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Introduction 

 

Lately we have assisted to a dramatic increase of the design and realization of high 

energy and high intensity accelerators.  In this contest are the high intensity Linacs 

for production of ultraviolet and X rays. These activities stimulated several 

Important Companies (i.e. Mitsubishi) to produce instrumentation specialized for 

the generation and the acceleration of electron beams of high intensity, where these 

beams consist in very short bunch trains (up to some tens of nanometers). One of 

most important features of this instrumentation is to avoid the beam quality 

perturbation because of the interaction with surrounding medium. This interaction 

appears because the bunches drag image currents and, consequently, 

Electromagnetic Energy is stored in the surrounding medium. A deformation of the 

EM Energy density may produce intense EM Field acting on the primary charges. 

This phenomenon is represented by the definition of ad hoc parameters: they are the 

Machine Impedance and the Wake Fields relevant to the frequency domain and 

time domain respectively. If these parameters exceed some thresholds, we have a 

deterioration of the beam quality and more in general, limit the maximum beam 

energy available. 

A first approach to this problem is to solve the EM field equations with the 

appropriate boundary conditions and sources by means of numerical codes. Various 

type of the above mentioned codes have been developed (ABCI, ROCOCO, 
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Particle Studio, etc.) which should give the Coupling Impedance (Wake Fields) as 

function of frequency, for a variety of configuration of the surrounding medium. 

There are indications that, at least for some configurations and boundary 

conditions, the results of these codes are not satisfactory. Maybe this is due to the 

required multi-purpose goal, which sacrifices the reliability to the versatility. In 

some cases, the results even violate some fundamental physical principles as 

Energy Conservation. We will analyze this behaviour and we will formulate some 

hypothesis on the cause of these violation. 

The impossibility to submit the portion of the machine to be tested using “in loco” a 

particle beam, in order to obtain the parameters of interest, forces the researchers to 

limit their tests and experiments to bench measurements on the Device Under Test 

(DUT) in a workshop. 

In this case, a common approach is to resort to an experimental technique, 

introduced in 1974 by M.Sands e J.Rees on intuitive basis. This technique consists 

in replacing the bunch by an impulse riding on a wire, and to perform 

measurements by means of a Network Analyzer. If the TEM field produced by the 

electric impulse fairly reproduces the EM field generated by the bunch, the EM 

behaviour of the DUT induced by the wire, may give good indications on the 

behaviour of the DUT interacting with the particle beam. This method, which may 

give sensible indications, is still largely adopted for testing components of particle 

accelerators.  However, even if this method has been largely studied, its results are 

only partially reliable at least in some range of frequencies, as it will be shown. 
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This is due to the presence of the wire that may perturb the measurement making 

uncertain some results. 

We intent to resort to analytic/numerical methods to be implemented in homemade 

codes, conceived “ad hoc”, and therefore more reliable than multipurpose 

commercial codes. The proposed methods intrinsically limit their applications to 

the analysis of canonical models of rather simple configurations: cylindrical 

insertions coupled to cylindrical vacuum tanks such as, cavities, thick irises etc. To 

this end the method of Mode Matching (MM) has been adopted.  

The basic idea of this technique is to represent the EM field in the cavities and in 

the waveguides by means of a complete set of orthogonal eigenmodes (vectors) of 

these items, considered as isolated and with homogeneous boundary conditions. In 

practice, this representation is useful because a limited number of modes are in 

general sufficient to have a good representation of the field behaviour and therefore 

of the electromagnetic interaction between the particle beam and the surrounding 

medium. When applied to finite domains, the Mode Matching Technique makes 

easy to introduce ohmic losses, in order to emulate real structures. 

The structure to analyze is divided in subsets in which it is possible to identify 

stationary or travelling modes. In the subsets of infinite dimensions, only the 

travelling waves are taken into account. General rules to subdivide in subsets the 

device do not exist: one must proceed by attempts.   

In order to solve the problem, one has to find the unknown coefficients of the 

modal expansions. On the borders of adjacent subsets, one has to impose the 
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continuity conditions of the EM-fields. Thus, a set of functional equations are 

obtained, equal to the border surfaces. Adopting the Ritz-Galerkin method, one can 

then project these equations on an orthogonal function set and, therefore, they 

change into an equal number of matrix/vector equations. 

In the first phase the research was oriented on the study of an ideal cylindrical 

pillbox (PEC-PMC) cavity and one with finite conductivity, both inserted into a 

cylindrical vacuum chamber. In the ideal case, considerations about energetic 

balance enforce the real part of the impedance to be strictly zero below the cutoff 

frequency even if in this range resonances exist. 

The second step in the work was to verify the agreement of the results by MM with 

those obtained by the Stretched Wire Method. The theory developed in connection 

with this method gives the longitudinal coupling impedance from the scattering 

parameters produced by the measurements on DUT by means of a Network 

Analyzer. However, since the MM can model the configuration of the Stretched 

Wire Method, we have first crosschecked the results of a bench measurement and 

the one obtained by means of the simulation of the Wire Method by means of MM.  

This work, subdivided in five Chapters, can be summarized as follows: 

• Chapter 1: in this chapter it is introduced the most relevant parameters to 

analyze the interaction between the beam and the surrounding medium. 

Furthermore, there is a detailed explanation of the adopted methods. 
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• Chapter 2: here is discussed the Mode Matching Technique applied to a 

Pillbox Cavity. We will use homogeneous boundary conditions and we will 

introduce material losses to simulate real devices. 

• Chapter 3: In this chapter, the MM technique is applied to a Thick Iris. This 

is a basic study of the reliability of the MM technique with mixed boundary 

conditions. A convergence study and a comparison with another Mode 

Matching configuration will be exposed.  

• Chapter 4: Here is an exhaustive treatment of the mode matching technique 

applied to Wire Method measurements. 

• Chapter 5: In this chapter, we will compare the results by our adopted 

methods with those obtained by commercial codes. Furthermore, we will 

provide exhaustive treatment about the reliability of the wire method for 

frequency ranges that include the frequency region below the waveguides 

cutoff. 
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Chapter 1: 

Main Parameters and adopted 

Methods 

 

1.1 Main parameters  

The way to operate of an accelerator strongly rides on the electromagnetic 

interaction existing between the bunch of charged particles and the vacuum 

chamber in which it propagates. The detailed knowledge of this process is 

necessary to improve the accelerator performances. We can consider the beam as a 

set of charged particle bunches placed at a correct distance, which should preserve 

respective space-time positions assigned during the previous acceleration process. 

Travelling inside the vacuum chamber, the beam induces a secondary 

electromagnetic field that may influence its dynamics. For a relativistic particle in a 

perfect and homogeneous structure, the final effect of the secondary field is null. 

An accelerator can be seen as a device with feedback system in which every 

longitudinal or transverse beam perturbation can be amplified or attenuated by 

electromotive forces created by the perturbation itself. The electromagnetic field 
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induced by the beam is called Wake Field because it remains behind the moving 

charges. 

The study of longitudinal and transverse dynamics needs the knowledge of some 

fundamental parameters: 

- the longitudinal wake potential: it is the voltage variation of a charge, due to 

the field generated  by another charge which precedes it; the longitudinal 

wake-field is responsible for the energy loss because it is essentially in 

phase  with  the particles; 

- The transverse wake potential: it takes into account the transverse force 

applied to the beam due to the transverse wake-fields; its effect is to deflect 

the beam and, as a consequence, it can generate bunch stretching. 

 

There are other parameters exploited to characterize the interaction beam-

accelerator: 

 The Wake Potentials for charge unit are called Wake Functions. 

The Fourier Transform of the Wake Potential is called Coupling Impedance and it 

results as function of the frequency. 

The two parameters just introduced represent two different description of the same 

phenomenon, the electromagnetic coupling between beam and accelerator structure. 

They depend by structures shape and not by bunch properties. The wake potential, 

mainly used for linear accelerators, allows a description in time domain, while 
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Coupling Impedance represents the problem in the frequency domain. Usually, it is 

employed for circular accelerators, for their intrinsic periodicity. 

To better define the concept of wake field, we can consider first a situation of a 

singular particle that will be use to define a point potential wake function. The final 

wake field will be the average value on the whole interaction zone for every beam 

particle. Therefore, let us consider Fig. 1-1, with q1 as a moving  charge with fixed 

velocity parallel to the vacuum chamber axis, r1 as the vector that indicate the  

transverse position, z1 as the vector that indicate the longitudinal position. 

 

 

Fig. 1-1. Reference Frame 

 

The electromagnetic field produced in the framework by q1 can be obtained 

resolving the Maxwell equations with appropriate boundary conditions. This field 

influences the dynamics of both q1 and q. 

We can define the energy lost by q1 as the work that the electromagnetic field does 

on it [1]: 
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with F the Lorentz Force. 

We can notice that previous integrals are calculated on an infinite path and it 

doesn’t correspond to a physic condition, but it is to underline that these 

expressions are an evaluation of the energy gain as good as the wave length is 

smaller than the considered length. 

Besides, we can consider the longitudinal wake function as the energy get by the 

secondary charge q for charge unit q and q1 [1]: 
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The loss factor as the lost energy by q1 for unit of squared charge 
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Finally, we can define the Longitudinal Coupling Impedance as the Fourier 

Transform of the wake function for a point like charge. 
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The wake function can be obtained from longitudinal Impedance through the 

Fourier Anti-transform. Besides, it counts the typical properties of the Fourier 

Transform. Another formulation of the Longitudinal Coupling Impedance can be 

derived by the previous formula considering as a source a beam which has a 

longitudinal sinusoidal modulation in the particle density. Allowing for the field 

produced by this beam interacting with the surrounding medium we can derive the 

Longitudinal Coupling Impedance as function of the wave number k. 
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We may consider also wake fields and impedances produced by higher order 

sources: dipoles, multipoles etc. These sources will lead to the relevant wakefields 

and impedances. We will limit ourselves to the longitudinal case and, from now on, 

the longitudinal impedance will be called impedance “tout court” and the sub index 
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will be dropped. Just to give an example, we give a criterion for longitudinal 

stability of a coasting beam in a circular accelerator 
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Where  

n = harmonic number 

e = elementary charge 

I0 = stored current 

∆p = momentum spread 

η = slippage 

m0 = particle rest mass 

F = form factor (between 1 and 1.6) 

 Generally, the impedance is a complex function and for this reason can be split in 

real and imaginary part. The real part results related to beam losses. 

As we told before, when the bunch crosses various insertions with variable cross 

section installed in the vacuum chamber, it excites secondary fields: some of them 

remain localized around the bunch and others are localized in resonating structures 

and others propagate in the vacuum chamber. 

This assertion can be demonstrated in the ideal case of an infinite length vacuum 

chamber, representing the longitudinal component of the electric field as a 

travelling wave through the chamber axis direction with random phase velocity. For 
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high power devices, wake fields induced by particles can strongly modify the 

distribution of the accelerating field. Furthermore, when the bunch crosses a cavity, 

it excites not only the fundamental mode but also the high order modes. They can 

induce beam energy losses, admittance deterioration (essentially in the bunch area) 

and instability phenomena with particle losses. Generally, as a consequence of 

these effects, one can have severe limitations of maximum electric current 

circulating in the accelerator. 

One can reasonably affirm that studies on the wake fields, on coupling impedance 

as a function of the frequency and, more generally, on the interaction between 

bunch and surrounding media, are very important to reach high quality beams 

coming out the accelerators. Therefore, it should be strongly recommended in 

projecting stage, if it is possible, to look for: 

- Developing cavities with as less as possible high order modes (and with 

very little Q factors) with frequencies not coincident with the fundamental 

mode higher harmonics, with the purpose of reducing the coupling between 

beam and high order modes and therefore to minimize the energy losses; 

- Testing devices devoted to the attenuation of high order modes excited by 

the beam to avoid them to subtract energy stored in the cavity. 

