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Introduction

The understanding of complex systems is one of the most exciting challanges

of the modern theoretical physics. A very important subject of the research in

this area is the study of glasses: amorphous solids, i.e. without crystalline order

[1, 2, 3, 4, 5, 6, 7]. The common way to produce a glass is by cooling a liquid

quickly enough to avoid its crystallization. As the temperature decreases, the

continuous increase of viscosity results in a progressive freezing of the liquid,

until, at sufficiently low temperatures, the system appears as a disordered solid.

Despite this process is well known from a long time, the underlying mechanisms

for which a liquid becomes a glass are still in discussion. The precise nature

of the glass state is also unclear. Does there exist an indipendent state of

matter which is the glass state? Does it exist as a long-lived metastable state

of the matter? Nobody knows the rigorous mathematical answer to these

questions. Actually much simpler related questions are unanswered or have

taken many efforts to solve. The absence of a simple symmetry group, which

is a defining property of the glass state, forbids the use of all the standard solid

state techniques, so that first principle computations become very difficult in

this case [8].

In the last years the interest about glassy systems is increasing a lot. One

of the reasons is that they are largely diffused in ordinary life and offer many

important applications. The common glass is a mixture of oxides; other good

glass formers are typically amorphus silica, metals and metallic alloys, poly-

mers, organic compounds. However, experiments and computer simulations

show that almost any liquid becomes a glass if the cooling rate is high enough.

Thus the glass formation should be not a distinguishing property of some

materials, but rather a universal one spread out over a wide spectrum of ex-

perimental time scales. The great interest around glassy systems is also related



to the fact that these ones can be considered as the archetype of complex sys-

tems. Thus the theoretical framework used to describe the glassy phase, the

techniques recently developed, could be transferred to many other fields where

complex systems are involved, at first sight very far one from another, such as

biological systems, vortices in superconductors, granular materials, optimiza-

tion problems and many others.

Experimentally, the glass transition corresponds to a dramatic slowing

down of the dynamical processes. The glass temperature Tg is convention-

ally defined as the one at which the relaxation time of the liquid becomes of

the order of 103 seconds or the viscosity reaches 1013 poise. This basically

corresponds to the temperature for which the relaxation time becomes com-

parable with the experimental time scale (set by the cooling rate), at which

the liquid falls out of equilibrium. A naive way to explain the slowing down of

the dynamics is to postulate the existence of a second order phase transition

at some temperature around Tg; thus the surprising increase of the relaxation

time would be just the usual critical slowing down observed at the critical

point. Such an explanation, although appealing from a theoretical point of

view, suffers the fact that no marked changes are found in the structural and

thermodynamical quantities passing from the liquid to the glass state and no

diverging characteristic lenght.

The glass transition should be rather a purely dynamical phenomenon, not

related to any singularity of the thermodynamical quantities. This is indeed

the interpretation provided by the Mode Coupling Theory, which represents

one of the main approaches to the supercooled liquids [21, 22, 23, 24, 25]. Intro-

duced by the seminal works of Bengtzelius, Gotze, Sjolander and of Leutheusser

indipendently [20], and then developed by Gotze and Sjogren in the last years,

this dynamical theory offers many predictions on the glass transition that can

be tested in experiments or computer simulations. One of the most successful

results is the characteristic two step relaxation by which the density correla-

tors relax. The particles are initially trapped into cages formed by the nearest

neighbours and the correlation function displays a plateau; only subsequently

the cages are broken and the correlation decays to zero. The lenght of the

plateau, i.e. the characteristic relaxation time diverges at a temperature Td

(> Tg). As this temperature is approached, however, the theoretical expecta-
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tions fail for supercooled liquids; activated processes not taken into account

by the theory become important, as will be better clarified below. The theory

works very well instead for colloidal suspensions, where the interparticle forces

are like those of hard spheres and the activated processes are probably less

important.

On the other hand, it was noted by Kauzmann long ago, that a real ther-

modynamic phase transition could be obtained in the limit of an infinitely

slow cooling. This idea was put forward to solve the following paradox. The

configurational entropy ∆S is defined experimentally as the entropy difference

between liquid and crystal; this quantity behaves smootly in the supercooled

liquid until the system becomes a glass (see Fig. 1.3). When cooled more

slowly the system follows the smooth ∆S (T ) curve down to slightly lower

temperatures, but then freezes again. If extrapolated ∆S (T ) vanishes at a

finite temperature TK and would be negative below this temperature, with the

unpleasant feature that the entropy of the crystal would be lower than the

liquid one. Thus, to avoid this paradox a real phase transition is assumed at

TK which would lead to ∆S (T ) = 0 for T < TK .

The idea of an underlying ideal phase transition, which could be obtained

only at infinitely slow cooling, receives some support from the measurements

of the relaxation time. For fragile glasses the experimental data are well fit-

ted by the Vogel-Fulcher law, τ = τ0 exp
(

A
T−TV F

)
, and this would predict a

phase transition at a temperature TV F < Tg, not accessible experimentally

(while staying at equilibrium). Well, the two extrapolated temperatures TK

and TV F turn out to be surprisingly close each other. The first phenomeno-

logical attempts to explain this fact originate in the work of Kauzmann [9],

then developed by Adam, Gibbs and Di Marzio [10, 11], which identifies the

glass transition as a real thermodynamic transition blurred by some dynamical

effects.

An indirect route towards structural glasses is given by the study of spin

glass models. These systems are composed by simple spins interacting through

competing quenched random interactions (quenched stands for time-indipendent

over all the experimental time scales). The intrinsec disorder combined with

the competing interactions implies the presence of frustration in these systems,

which is the inability that spin configurations satisfy all the interactions simul-
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taneously; this important feature lies on the basis of their complex behaviour.

