
UNIVERSITÀ DEGLI STUDI DI NAPOLI “FEDERICO II”
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Preface

Interior Point methods for linear and nonlinear optimization problems

have received an increasing attention in the last years. Main reasons for the

interest in Interior Point methods are their very attractive computational ef-

ficiency and good theoretical convergence properties, and their applicability

to several classes of nonlinear programming, semidefinite programming and

complementarity problems. Such research interest is also demonstrated by

the development of several software packages based on Interior Point algo-

rithms.

A crucial issue in the development of efficient Interior Point software is the

solution of the linear system, named KKT system, that arises at each itera-

tion of the method. Sparse direct methods for linear systems are widely used

in Interior Point based software, but when dealing with large-scale problems

their computational cost may become prohibitive. A promising alternative is

provided by iterative methods, that are receiving an increasing attention by

optimization community. It is known that great care must be taken in the use

of iterative methods for the linear systems. Firstly, since iterative methods

just give an approximate solution of the linear systems, some of the Interior

Point convergence theory have to be reassessed. Secondly, the success of an

iterative approach depends on the use of a suitable preconditioner, that is

mandatory because of the increasing ill-conditioning of the systems when the

iterates generated by the Interior Point method approach the solution. Ad

hoc preconditioners can be developed, that are able to tackle ill-conditioning.

Furthermore, iterative solvers allow to use adaptive accuracy requirements in

the solution of the systems to avoid unnecessary iterations when the current

Interior Point iterate is far from the solution.

The aim of the research activity described in this thesis has been the

analysis, the development and the implementation of iterative methods for
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the efficient solution of the KKT systems arising at each iteration of Interior

Point methods for large-scale convex Quadratic Programming problems.

We focus on KKT systems reduced to the well known augmented system

and normal equations forms and we consider a preconditioned Conjugate

Gradient method for their solution. Specifically we consider an incomplete

Cholesky factorization with limited memory for the normal equations ap-

proach and a constraint preconditioner for the augmented system approach.

In particular, in the last case we analyze the behaviour of the constraint pre-

conditioner with the Conjugate Gradient algorithm and we prove, for KKT

systems deriving from linear inequality constraints and nonnegativity bounds

on the variables, the equivalence with a suitable preconditioned Conjugate

Gradient applied to the positive definite normal equations. Starting from this

equivalence, we prove that no breakdown occurs for the considered algorithm

and it converges even if the augmented system matrix is indefinite.

The Interior Point framework is given by the Potential Reduction method.

Such method has good convergence and complexity properties, furthermore

it provides a quite simple framework to study linear algebra kernels that also

arise in other more general contexts. We extend convergence results for the

Potential Reduction method in the case of an iterative solution of the KKT

system arising at each iteration, starting from convergence results in the case

of direct solution of the system.

We have developed two software packages for solving large-scale convex

quadratic problems, based on the considered methods. We discuss some im-

plementation issues, with emphasis on those related to the solution of the

KKT systems with iterative methods. In particular, we describe a compu-

tational study of stopping criteria of the preconditioned Conjugate Gradient

method for solving the KKT systems. We present results of extensive numer-

ical experiments carried out in oder to verify the effectiveness of the proposed

approaches on a set of large-scale quadratic problems. We also compare our
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software packages to a well-estabilished software for nonlinear optimization

problems.

The thesis is organized as follows.

In Chapter 1 we outline the context of the research activity described in

this thesis. After a description of the considered optimization problem, we

focus on Interior Point methods for its solution. We describe the basic idea

and we give a brief overview on main Interior Point approches. We present

the KKT system arising at each iteration, whose efficient solution will be the

subject of the following chapter.

Chapter 2 focuses on the analysis and the development of suitable itera-

tive methods for solving the KKT systems. After a description of motivations

leading to the choice of iterative approaches, mainly for large-scale problems,

we analyze the solution of the normal equations and the augmented system

with a suitable preconditioned Conjugate Gradient method. In the case of

normal equations we consider an incomplete Cholesky factorization, while for

the augmented system we consider a constraint preconditioner. We prove the

equivalence between the Conjugate Gradient algorithm with the constraint

preconditioner and the Conjugate Gradient algorithm with a suitable pre-

conditioner applied to the normal equations, so that the Conjugate Gradient

can be applied to the augmented system which has an indefinite matrix.

In Chapter 3 we describe the Potential Reduction method, which is the

considered Interior Point framework for the Linear Algebra methods that we

developed. We describe the basic idea and its main features. Our interest

on the iterative solution of the linear system arising at each iteration leads

to analyze the convergence properties in the case of iterative solution of the

KKT systems. We extend to this case convergence results of the Potential

Reduction method for Quadratic Programming in the case of direct solution

of the KKT systems.
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The Potential Reduction with iterative solution of KKT systems, based

on an incomplete Cholesky factorization for the normal equations approach

and on the constraint preconditioner for the augmented system approach,

has been implemented in two software packages. The first one solves bound

constrained quadratic problems, the second one solves quadratic problems

with more general linear constraints. In Chapter 4 we describe our soft-

ware packages and, to this aim, we discuss some implementation issues, with

a particular attention for those related to the use of iterative methods for

KKT systems. In this context, we present a computational study of stop-

ping criteria for the preconditioned Conjugate Gradient, which we rely to the

convergence properties of the Potential Reduction method. We show that a

strategy based on restarting Conjugate Gradient iterations is particularly

advantageous.

We report results of numerical experiments on a set of test problems with

different sizes and sparsity patterns of the matrices. In the case of bound

constrained problems we compare some available preconditioners for sym-

metric positive definite systems; in the case of problems with more general

constraints, where the constraint preconditioner is the most promising pre-

conditioner for the augmented system, we compare the iterative approach to

a direct one. In both cases, we compare our solvers with the well-estabilished

software MOSEK for nonlinear optimization.
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Chapter 1

Interior Point methods for

Quadratic Programming

1.1 Introduction

In this Chapter we outline the context within which the thesis has been de-

veloped. We state the target optimization problem, that is convex Quadratic

Programming, and we introduce its primal-dual formulation and its optimal-

ity conditions.

Then we outline the basic idea and the most important approaches of

Interior Point methods for solving the target problem. We describe how

primal-dual Interior Point methods generate the sequence of iterates, how

they compute at each iteration a search direction and how they move along

such direction to obtain the next approximation of the solution.

We introduce the main topic of this thesis, that is the efficient solution of

the linear system arising at each iteration of Interior Point methods, which

is the subject of the next chapter.

We also discuss about the main differences between Interior Point meth-

ods and methods based on Active Set strategies.
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1.2. PROBLEM STATEMENT

Finally, we outline some of the currently available optimization software

packages based on Interior Point algorithms.

1.2 Problem statement

1.2.1 The QP Problem

Convex Quadratic Programming (QP) problems, i.e. optimization problems

with convex quadratic objective function and linear constraints, arise often as

subproblems in general nonlinear constrained optimization. Methods based

on Sequential Quadratic Programming use at each iteration a quadratic ap-

proximation of the problem in order to compute a search direction. Further-

more, there are a large number of other interesting applications of the QP

problem, such as, for example, the portfolio model proposed by Markowitz

[64], optimal control [10, 102] and VLSI design [103, 56].

We are particularly interested in solving large-scale QP problems. Math-

ematical modelization of phisical problems often leads to the formulation

of optimization problems with tens or hundreds of thousands of variables.

The increased power of computers and the development of algorithms which

are able to take advantage of this power make possible to solve very large

problems, so large-scale nonlinear optimization has become the most active

research field in nonlinear optimization.

In the sequel we define the QP problem and we give some basic definitions

and results. For more details the reader is referred to, e.g., [25, 35, 79].

We consider a convex QP problem in the following form:

minimize q(x) =
1

2
xT Qx + cT x

subject to Ax ≥ b, x ≥ 0
(1.1)
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1.2. PROBLEM STATEMENT

where Q ∈ <n×n is symmetric positive semidefinite, A ∈ <m×n, with m ≤ n,

c, x ∈ <n, b ∈ <m and the inequalities are interpreted componentwise.

We assume that A has full rank m, i.e. all the constraints are linearly inde-

pendent. If this is not the case, the problem has redundant constraints that

can be removed, so that our assumption is without loss of generality.

The original problem (1.1) can be transformed, by introducing a slack

vector z ∈ <m, to the following form, usually referred as the primal problem:

P ≡











minimize p(x) =
1

2
xT Qx + cT x

subject to Ax − b = z, x ≥ 0, z ≥ 0
(1.2)

The so-called dual problem can be associated to the primal one (1.2):

D ≡











maximize d(x, y) = bT y − 1

2
xT Qx

subject to Qx + c − AT y = s, s ≥ 0, y ≥ 0
(1.3)

where s ∈ <n, y ∈ <m. Note that z and s are primal and dual slack vectors,

respectively.

Definition 1.2.1 A point (x,z) is feasible for the problem (1.2) if it satisfies

all the linear constraints in (1.2). Analogously a point (x,y,s) is feasible for

(1.3) if it satisfies all the linear constraints in (1.3).

A point (x,z) is said optimal if in addition it attains the desired minimum.

The dual problem plays an important role in the design of optimization

algorithms, since it provides information about the set of the primal solutions.

Furthermore, the dual objective function gives a lower bound on the primal

objective function:

Theorem 1.2.1 (Weak duality) If (x, z) is feasible for the primal and (x, y, s)

is feasible for the dual, then

p(x) ≥ d(x, y).
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1.2. PROBLEM STATEMENT

Proof.

Since (x, y, s, z) ≥ 0, we have:

p(x) =
1

2
xT Qx+xT s−xT Qx+xT AT y = −1

2
xT Qx+bT y+xT s+zT y ≥ d(x, y).

2

Primal and dual objective functions have the same value at an optimal solu-

tion.

Theorem 1.2.2 If the primal problem has an optimal solution (x∗, z∗), then

the dual has an optimal solution (x∗, y∗, s∗), such that

p(x∗) = d(x∗, y∗).

Since there is no gap in the optimal solution between the primal and the

dual objective values, a way to check optimality is to compute the difference

between the two objective function values.

Definition 1.2.2 The duality gap of the primal and the dual problems (1.2)

and (1.3) is defined as

∆ = p(x) − d(x, y).

Since b = Ax − z implies bT y = (xT AT − zT )y, we have that:

∆ = p(x) − d(x, y) =

=
1

2
xT Qx + cT x −

(

bT y − 1

2
xT Qx

)

=

= xT s + zT y ≥ 0.

(1.4)

Definition 1.2.3 The primal-dual feasible set is

F =
{

w = (x, y, s, z) : Ax − b = z, Qx + c − AT y = s, w ≥ 0
}

.

Definition 1.2.4 The primal-dual strictly feasible set is

F0 =
{

w = (x, y, s, z) : Ax − b = z, Qx + c − AT y = s, w > 0
}

.
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1.2. PROBLEM STATEMENT

Note that, since the matrix Q is symmetric positive semidefinite, if the fea-

sible set is a not empty set, then a solution exsists for the QP problem.

Furthermore, since the feasible set is a convex set, any local solution of the

QP problem is a global minimum.

1.2.2 Optimality conditions

The first-order necessary optimality conditions for the primal and the dual

problems, the so-called Karush-Kuhn-Tucker (KKT) conditions, are defined

in the following theorem [25, 35, 79, 99].

Theorem 1.2.3 If (x∗, z∗) is a solution of (1.2), there are vectors y∗ ∈ <m,

s∗ ∈ <n, such that the following conditions are satisfied for (x, y, s, z) =

(x∗, y∗, s∗, z∗):










































Qx + c − AT y − s = 0

Ax − z − b = 0

xisi = 0 i = 1, . . . , n

yizi = 0 i = 1, . . . , m

x ≥ 0, y ≥ 0, s ≥ 0, z ≥ 0

.

We can restate the nonlinear system of the optimality conditions in the

following way:
















Qx + c − AT y − s

Ax − z − b

XSe

Y Ze

















= 0, w ≥ 0 (1.5)

where w = (x, y, s, z) ∈ <(2×n+2×m), X, Y , S, Z are the diagonal matrices of

the vectors x, y, s, z, respectively and e is a vector of all ones of appropriate

dimension.
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1.2. PROBLEM STATEMENT

The last two equations are the complementarity conditions, since they im-

ply that the nonzero elements of the vectors x and s, y and z, must be in

complementary locations. Since these conditions have to be satisfied at the

solution, the duality gap is equal to zero at the optimal solution.

Note that, since the objective function is convex and the feasible set is

convex, the KKT conditions (1.5) are not only necessary, but also sufficient.

1.2.3 The BCQP problem

A special case of convex QP problem is given by the Bound Constrained

Quadratic Programming (BCQP) problem, where the only constraints are

bounds on the variables:

l ≤ x ≤ u,

where l, u are known n-vectors. We assume for simplicity that the bounds

are finite.

This class of problems is important in itself since many phisical and en-

gineering problems can be formulated as BCQP, such as obstacle problems,

elastic-plastic torsion problems, journal bearing problems (see [73]), but it is

also an essential subproblem in many general nonlinear optimization prob-

lems.

We transform the BCQP problem to the following form:










minimize q(x) =
1

2
xT Qx + cT x

subject to x + z = e, x ≥ 0, z ≥ 0
(1.6)

where z ∈ <n and e ∈ <n is a vector of all ones. The dual of (1.6) can be

written as:










maximize eT y − 1

2
xT Qx

subject to Qx + c − y = s, s ≥ 0, t = −y ≥ 0,
(1.7)

where y, s, t ∈ <n. The vectors z and s are the slack vectors.
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1.3. INTERIOR POINT METHODS FOR QP PROBLEMS

Analogously to the case of QP problems, the duality gap of problems

(1.6)-(1.7) is

∆ = xT s + zT t

and the optimality conditions are given by:

















Qx + c + t − s

x + z − e

SXe

ZTe

















= 0,

















x

t

s

z

















≥ 0.

1.3 Interior Point methods for QP problems

1.3.1 Basic idea and main approaches

Interior Point (IP) methods for solving optimization problems have been an

active research field since the original work of Karmarkar [53]. They were

known since the 1950s [30] and were extensively studied in 1960s [24], but

was the publication of the Karmarkar’s paper that led to a great interest in

IP approach. Indeed, Karmarkar presented a new algorithm for Linear Pro-

gramming with polynomial complexity, while it was proved that the classical

simplex method has an exponential complexity in worst cases. One of the

main differences between the new algorithm and the simplex one was that

the former moved following a sequence of points belonging to the interior of

the feasible set, the latter moved along the boundary of such set, following a

sequence of vertices.

Over the years, a growing interest has been devoted to IP methods. Main

reasons for the interest in such methods are their computational complexity

and good convergence properties and their applicability not only to Linear

Programming problems, but also to other classes of optimization problems.
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1.3. INTERIOR POINT METHODS FOR QP PROBLEMS

Indeed, even though in the first years work in IP focused mainly on Lin-

ear Programming, then IP approach has been extended to several classes

of nonlinear programming, semidefinite programming and complementarity

problems. For details, see [29, 43, 78, 82, 90, 97, 99, 105] and the references

therein.

The basic idea of Interior Point methods is to compute a sequence of

approximations of an optimal solution belonging to the interior of the feasible

set. Actually, most of the current algorithms generate iterates which stay in

the interior of the positive orthant, but are infeasible for linear constraints.

A significant advantage of such algorithms over the previous ones is that they

do not require an initial feasible point, which is often difficult to compute.

These algorithms are called infeasible IP algorithms, on the contrary the

original ones are called feasible IP algorithms. Here we describe only feasible

Interior Point algorithms, the basic idea being the same.

Interior Point algorithms can be divided in primal algorithms, dual al-

gorithms, primal-dual algorithms. Primal algorithms are developed purely

in terms of primal variables, on the contrary dual algorithms are purely in

terms of dual variables. Karmarkar’s algorithm and most of algorithms de-

veloped in the first years of work made in IP area were primal algorithms.

Then researchers focused their attention on primal-dual IP methods, which

use explicity both primal and dual variables and became the most successful

and powerful class of IP methods.

There are several primal-dual IP algorithms, sharing the same funda-

mental principles but with different individual features. We briefly describe

three primal-dual algorithms: path-following algorithms, potential-reduction

algorithms, affine-scaling algorithms, that have been developed for Linear

Programming, but can be easily extended to QP and more general problems.

Consider a logarithmic barrier function. A barrier function can be ob-

tained replacing the nonnegativity of constraints in the primal problem by

8



1.3. INTERIOR POINT METHODS FOR QP PROBLEMS

logarithmic barrier penalty terms:

L(x, z) = p(x) − µ
n
∑

i=1

log xi − µ
m
∑

j=1

log zj,

where µ ≥ 0 is a barrier parameter. The first order optimality conditions for

the barrier problem

minimize L(x, z)

subject to Ax − b − z = 0

can be obtained by considering the associated Lagrangian function

L(x, z, y) = p(x) − µ
n
∑

i=1

log xi − µ
m
∑

j=1

log zj − yT (Ax − b − z),

by differentiating with respect to its variables and by setting s = µX−1e,

y = µZ−1e:
















Qx + c − AT y − s

Ax − z − b

XSe

Y Ze

















=

















0

0

µe

µe

















w ≥ 0. (1.8)

Note that (1.8) is equal to the KKT conditions (1.5) system when µ = 0,

so the solution of (1.8) approaches to the solution set of the primal-dual

problem as µ goes to zero.

Let (xµ, yµ, sµ, zµ) denote the solution of the system (1.8) for a given µ > 0.

The trajectory of strictly feasible points:

C = {(xµ, yµ, sµ, zµ) > 0 : µ > 0}

is called central path and is a crucial concept in the theory of primal-dual IP

methods.

Path-following algorithms are based on the idea to generate a sequence of

points into a neighborhood of the central path, ensuring that the iterates are

9



1.3. INTERIOR POINT METHODS FOR QP PROBLEMS

not too close to the boundary of the feasible set and the positivity condition

is not violated, so that the search directions always make a progress toward

the solution. At each iteration, a search direction is computed by applying

a Newton step to the system (1.8) with a fixed µ, then µ is decreased. The

process is repeated until the problem has been solved with the desired accu-

racy.

The system (1.8) is often written by introducing two parameters σ ∈ [0, 1],

µ̄ = xT s+yT z
n+m

, usually named centering parameter and duality measure, such

that µ = σµ̄. Key ingredients in IP methods are a measure of the quality

of a point and a way to “improve” such a point, so a suitable merit func-

tion and a way to decrease it are needed. In path-following algorithms the

duality measure is used to measure the desirability of a point in the search

space: strictly feasible points deviate from the central path C only because

the products xisi, yizi are generally not identical, so their deviation is mea-

sured by comparing the products with their average value µ̄. Starting from

this basic concept, different choices for the neighborhood of the central path

are possible. Restrictive choices for the neighborhood allow to obtain only

slow progresses at each iteration, leading to short-step path following algo-

rithms; on the contrary, with wide neighborhoods the requirement of staying

inside the neighborhood is easier to satisfy and long steps are possible which

allow to make faster progress toward the solution at each iteration. A typical

choice for the neighborhood of the central path is

N (γ) =
{

w ∈ F0 : xisi ≥ γµ̄, yjzj ≥ γµ̄ ∀i ∈ {1, . . . , n} , j ∈ {1, . . . , m}
}

,

with 0 < γ < 1.

