̃(i)

]
= 0, (3.1.30)

E
[
z(i)
(
z(i)
)T ]

= B E
[
Λ̃(i)

(
Λ̃(i)

)T ]
BT = BBT = M. (3.1.31)

We now calculate the state vector v(0), which is normal with zero mean and covariance

matrix
Mv = E[v(0) vT(0)] = E[v(t) vT(t)]. (3.1.32)
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Recalling (3.1.19) we then find that the elements Mij of Mv are given by

Mij = E
[
φ(i)(t) φ(j)(t)

]
(i, j = 0, 1, . . . , n− 1). (3.1.33)

To calculate the Mij’s we make use of the following formula (cfr. [33]):

Mij =






0, i+ j odd,

(−1)(j−i)/2m(i+j)/2, i+ j even,
(3.1.34)

where m0, m1, . . . , mn−1 can be computed by solving the following n linear algebraic equations

(−1)k
∑

q∈I

(−1)q an−2q+kmq =






0, k = 0, 1, . . . , n− 2,

1/2, k = n − 1,
(3.1.35)

with a0 = 1 and I = {i ∈ Z : k/2 ≤ i ≤ (n+ k)/2}. After the matrix Mv has been determined,
it can be factored out in the form (3.1.28) , for instance by means of Crout’s method. One then

obtains:
Mv = Bv B

T
v (3.1.36)

where Bv is a lower triangular matrix. If we then set

v(0) = Bv Λ̃(0), (3.1.37)

the vector v(0) thus obtained exhibits the desired features, i.e. is normal, with zero mean and

covariance matrix Mv. Therefore, we now dispose of the initial condition to be associated
to equation (3.1.26) . Let us now show how vector r(t) can be calculated at times t = k∆t

(k = 1, 2, . . .). First of all one can easily see that v(t) and r(t), given by (3.1.23) and (3.1.25)
respectively, are uncorrelated. Indeed, one has

E
[
r(t) vT(t)

]
=

∫ ∆t
0 eA(∆t−τ ) E

[
y(t+ τ) vT (0)

](
eAt
)T
dτ

(3.1.38)

+
∫ ∆t
0 eA(∆t−τ ) dτ

∫ t
0 E
[
y(t+ τ) yT (σ)

](
eA(t−σ)

)T
dσ.

Since

E
[
y(t+ τ) vT (0)

]
= 0 (t+ τ > 0) (3.1.39)

and
E
[
y(t+ τ) yT (σ)

]
= C δ(t+ τ − σ) (t+ τ > σ), (3.1.40)

where C is the positive semi-definite matrix

C =





0 0 · · · 0
0 0 · · · 0
...

...
. . .

...

0 0 · · · 1



 , (3.1.41)

by making use of (3.1.39) and (3.1.40) in (3.1.38), we find that the normal vectors r(t) and v(t)

are uncorrelated and hence independent. Therefore, r(t) can be calculated independently of
v(t). To this purpose it is necessary to calculate the covariance matrix

Mr = E
[
r(t) rT (t)

]
. (3.1.42)
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From (3.1.25) we have:

Mr =

∫ ∆t

0

dτ1

∫ ∆t

0

eA(∆t−τ1)E
[
y(t+ τ1) yT (t+ τ2)

](
eA(∆t−τ2)

)T
dτ2. (3.1.43)

Making use of (3.1.40) , after the substitution s = ∆t− τ from (3.1.43) we obtain

Mr =

∫ ∆t

0
eAsC

(
eAs
)T
ds. (3.1.44)

Let us denote by J(s) the function under the integral sign in (3.1.44) . Then,

d

ds
J(s) = AJ(s) + J(s)AT . (3.1.45)

Integrating both sides with respect to s in [0,∆t] and recalling (3.1.44) we obtain

eA∆t C
(
eA∆t

)T −C = AMr +MrA
T . (3.1.46)

Since the eigenvalues of A are the roots of polynomial Q(z) and since these have negative real

part, equation (3.1.46) admits the unique solution Mr. To calculate such matrix one has to
solve system (3.1.46) . Indeed, denoting by mij the elements of Mr and by dij the elements of

eA∆t, equation (3.1.46) can be re-written in the form of a system of n2 equations in as many
unknowns:

n∑

k=1

(
aikmkj + ajkmik

)
=






din djn, if i < n or j < n,

d2
nn − 1, if i = j = n.

(3.1.47)

However, due to the symmetry of Mr the number of equations and of unknowns reduces to
n(n+ 1)/2. System (3.1.47) then becomes:

∑

k≤j

aikmjk +
∑

k>j aikmkj +
∑

k≤i ajkmik +
∑

k>i ajkmki

=

{
din djn, if i = 1, 2, . . . , n; j = 1, 2, . . . , i (j < n),

d2
nn − 1, if i = j = n.

(3.1.48)

After the elements mij have been calculated, Mr can be written in the form (3.1.28) :

Mr = BrB
T
r , (3.1.49)

with Br a lower triangular matrix. Setting then

r(t) = Br Λ̃(k) for t = k∆t, (k = 1, 2, . . .), (3.1.50)

the vector r(t) is a normal sample with zero mean and covariance matrix Mr. We can now

calculate the components of the state vector v(t) at times t = 0,∆t, 2∆t, . . .. From (3.1.26) ,
(3.1.37) and (3.1.50) we obtain the initial condition and the iteration law for the computation
of v(t):

v(0) = Br Λ̃(0), (3.1.51)

v[(k+ 1)∆t] = eA∆t v(k∆t) +Br Λ̃(k), (k = 0, 1, . . .), (3.1.52)
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Finally, recalling (3.1.18) and (3.1.19) the sample path of the process X(t) can be obtained as
linear combination of the components v1(t), v2(t), . . . , vn(t) of vector v(t) as follows:

X(t) = b0 vm+1(t) + b1 vm(t) + . . .+ bm v1(t) when t = 0,∆t, 2∆t, . . . . (3.1.53)

Whenever it is required that X(t) originates at a given state X(0) = x0, it is sufficient to

calculate m out of the m+ 1 unknowns that appeared on the right hand side of (3.1.53) written
for t = 0. The (m+1)-th component of v(0) can be obtained by imposing that the left hand side

of (3.1.53) is changed to x0. Hence, one can for instance first calculate v1(0), v2(0), . . . , vm(0)
from (3.1.51) and then arise to vm+1(0) via (3.1.53) :

vm+1(0) =
x0 − [b1 vm(0) + . . .+ bm v1(0)]

b0
. (3.1.54)

3.2 Covariance function with damped oscillations

In this Section we shall implement the simulation procedure discussed in the foregoing. Let X(t)
be a stationary normal process with zero mean and correlation function ([96])

γ(τ) = e−β τ
cos(ατ − ψ)

cosψ
(τ ≥ 0), (3.2.1)

where α and β are positive real numbers and ψ is a real number such that

ψ ≤ arctan
β

α
. (3.2.2)

From (3.2.1) we see that γ(0) = 1. Since γ(τ) is an even function, to check that |γ(τ)| < 1 for
τ 6= 0 it is sufficient to show that

d

dτ
γ(τ)

∣∣∣
τ=0+

≤ 0. (3.2.3)

Indeed one has

d

dτ
γ(τ) = − e−βτ

cosψ

[
α sin(ατ − ψ) + β cos(ατ − ψ)

]
(τ ≥ 0) (3.2.4)

or
d

dτ
γ(τ)

∣∣∣
τ=0+

=
1

cosψ
(α sinψ − β cosψ) = α tanψ − β. (3.2.5)

From assumptions (3.2.2) it follows that (3.2.5) is not positive, i.e. (3.2.3) follows.

Let us now calculate the spectral density of X(t). Keeping in mind that γ(τ) is an even
function one has

Γ(ω) ≡
∫∞
−∞ e−i ω τ e−β |τ | cos(α,|τ |−ψ)

cosψ dτ

(3.2.6)

= 2
cosψ

∫∞
0 cos(ωτ) e−β τ cos(ατ − ψ) dτ,
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or

Γ(ω) = 2
cosψ

∫∞
0 cos(ωτ) e−β τ

[
cos(ατ) cosψ + sin(ατ) sinψ

]
dτ

(3.2.7)

= 2
∫∞
0 e−β τ cos(ωτ) cos(ατ) + 2 tanψ

∫∞
0 e−β τ cos(ωτ) sin(ατ).

From this expression we obtain

Γ(ω) =
∫∞
0 e−β τ

{
cos[(ω + α)τ ] + cos[(ω − α)τ ]

}
dτ

(3.2.8)

+ tanψ
∫∞
0 e−β τ

{
sin[(ω + α)τ ] + sin[(α− ω)τ ]

}
dτ.

Making use of

∫ ∞

0
e−β τ cos(ατ) =

β

α2 + β2
,

∫ ∞

0
e−β τ sin(ατ) =

α

α2 + β2
, (3.2.9)

from (3.2.8) we obtain

Γ(ω) =
β + (ω + α) tanψ

β2 + (ω + α)2
+
β + (α− ω) tanψ

β2 + (ω − α)2
(3.2.10)

Γ(ω) =

[
β+ω tanψ+α tanψ

] [
ω2−2αω+α2+β2

]
[
ω2+2αω+α2+β2

] [
ω2−2αω+α2+β2

]

+

[
β−ω tanψ+α tanψ

] [
ω2+2αω+α2+β2

]
[
ω2+2αω+α2+β2

] [
ω2−2αω+α2+β2

]

=
ω2
[
β+α tanψ−2α tanψ+β+α tanψ−2α tanψ

]

ω4+
(
α2+β2−4α2+α2+β2

)
ω2+
(
α2+β2

)2

+
2(α2+β2)

(
β+α tanψ

)

ω4+
(
α2+β2−4α2+α2+β2

)
ω2+
(
α2+β2

)2 .

Hence, we are finally led to the following expression:

Γ(ω) =
2
[(
β − α tanψ

)
ω2 +

(
β + α tanψ

)(
α2 + β2

)]

ω4 + 2
(
β2 − α2

)
ω2 +

(
α2 + β2

)2 . (3.2.11)

Note that (3.2.2) insures that spectral density (3.2.11) is positive.

We now write down Γ(ω) in the form (3.1.9) in the general case when

Γ(ω) =
d1 ω

2 + d2

ω4 + c1 ω2 + c2
(d1, d2 > 0; c21 − 4c2 < 0). (3.2.12)

In order to have Γ(ω) = |P (iω)/Q(iω)|2, from (3.2.12) we see that P (z) is a first degree poly-

nomial while the degree of Q(z) is two:

P (z) = b0 z + b1, (3.2.13)

Q(z) = z2 + a1 z + a2. (3.2.14)
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By imposing

Γ(ω) =
d1 ω

2 + d2

ω4 + c1ω2 + c2
=

∣∣∣∣∣
b0 i ω + b1

(i ω)2 + a1 i ω + a2

∣∣∣∣∣

2

,

e.g.

d1ω
2 + d2 =

∣∣b0 ω i+ b1
∣∣2, (3.2.15)

ω4 + c1ω
2 + c2 =

∣∣a1 ω i+ a2 − ω2
∣∣2, (3.2.16)

from which we obtain

d1 ω
2 + d2 = b20 ω

2 + b21,

ω4 + c1 ω
2 + c2 = ω4 + ω2(a2

1 − 2 a2) + a2
2.

Hence,
d1 = b20, d2 = b21, c1 = a2

1 − 2 a2, c2 = a2
2. (3.2.17)

From (3.2.17) we finally obtain the coefficients of polynomials (3.2.13) and (3.2.14):

b0 =
√
d1, b1 =

√
d2, a1 =

√
c1 + 2

√
c2, a2 =

√
c2. (3.2.18)

In the particular case of the process X(t) having covariance (3.2.1) , by identifying the spectral

density (3.2.11) with (3.2.12) , one finds

Γ(ω) = |P (iω)/Q(iω)|2,

with

P (z) =
√

2(β − α tanψ)z +
√

2(β + α tanψ)(α2 + β2) , (3.2.19)

Q(z) = z2 + 2βz + α2 + β2, (3.2.20)

where use of (3.2.13), (3.2.14) and (3.2.18) has been made.
To implement the simulation procedure, recalling (3.1.23)-(3.1.25) we have to solve the

stochastic differential equation (3.1.21) that is convenient to re-write as:

d

dt
v(t) = Av(t) + y(t), (3.2.21)

in which

v(t) =

(
φ(t)

φ′(t)

)
, A =

(
0 1

−α2 − β2 −2β

)
, y(t) =

(
0

Λ(t)

)
. (3.2.22)

By a well known procedure (see, for instance, [10]) the matrix eAt can be calculated. The final
result is

eAt =
e−βt

α

(
α cos(αt) + β sin(αt) sin(αt)

−(α2 + β2) sin(αt) α cos(αt) − β sin(αt)

)
. (3.2.23)

To obtain the matrix Mv = E
[
v(0)vT(0)

]
, we have to calculate (see (3.1.36) and (3.1.37)) the

quantities

Mij =






mi, i = j = 0, 1,

0, otherwise,
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where m0 and m1 are the solutions of the system

a2 m0 −m1 = 0, a1m1 =
1

2
.

Hence,

m0 =
1

2 a1 a2
=

1

4 β (α2 + β2)
, (3.2.24)

m1 =
1

2 a1
=

1

4 β
, (3.2.25)

so that

Mv =





1

4 β (α2 + β2)
0

0
1

4 β



 . (3.2.26)

Since Mv is diagonal, the factorization Mv = BvB
T
v is trivial:

Bv =





1

2
√
β (α2 + β2)

0

0
1

2
√
β



 . (3.2.27)

To calculate the elements mij of the matrix Mr = E
[
r(t)rT (t)

]
, let us remark that the linear

system (3.1.48) becomes

(
d11 d12

d21 d22

)(
0 0

0 1

)(
d11 d21

d12 d22

)
−
(

0 0

0 1

)

=

(
0 1

−α2 − β2 −2β

)(
m11 m12

m12 m22

)
+

(
m11 m12

m12 m22

)(
0 −α2 − β2

1 −2β

)

or:

(
d2

12 d12 d22

d12 d22 d2
22 − 1

)

(3.2.28)

=

(
2m12 m22 −m11 (α2 + β2) − 2 βm12

m22 −m11 (α2 + β2)− 2 βm12 −2m12 (α2 + β2) − 4 βm22

)
,

where we have denoted by dij the elements of e∆t.

Solving the system (3.2.28) , we obtain:

m11 =
1

α2 + β2

{ 1

4β

[
1 − d2

22 − d2
12 (α2 + β2)

]
− β d2

12 − d12 d22

}
, (3.2.29)

m12 =
d2

12

2
, (3.2.30)

m22 =
1

4β

[
1 − d2

22 − d2
12 (α2 + β2)

]
. (3.2.31)
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It is now necessary to write Mr in the form Mr = BrB
T
r , with Br a lower triangular matrix.

