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Abstract

Evolutionary Computation (EC) has been inspired by the natural phenomena
of evolution. It provides a quite general heuristic, exploiting a few basic
concepts: reproduction of individuals, variation phenomena that affect the
likelihood of survival of individuals and inheritance of parents features by
offspring. EC has been widely used in recent years to effectively solve hard,
non linear and very complex problems.

Amongst other things, EC–based algorithms have also been used to tackle
classification problems. Classification is a process according to which an ob-
ject is attributed to one of a finite set of classes or, in other words, it is
recognized as belonging to a set of equal or similar entities, identified by
a label. The main aspect of classification usually concerns the generation
of prototypes to be used to recognize unknown patterns. The role of pro-
totypes is that of representing patterns belonging to the different classes
defined within a given problem. For most of the problems of practical in-
terest, the generation of such prototypes is very difficult, since a prototype
must be able to represent patterns belonging to the same class, which may
be significantly dissimilar to each other. They must also be able to discrim-
inate between patterns belonging to classes different from the one that they
represent. Moreover, a prototype should contain the minimum amount of
information required to satisfy the requirements mentioned above.

The research presented in this thesis has led to the definition of an EC–
based framework to be used for prototype generation. The defined framework
does not provide for the use of any particular kind of prototypes. In fact,
it can generate any kind of prototype once an encoding scheme for the used
prototypes has been defined. The generality of the framework can be ex-
ploited to develop many applications. The framework has been employed to
implement two specific applications for prototype generation.
The developed applications have been tested on several data sets and the re-
sults compared with those obtained by other approaches previously presented
in the literature.
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Chapter 1

Introduction

The term Pattern recognition denotes a wide class of activities, including the
human mental processes which transform the sensory activities into percep-
tive experiences. Pattern recognition can be defined as the act of tacking in
raw data and taking actions based on the “category” of the patterns recog-
nized in the data [DHS01]. In this work the term will be used to meaning the
recognition process automatically performed by a computer. This activity is
often denoted as automatic or mechanical pattern recognition.

1.1 Pattern Recognition

Since the beginning of computer science the problem of recognizing patterns
in raw data obtained from real world has been faced. This process is of great
interest in many application fields: for example, optical character recognition
(OCR) is of great deal for automatic processing of documents. Human faces
recognition is gaining a lot of interest in security issues. The term pattern
will be meant a diversified set of information to be used for representing the
object to be recognized. This kind of information is generally obtained by
means of sensors acquiring descriptions of objects from the real world.

The pattern recognition process is mainly characterized by three aspects:

- representation or description of the patterns to be recognized;

- classification, i.e. the act of recognizing the “category” to which the
patterns provided to the recognizing system belong to;

- prototyping, i.e. the mechanism used for generating the prototypes or
models. Prototypes are used for representing the different categories to
be recognized.

1
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Note that both classification and prototyping strongly depend on the repre-
sentation chosen to describe the pattern to be recognized. In the following
subsections each of this aspects will be detailed.

1.1.1 Representation

In the pattern recognition field the problem of representation is that of
processing the information provided by the sensors in such a way that it is re-
duced to the minimum needed for the recognition task, eliminating that part
of information that is unnecessary, which in some cases may even misleads
the recognition process. On the other hand such processing must preserve
the information useful to perform the recognition task.

A “good” representation is one in which patterns demanding the same
action have representations somehow “close” to each other, yet “far” from
those that demand different actions. Moreover, such kind of representation
should allow one to easily represent prototypes describing different categories.

In some cases the patterns to be recognized are represented as vectors of
real-valued numbers. This approach to the representation is called statistical.
An alternative approach to the representation is called structural. In the
latter approach a pattern is described in term of its component parts their
relationships. These approaches are described below.

The Statistical Approach

The first approach used in the pattern recognition field for describing a pat-
terns has been that of representing it as a vector consisting of measures of
some of its characteristics or features. Following this approach, the patterns
may be seen as points in the feature space, a theoretical n-dimensional space
where n is the number of features chosen for describing the patterns. The
values assumed by the features of a pattern are the coordinates of the point
representing the pattern in that space. The statistical approach is essentially
based on the idea that if the features are appropriately chosen, patterns be-
longing to the same class are represented in the feature space by near points
according to a suitable chosen metric. From this standpoint, the problem of
pattern recognition becomes that of partitioning the feature space in different
regions, each one containing points belonging to the same class. It is worth
noting that the number of such regions can be greater than the number of
classes actually present in the problem. Since in many cases a class may
consist of several set of patterns, in which patterns belonging to the same
group are similar, whereas those ones belonging to different sets are quite
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Figure 1.1: Patterns represented in a 2-D feature space. Each pattern is
represented using a vector of two features, thus it is possible to represent the
features in a 2-D dimensional Cartesian space.

unlike. Usually these sets of patterns are said to be sub-classes of the class
their patterns belong to.

The crucial aspect of the statistical approach is choosing the best set of
features to be used for describing the pattern. This set has to provide the
system with the minimum quantity of information necessary for distinguish-
ing patterns belonging to different classes. But this task in many cases may
be very hard. Feature selection techniques have been devised that allow one
to choose the most distinctive features among those available. However, the
problem of choosing a first set of candidate features remains.

The Structural Approach

Since the beginning of the 60’s a different approaches to pattern recognition
have been devised. It is based on the idea that a complex object can be
described by means of the simpler parts, called components or primitives, of
which it is made of. For example, a technical drawing can be represented in
terms of lines and symbols. This decomposition process can be recursively
applied to the decomposed object: the symbols can be on their turn described
as sets of segments, arcs, etc. For an effective description of an object it is
not sufficient to describe its components, since a crucial role is played by the
relationships, or simply relations, existing among these simpler parts. Thus,
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according to this approach an object is described by its structure, whence
the name structural approach.

The main drawbacks of the structural approach concern both the classifi-
cation process and prototypes generation, as they are based on more complex
methods than that available for vectorial description. Particularly, classifica-
tion requires a comparison method between structural description providing
a similarity measure. The definition of such methods it is not at all a simple
task.

1.1.2 Classification

Classification is a process according to which an entity is attributed to one of
a finite set of classes or, in other words, it is recognized as belonging to a set
of equal or similar entities, possibly identified by a name. Classification can
also be alternatively defined as the process that, given a set of prototypes,
assigns a pattern to one of them. The effect of such a assignment is that of
dividing the patterns in classes1.

In many cases, classification is based on a “distance” function which takes
in input two descriptions of patterns and gives as output a value, usually
normalized in the range [0.0, 1.0]. This value measures the similarity of the
patterns given in input, or equivalently the distance between the patterns.
Given such a function and a set of prototypes, the assignment of an incoming
pattern to one of the classes is performed by measuring the distance between
the pattern and each of the prototypes. Then, the pattern is assigned to the
same class of its nearest prototype. Note that such approach can be applied
to any kind of description used to represent the patterns.

The degree of difficulty of a classification problem strongly depends on
the variability in the feature values for patterns in the same class relative to
the difference between feature values for patterns in different classes. The
variability of feature values for patterns in the same class may be due both
to the intrinsic complexity of the problem and to noise. Noise can be defined
in very general terms: any property of the sensed pattern which is not due
to the true characteristics of the pattern but instead to the randomness in
the world or the sensors.

1.1.3 Prototype Generation

The third main aspect of pattern recognition is the mechanism employed
for generating prototypes, quite often denoted by the term prototyping. A

1In the following this term will substitute the term “categories” used so far.
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prototype can be defined as a model on which all (or at least a part of2) the
patterns of a given class can be traced back to. The function of a prototype
is that of representing all the patterns that can be traced back to it. A pro-
totype may be seen as a way to reduce the information needed for describing
a much larger quantity of information: that represented by all the patterns it
describes. Moreover, a prototype musts have another fundamental requisite:
its representation ability has to be discriminative, i.e. it has to be able to
represent the patterns of just a single class.

The concept of prototype is quite general. In many cases it is a pattern.
But in some cases it may be represented in a different way from the patterns.
In the syntactic approach to pattern recognition, for example, logical rules
can be used to decide to which class a given prototype has to be assigned. In
such a case, the set of rules making up a prototype specifies the requirements
met by the patterns that it represents.

A set of prototypes may be built either exploiting the a priori knowledge
of the problem or deducing it on the basis of a set of patterns provided to the
system. This deductive process may be seen as a form of learning and it is
usually called training whereas the set of patterns provided is called training
set. Some general methods can be employed for training a classifier:

Supervised a teacher provides a class label for each pattern in the train-
ing set. The goal of the supervised training is yielding a set of labeled
prototypes that minimizes the error achieved by the system on the pro-
vided training set. This error indicates the percentage of misclassified
training patterns3.

Unsupervised no information is provided on the actual label of the pat-
terns in the training set. The system automatically forms clusters of
the input patterns. The clustering depend on a similarity function pro-
vided to the system. The role of this function is that of measuring
how much two patterns are similar. This kind of training is also called
clustering.

1.2 Pattern Recognition Systems

In the classification process performed by a pattern recognition system three
different operations can be distinguished: preprocessing, feature extraction

2As discussed in Section 1.1.1 in many cases a single prototype may be unable to
represent all the patterns of the corresponding class.

3A training pattern is said to be misclassified if the system attributes to it a label
different from that provided by the teacher.
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Figure 1.2: A pattern recognition system may be partitioned into components
such as the ones shown above.

and classification. Figure 1.2 shows a more detailed diagram of the com-
ponents of a typical pattern recognition system. A sensor converts physical
inputs into signal data. In the segmentation step sensed objects are isolated
each other and separated from the background. The feature extractor mea-
sures the object properties to be used for classification. The classifier uses the
extracted features for labeling the sensed objects. Finally a post-processor
takes into account other considerations, such as the effect of contexts and the
costs of errors, in order to decide on the appropriate action. In the following
each of these operations is described:

Sensing The input to a pattern recognition system is typically a transducer,
e.g. a camera to be used for acquiring images or a microphone employed
for acquiring sound. The difficulty of obtaining data from the external
world strongly depends on the characteristics and limitations of the
transducer (its bandwidth, resolution, sensitivity, distortion, signal- to-
noise ratio, latency, etc.) and on the characteristics of the environment
in which the data lie.

Segmentation and Grouping Segmentation is one of the deepest prob-
lems in pattern recognition. The purpose of segmentation is identifying
the objects to be recognized into the raw data provided by the sensors.
In computer vision, for example, this purpose is usually performed by
partitioning the acquired image in a number of regions, so that each
region corresponds to a recognizable object.

Closely related to the problem of pattern recognition is the problem
of recognizing or grouping together the various parts of a composite
object. For example, in OCR when the letter E is encountered it is
crucial for the system to put together the strokes that form that letter.

Feature Extraction The goal of a feature extractor is to characterize the
objects to be recognized by measurements whose values are likely very
similar for those in the same class and very different for those in differ-
ent ones. This leads to the idea of seeking for distinguishing features
that are invariant to irrelevant transformations of the input. For exam-
ple, the absolute position of an object identified in the acquired scene
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is irrelevant to the category of that object and thus the representation
to be used should be insensitive to its absolute position.

Classification As mentioned above the task of a classifier is that of attribut-
ing the incoming descriptions provided by the feature extractor to one
of the classes actually defined in the classification problem faced.

Post Processing Usually, a classifier is used in order to undertake an action
depending on the category of the analyzed object. To each action a
cost is associated . The post-processor uses the output of the classifier
to decide on the action to be undertaken. Conceptually, the simplest
measure of classifier performance is the classification error rate, i.e. the
percentage of new patterns that are assigned to a wrong category. Thus,
it is common to seek for minimum error-rate classification. However, it
may be much better to recommend actions that will minimize the total
expected cost, which is called the risk.

In order to improve the system performance, the post-processor can also
be used to exploit the context, i.e. input-dependent information other
than from the target pattern itself. For example, in optical character
recognition a vocabulary can be used to help recognizing words.

1.3 The Evolutionary Computation Paradigm

Evolutionary Computation (EC) is a generic term used to indicate a class of
population-based optimization algorithms that use mechanisms inspired by
natural evolution, such as selection, reproduction, mutation and recombina-
tion, called operators. Candidate solutions to the optimization problem play
the role of individuals in a population, and the cost function, usually called
the fitness function, determines the environment within which the solutions
“live”. The evolution of the population takes place after the repeated appli-
cation of the operators.
The basic elements of the EC paradigm are briefly described below:

1.3.1 Fitness

The fitness function measures the “goodness” of an individual as solution of
the problem to be solved. In practice, such a function contains the whole
available knowledge on the problem. This information is then exploited by
the selection mechanism in order to choose the individuals, i.e. solutions, that
will undergo genetic manipulation, performed by the operators, for producing
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the new population. Looking at this fact from a search space standpoint, the
fitness function provides information for locating regions containing good
solutions. As a consequence, the definition of an appropriate fitness function
for the problem faced, is a key issue in the designing phase of any EC–based
algorithm.

1.3.2 Selection

The selection mechanism, together with the genetic operators, represent
those parts of an EC–based system responsible for the stochastic search in
the solution space. In the evolutionary computation jargon, the individuals
chosen by the selection mechanism are called parents, whereas those ob-
tained after the manipulation carried out by the genetic operators are called
offspring. The role of the selection mechanism is that of exploiting the in-
formation acquired so far in order to find better solutions. Such exploitation
takes place favoring those individuals having a better fitness with respect to
those with a worse fitness. Nevertheless, these are not completely excluded
from the process generating the new population.

1.3.3 Solution Encoding

An important aspect of every EC–based algorithm is represented by the way
the solutions are encoded as individuals in the population. The choice of a
particular way for encoding the solution strongly affects the definition of the
operators, whose role is just that of generating new solutions (individuals)
from those the operators are applied to. Often in the EC literature, the
structure used for encoding the individuals, which is manipulated by the
recombination and mutation operators, is called chromosome or genotype.

Several EC schemes have been developed since the first of these schemes
was devised in the 60’ of the last century. These schemes differ each other
just for the way the solutions are encoded as individuals in the population.
In the following the main EC–based schemes and the corresponding encoding
used will be described:

Genetic Algorithms

Genetic Algorithms (GAs) were first introduced by Holland [Hol92]. In GAs,
solutions are encoded as bitstrings. Such kind of encoding can be used for
representing a wide class of solutions. For example, a chromosome 120 bits
long and such that each series of 12 consecutive bits encodes a normalized
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value in the range [0.0, 1.0] could be used for representing the parameters
that describe an airplane wing with particular properties.

As regards the operators, GAs have both a recombination and a mutation
operator. The recombination operator is called crossover. Several versions
of this operator have been devised. However, the simplest one divides each
bitstring into two pieces and exchanges the first section of each bitstring. As
regards mutation, instead, a common GA mutation strategy is that each bit
is flipped to the opposite value, with some low probability, .

