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Introduction

At the beginning of the research in liquid crystals the German physicist O. Leh-

mann observed under microscope that cholesteric droplets, put under a thermal

gradient, began to rotate. Such phenomenon is nowadays known as the Lehmann

rotation.

In spite of its relative simplicity, this phenomenon is very intriguing because

it is strictly related to non-equilibrium thermodynamics in chiral media, where

strange phenomena could take place: for example a thermodynamic force (whose

vectorial nature is polar) could be coupled to a flux of axial vectorial nature.

The Lehmann rotation phenomenon is due, in particular, to the coupling be-

tween an applied thermal gradient or electrostatic field and the induced torque

that puts in rotation the cholesteric drop.

Usually such effects are very weak and thus very difficult to detect since the

chirality degree of materials formed by chiral molecules is very low. Cholesteric

liquid crystals, on the contrary, possess a structural, macroscopic chirality; their

chirality degree is much higher than systems based on the molecular chirality,

so that these materials are good candidates to observe the cross-coupling phe-

nomena.

Since Lehman’s observations made at the end of the 19th century, very

few works appeared subsequently on this subject, because it is very difficult

to realize appropriate experimental geometries where competing effects (as the

flexo-electric effect, for example) are negligible. The idea behind the present

1
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work is to exploit a focalized laser beam to create a cholesteric droplet in a

nematic environment, possessing a cylindrical symmetry around the director

angular velocity induced by the external polar field. Laser light plays, in such a

configuration, an auxiliary role; its utility lies in the fact that, by mean of it, we

may control at will the geometry of the cholesteric profile so to avoid spurious

effects as the flexoelectric effect.

During this work we exploited an experimental apparatus able to detect the

whole transverse profile of the molecular reorientation present in the illumi-

nate zone and not only the amount of induced birefringence. Besides the light-

assisted Lehman effect, which was the main goal of this work, we were able to

observe other yet not reported phenomena as the laser-induced rigid rotation

of the whole reorientation profile and of the molecular director in nematics, the

laser-induced “frozen” low-birefringent steady state and the laser-induced direc-

tor rotation in cholesterics (the last two phenomena were predicted theoretically

but not yet observed experimentally, at our knowledge).

In the first chapter we will shortly describe the results of nonequilibrium

thermodynamics, paying attention to the phenomenological equations and their

relation to the symmetry of the physical system (Curie’s principle). We’ll then

describe briefly chirality and expose Pomeau’s idea about strange transport phe-

nomena in optically active fluids and how they can be exploited to obtain an

enantiomers separation in a racemic mixture.

In the second chapter we’ll briefly describe the liquid crystalline meso-

phases, paying particular attention to the nematic and cholesteric ones, and to

their elastic properties.

The third chapter will be devoted to the description of the interaction

between liquid crystals (LC) and external (electrostatic, magnetic and optical)

fields. The Freédericksz effect will be described and then specialized to two

interesting configurations: nematic samples under circularly polarized light and

cholesteric samples under linearly or circularly polarized light.
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The fourth chapter will be devoted to the Lehmann effect: it’s history

will be reviewed as well as the principal efforts performed to replicate it or to

measure the coupling constant between polar and axial vectors (in particular,

thermo- and electro-mechanical coupling constants). The chapter will close with

the exposition of the idea behind our experiment.

The fifth chapter will be devoted to describe the evolution of our detection

apparatus through different stages and why it was evolved in this way. More-

over, it will be discussed how to interpret the camera acquisitions obtained from

our detection apparatus in its final configuration, a configuration, as we know,

never used before to study the interaction between light and liquid crystals. The

last part of this chapter will be devoted to the description of the mixture we

chose to use in such work.

The sixth chapter will be devoted to our experimental observations on ne-

matic liquid crystals under linearly and circularly polarized light. Our detection

apparatus lead us to observe an unexpected dynamical response for circularly

polarized light, namely the light-induced rigid rotation of the molecular director

and of the whole reorientation profile. A 3-D model has been described in the

last part of the chapter, which accounts fairly well for the experimental obser-

vations.

The seventh chapter will be devoted to the experimental characterization

of the OFT in cholesterics for linearly, circularly and depolarized impinging

light. The cholesteric response in such configurations shows features that was

never observed before and that are predicted, for the case of circularly polarized

impinging light, from a very recent numerical model.

The eighth and last chapter will be finally devoted to the search of the

light-assisted Lehmann rotation induced by an electrostatic field. When the

cholesteric “droplet” was created by the depolarized light, the system shows

the same features of the Lehmann rotation. When circularly polarized light is

exploited, instead, we could observe the competition between the photon spin



4

angular momentum transfer to the cholesteric and the Lehmann torque induced

by the electrostatic field.



Chapter 1

Vectors, pseudovectors and

chirality

1.1 Reflections

If one considers a coordinate transformation from a cartesian system {x, y, z}
to another {x′, y′, z′}, this transformation can be represented by means of an

orthogonal matrix Q = {qij}, so that a vector ~v will be transformed, in the new

system of reference, in:

~v ′ = Q̂ . ~v or, component by component: v′i =
∑

j

qijvj . (1.1.1)

If we consider a reflection or inversion of the axis, its matrix will be in the form:

qij = −δij (1.1.2)

and thus

v′i = −vi. (1.1.3)

It is worth noting that such transformation will change the initial right-

handed coordinate system into a left-handed one. If we consider the distance

vector

~r = (x1, x2, x3) (1.1.4)

it will transformed through Q into the vector

5
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Figure 1.1: Behavior of a polar vector under the action of a inversion Q of the
cartesian coordinates.

~r ′ = (x′1, x
′
2, x

′
3) = (−x1,−x2,−x3) (1.1.5)

whose components are negative. Remembering that the new set of axis is op-

posite to the original, the transformation result will be to leave ~r exactly as it

was before the transformation was carried out, as shown in figure 1.1.

The distance vector ~r and all other vectors behaving this way under reflection

of the coordinate system are called polar vectors or, shortly, vectors.

A fundamental difference appears when we consider a vector defined as the

cross product of two polar vectors. Let

~c = ~a ∧~b or, component by component: ci = εijkajbk. (1.1.6)

where ~a and ~b are both polar vectors. When the coordinate system is inverted:

{
ai → −ai

bi → −bi

(1.1.7)

From the definition of ~c it will transform in

c′i = ci (1.1.8)
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that is ~c doesn’t behave like a polar vector under reflection (see figure 1.2),

being reflected under a reflection transform. These kind of objects are called

axial vectors or pseudovectors. Example of pseudovectors are the angular veloc-

ity (~ω = ~r ∧ ~v), the angular momentum (~L = ~r ∧ ~p), the torque ( ~N = ~r ∧ ~f) or

magnetic induction field (∂ ~B
∂t = −∇ ∧ ~E).

Figure 1.2: Behavior of an axial vector under the action of a inversion Q of the
cartesian coordinates.

If we agree that the universe does not care whether we use right- or left-

handed system, then it does no make sense to add an axial vector to a polar

vector. In vector equations like ~a = ~b, either ~a and ~b must be both polar vectors

or axial vectors. There are exception to this prohibition: where the universe

distinguish between right-handed and left-handed systems, in the beta decay,

for example, it is possible to add polar and axial vectors.

1.2 Entropy production and phenomenological

equations

Considering the thermodynamical evolution of a physical system, one has to

consider the law of conservation of the energy (basing on the first law of thermo-

dynamics) and the entropy production law (the second law of thermodynamics).
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If one considers the structure of the expression for the entropy production, one

can see that it consists of a sum of products of two factors. One of this factors

in each term is a flow quantity (for example heat flow, diffusion flow, chemical

reaction rate and so on). The other factor in each term is related to a gradi-

ent of an intensive state variable and may contain external forces ~Fk. Usually

one refers to the first factor in such terms as flux Ji and to the second fac-

tor as thermodynamic force Xi, or affinity. The expression for the entropy

production is thus:

T Ṡ =
∑

i

JiXi (1.2.9)

The expression for the entropy production vanishes when the system is at

the thermodynamic equilibrium, when all the forces and fluxes simultaneously

vanish. For irreversible processes, one has to compute the expression for the

entropy production. For a large class of irreversible phenomena under a wide

range of experimental conditions, the irreversible flows are linear functions of

the thermodynamic forces and can be expressed by means of phenomenological

laws which are introduced ad hoc in the purely phenomenological theories of

irreversible processes. As an example one can consider Fourier’s law for heat

conduction, in which the components of the heat flow are expressed as linear

functions of the components of the temperature gradient. If one restrict to this

linear region, one may write quite generally

Ji =
∑

k

LikXk. (1.2.10)

The quantities Lik are called phenomenological coefficients and the relations

(1.2.10) are called as phenomenological equations.

If one introduces the phenomenological equations into the expression for the

entropy production (1.2.9), one gets a quadratic expression in the thermody-

namic forces of the form

T Ṡ =
∑

ik

LikXiXk. (1.2.11)

It could arise the question about the validity of the linear approximation versus

the introduction of nonlinear phenomenological laws. For ordinary transport
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phenomena like heat and electric conduction, it is verified that the linear ap-

proximation holds under every experimental conduction. In other cases, as for

example in systems performing chemical reactions, one has to work in a very

limited range close to the equilibrium to ensure the validity of the linear ap-

proximations.

1.3 Curie principle and the influence of symme-

try properties of matter on the linear laws.

In principle, any component of a flux can be a linear function of the components

of all the thermodynamic forces. It is worth noting that fluxes and thermody-

namic forces do not have the same tensorial character: they can be scalars,

vectors or (second rank) tensors. This means that, under rotations and reflec-

tions, their components transform in different ways.

As a consequence, symmetry properties of the material system considered

may have the effect that the components of the fluxes do not depend to on

all components of the thermodynamic forces or that not every kind of flux

will depend from every kind of thermodynamical force. This is known as the

Curie symmetry principle [Curie (1894)]. By means of such reasonings, it can

be shown, as anticipated in section 1.1, that in an isotropic system fluxes and

forces of different tensorial character (as vectors and pseudovectors) do not

couple. The symmetry, or its lack, will determine the nature of the possible

couplings between forces and fluxes.

The spatial symmetry of the system conditions the nature of the couplings

between forces and fluxes in the phenomenological equations. The property of

time reversal invariance of the system at the microscopic level influences besides

the inverse equations, reverting the rules between ”causes” and ”effects”. These

reverting relations are known as the Onsanger reciprocal relations and won’t be

described here because of the dependence of their expression from the nature of

the system (for example, whether it is under the action of a magnetic field or

not). Their derivation and expression can be found, for example, on reference [de
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Groot and Marur (1962)].

Figure 1.3: Adam’s hand and its mirror reflection. Hand is a chiral object: it
can not be superimposed to its mirror image.

1.4 Chirality

The word ”chirality” comes from the ancient Greek χείρ, hand. Chirality thus

means handedness. The definition of chirality is due to Lord Kelvin1 and it is

related to the geometrical properties of an object: a figure is chiral if it is not

identical to its mirror image or, in mathematical terms, if it cannot be mapped

to its mirror image by applying only rotations and translations. The simplest

example of chiral object coming from everyday life is the hand (see figure 1.3).

An object superimposable with its mirror image is said to be achiral. It is worth

noting that doesn’t possess much sense speaking of the ”amount” of chirality of

an object: it can be superimposable to its mirror image (chiral) or it can not

be (achiral). There are not other possibilities.

As shown in figure 1.4, chiral objects don’t possess planes of symmetry.

Although the introduction of the concept of chirality could seem a ”useless”

geometrical concept, chirality has great consequences on our life. Chiral mole-

cules possess, as discovered by Biot, rotatory power, that is they can rotate the

direction of the polarization of light.

The two different antipodal species of the same chiral molecule with opposite
1Lord Kelvin’s words: ”I call any geometrical figure, or group of points, chiral, and say that

it has chirality if its image in a plane mirror, ideally realized, cannot be brought to coincide
with itself”.
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Figure 1.4: Chiral objects, unlike achiral, don’t possess planes of symmetry.

handedness are said enantiomers and are labelled by the addiction of a L- or D-

suffix to the name of the species, according to the versus of the rotatory power

of the respective species (see figure 1.5).

The active ingredients in caraway seeds and spearmint demonstrate the great

difference arising between the different handedness of the enantiomers of the

same chemical species: though they have identical molecular structures, the two

substances taste differently because they are opposite in chirality. Another, and

Figure 1.5: D- and L- enantiomers of a chiral molecule.
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more dramatic example comes from drug research and pharmacology: the tragic

administration of thalidomide to pregnant women in the 1960s. R-thalidomide

possess sedative properties while its S- enantiomer induces fetal malformations.

What could seem a mathematical game can cause giant differences in our life.

A 50/50 mixture of L- and D- enantiomers of the same chiral molecule is said

racemic and doesn’t show optical activity.

1.5 Transport phenomena for optically

active molecules

As pointed out by Pomeau [Pomeau (1971)], a system in which Curie’s principle

consequences can be observed are optically active fluids, fluids consisting of

optically active left- or right-handed molecules and thus violating parity.

In such systems are allowed fluxes like:




~J = αi,j
~Fi ∧ ~Fj

~J = β ∇∧ ~v

(1.5.12)

The phenomenological coefficients αi,j and β depend upon the thermodynamic

forces and flux under consideration and they reverse their sign depending from

which kind of molecules are we dealing with (left- or right-handed).

An interesting application exploiting the consequences of the presence of

such unusual fluxes was proposed by Pomeau, who proposed a new technique

able to separate the two species forming a racemic mixture by applying on the

mixture two perpendicular vectorial fields ~Fi and ~Fj . In this way one could

expect that their application gives rise to a current that will separate the two

optical antipodes in a direction perpendicular to the applied forces.

A physical sketch of how such system works is obtained by describing the

optical active molecules as Archimedes’ screws (with the respective handed-

ness). The size of these screws is supposed to be sufficient large with respect

to the solvent’s molecules length so that their interaction with the solvent is
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Figure 1.6: Schematization of the motion of the screws with opposite handedness
under the action of the electric field.

well described by hydrodynamic laws. Applying a static electric field along the

z direction, the screws will begin to rotate around the z axis and the sign of

this rotation will depend upon the screws handedness (see figure 1.6). Let’s

moreover suppose that, under the application of a second thermodynamic force

applied along the y direction, the solvent will acquire a mean drift velocity vy

with respect to the optically active molecules.

For the Magnus effect2 the rotating screws will therefore experience a transla-

tional velocity directed along the x axis and whose sign will depend upon the

rotation sign and thus upon the optical activity. It is therefore possible to sep-

arate in principle the two different species forming the racemic mixture.

Chiral system are thus the ideal systems where the ”strange” couplings be-

tween vectors and pseudovectors can be observed. The particular chiral system

that we will use in this work are cholesteric liquid crystals (whose descrip-

2Effect consisting in the generation of a sidewise force acting on a spinning cylindrical or
spherical solid immersed in a fluid (liquid or gas) when there is relative motion between the
spinning body and the fluid. The Magnus effect is responsible for the curve of a served tennis
ball or a driven golf ball.
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tion will come in the following chapters) because they possess a macroscopical

chiral structure (because of their long-range helical order) and can make such

effects more feasible.



Chapter 2

Liquid crystals

2.1 Soft condensed matter

Matter experiences very different states of aggregation: the most commonly

known are solid, liquid and gaseous, each of them characterized by its own well

defined assembling rules. In the solid phase (precisely in the crystalline solid

one), for example, each atom is locked into a definite location in the crystal

lattice, realizing a highly ordered and strongly anisotropic structure. Liquid

phase, on the contrary, is very disordered: atoms can freely move within the

liquid without being locked into well-defined positions and thus liquid is an

isotropic phase.

Between these two phases matter experiences sometimes other states of aggre-

gation, characterized by intermediate properties; one often refers to them as

soft condensed matter or soft matter. We can find matter in such a state of

aggregation in everyday life: glues, paints or soaps and so on.

Their peculiarity is that they are viscoleastic: they don’t posses the stiffness of

solids (even though exhibiting some elastic response) nor show the same rheo-

logical behavior of liquids. How intermediate are such properties will depend

from the material. In this work we will deal with liquid crystals.

15
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Figure 2.1: Schematic representation of some matter’s state of aggregation.