Denoting the elements of Br by bij, one has:

(
b11 0
b21 b22

)(
b11 b21

0 b22

)
=

(
m11 m12

m12 m22

)
,

that is

b211, b11 b21 = m12, b221 + b222 = m22.

We thus finally obtain

b11 =
√
m11, b21 =

m12√
m11

, b22 =

√

m22 −
m2

12

m11
. (3.2.32)

We are now in the position to construct sample paths of the normal process X(t) with

covariance (3.2.1) . Indeed, we first construct the sequence v(k∆t) (k = 0, 1, 2, . . .) and then
obtain X(k∆t) (k = 0, 1, 2, . . .). Recalling (3.1.51) and (3.1.52) one obtains:

v(0) =

(
v1(0)

v2(0)

)
=





1

2
√
β (α2 + β2)

0

0
1

2
√
β



 Λ̃(0), (3.2.33)

v[(k+ 1)∆t] =

(
v1[(k + 1)∆t]
v2[(k + 1)∆t]

)

=

(
d11 d12

d21 d22

)
v(k∆t) +

(
b11 0

b21 b22

)
Λ̃(k), (3.2.34)

where the elements dij of eA∆t are obtained from (3.2.23) while the bij’s are given by (3.2.32) .

The sequence Λ̃(k) (k = 0, 1, 2, . . .) consists of two-dimensional standard normal samples. The
values X(k∆t) can then be obtained by (3.1.53).

Recalling that b0 =
√

2(β − α tanψ) and b1 =
√

2(β + α tanψ)(α2 + β2), for k = 0, 1, 2, . . ., one

is led to the following expression:

X(k∆t) =
√

2(β − α tanψ)v2(k∆t) +
√

2(β + α tanψ)(α2 + β2) v1(k∆t). (3.2.35)

Note that if one wishes to condition the process on the initial state X(0) = x0, v2(0) must be

calculated as indicated by (3.2.33) and then v1(0) must be taken in such a way that

x0 = X(0) =
√

2(β − α tanψ)v2(0) +
√

2(β + α tanψ)(α2 + β2) v1(0),

that is

v1(0) =
1√

2(β + α tanψ)(α2 + β2)

[
x0 −

√
2(β − α tanψ) v2(0)

]
. (3.2.36)

We stress that the normal process X(t) with correlation function (3.2.1) is m.s. continuous
by virtue of the continuity of (3.2.1) in τ = 0. Furthermore, it is m.s. differentiable since γ̈(0) is

finite. Indeed, from (3.2.4) one obtains

d2

dτ2
γ(τ) = − e−βτ

cosψ

[
2αβ sin(ατ − ψ) + (β2 − α2) cos(ατ − ψ)

]
(τ ≥ 0), (3.2.37)
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so that
d2

dτ2
γ(τ)

∣∣∣
τ=0+

= β2 − α2 − 2αβ tanψ. (3.2.38)

From the symmetry of γ(τ) and hence of γ̈(τ), it follows d2γ(τ)/dτ2|τ=0 = d2γ(τ)/dτ2|τ=0+.
From (3.2.38) one then concludes that γ̈(0) is finite.

We remark that the process X(t) with correlation function (3.2.1) includes some well known
processes as a special case. If, for instance, we set β = α and ψ = π/4 in (3.2.1) one is led to
the B-2 type autocorrelation function

γ(τ) =
√

2 e−α τ cos
(
α τ − π

4

)
(τ ≥ 0). (3.2.39)

If, instead, we set ψ = 0 in (3.2.1) we obtain the following autocorrelation function

γ(τ) = e−β τ cos(α τ) (τ ≥ 0). (3.2.40)

3.2.1 About simulations

The simulation procedure is suitable to be implemented on supercomputers. Indeed, the error

induced by Monte Carlo methods is of the order of 1/
√
N , where N is the sample size. The latter

must therefore be large. Since the sample paths of our process are generated independently of one

another, it is possible to construct a vector algorithm to generate simultaneously a preassigned
number of sample paths. Hence, by using a supercomputer the computation time is expected to

shrink relevantly on the grounds of the mentioned parallel construction of the sample paths of
the process.

We have set up a FORTRAN program suitable to be implemented on a supercomputer. We
stress that the program has been conceived in a way to generate simultaneously independent
sample paths of a Gaussian process. As soon as a sample path crosses the preassigned boundary

S(t), the instant when such a crossing takes place is recorded and then used to build up a
histogram of the unknown FCT pdf through S(t). Such a sample path is then discarded and the

simulation is carried on starting afresh from the initial state x0 = 0 at the initial time t0 = 0.
The simulation procedure consists of constructing the states X(k∆t) of X(t) at times tk =

k∆t (k = 1, 2, . . .). We assume that th = h∆t is the first crossing time of S(t) if

X(h∆t) ≥ S(h∆t), X(k∆t) < S(k∆t) (k = 0, 1, . . . , h− 1).

Hence, the error due to the introduced discretization is not larger then ∆t. Therefore, the error
for a sample of size N (that is of the order 1/

√
N ) has to be of the same order of magnitude. It

is thus convenient to choose N ≈ (∆t)−2.
The program is structured in such a way that after establishing the form of the covariance

and of the boundary, the choice of the involved parameters can be made. Input variables are
also the total number of sample paths to be simulated, the number of those that must be
simultaneously simulated, the discretization step and the histogram’s bin. At each step by

means of (3.1.53) the states of the simultaneously simulated sample paths are determined. The
vector Λ̃ of the random numbers necessary to simulate the sample paths is constructed by a
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subroutine that adds up twelve pseudo-random numbers that are uniformly distributed in [0, 1].
The error committed by exploiting such a subroutine can be disregarded with respect to the

intrinsic error of the simulation procedure due to the use of discrete sample paths and of a
limited number of samples.

3.2.2 First passage time estimations

In order to widen up the field of investigation and thus reach more general conclusions on the
dependence of the shape of the FCT pdf on the boundary’s and covariance’s oscillations, we

referred to the following covariance function:

γ(t) = exp{−βt} cosαt , t ≥ 0, (3.2.41)

with α, β > 0. The corresponding spectral density is then:

Γ(ω) =
2β(ω2 + α2 + β2)

ω4 + 2ω2(β2 − α2) + (α2 + β2)2
. (3.2.42)

Differently from the B-2 case, the presence in (3.2.41) of the two independent parameters α

and β permit us to assign arbitrarily the period P = 2π/α of the periodic component of the
covariance as well as the damping time-constant β.

We recall that the covariance (3.2.41) has been included in some models of processes of
practical interest. Furthermore, often it turns out to be very useful to approximate certain

empirical covariance functions in which positive values are succeeded by negative values, such
as in the fading of radio signals received by a radar (see, for instance, [96]).

Since the spectral density (3.2.42) is of rational type, with the denominator a polynomial

of degree less then the numerator, Franklyn’s method is again applicable; hence, the algorithm
can be exploited.

Our simulation results allow us to come to some conclusions on the features of the FPT

density. In particular, its shape is seen to depend not only on the barrier, but also on the
numerical values of the parameters that characterize the covariance function of the process.

Indeed, the density is unimodal, bimodal or multimodal depending on the values of the input
parameters.

We then considered the estimation of how much our vector implementation of the simula-

tion algorithm is responsible for inducing distortions on the shape of the FPT densities. Such
distortion is indeed due to the limitation of the specified total number NPMAX of sample

paths, namely on the programmed stopping of the simulation algorithm. Such an imposed con-
dition implies that the sample paths being simulated, and such that they have not reached the

threshold as yet, do not contribute to the characterization of the FPT density. To estimate
the induced distortions, our algorithm has been implemented both in vector and in serial ways

and the respective results have been compared. In the serial programming modality, NPARA
is set to one, so that the algorithm simulates a pre-assigned number of sample paths each of
which has eventually reached the barrier. In order to evaluate the effects of exclusion of longer

paths, a TMAX parameter is introduced, representing the maximum time for the first crossing
of the barrier by a sample path to occur. Then, if the sample path has not reached the barrier
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during such a maximum time, it is removed from the set of paths to be used for the density
representation, and the consequent change of the density should consequently become apparent.

The conclusions we can draw from the numerous considered cases in which the parameters
of covariance function and the parameter TMAX have been made to vary, can be summarized

claiming that there is no significant distortion in the shape of the evaluated density even though
the set of paths simulated in the presence of TMAX is different from the set of paths obtained

without using TMAX . In conclusion, it is reasonable to claim that, at least with the parameters
and conditions chosen for our simulations, the number of “slower”paths is sufficiently small not

to affect significantly the shape of the histogram. The histograms for some of our simulation
results are shown in each couple of Figures 3.1-3.6. In each of them, on left-hand-side the

histogram with equal width cells is plotted for the serial simulation of 104 sample paths of the
process, while on the right-hand-side the histogram is plotted for the simulation of the same
number of sample paths constructed by using TMAX . In these figures, the step size ∆t of the

simulated process is set to 0.01, whereas the values of the parameters α and β are specified in
the captions to the figures.
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Figure 3.1: On left: α = 1.0, β = 1.0. On right: α = 1.0, β = 1.0, TMAX = 7.0
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Figure 3.2: On left: α = 1.0, β = 0.5. On right: α = 1.0, β = 0.5, TMAX = 7.0
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Figure 3.3: On left: α = 1.0, β = 0.1. On right: α = 1.0, β = 0.1, TMAX = 7.0
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Figure 3.4: On left: α = π, β = 0.1. On right: α = π, β = 0.1, TMAX = 7.0
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Figure 3.5: On left: α = π, β = 0.01. On right: α = π, β = 0.01, TMAX = 7.0
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Figure 3.6: On left: α = (2/3)π, β = 0.5. On right: α = (2/3)π, β = 0.5, TMAX = 7.0
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3.3 Parallel simulations for upcrossing FPT problem

The specified simulation procedure can be applied to any Gaussian process having rational spec-
tral densities. Since the sample paths of the simulated process are generated independently of

one another, this simulation procedure is particularly suited for implementation on supercom-
puters. Implementation has been made both in vector [20] and parallel modalities [22] after

suitable changes required for our computational needs. In particular, the parallel code has
been implemented in FORTRAN 90 on a 128-processor IBM SP4 supercomputer, based on MPI
language for parallel processing, made available to us by CINECA1.

To evaluate the upcrossing FPT pdf, we have randomly chosen the initial state x0, according
to the initial pdf γε(x0). To this purpose, the following acceptance-rejection method has been

implemented (cf. for instance [52]). At first step we generate the rvs U1, U2 uniformly distributed
in (0, 1). At second step we consider the rv Y = lnU2 + S(0)− ε, with pdf

fY (y) =

{
ey−[S(0)−ε], if y < S(0)− ε

0, if y ≥ S(0)− ε.

Hence, if U1 < exp{−(Y + 1)2/2}, we set X0 = Y , otherwise we return to first step. Then, X0

is a rv generated according to the pdf γε(x0).

Thanks to such simulation procedure, reliable histograms estimating the FPT pdf have been
constructed and the different shapes of the FPT pdf as induced by the oscillatory behaviors of

covariances and thresholds have been explored (cf. for instance [22] and references therein).

3.3.1 Using the diffusive approximation

Within the context of single neuron’s activity modeling, a completely different, apparently not

very much known, approach was proposed by Kostyukov ([54]). There, a non-Markov process
of a Gaussian type was assumed to describe the time course of the neural membrane potential.

The K-model makes use of [87] notion of correlation time. Namely, let X(t) be a stationary
Gaussian process with zero mean, unit variance and correlation function ρ(t). Then,

ϑ =

∫ +∞

0
|ρ(τ)| dτ < +∞ (3.3.1)

is the correlation time of X(t). Under the assumption that limε→0 P{X(0) < S(0)− ε} ' 1, i.e.

limε→0 γε(x0) ' f(x0), Kostyukov works out an approximation q(t) to the upcrossing FPT pdf.
Such an approximation is obtained as solution of the integral equation

∫ t

0

q(τ)K(t, τ) dτ = 1 − Φ[S(t)]. (3.3.2)

This can be solved by standard routine methods, due to the form

K(t, τ) =






1
2 t = τ

1 − Φ

{
(t− τ + ϑ)S(t)− ϑS(τ)√

(t− τ + ϑ) (t− τ)

}

, t > τ,

1Interuniversity Consortium of Northeastern Italy for Automatic Computing
(http://www.cineca.it/en/index.htm)
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with Φ(z) the distribution function of a standard Gauss rv. Equation (3.3.2) stems out of the
approximation of the transition density function P [S(τ), t− τ | x, 0] of the original process with

that of a Wiener process whose infinitesimal variance is the reciprocal of the correlation time:

P [S(τ), t− τ | x, 0] ≈ 1√
2 π (t− τ)/ϑ

exp

{
− [x− S(τ)]2

2(t− τ)/ϑ

}
.

Note that, under the above approximation, in equation (3.3.2) the unique parameter ϑ charac-

terizes the considered class of stationary standard Gaussian processes.
The K-model has been analyzed by us to pinpoint and similarities and differences with

respect to our models, as indicated in the next Section.

3.3.2 Markov versus non-Markov models

In order to analyze how the lack of memory affects the shape of the FPT densities, we have

compared the behavior of such densities for Gauss-Markov processes with that of Gauss non-
Markov processes ([28]).

Let us consider a zero-mean stationary Gaussian process X(t) with the simplest type of
correlation of concrete interest for applications [96]:

ρ(t) = e−β |t| cos(α t), α, β ∈ R
+. (3.3.3)

Furthermore, let us assume that the threshold is of the following type:

S(t) = d e−β t

{

1 − e2 β t − 1

2 d2
ln

[
1

4
+

1

4

√

1 + 8 exp

(
− 4 d2

e2 β t − 1

) ]}

, (3.3.4)

with d > 0.
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Figure 3.7: Plot of the threshold S(t) given in (3.3.4) for β = 0.5 and d = 0.25, 0.50 (bottom to
top).

As shown in Figure 3.7, the threshold (3.3.4) does not sweep the entire state space. Hence,
the K-model is not applicable. Moreover due to the form of correlation (3.3.3), X(t) is not

mean-square differentiable. Thus, the series expansions (1.3.15) and (1.3.16) do not hold for
FPT pdfs. Nevertheless, specific assumptions on parameter α help us characterize the shape of

the FPT pdf.
We start assuming α = 0, so that the correlation function (3.3.3) factorizes as

ρ(t) = e−β τ e−β (t−τ ) β ∈ R
+, 0 < τ < t.
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In such case X(t) becomes Gauss-Markov. For thresholds of form (3.3.4), the FPT pdf g(t) of
a Gauss-Markov process admits the following closed form:

g(t) =
4 d β eβ t

e2β t − 1

√

1 + 8 exp

(
− 4d2

e2 β t − 1

)

1 +

√

1 + 8 exp

(
− 4d2

e2 β t − 1

) f [S(t), t | 0, 0], (3.3.5)

where f [S(t), t | 0, 0] is the transition pdf of the process.
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Figure 3.8: Plots refer to FPT pdf of a zero-mean Gaussian process characterized by correlation
function (3.3.3), with β = 0.5, in the presence of the threshold (3.3.4), with d = 0.25. In (a),

the function g(t) in (3.3.5) has been plotted, corresponding to α = 0. The estimated FPT pdf
g̃(t) with α = 10−10 is shown in (b), with α = 0.25 in (c) and with α = 0.5 in (d).