Let us notice that in glass forming systems, frustration arises when the irregu-

lar shape of molecules or the realization of stable local arrangements, prevents

the system from reaching an ordered state; in this case the disorder is not

quenched, but rather self-induced by the slow dynamics itself of the particles.

Nevertheless, spin glasses bear many similarities with glass forming systems,

as concerned experimental and theoretical properties. In the last years several

powerful tools have been developed which allow to treat spin glass models in

great details, at least at mean field level (infinite range interactions).

Due to the presence of frustration, for low enough temperature the free

energy landscape of mean field spin glass models has many valleys, unrelated

by a simple simmetry, separated by free energy barriers that grow asymptoti-

cally as the size of the system. At equilibrium these models undergo a phase

transition at a critical temperature Tc which is well described by a spontaneous

replica symmetry breaking scheme [35, 36, 37, 38, 39]. In this framework the

order parameter is a function q (x) defined on the interval [0, 1], whose values

represent the possible values of the overlap among two valleys. Actually the

most pressing analogies with glasses have been noted for a particular class of

mean-field spin glass models, the so called ’discontinuous’ ones. This name

derives from the fact that for these models q (x) changes discontinuously at

Tc, although the transition is of second order in the Ehrenfest sense. Another

name often found in the literature for these models is ’one step RSB’ spin

glasses, because of the special pattern of symmetry breaking involved in their

solution. Well, one of the remarkable feauture of these ’discontinuous’ spin

glasses, first discovered in [45], is that the equilibrium transiton at Tc is as-

sociated with an entropy crisis, namely the vanishing of the configurational

entropy, as expected in the ideal Kauzmann scenario of glasses.

The study of Langevin dynamics of mean field spin glass models starting

from a random initial condition (i.e. istantaneous quench from infinite tem-

perature) reveals other deep connections with complex systems in which the

disorder is apriori absent [40, 41, 42]. In the ’discontinuous’ models there ex-

ists a dynamical transition at a temperature Td, larger than the equilibrium

transition Tc, which is exactly described by the Mode Coupling Theory in

its schematic formulation; this important feature was first noticed by Kirck-
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patrick, Thirumalai and Wolynes in a series of inspired papers of the mid-

eighties [62]. However the existence of a dynamic singularity at a temperature

above the true termodynamic one is possible only at mean field level (due to

metastable states of infinite lifetime) and has been conjectured that in realistic

systems like a glass, the region between Tc and Tg has instead a finite, but very

rapidily increasing relaxation time (see Fig. 2.2).

In the low temperature phase of mean field models, for T < Td, the equilib-

rium is never achieved, the system is no longer stationary but exhibits a slow

dynamics which depends on the whole history of the system up to the begin-

ning of its observation. Schematically, new relaxation processes come into play

on a time scale comparable to the age of the system: the older the system, the

longer the time needed for this ’aging’ relaxation to take place. These effects

are well known from some nonequilibrium experimental observations, namely

the slow relaxations and the aging phenomena which are observed for real spin

glasses and many other glassy systems [40]. Recent years have seen important

developments on the study of the out of equilibrium dynamics of the glassy

phases, initiated by the exact solution of the dynamics in a discontinuous spin

glass model by Cugliandolo and Kurchan [68]. It has become clear that, in

realistic systems with short range interactions, the pattern of replica symme-

try breaking can be deduced from the measurements of the violation of the

fluctuation-dissipation theorem [73, 74].

A class of widely studied eperimental systems, which displays a large vari-

ety of kinetic phenomena having many connections with the glass transition, is

given by the colloidal suspensions [13, 14, 15]. These systems can be prepared

for a large span of densities, and the interaction can be tuned to some extent

by varying the coating of the particles and the composition of the solvent. It is

possible to realize an hard-sphere system, the basic model underlying all the-

ories of simple liquids [19]. By the addition of polymer, one can also prepare

systems where the hard core is complemented by an attractive shell; this allows

to study the interplay of repulsion and attraction. Equilibrium phase diagrams

in the plane temperature - volume fraction show transitions between gas, liquid

and solid phases. However these predictions are not always realized in prac-

tice; rather systems exhibit a rich nonequilibrium phenomenology. They often

become undercooled, supersaturated, or trapped in gel-like or glass states. In
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many cases the products strongly depend on the starting position in the phase

diagram and discrepancies between predictions and actual obserations are due

to the intricacies of the dynamics.

Of course, the above picture offered by mean field spin glass models cannot

be taken as completely satisfactory. Despite the cited resemblances, these

models are microscopically quite different from glass forming systems and thus

not suitable to their description. Apart the mean field character and the

presence of quenched disorder, they do not contain particles; so as an example

they do not allow to describe the molecular motion of a supercooled liquid, or

that of suspended colloidal particles. As shown above, moreover, many systems

behave quite differently according to structural parameters determined by the

experimental conditions; in order to get a unifying description of these systems

it is crucial to understand the interplay between the density and the other

parameters.

Recently, to make stronger connections with physical systems, some models

have been introduced which combine features of spin glasses and lattice gas.