Genetic Programming

The field of program induction, using a tree-structured approach, was first
clearly defined by Koza [Koz92]. In this approach, named Genetic Pro-
gramming (GP), solutions are evolved in the form of Lisp programs in an
evolutionary way that extends the concepts of the fixed–length representa-
tions used in GA. The evolved structures are specified as a combination of
functions (arity > 0) and terminals (0–arity functions) which are combined
in order to form Lisp programs. In order to apply GP to a specific prob-
lem, a specific set of functions F = {f1, f2, . . . , fn} and also a specific set of
terminals T = {t1, t2, . . . , tn} have to be defined.

Also GP has both a recombination and a mutation operator. The re-
combination operator also called crossover creates two new individuals (i.e.
programs) by swapping randomly chosen sub–trees between the two par-
ent programs. The mutation operator, instead, modifies a single individual,
modifying a randomly chosen sub-tree, with a newly generated one.

Evolutionary Programming

Evolutionary Programming (EP) has been developed by Fogel [FOW66] for
evolving finite state machines (FSM) to be used to recognize or reject strings
correctly according to some target regular language. The EP field has changed
dramatically since its introduction and now the two main differences between
EP and GA are that EP uses only mutation (while GAs also use crossover)
and that in EP there is no restriction on a particular type of encoding to
be used (as opposed to the bitstring representation so common in GA). The
encoding to be chosen musts have just the property of representing FSM and
of being suitable for a mutation operator, able to explore the FSM search
space.



CHAPTER 1. INTRODUCTION 10

Evolutionary strategies

Evolution Strategies (ESs) were developed by Rechenberg and Schwefel at
the beginnings of 70’s of the last century [Rec73]. The motivation of this
study was, from the beginning, to solve engineering design problems. In
fact, Rechenberg and Schwefel developed ESs in order to conduct successive
wing tunnel experiments for aerodynamic shape optimization. In ESs, solu-
tions are usually encoded as vectors of floating point numbers rather than
bitstrings.

In ESs, is used as recombination operator an operator called intermediate
recombination in such a way that the vectors of two parents are averaged
together, element by element, to form a new offspring. Mutation, instead, is
performed by adding a random value from a Gaussian distribution (Gaussian
mutation) to each element of an individuals vector, in order to create a new
offspring.

1.3.4 Operators

Genetic operators explore new areas of the solution space searching for new
and possibly better, if , solutions. The search is usually performed randomly,
by modifying one or more individuals given in input. They are characterized
by a quantity p which indicates the probability value according to which an
operator is applied to one ore more individuals given in input. Hence, there
is a probability (1 − p) that the input individuals are passed unchanged in
output. Note that as higher is p, as higher is the exploration of the search
space performed by that operator.

Genetic operators can be grouped in two main classes, recombination and
mutation. The first class consists of those operators that take as input two
or more individuals and give as output the same, or even lesser, number of
individuals. The effect of recombination operators is that of swapping parts
of the individuals given in input. As regards mutation operators, instead,
they take in input a single individual and yield as output a new individual
obtained by randomly modifying the input one. These operators randomly
explore the neighbor of the solution represented by the input individual.

1.4 A Reader’s Guide to the Thesis

Chapter 2 introduces the basic concepts of supervised and unsupervised clas-
sification, as well as some of the most commonly used algorithms. Further-
more, some examples of application are also described.
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Chapter 3 contains a survey on Evolutionary Computation, describing
the basic terminology and methods. Particularly, genetic programming, ge-
netic algorithms, breeder genetic algorithms and a new approach, devised for
evolving graphs are illustrated.

In Chapter 4 the main contribute of this Thesis is presented: an Evolu-
tionary Computation framework to be used to generate prototypes for any
classifier. The proposed framework is quite general and can be employed any
time a way for encoding the prototypes used by a given prototype can be
defined. The more remarkable feature of this approach is likely its ability to
automatically find the needed number of prototypes, without any addition of
knowledge by the user. The only knowledge system exploits is that contained
in the set of labeled patterns used in the training phase.
In this chapter are also reported two specific applications of the framework.
The first one uses derivation trees in order to represent prototypes, consisting
of logical expressions; the second one, in the second one, instead, prototypes
are feature vectors.

Chapter 5 presents a new EC–based method for evolving graphs.
In Chapter 6 the experiments performed in order to evaluate the effec-

tiveness of both the approaches proposed are reported. Specifically, for the
framework devised, the behavior of both the applications described in the
chapter 4 on several data sets have been investigated, performing many ex-
periments. The method devised for evolving graphs has been tested on a
hard non–linear optimization involving the design of wireless networks.
Moreover, for both the methods investigated, the comparison of the obtained
results with those obtained by other approaches on the same problems, are
also reported.

Finally, in Chapter 7 the conclusions and some ideas on the future work
of the research presented in this Thesis are reported.



Chapter 2

An Overview of Pattern
Recognition Algorithms

In this chapter an overview of pattern recognition algorithms is given. These
algorithms can be divided in two main classes: classification and clustering.
As we have seen in the previous chapter, a classification algorithm is able
to recognizing the “category” to which a pattern belongs to. As concerns
clustering algorithms, instead, they are able to divide the analyzed data
into groups whose members are similar to each other and dissimilar to those
belonging to the other groups, according to similarity criteria provided by
the user.

Some applications of both classes of algorithms are also described in this
chapter. In the last decades, classification algorithms have been increasingly
used in a large variety of applications . Among the others it is possible men-
tion: optical character recognition, medical applications, object recognition
and document analysis. Some applications in the medical and biometric sig-
nals domains will be illustrated. Also clustering algorithms have been finding
a large variety of applications in the last years. Here, applications in the data
mining and image analysis domain will be described.

2.1 Classification Algorithms

In the most common and well-known classification algorithms, a pattern is
described by a feature vector, in which each component is a real number.

12
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Figure 2.1: Scheme of a neuron.

2.1.1 k-nearest neighbor

The k-nearest neighbor decision rule (k-NN) is a widely used classification
algorithm in statistical pattern recognition, which uses as information about
the classes to be distinguished a set of labeled pattern feature vectors, i.e.
each marked with the class it belongs to, this data set is usually called training
set.
When an unknown vector has to be classified, its k closest neighbors are
found from among all the patterns in the training set, and the class label
is decided based on a majority rule. In order to avoid ties on class overlap
regions, a odd value for k is chosen1. This rule is simple and elegant, yet the
error rate is small in practice. In theory, it is known that, as the number
of prototype patterns increases, the error rate asymptotically gets close to
the optimal Bayes error rate and actually tends to it when k is increased.
Because of this fact the k-NN rule has become a standard comparison method
against which new classifiers are compared. When k = 1 the k–NN decision
rule is called Nearest Neighbor (NN).

The major problem of using the k-NN decision rule is the computational
complexity caused by the large number of distance computations required.
For realistic pattern space dimensions, it is hard to find any variation of the
rule that would be significantly lighter than the brute force method, in which
all the distances between the unknown pattern vector and the training vectors
are computed. Therefore, various modifications of the k-NN classifiers have
been presented, often based on editing or pruning techniques by which the
number of patterns may be decreased without losing accuracy.

1Note that this choice can avoid the occurrence of ties only if the number of classes
present among the k-neighbors is less than three.
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Figure 2.2: General scheme of a multilayer neural network.

2.1.2 Artificial Neural Networks

An Artificial Neural Network (ANN) is a system composed by multiple layers
of simple processing elements called neurons (Figure 2.1). Each neuron is
linked to certain of its neighbors with varying coefficients of connectivity
(Figure 2.2). Each input is multiplied by a connection weight. In the simplest
case, these products are simply summed, fed through a transfer function to
generate a result, and then output. Even though all artificial neural networks
are constructed from this basic building block, the fundamentals may vary
in the blocks, so there are differences. Basically, all artificial neural networks
have a similar topological structure. Some of the neurons interface the real
world to receive inputs and other neurons provide the real world with the
network outputs. All the rest of the neurons are hidden. As shown in figure
2.2, the neurons are grouped into layers. The input layer consists of neurons
that receive inputs form the external environment. The output layer consists
of neurons that communicate the output of the system to the user or external
environment. There are usually a number of hidden layers between these
two layers. When the input layer receives the input its neurons produce
outputs, which in turn become inputs to the next layer of the system. The
process continues until the output layer is invoked, providing its output to
the external environment. There are different types of inter-layer connections
(i.e., connections used between layers):

Fully connected Each neuron on the first layer is connected to every neu-
ron on the second layer.

Partially connected A neuron on the first layer must not be necessarily
connected to all the neurons on the second layer.
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Feed forward The neurons on the first layer send their output to the neu-
rons on the second layer, but they do not receive any input back from
the neurons on the second layer.

Bi-directional There is another set of connections carrying the output of
the neurons of the second layer into the neurons of the first layer.

Resonance The layers have bi-directional connections, and the neurons con-
tinue sending messages across the connections several times until a cer-
tain condition is achieved.

Recurrent The neurons within a layer are fully or partially connected among
each other. As these neurons receive input from another layer, they
must communicate their outputs among each other a number of times
before they are allowed to send their outputs to another layer. Gener-
ally some conditions should be achieved among the neurons of a layer
before they can send their outputs to another layer.

Neural networks are a kind of machine learning algorithms, because changing
their connection weights (training) causes the network to learn the solution
to a problem. The connection strength between neurons is stored as a weight-
value for each specific connection. The system acquires new knowledge by
adjusting these connection weights. The learning ability of a neural network
is determined by its architecture and by the algorithmic method chosen for
training. The most common training methods are:

Supervised This method requires a teacher that may be a training set of
data or an observer who grades the performance of the network results.

Unsupervised The hidden neurons must find a way to organize themselves
with no external aid. In this approach, no pattern outputs are provided
to the network against which it can measure its predictive performance
for a given vector of inputs.

A variety of learning laws are in common use. These laws are mathemat-
ical algorithms used to update the connection weights. Some of the major
laws are described below:

Hebbs Rule This basic rule is: If a neuron receives an input from another
neuron, and if both are highly active, the weight of the link between
the neurons should be strengthened.
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Hopfield Law This law is similar to the Hebbs Rule, with the exception
that it specifies the magnitude of the strengthening or weakening. It
states, “if the desired output and the input are both active or both in-
active, increment the connection weight by the learning rate, otherwise
decrement the weight by the learning rate.”

Delta Rule It is one of the most commonly used. This rule is based on the
idea of continuously modifying the strengths of the input connections to
reduce the difference (delta) between the desired output value and the
actual output of a neuron. This rule changes the connection weights
by minimizing the mean squared error of the network. The error is
propagated back into previous layers, one layer at a time. The process
of back-propagating the network errors continues until the first layer
is reached. This rule is also referred to as the Widrow-Hoff Learning
Rule and the Least Mean Square Learning Rule.

Kohonen’s Learning Law In this procedure, the neurons compete for the
opportunity to learn, or to update their weights. The processing neuron
with the largest output is declared the winner and has the capability
of inhibiting its competitors as well as exciting its neighbors. Only the
winner is permitted output, and only the winner plus its neighbors are
allowed to update their connection.

The most successful applications of neural networks are in categorization and
pattern recognition. Such a system classifies the object under investigation
(e.g. an illness, a pattern, a picture, a chemical compound, a word, the
financial profile of a customer, etc.) as one in a number of possible categories
that, in return, may trigger the recommendation of an action such as a
treatment plan or a financial plan. Image processing and pattern recognition
form an important applicative area of neural networks, probably one of its
most active research areas.

In particular, neural networks have been used for printed character and
handwriting recognition. This area provides applications for banking, credit
card processing and other financial services, where reading and correctly
recognizing handwriting on documents is a crucial task. The pattern recog-
nition capability of neural networks has been used to read handwriting in
processing checks; the amount must normally be entered into the system by a
human. Neural networks are also used in areas ranging from robotics, speech,
signal processing, vision, character recognition to musical composition, de-
tection of heart malfunction and epilepsy, fish detection and classification,
optimization, and scheduling [Hay94].
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Figure 2.3: A structure of a typical decision tree.

2.1.3 Decision Trees

A decision tree classifier is a hierarchical structure where, at each level, a
test is applied to one or more attribute values that may have one of two
outcomes [Mit97]. The outcome may be a leaf, which allocates a class, or
a decision node, which specifies a further test on the attribute values and
forms a branch or subtree of the tree. Classification is performed by moving
down along the tree until a leaf is reached. The structure of a decision tree
classifier is shown in Figure 2.3.

The method for constructing a decision tree described by Quinlan [Qui93]
is as follows: Given n classes denoted as C1, C2, . . . Cn, and a training set Dtr,
then

- if Dtr contains one or more objects all belonging to a single class Cj,
then the decision tree is a leaf identifying class Cj.

- if Dtr contains no objects, the decision tree is a leaf determined from
information other than Dtr.

- if Dtr contains objects belonging to a mixture of classes, then a test is
chosen, based on a single attribute, that has one or more mutually ex-
clusive outcomes Out1, Out2, . . . , Outn. Dtr is partitioned into subsets
Dtr1 ,Dtr2 , . . . ,Dtrn , where Dtri

contains the objects in Dtr whose out-
come of the chosen test is Outi. The same method is applied recursively
to each subset of training objects.

Quinlan’s decision tree classifier, denoted in the literature as C4.5, uses tests
based on a single attribute value. That is, decision boundaries are parallel to
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(a) (b)

Figure 2.4: Given axes that show the attribute values and colors correspond-
ing to class labels (a) and (b), respectively axis-parallel and oblique decision
boundaries.

the attribute axes, such as the decision regions shown in Figure 2.4(a)). Other
tree classifiers may use more than one attribute value. For instance, oc1 in
[MKS94], was designed specifically to produce decision trees with oblique
(linear) decision boundaries like those shown in Figure 2.4(b). Oblique de-
cision boundaries can be an advantage in examples such as that shown in
Figure 2.4(b), where the natural class regions can be approximated using
only 3 oblique decision boundaries compared to 19 axis-parallel boundaries.

2.2 Classification Applications

As already said, classification algorithms have been used in a large variety
of domains in the last three decades. Among the huge number of explored
domains, it is possible to mention: optical character recognition, medical
applications, biometric signal recognition, object recognition, database in-
dexing and document analysis. This Section analyzes applications belonging
to a couple of fields that also today play an extremely relevant role: med-
ical applications and biometric signal recognition. In fact, the relevance of
computer-aided interpretation of medical examination is increasing with the
diffusion of mass screening, while the detection of biometric signals is a cur-
rently explored field, mainly for people authentication.

Four applications are analyzed in the following. The first two applica-
tions deal with biometric signals: fingerprints recognition and of the speaker
identification. The other two applications rise to the medical domain: the
diagnosis of cardiac pathologies based on electrocardiogram analysis and the
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diagnosis of breast cancer based on the analysis of mammograms.