In some cases, with highly collimated high energy beams, as the Free Electron 

Laser ones, this goal is very hard to reach. 
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1.2 The wire method 

This technique was proposed in 1974 by M. Sands and J. Rees which, on intuitive 

considerations, with the purpose to measure the energy lost by an electron bunch 

riding through a particle accelerator component to test, as a resonant cavity. This 

method, that allows to get measurements sufficiently meaningful without need to 

use the particles beam but simply with the normal equipments for bench 

measurements, it is still broadly used in the study of particle accelerator 

components. The simulation of the bunch passage through the device under test 

(DUT) is realized inserting inside the structure a metallic wire along the beam axis, 

in which flows a current impulse having a spatial shape similar to the bunch [2]. 

This configuration allows to gain the scattering parameters of the considered 

structure as feed by two coaxial waveguides, and therefore also the longitudinal 

coupling impedance. 

 

 

Fig. 1-2. Representation of a circular cross section pillbox and the wire stretched along beam 

axis. 
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The basic idea consists of consider to be possible, with the purpose of the energy 

losses evaluation by a particle bunch caused by the non-uniformity in a vacuum 

chamber, the substitution of the current impulse produced by the beam, with a 

current impulse having the same temporal behaviour, flowing through a wire 

stretched along the beam axis. One can see that the electric charge associated  to a 

particle beam crossing through a generic vacuum chamber produces inside of it 

electromagnetic field, which produces on the walls of the structure a charge 

distribution and induced currents. Stretching a metallic wire along the cavity axis, 

and neglecting the coupling effect with the inside radial line, it makes the cavity 

similar to a coaxial transmission line. It is worth of note that the introduced 

perturbation totally modifies the boundary conditions of the system. in fact, the 

section of the fundamental structure  obtained  will have not the simply connection 

property. As known, this has as a consequence the possibility to have TEM modes 

and all frequencies propagating modes as a solution of the Maxwell equations. 

Nevertheless, carrying a current impulse having the same temporal behaviour of the 

one related to the beam on the conductor, it has been shown that, the TEM field 

produced by this impulse exactly reproduces the field produced by the beam if 

initial energy is equal to that of the bunch, unless in the immediate proximity of the 

wire. The intuition suggests that independently by the wire presence, the field 

generated initially by the current impulse is the same of the one produced by the 

beam, provided that the wire dimensions do not perturb the electromagnetic field 
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existing without the wire. After this, the first charges and current induced on 

structure walls can be held equal in the two cases. This means that in a very first 

moment the cavity doesn't acknowledge the boundary condition variation. All 

affirmed till now, based exclusively on intuitive considerations, lead to believe that 

if the bunch duration results to be small in comparison to the time of relaxation of 

the cavity with the wire, then the energy loss by the impulse that circulates on the 

conductor, and lost as electromagnetic energy, it will be next to that lost by the 

particles beam emulated. Therefore, the electromagnetic behaviour of the cavity, 

with the wire inserted, is strongly indicative of the attenuation suffered from the  

High Order Modes and at the same time allows to understand the coupling between 

cavity and beam, thus to appraise the cavity loss factor in function of the frequency 

[2]. 

 

 

1.3 The modal expansions in a cylindrical cavity 

The basic idea of the proposed analytical approach is to subdivide the system in 

subsets (cavities and the waveguides) characterized by homogeneous boundary 

conditions and to expand the field as a superposition of the relevant eigenmodes. 
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Fig. 1-3. Representation of a circular cross section pillbox subdivided in subsets. 

 

The solution is found by matching the expansions solutions on the ports that 

separate the subsets. This can be easily done for the tangential component of 

magnetic field, while for the Electric Field is not possible because its tangential 

component on ports is zero by definition. The expansion has non-uniform 

convergence on these boundaries. However, it will be shown that it is possible to 

overcome this inconvenience. 

The complete set of eigenmodes consists in divergenceless modes plus irrotational 

modes. Taking into account the circular symmetry of the boundaries and of the 

excitations in cavity, the field can be expressed in terms of a complete set of basic 

functions in a cylindrical frame (r, z), in the following way [ 3]: 
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where the above modes satisfy the following equations 
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The boundary conditions are homogeneous for the tangential Electric Field on the 

surface S1 and for the tangential Magnetic Field on the surface S2, where S1 U S2 is 

the whole surface. 

Furthermore, as usual, the modes are orthonormal, so that is: 
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The problem of the non-uniform convergence is solved [3] resorting to the modal 

excitation coefficients (the current Ips or the tension Vps) are drawn considering the 

coupling of the cavity with the guides. Using the Maxwell equations and exploiting 

modal orthonormality, after some passages one can reach the followings 

relationships between the equivalent sources and the excitation coefficients 
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where 0ζ  is the impedance of the medium that fill the cavity and n̂  is the unit 

vector outgoing from surface cavity. In the propagation region, the propagation 

constant is: 
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it is worth to notice that the expressed tangential field in eq.(1.9) won't be the 

same expressed by eq.(1.5) because the not uniform convergence of the series 

on  cavity surface. The integral in eq.(1.5), as we can see afterwards, can be 

calculated only on the coupling surfaces with the guides and starting from its 

modes. The procedure has certainly some critical points on boundary edges in 

which, the field would be infinite. But this is not a problem, if we consider integral 

parameters that mediate on some local difficulties. The coefficients in the Ips 

expansions and those correspondents of the guides are unknown and they must be 

drawn by the conditions of continuity guide-cavity, as we will show in next 

Chapters.
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Chapter 2: 

The Pillbox cavity 

 

2.1 Generalities and Fields Expression 

In this chapter, we will deal with the pillbox cavity case. We want to calculate the 

Longitudinal Coupling Impedance using the Mode Matching technique as already 

successfully done for the iris. This technique can easily analyze the coupling 

between the cylindrical cavity and the waveguides characterized by circular 

symmetry that represent the vacuum chamber as shown in Fig.2-1. Let us consider a 

charged particle riding the positive z direction, along the symmetry axis of a Perfect 

Electric Conductor vacuum chamber. We assume the particle moving with constant 

velocity, even though the vacuum chamber discontinuities would imply little 

velocity changes. Like in iris case, this approximation does not affect our calculus. 

Similarly, as it was done for the iris, we assume that the forcing primary field is 

produced by the spatial spectrum of the previously mentioned point like particle q, 

riding on the axis at velocity v = βc.  
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It is worth of note that we have TM modes, with radial and longitudinal component 

of Electric Field and azimuthal component of Magnetic Field, as follows: 
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where g = b (in the pipe); g = c (in the cavity) , βγkκ = , q is the particle charge  

(In the following formulas we adopted q=1 for simplicity), and ( )g-rH
~

is the 

Heaviside function.  

z 2L 0 

c 

b d S1 

S2 

S3 

Fig. 2-1. Scheme of a Pillbox cavity: b = d ≡ waveguides radius; c ≡ cavity radius; 

2L ≡ cavity length. 
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As expressed in detail in Appendix B, resonant modes in a cylindrical structure of 

generic radius g are represented by the formula 
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where gk qq α=  αq is the qth zero of the equation 0)(0 =αJ . 

The EM Traveling Modes inside a waveguide of radius g are 

 

)(

)(
)(

1

0

0

q

q

q

g

q
Jg

rkJ
rk

απ
=Φ     (2.3) 

 

For a PEC cylindrical cavity of radius c and length 2L the normalized eigenmodes 

are [13] 
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where sε is the Neumann symbol ( sε =1 if s=1, sε =2 else ) and 
L

s
ks

2

π
= . 

At difference with the previous case, for the cavity we will resort to eigenmodes of 

all PEC surfaces. This implies a change in the function that describes the 

longitudinal behavior. Furthermore, we will not need to take into account the 

divergenceless modes. The explicit expression of the fields is given as an expansion 

of the eigenmodes weighted with the expansion coefficients Ips and Vt in the 

cavities and in the waveguides respectively: 
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where 
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b

t
t

b

t
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α
 

(b is the waveguide radius and t  is the index of the t
th

 zero). The total field inside 

all regions is given by the superposition of the primary fields in eq.(2.1) and the 

fields just defined. This superposition will be the expression used in the next 

paragraph, for the Field Continuity. 

 

 

2.2 Matching the magnetic field 

We tackle the problem in the same way as done for the iris. Namely assuming on 

the surfaces and on the ports the primary fields and impose that the modes must 

cancel this primary fields. We may only consider the continuity of the magnetic 

field tangential component on the two ports connecting the waveguides and the 
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cavity, as already done for the Electric Field in the iris case. On the surfaces 1,2 the 

total magnetic field continuity is written as: 
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where we have taken into account the primary field indicated by superscript “0”, 

and ( )rbH −
~

 is the Heaviside step function needed to limit the integral path to the 

ports instead of the total interface surfaces. We continue following the same 

procedure as done for the iris case, by adopting the Ritz Galerkin method, 

projecting eq.(2.8) on the waveguide eigenfunctions ( )rkt

b

t1Φ
 
and obtaining the 

following system: 
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where the vectors A1t and A2t are defined as 
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and the matrix Mpt is defined as 

 

( ) ( )∫ ΦΦ=
b

t

b

tp

c

ppt drrrkrkM
0

112π     (2.11) 

 

and  

( )∑

∑

−=

=

s

ps
ss

p

s

ps
s

p

I
L

I

I
L

I

2
1

2

2

1

ε

ε

    (2.12)

 

 

are functions of the excitation coefficients Ips. 

The explicit expressions of the vectors Ai and the matrix Mpt are given in Appendix 

C.  

The system expression using matrices and vectors is represented in the following 

equation 
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2.3 The excitation coefficients (PEC) 

The procedure adopted here is analogous to the one adopted for the iris again. 

Because of the new boundary conditions, the only difference is that we will resort to 

the excitation coefficients Ips instead of Vps. Therefore, the expression of Ips is: 
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where S defines the ideal cylindrical cavity surface, E
r

 is the total electric field, n̂  

is the outgoing unity vector orthogonal to this surface and hps is given by eq.(2.4). 

On the lateral surface of this cylinder, for a lossless material, En
r

×ˆ is null. Let us 

define S1 and S2 as the surfaces of the two bases. On these surfaces, only the radial 

components of the total Electric Field have to be taken into account. 

Therefore, one can write the eq.(2.14) as 
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where ẑ  is the unit vector having the z axis direction. 

We impose the boundary conditions of the tangential Electric Field on the surfaces 

S1 and S2. Even if the radial component of the modes vanishes on these surfaces (see 

eq.(2.6) ), however they must behave a non-uniform convergence to values different 

from zero such as to satisfy the following conditions: 
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This equation for the tangential components can be interpreted that the Electric 

Field of the resonant modes plus the impressed Electric Field inside the cavity: 

• For b < r < c must be zero because of the perfect conducting walls on the 

corona. 
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• Must be continuous and equal to the sum of the Electric Field of the 

traveling modes plus the impressed Electric Field inside the waveguides. 

Taking into account the definition of the matrix element Mpt given by eq.(2.11), one 

may get the formula:  
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where the known vectors N1p and N2p, the extended expression of which is given in 

Appendix C, are given by the following formula: 
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By inserting the just written equation in the expression of I1p and I2p given by 

eq.(2.12), we get: 
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A key feature of these expressions is that the two sums with the s-index can be put 

in a closed form. This is a general property and it is related to the modal expansion 

of Green Function. In addition to the undoubted advantage of the analytical sum, 

one has the further advantage that the matrices are reduced of one dimension. The 

electromagnetic problems will also benefit of this behavior: all the longitudinal 

electromagnetic modes are taken into account and therefore only a few transverse 

modes are sufficient to describe the phenomenon. 

