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Introduction

Introduction

Lately we have assisted to a dramatic increase of the design and realization of high
energy and high intensity accelerators. In this contest are the high intensity Linacs
for production of ultraviolet and X rays. These activities stimulated several
Important Companies (i.e. Mitsubishi) to produce instrumentation specialized for
the generation and the acceleration of electron beams of high intensity, where these
beams consist in very short bunch trains (up to some tens of nanometers). One of
most important features of this instrumentation is to avoid the beam quality
perturbation because of the interaction with surrounding medium. This interaction
appears because the bunches drag image currents and, consequently,
Electromagnetic Energy is stored in the surrounding medium. A deformation of the
EM Energy density may produce intense EM Field acting on the primary charges.
This phenomenon is represented by the definition of ad hoc parameters: they are the
Machine Impedance and the Wake Fields relevant to the frequency domain and
time domain respectively. If these parameters exceed some thresholds, we have a
deterioration of the beam quality and more in general, limit the maximum beam
energy available.

A first approach to this problem is to solve the EM field equations with the
appropriate boundary conditions and sources by means of numerical codes. Various

type of the above mentioned codes have been developed (ABCI, ROCOCO,
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Particle Studio, etc.) which should give the Coupling Impedance (Wake Fields) as
function of frequency, for a variety of configuration of the surrounding medium.
There are indications that, at least for some configurations and boundary
conditions, the results of these codes are not satisfactory. Maybe this is due to the
required multi-purpose goal, which sacrifices the reliability to the versatility. In
some cases, the results even violate some fundamental physical principles as
Energy Conservation. We will analyze this behaviour and we will formulate some
hypothesis on the cause of these violation.

The impossibility to submit the portion of the machine to be tested using “in loco” a
particle beam, in order to obtain the parameters of interest, forces the researchers to
limit their tests and experiments to bench measurements on the Device Under Test
(DUT) in a workshop.

In this case, a common approach is to resort to an experimental technique,
introduced in 1974 by M.Sands e J.Rees on intuitive basis. This technique consists
in replacing the bunch by an impulse riding on a wire, and to perform
measurements by means of a Network Analyzer. If the TEM field produced by the
electric impulse fairly reproduces the EM field generated by the bunch, the EM
behaviour of the DUT induced by the wire, may give good indications on the
behaviour of the DUT interacting with the particle beam. This method, which may
give sensible indications, is still largely adopted for testing components of particle
accelerators. However, even if this method has been largely studied, its results are

only partially reliable at least in some range of frequencies, as it will be shown.
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This is due to the presence of the wire that may perturb the measurement making
uncertain some results.

We intent to resort to analytic/numerical methods to be implemented in homemade
codes, conceived “ad hoc”, and therefore more reliable than multipurpose
commercial codes. The proposed methods intrinsically limit their applications to
the analysis of canonical models of rather simple configurations: cylindrical
insertions coupled to cylindrical vacuum tanks such as, cavities, thick irises etc. To
this end the method of Mode Matching (MM) has been adopted.

The basic idea of this technique is to represent the EM field in the cavities and in
the waveguides by means of a complete set of orthogonal eigenmodes (vectors) of
these items, considered as isolated and with homogeneous boundary conditions. In
practice, this representation is useful because a limited number of modes are in
general sufficient to have a good representation of the field behaviour and therefore
of the electromagnetic interaction between the particle beam and the surrounding
medium. When applied to finite domains, the Mode Matching Technique makes
easy to introduce ohmic losses, in order to emulate real structures.

The structure to analyze is divided in subsets in which it is possible to identify
stationary or travelling modes. In the subsets of infinite dimensions, only the
travelling waves are taken into account. General rules to subdivide in subsets the
device do not exist: one must proceed by attempts.

In order to solve the problem, one has to find the unknown coefficients of the

modal expansions. On the borders of adjacent subsets, one has to impose the
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continuity conditions of the EM-fields. Thus, a set of functional equations are
obtained, equal to the border surfaces. Adopting the Ritz-Galerkin method, one can
then project these equations on an orthogonal function set and, therefore, they
change into an equal number of matrix/vector equations.
In the first phase the research was oriented on the study of an ideal cylindrical
pillbox (PEC-PMC) cavity and one with finite conductivity, both inserted into a
cylindrical vacuum chamber. In the ideal case, considerations about energetic
balance enforce the real part of the impedance to be strictly zero below the cutoff
frequency even if in this range resonances exist.
The second step in the work was to verify the agreement of the results by MM with
those obtained by the Stretched Wire Method. The theory developed in connection
with this method gives the longitudinal coupling impedance from the scattering
parameters produced by the measurements on DUT by means of a Network
Analyzer. However, since the MM can model the configuration of the Stretched
Wire Method, we have first crosschecked the results of a bench measurement and
the one obtained by means of the simulation of the Wire Method by means of MM.
This work, subdivided in five Chapters, can be summarized as follows:

e Chapter 1: in this chapter it is introduced the most relevant parameters to

analyze the interaction between the beam and the surrounding medium.

Furthermore, there is a detailed explanation of the adopted methods.

10
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Chapter 2: here is discussed the Mode Matching Technique applied to a
Pillbox Cavity. We will use homogeneous boundary conditions and we will
introduce material losses to simulate real devices.

Chapter 3: In this chapter, the MM technique is applied to a Thick Iris. This
is a basic study of the reliability of the MM technique with mixed boundary
conditions. A convergence study and a comparison with another Mode
Matching configuration will be exposed.

Chapter 4: Here is an exhaustive treatment of the mode matching technique
applied to Wire Method measurements.

Chapter 5: In this chapter, we will compare the results by our adopted
methods with those obtained by commercial codes. Furthermore, we will
provide exhaustive treatment about the reliability of the wire method for
frequency ranges that include the frequency region below the waveguides

cutoff.

11
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Chapter 1:
Main Parameters and adopted

Methods

1.1 Main parameters

The way to operate of an accelerator strongly rides on the electromagnetic
interaction existing between the bunch of charged particles and the vacuum
chamber in which it propagates. The detailed knowledge of this process is
necessary to improve the accelerator performances. We can consider the beam as a
set of charged particle bunches placed at a correct distance, which should preserve
respective space-time positions assigned during the previous acceleration process.
Travelling inside the vacuum chamber, the beam induces a secondary
electromagnetic field that may influence its dynamics. For a relativistic particle in a
perfect and homogeneous structure, the final effect of the secondary field is null.
An accelerator can be seen as a device with feedback system in which every
longitudinal or transverse beam perturbation can be amplified or attenuated by

electromotive forces created by the perturbation itself. The electromagnetic field

13
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induced by the beam is called Wake Field because it remains behind the moving
charges.

The study of longitudinal and transverse dynamics needs the knowledge of some
fundamental parameters:

- the longitudinal wake potential: it is the voltage variation of a charge, due to
the field generated by another charge which precedes it; the longitudinal
wake-field is responsible for the energy loss because it is essentially in
phase with the particles;

- The transverse wake potential: it takes into account the transverse force
applied to the beam due to the transverse wake-fields; its effect is to deflect

the beam and, as a consequence, it can generate bunch stretching.

There are other parameters exploited to characterize the interaction beam-
accelerator:

The Wake Potentials for charge unit are called Wake Functions.

The Fourier Transform of the Wake Potential is called Coupling Impedance and it
results as function of the frequency.

The two parameters just introduced represent two different description of the same
phenomenon, the electromagnetic coupling between beam and accelerator structure.
They depend by structures shape and not by bunch properties. The wake potential,

mainly used for linear accelerators, allows a description in time domain, while

14
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Coupling Impedance represents the problem in the frequency domain. Usually, it is
employed for circular accelerators, for their intrinsic periodicity.

To better define the concept of wake field, we can consider first a situation of a
singular particle that will be use to define a point potential wake function. The final
wake field will be the average value on the whole interaction zone for every beam
particle. Therefore, let us consider Fig. 1-1, with ¢; as a moving charge with fixed
velocity parallel to the vacuum chamber axis, r; as the vector that indicate the

transverse position, z; as the vector that indicate the longitudinal position.

qi
O >
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Fig. 1-1. Reference Frame

The electromagnetic field produced in the framework by g; can be obtained
resolving the Maxwell equations with appropriate boundary conditions. This field
influences the dynamics of both ¢; and q.

We can define the energy lost by ¢; as the work that the electromagnetic field does

onit[1]:

15
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Uu(’]):_J-F(T,Z,rl,Zl,t)dz t:ﬁ
oo v
(1.1)
U21(r’ﬁ§7)=—jF(r,Z,rl,zl,t)dz =%y
oo v

with F the Lorentz Force.

We can notice that previous integrals are calculated on an infinite path and it
doesn’t correspond to a physic condition, but it is to underline that these
expressions are an evaluation of the energy gain as good as the wave length is
smaller than the considered length.

Besides, we can consider the longitudinal wake function as the energy get by the

secondary charge g for charge unit g and ¢; [1]:

w.(r. i) = Uy (r,137) [V/C] (1.2)

4.9

The loss factor as the lost energy by ¢; for unit of squared charge

k(n)zﬂ [V/C] (1.3)

16
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Finally, we can define the Longitudinal Coupling Impedance as the Fourier

Transform of the wake function for a point like charge.

z,(r,r;0)= [w.(r,n.0)e 7 dt (1.4)

—oo

The wake function can be obtained from longitudinal Impedance through the
Fourier Anti-transform. Besides, it counts the typical properties of the Fourier
Transform. Another formulation of the Longitudinal Coupling Impedance can be
derived by the previous formula considering as a source a beam which has a
longitudinal sinusoidal modulation in the particle density. Allowing for the field
produced by this beam interacting with the surrounding medium we can derive the

Longitudinal Coupling Impedance as function of the wave number k.
. v
2= Er=02K"Vd

We may consider also wake fields and impedances produced by higher order
sources: dipoles, multipoles etc. These sources will lead to the relevant wakefields
and impedances. We will limit ourselves to the longitudinal case and, from now on,

the longitudinal impedance will be called impedance “tout court” and the sub index

17
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will be dropped. Just to give an example, we give a criterion for longitudinal

stability of a coasting beam in a circular accelerator

2

Z

n

myc’ B2yIn|(Ap/ p)
el

<F

Where

n = harmonic number

e = elementary charge

Iy = stored current
Ap = momentum spread

n = slippage

my = particle rest mass

F = form factor (between 1 and 1.6)

Generally, the impedance is a complex function and for this reason can be split in
real and imaginary part. The real part results related to beam losses.

As we told before, when the bunch crosses various insertions with variable cross
section installed in the vacuum chamber, it excites secondary fields: some of them
remain localized around the bunch and others are localized in resonating structures
and others propagate in the vacuum chamber.

This assertion can be demonstrated in the ideal case of an infinite length vacuum
chamber, representing the longitudinal component of the electric field as a

travelling wave through the chamber axis direction with random phase velocity. For

18
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high power devices, wake fields induced by particles can strongly modify the
distribution of the accelerating field. Furthermore, when the bunch crosses a cavity,
it excites not only the fundamental mode but also the high order modes. They can
induce beam energy losses, admittance deterioration (essentially in the bunch area)
and instability phenomena with particle losses. Generally, as a consequence of
these effects, one can have severe limitations of maximum electric current
circulating in the accelerator.

One can reasonably affirm that studies on the wake fields, on coupling impedance

as a function of the frequency and, more generally, on the interaction between

bunch and surrounding media, are very important to reach high quality beams
coming out the accelerators. Therefore, it should be strongly recommended in
projecting stage, if it is possible, to look for:

- Developing cavities with as less as possible high order modes (and with
very little Q factors) with frequencies not coincident with the fundamental
mode higher harmonics, with the purpose of reducing the coupling between
beam and high order modes and therefore to minimize the energy losses;

- Testing devices devoted to the attenuation of high order modes excited by
the beam to avoid them to subtract energy stored in the cavity.

In some cases, with highly collimated high energy beams, as the Free Electron

Laser ones, this goal is very hard to reach.

19
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1.2 The wire method

This technique was proposed in 1974 by M. Sands and J. Rees which, on intuitive
considerations, with the purpose to measure the energy lost by an electron bunch
riding through a particle accelerator component to test, as a resonant cavity. This
method, that allows to get measurements sufficiently meaningful without need to
use the particles beam but simply with the normal equipments for bench
measurements, it is still broadly used in the study of particle accelerator
components. The simulation of the bunch passage through the device under test
(DUT) is realized inserting inside the structure a metallic wire along the beam axis,
in which flows a current impulse having a spatial shape similar to the bunch [2].
This configuration allows to gain the scattering parameters of the considered
structure as feed by two coaxial waveguides, and therefore also the longitudinal

coupling impedance.

Fig. 1-2. Representation of a circular cross section pillbox and the wire stretched along beam
axis.