2.2.1 Fingerprint Classification

Large volumes of fingerprints are collected and stored every day in a wide
range of applications, including forensic use, access control, and drivers li-
cense registration. Automatic identification based on fingerprints requires the
input fingerprint to be matched with a large number of fingerprints stored
in a database. Fingerprint classification is a technique used to assign a fin-
gerprint to one of the several prespecified types already established in the
literature [DDAS03]. Fingerprint classification can be viewed as a coarse-
level matching of the fingerprints. An input fingerprint is first matched to
one of the pre-specified types and then compared to a subset of the data-
base corresponding to that fingerprint type. For example, if the fingerprint
database is binned into five classes, and a classifier assigns a fingerprint to
two possible classes (primary and secondary) with extremely high accuracy,
then the identification system will only need to search two of the five bins,
thus decreasing the search space. Unfortunately, only five major fingerprint
categories have been identified, the distribution of fingerprints within these
categories is not uniform, and there are many ambiguous fingerprints, whose
exclusive membership cannot be reliably stated even by human experts. In
fact, the definition of each fingerprint category is both complex and vague. A
long-time experience is required for a human inspector to achieve a satisfac-
tory level of performance in fingerprint classification. Therefore, in practice,
fingerprint classification is not immune from errors and does not offer much
selectivity for fingerprint searching in large databases. To overcome this
problem, methods based on feature vectors have been proposed for index-
ing : fingerprints are not partitioned into non-overlapping classes, but each
fingerprint is characterized by means of a numerical vector summarizing its
main features.

2.2.2 Speaker Identification

Speaker identification is a special case of the more general problem of speaker
recognition. In the case of speaker identification the goal is to determine
which voice, in a group of known voices, best matches the input voice pat-
terns. If the speaker to be identified is not required to pronounce a specific
set of phrases the system is said to be text-independent.

The speaker identification problem has been addressed in the literature
by representing the audio signal using different features, calculated in the
frequency or in the time domain. Moreover, different classification paradigms
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have been employed, basically neural networks. One of the most frequently
quoted systems is illustrated in [DR95] . It uses features evaluated in the
frequency domain by the cepstral analysis. Different classification paradigms
are proposed and the best results obtained with a Gaussian mixture model.
Other authors have proposed the use of acoustic features directly obtainable
from the time domain, such as pitch, speech rate, voice quality and temporal
variation of the audio signal. This is the case of [MHT+01], where a system
exclusively dedicated to the recognition of the voiced segments in the audio
track is proposed.

2.2.3 Medical Applications

A large number of medical classification problems have been faced using
automatic methods. This Section describes two examples of classification
problems faced using neural networks. The first application concerns elec-
trocardiography automatic interpretation while the second is the aided diag-
nosis of breast cancer using thoracic x-rays.
Electrocardiography (ECG) has a basic role in cardiology since it consists of
effective, simple, non-invasive, low-cost procedures for the diagnosis of car-
diovascular disorders that have a high epidemiological incidence and are very
relevant for their impact on patient life and on social costs. Pathological
alterations observable by ECG can be divided into three main areas:

1. cardiac rhythm disturbances (or arrhythmia);

2. dysfunction of myocardial blood perfusion (or cardiac ischemia);

3. chronic alteration of the mechanical structure of the heart (for instance
left ventricular hypertrophy).

The literature in this topic reports several approaches to classification. In
general, past approaches, according to published results, seem to suffer from
common drawbacks that depend on high sensitivity to noise and unreliability
in dealing with new or ambiguous patterns [Tal83]. Artificial neural networks
have often been proposed as tools for realizing classifiers that are able to deal
even with nonlinear discrimination between classes and to accept incomplete
or ambiguous input patterns. In [SM98], three different architectures have
been proposed for carrying out the classifiers:

• An ANN is implemented to perform arrhythmia detection because of its
capability to reject unknown or ambiguous patterns. For this purpose,
two uncertainty criteria are introduced and evaluated.
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• Both a static and a recurrent ANN approach are implemented in several
architectures to detect ischemic episodes. While the first approach
features an easier learning process, the second one is able to learn the
input signal evolution even on a reduced training set.

• Recognition of chronic myocardial diseases requires a three step proce-
dure. The parameters chosen for analyzing the ECG have been fuzzy
processed by a layer of normalized radial basis functions and then have
been analyzed by a neural network; finally, a pruning technique is ap-
plied to reduce the network size and to improve its generalization ca-
pability.

The second application considered here is early breast cancer detection [ZSQ02].
Breast cancer is one of the leading causes of cancer deaths among women. A
woman has a 12% chance of developing breast cancer and a 3.5% chance of
dying from this disease over her lifetime. Based on the recent news in this
research area (“Study Backs New Mammography Technique”, November 28,
2000 on Reuters), in the largest study up to date, researchers at Women’s
Diagnostic and Breast Health Center in Plano, TX screened 12,860 women
for breast cancer utilizing computer-aided diagnosis (CAD) to interpret each
mammogram. A total of 49 unsuspected cancers were detected, 32 by both
CAD and the radiologist, nine by the radiologist alone and eight only with
the help of CAD. This shows that by using CAD in the interpretation of
mammograms, the number of cancers detected has increased by about 20%.
Moreover, all eight additional cancers were in the early stages, when they
are most easily treated. This shows the real significance of early detection of
micro-calcification clusters (MCCs) in digital mammography.

Clinically, MCCs are described as the presence of small deposits of cal-
cium usually arranged in a cluster. They can be found as some poorly defined
masses, architectural distortions, asymmetrical structures or also as some de-
veloping density or isolated ducts. Such diverse descriptions of MCCs provide
different approaches to detect MCCs in different CAD schemes. The reported
methods include both statistical and non-statistical approaches [ZSQ96], bi-
nary decision trees, and back-propagation neural networks. Many approaches
have been developed to face the problem. For instance a shift-invariant artifi-
cial neural network approach has been developed to reduce the false positive
detection rate of MCCs by means of a rule-based CAD scheme [ZQC96]. The
feature set used was mainly derived from the spatial domain using raw image
data. An improved method was developed by using a mixed feature set neural
network with a spectral entropy decision algorithm [ZSQ02], and the feature
set derived from both spatial and morphology domains. It is usually very
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difficult to adjust the balance between network complexity and learning accu-
racy for most real world problems. If too much emphasis is put on network
complexity, a poorly learned compact neural network will evolve. On the
contrary, when too much emphasis is put on learning accuracy, large neural
networks are usually obtained, which yield very good results on the train-
ing data, but they usually achieve unsatisfactory performances on unknown
data. In [XY99], sizing a neural network by using evolutionary algorithms is
discussed.

2.3 Clustering Algorithms

Clustering can be defined as a process that organizes objects into groups or
clusters, whose members are similar in some way. A cluster is therefore a
collection of objects which are “similar” between them and are “dissimilar”
from the objects belonging to other clusters.

The goal of clustering is to determine the intrinsic grouping in a set of
unlabeled data. But how to decide what constitutes a good clustering? It can
be shown that there is no absolute best criterion which would be independent
of the final aim of the clustering. Consequently, it is the user which must
supply this criterion, in such a way that the result of the clustering will suit
his needs. For instance, we could be interested in finding representatives
for homogeneous groups (data reduction), in finding “natural clusters” and
describe their unknown properties (“natural” data types), in finding useful
and suitable groupings (“useful” data classes) or in finding unusual data
objects (outlier detection).

A brief description of the most common and well-known clustering algo-
rithms is provided in the following. In all the proposed methods each pattern
is described by a feature vector, in which each component is a real number.

2.3.1 K-means

Given a population of patterns and a number K of groups or classes, the
final goal of this algorithm is partitioning the given population in K different
classes such that each class has a center which is the mean position of all
the patterns in that class, and each pattern is in the class whose center is
closest to it. The inputs of the algorithm are: the number of pattern feature
vectors, the needed number of classes K, and K means chosen at random.
After the inputs are provided, a loop starts until a termination condition
is met. This loop consists of two steps. In the first step, each pattern is
assigned to a class such that the Euclidian distance from this pattern to the
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Figure 2.5: An example of clustering. In this case 4 clusters into which
the data can be divided can be easily identified; the similarity criterion is
distance: two or more objects belong to the same cluster if they are “close”
according to a given distance (in this case geometrical distance). This is
called distance-based clustering.

center of that class is minimized; in the second step, the mean of each class
is calculated, based on the patterns belonging to that class. The quality of
the result of a K-means clustering is characterized by two parameters:

- Compacteness : low within class variance;

- Isolation: high distance between class centers;

Theoretically, K-means should terminate when no more patterns are chang-
ing classes (see Figure 2.5). There are proofs of termination for K-means.
These rely on the fact that both steps of K-means reduce the variance. Thus,
eventually, there is no move to make that will further reduce the variance.
Running to completion (i.e. no pattern changes its class) may require a large
number of iterations. In many cases, the algorithm is terminated when one
of the following criteria is met:

• A number of patterns is fixed. If a smaller number of patterns change
class, the algorithm terminates;

• After a fixed number of iterations, the algorithm terminates;

One of the main problems of this algorithm is that the classification result
depends on the initialization of the algorithm. If the K initial random means
are changed, it is possible that also the final result will be different. In



CHAPTER 2. OVERVIEW OF PATTERN RECOGNITION 24

Figure 2.6: Trajectories for the centroids of the K-means clustering procedure
applied to two-dimensional data. The final tessellation is also shown. The
centroids correspond to the centers of the cells. In this case, convergence is
obtained in three iterations.

the original K-means algorithm the initial means are computed randomly.
Nevertheless, random computation can be substituted with more efficient
procedures that usually are application-dependent.

2.3.2 Hierarchical Clustering

Hierarchical clustering is a bottom-up clustering method where clusters have
subclusters, which in turn have sub-clusters, and so on. The classic example
of this kind of clustering is species taxonomy. Agglomerative hierarchical
clustering starts with every single pattern in a single cluster. Then, at each
successive iteration, it merges the closest pair of clusters by satisfying some
similarity criteria, until all the data is in one single cluster.
The hierarchy within the final cluster has the following properties:

- clusters generated in early stages are nested in those generated in later
stages.

- clusters with different sizes in the tree can be valuable for discovery.

After the input patterns are provided, each pattern is assigned to a separate
cluster. Firstly, all pair-wise distances between clusters are evaluated, then
a distance matrix is constructed using the distance values. After that, a loop
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Figure 2.7: A dendrogram can represent the results of hierarchical clustering
algorithms. The vertical axis shows a generalized measure of similarity among
clusters. Here, at level 1 all eight points lie in singleton clusters; each point
in a cluster is highly similar to itself, of course. Points x6 and x7 happen to
be the most similar, and are merged at level 2, and so on.

starts until a termination condition is met. During each iteration of this loop,
the pair of clusters with the shortest distance is looked for. The selected pair
is removed from the matrix and the two clusters are merged. The distance
among the new cluster and all the others are computed and the matrix is
updated.

In the original version of the algorithm the loops end when the distance
matrix is composed of only one element. The most natural representation
of hierarchical clustering is a corresponding tree, called dendrogram, which
shows how the patterns are grouped. Figure 2.7 shows a dendrogram for a
simple problem involving eight patterns. Level 1 shows the eight patterns
as singleton clusters. At level 2 patterns x6 and x7 have been grouped to
form a cluster, and they stay together at all subsequent levels. Usually, in
dendrogram representations, similarity scale are drawn in order to give a
similarity measure among the grouped clusters.

Another representation for hierarchical clustering is based on sets, in
which each level of a cluster may contain sets that are subclusters, as shown
in Figure 2.8. The main disadvantage is that no provision can be made for
a relocation of objects that may have been incorrectly grouped at an early
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Figure 2.8: A set or Venn diagram representation of twodimensional data
reveals the hierarchical structure but not the quantitative distances between
clusters. The levels are numbered in red.

stage. Moreover, the use of different distance metrics for measuring distances
between clusters may generate different results. The more common metrics
used for the computation of cluster distance are detailed below.

Nearest Neighbor (minimum algorithm).

Let Xi and Xj respectively be the i–th and the j–th cluster; the distance
function used for measuring the distance between two clusters is:

dmin(Xi, Xj) = min
x ∈ Xi

x′ ∈ Xi

‖x− x′‖

When dmin(·, ·) is used to measure the distance between subsets, the nearest-
neighbor nodes determine the nearest subsets. In other words, the merging
of Xi and Xj corresponds to the fusion of two clusters having the two closest
elements. This kind of metrics roughly tends to produce “elongated” clusters.

Farthest Neighbor (maximum algorithm).

In this case the distance function used for measuring the distance between
two clusters is:

dmin(Xi, Xj) = max
x ∈ Xi

x′ ∈ Xi

‖x− x′‖
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When dmax(·, ·) is used to measure the distance between subsets, the distance
is determined by the most distant nodes in the two clusters. This kind of
metrics tends to merge the clusters minimizing the increment of the diameter
of the clusters themselves, thus obtaining clusters compact and roughly equal
in size.

Other Metrics.

The minimum and maximum measures represent two extremes in measuring
the distance between clusters, and in some problems can lead to unsatisfac-
tory results. The use of averaging is a possible way to improve the quality
of clustering, and

davg(Xi, Xj) =
1

|Xi| · |Xi|
∑
x∈Xi

∑
x′∈Xi

‖x− x′‖

dmean(Xi, Xj) = ‖mean(Xi)−mean(Xj)‖
can be more convenient metrics in the general case.

2.3.3 Self-Organizing Maps

A Self-Organizing Map (SOM) is a neural network algorithm introduced by
Kohonen [Koh82, Koh89] in 1982. It is used to categorize and interpret large,
high-dimensional data sets.
Briefly, it operates mapping n-dimensional data points that are similar to
each other onto nearby regions of a q-dimensional space; q is much smaller
than n (usually q = 2). The map is an array of nodes (also called neurons),
usually twodimensional, but also of higher order; it is often laid out in a rec-
tangular lattice. Each node has an associated reference vector of the same
size as the input feature vector. The input vectors are compared to these
reference vectors. A basic description of the SOM algorithm is given in the
following:
At the beginning, the reference vectors of all the nodes are randomly ini-
tialized. Then a loop starts until a termination condition is met. This loop
consists of the following steps:

- An input vector is randomly selected from the input set.

- Using a metrics (e.g., Euclidean) the input vector is compared to every
reference vector.

- The node whose reference vector is the best match is chosen as the
winning node for that particular input vector.
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Figure 2.9: Distribution of neurons in a SOM. Different colors indicate the
appurtenance to different classes.

- The neighboring nodes (i.e., nodes which are topographically close in
the array) to the winning node are then updated by a certain amount
so that they are more similar to the input vector.

The purpose of the last step is to make both the winning node and the nodes
in the winning neighborhood responding more favorably to inputs similar to
the input vector. This is how topologically close regions of the output map
gain an affinity for clusters of similar data vectors. The loop is repeated for
all the input vectors. This is called an epoch, or a time-step. There are
different views on how many time-steps the algorithm should be repeated
(training). Experimentally it has been seen that the optimal number depends
on the application, but usually the number of epochs varies in the range
[1000 100, 000].

During the training process, the neurons assume a configuration deter-
mined from the input data (see Figure 2.9). After the training is terminated,
the SOM can be used as a classifier: when an input pattern is submitted to
the SOM, only the most similar neuron will be activated and will provide its
output. If a set of input patterns, whose class is known, is submitted to the
trained SOM, then it is possible to associate the neurons to the classes of
input data.
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Figure 2.10: Texture clustering.