For the sum of the series in square brackets, we adopt the same procedure as done 

for the iris, so 
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where 
( )

c

p

pc

p
Yk

ck
Z

1
22

=
−

=
α

 (c is the cavity cross section radius). 

Expressing the above formula in terms of matrices and vectors we get: 
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2.4 The Excitation Coefficients in case of finite losses 

So far, we have discussed of a PEC device. Therefore, we spoke about a structure 

characterized by the following properties: 

• Electric field is perpendicular to the walls. 

• The current in the walls is a surface current. 

• No energy dissipation in the walls. 

• Below cutoff the field amplitude becomes infinite at resonance frequencies. 

When we consider a lossy device, the above properties will change because of the 

finite conductivity. There will be energy losses in the walls that limit the Fields 

amplitude at the resonance frequencies. It will be still very large, but not infinite. 

Furthermore, the current in the walls becomes a volume current with penetration 

dept depending on the material.  The most important change for our evaluations is 

that the Electric field has a tangential component at the wall. This component is 
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very little and depends on the penetration depth, but we need to add it to eq.(2.14) 

as a term under integral. 

The finite conductivity is represented by the surface impedance 
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     (2.22) 

 

where σ and δ represent the material conductivity and the penetration dept 

respectively [3, 4]. 

The Surface Impedance has the meaning that, on the metallic surfaces, there is a 

relationship between the tangential component of the Electric Field and the 

Magnetic Field, given by:  

 

HnZE Sl

rr
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where the subscript l indicates losses. This term has to be added to the eq.(2.14) and 

then the excitation coefficients formula becomes: 
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We remark that the excitation coefficients Ips are significantly different from zero 

only at frequencies such that 
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Therefore, in the above equation we may neglect in the sum all the excitation 

coefficients but psI . So that, we may approximate the expression given by eq.(2.24) 

as 
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By means of some algebra described in the Appendix C, we finally obtain the 

following formula: 
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Before substituting the just written formula in eq.(2.12) to obtain the excitation 

coefficients, we need to resort to a new definition of modal impedance as: 
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As demonstrated in Appendix C, the excitation currents for a lossy Pillbox are: 
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2.5 The Equation System 

The excitation currents expressed in eq.(2.21) and in eq.(2.28) allow us to reach the 

ultimate expression of the eq.(2.13) system in either loss free and lossy cases. We 

will report either formulas, even if it is possible to shift from lossy to loss free case 

simply equating to zero the parameters defined in eq.(2.27). 

For a loss free pillbox, equating eq.(2.13) with eq.(2.21) we get the following 

system: 
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By means of some algebra it is possible to uncouple the unknowns and, therefore, to 

simplify the solution. By adding and subtracting the two expressions, we obtain: 
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where  I  is the identity matrix. Here we resorted to the following trigonometric 

expressions: 
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For a lossy pillbox, equating eq.(2.13) with eq.(2.28) as already done for the loss 

free pillbox, we get the following system: 
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By adding and subtracting the two expressions and applying the trigonometric 

expressions shown in eq.(2.32), we obtain: 
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A commonly used computer tool, Mathworks Matlab, easily solves the just obtained 

equations. Actually, it is necessary to truncate the infinite matrices before trying to 

solve the equations. In section 2.7 we will show a good method to truncate the 

matrices without lose results goodness. 

 

 

2.6 The Longitudinal Coupling Impedance 

We determine the Coupling impedance separating the integral in components 

related to the cavity regions where, to be consistent with the previous assumptions, 

we take the charge  q=1 . 
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 the longitudinal component of the Electric field for the three regions is given in 

eq.(2.1) and summarized as follows. 
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For the z < 0 integral, substituting the Electric field for r = 0 and deprived of the 

factors not relevant for integration, we obtain an expression like the following 
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which is the same of the integral  
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Resorting to the above formula to resolve the integral in eq.(2.38) we obtain 
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that can be written  in a more elegant expression (using κ = k/βγ) 
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 Returning to the general expression of the integral, we notice that 
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Therefore, substituting everything in the first integral of eq.(2.36) we have 
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For what concerns the integral of Longitudinal Impedance related to the case  

0<z<2L , the Electric field along the z axis is given in eq.(2.37). Recalling the 

explicit expression of  Ips 
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we obtain the expression of the integrand 
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For r = 0 and without elements not relevant to the integral solution, we obtain the 

following integral and the relative solution 
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Therefore, the integral of the Longitudinal Coupling Impedance we are looking for, 

will be 
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The sums on s can be analytically calculated as already seen for iris, with a similar 

result. In fact, from the integral result we gain four sums on s to solve, derived by 

the follows: 
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Solving the above sums we reach this result 
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After some algebra we obtain the final result for the second integral of eq.(2.36)  
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For the z > 0 integral, substituting the Electric field for r = 0 and without elements 

not relevant to the integral solution, we obtain an expression like the following 
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The above integral can be written as already done for the integral of the first region 
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which has the same solution, with different signs. 

Solving the integral and using κ = k/βγ we obtain this result 
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Therefore, recalling the expression of 
0

0 )(
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Φ
r

qq rk
ρ  and substituting everything in 

the third integral of eq.(2.36) 
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The Longitudinal Coupling Impedance of the Pillbox is given by the sum of the 

three integrals eq.(2.29), eq.(2.34), eq.(2.38). 

 

 

2.7 Numerical results 

The two Equation Systems (eq.2.30-2.31 and eq.2.34-2.35) involves infinite 

equations and infinite unknowns. To allow the system inversion it is necessary to 

truncate the infinite matrices without hack the results validity. As already seen for 

the iris, through the Relative Convergence phenomenon, it is possible to reach a 

different result for different matrix truncation. 

Following the scheme reported on Lee and Mittra book [6] we imposed a relation 

between the number of modes of different zones in order to respect the Meixner 

condition [7]. 

 The choice of the ratios N1/N2 and N3/N2 (where Ni indicate the number of modes 

for the i
th

 region) has a considerable effect on the result goodness as seen for the 

iris.  
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In our specific case, we chosen 
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where N = N1 + N2 + N3 and w23 = w12 (because b = d), then N1 = N3. After 

truncation and inversion of the linear equations, we solved the problem. It will be 

represented the Longitudinal Coupling Impedance, as a fundamental parameter for 

accelerators project, subdivided in real and imaginary parts and for different values 

of number of modes, geometrical parameters and particle speed. The number of 

points is chosen as a simulation constant, n = 500, and the same is done for the 

waveguide radius (b = 12 mm). The number of modes is fixed (N = 200), but in 

some cases this number may be changed, when  it is needed to increase it to reach 

the converegence, as already discussed for iris case. 
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Fig. 2-2. Longitudinal Coupling Impedance, real part: βγ = 1, c/b = 4, L/b = 4. 

 

Fig. 2-3. Longitudinal Coupling Impedance with losses, real part: βγ = 1, c/b = 4, L/b = 4, 

ρ=1/(5.98·10
7
). 
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Fig. 2-4. Longitudinal Coupling Impedance, imaginary part: βγ = 1, c/b = 4, L/b = 4. 

 

Fig. 2-5. Longitudinal Coupling Impedance, real part: βγ = 1, c/b = 6, L/b = 4. 
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Fig. 2-6. Longitudinal Coupling Impedance with losses, real part: βγ = 1, c/b = 6, L/b = 4, 

ρ=1/(5.98·10
7
). 

 

Fig. 2-7. Longitudinal Coupling Impedance, imaginary part: βγ = 1, c/b = 6, L/b = 4. 
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Fig. 2-8. Longitudinal Coupling Impedance, real part: βγ = 1, c/b = 8, L/b = 4. 

 

 

Fig. 2-9. Longitudinal Coupling Impedance with losses, real part: βγ = 1, c/b = 8, L/b = 4, 

ρ=1/(5.98·10
7
). 
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Fig. 2-10.Longitudinal Coupling Impedance, imaginary part: βγ = 1, c/b = 8, L/b = 4. 

 

 

Fig. 2-11.Longitudinal Coupling Impedance, real part: βγ = 10, c/b = 4, L/b = 4. 
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Fig. 2-12. Longitudinal Coupling Impedance with losses, real part: βγ = 10, c/b = 4, L/b = 4, 

ρ=1/(5.98·10
7
). 

 

Fig. 2-13.Longitudinal Coupling Impedance, imaginary part: βγ = 10, c/b = 4, L/b = 4. 
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Fig. 2-14.Longitudinal Coupling Impedance, real part: βγ = 10, c/b = 6, L/b = 4. 

 

Fig. 2-15. Longitudinal Coupling Impedance with losses, real part: βγ = 10, c/b = 6, L/b = 4, 

ρ=1/(5.98·10
7
). 
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Fig. 2-16.Longitudinal Coupling Impedance, imaginary part: βγ = 10, c/b = 6, L/b = 4. 

 

 

Fig. 2-17.Longitudinal Coupling Impedance, real part: βγ = 10, c/b = 8, L/b = 4. 
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Fig. 2-18. Longitudinal Coupling Impedance with losses, real part: βγ = 10, c/b = 8, L/b = 4, 

ρ=1/(5.98·10
7
). 

 

Fig. 2-19.Longitudinal Coupling Impedance, imaginary part: βγ = 10, c/b = 8, L/b = 4. 
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Fig. 2-20.Longitudinal Coupling Impedance, real part: βγ = 100, c/b = 4, L/b = 4. 

 

Fig. 2-21. Longitudinal Coupling Impedance with losses, real part: βγ = 100, c/b = 4, L/b = 4, 

ρ=1/(5.98·10
7
). 
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Fig. 2-22.Longitudinal Coupling Impedance, imaginary part: βγ = 100, c/b = 4, L/b = 4. 

 

Fig. 2-23.Longitudinal Coupling Impedance, real part: βγ = 100, c/b = 6, L/b = 4. 
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Fig. 2-24. Longitudinal Coupling Impedance with losses, real part: βγ = 100, c/b = 6, L/b = 4, 

ρ=1/(5.98·107). 

 

Fig. 2-25. Longitudinal Coupling Impedance, imaginary part: βγ = 100, c/b = 6, L/b = 4. 
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Fig. 2-26. Longitudinal Coupling Impedance, real part: βγ = 100, c/b = 8, L/b = 4. 

 

Fig. 2-27. Longitudinal Coupling Impedance with losses, real part: βγ = 100, c/b = 8, L/b = 4, 

ρ=1/(5.98·107). 
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Fig. 2-28.Longitudinal Coupling Impedance, imaginary part: βγ = 100, c/b = 8, L/b = 4. 

 

Fig. 2-29.Longitudinal Coupling Impedance, real part: βγ = ∞, c/b = 4, L/b = 4. 
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Fig. 2-30. Longitudinal Coupling Impedance with losses, real part: βγ = ∞, c/b = 4, L/b = 4, 

ρ=1/(5.98·107). 

 

Fig. 2-31.Longitudinal Coupling Impedance, imaginary part: βγ = ∞, c/b = 4, L/b = 4. 
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Fig. 2-32. Longitudinal Coupling Impedance, real part: βγ = ∞, c/b = 6, L/b = 4. 

 

Fig. 2-33. Longitudinal Coupling Impedance with losses, real part: βγ = ∞, c/b = 4, L/b = 6, 

ρ=1/(5.98·107). 
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Fig. 2-34.Longitudinal Coupling Impedance, imaginary part: βγ = ∞, c/b = 6, L/b = 4. 

 

 

Fig. 2-35. Longitudinal Coupling Impedance, real part: βγ = ∞, c/b = 8, L/b = 4. 
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Fig. 2-36. Longitudinal Coupling Impedance with losses, real part: βγ = ∞, c/b = 4, L/b = 8, 

ρ=1/(5.98·107). 