20
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The basic idea consists of consider to be possible, with the purpose of the energy
losses evaluation by a particle bunch caused by the non-uniformity in a vacuum
chamber, the substitution of the current impulse produced by the beam, with a
current impulse having the same temporal behaviour, flowing through a wire
stretched along the beam axis. One can see that the electric charge associated to a
particle beam crossing through a generic vacuum chamber produces inside of it
electromagnetic field, which produces on the walls of the structure a charge
distribution and induced currents. Stretching a metallic wire along the cavity axis,
and neglecting the coupling effect with the inside radial line, it makes the cavity
similar to a coaxial transmission line. It is worth of note that the introduced
perturbation totally modifies the boundary conditions of the system. in fact, the
section of the fundamental structure obtained will have not the simply connection
property. As known, this has as a consequence the possibility to have TEM modes
and all frequencies propagating modes as a solution of the Maxwell equations.
Nevertheless, carrying a current impulse having the same temporal behaviour of the
one related to the beam on the conductor, it has been shown that, the TEM field
produced by this impulse exactly reproduces the field produced by the beam if
initial energy is equal to that of the bunch, unless in the immediate proximity of the
wire. The intuition suggests that independently by the wire presence, the field
generated initially by the current impulse is the same of the one produced by the

beam, provided that the wire dimensions do not perturb the electromagnetic field

21
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existing without the wire. After this, the first charges and current induced on
structure walls can be held equal in the two cases. This means that in a very first
moment the cavity doesn't acknowledge the boundary condition variation. All
affirmed till now, based exclusively on intuitive considerations, lead to believe that
if the bunch duration results to be small in comparison to the time of relaxation of
the cavity with the wire, then the energy loss by the impulse that circulates on the
conductor, and lost as electromagnetic energy, it will be next to that lost by the
particles beam emulated. Therefore, the electromagnetic behaviour of the cavity,
with the wire inserted, is strongly indicative of the attenuation suffered from the
High Order Modes and at the same time allows to understand the coupling between

cavity and beam, thus to appraise the cavity loss factor in function of the frequency

[2].

1.3 The modal expansions in a cylindrical cavity

The basic idea of the proposed analytical approach is to subdivide the system in
subsets (cavities and the waveguides) characterized by homogeneous boundary

conditions and to expand the field as a superposition of the relevant eigenmodes.

22
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Fig. 1-3. Representation of a circular cross section pillbox subdivided in subsets.

The solution is found by matching the expansions solutions on the ports that
separate the subsets. This can be easily done for the tangential component of
magnetic field, while for the Electric Field is not possible because its tangential
component on ports is zero by definition. The expansion has non-uniform
convergence on these boundaries. However, it will be shown that it is possible to
overcome this inconvenience.

The complete set of eigenmodes consists in divergenceless modes plus irrotational
modes. Taking into account the circular symmetry of the boundaries and of the
excitations in cavity, the field can be expressed in terms of a complete set of basic

functions in a cylindrical frame (r, z), in the following way [ 3]:

23
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E=YVé +YFf
(1.5)
where the above modes satisfy the following equations
Vxé, =kh = V-h =0; Vxh =ké, = V& =0
(1.6)

The boundary conditions are homogeneous for the tangential Electric Field on the
surface S; and for the tangential Magnetic Field on the surface S,, where S; U S; is
the whole surface.

Furthermore, as usual, the modes are orthonormal, so that is:

[e, e, av =[h ()h, (nav =36,
(1.7)
[7,0)-F, (nav =[g ()&, (nav =5,

24
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jk[(Exiy )ads +z,k, [(H xz, )-ads
_ S S

Zolm kZ_kZ

(1.8)
k,[(Exh;) hds ~ jzk [(fixe, )-ads
J— Sl

S,

Vm kz_kz

The problem of the non-uniform convergence is solved [3] resorting to the modal

excitation coefficients (the current I, or the tension V) are drawn considering the

coupling of the cavity with the guides. Using the Maxwell equations and exploiting

modal orthonormality, after some passages one can reach the followings

relationships between the equivalent sources and the excitation coefficients

jk
é/OIpx = k

P s

S

(1.9

JAk:+k:
V :_p—golps

ps k

where ¢, is the impedance of the medium that fill the cavity and 7 is the unit

vector outgoing from surface cavity. In the propagation region, the propagation

constant is:

25
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2 2
2 g2 > | Cp 7S
kpx —kp +k; _(_a J +(—2Lj (1.10)

it is worth to notice that the expressed tangential field in eq.(1.9) won't be the
same expressed by eq.(1.5) because the not uniform convergence of the series
on cavity surface. The integral in eq.(1.5), as we can see afterwards, can be
calculated only on the coupling surfaces with the guides and starting from its
modes. The procedure has certainly some critical points on boundary edges in
which, the field would be infinite. But this is not a problem, if we consider integral
parameters that mediate on some local difficulties. The coefficients in the Iy
expansions and those correspondents of the guides are unknown and they must be
drawn by the conditions of continuity guide-cavity, as we will show in next

Chapters.
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Chapter 2:

The Pillbox cavity

2.1 Generalities and Fields Expression

In this chapter, we will deal with the pillbox cavity case. We want to calculate the
Longitudinal Coupling Impedance using the Mode Matching technique as already
successfully done for the iris. This technique can easily analyze the coupling
between the cylindrical cavity and the waveguides characterized by circular
symmetry that represent the vacuum chamber as shown in Fig.2-1. Let us consider a
charged particle riding the positive z direction, along the symmetry axis of a Perfect
Electric Conductor vacuum chamber. We assume the particle moving with constant
velocity, even though the vacuum chamber discontinuities would imply little
velocity changes. Like in iris case, this approximation does not affect our calculus.
Similarly, as it was done for the iris, we assume that the forcing primary field is
produced by the spatial spectrum of the previously mentioned point like particle ¢q,

riding on the axis at velocity v = fc.
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Fig. 2-1. Scheme of a Pillbox cavity: b = d = waveguides radius; ¢ = cavity radius;
2L = cavity length.

It is worth of note that we have TM modes, with radial and longitudinal component

of Electric Field and azimuthal component of Magnetic Field, as follows:

B (1) 49505 [Ko (er)=L27) g g )}mg-r)exp(— ke )omeglip)

2mlpl 1,(xg)
E2lea)= S50 0 ) el i) @)

20) = 25 o) ) ol i Do)

where g = b (in the pipe); g = ¢ (in the cavity) , k =k/fy, q is the particle charge
(In the following formulas we adopted q=1 for simplicity), and H (g-r)is the

Heaviside function.
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As expressed in detail in Appendix B, resonant modes in a cylindrical structure of

generic radius g are represented by the formula

d¢ (k r) = M 2.2)
Ig \™q g\/;-ll ((Zq) .
where k, =, / g ogis the q™ zero of the equation J o(@)=0.
The EM Traveling Modes inside a waveguide of radius g are
Jo(k,r)
= (2.3)

Df (k,r)=—t
q( qr) g\/;‘ll(aq)

For a PEC cylindrical cavity of radius ¢ and length 2L the normalized eigenmodes

are [13]

€, (r,z) =e, (r,z)f te,, (r,z)2 =

L\/?[_ ks SiIl(kSZ)cDi-p (kpr)f—i_kp COS(]{SZ)(I)BP (kpl")f] (24)
kpS 2L

- n E . "
h,,s<r,z)=h,,s<r,z)¢=,/2z cos(k,z)®¢ (k,r)
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where €, is the Neumann symbol (g,=1 if s=1, €, =2 else ) and k, = %

At difference with the previous case, for the cavity we will resort to eigenmodes of
all PEC surfaces. This implies a change in the function that describes the
longitudinal behavior. Furthermore, we will not need to take into account the
divergenceless modes. The explicit expression of the fields is given as an expansion
of the eigenmodes weighted with the expansion coefficients I, and V. in the

cavities and in the waveguides respectively:

b
E,(r.z)= J'ZVJ k’%q)ﬁ, (k,r)eXp(jz\/k2 —k; )
E, (r.z)= zﬁ@¢hkrkm{uJH-k ) 2<0 (2.5)

an_ CI)Ib, kr) exp(]z\/k2 —k’ )

k, |e
E(r,z)=—jZ,y —L.|==cos(k,z)®; (kI
0;;kV2L 0r"r
E(r,z)=—Z Z
H;(r,z):z
D.S

kmnkﬂ@‘wfﬂw 0<z<2L (2.6)

k0
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kY

21‘

b (k,r) exp[ (z- 2L1/k2—k2]
qu)” krexp[ (z—2L)Wk> -k ] 2L<z (2.7)

H,,(r,z)= ZVZjZ;cpf,(krr)exp[— jz=2LWk? —kf]
t 0

where

yro k1

[ ~(, /by %
(b is the waveguide radius and ¢ is the index of the ¢ zero). The total field inside
all regions is given by the superposition of the primary fields in eq.(2.1) and the
fields just defined. This superposition will be the expression used in the next

paragraph, for the Field Continuity.

2.2 Matching the magnetic field

We tackle the problem in the same way as done for the iris. Namely assuming on
the surfaces and on the ports the primary fields and impose that the modes must
cancel this primary fields. We may only consider the continuity of the magnetic

field tangential component on the two ports connecting the waveguides and the
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cavity, as already done for the Electric Field in the iris case. On the surfaces 1,2 the

total magnetic field continuity is written as:

Hg(r,O_)+ H(p(r,O_): [Hg(r,O+ )+ H(I,(r,O+ )]H~ (b-r) 0<r<b
HO(r, 20 )+ H,(r, 20" )= [HO(r, 207 )+ H (v, 227 | (- 7) 0<r<b
2.8)

where we have taken into account the primary field indicated by superscript “07,
and H (b— r) is the Heaviside step function needed to limit the integral path to the

ports instead of the total interface surfaces. We continue following the same

procedure as done for the iris case, by adopting the Ritz Galerkin method,
projecting eq.(2.8) on the waveguide eigenfunctions @/, (k,r) and obtaining the

following system:

Alt - Yoyb‘/lt_ = ZMptIlp

)4
. (2.9)
A, +Y YV = ZMmlzp
)4

where the vectors A, and A, are defined as
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A, = [HY(r07 )0l (k,r)as - [[H (0"}l (k)T (b= r)as

Sy

(2.10)
k2L
A2t = Alze “
and the matrix M, is defined as
b
M, =27[®;, (k, )0t (k,r)rdr 2.11)
0
and
gS
ip = z 2 Ips
(2.12)

are functions of the excitation coefficients Ip.

The explicit expressions of the vectors A; and the matrix My, are given in Appendix
C.

The system expression using matrices and vectors is represented in the following

equation
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M
- (2.13)
M

2.3 The excitation coefficients (PEC)

The procedure adopted here is analogous to the one adopted for the iris again.
Because of the new boundary conditions, the only difference is that we will resort to

the excitation coefficients I instead of V. Therefore, the expression of I is:

I, =$J‘ﬁxﬁ-ﬁ;aﬁ (2.14)
p s 8

where S defines the ideal cylindrical cavity surface, E is the total electric field, 7

is the outgoing unity vector orthogonal to this surface and A, is given by eq.(2.4).

On the lateral surface of this cylinder, for a lossless material, Ax E is null. Let us
define S; and S, as the surfaces of the two bases. On these surfaces, only the radial
components of the total Electric Field have to be taken into account.

Therefore, one can write the eq.(2.14) as
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kY, AL, T +) 7 AL T -\ =
I, = #;O_k{— Sj EXE(r07)- 1, (r,0)dS + Sj EXE(r2r) 1, (r,2L)dS] ~

_ LYO_{_ [E(r07) 1y, (r.0)as + [ Ex(r2L7) by, (r2L)dS ]

M Sy

(2.15)

where Z is the unit vector having the z axis direction.
We impose the boundary conditions of the tangential Electric Field on the surfaces

S; and S>. Even if the radial component of the modes vanishes on these surfaces (see

eq.(2.6) ), however they must behave a non-uniform convergence to values different

from zero such as to satisfy the following conditions:

Ef(r,z:0+)+E?(r,z:0+)

{Ef(r,z=o-)+;vl;q>ft<k,r>}ﬁ<b—r)

E(r.z=20)+E°(r,z=2L" )= {Ef (rz=20)+Y v, @, (ktr)}ﬁ(b ~r)

(2.16)

This equation for the tangential components can be interpreted that the Electric
Field of the resonant modes plus the impressed Electric Field inside the cavity:
e For b < r < ¢ must be zero because of the perfect conducting walls on the

corona.
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e Must be continuous and equal to the sum of the Electric Field of the
traveling modes plus the impressed Electric Field inside the waveguides.
Taking into account the definition of the matrix element M), given by eq.(2.11), one

may get the formula:

JkY, £, s . _
I,,X:m Z{(_1) .(—NZP+ZM[”V2J—(—N1P+ZM”VH ﬂ (2.17)

where the known vectors N;, and N,,, the extended expression of which is given in

Appendix C, are given by the following formula:

N, =—2ﬁj[Ef(r,z=07)'P~1(b—r)—E9(raZ:0+)]'q);(kpr)rdr
0

(2.18)

By inserting the just written equation in the expression of I;, and I, given by

eq.(2.12), we get:
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JjkY, g (-1) N £, _
Ilp = 2LO {{gkz _klz) _kxz _sz +;Msz2r - ;m _Nlp +;Mptvlr

kY, £, N o ey ] _
ST {?kz_k;-k:}(—’vzﬁ%MﬂmJ— R S

(2.19)

A key feature of these expressions is that the two sums with the s-index can be put
in a closed form. This is a general property and it is related to the modal expansion
of Green Function. In addition to the undoubted advantage of the analytical sum,
one has the further advantage that the matrices are reduced of one dimension. The
electromagnetic problems will also benefit of this behavior: all the longitudinal
electromagnetic modes are taken into account and therefore only a few transverse
modes are sufficient to describe the phenomenon.