For a zero-mean Gauss-Markov process characterized by the correlation function (3.3.3) with
β = 0.5 and α = 0, the FPT pdf given in (3.3.5) for threshold (3.3.4) is plotted in Figure 3.8(a)
for d = 0.25 and in Figure 3.9(a) for d = 0.5. Note that as d increases the mode increases,

whereas the corresponding ordinate decreases.
Setting α 6= 0 in (3.3.3), the Gaussian process X(t) is no longer Markov. Its spectral density

is of a rational type:

Γ(ω) =
2 β (ω2 + α2 + β2)

ω4 + 2ω2 (β2 − α2) + (β2 + α2)2
. (3.3.6)

Since in (3.3.6) the degree of the numerator is less than the degree of the denominator, it is

possible to apply the simulation algorithm described in [24] in order to estimate the FPT pdf
g̃(t) of the process. The number of simulated sample paths was set equal to 107. The estimated

FPT pdf’s g̃(t) through the threshold (3.3.4) with d = 0.25 are plotted in Figures 3.8(b), 3.8(c),
3.8(d) when β = 0.5 and α = 10−10, 0.25, 0.5 respectively. Figures 3.9(b), 3.9(c), 3.9(d) refer to
the choice d = 0.5. Note that as α increases, the shape of the FPT pdf g̃(t) becomes flatter and

the related mode increases. Furthermore, comparing Figures 3.8(a), 3.8(b) and Figures 3.9(a),
3.9(b), g̃(t) looks very similar to g(t) for small values of α, since the simulated non-Markov
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Figure 3.9: Same as in Figure 3.8 with d=0.5.

stochastic process X(t) turns out to be approximatively an exponentially correlated process.
This last circumstance becomes more evident in Figure 3.10, where plots of upcrossing FPT pdf

are shown for the same choice of correlation time (3.3.1). Here we refer to the test threshold
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Figure 3.10: For different choices of ϑ in the interval [0.008, 1.024], with threshold S(t) =
−t2/2− t+ 5, plots of the estimated g̃u(t) are shown in (a) and plots of g̃u(t) for the OU-model

in (c). Same in (b) and (d) for values of ϑ in [2.048, 200].

S(t) = −t2/2 − t+ 5 (3.3.7)

and to the following choice of correlation times:

i) ϑ = 0.008, 0.016, 0.032, 0.064, 0.128, 0.256, 0.512, 1.024;

ii) ϑ = 2.048, 4, 8, 16, 32, 64, 100, 200.
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By simulating the stochastic process with correlation function (3.3.3), where α = 10−5 and
β = ϑ−1, plots of estimated upcrossing FPT pdf are shown in Figure 3.10(a) for correlation times

i), and in Figure 3.10(b) for correlation times ii). Instead, for the OU model, corresponding to
a stationary Gauss-Markov process with

m(t) = 0, c(s, t) = e−(t−s)/ϑ (s < t),

upcrossing FPT density approximations g̃u(t), evaluated via (1.3.14), are plotted in Figure

3.10(c) for correlation times i) and in Figure 3.10(d) for correlation times ii). Note that plots
in Figures 3.10(a), 3.10(b) look similar to plots in Figures 3.10(c), 3.10(d), since the simulated
stochastic process X(t) turns out to be approximatively an exponentially correlated process

with correlation time ϑ = β−1, like as in the case of the OU process. When ϑ > 4, the obtained
upcrossing FPT pdf’s are practically indistinguishable from a Gaussian with mean 5 and variance

1. A more general asymptotic result holds for a class of diffusion processes with normal standard
one-dimensional pdf [21].

We have performed further numerical comparisons, including approximations of the FPT
pdf for the Wiener model and for the K-model, by considering a variety of thresholds and of ϑ

values [29].
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Figure 3.11: For different choices of ϑ in the interval [0.008, 1.024], with the same threshold as

in Figure 3.10, plots of g̃u(t) for the Wiener model are shown in (a) and plots of q(t) for the
Kostyukov-model in (c). Same in (b) and (d) for values of ϑ in [2.048, 200].

Indeed, the Wiener model corresponds to a non stationary Gauss-Markov process with

m(t) = 0, c(s, t) = s/ϑ (s < t).

By numerically solving (1.3.14) for the same threshold (3.3.7), plots of the corresponding up-
crossing FPT density approximations g̃u(t) are shown in Figure 3.11(a) for correlation times i)

and in Figure 3.11(b) for correlation times ii). Following the outline given in [55], the results of
the numerical solution of equation (3.3.2) are shown in Figure 3.11(c) for correlation times i) and
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in Figure 3.11(d) for correlation times ii). Again, growing ϑ induces a continuous displacement
of the upcrossing FPT pdf towards a Gaussian with mean 5 and variance 1. This is in agreement

with the analytical results obtained in [55] for infinitely large correlation time.
Comparing Figure 3.10 with Figure 3.11, it is evident that for large correlation times the

FPT pdf’s exhibit similar features, whereas large deviations are present for small correlation
times.

Our investigations in this direction suggest that the validity of approximations of the firing
densities in the presence of memory effects by the FPT densities of Markov type depends on the

magnitude of the correlation time. Some preliminary results on the asymptoties of firing pdf’s
as the correlation time diverges can be found in [42] for the case of non-stationary Gauss-Markov

processes.

3.3.3 Asymptotic results for Gaussian processes

Computational as well as analytical results have indicated that for the class of one-dimensional

diffusion processes, admitting steady state densities, the conditioned FPT pdf is susceptible of
an excellent non-homogeneous exponential approximation for large thresholds, either asymptot-
ically constant or asymptotically periodic [67, 41]. These results have led us to gain some insight

on the asymptotic behavior of the FPT pdf for correlated non-Markov Gaussian stochastic pro-
cesses of concrete interest for certain applications. Specifically, we have considered the class of

zero-mean stationary Gaussian processes characterized by damped oscillatory covariances [87]:

ρ(t) = e−a|t|
[
cos
(
ω t) +

a

ω
sin
(
ω|t|)

]
, (3.3.8)

where a and ω are positive real numbers. Functions of form (3.3.8) can be conveniently used

to approximate experimental covariance functions that, starting from a unit initial maximum
amplitude, asymptotically tend to zero with an exponential envelope. From (3.3.8) one has

ρ(0) = 1. Furthermore ρ̇(0) = 0 and ρ̈(0) = −(a2 + ω2) < 0, since for t > 0 there holds:

ρ̇(t) = −ρ̇(−t) = −e
−a t

ω
(a2 + ω2) sin(ω t),

(3.3.9)

ρ̈(t) = ρ̈(−t) =
e−a t

ω
(a2 + ω2)

[
a sin(ω t) − ω cos(ω t)

]
.

Gaussian processes with covariances (3.3.8) are mean-square differentiable so that series expan-

sions (1.3.15) and (1.3.16) are available for the FPT pdf. Due to the outrageous complexity
of the numerical evaluations of the involved partial sums on account of the form of its terms,

we have undertaken a completely different approach to investigate the asymptotic behaviour of
FPT pdf [24]. We have estimated the FPT pdf by means of the simulation procedure and then
we have made use of the least squares method to fit an exponential density λe−λt. The least

squares estimate of λ has been determined as

λ̂ = −
∑n

i=1 ti ln[1 − G̃(ti)]∑n
i=1 t

2
i

, (3.3.10)

where G̃(t) is the cumulative FPT distribution function of the random sample (t1, . . . , tn) gener-
ated by the simulation procedure. The results of our computations have shown that for certain
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periodic thresholds of the form

S(t) = S0 +A sin
(
2 π t/Q

)
, S0, Q > 0, A ≥ 0 (3.3.11)

and not very distant from the initial value of the process, the FPT pdf soon exhibits damped

oscillations having the same period of the threshold. Furthermore, starting from rather small
times, the estimated FPT densities g̃(t) appears to be representable in the form

g̃(t) ' Z̃(t) e−
bλ t,

where λ̂ is given in (3.3.10) and Z̃(t) is a periodic function having the same period of the threshold
(3.3.11). All forthcoming figures refer to the case a = ω = 1 in (3.3.8). Figures 3.12(a) and
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Figure 3.12: The estimated FPT density g̃(t) is compared with the exponential density λ̂ e−
bλ t,

for the constant threshold S = 2.5 and λ̂ = 0.0094905 in (a) and for the periodic threshold

S(t) = 2.5 + 0.1 sin(2 π t/3) and λ̂ = 0.0096462 in (c). The corresponding functions Z̃(t) =

g̃(t) e
bλ t are plotted respectively in (b) and in (d).

3.12(c) show the estimated FPT densities g̃(t), as well as the exponential densities λ̂ e−
bλ t in

which the parameter λ̂ has been evaluated according to (3.3.10). Figures 3.12(b) and 3.12(d)

show plots of Z̃(t) ' g̃(t) e
bλ t. Their periodic behavior in the cases of periodically varying

threshold is apparent.

The goodness of the exponential approximation increases as the threshold is progressively

moved farther apart from the starting point of the process. The more the periodic threshold is
far from the starting point of the process, the more the exponential approximation improves.

The relevance and the validity of such an unexpected numerical result have been confirmed
by rigorous mathematical arguments [27]. Indeed, as threshold (3.3.11) moves away from the

initial state of the process, the FPT pdf approaches a non-homogeneous exponential density of
the type

g(t) ∼ h(t) exp

{
−
∫ t

0
h(τ)dτ

}
, (3.3.12)
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where h(t) is a function depending on the correlation function and on the threshold. The function
h(t) is completely specified by the knowledge of the asymptotic behavior of the first term W1(t)

in the series expansion (1.3.15), within the conditioned FPT problem, and of the first term

W
(ε)
1 (t) in the series expansion (1.3.16), within the upcrossing one, as we show in some details

hereafter.
Let us consider an asymptotically constant threshold

S(t) = S0 + %(t), t ≥ 0, (3.3.13)

with S0 ∈ R and where %(t) ∈ C1[0,+∞) is a bounded function independent of S0 such that

lim
t→+∞

%(t) = 0 and lim
t→+∞

%̇(t) = 0. (3.3.14)

If

lim
t→+∞

ρ(t) = 0 and lim
t→+∞

ρ̇(t) = 0, (3.3.15)

then

R(S0) := lim
t→+∞

W1(t) =

√
−ρ̈(0)

2 π
exp

{
−S

2
0

2

}
, (3.3.16)

i.e. the function W1(t) in (1.3.15) approaches a constant value as t increases. If we add the
hypothesis

lim
t→+∞

ρ̈(t) = 0 lim
S0→+∞

%

(
t

R(S0)

)

S0
= 0, (3.3.17)

with R(S0) defined in (3.3.16), then for S0 → +∞ equation (3.3.12) holds with h(t) = R(S0)
for all t > 0. When the covariance has the form (3.3.8), hypotheses (3.3.15) hold due to (3.3.9).

Moreover, when the threshold is constant, i.e. S(t) = S0, hypotheses (3.3.14) and (3.3.17) are
fulfilled so that from (3.3.16) one has

R(S0) =

√
a2 + ω2

2 π
e−S

2
0/2. (3.3.18)

Set S0 = 2.5, as in Figure 3.12(a). From (3.3.16) it follows that, as t increases, W1(t) approaches
the constant value R(2.5) = 0.00988928 very near to λ̂ = 0.0094905, estimated via (3.3.10).

Recall that W1(t) is seen to provide an upper bound to the FPT pdf in (1.3.15) as first-order
approximation. As Figure 3.13 shows, W1(t) is a good approximation of g only for small values

of t.
Now, let us consider an asymptotically periodic threshold of the form (3.3.13), with

lim
k→+∞

%(t+ kQ) = Z(t), lim
k→+∞

%̇(t+ kQ) = Ż(t), (3.3.19)

where Z(t) is a periodic function of period Q > 0 satisfying

∫ Q

0
Z(τ) dτ = 0. (3.3.20)
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Figure 3.13: For the constant threshold S(t) = 2, the estimated FPT density g̃(t) is plotted with

the function W1(t) in (a) and with the function R(2) exp{−R(2) t} in (b), where R(2) is given
in (3.3.18).

If (3.3.15) holds, then

R[Z(t)] := lim
k→+∞

W1(t+ k Q) =

√
−ρ̈(0)

2 π
exp

{
− [S0 + Z(t)]2

2

}
(3.3.21)

×
[

exp

(

− [Ż(t)]2

2 [−ρ̈(0)]

)

−
√

π

2 [−ρ̈(0)]
Ż(t) Erfc

(
Ż(t)√

2 [−ρ̈(0)]

)]

with Erfc(z) := 1 − Erf(z), z ∈ R. Hence, as t increases, W1(t) becomes a positive periodic
function with period Q, providing an upper bound to g(t) for all t > 0, as shown in Figure

3.14(a). Since Z(t) does not depend on S0, one also has limS0→+∞R[Z(t)] = 0.
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Figure 3.14: In the presence of the periodic threshold S(t) = 2 + 0.1 sin(2 π t/3), the estimated

FPT density g̃(t) is compared with the functionW1(t) in (a) and with the asymptotic exponential

approximation R[Z(t)] exp
{
−
∫ t
0 R[Z(τ)] dτ

}
in (b).

In order to prove that the FPT pdf exhibits the exponential trend (3.3.12) for large times in
the presence of the asymptotically periodic threshold (3.3.13), with %(t) such that (3.3.19) hold,

it is necessary to introduce a new function ϕ(t), non-negative and monotonically increasing, that
is the solution of ∫ ϕ(t)

0
R[Z(τ)] dτ = α t, ∀t > 0 (3.3.22)
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where

α ≡ α(S0) =
1

Q

∫ Q

0
R[Z(τ)] dτ.

When (3.3.15) are fulfilled and

lim
t→+∞

ρ̈(t) = 0 lim
S0→+∞

%

(
ϕ

(
t

α

))

S0 + Z

(
ϕ

(
t

α

)) = 0, (3.3.23)

equation (3.3.12) holds with h(t) ≡ R[Z(t)], given in (3.3.21), and Z(t) = A sin(2πt/Q), as
Figure 3.14(b) shows.

Figure 3.15 shows the same non-homogeneous exponential approximations of upcrossing FPT

densities for large thresholds, either asymptotically constant or asymptotically periodic.
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Figure 3.15: For ε = 0.1, the estimated FPT density g̃
(ε)
u (t) is compared with the function

W
(ε)
1 (t) for S(t) = 1.0 in (a) and for S(t) = 1 + sin(2πt/3) in (c). For the same choice of

ε, the estimated FPT density g̃
(ε)
u (t) is compared with asymptotic exponential approximation

R[Z(t)] exp
{
−
∫ t
0 R[Z(τ)] dτ

}
for the constant thresholds S(t) = S0 = 1.5 and S(t) = S0 = 2

in (b) and for the periodic threshold S(t) = 2 + 0.1 sin(2πt/3) in (d).