 

Fig. 2-37.Longitudinal Coupling Impedance, imaginary part: βγ = ∞, c/b = 8, L/b = 4. 
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When the values of the real part of the Coupling Impedance are as low as 10
-13

-10
-14

 

Ohm, it is useless to increase the number of modes: the results are quite erratic. This 

is a consequence that we are approaching to the accuracy given for the zeros of the 

Bessel Functions [8]. This inconvenience, which happens at very low energies, 

affects only the real part of the Coupling Impedance and not the imaginary part. 

 

 

Fig. 2-38. Convergence test for Mode Matching Technique, Coupling Impedance. (βγ=0.1, 

c/b=2, L/b=4). 
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Chapter 3: 

The Thick Iris 

 

3.1 Generality and Fields Expression 

Here we want to analyze the interaction between a beam and a thick iris inserted in 

a cylindrical vacuum chamber both of circular cross section. 

 

 

 

We assume the forcing primary field as produced by the spatial spectrum of a point 

like particle q riding on the axis with a velocity βc. Therefore, the primary fields are 

TM type and their explicit expression are given below 

 

ZONE 2 

ZONE 1 

d  

 

S2 

ZONE c 

S1 c 

b 

v = βc 

Fig. 3-1. Schematic representation of a generic Thick Iris. 
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  (3.1) 

  

where g = b (in the waveguide); g = c (in the iris) , βγkκ =   , Km and Im are 

modified Bessel Function, (In the following formulas we adopted q=1 for 

simplicity). In Appendix A is given a detailed exposition. 

This configuration is split in two semi-infinite pipes, separated by a cylindrical 

region of the same radius as the iris and of same length. The pipes are considered as 

waveguides and the cylindrical region as a pillbox cavity. The basic idea of the 

analytical approach is to represent the EM Fields in the cavity and in the 

waveguides by means of eigenmodes of these structures as considered isolated and 

with perfect (magnetic or electric) walls. It is well known that these modes form a 

complete set by means of which we can represent any EM Field configurations. 

Then, in order to find the expansion coefficients, we must impose the continuity of 

the electric and the magnetic fields on the borders separating adjacent structures. 

The boundary conditions on the iris are: 

• Perfect magnetic conductor on the bases 

• Perfect electric conductor on the lateral surface 
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The primary fields are of TM type. The cylindrical symmetry does not introduce 

any longitudinal Magnetic Field. Therefore, the scattered field will be of TM type 

too. 

One can tackle the problem in two different ways: 

1. Assume the primary source and impose the boundary conditions on the 

surface and the continuity on the ports [4] 

2. Assume on the surfaces and on the port the primary fields and impose that 

the modes must cancel these primary fields. 

We will adopt the second approach. It is clear that the primary field alone does not 

satisfy all the boundary conditions: for instance, the tangent electric primary field 

on the corona is not vanishing. Therefore, the modes must restore this condition on 

this surface.  

The EM Travelling Modes inside a generic cylindrical structure of radius g can be 

represented by the following normalized eigenmodes: 

 

p.e.c. 

p. m.c. 
0 

p.e.c. 
 

p. m.c. 
 

0 2L z 

n̂

n̂

Fig. 3-2. Scheme of the boundary conditions. 
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where gk qq α=  and αq is the q
th

 zero of the equation 0)(0 =αJ . More details 

about these expressions are written in Appendix B. 

For a cylindrical cavity of radius c and length 2L the formula of the normalized 

eigenmodes is written [4] as 
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where sε is the Neumann symbol ( sε =1 if s=1, sε =2 else ) and 
L

zs
k s

2

π
= . 

The fields inside the three zones in which we divided the device are represented as 

follows 
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where   ps

ps

ps

ps

ps V
k

k
jV

j

kZ
I =−=

ωµ

0
 ; 22

spps kkk += ; sε is the Neumann symbol 

( sε =1 if s=1, sε =2 else ); 
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t
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α
 (b is the pipe cross section 

radius); Vps and Fps are the excitation coefficients of the divergenceless and 

irrotational resonant modes respectively. 



Chapter 2: The Thick Iris 

 82 

The total field inside every region is given by the superposition of the primary fields 

in eq.(3.1) and the fields just defined. This superposition will be the expression used 

in the next paragraph, for the Field Continuity verification. 

 

 

3.2 Matching the electric field 

Now we will define the Electric field continuity at the interfaces between the three 

subsets in which we divided the device, taking into account the irrotational modes 

too: 
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(3.8) 

 

where the primary field are indicated by the superscript “0”, and ( )rcH −
~

 is the 

Heaviside step function that represents the neglecting of the fields in 

correspondence to the coronas. 

From eq.(3.8) and using the expressions of the Transverse Magnetic Modes, we get 

the explicit expression of the continuity at the interfaces: 
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(3.9) 

 

where b and c are the waveguide and cavity radii respectively; indices 1,2 indicate 

the left and the right interface between subsets. 

By adopting the Ritz Galerkin method, we project eq.(3.9) on the eigenfunctions 

( )rkt

b

t1Φ
 
and we obtain the following system: 
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where the vectors A1t and A2t are related to the primary fields and are defined as 
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where S indicates the interfaces surface and the matrix Mpt is defined as 
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and their explicit expression is given in Appendix C. 

It is worth of note that it is needed to get the sums V1p e V2p defined as: 
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The just given definition will introduce a simplification because one index has been 

“saturated”. 
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3.3 The excitation coefficients (PEC+PMC) 

The mode excitation coefficients psV and psF defined in the above paragraph, are 

determined taking into account the coupling between cavity and waveguides. Using 

Maxwell Equations and the modal orthonormality, after some algebra it is possible 

to reach the formulas we are looking for. Operating in such way, it is implicit to 

impose the continuity of the tangential Magnetic Fields on the interfaces between 

cavities and waveguides. This means that we build a non-zero Field in 

correspondence of the cavity ports, using Field distributions that result zero on the 

same ports (cavity modes). This operation is done because the sum converge not 

uniformly, so the limit of the sum calculated in a point that lies on the perfect 

magnetic conductor surface cannot be changed to the sum in a point whose limit 

tends to the surface of the conductor. In fact, the first limit is zero, whereas the 

second tends to the assigned Magnetic Field. This procedure has a critical point in 

correspondence of the edges angles where the field should tend to infinite. 

However, this effect is not a real problem because the parameters we are calculating 

are of global type, so they means on these critical points. 

Summarizing what written above, the continuity of the Electric Field cannot be 

expressed “tout court” using the eigenfunction expansions because they satisfy the 

homogeneous boundary conditions. However, this inconvenient can be 

circumvented resorting to the excitation coefficients psV  as function of the Magnetic 

Field distribution on the ports [3] as: 



Chapter 2: The Thick Iris 

 86 

 

( )∫ ⋅×
−−

−=
S

*

ps

sp

ps dSneH
kkk

jkZ
V ˆ

222

0 rr
   (3.14) 

 

where n̂  is the outgoing unity vector orthogonal to the cavity surface S and eps is 

given by eq.(3.4). 

We will have a non-zero Electric Field tangent component only on the two ports S1 

and S2. Therefore, one can write the eq.(3.14) as: 
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where ẑ  indicate the positive direction of z axis from left to right and H
r

represents 

the total Magnetic Field at the interface surfaces. We impose the boundary 

conditions of the tangential Electric Field on the surfaces S1 and S2. Even if the 

radial component of the modes vanishes on these surfaces (see eq.(3.8) ), however 

they must behave a non-uniform convergence to values different from zero such as 

to satisfy the following conditions: 
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Expanding the integral and taking into account the definition of the matrix element 

Mpt one may get the formula: 
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and its explicit expression is given in Appendix C. 

For what concerns the irrotational modes we have [4] 
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where n is the outgoing versor orthogonal to the cavity surface S and fps is given by 
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We will have a non-zero Electric Field tangent component only on the two ports S1 

and S2. Therefore, one can write 
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where H
r

 represents the total field at the interface surfaces. 

Expanding fps we obtain after some algebra 
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Taking into account the definition of V1p and V2p as given by eq.(3.13), we get: 
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A key feature of this expression is the two sums with the s-index can be put in a 

closed form. This is a general property and is related with the modal expansion of 

Green Function. Resorting to eq.(1.421.4) of reference [5] one can compact the 

sums over “s” as: 
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 In addition to the undoubted advantage of the analytical sum, one has the further 

advantage that the matrices are reduced of one dimension. The electromagnetic 
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problems will also benefit of this behaviour: all the longitudinal electromagnetic 

modes are taking into account and therefore only a few transverse modes are 

sufficient to describe the phenomenon. 

From the above algebra, we obtain then the simplified form: 
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where 
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 (c is the iris cross section radius). 

Expressing the above formula in terms of matrices and vectors, we get: 
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where 
c

Z and 
b

Y  are diagonal matrices. 
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3.4 The Equation System 

By equating eq. (3.10) with eq. (3.26), we get the following infinite system in 

infinite unknowns: 
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By means of some algebra it is possible to uncouple the unknowns and, therefore, to 

simplify the solution. By adding and subtracting the two expressions, we obtain: 
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Where we resorted to the following trigonometric expressions: 
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( ) )cot()csc(2/tan xxx −=   and  ( ) )cot()csc(2/cot xxx +=  

 

As a conclusion one can see that the equations are uncoupled since in the first one 

appears only the unknown ( )+−
+ 21 VV  and in the second one only ( )+−

− 21 VV . 

Therefore, they can be solved by the inversion of a simpler matrix.  

Other authors in a similar way solve the problem for this case resorting to a wave 

representation inside the iris (Travelling Wave Mode Matching): 
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 (3.30) 

 

where ck pp /α=  and αp are the zeros of the Bessel function J0(x) and ( )rk p

c

0Φ  and 

( )rk p

c

1Φ  are the modal functions. However, their results are restricted to the lossless 

case, but it is not the only limitation. 

One can see that, being equivalent to each other, the mode-matching technique 

needs only half modes in respect to the number of modes needed by travelling wave 
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mode matching. This means that our technique needs less computational power to 

reach the result than the classical travelling wave mode matching.  

However, this advantage is not enough to justify the increased mathematic 

difficulties introduced by this method, due to not uniformly convergent series. As 

will be shown, the mixed mode matching technique allows reaching better results 

than the other method. 

 

3.5 The longitudinal coupling impedance 

When a structure as the iris is studied in an accelerator project, it is important to 

evaluate its iteration with the particle beam. In time domain, a global parameter that 

defines this interaction is the wake potential, already defined. Its analogous in the 

frequency domain is the longitudinal coupling impedance, easily obtained from the 

potential using the Fourier Transform. Here we will start from the more general 

definition of the Impedance already given in previous paragraphs, to reach a 

particular expression fitted to the iris structure, as: 
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The procedure adopted is the same as the one of the previous Chapter, and we get 

the numerical results listed in the next Section.  

 

 

3.6 Numerical Results 

The two Equation Systems (eq.3.28-3.29) involves infinite equations and infinite 

unknowns. To allow the system inversion it is necessary to truncate the infinite 

matrices without hack the results validity. Doing some simulations on the device is 

possible to see a different result for different matrix truncation. It is the Relative 

Convergence phenomenon [6].  

 At this, a finite number of modes for each waveguide and cavity must be 

considered. The choice of the ratios N1/N2 and N3/N2 (where Ni indicate the 

number of modes for the ith region) has a considerable effect on the result goodness. 