A survey on path-following algorithms is given in [43], see also [99].

The framework that we consider for the study of this thesis is a primal-

dual Interior Point Potential Reduction method. Here we just outline the

10
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basic idea and some features of such method, while in Chapter 3 we describe

in details the Potential Reduction method applied to QP problems.

Potential Reduction algorithms are based on the idea of minimizing a log-

arithmic function called potential function. A single function, the potential

function, is used to measure the “optimality” of a point or to decide how

to provide a “better” approximation to an optimal solution [90]. Potential

Reduction algorithms compute steps of the same form as do path-following

algorithms, but they not explicitily follow the central path [99].

The aim to decrease the potential function as much as possible at each iter-

ation of the algorithm can be always achieved under suitable assumptions,

and a corresponding bound on the number of iterations necessary to obtain

a desired accuracy in the solution can be computed.

Potential Reduction methods are important from an historical point of

view because potential functions were used in the development of IP algo-

rithms in the Karmarkar’s work and some subsequent works. Main reasons

for studying such methods are given by some of their features such as the

strong relation between theory and practice, which is often not observed in

path-following methods [90]. Potential Reduction methods have good con-

vergence and complexity properties, furthermore they have great flexibility

and they are not too hard to implement. Finally, we are interested in Poten-

tial Reduction methods since they provide a suitable framework to study the

most demanding linear algebra kernels arising in any Interior Point methods.

A variety of potential functions have been considered in developing Po-

tential Reduction algorithms. Primal Potential Reduction methods, based

on potential functions that make use of only primal variables, are mainly

due to Karmarkar [53] and Gonzaga [42]. Then potential functions taking

into account both the primal and the dual variables have been considered.

The most successful primal-dual potential function has been introduced by

Tanabe [89] and Todd and Ye [91]. First primal-dual Potential Reduction

11
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methods have been developed by Todd and Ye [91] and Ye [104], but the most

used primal-dual algorithm is due to Kojima, Mizuno and Yoshise for linear

complementarity problems [58]. Primal-dual Potential Reduction methods

for convex programming have been applied in [36, 70] and, in the special

case of bound constrained quadratic problems, in [48, 17]. Nesterov and

Nemirovskii provided some extensions to certain nonlinear problems. Main

infeasible versions of the Potential Reduction method for Linear Programm-

ming are due to Mizuno, Kojima and Todd [69] and Tutuncu [92].

A survey on Potential Reduction methods for Linear Programmming and its

extensions is given by Todd in [90].

Affine-scaling algorithms, originally introduced by Dikin [18], are histori-

cally the simplest IP algorithms. Their basic idea is to transform the original

problem in a new one having the variables centered in the feasible set. Given

a current iterate xk, an ellipsoid centered at xk and inscribed into the feasible

set is constructed, then the objective function is minimized on this ellipsoid.

In order to transform the problem, the variables are scaled by using diagonal

matrices, e.g. x is scaled as x = Dξ = X0ξ, where the scaling matrix maps

x to the vector of all 1’s e. The denomination of the method is due to this

scaling operation.

At a first look, there is no connection with other IP algorithms described

above, but a relation can be found by analyzing the directions computed

in the search space. The Newton direction δw which is computed by path-

following algorithms by applying a Newton step to the system of optimality

conditions can be decomposed into two parts [95]:

δw = δwopt + δwcen

where δwopt is a step toward optimality, that tries to improve optimality,

and δwcen is a step toward centrality, that tries to improve proximity to the

12
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central path (in the case of infeasible algorithms there is an additional term

that plays the role of a step toward feasibility). The direction computed

by an affine-scaling algorithm coincides with δwopt, which indeed is usually

called affine scaling direction. Hence, affine-scaling algorithms can also be

motivated in terms of Newton’s method. They consider systems of the form

(1.8), where the centering parameter σ is equal to zero, so that the search

direction is not forced to go toward the central path.

A general feasible primal-dual IP framework for solving (1.1) is described

in Figure 1.1, where w = (x, y, s, z) is an approximation of the solution,

δw = (δx, δy, δs, δz) is a search direction and θ is the step lenght on such a

direction.

1.3.2 Linear Algebra in Interior Point methods

Primal-dual IP algorithms compute at each iteration a search direction by

applying a Newton step to the nonlinear system (1.8). This system can be

viewed as the system of the KKT conditions for the primal-dual problem

perturbed with a suitable parameter µ. The linear system deriving by the

application of a Newton step has the following form (see Figure 1.1):

















Q −AT −I 0

A 0 0 −I

S 0 X 0

0 Z 0 Y

































δx

δy

δs

δz

















=

















0

0

−XSen + µen

−Y Zem + µem

















. (1.9)

We also refer to such system to as the KKT system. It is a system of 2n+2m

equations in 2n + 2m unknowns, which is nonsingular under the assumption

that the matrix A has full row rank. Its unique solution gives a search

direction for the considered IP algorithm.

All the IP algorithms described in the previous subsection solve a system

13
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! initialization

choose w0 strictly feasible, µ > 0

k = 0

! iterations

while (convergence criterion not satisfied) do

compute a search direction δwk by solving the system:















Q −AT −I 0

A 0 0 −I

Sk 0 Xk 0

0 Zk 0 Y k





























δxk

δyk

δsk

δzk















=















0

0

−XkSken + µen

−Y kZkem + µem















,

compute θk such that wk > 0

update the approximation of the solution as wk+1 = wk + θkδwk

update µ

k = k + 1

endwhile

Figure 1.1: A general feasible primal-dual IP framework.

(1.9) with different choices of the parameter µ. We have already said that

in path-following algorithms µ is usually treated as the product of a suitable

centering parameter and a duality measure, in potential reduction algorithms

µ depends on the current duality gap and on a parameter ρ related to the

potential function used by the algorithm, finally in affine scaling algorithms

µ is equal to zero.

Note that the first two right hand sides equal to zero denote that the

primal and the dual feasibility are kept during the iterations; if an infeasible

IP method is used they are equal to the opposite of the dual infeasibility and
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the primal infeasibility, given by rd = Qx + c−AT y − s and rp = Ax− b− z

respectively.

The solution of the system (1.9) is one of the most critical issues in IP

methods. A solution could be obtained by factorizing the whole large system

and by solving the factorized system, but usually reduced forms to smaller

systems are preferred. There are two main stages of reduction that are usually

considered and different solution strategies can be developed for the reduced

systems. Our aim is to develop efficient strategies to solve the KKT system

(1.9) arising at each iteration of a potential reduction algorithm, focusing on

iterative tecniques and suitable preconditioning strategies to deal with the

ill-conditioning of the system, as we describe in the next chapter.

1.3.3 Interior Point vs. Active Set methods

It is well known that the other main class of numerical methods for Quadratic

Optimization is the Active Set one.

The main concept of a method based on an Active Set approach is given

by the Active Set at a point x. The Active set A(x) at a point x of a QP

problem is defined as the set of the indices of the constraints at which equality

holds:

A(x) =
{

i ∈ {1, . . . , m} : aT
i x = bi

}

where ai is the i-th row of the matrix A.

Active Set methods aim to predict which of the inequality constraints are

active at an optimal solution, so they are based on the idea of considering

at each iteration an estimate of the active set at an optimal solution (see,

e.g., [45, 79]). To this aim, at each iteration a set of indices, named working

set, is obtained by selecting a subset of the constraints that are imposed as

equalities, and a quadratic subproblem reduced to the variables whose indices

belong to the working set is solved. Hence, equality-constrained QP problems
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are solved at each iteration. If the considered estimate of the optimal active

set is incorrect, then the current working set is updated and another iteration

is performed: if the solution of the solved subproblem violates one of the

inequality constraints whose indices are not in the working set, then the

working set is updated by adding some constraints, if the solution of the

solved subproblem is not that of the original problem, then the working set

is updated by deleting some constraints.

Note that the convergence of the Active Set method can be accelerated

by combining such method with another optimization method, the Gradient

Projection method. In [72, 73] this strategy was first proposed for the solu-

tion of Bound Constrained Quadratic Programming problems. The standard

Active Set strategy is used to explore the “face” of the feasible set defined

by the current iterate and the Gradient Projection method is used to move

to a different “face”.

From a computational point of view, the IP approach has some advan-

tages over the Active Set one, as observed, e.g., in [45, 85]. Active Set

approaches can potentially require a very large number of iterations and,

anyway, their number of iterations is often greater than those required for

the same problem by Interior Point approaches. Active Set iterations gen-

erally do not require a very large computational effort, since the dominant

task is given by matrix factorizations, that are usually computed by using

suitable strategies to update existing factors and to adapt them to changes

in the working set. However, adding or deleting a constraint are operations

that make difficult to exploit the structure of the matrices involved in the

computations and require the development of ad hoc linear algebra routines.

On the other hand, in an Interior-Point structure and dimension of the ma-

trices do not change during the iterative process, so that it is possible to

use standard linear algebra routines. Effective advantages of Interior Point

implementantions have been shown, e.g., in [7, 71].
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1.3.4 Interior Point Software

Over the years, a large number of algorithms and well-estabilished software

packages for the solution of optimization problems have been developed. The

development of modelling languages, that are useful to easily formulate op-

timization problems and to use the solvers, and the advent of computational

environments for remote solution of optimization problems on the web [23, 76]

have provided users with friendly tools to use optimization software. Opti-

mization software is discussed in [74, 101, 7, 45] and on NEOS Guide to

Optimization Software [77].

As demonstrated by extensive computational comparisons between state-

of-the-art software, for nonlinear optimization problems IP-based software is

strongly competitive with Active-Set SQP software [7, 71].

We outline currently available IP software packages for QP. Some of them

are able to solve also more general nonlinear problems.

Software packages implementing an Interior-Point approach include BPMPD

[67, 68], CPLEX/Barrier [51], HOPDM [39], KNITRO [11, 96], LOQO [93,

88], MOSEK [75], OOQP [32], OOPS [40], QPB [15] from the GALAHAD

library and Xpress-MP [47].

BPMPD [67, 68] implements an IP approach with advanced presolve tech-

niques. It uses heuristic to make decision between different stages of reduc-

tion of the KKT systems and a factorization based on supernodal elimination.

CPLEX/Barrier [51] is based on a primal-dual predictor-corrector method

and on Cholesky factorization algorithms for solving KKT systems.

HOPDM [39] implements an infeasible primal-dual IP method with mul-

tiple centrality correctors. The solution of the linear systems is based on a

fast sparsity-exploiting Cholesky decomposition.

The interesting software KNITRO [11, 96] implements a primal-dual IP

method with a trust region approach and uses an iterative solver, namely

a projected conjugate gradient, in its computational kernel. Each step is
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the sum of a normal step to improve the feasibility and a tangential step

computed using a projected conjugate gradient iteration. A version known

as KNITRO-Direct, based on a direct method to solve the linear algebra

kernel, is also available.

LOQO [93, 88] implements an infeasible path-following method, using a

factorization of a regularized matrix and a heuristic to choose ordering in

reduction of the inner system in order to maximize sparsity in the factoriza-

tion.

MOSEK [75] is based on a homogeneous monotone complementarity for-

mulation of the problem to be solved and implements an infeasible Interior

Point method, using a direct approach to solve the KKT systems. We use

MOSEK in order to make a comparison with the performances of two solvers

that we have developed to solve convex QP problems, based on an Interior

Point Potential Reduction method (see Chapter 4).

OOQP [32] and OOPS [40] are object-oriented IP software. OOQP im-

plements a predictor-corrector algorithm with higher order correction, using

a direct approach for solving the linear systems. OOPS is a parallel solver

which exploits special structures in the matrices and is able to solve very

large problems.

QPB [15] is an IP software that is able to solve convex and non-convex

QP problems. It uses a combined conjugate-gradient/Lanczos method with

a suitable preconditioner.

Xpress-MP [47] implements a path-following algorithm and is based on

Cholesky factorization algorithms for the linear algebra kernels.
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Chapter 2

Iterative solution of KKT

systems

2.1 Introduction

One of the most critical issues in the development of efficient Interior Point

software for large-scale nonlinear optimization problems is the solution of the

KKT linear system that arises at each iteration. Therefore, the efficiency and

effectiveness of IP algorithms is strongly related to Linear Algebra algorithms

which they use. This symbiotic relationship [80] has also motivated recent

advances in numerical Linear Algebra.

The aim of this Chapter is to present and to analyze suitable strategies to

efficiently solve the linear systems at each iteration of an IP method for con-

vex QP problems. Starting from the perturbed KKT system, we describe its

reduced forms, the augmented system and the normal equations, and we dis-

cuss about their ill-conditioning. Then we outline some methods to solve such

systems. Iterative methods appear to be very promising, mainly when dealing

with large-scale problems. We focus on iterative solution of the KKT system

in both augmented system and normal equations forms. We use a Conju-
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gate Gradient method with suitable preconditioning strategies, which are

different for the two reduced forms. We first consider the normal equations

approach and a Conjugate Gradient algorithm with an incomplete Cholesky

factorization as preconditioner, then we consider the augmented system ap-

proach with a block preconditioner, named Constraint Preconditioner. We

present a suitable Constraint Preconditioner for the augmented system ma-

trix arising from convex QP problems with inequality constraints and we

analyze the behaviour of this preconditioner with the Conjugate Gradient

algorithm. In particular, we show that with a suitable choice of the start-

ing point the Conjugate Gradient algorithm applied to the preconditioned

augmented system behaves as if it were applied to suitably preconditioned

normal equations. Starting from this equivalence, we prove the convergence

results for the Conjugate Gradient method with constraint preconditioner.

Finally, we also report a spectral analysis of the preconditioned matrix.

2.2 Approaches to the solution of the KKT

system

2.2.1 KKT system reduction

In an IP method to solve QP problems, a Newton direction is obtained at

each iteration by solving a (2n + 2m)× (2n + 2m) linear system of the form


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
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
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
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, (2.1)

where X, S, Y, Z are the diagonal matrices whose diagonal entries are the

components of x, s, y, z, respectively, en ∈ <n and em ∈ <m are the vectors
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of all ones (in the sequel denoted by e, when the dimension is clear from

the context), µ is a suitable parameter, rp, rd are the primal and the dual

infeasibility respectively and are equal to zero in the case of a feasible method

(see subsection 1.3.2).

From now on we consider the case of a feasible method since, from a point

of view of the solution of the KKT system, the only difference for an infeasible

method is in the right hand sides because of rp, rd, while the structure of the

system is the same.

The solution of the system (2.1) at each IP iteration requires a large

computational effort and hence it is one of the most critical issues in an

effective implementation of IP methods.

By eliminating δs and δz,

δz = Aδx,

δs = Qδx − AT δy,

the above system is usually reduced to the so-called augmented system:





Q + E −AT

−A −F









δx

δy



 =





−Se + X−1µe

Ze − Y −1µe



 , (2.2)

where E = X−1S and F = Y −1Z. Since IP methods generate iterates

w = (x, y, s, z) > 0, E and F have positive diagonal elements.

Note that the linear system (2.2) can also be considered as a system describ-

ing a saddle-point problem. Such problems have been extensively studied in

recent years, see [8].

A further reduction, obtained by eliminating δy,

δy = −F−1Aδx − Y e + Z−1µe,

leads to the n × n system of normal equations (dual ordering form):

(Q + E + AT F−1A)δx = −Se + X−1µe − AT Y e + AT Z−1µe. (2.3)
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It is also possible to eliminate δx instead of δy,

δx = (Q + E)−1AT δy + (Q + E)−1(−Se + X−1µe),

obtaining the m × m system of normal equations (primal ordering form):

(A(Q+E)−1AT +F )δy = −Ze+Y −1µe−A(Q+E)−1(−Se+X−1µe). (2.4)

The normal equations in primal ordering form have a smaller size then those

in dual ordering form, but they require to handle the matrix (Q + E)−1,

therefore it is more convenient to consider the dual ordering. In the sequel

we always consider the normal equations in the dual ordering form.

In [27] it is also shown another equivalent form for the KKT system, the

doubly augmented system:





Q + E + 2AT F−1A AT

A F









δx

δy



 =





b1 + 2AT F−1b2

b2



 ,

where b1 = −Se+X−1µe, b2 = −Ze+Y −1µe, and a one-parameter family of

linear systems is formulated that includes the augmented system as a special

case.

The normal equations have a smaller size than the augmented system

and their matrix is symmetric positive definite (spd), while the augmented

system one is symmetric indefinite, with n positive and m negative eigenval-

ues (more precisely, it is quasi-definite [94]). On the other hand, the matrix

of the augmented system is sparse if Q and A are sparse, while the one of

the normal equations can result dense even if Q and A are sparse, e.g. when

A has a dense column, and it is usually denser anyway. Finally, at each IP

iteration, the matrix of the normal equations must be entirely recomputed,

while only the diagonal coefficients of the augmented system must be up-

dated.
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Note that in both augmented system and normal equations, the sparsity pat-

tern of the matrix is unchanged during the whole IP algorithm.

Finally, as the solution at each IP iteration approaches the boundary of the

feasible set of the primal-dual problem (P,D), some entries of E and F can

become very large, leading to an increasing ill-conditioning in the normal

equations as well as in the augmented system. Ill-conditioning deteriorates

the rate of convergence of most iterative methods, like Krylov subspace meth-

ods, that have to be used with suitable preconditioners. This is one of the

most critical difference with direct methods, as we discuss in the next sec-

tions.

2.2.2 Direct vs Iterative solvers

Direct methods are widely used to solve the systems (2.2) and (2.3) in well-

established IP software, such as LOQO [93], MOSEK [75], OB1-R [63], PCx

[16], OOQP [32]. The Cholesky factorization is usually applied to the nor-

mal equations, and variants of the LDLT factorization, differing essentially

for the pivot selection rule, are applied to the augmented system. In both

cases, sparse matrix reordering strategies and further “ad hoc” strategies

are exploited to deal with the fill-in problem (for a discussion on the direct

approach see, e.g., [2, 99]). Note that with direct methods the increasing

ill-conditioning of the system matrix is not a severe problem. Indeed, un-

der quite general assumptions, the computed Newton directions are accurate

enough to ensure progress toward the optimal solution [26, 98, 100].

When dealing with large-scale problems, the cost of using direct solvers

may become prohibitive in terms of both memory and time requirements. In

this case, the iterative solvers seem to offer a viable alternative. However,

due to the unavoidable ill-conditioning of the linear systems, the use of ef-

fective preconditioners is mandatory to obtain useful Newton directions. On
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the other hand, it is possible to develop ad hoc preconditioners. Moreover

iterative solvers allow to use adaptive accuracy requirements in the solution

of the system in order to avoid unnecessary iterations when the current IP

iteration is far from the solution of the problem.

The first attempts to use iterative solvers are concerned with the applica-

tion of the preconditioned Conjugate Gradient (CG) method to the normal

equations. Diagonal preconditioners or incomplete Cholesky factorizations,

either recomputed at each CG step or freezed for a few steps, have been the

usual choices [14, 54, 65, 66]. CG with spanning-tree preconditioners [84]

and preconditioned LSQR [34] have been also used.