2.4 Clustering Applications

Clustering algorithms have been used in a large variety of applications. In
this section, four applications where clustering has been employed as an
essential step are described. These areas are: image segmentation, object
and character recognition, document retrieval, and data mining.

2.4.1 Image Segmentation

Image Segmentation is a fundamental component in many computer vision
applications, and can be addressed as a clustering problem [RK82]. The
segmentation of the images presented to an image analysis system is critically
dependent on the scene to be sensed, the imaging geometry, configuration,
and sensor used to transduce the scene into a digital image, and ultimately
on the desired output (goal) of the system. The applicability of the clustering
methodology to the image segmentation problem was recognized over three
decades ago, and the paradigms underlying the initial pioneering efforts are
still in use today. A recurring theme is defining feature vectors at every pixel
as composed of both functions of image intensity and functions of the pixel
location itself. An image segmentation is typically defined as an exhaustive
partitioning of an input image into regions, each of which is considered to be
homogeneous with respect to some image property of interest (e.g., intensity,
color, or texture). In this case a segment represents a region of the image
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and the segmentation problem consists in separating the image into a set of
non-overlapping segments that cover the whole image.

2.4.2 Object Recognition

The use of clustering to group views of 3D objects for the purposes of object
recognition in range data was described in [DJ95]. The term view refers to
a range image of an object obtained from any arbitrary viewpoint. The sys-
tem under consideration employed a viewpoint dependent (or view-centered)
approach to the object recognition problem; each object to be recognized
was represented in terms of a library of range images of that object. There
are many possible views of a 3D object and one goal of that work was to
avoid matching an unknown input view against each image of each object. A
common theme in object recognition literature is indexing, wherein the un-
known view is used to select a subset of views of a subset of the objects in the
database for further comparison, and rejects all other views of the objects.
One of the approaches to indexing employs the notion of view classes; a view
class is the set of qualitatively similar views of an object. In that work, the
view classes were identified by clustering; the rest of this subsection briefly
outlines the technique. Object views were grouped into classes based on the
similarity of shape spectral features. Each input image of an object viewed
in isolation yields a feature vector which characterizes that view. The feature
vector contains the first ten central moments of a normalized shape spectral
distribution of an object view. The shape spectrum of an object view is ob-
tained from its range data by constructing a histogram of shape index values
(which are related to surface curvature values) and accumulating all the ob-
ject pixels that fall into each bin. By normalizing the spectrum with respect
to the total object area, the scale differences that may exist between differ-
ent objects are removed. Given a set of object representations that describes
m views of the i–th object, the goal is to derive a partition of the views.
Each cluster contains those views of the i-th object that have been deemed
similar based on the dissimilarity between the corresponding moment fea-
tures of the shape spectra of the views. A database is used, containing 3,200
range images of 10 different sculpted objects with 320 views per object. The
range images were synthesized from 320 possible viewpoints of the objects.
The views of each object are clustered, based on the dissimilarity measure
between their moment vectors using a hierarchical clustering scheme. The
resulting clustering demonstrates that the views of each object fall into sev-
eral distinguishable clusters. The barycenter (also called centroid) of each of
these clusters was determined by computing the mean of the moment vectors
of the views falling into the cluster. In [DJ95] it has been demonstrated that
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this clustering-based view grouping procedure facilitates object matching in
terms of both classification accuracy and the number of matches necessary
for correct classification of test views. Object views are grouped into com-
pact and homogeneous view clusters, thus demonstrating the power of the
cluster-based scheme for view organization and efficient object matching.

2.4.3 Character Recognition

Clustering was employed in [SA98] to identify lexemes in handwritten text
for the purposes of writer-independent handwriting recognition. The success
of a handwriting recognition system is vitally dependent on its acceptance by
potential users. Writer-dependent systems provide a higher level of recogni-
tion accuracy than writer-independent systems, but require a large amount
of training data. A writer-independent system, on the other hand, must be
able to recognize a wide variety of writing styles in order to satisfy an indi-
vidual user. As the variability of the writing styles that must be captured by
a system increases, it becomes more and more difficult to discriminate be-
tween different classes due to the amount of overlap in the feature space. One
solution to this problem is to separate the data from these disparate writing
styles for each class into different subclasses, known as lexemes. These lex-
emes represent portions of the data which are more easily separated from the
data of classes other than the one which the lexeme belongs to. In [SA98],
handwriting is captured by digitizing the position of the pen and the state of
the pen point (up or down) at a constant sampling rate. After some resam-
pling, normalization, and smoothing, each stroke of the pen is represented as
a variable-length string of points. A metric based on elastic template match-
ing and dynamic programming is defined to calculate the distance between
two strokes. Using the distances calculated in this way, a proximity matrix
is constructed for each class of digits (i.e., 0 through 9, see 2.11). Each
matrix measures the intraclass distances for a particular digit class. Digits
in a particular class are clustered in an attempt to find a small number of
prototypes.

Clustering is done using the K-means algorithm for different values of K.
The value maximizing the interclass distance and minimizing the intraclass
distance is assumed to be the best. As expected, the mean squared error
(MSE) decreases monotonically as a function of K. The optimal value of K
is chosen by identifying a knee in the plot of MSE vs. K. When representing
a cluster of digits by a single prototype, the best on-line recognition results
were obtained by using the digit that is closest to that cluster center. Using
this scheme, a correct recognition rate of 99.33% was obtained.
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Figure 2.11: Clusters of digits.

2.4.4 Information Retrieval

Information retrieval (IR) is concerned with automatic storage and retrieval
of documents [Ras92]. Many university libraries use IR systems to provide
access to books, journals, and other documents. Libraries use the Library
of Congress Classification (LCC) scheme for efficient storage and retrieval of
books. The LCC scheme consists of classes labeled from A to Z, which are
used to characterize books belonging to different subjects. There are several
problems associated with the classification of books using the LCC scheme.
Some of these are listed below:

- LCC number alone may not be able to retrieve all the relevant books:
the classification numbers assigned to the books do not contain suffi-
cient information regarding all the topics covered in a book.

- There is an inherent problem in assigning LCC numbers to books in
a rapidly developing area. Multiple labels for books dealing with the
same topic will force their placement on different stacks in a library.

- Assigning a number to a new book is a difficult problem. A book
may deal with topics corresponding to two or more LCC numbers, and
therefore, assigning a unique number to such a book is difficult.

[MJ95] describes a knowledge-based clustering scheme to group represen-
tations of books, which are obtained using the ACMCR (Association for
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Computing Machinery Computing Reviews) classification tree. This tree is
used by the authors contributing to various ACM publications to provide
keywords in the form of ACMCR category labels. It consists of 11 nodes
at the first level and each node has a label that is a string of one or more
symbols. For example, I515 is the label of a fourth-level node in the tree.
The clustering problem can be stated as follows. Given a collection of books,
a set of clusters is needed. A hierarchical clustering algorithm has been used
and a threshold value has been chosen such that the largest gap in the den-
drogram is the one between the levels at which six and seven clusters are
formed. An examination of the subject areas of the books in these clusters
revealed that the clusters obtained are indeed meaningful.

2.4.5 Data Mining

Searching for useful nuggets of information among huge amounts of data has
become known as the field of data mining. Data mining can be applied to
relational, transactional, and spatial databases, as well as large stores of un-
structured data such as the World Wide Web. Data mining is an exploratory
activity, so clustering methods are well suited for it. Clustering is often an
important initial step of many in the process of data mining. Some of the
data mining approaches which use clustering are database segmentation, pre-
dictive modeling, and visualization of large databases.

Segmentation. Clustering methods are used in data mining to segment
databases into homogeneous groups. This can serve purposes of data
compression (working with clusters rather than with individual items),
or of identifying characteristics of subpopulations which can be targeted
for specific purposes (e.g., marketing aimed at senior citizens).

Predictive Modeling. Statistical methods of data analysis usually involve
hypothesis testing of a model the analyst already has in mind. Data
mining can aid the user in discovering potential hypotheses prior to
using the statistical tool. Predictive modeling uses clustering to group
items, then infers rules to characterize the groups and suggest models.
For example, magazine subscribers can be clustered based on a number
of factors (age, sex, income, etc.), then the resulting groups can be
characterized in an attempt to find a model which will distinguish those
subscribers that will renew their subscriptions from those that will not.

Visualization. Clusters in large databases can be used for visualization, in
order to aid human analysts in identifying groups and subgroups that
have similar characteristics.



Chapter 3

Evolutionary Computation

In nature, evolution is mostly determined by natural selection caused by the
competition among different individuals for the resources available. In this
competition, the fittest individuals are more likely to survive and propagate
their genetic material trough future generations. This natural phenomena
has been largely studied by computer scientists since the last years of the
50’s of the last century [Fra57, Fri59, FDN59]. Those scientist sensed that
so as natural evolution has been able to evolve highly complex structures,
e.g. plants and animals, algorithms simulating this natural process could
be devised in order to solve problems requiring complex and hard to find
solutions. The result of this insight has been a new computation paradigm,
largely used to implement several different algorithms, able to find adequate
solutions for many problems.

In this chapter the basic concepts of the evolutionary computation par-
adigm are presented. In the first section the main advantages of EC–based
algorithms while compared to other global optimization techniques are dis-
cussed. In the second section the basic concepts of the evolutionary compu-
tation paradigm are introduced, while the next two section are devoted to the
description of the two main classes of EC–based algorithms: Genetic Algo-
rithms and Genetic Programming. In section 3.5 a particular type of Genetic
Programming, based on the concept of context-free grammar, is described.
Finally, some applications that use EC–based algorithms are listed.

3.1 Advantages of Evolutionary Computation

EC–based algorithms have been successively used in a wide range of ap-
plications: optimization task, image analysis, data mining, etc. In order
explain, at least in part, this success in the following some of the advantages

34
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of using EC–based algorithms, while compared to other global optimization
techniques [Fog99], are listed:

1. The performances of any EC–based algorithm are representation in-
dependent, in contrast to other numerical techniques, which might be
applicable only for continuous values or other constrained sets.

2. The EC paradigm offers a framework such that it is comparably easy to
incorporate the available knowledge about the problem. The possibility
of incorporating such information in an easy way, allows to better focus
the evolutionary search, yielding a more efficient exploration of the
state space of possible solutions.

3. EC–based algorithms can also be combined with more traditional op-
timization techniques. This may be as simple as the use of a gradient
minimization after primary search with an evolutionary algorithm (e.g.
fine tuning of weights of an evolutionary neural network) or it may
involve simultaneous application of other algorithms (e.g. hybridizing
with simulated annealing or Tabu search to improve the efficiency of
basic evolutionary search).

4. The evaluation of each solution can be handled in parallel and only
selection (which requires at least pair-wise competition) requires some
serial processing. On the contrary, implicit parallelism is not possible
in many global optimization algorithms like simulated annealing and
Tabu search.

5. Traditional optimization methods are not robust with respect to the
dynamic changes in the problem of the environment and often require
a complete restart in order to provide a solution (e.g. dynamic pro-
gramming). In contrast, evolutionary algorithms can be used to adapt
solutions to changing circumstance.

6. Perhaps, the greatest advantage of evolutionary algorithms comes from
the ability to address problems for which the available knowledge is
inadequate to develop solving strategies that give satisfactory solutions.
In these cases EC provide a general heuristic that may be able to find
satisfactory solutions.

3.2 The Evolutionary Algorithm Paradigm

The term natural evolution is generally used to indicate the process that
has transformed the community of living beings populating the earth from
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a set of simple unicellular organisms to a huge variety of living species, each
integrated in the surrounding environment. The laws which guided such a
tremendous development through the geological era, until the creation of
the most complex species ever known, the human one, are essentially still
unknown. Several attempts for explaining this extraordinary and astonishing
natural phenomena have been done in the past. The most accredited scientific
theory on the evolution of species is, still nowadays, due to Darwin [Dar59]:

...if variations useful to any organic being do occur, assuredly in-
dividuals thus characterized will have the best chance of being
preserved in the struggle for life; and from the strong princi-
ple of inheritance they will tend to produce offspring similarly
characterized. This principle of preservation, I have called,
for the sake of brevity, Natural Selection.

The great merit of Charles Darwin has been that of identifying a small set
of essential elements to rule evolution by natural selection: reproduction
of individuals, variation phenomena that affect the likelihood of survival of
individuals, inheritance of many of the parents’ features by offspring in repro-
duction and the presence of a finite amount of resources causing competition
for survival between individuals.

These simple features – reproduction, likelihood of survival, variation,
inheritance and competition – are the bricks that build the simple model
of evolution employed by computer scientists to define a new computational
scheme. This model is able to solve difficult problems, so as NP -hard op-
timization problems or machine learning problems, in which solutions are
represented by complex models able to represent objects belonging to dif-
ferent classes. This natural phenomena inspired computational schema is
known as evolutionary computation (EC).

Most of the terms used in the EC jargon have been borrowed by biology.
The description of a living being is written in a series of chromosomes: most
multi-celled living beings have many chromosomes in their DNA (RNA in
the cases of some organisms). In EC the genetic code for an individual to
be evolved is simply called its chromosome (singular). Each chromosome
is composed of many genes. The different possible states of these genes, in
biology, are referred to as the alleles. The field of EC has collapsed this dis-
tinction and simply describes the chromosome under evolution as comprised
of many alleles.

There is an important distinction between the genetic code of an organism
and the organism itself. Though both of them are evolved simultaneously
and are inexorably linked, in some cases there may be important reasons
for this distinction to exist in EC. In biology, the encoding of an organism
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Figure 3.1: Flow chart of the EC schema.

(the chromosomes) is referred to as the genotype of that organism. The
physical realization of the organism is referred to as the phenotype of that
organism. The same terms (genotype and phenotype) are also used in EC
to refer to the encoding used to represent the solutions of the problem faced
and the solutions themselves. However, in some kinds of EC–based algorithm
genotype and phenotype are identical. In biology, the fitness of an organism
is the ability of that individual to live long enough to produce genetically
viable offspring. In EC the fitness of an evolving individual is generally the
ability of the phenotype of that individual to meet the specifications set by
that specific EC system.

More specifically, EC–based algorithms find solutions for a given problem
by generating a population of individuals, i.e. a set of tentative solutions.
Then the “goodness” of each individual as solution of the problem is eval-
uated by means of a fitness function containing all the knowledge on the
problem to be solved. Finally, a new population is generated by selecting
individuals in the current population and modifying them by variation op-
erators, in order to generate new and better, if possible, individuals. This
process is repeated until one or more conditions are not satisfied. Formally,
given a population pt at time t, an evolutionary algorithm applies variation
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operators v on the population. Variations are applied according to a selec-
tion method s, where individuals compete to be selected according to their
fitness. A population pt+1 at time t + 1 is found by:

pt+1 = v(s(pt))

The variation operators provide new solutions modifying the existing ones.
In evolutionary algorithms, these operators usually consist of recombination
and mutation operators. In the EC jargon the individuals chosen by the
selection method and given as input to the variation operators are called
parents, whereas the individuals generated by these operators as output are
called offspring. The use of a population of solutions, together with the varia-
tion operators and a selection mechanism, implementing competition among
individuals, provides an effective strategy to explore the solution space of
the problem to be solved. Note that only those solutions which are reachable
by the operators, i.e. those obtainable by iteratively applying the operators
to the individuals of the initial population (p0), could be visited during the
evolutionary process or run.