For the sum of the series in square brackets, we adopt the same procedure as done

for the iris, so

I, = jYOYp{csc(2LkZ; )- [ZMptvg —NZPJ—cot(ZLkZ; )-(ZMWVI; —Nlpﬂ

t

t

I,, = jY,Y [cot(2LkZ <) (ZMWVJ -N,, j —cscl2Lkze)- (ZMWVU‘ -N,, ﬂ

(2.20)
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1 . . ) .
=— (c s the cavity cross section radius).
p

where Z ; =

1lkz—(a'p/c)2
k

Expressing the above formula in terms of matrices and vectors we get:

1= %y lesclokrz ) v - v, )~ cotlkrze ) a vy - w, )|

1, = ¥, lotlkrz ) M v - N, )-cselorrze) (mv; - N, )]

2.4 The Excitation Coefficients in case of finite losses

So far, we have discussed of a PEC device. Therefore, we spoke about a structure
characterized by the following properties:

e Electric field is perpendicular to the walls.

e The current in the walls is a surface current.

® No energy dissipation in the walls.

¢ Below cutoff the field amplitude becomes infinite at resonance frequencies.
When we consider a lossy device, the above properties will change because of the
finite conductivity. There will be energy losses in the walls that limit the Fields
amplitude at the resonance frequencies. It will be still very large, but not infinite.
Furthermore, the current in the walls becomes a volume current with penetration
dept depending on the material. The most important change for our evaluations is

that the Electric field has a tangential component at the wall. This component is
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very little and depends on the penetration depth, but we need to add it to eq.(2.14)
as a term under integral.

The finite conductivity is represented by the surface impedance

z, =114 (2.22)

where ¢ and J represent the material conductivity and the penetration dept
respectively [3, 4].

The Surface Impedance has the meaning that, on the metallic surfaces, there is a
relationship between the tangential component of the Electric Field and the

Magnetic Field, given by:

E =Z,ixH (2.23)

where the subscript / indicates losses. This term has to be added to the eq.(2.14) and

then the excitation coefficients formula becomes:
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kY, -
S —ﬂlzy—k j(E <

b, )-ids |-

) s

xh,, ) ids + [(AxE, - hds | =
N

Y, Z ~
kZ_kOZ _Skz !H‘hpsds—
P s

kY, Z
K-k -k kz—/&jz ol By

s S ww

s

We remark that the excitation coefficients I, are significantly different from zero

only at frequencies such that

k= k* +k?

Therefore, in the above equation we may neglect in the sum all the excitation

coefficients but/ , . So that, we may approximate the expression given by eq.(2.24)

as

:L j(meh )7 ndS =5 5 kYZkz 1,[h,

I
S 2 2
PRk -

5 5+S,

JkY,

mSjS(E <, ) idS — %

JkY,Z
2
—k,

S

I, % ! [cos(ic, ) (i, )} ds

(2.25)
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By means of some algebra described in the Appendix C, we finally obtain the

following formula:

I, = Iy [(E,, xR, ) ads

tot

. 2 &
(k> —k2 )+ jk¥,Z, (C +LJ 545, (2.26)

Before substituting the just written formula in eq.(2.12) to obtain the excitation

coefficients, we need to resort to a new definition of modal impedance as:

o _ k2 =k +A

! k

And define the new quantities

5 _ jszOZS
P2l |k - k2 )+ Aflk? —k2)+ A jkY,Z /L]

(2.27)

A= jkY,Z, (g+zj
c L

As demonstrated in Appendix C, the excitation currents for a lossy Pillbox are:
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1= v, {o+resclokrze | mvi - n,)-[s+ v cotlorrze )| vy - n, )}

1, = v {s+y colerrz | oy -n,)-lo+y  esclowez M orv; - v, )}

(2.28)

2.5 The Equation System

The excitation currents expressed in eq.(2.21) and in eq.(2.28) allow us to reach the
ultimate expression of the eq.(2.13) system in either loss free and lossy cases. We
will report either formulas, even if it is possible to shift from lossy to loss free case
simply equating to zero the parameters defined in eq.(2.27).

For a loss free pillbox, equating eq.(2.13) with eq.(2.21) we get the following

system:

A=Y, YV = MY lesclokezt)- (M Vi - N,)-cotl2keze)- (m v - N

A4V = M Y leotlkrze) M v - N, )-eselorrze ) (m vy - w, )]

(2.29)

By means of some algebra it is possible to uncouple the unknowns and, therefore, to

simplify the solution. By adding and subtracting the two expressions, we obtain:
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- jz' My cotlkrz v, -v:)=
(2.30)
= 2,2"(A,+A,)- j2" M"Y cotlkLz N, - N,)
-z’ M7y anlerze a|lv; +v;)=
(2.31)
=7,2"(A,~ A,)+ jZ" M"Y tan(kL.Z N, + N,)

where [ is the identity matrix. Here we resorted to the following trigonometric

expressions:

tan(x/ 2) =csc(x)—cot(x) and cot(x/ 2) =csc(x)+cot(x) (2.32)

For a lossy pillbox, equating eq.(2.13) with eq.(2.28) as already done for the loss

free pillbox, we get the following system:

= M {51 esclorrze | vi-n,)-[8+ Y cotlokrze ) (v, - n,)}

A +Y, YV =
= M {[5+1 cotlorrze ) v -, )-[s+¥° esclorze | mv; -, )}
(2.33)
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By adding and subtracting the two expressions and applying the trigonometric

expressions shown in eq.(2.32), we obtain:

{1-jz’m s +y cotlez |mflv; -vi)=
(2.34)
2,2" (A, + A)- j2" M5 +Y* cotlkrz (N, - N,)

ﬂ?

- jz' MY anlkrze M|y, +v3)=

=7,2"(A, - A,)+ jZ" MY tan(kLz N, + N,)

(2.35)

A commonly used computer tool, Mathworks Matlab, easily solves the just obtained
equations. Actually, it is necessary to truncate the infinite matrices before trying to
solve the equations. In section 2.7 we will show a good method to truncate the

matrices without lose results goodness.

2.6 The Longitudinal Coupling Impedance

We determine the Coupling impedance separating the integral in components
related to the cavity regions where, to be consistent with the previous assumptions,

we take the charge g=I .
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0 ik, 2L ik +oo ik .
20=[E(r=02e" " de~ [Er=020"" de - [E,(r=02k" "
—oo 0 2L

(2.36)

the longitudinal component of the Electric field for the three regions is given in

eq.(2.1) and summarized as follows.

b
E(r2)=i3 Ve "f]ff !, (k r)explizyk” —&7 ) <0

, k, e .
E(r,z)=- ]ZOZT” 22 cos(ksz)cbop (k, I, 0<z<2L| (2.37)
p,S

b
E, (r.z)= —j>. Vs kf]):’ ld (k,r)exp[— jlz—2LWk* —k? ] 2L< 7

For the z < 0 integral, substituting the Electric field for r = 0 and deprived of the

factors not relevant for integration, we obtain an expression like the following

[ exp(jw/kz—kf z+j%zjdz (2.38)

which is the same of the integral

Ie‘”dx zée‘”
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Resorting to the above formula to resolve the integral in eq.(2.38) we obtain

- W_%z
=

that can be written in a more elegant expression (using k = k/By)

2_ Z_k
ij k; /ﬂ

—— (2.39)

Returning to the general expression of the integral, we notice that

JO(quLo _ 1

- p\/;‘ll(aq) B p\/;‘ll (aq)

@, (k, r){

q

Therefore, substituting everything in the first integral of eq.(2.36) we have

b 2 _ 1,2 _ k
0 e . kY, ( K —k; /ﬂ)
— [E.(r=02¢""dz= = >V, (2.40)
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For what concerns the integral of Longitudinal Impedance related to the case
0<z<2L , the Electric field along the z axis is given in eq.(2.37). Recalling the

explicit expression of I

JkY, £,
Ips = k2 —I(();J 2L |:N1p szt‘/lr ( 1) ( 2p szrVerj|

we obtain the expression of the integrand

£k cos(k,z)

—kaz—ycbop(r){mp —ZI:MPTVH‘ —(—1)5(1\721, —ZMPTVJH (2.41)

For r = 0 and without elements not relevant to the integral solution, we obtain the

following integral and the relative solution

" (%ZLZ 1 2(‘1+(—1)‘Y exP[zjﬁkLD

jcos(kxz) exp 5
(kj —k?
B

0
Therefore, the integral of the Longitudinal Coupling Impedance we are looking for,

(2.42)

will be
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.k( e
2L . ~ o~ -] —1+(—1)e i J
.[Ezc(r:O,Z)GXp(]ijdZ:_z gskp [Ap_(_l) Bp] ﬁ

B oLk k2 )Vl (a,) (k Jz

where
An = Nlp _ZMptVlt_
t

Bn :NZP _szsz
t

The sums on s can be analytically calculated as already seen for iris, with a similar
result. In fact, from the integral result we gain four sums on s to solve, derived by

the follows:

Solving the above sums we reach this result
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A .

jl{c:sc(ZL,/k2 —k, )e

2 kL

£ —cot

br i &2 )} s
.

P

2jkL

jkl:cot(2L1/k2—k§ )e F —csc

~

)

Jie =k 1+ 82)- g7

2 kL

+e ? Bk*—k?

-B -

p

Je =il 1 57)- 5%

(2.44)

After some algebra we obtain the final result for the second integral of eq.(2.36)

2L k
- IEZC (r= O,z)exp( jdz =
0
2jLk

j—z
[Z M, (Vzteﬁ -V ﬂ

B
(K2 +k12))Jl(ap)

+

[(m)[ e

2jKL
5 s
+B »

2jkL
I
Ap+Bpe

J —cothr k-2 {

H

z:(k* +k2)J,(a,)

(2.45)

For the z > 0 integral, substituting the Electric field for r = 0 and without elements

not relevant to the integral solution, we obtain an expression like the following
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j ) exp{ jﬁz — jz=2L)Kk* =k} }dz (2.46)
2L B
The above integral can be written as already done for the integral of the first region

exp( J2LAKk* =k’ )J‘;exp{— jZ(*\/kZ —k; —kﬂdz (2.47)

p

which has the same solution, with different signs.

Solving the integral and using x = k/fly we obtain this result

kP —k2+K
] A exp( sz%J (2.48)

K +k’

Therefore, recalling the expression of ®f (qu)‘ » and substituting everything in

the third integral of eq.(2.36)

k,Y,”( k* -k’ +%j L
V,, exp(jZL—J

o "/,
- J.EZZ(r =O,z)ejﬁ dz =
2L

-1
D
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The Longitudinal Coupling Impedance of the Pillbox is given by the sum of the

three integrals eq.(2.29), eq.(2.34), eq.(2.38).

2.7 Numerical results

The two Equation Systems (eq.2.30-2.31 and eq.2.34-2.35) involves infinite
equations and infinite unknowns. To allow the system inversion it is necessary to
truncate the infinite matrices without hack the results validity. As already seen for
the iris, through the Relative Convergence phenomenon, it is possible to reach a
different result for different matrix truncation.

Following the scheme reported on Lee and Mittra book [6] we imposed a relation
between the number of modes of different zones in order to respect the Meixner
condition [7].

The choice of the ratios NI/N2 and N3/N2 (where Ni indicate the number of modes
for the i™ region) has a considerable effect on the result goodness as seen for the

iris.

N, b
Vz = ; = le (250)

—

In our specific case, we chosen
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_ N/w,
11wy, +1
_ N
141wy, 1wy,
_ N/Twy,
11wy, 1wy,

1

(2.51)

2

3

where N = N1 + N2 + N3 and w»; = wy, (because b = d), then N1 = N3. After
truncation and inversion of the linear equations, we solved the problem. It will be
represented the Longitudinal Coupling Impedance, as a fundamental parameter for
accelerators project, subdivided in real and imaginary parts and for different values
of number of modes, geometrical parameters and particle speed. The number of
points is chosen as a simulation constant, n = 500, and the same is done for the
waveguide radius (b = 12 mm). The number of modes is fixed (N = 200), but in
some cases this number may be changed, when it is needed to increase it to reach

the converegence, as already discussed for iris case.
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Real Part
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Fig. 2-2. Longitudinal Coupling Impedance, real part: py=1,c/b=4,L/b=4.
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Fig. 2-3. Longitudinal Coupling Impedance with losses, real part: py=1,c/b=4,L/b =4,
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Imaginary Part
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Imaginary Part
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When the values of the real part of the Coupling Impedance are as low as 10"3-107
Ohm, it is useless to increase the number of modes: the results are quite erratic. This
is a consequence that we are approaching to the accuracy given for the zeros of the
Bessel Functions [8]. This inconvenience, which happens at very low energies,

affects only the real part of the Coupling Impedance and not the imaginary part.

w10 Feal Part Imaginary Part
1 ! ! ! ' 140 ! ! ! '
| | 1| —— 100 modes | | | — 100 modes
: : | — 200 modes —— 200 modes
11 R U N I : : : :
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Fig. 2-38. Convergence test for Mode Matching Technique, Coupling Impedance. (fy=0.1,
c/b=2, L/b=4).
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Chapter 2: The Thick Iris

Chapter 3:

The Thick Iris

3.1 Generality and Fields Expression

Here we want to analyze the interaction between a beam and a thick iris inserted in

a cylindrical vacuum chamber both of circular cross section.

Fig. 3-1. Schematic representation of a generic Thick Iris.