It should be stressed that the analytic and the simulation results constitutes only a pre-

liminary step towards the construction of neuronal models based on non-Markov processes.
Nevertheless, we stress that the unveiling of properties of the asymptotic behavior of FPT may

turn out to be useful also for the description of neuronal activities at small times whenever
the intrinsic time scale of the microscopic events involved during the neuron’s evolution is much
smaller than the macroscopic observation time scale, or when the asymptotic regime is exhibited

also in the case of firing thresholds not too distant from the resting potential, similarly to what
was already pointed out by us in connection with the OU neuronal model [41].
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3.4 Upcrossing FPT problem and the correlation time

Upcrossing first passage time problems play a relevant role in various applied contexts including

neuronal modeling [56]. Now, for a one-dimensional, non-singular stationary Gaussian process
{X(t), t≥ 0} with zero mean, unit variance and correlation function %(t), we focus our attention

on

τc :=

∫ +∞

0

∣∣%(ϑ)
∣∣ dϑ (3.4.1)

defined, as in (3.3.1), as the correlation time of the process.
The available analytical results on upcrossing first-passage-time (FPT) problems are scarce,

fragmentary and mainly centered on diffusion processes. Furthermore, if one deals with models
involving processes characterized by memory effects the Markov property breaks down, and one
is forced to face FPT problems for correlated processes (cf., for instance, [21], [27], [29] and

[42]). Hence, in order to construct neuronal models that are based on such processes, we recall
that a one-dimensional, non-singular stationary Gaussian process with zero mean, unit variance

and correlation function %(t), such that %(0) = 1, %̇(0) = 0 and %̈(0) < 0, the derivative of X(t),
Ẋ(t), with respect to t, exists in the mean-square sense. Let S(t) ∈ C1[0,+∞) be an arbitrary

function such that X(0) = x0 < S(0), T the FPT random variable and

g(t | x0) =
∂

∂t
P (T < t) (3.4.2)

is the FPT pdf of X(t) through S(t) conditional upon X(0) = x0. Furthermore, we recall that

∀n ∈ N and 0 < t1 < t2 < . . . < tn we denote by Wn(t1, t2, . . . , tn | x0) dt1 dt2 · · ·dtn the joint
probability that X(t) crosses S(t) from below in the intervals (t1, t1 + dt1), (t2, t2 + dt2), . . .,

(tn, tn + dtn) given that X(0) = x0. The function Wn can be written as:

Wn(t1, t2, . . . , tn | x0) =

∫ +∞

Ṡ(t1)

dξ1

∫ +∞

Ṡ(t2)

dξ2 · · ·
∫ +∞

Ṡ(tn)

dξn

n∏

i=1

[ξi − Ṡ(ti)]

×p2n[S(t1), t1; S(t2), t2; . . . ; S(tn), tn; ξ1, t1; ξ2, t2; . . . ; ξn, tn | x0], (3.4.3)

where p2n(x1, t1; x2, t2; . . . , xn, tn; ξ1, t1; ξ2, t2; . . . ; ξn, tn | x0) is the joint pdf of x1 = X(t1),

x2 = X(t2), . . ., xn = X(tn), ξ1 = Ẋ(t1), ξ2 = Ẋ(t2), . . ., ξn = Ẋ(tn) conditional upon
X(0) = x0. Furthermore, we consider the following functions:

Q1(t | x0) = W1(t | x0)

(3.4.4)

Qn(t | x0) =

∫ t

0
dt1

∫ t

t1

dt2 · · ·
∫ t

tn−2

dtn−1 Wn(t1, t2 . . . , tn−1, t | x0)

(n = 2, 3, . . .),

with t0 > 0. We note that Qn(t | x0) dt gives the probability that X(t) crosses S(t) from below

at least n times and the last crossing occurs in the interval (t, t+dt) conditional upon X(0) = x0.
Denoting by qk(t | x0) dt the probability that X(t) crosses S(t) for the k-th time in (t, t+ dt),
one has (cf. [77]):

Qn(t | x0) =

+∞∑

k=n

(
k − 1

n− 1

)
qk(t | x0) (n = 1, 2, . . .). (3.4.5)
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Since g(t | x0) ≡ q1(t | x0), setting n = 1 in (3.4.5) one obtains:

g(t | x0) = W1(t | x0) −
+∞∑

k=2

qk(t | x0), x0 < S(0). (3.4.6)

Making use of (3.4.5) and (3.4.6), an alternative expression (to the equation (1.3.15)) for g(t | x0)

can be obtained in terms of the functions Qn(t | x0):

g(t | x0) = W1(t | x0) −
+∞∑

n=2

(−1)nQn(t | x0), x0 < S(0). (3.4.7)

We stress that although (3.4.7) gives a formal analytical expression for the FPT pdf through

arbitrary time-dependent boundaries, no reliable numerical evaluations appear to be feasible
due to the complexity of (3.4.4). However, the explicit expression of W1(t | x0) can be evaluated
([74]):

W1(t | x0) =
|Λ3(t)|1/2

2 π [1− %2(t)]
exp

{
− [S(t)− x0 %(t)]

2

2 [1− %2(t)]

}

×
[
exp

{
−σ

2(t | x0)

2

}
−
√
π

2
σ(t | x0) Erfc

(
σ(t | x0)√

2

)]
, (3.4.8)

where

|Λ3(t)| = −%̈(0)
[
1 − %2(t)

]
−
[
%̇(t)

]2
,

(3.4.9)

σ(t | x0) =

(
1 − %2(t)

|Λ3(t)|

)1/2{
Ṡ(t) +

%̇(t)
[
%(t)S(t)− x0

]

1 − %2(t)

}
,

and

Erfc(z) =
2√
π

∫ +∞

z
e−y

2
dy, z ∈ R. (3.4.10)

We note that W1(t | x0), providing an upper bound to the FPT pdf in (3.4.7), is a good
approximation of g(t | x0) only for small values of t.

We shall now focus on the upcrossing FPT problem. We assume that a subset of sample
paths of X(t) originates at a state X0 that is a random variable with preassigned pdf

γε(x0) =






f(x0)

[∫ S(0)−ε

−∞
f(z) dz

]−1

, x0 < S(0)− ε

0, x0 ≥ S(0)− ε,

(3.4.11)

where ε > 0 is a fixed real number and f(x0) denotes the pdf of X(0):

f(x0) =
1√
2 π

exp
{
−x

2
0

2

}
, x0 ∈ R. (3.4.12)

Then,

T
(ε)
X0

:= inf
t≥0

{t : X(t) > S(t)} (3.4.13)
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is the ε-upcrossing FPT of X(t) through S(t). Its pdf is related to the conditional FPT pdf
g(t | x0) as follows [25]:

g(ε)
u (t) =

∫ S(0)−ε

−∞
g(t | x0) γε(x0) dx0 (t ≥ 0). (3.4.14)

Making use of (3.4.6) in (3.4.14), one has:

g(ε)
u (t) = W

(ε)
1 (t) −

+∞∑

k=2

q
(ε)
k (t) (3.4.15)

where

W
(ε)
1 (t) =

∫ S(0)−ε

−∞
W1(t | x0) γε(x0) dx0, (3.4.16)

q
(ε)
k (t) =

∫ S(0)−ε

−∞
qk(t | x0) γε(x0) dx0 (k = 2, 3, . . .). (3.4.17)

In Section 3.4.1, under suitable assumptions on the correlation function %(t) and on the threshold

S(t), the behavior of g
(ε)
u (t) as τc → +∞ is analyzed. Furthermore, in Section 3.4.2 two different

stationary Gaussian processes are considered and the results of some simulations are finally
presented.

3.4.1 Asymptotic results for large correlation times

Proposition 3.4.1 Let {X(t), t ≥ 0} be a non-singular stationary Gaussian process with zero
mean, unit variance and correlation function %(t) such that %(0) = 1, %̇(0) = 0 and %̈(0) < 0.

Furthermore, let S(t) ∈ C1[0,+∞) be an arbitrary monotonically decreasing function such that
Ṡ(t) − [S(t)− S(0)]/t≤ 0. If the correlation function of X(t) satisfies

lim
τc→+∞

%(t) = 1, lim
τc→+∞

%̇(t) = lim
τc→+∞

%̈(t) = 0, lim
τc→+∞

%̇(t)

1 − %2(t)
= −1

t
, (3.4.18)

then

ϕ(ε)(t) := lim
τc→+∞

W
(ε)
1 (t) =






−Ṡ(t) γε[S(t)], S(t) < S(0)− ε,

0, otherwise.

(3.4.19)

Proof 3.4.1 We first note that (3.4.8) can be written as:

W1(t | x0) =
1√

2 π [1 − %2(t)]
exp

{
− [S(t)− x0 %(t)]

2

2 [1− %2(t)]

}

×
{
−1

2

[
Ṡ(t) +

%̇(t)
[
%(t)S(t)− x0

]

1 − %2(t)

]
Erfc

(
σ(t | x0)√

2

)

+
1

2 π

√
|Λ3(t)|

1− %2(t)
exp

[
−σ

2(t | x0)

2

]}
, (3.4.20)
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with x0 < S(0), and where |Λ3(t)| and σ(t | x0) are given in (3.4.9). By virtue of assumptions
(3.4.18) one has:

lim
τc→+∞

|Λ3(t)|
1 − %2(t)

= 0,

(3.4.21)

lim
τc→+∞

{
Ṡ(t) +

%̇(t)
[
%(t)S(t)− x0

]

1− %2(t)

}
= Ṡ(t) − S(t) − x0

t
·

Furthermore, by noting that

Ṡ(t) − S(t)− x0

t
< Ṡ(t) − S(t)− S(0)

t
≤ 0

and recalling (3.4.18), one is led to:

lim
τc→+∞

σ(t | x0) = −∞. (3.4.22)

Hence, due to (3.4.21) and (3.4.22), from (3.4.20) one obtains:

lim
τc→+∞

W1(t | x0) = −
[
Ṡ(t) − S(t) − x0

t

]
δ
[
S(t)− x0

]
, (3.4.23)

where δ denotes the Dirac delta-function. Taking the limit as τc diverges in (3.4.16) and making
use of (3.4.23), Eq. (3.4.19) immediately follows. �

Remark 3.4.1 Under the assumptions of Proposition 3.4.1, if limt→+∞ S(t) = −∞ one has:

∫ +∞

0

ϕ(ε)(t) dt = 1. (3.4.24)

Proof 3.4.2 Integrating both sides of (3.4.19) with respect to t in (0,+∞), we obtain:

∫ +∞

0

ϕ(ε)(t) dt = −
∫

D

Ṡ(t) γε[S(t)] dt,

where D = {t : S(t) < S(0)− ε}. Hence, recalling (3.4.11), Eq. (3.4.24) immediately follows. �

Remark 3.4.1 shows that as τc → +∞ the ε-upcrossing probability that, eventually, X(t) crosses
S(t) from below at least once is unit. Hence, as τc → +∞ the ε-upcrossing probability that

X(t) ultimately crosses S(t) for the first time is unit.

Proposition 3.4.2 Under the assumptions of Proposition 3.4.1, if limt→+∞ S(t) = −∞ one

has:

lim
τc→+∞

g(ε)
u (t) = ϕ(ε)(t), (3.4.25)

with ϕ(ε)(t) defined in (3.4.19).
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Proof 3.4.3 Taking the limit as τc → +∞ in (3.4.15), for all ε > 0 one has:

ϕ(ε)(t) = h(ε)(t) + ψ(ε)(t), (3.4.26)

where we have set:

h(ε)(t) = lim
τc→+∞

g(ε)
u (t), ψ(ε)(t) = lim

τc→+∞

+∞∑

k=2

q
(ε)
k (t). (3.4.27)

Integrating both sided of (3.4.26) with respect to t between 0 and +∞, and making use of Re-
mark 3.4.1, one obtains: ∫ +∞

0
ψ(ε)(t) dt = 0.

Hence, ψ(ε)(t) = 0, so that (3.4.25) follows from (3.4.26). �

3.4.2 Simulation results

In this Section, a simulation is used in order to disclose the essential features of the ε-upcrossing

FPT pdf for a stationary Gaussian processX(t) and for specified boundaries. Our approach relies
on a simulation procedure by which sample paths of the stochastic process are constructed and
their upcrossing first passage instants through the boundary are recorded in order to construct

reliable histograms estimating the FPT pdf g̃
(ε)
u (t). Specifically, for the construction of sample

paths of the process X(t) we have used the “conditional expectations method” and, to avoid
numerical stability problems, we have implemented a regularization technique based on the so-

called “doubled algorithm” (see, for instance, [69]). Since the sample paths of the simulated
process are generated independently of one another, the simulation procedure is particularly

suited for implementation on supercomputers. Hence, the related vector and parallel code has
been implemented on an IBM SP-Power4 machine. To evaluate the ε-upcrossing FPT densities,

we have chosen X0 randomly according to the initial pdf γε(x0). To this purpose, we have made
use of the so-called acceptance-rejection method (cf. for instance [78]).

We now consider two stationary Gaussian processes such that the assumptions on the cor-

relation function of Proposition 3.4.1 are satisfied.

(i) Let {X1(t), t ≥ 0} be a stationary Gaussian process with zero mean, unit variance and
correlation function:

%(t) = e−α|t|
{

cos(αω t) +
1

ω
sin(αω |t|)

}
(t ∈ R) (3.4.28)

where α > 0 and ω ∈ R. Since

%̇(t) = −1 + ω2

ω
αe−α|t| sin(αω t),

%̈(t) =
1 + ω2

ω
α2 e−α|t|

{
sin(αω |t|) − ω cos(αω t)

}
,

one has %(0) = 1, %̇(0) = 0 and %̈(0) = −α2 (1+ω2) < 0, so that the process X1(t) is mean-square
differentiable. Furthermore, the correlation time of X1(t) is:

τc =
2

α (1 + ω2)
· (3.4.29)
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Hence, τc → +∞ if and only if α→ 0. It is easily proved that (3.4.18) hold as α→ 0.

(ii) Let {X2(t), t ≥ 0} be a stationary Gaussian process with zero mean, unit variance and
correlation function:

%(t) =
1

1 + β t2
(t ∈ R) (3.4.30)

with β > 0. Since

%̇(t) = − 2 β t

(1 + β t2)2
,

%̈(t) = −2 β (1− 3 β t2)

(1 + β t2)3
,

one has %(0) = 1, %̇(0) = 0 and %̈(0) = −2 β < 0, so that X2(t) is mean-square differentiable.