The effectiveness of iterative methods applied to the normal equations

can suffer from the loss of sparsity in forming AT F−1A. Therefore, an in-

creasing attention has been devoted to the augmented system, although it

is not definite positive. Furthermore, it has been observed in [81] that ev-

ery preconditioner for the normal equations induces a preconditioner for the

augmented system, while the converse is not true. First experiments with it-

erative methods on the augmented system have been performed using solvers

for symmetric indefinite systems, such as SYMMLQ with suitable symmetric

preconditioners [33], and a symmetric variant of QMR with a modified SSOR

preconditioner [28]. A class of preconditioners reducing the augmented sys-

tem to positive definite systems, and hence allowing the use of CG, has been

proposed in [81].

We consider an iterative solution of the perturbed KKT system, in both

augmented system and normal equations forms, based on a preconditioned

Conjugate Gradient algorithm. The preconditioner must be obviously chosen

so that the preconditioned system is easy to solve and a faster convergence

can be achieved. Since the convergence rate of the CG method depends on

the distribution of the eigenvalues of the system matrix, the preconditioned

matrix should have more favorable spectral properties (properly clustered
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eigenvalues), than the original one. A detailed description of the precondi-

tioned Conjugate Gradient method is given in [87, 37]. We choose a different

form of preconditioning for the CG method applied to the systems (2.2) and

(2.3), that we describe in the next sections.

2.2.3 The KKT system for BCQP problems

We note that the KKT system arising in IP methods for BCQP problems

has the identity matrix of appropriate dimension in place of the constraint

matrix A, so that there are not all the problems related to the presence of such

matrix in solving the system, as described in the two previous subsections.

The augmented system is:





Q + E I

I −F̄









δx

δt



 =





−Se + X−1µe

Ze − T−1µe



 , (2.5)

where δt = −δy, F̄ = T−1Z and I is the identity matrix of dimension n, and

the normal equations (dual ordering form) are given by:

(Q + E + F̄−1)δx = −Se + X−1µe + Te − Z−1µe, (2.6)

with

δt = F̄−1δx − Te + Z−1µe. (2.7)

It follows that the normal equations matrix must not be entirely recomputed

at each iteration of the IP method, since only E and F̄ change at each

iteration, affecting only the diagonal elements of the whole coefficient matrix.

Furthermore, the normal equations matrix is always sparse as well as the

Hessian matrix Q. Hence, the normal equations form is a natural choice for

BCQP problems.
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2.3 Solution of Normal Equations: CG with

an Incomplete Cholesky preconditioner

As noted in the previous section, the normal equations form for the KKT

system is very convenient for bound constrained problems. In the first phase

of the research activity, our attention was devoted to the solution of BCQP

problems with the normal equations approach (see [12]). We consider an iter-

ative solution of the normal equations based on a preconditioned Conjugate

Gradient method, where the preconditioner is an incomplete factorization

with limited memory introduced in [60].

Incomplete Cholesky factorizations appear as a natural choice for positive

definite systems. A general algorithm for an incomplete Cholesky factoriza-

tion of a matrix B can be obtained by performing the Cholesky factorization

and dropping some elements in predetermined positions, so that a decompo-

sition of the following form is computed:

B = LLT − R,

where L is a lower triangular matrix and R is the residual of the factorization.

The matrix −R contains the elements that are dropped during the incomplete

elimination process, in order to reduce fill in the Cholesky factor.

The choice of a nonzero pattern for the factor is the fundamental issue in

incomplete factorizations. In so-called ILU(p) factorizations, a level of fill

is attributed to each element and dropping is based on its value. For an

element in location i, j, which is updated by the formula bij = bij − bik × bkj,

the level of fill is

levij = min {levij, levik + levkj + 1}

and initially levij = 0 if bij 6= 0, levij = ∞ otherwise [87]. ILU(p) factor-

izations are based on the idea of keeping all the elements whose level of fill
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does not exceed p. The case p = 0 gives the ILU(0) factorization, where the

nonzero pattern considered for the factorization is the same of the original

matrix B. Other strategies to reduce fill-in are based on a drop tolerance

and drop all elements that are smaller than a prefixed tolerance, so that the

elements to drop are chosen on the base of their magnitude instead of their

positions.

The above methods have an unpredictable behavior in terms of memory

requirements, that is a drawback above all for large-scale problems. Factor-

izations that avoid unpredictable memory requirements are those of Jones

and Plassmann [52], where a certain number of largest elements is retained,

and the ILUT factorization [87], depending on a memory parameter and on

a drop tolerance. The Incomplete Cholesky Factorization (ICF) with limited

and predictable memory requirement by Lin and Moré combines the best fea-

tures of these factorizations; it was proposed in [60] and successfully applied

by the same authors in the TRON software for nonlinear bound-constrained

problems [61].

The main feature of the ICF algorithm is that it allows to specify the

amount of additional memory available for the incomplete factorization, with-

out the need to use a drop tolerance. Specifically, at the jth step of the

process, the jth column of the incomplete factor is determined by retaining

the nj + p largest elements, where p is an user-specified fill-in parameter,

i.e. the additional memory of the Cholesky factor, and nj is the number of

nonzero elements in the corresponding column of the original matrix. In con-

trast with incomplete factorizations that rely on drop tolerance techniques to

reduce the fill-in, such strategy allows to obtain an efficient preconditioner

with predictable memory behavior, which is desirable from the large-scale

optimization point of view.

The incomplete Cholesky factorization may fail for a positive definite

matrix, if a negative diagonal element is encountered. A shifting strategy
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is used in the ICF algorithm in order to avoid negative pivots, so that the

matrix B̂ = B + αI is factorized, where I is the identity matrix and α is

a suitable parameter such that the factorization succeeds. A suitable choice

of this parameter allows to handle also indefinite matrices. Note that a

diagonal scaling by the l2-norm of the columns of the initial matrix is applied

before computing ICF, but the computed incomplete factor is rescaled back,

therefore the preconditioned CG is applied to the original matrix.

The above preconditioning method has been applied to BCQP problems

in [12], where the preconditioner P is the incomplete Cholesky factorization

of the coefficient matrix.

Numerical experiments show that is useful to perform a scaling of the

system in order to reduce the effects of the ill-conditioning. As suggested

in [48], a way to tackle such numerical difficulty is to consider the diagonal

matrix

D = (XZ)1/2,

in order to scale the equations (2.6)-(2.7) to the form:

(D(Q + E)D + G)(D−1δx) = D(−Se + X−1µe) + D(Te − Z−1µe)

Dδt = G(D−1δx) + D(Te − Z−1µe),

where G = DF̄−1D = TX is a diagonal positive definite matrix. Thus, we

consider for BCQP problems the above scaled systems instead of the original

ones.

A crucial issue is the choice of the fill-in parameter p. Since in [61] it has

been shown that the use of additional memory often reduces the number of

steps drastically, it is useful an adaptive strategy for choosing the value of p

to fill the triangular matrix, as we show in Chapter 4.
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2.4 Solution of Augmented System: CG with

a constrained preconditioner

A very promising class of preconditioners for the augmented system is that

of Constraint Preconditioners (CPs). They are symmetric indefinite precon-

ditioners having the same block structure as the augmented system matrix,

with the upper-right and lower-left blocks unchanged. They date back to

[4], but recently they have attracted the interest of many IP researchers

and, more generally, of people working on saddle-point problems (see e.g.

[9, 19, 22, 38, 49, 55, 59, 62, 83, 86, 27]; an overview of CPs is included

in the survey paper [8]). Furthermore, they begin to be implemented in

state-of-the-art IP software, such as KNITRO [11, 96] and HOPDM [39].

We consider the following Constraint Preconditioner:

P =





diag(Q) + E −AT

−A −F



 (2.8)

and its application through sparse direct factorization. Note that, by pre-

conditioning with P the augmented system matrix, all the eigenvalues are

moved to the positive semiaxis and at least m of them are made equal to 1

[9, 22].

In the next subsections we prove (see [13]) that, if a suitable CG start-

ing guess is chosen, the approach based on the Conjugate Gradient with

Constraint Preconditioner, henceforth referred to as CPCG, is equivalent to

applying the CG method with a spd preconditioner to the normal equations

in dual ordering form. Starting from this result, we obtain results concerning

the convergence of CPCG. Results concerning the behaviour of the precon-

ditioned CG algorithm have been obtained for other preconditioners in the

class of constraint preconditioners, see [9, 22, 55, 62, 86] and the recent work

[27].
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2.4.1 Equivalence between CPCG and a preconditioned

CG for Normal Equations

Let us write the augmented system as

Mδu = b, (2.9)

where

M =





C −AT

−A −F



 (2.10)

C = Q+E, δu = (δxT , δyT )T , b = (bT
1 , bT

2 )T , b1 = −Se+X−1µe and b2 = Ze−
Y −1µe. From the following factorization of the Constraint Preconditioner,

P =





D −AT

−A −F



 =





I 0

−AD−1 I









D 0

0 −G









I −D−1AT

0 I



 ,

where D = diag(Q) + E and G = F + AD−1AT are spd matrices, it results

that

P−1 =





I D−1AT

0 I









D−1 0

0 −G−1









I 0

AD−1 I



 =

=





D−1 − D−1AT G−1AD−1 −D−1AT G−1

−G−1AD−1 −G−1



 .

(2.11)

By exploiting the block structure of the matrix of the augmented system and

of P−1, the CPCG algorithm can be written as shown in Figure 2.1, where

δui = ((δxi)T , (δyi)T )T is the approximate solution, ri = ((ri
1)

T , (ri
2)

T )T the

residual, zi = ((zi
1)

T , (zi
2)

T )T the preconditioned residual and pi = ((pi
1)

T , (pi
2)

T )T

the search direction, at the i-th iterate.

Since the matrices M and P are not spd, a breakdown could occur in this

algorithm; furthermore, the CG convergence properties are not guaranteed.

However, this is not the case when the starting guess is chosen in such a way
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that the initial residual has the last m components equal to 0. Indeed, by

using such a starting guess, we have that CPCG behaves as if it were applied

to a spd system, as stated by the following theorem.

Theorem 2.4.1 In the CPCG algorithm, if

δx0 = 0, δy0 = −F−1b2, (2.12)

then the vectors δxi, ri
1, z

i
1 and pi

1 are equal to the approximate solution, the

residual, the preconditioned residual and the search direction, respectively, at

the i-th iteration of the CG algorithm applied to the normal equations

(C + AT F−1A)δx = b1 − AT F−1b2, (2.13)

with preconditioner

P̃ = D + AT F−1A, (2.14)

and null starting guess.

To prove the previous theorem, we use the following lemma (similar re-

sults have been provided in [22, 86] for other types of CP):

Lemma 2.4.2 In the CPCG algorithm, if the starting guess (2.12) is chosen,

then, ∀i ≥ 0,

ri
2 = 0, (2.15)

ti2 = 0. (2.16)

Proof of Lemma 2.4.2.

The proof proceeds by induction. From (2.12) we have that

r0
2 = b2 + Aδx0 + Fδy0 = 0,
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and hence

z0
2 = −G−1(AD−1r0

1),

z0
1 = D−1(r0

1 + AT z0
2) = D−1(I − AT G−1D−1)r0

1.

Using these expressions and taking into account that G = F + AD−1AT , we

obtain
t02 = −Ap0

1 − Fp0
2 = −Az0

1 − Fz0
2 =

= (−I + AD−1AT G−1 + FG−1)AD−1r0
1 =

= (−I + GG−1)AD−1r0
1 = 0.

Assuming that the relations (2.15) and (2.16) hold for j ≥ 0, we have

rj+1
2 = rj

2 − αtj2 = 0.

It follows that

zj+1
2 = −G−1AD−1rj+1

1 ,

zj+1
1 = D−1(rj+1

1 + AT zj+1
2 ) = D−1(I − AT G−1D−1)rj+1

1 , (2.17)

pj+1
1 = zj+1

1 + βpj
1 = D−1(I − AT G−1D−1)rj+1

1 + βpj
1, (2.18)

pj+1
2 = zj+1

2 + βpj
2 = −G−1AD−1rj+1

1 + βpj
2, (2.19)

and hence

tj+1
2 = −Apj+1

1 − Fpj+1
2 =

= (−I + (AD−1AT + F )G−1)AD−1rj+1
1 − β(Apj

1 + Fpj
2) =

= −βtj2 = 0.

2

We now prove the theorem.

Proof of Theorem 2.4.1.

Let δx̃i, r̃i, z̃i and p̃i be the approximate solution, the residual, the precon-

ditioned residual and the search direction computed at the i-th iteration of
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the CG algorithm applied to system (2.13) with preconditioner (2.14). Fur-

thermore, let t̃i = (C + AT F−1A)p̃i and let α̃i and β̃i be the scalars used

to compute δx̃i+1, r̃i+1 and p̃i+1. We first note that, using the Sherman-

Morrison-Woodbury formula, it results

P̃−1 = D−1 − D−1AT G−1AD−1 (2.20)

and hence, if ri
1 = r̃i, then zi

1 = z̃i (see (2.17) in the proof of Lemma 2.4.2).

Therefore, we need to prove that, ∀i ≥ 0,

δxi = δx̃i, ri
1 = r̃i, pi

1 = p̃i. (2.21)

To this aim, we prove also that

ti = t̃i. (2.22)

We proceed by induction. For i = 0, the equalities (2.21)-(2.22) come from

the choice of the initial guess.

Assuming that the relations (2.21)-(2.22) hold for i ≥ 0 and recalling Lemma 2.4.2,

we readily obtain αi = α̃i and βi = β̃i, and hence

δxi+1 = δx̃i+1, ri+1
1 = r̃i+1, pi+1

1 = p̃i+1. (2.23)

Furthermore,

t̃i+1 = Cp̃i+1 + AT F−1Ap̃i+1 =

= Cz̃i+1 + AT F−1Az̃i+1 + β̃it̃i

and, using (2.18)-(2.19),

ti+1 = Cpi+1
1 − AT pi+1

2 =

= CD−1(I − AT G−1D−1)ri+1
1 + AT G−1AD−1ri+1

1 + βiti =

= Czi+1
1 + AT G−1AD−1ri+1

1 + βiti.

From (2.23) it follows that

AT G−1AD−1ri+1
1 = (I − DP̃−1)r̃i+1 = (P̃ − D)z̃i+1 = AT F−1Azi+1

1 ;
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thus

ti+1 = t̃i+1,

which completes the proof. 2

2.4.2 Convergence analysis of CPCG

We derive results on the convergence of CPCG from Theorem 2.4.1.

Corollary 2.4.3 Let ei = δu∗ − δui, where δu∗ = ((δx∗)T , (δy∗)T )T is the

solution of system (2.9), and ẽi = δx∗ − δx̃i. If the starting guess (2.12) is

chosen, then

i) CPCG does not break down;

ii) it converges in at most n iterations;

iii) (ei)T Mei > 0 if ei 6= 0.

Then, we can define ||ei||M =
√

(ei)T Mei and the following inequality holds:

iv)

||ei||M ≤ 2

(√
κ − 1√
κ + 1

)i

||e0||M ,

where κ = λmax/λmin, with λmax and λmin maximum and minimum

eigenvalue of the matrix P̃−1(C + AT F−1A).

Proof.

By Theorem 2.4.1, the scalars σi and τ i in CPCG (see Figure 2.1) are equal

to the corresponding scalars in the preconditioned CG applied to the normal

equations; therefore i) holds. Equality (2.15) in Lemma 2.4.2 yields

−Aδxi − Fδyi = b2

34



2.4. SOLUTION OF AUGMENTED SYSTEM: CG WITH A

CONSTRAINED PRECONDITIONER

and hence, by using Theorem 2.4.1, if δx̃i = δx∗ then δyi = δy∗, which proves

ii). Furthermore, we have

(ei)T Mei = (ei
1)

T Cei
1 + (ei

2)
T Fei

2 = (ẽi)T (C + AT F−1A)ẽi,

which implies iii) and iv). 2

The previous corollary shows that M acts on ei as a spd matrix, although

it is indefinite. Note that this does not hold if the matrix F is not positive

definite. As already observed in [86], if F = 0, e.g. in QP problems with

equality constraints, then ||ei||M is zero whenever ei
1 = 0, even if ei

2 6= 0. In

this case the CPCG algorithm may not be able to decrease the residual and

hence to compute an accurate approximation of the solution. Possible cures

to this problem are the diagonal scaling discussed in [86] and the residual

update strategy presented in [44]. On the other hand, regularization tech-

niques can be applied to the augmented system to obtain a spd lower right

block F [1].

2.4.3 Spectral analysis of the preconditioned matrix

For sake of completeness, we report some results that show the close rela-

tionship between the spectrum of P̃−1(C +ATF−1A) and that of P−1M and

provide a bound on λmax and λmin [22]. By a simple computation we have

that

P−1M =





I + ḠD̄ 0

−G−1AD̄ I



 ,

where D̄ = D−1C − I and Ḡ = I − D−1AT G−1A, and that

I + ḠD̄ = P̃−1(C + AT F−1A);

therefore m eigenvalues of P−1M are equal to 1, while the remaining n eigen-

values are the ones of P̃−1(C +AT F−1A) and hence are real positive. A more

complete analysis of the spectrum is given in the following theorem [22].
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Theorem 2.4.4 The matrix P−1M has at least m unit eigenvalues. Fur-

thermore, if the matrix Ḡ is nonsingular, there are m linearly independent

eigenvectors corresponding to these eigenvalues. The remaining eigenvalues

of P−1M lie in the interval

[

λmax(D
−1AT F−1A) + λmin(D−1C)

1 + λmax(D−1AT F−1A)
,
λmin(D−1AT F−1A) + λmax(D

−1C)

1 + λmin(D−1AT F−1A)

]

,

(2.24)

where λmax(V ) and λmin(V ) denote the maximum and the minimum eigen-

value of the matrix V , respectively.

In our case the matrix Ḡ is nonsingular, since ḠD−1 = D−1−D−1AT G−1AD−1 =

P̃−1 (see (2.20)). A corollary of the previous theorem shows that the eigenval-

ues of P−1M are bounded also by the minimum and the maximum eigenvalue

of D−1C.

Corollary 2.4.5 The following relation holds:

λmin(D−1C) ≤ λmin(P−1M) ≤ λmax(P
−1M) ≤ λmax(D

−1C).

Proof.

The thesis follows from (2.24) by recalling that, if V is a spd matrix, then

either (diag(V ))−1V has all the eigenvalues equal to 1 or it has at least one

eigenvalue less than 1 and one eigenvalue greater than 1 (see, e.g., [86]).1 2

1A direct proof of Corollary 2.4.5 is provided in [9].
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! initialization

choose δx0, δy0;

i = 0; r0
1 = b1 − Cδx0 + AT δy0; r0

2 = b2 + Aδx0 + Fδy0;

z0
2 = −G−1(AD−1r0

1 + r0
2); z0

1 = D−1(r0
1 + AT z0

2);

p0
1 = z0

1 ; p0
2 = z0

2 ;

σ0 = (z0
1)T r0

1 + (z0
2)T r0

2;

! preconditioned CG iterations

while ( convergence criterion not satisfied )

ti1 = Cpi
1 − AT pi

2; ti2 = −Api
1 − Fpi

2;

τ i = (pi
1)

T ti1 + (pi
2)

T ti2;

αi = σi/τ i;

δxi+1 = δxi + αipi
1; δyi+1 = δyi + αipi

2;

ri+1
1 = ri

1 − αiti1; ri+1
2 = ri

2 − αiti2;

zi+1
2 = −G−1(AD−1ri+1

1 + ri+1
2 ); zi+1

1 = D−1(ri+1
1 + AT zi+1

2 );

σi+1 = (zi+1
1 )T ri+1

1 + (zi+1
2 )T ri+1

2 ;

βi = σi+1/σi;

pi+1
1 = zi+1

1 + βipi
1; pi+1

2 = zi+1
2 + βipi

2;

i = i + 1;

endwhile

Figure 2.1: Block formulation of the Conjugate Gradient algorithm with the

Constraint Preconditioner.