We assume the forcing primary field as produced by the spatial spectrum of a point
like particle q riding on the axis with a velocity Bc. Therefore, the primary fields are

TM type and their explicit expression are given below
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E°(r2) —@{Ko (o)~ Laler) g (xg)} exp(— jke/ B)sng (17p)

2mlBl I, (rcg)
E2lec)= 220 i o) 4 ) exol- ) 3

130r)= 25 oD )| el s o)

where g = b (in the waveguide); g = ¢ (in the iris) , x=k/By , K, and I, are
modified Bessel Function, (In the following formulas we adopted g=I1 for
simplicity). In Appendix A is given a detailed exposition.
This configuration is split in two semi-infinite pipes, separated by a cylindrical
region of the same radius as the iris and of same length. The pipes are considered as
waveguides and the cylindrical region as a pillbox cavity. The basic idea of the
analytical approach is to represent the EM Fields in the cavity and in the
waveguides by means of eigenmodes of these structures as considered isolated and
with perfect (magnetic or electric) walls. It is well known that these modes form a
complete set by means of which we can represent any EM Field configurations.
Then, in order to find the expansion coefficients, we must impose the continuity of
the electric and the magnetic fields on the borders separating adjacent structures.
The boundary conditions on the iris are:

e Perfect magnetic conductor on the bases

e Perfect electric conductor on the lateral surface
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n
T p.e.c.
p. m.c p. m.c.
____________________ - _)
2L, z
p.e.c. l

Fig. 3-2. Scheme of the boundary conditions.

The primary fields are of TM type. The cylindrical symmetry does not introduce
any longitudinal Magnetic Field. Therefore, the scattered field will be of TM type
too.
One can tackle the problem in two different ways:
1. Assume the primary source and impose the boundary conditions on the
surface and the continuity on the ports [4]
2. Assume on the surfaces and on the port the primary fields and impose that
the modes must cancel these primary fields.
We will adopt the second approach. It is clear that the primary field alone does not
satisfy all the boundary conditions: for instance, the tangent electric primary field
on the corona is not vanishing. Therefore, the modes must restore this condition on
this surface.
The EM Travelling Modes inside a generic cylindrical structure of radius g can be

represented by the following normalized eigenmodes:

79



Chapter 2: The Thick Iris

ds (k r):M (3.2)
0g \ g g\/;‘]l(aq) .
J (k,r) (33)

®f (k)= —A—1"
(k,r) g\/;Jl(aq)

where k, =, / g and qa, is the qth zero of the equation J,(&)=0. More details

about these expressions are written in Appendix B.
For a cylindrical cavity of radius ¢ and length 2L the formula of the normalized

eigenmodes is written [4] as

Eps (r’Z): eps (r’Z)f-i_ e;s (r’Z)2 =

L\/?[_ ks COS(kSZ)CDi-p (kpr)f—i_kp Sin(ksz)(bgp (kpl")f] (34)
k, V2L

—~ N e . . N
h,,s<r,z)=h,,s<r,z)¢=,/2z sin(k, 2)® (k,r)@

TSZ

where €is the Neumann symbol (&,=1 if s=1, €,=2 else ) and &k, :E.

The fields inside the three zones in which we divided the device are represented as

follows
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ZVI_ t t qbb ) Je K=k}

E,(r.2)= 2V, @i (kr Je 1 (3.5)

z>=—zv;;@z(kfr>ew“-kf
t 0

£ v k,+F k,
Jk; +k2 or
VékJ+F k,
Ef(r,z)=) 22 _rr L (k,r) (3.6)
ko +k; !

)@ (k,r)

zfmf

EZZ(r z __JZV;; r]fr CIDh(k ) —j(z=2L WK=K
E,,(r,2) zvth) e (-20)E 8 3.7)

t

z :Zsz?¢l k,r)e NI
0

Z.k k

where [, = j(q&[; V=] I:Y V, s k,, =4k, +k}; € is the Neumann symbol
) b k 1 ) ) .
(&,=11if s=1, ;=2 else ); ¥ =——————==—, (b is the pipe cross section

kK —(a,/b)  Z
radius); V,s and F,, are the excitation coefficients of the divergenceless and

irrotational resonant modes respectively.
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The total field inside every region is given by the superposition of the primary fields
in eq.(3.1) and the fields just defined. This superposition will be the expression used

in the next paragraph, for the Field Continuity verification.

3.2 Matching the electric field

Now we will define the Electric field continuity at the interfaces between the three
subsets in which we divided the device, taking into account the irrotational modes

too:

E’ (r,O_ )+ E, (r,O_ )= [Eﬁ) (}”,0+ )+ E’ (r,0+ )]H~ (c—r) z=0

Er2L )+ E, (r2L)=[E(r20 )+ E<(r20 A (c~7) z=2L

where the primary field are indicated by the superscript “0”, and H (c—r) is the

Heaviside step function that represents the neglecting of the fields in
correspondence to the coronas.
From eq.(3.8) and using the expressions of the Transverse Magnetic Modes, we get

the explicit expression of the continuity at the interfaces:
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_| Zx I,(xr) a ¢ V”‘k‘+Fk
-\ e +Z[q’ VRS ]

(3.9)

where b and c are the waveguide and cavity radii respectively; indices 1,2 indicate
the left and the right interface between subsets.

By adopting the Ritz Galerkin method, we project eq.(3.9) on the eigenfunctions

ol (k,r) and we obtain the following system:

A, +V, = ZMPIVIP
p

. (3.10)
Ay, +V, = ZM[?)‘VZp
P

where the vectors A, and A are related to the primary fields and are defined as
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4, = [ E(r07 )0}, (k,r)ds —[ [E(r0 ), (k,r)dS}EI (c—r)

—jk2L
A, =Ae / (3.11)
where § indicates the interfaces surface and the matrix M), is defined as
M, =2x[ @, k,r)o!, (k,r)rdr (3.12)
0
and their explicit expression is given in Appendix C.
It is worth of note that it is needed to get the sums Vj, e V,, defined as:
e Vk+F k
v, ,= Z Cs _pss psp
2 2
V2L kD k]
(3.13)

e V k +F k
V,, = ) R e Sy T 2
2p S( ) I ki.,_kf

The just given definition will introduce a simplification because one index has been

“saturated”.
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3.3 The excitation coefficients (PEC+PMC(C)

The mode excitation coefficients V, and F, defined in the above paragraph, are

determined taking into account the coupling between cavity and waveguides. Using
Maxwell Equations and the modal orthonormality, after some algebra it is possible
to reach the formulas we are looking for. Operating in such way, it is implicit to
impose the continuity of the tangential Magnetic Fields on the interfaces between
cavities and waveguides. This means that we build a non-zero Field in
correspondence of the cavity ports, using Field distributions that result zero on the
same ports (cavity modes). This operation is done because the sum converge not
uniformly, so the limit of the sum calculated in a point that lies on the perfect
magnetic conductor surface cannot be changed to the sum in a point whose limit
tends to the surface of the conductor. In fact, the first limit is zero, whereas the
second tends to the assigned Magnetic Field. This procedure has a critical point in
correspondence of the edges angles where the field should tend to infinite.
However, this effect is not a real problem because the parameters we are calculating
are of global type, so they means on these critical points.

Summarizing what written above, the continuity of the Electric Field cannot be
expressed “tout court” using the eigenfunction expansions because they satisfy the
homogeneous boundary conditions. However, this inconvenient can be

circumvented resorting to the excitation coefficients V as function of the Magnetic

Field distribution on the ports [3] as:
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v, :—ﬁj(”xz;)-ﬁds (3.14)
P s S

where 71 is the outgoing unity vector orthogonal to the cavity surface S and ey, is
given by eq.(3.4).
We will have a non-zero Electric Field tangent component only on the two ports S;

and S,. Therefore, one can write the eq.(3.14) as:

kZ ~N - ek A i %
V’”:—kz—szo—kz {—jsz-em(r,o)dmjzx -em(r,ZL)dSZI:
P s S, s,
(3.15)
S L — [Hy(r0")e), (r0)as + [ Hi(n2L e, (r2L)ds
k2 _k2 _kZ o\’ ps\"? o\ ps \"»
p s S S,

where Z indicate the positive direction of z axis from left to right and H represents
the total Magnetic Field at the interface surfaces. We impose the boundary
conditions of the tangential Electric Field on the surfaces S; and S,._Even if the

radial component of the modes vanishes on these surfaces (see eq.(3.8) ), however

they must behave a non-uniform convergence to values different from zero such as

to satisfy the following conditions:
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Hilr2=0 )+ Xl (k) =gl =0 ) gl =0 (e 1)
t 0=t

Hg(r,z = 2L+)+ Z%@fr(ktr)= [H;(r,z = 2L_)+ H(g(r,z = 2L_)]I:I(c—r)
t 0t

(3.16)

Expanding the integral and taking into account the definition of the matrix element

M, one may get the formula:

J27kZ  k £ I’A s I’
v, o=- : N, - M (1| N, +E M, 2
Pk -k k2 )k, N2\ 2M Z,Z" 0|, 2Mp Z,Z"

t t

(3.17)
where
Ny, =—27ZI[H¢(;»,Z:0‘)—H¢(r,z:0+)]-CI);(kpr)rdr
0
(3.18)
-jk2L
N,,=N,e ’

and its explicit expression is given in Appendix C.

For what concerns the irrotational modes we have [4]
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pPs

F :—@D(ﬁsxﬁ)-ﬁds} (3.19)

where n is the outgoing versor orthogonal to the cavity surface S and fy is given by

- £, COS(ka)Jo(kpr) _
o g )

1 e, {kpcos(kxz)Jl(kpr)f—kssin(ksz)JO(kpr)f}

h N7 )

(3.20)

k, V2L

We will have a non-zero Electric Field tangent component only on the two ports S;

and S,. Therefore, one can write

Foo_ BT [(7,(r0)x H)-ads + [(F,(r2L)x H)-ids (3.21)

ps ps
k S S,

where H represents the total field at the interface surfaces.

Expanding f,; we obtain after some algebra

j2xZyk, [e %= N
F, :_TOP \/%M (A, - (1) HZ(D)CIDlp(kPr)rdr} (3.22)

pPs
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Taking into account the definition of Vj, and V3, as given by eq.(3.13), we get:

t t

‘ £, V., ; vV,
le Z—I;]_L(kz _k;)zm{(zolvlp _Zr:Mpt ?j_(_l) (Z()sz +ZT:M[” Zzh ]j|
s ps

j g‘v s Vt_ V“t—
V,, = _k—L(kz K )z(—)kz - {(—1) (ZONIP -3M, ?j—(ZONZP +IM, H
s ps t t

(3.23)
A key feature of this expression is the two sums with the s-index can be put in a
closed form. This is a general property and is related with the modal expansion of
Green Function. Resorting to eq.(1.421.4) of reference [5] one can compact the

[ IS4

sums over S as:

(3.24)

In addition to the undoubted advantage of the analytical sum, one has the further

advantage that the matrices are reduced of one dimension. The electromagnetic
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problems will also benefit of this behaviour: all the longitudinal electromagnetic
modes are taking into account and therefore only a few transverse modes are
sufficient to describe the phenomenon.

From the above algebra, we obtain then the simplified form:

v, v
v, =—jz¢ {cot(ZLkZ; {ZONIP M,k j—cso(2LkZ; {ZONZP +IM,, 3 ﬂ
[ t

V,,=—jZ; l:csc(ZLkZ; {ZONlp _;Mpr ZI;’ J_COt(ZLkZ; {ZONZP +Zf‘,Mpr 22, j:l

b
t t

(3.25)
K =(a,jef R o
where Z = T = F (c is the iris cross section radius).
P
Expressing the above formula in terms of matrices and vectors, we get:
V, =z leselorrz ) (2,5, + M y"v:)-cotlokrz ) (z,n, - my" v; )
V, =z feotlekLze ) (z,N, + M YV} - esclorrz? )-(z,N, - My v; )|
(3.26)

where Z“and Y » are diagonal matrices.
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3.4 The Equation System
By equating eq. (3.10) with eq. (3.26), we get the following infinite system in

infinite unknowns:

A+ =z esclorize g N+ v Vs )-cotlarrz )z, n vy

A, +Vi= ngg[cot(szg)- (Zoﬁz +M g”z;)—csc(szg)- (Ml —gg’\_/;)]
(3.27)

By means of some algebra it is possible to uncouple the unknowns and, therefore, to

simplify the solution. By adding and subtracting the two expressions, we obtain:

~

- Mz cotliez ay’|lv; +v:)= (3.28)
= (A, +A,)- jZ,M" 2 cotlkLz NN, - N, )

1+ 2 wnleez ay' Jv; +vi)= (3.29)

Where we resorted to the following trigonometric expressions:
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tan(x/ 2) =csc(x)—cot(x) and cot(x/ 2) =csc(x) +cot(x)

As a conclusion one can see that the equations are uncoupled since in the first one
- + . - +
appears only the unknown (Kl +Kz) and in the second one only (\11 -V, )

Therefore, they can be solved by the inversion of a simpler matrix.
Other authors in a similar way solve the problem for this case resorting to a wave

representation inside the iris (Travelling Wave Mode Matching):

.1 k i k2—k2z — kK (2L
E,(r,z)=j L (k r{ Ve VT +V,, e’ }
’ ﬂﬁ;w&—kj

1 ¢ + —ik- ﬁz _ 2_1% —
Ezr(V,Z)ZlB—\/;quI(kpr{Vz,,e et +V2pe’m( “)}
p

Hw(r zZ)=

q)c k F{V-# jwk kZ V_ jwk k 2Lj|

Oﬁ\/_z\/m Ip 2p€

(3.30)

where k, =, /c and o, are the zeros of the Bessel function Jo(x) and CIDf)(k pr) and

N (k pr) are the modal functions. However, their results are restricted to the lossless

case, but it is not the only limitation.
One can see that, being equivalent to each other, the mode-matching technique

needs only half modes in respect to the number of modes needed by travelling wave
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mode matching. This means that our technique needs less computational power to
reach the result than the classical travelling wave mode matching.

However, this advantage is not enough to justify the increased mathematic
difficulties introduced by this method, due to not uniformly convergent series. As
will be shown, the mixed mode matching technique allows reaching better results

than the other method.