Due to the generality of the computational schema just described, many
EC–based algorithms have been proposed since the first appearance of this
natural phenomena inspired computational scheme and probably many oth-
ers will be proposed in the future. Given a problem to be solved an evolu-
tionary algorithm can be devised for that problem defining the following four
elements:

- A solution encoding, i.e. a data structure, have to be defined in order to
encode the solutions of the problem. The definition of such a structure
should make easy the definition of variation operators.

- Variation operators that produce offspring by modifying the selected
parent individuals. The operators implements the concept of inheri-
tance through stochastic variation and are strictly related to the data
structure employed to represent the solutions of the problem at hand;

- A fitness function that evaluates each individual and assigns to it a
score, or fitness value.

- A Selection method that implements a choice mechanism that favors
individuals with higher fitness.

In the following these key elements of any EC–based algorithm are described.
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3.2.1 Solution Encoding

According to the Encyclopedia Britannica a code can be defined as a system
of symbols and rules used to define a transformation establishing correspon-
dences between the elements belonging to two different domains. In nature,
long sequences of DNA (Deoxyribonucleic acid) molecules encode the in-
structions specifying the biological development of all cellular forms of life.
DNA sequences contain all the information characterizing the individuals
and its ability to survive in the environment. For example, in humans this
can range from the hair color to the ability to roll the tongue and to any
hereditary diseases. This encoding allows the inheritance of the traits from
both the parents to the offspring. Moreover, mutations occurred in the DNA
code, are immediately transmitted to the encoded organism. This mecha-
nism gives the nature the chance of exploring new possibilities of life, fitter
to the environment.

In the EC field the difference between the solution (phenotype in the EC
jargon) and its encoding is not always clear because in some cases they are
identical. However, in many cases the role of the solution encoding is that of
defining simpler and often more effective operator.
As mentioned in the introduction in the EC field the different representations
employed for encoding solutions and the corresponding operators are used
in order to categorize the four main branches in which the EC field can be
divided: genetic algorithms use a bit-string and two-parent crossover, evo-
lutionary strategies use a real-valued vector and Gaussian mutation, evolu-
tionary programming employs a finite-state machine and mutation operators,
and genetic programming uses a computer program or executable structure
and two-parent crossover. These classifications represent common or initial
implementations, but many implementations use components from different
branches and make the classifications less accurate.

Besides the four main branches distinguishable by their different encod-
ing, many specific encoding have been developed in order to solve particular
problems. Among the others, grouping problems1 and graph generation prob-
lems have induced the development of specific encoding. As regards grouping
problems, Falkenauer [Fal98] proposed a new encoding method specifically
devised for this kind of problems. For the graph generation problems, new

1In a grouping problem a set of objects has to be partitioned in subsets according to
some constraints. An example of grouping problem is the bin packing problem: it consists
in placing n objects, each with a weight ωi > 0, in the minimum number of bins such
that the total weight of the objects in each bin does not exceed the bin’s capacity. All the
bins have the same capacity c. This type of problems belongs to the class of the NP -hard
problem.
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methods involving specific representation have been proposed in the fields
of molecular design [GLW98] and electrical circuit design [CAH+02], using
a direct encoding of the evolving graph. Different specific encoding schemes
have been also used for evolving artificial neural networks [Yao99]. Moreover,
in chapter 5 a new EC–based method able to evolve graphs of variable size
is presented.

3.2.2 Operators

The role of the variation (genetic) operators from a search standpoint is that
of exploring new areas of the solution space searching for new and better, if
possible, solutions. The search is usually performed by randomly modifying2

the individual(s) given in input. Operators are usually characterized by a
quantity p which indicate the probability according to which an operator is
applied to one ore more individuals. Hence, there is a probability (1 − p)
that such individuals remain unchanged. Note that the higher p, the higher
the exploration of the search space.

Genetic operators can be grouped in two main classes, recombination and
mutation. The first class groups those operators that take as input two or
more individuals and give as output the same, or even lower, number of
individuals. The effect of recombination operators is that of swapping or
combining parts of the individuals given in input. The effects of this kind
of operators strongly depend on the similarity degree of the individuals it is
applied on [Sha01]. In fact, more similar are the input individuals lesser is
the degree of diversity between input and output individuals.
As regards mutation operators, instead, they take in input a single individ-
ual and yield as output a new individual obtained randomly modifying the
input one. The effect of this operator is that of a random exploration of the
neighbor of the input individual.
These two classes of operators are described in the following.

Recombination

In the EC field, recombination operators have received extensive exploration
since the presentation of the pioneer work of John Holland in the 1970s on
genetic algorithms [Hol92]. The main idea behind this kind of operators was
that of taking sub-parts from individuals that supply different sub-solutions
and combining them in order to improve the quality of the solutions.

2Note that also eurhystic operators can be defined. This kind of operators do not
modify the individual randomly, but use eurhystic knowledge in order to generate better
solutions.
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The idea of information exchange among individuals in a population by
means of recombination operator, in a broad sense, can be regarded as mod-
eling sex. In biology, there are four main explanations proposed for the im-
portance of the role played by sexual reproduction in the process of evolution
[Hol00]:

- Provides long (random) jumps in the space of possibilities, thus pro-
viding a way off of local maxima.

- Repairs mutational damage by sequestering deleterious mutations in
some offspring while leaving other offspring free of them.

- Provides persistent variation that enables organisms to escape adaptive
targeting by viruses, bacteria, and parasites.

- Recombines building blocks, hence allowing the discovery of new better
solutions made by the rearranged blocks.

The importance and the effectiveness of the recombination operator, is
founded on the theoretical foundation of GA’s formulated by Holland [Hol92],
based on the concept of schemata, which in the case of GA’s are sub-structures
of bit strings. This analysis suggests that selection increasingly focuses the
search on subsets of the search space with estimated above-average fitness,
whose solutions share one or more of this sub-structure, i.e. schemata.
This analysis forms the basis for the fundamental theorem of Genetic Al-
gorithms, namely, the Schema Theorem [Hol92]: “Short, low-order, above-
average schemata receive exponentially increasing trials in subsequent gen-
erations of a genetic algorithm”3. A consequence of this theorem is another
key idea of the theoretical foundations of the EC: these algorithms explore
the search space by short, low-order, high-fit schemata which, subsequently,
are recombined to form even more highly fit higher-order schemata. This
statement is well known as the Building Block Hypothesis [Gol89, Hol92].
The ability to produce fitter and fitter partial solutions by combining build-
ing blocks is believed to be a primary source of the search power of any
EC–based algorithm. Thus, crossover has been considered to be the primary
search operator that distinguishes EC-scheme based algorithms from most
other search algorithms.

3The concept of schemata introduced by Holland has been extended to others EC-
based algorithm, e.g. genetic programming. Furthermore, these extensions have induced
the demonstration of the schemata theory also for other classes of EC–based algorithms,
e.g. genetic programming [PM03a, PM03b].
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Mutation

In biology, mutations are permanent, sometimes transmissible changes to
the genetic material (DNA or RNA) of a cell. Mutations can be caused by
copying errors in the genetic material during the cell division, by exposure
to radiation, chemicals, or also by viruses. Mutations are considered the
driving force of evolution, where less favorable (or deleterious) mutations are
removed from the gene pool by natural selection, while more favorable (or
beneficial) ones tend to accumulate.

In the EC field, the role of the mutation is that of generating new so-
lutions, modifying the genetic material of single individuals. In this way,
mutation helps to maintain the genetic diversity in the new population of
individuals. A classic and simple example of a mutation operator is that of
the GA’s: each bit of the bit-string, representing an individual, is changed
according to a probability pm. Generally this probability is set to 1/L where
L is the length of the string. This value ensure that, on the average, only
one bit is mutated in a single string.

3.2.3 Selection Methods

Selection methods are based on stochastic mechanisms that allow one to se-
lect in a probabilistic manner the individuals to be chosen as parents for
producing offspring in the next population. The role of selection is that of
exploiting the information acquired so far in order to find better solutions.
Such exploitation takes place favoring individuals having better fitness. Nev-
ertheless, individuals having lower fitness are not completely excluded from
the choice process.

Selection methods are characterized by some quantities that essentially
measure the degree of exploitation of the information given by those individ-
uals that have a good fitness. If P (t + 1) is the population generated from
the population P (t) by a given selection method σ, some quantities can be
defined:

Selection intensity
If fP (t+1) if the expected average fitness value of P (t + 1) and fP (t)

is the expected average fitness value of P (t) the selection intensity is
given by

Sσ =
fP (t+1)

fP (t)

Selection variance
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The selection variance is the expected variance of the fitness distribu-
tion of the population P (t + 1) .

Loss of diversity
Proportion of individuals of the population P (t) that have not been
selected at all by σ and then are not present in P (t + 1).

From a search perspective, the selection intensity measures the degree of ex-
ploitation of the information available (the fitness values of the individuals in
the current population). The loss of diversity, instead, measures the loss of
information due to the selection process. These quantities are directly pro-
portional: the higher the selection intensity, the higher the loss of diversity.
Note that if too high values are used for such quantities, the system tends to
perform like a greedy heuristic. On the contrary, if too small values are used
the system behavior is similar to that of random search algorithms. In the
following the most used selection methods are described.

Fitness Proportional or Roulette Wheel

Let N be the number of individuals belonging to a population P and {f0, f1,
. . . , fN−1} be the set of their fitness values. The fitness proportional selection
method gives to each individual i in P the following probability of being
selected:

pi =
fi

N−1∑
i=1

fi

A possible implementation of the method consists in mapping the individuals
to N contiguous segments {s0, s1, . . . , sN−1} of a line, such that the length
of the segment si is proportional to fi. Each time an individual has to be
selected, a random number in the interval [0,

∑
N−1

i=0
si] is generated, the i–th

individual whose corresponding segment si spans the number is chosen. This
technique is analogous to a roulette wheel (whence its name), where each slice

Figure 3.2: Roulette wheel selection.
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is assigned to a different individual and the size of the slice is proportional
to the fitness of the corresponding individual. In this metaphor the ball is
represented by the random number (see figure 3.2).

This selection method, although widely used in many EC–based algo-
rithms, has been criticized because of the importance given to the fitness
values differences [BT96]: if differences between “good” and “bad” individu-
als in a population is high, it is possible that only the first ones will be selected
in many copies, decreasing the population diversity. In this situation both
the selection intensity and the loss of diversity tend to increase. On the
contrary, when in the late phases of a run the individuals in the population
tend to have similar fitness values, the selection intensity of this mechanism
decreases dramatically. The main drawback of this selection method is that
its selection parameters, e.g. selection intensity, strongly depends on the
relative fitness values of the individuals to be selected and cannot be tuned
from the outside.

Ranking selection

Ranking selection [GB89] was proposed to overcome the scaling problems of
the proportional fitness selection (stagnation in the case where the selective
pressure is too small or premature convergence where selection has caused
the search to narrow down too quickly). It is based on the fitness order,
into which individuals are sorted. The selection probability is then assigned
to individuals as a function of their rank in the population. Mainly, linear
ranking and exponential ranking are used: Let N be the number of individ-
uals to be selected, i the position of an individual in the ordered population
(worst fit individual has i = 1, whereas the fittest one has i = N) and sp

the selective pressure: according to the linear ranking, the probability of the
i–th individual to be selected is given by the following formula:

p(i) = 2.0− sp + 2.0 · (sp − 1) · (i− 1)/(N − 1)

Note that linear ranking allows one to vary the selective pressure in the range
[1.0, 2.0].

A non linear formula can be also used to compute the probability to select
the i–th individual:

p(i) =
c(N−i)

N∑
j=1

c(N−j)
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The sum
∑

N

j=1
cN−j normalizes the probabilities so as to ensure that:

N∑
j=1

pi = 1

According to this formula the probabilities of the ranked individuals are
exponentially weighted. The base of the exponent c (0 < c < 1) is the
parameter of the method. The closer c to 1 the lower the “exponentially” of
the selection method.

The main drawback of the ranking–based selection mechanisms is that it
exaggerates the differences between closely clustered fitness values, so that
the slightly better solutions can be chosen much more frequently than the
slightly worse ones [Whi89].

Tournament Selection

In the tournament selection, a number T of individuals is randomly chosen
from the population, and the best individual in this group is selected as par-
ent. This process is repeated for as many times as the number of individuals
to be selected.

Among the many selection mechanisms proposed since the beginning of
the evolutionary computation [BT96], the tournament is increasingly being
used because it is simple and efficient for both non-parallel and parallel archi-
tectures. Furthermore, it allows to adjust its selective pressure so as to adapt
its performance for different domains. This adjustment can be done simply
modifying the the number T of individuals involved in the tournament. In
fact, its selective pressure is increased (decreased) by simply increasing (de-
creasing) the value of T . In figure 3.3 the relations between T and the
selective pressure, the loss of diversity and the selection variance are shown.
Note that these quantities depend only on the Tournament size T , but are
independent of the population size N .

Truncation Selection

Differently from the selection methods modeling natural selection described
above, truncation selection is an artificial selection method. It is used by
breeders for large populations/mass selection [Bul80].

In truncation selection, individuals are sorted according to their fitness.
The individuals to be selected as parents are randomly chosen among the
first Tr best individuals. The value of Tr indicates the proportion of the
population to be selected as parents and usually takes values in the range
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Figure 3.3: Relation between the tournament size T and properties of selec-
tion performed.

[0.10, 0.50]. Individuals below the truncation threshold do not produce off-
spring. Clearly, truncation selection allows one to easily control the loss of
diversity which is equal to (1.0− Tr). On the contrary the relation between
the selective pressure and Tr is much more complex.

Comparison of Selection Schemes

In [MSV95] an analysis of truncation selection on the ONEMAX function4

can be found. In [BT96] this analysis is extended to tournament and lin-
ear ranking selection as well. For this function the number of generations
needed to reach convergence with a simple genetic algorithm is proportional
to
√

n and inversely proportional to the selection intensity (the population
should be large enough to converge to the optimum and the initial popula-
tion should be generated at random). This would suggest a high selection
intensity as best selection scheme. However, a high selection intensity leads
to premature convergence and thus a poor quality of the solutions. From the
analysis done in [BT96] appeared that the three selection methods behave
similar assuming similar selection intensity. In figure 3.4 the relation between
selection intensity and the corresponding parameter of the selection meth-
ods (selective pressure, truncation threshold and tournament size) is shown.

4This function takes a bitstring as input and gives as output the number of ones con-
tained in input. As a consequence the optimal string is that containing all ones and the
value of the ONEMAX function on it is n, where n is the number of bits in the input
strings.
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Note that with tournament selection only discrete values can be assigned and
linear ranking selection allows only a smaller range for the selection intensity

The three selection methods have also been compared by considering the
following parameters: loss of diversity (figure 3.5) and selection variance
on the selection intensity. From the plot of figure 3.5, it can be seen
that truncation selection leads to a much higher loss of diversity for the
same selection intensity compared to ranking and tournament selection. This
behavior is consequence of the fact that truncation selection is more likely
to replace less fit individuals with fitter offspring, because all individuals
below a certain fitness threshold cannot be selected. As regards ranking and
tournament selection, they seem to behave similarly.