Following the scheme reported on Lee and Mittra book [6] we imposed the written 

below relations between the numbers of modes of different zones in order to respect 

the Meixner condition [7]. 
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In our specific case, we chosen 
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where N = N1 + N2 + N3 and w23 = w12 (because b = d), then N1 = N3. After 

truncation and inversion of the linear equations, we solved the problem. It will be 

shown the goodness of the mode-matching analysis to manage the particle passing 

through a thick iris problem. It will be represented the Longitudinal Coupling 

Impedance, as a fundamental parameter for accelerators project, subdivided in real 

and imaginary parts and for different values of number of modes, geometrical 

parameters and particle velocity. 
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Fig. 3-3. Comparison between mixed mode matching and travelling wave mode matching 

applied on the same device: Real part of Coupling Impedance (βγ=10, c/b=0.2, L/b=0.25)  

 

Fig. 3-4. Comparison between mixed mode matching and travelling wave mode matching 

applied on the same device: Imaginary part of Coupling Impedance. (βγ=10, c/b=0.2, L/b=0.25) 
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In Fig.3-3 is shown the comparison between the method adopted here and the 

travelling wave mode matching (usually called mode matching in literature), 

applied to the same structure. It is worth of note that the normalization of wave 

number to the guide radius implies that the cutoff frequency will always fall on the 

same value of the normalized wave number. This value ( kb = 2.4 ) corresponds to 

the first zero of the Bessel Function J0(x)=0. One should not be surprised by the 

vanishing of the real part of the Impedance for all the frequencies below the cutoff. 

A different behaviour would conflict with the energy conservation principle. 

Allowing for the energy released by the beam into the room delimited by the 

discontinuity of the iris, this energy “must be entirely given back” again to the beam 

itself. Since we are below the cutoff, no energy is indeed allowed to freely flow 

inside the pipes. Therefore, the real part of Coupling Impedance must be zero 

because the beam did not lose any energy. By converse, the imaginary part is 

certainly different from zero since there is a balanced exchange of energy between 

the beam and the room inside the discontinuity, as shown in Fig.3-4. We expect that 

this will not happen when the walls of the iris have a finite conductivity, since a 

certain amount of the energy exchanged will be dissipated on the walls. We expect 

that in this case at some frequencies (related to the device resonances) it will appear 

a non-vanishing real part in the Coupling Impedance. Above cutoff, the real part the 

coupling may be different from zero: a certain amount of the energy, released by the 

beam into the room delimited by the discontinuity of the iris, may flow into the 
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beam pipes. Since the phase velocity of its EM field is larger than the particle 

velocity, the mean power exchange between the beam and the field is zero: in sum, 

this energy is irreversibly lost and a non-zero real part appears in the Coupling 

impedance, even in the case of lossless walls. 

 While at low frequency the results of the two methods are almost superposable, the 

discrepancy between these results becomes macroscopic at high frequency, where it 

attains almost 10%. In order to understand which method is more convenient, we 

performed a convergence test for the mixed mode matching case. The results of this 

procedure are represented in Fig.3-5. In Fig.3-3 is also reported the time needed by 

the computer to reach the result and it is clear that in this case the travelling wave 

mode matching method faster than Mixed mode matching method. It is only a 

coincidence, because usually the M.M. is intrinsically faster and, as more little is βγ 

as more evident is the difference in time. 
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Fig. 3-5. Four Convergence test for Mixed mode matching Technique, Imaginary Part of 

Coupling Impedance. (βγ=10, c/b=0.2, L/b=0.25). 

 

Fig. 3-6. Convergence test for Mixed mode matching Technique, Imaginary Part of Coupling 

Impedance. (βγ=10, c/b=0.2, L/b=0.25). 
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This method exhibits a fast convergence in the estimation of the longitudinal 

coupling impedance. Few modes are required to obtain an error lower than percent 

and then an accurate value of the impedance. In Fig.3-5 and Fig.3-6 is shown the 

convergence study on the real part of the Coupling Impedance. If 100 modes are 

used, one can be find an error lower than 1‰. 

 

fig. 3-7. Convergence of the real part of the Longitudinal Impedance. (kb=3). 

 

In the figures below, we want to show how much the Longitudinal Coupling 

Impedance is useful to understand the interaction between the particle and the iris 

for some particle speed values and varying some iris parameters. Every simulation 
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is done using 100 modes and taking 500 points for every graphic. The only constant 

parameter is the waveguide radius b=30 mm. 

 

Fig. 3-8. Longitudinal Coupling Impedance, real part: βγ = 0.1, c/b = 0.2, L/b = 0.25. 
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Fig. 3-9. Longitudinal Coupling Impedance, imaginary part: βγ = 0.1, c/b = 0.2, L/b = 0.25. 

 

Fig. 3-10. Longitudinal Coupling Impedance, real part: βγ = 0.1, c/b = 0.4, L/b = 0.25. 
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Fig. 3-11. Longitudinal Coupling Impedance, imaginary part: βγ = 0.1, c/b = 0.4, L/b = 0.25. 

 

Fig. 3-12. Longitudinal Coupling Impedance, real part: βγ = 0.1, c/b = 0.6, L/b = 0.25. 
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Fig. 3-13. Longitudinal Coupling Impedance, imaginary part: βγ = 0.1, c/b = 0.6, L/b = 0.25. 

 

Fig. 3-14. Longitudinal Coupling Impedance, real part: βγ = 1, c/b = 0.2, L/b = 0.25. 
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Fig. 3-15. Longitudinal Coupling Impedance, imaginary part: βγ = 1, c/b = 0.2, L/b = 0.25. 

 

 

Fig. 3-16. Longitudinal Coupling Impedance, real part: βγ = 1, c/b = 0.4, L/b = 0.25. 
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Fig. 3-17. Longitudinal Coupling Impedance, imaginary part: βγ = 1, c/b = 0.4, L/b = 0.25. 

 

 

Fig. 3-18. Longitudinal Coupling Impedance, real part: βγ = 1, c/b = 0.6, L/b = 0.25. 
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Fig. 3-19. Longitudinal Coupling Impedance, imaginary part: βγ = 1, c/b = 0.6, L/b = 0.25. 

 

 

Fig. 3-20. Longitudinal Coupling Impedance, real part: βγ = 10, c/b = 0.2, L/b = 0.25. 
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Fig. 3-21. Longitudinal Coupling Impedance, imaginary part: βγ = 10, c/b = 0.2, L/b = 0.25. 

 

 

Fig. 3-22. Longitudinal Coupling Impedance, real part: βγ = 10, c/b = 0.4, L/b = 0.25. 
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Fig. 3-23. Longitudinal Coupling Impedance, imaginary part: βγ = 10, c/b = 0.4, L/b = 0.25. 

 

 

Fig. 3-24. Longitudinal Coupling Impedance, real part: βγ = 10, c/b = 0.6, L/b = 0.25. 
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Fig. 3-25. Longitudinal Coupling Impedance, imaginary part: βγ = 10, c/b = 0.6, L/b = 0.25. 

 

 

Fig. 3-26. Longitudinal Coupling Impedance, real part: βγ = 100, c/b = 0.2, L/b = 0.25. 
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Fig. 3-27. Longitudinal Coupling Impedance, imaginary part: βγ = 100, c/b = 0.2, L/b = 0.25. 

 

 

Fig. 3-28. Longitudinal Coupling Impedance, real part: βγ = 100, c/b = 0.4, L/b = 0.25. 
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Fig. 3-29. Longitudinal Coupling Impedance, imaginary part: βγ = 100, c/b = 0.4, L/b = 0.25. 

 

 

Fig. 3-30. Longitudinal Coupling Impedance, real part: βγ = 100, c/b = 0.6, L/b = 0.25. 



Chapter 2: The Thick Iris 

 113

 

 

Fig. 3-31. Longitudinal Coupling Impedance, imaginary part: βγ = 100, c/b = 0.6, L/b = 0.25. 
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Fig. 3-32. Longitudinal Coupling Impedance, real part: βγ = ∞, c/b = 0.2, L/b = 0.25. 

 

Fig. 3-33. Longitudinal Coupling Impedance, imaginary part: βγ = ∞, c/b = 0.2, L/b = 0.25. 
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Fig. 3-34. Longitudinal Coupling Impedance, real part: βγ = ∞, c/b = 0.4, L/b = 0.25. 

 

 

Fig. 3-35. Longitudinal Coupling Impedance, imaginary part: βγ = ∞, c/b = 0.4, L/b = 0.25. 
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Fig. 3-36. Longitudinal Coupling Impedance, real part: βγ = ∞, c/b = 0.6, L/b = 0.25. 

 

 

Fig. 3-37. Longitudinal Coupling Impedance, imaginary part: βγ = ∞, c/b = 0.6, L/b = 0.25. 
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One can see that for βγ = 0.1, or β ≈ 0.1 little Impedance spectra are reached 

(fig.3.8-3.13). This is due to the transit time of the charge through the iris. In fact, 

the lesser is the velocity the longer will be the transit time and consequently the 

shorter will be the spectrum. 

Moreover, for little values of βγ, the interaction between particle and iris is at 

minimum, and the very little real part value of the obtained impedance confirms this 

assertion. It is worth of note that when the ratio c/b ≈ 1 the impedance amplitude 

decreases to very little values, as expected. In case of βγ = ∞, meaning β =1 (the 

charge moves with light speed), an infinite spectrum is obtained, with the real part 

of the impedance that never vanish. 
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Chapter 4: 

The Coaxial Setup 

 

4.1 Generalities and Fields Expression 

In this chapter, we will apply the mode matching technique to a device that consists 

of a pillbox with an inner wire stretched along its z-axis. The problem and, 

therefore, its solution are different with respect to the previous cases, first because 

of the absence of the beam: as a forcing term, we may consider a traveling 

waveguide mode. It is worth of note that, since the coaxial configuration has a 

multiple connection of first order, it can support at least one TEM mode: it is quite 

natural to take this mode as the forcing source. In this case, we will find the 

scattering parameters first, and then we will use them to determine the coupling 

impedance. 
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Fig. 4-1. Scheme of the pillbox with the stretched wire on z axis. a = wire radius; b = waveguide 

radius; c = cavity radius; 2L = cavity length. 

 

In addition, the presence of the wire changes the Device Under Test (DUT) 

characteristics. Inserting the wire, the waveguides behave like coaxial cables (with 

minor and major radii a and b respectively as designed in Fig.4-1) and the cavity is 

treated as a coaxial cavity. Therefore, the cavity modes and the waveguide waves 

are different from the previous cases. The functional expressions of modes in 

coaxial cables are as follows: 

 













=

−

−

=

=Φ
,...3,2

1)/(/)(

)/()()()/(

2

10

)(

2

0

2

0

0000
0 t

agJJ

arYJYarJ

a

t

rk

tt

ttttt
t

g

t

αα

ααααπα  (4.1) 

 

where tα is solution of the equation [ ] 0)()()()( 0000 =− ααααα JxYYxJ   

with abx /=  e acx /=  respectively, and 

b 

c 

2L 

a 



Chapter 4: The Coaxial Setup 

 120

 














=

−

−

=

=Φ

,...3,2

1)/(/)(

)/()()()/(

2

1
)/ln(2

1

)(

2

0

2

0

1001

1

t

agJJ

arYJYarJ

a

t
agr

rk

tt

ttttt

t

g

t

αα

ααααπα

π

  (4.2) 

 

The details are given in Appendix D.  

For a cylindrical cavity of radius c and length 2L, the expression of the normalized 

eigenmodes is given by [3] 
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where the transverse modal functions )( rk p

c

pΦ  are the same functions which 

represent the coaxial cable modes, and sε is the Neumann symbol ( sε =1 if s=1, 

sε =2 else ). 

The expression of the fields as an expansion of the eigenmodes weighted with the 

expansion coefficients Ips and Vt in the cavities and in the waveguides are 
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The only difference is that the expression of the modal radial functions is the one 

given by eq.(4.1). 