3.5 The longitudinal coupling impedance

When a structure as the iris is studied in an accelerator project, it is important to
evaluate its iteration with the particle beam. In time domain, a global parameter that
defines this interaction is the wake potential, already defined. Its analogous in the
frequency domain is the longitudinal coupling impedance, easily obtained from the
potential using the Fourier Transform. Here we will start from the more general
definition of the Impedance already given in previous paragraphs, to reach a

particular expression fitted to the iris structure, as:

0 X/, 2L v/,
20 = [, (=00 " az- L B, r=0.2)"V az+
q-. q5

+oo K/,
—len(r:o,z)e% dz.
45 (3.31)
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The procedure adopted is the same as the one of the previous Chapter, and we get

the numerical results listed in the next Section.

3.6 Numerical Results

The two Equation Systems (eq.3.28-3.29) involves infinite equations and infinite
unknowns. To allow the system inversion it is necessary to truncate the infinite
matrices without hack the results validity. Doing some simulations on the device is
possible to see a different result for different matrix truncation. It is the Relative
Convergence phenomenon [6].

At this, a finite number of modes for each waveguide and cavity must be
considered. The choice of the ratios N1/N2 and N3/N2 (where Ni indicate the
number of modes for the i" region) has a considerable effect on the result goodness.
Following the scheme reported on Lee and Mittra book [6] we imposed the written
below relations between the numbers of modes of different zones in order to respect

the Meixner condition [7].

TRt (3.32)

In our specific case, we chosen
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_ N/w,
141wy, +1
_ N
141wy, 1wy,

_ N/Tw,,
1+1/w, +1/w,,

1

(3.33)

2

3

where N = N1 + N2 + N3 and w»; = wy, (because b = d), then N1 = N3. After
truncation and inversion of the linear equations, we solved the problem. It will be
shown the goodness of the mode-matching analysis to manage the particle passing
through a thick iris problem. It will be represented the Longitudinal Coupling
Impedance, as a fundamental parameter for accelerators project, subdivided in real
and imaginary parts and for different values of number of modes, geometrical

parameters and particle velocity.
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Fig. 3-3. Comparison between mixed mode matching and travelling wave mode matching
applied on the same device: Real part of Coupling Impedance (py=10, ¢/b=0.2, L/b=0.25)

3000 T T
— Wode Matching
---- Wawe Matching
= S S S S —
S N B O S S |
T
=
o,
JERR =01 S [ . I S S SR 4
= H ; H ; ;
=2 H ; H ; ;
E
£
™
1000 ool I ROnEnes (EECE SERELREERE T RECREERER EELEEE
i i i

& 8 10 12
kb (normalized wawe number)

Fig. 3-4. Comparison between mixed mode matching and travelling wave mode matching
applied on the same device: Imaginary part of Coupling Impedance. (By=10, c¢/b=0.2, L/b=0.25)
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In Fig.3-3 is shown the comparison between the method adopted here and the
travelling wave mode matching (usually called mode matching in literature),
applied to the same structure. It is worth of note that the normalization of wave
number to the guide radius implies that the cutoff frequency will always fall on the
same value of the normalized wave number. This value ( kb = 2.4 ) corresponds to
the first zero of the Bessel Function Jo(x)=0. One should not be surprised by the
vanishing of the real part of the Impedance for all the frequencies below the cutoff.
A different behaviour would conflict with the energy conservation principle.
Allowing for the energy released by the beam into the room delimited by the
discontinuity of the iris, this energy “must be entirely given back™ again to the beam
itself. Since we are below the cutoff, no energy is indeed allowed to freely flow
inside the pipes. Therefore, the real part of Coupling Impedance must be zero
because the beam did not lose any energy. By converse, the imaginary part is
certainly different from zero since there is a balanced exchange of energy between
the beam and the room inside the discontinuity, as shown in Fig.3-4. We expect that
this will not happen when the walls of the iris have a finite conductivity, since a
certain amount of the energy exchanged will be dissipated on the walls. We expect
that in this case at some frequencies (related to the device resonances) it will appear
a non-vanishing real part in the Coupling Impedance. Above cutoff, the real part the
coupling may be different from zero: a certain amount of the energy, released by the

beam into the room delimited by the discontinuity of the iris, may flow into the
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beam pipes. Since the phase velocity of its EM field is larger than the particle
velocity, the mean power exchange between the beam and the field is zero: in sum,
this energy is irreversibly lost and a non-zero real part appears in the Coupling
impedance, even in the case of lossless walls.

While at low frequency the results of the two methods are almost superposable, the
discrepancy between these results becomes macroscopic at high frequency, where it
attains almost 10%. In order to understand which method is more convenient, we
performed a convergence test for the mixed mode matching case. The results of this
procedure are represented in Fig.3-5. In Fig.3-3 is also reported the time needed by
the computer to reach the result and it is clear that in this case the travelling wave
mode matching method faster than Mixed mode matching method. It is only a
coincidence, because usually the M.M. is intrinsically faster and, as more little is £y

as more evident is the difference in time.
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Fig. 3-6. Convergence test for Mixed mode matching Technique, Imaginary Part of Coupling

Impedance. (By=10, ¢/b=0.2, L/b=0.25).
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This method exhibits a fast convergence in the estimation of the longitudinal
coupling impedance. Few modes are required to obtain an error lower than percent
and then an accurate value of the impedance. In Fig.3-5 and Fig.3-6 is shown the
convergence study on the real part of the Coupling Impedance. If 100 modes are

used, one can be find an error lower than 1%o.

415 ) : : ) : ) : : )
41
405

40

Real part [ohm]

394

39

S N T T N SN S TN R N
0 20 40 g0 a0 100 1200 140 160 180 200
Modes

fig. 3-7. Convergence of the real part of the Longitudinal Impedance. (kb=3).

In the figures below, we want to show how much the Longitudinal Coupling
Impedance is useful to understand the interaction between the particle and the iris

for some particle speed values and varying some iris parameters. Every simulation
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is done using 100 modes and taking 500 points for every graphic. The only constant

parameter is the waveguide radius b=30 mm.
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Fig. 3-8. Longitudinal Coupling Impedance, real part: py = 0.1, ¢/b = 0.2, L/b = 0.25.
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Fig. 3-27. Longitudinal Coupling Impedance, imaginary part: fy = 100, c/b = 0.2, L/b = 0.25.
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Fig. 3-33. Longitudinal Coupling Impedance, imaginary part: fy = «, ¢/b = 0.2, L/b = 0.25.
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One can see that for By = 0.1, or B = 0.1 little Impedance spectra are reached
(fig.3.8-3.13). This is due to the transit time of the charge through the iris. In fact,
the lesser is the velocity the longer will be the transit time and consequently the
shorter will be the spectrum.

Moreover, for little values of By, the interaction between particle and iris is at
minimum, and the very little real part value of the obtained impedance confirms this
assertion. It is worth of note that when the ratio ¢/b = 1 the impedance amplitude
decreases to very little values, as expected. In case of By = o, meaning § =1 (the
charge moves with light speed), an infinite spectrum is obtained, with the real part

of the impedance that never vanish.
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Chapter 4:

The Coaxial Setup

4.1 Generalities and Fields Expression

In this chapter, we will apply the mode matching technique to a device that consists
of a pillbox with an inner wire stretched along its z-axis. The problem and,
therefore, its solution are different with respect to the previous cases, first because
of the absence of the beam: as a forcing term, we may consider a traveling
waveguide mode. It is worth of note that, since the coaxial configuration has a
multiple connection of first order, it can support at least one TEM mode: it is quite
natural to take this mode as the forcing source. In this case, we will find the
scattering parameters first, and then we will use them to determine the coupling

impedance.
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wavequide

Fig. 4-1. Scheme of the pillbox with the stretched wire on z axis. a = wire radius; b = waveguide
radius; ¢ = cavity radius; 2L = cavity length.

In addition, the presence of the wire changes the Device Under Test (DUT)
characteristics. Inserting the wire, the waveguides behave like coaxial cables (with
minor and major radii a and b respectively as designed in Fig.4-1) and the cavity is
treated as a coaxial cavity. Therefore, the cavity modes and the waveguide waves
are different from the previous cases. The functional expressions of modes in

coaxial cables are as follows:

0 t=1
P50 =) g7 Iyl @) - Jy@ e fa) =25, @D
2a JI2@) I (ge, la)—1

where ¢, is solution of the equation a[] ax)Y,(a)-Y,(ax)J, (a)] =0

with x=b/a e x=c/a respectively, and
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1
P t=1
¢ (k,r) = 4.2)
aNz J(rala)Y,(a)-J, (@)Y, (ra,la) t=23,...
2a V@)1 (ga,la)-1

The details are given in Appendix D.
For a cylindrical cavity of radius ¢ and length 2L, the expression of the normalized

eigenmodes is given by [3]

épx (r’Z) = epx (r’Z)f + e;x (r’Z)2 =

kL\/i [k, sin(k,2)®; (k, )P+ &, cos(k,2) @5, (k, r)2] (4.3)
ps

- . £ . .
hps(r,z) = hps(r,z)(p: 22 COS(ksZ)q)p(kpr)¢

where the transverse modal functions @ (k,r) are the same functions which
represent the coaxial cable modes, and € is the Neumann symbol (g,=1 if s=I,
g, =2 else).

The expression of the fields as an expansion of the eigenmodes weighted with the

expansion coefficients I,; and V; in the cavities and in the waveguides are
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where

Elz(r,a:jzﬂ ki )+ vy (2]

Elr r, Z zq)u kr[vlr +V1r( )] z<0

E; (r, z

H; r,z

k
): _jzoz_p
p.s

ps

r z)=—Zz¢f,(k,r)[vl:(z)—vg(z)]

¢
Op ps

=-Z z Sy kesin (k,z)®;, (k,rI, 0<z<2L

c
1p ps

=_]z” @ (k)i (z—2L)+ vV (z—2L)]

ZCI%, k)i (z=2L)+V; (z-2L)] 2L<z

r < :zZ—T(I)fI krr [—VZ_I(Z—ZL)-FVZI(Z—ZL)]
t 0

Vi, (2)=v," eXP(J_r Jok® =k} )
Vzt/_ (Z) = Vzt/_ exp(i JZA k- er )

4.3)

4.4)

4.5)
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The only difference is that the expression of the modal radial functions is the one

given by eq.(4.1).

4.2 Matching the Magnetic Field

Let us allow for the coupling between the cylindrical cavity and the waveguides,
which represent the vacuum chamber. A wire is stretched inside the vacuum
chamber in order to model the situation that appears when we deal with
measurements of the scattering matrix. We take into account the coupling between
the cylindrical cavity and waveguides.

As already mentioned in Chapter 2, in which we have the same Perfect Electric
Conductor boundary conditions, we may only consider the continuity of the
magnetic field tangential component on the two ports connecting the waveguides
and the cavity.

On the surfaces 1,2 the continuity

Hw(r,O_)=H¢(r,O+) a<r<b
(4.6)
Hw(r,ZL_):H(/,(r,ZU) a<r<b
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It is assumed that in the waveguides there are traveling waves in both directions.
We underline the convention adopted for the scattering matrices, which attributes
the positive sign to the incoming wave with respect to the DUT. From eq.(4.6) and
using the expressions of the transverse modes we get the explicit expression of the

continuity:

Z<1> (k r)[z J YZYb VvVl (k,r) a<r<b

4.7)

ZCD;(kpr)(Z(—l)s\/imJ YZY V-V o' kr) a<r<b

where indices b and c respectively indicate guide and cavity and for brevity sake it

has beenset V' (z=0)=V,"" and V' (z=2L)=V,"".

As in the previous cases it is not needed to get I, but only the sums I, e I, defined

as:

gv
Ilp = Z ZLIps (48)

I, =3 (1) 2, (4.9)
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this will introduce a simplification because one index has been “saturated”.
By projecting eq.(4.7) on the eigenfunctions®’ (k,r)the following system is

obtained:

(4.10)
Z,M"1,=y"lv;-V3)
where the matrix M), is defined as
b
M, =2x[®;, (k,r)o!, (k r)rdr (4.11)
0

and its explicit expression is given in Appendix C.

4.3 The excitation coefficients (PEC)

Following the same procedure already seen for the Thick Iris and the Pillbox we

have:
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Jk
é/OIpx = k2 _

— = [AxE-h'dS (4.12)
kj—kfj

ps
N

where, n is the outgoing unit vector orthogonal to the cavity surface S.
Here we follow the procedure already adopted in the previous Chapters and we

obtain the matrix representation for the unknown excitation currents I;, and Ip:

Z,1, = j¥ " escloktz v +v;)- iy collkiz aly: +v;)

(4.13)
2,1, = jy* collokrz Wl +v; - jy° esclokiz vy +v;)
Equating this expression with eq.(4.10) we get the system:
Vv m Ty fesclokz My +v; - cotlokz v +v )
(4.14)

vV -vi sy coloraz e ;v J-osc{2kez v +v)

In order to give a simple expression of the scattering matrix for this DUT we

introduce the following matrices:
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hence the system in eq.(4.14) became as follows:

B +v3 )~ Al vy )=y v; -v;)

(4.15)
Blvi+vy)-alvi+vs)=r' v -v,)
The explicit expression of the scattering parameters is:
b -a-sle-a) ]l s av sl -a) 8]
(4.16)

5, =l - a) B+ a-r| B+ -] (v + )

Because of the symmetry, the remaining parameters satisfy the following identities

I
[
I
ltn

=22
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4.4 The excitation coefficients (Lossy)

In the case of the Wire Method is not necessary to introduce losses due to finite
conductivity of the walls indeed, below cutoff the power lost because of the TEM
wave is so larger than the one dissipated in the cavity that the quality factor Q is
dominated by the former ones. Above cutoff frequency, the above statement is a

fortiori valid.