Being constituted of particles, they allow to introduce the density and other

related quantities which are usually important in the study of liquids. In this

thesis we consider the frustrated Blume-Emery-Griffiths (BEG) model [80],

which is a quite general framework to describe different complex systems. Es-

sentially the model consists of a lattice gas (ni = 0, 1) in a frustrated medium

where the particles have an internal degree of freedom, given by their spin

(si = ±1), which may account, as an example, of the possible orientations of

complex molecules in glass forming systems. Since the presence of frustration

in the model, two particles can be nearest neighbours only if the relative ori-

entation is appropriate, otherwise they have to move apart; frustrated loops

correspond in the liquid to those loops which, due to geometric hindrance,

cannot be fully occupied by the particles. These steric effects are greatly re-

sponsible for the geometric frustration appearing in glass forming systems at

low temperatures or high densities; thus the model offers a clear and intuitive

picture of the mechanism leading to a glass transition, qualitative reproducing

the complex dynamical behaviour present in this regime. Moreover, the par-

ticles interact also through a potential depending on the coupling K, which

allow to implement possibly a further attractive component, besides the hard
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core one, as occurs in the colloidal suspensions with addition of polymers.

A complete mean-field solution of the equilibrium properties has been found

only recently in [81], by solving numerically the equations of the full replica

symmetry breaking scheme using a suitable technique of integration; moreover

a dynamical treatment of the model is still lacking. Then we introduce a suit-

able spherical version of the BEG model which allows a complete analysis of

its equilibrium and dynamical properties [82]. Compared with the Ising case,

this spherical version is less frustrated and the spin glass phase is described

by a single-valued order parameter i.e. by a replica symmetric solution; how-

ever the advantage is to allow for a full analytical treatment. Furthermore,

the description of the model in terms of continuous lattice fields allows us to

implement the Langevin dynamics; thus we can investigate the time evolution

of the various correlation and response functions and of density. The model is

characterized by a large variety of behaviours obtained by varying its parame-

ters; the overall qualitative picture is similar to that evidenced by the physical

systems indicated previously. For K positive the phase diagram in the plane

density - temperature shows the existence of a tricritical point which connects

two kinds of transition lines (see Fig. 4.3). At that located below the tricritical

point, the order parameters (overlap and density) discontinuously jump and

a first order transition takes place with coexistence of the liquid and glassy

phase. In the same region the analysis of the dynamics displays the existence

of a dynamical transition line, different from the static one, depending on the

initial density. Still in the liquid phase, but very close to this critical line, we

have also put in evidence the existence of the interrupted aging effect due to

a large but finite equilibration time; from an experimental or numerical point

of view, this effect could make rather ambiguous the onset of the glassy phase

if the system is probed on restricted time windows. The other line connected

to the tricritical point, is a glass transition line where the density does not

jump and the equilibrium correlation functions display a diverging relaxation

time. This scenario is similar to that evidenced by recent studies on the Mode

Coupling Theory for a square-well-system (hard core particle repulsion plus

attractive potential), which have led to postulate the existence of so-called

’attractive glasses’ at density values well below that predicted by the hard

sphere system [33, 34]. The model can be taken as the starting point for fu-
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ture qualitative and quantitative improvements or extensions to other complex

systems.

Outline of the thesis

The thesis is organized as follows. In Chapter 1 we describe some phenomeno-

logical aspects of the glass transition and glass forming systems. In Chapter 2

we present the mode coupling theory, specifically its basic equations, results,

and the comparison with the experimental data for several kinds of glassy

systems. In Chapter 3 we study the spin glass models at mean field level illus-

trating the various basic techniques. In Chapter 4 we introduce the spherical

frustrated Blume-Emery-Griffiths model and study its equlibrium and dynam-

ical properties.

Moreover, several appendices contain further investigations of the various

issues, which need a more involved technical analysis. A detailed introduction

on the Mori-Zwanzig projector formalism is given in Appendix A. In Appendix

B the conventional derivation of the Mode Coupling Theory is carried out,

based on the Mori-Zwanzig projector formalism; an alternative more trasparent

derivation recently developed is also briefly presented. In Appendix C we

study the TAP states of the spherical p spin glass model and in Appendix D

its dynamical equations for both the low and high temperature phase. Finally,

in Appendix E we present in detail the dynamical solution of the spherical

frustrated Blume-Emery-Griffiths model in the case of zero particle-particle

coupling (K = 0).
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Chapter 1

Phenomenological aspects of

glassy systems

In this chapter we describe the main phenomenological properties which char-

acterize glass forming systems [1, 2, 3, 4, 5, 6, 7]. The glass transition essen-

tially consists in a solidification without crystallization. It is observed in a

large variety of substances like covalently bonded systems like SiO2, hydrogen-

bonded liquids, ionic mixtures, polymers, molecolar van der Waals liquids.

However, experiments and computer simulations suggest that almost any liq-

uid becomes a glass if the cooling rate is high enough. When a glass former

is cooled from its melting temperature to the glass transition temperature, it

shows an increase of the relaxation time by many decades without a significant

change in its structural properties. The set of phenomena observed during this

process should be due only to a dynamical transition, without any singularity

in the thermodynamical quantities; on the other hand the Kauzmann parodox

gives some evidence that a real thermodynamic phase transition could exist in

the limit of an infinitely slow cooling. However, a theory able to explain just

the salient phenomenology is still lacking.

Colloidal suspensions display a large variety of kinetic phenomena, having

many interesting connections with the glass transition [13, 14, 15]. They can

be prepared for a large span of densities, and the interaction can be tuned

in order to realize an hard-sphere system, or systems where the hard core is

complemented by an attractive shell. A rich nonequilibrium phenomenology
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is exhibited; systems often become undercooled, supersaturated, or trapped

in gel-like or glass states. Colloid science aims to understand the underlying

mechanisms of these transitions.