Furthermore, the correlation time of X2(t) is:

τc =
π

2
√
β
· (3.4.31)

Hence, τc → +∞ if and only if β → 0. One can easily prove that (3.4.18) hold as β → 0.
In Fig. 3.16(a) the correlation function (3.4.28) is plotted for ω = 1 and for α = 0.1, 0.5, 1, 2,

whereas in Fig. 3.16(b) the correlation function (3.4.30) is plotted for β = 0.1, 0.5, 1, 2,
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Figure 3.16: Plot of correlation function (3.4.28) in (a) and of correlation function (3.4.30) in (b) as
function of t. Figure (a) refers to the case ω = 1 and α = 0.1, 0.5, 1, 2; Figure (b) refers to the case
β = 0.1, 0.5, 1, 2.

For both processes X1(t) and X2(t), if S(t) is an arbitrary monotonically decreasing function
such that (1) Ṡ(t) − [S(t) − S(0)]/t ≤ 0 and (2) limt→+∞ S(t) = −∞, then (3.4.25) holds. For

instance, if S(t) = a t + b (a < 0; b ∈ R) conditions (1) and (2) are satisfied, whereas if
S(t) = a t2 + b t+ c (a 6= 0; b, c ∈ R) conditions (1) and (2) are satisfied if and only if a < 0 and

b < 0. Furthermore, if S(t) = a eb t (a, b ∈ R) conditions (1) and (2) hold if and only if a < 0
and b > 0.

By making use of simulation procedure, we have performed extensive computations on pro-

cesses X1(t) and X2(t) to disclose the behavior of the ε-upcrossing FPT pdf through time-
dependent boundaries for large correlation times. The results of the simulations have indicated

that g̃
(ε)
u (t) is susceptible of an excellent approximation for large τc. Indeed, under the assump-

tion of Proposition 3.4.2, for large τc the following asymptotic relation holds:

g(ε)
u (t) 'W

(ε)
1 (t) (t > 0), (3.4.32)
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Figure 3.17: Plot of g̃
(ε)
u (t) and of W

(ε)
1 (t) for the Gaussian process with zero mean, unit variance and

correlation function (3.4.28) for S(t) = 3 − t, ε = 0.01 and ω = 1 in the following cases: (a) α = 2, (b)
α = 1, (c) α = 0.5 and (d) α = 0.1.

where W
(ε)
1 (t), that provides an upper bound for the ε-upcrossing FPT pdf, is given in (3.4.16).

This is clearly indicated in Fig. 3.17 and in Fig. 3.18 in which S(t) = 3 − t. Indeed, for the

Gaussian process X1(t), in Fig. 3.17 the simulated function g̃
(ε)
u (t) is compared with W

(ε)
1 (t) for

α = 2 in (a), α = 1 in (b), α = 0.5 in (c) and α = 0.1 in (d), by setting ε = 0.01 and ω = 1. We

note that already for α = 0.1 (cf. Fig. 3.17(d) ) W
(ε)
1 (t) provides a good approximation of the

simulated ε-upcrossing FPT pdf. Furthermore, Proposition 3.4.1 indicates thatW
(ε)
1 (t) ' ϕ(ε)(t)

for large τc, so that g
(ε)
u (t) ' ϕ(ε)(t) for all α such that 0 < α < 0.1. Instead, for the Gaussian

process X2(t), in Fig. 3.18 the simulated function g̃
(ε)
u (t) is compared with W

(ε)
1 (t) for β = 2 in

(a), β = 1 in (b), β = 0.5 in (c) and β = 0.1 in (d), by setting ε = 0.01. As Fig. 3.18(d) shows,

already for β = 0.1, W
(ε)
1 (t) provides a good approximation of g̃

(ε)
u (t). Hence, g

(ε)
u (t) ' ϕ(ε)(t)

for all β such that 0 < β < 0.1.
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Figure 3.18: Plot of g̃
(ε)
u (t) and of W

(ε)
1 (t) for the Gaussian process with zero mean, unit variance and

correlation function (3.4.30) for S(t) = 3 − t, and ε = 0.01 in the following cases: (a) β = 2, (b) β = 1,
(c) β = 0.5 and (d) β = 0.1.
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Chapter 4

Auxiliary results

4.1 An algorithm for data samples representation

In the descriptive statistic, the classification methods are employed for dividing a data sample

in cells. Cell grouping is one of the most important and special sector of statistical research. In
this field we find the theory of density estimation ([92], [84]). If we observe a data sample from
a random variable with an unknown density function f(x), the density estimation purpose will

be the construction of a function approximating the density function by sampling data. The
histogram function is the oldest density estimator (see e.g. [85]). The choice of cell grouping

methods is the main problem for the histogram construction, because we lose a part of infor-
mation on the sample by this procedure. Since we look for a synthetic view of known data, we

cannot evaluate all available information. Anyway, there is not a perfect rule by which we could
conclude that our deductions from histogram are exact. Nevertheless it is possible to change the

choice of the cells so that we could find a better approximation. Generally one prefers dividing
the sample range into intervals with the same length (method of equal cell widths). But if we

could formulate an hypothesis about the distribution of the random sample, we could also fix
cells in which the probability of a data belonging from each of this is equal (method of equal
probability cells). There are also other methods: some are more near the cluster analysis (see

e.g. [47]), like, for example, the method of natural cells, proposed by Mineo in [60].

We proposed here the RANDOM algorithm ([18]). It constructs histograms of data samples
in which the location of the cells is determined by a preassigned fixed number of sample elements.
This procedure is substantially innovative with respect to the construction of histograms with

equal cell widths [84]. Being based on a different method for choosing histogram cells, it requires
only the specification of the number of cells.

We give an outline of the adopted method and analyze its running time. Then we discuss some
statistical results obtained by the use of RANDOM and of the standard method of equal cell

widths. The statistical analysis of data sample relies on the use of pseudo-random number
generators ([52]). Finally, some concluding remarks on the use of RANDOM algorithm are

given.
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4.1.1 Description of the Random Algorithm

Given an unordered random data sample x1, x2, . . . , xn of size n, we consider the first m

ordered data y1 < y2 < . . . < ym and the intervals

Ii = (yi, yi+1) i = 1, 2, . . . , m− 1.

The middle points

zi+1 =
yi + yi+1

2
i = 1, 2, . . . , m− 1

of the intervals Ii are the end points of the cells Ki used for the histogram’s construction:

K1 = ]z1, z2], with z1 = y1 + (y1 − z2) = 2y1 − z2

Ki = ]zi, zi+1], for i = 2, 3, . . . , m− 1

Km = ]zm, zm+1], with zm+1 = ym + (ym − zm) = 2ym − zm.

In order to describe the entire data sample and to achieve an estimation of the order of

magnitude of its elements, we add two more cells in which the minimum α and the maximum β
of the data sample represent the left-hand point of the first cell and the right-hand point of the

last cell, respectively

K0 =]α, z1] Km+1 =]zm+1, β].

It should be emphasized that α and β do not have any direct influence on the cell construc-

tion, in the sense that they do not play any role in the specification of the cell width. The
addition of the above two intervals is required for the description of the tails of histogram.

After the specification of the cells, the number of data falling in each cell is recorded. The
algorithm yields two output arrays: the first array includes the cell end points, and the second
array includes the ratio of the sample frequencies in each cell over the cell width. The main

steps of RANDOM are listed hereafter.

Scheme of the RANDOM algorithm

R1 . Set y(i) = x(i) for i = 1, 2, . . . , m.

R2 . Sorting tha array y by increasing order. [Average running time: O(m · logm) ([53])].
R3 . [Construction of the cell end points] Set

z(1) =
3 · y(1)− y(2)

2

z(i+ 1) =
y(i) + y(i+ 1)

2
i = 1, 2, . . . , m− 1

z(m+ 1) =
3 · y(m) − y(m− 1)

2
.

R4 . Find sample maximum and minimum. [Average running time: O(n)([53])].

R5 . [Frequencies counting] Set
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f(0) =
|{x(k) : x(k) < z(1), k = 1, . . . , n}|

n · [z(1)− α]

f(j) =
|{x(k) : z(j) ≤ x(k) < z(j + 1), j = 1, . . . , m; k = 1, . . . , n}|

n · [z(j + 1)− z(j)]

(j = 1, 2, . . . , m)

f(m+ 1) =
|{x(k) : x(k) ≥ z(m+ 1), k = 1, . . . , n}|

n · [β − z(m+ 1)]

For step R5 the uniform binary searching algorithm with two pointers, which is sketched below,

has been implemented.

Uniform binary searching algorithm

B1 . Set i = 1.
B2 . If i = n, go to B11: the algorithm terminates.

B3 . If x(i) < z(1) set cnt(1) = cnt(1) + 1;
otherwise if x(i) > z(m+ 1) set cnt(m+ 2) = cnt(m+ 2) + 1.

B4 . Set Initial = 1, Final = m+ 1, Mid = (Initial+ Final)/2.

B5 . [Test] If (Final− Initial) ≤ 1 go to B10.
B6 . If x(i) < z(Mid), set Final = Mid; if x(i) > z(Midio), set Initial = Mid.

B7 . If x(i) = z(Mid), go to B9.
B8 . Go to B5.

B9 . Set cnt(Final) = cnt(Final) + 1.
B10. Set i = i+ 1 and go to B2. [Average running time: O(n · logm)].

B11. Carry out
α, z(1), z(2), . . . , z(m+ 1), β (cell end points for the histogram)

f(0), f(1), . . . , f(m), f(m+ 1) (frequencies over the cells widths).

The overall average running time of the algorithm RANDOM is thus O(n · logm).

4.1.2 Statistical tests to verify the RANDOM rule

A FORTRAN 77 code for the implementation of algorithm RANDOM has been realized.

The data samples have been generated by pseudo-random number routines of the NAG library.
We have tested the RANDOM rule by means of 105-size pseudorandom numbers from nor-

mal, uniform in (0, 1), exponential with parameter 1 and chi-square (with 5 freedom degrees)
distributions. The histograms, constructed by means of RANDOM, provide a good graphic

approximation of such densities.
As a statistical check of the results, achieved by RANDOM, a chi-square hypothesis test

([11]) and Kolmogorov-Smirnov test for grouped data ([11, 70]) have been performed. The cell
number 2n2/5 is customarily indicated for the chi-square test, which in our case led to 200 cells

for a 105-size sample. However, we have also made use of some other values.
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Chi-square test

In the chi-square test, it is necessary to divide the random sample range in m cells to check

theH0 hypothesis. We call ni the number of observed data in the i−th cell and pi the probability
of a data belonging to the i− th cell when the null hypothesis is true for i = 1, 2, ...,m.

The Pearson statistic is:

χ2
n =

m∑

i=1

(
ni − npi√

npi

)2

. (4.1.1)

Generally in order to reject the H0 hypothesis, the significativity level is fixed to 0.05 or 0.01. In
this case, since we fixed a priori the pseudo-random sample distribution, we evaluate the critical

level, i.e. the probability that the random variable χ2 has a greater value than the statistic χ2
n

calculated numerically by (4.1.1). In this way the chi-square test allows to compare the histogram

function, built on the chosen cells, with the theoretical density function, by measuring the fitting
degree of the first one. The chi-square test has been made for the grouping RANDOM method
and for the grouping method in equal cell widths.

Since the medium value of the chi-square random variable is equal to the cell number reduced
by one, from the tables it is possible to deduce that the statistic χ2

n approximates its medium
value better with the grouping random rule than the equal cell widths grouping. Moreover we

observe that after 150 cells, in the random case the critical level is always greater than that in
the equal cell widths. This observation confirms the right result of the chi-square test for the

chosen rule. Let us note that for the random rule in χ2-test it is not necessary any particular
choice for the cell number, as it appears in Mann and Wald ([59]).

Some other considerations are made for the exponential random sample distribution with pa-
rameter 1. The χ2-test, employed with equal cell width grouping, does not reject the null

hypothesis only if the thumb rule is adopted. This technique is not necessary for the random
sample grouping (see Table 4.3).

In none of the analyzed cases is the hypothesis rejected when RANDOM is used. The same

test has also been performed for the cases of equal-width cells. Tables 4.1-4.4 give the χ2
n

statistics, estimated from the sample, and the probability that the χ2 estimator is greater than

the χ2
n statistics for various cell numbers. Table 4.1 refers to a sample taken from a standard

normal distribution, Table 4.2 lists the results obtained for a sample generated by means of

a uniform distribution over the interval (0,1). Columns 2 and 3 report the χ2 test results for
the case of algorithm RANDOM, and columns 4 and 5 list the corresponding results for the
equal-width case. Table 4.3 lists the results obtained for a sample generated by means of an

exponential distribution with parameter 1: the results are specified for the case of equal width
cells using the thumb rule and when the thumb rule is not used. Finally, the Table 4.4 shows

results for a chi-square distribution sample.

Algorithm RANDOM is designed to construct histograms with unequal cell widths. In such
a way one can use narrower cells in the regions where density of data is higher and wider cells

where the data appear to be more sparse. Hence, not only frequencies but also cell widths
characterize the sample distribution.

Although, as in the case of equal cell widths, RANDOM requires a priori specification of
the number of cells for the histogram construction, the specification of classes K1, K2, . . . , Km

is made possible as soon as the first m sample data are given, without need to inspect the

whole sample. Therefore, the choice of the cells takes place after a number of observations
that in general is much smaller than the sample size. This appears to be particularly useful
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N(0,1)

RANDOM Equal width

cells number χ2
n P (χ2 > χ2

n) χ2
n P (χ2 > χ2

n)

50 66.4453 0.0490 42.9888 0.2857

100 108.5469 0.2404 106.1527 0.2933

150 162.6406 0.2102 179.0475 0.0470

200 210.1172 0.2807 242.3425 0.0194

300 290.7969 0.6221 347.1316 0.0288

400 391.3828 0.5978 419.1739 0.2339

Table 4.1: Results of χ2-test for a normal distribution sample

Uniform in (0,1)

RANDOM Equal width

cells number χ2
n P (χ2 > χ2

n) χ2
n P (χ2 > χ2

n)

50 61.6328 0.1062 55.5131 0.2427

100 116.9922 0.1047 115.4379 0.1238

150 179.8438 0.0432 156.5202 0.3202

200 220.9609 0.1365 226.4800 0.0882

300 314.5547 0.2570 333.5806 0.0822

400 428.3203 0.1498 403.9240 0.4218

Table 4.2: Results of χ2-test for an uniform distribution sample

for statistical observations on sample data occurring over long periods of time: by recording an

initial part of the incoming data one is led to specify the histogram cells and hence launch the
histogram construction procedure without any further action. All this is greatly advantageous

over the standard procedure based on equal cell widths, whereby the whole sample must be
recorded in order to specify cell widths on the basis of the observed smallest and largest sample

data.

Kolmogorov-Smirnov test for grouped data

The Kolmogorov-Smirnov statistic, usually called D, is used for testing the hypothesis ac-

cording to which a random sample comes from a fixed discrete distribution (see e.g. [86]).
Pettitt and Stephens ([70]) defined the analogous statistic for grouping data with continuous
distribution.