2.2 Liquid crystals (LCs)

Liquid crystals represents an equilibrium phase of matter in which the molecules

are arranged with a degree of order that falls inbetween the complete positional

disorder of a liquid and the long-ranged, three dimensional order of a crystal. It

is worth pointing that this phase differs completely from the partial-crystalline

phase, which is a nonequilibrium state of matter in which the system is somehow

prevented from reaching its equilibrium state and in which microscopic regions

of crystalline order coexist with disordered regions, often forming complex struc-

tures. At the beginning of liquid crystal research (at the end of 19. century),

Lehmann devoted much of his pioneering work on liquid crystals on persuading

other researchers that LCs were not partial cristalline but a completely new

phase.

Liquid crystals are found in:

• certain organic compounds with highly anisotropic molecular shapes (rod-

or disc-like)

• polymers composed of units having a high degree of rigidity

• polymers or molecular aggregates which form rigid rod-like structures in
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solution.

They are very interesting because possess rheological properties analogous

to fluids but are birefringent like crystals (with the great difference that the

direction of optical axis is not fixed and can vary from point to point within

them) and show giant optical nonlinearities. One can figure them like fluids

possessing extra internal degrees of freedom.

2.2.1 Classification of the LCs mesophases

The most disordered type of liquid crystalline is surely the nematic phase,

which has no positional order (the centres of mass of the molecules are arranged

like in an isotropic liquid) but in which the molecules are, on the average,

oriented about a particular direction. Thus the only kind of ordering that

survives in such mesophase is the orientational molecular ordering. The versor

describing such direction is often called molecular director or director:

n̂(θ, φ) =
(

sin θ cosφ, sin θ sin φ, cos θ
)
. (2.2.1)

If the molecules of a system in such mesophase are chiral, their centres of

mass will be randomly distributed within the fluid but, as a consequence of the

microscopical chirality, a structure develops with well defined macroscopical chi-

rality. In these systems there is indeed the tendency for neighboring molecules

to align at a slight angle to one another; this weak tendency leads the director

to form a helix in space, whose pitch is much longer than the size of a single

molecule: thus arises a ”transfer” of chirality from the molecules to the whole

structure. This phase is called chiral nematic or cholesteric.

Other liquid crystalline mesophases are more ordered than the two described

above: smectic and the columnar phases, for example, will possess also a posi-

tional ordering. In what follows we won’t pay attention to these other kind of

liquid crystals.
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2.3 Continuum theory

Although a microscopic approach for studying LC’s behavior is available, we will

focus our attention on a macroscopic approach exploiting continuum theory’s

results. Continuum theory offers a powerful tool for a macroscopical description

of the behavior of liquid crystals: it provides an expression of their energy which,

minimized, will leads to describe equilibrium configuration of the molecular

director. It should be noted that the validity of such description hold as long

as (a represents the mean molecular size):

a ∇·n̂ ¿ 1 (2.3.2)

that is as long as n̂’s variations remains lower then the length l over which

molecular ordering varies appraisably.

If a system doesn’t exchange work with the environment and its tempera-

ture and volume remain fixed, the relevant thermodynamical potential becomes

Helmholtz free energy F , obtained from system’s internal energy U by mean of a

Legendre transform on the canonical variables temperature and entropy (T ,S):

F = U − T S. (2.3.3)

The system will reach equilibrium minimizing F . To show that, let’s consider

an arbitrary isothermal state transform, for which we have:

Q
T ≤ ∆S. (2.3.4)

Thermodynamic’s first principle states that

Q = ∆U + L. (2.3.5)

We can then write

L ≤ T ∆S −∆U = −∆F . (2.3.6)

If our system has V = cost. and L = 0 we have:

∆F ≤ 0. (2.3.7)

The system will thus evolve toward the free energy minimum.
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2.3.1 Frank-Oseen elastic energy

In order to give the expression of the free energy density F = F(n̂,∇n̂) asso-

ciated with LC’s distortions we will follow Oseen reasoning [de Gennes (1974);

Chandrasekhar (1977); Stewart (2004)]. The energy of a LC sample can be ob-

viously obtained by integrating the free energy density over the whole sample

volume:

F =
∫

V

F(n̂,∇n̂) d3~x. (2.3.8)

Let’s assume the liquid crystal being incompressible. An LC exhibiting a relaxed

configuration in the absence of forces acting on it is said to be in a natural orien-

tation. The free energy is usually defined to within the addiction of an arbitrary

constant: let’s choose the value of this constant properly so that F(n̂,∇n̂) = 0

for any natural orientation; any other configuration induced upon the sample

produces an increasing in the energy, that is:

F(n̂,∇n̂) ≥ 0. (2.3.9)

LCs usually lack polarity: n̂ and −n̂ are thus physically indistinguishable and

it is therefore natural to require that:

F(n̂,∇n̂) = F(−n̂,−∇n̂). (2.3.10)

Moreover, F must be frame of reference-independent; defined Q any orthogonal

matrix and QT its transpose, when n̂ → Q n̂(QT ~r), it must hold:

F(n̂,∇n̂) = F(Q n̂, Q∇n̂ QT ). (2.3.11)

Let’s choose our coordinate system with z parallel to the director at the origin,

so that:

n̂(0, 0, 0) = (0, 0, 1). (2.3.12)

Small changes ∆x, ∆y and ∆z from the origin in the x,y and z direction will
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induce three types of change in the orientation of n̂(0), leading to six components

of curvature, called also curvature strains. In Frank’s notation, these ”splay”,

”twist” and ”bend” components are:





splay: s1 = ∂nx

∂x , s2 = ∂ny

∂y

twist: t1 = −∂ny

∂x , t2 = ∂nx

∂y

bend: b1 = ∂nx

∂z , b2 = ∂ny

∂z

(2.3.13)

where the components of the director are n̂ = (nx, ny, nz) and the terms are

evaluated in the origin. A physical representation of what’s happening when

the system is under the action of such deformations can be viewed in figure 2.2.

Figure 2.2: Schematic representation of splay, twist and bend deformations
acting on LC.
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Expanding n̂ in a Taylor series round the origin gives (using Einstein summation

convention and the convention about n̂’s derivatives: ni,j(~x) = ∂xj
ni(~x)):

ni(~x) = ni(0) + xjni,j

∣∣
~x=0

+ o(|~x|2), i = 1, 2, 3 (2.3.14)

Keeping in mind the choice of our reference system and that n̂·n̂ = 1 and thus

0 = ~∇(n̂·n̂) = 2êj nini,j , we can write: nz,j(0) = 0; n̂’s series expansion can be

therefore rewritten as:




nx = a1x + a2y + a3z + o(|~x|2)

ny = a4x + a5y + a6z + o(|~x|2)

nz = 1 + o(|~x|2)

(2.3.15)

where the ai constants can be related to the others given in expression (2.3.13)

by: 



a1 = s1, a2 = t2, a3 = b1,

a4 = −t1, a5 = s2 a6 = b2

(2.3.16)

Let’s now expand the free energy density F with respect to the six curvature

strains:

F ' kiai +
1
2
kij aiaj , i, j = 1, 2, ..., 6 (2.3.17)

where ki and kij are known curvature elastic constants; the quadratic terms

in (2.3.17) can always be written as a quadratic form where kij = kji.

Since we are dealing with uniaxial objects, a rotation about the z axis makes

no change to the physical description, that is the free energy density should be

identical when described with the new curvature strains a′i:

F ' kia
′
i +

1
2
kij a′ia

′
j . (2.3.18)

By making use of such an idea and and cleverly choosing the frame rotation

around z-axis, it’s possible to show that, of the six ki only two are independent:

{ki} = {k1, k2, 0, 0,−k2, k1, 0} (2.3.19)



22

and that, of the thirty-six kij , only five are independent:

||kij || =

k11 k12 0 −k12 (k11 − k22 − k24) 0

k12 k22 0 k24 k12 0

0 0 k33 0 0 0

−k12 k24 0 k22 −k12 0

(k11 − k22 − k24) k12 0 −k12 k11 0

0 0 0 0 0 k33

.

(2.3.20)

The general form of the free energy density, expressed with Franks curvature

strains, will therefore be:

F = k1(s1 + s2) + k2(t1 + t2) +
1
2
k11(s1 + s2)2 +

1
2
k22(t1 + t2)2+

+
1
2
k33(b2

1 + b2
2) + k12(s1 + s2)(t1 + t2)− (k22 + k24)(s1s2 + t1t2) (2.3.21)

Introducing the new constants:

s0 = − k1

k11
, t0 = − k2

k22
(2.3.22)

and redefining free energy with the addiction of the constant:

Fd = F +
1
2
k11s

2
0 +

1
2
k22t

2
0 (2.3.23)

the free energy density can be written in the form:

Fd =
1
2
k11(s1 + s2 − s0)2 +

1
2
k22(t1 + t2 − t0)2 +

1
2
k33(b2

1 + b2
2)+

+k12(s1 + s2)(t1 + t2)− (k22 + k24)(s1s2 + t1t2). (2.3.24)

Observing that:





s1 + s2 = nx,x + ny,y = ∇·n̂

−(t1 + t2) = ny,x + nx,y = n̂·∇ ∧ n̂

b2
1 + b2

2 = n2
x,x + n2

y,y = (n̂ ∧∇ ∧ n̂)2

(2.3.25)
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and that

−(s1s2 + t1t2) = ny,xnx,y − nx,xny,y =
1
2
∇·

[
(n̂·∇)∇− (∇·n̂)n̂

]
(2.3.26)

Fd can be written in vector notation as:

Fd =
1
2
k11(∇·n̂− s0)2 +

1
2
k22(n̂·∇ ∧ n̂ + t0)2 +

1
2
k33(n̂ ∧∇ ∧ n̂)2+

−k12(∇·n̂)(n̂·∇ ∧ n̂) +
1
2
(k22 + k24)∇·

[
(n̂·∇)∇− (∇·n̂)n̂

]
. (2.3.27)

The constants k11, k22 and k33 are said, respectively, splay, twist and bend elas-

tic constants. The combination (k22 + k24) is called saddle-splay constant. It is

worth noting that the saddle-splay term is often omitted from the free energy

expression since it doesn’t contribute to the bulk equilibrium equations because,

being a divergence, becomes, when integrated over the whole volume, a surface

integral over the boundary. Thus we will omit this term in the forthcoming

expression of LC’s free energy.

So far we have not jet stated which kind of LC we are dealing with. We have

just used the invariance of the free energy with respect to the rotation of the

reference frame. There is still another invariance requirement that free energy

must satisfy (see eq. (2.3.10)). That can be true only if k12 = 0 and s0 = 0.

Keeping in mind s0’s definition it must also be k1 = 0.

We have now to achieve free energy’s definitive expression for nematics and

cholesterics exploiting their symmetry properties.

2.3.2 Nematic free energy

Nematic molecules remain alike upon reflection within planes containing the

director. Applying a proper transformation of such kind one can easily see that

k2 = 0 and thus t0 = 0. Nematic’s elastic free energy density will therefore be:

F (n)
d =

1
2
k11(∇·n̂)2 +

1
2
k22(n̂·∇ ∧ n̂)2 +

1
2
k33(n̂ ∧∇ ∧ n̂)2 (2.3.28)

The three elastic constants are positive and their order of magnitude is U
a ∼

∼ 10−6dyne (where U ∼ 0.1eV is the typical molecular interaction energy).
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2.3.3 Cholesteric free energy

The molecules constituting cholesterics are chiral and thus their mirror image

is different from themselves. Their enantiomorphism has the great consequence

of breaking the symmetry under reflection within planes containing the director

and therefore t0 6= 0. The resulting expression for cholesteric free energy is:

F (c)
d =

1
2
k11(∇·n̂)2 +

1
2
k22(n̂·∇ ∧ n̂ + t0)2 +

1
2
k33(n̂ ∧∇ ∧ n̂)2 (2.3.29)

2.4 Equilibrium equations

Equilibrium equations for such systems can be derived by making Fd stationary

under the variation of n̂ over the unit sphere; the resulting Euler-Lagrange

equations are:

−∂Fd

∂ni
+ ∂j

( ∂Fd

∂ni,j

)
= −λ(~x)ni (2.4.30)

where λ(~x) is a multiplier ensuring the satisfaction of condition n̂·n̂ = 1. Defin-

ing the molecular field ~hd as:

hd
i ≡ −∂Fd

∂ni
+ ∂j

( ∂Fd

∂ni,j

)
(2.4.31)

the Euler-Lagrange equations (2.4.30) will simplify to a parallelism condition,

point by point, between director and molecular field:

hd
i = −λ(~x)ni. (2.4.32)

Moreover there is another way of obtaining director’s equilibrium configura-

tion instead of solving Euler-Lagrange equations. Defining the elastic torque ~τd

as:

~τd = n̂ ∧ ~hd (2.4.33)

the Euler-Lagrange equations (2.4.30) become:

~τd = 0. (2.4.34)

An equilibrium configuration will therefore zeroes the elastic torque.
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These two procedures are equivalent and they can be used even in the pres-

ence of external fields acting on the LC: it is always possible to compute the free

energy contribution due to the presence of the external fields, to obtain the rel-

ative Euler-Lagrange equations and the consequent equilibrium configuration;

alternatively, but equivalently, one can obtain the expression of the external

field torque acting on the LC: the equilibrium configuration will be obtained by

setting the total torque to zero.

2.5 Boundary effects or anchoring

In discussing the elasticity of nematics and cholesterics one has to pay attention

on the point of how can one impose a distortion on LCs. The easiest way

(that doesn’t needs the action of external fields) is forcing the orientation that

interfaces (properly prepared) impose on the layer of LCs with whom they are in

contact. Any surface will impose his way of ordering on the director of adjacent

LC. In most practical cases surface forces at boundaries are much stronger than

bulk elastic forces and their effect is enough to impose a well-defined direction

to the director n̂ at the surfaces. This is the case of strong anchoring. The

effect of the anchoring, in this case, will be to impose a given direction to the

director at boundaries but has not to be taken into account by adding extra free

energy terms to the free energy. In the case of weak anchoring, instead, one has

to take into account both bulk and surface terms in the free energy.

There are two important cases of strong anchoring:

• homeotropic: is an alignment perpendicular to the sample surfaces. This

kind of anchoring is usually obtained by covering the surface with a sur-

factant layer.

• planar: it forces the molecules to be parallel to the surface. For a free

surface any direction in the plane of the surface may be allowed, while for

a solid substrate a particular direction in the plane may be imposed by

the crystalline structure of the surface. An easy way of imposing a singled

direction is obtained just by rubbing a glass surface.
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2.6 Nematics and cholesterics equilibrium con-

figurations

From the expression (2.3.28) we can easily see that a nematic LC reaches its

natural equilibrium configuration when F (n)
d = 0; that happens only when the

splay, twist and bend terms are simultaneously equal to zero, that is when n̂

remains parallel to itself pointing along the same direction everywhere in the

whole sample volume. It is worth noting that free energy minimum leaves unde-

termined the direction along which the director points: the energy of a nematic

”monodomain” is independent of the orientation of the director. Anchoring ef-

fects play their important rule right in breaking the symmetry of the nematic

phase, imposing their preferential direction to the whole nematic sample.

For cholesteric liquid crystals, the expression of their free energy F (c)
d is very

similar to the nematic one F (n)
d ; the effect of the small dissimilarity between

them will however imply great differences between the respective equilibrium

configurations. From now on, the constant t0 will be denoted as q0; for sake of

simplicity, let’s write F (c)
d as:

F (c)
d =

1
2
k11(∇·n̂)2 +

1
2
k22(n̂·∇ ∧ n̂)2 +

1
2
k33(n̂ ∧∇ ∧ n̂)2+

+k22q0 n̂·∇ ∧ n̂ +
1
2
k22q

2
0 . (2.6.35)

Scaling down the free energy zero point by the constant term 1
2k22q

2
0 , we obtain

that cholesteric free energy can be expressed as:

F (c)
d = F (n)

d + k22q0 n̂·∇ ∧ n̂. (2.6.36)

What will be cholesteric equilibrium configuration? We have to minimize

again free energy. It is easy to see that, in the planar distortion hypothesis

(that is n̂(~x, t) = n̂(z, t)) and without any constraint at the boundaries, this

condition is satisfied if:
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



θ(z, t) = π
2

φ(z, t) = q0z + φ0

(2.6.37)

that is if the molecules will tend to align along a spiral with pitch p = 2π/q0

(see figure 2.3).

Figure 2.3: Typical molecular arrangement in the cholesteric phase.