1.1 The glass transition

The classical way to produce glass is to cool a liquid quickly enough that crys-

tallization has no time to occur. As the temperature decreases the continuous

increase of viscosity results in a progressive slowing down of the molecular dy-

namics, until, at sufficiently low temperature, the system cannot equilibrate

anymore on the time scale set by the cooling rate and appears as a disordered

solid, commonly called glass.

Different from the gaseous, liquid and crytalline solid state of matter, the

glassy state has been thought to be reserved for a particular class of materials,

the glass formers [2]. Many experiments have been realized to search for new

members of this family and to understand by which mechanisms some materials

form glass and others do not. Traditional cooling rates in good glass formers

like window glass are typically of order 10−2Ks−1. Based on the experience

made on this time scale, metals and alloys were for a long time considered as

non glass forming systems. By using new techniques, however, cooling rates of

order 10−5Ks−1 and higher could be achieved, at which many metallic alloys

form glasses. A further extension of the family of glass forming systems can be

realized by considering the results of computer simulations: in fact it has been

found that at cooling rates of order 10−12Ks−1 simple liquids, like liquid argon

(to all appearences one of the worst candidates for glass formation), exhibit

a broad transition which resembles a glass transition. These results suggest

that glass formation is not a distinguishing property of materials, but rather

a univeral one spread out over a very wide spectrum of experimental time

scales. This is not surprising since glass formation is solidification without

crystallization, and then the ability to form a glass strongly depends on the

time necessary to crystallization and on the possibility to avoid it during the

cooling.

Let us consider the behaviour of the specific volume at constant pressure as

a function of the temperature during the process of cooling [7]; it is schemat-
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ically represented in Fig. 1.1. If the cooling is slow the liquid undergoes the

crystallization at the melting temperature Tm and the specific volume dis-

continuously jumps at this temperature. Instead, when the liquid is quenched

quickly enough to avoid the crystallization, the specific volume displays no dis-

continuity at the melting temperature Tm, but decreases with the same slope

of the liquid; the system is called a supercooled liquid. Then, in a narrow inter-

val around a temperature Tg, the slope of the curve changes very quickly but

continuously, so to become close to that of the crystalline solid. In this narrow

interval we have thus the passage to the glass state. The specific heat behaves

in an analogous way (see Fig. 1.1). Actually no discontinuity occurs in any

physical quantities but only a rapid change on passing through Tg. Thus, the

above behaviour does not correspond to a true thermodynamical phase tran-

sition. It should be more appropriate to speak of a crossover of some physical

quantites that would correspond to a transition of dynamical nature, due to

purely kinetic effects.
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Figure 1.1: Schematic representation of the specific volume and of the specific heat as a
function of temperature (l: liquid; sl: supercooled liquid: c: crystal: g: glass)

The transition temperature Tg, called glass temperature, is conventionally

defined as the one at which the typical structural relaxation time τ of the liquid

becomes of the order of 103 seconds, or equivalently, the viscosity is about 1013

poise. This basically corresponds to the temperature for which the relaxation

time becomes comparable with the experimental time scale (set by the cooling

rate Γ = −dT/dt), at which the liquid falls out of equilibrium (i.e. Tg � τΓ).
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The purely dynamical character of the glass transition is confirmed by the

experimental observation that the glass temperature Tg depends on the cooling

rate and the properties of the glasses depend on their history of preparation.

Actually, Tg decreases slightly when Γ decreases: the slower is the cooling, the

longer is the time the liquid has to thermalize in the allowed configurations,

so it can reach a lower temperature before falling out of equilibrium and this

leads to a lower Tg. The dependence of Tg from the cooling rate Γ is well

approximated by a logarithmic law and in practice is weak: only a few K

when Γ changes for an order-of-magnitude. Thus Tg can be almost considered

as a property of the material.

It should be appealing to associate the huge increase of the relaxation time

with a standard second order phase transition at some temperature around Tg;

then the slowing down could be explained as the usual critical slowing down

observed at the critical point. However no growth of a structural correlation

lenght has been detected so far in supercooled liquids. Quite to the contrary,

the variations of structure in liquids and glasses, as measured in neutron and

X-ray diffraction experiments, appear rather bland [4]. The ordinary high

temperature liquid has only short range order whose signature in the static

structure factor is a broad peak (or a split peak for some molecular systems)

at a given wave vector that roughly corresponds in real space to some typical

mean distance between neighbouring molecules. As the temperature is lowered

and the supercooled regime is entered, there are small continuous variations

of the structure factor that mostly reflect the change in density (typically a

5% change between Tm and Tg) and, possibly, some adjustments in the local

arrangements of the molecules. There is no sign, however, of a significantly

growing correlation lenght.

1.2 Strong and fragile glasses

The characteristic relaxation time τ can change by many orders of magnitude

for small variations of temperature during the cooling process. The same

behaviour is found for the viscosity η, which can be related to τ via the Maxwell

relation, η = G∞τ , where G∞ is the infinite frequency shear modulus. Such

a dramatic variation of the relaxation time as a function of the temperature
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has been represented by Angell [5]; his plot of log η versus Tg/T allows to

distinguish several types of behaviour (see Fig. 1.2). So called strong glasses,

Figure 1.2: Main figure: Viscosity of different glass-formers as a function of Tg/T , where
Tg is the glass transition temperature. For GeO2, a system forming a network of strong
intermolecul ar bonds, the variation is almost linear, whereas the other liquid (glycerol,
m- toluidi ne and orthoterphenyl) are characterized by a strong d eparture from linear
dependence. Left inset: Temperature dependence of the specific heat, normalized to its
value for the crystall, for different glass-formers. .

which form 2- or 3- dimensional networks of strong bonds (like SiO2 and GeO2),

show an Arrhenius behaviour between Tg and the high temperature region,

described by

τ = τ0 exp

(
∆F

kBT

)
(1.1)

(linear shape in the plot in Fig. 1.2) where ∆F is the typical free energy barrier

or the effective activation free energy. On the other hand, other glasses called

fragile glasses, that are the vast majority, are characterized by a non-Arrhenius

behaviour; in this case the increase of the relaxation time when decreasing
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temperatures is much faster than the Arrhenius one (marked upward curvature

in Fig. 1.2). Thus the typical free energy barrier increases when T decreases.