As concerns the differences in selection variance, for the same selection
intensity truncation leads to a much smaller selection variance than ranking
or tournament, which instead behaves similarly.In [BT96] it was also proved,
that the fitness distribution for the population generated by ranking and
tournament selection, respectively setting sp = 2 and T = 2, is identical.

3.2.4 Fitness

As mentioned above fitness function measures the “goodness” of an individual
as solution of the problem at hand. In practice, such a function contains the
whole available knowledge on the problem. This information is exploited by
the selection mechanism in order to choose the individuals that will undergo
genetic manipulation for producing the new population. Looking at this fact
from a search space standpoint, the fitness function provides information for
locating regions containing good solutions. The fitness function can be seen
as the “driver” of the search performed by any EC–based technique, that
guides the search toward those regions of the solution space that seems to be
very promising, according to the built-in knowledge of the fitness function. As
a consequence the definition of an appropriate fitness function for the problem
faced, is a key issue in the designing phase of any EC–based algorithm.

Another way to look at the fitness functions is in terms of fitness land-
scape, which shows the fitness value for each possible chromosome. Using a
landscape metaphor in order to develop insight about the workings of a com-
plex system originates from the work of Wright on genetics [Wri32]. A simple
definition of fitness landscape in EC is the following: a fitness landscape is a
plot where the points in the horizontal direction represent different individual
genotypes in a search space and the points in the vertical direction represent
the fitness value of each individual [LP02]. If genotypes can be visualized
in two dimensions, the plot can be seen as a 3-D map, which may contains
peaks and valley (see figure 3.6). From a fitness landscape perspective the
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Figure 3.4: (a) Dependence of selection parameters on selection intensity for
ranking selection (the blue line), tournament (red) and truncation (green).

Figure 3.5: Dependence of loss of diversity on selection intensity.
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Figure 3.6: En example of fitness landscape. In which the phenotype is
represented by a couple of integers [−20, 20].

task of finding the best solution for a problem is equivalent to finding the
highest peak (for maximization problem) and any technique used as problem
solver can be seen as short-sighted explorer searching for it.

From the fitness landscape perspective, EC–based techniques can be imag-
ined as operating via population of explorers, initially scattered at random
across the fitness landscape. Explorers, i.e. individuals, that have found a
relatively high fitness points are rewarded with a high probability of surviving
and reproducing.

Fitness Landscape and Problem Difficulty

The fitness landscape metaphor can be helpful to understand the difficulty
of a problem, i.e. the average amount of search needed to find the optimal
solution for that problem. For example, imagine a very smooth and regular
landscape with a single hill top. This is a typical fitness landscape of an easy
problem, the most of the search strategies are able to find the top of the hill
in a straightforward manner.

The opposite is true for a very rugged landscape, with many hills which
are lower than the best one. The search of the global optimum in this case
is a very hard task for every search strategy, as it is easy to be trapped on
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one of the many sub-optimal peaks present in the landscape, usually called
local optima, while the highest peak is called global optimum.

Another kind of hard fitness landscape are those that contain totally flat
areas, usually called plateaus. These might be situated at high or low fitness
values, but in both cases there is no gradient and any search technique has
no guidance as to where he should go next. At the extreme of this situation
there is the needle in a haystack landscape: all the points in the landscape
have the same fitness value, except one, the global optimum, that has a higher
fitness than the others. In this extreme case, every search strategy can only
act like a random searcher, moving at random through the landscape and
hoping to fall by hazard on the global optimum (the needle).

Fitness Landscape Topology

Using the fitness landscape metaphor presents some difficulties: if the dif-
ferent genotypes of the search space can be represented in two dimensions,
then it is possible to visualize the landscape by using a 3-D image like that
of figure 3.6. But, usually, this is not the case in practice, since in the most
of the problems of practical interest the number of variables involved is more
than two and then the landscape cannot be visualized. Moreover, problems
can be multi objective, i.e. the fitness can have several component, each
represented on a different vertical axis. As a consequence, fitness landscapes
are very difficult to be visualized in practice.

Furthermore, in order to understand the features of a fitness landscape,
it is not enough to know which points are in the search space and what their
fitness values are, but it is also necessary to know which point is a neighbor
of which other point. It is clear that the definition of a neighbor relationship
is a crucial step in the construction of a fitness landscape, since its main
characteristics, like peaks, valleys, plateaus, etc. strongly depend on the
neighborhood relationship and deeply change if this relationship is modified.
This relationship is defined in terms of the genetic operators used to explore
the search space: two individuals are assumed to be neighbors if it is possible
to obtain the second one by the application of one step of a genetic operator
to the first one. While the neighbor relationship can be easily defined for
unary genetic operators like mutation, it is much more difficult define this
relationship for binary or multi-parent operators like crossover. This difficult
may prevent one from being able to plot the landscape even for one or two
dimensional search spaces.

Note that given an operator O, a distance d can also be defined in terms
of O: the distance between the points a and b in the search space d(a, b)
is equal to the number of applications of O needed to transform a in b. So
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doing, if S is the entire solution space, the neighborhood N of a point x ∈ S
can be defined as the set of points y of S reachable by one application of the
operator O:

N(x) = {y ∈ S : y = O(x)}
The notion of neighborhood is essential for the definition of local optima:

those points x ∈ S for which (for maximization problems):

f(x)− f(y) ≥ 0, ∀y ∈ N(x)

A point x∗ is a global optimum if it is the absolute maximum in the whole
S:

f(x∗)− f(y) ≥ 0, ∀y ∈ S

Notice that global optima are well defined by the fitness function and do not
need the definition of any structure on S. Other features of a landscape such
as basins, barriers, or neutrality can be defined likewise in [Sta02]

An alternative way for representing the fitness landscape, that can over-
come some of these problems, is by means of a graph, where the nodes rep-
resent the individual genotypes in the search space, the labels of the nodes
are the fitness values of the corresponding genotype and the arcs define the
neighborhood relationship on the basis of a unary genetic operator.

Examples of Fitness Function

Fitness evaluation may be as simple as computing a mathematical function
or as complex as running an elaborate simulation. In order to communicate
this variety in an effective way, in the following two practical examples of
fitness evaluation are given.

Example 1
Suppose that one is planning to evolve a good airplane wing. To do this
he designs a way of encoding many of the important aspects of standard
airplane wings as parameters. This list of parameters will be the genotype
of the airplane wing. With a specific list of parameters, one could take this
list and create a physical realization of the wing (e.g., out of plastic) or a
virtual realization of the wing (e.g., a CAD model). This realization is the
phenotype of the evolving structure. Imagine that one is trying to discover
a wing design that has a minimal drag to lift coefficient. If a virtual wind-
tunnel is available, the process for determining the fitness of the chromosome
c in the current population could work as follows:

- From the chromosome c create the phenotype it encodes (a CAD model
of the wing).
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- Insert this virtual wing into the virtual wind-tunnel and measure the
drag α and lift β created by this wing under the air conditions of
interest.

- Assign the fitness to be fc = α
β

In this example, the fitness defined allows one to evolve wings that have a
good drag to lift coefficient, but other parameters, e.g. the wing weight are
not optimized, since they have not been inserted in the fitness function.

airplane wings under evolution are said to be encoded by the bitstrings
that represent them.

Example 2
See now another example of fitness: suppose that one is unaware of the Taylor
series expansion for f(x) = ex and he would like an approximation to ex by
means of a functions that contains the basic arithmetic operators (+,−, ∗, /)
plus the variable x and constants. Such an approximation function can be
obtained using a GP algorithm. The fitness of a chromosome c that encodes
the function Fc can be defined as follows:

- Pick N random values for x inside the range of interest (e.g., [0, 1000]);

- For value xj (1 ≤ j ≥ N), define the error for this x value as:
Ej = (exj −Fc(xj))

2;

- Compute the fitness of c as, fc = 1
N

∑N
j=1 Ej

This particular experiment has been performed and several first terms of the
Taylor’s series were successfully evolved [Koz92]. In this example, the fitness
of each chromosome is an approximation to the chromosome’s real “fitness”,
i.e. that measured on all the points in the given range, and that the fitness
of chromosome c will be different if tested more than once. Moreover, N is a
parameter of the fitness calculation: higher it is and greater is the accuracy
of the measured fitness5. This situation occurs anytime that the calculation
of the exact fitness for an individual is too expensive.

3.3 Genetic Algorithms

Genetic algorithms (GAs) are one of the best known class of EC-based al-
gorithms. They have been invented by Holland in the middle of the 1970s

5Obviously, the price to pay for a greater accuracy is a greater computational cost for
the fitness evaluation.
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[Hol92]. GAs have been successfully applied to a wide variety of real-world
problems, such as combinatorial optimization ones or learning tasks. In this
class of algorithms, individuals are coded as fixed length strings of characters.

The first step in the design of a GA is the definition of the alphabet Σ, the
set of the n allowed characters that can be used to construct the strings and
the strings length L. The search space, i.e. the set of all possible individuals,
is composed by nL different strings. In the most of the case, that will be
referred to as canonical GA in the following, is the one in which the alphabet
consists of just the two symbols 0 and 1 (Σ = {0, 1}). In this case the size
of the search space equals to 2L.

The GA process starts with the generation of an initial population, con-
sisting of a set of individuals randomly chosen in the search space. The size
p of the population is usually fixed once for all at the beginning of the run.
Note that usually p << nL. After that the initial population has been cre-
ated, the process enters in a loop, where the following steps are performed at
each iteration (iterations of the GA process are usually called generations):

1. The fitness of each string is evaluated.

2. Selection is performed: one individual is selected from the current pop-
ulation and inserted in the mating population6. This selection process
is repeated p times. At the end of this process the mating population
contains p individuals.

3. Variation is performed: recombination and mutation are applied to
the individuals in the mating population in order to create the next
population.

The process just described ends when a termination criterion is fulfilled. The
most commonly used termination criteria are:

- at least one individual in the current population has a satisfactory
fitness value;

- a prefixed maximum number of generation has been reached.

As mentioned in section 3.2.3 several selection methods have been devel-
oped. These methods are independent from the way in which the solutions
are encoded, any selection method can be used for performing the selection
step (point 2). As regards the specific operators of the GAs they are described
in the following.

6Note that the selected individuals are not removed from the population under selection.
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(a)

(b)

Figure 3.7: (a) Two GA individuals selected for crossover. The crossover
point is equal to 4. (b) On the left the offspring obtained by combining the
crossover fragment of the first parent with the remainder of the second one
is shown, while the offspring obtained combining the crossover fragment of
the second parent and the remainder of the first one is shown on the left.

3.3.1 Recombination

The recombination operator used in the GAs is usually called crossover. It is
applied to couple of strings with a probability pc and produce two offspring,
each containing genetic material from each of their parents.

Many crossover algorithms have been proposed for GAs in the literature.
The most used one is called one point crossover and its operation is illustrated
in figure 3.7. This kind of crossover is performed first randomly choosing a
number t in the range [1, L − 1]. The number t identifies one of the L − 1
interstitial locations lying between the positions of a string of length L. In
the example of figure 3.7(a) the chosen interstitial location is the fourth
one. This location becomes the crossover point. Then each parent is split
at this crossover point into a crossover fragment and a remainder. The
crossover fragment of the first individual of figure 3.7(a) is the string 1011

while the remainder is 00. The crossover fragment of the first individual
is then combined with the remainder of the second one while the crossover
fragment of the second individual is combined with the remainder of the first
one.

3.3.2 Mutation

The mutation operator modifies a sub-string of an individual, with a certain
probability pm. Also in the case of mutation many algorithms have been de-
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(a) (b)

Figure 3.8: (a) The string to be mutated. In this case only the third position
has been changed. (b) The individual obtained after mutation.

veloped. The most commonly used is called point mutation and its operation
is illustrated in figure 3.8. Each position in the input string is chosen with a
probability pm and the character contained in that position is then replaced
with another randomly chosen character. The optimal mutation rate for GAs
have been extensively studied for the canonical GAs and has been found that
the in the most of the cases the optimal rate is 1/L [Och05]. This mutation
rate causes, on average, the change of just one bit for each individual.

3.4 Genetic Programming

GAs are capable of solving many problems and are simple enough to allow
solid theoretical studies. Nevertheless, the fixed-length string representation
of the solutions that characterizes them is difficult, unnatural and constrain-
ing for a wide set of applications. In these cases the most natural repre-
sentation for a solution is a hierarchical computer program rather than a
fixed-length character string. For example, fixed-length strings do not read-
ily support the hierarchical organization of tasks into subtasks typical of
computer programs, they do not provide any convenient way for incorporat-
ing iteration and recursion and so on. But above all, GAs representation
schemes do not have any dynamic variability: the initial selection of string
length limits in advance the number of internal states of the system and
limits what the system can find out.

This lack of representation power is overcome by Genetic Programming
[Koz92], which operates with very general hierarchical computer programs.
Even though every programming language (e.g. Pascal, Fortran, C, etc.)
is virtually capable of expressing and executing general computer programs,
Koza chose the LISP (LISt Processing) language for encoding GP individuals.
The reasons of this choice can be summarized in the following:

- Both instructions and data have the same form in LISP, so that it is
possible and convenient to treat a computer program as data in the
genetic population.
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- This common form of programs and data is a parse tree and this fact
allows one to decompose in a simple way a structure in substructures
(subtrees) to be manipulated by the genetic operators.

- LISP facilitates the programming of structures whose size and shape
change dynamically and the handling of hierarchical structures.

- Many programming tools are commercially available for LISP.

In other words GP, as originally defined by Koza, considers individuals as
LISP-like tree structures. These structures are perfectly capable of cap-
turing all the fundamental properties and features of modern programming
languages. The GP using this representation will be called tree-based from
now on. The tree-based representation of genomes, although is the oldest
and most commonly used, is not the only one that has been employed in GP.
In particular, in the last few years a growing attention has been given by
researchers to linear genomes [BB01, RCO98] .

In synthesis, GP based algorithms breeds programs for solving problems
by executing the following steps:

1. Generate an initial population of computer programs.

2. Iteratively perform the following steps until the termination criterion
has been fulfilled:

(a) Execute each program in the population and assign it a fitness
value according to how well it solves the problem at hand.

(b) Create a new population by applying the following operations:

i. Probabilistically select a set of computer programs to be re-
produced, on the basis of their fitness (selection step).

ii. Copy some of the selected individuals, without modifying
them into the new population (reproduction).

iii. Create new computer programs by genetically recombining
randomly chosen parts of two selected individuals (crossover)

iv. Create new computer programs by substituting randomly cho-
sen parts of some selected individuals with new randomly gen-
erated ones (mutation).

3. The best computer program appeared in any generation is designated
as the result of the GP process and given in output as solution of the
problem whose knowledge has been inserted in the fitness function used
to evaluate the individual.