2.6.1 Elastic and chiral torques

From now on we will call elastic torque the torque derived from nematic free

energy:

~τd = ~τ
(n)
d = n̂ ∧ ~hd,(n) (2.6.38)

where ~hd,(n) is:

h
d,(n)
i = −∂F

(n)
d

∂ni
+ ∂j

(∂F
(n)
d

∂ni,j

)
. (2.6.39)
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Recalling the splay, twist and bend terms in nematic free energy expression, one

can compute the relative elastic torques:




~τS
d = k11∇(∇·n̂)

~τT
d = −k22

[
A ∇∧ n̂ +∇∧ (A n̂)

]

~τB
d = k33

[
~B ∧ (∇∧ n̂) +∇∧ (n̂ ∧ ~B)

]

where:

{
A = n̂·(∇∧ n̂)
~B = n̂ ∧ (∇∧ n̂)

(2.6.40)

obviously their sum gives the total elastic torque:

~τS
d + ~τT

d + ~τB
d = ~τd. (2.6.41)

We will call chiral torque the torque derived from the term fc =

= k22q0 n̂·∇ ∧ n̂:

~τc = n̂ ∧ ~hc (2.6.42)

where

hc
i = −∂fc

∂ni
+ ∂j

( ∂fc

∂ni,j

)
. (2.6.43)

The explicit expression of the chiral torque is:

~τc = 2 k22 q0 (n̂ ∧∇ ∧ n̂). (2.6.44)

2.7 Homeotropic anchoring and frustrated cho-

lesterics

It is interesting to study what happens if one tries to frustrate the cholesteric

structure. Frustration is the competition between different influences on a phys-

ical system that favour incompatible ground states. Cholesterics, for example

tend to form twisted structure that could be incompatible with the effect of other

agents, such as applied electric or magnetic fields or geometric constraints. One
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refers to such cases of frustrated cholesterics and often observes the birth of

complex ordered structures. One of the most studied case is the cholesteric

helix unwinding by mean of an applied magnetic field. A good review of frus-

trated cholesterics can be found in ref. [Kamien and Seilinger (2001)]. Our

interest will be however devoted to another intriguing configuration, occurring

when boundaries are treated for homeotropic anchoring; to understand why

such configuration is incompatible with the cholesteric structure, one can refer

to figure 2.3: the z axis is parallel to the helix axis and the walls lay in planes

parallel to the xy plane. Without anchoring conditions the molecules will tend

to be parallel to the xy plane as shown in the figure; treating the walls for

homeotropic anchoring will force the molecules in contact with the boundaries

to be parallel to the z axis and thus to be normal to the plane where they would

tend to lay. The question is: would in such case the helix structure survive? To

give an answer to this question we have to solve the Euler-Lagrange equations

or, alternatively, balancing the total torque with boundary conditions given by

homeotropic anchoring.

Let’s work again in the plane distortion approximation n̂(~x, t) = n̂(z, t) and

let’s choose again our frame of reference so that the undistorted state can be

written as: n̂U = (0, 0, 1). Let’s consider a distortion around this state inducing

the small variation: δn̂(z, t) = (δnx(z, t), δny(z, t), 1); for the sake of simplicity

let’s call: δnx = ξ and δny = ψ.

The expression of the free energy in the small distortion approximation will be:

F (c)
d = k22(ψ ξ′ − ψ′ ξ) +

1
2
k33[(ξ′)2 + (ψ′)2] (2.7.45)

and the relative Euler-Lagrange equations will be:





2k22q0ψ
′ + k33ξ

′′ = 0

2k22q0ξ
′ − k33ψ

′′ = 0

(2.7.46)

It s worth noting that, as repeated above, if one computes the elastic and the

chiral torque in the same approximations (plane distortion and small distor-

tion), the total torque balance equation will lead to the same equations.
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For the sake of simplicity, let’s introduce ζ = z/d (where d is the sample

thickness) and let’s derive with respect to ζ: vξ = ∂ζξ = ξ′ and vψ = ∂ζψ = ψ′.

Introducing the dimensionless quantity

q̃0 =
k22

k33

q0d

π
(2.7.47)

the Euler-Lagrange equations will be:




v′ξ + 2π q̃0 vψ = 0

v′ψ − 2π q̃0 vξ = 0

(2.7.48)

One can easily decouple these equations by deriving them and substituting one

into the other; the system will therefore be transformed in:





v′′ξ + (2π q̃0)2v′ξ = 0

v′′ψ + (2π q̃0)2v′ψ = 0

(2.7.49)

By integration, one obtains:





vξ(ζ) = A cos(2π q̃0ζ) + B sin(2π q̃0ζ)

vψ(ζ) = C cos(2π q̃0ζ) + D sin(2π q̃0ζ)

(2.7.50)

These solutions have to respect equations (2.7.48): thus D = A and C = −B.

Integrating them between 0 and ζ with the condition that ξ(ζ = 0) = ψ(ζ = 0) = 0,

we finally obtain:




ξ(ζ) = 1
2π q̃0

[
A sin(2π q̃0ζ) + B

(
1− cos(2π q̃0ζ)

)]

ψ(ζ) = 1
2π q̃0

[
A

(
1− cos(2π q̃0ζ)

)
−B sin(2π q̃0ζ)

] (2.7.51)

Imposing on the other wall of the cell the anchoring condition ξ(ζ = 1) =

= ψ(ζ = 1) = 0, one finally obtains:




A sin(2π q̃0) + B
(
1− cos(2π q̃0)

)
= 0

A
(
1− cos(2π q̃0)

)
−B sin(2π q̃0) = 0

(2.7.52)
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Figure 2.4: Cholesteric liquid crystals samples frustrated by the competition
between chiral torque and effect of the homeotropic anchoring.

An homogenous system, in order to possess a nontrivial solution (in this case,

twisted structure compatible with homeotropic anchoring on the walls), must

possess determinant zero. This brings to the condition:

sin2(πq̃0)
(πq̃0)2

= 0. (2.7.53)

We are working in the small distortion approximation and thus we can consider

the first zero, that is q̃0 = 1 or, in terms of q0:

q0th
=

k33

k22

π

d
. (2.7.54)

Remembering the relationship between q0 and the pitch p, the system has non-

trivial solutions when the cholesteric pitch is shorter then the threshold pitch:

pth = 2
k22

k33
d. (2.7.55)

So, if the the pitch p is shorter than pth, the chiral torque will be strong enough

to overcome the anchoring at the walls and a twisted structure will form; if,

on the contrary, the value of the pitch is greater than the threshold value, the

system wont’t be able to twist, the effect of the anchoring prevails and the
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cholesteric sample is forced to behave like a homeotropically aligned nematic

one (see figure 2.4).

Figure 2.5: Schematic transversal view of a wedge cell.

2.7.1 Cholesteric fingers and fingerprint textures

Figure 2.6: View between crossed polarizers of a wedge cell filled with cholesteric
LC and whose walls are treated for homeotropic anchoring (after ref. [P. Oswald
and Pirkl (2000)]) The dark region is the thinner one, where the anchoring
prevails against the chiral torque. Thereafter is the fingerprint texture, where
we can observe cholesteric domain surrounded by nematic regions and, finally,
on the right is the brightest region, where the cholesteric torque prevails.

Usually people don’t handle with chiral LC possessing pitch variable at will.

In such cases, if one wants to ensure that the anchoring constraints win the
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chiral torque (or succumb), he can exploit the expression of critical pitch value

dependence from the sample thickness (eq. (2.7.54) or (2.7.55)). Given a p

value, one has to realize a sufficiently thick cell to ensure the helix birth or,

on the contrary, one can make sufficiently thin cells to ensure prevailing of the

homeotropic anchoring.

Often is useful to work with wedge cells, that is cells whose walls, instead of

being parallel, are at a slight angle α. As shown in figure 2.5, in such cells one

can observe the coexistence of chiral and homeotropic regions, whose extension

depends from the value of the confinement ratio:

C =
d

p
. (2.7.56)

A chiral region surrounded by an homeotropic region is often called cholesteric

finger and a pattern of cholesteric fingers is called fingerprint texture.

Figure 2.7: View between crossed polarizers of a typical fingerprint texture.
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Chapter 3

External fields effect on LC

So far we have considered what happens when we act mechanically on LCs. In

this chapter we will consider the interaction with external fields (magnetic and

electric static fields and optical fields).

3.1 Static fields

3.1.1 Electric field

The application of an electric field ~E to a liquid crystal produces a dipole mo-

ment per unit volume called polarisation ~P . LC’s anisotropy generally forces ~E

and ~P to have different directions. They are related by mean of the susceptibility

tensor χ̂e via the equation:

~P = ε0χ̂e
~E where: χ̂e =

χe⊥ 0 0

0 χe⊥ 0

0 0 χe‖

(3.1.1)

where ε0 is the permittivity of the free space and χe‖ and χe⊥ denote, respec-

tively, the susceptibilities parallel and perpendicular to the director.

Introducing the electric displacement vector

~D = ε0 ~E + ~P (3.1.2)

35
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and the dielectric tensor

ε̂ =

εe⊥ 0 0

0 εe⊥ 0

0 0 εe‖

(3.1.3)

where εe‖ = 1 + χe‖ and εe⊥ = 1 + χe⊥ and the dielectric anisotropy εa is

εa = ε‖ − ε⊥, the general expression for the electric displacement is:

~D = ε0ε⊥ ~E + ε0εa(n̂· ~E)n̂. (3.1.4)

The total electric energy will therefore be:

wE = −1
2

~D· ~E = −1
2
ε0ε⊥| ~E|2 − 1

2
ε0εa(n̂· ~E)2. (3.1.5)

Because the first term is independent of the orientation of n̂, it will usually

omitted from the energy expression, which then reduces to:

wE = −1
2
ε0 εa(n̂· ~E)2. (3.1.6)

When εa > 0 the energy is minimized when n̂ and ~E are parallel while, when

εa < 0, when they are perpendicular. In this work we made use of materials

with positive dielectric anisotropy. An applied electric field will thus tend to

align the director along its direction.

The expression of the electric torque is:

~τE =
εa

4π
(n̂· ~E)

(
n̂ ∧ ~E

)
(3.1.7)

3.1.2 Magnetic field

The application of a magnetic field ~H across a LC sample induces a magnetiza-

tion ~M in the liquid crystal due to the weak magnetic dipole moments imposed

upon the molecular alignment by the magnetic field. Similarly to the case of

the electric field, the general magnetization expression is:

~M = χ⊥ ~H + (χ‖ − χ⊥)
(
n̂· ~H

)
n̂ (3.1.8)

where χ‖ and χ⊥ are the diamagnetic susceptibilities when the field and the

director are, respectively, parallel and perpendicular.
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The magnetic induction can be expressed as:

~B = µ0 µ⊥ ~H + µ0χa

(
n̂· ~H

)
n̂ (3.1.9)

where χa = χ‖ − χ⊥ is called the magnetic anisotropy and is generally very

small compared to εa (in the SI its order of magnitude is 10−6 while εa ∼ 1).

The total magnetic energy will be:

wH = −1
2

~B· ~H = −1
2
µ0µ⊥| ~H|2 − 1

2
µ0µa(n̂· ~H)2. (3.1.10)

Because the first term is independent of the orientation of n̂, it is usually omitted

from the energy expression, which then reduces to:

wH = −1
2
µ0 µa(n̂· ~H)2. (3.1.11)

When µa > 0 the energy is minimized when n̂ and ~H are parallel while, when

µa < 0, when they are perpendicular.

The expression of the magnetic torque is:

~τH = χa(n̂· ~H)
(
n̂ ∧ ~H

)
(3.1.12)

3.2 Optical fields

Let’s consider an electromagnetic monochromatic wave at frequency ω in the

optical range impinging on the LC sample. The expressions of the real fields

impinging on the sample are:





~Ereal(t) = 1
2

(
~Ee−ıωt + ~E∗eıωt

)

~Dreal(t) = 1
2

(
~De−ıωt + ~D∗eıωt

) (3.2.13)

The electromagnetic energy U will be an oscillating function with respect to

the time. Its average value over the optical period π/ω is:

wo = 〈U〉 =
1

16π

(
~D∗· ~E + ~B∗· ~H

)
. (3.2.14)
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Remembering that the magnetic effects are usually negligible with respect to

the electric one, the optical energy expression will be:

wo = − 1
16π

ε⊥| ~E|2 − 1
16π

εa|n̂· ~E|2. (3.2.15)

Again, the first term is not affected from the director orientation and can be

therefore omitted. Then, the expression of the optical energy reduces to:

wo = − 1
16π

εa|n̂· ~E|2. (3.2.16)

The relative optical torque is:

τo =
εa

8π
Re

[
(n̂· ~E∗)

(
n̂ ∧ ~E

)]
(3.2.17)

The field ~E is relative to the complex wave at a given point and it is not

the amplitude of the impinging wave. How such amplitudes are related to the

torque (3.2.17) can be computed by mean of the Maxwell equations.

It is worth noting that, although the formal expression of the optical torque

resembles very closely the expression of the static electric torque, the two inter-

action processes are very different. Static fields are usually applied on the whole

sample while the optical field consists of a laser beam impinging on the sample

and whose transversal dimensions are much smaller than the cell walls exten-

sion. Thus we have to take in account the transverse effect arising when the

optical fields interact with LCs (see section 3.3.2). Moreover, light has a vector

character, as described by its polarization state. LC are being birefringent ma-

terials, are very sensitive to the light polarization state, yielding to reorientation

effects having no analogue in the static electric field case.

3.3 Fréedericksz effect

One of the most known and exploited effects in the wide multitude of phenomena

occurring in LCs is the Fréedericksz effect, that can be induced by a static

electric or magnetic field [Fréedericksz and Zolina (1933)] or by an optical field

[Zolot’ko et al. (1980); Durbin et al. (1981); Zel’dovich and Tabiryan (1982)].

To describe briefly this phenomenology, let’s refer to figure 3.1: a nematic LC
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Figure 3.1: Fréedericksz effect generated by a static (electric or magnetic) field
~A: (a) if (| ~A| < | ~Ath|) the field not affect the sample, that remains undistorted,
while (b) if the field intensity exceeds a threshold value (| ~A| > | ~Ath|) the sample
will be distorted.

sample is treated for homeotropic anchoring. Let the z axis be the axis along

which the molecules are aligned and let us apply a static field ~A (electric or

magnetic) along the x axis. The torque induced into the sample is:

~τA =
∆a

4π
(n̂· ~A )

(
n̂ ∧ ~A

)
(3.3.18)

where ∆a is the opportune anisotropy (dielectric or magnetic, depending from

the nature of ~A). In this configuration (n̂⊥ ~A) the torque is zero and ~A doesn’t

affect the sample. But, if the director would experience slight thermal fluctu-

ations, then it would experience a nonzero torque due to the presence of ~A.

However, if the intensity of the applied field won’t be high enough, the con-

trasting elastic torque ~τd will prevail, damping the fluctuations and forcing the

sample to the undistorted state. On the contrary, if the applied field is above a

critical threshold value, the sample will experience a Fréedericksz transition, and

the sample will reach a distorted equilibrium state, as shown in figure 3.1-(b).
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3.3.1 Optical Fréedericksz Transition (O.F.T.)

The situation is quite different when the transition is induced by an optical field.

As mentioned above, a laser beam has a finite spatial extension (' 100µm) (see

figure 3.2). Moreover, LCs are sensitive to the light polarization: the OFT will

therefore change its character drastically with respect to the impinging light

polarization. The analysis of the optical reorientation of LC will thus be a

highly complex nonlinear problem: the nature of the OFT depends upon the

light polarization state, that, in its turn, depends upon the local birefringence of

the medium. The cause becomes the effect, the effect becomes the cause again

and so on till an equilibrium condition is reached that, in principle, could even

not exist. In the last case, we observe the rising of dynamical regimes (often

complex).

Figure 3.2: Reorientation profile induced by a laser beam with transverse
gaussian profile in a nematic sample homeotropically aligned.
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3.3.2 Transverse effects

The OFT, as mentioned above, induces inhomogeneity in the molecular response

because the sample is not uniformly subjected to the same field. Thus, the illu-

minated molecules will experience the optical torque and will reorientate; con-

temporary, during their reorientational process, they will exert an elastic torque

on their not illuminated neighbours, that couldn’t otherwise reorient, creating

a strong transversal correlation within the crystal. Another consequence of the

finite beam size and inhomogeneous exposure to the optical field is the rising of

the threshold value for the OFT.