 

 

4.2 Matching the Magnetic Field 

Let us allow for the coupling between the cylindrical cavity and the waveguides, 

which represent the vacuum chamber. A wire is stretched inside the vacuum 

chamber in order to model the situation that appears when we deal with 

measurements of the scattering matrix. We take into account the coupling between 

the cylindrical cavity and waveguides.  

As already mentioned in Chapter 2, in which we have the same Perfect Electric 

Conductor boundary conditions, we may only consider the continuity of the 

magnetic field tangential component on the two ports connecting the waveguides 

and the cavity. 

On the surfaces 1,2 the continuity   
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It is assumed that in the waveguides there are traveling waves in both directions. 

We underline the convention adopted for the scattering matrices, which attributes 

the positive sign to the incoming wave with respect to the DUT. From eq.(4.6) and 

using the expressions of the transverse modes we get the explicit expression of the 

continuity: 
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where indices b and c respectively indicate guide and cavity and for brevity sake it 

has been set    ( ) −+−+ == /

1

/ 0 tt VzV   and  ( ) −+−+ == /

2

/ 2 tt VLzV . 

As in the previous cases it is not needed to get Ips but only the sums I1p e I2p defined 

as: 
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this will introduce a simplification because one index has been “saturated”. 

By projecting eq.(4.7) on the eigenfunctions )( rkt

b

tΦ the following system is 

obtained: 
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where the matrix Mpt is defined as 
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and its explicit expression is given in Appendix C.  

 

 

4.3 The excitation coefficients (PEC) 

Following the same procedure already seen for the Thick Iris and the Pillbox we 

have: 
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where, n is the outgoing unit vector orthogonal to the cavity surface S. 

Here we follow the procedure already adopted in the previous Chapters and we 

obtain the matrix representation for the unknown excitation currents I1p and I2p: 
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Equating this expression with eq.(4.10) we get the system: 
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In order to give a simple expression of the scattering matrix for this DUT we 

introduce the following matrices: 
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hence the system in eq.(4.14) became as follows: 
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The explicit expression of the scattering parameters is: 
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Because of the symmetry, the remaining parameters satisfy the following identities 
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4.4 The excitation coefficients (Lossy) 

In the case of the Wire Method is not necessary to introduce losses due to finite 

conductivity of the walls indeed, below cutoff the power lost because of the TEM 

wave is so larger than the one dissipated in the cavity that the quality factor Q is 

dominated by the former ones. Above cutoff frequency, the above statement is a 

fortiori valid. 

 

 

4.5 The Longitudinal Coupling Impedance 

We have used the mode matching technique to simulate an experimental setup for 

wire method measurements of the scattering parameters of a pillbox cavity [9]. This 

way to proceed implies that we need to use the same formula used for the 

experimental measurements case, to obtain the Longitudinal Coupling Impedance 

from the scattering parameters. This formula gives the real part of the longitudinal 

coupling impedance, which is sufficient to reach requested informations about the 

device under test 
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or in a more compact expression 
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4.6 Numerical results 

Eq.(4.16) involves infinite matrices. To allow a good convergence it is necessary to 

truncate the infinite matrices without detriment of the results validity. As already 

seen for the pillbox and for the iris, through the Relative Convergence phenomenon, 

it is possible to reach a different result for different matrix truncation. 

Following the scheme reported on Lee and Mittra book [6] we imposed a relation 

between the number of modes of different zones in order to respect the Meixner 

condition [7]. We proceed in a similar way as done in the previous Chapters. The 

only difference is that the first component (namely the one relevant to the TEM 

mode) of the scattering parameters 
21

S is sufficient to characterize the coupling 

impedance. 

It will be represented the Longitudinal Coupling Impedance, as a fundamental 

parameter for accelerators project, subdivided in real and imaginary parts and for 

different values of geometrical parameters. The number of points is chosen as a 

simulation constant, n = 500, and the same is done for the waveguide radius (b = 12 

mm). We  used very few modes (N = 20) if compared to other cases already seen, 

inasmuch the exceptionally good convergence for the wire method. On the other 
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side, a little number of modes is necessary through the extreme slowness of the 

computing time associated to the wire method that cannot perform a direct calculus 

of the Coupling Impedance. Some examples of Mode Matching Technique used to 

simulate the wire method is shown in the following pictures. 

 

Fig. 4-2. Longitudinal Coupling Impedance, real part: b=12mm, c/b = 4, L/b = 4. 

 

40 GHz 3 GHz 
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Fig. 4-3. Longitudinal Coupling Impedance, real part: b=12mm c/b = 6, L/b = 4. 

 

Fig. 4-4. Coupling Impedance, real part: b=12mm c/b = 8, L/b = 4. 
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By means of the eq(4.18), the wire method simulations present a real part of the 

coupling impedance every time over zero. In the mode matching simulations, the 

real part of the C.I. under zero can be seen as a signal of bad convergence and thus 

it means the necessity to increase the number of the employed modes.
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Chapter 5: 

Comparisons among Results of 

Various Codes 

 

5.1 Generalities 

We have learned that the behaviour of any passive device inserted in a cylindrical 

vacuum tank dramatically changes passing from below to above the cutoff of the 

vacuum tank. It is worth of note that this frequency is connected only to the 

dimensions of the vacuum tank cross section and that below this frequency no wave 

is allowed to propagate in this pipe. 

Below cutoff, in case of a PEC device, the real part of the Coupling Impedance 

(C.I.) must vanish at all the frequencies. A different behaviour would conflict with 

the energy conservation principle. Allowing for the energy released by the beam 

into the room delimited by the inserted device, this energy “must be entirely given 

back” again to the beam itself. Since we are below cutoff, no energy is indeed 

allowed to freely flow inside the pipes. Therefore, the real part of Coupling 

Impedance must be zero because no energy is delivered and propagated into the 

vacuum chamber, neither is lost by ohmic dissipation inside the device. By 
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converse, the imaginary part is certainly different from zero since there is a 

balanced exchange of energy between the beam and the room inside the device. We 

expect that the real part of the C.I. will not vanish when the walls of the inserted 

device have a finite conductivity, since the current impressed into the device 

dissipates on the walls a certain amount of the energy stored in the device: the 

exchange of power with the beam will be no longer balanced. We expect that in this 

case at some frequencies (related to the device resonances) it will appear a 

significant real part in the Coupling Impedance. 

Above cutoff, the real part the coupling may be different from zero: a certain 

amount of the energy, released by the beam into the room delimited by the 

discontinuity of the device, is allowed to flow into the beam pipes. Since the phase 

velocity of its EM field is larger than the particle velocity, the mean power 

exchange between the beam and the field is zero: in sum, this energy is irreversibly 

lost for the beam and a non-zero real part appears in the Coupling Impedance, even 

in the case of a device with PEC walls. In the case of walls of finite conductivity, 

there will be additional losses which will lower the Quality Factor of the resonance 

which appears in the Coupling Impedance: this lowering is always rather small and 

sometimes is negligible. In general we expect high Q resonances below cutoff and 

low Q resonances above cutoff. These latter have a large degree of superposition 

and generate the so-called Broad Band Impedance. 

The stretched wire method is since long (1969) largely used for measuring the 

Coupling Impedance. Since then, various improvements of the measuring technique 



Chapter 5: Comparisons among Results of Various Codes 

 135

were introduced; however, from what said before hand, it is clear that the stretched 

wire method introduces an intrinsic perturbation to the behaviour of the 

electromagnetic field. The presence of the wire changes the device topology from 

simple connection to multiple-connection. This perturbation introduces a TEM 

wave which has zero Cutoff Frequency. This TEM wave is able to remove a certain 

amount of the energy stored into the inserted device and bring it to infinity without 

interacting with the beam. Therefore, the beam will be given back only a certain 

amount of the power previously released to the device. This will produce a more or 

less large discrepancy between the true Coupling Impedance and the measured by 

means of the Wire Method, whatever is the manipulation of the measured 

parameters (scattering parameters). Above the cutoff frequency of the original 

configuration, the perturbation introduced by the stretched wire is expected to be 

less significant than below cutoff. 

 

 

5.2 Analisys of the Pillbox Long. Coupling Impedance. 

As an example we examine the results of the C.I. of a PEC pillbox as calculated 

from our code. The results are depicted in Fig.5-1, where the real and imaginary 

part of the C.I. are reported.  
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Fig. 5-1. PEC. C. I. for a pillbox cavity: b = 4 mm; c = 36 mm; 2L = 12 mm; βγ > 1000; 

  

One can notice that the real part is strictly zero below the cutoff frequency 

corresponding to the normalized wave number 2.4. Inside this range the imaginary 

part is, however, different from zero and exhibits a large number of resonances. 

This behaviour is just what we expected. In Fig.5-2 are reported the results for a 

lossy pillbox and in Fig.5-3 they are overlaid on those of the lossless pillbox. 
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Fig. 5-2. Copper. C.I. for a pillbox cavity: b = 4 mm; c = 36 mm; 2L = 12 mm; βγ > 1000; 

 

 

Fig. 5-3. Comparison betwen Copper and PEC. C.I. for a pillbox cavity: b = 4 mm; c = 36 mm; 

2L = 12 mm; βγ > 1000; 
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One can notice that below the cutoff the real part of the C.I. exhibits non-zero 

values at the same resonant frequencies as the imaginary part, while it is apparent 

that above cutoff it is not possible to appreciate any difference between copper and 

PEC behaviour. The representation system in Fig.5-3 foresees that where the two 

curves coincide, red curve covers the black one. 

 Above the cutoff frequency, the results for steel coincide with the once of copper 

and PEC. So therefore is not interesting to show any picture for this case. Below 

cutoff there are differences which cannot be appreciated in such wide frequency 

range: therefore, it is worthwhile to compare them in a narrow frequency 

bandwidth, around the first resonance at 3.2GHz. This has been done in Fig.5-4 and 

Fig.5-5. 
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Fig. 5-4. Copper. C.I. for a pillbox: b = 4 mm; c = 36 mm; 2L = 12 mm; βγ > 1000; 

 f0 ≈ 3.2 GHz. 

 

Fig. 5-5. Steel. C.I. for a pillbox: b = 4 mm; c = 36 mm; 2L = 12 mm; βγ > 1000;  f0 ≈ 3.2 GHz. 
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Both resonances have a typical Lorentzian behaviour. It is remarkable the high 

value of the impedance even with stainless steel walls. The main parameters found 

are listed in Table 1. 

 

MATERIAL Re(Zc)  [kΩ] Q QSF Re(Zc/Q)  [Ω] f   [GHz] fSF   [GHz] 

Copper 250 8920 7689 28.0 3.196 3.196 

Stainless Steel 79 2820 2500 28.1 3.197 3.196 

Table 1. fundamental parameters for two well-known materials, Copper and Steel, determined 

by Mode Matching Technique and SuperFish code applied to a pillbox cavity: b = 4 mm; c = 36 

mm; 2L = 12 mm; βγ > 1000 

 

It is worth of note that the value of Zc and Q decrease as the square root of the 

relevant conductance ratio ( 10 ) which is just the ratio of the surface impedance of 

the two metals. The quantity Zc/Q stays constant. The table reports also the Quality 

Factors and the resonant frequency calculated by means of the computer code 

SuperFish. The agreement is quite satisfactory. 

The results of the calculations for a different pillbox cavity are represented in Fig.6, 

where we compare PEC and copper pillboxes. 
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Fig. 5-6. Comparison betwen Copper and PEC. C.I. for a pillbox cavity: b = 15 mm; c = 43 

mm; 2L = 30 mm; βγ > 1000; 

 

The narrow band investigation for copper and steel are reported in Fig.5.7 and 

Fig.5.8.  
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Fig. 5-7. Copper. C.I. for a pillbox: b = 15 mm; c = 43 mm; 2L = 30 mm; βγ > 1000;  f0 ≈ 2.8 

GHz. 