37



Chapter 3

Potential Reduction framework

3.1 Introduction

The Interior Point framework that we consider is given by a Potential Re-

duction method. We already described the motivations for our interest in

this method and some its feature in Chapter 1. In this Chapter we describe

a primal-dual Potential Reduction (PR) method for solving Quadratic Pro-

gramming problems. We present the potential function that we consider and

its main properties, deriving the basic idea of the PR method to achieve

an optimal solution. Starting from the classical convergence results in [58],

we report convergence results for QP problems in the case of direct solution

of the KKT linear systems arising at each iteration of the method and we

extend the convergence analysis to the case of inexact solution of the KKT

systems.

3.2 The Potential Reduction algorithm

In this Section we describe the feasible Potential Reduction algorithm that

we use for solving QP problems.
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In a Potential Reduction algorithm a fundamental role is played by the

potential function. We consider the symmetric primal-dual potential function

of Tanabe [89] and Todd and Ye [91]:

Φ(w) = ρ log
(

xT s + zT y
)

−
n
∑

i=1

log (xisi) −
m
∑

j=1

log (zjyj) , (3.1)

where w = (xT , yT , sT , zT )T and ρ > n + m is a suitable parameter.

This logarithmic function has very important properties. In order to examine

such properties, it is convenient to rewrite (3.1) in a different way:

Φ(w) = (ρ − (n + m)) log
(

xT s + zT y
)

−
n
∑

i=1

log

(

xisi

(xT s + zT y)/(n + m)

)

−
m
∑

j=1

log

(

zjyj

(xT s + zT y)/(n + m)

)

+ (n + m) log (n + m)

= Φopt(w) + Φcen(w),

(3.2)

where

Φopt(w) = (ρ − (n + m)) log
(

xT s + zT y
)

Φcen(w) = −
n
∑

i=1

log

(

xisi

(xT s + zT y)/(n + m)

)

−
m
∑

j=1

log

(

zjyj

(xT s + zT y)/(n + m)

)

+ (n + m) log (n + m) .

From (3.2) one can notice that the potential function is the sum of two terms

related to the basic concept of optimality and centrality, respectively.

The first term Φopt is related to the optimality, since it tends to −∞ as the

iterates tend to optimality, when the duality gap ∆ goes to zero.

The second term Φcen is related to the centrality, that is as better as the

pair products xisi, ziyi are not much smaller than their average value (xT s+

zT y)/(n + m). Such term of the potential function acts as a barrier when

w = (xT , yT , sT , zT )T goes toward a point such that xisi = 0, ziyi = 0, but

∆ > 0, when the boundary of the feasible set is approached without tending
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to an optimal solution.

We can show (see Lemma 3.2.1) that the function Φcen is bounded from below,

so that the potential function approaches −∞ only when Φopt approaches

−∞, that is when ∆ tends to zero. Hence, the aim of a Potential Reduction

method is to drive the potential function toward −∞ in order to decrease

the duality gap to zero. Therefore, the basic idea is to solve the following

minimization problem:

minimize Φ(w)

subject to Ax − b = z, Qx + c − AT y = s, w > 0.
(3.3)

Lemma 3.2.1 For any w > 0 we have:

Φcen ≥ (n + m) log (n + m) .

Proof.

The function Φcen can be written as:

Φcen = −
n
∑

i=1

log(xisi) −
m
∑

j=1

log(yjzj) + (n + m) log(xT s + zT y).

From the arithmetic mean and the geometric mean inequality, we have:

n
∏

i=1

xisi

m
∏

j=1

yjzj ≤




1

n + m





n
∑

i=1

xisi +
m
∑

j=1

yjzj









n+m

and, taking the logarithm on both sides:

n
∑

i=1

log(xisi) +
m
∑

j=1

log(yjzj) ≤ (n + m) log

(
∑n

i=1 xisi +
∑m

j=1 yjzj

n + m

)

,

that is

(n + m) log(xT s + zT y)−
n
∑

i=1

log(xisi)−
m
∑

j=1

log(yjzj) ≥ (n + m) log(n + m).2

40



3.2. THE POTENTIAL REDUCTION ALGORITHM

Lemma 3.2.2 The potential function is unbounded below on its domain.

Proof.

For any µ > 0 we can consider a point wµ on the central path defined by µ.

By substituting such point in (3.2) we have:

Φ(wµ) = (ρ − (n + m)) log ((n + m)µ) + (n + m) log(n + m)

that tends to −∞ as µ tends to zero. 2

The following Lemma shows the relationship existing between the poten-

tial function and the duality gap.

Lemma 3.2.3 For any strictly feasible point w we have

∆ ≤ exp

(

Φ(w) − (n + m) log(n + m)

ρ − (n + m)

)

. (3.4)

Proof.

The result follows immediately from (3.2) and Lemma 3.2.1. 2

From Lemma 3.2.3, if the PR method generates a sequence {wk} of strictly

feasible iterates such that Φ(wk) → −∞, then ∆k → 0. Hence, reducing the

potential function over the feasible domain forces the sequence to converge

to an optimal solution.

Furthermore, if the potential function is reduced by a fixed amount δ > 0 at

each iteration of the PR algorithm, that is

Φ
(

wk+1
)

≤ Φ
(

wk
)

− δ, ∀k = 0, 1, 2, . . . , (3.5)

then the duality gap is reduced under a certain threshold ε within O((ρ −
(n + m)) log(1/ε)) iterations [12, 90, 99].
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Proposition 3.2.4 Given a starting point w0 ∈ F0, suppose that the PR

algorithm generates a sequence
{

wk
}

∈ F0 that satisfies (3.5) for some δ > 0.

Then for any ε ∈ (0, 1), we have an index K defined by

K =
⌈

(1/δ)(Φ(w0) − (n + m) log(n + m) + (ρ − (n + m))| log(ε)|)
⌉

,

such that

∆k ≤ ε, ∀k ≥ K. (3.6)

Proof.

By taking the logarithm of both sides in (3.4), we find that (3.6) follows from

the inequality:

Φ(wk) ≤ (n + m) log(n + m) − (ρ − (n + m))| log(ε)|. (3.7)

But, from (3.5), we have

Φ(wk) ≤ Φ(w0) − kδ, k = 1, 2, . . .

so that (3.7) in turn follows from:

Φ(w0) − kδ ≤ (n + m) log(n + m) − (ρ − (n + m))| log(ε)|.

The result follows from the last expression. 2

We prove that (3.5) holds in Section 3.3.

A constant reduction in the potential function can be achieved, at each

iteration, by taking a steepest descent step in the feasible region, with respect

to a suitable norm (see, for example, [58, 90]), or, equivalently, by computing

a Newton step for the following perturbed KKT equations:

H(wk) =

















Qxk + c − AT yk − sk

Axk − zk − b

XkSke

Y kZke

















=

















0

0
∆k

ρ
∆k

ρ

















wk > 0, (3.8)
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where ∆k is the duality gap corresponding to wk. This in turn requires the

solution of the KKT linear system (2.1), where rp = 0, rd = 0, µ = ∆k/ρ:

















Q −AT −I 0

A 0 0 −I

Sk 0 Xk 0

0 Zk 0 Y k

































δxk

δyk

δsk

δzk

















=

















0

0

−XkSken + ∆k

ρ
en

−Y kZkem + ∆k

ρ
em

















. (3.9)

Once the Newton direction δwk = (δxk, δyk, δsk, δzk) has been computed,

the (k + 1)-th iterate is obtained as:

wk+1 = wk + θ̄kδwk,

where θ̄k is a suitable step length. The step length is given by

θ̄k = arg min
θ̄∈(0,θk

max)
Φ(wk + θ̄δwk), (3.10)

with

θk
max = max

{

θ ≥ 0 : wk + θδwk ≥ 0
}

.

However, as we point out in Chapter 4, in practice a simpler choice for the

step length, that allows to avoid a line search procedure, can be made.

The PR method previously described can be summarized into the algo-

rithmic framework in Figure 3.1.

3.3 Convergence of the Potential Reduction

method for QP

In this section we analyze the convergence properties of the feasible Potential

Reduction method for Quadratic Programming. We first report the results

concerning the “exact” solution of the KKT systems, then we extend these
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! initialization

choose w0, ρ > n + m +
√

n + m, ε > 0

∆0 = (x0)
T
s0 + (z0)

T
y0

k = 0

! PR iterations

while (∆k ≥ ε) do

compute δwk by solving the system (3.9)

compute θk as in (3.10)

wk+1 = wk + θkδwk

∆k+1 = (xk+1)
T
sk+1 + (zk+1)

T
yk+1

k = k + 1

endwhile

Figure 3.1: The Potential Reduction algorithmic framework.

results to the case of “inexact” solution of the systems, obtained by using

iterative methods.

In [58] (see also [99]), it has been proved for Linear Complementarity

problems that the reduction in the potential function value can be obtained,

under the assumption that the directions are computed exactly. The final

result of an elegant convergence theory is the following:

Φ(wk+1) − Φ(wk) ≤ −(
√

3/2)τ + max
{

ρ/2n, [2(1 − τ)]−1
}

τ 2, (3.11)

where ρ = n +
√

n, τ ∈ (0, 1). In particular, if n ≥ 2 and τ = 0.4, then

Φ(wk+1) − Φ(wk) ≤ −0.2.

We note that the optimality conditions for a primal-dual convex QP prob-

lem can be stated in terms of a Linear Complementarity problem [57]. Indeed,

a Linear Complementarity problem (LCP) is formulated as follows: find an
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(u, v) ∈ <2n̄ such that

v = Mu + q, (u, v) ≥ 0 and uivi = 0, i = 1, 2, . . . , n̄,

where M is an n̄ × n̄ matrix and q ∈ <n̄, so that the KKT conditions for

the primal-dual pair (1.2)-(1.3) can be interpreted as a LCP problem with

dimension n̄ = n + m, where u = (x, y)T , v = (s, z)T and M , q are given by

M =





Q −AT

A 0



 , q =





c

−b



 . (3.12)

We are particularly interested in solving convex QP problems by using

a Potential Reduction framework where the KKT systems are solved with

iterative methods, as discussed in Chapter 2. Starting from the convergence

results that we have in the case of direct solution of the inner systems, we ex-

tend such results to the case of an iterative solution of such systems. Indeed,

since iterative methods give approximated solutions of the linear systems,

some of the convergence theory has to be reassessed. We show that in both

cases, “exact” and “inexact” solution of KKT systems, the relation (3.5)

holds, that is the potential function is reduced at least by a constant at each

iteration of the Potential Reduction algorithm.

Remark. Let us write the relation (3.4) as

∆ ≤ ecΦ(w) ea = ā ec Φ(w) (3.13)

where 0 < c < 1 and a < 0, so 0 < ā < 1.

If at each iteration of the PR algorithm (3.5) holds, then it follows that:

ec Φ(wk+1)

ecΦ(wk)
= ec (Φ(wk+1)−Φ(wk)) = e−c δ < 1,

hence the sequence ec Φ(wk) linearly converges to zero.

As a consequence, from (3.13), we have that

∆k → 0 r-linearly.
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3.3.1 Preliminaries

We introduce some notation that will be useful in the next subsections.

Unless otherwise specified, the symbol ‖·‖ denotes the Euclidean matrix and

vector norms.

V1 = (XS)
1

2 ; V2 = (ZY )
1

2 ;

V = diag(V1, V2), V ∈ <(n+m)×(n+m);

v1 = V1en = [
√

xisi]
n
i=1; v2 = V2em = [

√
ziyi]

m
i=1; v = V e, v ∈ <n+m;

h1 = −v1 +
∆

ρ
V −1

1 en; h2 = −v2 +
∆

ρ
V −1

2 em; h = (hT
1 , hT

2 )T ∈ <n+m;

r = Xr1 ∈ <n;

u1 = h1 + V −1
1 r; u2 = h2; u = (uT

1 , uT
2 )T ∈ <n+m;

D1 = X
1

2 S−
1

2 D2 = Z
1

2 Y −
1

2

vmin = min{v1, . . . , vn+m} = ||V −1||−1.

Note that, from the definition of v, we have:

||v||2 = xT s + zT y = ∆. (3.14)

A lower bound exists on ||h|| for a suitable choice of ρ [58]:

Lemma 3.3.1 For any w ∈ F 0 and for ρ ≥ n + m +
√

n + m we have

||h|| ≥
√

3

2vmin

∆

ρ
. (3.15)
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3.3.2 Exact solution of the KKT systems

We report the convergence results in the case of “exact” solution of the KKT

systems in order to introduce the basic ideas of the proof of the convergence

and more easily derive the results concerning the iterative solution of such

systems.

We restrict our attention to search directions δw which satisfy the equa-

tions






Xδs + Sδx = −SXe + ∆
ρ
e

Y δz + Zδy = −Y Ze + ∆
ρ
e

(3.16)

where, from the first two equations of the system (3.9), we have

δz = Aδx, δs = Qδx − AT δy, (3.17)

since we consider a feasible method.

By using the notation introduced in subsection 3.3.1, we can reformulate

(3.16) in the following ways:







Xδs + Sδx = V1h1

Zδy + Y δz = V2h2

(3.18)







D−1
1 δx + D1δs = h1

D−1
2 δz + D2δy = h2

(3.19)

(by multiplying by V −1
1 the first equation and by V −1

2 the second equation)







X−1δx + S−1δs = V −1
1 h1

Z−1δz + Y −1δy = V −1
2 h2.

(3.20)

(by multiplying once again by V −1
1 the first equation and by V −1

2 the second

equation).

The following Lemma establishes some useful results.
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Lemma 3.3.2 The following inequalities hold:

(i) 0 ≤ δxT δs + δzT δy ≤ 1

2
||h||2.

(ii) ||X−1δx||2+||S−1δs||2+||Z−1δz||2+||Y −1δy||2 ≤ 1

v2
min

(||h||2−2(δxT δs+

δzT δy)).

Proof.

We first prove assertion (i). It follows immediately from (3.17) that:

δxT δs + δzδy = δxT δs + (Aδx)T δy

= δxT (δs + AT δy)

= δxT (Qδx − AT δy + AT δy)

= δxT Qδx ≥ 0

(3.21)

since Q is positive semi-definite.

Furthermore, from (3.19) we obtain that:

||h||2 = ||h1||2 + ||h2||2
= ||D−1

1 δx + D1δs||2 + ||D−1
2 δz + D2δy||2

= ||D−1
1 δx||2 + ||D1δs||2 + ||D−1

2 δz||2 + ||D2δy||2 + 2(δxT δs + δzT δy)

(3.22)

and this implies that

||h||2 ≥ 2(δxT δs + δzT δy). (3.23)
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Now we prove assertion (ii). From (3.19), (3.20) and (3.22) we obtain:

||X−1δx||2 + ||S−1δs||2 + ||Z−1δz||2 + ||Y −1δy||2

= ||V −1
1 D−1

1 δx||2 + ||V −1
1 D1δs||2 + ||V −1

2 D−1
2 δz||2 + ||V −1

2 D2δy||2

= ||V −1
1 ||2||D−1

1 δx||2 + ||V −1
1 ||2||D1δs||2

+||V −1
2 ||2||D−1

2 δz||2 + ||V −1
2 ||2||D2δy||2

≤ ||V −1||2(||D−1
1 δx||2 + ||D1δs||2 + ||D−1

2 δz||2 + ||D2δy||2)

=
1

v2
min

(||h||2 − 2(δxT δs + δzT δy)).

(3.24)

2

We impose on the step parameter θ̄ the requirement that

θ̄ max(||X−1δx||∞, ||S−1δs||∞, ||Z−1δz||∞, ||Y −1δy||∞) = τ (3.25)

for some τ ∈ (0, 1), which we will determine later.

Next, we evaluate the difference between the potential function values of

Φ(wk+1) and Φ(wk). By following the same steps described in [58] we obtain

that:

Φ(wk+1) − Φ(wk) ≤ θg1 + θ2g2, ∀θ ∈ (0, θ̄], (3.26)

where

g1 =
ρ

∆
(xT δs+sT δx+zT δy+yT δz)−eT

n (X−1δx+S−1δs)−eT
m(Z−1δz+Y −1δy)

(3.27)

g2 =
ρ

∆
(δxT δs + δzT δy) +

||X−1δx||2 + ||S−1δs||2 + ||Z−1δz||2 + ||Y −1δy||2
2(1 − τ)

.

(3.28)

From (3.26), we observe that the quadratic function:

f(θ) = θg1 + θ2g2,
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is an upper bound on Φ as a function of the step length θ along the search di-

rection. Therefore, in order to obtain the desired result, we will find bounds

on the size of g1 and g2.

From the definition of g2 in (3.28), by using (3.24) of Lemma 3.3.2 we

obtain the following bound:

g2 ≤
ρ

∆
(δxT δs+ δzT δy)+

1

2(1 − τ)v2
min

(

||h||2 − 2(δxT δs + δzT δy)
)

. (3.29)

The function g1 can be expressed in terms of h. By using (3.18), (3.20),

we have:

g1 =
ρ

∆
eT

n (Sδx + Xδs) +
ρ

∆
eT

m(Zδy + Y δz) − eT
n (X−1δx + S−1δs)

−eT
m(Z−1δz + Y −1δy)

=
ρ

∆
eT

nV1h1 +
ρ

∆
eT

mV2h2 − eT
nV −1

1 h1 − eT
mV −1

2 h2

=
ρ

∆

(

V en+m − ∆

ρ
V −1en+m

)T

h

= − ρ

∆

(

−v +
∆

ρ
V −1en+m

)T

h

= − ρ

∆
||h||2.

(3.30)

The following theorem holds.

Theorem 3.3.3 Let

θ̄ =
τvmin

||h|| with τ ∈ (0, 1). (3.31)

Suppose that the direction δw satisfies the equations (3.16). Then, the con-

dition (3.25) holds, and

θg1 ≤ −
√

3

2
τ (3.32)
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θ2g2 ≤ max

{

ρ

2(n + m)
,

1

2(1 − τ)

}

τ 2. (3.33)

Proof.

We show first that the restriction (3.25) holds. From (3.24) we have

||X−1δx||2 ≤ ||h||2
v2

min

− 2

v2
min

(δxT δs + δzT δy) − ||S−1δs||2 − ||Z−1δz||2 − ||Y −1δy||2

≤ ||h||2
v2

min

so that

||X−1δx|| ≤ ||h||
vmin

and therefore

θ̄||X−1δx||∞ ≤ θ̄||X−1δx|| ≤ vminτ

||h||
||h||
vmin

= τ.

The other bounds in (3.25) can be checked in the same way.

We have, from (3.30) and (3.31):

θg1 = − ρ

∆
||h||τvmin.

The inequality (3.32) follows immediately using the bound (3.15).