Be k the cell number and pi the probability of a data belonging to the i− th cell. We indicate
with ei = npi the expected number of the i − th cell observations and with ni the absolute
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Exponential with parameter 1

RANDOM Equal width (thumb rule) Equal width (no thumb rule)

cells χ2
n P (χ2 > χ2

n) χ2
n P (χ2 > χ2

n) χ2
n P (χ2 > χ2

n)

50 61.5312 0.1079 80.0565 3.359-E03 34.0543 0.9483

100 116.9844 0.1047 158.4693 1.382-E04 59.7499 0.9993

150 176.6328 0.0606 253.4255 2.036-E07 91.2264 0.9999

200 218.6719 0.1614 340.2742 1.739-E09 113.7131 0.9999

300 312.0938 0.2894 501.4445 1.817-E09 146.7343 0.9999

400 428.5234 0.1482 694.1066 3.909-E18 198.8663 0.9999

Table 4.3: Results of χ2-test for an exponential distribution sample

chi-square with 5 freedom degrees

RANDOM Equal width

cells number χ2
n P (χ2 > χ2

n) χ2
n P (χ2 > χ2

n)

50 46.0781 0.5923 42.9270 0.7165

100 114.2656 0.1399 90.4564 0.7183

150 170.4688 0.1099 169.0036 0.1253

200 225.2969 0.0297 231.8755 0.0550

300 314.8047 0.2538 332.3705 0.0894

400 402.2500 0.4449 469.9254 0.0082

Table 4.4: Results of χ2-test for a chi-square distribution sample
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N(0,1)

cells RANDOM Equal width Equal probability

100 132.9808 124.5460 133.0000

150 132.9808 131.0362 132.9987

200 139.2207 124.5460 137.0000

300 138.9666 131.0359 132.9991

400 138.9666 138.4010 137.0000

Table 4.5: Results of Kolmogorov-Sminorv test for a normal distribution sample

observed frequencies. If y1, y2, . . . , yk+1 are the endpoints of the given cells, let:

Fn(y) =






0 for y < y1

∑j
i=1

ni

n for yj ≤ y < yj+1 for j = 1, . . . , k

1 for y > yk+1

(4.1.2)

is the cumulated distribution function of the histogram related to the observed data and let

Fr(y) =






0 for y < y1

∑j
i=1

ei
n for yj ≤ y < yj+1 for j = 1, . . . , k

1 for y > yk+1

(4.1.3)

is the cumulated distribution function for grouped data.

The Kolmogorov-Smirnov statistic for grouping data is:

S = max
1≤j≤k

∣∣∣∣∣

j∑

i=1

(ni − ei)

∣∣∣∣∣ . (4.1.4)

The statistic (4.1.4) allows to compare the empirical distribution function (4.1.2) with the the-
oretical one in (4.1.3), both defined for a fixed grouping. The test has a good power when the

grouping is made with equal probability cells (see e.g. [39]). For this reason, it is necessary to
compare the value of S obtained by taking equal probability cells with that obtained for equal

cells widths and for random cells. In the sequel, we give the tables of the results.

Let us observe that the computation of statistic S does not require more then 5 observed data
in each cell, differently from the χ2-test. This requirement is very advantageous for densities

with shape very similar to the exponential one.
By Tables 4.5-4.8 we do not see very different behavior between the statistic values calculated

for random cells, for equal cell widths and for equal probability cells.
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Uniform in (0,1)

cells RANDOM Equal width Equal probability

100 198.3109 235.9438 236.0000

150 227.6627 235.9462 236.0012

200 227.6627 235.9438 236.0000

300 238.1205 235.9462 236.0012

400 240.3350 235.9438 236.0000

Table 4.6: Results of Kolmogorov-Sminorv test for an uniform distribution sample

Exponential with parameter 1

cells RANDOM Equal width Equal probability

100 192.5839 147.7309 236.0000

150 227.7742 192.2722 235.9981

200 238.1558 237.2067 236.0000

300 240.6874 192.2722 235.9981

400 240.6874 229.4807 236.0000

Table 4.7: Results of Kolmogorov-Sminorv test for an exponential distribution sample

chi-square with 5 freedom degrees

cells RANDOM Equal width Equal probability

100 187.3853 200.6175 202.0000

150 187.3853 209.9221 205.6688

200 209.7770 200.6184 211.0000

300 215.3498 209.9230 208.3356

400 209.5713 207.0301 216.0000

Table 4.8: Results of Kolmogorov-Sminorv test for a chi-square distribution sample
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4.1.3 Modified RANDOM rule

In [19] the Random rule is tested by samples of numerically generated (distinct) data. After the
reliability of Random rule has been proved, we have applied it on samples of data whose density

function was unknown. More specifically, we have constructed histograms with random cells
for simulated times of the first passage of 105 sample paths of a stationary Gaussian process

characterized by a covariance function with damped oscillations (3.2.41), and for a constant
threshold. In this case the samples consist of data that are not all distinct. In such a case, the

Random algorithm, originally devised for distinct data, has been suitably modified. It now may
build a number of histogram cells less than that required in input. For instance, if 100 cells
are required, the algorithm chooses the first k (< 100) separate elements among the first 100,

that are those present once in the initial subsample, and it constructs k cells centred in these k
points. This algorithm is denoted as the Modified Random rule with Unknown number of cells,

the MRU rule for short. Alternatively, we have also implemented the Random rule choosing the
first 100 data that have a frequency greater than or equal to 2 (we call this algorithm Modified

Random rule with Fixed number of cells, i.e. MRF rule). In this way, we were able to take note
of the changes in the density histogram for different choices of number of cells. To this end,

we have carried out simulations for the specified processes and we have applied both modified
Random rules to the array of the simulated first passage times. The histograms thus obtained

are shown in the Figures 4.9-4.20 and each of them is compared with the histograms obtained by
applying the equal width cells rule. The graphs were constructed by resorting to Matlab tools.
We can draw the following conclusions:

1. the Random Rule, in its both variants, appears to be more stable than that for the equal
width cells, in the sense that with a smaller number of cells it provides a good approximation

of the density, which is not significantly affected by a class number increase;
2. the results obtained by applying the modified versions of Random rule, MRU and MRF, show

that the MRU provides a more detailed approximation than that available by applying the MRF
criterion. The reason is that the first k most frequent data belong to high density areas, and

the MRF criterion yields a discrete approximation that is good in such areas but rather poor in
low probability areas.
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4.1.4 Comparing histograms

In the following Figures histograms for data sample of 105 size from assigned probability dis-
tributions are plotted. For each data sample 3 histograms are constructed: by 100 RANDOM

cells, by 100 equal width cells and by 100 equal probability cells.
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Figure 4.1: Uniform sample. On left: RANDOM cells. On rigth: equal width cells
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Figure 4.2: Uniform sample: equal probability cells
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Figure 4.3: Normal sample. On left: RANDOM cells. On rigth: equal width cells
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Figure 4.4: Normal sample: equal probability cells
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Figure 4.5: Exponential(1) sample. On left: RANDOM cells. On rigth: equal width cells
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Figure 4.6: Exponential(1) sample: equal probabil-
ity cells
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Figure 4.7: Chi-square(5) sample. On left: RANDOM cells. On rigth: equal width cells
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Figure 4.8: Chi-square(5) sample: equal probability
cells
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In particular, in Figures 4.9 and 4.10 the histograms by MRU and MRF rules, and by equal
width cell (EWC) rules are plotted. At first algorithm MRU rule has been implemented, and

39 distinct elements in the first 200 data have been found. Consequently, also in the other 2
cases (by MRF and EWC rules), histograms with 39 cells had to be constructed. The covariance

function (3.2.41) contains the parameters α = 1.0 and β = 1.0 and the barrier is set equal to 1.
In Figures 4.11-4.14 are listed three graphs: the first is the histogram constructed with the MRU

rule, the second one depicts the histogram with cells obtained by MRF rule and the third one
shows the EWC histogram.

The number of classes is set as described above, and therefore it varies from case to case. The
barrier is constant, while the parameters α and β of the covariance function are specified for

each figure.
As further investigations, we have constructed histograms with different numbers of cells in
order to verify if the shape of the approximated density would vary as the number of cells

increases. Our numerous simulations have led us to the conclusion that the number of the
histogram cells required by applying MRU rule is the number of cells sufficient to provide a

satisfactory representation of the density. Indeed its shape does not undergo significant changes
as the number of cells varies. In the Figures 4.15-4.20, for these three Rules, histograms with

100 cells are finally shown.
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Figure 4.9: Number of cells = 39, α = 1.0, β = 1.0. On left: MRU cells. On right: MRF cells.
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Figure 4.10: Number of cells = 39, α = 1.0, β = 1.0.
Equal width cells.
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Figure 4.11: Number of cells = 24, α = 1.0, β = 0.5. On left: MRU cells. On right: MRF cells.
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Figure 4.12: Number of cells = 24, α = 1.0, β = 0.5.
Equal width cells.
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Figure 4.13: Number of cells = 26, α = 1.0, β = 0.1. On left: MRU cells. On right: MRF cells.
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Figure 4.14: Number of cells = 26, α = 1.0, β = 0.1.
Equal width cells.
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Figure 4.15: Number of cells = 100, α = 1.0, β = 1.0. On left: MRU cells. On right: MRF cells.
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Figure 4.16: Number of cells = 100, α = 1.0, β =
1.0. Equal width cells.
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Figure 4.17: Number of cells = 100, α = 1.0, β = 0.5. On left: MRU cells. On right: MRF cells.
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Figure 4.18: Number of cells = 100, α = 1.0, β =
0.5. Equal width cells.
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Figure 4.19: Number of cells = 100, α = 1.0, β = 0.1. On left: MRU cells. On right: MRF cells.
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Figure 4.20: Number of cells = 100, α = 1.0, β =
0.1. Equal width cells.
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4.2 A quadrature technique

A recursive method for the numerical integration is used here. The idea is to implement the mo-

ments method [35] not in original formulation, but introducing a recurrence formula of moments
that solves the ill-conditioning problem. Due to recurrence form, we use a recursive algorithm,

which well adapts to given formula of moments [62]. Starting with a specifed initial value, the
algorithm constructs the moments, by which the coefficients of recursive formula for orthogonal

polynomials are obtained [88]. The Brent algorithm [1] finds the zeros of the orthogonal poly-
nomials with respect to weight function and finally a gaussian quadrature rule [38] is applied

using the new nodes with relative weights. The integrals considered may have different weight
functions always characterized by an exponential term.

We give the general recurrence formulas to evaluate the moments used to build up the feasible
family of orthogonal polynomials with respect to several specific weight functions and some of
them have been suggested by a paper of Piessen [71].

The application of the method to the numerical treatment of contact problems shows some
interesting results.

Now, specifically a special recursive algorithm is built by a three-term recursive formula with
coefficients evaluated by the moments method. A functional c(·) is studied over any function

space that contains the polynomial space and it is shown that such a functional is positive defi-
nite, enabling us to use the advantages of such a property on the zeros of orthogonal polynomials

for such a functional. A comparison is presented of the numerical advantages of such a method
with respect to the Laguerre polynomials. This technique is an extension of the method already

established for numerical integrations over finite domains [62, 63] and it is a variant of classic
quadrature methods [35], [61], [43].

Furthermore, several recurrence formulas for moments related to different weight functions

are given. These formulas are used to carry out numerical integrations within a domain cor-
responding to the whole positive real axis. Benefits of the procedure are shown for particular

cases with comparison of results obtained by other integration rules.

4.2.1 The moments method

Given a function l(x) defined over (0,+∞), positive over such an interval, with

∫ +∞

0
l(x)e−αxdx < +∞, α ∈ R

+ (4.2.1)

let us consider a system of orthogonal polynomials {Pn(x)}∞n=0 in (0,+∞) with respect to the
weight function l(x)e−αx, namely such that ∀n

∫ +∞

0

l(x)e−αxPn(x)Pi(x)dx = 0 i = 0, 1, . . . , n− 1, (4.2.2)

and the Gaussian quadrature formula

∫ +∞

0

l(x)e−αxf(x)dx ≈
n∑

k=1

A
(n)
k f(xk) (4.2.3)

where x1, x2, . . . , xn are the zeros of the polynomial Pn(x) and the A
(n)
k are the respective weights

in the quadrature formula.
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It is known that the Gaussian quadrature formulas are stable, convergent and very precise when
one is able to determine the appropriate family of orthogonal polynomials {Pn(x)}∞n=0.

The classical treatment may be found in [88], using an orthogonalization procedure and deter-
minantal representation of the polynomials. In [62] it is shown that the numerical procedure

coming from determinantal ratios is very ill conditioned.

With the method due to Brezinski [2] one defines over the space of the complex polynomials
the functional c,

c(f(x)) =

∫ +∞

0
f(x)l(x)e−αxdx α ∈ R

+; (4.2.4)

completely determined by the moments

ci = c(xi) =

∫ +∞

0
xil(x)e−αxdx i = 0, 1, . . . . (4.2.5)

In such case, the family of orthogonal polynomials {Pk(x)} with respect to the functional c, i.e.
the family for which ∀k ∈ N and x ∈ (0,+∞)

Pk(x) = p
(k)
0 + p

(k)
1 x+ · · ·+ p

(k)
k xk has the degree k and (4.2.6)

c(xiPk) = 0 for i = 0, 1, · · · , k − 1,

is determined by the moments (4.2.5) and the following three-term recurrence formula:

Pk+1(x) = (Ak+1x+Bk+1)Pk(x)−Ck+1Pk−1(x), k = 0, 1, . . . ,

with

P−1(x) = 0, P0(x) = any arbitrary constant different from zero,

and

Ak+1 =
p
(k+1)
k+1

p
(k)
k

, Bk+1 = −
p
(k+1)
k+1 αk

p
(k)
k hk

, Ck+1 =
p
(k−1)
k−1 p

(k+1)
k+1

(p
(k)
k )2

· hk
hk−1

(4.2.7)

where

αk = p
(k)
k c(xk+1Pk) + p

(k)
k−1c(x

kPk) and (4.2.8)

hk = c(P 2
k ). (4.2.9)

Choosing the polynomials Pk as monic polynomials, a simplified recurrence formula is obtained:

Pk+1(x) = (x+Bk+1)Pk(x) −Ck+1Pk−1(x), k = 0, 1, . . . , (4.2.10)

P−1(x) = 0, P0(x) = 1,

having ∀k
Ak+1 = 1, Bk+1 = −αk

hk
, Ck+1 =

hk
hk−1

, (4.2.11)

with

αk = c(xk+1Pk) + p
(k)
k−1c(x

kPk), hk = c(xkPk). (4.2.12)
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By linerity of the funcional, one has

hk =

k∑

i=0

ck+ip
(k)
i , γk =

k∑

i=0

ck+i+1p
(k)
i , (4.2.13)

αk = γk + p
(k)
k−1hk for k = 0, 1, . . . (4.2.14)

and finally

p
(k+1)
i = p

(k)
i−1 + Bk+1p

(k)
i − Ck+1p

(k−1)
i i = 0, 1, . . . , k, (4.2.15)

which allows the evaluation of the coefficients of the polynomial of degree k + 1 starting from
the initail data:

p
(−1)
−1 = p

(−1)
0 = 0, p

(0)
−1 = p

(0)
1 = 0, p

(0)
0 = 1, h−1 = 1. (4.2.16)

Chebyschev in [8] used a method based on moments, that, unfortunately, is ill conditioned;
he used a recurrence formula, which is analogous to (4.2.10) but involving the quantities

zk,i = c(xiPk), k, i = 0, 1, 2, · · · .