4.5 The Longitudinal Coupling Impedance

We have used the mode matching technique to simulate an experimental setup for
wire method measurements of the scattering parameters of a pillbox cavity [9]. This
way to proceed implies that we need to use the same formula used for the
experimental measurements case, to obtain the Longitudinal Coupling Impedance
from the scattering parameters. This formula gives the real part of the longitudinal
coupling impedance, which is sufficient to reach requested informations about the

device under test
z,|=-22,1n(s,,|)=-2z, m(10)10g(s,,|) (4.17)

or in a more compact expression
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(4.18)

4.6 Numerical results

Eq.(4.16) involves infinite matrices. To allow a good convergence it is necessary to
truncate the infinite matrices without detriment of the results validity. As already
seen for the pillbox and for the iris, through the Relative Convergence phenomenon,
it is possible to reach a different result for different matrix truncation.

Following the scheme reported on Lee and Mittra book [6] we imposed a relation
between the number of modes of different zones in order to respect the Meixner
condition [7]. We proceed in a similar way as done in the previous Chapters. The
only difference is that the first component (namely the one relevant to the TEM

mode) of the scattering parameters S_ is sufficient to characterize the coupling

impedance.

It will be represented the Longitudinal Coupling Impedance, as a fundamental
parameter for accelerators project, subdivided in real and imaginary parts and for
different values of geometrical parameters. The number of points is chosen as a
simulation constant, n = 500, and the same is done for the waveguide radius (b = 12
mm). We used very few modes (N = 20) if compared to other cases already seen,

inasmuch the exceptionally good convergence for the wire method. On the other
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side, a little number of modes is necessary through the extreme slowness of the
computing time associated to the wire method that cannot perform a direct calculus
of the Coupling Impedance. Some examples of Mode Matching Technique used to

simulate the wire method is shown in the following pictures.

wire method
1200 T T T
e S Bt
e T e e S
E
=
2 ‘ ‘ ‘ : ‘ ‘
] e B - SO N | US| SO SO O SO SS g
o | | | H | |
= : ; :
=
L]

kb (hormalized wave number)

Fig. 4-2. Longitudinal Coupling Impedance, real part: b=12mm, c/b =4, L/b = 4.
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Zikki)-Real [Ohm]

Fig. 4-3. Longitudinal Coupling Impedance, real part: b=12mm c¢/b = 6, L/b = 4.
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Fig. 4-4. Coupling Impedance, real part: b=12mm c¢/b =8, L/b = 4.
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By means of the eq(4.18), the wire method simulations present a real part of the
coupling impedance every time over zero. In the mode matching simulations, the
real part of the C.I. under zero can be seen as a signal of bad convergence and thus

it means the necessity to increase the number of the employed modes.
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Chapter 5:
Comparisons among Results of

Various Codes

5.1 Generalities

We have learned that the behaviour of any passive device inserted in a cylindrical
vacuum tank dramatically changes passing from below to above the cutoff of the
vacuum tank. It is worth of note that this frequency is connected only to the
dimensions of the vacuum tank cross section and that below this frequency no wave
is allowed to propagate in this pipe.

Below cutoff, in case of a PEC device, the real part of the Coupling Impedance
(C.I.) must vanish at all the frequencies. A different behaviour would conflict with
the energy conservation principle. Allowing for the energy released by the beam
into the room delimited by the inserted device, this energy “must be entirely given
back” again to the beam itself. Since we are below cutoff, no energy is indeed
allowed to freely flow inside the pipes. Therefore, the real part of Coupling
Impedance must be zero because no energy is delivered and propagated into the

vacuum chamber, neither is lost by ohmic dissipation inside the device. By
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converse, the imaginary part is certainly different from zero since there is a
balanced exchange of energy between the beam and the room inside the device. We
expect that the real part of the C.I. will not vanish when the walls of the inserted
device have a finite conductivity, since the current impressed into the device
dissipates on the walls a certain amount of the energy stored in the device: the
exchange of power with the beam will be no longer balanced. We expect that in this
case at some frequencies (related to the device resonances) it will appear a
significant real part in the Coupling Impedance.

Above cutoff, the real part the coupling may be different from zero: a certain
amount of the energy, released by the beam into the room delimited by the
discontinuity of the device, is allowed to flow into the beam pipes. Since the phase
velocity of its EM field is larger than the particle velocity, the mean power
exchange between the beam and the field is zero: in sum, this energy is irreversibly
lost for the beam and a non-zero real part appears in the Coupling Impedance, even
in the case of a device with PEC walls. In the case of walls of finite conductivity,
there will be additional losses which will lower the Quality Factor of the resonance
which appears in the Coupling Impedance: this lowering is always rather small and
sometimes is negligible. In general we expect high Q resonances below cutoff and
low Q resonances above cutoff. These latter have a large degree of superposition
and generate the so-called Broad Band Impedance.

The stretched wire method is since long (1969) largely used for measuring the

Coupling Impedance. Since then, various improvements of the measuring technique
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were introduced; however, from what said before hand, it is clear that the stretched
wire method introduces an intrinsic perturbation to the behaviour of the
electromagnetic field. The presence of the wire changes the device topology from
simple connection to multiple-connection. This perturbation introduces a TEM
wave which has zero Cutoff Frequency. This TEM wave is able to remove a certain
amount of the energy stored into the inserted device and bring it to infinity without
interacting with the beam. Therefore, the beam will be given back only a certain
amount of the power previously released to the device. This will produce a more or
less large discrepancy between the true Coupling Impedance and the measured by
means of the Wire Method, whatever is the manipulation of the measured
parameters (scattering parameters). Above the cutoff frequency of the original
configuration, the perturbation introduced by the stretched wire is expected to be

less significant than below cutoff.

5.2 Analisys of the Pillbox Long. Coupling Impedance.

As an example we examine the results of the C.I. of a PEC pillbox as calculated
from our code. The results are depicted in Fig.5-1, where the real and imaginary

part of the C.I. are reported.
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Fig. 5-1. PEC. C. L for a pillbox cavity: b =4 mm; ¢ = 36 mm; 2L = 12 mm; fy > 1000;

One can notice that the real part is strictly zero below the cutoff frequency
corresponding to the normalized wave number 2.4. Inside this range the imaginary
part is, however, different from zero and exhibits a large number of resonances.

This behaviour is just what we expected. In Fig.5-2 are reported the results for a

lossy pillbox and in Fig.5-3 they are overlaid on those of the lossless pillbox.
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Fig. 5-2. Copper. C.I. for a pillbox cavity: b = 4 mm; ¢ = 36 mm; 2L = 12 mm; fy > 1000;
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Fig. 5-3. Comparison betwen Copper and PEC. C.I. for a pillbox cavity: b =4 mm; ¢ = 36 mm;
2L =12 mm; By > 1000;
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One can notice that below the cutoff the real part of the C.I. exhibits non-zero
values at the same resonant frequencies as the imaginary part, while it is apparent
that above cutoff it is not possible to appreciate any difference between copper and
PEC behaviour. The representation system in Fig.5-3 foresees that where the two
curves coincide, red curve covers the black one.

Above the cutoff frequency, the results for steel coincide with the once of copper
and PEC. So therefore is not interesting to show any picture for this case. Below
cutoff there are differences which cannot be appreciated in such wide frequency
range: therefore, it is worthwhile to compare them in a narrow frequency
bandwidth, around the first resonance at 3.2GHz. This has been done in Fig.5-4 and

Fig.5-5.
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Fig. 5-5. Steel. C.L for a pillbox: b =4 mm; ¢ = 36 mm; 2L = 12 mm; By > 1000; f, = 3.2 GHz.
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Both resonances have a typical Lorentzian behaviour. It is remarkable the high
value of the impedance even with stainless steel walls. The main parameters found

are listed in Table 1.

MATERIAL Re(Z,) [kQ] Q Qsr Re(Z./Q) [Q] f [GHz] fsr [GHz]
Copper 250 8920 7689 28.0 3.196 3.196
Stainless Steel 79 2820 2500 28.1 3.197 3.196

Table 1. fundamental parameters for two well-known materials, Copper and Steel, determined
by Mode Matching Technique and SuperFish code applied to a pillbox cavity: b =4 mm; ¢ = 36
mm; 2L = 12 mm; By > 1000

It is worth of note that the value of Z. and Q decrease as the square root of the

relevant conductance ratio (\/E ) which is just the ratio of the surface impedance of
the two metals. The quantity Z./Q stays constant. The table reports also the Quality
Factors and the resonant frequency calculated by means of the computer code
SuperFish. The agreement is quite satisfactory.

The results of the calculations for a different pillbox cavity are represented in Fig.6,

where we compare PEC and copper pillboxes.
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Fig. 5-6. Comparison betwen Copper and PEC. C.I for a pillbox cavity: b = 15 mm; ¢ =43
mm; 2L = 30 mm; By > 1000;

The narrow band investigation for copper and steel are reported in Fig.5.7 and

Fig.5.8.
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Fig. 5-7. Copper. C.I for a pillbox: b = 15 mm; ¢ =

GH:z.
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Fig. 5-8. Steel. C.IL for a pillbox: b = 15 mm; ¢ = 43 mm; 2L = 30 mm; py > 1000; f, =2.8 GHz.
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In Table 2 the most important paramenters are listed.

MATERIAL Re(Z,) [kQ] Q Qsk Re(Z./Q) [Q] f [GHz] fsr [GHz]
Copper 614 17670 13992 34.7 2.760 2.680
Stainless Steel 194 5674 4579 342 2.760 2.760

Table 2. fundamental parameters for two well-known materials, Copper and Steel, determined
by Mode Matching Technique and SuperFish code applied to a pillbox cavity: b = 15 mm; ¢ =
43 mm; 2L = 30 mm; py > 1000

All the comments done for the first structures apply to this case.

In general, in the lossless case, it is very difficult to pick up the resonances below
cutoff. These can be built only as the limit for the conductivity going to infinity. In
this case, at resonant frequencies will appear impedance represented by a delta

function of the form

(1)L i 2 ot )=, ()t - )

Where &(f — f,) is the Dirac impulsive function.

As an example, the quantities Z_(f,) andZ,(f,), the latter indicated with arrows,

are reported in the following picture:
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Fig. 5-9. PEC. C.IL for a pillbox: b = 10 mm; ¢ = 30 mm; 2L = 20 mm; By > 1000.

5.3 Comparison with the Results of Wire Method.

Now we want to compare the results just discussed, with those given by the
simulation of measurements obtained by means of the Stretched Wire Method. In
Fig.5-10 it is reported, for a lossless Pillbox, this comparison up to a frequency of
30 GHz well above the cutoff frequency. According to fundamental arguments on

physical behaviour we expect some discrepancies. We need a more detailed view of
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pill box comparison between exact evaluation and numerical measurements (wire method)
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Fig. 5-10. Comparison between the ‘“numerical experiment” based on the Wire Method and the
Mode Matching exact evaluation in a wide range of frequencies. C.1. for a PEC pillbox: b =10
mm; ¢ = 60 mm; 2L = 80 mm; fy > 1000.

this behaviour and therefore we split the frequency range in two parts: the first one

(Fig.5.11) from zero up to cutoff frequency increased of about 30%. The second

one (Fig.5.12) up to 30 GHz.
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FEG Pillbox: cormparison between exact evaluation and nurnerical measurernants (wire method)
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Fig. 5-11. Comparison between the ‘“numerical experiment” based on the Wire Method and the
Mode Matching exact evaluation. C.1. for a PEC pillbox: b = 10 mm; ¢ = 60 mm; 2L = 80 mm;
By > 1000.

i
5
Frequency [GHz]

It is clear that the wire method shows a very bad agreement below the cutoff
frequency. This phenomenon is to be ascribed to the presence of the wire which
perturbs the measurement making uncertain some results. The presence of the wire,
indeed, shifts the cutoff frequency to zero by introducing a TEM mode (the TEM
mode is allowed to propagate because coaxial cables support it). This implies an
additional loss of energy from the resonant cavity and a consequent depletion of the

quality factor: broadband impedance behaviour appears in the forbidden region.
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Fig. 5-12. Comparison between the ‘“numerical experiment” based on the Wire Method and the
Mode Matching exact evaluation. C.I. for a PEC pillbox: b = 10 mm; ¢ = 60 mm; 2L = 80 mm;
By > 1000.

In the range of frequencies 30% larger than the cutoff (10-30 GHz) it is quite
striking the agreement between the behaviour of the wire measurement and the
exact evaluation. Negligible perturbations appear in this range.

Below cutoff we want to compare the behaviour of the impedances calculated with
the two methods taking into account the losses (e.g. copper). This is done for the

same set of parameters as in Fig.5-4.
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Fig. 5-13. Comparison between the “numerical experiment” based on the Wire Method and the
Mode Matching exact evaluation. Copper. C.I. for a pillbox: b =4 mm; ¢ = 36 mm; 2L = 12
mm; By > 1000.

The relevant resonances do not correctly overlap as the first one. However, there are
differences which cannot be appreciated in such wide frequency range: therefore, it
is worthwhile to compare them in a narrow frequency bandwidth, around the first

resonance at 3.3GHz, and it is reported in Fig.5-14.
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wire method

200

Z(kb)Feal [Ohm]

0.275

kb (normalized weawe number)

0.29

Fig. 5-14. C.I. for a pillbox: b = 4 mm; ¢ = 36 mm; 2L = 12 mm; By > 1000; f,=3.3 GHz; as
from the “numerical experiment” based on the Wire Method.