In order to prove (3.33) we observe that

∆ = ||v||2 ≥ (n + m)v2
min,

so that we have from (3.29):

g2 ≤ ρ

(n + m)v2
min

(δxT δs + δzT δy) +
||h||2

2(1 − τ)v2
min

− (δxT δs + δzT δy)

(1 − τ)v2
min

=

{[

ρ

n + m
− 1

(1 − τ)

]

(δxT δs + δzT δy)

||h||2 +
1

2(1 − τ)

}

||h||2
v2

min
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and therefore

θ2g2 ≤
{[

ρ

n + m
− 1

(1 − τ)

]

(δxT δs + δzT δy)

||h||2 +
1

2(1 − τ)

}

τ 2.

By using assertion (i) of Lemma 3.3.2, if

ρ

n + m
− 1

1 − τ
≥ 0

then

θ2g2 ≤
{

(

ρ

n + m
− 1

1 − τ

)

1

2
+

1

2(1 − τ)

}

τ 2 =
ρ

2(n + m)
τ 2

else

θ2g2 ≤
1

2(1 − τ)
τ 2.

Thus the inequality (3.33) follows. 2

In view of Theorem 3.3.3, from (3.26) we have that:

Φ(wk+1) − Φ(wk) ≤ −
√

3

2
τ + max

{

ρ

2(n + m)
,

1

2(1 − τ)

}

τ 2. (3.34)

Note that the reductions obtained in practical implementation are usually

much larger than the theoretical lower bound (3.34). This in turn implies

that the complexity result, about the lower bound on the number of iterations

required to obtain a fixed duality gap reduction, is somewhat pessimistic. It

has been verified, by intensive numerical experiments, that the number of

iterations of PR algorithm is in practice independent of the problem size (see

Chapter 4).
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3.3.3 Inexact solution of the KKT systems

Let us consider the KKT system arising at each iteration of the PR algorithm

reduced to the augmented system form


















(Q + X−1S)δx − AT δy = −Se + X−1 ∆

ρ
e

Aδx + Y −1Zδy = −Ze + Y −1 ∆

ρ
e

,

obtained by eliminating δz, δs from the first two equations of the system

(3.9) (see Chapter 2):

δz = Aδx, δs = Qδx − AT δy. (3.35)

Suppose that we use an iterative method to solve the system. In Chapter 2

we have shown that, when we use a CPCG method with a suitable choice

for the initial solution, the residual corresponding to the second block of

equations in the augmented system is equal to zero. Hence, we produce an

inexact solution that satisfies the system:


















(Q + X−1S)δx − AT δy = −Se + X−1 ∆

ρ
e + r1

Aδx + Y −1Zδy = −Ze + Y −1 ∆

ρ
e

(3.36)

where r1 is the opposite of the residual vector.

We observe that, by computing δs, δz from (3.35) using the inexact solution

of (3.36), we obtain a direction δw that satisfies:


















Xδs + Sδx = −SXe +
∆

ρ
e + Xr1

Y δz + Zδy = −Y Ze +
∆

ρ
e

, (3.37)

i.e. the residual r1 in the augmented system corresponds to a residual r =

Xr1 in the third block of equations of the whole system (3.9). Hence, the

approximated computed direction δw is the solution of the system

H ′(w)δw = −H(w) + g + r̂, (3.38)
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where H(w) is given by (3.8), g = (0, 0, ∆
ρ
, ∆

ρ
)T and r̂ ∈ <2n+2m is the opposite

of the residual vector on the whole system, which is nonzero, and it is given

by r = Xr1, only for the linear equations of the third block of equations, as

a consequence of solving inexactly only those equations:

r̂ =

















0

0

r

0

















∈ <2n+2m. (3.39)

In the remainder of this section our aim is to prove that the convergence

theory can be reassessed in order to take into account the inexact solution

of the KKT system.

By using the notation introduced in subsection 3.3.1, we can reformulate

(3.37) in the following ways:







Xδs + Sδx = V1u1

Zδy + Y δz = V2u2

(3.40)







D−1
1 δx + D1δs = u1

D−1
2 δz + D2δy = u2

(3.41)







X−1δx + S−1δs = V −1
1 u1

Z−1δz + Y −1δy = V −1
2 u2.

(3.42)

The following Lemma holds, which is the analogous of Lemma 3.3.2.

Lemma 3.3.4 The following inequalities hold:

(i) 0 ≤ δxT δs + δzT δy ≤ 1

2
||u||2.

(ii) ||X−1δx||2+||S−1δs||2+||Z−1δz||2+||Y −1δy||2 ≤ 1

v2
min

(||u||2−2(δxT δs+

δzT δy)).
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Proof.

The proof is obtained from that of Lemma 3.3.2 by simply make u play the

role of h. 2

We aim to find bounds on the size of g1 and g2 in (3.26).

From the definition of g2 in (3.28), by using assertion (ii) of Lemma 3.3.4 we

obtain the following bound:

g2 ≤
ρ

∆
(δxT δs+ δzT δy)+

1

2(1 − τ)v2
min

(

||u||2 − 2(δxT δs + δzT δy)
)

. (3.43)

The function g1 can be expressed in terms of h and r̄, where r̄ = (rT , 0T )T ∈
<n+m. By using (3.40), (3.42), we have:

g1 =
ρ

∆
eT

n (Sδx + Xδs) +
ρ

∆
eT

m(Zδy + Y δz) − eT
n (X−1δx + S−1δs)

−eT
m(Z−1δz + Y −1δy)

=
ρ

∆
eT

nV1u1 +
ρ

∆
eT

mV2u2 − eT
nV −1

1 u1 − eT
mV −1

2 u2

=
ρ

∆
eT

n+mV u − eT
n+mV −1u

=
ρ

∆

(

V en+m − ∆

ρ
V −1en+m

)T

u

= − ρ

∆

(

−v +
∆

ρ
V −1en+m

)T

u

We have:

−v +
∆

ρ
V −1en+m = h

and
hT u = hT

1 u1 + hT
2 u2

= hT
1 (h1 + V −1

1 r) + hT
2 h2

= ||h1||2 + hT
1 V −1

1 r + ||h2||2

= ||h||2 + hT
1 V −1

1 r
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so that:
g1 = − ρ

∆
(hT u)

= − ρ

∆
(||h||2 + hT V −1r̄).

(3.44)

Now we have all the tools to find a value of θ̄ and a restriction on ||r|| that

allow us to achieve a constant reduction in Φ.

Theorem 3.3.5 Let

θ̄ =
τvmin

||u|| with τ ∈ (0, 1).

Suppose that the direction δw satisfies the equations (3.38). Moreover, sup-

pose that the residual r satisfies

||r|| ≤ γ
∆

ρ
; γ <

√
3

2
. (3.45)

Then, the condition (3.25) holds, and

θg1 ≤ −
√

3 − 2γ

4
τ (3.46)

θ2g2 ≤ max

{

ρ

2(n + m)
,

1

2(1 − τ)

}

τ 2. (3.47)

Proof.

We show first that the restriction (3.25) holds. From assertion (ii) of Lemma

3.3.4 we have

||X−1δx||2 ≤ ||u||2
v2

min

− 2

v2
min

(δxT δs + δzT δy) − ||S−1δs||2 − ||Z−1δz||2 − ||Y −1δy||2

≤ ||u||2
v2

min

so that

||X−1δx|| ≤ ||u||
vmin
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and therefore

θ̄||X−1δx||∞ ≤ θ̄||X−1δx|| ≤ vminτ

||u||
||u||
vmin

= τ.

The other bounds in (3.25) can be checked in the same way.

To show the inequality (3.46), we first observe that from (3.45) and (3.15) it

follows that

||V −1r̄|| ≤ ||V −1|| · ||r̄|| ≤ γ

vmin

∆

ρ
≤ ||h|| (3.48)

so that we have:

||u|| ≤ ||h|| + ||V −1r̄|| < 2||h||, (3.49)

||h||2 + hT V −1r̄ ≥ ||h||2 − ||h||||V −1r̄|| = ||h||(||h|| − ||V −1r̄||) > 0. (3.50)

The last inequality ensures that the linear coefficient g1 is negative. Since

g2 is positive, the quadratic approximation f(θ) is an upturned parabola

that takes a dip as θ increases from zero. Furthermore, by using the bounds

(3.15), (3.45), (3.49), and (3.50), we have from (3.44):

θg1 ≤ − ρ

∆

||h||
||u||(||h|| − ||V −1r̄||)vminτ

≤ −(

√
3

2
− γ)

τ

2
= −

√
3 − 2γ

4
τ.

In order to prove (3.47) we observe that, from (3.29):

g2 ≤ ρ

(n + m)v2
min

(δxT δs + δzT δy) +
||u||2

2(1 − τ)v2
min

− (δxT δs + δzT δy)

(1 − τ)v2
min

=

{[

ρ

n + m
− 1

(1 − τ)

]

(δxT δs + δzT δy)

||u||2 +
1

2(1 − τ)

}

||u||2
v2

min

and therefore

θ2g2 ≤
{[

ρ

n + m
− 1

(1 − τ)

]

(δxT δs + δzT δy)

||u||2 +
1

2(1 − τ)

}

τ 2.
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By using assertion (i) of Lemma 3.3.4, if

ρ

n + m
− 1

1 − τ
≥ 0

then

θ2g2 ≤
{

(

ρ

n + m
− 1

1 − τ

)

1

2
+

1

2(1 − τ)

}

τ 2 =
ρ

2(n + m)
τ 2

else

θ2g2 ≤
1

2(1 − τ)
τ 2.

Thus the inequality (3.47) follows. 2

In view of Theorem above, from (3.26) we have that:

Φ(wk+1) − Φ(wk) ≤ −
√

3 − 2γ

4
τ + max

{

ρ

2(n + m)
,

1

2(1 − τ)

}

τ 2.

Therefore we have obtained a result that is very similar to that we have in

the case of exact solution of the inner systems.

We remark that the bound on the residual, as prescribed by Theorem 3.3.5,

can be exploited in the development of an implementation of the PR algo-

rithm in order to adapt the accuracy requirement in the solution of the inner

systems to the current value of the duality gap. As the iterates approach the

solution, such value can be reduced, so that the accuracy required for the in-

exact solution increases. Such adaptive strategy is aimed to reduce as much

as possible the number of inner iterations, without affecting the number of

outer iterations.

Note that, if we use an iterative method to solve the inner system reduced

to the normal equations form (dual ordering), then we produce an inexact

solution satisfying the system:

(Q + X−1S + AT Z−1Y A)δx = −Se + X−1 ∆

ρ
e − AT Y e + AT Z−1 ∆

ρ
e + r̃,

58



3.3. CONVERGENCE OF THE POTENTIAL REDUCTION METHOD

FOR QP

where r̃ is the opposite of the residual vector. The residual r̃ corresponds

once again to a residual r = Xr̃ in the third block of equations of the original

system, so that we have the same convergence results that we have proved

for an inexact solution of the system in the augmented system form.

Note that, when we consider BCQP problems we can repeat the same

analysis of this subsection (see [12]) by considering the following matrices:

V = diag(V1, V2), V ∈ <2n×2n; V1 = (XS)
1

2 ; V2 = (ZT )
1

2 ;

D1 = X
1

2 S−
1

2 ; D2 = Z
1

2 T−
1

2 .

In Theorem 3.3.5 the quantities θg1, θ2g2 have the following bounds:

θg1 ≤ −
√

3 − 2γ

4
τ

θ2g2 ≤ max

{

ρ

4n
,

1

2(1 − τ)

}

τ 2.
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Chapter 4

Developed software and

Numerical results

4.1 Introduction

The Potential Reduction method with iterative solution of the KKT sys-

tems has been implemented in two software packages. The first one, named

PRBCQP-S, implements a normal equations approach with the incomplete

Cholesky factorization described in Section 2.3 for BCQP problems, the sec-

ond one, named PRQP, implements an augmented system approach with

the constraint preconditioner described in Section 2.4 for QP problems of

type (1.1). These software packages will be soon available for on line solu-

tion of problems on the computational environment for optimization named

ESOPO [23], which has been developed in the context of the Italian MIUR

FIRB project “Large Scale Nonlinear Optimization”.

In order to describe the developed software packages, we analyze some

implementation issues arising in developing efficient and effective IP based

software. Our attention is particularly devoted to implementation issues re-

lated to the solution of KKT systems with iterative methods. One of the
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main issues arising in the use of iterative methods for linear systems is the

choice of a suitable stopping criterion. We present a computational study

of stopping criteria of the preconditioned CG method for solving the KKT

systems. We first consider the “simplest” CG termination rule, based on the

requirement that the residual norm is less than some factor of the norm of

the initial residual, then we consider other criteria, taking into account the

convergence results of the Potential Reduction method and the step length

on the direction which is obtained by solving the KKT system.

The choice of the fill-in parameter is another relevant implementation issue

when dealing with a preconditioner given by an incomplete Cholesky factor-

ization with limited memory.

For more details about implementation issues in IP methods the reader is

referred to, e.g., [2, 41].

We show the results of numerical experiments carried out to analyze the

effectiveness of the implemented approaches on a set of large-scale quadratic

problems. In the context of the PR solver for BCQP problems, we com-

pare the selected ICF preconditioner with other available preconditioners for

positive definite systems. In the context of the PR solver for QP problems

based on the augmented system approach, the constraint preconditioner is

the more promising preconditioner, so we compare the selected iterative ap-

proach with a direct approach for the KKT systems. In both BCQP and

QP cases, we also compare the developed software packages to the well-

estabilished software MOSEK. MOSEK (see also Chapter 1) is designed to

solve large-scale optimization problems. Problems that MOSEK can solve

include linear problems and quadratic and quadratically constrained prob-

lems (integer constrained variables are allowed). For continuous problems

MOSEK implements Interior Point based algorithms. Specifically Mehrotra

type predictor-corrector methods are considered and the Newton systems

arising at each iteration are solved by using a sparse direct method [3].
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4.2 PRBCQP-S: a Potential Reduction soft-

ware for sparse BCQP problems

In this Section we present a software package that solves quadratic problems

with only bound constraints. It is based on the Potential Reduction algo-

rithm in Figure 3.1 and solves the KKT systems in normal equations form

by applying a preconditioned Conjugate Gradient method where the precon-

ditioner is the incomplete Cholesky factorization with predictable memory

requirement by Lin and Morè (Section 2.3).

We analyze the main computational issues, focusing on those associ-

ated with the considered iterative approach for the inner iterations, then

we present the results of numerical experiments carried out in order to verify

the effectiveness of this approach and to make software comparisons to other

preconditioners and to the software MOSEK.

4.2.1 Stopping criteria for the inner iterations

The solution of the KKT linear systems in the context of Interior Point ap-

proaches is at the inner level of an iterative process which computes, at the

outer level, an approximation of the solution of the optimization problem at

each iteration. When the approximation of the solution of the optimization

problem is far from an optimal solution, at least at the early outer itera-

tions, it is convenient to accept an approximated inner solution having not

a high accuracy, that should be required at the last outer iterations. Hence,

we devised adaptive stopping criteria, based on the “quality” of the outer

iterates.

We analyze different stopping rules for the preconditioned CG algorithm

that we use to solve the inner systems. The “simplest” CG stopping criterion

is based on the requirement that the residual norm is less than some factor
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of the initial residual norm:

||ri||
||r0|| ≤ tolkcg,

where ri is the i-th CG step residual, r0 is the initial residual and tolkcg is a

tolerance at k-th PR iteration.

We adapt the tolerance tolcg to the “quality” of the outer iterates by

relating its value to the value of the current duality gap ∆. Since such value

decreases when the PR iterates approach the solution, even a higher accuracy

is required in computing the Newton direction.

We analyze two adaptive strategies to set the tolerance value:

AD1 tolkcg = max {min {γ∆, tolmax} , tolmin} ,

AD2 tolkcg = ∆/ρ̄, ρ̄ = n
√

n,

where 0 < γ < 1 is a suitable parameter and tolmin, tolmax are lower and

upper bounds on the tolerance. On the base of numerical experiments and

taking into account the accuracy required in the stopping criterion for the

outer iterations (4.4), we set their values as follows:

γ = 10−6

tolmin = 10−8

tolmax = 10−4

(4.1)

The above strategies are both related, by means of a suitable scaling factor,

to the value of duality gap ∆ at current iterate. Specifically, as scaling factor

for ∆ the AD2 strategy uses 1/ρ̄, which is related to the problem size n. As

a result, when the problem size increases, the scaling factor decreases, and

therefore an higher accuracy is required. In contrast, in the AD1 strategy,

the scaling factor is set to γ, independently of n. Furthermore, we force tolcg
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to stay in a fixed interval, in order to avoid a too high or too low accuracy.

Finally, in our numerical experiments we also consider a termination strategy

in which the tolerance tolcg has the fixed value 10−9; we refer to it as the FX

strategy.

Numerical results concerning the above stopping criteria are reported in

subsection 4.2.8.

4.2.2 Choice of the fill-in parameter

The adaptive strategy for the accuracy requirements in the CG steps is used

in conjunction with an adaptive fill-in requirement in the ICF factorization

with limited memory described in Section 2.3. Since in [61] it has been

shown that the use of additional memory often reduces the number of steps

drastically, we consider an adaptive strategy for the choice of the value of

the fill-in parameter p. We have selected the following criterion, based on

intensive numerical experiments. Starting from the initial value p = 2, such

value is incremented by 3 if the following condition is satisfied at the k-th

outer iteration:

stepk
cg/step

k−1
cg > 1.2 and stepk

cg > 2 · 10−3n,

where stepk
cg is the number of CG steps at the outer iteration k. In few

words, we increase the fill-in value if the number of CG steps at a given outer

iteration increases at least of more than 20% with respect to the previous

iteration.

4.2.3 Step length computation

At each iteration of the PR algorithm, once the Newton direction δwk has

been computed, a steplength θk on such direction should be computed by
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taking (see Section 3.2):

θk = arg min
θ∈(0,θk

max)
Φ(wk + θδwk), (4.2)

where

θk
max = max

{

θ ≥ 0 : wk + θδwk ≥ 0
}

.

Theoretically a line search procedure is necessary. From a computational

point of view, a procedure to compute the step length avoiding the line

search should be preferred, mostly when dealing with large-scale problems.

We make the following simple choice for the step length:

θk = βθk
max, (4.3)

with 0 < β < 1, that leads to a constant reduction in the potential function,

as it has been observed in [12, 48].

4.2.4 Starting point selection

When a bound constrained problem is considered, a strictly feasible starting

point w0 = (x0, y0, s0, z0) can be easily selected. A natural choice for the

value of x0 is the mid point of the two bounds. Then we choose the other

values in the following way:

t0 = αe, α = max{1, 3 ‖ Qx0 + c ‖ −(eT (Qx0 + c))/2n}.
s0 = Qx0 + c + t0

z0 = e − x0.

Note that we set x0, α and t0 as in [48], where the authors show that such

choice implies that ∆0 ≤ 1/ε, which represents a starting condition for their

proof of the theoretical convergence of the algorithm.
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4.2.5 Other implementation issues

The PR algorithm is stopped at the k-th iteration if the following condition

on the relative duality gap is satisfied:

∆k

1 + |q(xk)| ≤ tol, (4.4)

where tol is a tolerance specified by the user. A maximum number, maxit,

of iterations is also considered.

Intensive numerical experiments in [48] suggest that, from the conver-

gence point of view, a good combination of the values for the parameters ρ

and β of the PR algorithm is given by ρ = 0.1n1.5 and β = 0.99. We used

such values in our implementation.

The values of the algorithmic parameters were set as specified in Table 4.1.