This is indicative of thermally activated dynamics and implies a collective

behaviour involving more and more particles. In this case the relaxation time

versus temperature is well fitted by the Volger-Fulcher law

τ = τ0 exp

[
A

kB (T − TV F )

]
(1.2)

which would predict a phase transition at a temperature TV F which is not

accessible experimentally (while staying at equilibrium). The more fragile the

glass, the closer is TV F to Tg, while strong glasses have a TV F close to zero.

There are, however, alternative fitting formulas that have been also used, some

of which do not imply any singularity at a nonzero temperature.

The above described dramatic increase of the relaxation time or the large

typical free energy barrier is a peculiar feature of glass phenomenology and

is not commonly encountered. For instance in the field of standard critical

phenomena, the slowing down of the dynamics occurring when approaching the

critical point is usually characterized by a power law growth of the relaxation

time and not by an exponential growth.

1.3 The Kauzmann paradox

We have seen previously that despite some similarities, it is not possible to

classify the passage to the glass state as a thermodynamic transition, since the

glass temperature Tg depends on the time scale set by the cooling rate and no

marked changes are found in the thermodynamical and structural quantities.

Actually, from the experimental data no true thermodynamic transition is

ever directly observed since the system falls out of equilibrium before it could

happen. The Kauzmann paradox which now describe and the experimental

observation that at low cooling rate the glass transition is much sharper, have

suggested the possibility that a thermodynamic phase transition appears in

the limit of infinitely slow cooling rate and this ideal glass transition underlies

the real glass transition occurring at finite rates.

Below the melting point Tm the specific heat of a supercooled liquid is

larger than that of the corresponding crystal (see Figs. 1.1 and 1.2); as a con-
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sequence of this excess specific heat, the entropy difference between the liquid

and the crystal, which is an experimental measure of the so called configura-

tional entropy ∆S, decreases with temperature, typically by a factor 3 between

Tm and Tg for fragile liquids, until the system becomes a glass. When cooled

more slowly the system follows the smooth ∆S (T ) curve down to slightly lower

temperatures, but then freezes again. If extrapolated ∆S (T ) vanishes at a fi-

nite temperature TK and would be negative below this temperature, with the

unpleasant feature that the entropy of the crystal would be lower than the

liquid 1.3. Thus, to avoid this paradox one can admit that for an infinetely

slow cooling ∆S vanishes at TK and remains zero for temperature T < TK .

Since the liquid can now reach the equilibrium at all the temperatures, this

would mean that at TK there is a real thermodynamic phase transition for the

supercooled liquid.

g

∆S

TT Tk

Figure 1.3: Configurational entropy ∆S as a function of the temperature. The squares
indicate the experimental points. The full line is a fit of the equilibrated data and the dotted
line is an extrapolation of their behaviouri below Tg.

However this is of course not the only possibility to solve the Kauzmann

paradox. For example one can suppose that the extrapolation for infinitely slow

cooling is not valid and that the real equilibrium ∆S (T ) curve is a smooth

function of the temperature which vanishes gradually at T = 0, as it does in

the Debye theory of crystals.
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This idea of an underlying ideal phase transition, which could be obtained

only at infinitely slow cooling, is supported from the following observation:

the two temperatures where the extrapolated experimental behaviour has a

singularity, TV F and TK , turn out to be surprisingly close to each other, as

can be seen from the table below (taken from [6]). The first phenomenological

attempts to explain this fact originate in the work of Kauzmann [9], and de-

veloped by Adam, Gibbs and Di Marzio, which identifies the glass transition

as a true thermodinamic transition blurred by some dynamical effects [10, 11].

In the Adam-Gibbs picture, the relaxation takes place by increasingly co-

operative rearrangements of groups of molecules, which relax indipendently

one from another. The effective activated energy goes as the inverse of the

configurational entropy and if this quantity is identified as the entropy differ-

ence between the supercooled liquid and the crystal, then the theory allows

to correlate the extrapolated divergence of the relaxation time with the Kauz-

mann paradox [10]; in particular a linear behaviour of ∆S (T ) implies the

Volger-Fulcher law. The vanishing of the configurational entropy at a nonzero

temperature is also predicted in the Gibbs-Di Marzio approximate mean field

treatment of a lattice model of linear polymeric chains [11].

The free energy landscape described by the Adam-Gibbs scenario can be

imagined as an incredibly complex multi-dimensional set of hills, valleys, basins,

saddle points and passage-ways around the hills. However, the fraction of space

which is accessible to the representative state point of the system decreases

with decreasing temperature, and the system becomes constrained to deeper

and deeper wells. At low enough temperature, when the representative point

of the supercooled liquid is mostly found in fairly deep and narrow wells, it

seems reasonable to define a ’configurational entropy’, that is proportional to

the logarithm of the number of minima that are accessible at a given tempera-

ture. The liquid configurations corresponding to these accessible minima have

been called ’inherent structures’ and Stillingher and coworkers have recently

designed a gradient-descent mapping procedure to find the inherent structures

and study their properties in computer simulations [88].