The peak of the Coupling Impedance is almost two hundred times smaller than the

one calculated by MM, and there is also a drastic reduction of the Quality Factor

(see Fig.5-14). This is due to the foreseen loss of power channelled by the TEM

mode present because of the wire. The results are summarized in the Table 3.

Method Re(Z,) [kQ] Q Re(ZJ/Q) [Q]
Exact evaluation 250 8920 28.0
Wire Method 1.27 300 4.25

Table 3. Comparison between the main parameters obtained by Numerical Wire
Measurements and Exact Evaluation applied to a pillbox cavity: b = 15 mm; ¢ = 43 mm; 2L =

30 mm; By > 1000
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5.4 Comparison of the results with a commercial code.

The comparison between the Mode Matching and a commercial code, in this case

Particle Studio, for a PEC pillbox cavity is reported in Fig.5-15.

T | T | T
1 2

kb (normalized wave number)

2000
Vode Matching
Particle Studio
1500 -
g
T 1000-
o
©
g
2 5004 | o 71.5GH]
N | | | |
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™
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3

Fig. 5-15. Comparison between the Mode Matching exact evaluation and the commercial code
Particle Studio. C.I. for a PEC pillbox: b = 4 mm; ¢ = 36 mm; 2L = 12 mm; fy > 1000.

As a first evaluation, it is evident that the Particle Studio simulation is very noisy. It
means a very rough representation of the coupling impedance, with values not

strictly above zero, a clear sign of bad accuracy, in spite of the long time needed by
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the simulation. As already seen for the Wire Method, the coupling Impedance
assume values different from zero in the forbidden region below the cutoff
frequency. It is noticeable a good agreement with mode matching technique for the
resonances above the cutoff, up to normalized wave number 4.5. For higher
frequencies, the agreement is acceptable only for resonance frequencies of high

amplitude. Then the results are becoming more and more noisy. For a lossy pillbox,

2000

Particle Studio
Mode Matching

1500

1000 —

500

Z (kb)-real part [Q ]

Il
UUU\U WU Ty
: Cutoff

-—
t 2 3 4 5 8

kb (normalized wave number)

Fig. 5-16. Comparison between the Mode Matching exact evaluation and the commercial code
Particle Studio. C.I. for a Copper pillbox: b =4 mm; ¢ = 36 mm; 2L = 12 mm; By > 1000.

above cutoff there is no difference with the previous considerations. Below cutoff

the results of Particle Studio seems to be quite insensitive to the conductivity. It is
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impossible to recognize any correspondence between the resonance shown by the

Mode Matching and one of the Particle Studio.
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Conclusions

There is no doubt that computer codes have some limitation in their performances
mainly in the range of frequencies below cutoff and up to a certain extent. We may
interpret at least the behaviour of Particle Studio as a consequence of the procedure
adopted in this electromagnetic CAD. The problem is solved in the time domain
and then an inverse Fourier Transform is performed in order to get the Coupling
Impedance from the Wake Field. This implies that high Q resonances need very
long computing time in order to let the resonance to damp down. We have seen in
our analysis that below cutoff the Coupling Impedance at resonances is very high
and also the quality factor Q. Therefore, for these resonances the length of the
damping time is unacceptable for inverse Fourier Transform and a truncation
introduces remarkable errors in computation, even more magnified by the high
value of the Coupling Impedance. As a consequence we get large noise below
cutoff. Another important accomplishment of this work was the understanding of
the limitations of bench measurements by means of the stretched wire method. It
has been demonstrated that this method intrinsically will give wrong results below
cutoff. The presence of the wire introduces a TEM wave which intrinsically has a
zero cutoff frequency. All the resonant frequencies are depleted because of power
drained in the pipes bi the TEM mode. Above frequency 30% larger than the cutoff,

there are indications that this method may give fairly good results.
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A proposal for future developments

Even if the mode matching in its various forms is quite powerful and efficient, it is
restricted to a limited number of canonical cases which may be treated analytically.
Therefore, it cannot be used for insertions of arbitrary shapes. However, it is
suggested to still use MM method by resorting to hybrid techniques in order to
surmount this inconvenient:

Apart for exceptional cases, the vacuum tank is formed by pipes of standard cross
sections (rectangular, circular, and elliptical) so that the waveguide modes can be
represented analytically. Allowing for the exotic shape inserts, one may resort to
the modal expansions which can be found by means of commercial codes (e.g.
Eigenmode Solver by Microwave Studio CST), after then Mode Matching
Technique can be use numerically to match the boundary conditions on the surfaces
of the adjacent domains (waveguides-inserts). In this way we can profit from the
flexibility of the Eigenmode Solvers and the precision and velocity of MM
techniques. It is worth of note that in this way, one can introduce the power losses

due to the finite conductivity of the inserts.

154



Conclusions

155



Appendix A: Particle in an Infinite Pipe

Appendix A

Particle in an infinite pipe

In this appendix we will deliver an expression for the EM field generated by a
particle travelling with constant velocity v = fc in an infinite cylindrical pipe (Fig.
A-1).

An ultrarelativistic particle field is confined in an angular region of aperture = 1/y,

where

is called Lorentz Factor. It represent the particle energy measured in rest mass
units. The radiation phenomenon is due to the image charges on the lateral surfaces
of the pipe.

A particle of charge g, travelling in free space with constant velocity v=fc, feed an

electromagnetic field of only TM modes

E ={, g—’; K, (kr)? + jK, (xr)f]exp(— j%] (A.1)
o o_ar _ k)
Hv_27r Kl(Kr)exp( j ﬁj(p (A.2)
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where v indicates vacuum medium and Ky(x) e K;(x) are the modified Bessel
Functions of order zero and one respectively.

Every Electromagnetic entity can be represented as a superposition of two terms:
the first term is due to a charge moving uniformly in a free space; the second term
is the same kind, but fed by the induced surface current flowing on pipe walls (r=a,

where a is the pipe radius)

Fig. A-1. A cylindrical pipe of radius a

and ever directed along the axis maintaining a TM propagation. Therefore, the

unknown of the problem is the spatial Fourier Transform of the just mentioned

current density J(z,m), in wave number domain

F(u)= 1 IJ(z)exp(jzu)dz (A4)
2w ¥

157



Appendix A: Particle in an Infinite Pipe

where we have omitted o for briefness.
Let us begin writing the potential vector as a function of the chosen unknown. By

means of the azimuthal symmetry of the problem, one can write

N>

Alrz)=A.(r2) =2“—2“ | J(z&(f@d%)dzo (A.5)

where R is the distance between a generic reference point P(r,¢,z) and the source

point Py(r,@0,z0)
R*=r"+a" =2arcos(p-@ ) +(z-2,) =D +(z-z,) (A.6)

where D is the distance on the transverse plane, introduced for notation easiness. It

is possible to write the Green Function as a spatial integral of Bessel Functions

exp(— jkR) _1 j:OKO (D u? —k2 )exp[— Jjulz—z,)ldu (A7)
R T

It is interesting to notice that the convergence of the above integral requests a
negative k imaginary component. This implies the presence of losses, even little, in

the medium that fills the pipe, and implies the sign assignment to the root function

158



Appendix A: Particle in an Infinite Pipe

to obtain Im(vk>—u?) <0, that is an appropriate cut in the complex plane in

order to avoid the “polidromy” of this function.

The (A.7) allows to write

[P IR 4 o [Glurexpl e, (A8)

0

where the G(u,r) function, depending only on the transverse coordinate r, can be

easily simplified applying the addiction formulas of Bessel Functions

ZSnln (mp)Kn (mr)cos(nx) p=r
K, (m\/r2 —p2—2rpcosx)= (A9)

anln (mr)Kn (mp)cos(nx) pr

n=0

where €, is the Neumann symbol, defined as

1 n=0
8 =
! 2 n=1,23,...

And executing the integration on ¢y, we reach
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Glu,r)= ) (A.10)

The knowledge of the G(u,r) function allow us to write simple integral relations
that relate the Potential and the Fields to the unknown F(u). This way it will be easy
to obtain an integral equation for F(u), bringing the liaison between Potential and
Fields spectra of algebraic type.

Returning to the vector Potential (A.5), one can write
A, (r,z)= Cg IG(u,r)F(u)eXp(— juz)du (A.11)
c —oo

where C is the impedance of the medium that fills the pipe (usually vacuum).
From the last expression, it is possible to obtain the electric field fed by the induced

current

F(u)e ™™ du (A.12)
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where the longitudinal component of the electric field must satisfy the boundary
conditions on the perfect conducting pipe.

In fact, imposing the nullifying of the tangential component of the electric field on
pipe edges (r = a), it is possible to bring the integral equation for the current

spectrum

2

K,(ka)exp(- jak/Bz)  Vz  (A.13)

TP (exp(- juc)au ="

That is a integral equation on the unknown F(u), whose kernel is
T(u)= 2a(u2 —kz)lo(a\/u2 -k? )KO (a\/u2 —k* ) (A.14)

Since it is needed to develop such kind of integrals, it is useful to explicit the real

and imaginary parts.

Reminding the choice on imaginary part of the root Imvk* —u® <0, it is possible

to explicit the two cases

Za(uz—kz)lo(a\/u2—k2 )Ko(a\/uz—kz), |u|2k

T(u)= (A.15)

an(k2 —uz)Jo(at\/k2 —u’ IYO (a\/k2 —u’ )+ AR (a\/k2 —u’ )l |u| <k
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The integral equation (A.13) does not show calculus difficulties because, being

valid for every z, it is possible to read it as a Fourier Transform. So that

_ q6u—kp)
Flw= 2mal (Ka) (A.16)

where d(x) is the 6—Dirac function.
The knowledge of F(u) function is enough to calculate the entire electromagnetic

field. The formula of the current density is obtained anti-transforming the eq.(A.4)

J(z)= fF(u)exp(— juz)du = —M (A.17)
. 27ra10(1ca)

The current flowing along pipe lateral surface can be expressed as vector J flux and

itis I(z) = 2mal(z), so

[(Z):_M_ (A.18)

The current I(z) is a Fourier transform [(z, @); it represents the temporal Fourier

Transform of the current i(z,t) that flows along the edges of the cylindrical
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conductor. To obtain the i(z,¢) one should perform a further inverse Fourier
transformation. It is possible but useless to our goals.

We get at last, the expression of electromagnetic fields substituting the eq.(A.10)
and eq.(A.16) in the eq.(A.13).

The total field is defined as

Et :EO +E'

where Eo represents the field of a single particle moving in a vacuum medium.
The field results null for r>a, and for 0<r<a, and using the eq.(A.1l) it is

represented by the formulas

Adopting the same procedure for the magnetic field, (using the eq.(A.2)), one

obtains
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where k = k/By.
If the particle is moving with light velocity, the fields became independent from the

waveguide radius, so:

E, (r,z) =0
E, (rz) =2 exp(— jk) (A.22)
2rr

q .
H,(rz)= %eXP(— jkz)
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Appendix B
Eigenfunctions of Helmholtz Equation for a cylindrical

pipe, with Dirichlet conditions.

The purpose of this appendix is to give the expression of the modal functions of a

circular cross section waveguide with radius a, as showed in Fig.B-1.

Fig. B-17. Cross section of a cylindrical waveguide.

We assume a symmetrical azimuthal TM propagation in the waveguide. The

Helmholtz equation in a cylindrical frame is

V&+k'd=0 (B.1)

The explicit expression of V,is
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19 o 1 9°
t % e SN 2
ror or r’dg’

Thus the eq.(B.1) becomes

2
19 00,10 ® ko=0 (B.2)

__r_

ror dr 1’09’

where @ is a function of r and ¢. Splitting ®@ in two functions, each one depending

on a variable only, as

(D(I‘,(p) =, (r)q)z ((P)

and substituting in eq.(B.2) we obtain

—7T ¢ 3

19 90, +(k2 —n—j(Dl(r)zO

ror or r
| 9% (B.3)
= a(p22 +n’d,(p)=0

with the Dirichlet condition ®(r=a)=0.

The solutions of the just written eq.(B.2) are
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@, (r)=AJ, (k,r)+BY,(kr)

(B.4)
@, (p)= Cexp(jny)
In the case of n = 0, we have
%%r%—f+kf@=0 (B.5)
and its solution
&(r)= AJ(k,r)+ BY,(k,r) (B.6)

It is worth of note that in this case @, (p) becomes a constant, and it can be put as
unity. Since r — 0 implies that Yy(r) — —o, we need B = 0 to have finite fields,
besides we impose the Dirichlet condition®(r =a)=0, so we reach the following

modes expression

@ (r)= AJO( . ﬁj (B.7)
a
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where &, :&; p, VYme N is the m™ zero Jy(x) (Bessel Function of first kind

a

and zero order) and the propagation constants can be expressed as

J(ka)* = p? |ka| >p
k,a= " " (B.8)
{— NPy —(ka)  |kd<p,

where we have taken into account the identity ( ak)2 = (aky, )2 + (ak,, )2 .

The imaginary part sign of the propagation constants must be chosen negative to
satisfy the condition of radiation to infinite. Substituting r = a in the eq.(B.7) it is
evident that the Dirichlet condition is satisfied.

The modes must be orthonormal, that is
[[|@, () as =1 (B.9)
S

where S is the waveguide cross section.

The explicit expression of eq.(B.9) is

2
j()a rj" (pnm Lj‘]n (pnm’ Ljdr = a_[‘,n,(pnm )]2 5mm’
a a r

’

1 m=m

where J,,,. ={ .
0 m#m’
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In case of n = 0, we must reach this result

2
J.a.[ZEA{Jo(pom LH rdrdf = A*a’x[-1,(p,, )|’ =1
a

0 JO

where we resort to the property J,'(x) =—J,(X).