 

Fig. 5-8. Steel. C.I. for a pillbox: b = 15 mm; c = 43 mm; 2L = 30 mm; βγ > 1000;  f0 ≈ 2.8 GHz. 
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In Table 2 the most important paramenters are listed. 

 

MATERIAL Re(Zc)  [kΩ] Q QSF Re(Zc/Q)  [Ω] f   [GHz] fSF   [GHz] 

Copper 614 17670 13992 34.7 2.760 2.680 

Stainless Steel 194 5674 4579 34.2 2.760 2.760 

Table 2. fundamental parameters for two well-known materials, Copper and Steel, determined 

by Mode Matching Technique and SuperFish code applied to a pillbox cavity: b = 15 mm; c = 

43 mm; 2L = 30 mm; βγ > 1000 

 

All the comments done for the first structures apply to this case. 

In general, in the lossless case, it is very difficult to pick up the resonances below 

cutoff. These can be built only as the limit for the conductivity going to infinity. In 

this case, at resonant frequencies will appear impedance represented by a delta 

function of the form 
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π σ ,

,
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Where ( )iff −δ  is the Dirac impulsive function.  

As an example, the quantities ( )ic fZ  and ( )id fZ , the latter indicated with arrows, 

are reported in the following picture: 
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Fig. 5-9. PEC. C.I. for a pillbox: b = 10 mm; c = 30 mm; 2L = 20 mm; βγ > 1000. 

 

 

5.3 Comparison with the Results of Wire Method. 

Now we want to compare the results just discussed, with those given by the 

simulation of measurements obtained by means of the Stretched Wire Method.  In 

Fig.5-10 it is reported, for a lossless Pillbox, this comparison up to a frequency of 

30 GHz well above the cutoff frequency. According to fundamental arguments on 

physical behaviour we expect some discrepancies. We need a more detailed view of  
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Fig. 5-10. Comparison between the “numerical experiment” based on the Wire Method and the 

Mode Matching exact evaluation in a wide range of frequencies. C.I. for a PEC pillbox: b = 10 

mm; c = 60 mm; 2L = 80 mm; βγ > 1000. 

 

this behaviour and therefore we split the frequency range in two parts: the first one 

(Fig.5.11) from zero up to cutoff frequency increased of about 30%. The second 

one (Fig.5.12) up to 30 GHz. 

 

Cutoff 
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Fig. 5-11. Comparison between the “numerical experiment” based on the Wire Method and the 

Mode Matching exact evaluation. C.I. for a PEC pillbox: b = 10 mm; c = 60 mm; 2L = 80 mm; 

βγ > 1000. 

 

It is clear that the wire method shows a very bad agreement below the cutoff 

frequency. This phenomenon is to be ascribed to the presence of the wire which 

perturbs the measurement making uncertain some results. The presence of the wire, 

indeed, shifts the cutoff frequency to zero by introducing a TEM mode (the TEM 

mode is allowed to propagate because coaxial cables support it). This implies an 

additional loss of energy from the resonant cavity and a consequent depletion of the 

quality factor:  broadband impedance behaviour appears in the forbidden region. 

 

Cutoff 
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Fig. 5-12. Comparison between the “numerical experiment” based on the Wire Method and the 

Mode Matching exact evaluation. C.I. for a PEC pillbox: b = 10 mm; c = 60 mm; 2L = 80 mm; 

βγ > 1000. 

 

In the range of frequencies 30% larger than the cutoff (10-30 GHz) it is quite 

striking the agreement between the behaviour of the wire measurement and the 

exact evaluation. Negligible perturbations appear in this range. 

Below cutoff we want to compare the behaviour of the impedances calculated with 

the two methods taking into account the losses (e.g. copper). This is done for the 

same set of parameters as in Fig.5-4. 
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Fig. 5-13. Comparison between the “numerical experiment” based on the Wire Method and the 

Mode Matching exact evaluation. Copper. C.I. for a pillbox: b = 4 mm; c = 36 mm; 2L = 12 

mm; βγ > 1000. 

 

The relevant resonances do not correctly overlap as the first one. However, there are 

differences which cannot be appreciated in such wide frequency range: therefore, it 

is worthwhile to compare them in a narrow frequency bandwidth, around the first 

resonance at 3.3GHz, and it is reported in Fig.5-14. 
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Fig. 5-14. C.I. for a pillbox: b = 4 mm; c = 36 mm; 2L = 12 mm; βγ > 1000;  f0=3.3 GHz; as 

from the “numerical experiment” based on the Wire Method. 

  

The peak of the Coupling Impedance is almost two hundred times smaller than the 

one calculated by MM, and there is also a drastic reduction of the Quality Factor 

(see Fig.5-14). This is due to the foreseen loss of power channelled by the TEM 

mode present because of the wire. The results are summarized in the Table 3. 

 

Method Re(Zc)     [kΩ] Q Re(Zc/Q)     [Ω] 

Exact evaluation  250 8920 28.0 

Wire Method 1.27 300 4.25 

Table 3. Comparison between the main parameters obtained by Numerical Wire 

Measurements and Exact Evaluation applied to a pillbox cavity: b = 15 mm; c = 43 mm; 2L = 

30 mm; βγ > 1000 
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5.4 Comparison of the results with a commercial code. 

The comparison between the Mode Matching and a commercial code, in this case 

Particle Studio, for a PEC pillbox cavity is reported in Fig.5-15. 

 

 

Fig. 5-15. Comparison between the Mode Matching exact evaluation and the commercial code 

Particle Studio. C.I. for a PEC pillbox: b = 4 mm; c = 36 mm; 2L = 12 mm; βγ > 1000. 

 

As a first evaluation, it is evident that the Particle Studio simulation is very noisy. It 

means a very rough representation of the coupling impedance, with values not 

strictly above zero, a clear sign of bad accuracy, in spite of the long time needed by 

Cutoff 
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the simulation. As already seen for the Wire Method, the coupling Impedance 

assume values different from zero in the forbidden region below the cutoff 

frequency. It is noticeable a good agreement with mode matching technique for the 

resonances above the cutoff, up to normalized wave number 4.5. For higher 

frequencies, the agreement is acceptable only for resonance frequencies of high 

amplitude. Then the results are becoming more and more noisy. For a lossy pillbox,  

 

 
Fig. 5-16. Comparison between the Mode Matching exact evaluation and the commercial code 

Particle Studio. C.I. for a Copper pillbox: b = 4 mm; c = 36 mm; 2L = 12 mm; βγ > 1000. 

 

above cutoff there is no difference with the previous considerations. Below cutoff 

the results of Particle Studio seems to be quite insensitive to the conductivity. It is 

Cutoff 
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impossible to recognize any correspondence between the resonance shown by the 

Mode Matching and one of the Particle Studio. 
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Conclusions 

 

There is no doubt that computer codes have some limitation in their performances 

mainly in the range of frequencies below cutoff and up to a certain extent. We may 

interpret at least the behaviour of Particle Studio as a consequence of the procedure 

adopted in this electromagnetic CAD. The problem is solved in the time domain 

and then an inverse Fourier Transform is performed in order to get the Coupling 

Impedance from the Wake Field. This implies that high Q resonances need very 

long computing time in order to let the resonance to damp down. We have seen in 

our analysis that below cutoff the Coupling Impedance at resonances is very high 

and also the quality factor Q. Therefore, for these resonances the length of the 

damping time is unacceptable for inverse Fourier Transform and a truncation 

introduces remarkable errors in computation, even more magnified by the high 

value of the Coupling Impedance. As a consequence we get large noise below 

cutoff. Another important accomplishment of this work was the understanding of 

the limitations of bench measurements by means of the stretched wire method. It 

has been demonstrated that this method intrinsically will give wrong results below 

cutoff. The presence of the wire introduces a TEM wave which intrinsically has a 

zero cutoff frequency. All the resonant frequencies are depleted because of power 

drained in the pipes bi the TEM mode. Above frequency 30% larger than the cutoff, 

there are indications that this method may give fairly good results.  
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A proposal for future developments 

Even if the mode matching in its various forms is quite powerful and efficient, it is 

restricted to a limited number of canonical cases which may be treated analytically. 

Therefore, it cannot be used for insertions of arbitrary shapes. However, it is 

suggested to still use MM method by resorting to hybrid techniques in order to 

surmount this inconvenient: 

Apart for exceptional cases, the vacuum tank is formed by pipes of standard cross 

sections (rectangular, circular, and elliptical) so that the waveguide modes can be 

represented analytically. Allowing for the exotic shape inserts, one may resort to 

the modal expansions which can be found by means of commercial codes (e.g. 

Eigenmode Solver by Microwave Studio CST), after then Mode Matching 

Technique can be use numerically to match the boundary conditions on the surfaces 

of the adjacent domains (waveguides-inserts). In this way we can profit from the 

flexibility of the Eigenmode Solvers and the precision and velocity of MM 

techniques. It is worth of note that in this way, one can introduce the power losses 

due to the finite conductivity of the inserts. 
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Appendix A 

Particle in an infinite pipe 

 
In this appendix we will deliver an expression for the EM field generated by a 

particle travelling with constant velocity v = βc in an infinite cylindrical pipe (Fig. 

A-1). 

An ultrarelativistic particle field is confined in an angular region of aperture ≈ 1/γ, 

where 

21

1

β
γ

−
=  

 

is called Lorentz Factor. It represent the particle energy measured in rest mass 

units. The radiation phenomenon is due to the image charges on the lateral surfaces 

of the pipe. 

A particle of charge q, travelling in free space with constant velocity v=βc, feed an 

electromagnetic field of only TM modes 
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where v indicates vacuum medium and K0(x) e K1(x) are the modified Bessel 

Functions of order zero and one respectively. 

Every Electromagnetic entity can be represented as a superposition of two terms: 

the first term is due to a charge moving uniformly in a free space; the second term 

is the same kind, but fed by the induced surface current flowing on pipe walls (r=a, 

where a is the pipe radius) 

 

 

   

 

( ) ( )zz,ωJz,ωJ ˆ=
r

    (A.3) 

 

and ever directed along the axis maintaining a TM propagation. Therefore, the 

unknown of the problem is the spatial Fourier Transform of the just mentioned 

current density J(z,ω), in wave number domain 
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Fig. A-1. A cylindrical pipe of radius a 
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where we have omitted ω for briefness.  

Let us begin writing the potential vector as a function of the chosen unknown. By 

means of the azimuthal symmetry of the problem, one can write 
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where R is the distance between a generic reference point P(r,φ, z) and the source 

point P0(r,φ0,z0) 
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where D is the distance on the transverse plane, introduced for notation easiness. It 

is possible to write the Green Function as a spatial integral of Bessel Functions 
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It is interesting to notice that the convergence of the above integral requests a 

negative k imaginary component. This implies the presence of losses, even little, in 

the medium that fills the pipe, and implies the sign assignment to the root function 
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to obtain 0)ukIm( 22 ≤− , that is an appropriate cut in the complex plane in 

order to avoid the “polidromy” of this function. 

The (A.7) allows to write 
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where the G(u,r) function, depending only on the transverse coordinate r, can be 

easily simplified applying the addiction formulas of Bessel Functions 
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where εn is the Neumann symbol, defined as 
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And executing the integration on ϕ0, we reach 

  



Appendix A: Particle in an Infinite Pipe 

 160 

( )
( ) ( )

( ) ( )







≥−−

≤−−

=

a      rkurKkuaI

a      rkuaKkurI

u,rG

22

0

22

0

22

0

22

0

  (A.10) 

 

The knowledge of the G(u,r) function allow us to write simple integral relations 

that relate the Potential and the Fields to the unknown F(u). This way it will be easy 

to obtain an integral equation for F(u), bringing the liaison between Potential and 

Fields spectra of algebraic type. 