Self-phase modulation

One of the most spectacular effects arising in the OFT is the self-phase modu-

lation. When a laser beam traverses an LC slab, one observes in the far field

Figure 3.3: Picture of a typical far field diffraction ring pattern due to the
self-phase modulation in LCs.

a series of concentric rings diverging very rapidly. Figure 3.3 shows a typical

self-diffraction rings pattern. A rigorous mathematical treatment of such phe-

nomenon can be found in [Santamato and Shen (1985)]. It can be shown that

the rings number, related to the phase difference accumulated between ordi-

nary and extraordinary wave travelling through the cell, is strictly related to

the reorientational amplitude (supposed to be, like the impinging laser profile,
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gaussian) at the centre of the reorientation profile:

N ∝ θ2(~r = 0). (3.3.19)

Exploiting such considerations it is thus possible to measure the ring number

and to obtain the amplitude of the reorientational profile.

3.4 S.I.S.L.S.

S.I.S.L.S. is the acronym for self-induced stimulated light scattering and oc-

curs when a circularly polarized laser beam impinges normally to a nematic

slab treated for homeotropic alignment. Theoretical and experimental studies

of such effect can be found in references [Santamato et al. (1986, 1987, 1988)].

Figure 3.4: Schematic representation of director’s rotation induced from a cir-
cularly polarized laser beam.

In figure 3.4 is shown a schematic sketch of the SISLS process. If the imping-

ing beam possesses an intensity beyond the Fréedericksz threshold value, n̂

reorientates (along a direction φ depending from system’s residual anisotropies)

and the cell becomes birefringent. The radiation, traversing the birefringent

medium, changes its polarization state and, thus, photons release part of their

spin angular momentum to the medium. The amount of exchanged spin angular
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momentum can be expressed as1:

∆s3 =
I(ein − eout)

ω
(3.4.20)

where e represents the ellipticity of the polarization ellipse. LCs molecules will

thus be put in rotation and the birefringence axes will begin to rotate.

Self-induced stimulated light scattering is a nondestructive process because

the photon is scattered from the medium (not absorbed), releasing part of its

energy and angular momentum to it. Said ω and Jz frequency and angular

momentum2 of the impinging light and ω ′ and Jz
′ the frequency and angular

momentum after the scattering process, the medium will become from the dif-

fused photon h̄(ω ′ − ω) energy and (Jz
′ − Jz) angular momentum. It is thus

transferred to the body the difference of photon’s energy and angular momen-

tum.

The rotational energy transferred to the body is dissipated through the viscous

forces and induces into the scattered photon a red-shift ∆ω = 2Ω (where Ω is the

angular velocity induced in the body). This effect was experimentally observed

[Santamato et al. (1987)].

3.5 O.F.T. in cholesterics

A review of the peculiarities of the OFT in cholesteric liquid crystal can be

found in [Abbate et al. (1996)] and in the references there cited.

The phenomenology of this reorientation process is very particular. Let’s begin

by considering the case of linearly polarized light (see figure 3.5). When the laser

intensity goes over the Fréedericksz threshold (Ĩ1 in figure) the system reaches

the so called Optical Phase Locked (OPL) regime: the sample is ”locked” in a

low birefringence state for a wide range of intensities; after a second threshold

Ĩ2 the system jumps abruptly to a highly distorted state. Decreasing the laser

intensity below Ĩ2, the system, instead of turning back to the low birefringence
1It should be taken in account that light possesses both spin and orbital angular momentum

and how to decompose light’s total angular momentum into the spin and the orbital part, but
in the geometry of our experimental setup (laser beam with circular transverse profile) the
light doesn’t carry orbital angular momentum nor can exchange it with LCs; thus the observed
effects can be ascribed exclusively to the light’s spin transfer.

2We use Jz for denoting light’s total angular momentum.
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Figure 3.5: Ring number versus laser intensity for a cholesteric sample illu-
minated with linearly polarized light (after [Abbate et al. (1996)]). Series • :
obtained increasing the laser intensity - series ◦ : obtained decreasing the laser
intensity.

OPL state, shows an hysteretic behavior remaining in the highly distorted state

till a third threshold Ĩ3.

The presence of the optical phase-locked state and the occurrence of the bista-

bility without the action of external elements is a very unusual characteristic

of cholesterics (nematic don’t show such features); they arise because of the

competition between the helical structure induced by the chiral torque and the

homeotropic anchoring conditions imposed at the sample boundary.

To explain the observed ”locked” behavior that, for a wide range of inten-

sities prevents the formation of rings in the far field, in [Abbate et al. (1996)]

the authors suppose that the excess energy put into the sample by the laser

beam, instead of increasing the sample birefringence (raising the rings number),

is stored in the twist degree of freedom. If this were the case, a rotation of the

polarization plane should be present in the plane beyond the sample, because of

Mauguin’s theorem [Mauguin (1911)]. The phase retardation induced into the

sample is frozen to the value δ ∼ π and the sample should behave as a retarder

plate λ/2, rotating the polarization’s direction. In the forthcoming chapters of
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this work it will be given an experimental proof that this picture is true.

When the imping light is circularly polarized the sample, as a consequence of

the cholesteric helical structure with its well defined helicity, behaves differently

under left- or right-handed circularly polarized light, depending from whether

light and helix helicity are equiversal or not.

Figure 3.6: Ring number versus laser intensity for a cholesteric sample illu-
minated with circularly polarized light with helicity opposite with respect to
the cholesteric helical sense (after [Abbate et al. (1996)]). Series • : obtained
increasing the laser intensity - series ◦ : obtained decreasing the laser intensity.

We have thus to consider the two cases separately:

• Same helicity

When the helicity of light and the chiral torque are the same it is possible

observed the double threshold feature (OPL and highly distorted state)

and the hysteresis loop (see figure 3.6).

• Opposite helicity

When the helicity of light and the chiral torque are in contrast the OPL

and hysteresis loop disappear, as shown in figure 3.7.

In the work [Maddalena et al. (1995)] and in the very recent work [Brasselet

et al. (2005)] numerical simulations are performed in which it is foreseen that,
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Figure 3.7: Ring number versus laser intensity for a cholesteric sample illumi-
nated with circularly polarized light with helicity concordant with respect to
the cholesteric helical sense (after [Abbate et al. (1996)]). Series • : obtained
increasing the laser intensity - series ◦ : obtained decreasing the laser intensity.

under particular conditions depending from the helical pitch p, the confinement

ratio (defined in eq. (2.7.56)) and the helicity of light, it is expected that the

director rotates (precesses or nutates). In this work will be given, among other

effects, the first experimental observation of the rotation in cholesteric samples

under the action of circularly polarized light.

It is important to point out that the works cited above were developed within

the plane wave approximation, where all relevant parameters are assumed to

depend on one spatial coordinate (z) and the time (t). The validity of such ap-

proximation will be discussed later by confronting the experimental acquisitions

with predictions of a newly developed model in three-dimensions.



Chapter 4

Lehmann effect and unusual

couplings in cholesterics

At the beginning of the research on LCs, the German physicist O. Lehmann

published a work [Lehmann (1900)] on which he reported his big amount of ob-

servations about the behavior of a strange, almost unknown at the time, matter’s

state of aggregation, shoch is known, today, as the cholesteric phase. Amongst

these observations, he reported the rotation of cholesteric drops subjected to a

thermal gradient parallel to the axis of the helical structure. From polarimetric

considerations, he argued that the structure rather that the drop itself was put

in rotation by the heat flux.

The peculiarity of this phenomenon, making it so intriguing, is that the drop

reacts to the applied thermal gradient, which is a polar vector, generating a

torque (that induces the rotation of the drop in the plane xy orthogonal to the

applied gradient), which is an axial vector. Such couplings are, as pointed out

in chapter 1, usually forbidden in normal structures but are allowed in parity-

breaking structures, as in the case of cholesterics. Such effect is thus strictly

related to the geometric structural properties of the considered material (i.e.

the macroscopic chiral structure of cholesteric LCs).

Many experiments have been executed since Lehmann’s first observation but no

one has been able to replicate an analogous rotation in a clear and unambigu-

ous way, discriminating cross-couplings effects (arising only in chiral structures)

47
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from effects with different origin. In the next sections a short review will be

given on the principal efforts done to investigate Lehmann-like phenomena.

4.1 Dynamic continuum theory results for cho-

lesterics

Formulating a dynamic continuum theory for liquid crystals is a very hard work

because LCs possess, unlike ordinary fluids, internal orientational degree of free-

dom (the director); thus orientational dynamic and its interconnection with the

fluid motion has to be taken in account.

Leslie [Leslie (1969)] developed the continuum theory for cholesterics and showed

[Leslie (1968, 1971)] the existence of Lehmann-like solutions. The dynamic con-

tinuum theory won’t be exposed in this work and we’ll refer to Leslie’s work

or classical textbooks (as, for example, [de Gennes (1974)]) for it. At last, a

very brief but exhaustive summary of the equations needed to study Lehmann’s

rotation can be find in reference [Shahinpoor (1976)].

From a physical point of view, we can follow Leslie reasoning for understand-

ing why do such strange coupling work for cholesterics. Cholesterics, unlike

nematics, possess a nonuniform configuration (the helical structure). So, even

if they are subjected to a uniform solicitation like a uniform thermal gradient,

they will react, because of their structural properties, in a nonuniform way to

the applied field, leading , generally, to flow of the fluid and distortion of the

orientation pattern. If the applied field is parallel to the helical axis, the ma-

terial will be at rest and the torque acting on the director seeks to rotate the

director uniformly around the helix axis. If there is no external balancing torque

(for example, the boundaries are free), the helix simply rotates with uniform

angular velocity about its axis. This situation resembles the paper spirals that,

put on heat sources, begin to rotate steadily under the action of the ascending

air currents.
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4.1.1 Lehmann-like effect equation:

It can be shown that the director dynamics in a cholesteric is described by [Gil

and Gilli (1998)]:

γ1
∂n̂

∂t
= ~h(n̂) + νE n̂ ∧ ~E (4.1.1)

where ~h(n̂) is the molecular field (free energy’s lagrangian derivative, already

defined in section 2.4), γ1 is the rotational viscosity coefficient1 and the coef-

ficient νE is said to be, respectively, chemico-, thermo- or electro-mechanical

coupling coefficient, depending from the choice of the field ~E between the chem-

ical potential gradient, the thermal gradient or the electric field .

In a configuration resembling the Lehmann effect configuration, that is when

the applied field is parallel to the helix axis, and in the planar deformation

hypothesis (n̂(~x, t) = n̂(z, t)) such equation simplifies to:

γ1
∂ϕ

∂t
= k22

∂2ϕ

∂ z2
− νE E (4.1.2)

We’ll consider two important solutions classes for this equation, corresponding

to two different boundary conditions: (a) stress free boundaries or (b) planar

anchoring.

• (a) stress free boundaries:

When boundaries impose no constraints to the sample the solution of the

equation (4.1.2) takes the form:

ϕ(z, t) = q0z − νEE

γ1
t + cost. (4.1.3)

which represents an helix with pitch q0 (the natural pitch) and that rotates

rigidly with angular velocity depending from the intensity of the applied

field, the coupling coefficient and the viscosity coefficient:

ω = −νE E

γ1
. (4.1.4)

The rotational velocity is thus independent from the pitch of the sample

and depends linearly from the applied field (reverses its sign reversing

the sign of the field) and from the coupling coefficient. This solution

represents the Lehmann-like rotatory solution.
1For a proper classification of the viscosity coefficients appearing in LC dynamic see

ref. [Stewart (2004)], chapter 4.
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• (b) planar anchoring:

When the walls are treated for planar anchoring, forcing the director to

lay, for example, along the x-axis at the first wall (z = 0) and along the

direction ϕ
D

at the other wall (z = D), the solution of the equation (4.1.2)

takes the form:

ϕ(z, t) =
ϕD

D
z − νEE

k22
z(D − z) (4.1.5)

which represents, in the absence of the applied field ~E, a uniformed twisted

structure (whose pitch depends from the anchoring conditions and is thus

different from the unperturbed one q0). The application of the field will

induce inhomogeneities in the twist.

Two kind of experiments were performed about cross-couplings in cholesterics:

measure of the coupling coefficients (the thermo-mechanical and the electro-

mechanical coupling coefficient) and a search for Lehmann-like rotations. In

the next sections we will give a brief review of the principal efforts done in those

directions.

4.2 Measure of the thermo-mechanical coupling

coefficient

A first experimental attempt in measuring the thermo-mechanical coupling co-

efficient was made by Jánossy’s group [Éber and Jánossy (1982, 1984)]. The

experimental setup realized in these works is shown in figure 4.1.

In such a configuration the thermal gradient induces a distortion in the

director field. A laser traverses the sample along the z direction. The phase

difference between ordinary and extraordinary waves at the sample exit has

expression:

∆φ =
π

120
L5

λ

no(n2
e − n2

o)
n2

e

λ2
eff

k2
33

(∂T

∂x

)2

(4.2.6)

and is thus related to the effective thermo-mechanical coupling coefficient λeff,

related to the thermo-mechanical coupling (λ3 in Jánossy notation) by means

of the relation:

λeff = λ3 + k22
dq0

dT
(4.2.7)
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Figure 4.1: Schematic representation of the experimental geometry adopted in
[Éber and Jánossy (1982, 1984)]. The sample boundaries (lying in the xy plane)
are treated for planar anchoring. The thermal gradient is applied parallel to the
x axis.

The estimated value for the thermo-mechanical coupling coefficient was:

λ3

k33
= 4 ∗ 104 oC−1m−1 (4.2.8)

4.3 Measure of the electro-mechanical coupling

coefficient

The effort of measuring the electro-mechanical coupling coefficient was per-

formed by the group of Madhusudana in two types of experiments [Madhusu-

dana and Pratibha (1989); Madhusudana et al. (1991)]. In one experiment,

following Jánossy’s footsteps, they realize a distorted configuration (cell walls

treated for planar alignment) while the other experiment is performed on cho-

lesteric drops, resembling Lehmann’s original configuration.
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4.3.1 Profile distortion in planar cells

In this experiment [Madhusudana et al. (1991)], a sample is prepared, as in

Jánossy’s experiment, planarly aligned. The difference with Jánossy’s experi-

mental setup is that, in this configuration, the electric field is applied parallel

to the helix axis (see figure 4.2).

Figure 4.2: In this experimental configuration the applied field is parallel to the
helix axis.

The director configuration is then described by eq. (4.1.2); the application of

the electric field twists inhomogeneously the structure; the idea of these experi-

ment is to apply a low frequency AC electric field and to observe the azimuthal

profile’s oscillations due to the electric field’s sign inversion.

4.3.2 Rotation of cholesteric drops

In this experiment [Madhusudana and Pratibha (1989)] an opportune mixture

of cholesteric drops suspended in its own isotropic phase is prepared. Such

drops are successively put under glasses and flattened, paying attention that

the drops were surrounded by the isotropic environment and not in contact

with the glasses (to ensure the condition stress free boundary required to obtain

rotating solutions like those given by eq. (4.1.3)), as shown in figure 4.3; a DC

electric field was then applied to the sample.

The drop radius is much greater than the sample thickness (δ À d) and the
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Figure 4.3: A cholesteric drop of radius∼ δ flattened between glasses at a dis-
tance d.

cholesteric pitch is of the order of magnitude of the cell thickness. Typical val-

ues for this experiment are: d ' p ' 5µm and δ ' 50µm. Put the drop under

crossed polarizers, they observed the χ defect line and the rotation of the dark

and bright brushes around it to deduce the rotational velocity of the director.

The value of the electro-mechanical coefficient obtained in these experiments

was:

ν
~E
' −0.6 ∗ 10−12Jm−1 (4.3.9)

4.3.3 Is this really a Lehmann-like rotation?

Although in Madhusudana’s experiment is observed the rotation of drops under

an applied electric field, the question is: are such rotations of the Lehmann-like

type? That is, are these rotation exclusively adducible to the cross-couplings?

As suggested in ref. [Tarasov et al. (2003a,b)], this is not the case. Lehmann-

like rotations should arise in situations in which the only contributing factor is

the applied polar vector and that can happen, for example, in a geometry in

which the applied field is parallel to the helix axis. This is unfortunately not

the situation of the flattened cholesteric drops experiment. The topology of a

cholesteric drop is very complicated and surely is not a sequence of cholesteric

planes forming the usual helix. Moreover, the drops are flattened, complicating

the topology of the system (remember that the natural cholesteric pitch order

of magnitude is comparable to the cell thickness while the radial extension of

the drops is one order of magnitude greater).
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Inside a flattened cholesteric drop, the splay-bend deformation of the cholesteric

layers is significant and, thus, the flexoelectric2 contribution to the dynamics of

the drop must be considered. Moreover in presence of defects -and this is the

case, indeed- the splay-bend deformation is further enlarged and the flexoelec-

tric contribution becomes even more stronger.