In [62] it has been shown that the numerical results by the moments method are better than

those of [8].

4.2.2 A recursive relation for moments

The moments method has been applied by various authors to evaluate integrals over finite
intervals (see [34], [61], [62], [63]). In the following, we consider the infinite interval and take as

a special case l(x) = ln(x+ 1). In particular, we want to evaluate the integral

∫ +∞

0
f(x)ln(x+ 1)e−αxdx with α ∈ R

+. (4.2.17)

• Let us consider the functional

c(f(x)) =

∫ +∞

0
f(x)ln(x+ 1)e−αxdx, α ∈ R

+; (4.2.18)

the moments cn are definited as

cn =

∫ +∞

0
xnln(x+ 1)e−αxdx, ∀n ∈ N. (4.2.19)

The following relations hold

(i) c0 =
eα

α
E1(α) (4.2.20)

(ii) cn =

n−1∑

i=0

(−1)i
(n− 1 − i)!

αn−i+1
+ (−1)nc0 +

n

α
cn−1 for n = 1, 2, . . . (4.2.21)
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It is easy to prove (i):

c0 =

∫ +∞

0
ln(x+ 1)e−αxdx =

[
− 1

α
e−αxln(x+ 1)

]+∞

0

+
1

α

∫ +∞

0

e−αx

x + 1
dx =

=
1

α

∫ +∞

0

e−αx

x+ 1
dx

(setting y = α(x+ 1))

=
eα

α

∫ +∞

α

e−y

y
dy =

eα

α
E1(α),

where E1(x) =

∫ +∞

x

e−y

y
dy is the exponential integral, available in tabular form.

We prove now the (ii):

cn =

∫ +∞

0
xnln(x+ 1)e−αxdx = [ln(x+ 1)In]

+∞
0 −

∫ +∞

0

In
x+ 1

dx

where

In =

∫
xne−αxdx.

From mathematical tables [45] we have that

In = −e
−αx

α

n∑

i=0

xn−in!

αi(n− i)!
,

therefore

cn =

[

ln(x+ 1)

(

−e
−αx

α

n∑

i=0

xn−in!

αi(n− i)!

)]+∞

0

+

∫ +∞

0

e−αx

α

n∑

i=0

xn−in!

αi(n− i)!

x+ 1
dx

=

∫ +∞

0

e−αxxn

α(x+ 1)
dx+

∫ +∞

0

e−αx

α(x+ 1)

n∑

i=1

xn−in!

αi(n− i)!
dx

=

∫ +∞

0

e−αxxn

α(x+ 1)
dx+

n

α

∫ +∞

0

e−αx

α(x+ 1)

n−1∑

i=0

xn−1−i(n− 1)!

αi(n− 1 − i)!
dx

=

∫ +∞

0

e−αxxn

α(x+ 1)
dx− n

α

∫ +∞

0

In−1

x+ 1
dx

=

∫ +∞

0

e−αxxn

α(x+ 1)
dx+

n

α
cn−1. (4.2.22)

Recalling that

xn

x+ 1
=

n−1∑

i=0

(−1)ixn−1−i +
(−1)n

x+ 1
(4.2.23)

we can write

∫ +∞

0

e−αxxn

α(x+ 1)
dx =

n−1∑

i=0

(−1)i
1

α

∫ +∞

0
e−αxxn−1−idx+ (−1)n

∫ +∞

0

e−αx

α(x+ 1)
dx =
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1

α

n−1∑

i=0

(−1)i
(n− 1 − i)!

αn−i
+ (−1)nc0.

Substituting the last one in (4.2.22)

cn =

n−1∑

i=0

(−1)i
(n− 1 − i)!

αn−i+1
+ (−1)nc0 +

n

α
cn−1. (4.2.24)

Now we prove that the following recurrence formula for the moments holds:

cn = cn−1

(n
α
− 1
)

+
n− 1

α
cn−2 +

(n− 1)!

αn+1
n = 1, 2, . . . (4.2.25)

with c−1 = c0 =
eα

α
E1(α). To this aim, we rewrite the (ii) for cn−1

(iii) cn−1 =

n−2∑

i=0

(−1)i
(n − 2 − i)!

αn−i
+ (−1)n−1c0 +

n− 1

α
cn−2. (4.2.26)

Adding (ii) to the (iii) and recalling that

n−1∑

i=1

(−1)i
(n− 1 − i)!

αn−i+1
= −

n−2∑

i=0

(−1)i
(n − 2 − i)!

αn−i
, (4.2.27)

it obtains

cn + cn−1 =
(n− 1)!

αn+1
+
n

α
cn−1 +

(n− 1)

α
cn−2 (4.2.28)

and finally

cn = cn−1(
n

α
− 1) +

(n− 1)

α
cn−2 +

(n− 1)!

αn+1
n = 1, 2, . . . (4.2.29)

Specifications on the functional

To apply the moments method we need to verify that

hk 6= 0 k = 0, 1, . . . , (4.2.30)

but from [2] hk = c(P 2
k ) and in our case c(P 2

k ) is positive, being

hk = c(P 2
k ) =

∫ +∞

0
P 2
k (x)e−αxl(x)dx > 0. (4.2.31)

In [2] the determinant involving the moments cn is considered

Hk(c0) =

∣∣∣∣∣∣∣∣

c0 c1 c2 . . . ck−1

c1 c2 c3 . . . ck
. . . . . . . . . . . . . . .
ck−1 ck ck+1 . . . c2k−2

∣∣∣∣∣∣∣∣
. (4.2.32)

If Hk(c0) 6= 0 ∀k , the functional c is definite.
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If Hk(c0) ≥ 0 ∀k , the functional c is positive.
If Hk(c0) > 0 ∀k , the functional c is positive definite.

Furthermore, from [2], one has

Pk(x) = Dk

∣∣∣∣∣∣∣∣∣∣

c0 c1 . . . ck
c1 c2 . . . ck+1

. . . . . . . . . . . .

ck−1 ck . . . c2k−1

1 x . . . xk

∣∣∣∣∣∣∣∣∣∣

for k = 1, 2, . . . (4.2.33)

and P0(x) = D0, where Dk for k = 0, 1, 2, . . . are constants different from zero.

Widder in [93] has shown that if c(P 2
k (x)) > 0 for all k, the functional c is positive definite.

The proof in [2] for the case of the family of monic polynomials {Pk(x)} is given using the
following identity

c(P 2
k ) = c((p

(k)
0 + p

(k)
1 x+ · · ·+ p

(k)
k xk)Pk(x)) (4.2.34)

= p
(k)
0 c(Pk) + p

(k)
1 c(xPk) + · · ·+ p

(k)
k c(xkPk). (4.2.35)

By the othogonality of the polynomials Pk, one has

c(P 2
k ) = p

(k)
k c(xkPk). (4.2.36)

From (4.2.32) and (4.2.33) the coefficient of maximal degree of Pk(x) is given by

p
(k)
k = DkHk(c0) and c(xkPk) = DkHk+1(c0). (4.2.37)

Therefore

0 < c(P 2
k ) = p

(k)
k c(xkPk) = D2

kHk(c0)Hk+1(c0), ∀k. (4.2.38)

Hence Hk(c0) > 0 ∀k or Hk(c0) < 0 ∀k.
We note that c0 = c(x0) = c(1) = c(p

(0)
0 ) = c(P 2

0 (x)) > 0, but we also have that c0 = H1(c0)
and for k = 1 one has that H1(c0) > 0, from which also H2(c0) > 0, H3(c0) > 0, . . . ; finally

Hk(c0) > 0 ∀k. (4.2.39)

In our case c(P 2
k (x)) > 0 ∀k and in particular

c0 =
eα

α
E1(α) > 0 (4.2.40)

with α ∈ R
+. Therefore the functional (4.2.18) is positive definite .

Evaluation of nodes and weights

The determination of the nodes is made by using the Brent algorithm [1], which combining
the methods of the linear interpolation, the quadratic inverse interpolation and the bisection,
allows to obtain results with high precision. Note that this algorithm requires the specification

of the values of extremes a and b of the interval where the polynomial has a zero, namely where
P (a) · P (b) < 0. Using the properties of roots separation [88] of the orthogonal polynomials,
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there is not any problem in the case of a bounded interval containing all the roots of the poly-
nomials. For the case of the unbounded integration domain, it is useful to find an upper bound

M for the zeros of the polynomial Pn that makes the interval
[
x

(n−1)
n−1 ,M

]
not too much larger

in such a way to obtain the last zero x
(n)
n of Pn in not too many steps. Using the Hadamard-

Gershgorin theorem [2], the zeros are localized in the union of balls with center −Bi and radius
r = 1 + |Ci| for i = 1, . . . , k, where Bi and Ci i = 1, . . . , k are the coefficients appearing

in the recurrence formula for Pk. Being the zeros real and separated, namely two consecutive
zeros of Pk+1 are separated by a zero of Pk and vice versa, one can apply the algorithm for

searching all zeros without any problem; therefore it is possible to use the Brent algorithm in
a Fortran version, as it is in the IMSL Library [48] with H-Float precision. The scheme to find
the zeros is the following:

Step 1. The zeros x
(2)
1 and x

(2)
2 of P2(x) are determined (with x

(2)
1 < x

(2)
2 )

Step 2. For k = 3, . . . , n, x
(k)
1 is evaluated in such a way 0 < x

(k)
1 < x

(k−1)
1 and for j = 2, . . . , k−1

the zeros x
(k)
j are evaluated taking in account that x

(k−1)
j−1 < x

(k)
j < x

(k−1)
j ;

Step 3. Finally, the last zero x
(k)
k of Pk(x) is evaluated recalling that x

(k−1)
k−1 < x

(k)
k < b, where b

is determined by the theorem of Hadamard-Gershgorin.

For the weights, as in [63], the following expression

A
(k)
i =

hk−1

P ′
k(xi)Pk−1(xi)

for i = 1, . . . , k (4.2.41)

is used, where x1, . . . , xk are the zeros of Pk(x).

The algorithm and numerical results

The algorithm in Fortran-77 has been implemented with the H-Float storage to obtain a suf-
ficient number of significant digits (about 33 significant decimal digits). A brief scheme of the

algorithm is the following:
Step 1. The value of α and the maximum number of nodes for the quadrature are required.

Step 2. Initialize the coefficients of P−1(x) and of P0(x) by the ( 4.2.16).

Step 3. Set c−1 = c0 =
eα

α
E1(α).

Step 4. For k = 1, . . . , n− 1
• Compute the moments c2k−1 and c2k, by ( 4.2.29);
• Compute Bk+1 and Ck+1 by the ( 4.2.7) to determine the coefficients of Pk+1(x) by the (4.2.15)

• Compute all zeros of Pk+1(x) as above described.

As example of application let us consider the following integral

∫ +∞

0
e−αxln(x+ 1)

α(x+ 1)ln(x+ 1)− 2

x+ 1
dx. (4.2.42)

We compare its obtained evaluation by the proposed method with its evaluation by the Gauss-
Laguerre quadrature formula, known its zero value [45]. The Gauss-Laguerre quadrature formula
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Table 4.9: For α = 0.5

n. of exact digits n. of Pn nodes n. of Laguerre nodes

2 3 4

3 6 9

4 11 14

5 17 22

6 24 30

Table 4.10: For α = 1.0

n. of exact digits n. of Pn nodes n. of Laguerre nodes

2 2 2

3 3 5

4 6 8

5 9 12

6 13 16

is applyed being:
∫ +∞

0

e−αxln(x+ 1)
α(x+ 1)ln(x+ 1)− 2

x+ 1
dx =

1

α

∫ +∞

0
e−xln(x/α+ 1)

(x+ 1/α)ln(x/α+ 1)− 2

(x/α) + 1
dx.

In the Tables 4.9-4.11 the number of nodes to obtain the specified number of exact digits are

presented for different α values.
From tables results, the method shows its efficiency essentially based on the construction of

optimized nodes and weights for the quadrature.

4.2.3 Examples

For a weight function such that

w(x) = l(x)e−αx α ∈ R
+ (4.2.43)

defined over (0,+∞), positive over such interval, with
∫ +∞

0
w(x)dx < +∞ (4.2.44)

we consider the functional

c(f(x)) =

∫ +∞

0
f(x)w(x)dx (4.2.45)
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Table 4.11: For α = 1.5

n. of exact digits n. of Pn nodes n. of Laguerre nodes

2 1 2

3 3 4

4 4 6

5 6 8

6 8 11

and the moments

cn =

∫ +∞

0

xnw(x)dx ∀n ∈ N. (4.2.46)

We require the related functional is positive definite to allow the implementation of the specified
algorithm; this request is satisfied if c0 > 0. For the given weight function w(x) we can write

a recurrence formula for moments more general, but that needs to be specialized for specified
cases, than that presented in [64]

cn =

∫ +∞

0

e−αxxn

α

d

dx
l(x)dx+

n

α
cn−1 +K n = 1, 2, . . . (4.2.47)

where K is a costant.

The problem is to find a way to rewrite the integral on the right hand side of (4.2.46) as a
function of moments of degree less than n; we would like to represent the same integral as a

function of very few moments. When it is possible, the specified recurrence formula allows to
use a recursive algorithm and to evaluate, with high precision, the integral

∫ +∞

0
f(x)w(x)dx (4.2.48)

where f(x) ia a real function to be specified.

From c0 and from the recurrence formula for moments, we can construct Bk+1 and Ck+1 involved
in the recurrence formula for the coefficients of polynomials, namely

p
(k+1)
i = p

(k)
i−1 +Bk+1p

(k)
i −Ck+1p

(k−1)
i i = 0, 1, . . . , k, ∀k. (4.2.49)

The family of polynomials {Pn(x)}∞n=0 in (0,+∞) are orthogonal respect to l(x)e−αx, i.e. the
polynomials are such that ∀n

∫ +∞

0
l(x)e−αxPn(x)Pi(x)dx = 0 i = 0, 1, . . . , n− 1. (4.2.50)

It is not necessary to apply any transformation of infinite integration domain into a finite one,
because the aim of this technique is to construct new systems of orthogonal polynomials with

respect to specified weight functions over an infinite domain. The gain is to obtain a larger
class of orthogonal polynomial systems useful in different fields such as in Volterra analysis
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of linear or non linear systems, approximation rules, pseudospectral methods, etc. Though
analytical expression for these polynomials is not available, we have an algorithm to construct

them. Hence, if we know the recurrence formula for the moments, by using them we can build
a different systems of polynomials for different problems.