Actually, the problem of the existence of a true thermodynamic transition

at TK = TV F is still unsolved; in the discontinuous mean field spin glass models

with quenched disorder, such transition exists and is of a strange type. It is of
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second order because the entropy and internal energy are continuous; on the

other hand the order parameter is discontinuous at the transition. Let us note

that the individuation of an order parameter in real glass forming systems is

not obvious. It can be identified as the modulation of the microscopic density

profile (for a more precise definition see [8]) and also displays a discontinuous

character at the transition, i.e. as the system freezes there is a finite jump in

this modulation.

Substance TK (K) TV F (K) Tg (K)

o-therphenyl 204.2 202.4 246

salol 175.2 220

2-MTHF 69.3 69.6 91

n-propanol 72.2 70.2 97

3-bromopentane 82.5 82.9 108

(1.3)

1.4 Two step relaxation

In an ordinary liquid above the melting point, relaxation functions are usually

well described, after some transient time, by a simple exponential decay. One

of the peculiar features of glass forming systems is the appearence, already

at temperature higher than the glass transition temperature Tg, of dynami-

cal anomalies. Johari and Goldstein, by studying the relaxation spectrum of

fragile glass formers by dieletric spectroscopy techniques [12], observed that

at sufficiently low temperatures, but higher than Tg, the relaxation spectrum

presents two peaks: the high frequency (low time) peak, which is interpretable

as corresponding to the motion of particles within the cage formed by their

nearest neighbours (called β-relaxation), and the high frequency (short time)

one corresponding to the more cooperative motion for which the particles es-

cape their initial cages (called structural or α-relaxation). When the relax-

ation function is plotted against the logarithm of the time, one observes what

is called a ’two step relaxation’ (see Fig. 2.1) .

The analysis of experimental data has shown that the long time relax-

ation is nonexponential, but well fitted by a stretched exponential, also called
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Kohlrausch-Williams-Watts function:

Φ (t) = A exp
[
− (t/τ)δ

]
(1.4)

This form of decay can be interpreted as the result of many processes, occur-

ring over different time scales. Instead power laws are used to reproduce the

relaxation function in the in range of intermediate times. The Mode Coupling

Theory that we present in the next chapter, is able to predict the dynamical

behaviour now described.

1.5 Glassy behaviour in colloidal suspensions

A class of systems which displays a large variety of kinetic phenomena, hav-

ing interesting connections with the glass transition, is given by the colloidal

suspensions. They have been studied extensively because their practical im-

portance and their relevance in biophysics. These systems are also of great

theoretical interest since they are models for conventional matter. They can

be prepared for a large span of densities, and the interaction can be tuned

to some extent by varying the coating of the particles and the composition of

the solvent. It is possible to realize an hard-sphere system, the basic model

underlying all theories of simple liquids. One can also prepare systems where

the hard core is complemented by an attractive shell; this allows to study the

interplay of repulsion and attraction. Fig. 1.4 illustratees the possible types

of phase diagrams that are expected at equilibrium, in the plane temperature

- volume fraction. However the predictions of equilibrium phase diagrams are

not always realized; rather systems exhibit a rich nonequilibrium phenomenol-

ogy. They often become undercooled, supersaturated, or trapped in gel-like or

glass states. In many cases the products strongly depend on the starting po-

sition in the phase diagram and discrepancies between predictions and actual

obserations are due to the intricacies of the dynamics of phase transitions.

Hard sphere colloids suspended in a solvent provide the simplest illustration

of the subtleties involved. In this case the phase diagram is a strightforward

crystal-fluid equilibrium. Entropy considerations predict that these systems

form crystals if the volume fraction is increased. Above the ’freezing’ volume
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Figure 1.4: A wide range of phase diagrams occurs naturally [15]. a) for a purely hard
sphere system the phase diagram shows only fluid (F) and crystal (C) phases. b) Atomic
systems are often modelled by hard sphere systems with long range attractions. This leads to
equilibrium between gas (G), liquid (L) and crystal phases. c) In cases where the attraction
is short range, as in protein systems, equilibrium between gas and crystal is found, but the
liquid-liquid transition becomes metastable.

fraction, φf = 0.494, it is entropically favourable if some spheres are in a crys-

tal, but above the ’melting’ volume fraction, φm = 0.545, all spheres should be

in a crystal (Fig. 1.4a). Instead Pusey and van Megen [30] clearly observed

that above a certain volume fraction (φg = 0.58) an amorphous glassy phase

appeared that did not crystallize over several months. The value φg = 0.58

is not an intrinsic glass transition volume factor for hard sphere colloidal sus-

pensions; recently samples with high volume fractions, which fail to crystallize

even after a year on Earth, have been seen to crystallize fully in less than

two weeks in microgravity (10−6g). This have also been corroborated in ex-

periments on centrifuged samples and indicates that even a small amount of

uniaxial stress can jam a system such that crystallization is not observed.

The addition of nonadsorbing polymers is able to produce an attraction

between the colloidal particles. The first theoretical interpretation of this

polymer-induced attraction was due to Asakura and Oosawa [18], who dis-

cussed it in terms of the ’depletion’ effect. Colloids are surrounded by a deple-

tion zone from which the polymers are sterically excluded. When the colloids

are close enough there is an overlap of depletion zones, causing an unbalanced

osmotic pressure pushing the particles together, which can be expressed as

an attractive pair potential. An advantage of such systems is that the range
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and the depth of the potential are controlled by the size and volume fraction

of the polymer respectively. Depending on the relative sizes of the polymer

and the colloid, two distinct situation can be resolved (see Fig. 1.5a,b); not

only the gas-crystal coexistence described above is exhibited, but also gas,

liquid and crystal coexistence. Note that the polymer concentration goes as

the inverse temperature, thus Figs. 1.5a,b correspond respectively to Figs.