The interpretation of the experimental observations concerning flattened

drops and cross-coupling phenomena driven by the electric field is thus unsat-

isfactory and the separation between the effects caused by the cross-couplings

and effect of other nature is not clear. This configuration is thus unable for

observing cross-coupling phenomena as Lehmann-like rotation.

In ref. [Tarasov et al. (2003a,b)] is indeed developed an electrohydrodynamical

model reproducing the rotational dynamic of the flattened cholesteric drops by

making use of the flexoelectricity and without taking in account the electro-

mechanical coupling.

4.4 The idea behind our experiment

The idea of our experiment is to realize homeotropic samples filled with a

cholesteric LC with pitch slightly longer than the critical threshold value for

pitch frustration (p ' pth). The sample will thus be frustrated by the anchor-

ing to behave like a homeotropically aligned nematic. From the predictions and

the observations reported in ref. [Abbate et al. (1993)] it is expected that the

OFT threshold value is very low (zero in the limit p → p+
th). A laser light im-

pinging on the sample will thus easily reorient it, leading to the formation a of

a cholesteric domain.

The advantage of such configuration is that the cholesteric domain is well lo-

calized within the region illuminated by the laser beam and the helix will au-

tomatically develop with its axis along the beam direction, the same direction

2The flexoelectric effect is the analogous of the piezoelectric effect in ordinary crys-
tals [Meyer (1969); Patel and Meyer (1987)]. It is a linear electro-optic effect and its contri-
bution to the free energy is:

ff-e = −eS
~E · ~S − eB

~E · ~B (4.3.10)

where ~S and ~B are the splay and bend deformation terms. This effect becomes significant
when large splay-bend deformation takes place.
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along which can be applied the electric field.

This configuration seems thus optimal for excluding effects of other nature.

Eventual rotations can exclusively be ascribed to the cross-couplings effects.

It is worth noting that, in such scheme, light plays an auxiliary role, leading

only to the formation of the cholesteric domain. A sketch of our geometry can

be found in figure 4.4. The splay-bend deformation, moreover, can be reduced

at will by working very close to the threshold.

Figure 4.4: A sketch of our experimental geometry.

4.4.1 Homeotropic alignment’s effects on Lehmann-like ro-

tation

The question that could arise about our geometry is that the configuration

in which we choosed to work (homeotropically aligned sample) is neither the

stress-free boundary situation described by eq. (4.1.3) nor the planar aligned

one, described by eq. (4.1.5). Are we sure that the director, under the action

of the applied field, rotates? And how will be the eventual angular velocity in

such configuration related with the stress-free boundary one (4.1.4)?

To give an answer to this question let’s consider eq. (4.1.1). Since we are

interested only on the effect of the field ~E and not on the molecular arrangement

within the sample, we’ll omit the effect of the molecular field ~h. Let’s then
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consider the vector product with n̂ of the members of eq. (4.1.1):

γ1n̂ ∧ ∂n̂

∂t
≈ νE n̂ ∧ n̂ ∧ ~E. (4.4.11)

Supposing to apply the field parallel to the helix axis, for the helix structure

frustrated by the homeotropic alignment (shown in figure 2.4-(a)), the dynamic

equation will be:

sin2 θ
(
γ1

∂ϕ

∂t
+ νE E

)
= 0. (4.4.12)

Thus, although the homeotropic alignment will force the molecules to arrange

outside the cholesteric planes and acquire a ”distorted” configuration, the ap-

plication of the field will give rise to the rotation with the same angular velocity

of the stress-free boundary condition.

Moreover the rotation governed by eq. (4.4.12) is independent on θ and, hence,

on the splay-bend distortion in the sample (and consequent flexoelectric effect),

that can be reduced at will.



Chapter 5

Experimental setup

The aim of this chapter is to give a brief description of the stages through which

our detection apparatus is evolved and why it is evolved in this way.

Figure 5.1: Passive attenuator.

5.1 Pump injection stage

All the forthcoming configurations are characterized by a common factor: the

first stage or pump injection stage. The pump used in this work is a Verdi laser

from Coherent, a Nd:YVO4, frequency doubled laser at λ = 532nm in a single

TEM00 mode, linearly polarized and with transverse circular profile.

57
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Although is it possible to vary the pump power electronically, it is better (more

stable) to use instead a passive attenuator stage. In figure 5.1 is shown our

stage. Pump light comes from the left, linearly polarized along the vertical

direction. A λ/2 retarder waveplate varies at will the direction of pump polar-

ization. The light emerging from the waveplate impinges on a polarizing beam

splitter (CP in the figure), that ”cuts” the impinging light, letting go ahead only

the component polarized along the vertical direction. Rotating the direction of

the first waveplate we are thus able to choose the intensity of the trespassing

light. The last stage consists of different waveplates (in figure are indicated,

as an example, a λ/2 and a λ/4); their choice (or the choice of more complex

objects, like Babinet’s compensator or a Pockel cell) depends on which kind of

polarization we want to give to the pump.

The last step of this stage is the injection lens that focalizes the pump light

on the LC sample. In this work we made use of a lens with a long focal length1

(f = 25cm).

5.2 Polarimeter stage

Another common factor between the different configurations is the polarimeter;

thus we’ll describe it briefly here. A very simple polarimeter can be realized

putting in rotation around an axis parallel to the probe propagation direction

a polarizer. A radiation with Stokes vector Sin = {S0, S1, S2, S3} impinging on

such a polarizer will emerge from it with a Stokes vector:

Sout =





1
2

(
S0 + S1 cos 2Ωt + S2 sin 2Ωt

)

1
2 cos 2Ωt

(
S0 + S1 cos 2Ωt + S2 sin 2Ωt

)

1
2 sin 2Ωt

(
S0 + S1 cos 2Ωt + S2 sin 2Ωt

)

0





. (5.2.1)

1The choice of a lens with such a long focal length furnishes a wider beam waist ('100µm
radius) in the focus; this implies higher threshold powers for OFT but contemporary guaran-
tees that the pump light can be treated as a nearly good approximation of the plane wave
limit. We want to work in such limit for the necessity of excluding finite-beam size effects
that could complicate the interpretation of our experimental results.
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Figure 5.2: A sketch of our simple polarimeter.

Such a radiation will then be collected into a photodiode, who’ll thus produce

a signal:

Vdiode ∝ S0,out =
1
2

(
S0 + S1 cos 2Ωt + S2 sin 2Ωt

)
. (5.2.2)

A lock-in amplifier with a reference signal at 2Ω will finally be provide the

measure of the phase and quadrature part of this signal:

{
X = S1

Y = S2

(5.2.3)

By means of this setup it is thus possible to measure two of the Stokes para-

meters (S1 and S2); a slight modification of this simple configuration allows

us to measure a third Stokes parameter. As a matter of fact, by adding (see

figure 5.2) after the rotating polarizer a second one with axis along a direction κ

with respect to the reference direction (the vertical), one obtains a photodiode

signal:

Vdiode ∝ c + X1 cos 2Ωt + Y1 sin 2Ωt + X2 cos 4Ωt + Y2 sin 4Ωt (5.2.4)
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where:




c = 1
4 S0 + 1

8 S1 cos 2κ + 1
8 S2 sin 2κ

X1 = 1
4 S0 cos 2κ + 1

4 S1

Y1 = 1
4 S0 sin 2κ + 1

4 S2

X2 = 1
8 S1 cos 2κ− 1

8 S2 sin 2κ

Y2 = 1
8 S1 sin 2κ− 1

8 S2 cos 2κ

(5.2.5)

represent, respectively, the c.c. value and the amplitudes of signal’s phase and

quadrature at 2Ω and 4Ω. Setting the κ value to zero the lock-in signal simplifies

to




X1 = 1
4 S0 + 1

4 S1

Y1 = 1
4 S2

X2 = 1
8 S1

Y2 = 1
8 S2

(5.2.6)

This simple apparatus thus lets us measure the Stokes parameters of the light

emerging from the LC cell2. The relationship between Stokes parameters and

director’s configuration can be easily computed by approximating LC slab as a

retarder waveplate inducing a phase shift δ (related to θ) and whose easy axis

points at the angle ϕ with respect to the vertical direction (chosen as reference

direction). The emerging Stokes vector S̄exit = {S0,exit, S1,exit, S2,exit, S3,exit}
is related to the impinging Stokes vector S̄ = {S0, S1, S2, S3} by means of the

2Please note that we can measure by means of this apparatus only three (S0, S1 and S2)
of the four Stokes parameter. Since LC are transparent, the light polarization dynamics take
place only on the Poincarè sphere and not in its inside. Thus S2

0 = S2
1 + S2

2 + S2
3 and it is

possible to deduce S3’s value (but not its sign).
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relations:




S0,exit = S0

S1,exit = S1

(
cos2 2ϕ + sin2 2ϕ cos δ

)
+ S2 sin 4ϕ sin2 δ

2+

−S3 sin 2ϕ sin δ

S2,exit = S1 sin 4ϕ sin2 δ
2 + S2

(
sin2 2ϕ + cos2 2ϕ cos δ

)
+

+S3 cos 2ϕ sin δ

S3,exit = S1 sin 2ϕ sin δ − S2 cos 2ϕ sin δ+

+S3 cos δ

(5.2.7)

5.3 First configuration

The first experimental geometry adopted was with co-propagating pump and

probe (a He-Ne laser). In figure 5.3 is shown a schematic sketch of this geometry.

The probe, whose polarization state is controlled by means of suitable polarizing

elements (depending on the choice of the probe polarization state, argument on

which we’ll discuss later; in figure is indicated by the λ/4) is injected along the

Figure 5.3: First experimental geometry: co-propagating pump and probe.

pump direction by means of a dichroic mirror; both (pump and probe) impinges

on the lens L1 that focalizes them on the LC cell, from which they emerge rapidly
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divergent. A second collecting wide lens L2 (with a 15cm diameter) is therefore

put after the cell; the light collected from this second lens impinges lastly on the

interferential filter (IF) that cuts off the pump radiation and transmits the probe

radiation, that ends up into the polarimeter stage. As in usual pump and probe

scheme, the pump induces the phenomena that are analyzed by means of the

probe. The choice of the better probe’s polarization is thus very important for

improving the apparatus sensitivity, specially at the threshold, where a detection

sensitivity as high as possible is required to avoid threshold overestimation.

5.3.1 The probe polarization

Let’s consider what happens to the probe polarization emerging from LC when

it is polarized linearly or circularly. In such cases eqs. (5.2.7) become:

• Linearly polarized light:

Let’s consider a probe light linearly polarized along the direction α. The

Stokes vector of such radiation is:

Slin = {S0, S0 cos 2α, S0 sin 2α, 0}. (5.3.8)

The Stokes vector of the radiation emerging from the sample in proximity

of the threshold (for small δ):





S0,exit = S0

S1,exit = S0 cos 2α

S2,exit = S0 sin 2α

S3,exit = −S0δ sin 2(α− ϕ)

(5.3.9)

The lock-in acquires (see eqs. (5.2.6)) S1 and S2 (related directly to X2

and Y2) and thus this configuration is not very useful, since the signals

are unable to distinguish between sample below and above threshold. The

only parameter sensitive to δ’s variations is S3, which is, as pointed out

before, not measured directly.
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• Circularly polarized light:

The Stokes vector for circularly polarized probe beam is:

S = {S0, 0, 0, σS0} (5.3.10)

with σ ± 1 depending from the light under consideration (right- or left-

handed). The Stokes vector of the radiation emerging from the sample in

proximity of the threshold (for small δ):




S0,exit = S0

S1,exit = −σS0 δ sin 2ϕ

S2,exit = σS0 δ cos 2ϕ

S3,exit = σS0

(5.3.11)

This configuration is the most sensible one, since S1 and S2 grow linearly with δ:

it is thus a good configuration, indicated for threshold detection measurements.

It is worth noting that, in this configuration, one can easily obtain δ and ϕ using

only the amplitude (R2 =
√

X2
2 + Y 2

2 ) and the phase (R2 = arctan(Y2/X2)) of

the signal3 at the frequency 4Ω:




R2 =

√(
− 1

8σS0 sin δ sin 2ϕ
)2

+
(

1
8σS0 sin δ cos 2ϕ

)2

=

= 1
8S0 sin δ

θ2 = arctan
(

S0 sin δ cos 2ϕ
S0 sin δ sin 2ϕ

)
= arctan cot 2ϕ = −π

2 + 2ϕ

(5.3.12)

Noting that the angle ψ of the major axis of the polarization ellipse is related

to θ2 by means of the simple relation:

ψ =
1
2

θ2 (5.3.13)

we obtain the that polarization ellipse in the case of circularly polarized light

emerges with a difference of phase of π/4 with respect to the sample direction
3Those expression are exact and not the series expansion for small δ given in eqs. (5.3.11).
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ϕ:

ψ = ϕ− π

4
. (5.3.14)

5.3.2 Limitations

This system, although the clever choice of the probe polarization, is not very

sensitive with respect to δ’s variations; δ should increase linearly with the far-

field self diffraction ring number. As shown in figure 5.4, this is not the case.

Figure 5.4: δ acquisition taken for a nematic sample (70µm thick) reoriented by
a linearly polarized light.

The problem of such configuration lyes in the lacking correspondence be-

tween hypothesis and real situation. Experimental data interpretation bases

itself on the assumption that the hypothesis leading to eqs. (5.2.7) are true. In

particular, it is important for δ being constant over the whole region illuminated

by the probe beam. This condition is true only if the probe transverse beam

size in correspondence of the sample is much narrower than the pump one and

transverses only the central part of the reorientated sample, part in which the δ

value remains nearly constant. This assumption was not valid. Experimentally,

the probe illuminated a region much wider then the region illuminated by the
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pump (see figure 5.5). Since both, pump and probe, were focused on the sample

by the same lens, it was very hard to make the probe narrower then the pump4;

thus we decided to adopt a different experimental configuration.

Figure 5.5: Schematic description of pump and probe behavior in proximity
of the LC in the first experimental configuration: (a) The probe spot is wider
than the pump one. (b) Transverse intensity profiles: the probe integrates over
reoriented and unoriented parts of the sample.

Figure 5.6: Second experimental geometry: counter-propagating pump and
probe.

4To make the probe narrower than the pump in correspondence of the lens focal plane,
one has to ensure the probe being wider than the pump before impinging the lens L1 (since
they are gaussian); the easiest way of making the probe wider is to make use of two lenses
confocal mounted (in telescopic configuration) but, despite the simplicity of this configura-
tion, it is not so easy to warranty a probe beam impinging on the lens L1 parallel and not
converging/diverging; in addiction, it is not possible to have a probe narrow at will, because
of limitations on the spatial extension of the telescope (the greater the zoom factor (f1/f2)
is, the longer the telescope (f1 + f2) has to be).
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5.4 Second configuration

Since the poor sensitivity of the detection apparatus in the first experimental

configuration due to the ”incorrect” spatial extension of pump and probe and

the difficulties in varying them independently, we decided to adopt a second

configuration, in which the two beams were counter-propagating. In such a way

it is possible to adjust the two beam sizes in proximity of the sample indepen-

dently, since they are focused on the sample by different lenses, as shown in

figure 5.6.

The probe polarization was chosen, according to the reasoning performed

in section 5.3.1, to be circular. The lens L2 focusing the probe beam on the

Figure 5.7: Schematic description of pump and probe behavior in proximity of
the LC in the second experimental configuration: (a) The probe spot is narrower
than the pump one. (b) Transverse intensity profiles: the probe trespasses only
the central part of the pump beam, experiencing a constant δ value.

LC sample was chosen with a very short focal length (fL2 = 3cm) and ensured

the validity of the δ constant value assumption. In figure 5.7 is schematically

showed what happens in proximity of the sample.

5.4.1 Limitations

As shown in figure 5.8, this configuration detects very sensitively directors re-

orientation, even when the far field self-diffraction pattern has not been well

developed (indicated in figure with ”sizzlings”).

The big problem of this configuration is its failure when the self diffraction pat-

tern in the far field has more then one ring. The problem is that, the more
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Figure 5.8: δ acquisition taken for a nematic sample (70µm thick) reoriented by
a linearly polarized light.

the rings are, the wider the self-diffraction pattern is. The probe beam, rapidly

diverging from its own (because focused by a short focal length lens), is too wide

to be entirely collected by the beam splitter. The more the rings, the greater

is the part of the probe that goes lost. That explains why the signal, after one

ring, is rapidly reduced.