Taking into account eq.(B.9) we have

A= (B.10)
Cl\/; Jy (pOm)
where the minus sign is included to respect the radiation condition.
Substituting the eq.(B.10) in the eq.(B.7) we reach
Jo\Pom ¥
& (r)=— lr, A) (B.11)

_a T Jl(pOm)

which is the modes expression commonly used (without writing p,, but only p

to have a more compact expression).
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Appendix C

Coefficients Calculation

The purpose of this appendix is to calculate the coefficients introduced in the
problems formulation. Even if there are little differences between the iris

coefficients and the pillbox ones, we will report both the expressions, to be clearer.

IN IRIS CASE:

recalling the definition of A; in eq.(2.11)

A, = [ E(r07 Yo ks { (B0 Yot (k,r)ds}ﬁ )
(C.1)

—jk2L

A, =Ae /
From eq.(2.3) we have

J,(a,r/b)

D’ (a,r/b) = 70
lz(a’tr/) b\/;.]l(ar)

and from Primary Fields expression in eq.(2.1) we have on the waveguide side of

the left interface:
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and on the cavity side of the left interface:

substituting in eq.(C.1) we obtain

A :ZOK{}[KI(HH L) (Kb)} T@r/b)

R L) " bmd (a))
(C.2)
i 11(Kr) J,(e,r/b)
- K ————rd
[ )| |
it is easily resolvable using integrals of this type [8]
J.r‘ll (o )K, (Br)dr == oal,(aa)k, (ﬁal; fé;gzl (aa)K(Ba)+orp (C3)
Tr]l(m)ll(ﬁr)drz ,Ba‘]1(aa)lo(ﬂ0‘:2);;";Jo(m)h(ﬁa)’ (C4)

172



Appendix C: Coefficients Calculation

whence we have after some simplifications

Zya, Io(Kb)_Jo(az)_Io(Kt)_Jo( a,c/b)

A = C.5
! ,B\/;Jl(a,)(bzlc2+af) 1,(xb) 1,(xe) (€5)

The first term in square brackets is = 1 because J,(e, )= 0inasmuch «is a zero of

the just written equation, so:

Z,a,J, (atc/b)

A= T e )b + ) ©o

Since the A; vectors differ of an exponential only, the calculus for A, is omitted.
To complete the description of the vectors and matrices existing in the continuity

system, we need now to calculate the M), matrix

M, = [, (k,r ot (k,r)ds (C.14)
S

where S is the iris aperture. According to the definition of CIqu (k,r)in eq.(2.3), we

can summarize this formula for the waveguide and the cavity as

173



Appendix C: Coefficients Calculation

Ji(a,r/c) J,(a,r/b)
®;, (@, r/c)=—=1—, &) (a,r/b) =—=—"—
117( pr/) C‘/;J1( p) , D ( tr/) b\/;Jl(O(,)
Then eq.(C.14) becomes
2 c

M, = N YPRIATY l J(a,r/c)J (a,r/b)rdr

Resorting to the well known integral [8]

pad,(aa)l,(pa)-aal (aa)l,(fa)
a? _ﬂz

'TrJl (&'r)J1 (ﬁr)dr =

we obtain

_ 2c*a, gy (@), (ca, /b)-2cba,J (ca, /b)J, (ap)
" Jl (ar )Jl (ap )(bza’,p2 _Cza,tz)

(C.15)

(C.16)

the first addendum is zero because J,(e,)=0 inasmuch ¢ is a zero of the just

written identity. Therefore, we have
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2c2a'tjo[at Cj
b
M =

") ey -

(C.17)

For what concerns the calculation of the excitation coefficients V), and F,; we need

the explicit expression of its vectors:

N, =—27rj-[H¢(r,z =0" )—Hq,(r,z :O+)]-CI>; (kpr)rdr
0

(C.18)
k2L

N,,=N, e’
From the primary fields in eq.(2.1) and the definition of @y (k r)in eq.(3.3) we

have

Ji(a,r/c)

ol =—0rl -
(@7 fe)=- Vel @)

- qic_ I Kr) |
HY(rz=0 ):z—n_Kl(Kr)+I; ) KO(Kb)_
Ho(rz=0+):ﬂ_K (rr)+ Il(Kr)'K (KC)_

o 2m| : IO(KC) ° i
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Substituting in eq.(C.18), it results

— px Ko(Kb)_Ko(Kt) Cr a rlcll ()dr
Nlﬂ‘cmm,,){zo(w zo(,«:)}fo lerfeokr €10

Using the integral (C.4) we attain

N :|:K0(Kb)_ KO(KC):| CK[CIdZ(KC)Jl(ap)+ II(KC)JZ(ap)ap]
L (kb)) 1y (xc) Jri(a, fe*x? +a?)

To decrease the order of the I, and J, Bessel Functions, it is useful to use the

following recurrence relations [8]:

Besides, taking into account that J, (&, )=0 we have

N

_ 1 (xe)K, (kD) -1, (kb)K, (k)] (C.11)
1" Jrl,(kb) e’k + 0{5)
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IN PILLBOX CASE:
To obtain the homonymous coefficients of the iris case we will follow the same

procedure. Therefore, we will report only the definitions and the results.

A, = [HO (07 J0, (k,r)as | [ 1207 )t (k,r)ds | (6—r)
S S

—jk2L

A2t = Alze /

Resorting to the primary Magnetic Field definition in eq.(3.1), after some algebra

we can write

A= Kj[ L) () 1ilw) o (Kc)} " (& r)rdr

Solving the above integral, we obtain:

_ b2K2[IO(CK)Ko(bK)_Io(bK)Ko(CK)]
' Jrl,(cx) b’ +a?)

A (C.12)

Since the A; vectors differ of an exponential only, the calculus for A, is omitted.

The M, matrix in pillbox case differs from iris case by the integration path only:
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M = 2
" oebd (@) (@)

[Ji@,rfc) (@ byrar

Thus, following the same procedure as iris we obtain:

ZbZaPJO(a'p bj
_ C
"= e, )bl —ca?) (19
For what concerns Ny, and Ny,
N, =—27rj[Ef(r,z =0 )-Hp-r)-E(r.z=0" )} @<k, r) rdr
0
k2L
N,,=N,e ”’
Jo(ap bjapzo
N, =~ - C.14
v Vx| Bl e (e, N2« +a[2,) (19

PILLBOX CAVITY WITH FINITE CONDUCTIVITY:

in Chapter 2 we got the following equation
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(kjk_—ykz) [(E,,xP,) hds - jkfoz j lcos(k, 2)¢ (k, I ds
ps /S,

+S,

The integration on S is performed as follows:

I[cos(kszﬁ;(kpr)]zdS =

(C.15)

= [leos(k, 0)0¢ (k) s + [leos(k, 2L)@ (k) a5 + [leos(k, <) (k, e I as =

S S, S
_275J'[<1> (k,r)f rdr+2n’”<l> k)l rdr+2fcos
¢ 0

_2+4_L
CE,

By inserting the previous result in eq.(C.15) we obtain

JkY, kY, Z,

AN g, 2

and, after some algebra, finally

I, = JKYy _[ (EW xh, ) Ads

» 2 €
2 2 . s +5,
(k _kps)+ JkYOZS(C-i-Lj Siks

(C.16)
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Resorting to the expressions in eq.(3.9), we may write

B £, JkY, E xh' )n
(k _kps)+]kY0Zs[c+£jSl+S2
(C.17)
1y Yo (B i)
s V2L (kz _k;)-l- jkYOZ:(z-'_él‘j] SitS2
C

In order to express the sums in a closed form we must perform the integrations

which give a result similar to eq.(3.19):

- ]kng0|:(_1)Y (_ N2p + ZMPTVZ-:)_ (_ Nlp + szr‘/lt_ jj|
11[7 = Z 2 c
pr 2L{(k2 —K2 )+ jkYOZS(+IjH
C

(C.18)
]k€3Y0|:(_ N2p +szrV2‘:j_(_1)v(_ Nlp + szt‘/lr_)j|
2L[(k2 —k2 )+ jkYOZS(2+€Sﬂ
c L

1, =Z(;
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The sums in a closed form it is not so simple as done for eq.(3.19) because of the
Neumann symbol present in the denominator. The sums are therefore slightly

different, namely

)3
“"{(k —k2, +]kYZ( +

SIS

_5 +i gs —
aﬂ_ Pk )rA

2L, 2Lc0t(2L\/W)
kot JE -k +A

Where
A= jkY,Z, (2 2)
c L
S J2YZs

S GEREN GRSy AR

Similarly we obtain for 7, ,

i e (-1) _2Lg 2Lcsc(2L,/k2—k2+A)
- {(k —k; )+ jky,z, [2 iﬂ k o —k,+A
c

Defining a new modal impedance as:
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oo k2 =k +A

! k

We obtain for the eq.(C.18)

1, = j¥, {[@ +Y¢ osc(2kLz )(ZMP,V; ~N,, j —[s, + ¥ cotlokrze )(ZMP,V; -N, ]}

I, = j¥, {[5], +Y¢ cot(2kLZ¢ )(ZMP,V; - NZPJ —[s, +¥¢ esclokrze )(ZM Vi =N, ]}

t t

This can be written in the matrix formalism as:

1= {5+ v esclhrz ) mvi -, )-[s+y° cotlorrze )| (e v; - v, )}
(C.19)
1= v, {8+ cotlokize )| (a v —n,)-[5+ v esclokize ) a vy v, )}
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Appendix D

Modes of a Coaxial Cable

In this appendix we will give the expression of the Fields inside a coaxial

waveguide. We will mainly discuss about the EM field transverse components
(E,ed H,) on which will be imposed the continuity condition. We will deal with a

PEC waveguide, so we will not consider wall losses. It is possible to express the

EM field separating the longitudinal components from the transverse ones:
E(P)=E(P)+E.(P)? H(P)=H,(P)+H (P); (D.l)

We can introduce a transverse cylindrical frame, which is perfectly suitable to the
treated structure. Furthermore, we will use only TM modes (H,=0) which are the
mainly excited modes in a particle accelerating machine. In this case we can

express the EM field as follows [9,10]:

E,(P)=3"V,(2),(r.0)
. g a (D.2)
H,(P)=>"1,(2h,(r.0)

E.(P)= % > k1, ()@, (r.9)

H_(P)=0

(D.3)
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Appendix D: Modes of a Coaxial cable

where ¢ (r,p)e ﬁn (r,) are the vector modal functions and V (z) e I (z) are the
scalar excitation coefficients (scalar modal functions), k, is the transverse

eigenvalue, k is the propagation constant and ¢, is the characteristic impedance of

the medium that fills the waveguide.

HAN T.

Fig. D-18. A coaxial cable

The excitation coefficients obey to the telegraphers Equations and can be expressed

as a sum of a travelling wave and a scattering wave:

E P =YV ()+V, (DF,(r0)

N . (D.4)
_ 1 - -
H.(P)= —Z{W}m (r.9)

The ¢ are the normalized modal impedances, and in a coaxial cable of external

radius and internal radius ‘b’ and ‘a’ respectively, they are:
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pr—— Y R ke D)

ka " ’ / ka
where w, are the zeros of the following equation:
b
I (@)Y, (x) = J, (Y, (ax)]=0 a= (D.6)

Resorting to the orthonormality property of the vector functions:

It is possible to express them as:

e (nN=rZ"k,r) h (r)=@Z" (k,r) (D.7)

where Z"(k,r) are linear combinations of Bessel Functions and w indicates the

feeding guide [9]:
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1
—_— :1
y | 2rIn(b/a) !
Zl (kmr)_ Wm\/; Jl(l’Wm/a)Yo(Wm)_Jo(Wm)K(er/a) 2.3 (DS)

2a JIEw,) 1 2w, [a)—1

Z"(k,r)is the fundamental mode of the coaxial cable and it is a TEM mode. The

modes corresponding to the others m are TM type modes.

187



Appendix D: Modes of a Coaxial cable

188



Bibliografia

Bibliography

[1]

[10]

L. Palumbo, V. G. Vaccaro, M. Zobov, Wake fields and impedance,
LNF-94/041 Preprint

Andrea Argan: L’impedenza longitudinale negli acceleratori: Teoria e
misura 1996/1997.

G. Franceschetti: Campi elettromagnetici, Boringhieri 1988.

J.Van Bladel. Electromagnetic Fields, McGraw-Hill Book Company,
1964.

L. S. Gradshtein, .M. Ryzhik; Table of Integrals, Series and Products;
Academic press, 1980.

R. Mittra, W.W. Lee; Analytical techniques in the theory of guided
waves; Macmillan, New York, 1971.

J. Meixner; The behaviour of electromagnetic fields at edges; IEEE
Transactions on antennas and propagation 20, pp. 442 - 446, 1972.

M. Abramowitz, A. Stegun; Handbook of Mathematical Functions;
Dover Publications, INC., New York.1970

D.Davino: Analisi modale di una cavita a soppressione dei modi, a.a.
1995/96

D.Davino, M. R. Masullo, V.G. Vaccaro, L. Verolino: Coaxial-wire
technique: A comparison between theory and experiment, 1L NUOVO

CIMENTO, 1999

189



Bibliografia

[11] V. G. Vaccaro, Coupling Impedance Measurements: An Improved Wire
Method, INFN/TC-94/023, 1994.

[12] N.Marcuvitz, Waveguide handbook, IEE 1986

190