In the following sections each specific features of this process is detailed.
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3.4.1 Representation of GP Individuals

The set of all the possible structures that GP–based system can generate
is the set of all the possible trees that can be built recursively from a set
of function symbols F = {f1, f2 . . . , fn} (used to label internal tree nodes)
and a set of terminal symbols T = {t1, t2 . . . , tm} (used to label tree leaves).
Each function in the set F takes a fixed number of arguments, specifying its
arity. Functions may include arithmetic operations (+,-,*,etc.) mathemat-
ical functions (such as sin, cos, log, exp, etc.) conditional operations (e.g.
IF-THEN-ELSE) and other domain-specific functions that may be defined.
Each terminal symbol is typically either a variable or a constant, defined on
the problem domain. In figure 3.9 an example of GP individual is shown.

Closure and Sufficiency of Function and Terminal Sets

The function and terminal sets should be chosen so as to verify the require-
ments of closure and sufficiency.

The closure property requires that each of the functions chosen is able
to accept as its arguments any value and data type that may possibly be
returned by any function and any terminal. In other words each function
should be well defined for any combination of arguments that it may en-
counter.

The reason why this property must be verified depends on the fact that
programs must be executed by an interpreter in order to assign them a fitness
value. The failure of the execution of a program due to a wrong argument
for one or more of the functions in it, makes impossible its evaluation. The
function and terminal sets of the example proposed in figure 3.9 satisfy this
property.

The following ones, for instance, don’t satisfy this property: F = {+,−, /}
and T = {x, 1, 0}. In fact, each evaluation on an expression containing the

Figure 3.9: A legal tree built by using the sets F = {+,−} and T = {x, 1}.
The tree encodes the expression (+x(−x1))
.
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operation of division by zero would be lead to an unpredictable behavior.
Usually, in any GP implementation the division operation is suitably modi-
fied in order to satisfy the closure property. The satisfaction of this property
in real-life applications is not always so easy, because the use of many differ-
ent data types could be necessary.

Another common example of this situation is a mix of boolean and
numeric functions: function sets could be composed by boolean functions
(AND, OR, etc.), arithmetic functions (+,−,∗,etc.), comparison functions
(>,<,=, etc.) and conditional ones (IF THEN ELSE), etc. and one might
want to evolve expression such us:

IF ((x > 10 ∗ y)AND(y > 0)) THEN z + y ELSE z ∗ x.

In such cases, the introduction of typed functions into the GP genome can
help to force the closure property to be verified. For example, a particular
GP version, called strongly typed GP (STGP), in which each node carries
its type as well as the types it can call, thus forcing functions calling it to
cast the argument into the appropriate type, has been introduced [Mon93a].
The use of typing makes much more efficient the initialization and variation
phases with respect to a standard GP, as type checking allows the system
to generate only individuals that respect the closure property. Furthermore,
the effect of the type checking is that of reducing the search space which is
likely to improve the search.

The sufficiency property requires that the set of terminals and that of the
functions is capable of expressing a solution to the problem. For instance, the
function and terminal sets of the example of figure 3.9 satisfy the sufficiency
property if the problem at the hand is an arithmetic one. It does not verify
this property if, for instance, if the problem faced is a logic one. For many
domains, the requirements for sufficiency in the function and terminal sets
are not clear and the definition of appropriate sets depends on the experience
of the GP designer and his knowledge of the problem.

3.4.2 Initialization of a GP Population

The initialization of a GP population is the first step of the evolution process.
It consists in the creation of the program structures that will be later evolved.
The most common initialization methods in the tree-based GP are the grow
method, the full method and the ramped half-and-half method [Koz92]. This
methods will be explained in the following paragraphs, where the set of the
function symbols composing the trees will be denotated by F , the set of the
terminal symbols by T and the maximum depth allowed for a tree by d.
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Grow initialization

When the grow method is employed, each tree of the initial population is
built using the following algorithm:

- a random symbol is chosen with uniform probability from F to be the
root of the tree;

- let n be the arity of the function symbol chosen. Then n nodes are
selected with uniform probability from the set F

⋃
T to be its sons;

- for each function symbol between these n nodes, the method is recur-
sively applied, i.e. its sons are selected from the set F

⋃
T , unless this

symbol has a depth equal to d − 1. In the latter case, its sons are
selected from T .

Summarizing, the root is chosen with uniform probability from F , so that
no tree composed by a single node is initially created. Nodes with depths
between 1 and d − 1 are chosen with uniform probability from F

⋃
T , but

once a branch contains a terminal node, that branch has ended even if the
maximum depth d has not been reached. Finally, nodes at depth d are chosen
from T . Since the incidence of choosing terminals from F

⋃
T is random

throughout the initialization, trees initialized by using the grow method are
likely to have irregular shape, i.e. to contain branches of various different
lengths.

Full initialization

Instead of choosing nodes from F
⋃
T , the full method chooses only the

function symbols until a node is at the maximum depth. Then it chooses
only terminals. The result is that every branch of the tree goes to the full
maximum depth.

Ramped half-and-half initialization

As first noted by Koza [Koz92], population initialized with the above two
methods my be composed by trees that are too similar between them. The
ramped half-and-half technique has been developed in order to enhance pop-
ulation diversity. Let d the maximum depth parameter, the population is
divided equally among individuals to be initialized with tree having depths
equal to 1, 2, ..., d−1, d. For each depth group, half of the trees are initialized
with the full technique and half with the grow one.
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(a) parents

(b) offspring

Figure 3.10: An example of crossover application. Crossover fragments are
included into gray forms.

3.4.3 Recombination

The recombination operator of the GP, commonly called crossover so as in
the GAs, creates variation in the population by producing new offspring that
consist of parts taken from each parent.

Given two parents I1 and I2, GP crossover starts by independently choos-
ing one random point in each parent (it will be called the crossover point for
that parent). Usually the crossover point is chosen in such a way that the
node lying underneath this point has the probability equal to 0.9 of being
an internal node and a probability of 0.1 of being any node (internal or ter-
minal). The crossover fragment for a particular parent is the subtree rooted
at the node lying underneath the crossover point. The first offspring is pro-
duced by deleting the crossover fragment from I1 and inserting the crossover
fragment of I2 at the crossover point of I1. The second offspring is produced
in a symmetric manner. In figure 3.10 an example of crossover application is
shown.

The swapping of entire subtrees, regardless of the crossover points chosen,
yields syntactically legal programs only if the closure property of the func-



CHAPTER 3. EVOLUTIONARY COMPUTATION 61

(a) parent (b) offspring

Figure 3.11: An example of mutation application.

tions is satisfied. It is important to remark that in cases where a terminal
and/or the root of one parent are located at the crossover point, generated
offspring could have considerable depths. This may be one possible cause of
the phenomenon of bloat, i.e. progressive growth of the code size of individ-
uals in the population. For this reason, many variants of the standard GP
crossover have been proposed in the literature. The most common ones assign
different probabilities of being chosen as crossover point to the various par-
ents’nodes, depending on the depth level they are situated. In particular, it
is very common to assign low probability of being chosen as crossover points
to the root and the leaves, in order to limit the influence of degenerative
phenomena like that described above.

3.4.4 Mutation

The standard GP mutation, called subtree mutation, starts by choosing a
point at random, with uniform probability distribution, within the input in-
dividual. This point is called the mutation point. Then, the subtree laying
below the mutation point is removed and a new randomly generated sub-
tree is inserted at that point. This operation so as in the case of standard
crossover is controlled by a parameter that specifies the maximum depth al-
lowed and limits the size of the newly created subtree that is to be inserted.
Nevertheless, the depth of the generated offspring can be considerably larger
than the one of the parent.

Also for the mutation many variants of the standard one have been devel-
oped. The most commonly used are the ones aimed at limiting the probabil-
ity of choosing the root and/or the leaves of the parent as mutation points.
A particular example of mutation variant is the point mutation [PL97], in
which, concurrently, each node in the tree has a given probability to be
changed with a random one of the same arity.
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GPTerminals a0 a1 d0 d1 d2 d3
GPNonterminals and(2) or(2) not(1) if(3)

Table 3.1: The GP symbols for the 6-multiplexer problem. The numbers in
the parentheses indicate the arity of the corresponding nonterminals symbols.

Figure 3.12: A GP tree for the symbols of the table above.

3.5 Grammatically–based Genetic Program-

ming

As mentioned in section 3.4.1 the requirement of closure is hard to be satisfied
in many cases, especially when several data types could be necessary. Several
approaches have been proposed within the GP framework in order to over-
come this drawbacks [Mon93b, Ros94]. Among the others, that proposed by
Whigham [Whi96], who introduced the use of context free grammar (CFG),
is one of the most effective. The class of context-free grammars is one of the
four main classes distinguished by Chomsky [Cho56]. Of these grammars, the
class of the context-free ones is the most popular, as the grammars belonging
to this class are simple and applicable to many problems. For example, most
modern programming languages have been defined using these grammars.

The use a context-free grammar allows the user to bias the initial GP
structures, and automatically ensure that typing and syntax are maintained
by manipulating the explicit derivation tree built using the grammar. This
system will be referred to as context-free grammar genetic programming, or
CFG-GP.

A context free grammar is a four-tuple (N , Σ, P , S), where N is the non-
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terminal7 alphabet, Σ is the terminals alphabet, P is the set of productions
and S is the designated start symbol. The productions are of the form
x → y
where x ∈ N and y ∈ {Σ

⋃
N}∗.

Productions of the form
x → y
x → z
may be expressed using the disjunctive symbol |, as
x → y|z
The string separated by the symbol ’|’ on the right side of the rules will be
denoted in the following as clause.

A derivation step represents the application of a production form of P
to some nonterminal A ∈ N . In the following the symbol ⇒ is used for
representing the derivation step. For example, given the nonterminal A, the
derivation step from A by applying the production rule A → θ is represented
as:

αAβ
A→θ⇒ αθβ

where α, β, θ ∈ {N
⋃

Σ}∗ and A ∈ N .
Moreover, a derivation rooted in A, where A ∈ N , is defined as

A
∗⇒ α where α ∈ {N ∪ Σ}∗

Here
∗⇒ represents zero or more derivation steps. Note that a series of deriva-

tion steps may be represented as a tree such as in figure 3.13.

3.5.1 An Example of Application of CFG-GP

In this section the 6-multiplexer8 is used as example to describe the dif-
ferences between traditional GP and CFG-GP. A full description of the 6-
multiplexer can be found in [Koz92].

In table 3.1 the sets of symbols used by the GP for representing the 6-
multiplexer problem is shown. In figure 3.12 a GP tree available by using this
table is also shown. While in table 3.2 one of the many possible grammars
that allows the creation of the same functional structures is shown. In figure

7Grammars traditionally use the definitions terminal and nonterminal to represent the
atomic tokens and symbols to be replaced, respectively. GP have used these terms for
distinguishing functions with a number of arguments greater than 0 and 0-arity functions
or atomic values. In order to ensure to avoid confusion when discussing GP constructs the
words GPterminals and GPnonterminals will be used.

8The 6-multiplexer is a simple boolean problem where two address lines are used to
select between four possible data lines.
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Symbols

N = {B, T}
Σ = {a0, a1, a2, d0, d1, d2, d3}

Production rules

1) S → B
2) B → and B B | or B B | not B | if B B B | T
3) T → a0 | a1 | a2 | d0 | d1 | d2 | d3

Table 3.2: A context free grammar for the 6-multiplexer problem.

Figure 3.13: A tree created from the grammar of table 3.2.

3.13 a derivation tree generated by using this grammar is shown. Note that
both the trees represent the function and(or(a0, a1), not(d0)).

In the following the creation of the initial population and the operators
of the CFG-GP are described.

Creating the initial population

In the GP approach the individuals of the initial population can be created
by using one of the method described in section 3.4.2. Generally the most
used among the methods mentioned above is the ramped half-and-half.

In the CFG-GP, instead, the individuals in the initial population, encoded
as derivation tree, are generated by starting with root node containing the
symbol S, then a clause on the right side of the corresponding production rule
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is randomly chosen. After, a number of sons equal to the number of symbols
in the chosen clause is assigned to the root node. Each son contains a different
one of these symbols. The same process is recursively repeated for each
nonterminal node in the tree (see figure 3.13). Note that the derivation tree
so built represents the genotype of the individual. As regards the phenotype,
it is represented by the string built by visiting the tree in depth first order
and copying into this string the terminal symbols contained in the leaves.

In order to control the growth of the tree generated by a given grammar, to
each clause on the right hand of a production rule is a associated a value in the
range [0.0, 1.0]. This value indicates the probability that the corresponding
clause is returned when that production rule is activated returns. These
values are usually normalized. Specifically, the growth of trees is limited by
given a much more high probability to those clauses containing only terminal
symbols. For example, if one takes into account the rule

B → and B B | or B B | not B | if B B B | T

a possible choice of the probabilities for the right side clauses could be the
following:

0.10 | 0.10 | 0.10 | 0.10 | 0.60

Crossover

All the terminals in a derivation tree have at least one nonterminal above
them in the program tree, so without loss of generality crossover points can
be constrained to be located only on nonterminals nodes. The crossover
operation maintains legal programs of the language defined by the grammar
by ensuring that the same nonterminals are selected at each crossover point.
Given two derivation trees ρ1 and ρ2 the crossover algorithm is:

1. Randomly choose a nonterminal A ∈ ρ1;

2. Randomly select A ∈ ρ2.

3. Swap the subtrees below these nonterminals;

Note that if the symbol A does not exist in ρ2 the trees are left unchanged.

Mutation

The mutation operator is applied to the input tree by randomly choosing
a nonterminal as the site for mutation. Then the subtree under the cho-
sen nonterminal is deleted and a new subtree is generated according to the
grammar productions. The chosen nonterminal is used as starting point.
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Figure 3.14: An example of CFG-GP crossover

3.6 Applications of EC–based Algorithms

EC–based algorithms are usually used when the problem to be solved is a
NP–hard one and the knowledge available does not allow to develop a solving
strategy that is specific for the problem, or when the strategies developed
so far give unsatisfactory solutions. In these cases, the powerful heuristic
provided by the EC paradigm, using the limited knowledge available on the
problem may be able to find satisfactory solutions. In the following some
applications that use EC–based algorithms are listed:

Combinatorial problems
There exists an extensive range of problems which can be formulated
as obtaining the values for a vector of variables subject to some restric-
tions. The elements of this vector are denominated decision-variables,
and their nature determines a classification of this kind of problems.
Specifically, if decision-variables are required to be discrete (i.e. the
solution is a set or sequence of integer numbers or any other discrete
type), the problem is said to be combinatorial. The process of finding
optimal solutions (maximizing or minimizing an objective function)
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for such a problem is called combinatorial optimization. These prob-
lems have been traditionally approached using exact techniques such
as Branch and Bound [LW66]. These techniques ensure that the opti-
mal solution is found but, unfortunately, their application is seriously
limited as they cannot cope with the combinatorial explosion of the
solutions, i.e. the exponential growth of the number of solutions as the
number of decision-variables involved increases.