As an attempt to solve this problem, one could make use of wider beam

splitter but it would extend the range of response of the system to two, three

rings and then there will anyway be a critical rings number over which the sys-

tem will however fail.

This setup is thus indicated for its very high sensitivity for threshold mea-

surements but fails over a certain ring number.
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5.5 Third and definitive configuration

Taking into account the difficulties related to the fact that the probe beam had

to obey to the laws of the gaussian optics and to its limitations and that we are

seeking for a detection apparatus working in every experimental range, our last

experimental setup was realized renouncing to a probe laser beam. We used

instead as probe a white, depolarized light source (emitted from a light bulb),

and realized a probe detection apparatus consisting in an opportune modifica-

tion of the classical polarized microscope. The sketch of our experimental setup

is shown in figure 5.9.

Since, to our knowledge, this work represent the first time in which such an ap-

paratus is used to characterize the interaction between light and liquid crystals,

few words have to be spent about the meaning of the acquisitions performed by

means of this experimental setup.

Figure 5.9: A sketch of the third experimental setup.

5.5.1 Microscope observations: the probe arm of the ex-

perimental setup.

Since the probe light illuminate a region of the sample much wider (order of

magnitude) than the pump beam size, the assumption of a constant δ profile



69

won’t be valid anymore.

Let us then start by approximating the liquid crystal (LC) cell as a retarda-

tion waveplate with nonuniform phase shift δ(x, y) and easy axis at an angle ϕ

with respect to a reference direction (chosen, for convenience, along the linear

polarization of the Verdi laser).

Figure 5.10: The probe’s path.

The probe arm of the experiment is made by a light source (a light bulb

which emits unpolarized white light isotropically along every direction), a col-

limating stage (a set of lenses), a first polarizer at an angle η with respect to

the reference direction, the LC cell (described, as stated above, as a retarder

plate), the second polarizer (crossed with respect to the first polarizer at an an-

gle η + π/2) and, finally, the microscope objective. A schematic representation

of the probe arm can be found in figure 5.10.

The intensity of the radiation emerging from such a system is:

S0,out =
1
2

sin2 δ(x, y)
2

sin2[2(η−ϕ)]
(
S0,in +S1,in cos 2η+S2,in sin 2η

)
(5.5.15)

where Si(i, 0, .., 3) are the Stokes parameters.

If the first polarizer is along the vertical, this expression simplifies to:

I =
I0

2
cos2 η sin2[2(η − ϕ)] sin2 δ(x, y)

2
. (5.5.16)
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where I0 is the intensity of the light impinging the first polarizer5.

At this point it should be described how the LC reorientates and, thus,

which shape should be given to δ(x, y) for a good description of the reorien-

tation profile6. Firstly, we assume a gaussian reorientation profile centered on

the laser beam; then, taking into account the effects of the elastic anisotropy

of liquid crystals, we assume this profile being, rather than circular, elliptical

(characterized with its long axis at a direction γ with respect the x axis and

amplitudes 2σx and 2σy, as shown in figure 5.11); we then obtain:

δ(x, y) = nπ e
− (x cos γ+y sin γ)2

σ2
x

− (y cos γ−x sin γ)2

σ2
y (5.5.17)

where n represents, the gaussian’s amplitude, in π units, at the origin.

Figure 5.11: Schematic representation of the delay profile.

The resulting probe intensity profile is:

I(x, y) =
I0

2
cos2 η sin2 [2(η − φ)] sin2

[nπ

2
e
− (x cos γ+y sin γ)2

σ2
x

− (y cos γ−x sin γ)2

σ2
y

]
.

(5.5.18)

Figure 5.12 shows intensity profiles during a typical LC reorientation process

(for example the Fréedericksz transition under linearly polarized light), charac-

terized by an increasing value of n and fixed values of the other parameters.

A very important consequence of expression (5.5.18) is that the angle ϕ ap-
5The factor 1/2 arises because the input light is unpolarized.
6The reorientation is assumed to lie in a plane at angle ϕ with respect to the horizontal

axis.
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Figure 5.12: Intensity profile of the probe radiation emerging from the system
(LC+polarizers) according to expression (5.5.18); parameter values used for this
simulation: S0 = 1, η = π/4, ϕ = 0, γ = π/4, σx = 0.9, σy = 0.6).

pears only in the factor sin2[2(η−ϕ)] and is thus ”decoupled” from the δ-terms

of the reorientation profile: ϕ regulates only (depending from the amount of

the ”crossing” with the polarizer’s angle η) the relative value of the maximum

of the intensity profile, independently of the gaussian’s amplitude and direction

and it doesn’t act on the gaussian’s shape. So, a steadily growing value of ϕ

doesn’t imply, as someone could wrongly expect, a rigid rotation of the concen-

tric ring pattern; rather it determines a periodical modulation of its intensity.

An example of this behaviour is shown in figure 5.14.
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Figure 5.13: As clearly shown in this example, n in expression (5.5.17) represents
the number of maxima and minima of a section of probe’s intensity profile
moving from the middle of the pattern towards the external part.

5.5.2 Pump polarization state.

Besides the polarimeter microscope with the probe bulb lamp, in our experi-

mental setup a second polarimeter analyzes the pump radiation emerging from

the LC sample, as can be seen in figure 5.9. In such configuration δ can not be

assumed to be constant and its inhomogeneities has to be taken in account.

Let us consider a generic pump polarization state:

Sin = {S0, S1, S2, S3}.

This radiation impinges directly on the LC cell7, approximated as a retarder

waveplate plate δ(x, y) at angle ϕ, and emerges from it with an ellipticity:

S3,out = S1 sin δ sin 2ϕ− S2 sin δ cos 2ϕ + S3 cos δ. (5.5.19)

The major axis of the polarization ellipse will be at an angle ψ such that:

tan 2ψout =
S2,out

S1,out
=

=
S1 2 sin 4ϕ (1− cos δ) + S2 (sin2 2ϕ + cos2 2ϕ cos δ) + S3 cos 2ϕ sin δ

S1 (cos2 2ϕ + sin2 2ϕ cos δ) + S2 2 sin 4ϕ (1− cos δ)− S3 sin 2ϕ sin δ
.

(5.5.20)

Such an expression is very complicated and depends strongly on δ’s shape.

However there is a very special case in which this expression simplifies notably:
7in what follows, for sake of simplicity, we’ll use δ instead of δ(x, y) but it should anycase

be kept in mind that we are dealing with a nonuniform reorientation profile.
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Figure 5.14: The increasing value of ϕ doesn’t change the shape of the concentric
ring pattern: it acts only on its brightness, modulating it periodically.

the circular polarization case. In such a case, the initial pump polarization state

is:

Sin = {S0, 0, 0, σS0}

(with σ = ±1 depending from the handedness of the light) and ψ’s expression

simplifies to:

ψout = −1
2

arctan cot 2ϕ = −ϕ± π

4
(5.5.21)

(the sign + or − are depending from the choice of the tangent’s determination).

It is worth noting that in this case ψout is independent from δ(x, y), whatever

complicated shape it possesses, and depends uniquely on the angle ϕ of the easy
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axis of the plate.

Reassuming, our probe apparatus (the microscope) allows us to easily obtain

the reorientation profile shape’s parameters (i. e. n, γ, σx and σy) but it doesn’t

work so good in measuring the angle ϕ.

However, the polarization state of the pump radiation emerging from the LC cell

carries information about the LC reoriented state too: ϕ can be thus obtained

from it.
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Figure 5.15: Schematical representation of a typical cell section.

5.6 Samples and mixtures

In figure 5.15 it is schematically represented a LC cell, composed by two glasses

preventively covered with a surfactant for strong homeotropic anchoring and

separated by two Mylar spacers (nominal thickness 70µm).

The used surfactant is D.M.O.A.P. (n-octadecildimetil[3-(trimetoxisilil)propil]-

-ammoniocloride). The cells on which the electric field has to be applied were

realized by making use of I.T.O. (Indium Tin Oxide) coated glasses.

Figure 5.16: Frontal view of the sample aligned parallel to the vertical, at 45o

and along the horizontal direction.

The cholesteric LC used in the reported experimental acquisitions is a mix-

ture obtained by a doping the pure nematic E7 (produced by Merck) with the

chiral agent C15 (produced by Merck too); for the mixture used in our experi-

ment C15’s per cent concentration is cC15 = 1.31± .0.01% w/w for our mixture.

The pitch of such a mixture, as desired, is slightly longer than the critical
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threshold value for our cell thickness (70µm). This mixture shows a singular

behaviour: it is so near to the critical value, that shows dependence from the

gravity that is not present in other mixtures far away from this critical situa-

tion. As a matter of fact, rotating the sample around the z axis (the horizontal

axis of laser propagation) the fluxes within the fluid favor the formation of a

cholesteric finger pattern in which the finger are parallel to each other and whose

axis points along (or normally to) the vertical. In figure 5.16 are represented

Figure 5.17: The referred positions are those showed in figure 5.16. (a) sample
in the vertical position - (b), (c) and (d) sample at 45o - (e) and (f) sample in
the horizontal position.

the sample directions for the pictures taken in figure 5.17. In figure 5.17-(d), for

example, we can see how the fingers tend to align their axis along the vertical,

that is at 45o with respect to the mylar stripes.
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Figure 5.18: The relaxation from thefinger domain to the homeotropic one.

In figure 5.18 is shown the slow relaxation from the striped finger domain

to the homeotropic configuration. Being the pitch near to the critical value,

this relaxation process needed about 40 hours to reach its stable configuration

(without fingers).

In figure 5.19 it is shown the behaviour of the opposite situation: the mixture

(cC15 = 1.39± .0.01%) had a pitch slightly shorter than the threshold value; the

system thus spontaneously tended to form the fingerprint texture (note that in

this case the texture is no more striped, resembles really fingerprints because of



78

its irregularity and the direction of gravity does not matter any more).

Figure 5.19: Spontaneous fingerprint texture formation.



Chapter 6

Nematic samples

In this chapter we’ll report our experimental observations taken on the well stud-

ied case of OFT in nematic samples1; we monitored the reorientation process

with our new detection apparatus, whose ability to detect the shape of the re-

orientation pattern leads to an unexpected result in the case of circularly polar-

ized impinging light, where the S.I.S.L.S. (described in section 3.4) phenomenon

takes place. A model developed beyond the planar distortion hypothesis needs

to be developed for a fitting description of the experimental observations.

Figure 6.1: Spatial extension of the reorientation pattern for linearly polarized
pump light.

1As said in the preceding chapter, the samples used in the experiments are 70µm thick
cells.
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6.1 Linearly polarized pump light

In the case of linearly polarized pump light, the reorientation process is sup-

posed to proceed with an increasing δ value in correspondence of increasing

values of the pump power. Contemporary, one expects the ϕ value remaining

constant.

In figure 6.2 are shown the pictures for the reorientation profile taken for dif-

Figure 6.2: Experimental acquisitions (left column) versus inhomogeneous re-
tarder waveplate predictions (right column).

ferent values of the pump power and are confronted with the predictions of the
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model developed in section 5.5.1. These simulations were performed by leav-

ing ϕ unchanged and contemporary increasing δ, or, precisely, the value of the

gaussian amplitude n at the origin (referring to eq. (5.5.17)).

As one can see, the agreement between predictions and experimental obser-

vations in the case of linearly polarized pump light is very good.

In figure 6.1 are shown the diameters of the reorientation profile (analysis

performed by marking every picture and monitoring the markers) as a function

of the pump power.

Figure 6.3: Director’s rotation angular velocity (pump circularly polarized σ−).

6.2 Circularly polarized pump light

The case of circularly polarized pump makes clear the innovation introduced by

our detection apparatus. To understand why, we can confront the acquisitions

taken from the polarimeter stage and the acquisition taken from the microscope

(our probe).

In the case of circularly polarized pump, it is expected that, for a given value of

the pump power, δ remains constant while ϕ increases linearly with the time,
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corresponding to a physical situation in which the molecular director n̂ rotates

along the z direction (pump laser direction of propagation). As suggested in

section 5.5.1 and simulated in figure 5.14 such behaviour would imply a trans-

mitted intensity profile ”fixed” (i.e. whose shape remains frozen) but oscillating

in its brightness (depending from the crossing between ϕ and the direction of

the axis of the crossed polarizers).

Figure 6.4: Director’s rotation angular velocity (pump circularly polarized σ+).

Observing polarimeter’s acquisitions (see figures 6.3 and 6.4), one would

probably agree that such predictions are correct, since the director rotates for

every pump power. This picture unfortunately doesn’t correspond to the phys-

ical reality entirely. The differences emerge when we observe2 the behaviour of

the reoriented pattern (see figure 6.5).

As expected, the pattern brightness oscillates periodically but δ doesn’t re-

main frozen (as the pattern simulated in figure 5.14 does). The whole pattern

is put in rotation by the light. This effect was never observed before. The

acquisition systems used till now gained their information, as described in sec-

tion 3.3.2, eq. (3.3.19), by the far field self diffraction ring pattern; this system

2It is possible to download the videos of the dynamic behaviour of the re-
oriented pattern in this and other experimental configurations from the web page:
http://people.na.inf.it/∼anton/PhD.html.
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Figure 6.5: Pictures of the reoriented pattern under circularly polarized light.

furnishes the amplitude of the gaussian profile at the origin (n/π in our no-

tation), that doesn’t change, since the whole pattern rotates rigidly, without

changing its shape. Correspondingly, in our inhomogeneous waveplate retarder

model, this situation implies that γ’s value increases while the other parameter

remain constant, given the pump power value.

From the comparison between pictures and polarimeter acquisition we can

deduce that ϕ and γ velocity are synchronous.

Such results have never been observed before nor have been foreseen by

any numerical model (that are usually developed in the planar deformation

hypothesis n̂(~x, t) = n̂(z, t)).
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6.3 3-d model

Recently our group has developed a three-dimensional dynamical model based

on the Ritz variational principle for analyzing the results of light’s orbital angu-

lar momentum (related to the transverse beam profile) transfer in liquid crystals

[Piccirillo et al. (2005)].

Such a model goes beyond the planar distortion approximation, retaining all

the x, y and z coordinates in the molecular director, and takes in account the

anisotropies in the molecular response: it is thus able to describe our experi-

mental observations.

This model is based on a set of ODEs obtained by applying the Ritz varia-

tional method to the nematic free energy F and the dissipation function R of

the whole sample. The method consists in assuming realistic space profiles of

the director field n̂(~x, t; p) and of the optical field ~E(~x, t; p) in the sample. The

profiles n̂(~x; p(t)) and ~E(~x; p(t)) depend on time through a set of parameters

pi(t) (i = 1, ..., N) and are chosen so to calculate analytically the free energy

F(p) and dissipation function R(p) as explicit functions of the parameters pi.

The pi(t) time evolution is then evaluated from ODEs

∂F
∂pi

=
∂R
∂ṗi

(i = 1, ..., N). (6.3.1)

where ṗi denotes the time derivative of the parameters pi.

Crucial to the method is the choice of the profiles of n̂(~x; p(t)) and ~E(~x; p(t)),

that must be as realistic as possible. Since the model deals with beams carrying

either orbital and spin angular momentum (thus chosen to be elliptically shaped,

with beam waists along the x and y direction, respectively, wx and wy), the

profiles of for the polar angles θ and φ of n̂ = (sin θ cos φ, sin θ sin φ, cos θ) are

supposed to be elliptically shaped; their expression is:

θ = θ(x, y, t) = θ0(t)e
− 1

2L2 ρ·Q(t)ρ ρ = (x, y), (6.3.2)

and

φ = φ(z, t) = φ0(t)− φ1(t) cos
(πz

L

)
, (6.3.3)
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where L is the sample thickness. The matrix Q(t) in Eq. (6.3.2) is given by

Q(t) = R−1(γ(t))Q0(t)R(γ(t)) where R(γ(t)) is the 2×2 matrix representing

the rotation of angle γ(t) and Q0(t) is defined as

Q0(t) =

(
α1(t) 0

0 α2(t)

)
(6.3.4)

where αi are related to the amplitudes of the θ profile by means of the re-

lation α1,2 = 2L2/(wθ
1,2)

2. The profiles in Eqs. (6.3.2) and (6.3.3) obey the

boundary conditions for homeotropic alignment, viz. θ(0) = θ(L) = 0 and

∂φ/∂z(0) = ∂φ/∂z(L) = 0.