1.4b,c. Although it is possible to predict the equilibrium phases of such sys-

tems, they also show a frustrating behaviour. Fig. 1.5c shows as the crystal

phase predicted at equilibrium is reached only in a narrow window close to the

phase boundary. Eventually deep in the phase diagram, due to various aggra-

gation mechanisms, the system is trapped in a gel-like state instead. Much

depends on the initial conditions, in this case polymer concentration and col-

loid volume fraction. Although slightly changing one condition may not alter

which equilibrium phase is expected, it may significantly affect whether or

not they are reached. Predictions of the kinetics often come from free energy

diagrams, from which the unstable and metastable regions and the common

associated mechanisms of spinodal decomposition, nucleation and growth are

delineated. Furthermore, glass states can be obtained also in this case. Non-

equilibrium phenomena characterized by intriguing aspects have been recently

found, which cannot be understood from the glass states formed in hard sphere

solutions; these will be discussed in the next chapter. Mode Coupling Theory

has played a leading role in colloidal systems, interpreting and rationalizing

some of the observations and achieving quite acceptable numerical agreement

in comparison to experiments.
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Figure 1.5: Phase diagrams indicating coexisisting phases, similar to those of Fig. 1.4 but
inverted, as polymer concentration plays the role of inverse temperature. a) (large polymer)
is similar to an atomic system, having regions of three phase equilibria. b) (small polymer)
is similar to systems found for some proteins, with two-phase coexistence and a metastable
liquid-liquid region. c) The situation often found experimentally for short polymers. The
shaded area indicates the region where aggregation occurs; only in the narrow region close
to the phase boundary are the equilibrium phases reached.
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Chapter 2

Mode Coupling Theory

Mode Coupling Theory (MCT) is one of the main theoretical approaches to

the supercooled liquids near the glass transition [21, 22, 23, 24, 25]. It puts

forward the idea that at low temperatures the nonlinear feedback mechanisms

in the microscopic dynamics of the particles become so strong to lead to the

structural arrest of the system. The glass transition at the critical temperature

Td corresponds to a singularity exhibited by the solutions of the equations of

motion for the density autocorrelation functions, the so called mode-coupling

equations, obtained through some suitable approximations from the canonical

equations of motion.

For temperature higher than Td the theory predicts most of the peculiar

behaviours which are observed for fragile glass formers; however very close to

Td the theoretical expectations are no more in agreement with the experimen-

tal data, since activated processes, not taken into account by MCT, become

important. On the other hand the theory works very well for colloidal sus-

pensions, where the interparticle forces are like those of hard spheres and the

activated processes are probably less important [32]. When the inter-particle

potential contains an attractive part, besides the repulsive hard-core two inter-

secting liquid-glass transition lines appear, one which extends to low densities,

while the other one, at high densities, shows a re-entrant behaviour [33]. These

results have had some evidence by recent experiments [34].
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2.1 The basic equations of the Mode Coupling

Theory

The dynamics of liquids is usually described by means of correlation func-

tions of the density fluctuation modes [19]. One of the basic quantity is the

intermediate scattering function, defined as

Sq (t) =

〈
δρ∗

qδρq (t)
〉

N
ρq (t) =

N∑
i=1

exp (iq · ri (t)) (2.1)

where N is the number of particles, ri (t) the position of the particle i at

time t and 〈〉 the Boltzmann average. The t = 0 value of Sq (t) determines

the static structure factor, Sq =
〈
δρ∗

qδρq

〉
/N =

(〈
ρ∗
qρq

〉 − N2δq,0

)
/N , while

its Fourier transform defines the dynamical structure factor, Sq (ω), which is

directly measurable by neutron or light scattering experiments. One can then

introduce the correlator Φq (t), which is the main object in MCT, normalizing

the intermediate scattering function by the static structure function:

Φq (t) =
Sq (t)

Sq

=

〈
δρ∗

qδρq (t)
〉

〈
δρ∗

qδρq

〉 (2.2)

The equations of motion for Φq (t) in the case of an isotropic system are written

as
··
Φq (t) + Ω2

qΦq +

∫ t

0

Mq (t − u)
·
Φq (u) du = 0 (2.3)

where Ωq is a microscopic frequency related the static structure factor, Ω2
q =

q2kBT/ (mSq) (m is the mass of the particles and kB Boltzmann’s constant).

One can recognize in (2.3) for a given mode q the equation of motion of a

damped harmonic oscillator with the complication of a retarded friction pro-

portional to the kernel Mq (t). We emphasize that, if a special expression for

Mq (t) is assumed, the equations of motion (2.3) are exact. They can be ob-

tained by means of the Mori-Zwanzig projection operator formalism (see App.

A); the kernel Mq (t) that one finds is given by Eq. (B.6), derived in App. B;

the initial conditions are Φq (0) = 1,
.

Φq (0) = 0.

MCT is obtained through the mode coupling approximation (see App. B)

for which the kernel Mq (t) is written as sum of a sharply peaked term, νqδ (t),
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and a contribution Ω2
qmq (t) expressed as a quadratic form of the correlators

Φq (t), i.e.