Returning to the vector Potential (A.5), one can write 
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where  ζ is the impedance of the medium that fills the pipe (usually vacuum). 

From the last expression, it is possible to obtain the electric field fed by the induced 

current 
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where the longitudinal component of the electric field must satisfy the boundary 

conditions on the perfect conducting pipe. 

In fact, imposing the nullifying of the tangential component of the electric field on 

pipe edges (r = a), it is possible to bring the integral equation for the current 

spectrum 
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That is a integral equation on the unknown F(u), whose kernel is 
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Since it is needed to develop such kind of integrals, it is useful to explicit the real 

and imaginary parts. 

Reminding the choice on imaginary part of the root 0ukIm 22 ≤− , it is possible 

to explicit the two cases 
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The integral equation (A.13) does not show calculus difficulties because, being 

valid for every z, it is possible to read it as a Fourier Transform. So that 
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where δ(x) is the δ–Dirac function. 

The knowledge of F(u) function is enough to calculate the entire electromagnetic 

field. The formula of the current density is obtained anti-transforming the eq.(A.4) 
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The current flowing along pipe lateral surface can be expressed as vector J flux and 

it is I(z) = 2πaJ(z), so 
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The current I(z) is a Fourier transform I(z,ω); it represents the temporal Fourier 

Transform of the current i(z,t) that flows along the edges of the cylindrical 
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conductor. To obtain the i(z,t) one should perform a further inverse Fourier 

transformation. It is possible but useless to our goals. 

We get at last, the expression of electromagnetic fields substituting the eq.(A.10) 

and eq.(A.16) in the eq.(A.13). 

The total field is defined as 

 

EEE t += 0  

 

where 0E  represents the field of a single particle moving in a vacuum medium. 

The field results null for ar > , and for ar0 ≤≤ , and using the eq.(A.1) it is 

represented by the formulas 
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Adopting the same procedure for the magnetic field, (using the eq.(A.2)), one 

obtains 
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where κ = k/βγ. 

If the particle is moving with light velocity, the fields became independent from the 

waveguide radius, so: 
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Appendix B 

Eigenfunctions of Helmholtz Equation for a cylindrical 

pipe, with Dirichlet conditions. 

 

The purpose of this appendix is to give the expression of the modal functions of a 

circular cross section waveguide with radius a, as showed in Fig.B-1. 

 

     

Fig. B-17. Cross section of a cylindrical waveguide. 

   

We assume a symmetrical azimuthal TM propagation in the waveguide. The 

Helmholtz equation in a cylindrical frame is 

 

02 =+∇ ΦkΦ tt     (B.1) 

 

The explicit expression of t∇ is 



Appendix B: Eigenfunctions of Helmholtz Equation for a cylindrical pipe, with Dirichlet conditions 

 167 

 

2

2

2

11
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r

rr
t

∂

∂
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∂

∂

∂

∂
→∇  

 

Thus the eq.(B.1) becomes 

 

0Φk
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Φ
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1

r

Φ
r

rr

1 2

t2

2

2
=+

∂

∂
+

∂

∂

∂

∂
   (B.2) 

 

where Φ is a function of r and φ. SplittingΦ in two functions, each one depending 

on a variable only, as 

 

( ) ( ) ( )φΦrΦφr,Φ 21=  

 

and substituting in eq.(B.2) we obtain 
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2

2

2

2

12

2
2

t
1

   (B.3) 

 

with the Dirichlet condition ( ) 0rΦ == a . 

The solutions of the just written eq.(B.2) are 
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( ) ( ) ( )

( ) ( )







=

+=

jnφCφΦ

rkBYrkAJrΦ tntn

exp2

1

    (B.4) 

 

In the case of n = 0, we have 

 

0
1 2 =+

∂

∂

∂

∂
Φk

r

Φ
r

rr
t      (B.5) 

  

and its solution 

 

( ) ( ) ( )rkBYrkAJrΦ tt 00 +=     (B.6) 

 

It is worth of note that in this case ( )φΦ2  becomes a constant, and it can be put as 

unity. Since r → 0 implies that Y0(r) → –∞, we need B = 0 to have finite fields, 

besides we impose the Dirichlet condition ( ) 0== arΦ , so we reach the following 

modes expression 

 

( ) 







=

a

r
pAJrΦ mm 0      (B.7) 
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where 
a

p
k m

tm = ; Nm pm ∈∀  is the mth zero J0(x) (Bessel Function of first kind 

and zero order) and the propagation constants can be expressed as 

 







<−−

>−
=

 pka     (ka)pj

pka         p(ka)
ak

mm

mm

zm 22

22

   (B.8) 

 

where we have taken into account the identity (ak)
2
 = (aktm)

2
 + (akzm)

2. 

The imaginary part sign of the propagation constants must be chosen negative to 

satisfy the condition of radiation to infinite. Substituting r = a in the eq.(B.7) it is 

evident that the Dirichlet condition is satisfied. 

The modes must be orthonormal, that is 

 

( ) 1
2

=∫∫ dSrΦ
S

m     (B.9) 

 

where S is the waveguide cross section. 

The explicit expression of eq.(B.9) is 
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a
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a
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r
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where 




≠

=
=

m'   m

m'   m
δmm'

0

1
. 
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In case of n = 0, we must reach this result 

 

( )[ ] 1
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2 =−=















∫ ∫ m

a π

m pJπaArdrdθ
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r
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where we resort to the property (x)J(x)'J
10

−= . 

Taking into account eq.(B.9) we have 

 

( )mpJπa
A

01

11
=     (B.10) 

 

where the minus sign is included to respect the radiation condition. 

Substituting the eq.(B.10) in the eq.(B.7) we reach 

 

( )
( )

( )m

m

m
pJ

a
rpJ

πa
rΦ

01

001
=    (B.11) 

 

which is the modes expression commonly used (without writing 0mp  but only mp  

to have a more compact expression). 
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Appendix C 

Coefficients Calculation 

The purpose of this appendix is to calculate the coefficients introduced in the 

problems formulation. Even if there are little differences between the iris 

coefficients and the pillbox ones, we will report both the expressions, to be clearer. 

 

IN IRIS CASE: 

recalling the definition of Ai in eq.(2.11) 
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  (C.1) 

 

From eq.(2.3) we have 
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)(
)(

1

1
1

t

t
t

b

t
Jb

brJ
br

απ

α
α =Φ  

 

and from Primary Fields expression in eq.(2.1) we have on the waveguide side of 

the left interface: 
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and on the cavity side of the left interface: 
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substituting in eq.(C.1) we obtain 
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  (C.2) 

 

it is easily resolvable using integrals of this type [8] 

 

( ) ( ) ( ) ( ) ( ) ( )
∫ +

+−−
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a
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whence we have after some simplifications 
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The first term in square brackets is = 1 because ( ) 00 =tJ α inasmuch tα is a zero of 

the just written equation, so: 

 

   
( )

( ) ( )( )222

01

00
1

tt

tt
t

bcIJ

bcJZ
A

ακκαπβ

αα

+
=    (C.6) 

 

Since the Ai vectors differ of an exponential only, the calculus for A2t is omitted. 

To complete the description of the vectors and matrices existing in the continuity 

system, we need now to calculate the Mpt matrix 

 

( ) ( )∫ ΦΦ=
S

t

b

tp

c

ppt dSrkrkM 11     (C.14) 

 

where S is the iris aperture. According to the definition of )(1 rkq

g

qΦ in eq.(2.3), we 

can summarize this formula for the waveguide and the cavity as 
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Then eq.(C.14) becomes 
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Resorting to the well known integral [8] 
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we obtain 
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the first addendum is zero because ( ) 00 =tJ α  inasmuch tα is a zero of the just 

written identity. Therefore, we have 
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For what concerns the calculation of the excitation coefficients Vps and Fps we need 

the explicit expression of its vectors: 
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From the primary fields in eq.(2.1) and the definition of )(1 rkq

a

qΦ in eq.(3.3) we 

have 
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Substituting in eq.(C.18), it results 
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Using the integral (C.4) we attain 
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To decrease the order of the I2 and J2 Bessel Functions, it is useful to use the 

following recurrence relations [8]: 
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Besides, taking into account that ( ) 00 =tJ α  we have 
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IN PILLBOX CASE: 

To obtain the homonymous coefficients of the iris case we will follow the same 

procedure. Therefore, we will report only the definitions and the results. 
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Resorting to the primary Magnetic Field definition in eq.(3.1), after some algebra 

we can write 

 

( )
( )

( ) ( )
( )

( ) ( )∫ Φ







−=

b

t

b

tt drrrkcK
cI

rI
bK

bI

rI
A

0

10

0

1
0

0

1
1 κ

κ

κ
κ

κ

κ
κ  

 

Solving the above integral, we obtain: 
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Since the Ai vectors differ of an exponential only, the calculus for A2t is omitted. 

The Mpt matrix in pillbox case differs from iris case by the integration path only: 
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Thus, following the same procedure as iris we obtain: 
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For what concerns N1p and N2p 
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PILLBOX CAVITY WITH FINITE CONDUCTIVITY: 

in Chapter 2 we got the following equation 
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The integration on S is performed as follows: 
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By inserting the previous result in eq.(C.15) we obtain 
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and, after some algebra, finally 
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Resorting to the expressions in eq.(3.9), we may write 
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 (C.17) 

 

In order to express the sums in a closed form we must perform the integrations 

which give a result similar to eq.(3.19): 
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The sums in a closed form it is not so simple as done for eq.(3.19) because of the 

Neumann symbol present in the denominator. The sums are therefore slightly 

different, namely 
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Similarly we obtain for pI2  : 
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Defining a new modal impedance as: 
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We obtain for the eq.(C.18) 
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This can be written in the matrix formalism as: 
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Appendix D 

Modes of a Coaxial Cable 

In this appendix we will give the expression of the Fields inside a coaxial 

waveguide. We will mainly discuss about the EM field transverse components 

( tE
r

ed tH
r

) on which will be imposed the continuity condition.  We will deal with a 

PEC waveguide, so we will not consider wall losses. It is possible to express the 

EM field separating the longitudinal components from the transverse ones: 

 

r r
E P E P E P zt z( ) ( ) ( ) $= +  , 

r r
H P H P H P zt z( ) ( ) ( ) $= +  (D.1) 

 

We can introduce a transverse cylindrical frame, which is perfectly suitable to the 

treated structure.  Furthermore, we will use only TM modes (Hz=0) which are the 

mainly excited modes in a particle accelerating machine. In this case we can 

express the EM field as follows [9,10]: 
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where 
r
e rn ( , )ϕ e 

r
h rn ( , )ϕ  are the vector modal functions and V zn ( )  e I zn ( )  are the 

scalar excitation coefficients (scalar modal functions), kn  is the transverse 

eigenvalue, k  is the propagation constant and ζ0  is the characteristic impedance of 

the medium that fills the waveguide. 

 

 

Fig. D-18. A coaxial cable 

 

The excitation coefficients obey to the telegraphers Equations and can be expressed 

as a sum of a travelling wave and a scattering wave: 
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The ζn

w are the normalized modal impedances, and in a coaxial cable of external 

radius and internal radius ‘b’ and ‘a’ respectively, they are: 
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where wn  are the zeros of the following equation: 

 

[ ] 0)()()()( 0000 =− xYxJxYxJx αα  , 
a

b
=α    (D.6) 

 

Resorting to the orthonormality property of the vector functions: 
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It is possible to express them as: 
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where )(1 rkZ m

w  are linear combinations of Bessel Functions and w indicates the 

feeding guide [9]: 
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)( 11 rkZ w is the fundamental mode of the coaxial cable and it is a TEM mode. The 

modes corresponding to the others m are TM type modes. 
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