β tol maxit

0.99 1E–6 50

Table 4.1: Values of the algorithmic parameters used in the numerical exper-

iments with PRBCQP-S.

To solve the inner system we use the ICFS package by Lin and Moré,

which is based on the ICF algorithm (http://www-unix.mcs.anl.gov/∼more/icfs/).

To perform the remaining computational kernels, namely the inner products

and the matrix-vector products, we use respectively the DDOT function from

the basic linear algebra subroutines (BLAS) package [20] and the DSSYAX

routine from the ICFS package. The matrices are stored by using the com-

pressed columns sparse format, as required by the ICFS package.
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4.2.6 Test problems

The test problems we considered are randomly generated BCQP problems

and the obstacle problem [73]. For constructing a random (RND) sparse

problem, we used a technique similar to that introduced by Moré and Toraldo

in [72] to generate random dense problems. The RND problems depend on

several parameters: the number of variables n, the condition number (ncond)

of the Hessian matrix Q, the magnitude of degeneracy (ndeg) at the solution

x∗, the number of active constraints nact(x∗) at the solution x∗, the density

of the Hessian matrix (density), the bounds l and u. The Hessian matrix Q

is generated by using the Matlab routine sprandsym, which returns a random

symmetric positive definite matrix with a given condition number and with

approximately density×n × n nonzeros. The vector c is equal to Qx∗ − r,

where r is a vector related to the magnitude of degeneracy ndeg,

ri = [∇q(x∗)]i = ±10vindeg, ∀i : x∗

i = ui or x∗

i = li

where vi ∈ (0, 1) is randomly generated. We set

• n = i × 104, where i ∈ {1, 2, 3, 4, 5, 6},

• ncond = 10l, where l ∈ {4, 6},

• ndeg = -3,

• nact(x∗) = n/2,

• density= 10/n, i.e. the Hessian matrix has about 10 nonzero entries in

each row,

• li = 0 and ui = 1, ∀i = 1, . . . , n.

For the obstacle (OBS) problem, Q is a special structured block tridiago-

nal matrix, with all blocks having the same size t, where n = t2. In particular,
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the diagonal blocks are also tridiagonal matrices, and the superdiagonal and

subdiagonal blocks are equal to −I, where I is the identity matrix of size t.

The vector c is given by

c = −h2,

where h = 1/(t + 1), and the bounds are given by

li = (sin (9.2αi) × sin (9.3γi))
3 ,

ui = (sin (9.2αi) × sin (9.3γi))
2 + 0.02,

where

αi = (i − b(i − 1)/tc × t) × h and γi = di/te × h.

In our computational experiments, the OBS problem size is restricted to

i × 104, where i ∈ {1, 4, 9}.

4.2.7 Computational environment

In the next subsections we present the results of numerical experiments car-

ried out on two machines. The first one is an IBM RS6000 workstation avail-

able at Istituto di Calcolo e Reti ad Alte Prestazioni (ICAR-CNR, Naples

section, Italy). The system is equipped with a Power2 160 MHz micropro-

cessor, 512 MB ECC RAM, and 128 KB data L1 cache. All implementations

were carried out using the AIX XL Fortran compiler.

The other system is a PC available at the Department of Mathematics

of the Second University of Naples (Caserta, Italy). The system is equipped

with a Pentium III 864 MHz microprocessor, 256 MB RAM, 128 KB data

L1 cache, and the Linux operating system. All implementations were carried

out using the g77 Fortran compiler.
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4.2.8 Numerical results: comparison of stopping crite-

ria

The aim of the numerical experiments shown in this subsection is to verify

the effectiveness of the adaptive strategies for the accuracy requirement in

solving the inner systems proposed in subsection 4.2.1. We compare the AD1

strategy, where the values of the parameters are those specified in (4.1), to

the AD2 and to the FX strategies.

Tables 4.2 and 4.3 show the results obtained by using the IBM RS6000

machine to solve the RND problems, with ncond=104 and ncond=106, re-

spectively. With RNDi we denote the RND problem of size n = i× 104. For

each strategy, we show the number of outer iterations of the PR algorithm

and the total number of preconditioned CG iterations, required to solve all

the generated random problems. Moreover, the times expressed in seconds

are shown. In the last column, the relative error on the objective function:

ERR =
|q(x∗) − q(xc)|

|q(x∗)| ,

where x∗ is the solution and xc is the final computed solution, is shown.

As expected from an Interior Point algorithm, both tables show that the

number of outer iterations is almost independent of the problem size, and

it is the same for all the considered strategies, showing that the use of an

adaptive termination strategy does not affect the number of outer iterations.

In Table 4.3 we can observe a general significant rise in the number of CG

iterations with respect to Table 4.2 due to the higher ill-conditioning of the

Hessian matrix Q, and therefore of the inner system matrices. Moreover,

we observe that at least one of the two adaptive strategies gives a number

of CG steps less than those required by the FX approach. We also note

that, for some problem size, performing more CG steps does not result in

higher execution time, since the cost of a step also depends on the fill-in
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value used in a given outer iteration. However, we can see that an adaptive

accuracy requirement leads in general to better performances with respect

to the use of a fixed accuracy requirement. In fact, an adaptive strategy

allows to require a lower accuracy in the solution of the system in the first

PR iterations. We finally note that there is not a clear winner among the two

adaptive strategies. It can be only argued that for increasing problem size

and ill-conditioning the AD1 strategy should ensure more stable performance

than the AD2 strategy.

Problem AD1 AD2 FX

it CG time it CG time it CG time ERR

it it it

RND1 18 78 7.60E+0 18 78 7.70E+0 18 105 9.10E+0 8.0E–8

RND2 20 96 2.36E+1 20 118 3.74E+1 20 222 5.90E+1 1.0E–7

RND3 20 129 5.90E+1 20 145 6.11E+1 20 169 4.73E+1 1.0E–7

RND4 22 179 1.06E+2 22 152 9.78E+1 22 214 9.63E+1 1.0E–7

RND5 21 228 1.95E+2 21 229 1.74E+2 21 380 2.53E+2 4.0E–7

RND6 22 442 4.98E+2 22 509 5.31E+2 22 478 6.82E+2 1.0E–7

Table 4.2: Numerical results for RND problems with ncond= 104.

4.2.9 Numerical results: comparison with other pre-

conditioners

In Table 4.4 we compare the performance of the PR algorithm based on the

ICF preconditioner (PR-ICF) with the performance of the algorithm when

the preconditioners SSOR (PR-SSOR) and ILU(0) (PR-ILU), by the ESSL

library, are used. We consider the case ncond = 106 and the AD1 strategy.

For each of the three considered preconditioners, we show the number of

outer iterations of the PR algorithm, the total number of preconditioned
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Problem AD1 AD2 FX

it CG time it CG time it CG time ERR

it it it

RND1 19 118 1.88E+1 19 118 1.87E+1 19 179 2.01E+1 1.0E–7

RND2 21 145 6.11E+1 21 162 6.27E+1 21 216 6.30E+1 1.0E–7

RND3 22 187 8.54E+1 22 179 6.87E+1 22 223 6.43E+1 9.0E–8

RND4 23 309 1.95E+2 23 152 9.72E+1 23 341 2.12E+2 3.0E–7

RND5 24 258 2.07E+2 24 465 2.75E+2 24 373 2.48E+2 2.0E–7

RND6 24 491 5.49E+2 24 635 6.12E+2 24 620 6.93E+2 2.0E–7

Table 4.3: Numerical results for RND problems with ncond= 106.

CG iterations and the times, expressed in seconds. In the last column, the

relative error of the objective function value is reported. These results have

been obtained by using the IBM RS6000 machine.

From the results on Table 4.4, we observe that the use of the ILU pre-

conditioner with no additional memory dramatically increases the number

of CG steps, and then the times to the solution. This confirms that the use

of an adaptive fill-in requirement strategy improves the quality of the in-

complete Cholesky factor, and then it drastically improves its performance.

When we use the SSOR preconditioner, the number of CG steps is higher

than those obtained by using the ICF and ILU(0) preconditioners, but the

times are lower than those related to the ILU(0). This is due to the fact

that the computation and the use of the SSOR preconditioner, which only

requires forward and backward system solutions involving the lower and up-

per triangular parts of the coefficient matrix, is usually much less expensive

with respect to incomplete factorization-based preconditioners, but it leads to

poorer performances. Thus, the ICF preconditioner with additional adaptive

memory ensures better performance than the SSOR preconditioner.
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Problem PR-ICF PR-SSOR PR-ILU

it CG time it CG time it CG time ERR

it it it

RND1 19 118 1.88E+1 19 4140 4.90E+1 19 3299 8.72E+1 1.0E–7

RND2 21 145 6.11E+1 21 5215 1.77E+2 21 4245 3.37E+2 1.0E–7

RND3 22 187 8.54E+1 22 6590 3.62E+2 22 9066 1.05E+3 9.0E–8

RND4 23 309 1.95E+2 23 6199 5.35E+2 23 6063 1.19E+3 3.0E–7

RND5 24 258 2.07E+2 24 8464 9.53E+2 24 6792 1.71E+3 2.0E–7

RND6 24 491 5.49E+2 24 7059 1.16E+3 24 6726 2.52E+3 2.0E–7

Table 4.4: Numerical results for different preconditioners and for RND prob-

lems with ncond= 106.

4.2.10 Numerical results: comparison with MOSEK

The aim of this subsection is to present numerical results of a comparison

between the PRBCQP-S software and the MOSEK [75] software. Due to

the current unavailability of such software on the IBM R6000 system, the

results refer to experiments carried out on a PC. We consider the version

of the PR-ICF solver with the AD1 tolerance strategy. In order to have

computed solutions with the same accuracy of those provided by MOSEK,

we use the value 10−7 into the outer stopping criterion. Tables 4.5 and 4.6

show the results to solve the RND problems, with ncond= 104 and ncond=

106, respectively. For each of the two solvers, we show the number of outer

iterations (and the total number of preconditioned CG iterations for the

PR-ICF algorithm) and the overall CPU times expressed in seconds.

We observe an increase in the number of iterations (both outer and inner)

with respect to the results shown in Table 4.2 and 4.3. This is due to the

higher accuracy demand on the quality of the solution. MOSEK gives better

performances than PR-ICF for problems with size n < 4× 104. The scenario
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changes when we solve higher dimension problems. Such results show that

for large sparse problems without any structure, the use of preconditioned

iterative methods is competitive with the use of sparse direct ones.

Finally, we show the results obtained by solving the obstacle problems

with PR-ICF solver and with MOSEK. Due to the special structure of such

problems, we use a modified AD1 strategy in order to require lower accuracy

in solving the linear systems. Specifically, we use:

γ = 10−2

tolmin = 10−5

tolmax = 10−2

.

Furthermore, we let the fill-in parameter p to have only the value 1 or 2. In

Table 4.7 we report the number of outer iterations (and the total number of

preconditioned CG iterations for the PR algorithm) and the times expressed

in seconds, needed for solving the OBSi problems, where i ∈ {1, 4, 9}.
We observe that also for high structured problems, for which a sparse

direct inner solver is very stable and efficient, the use of iterative approaches

compares favourably.

Problem PR-ICF MOSEK

it CG it time it time

RND1 19 83 4.80E+0 14 3.40E+0

RND2 21 114 1.76E+1 14 1.68E+1

RND3 21 136 2.90E+1 15 2.34E+1

RND4 23 187 5.32E+1 15 8.94E+1

RND5 23 272 1.21E+2 16 1.61E+2

Table 4.5: Comparison of PR-ICF and MOSEK for RND problems with

ncond= 104.
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Problem PR-ICF MOSEK

it CG it time it time

RND1 21 129 1.16E+1 16 3.80E+0

RND2 22 152 3.32E+1 17 1.99E+1

RND3 24 208 4.65E+1 17 2.59E+1

RND4 25 339 9.48E+1 17 1.02E+2

RND5 26 305 1.18E+2 18 1.80E+2

Table 4.6: Comparison of PR-ICF and MOSEK for RND problems with

ncond= 106.

Problem PR-ICF MOSEK

it CG it time it time

OBS1 14 144 2.70E+0 11 3.60E+0

OBS4 16 319 2.36E+1 13 2.39E+1

OBS9 18 595 8.58E+1 14 8.09E+1

Table 4.7: Comparison of PR-ICF and MOSEK for OBS problems.
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4.3 PRQP: a Potential Reduction software

for sparse convex QP problems

In this Section we present a software package for solving the quadratic opti-

mization problem (1.1). It is based on the Potential Reduction algorithm in

Figure 3.1 and solves the KKT systems in augmented system form by apply-

ing a preconditioned Conjugate Gradient method where the preconditioner

is the constraint preconditioner introduced in Section 2.4.

As we made for the previous solver, we analyze the computational is-

sues related to the solution of the linear systems with an iterative method.

In particular, we make a computational study of stopping criteria for the

preconditioned CG algorithm that we use to solve the KKT systems, ex-

tending the experiences that we made in the case of BCQP problems. Then

we present the results of numerical experiments, showing results concerning

different stopping criteria for the CG steps and the results of comparisons to

a direct approach for the KKT systems and to the software MOSEK.

4.3.1 Stopping criteria for the inner iterations

In order to make a computational study of stopping criteria of the precon-

ditioned CG algorithm for solving the linear systems, we first consider a

criterion that is in analogy to that used in the context of the PR algorithm

for BCQP problems (subsection 4.2.1), then we rely the stopping rule of the

CG steps to the convergence properties of the PR algorithm.

As we have already noted, the “simplest” criterion to stop CG steps is

based on the reduction of the relative residual of the approximated solution:

||ri||
||r0|| ≤ tolkcg, (4.5)

where ri is the i-th CG step residual at k-th PR iteration, r0 is the initial

residual and tolkcg is a tolerance at k-th PR iteration.
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We consider, in analogy to the case of BCQP problems (see subsection 4.2.1),

tolkcg defined as

tolkcg = max {min {γ∆, tolmax} , tolmin} , (4.6)

where 0 < γ < 1 and tolmin, tolmax are suitable tolerances, so that the

accuracy of the solution of the augmented system is related to the current

value of the duality gap, through the scaling factor γ; the aim is to avoid

unnecessary CG steps far from the solution of the optimization problem,

without affecting significantly the number of PR iterations. The bounds

tolmin and tolmax are used to prevent from too large or too low accuracy

requirements. The values of γ, tolmin and tolmax are set as follows:

γ = 10−6

tolmin = 10−8

tolmax = 10−4

. (4.7)

Intensive numerical experiments made with the above stopping criterion

showed that the performance of the preconditioned CG method strongly de-

pend on the value of the parameter γ and the values of the bound tolerances.

Furthermore, a suitable combination of these values, that seems to be the

best one, leads to use the upper bound tolerance much more times than the

original value γ∆.

We tried to devise another stopping criterion which was not depending on

parameters based on computational experiments. Theoretical results suggest

a strategy for the choice of a stopping criterion, allowing to rely such criterion

to the convergence properties of the considered Interior Point framework.

From Theorem 3.3.5 we have that, when we use an iterative method to solve

the KKT systems, we have a constant reduction in the potential function

if the (absolute) residual norm ||r̂|| on the whole KKT system satisfies an

upper bound depending by the duality gap and by the parameter ρ, which
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corresponds to the perturbation of the original KKT system. This bound on

the residual norm can be used as a stopping criterion for the CG steps.

We note that the same criterion can be derived also starting from another

point of view, only taking into account the behaviour of inexact Newton

methods. Consider the original KKT equations and the perturbed ones:

F (wk) =

















Qxk + c − AT yk − sk

Axk − zk − b

XkSke

Y kZke

















= 0, wk > 0,

Fµ(wk) =

















Qxk + c − AT yk − sk

Axk − zk − b

XkSke − µen

Y kZke − µem

















= 0, wk > 0.

In [5] it is observed that an inexact Newton step applied to the system of

perturbed KKT equations, that gives

F ′

µ(w)δw = −Fµ(w) + r̂,

where r̂ ∈ <2n+2m is the opposite of the residual vector, can be interpreted

as an inexact Newton step applied to the original system:

F ′(w)δw = −F (w) + rg,

where

rg = µ
(

0, 0, eT
n , eT

m

)T
+ r̂.

It is also shown that, if

||r̂|| ≤ η∆,

taking into account the observation that [6]

||F (w)|| ≥ ∆√
n + m

,
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then it can be found a forcing sequence of the inexact Newton method applied

to the original KKT equations system. Indeed, we have

||rg|| ≤ µ
√

n + m + ||r̂||

and, since in a PR algorithm µ = ∆/ρ, we find

||rg|| ≤
(

n + m

ρ
+ η

√
n + m

)

||F (w)||,

where (n + m)/ρ + η
√

n + m, with η such that (n + m)/ρ + η
√

n + m < 1,

is a forcing sequence. Hence we have the following bound on ||r̂||:

||r̂|| ≤ η∆, η <
1 − (n + m)/ρ√

n + m

that is

||r̂|| ≤ ∆

ρ
,

which is the same bound obtained from the convergence theory of the PR

method with inexact solution of the inner systems.

We recall that the only nonzero components of the residual r̂ are those

corresponding to the third block of equations, say r̃, and the residual r in the

first block of equations of the KKT system reduced to the augmented system

corresponds to a residual r̃ = Xr in the third block of equations of the whole

system (see Chapter 3). Then, in accordance with the theoretical results

about the convergence of the PR method, the preconditioned CG algorithm

could be stopped when

||Xkri|| ≤ ∆

ρ
. (4.8)

where ri is the i-th CG step residual in the first block of equations of the

augmented system at k-th PR iteration.

Note that the quantity ||Xr|| strongly depends on ||X||. We have ex-

perimentally observed that, when the norm of X is very large at the first
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PR iterations, due to the choice of the starting point, we have a high accu-

racy requirement in the solution of the augmented system by using (4.8) as a

stopping criterion. This leads to a large number of CG steps, that are compu-

tationally expensive and are not useful at the first PR iterations. Therefore,

we consider the following stopping criterion for the preconditioned CG steps,

where we avoid the dipendence on X, so that we reduce the accuracy re-

quirement at the first outer iterations:

||ri|| ≤ tolkcg, (4.9)

where tolkcg is given by

tolkcg =
∆

ρ
. (4.10)

As in the first criterion we considered, tolkcg is adapted to the outer iterations

in such a way that the accuracy requirement grows up as the duality gap

decreases.

The results of numerical experiments, that we made by using the pre-

conditioned CG method with the above stopping criterion, show that this

method behaves well on the most of the considered problems (see subsec-

tion 4.3.5). This motivates our investigation on the use of the precondi-

tioned CG method and a further search of a good stopping criterion in order

to improve its performance.

We tried to use of a stopping criterion based on the sufficient condition

given by the convergence theory, reducing the accuracy requirement in (4.9).

To this aim, the tolerance is scaled by a constant c greater than 1:

tolkcg = c
∆k

ρ
. (4.11)

A numerical comparison of the considered stopping criteria is in sub-

section 4.3.5. We show that the last criterion allows to obtain the best

performance, but a suitable safeguard strategy must be used to avoid that

inaccurate directions deteriorate the “quality” of the PR iterates.
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4.3.2 Other implementation issues

The step length computation is made as described in subsection 4.2.3 for the

PRBCQP-S software.