The parameters pi(t) (i = 1, . . . , 6) of our model are the maximum tilt angle

θ0(t), the rotation angle φ0(t), the torsion angle φ1(t) and, finally, the three

independent entries of the 2×2 symmetric matrix Q(t) defining the transverse

profile of θ. More precisely, we defined pi = (φ0, φ1, γ, θ0, α1, α2) in this order.

All the parameters pi are dimensionless.

When the profiles of eqs. (6.3.2) and (6.3.3) are inserted in the usual Frank’s

elastic free energy (2.3.28), the integration over the sample volume can be carried

out, leading to the expression:

F = πk33L
16
√

α1α2

[
4π2 +

(
A + B

)
(α1 + α2)+

−
(
A−B

)
(α1 − α2) cos[2(γ − φ0)]

]
θ2
0

(6.3.5)

In the equations above, we posed A = 1 − k11/k33 and B = 1 − k22/k33 and

we retained terms up to the second-order in θ0 and to the first order in φ1. No

conditions have been posed on the rotation angle φ0.

Because in nematics A > B, we see from eq. (6.3.5) that, when θ0 6= 0 and,

for example, α1 > α2, the free energy is minimum if φ0 = γ. A restoring force

then results tending to orient the average azimuthal angle φ0 of the director

along the major axis of the elliptic profile of the θ-distribution. This coupling

between φ0 and γ angles vanishes when the twist and the bend elastic constants

are equal (k11 = k22 ⇒ A = B) or when the laser induced θ-distribution is cylin-

drically symmetric around the z-axis. This effect is obviously cancelled out in
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the one-elastic-constant approximation.

The optical contribution Wo to the free energy is obtained by integrating

over the sample volume the density:

w0 =
I0

4 c no
(n̄2(θ)− n2

o)
(
S̃0 + S̃1 cos 2φ + S̃2 sin 2φ

)
(6.3.6)

where c is the speed of light, S̃i = Si(z)/S0(0) (i = 0, ..., 3) are the Stokes para-

meter of the beam polarization inside the sample divided by the value S0(0) of

the Stokes parameter S0 at the input plane of the nematic film, I0 = (c/8π)S0(0)

is the incident laser intensity, n̄(θ) is the refractive index as seen by the extra-

ordinary wave, and, finally, no is the refractive index of the ordinary wave.

The Stokes parameters Si are calculated from the explicit expression of the

optical electric field in the Geometric Optic Approximation (GOA) for plane

waves [Zel’dovich and Tabiryan (1982)].

The dissipation function density expression is:

R =
γv

2
(n×ṅ)2 (6.3.7)

where γv is an effective viscosity coefficient. Up to terms in θ2
0, R can be

expressed as:

R =
(π k33 Lτ

2
√

α1α2

)
θ2
0(M)−1

ij ṗiṗj (6.3.8)

where τ = γvL2/k33 is the characteristic response time of the system.

Eqs. (6.3.1) can be then put in the form

ṗi = MijTi (6.3.9)

where Ti are the torque defined by:

Ti =
∂F tot

∂pi
(6.3.10)
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and Mij is given by:

M =




2 + θ2
0
4 0 0 0 0 0

0 8 + 2θ2
0

3 0 0 0 0

0 0 8α1α2
(α1−α2)2

0 0 0

0 0 0 4θ2
0 4α1θ0 4α2θ0

0 0 0 4α1θ0 16α2
1 0

0 0 0 4α2θ0 0 16α2
2




. (6.3.11)

Retaining all the terms up to the fourth order in θ0 and φ1, the elastic free

energy expression will be:

Fe = F0 {P0 + P1(α2 + α1) + P2(α2 − α1) cos[2(γ − φ0)]} (6.3.12)

where

F0 =
πk33L

16
√

α1α2
. (6.3.13)

and P0, P1, P2 are polynomials given by:




P0 = π2
[
(4 + 3φ2

1)θ
2
0 +

(
A−1

2 − 5
3φ2

1

)
θ4
0

]

P1 = (A + B)θ2
0 − 3

16 (A− 1)θ4
0

P2 = −(A−B)
(
1− 1

2φ2
1 + 1

12φ4
1

)
θ2
0+

+ (A−1)
16

(
3− φ2

1 + 1
8φ4

1

)
θ4
0

(6.3.14)

The elastic contributions to the torques Ti can be obtained by derivation of

Fe with respect to the pi:

T e
φ0

= 2F0P2(α2 − α1) sin[2(γ − φ0)] (6.3.15)

T e
φ1

= F0 {Q0 + Q1(α2 + α1) + Q2(α2 − α1) cos[2(γ − φ0)]} (6.3.16)

T e
γ = −T e

φ0
(6.3.17)

T e
θ0

= F0 {T0 + T1(α2 + α1) + T2(α2 − α1) cos[2(γ − φ0)]} (6.3.18)

T e
α1

= − F0

2α1
{P0 + P1(α2 − α1) + P2(α2 + α1) cos[2(γ − φ0)]}(6.3.19)

T e
α2

= − F0

2α2
{P0 − P1(α2 − α1)− P2(α2 + α1) cos[2(γ − φ0)]}(6.3.20)
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where the polynomials Qi e Ti (i = 0, 1, 2) are given by:





Q0 = π2φ1

(
6θ2

0 − 10
3 θ4

0

)

Q1 = 0

Q2 = φ1

[
(A−B)

(
1− 1

3φ2
1

)
θ2
0 − (A− 1)

(
1
8 − 1

32φ2
1

)
θ4
0

]
(6.3.21)





T0 = π2
[(

8 + 6φ2
1

)
θ0 +

(
2(A− 1)− 20

3 φ2
1

)
θ3
0

]

T1 = 2(A + B)θ0 − 3
4 (A− 1)θ3

0

T2 = −(A−B)
(
2− φ2

1 + 1
6φ4

1

)
θ0+

+A−1
4

(
3− φ2

1 + 1
8φ4

1

)
θ3
0

(6.3.22)

To the same approximation, the optical contributions to the torques Ti are

given by

T o
φ0

=
σP

ω

[
Z(1− cos α)− α2G4,0(α)

6β
[3δZ + 2(2− 6δ)Z2]

]
(6.3.23)

T o
φ1

= −σP

ω

[
2ZαG2,1(α)− α2G4,1(α)

6β
[3δZ + 2(2− 6δ)Z2]

]
(6.3.24)

T o
γ = −P

ω (α1 − α2)(w2
1 − w2

2) sin 2γ

[
Z3α

8 − α2

64β [3δZ3 − 4(3δ − 1)Z3
2 ]

] (6.3.25)

T o
θ0

= −P

ω

[
Z(βα)1/2 − (α)3/2

8
√

β
[3δZ − 4(3δ − 1)Z2]

]
(6.3.26)

T e
α1

=
P

ω

[
B1Z

3α

6
− α2

16β
[δB1Z

3 − 4(3δ − 1)C1Z
3
2 ]

]
(6.3.27)

T e
α2

=
P

ω

[
B2Z

3α

6
− α2

16β
[δB2Z

3 − 4(3δ − 1)C2Z
3
2 ]

]
(6.3.28)

where σ = ±1 depends on the polarization helicity, P is the power of the

incident beam, ω is the optical frequency, δ = 1 − n2
o/n2

e, β = πnoδL/2λ, and

α = βθ2
0 is the small distortion expression for the phase difference accumulated

by the extraordinary and ordinary waves in traversing the sample. Moreover,

in Eqs. (6.3.23-6.3.28) we posed

Gm,n(α) =
∫ 1

0

dz sinm(πz) cosn(πz) sin
[
α

(
z − sin πz

2π

)]
, (6.3.29)
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



B1 = 3
4 (w2

x cos2 γ + w2
y sin2 γ + 1

2w2
xw2

yα2)

B2 = 3
4 (w2

y cos2 γ + w2
x sin2 γ + 1

2w2
xw2

yα1)

(6.3.30)





C1 = 1
4 (w2

x cos2 γ + w2
y sin2 γ + w2

xw2
yα2)

C2 = 1
4 (w2

y cos2 γ + w2
x sin2 γ + w2

xw2
yα1)

(6.3.31)

{
Z = Z(α1, α2, γ) = [1 + α1(B1 − C1) + α2(B2 − C2)]−1/2

Z2 = Z(2α1, 2α2, γ)
(6.3.32)

The quantities Z and Z2 have a simple geometrical meaning. They represent,

in fact, the superposition integrals of the profiles of θ2 and θ4 as obtained

from Eq. (6.3.2) with the profile of the intensity I of the incident wave, viz.

Z = θ−2
0 I−1

0

∫
θ2I dxdy, Z2 = θ−4

0 I−1
0

∫
θ4I dxdy, I0 = 2P/(πwxwy). Look-

ing at expressions of the optical torques, we may identify the right-hand side

of Eq. (6.3.23) as the expression of the overall photon spin angular momen-

tum (P/ω)∆s3 and the right-hand side of Eq. (6.3.25) as the expression of the

overall photon orbital angular momentum (P/ω)∆Lz transferred to the sam-

ple in our approximation3. The Z factors appearing in these expressions come

from averaging over the not uniform index and light intensity transverse profiles.

From Eq. (6.3.25) we see that ∆Lz vanishes in the case of a laser beam having

circular cross section (wx = wy) and it is proportional to sin 2γ. Another inter-

esting feature of our model is that the elastic torques T e
φ0

and T o
γ are opposite.

They are indeed internal elastic torques tending to align γ to φ0. The existence

of these internal torques is related to the elastic anisotropy of the material and

to the consequent lack of invariance of the elastic free energy when the director

is rotated. When the torques acting on φ0 and γ are added together, the internal

elastic torques cancels out, and we recover the total angular momentum balance.

The ODE’s of our model were solved by standard Runge-Kutta routine using

tabulated values of the material constants of E7 at room temperature, namely
3∆Lz refers to one photon
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k11 = 11.09·10−7 dyne, k22 = 5.82·10−7 dyne, k33 = 15.97·10−7 dyne, no = 1.52,

ne = 1.73, were kii (i = 1, 2, 3) are the material elastic constants for splay, twist

and bend, and no, ne are the ordinary and extraordinary refractive indices, re-

spectively. The sample thickness used in this simulation was L= 50µm.

Figure 6.6: Numerical integrations results. - part 1.
Ĩ represents the normalized laser intensity.

In figures 6.6 and 6.7 are shown the results of the numerical integration

of the above described model performed in a configuration resembling our ex-

perimental geometry (beam with transverse circular profile and beam waists



91

wx = wy = 50µm: we are thus excluding orbital angular momentum effects).

Figure 6.7: Numerical integrations results. - part 2.

Every picture shows the values of the model parameters pi at a given power

value and on a certain dynamical branch. The parameter α shown in figure 6.6

is related tho the amplitude n of the reorientation pattern (see eq. (5.5.17)) is

related by means of the relation α = 2n. The parameters α1 and α2 correspond

to σx and σy. The different colors in the simulations are chosen in accordance

with the following convention: blue tonalities are used for integrations in which

the intensity was increased at every integration step while green tonalities were

used when the intensity was decreased.

Such integrations (and the other performed using different parameter values)

show anyway that a beam circularly shaped and impinging on an elastically

anisotropic nematic LC gives rise to a reorientation pattern that is elliptically

shaped4 (see in figure 6.6 the part relative to the ratio α1/α2) and rotates, ex-

actly like experimental observations suggest: φ0 and γ grow with the time with

4The pattern becomes circularly shaped only in the case of the elastically isotropic LC,
that is when A = B.
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the same velocity (see figure 6.7) while the other parameters are time indepen-

dent. Please note that, although φ0 and γ rotate with same angular velocity,

they have different values and their difference depends upon the intensity value

and the other parameters.

6.3.1 Search for a rigidly rotating solution

From eqs. (6.3.9) the dynamic equation for γ and φ0 are:




γ̇ = mγ,j Tj

φ̇0 = mφ0,j Tj

(6.3.33)

where mi,j are the matrix elements of M . From eq. (6.3.11) it is easy too see

that M acts diagonally on both γ and φ0; eqs (6.3.33) will therefore be:




γ̇ = mγ,γ Tγ = mγ,γ T e
γ + mγ,γ T o

γ

φ̇0 = mφ0,φ0 Tφ0 = mφ0,φ0 T e
φ0

+ mφ0,φ0 T o
φ0

(6.3.34)

For sake of simplicity, let’s denote mφ0,φ0 = mφ0 and mγ,γ = mγ . Remembering

that

T e
γ = −T e

φ0
(6.3.35)

for sake of simplicity we call it the internal torque Tint. Expressing then the

optical torques as: 



T o
φ0

= P
ω ∆S3

T o
γ = P

ω ∆Lz

(6.3.36)

eqs. (6.3.34) become:




γ̇ = mγTint + mγ
P
ω ∆Lz

φ̇0 = mφ0Tint + mφ0
P
ω ∆S3

(6.3.37)

Since we are considering beams with transverse circular profile, there will be no

orbital angular momentum transfer and ∆Lz = 0. Since we are looking for a

rigid solution, we make the Ansatz that γ − φ0 = cost.; since, from eq. (6.3.23)
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Tint = Tint(γ − φ0), our Ansatz implies that the internal torque too has to be

constant. Moreover, γ − φ0 = cost. ⇒ γ̇ = φ̇0. Let’s call their angular velocity

Ω:

Ω = γ̇ = φ̇0. (6.3.38)

Under such assumptions eqs. (6.3.37) become:




Ω = mγTint

Ω = mφ0Tint + mφ0
P
ω ∆S3

(6.3.39)

Multiplying the first equation for mφ0 and the second one for mγ and adding

them together member by member, we obtain:

(mφ0 + mγ)Ω = mφ0mγ
P

ω
∆S3 (6.3.40)

and finally

Ω =
mφ0mγ

(mφ0 + mγ)
P

ω
∆S3 (6.3.41)

This result is indeed very important because, for ordinary LC, elastic an-

isotropies are very small (∆k/k ¿ 1) and thus α1 − α2 ' 0. If one sees at the

expression of the matrix M would then understand that the term mγ will be

much greater with respect to mφ0 . Expanding for small mφ0 we then obtain:

Ω ≈ P

ω
∆S3. (6.3.42)

This result is very important because on one side it is coherent with paste

experiments [Santamato et al. (1986, 1987, 1988)] but contemporary on the

other side allows the existence of our rigidly rotating solution; the one doesn’t

exclude the other.
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Chapter 7

Cholesteric samples

In this chapter we’ll report our observations performed on cholesteric samples

with our new detection apparatus. The mixture used, as anticipated in sec-

tion 5.6, was obtained by solving some chiral molecules (C15 from Merck) into

the nematic E7. The concentration of the used mixture is cC15 = 1.31± .0.01%.

Figure 7.1: Linearly polarized impinging light: spatial extension of the reorien-
tation pattern.

95
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7.1 Linearly polarized light

Under linearly polarized pump light our cholesteric samples had three different

kind of responses, as shown in figures 7.1, 7.2 and 7.3, where are reproduced,

Figure 7.2: Linearly polarized impinging light: ϕ values obtained from the
polarimeter.

respectively, the value of the reoriented pattern extension (σx and σy), ϕ’s value

(taken from the polarimeter) and γ’s value (taken from microscope pictures).

In the pictures we have distinguished three regions: (1), (2) and (3).

• region (1):

O.P.L. region. In this range the value of the induced birefringence in

the sample remains frozen. As expected from the authors of ref. [Ab-

bate et al. (1996)] the excess energy stored into the sample, that cannot

induce a sample birefringence increase, twists the structure, providing a

polarization-rotator effect (λ/2-like). In fact, if one considers the behav-

iour of ϕ: the light emerging from the sample is polarized along a direction

that depends from the pump power. In this region γ’s remains constant

(the reoriented pattern doesn’t rotate).
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Figure 7.3: Linearly polarized impinging light: γ values gained from the pic-
tures.

• region (2):

In this region ϕ remains constant while the reorientation pattern grows

and rotates: σi and γ grow very rapidly. Thus, in this range, the energy

excess increases the sample birefringence and doesn’t increase the twist of

the structure.

• region (3):

In this last region all the systems parameters grow slowly: the reoriented

pattern grows (σi increase), rotates (γ increases) and ϕ changes.

It seems thus that these measurements confirm the physical pictures conjec-

tured from the authors of reference [Abbate et al. (1996)].