In order to use the recursive algoritm, we give the recurrence formulas for moments related to
the following weight functions:

w1(x) = xβe−αx α ∈ R
+ β > −1

w2(x) = e−αx(sinβx+ λ) β ∈ R, λ ≥ 1, α ∈ R
+

w3(x) = e−αx(cosβx+ λ) β ∈ R, λ ≥ 1, α ∈ R
+

Case w1(x)
It could be seen as the generalized Laguerre weight function

w(x) = xβe−x β > −1 (4.2.51)

where a simple transformation is applied. We have considered also this case to show that the
recursive algorithm gives the generalized Laguerre polynomials. The recurrence formula for the

moments is the following:

cn =
n+ β

α
cn−1 n = 1, 2, . . .with c0 =

(n+ β)!

αn+β+1
. (4.2.52)

This relation has easly derived from ( 4.2.46) applying the integration by parts.

Case w2(x)
Starting from integral definition of the moment cn and applying the integration by parts, the

equation (4.2.47) becomes

cn =
β

α

∫ +∞

0

e−αxxn

α
cosβxdx+

n

α
cn−1 n = 1, 2, . . . . (4.2.53)

Let us consider the integral in the r.h.s.

β

α

∫ +∞

0

e−αxxn

α
cos βxdx =

[
β

α
In cos βx

]+∞

0

+
β2

α

∫ +∞

0

In sinβxdx =

n!β

αn+2
+
β2

α

∫ +∞

0
In sin βxdx+

β2λ

α

∫ +∞

0
Indx− β2λ

α

∫ +∞

0
Indx =

n!β

αn+2
+
β2

α

∫ +∞

0
In(sinβx+ λ)dx− β2λ

α

∫ +∞

0
Indx =

n!β

αn+2
+
β2

α

∫ +∞

0
In(sinβx+ λ)dx− β2λ

α

∫ +∞

0

(

−e
−αx

α

n∑

i=0

xn−in!

αi(n− i)!

)

dx =

n!β

αn+2
+
β2

α

∫ +∞

0

(

−e
−αx

α

n∑

i=0

xn−in!

αi(n− i)!

)

(sinβx+ λ)dx+
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β2λ

α2

n∑

i=0

n!

αi(n− i)!

(n− i)!

αn−i+1
=

n!β

αn+2
− β2

α2

n∑

i=0

cn−in!

αi(n− i)!
+
β2λ

α2

(n+ 1)!

αn+1
=

n!β

αn+2
− β2

α2
cn −

β2

α2

n∑

i=1

cn−in!

αi(n− i)!
+
β2λ(n+ 1)!

αn+3
, (4.2.54)

where In =

∫
e−αxxndx = −e

−αx

α

n∑

i=0

xn−in!

αi(n− i)!
.

Finally, substituing (4.2.54) and (4.2.53), we have

cn =
n!

α2 + β2

[
β

αn
+

(n+ 1)β2λ

αn+1
− β2

n∑

i=1

cn−i
αi(n− i)!

+
α

(n− 1)!
cn−1

]
. (4.2.55)

Writing the same relation for cn−1, and subtracting it from ( 4.2.55), one has

cn = cn−1
n

α
+

n!β2λ

(α2 + β2)αn+1
− n!β2cn−1

(α2 + β2)α(n+ 1)!
− n(n− 1)cn−2

(α2 + β2)
+

nαcn−1

(α2 + β2)
. (4.2.56)

So we can write the following three terms recurrence formula for the moments:

cn =
1

(α2 + β2)

[
2nαcn−1 − n(n − 1)cn−2 +

n!β2λ

αn+1

]
n = 2, 3, . . . . (4.2.57)

To apply the (4.2.57) it is sufficient to know the values of c0 and c1, available on the tables [45].

Case w3(x)

This case is similar the previous one, since the recurrence formula is the same of (4.2.57), while
the formula derived from (4.2.47) is a little bit different.

By applying the (4.2.47), we obtain

cn = −β
∫ +∞

0

e−αx

α
xn sinβxdx+

n

α
cn−1. (4.2.58)

Developing the above integral, by using same technique, we also obtain:

−β
α

∫ +∞

0
e−αxxn sin βxdx =

−
[
β

α
In sin βx

]+∞

0

+
β2

α

∫ +∞

0
In cos βxdx+

β2λ

α

∫ +∞

0
Indx− β2λ

α

∫ +∞

0
Indx =

β2

α

∫ +∞

0
In(cosβx+ λ)dx− β2λ

α

∫ +∞

0
Indx,

whereIn =

∫
e−αxxndx = −e

−αx

α

n∑

i=0

xn−in!

αi(n− i)!
.
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Hence, the recurrence formula is given by

cn =
n!

α2 + β2

[
(n + 1)β2λ

αn+1
− β2

n∑

i=1

cn−i
αi(n− i)!

+
α

(n− 1)!
cn−1

]

. (4.2.59)

A comparing example

We have applied the proposed recursive algorithm to the following integral:

∫ +∞

0
(sinx+ 1)e−αxln(x)dx (4.2.60)

The Figure 4.21 shows the graphic of the integrand function with α = 0.01. It is a difficult case

for the classical gaussian quadrature method, but the recursive algorithm appears to be more
convenient. The recursive formula for moments (4.2.57) has been used with β = λ = 1.

To evaluate the precision of the algorithm, we used the precision index

τ = −log
(
A− B

B

)
(4.2.61)

where A is the numerical result and B the analytical value. In the Figure 4.22 the precision

indexes are plotted as nodes number increases for the recursive algorithm and for the IMSL [48]
routines of Gauss-Laguerre quadrature rule applied to

1

α

∫ +∞

0
(sin

x

α
+ 1)e−xln(

x

α
)dx. (4.2.62)

The real value B of the integral, taken from tables [45], has been evaluated by Mathematica [94]

to obtain its value in multiple precision. The algorithm is in Q-Float precision. On the left of
Figure 4.22 the recursive algorithm shows an increasing precision for the approximation to the

integral as the number of nodes increases, with two values of α = 0.01 (the lower curve) and
α = 0.001 (the higher curve). On the right of Figure 4.22, with α = 0.01 , we see how the result

of application of the Gauss-Laguerre quadrature rule is affected by high oscillations.

0 50 100 150 200 250 300 350 400
0

1

2

3

4

5

6

Figure 4.21: f(x) = (sinx+ 1)e−αx ln(x)
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Figure 4.22: On the left: precision index τ for α = 0.01 (the lower curve) and α = 0.001. On the
right: precision indexes for recursive (regular curve) and classical methods with α = 0.01.

4.2.4 Application to a contact problem

The analysis of mechanisms that rule the mechanical and thermal behavior of contacting surfaces

has been carried out in the past almost exclusively on experimental bases. Theoretical models
have also been built up, but their application was limited to very simple geometries. The problem

has been revisited by employing numerical methods within the framework of the finite element
methods [97], [98], [99]. Experimental methods should be used to characterize in statistical

way the microscopic geometry and the micro-mechanical parameters of the contacting surfaces.
Different statistical parameters and different mechanical hypotheses can be used to build up

such models, see also [9], [46] and [80]. Statistical variables of the surface micro-geometry are
extracted from experimental measurements of the surface profile.

Such models usually require the numerical evaluation of quite complex integral relationships.
The evaluation of such integrals has shown low precision if standard quadrature rules are adopted
hence the development of specific methods is mandatory.

In [65] we have considered the numerical evaluation of integrals over an infinite interval,
which plays a key rule in this kind of problem; in order to achieve numerical results with degree

of extremal precision it has been necessary to build quadrature rule similar but more general
than that of the Gauss-Laguerre type.

Physical contact models has been adapted in [83, 95, 99] to build up high precision contact
elements that permit to treat the problem within the framework of the finite element technique.

The behavior of such elements is ruled both by the geometrical relationships between contact
nodes of the discretisation and by macroscopical laws extrapolated from the microscopical ones.

Here we discuss the problems encountered by adapting the elastic model proposed by Greenwood-
Williamson [46]. The model is built up by combining statistical relationships with the basic Hertz
relationships [50] for contact between two elastic spheres:

aH = (βw)1/2 (4.2.63)

AH = πβw (4.2.64)
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PH =
4

3
E∗β1/2w3/2 (4.2.65)

where aH is the contact radius, β is the original radius of the spheres, w is the compliance, AH
is the contact area, PH is the contact force and E∗ is the elastic modulus of contacting surfaces.

From the statistical point of view we can represent the surface profile by employing a statistical
function which represents the distribution of the asperities heights. If the deformation of the

microscopical surfaces profile is disregarded the probability that the contact of the two mean
planes takes place for a certain compliance, d, is given by

prob. of contact = prob (zs > d) =

∞∫

d

φ (zs)dzs (4.2.66)

where φ (zs) is a chosen statistical function and zs is the summit height. The number of con-
tacting asperities can be also expressed as a function of the compliance, d, if the total number

N of asperities is known

nc = N

∞∫

d

φ (zs)dzs (4.2.67)

The Greenwood and Williamson model is based on the hypothesis that the geometry of the

top of the asperities have a spherical shape. Hence combining a statistical distribution function
with the Hertz equations the authors [46] are able to express the real contact area, Ar, and the

contact force, P , as functions of the compliance and of the characteristic values of the asperities:

Ar = Nπβ

∞∫

d

(zs − d)φ (zs)dzs (4.2.68)

P =
4

3
NE∗β1/2

∞∫

d

(zs − d)3/2 φ (zs)dzs. (4.2.69)

A typical statistical function considered for height and summits distributions is the normal

distribution density fnnction

φ (zs) =
1

σs
√

2π
e
−
z2
s

2σ2
s (4.2.70)

with σs is the standard deviation of the summits. The integrals involved do not admit a closed

form solution, hence the relationships are usually normalized to permit their hand calculation
by employing table of standard integrals. Such normalization is still convenient also in our case.

We define the normalized variable

xs =
zs
σs
. (4.2.71)
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By using (4.2.70) in the (4.2.67), (4.2.68) and (4.2.69), applying the normalization and by using

Gn (dσ) = σns

∞∫

dσ

(xs − dσ)
n 1√

2π
e−

x
2
s

2 dxs =

∞∫

d

(zs − d)n
1

σs
√

2π
e
−

z
2
s

2σ2
s dzs (4.2.72)

the (4.2.67-4.2.69) become

nc = NG0 (dσ) (4.2.73)

Ar = NπβG1 (dσ) (4.2.74)

P =
4

3
NE∗β1/2G3/2 (dσ) . (4.2.75)

To set up a contact constituve law suitable to finite element discretisation we need to de-

termine a relationship between nodal forces and surfaces approach (see also [83, 97]). The
Greenwood and Williamson model in last equations presents a nonlinear relationship between

such parameters. The equations should be translated at element level

FN = A
4

3
ηE∗β1/2G3/2 (dσ) (4.2.76)

where FN is the element contact force, η is the known density of summits per unit of contact
area Λ and dσ is the contact area element.

The constitutive law should be linked to a chosen contact geometry, which defines the surfaces
approach, see [99] for more details. The linearisation of the equation system containing the

equation (4.2.76) involves the terms G0(dσ), G1(dσ), G 3
2
(dσ) and also G 1

2
(dσ), being

∂FN
∂d

= −2ηAE∗β1/2σ1/2
s

∞∫

dσ

(xs − dσ)
1/2 1√

2π
e−

x
2
s

2 dxs = −2ηAE∗β1/2G1/2 (dσ) . (4.2.77)

The Gaussian quadrature is applied setting ts = e−xs in such a way the

Gn (dσ) = σns

e−dσ∫

0

(− ln(ts) − dσ)
n 1√

2π
e−

(− ln(ts))2

2
1

ts
dts (4.2.78)

is approximated by

Gn (dσ) = σns
e−dσ

2

N punti di Gauss∑

k=1

Bk

[
− ln

(
e−dσ

2
xk +

e−dσ

2

)
− dσ

]n
e
− 1

2

h
− ln

“
e
−dσ

2
xk+ e

−dσ

2

”i2

(
e−dσ

2 xk + e−dσ

2

)

(4.2.79)
where Bk are the weights and xk the Gaussian points (nodes).

The numerical integration performed has shown a not satisfactory numerical precision, even if a
high number of Gauss points has been used. Tables 4.12 and 4.13 report the number of significant
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digits, delimited by the vertical bar, for Gn(dσ) computed at d = 3.0 with σs = 1.0. It is evident
that the numerical integration of G0(3.0) and G1(3.0) presents an almost satisfactory number of

correct digits. On the opposite, G 1
2
(3.0) and G 3

2
(3.0), which are both involved in the proposed

contact numerical model, do not gain a satisfactory number of exact digits, even if a high number
of Gauss points would be used. The transformation of the integration limits between zero and

infinite and the employment of Gauss-Laguerre quadrature rule have also shown a poor precision.

Then integration has been carried out by employing the proposed method on the range

(0,+∞): Tables 4.12 and 4.13 show the number of the obtained exact digits. The numerical
results are achieved by using the recursive algorithm [64] with recurrence formula (4.2.52) for

the moments. The integral (4.2.72) under investigations has been transformed in

1√
2π
e−

d
2

2

∞∫

0

e−
z
2
s

2 zns e
−zsddzs. (4.2.80)
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Table 4.12: Exact digits for G0(3.0) and for G1(3.0)

N. of Nodes G0(3.0) (∗10−2) G1(3.0) (∗10−2)

2 0.13 0.038

3 0.134 0.038

4 0.1349 0.03821

5 0.1349 0.03821

6 0.13498 0.038215

7 0.134989 0.038215

8 0.1349898 0.0382154

9 0.13498980 0.03821543

10 0.13498980 0.03821543

11 0.134989803 0.038215431

13 0.1349898031 0.038215431

15 0.13498980316 0.03821543170

18 0.13498980316 0.0382154317047

20 0.134989803163 0.03821543170477

26 0.13498980316300945 0.0382154317047723

28 0.134989803163009452 0.03821543170477235

34 0.13498980316300945266 0.0382154317047723595

40 0.1349898031630094526651 0.038215431704772359564
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Table 4.13: Exact digits for G 1
2
(3.0) and for G 3

2
(3.0)

N. of nodes G1/2(3.0) (∗10−2) G3/2(3.0) (∗10−2)

2 0.064 0.026

3 0.0641 0.0263

4 0.0641 0.02639

5 0.06418 0.02639

6 0.06418 0.026396

7 0.0641850 0.026396

8 0.0641850 0.0263967

9 0.06418504 0.0263967

10 0.06418504 0.02639675

11 0.06418504 0.02639675

13 0.0641850439 0.0263967554

15 0.06418504393 0.02639675542

18 0.0641850439348 0.026396755426

20 0.06418504393485 0.0263967554269

26 0.0641850439348550 0.0263967554269467

28 0.06418504393485507 0.02639675542694672

34 0.0641850439348550793 0.0263967554269467273

40 0.064185043934855079312 0.0263967554269467273

122



Bibliography

[1] Brent R.P. (1971) An Algorithm with Guaranteed Convergence for Finding a Zero

of a Function , Comput. J., 14 (4), 422-425.
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