The selection of a good starting point for an Interior Point algorithm for

nonlinear optimization is still an open problem. Some heuristics to find a

strictly feasible point have been developed that work well in practice, based

on the solution of least-squares problems; another starting point strategy is

proposed in [31]. For a discussion about the starting point selection in IP

methods see, e.g., [2, 99]. This issue is not addressed in this thesis. When

starting points are not available, they are computed by solving “hand-tuned”

least squares problems.

As for the PR algorithm for BCQP problems, the outer iterations are

stopped if the following condition on the relative duality gap is satisfied:

∆k

1 + |q(xk)| ≤ tol, (4.12)

where tol is a tolerance specified by the user, and a maximum number, maxit,

of iterations is also considered.

The parameter ρ in the potential function (3.1) is set as

ρ = γρ(n + m), (4.13)

where γρ ≥ 2 is selected taking into account the size of the problem. This

choice is driven by the observation that a value of ρ larger than the lower

bound value n+m+
√

n + m usually produces better numerical performance,

although it degrades the theoretical complexity estimate (see, e.g., [99]).

For all the test problems, the algorithmic parameters involved in the defi-

nition of the potential function (see (4.13)), of the PR step length (see (4.3))

and of the stopping criterion for the outer iterations (see (4.12)) were set as

specified in Table 4.8. The value of β was chosen as suggested in [48]; the

other values were selected on the basis of numerical experiments.
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γρ β tol maxit

6 if m + n ≤ 15000

10 otherwise
0.99 1E–7 50

Table 4.8: Values of the algorithmic parameters used in the numerical exper-

iments with PRQP.

At each PR iteration the Constraint Preconditioner is factorized and

applied using the MA27 suite of routines from the Harwell Subroutine Li-

brary, which implements a variant of the Gaussian elimination to compute

the LDLT factorization of a symmetric sparse matrix [21].

The preconditioned CG algorithm is implemented using (2.12) as starting

guess. The block structure of P is not exploited as in the algorithm in Fig-

ure 2.1, since this requires the explicit computation of G.

Ad hoc routines have been developed to compute sparse symmetric and un-

symmetric matrix by vector products.

4.3.3 Test problems

Two sets of test problems were considered. The first one includes 15 QP prob-

lems from the CUTEr collection [46], that were modified to have only linear

inequality constraints and nonnegative variables with no upper bounds. The

second set is composed of 9 problems that were randomly generated. The

Hessian matrices were built by using the sprandsym Matlab function, requir-

ing about 10n nonzero entries, which, for the selected values of n, correspond

to more than 99% of sparsity; the constraint matrices were obtained by us-

ing the random matrix generator from the Matrix Market Deli collection

(http://math.nist.gov/MatrixMarket/deli/Random), requiring a sparsity of

at least 98%. The dimensions n and m, the number of nonzero entries of the
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upper (or lower) triangle of the Hessian matrix Q, nnz(Q), and the num-

ber of nonzero entries of the constraint matrix A, nnz(A), of the two set of

problems are reported in Table 4.9.

For the modified CUTEr problems, strictly feasible starting vectors x0 and

y0 were computed by solving “hand-tuned” least squares problems. In the

case of the random tests, the vectors b and c in the primal-dual problem (1.2)-

(1.3) were defined in such a way that x0 = en and y0 = em resulted strictly

feasible.

4.3.4 Computational environment

All the tests were performed using a personal computer available at the

Department of Mathematics of the Second University of Naples, equipped

with a 2.53 GHz Pentium IV processor, a memory of 1.256 GB and a L2

cache of 512 KB, and running the Linux Red Hat 9.0 operating system. The

PR software is coded in Fortran 77, with double precision. It was compiled

using the g77 3.2.2 Fortran compiler with the -O3 option; the version 3.1.1.42

of MOSEK was used.

4.3.5 Numerical results: comparison of stopping crite-

ria

We show the results of numerical experiments carried out to analyze the be-

haviour of the PR implementation based on CPCG (henceforth referred to as

PR-CPCG) with the stopping criteria described in subsection 4.3.1. We show

only results concerning the two last criteria, based on convergence properties

of the PR method. We restate here the considered criteria for semplicity of

description:

82



4.3. PRQP: A POTENTIAL REDUCTION SOFTWARE FOR SPARSE

CONVEX QP PROBLEMS

Problem n m nnz(Q) nnz(A)

AUG3DCQP 3873 1000 3873 6546

CVXQP1-a 1000 500 3984 1498

CVXQP1-b 10000 5000 39984 14998

CVXQP2-a 1000 250 3984 749

CVXQP2-b 10000 2500 39984 7499

CVXQP3-a 1000 750 3984 2247

CVXQP3-b 10000 7500 39984 22497

GOULDQP3-a 1999 999 3996 2997

GOULDQP3-b 9999 4999 19996 14997

GOULDQP3-c 19999 9999 39996 29997

MOSARQP1 2500 700 2545 3422

MOSARQP2 2500 700 2545 3422

STCQP2-a 1025 510 5615 2805

STCQP2-b 4097 2052 26603 13338

STCQP2-c 8193 4095 57333 28665

RAND1 20000 100 105001 2000

RAND2 20000 1000 105001 4000

RAND3 30000 1000 143250 3000

RAND4 30000 1000 143250 6000

RAND5 30000 3000 143250 9000

RAND6 30000 5000 143250 15000

RAND7 30000 8000 143250 24000

RAND8 40000 1000 210048 8000

RAND9 50000 1000 262525 10000

Table 4.9: Dimensions and number of nonzero entries of the modified CUTEr

test problems (AUG3DCQP - STCQP2-c) and of the random test problems

(RAND1 - RAND9).
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STOP1 ||ri|| ≤ tolkcg, tolkcg =
∆

ρ

STOP2 ||ri|| ≤ tolkcg, tolkcg = c
∆

ρ
, c = 10.

According to the results presented in Section 2.4, n is always set as max-

imum number of CG steps.

In Table 4.10 we report the number of PR iterations and the total number

of CG iterations performed by PR-CPCG when the STOP1 and the STOP2

criteria are used. Results concerning the STOP1 criterion show that, as

expected from an Interior Point algorithm, the number of PR iterations is

almost independent of the problem size. The problem AUG3DCQP has a

diagonal Hessian, so it requires a very small number of CG iterations. On

the contrary, the GOULDQP3 problems require a very large number of CG

iterations. A more detailed analysis of the behaviour of PR-CPCG shows

that at least 94% of the CG iterations are carried out in the last three PR

iterations. A possible explanation is that these problems have no active

constraints at the computed solution; therefore, the entries of F = Y −1Z

eventually become all very large, leading to very ill-conditioned augumented

systems. However, the behaviour of PR-CPCG in this case deserves further

investigation.

Results concerning the STOP2 criterion show that, when we reduce the

accuracy requirement on the CG solutions, the number of PR iterations dra-

matically increases for some of the test problems, and for 7 problems the

maximum number of allowed outer iterations is reached without achieving

an optimal solution.

In order to better analyze the reasons of these failures, we consider, at

each outer iteration of PR-CPCG with STOP2 criterion, not only the step

length θ on the direction computed with CPCG, but also the step length

θ
′

on the direction computed with a direct method starting from the same
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point used in CPCG, and we compute the angle α between the two direc-

tions. We show these details for two selected test problems in Table 4.11 and

Tables 4.12-4.13. For the first one the convergence is reached in a signifi-

cantly larger number of iterations with respect to the STOP1 case, for the

second one the convergence is not obtained. We report for each PR iterate

the number of CG steps, the value of the primal objective function, the step

lengths θ and θ
′

, the angle α between the directions corresponding to the

two step lengths.

We note that the step length θ becomes shorter and shorter, so that the

quality of the corresponding iterates degrades, making difficult to reduce the

value of the objective function and to achieve the convergence to an optimal

solution. In the sequel we describe the possible reasons for this drawback

and a strategy that we developed as a possible cure.

A strategy based on restarting CG iterations

A possible reason for the above problem is that high values of tolcg lead to

poorly centered iterates. A point w = (x, y, s, z) is a centered point if all the

pair products xisi, yizi are equal to the centering measure (see Chapter 1)

∆/(n + m). Hence, when

vmin = min (xisi, yjzj) <<
∆

n + m
, i ∈ {1, . . . , n} , j ∈ {1, . . . , m} (4.14)

we have a poorly centered point w.

In correspondence to a point w such that (4.14) holds, the step length tends

to be short, since from (3.31) we have:

θ ≤ 2τ
ρ√
3

vmin

∆
<< 2τ

ρ√
3(n + m)

, τ ∈ (0, 1).

In order to avoid inaccurate directions, that deteriorate the “quality” of

the PR iterates, we developed a strategy based on restarting CG iterations:
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at each PR iteration, if the computed step length θ is “too short”, then it

is rejected and we restart CG from the last computed direction by using an

increased accuracy requirement. A step length is considered too short when

its value is smaller than a fixed quantity and it is smaller than a certain

percentage of the step length computed at the previous outer iteration. The

restart is performed only a time for each PR iteration. We also use an upper

bound tolmax to prevent from too low accuracy requirements, based on the

initial residual norm:

tolmax = 10−2||r0||.

This restarting CG strategy allows to use a reduced accuracy requirement

in the computation of the directions, dinamically improving their “quality”

when it is necessary, inside the current PR iteration. It has a very low com-

putational cost, since it does not require a new factorization of the precon-

ditioner, the matrices involved in the computation being invariate. Details

of numerical results obtained by using the CG restarting strategy are shown

in Tables 4.14, 4.15. We compare, at each PR iteration, the computed step

length θ to the step length θ
′

obtained by solving the KKT system with a

direct method and we show the values of rejected step lengths in performing

CG restarting. We also show the angle α between θ and θ
′

and, when a CG

restart is performed, the angle between θ
′

and the rejected angle. We see

that the CG restarting strategy is effective to compute “good” step length,

since almost always the step lengths computed restarting CG iterations are

better than the rejected steps and are not too different from that computed

with a direct method.

In Table 4.16 the results obtained for all the considered QP problems by

using PR-CPCG with the STOP2 criterion and restarting CG strategy are

shown. We report the number of PR iterations and the total number of CG

iterations. Further details are shown in the next tables, where the results

concerning software comparisons are reported.
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Problem STOP1 STOP2

PR it CG it PR it CG it

AUG3DCQP 15 16 15 15

CVXQP1-a 18 192 18 153

CVXQP1-b 22 290 21 223

CVXQP2-a 18 188 19 165

CVXQP2-b 21 287 21 217

CVXQP3-a 19 225 35 214

CVXQP3-b 23 371 24 321

GOULDQP3-a 8 2238 50 305

GOULDQP3-b 9 12167 44 9350

GOULDQP3-c 10 10363 50 264

MOSARQP1 19 70 38 76

MOSARQP2 15 52 30 57

STCQP2-a 24 195 50 78

STCQP2-a 30 305 30 237

STCQP2-a 33 365 33 287

RAND1 16 1028 50 790

RAND2 16 601 45 1079

RAND3 17 670 18 503

RAND4 17 1035 50 832

RAND5 18 716 20 617

RAND6 18 748 19 563

RAND7 19 837 32 871

RAND8 17 1276 50 826

RAND9 16 1392 50 890

Table 4.10: Number of PR iterations and CG iterations of PR-CPCG with

STOP1 and STOP2 criteria.
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Problem MOSARQP1, n = 2500, m = 700

it CG it obj. func. step length θ step length θ
′

α

1 1 4.1244314E+6 1.1673615E–2 3.0999504E–2 3.5217162E–3
2 1 4.1168257E+6 2.0194438E–3 5.1954647E–1 7.7426228E–3
3 1 4.1167489E+6 2.0443394E–5 5.3094238E–1 7.7162981E–3
4 1 4.1167481E+6 2.0445908E–7 5.3105709E–1 7.7160873E–3
5 1 4.1167481E+6 2.0445930E–9 5.3105824E–1 7.7160852E–3
6 1 4.1167481E+6 2.0447428E–11 5.3105825E–1 7.7160852E–3
7 1 4.1167481E+6 2.0351079E–13 5.3105825E–1 7.7160852E–3
8 1 4.1167481E+6 3.5703647E–15 5.3105825E–1 7.7160852E–3
9 1 2.3854301E+6 5.3141570E–1 4.0503318E–15 7.7160852E–3
10 1 1.0546949E+6 7.3932485E–1 7.4139100E–1 9.3765365E–3
11 1 1.0430482E+6 1.2102649E–2 3.7280249E–2 7.0122422E–3
12 1 1.0429314E+6 1.2233150E–4 3.8535204E–4 7.0073006E–3
13 1 1.0429303E+6 1.2234474E–6 3.8548177E–6 7.0072512E–3
14 1 1.0429302E+6 1.2234490E–8 3.8548315E–8 7.0072507E–3
15 1 1.0429302E+6 1.2234660E–10 3.8548852E–10 7.0072507E–3
16 1 1.0429302E+6 1.2244688E–12 3.8580446E–12 7.0072507E–3
17 1 1.0429302E+6 1.2167253E–14 3.8336466E–14 7.0072507E–3
18 1 1.0429302E+6 2.5173627E–15 7.9316826E–15 7.0072507E–3
19 1 1.0429302E+6 2.2965414E–15 7.2359209E–15 7.0072507E–3
20 1 1.0429302E+6 3.9747831E–16 1.2523709E–15 7.0072507E–3
21 1 1.0429302E+6 6.6246386E–16 2.0872849E–15 7.0072507E–3
22 1 1.7999737E+4 1.9133884E+0 1.8838657E+0 7.0072507E–3
23 1 4.3144364E+3 8.4014047E–1 9.0859128E–1 6.8379209E–3
24 1 –2.9858447E+2 7.3805723E–1 9.4106145E–1 6.6320512E–3
25 2 –2.5885914E+3 8.6669209E–1 8.6674547E–1 2.3058794E–3
26 3 –3.3564920E+3 8.1248735E–1 8.1247247E–1 7.7642026E–4
27 3 –3.6397346E+3 7.6539209E–1 7.6536730E–1 1.0740269E–3
28 3 –3.7606858E+3 8.1078182E–1 8.1356768E–1 1.1801662E–3
29 3 –3.8025719E+3 8.0942538E–1 8.0940495E–1 8.9222251E–4
30 3 –3.8155680E+3 7.8355826E–1 7.8353732E–1 8.4652787E–4
31 4 –3.8195450E+3 7.6001471E–1 7.6001482E–1 2.3127010E–5
32 3 –3.8207470E+3 7.2080015E–1 7.2081993E–1 1.8354064E–4
33 4 –3.8212162E+3 8.0369510E–1 8.0369405E–1 8.5561736E–6
34 4 –3.8213646E+3 8.7843958E–1 8.7843996E–1 1.5089381E–5
35 5 –3.8214007E+3 9.1275952E–1 9.1275952E–1 5.1619137E–8
36 5 –3.8214080E+3 9.1083740E–1 9.1083740E–1 5.1619137E–8
37 5 –3.8214095E+3 9.6406686E–1 9.6406686E–1 4.4703484E–8
38 5 –3.8214097E+3 9.0452763E–1 9.0452763E–1 1.0536712E–7

Table 4.11: Details of PR-CPCG with the STOP2 criterion for MOSARQP1.
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Problem RAND8, n = 40000, m = 1000

it CG it obj. func. step length θ step length θ
′

α

1 12 5.5890635E+4 2.3819130E–1 2.4004051E–1 4.3043098E–2
2 11 4.4598067E+4 2.9697747E–1 2.8216661E–1 6.2375555E–2
3 10 3.2810783E+4 4.0263040E–1 4.8400264E–1 6.1561997E–2
4 11 2.1803230E+4 5.3361583E–1 8.1342905E–1 6.3083858E–2
5 14 2.1604483E+4 1.4699823E–2 8.2719734E–1 5.4502048E–2
6 14 2.1602468E+4 1.5052344E–4 8.2306555E–1 5.4673317E–2
7 14 2.1602448E+4 1.5056091E–6 8.2302224E–1 5.4675133E–2
8 14 2.1602448E+4 1.5056126E–8 8.2302180E–1 5.4675151E–2
9 14 2.1602448E+4 1.5053765E–10 8.2302180E–1 5.4675151E–2
10 14 2.1602448E+4 1.5116627E–12 8.2302180E–1 5.4675151E–2
11 14 2.1602448E+4 4.1159132E–14 8.2302180E–1 5.4675151E–2
12 14 1.9656449E+4 1.4712104E–1 2.2563783E–14 5.4675151E–2
13 15 1.9627294E+4 2.4468146E–3 1.3190799E–1 4.8390748E–2
14 15 1.9627004E+4 2.4428646E–5 1.3338980E–1 4.8419585E–2
15 15 1.9627001E+4 2.4428252E–7 1.3340455E–1 4.8419874E–2
16 15 1.9627001E+4 2.4428507E–9 1.3340470E–1 4.8419877E–2
17 15 1.9627001E+4 2.4399782E–11 1.3340470E–1 4.8419877E–2
18 15 1.9627001E+4 2.1644672E–13 1.3340470E–1 4.8419877E–2
19 15 1.9627001E+4 4.0354473E–14 1.3340470E–1 4.8419877E–2
20 15 1.4094492E+4 4.8263121E–1 2.7509588E–14 4.8419877E–2
21 16 1.4012212E+4 1.0714588E–2 2.2730559E–1 5.3892380E–2
22 16 1.4011387E+4 1.0837115E–4 2.3493731E–1 5.4205712E–2
23 16 1.4011378E+4 1.0838363E–6 2.3501313E–1 5.4208882E–2
24 16 1.4011378E+4 1.0838378E–8 2.3501389E–1 5.4208914E–2
25 16 1.4011378E+4 1.0830126E–10 2.3501390E–1 5.4208914E–2
26 16 1.4011378E+4 1.2106358E–12 2.3501390E–1 5.4208915E–2
27 16 1.2412139E+4 2.1248967E–1 5.7311448E–14 5.4208915E–2
28 17 1.2388846E+4 3.6472929E–3 1.9421914E–1 5.3581436E–2
29 17 1.2388612E+4 3.6674497E–5 1.9586205E–1 5.3673457E–2
30 17 1.2388610E+4 3.6676531E–7 1.9587852E–1 5.3674381E–2

Table 4.12: Details of PR-CPCG with the STOP2 criterion for RAND8 (part

1).