7.2 Circularly polarized light

As anticipated in section 3.5, a cholesteric sample, because of its intrinsic helicity

due to its chirality, distinguishes, unlike nematics, between left-handed and

right-handed circularly polarized light. Thus we have to consider the two cases



98

separately.

7.2.1 Concordant helicities: light circularly polarized (σ−)

Figure 7.4: Circularly polarized light with the same helicity of the cholesteric
helix (σ−): α/2π.

Figure 7.5: Circularly polarized light with the same helicity of the cholesteric
helix (σ−): angular velocity ∂t ϕ.

In this case too the authors of reference [Abbate et al. (1996)] and the au-

thors of the more recent work [Brasselet et al. (2005)] made some predictions

based on their theoretical model.
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They observed in this case, as in the case of linearly polarized pump, an

optical phase locked phase, after which the system jumped abruptly to a highly

distorted state. Their model predicted besides the presence of director’s rota-

tions, in some specific experimental parameters range, but they didn’t observed

them.

From figure 7.4 appears clear that the system remains in OPL state after

which jumps on an highly distorted state (not represented in figure). If one con-

siders instead figure 7.5 one can see that the predictions were true: the director

rotates.

7.2.2 Discordant helicities: light circularly polarized (σ+)

Figure 7.6: Circularly polarized light with the same helicity of the cholesteric
helix (σ+): α/2π.

The results obtained in this configuration are in contrast with the predic-

tions made by the above cited authors.

In fact they predicted the absence of the OPL state and the absence of di-

rector’s rotation.
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Figure 7.7: Circularly polarized light with the same helicity of the cholesteric
helix (σ+): angular velocity ∂t ϕ.

As one can see from figure 7.6, there is indeed no OPL: the sample bire-

fringence grows with the pump power. The great contrast between theoretical

predictions and experimental observations comes out when we consider ϕ’s be-

haviour: it rotates too (see figure 7.7).

The discrepancy between the models and experimental observations is prob-

ably due to the fact that, as in the case of nematics, the models are developed

in the plane distortion hypothesis (n̂(~x, t) = n̂(z, t)) and that, as in the case of

nematics, this hypothesis seems to be too crude. In this configurations seems

to work the same (γ − φ0) coupling phenomenon present in the nematic case.

An extension of the 3-d model showed in section 6.3 for the case of cholesteric

LCs could be probably able to explain such new experimental observations.

7.3 Depolarized light

At last we considered the case of depolarized pump light, for such there are no

reference in literature. Our first requirement was the choice of how to be-

come depolarized light. For obtained depolarized light, we followed the method

adopted in reff. [Arnone et al. (1996); Marrucci et al. (1998)], that is we made



101

Figure 7.8: A path on Poincarè’s sphere equivalent to the one described by
eqs. (7.3.1)

the pump polarization vary very rapidly (that is, rapidly than the molecular

response time) by means of an electro-optic device (a Pockel’s cell).

The choice of how to drive the Pockel’s cell was very critical. In refer-

ences [Arnone et al. (1996); Marrucci et al. (1998)], the cell was driven by a

saw-tooth voltage function (with period T ) oscillating between two different

voltages, chosen to produce the polarization dynamics:




s1(t) = 0

s2(t) = sin( 2πt
T )

s3(t) = cos( 2πt
T )

(7.3.1)

Such a configuration presents two inconveniences for our purposes: it covers the

Poincaré sphere following always the same verse (this problem can be solved

by using a triangular wave instead of the saw-tooth) and possesses a privileged

direction (45o in the case of 7.3.1, see figure 7.8 for the path on the Poincarè

sphere). This condition is inadmissible for our purposes because a privileged

direction could prevent the rotations are we looking for.

For avoiding such problem one could put in rotation around the z axis the

Pockel’s cell (for varying the privileged direction) but such a solution seems
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Figure 7.9: Depolarized impinging light: spatial extension of the reorientation
pattern.

impracticable. A more feasible solution is to let the system directly jump from

one pole on the sphere to the other by driving the cell with a square wave. In

such a way the polarization dynamics is:




s1(t) = 0

s2(t) = 0

s3(t) = σ(t)

(7.3.2)

where σ is a square wave jumping from +1 to -1 periodically. In this way the

system doesn’t possess any preferred direction more.

The results of our observations of the cholesteric behaviour under depolarized

light can be again split into three parts:

• region (1):

O.P.L. region. In this range the value of the induced birefringence in the

sample remains frozen. The sample shows in this case too a polarization-
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Figure 7.10: Depolarized impinging light: ϕ values obtained from the polarime-
ter.

rotator effect (λ/2-like), almost unexpected indeed since the impinging

light is depolarized while the light emerging from the sample is polarized

along a direction that depends from the pump power. In this region γ’s

remains constant (the reoriented pattern doesn’t rotate).

• region (2):

In this region ϕ remains constant while the reorientation pattern grows:

σi grow while ϕ and γ are almost constant.

• region (3):

In this last region all the systems parameters grow and γ begins to rotate,

as under circularly polarized light.



104

Figure 7.11: Depolarized impinging light: γ values gained from the pictures.



Chapter 8

Electric field effects in

cholesterics: the Lehmann

rotation

In this last chapter we’ll discuss our experimental observations performed on

cholesteric samples on which was applied an electric DC field. As mentioned in

in chapter 5 the samples were realized with ITO coated glasses.

Two different experimental configurations were performed in this last set of

Figure 8.1: Angular velocity versus ∆V . Impinging light power: P = 134 mW.

105
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Figure 8.2: Angular velocity versus ∆V . Impinging light power: P = 137 mW.

measurements1: the search for the Lehmann rotation for samples reoriented

with depolarized light and the study of the competition between the Lehmann

torque, due to the cross-couplings, and the spin angular momentum transfer

from circularly polarized light.

Figure 8.3: Angular velocity versus ∆V . Impinging light power: P = 141 mW.

1The movies relative to the measurements reported in this chapter will be available at the
web page http://people.na.infn.it/∼anton/PhD.html.



107

8.1 Lehmann rotation under depolarized light

The first set of measurements was performed with depolarized light. The choice

of such kind of light was taken to avoid the eventuality that the observed rota-

tions were due to the light spin angular momentum transfer, since, as we have

Figure 8.4: Angular velocity versus ∆V . Impinging light power: P = 171 mW.

seen in section 7.2, circularly polarized light induces rotation in cholesteric sam-

ples.

In figures 8.1, 8.2, 8.3 and 8.4 is shown the angular velocity versus the ap-

plied electric field for different pump powers.

As one can see, the behaviour of the induced angular velocity versus the

electric field is linear in the electric field and reverses its sign by reversing the

sign of the applied field, as expected from the theory (cfr. eq. 4.1.4).

Please note that these rotation were indeed very slow. The possible causes

of such behaviour will be shortly discussed in section 8.3.
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Figure 8.5: Angular velocity versus ∆V . Impinging light (σ−) power: P = 246
mW.

8.2 Lehmann effect under circularly polarized

light

As we have seen in section 7.2, a cholesteric sample, pumped with circularly po-

larized light, with either the opposite helicities, is put in rotation. The electric

Figure 8.6: Angular velocity versus ∆V . Impinging light (σ−) power: P = 264
mW.

field will then in such case compete with light’s spin, giving rise to more com-

plex phenomena. It can so happen that the two torques balance, stopping the
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rotation, or cooperate, enhancing the rotation, or, even more, reverting rotation

sign.

8.2.1 Concordant helicities: light circularly polarized (σ−)

In the case of concordant light and cholesteric helix helicities, as we have seen in

Figure 8.7: Angular velocity versus ∆V . Impinging light (σ−) power: P = 320
mW.

the preceding chapter, the reoriented pattern rotates anticlockwise (possessing

thus negative angular velocity).

The action of the electric field in such configuration is reported in figures 8.5, 8.6

and 8.7. The angular velocity seems to be always linear in the applied electric

field, possessing a Lehmann-like behaviour:

ω − ω0 ∝ −ν~EE

γ
. (8.2.1)

where ω0 possesses a negative value.

Please note the system’s behaviour in figure 8.5, where the velocity reverts

its sign by inverting the applied field. It is indeed interesting to watch the movies

available in the above cited web-page: they show the reoriented pattern rotating

clock- and anti-clockwise, depending from the sign of the applied electric field.
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Figure 8.8: Angular velocity versus ∆V . Impinging light (σ+) power: P = 187
mW.

8.2.2 Discordant helicities: light circularly polarized (σ+)

In the case of discordant light and cholesteric helix helicities, we have seen

that the reoriented pattern rotates clockwise (possessing thus positive angular

velocity).

Figure 8.9: Angular velocity versus ∆V . Impinging light (σ+) power: P = 197
mW.

The sample response to the electric field was always described by a relation

like that given in eq. (8.2.1), but this time with positive ω0 values.
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8.3 Open questions

The above described measurements show the occurrence of the Lehmann rota-

tion phenomenon, putting cholesteric LCs in rotation under the action of an

applied electrostatic field. It is worth noting that the induced rotation is very

slow, unlike the situation Lehmann observed, in which he reported the observa-

tion of violent rotation of the cholesteric drops.

The cause of such slow rotation could depend from two different factors, on

which we are actually focusing our attention: the homeotropic anchoring on

ITO and the generation of space charge.

8.3.1 Anchoring on ITO

Figure 8.10: The cholesteric reorientation pattern above threshold in samples
with ITO coated glasses.

Samples realized with ITO coated glasses show a very particular behaviour

above OFT threshold. From consideration from the inhomogeneous retarder

waveplate model 5.5.17 and from the observations performed on the same mix-

ture put in cells without ITO deposition, the reoriented pattern is expected to
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be elliptically shaped. As one can see in figure 8.10, the experimental observed

pattern has a hollow cross in its middle. Increasing the pump value, the cross

vanishes and the system behaves ”normally”, as expected.

Figure 8.11: Simulation of the observed pattern by supposing the ϕ profile being
not uniform.

The nature of this cross is still not very clear although it resembles very

closely the conoscopic figures one observe illuminating an uniaxial crystal with

convergent light. This could suggest an interpretation for the observed cross:

reversing the physical picture, it could be that the parallel probe light impinges

on the sample with non-perfectly-orthogonal aligned. In figure 8.11 is simulated

how the reoriented pattern would appear if one suppose that the impinging light

induces a nonuniformity in the ϕ profile (supposed to be hyperbolic). This sim-

ulation seems to provide a step toward the comprehension of the experimental

observation.

Such problem is related to the slow rotation observed in our experiments

because we decided to work, to avoid the occurrence of the hollow cross, far

from the threshold and thus in a highly distorted state, where the pattern is

expected to rotate very slowly.
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A better anchoring is thus desirable because could let us work in the slightly-

above threshold region, where the structure should rotate quicklier and, more-

over, the flexoelectric effect is negligible.

At last, the anchoring on ITO coated glasses seems to possess a very short

mean life: after few hours of pump illumination the anchoring breaks out and

the cell remains written. A stronger anchoring could maybe improve the cells

duration.

8.3.2 Space charge generation

The other open question is whether, applied the electric field, a space charge

is generated and reaches the electrodes/cell walls -screening the applied electric

field- or not. It is important to understand if this phenomenon takes place or

not because, in affirmative case the effective electric field could be of order of

magnitude smaller then the external applied field, giving rise to slower rotations.

An hint that this could be the situation comes from a dust contaminated

sample (probably full of impurities), in which, reverting instantaneously the sign

of the electric field, due to the charge redistribution, the reorientation pattern

was destroyed and reformed within a minute. In cleaner samples this effect

doesn’t happen (by reverting instantaneously the sign of the electric field the

pattern inverts its velocity without redistribution phenomena); that could not

exclude the presence of spatial charge but ensures that its density is much lower.

The question that remains still open is whether is low enough to neglect the ex-

ternal field screening effect.

A way of estimating the effective value of the electric field within the sample

is obtained by considering the competition between light and electric field: by

measuring the electric field intensity required to make close the light reoriented

pattern, one could obtain the value of the real applied electric field.
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Conclusions

The aim of the present work is the search for the Lehmann rotation induced

by an electrostatic field, an intriguing phenomenon – involving cross-couplings

between thermodynamical forces and fluxes of different vectorial nature – ob-

served at the beginning of the research on LCs and never replicated in an clear

and unequivocal way.

The idea behind this work was to realize a clever experimental configuration

in which every other contributing factor would be excluded and the rotation

could be ascribed only to the cross-couplings. To this purpose, we realized a

long pitch cholesteric sample frustrated by the strong homeotropic anchoring to

behave like a nematic LC. Illuminating the sample with a focused laser beam we

were then able to create a thin cholesteric region (equivalent of the cholesteric

drop in the Lehmann experiment) -surrounded by a nematic environment- whose

characteristics could be set at will and whose axis is automatically along the z

direction.

With this goal in mind, we mounted a detection apparatus that could gain

information about the molecular reorientation state in every power range. The

system is evolved through different stages; finally we chose as detection appa-

ratus a revisited version of the polarized microscope. This configuration has

revealed itself surprisingly sensitive: it furnishes the picture of the whole trans-

verse reorientational profile within the sample and not only its amplitude (as

the detection systems based on the far-field self-diffraction rings do).

A first unexpected result was obtained analyzing with our detection appara-
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tus the response of a nematic sample to circularly polarized light. We observed

that the light put in rotation not only the molecular director but also the whole

reoriented pattern, that was put in rotation as a single rigid crystal. Such un-

expected coupling between θ and ϕ was never observed before. For a fitting

description of such phenomenon one needs to go beyond the plane-wave approx-

imation in developing a model; a 3-D model, which accounts fairly well for the

experimental observations, has been described within this work.

The analysis of cholesteric samples has given unexpected results too. In the

case of circularly polarized impinging light, for example, we found the sample

rotating. Such result was predicted from a very recent numerical model [Bras-

selet et al. (2005)] but was never observed before. For linearly polarized light

we checked the hypothesis made in [Abbate et al. (1996)]: a cholesteric sample,

in the Optical Phase Locked region acts like a rotator, rotating the direction of

the linearly polarized impinging light. Moreover we performed an analysis of

the response of cholesteric samples to depolarized light.

Having characterized the behaviour of the samples with our new detection

apparatus, we could finally begin our search for the light-assisted Lehmann ro-

tation induced by an electrostatic field. When the cholesteric “droplet” was

created by the depolarized light, the system showed the same features of the

Lehmann rotation: it was put into rotation by the electric field, the rotational

velocity was linear in the applied field and reverted its sign by inverting the

electric field, as predicted by the theory.

When the cholesteric “droplet” was created instead by circularly polarized light,

we could observe the competition between the light spin angular momentum

transfer to the cholesterics and the Lehmann torque induced by the electro-

static field. By varying opportunely the electric field intensity we was able to

regulate, at will, the molecular rotation, increasing or stopping it.

It is worth noting that, due to the big amount of unexpected and never before

observed effects contained in this work, there is still much to do, both from the

experimental and from the theory point of view. The problem of increasing
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the quality of the anchoring of the ITO coating is an example as is also the

extension of our 3D model to the case of cholesterics under static electric field.

Also the space charge in the sample is a problem to be faced on.
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Appendix A

Proposal for a better

polarimeter

Putting at the entrance of the polarimeter stage described in section 5.2 (fig-

ure 5.2) a retardation waveplate with delay that increases with the time (as an

example, a Pockels cell driven by a saw-tooth signal) with slope ωp and fixes its

easy axis at 45o with respect to the reference direction, the photodiode signal

is given by:

s(t) ∝ 4S0 + 4S0 cos 2Ωt + 4S2 sin 2Ωt+

+2S1 cos ωpt− 2S3 sin ωpt+

+2S1 cos
[
(2Ω− ωp)t

]
+ 2S3 sin

[
(2Ω− ωp)t

]
+

+2S1 cos
[
(2Ω + ωp)t

]
− 2S3 sin

[
(2Ω + ωp)t

]
+

+S1 cos
[
(4Ω− ωp)t

]
+ S3 sin

[
(4Ω− ωp)t

]
+

+S1 cos
[
(4Ω + ωp)t

]
− S3 sin

[
(4Ω + ωp)t

]
.

(A.0.1)

A lock-in working in the dual reference mode would then give the following
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phase X and quadrature signals Y :




X2Ω = 4S0

Y2Ω = 4S2

Xωp
= 2S1

Yωp = −2S3

(A.0.2)

In this way all Stokes’ parameters can be directly measured on independent

channels (instead of calculating S3 from the other parameters, as in the case of

the polarimeter used in this thesis).
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