MMCT
q (t) = νqδ (t) + Ω2

qmq (t) (2.4)

mq (t) =
∑

k+p=q

V (q,k,p) Φk (t)Φp (t) (2.5)

where the vertices V (q,k,p) are coefficients assumed to depend on the physical

control parameters like density or temperature; they are related to the static

structure factor Sq (see Eq. (B.17)), which can be obtained experimentally

or computed from the pair potentials. With this approximation one arrives

therefore to a closed set of coupled equations for the correlators Φq, the so called

mode-coupling equations, which thus give their full time dependence. These

are the equations originally proposed by Bentgtzelius, Gotze and Sjolander

[20] describing the idealized structural glass transition. The kernel mq can be

extended for convenience to a general polynomial in the variables Φq.

The long time behavior of the solutions of the mode coupling equations

changes if the vertices pass certain critical values Vc. Beyond this thresh-

old, the correlators do not decay to zero at infinite times. This means that

a density fluctuation that was present at time zero does not disappear even

at very long times, i.e. the system is no longer ergodic. Solutions for which

Φq (t → ∞) = fq �= 0, corresponding to low temperatures and high densities,

are interpreted to describe an ideal glass state; the quantity fq is defined as

the non-ergodicity parameter. Instead solutions so that Φq (t → ∞) = 0 (for

each q) correspond to a liquid state. The singularity at Vc, accompained by

a diverging relaxation time, is identified with the idealized glass transition.

Note that the vertices are assumed to depend smoothly on the physical con-

trol parameters, so the transition observed is due only to the non-linearity of

the mode coupling equations, it is thus a pure dynamical transition and no

thermodynamic phase transition is present.

The physical explanation about the microscopic origin of the slowing down

is generally believed to be the cage effect, implemented by the kernel mq (t).

A particle of the fluid does not perform a Brownian motion but rather rattles

many times inside cages formed by its neighbors. The motion of a particle

over distances larger than the typical cage size is severely suppressed when
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the density is high, since the breaking of this cage requires a cooperative rear-

rangement of many particles; a slow complex dynamics is originated.

The essence of the mode coupling approximation is factorization of averages

of products into products of averages. A priori estimations of the validiity

of the mode coupling approximation are not known. The approximation is

uncontrollable in the sense that there is no systematic expansion scheme which

would identify the considered expressions as some leading contributions in a

series of terms of decreasing importance [41].

An interesting alternative derivation of MCT has been recently proposed

[25]. This new approach is more transparent and allows to investigate in detail

the meaning of the less controlled steps intrinsec in the original derivation of

MCT. Starting from Newton’s equations for the evolution of the density, one

then writes them as a linear generalized Langevin equation, without the use of

the projection formalism. A formally exact expression for the memory kernel is

derived and, making the approximation that the noise is gaussian, the standard

MCT equations are obtained, together with the random phase approximation

for the static structure factor. This suggests that MCT is a theory of fluid

dynamics that becomes exact in a mean field limit. This possibility will be

confirmed in the next chapter on the basis of the strong analogies between the

equations describing the schematic MCT and the dynamical equations of the

p spin glass model with infinite range interactions. The basic steps of this new

derivation of MCT are given in App. B.

2.1.1 Schematic models

Due to the complexity of the mode coupling equations, unfortunately their

solutions can be obtained only numerically. Therefore Bentgtzelius, Gotze

and Sjolander made the approximation, which was proposed indipendently

also by Leutheusser [20], that the structure factor is given by a delta function

at a certain wave vector q0, which locates the main peak in Sq. With this

approximation the system (2.3) reduces to a single equation for the only mode

q0:
··
Φ (t) + Ω2Φ (t) + ν

·
Φ (t) + Ω2

∫ t

0

m (t − u)
·
Φ (u) du = 0 (2.6)
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where m (t) = F (V, Φ (t)) with F (V, f) =
∑

n vnfn. Such an equation for

a single mode (or at most very few) is called a schematic model. Due to

its greatly reduced complexity, analytic investigations are possible. Since in

these simplified models the details of all the microscopic informations have

been eliminated, they cannot be used to understand the experimental data

quantitatively. However Gotze and Sjogren have found that many features

of the general solutions near the singularity do not depend on the detailed

form of the mode coupling kernel, but rather they are determined by a few

parameters specifying the topological features of the singularity in the space

of the parameters V ; therefore such universal features of the full theory can

be discussed even with schematic models. Now we know how to construct

schematic models in order to reproduce the desidered features of the full MCT

equations.

The simplest schematic model is the F1 model with F (V, f) = v1f ; it is

analytically solvable and exhibits a A-type transition, i.e. the non-ergodicity

parameter f vanishes regularly at the transition. More relevant to describe

the structural glasses are those models with a B-type transition, where f dis-

continuously jumps to a nonzero value. Examples of this class are the Fp−1

models, F (V, f) = vp−1f
p−1, having for p > 2 the same qualitative features.

In Chapter 3 we’ll face a spin glass model, the p spin model, whose high tem-

perature equilibrium dynamics is almost identical to the mode coupling theory

described by the kernels Fp−1. Thus we’ll discuss there this class of models

in detail; they capture the most important features of the MCT, even if they

display no stretched exponential usually found in the experimental studies of

supercooled liquids. The simplest model, able to produce also stretching, is

the F1,2 model defined by F (V, f) = v1f + v2f
2. Its numerically obtained

solution Φ (t) is showed in Fig. 2.1 for different values of the parameters.

2.2 Main results of MCT

MCT is characterized by many theoretical predictions [21, 22, 23, 24]. Most

of them are obtained by asymptotic expansions near the glass singularity. In

this section we present only some of the main predictions of MCT.

One of the main success of MCT is the prediction of the existence of the two

29