89



4.3. PRQP: A POTENTIAL REDUCTION SOFTWARE FOR SPARSE

CONVEX QP PROBLEMS

Problem RAND8, n = 40000, m = 1000

it CG it obj. func. step length θ step length θ
′

α

31 17 1.2388610E+4 3.6676055E–9 1.9587868E–1 5.3674391E–2
32 17 1.2388610E+4 3.6521222E–11 1.9587868E–1 5.3674391E–2
33 17 1.2388610E+4 4.5617985E–13 1.9587868E–1 5.3674391E–2
34 17 1.2388610E+4 2.6834109E–14 1.9587868E–1 5.3674391E–2
35 17 9.0122558E+3 5.4548940E–1 7.0612137E–14 5.3674391E–2
36 20 8.5345543E+3 1.2873839E–1 4.3056220E–1 6.3172072E–2
37 20 8.5299749E+3 1.3672932E–3 4.4110977E–1 7.0477624E–2
38 20 8.5299291E+3 1.3701421E–5 4.4122475E–1 7.0552360E–2
39 20 8.5299286E+3 1.3701830E–7 4.4122590E–1 7.0553109E–2
40 20 8.5299286E+3 1.3717293E–9 4.4122591E–1 7.0553116E–2
41 20 8.5299286E+3 1.3658011E–11 4.4122591E–1 7.0553116E–2
42 20 8.5299286E+3 6.3931116E–13 4.4122591E–1 7.0553116E–2
43 20 8.4045510E+3 3.7521482E–2 6.3855293E–15 7.0553116E–2
44 20 8.4032995E+3 3.8553073E–4 4.2294042E–3 7.2646656E–2
45 20 8.4032870E+3 3.8565801E–6 4.2714454E–3 7.2667897E–2
46 20 8.4032869E+3 3.8565959E–8 4.2718658E–3 7.2668110E–2
47 20 8.4032869E+3 3.8560028E–10 4.2718700E–3 7.2668112E–2
48 20 8.4032869E+3 3.9548746E–12 4.2718700E–3 7.2668112E–2
49 20 7.3870273E+3 3.1648662E–1 4.2718700E–3 7.2668112E–2
50 22 7.3728939E+3 5.8111587E–3 5.1385052E–2 8.1539647E–2

Table 4.13: Details of PR-CPCG with the STOP2 criterion for RAND8

(cont’d).
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Problem MOSARQP1, n = 2500, m = 700

it CG obj. func. step length step length rejected α rejected

it θ θ
′

step length angle

1 1 4.1244314E+6 1.1673615E–2 3.0999504E–2 —– 3.5217162E–3 —–
2 2 2.4231022E+6 5.1943896E–1 5.1954647E–1 2.0194438E–3 1.6158457E–3 7.7426228E–3
3 1 1.8306593E+5 1.6316047E+0 1.8715256E+0 —– 1.2813857E–2 —–
4 2 1.8923982E+4 1.4009245E+0 1.4482246E+0 —– 3.3788702E–3 —–
5 4 6.3287825E+3 7.1722754E–1 7.1581594E–1 6.7195648E–1 3.1484542E–5 1.7408407E–3
6 1 –9.9462105E+2 9.8760633E–1 9.8354721E–1 —– 7.3733817E–3 —–
7 2 –3.0725568E+3 9.6717991E–1 9.6711641E–1 —– 2.0210771E–3 —–
8 2 –3.5562010E+3 8.0497937E–1 8.0502570E–1 —– 2.4982734E–3 —–
9 3 –3.7442002E+3 8.6214440E–1 8.6213473E–1 —– 6.5388398E–4 —–
10 3 –3.7987887E+3 8.2723299E–1 8.2722333E–1 —– 5.5469346E–4 —–
11 3 –3.8138749E+3 7.5445625E–1 7.5445472E–1 —– 1.6756441E–4 —–
12 3 –3.8190284E+3 7.6301546E–1 7.6301835E–1 —– 2.5433550E–4 —–
13 3 –3.8206580E+3 7.6387417E–1 7.6387043E–1 —– 2.4216331E–4 —–
14 4 –3.8212051E+3 8.2455340E–1 8.2455373E–1 —– 1.2285156E–5 —–
15 4 –3.8213626E+3 8.8161352E–1 8.8161390E–1 —– 1.5032635E–5 —–
16 5 –3.8214006E+3 9.2184547E–1 9.2184547E–1 —– 1.1827430E–7 —–
17 5 –3.8214080E+3 9.1147490E–1 9.1147490E–1 —– 7.8849534E–8 —–
18 5 –3.8214095E+3 9.6326221E–1 9.6326221E–1 —– 5.1619137E–8 —–
19 5 –3.8214097E+3 9.0344500E–1 9.0344500E–1 —– 1.0215721E–7 —–

Table 4.14: Details of PR-CPCG with the STOP2 criterion with CG restart for MOSARQP1.
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Problem RAND8, n = 40000, m = 1000

it CG obj. func. step length step length rejected α rejected

it θ θ
′

step length angle

1 12 5.5890635E+4 2.3819130E–1 2.4004051E–1 —– 4.3043098E–2 —–
2 11 4.4598067E+4 2.9697747E–1 2.8216661E–1 —– 6.2375555E–2 —–
3 10 3.2810783E+4 4.0263040E–1 4.8400264E–1 —– 6.1561997E–2 —–
4 11 2.1803230E+4 5.3361583E–1 8.1342905E–1 —– 6.3083858E–2 —–
5 27 1.1352583E+4 8.2725311E–1 8.2719734E–1 1.4699823E–2 5.9259064E–3 5.4502048E–2
6 35 6.7125626E+3 8.7189926E–1 8.7158534E–1 6.3257570E–1 6.1655298E–3 4.9394092E–2
7 46 5.0643049E+3 8.9587980E–1 8.9580967E–1 3.6698759E–1 4.0513660E–3 5.8922651E–2
8 55 4.6092515E+3 8.6030007E–1 8.5790487E–1 5.7613413E–1 1.5506299E–3 2.3604471E–2
9 43 4.4851293E+3 7.8396123E–1 9.5560734E–1 —– 1.7853106E–2 —–
10 51 4.4389504E+3 8.1865096E–1 8.1865557E–1 —– 1.9307433E–2 —–
11 66 4.4252145E+3 7.4711620E–1 9.3447192E–1 —– 8.5871349E–3 —–
12 76 4.4190342E+3 8.7814418E–1 8.7770015E–1 —– 4.6380074E–3 —–
13 81 4.4173089E+3 8.9580140E–1 9.9015182E–1 —– 2.4687709E–3 —–
14 86 4.4168374E+3 9.4827600E–1 1.0439692E+0 —– 1.1825383E–3 —–
15 90 4.4167384E+3 9.3117041E–1 9.3117298E–1 —– 5.5523926E–4 —–
16 87 4.4167147E+3 9.7996378E–1 9.7996463E–1 —– 4.4187506E–4 —–
17 89 4.4167100E+3 1.0345036E+0 1.0344989E+0 —– 2.0041964E–4 —–
18 94 4.4167094E+3 1.0336968E+0 1.0336964E+0 —– 6.5953179E–5 —–

Table 4.15: Details of PR-CPCG with the STOP2 criterion with CG restart for RAND8.
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4.3.6 Numerical results: comparison with a direct ap-

proach for the KKT system

To better analyze the effects of CPCG on the PR algorithm, we compare the

PR-CPCG implementation with stopping criterion for the CG steps based on

(4.9)-(4.11) and CG restarting, to an implementation that was also developed

applying a direct solver. This implementation, henceforth referred to as PR-

DIR, performs a direct solution of the augmented system by using MA27

suite of routines from the Harwell Subroutine Library.

In Table 4.17 we report the number of PR iterations and the execution

time, in seconds, of PR-CPCG and PR-DIR for the selected test problems.

We also show the total number of CG iterations performed by PR-CPCG.

More details on the time spent in the solution of the augmented system in

both PR implementations, i.e. in the factorization of the preconditioner and

in the execution of CPCG, as well as in the factorization of the augmented

system matrix and in the solution of the triangular systems, are presented in

Table 4.18. The total times required by the iterative and the direct system

solution are also reported. Note that we were not able to run PR-DIR on two

problems, due to the high memory requirements in the LDLT factorization.

We see that the use of CPCG does not significantly affect the number of

PR iterations. By comparing PR-CPCG and PR-DIR, we find that this num-

ber is the same for 55% of the problems; in the remaining cases, PR-CPCG

generally requires one more iteration. The execution time of PR-CPCG is

smaller then the time of PR-DIR for about 75% of the test cases. For most

of them the time reduces by one to three orders of magnitude and such re-

duction is generally larger for larger problem sizes. This agrees with the

observation that the execution time is dominated by the solution of the aug-

mented system, and that the time required by the CPCG iterations is largely

compensated by the time spent in the factorization of the preconditioner,
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which is often substantially smaller than the time for the factorization of the

augmented system matrix. As expected, PR-CPCG requires a greater time

than PR-DIR when the Hessian matrix is diagonal (AUG3DCQP) or “very

close to being diagonal” (MOSARQP1 and MOSARQP2); in these cases, the

difference between the times of the two PR implementations ranges approxi-

mately from 20% to 45%, where the percentage is computed with respect to

the time of PR-DIR. Finally, PR-CPCG spends much more time than PR-

DIR on the GOULDQP3 problems, since they require a very large number

of CG iterations.

4.3.7 Numerical results: comparison with MOSEK

The aim of this subsection is to present numerical results of a comparison

between the PRQP solver and MOSEK. We consider the PR-CPCG imple-

mentation with stopping criterion for the CG steps based on (4.9)-(4.11) and

CG restarting. MOSEK was run setting the “relative gap termination toler-

ance” to 1E–7 and using the default values for all the other parameters (see

[75]).

In Table 4.19, we show the number of iterations, the values of the primal

objective functions and the relative duality gaps (defined as in (4.12)) at the

computed solutions, the execution time (sec.) for PR-CPCG and MOSEK.

We see that PR-CPCG is faster than MOSEK in 70% of the test cases,

although MOSEK performs less iterations. In particular, for most of the ran-

dom problems, which are the largest ones, PR-CPCG requires an execution

time which is from one to two orders of magnitude smaller. PR-CPCG is

much faster on CVXQP2-b too. On the GOULDQP3 test cases the execution

time of MOSEK is substantially smaller, according to the previous observa-

tion about the required number of CG iterations. As for PR-DIR, MOSEK

is faster than PR-CPCG on AUG3DCQP, MOSARQP1 and MOSARQP2.
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MOSEK is faster also on CVXQP3-b. Note that, for the six CVXQP test

cases, given the size of the Hessian, the performance of PR-CPCG improves

as the size of the contraint matrix decreases, since the time for factorizing

and applying the preconditioner reduces.

Finally, we observe that the primal objective function values provided by

PR-CPCG and MOSEK do not differ significantly. The objective function

values of MOSEK, as well as the computed relative duality gaps, are often

smaller, as expected since MOSEK implements an infeasible algorithm. For a

few problems MOSEK does not satisfy the relative gap termination tolerance,

reporting near-optimality for the computed solution.
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Problem PR-CPCG

STOP2 with CG restart

PR it CG it

AUG3DCQP 15 17

CVXQP1-a 18 160

CVXQP1-b 21 225

CVXQP2-a 18 153

CVXQP2-b 20 212

CVXQP3-a 19 185

CVXQP3-b 24 324

GOULDQP3-a 11 3460

GOULDQP3-b 10 5873

GOULDQP3-c 11 11300

MOSARQP1 19 58

MOSARQP2 15 45

STCQP2-a 25 162

STCQP2-b 30 246

STCQP2-c 33 292

RAND1 16 955

RAND2 18 531

RAND3 18 503

RAND4 17 774

RAND5 18 544

RAND6 18 533

RAND7 19 616

RAND8 18 970

RAND9 17 953

Table 4.16: Number of PR iterations and CG iterations of PR-CPCG with

STOP2 criterion and CG restart.
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Problem PR-CPCG PR-DIR

it (CG it) time it time

AUG3DCQP 15 (17) 2.51E–1 15 2.14E–1

CVXQP1-a 18 (160) 1.32E–1 18 1.14E+1

CVXQP1-b 21 (225) 1.19E+1 22 1.14E+4

CVXQP2-a 18 (153) 6.17E–2 18 2.48E+0

CVXQP2-b 20 (212) 9.11E–1 21 3.09E+3

CVXQP3-a 18 (185) 3.84E–1 19 3.13E+1

CVXQP3-b 24 (324) 8.34E+1 – —–

GOULDQP3-a 11 (3460) 1.42E+0 8 5.25E–2

GOULDQP3-b 10 (5873) 1.73E+1 8 2.69E–1

GOULDQP3-c 11 (11300) 7.60E+1 10 7.79E–1

MOSARQP1 19 (58) 2.43E–1 18 1.73E–1

MOSARQP2 15 (45) 1.79E–1 14 1.28E–1

STCQP2-a 25 (162) 1.01E–1 25 2.03E–1

STCQP2-b 30 (246) 7.14E–1 30 9.54E+0

STCQP2-c 33 (292) 1.99E+0 33 5.08E+1

RAND1 16 (955) 5.15E+0 16 3.49E+1

RAND2 18 (531) 3.21E+0 16 1.96E+2

RAND3 18 (503) 5.35E+0 17 1.53E+2

RAND4 17 (774) 8.07E+0 17 3.97E+2

RAND5 18 (544) 6.67E+0 18 8.59E+2

RAND6 18 (533) 7.50E+0 18 2.34E+3

RAND7 19 (616) 1.14E+1 – —–

RAND8 18 (970) 1.90E+1 17 1.30E+3

RAND9 17 (953) 3.07E+1 16 1.67E+3

Table 4.17: Number of PR iterations and execution time (sec.) of PR-CPCG

and PR-DIR. The total number of CG iterations in PR-CPCG is also re-

ported (in brackets).
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Problem PR-PCG PR-DIR

prec. PCG total fact. solve total

time time time time time time

AUG3DCQP 1.48E–1 3.91E–2 1.87E–1 1.45E–1 1.04E–2 1.55E–1

CVXQP1-a 6.05E–2 5.64E–2 1.17E–1 1.13E+1 5.59E–2 1.14E+1

CVXQP1-b 9.55E+0 2.11E+0 1.17E+1 1.14E+4 5.37E+0 1.14E+4

CVXQP2-a 1.34E–2 3.28E–2 4.63E–2 2.43E+0 2.87E–2 2.46E+0

CVXQP2-b 1.53E–1 5.98E–1 7.51E–1 3.09E+3 2.27E+0 3.09E+3

CVXQP3-a 2.33E–1 1.32E–1 3.65E–1 3.12E+1 1.01E–1 3.13E+1

CVXQP3-b 7.60E+1 7.11E+0 8.31E+1 —– —– —–

GOULDQP3-a 1.98E–2 1.38E+0 1.40E+0 2.39E–2 1.68E–3 2.56E–2

GOULDQP3-b 1.13E–1 1.70E+1 1.71E+1 1.53E–1 1.19E–2 1.65E–1

GOULDQP3-c 2.90E–1 7.54E+1 7.57E+1 4.85E–1 3.46E–2 5.20E–1

MOSARQP1 1.47E–1 6.04E–2 2.07E–1 1.34E–1 9.17E–3 1.43E–1

MOSARQP2 1.05E–1 4.43E–2 1.49E–1 9.43E–2 6.62E–3 1.01E–1

STCQP2-a 2.66E–2 5.28E–2 7.94E–2 1.70E–1 7.22E–3 1.77E–1

STCQP2-b 1.48E–1 4.29E–1 5.77E–1 9.30E+0 9.08E–2 9.39E+0

STCQP2-c 3.78E–1 1.27E+0 1.65E+0 5.01E+1 2.51E–1 5.04E+1

RAND1 1.32E–1 4.76E+0 4.89E+0 3.45E+1 1.75E–1 3.46E+1

RAND2 1.63E–1 2.78E+0 2.94E+0 1.96E+2 4.00E–1 1.96E+2

RAND3 2.38E–1 4.70E+0 4.94E+0 1.52E+2 4.05E–1 1.52E+2

RAND4 2.48E–1 7.39E+0 7.64E+0 3.96E+2 6.47E–1 3.96E+2

RAND5 2.97E–1 5.92E+0 6.22E+0 8.57E+2 1.09E+0 8.58E+2

RAND6 3.90E–1 6.62E+0 7.01E+0 2.34E+3 2.01E+0 2.34E+3

RAND7 8.01E–1 1.01E+1 1.09E+1 —– —– —–

RAND8 3.61E–1 1.79E+1 1.82E+1 1.30E+3 1.33E+0 1.30E+3

RAND9 4.43E–1 2.91E+1 2.95E+1 1.67E+3 1.61E+0 1.67E+3

Table 4.18: Time spent in the solution of the augmented system in PR-CPCG

and PR-DIR.
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Problem PR-PCG MOSEK

it obj. fun. rel. gap time it obj. fun. rel. gap time

AUG3DCQP 15 –1.1437149E+3 5.81E–8 2.51E–1 9 –1.1437149E+3 1.42E–8 1.40E–1

CVXQP1-a 18 9.5628021E+5 5.70E–8 1.32E–1 13 9.5627955E+5 1.68E–8 3.80E–1

CVXQP1-b 21 9.5015317E+7 5.20E–8 1.19E+ 1 15 9.5014994E+7 4.45E–8 3.92E+1

CVXQP2-a 18 7.6457806E+5 5.00E–8 6.17E–2 13 7.6457807E+5 8.09E–8 3.90E–1

CVXQP2-b 20 7.6001729E+7 5.41E–8 9.11E–1 15 7.6001721E+7 7.75E–8 2.10E+2

CVXQP3-a 18 1.0437435E+6 9.65E–8 3.84E–1 14 1.0437447E+6 1.30E–6 4.70E–1

CVXQP3-b 24 1.0346454E+8 1.72E–8 8.34E+1 15 1.0346444E+8 7.26E–8 2.96E+1

GOULDQP3-a 11 –2.1031026E+3 1.12E–8 1.42E+0 4 –2.1031022E+3 3.46E–8 9.00E–2

GOULDQP3-b 10 –1.3279951E+4 6.43E–8 1.73E+1 5 –1.3279951E+4 1.13E–8 4.10E–1

GOULDQP3-c 11 –3.8149454E+4 4.56E–8 7.60E+1 6 –3.8149455E+4 4.00E–8 1.25E+0

MOSARQP1 19 –3.8214097E+3 3.00E–8 2.43E–1 10 –3.8214100E+3 6.33E–9 1.60E–1

MOSARQP2 15 –5.0525919E+3 4.45E–8 1.79E–1 8 –5.0525917E+3 8.45E–9 1.20E–1

STCQP2-a 25 1.0483316E+4 3.12E–8 1.01E–1 12 1.0483303E+4 3.05E–7 1.50E–1

STCQP2-b 30 6.2341714E+4 4.11E–8 7.14E–1 13 6.2341655E+4 5.94E–7 3.12E+0

STCQP2-c 33 1.4045189E+5 2.44E–8 1.99E+0 13 1.4045168E+5 1.83E–6 1.67E+1

RAND1 16 1.2018049E+3 6.25E–8 5.15E+0 9 1.2018040E+3 9.32E–8 1.38E+1

RAND2 18 1.9434943E+3 3.14E–8 3.21E+0 10 1.9434943E+3 2.80E–8 7.20E+1

RAND3 18 1.3889325E+3 2.11E–8 5.35E+0 10 1.3889324E+3 6.94E–8 4.96E+1

RAND4 17 3.1461022E+3 5.10E–8 8.07E+0 12 3.1461020E+3 7.63E–9 9.99E+1

RAND5 18 3.8319518E+3 3.89E–8 6.67E+0 11 3.8319522E+3 1.45E–8 6.12E+2

RAND6 18 5.9703612E+3 7.14E–8 7.50E+0 10 5.9703609E+3 8.61E–8 1.32E+3

RAND7 19 8.7214249E+3 2.55E–8 1.14E+1 10 8.7214249E+3 8.88E–8 2.21E+3

RAND8 18 4.4167094E+3 2.75E–8 1.90E+1 11 4.4167092E+3 9.62E–9 3.58E+2

RAND9 17 5.5535207E+3 3.80E–8 3.07E+1 10 5.5535209E+3 1.35E–8 5.50E+2

Table 4.19: Comparison of PR-CPCG and MOSEK.
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