This kind of problems have been addressed quite successfully with GAs.
A very common example of this kind of problems is the time-tabling of
exams of classes in Universities, etc. At the Department of Artificial
Intelligence, University of Edinburgh, time-tabling the MSc exams is
now done using a GA–based system. Also the Job-Shop Scheduling
Problem 9 is a very difficult NP-hard problem which, so far, seems best
addressed by branch and bound search techniques. GAs have been
successfully applied also to this problem [NY91].

Neural networks optimization
As mentioned in section 2.1.2 Artificial Neural Networks (ANNs) rep-
resent an AI important paradigm dealing with massively parallel infor-
mation processing proposed as biological models for the human brain.
Whenever an ANN is to be used it must first be designed. At present,
any ANN design drags along an unstructured, heuristic and arbitrary
path in order to reach “the better” structure and connectivity to be
trained. Only the training methods are truly applied, but every ANN
type seems to need a different own training mechanism. Usually the
training mechanism is a some kind of hillclimbing, that is very closely
related to (and so, dependent on) the problem being solved, the ANN
type and/or the pattern set for it. The final result is a vast landscape
of different multiparameter tuning procedures to be carried out for any
individual problem and with no warranties for optimum results.

In order to overcome this lack of methodology EC-based methods have
been used to design Artificial Neural Networks [Yao99]. Essentially EC-
based algorithms have been used at two different levels: optimization
of the connection weights or of the architecture. In the former case

9An instance of the job-shop scheduling problem consists of a set of n jobs and m
machines. Each job consists of a sequence of n activities so there are n ∗ m activities in
total. Each activity has a duration and requires a single machine for its entire duration.
The activities within a single job all require a different machine. An activity must be
scheduled before every activity following it in its job. Two activities cannot be scheduled
at the same time if they both require the same machine. The objective is to find a schedule
that minimizes the overall completion time of all the activities.
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the architecture of the ANN is provided by the user and EC is used
just to optimize the connection weights. In the latter case, instead,
EC is employed to find the best configuration of the ANN, especially
for minimizing its size, while the connection weights are adjusted by
using specific algorithms, e.g. back-propagation, in order to minimize
the error.

Computer Aided Design (CAD)
The term Computer-aided design (CAD) refers to the use of a wide
range of computer-based tools that assist engineers, architects and
other design professionals in their design activities. CAD is used to de-
sign and develop products, these can be goods used by end consumers
or intermediate goods used in other products. CAD is also extensively
used in the design of tools and machinery used in the manufacture of
components.

In order to optimize the products designed by means of CAD tools,
EC-based algorithms have been integrated in this software tools. An
example of this use of EC in the CAD designing is represented by
EnGENEous a CAD tool developed by General Electric [Gol66]. It is
a hybrid system, combining numerical optimization tools and genetic
algorithms. This tool has been used to improve the performance in the
design Boeing 777’s jet engines.



Chapter 4

An Evolutionary Framework
for Classification Problems

In this chapter one of the main contributions of this thesis is presented.
We have defined a general EC–based framework for generating prototypes in
classification problems, which is largely independent of both the classification
scheme and the technique used for representing the prototypes. Moreover,
our approach does not require any specific knowledge on the classification
problem to be solved and it is able to automatically find the actual number
of prototypes needed to represent the patterns belonging to different classes.
This ability derives from three key assumptions: (i) the encoding of all the
prototypes searched in a single individual; (ii) each individual contains a
variable number of prototypes; (ii) prototypes within an individual are not
a priori labeled. It is useful to remark that the use of such a framework
can be very helpful for the development of a recognition system because,
independently of the specific classification scheme used, the definition of the
prototypes strongly affect the performance of the whole system.

In section 4.1 the previous and related work for classification problems
in the EC field is briefly illustrated. While in section 4.2 the framework
devised is detailed. In section 4.3 the CFG-GP version of the proposed
general framework is presented. Finally, in section 4.4 another version that
uses real-valued vectors is presented.

4.1 Related and Previous Work

Thanks to their ability to solve hard problems characterized by complex and
high dimensional search spaces, EC-based algorithms have been successfully
used to solve classification problems. Specifically, GAs have been applied to

69
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evolve sets of rules for more than two decades. These rules predict the class of
a pattern specifying some values of the pattern attributes. This methodology
forms a machine learning paradigm called learning classifier systems (LCS)
[LSW00]. In this approach each individual encodes one or more rules of the
form IF-THEN: the rule antecedent (the IF part) contains a combination of
conditions on some attribute values, while the rule consequent (the THEN
part) expresses the class predicted by the rule. GAs for rule discovery can be
divided into two main classes, called Michigan and Pittsburgh, based on how
rules are encoded by individuals In the Michigan [GN95, GS93] approach
each individual encodes a single prediction rule, whereas in the Pittsburgh
approach [PGP97, Jan93, DSGJ93] each individual encodes a whole set of
prediction rules.

The Pittsburgh approach was originally devised to solve single–class prob-
lems and then only the antecedent part of a rule is encoded. Patterns that
match one or more rules are classified as a positive examples of the class,
whereas patterns that do not match any rule are classified as a negative ex-
amples. In order to tackle multi–class problems, they have been extended
by introducing multiple populations so that each population is dedicated to
learn rules for a specific class. Note that it is also possible that a pattern is
matched by more rules belonging to different classes or by any rules of any
class. Unfortunately, this problem has not been addressed in many of the
systems based on the Pittsburgh approach.
Also the Michigan approach was developed to cope with problems for a
single–class only, as well. In case of multi–class problems, these algorithms
are run once for each class, where each run evolves a set of rules for a speci-
fied class. So as in the Pittsburgh approach, it is possible that an instance is
matched by several rules, each predicting a different class, or it is also possi-
ble that an instance is matched by none of any rule predicting any class. In
order to overcome this problem affecting both the approaches, some hybrid
Michigan/Pittsburgh methods have also been proposed [Hek97].

As mentioned above, genetic algorithms have widely been used to cope
with classification problems, but only recently some attempts have been
done solve such problems using GP [ABL02, RDC00, DDT02, KPMA00].
In [RDC00], GP has been used to evolve equations involving simple arith-
metic operators and feature variables, for hyper-spectral image classification.
In [ABL02], GP has also been employed for image classification problems,
adding exponential functions, conditional functions and constants to the sim-
ple arithmetic operators. In [CLH02] GP has been used to generate discrimi-
nant functions which carry out arithmetic functions with fuzzy attributes for
a classification problem. In [MVFN01] GP has been used to evolve pop-
ulations of fuzzy rule sets, whereas a simple evolutionary algorithm was



CHAPTER 4. A FRAMEWORK FOR CLASSIFICATION 71

employed to evolve the membership function definitions. The populations
involved are allowed to co-evolve in such a way that both rule sets and mem-
bership functions can adapt each other. In [KPMA00], an interesting method
which considers a c-class problem as a set of c two-class problems has been
introduced. When the expression for a particular class is searched, that class
is considered as target, while the other ones are merged and treated as a
single undesired class. In this way, c expressions can be obtained performing
c runs. These expressions can then be used concurrently for discriminat-
ing the c different classes of the problem at hand. In all the above quoted
approaches, the number c of classes to be dealt with is used to divide the
data set at hand in exactly c parts. Thus, these approaches do not take into
account the existence of subclasses within one or more of the classes in the
analyzed data set. In the EC field, classification tasks have been faced by
considering them as multimodal optimization problems: a single prototype
is seen as one of the several solutions to be searched for [HGD94, HG96].
In this kind of approach the individuals representing the candidate proto-
types are concurrently evolved in the same population and niching methods
[GR87, DG89] are used to form and maintain the searched solutions. These
methods consider a good solution (i.e. prototype) and its neighborhood in
the solution space as a niche. The aim of these algorithms is that of creating
groups of individuals, usually called subpopulation, each one occupying a dif-
ferent niche. A subpopulation has the task of finding out the best solution
within the niche it occupies. Among niching methods, fitness sharing are the
best known and the most widely used [Hor97]. In this approach, a distance
measure is defined and the individuals having distances among them lower
than a given value (niche radius) are considered as belonging to the same
niche. Such individuals are forced to share a given amount of fitness. In
practice, the sharing is obtained by reducing the fitness of all the individ-
uals within the niche according to their number. The effective use of the
fitness sharing in real world problems, however, is severely limited because
it requires a high degree of knowledge about the fitness function landscape,
while for the most of such problems such knowledge is hard to achieve.

4.2 An EC–based Framework for Classifica-

tion problems

In this section an EC–based framework for generating prototypes is pre-
sented. This framework is general and has been defined without specifying
the form of the prototypes to be used. As a consequence, it can be applied
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Figure 4.1: The framework solution encoding. A solution is encoded as a list
of prototypes. The circles represent the data structures used to encode the
prototype.

to any kind of classifier and to any classification problem, once a way for
encoding the prototypes has been specified. Given this encoding, each in-
dividual consists of a variable number of prototypes representing the whole
set of prototypes to be used for the problem at hand (see figure 4.1). The
knowledge about the specific problem to be solved is limited to the choice of a
training set Dtr of labeled patterns that must be provided to the framework.

The assumption that an individual is made up by the whole set of proto-
types offers several advantages. The most relevant one is that it is possible
to find the actual number of prototypes by using a simple and well defined
fitness function. In fact, in our approach the fitness of an individual coin-
cides with the recognition rate obtained by using the whole set of prototypes
making up that individual. Moreover, in order to find the minimum number
of prototypes, a term that favors individuals having a lower number of proto-
types, can be added to the fitness function. Discovering the actual number of
prototypes needed to represent the patterns for a given class is a crucial issue
in the design of any classifier. In most of the real applications, in fact, the
variability exhibited even by the pattern belonging to the same class cannot
be managed by defining a single prototype. In figure 4.2 a simple example in
which this situation may occurs is given. In this example two different ways
of writing the character “A” are taken into account. So, here it is clear the
difficulty of representing these different patterns by the same prototype.

In figure 4.3 the outline of the algorithm of the framework proposed is
shown. In the initial population each of the P individuals is generated first
randomly choosing a number n in the range [Nmin, Nmax] with a uniform
probability distribution. While Nmin is usually chosen equal to the number
of classes of the problem at hand, the value of Nmax has to be chosen by the
user and represent a parameter of the algorithm. The number n represent the
number of prototypes that makes up the i–th individual. Then n prototypes
are generated by using the adopted encoding scheme. This generation can
be done randomly or not. Usually, the majority of prototype are randomly
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Figure 4.2: Two different ways of writing the letter “A”.

generated, while a certain number of them are generated in such a way to
match same of the patterns in the training set.

After that the initial population has been created, the prototypes of each
individual are labeled by using the dynamic labeling mechanism defined.
Then the fitness of each individual is evaluated. Note that also the fitness
evaluation is defined within the framework. Afterwards a new population is
generated. The first, in terms of their fitness values, E individuals, according
to an elitist strategy1, are just copied in the new population. Then any
selection mechanism can be used in order to choose (P − E/2) couples of
individuals. To every selected couple, the recombination operator defined
within the framework is applied according to a chosen probability factor
pc. After the mutation operator specific of the encoding used to represent
the prototypes is applied according to a probability factor pm. The new
population so built replaces the old one and the process is repeated until a
termination criterion is fulfilled. In the following the specific parts of the
framework proposed are detailed.

4.2.1 Solution Encoding

As mentioned above, an individual contains the whole set of the prototypes.
This set is encoded in the individual as a list of the data structure that
encodes the prototypes. Obviously, in order to automatically find the right

1An elitist strategy ensures that the fittest members of the population are passed on
to the new one without being altered by genetic operators. Using elitism ensures that the
best individuals so far evolved can never been lost from one generation to the next. From
a search space perspective, such a mechanism preserves the information contained in the
best area so far located.
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begin
create a population of P individuals;
evaluate the fitness of each individual;
for i = 0 to NG do

copy the best E individuals in the new population;
for j = 0 to (P − E)/2 do

apply the selection mechanism;
replicate the selected individuals;
if flip(pc) then

apply the crossover operator on the selected individuals;
end if
if flip(pm) then

perform mutation on the offspring;
end if
evaluate the fitness of each individual;

end for
replace the old population with the new one;
update variables for termination;

end for
end

Figure 4.3: The outline of the algorithm of the framework defined.
Note that the function flip(p) returns the value 1 with a probability p and
the value 0 with a probability (1 − p). Its role is that of implementing the
probability of application of the operators.

number of prototypes, the length of the individuals, i.e. the cardinality of
the set encoded by an individual, is variable. In figure 4.1 an example of an
individual that encodes a set of five prototypes is given.

4.2.2 Prototype Labeling

The prototypes making up an individual are not a priori labeled, but their
labeling occurs after a matching process: in such a process, each pattern
in the training set is assigned to one prototype according to the matching
procedure defined for the considered classification problem. In the following
the procedure employed to label the prototypes, called dynamic labeling, is
given:
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P1 P2 P3 P4 P5

c1 3 36 0 0 44

c2 30 6 0 1 0

c3 0 0 47 3 0

c4 0 0 8 68 4

(a)

P1 P2 P3 P4 P5

c1 3 36 0 0 44

c2 30 6 0 1 0

c3 0 0 47 3 0

c4 0 0 8 68 4

(b)

Figure 4.4: An example of the dynamic labeling of the 5 prototypes of an
individual. In (a) the patterns of the training set (belonging to 4 different
classes) have been assigned to the prototypes. In (b) each prototype is labeled
according to the patterns assigned to it.
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1. The assignment of the training set patterns to the prototypes making
up the individual is performed. After this step, pi (pi ≥ 0) patterns have
been assigned to the i-th prototype. In the following the prototypes
for which pi > 0 will be referred to as valid. The remaining prototypes
(pi = 0) will be ignored.

2. Each valid prototype is labeled with the label most widely represented
among the patterns that have been assigned to it.

In figure 4.4 an example of application of this procedure is given. In the
example, four classes have been defined and the individual is made up of
four prototypes. The first prototype p1 is labeled with the label of the second
class, as it has demonstrated to be a good prototype for that class, while,
for the same reason, p2 has been labeled with the label of the first class.
The prototypes p3, p4 and p5 have respectively been labeled with the label
of the third, fourth and first class. Note that in this example the individual
provides two prototypes for the first class.

Note that the dynamic labeling together with the recombination operator,
described in section 4.2.4, allows the framework to automatically find the
right number of prototypes for the classification problem faced. Yet, the
dynamic labeling of prototypes allows one to relax a strong constraint caused
by the a priori labeling of the prototypes (see figure 4.5). In fact, suppose
that the analyzed data contains c classes and each individual also contains
c a priori labeled prototypes2, the constraint imposed on the labels of the
prototype reduces of a factor (c!) the number of solutions to be considered as
good solutions of the problem at hand. This so strong limitation depends on
the fact that, given a set of c prototypes in which each prototype is a good
one for a different class, of its (c!) possible permutations just one is considered
as good solution, while the other ones are considered as bad solutions. This
situation occurs because, in these other cases, the position in the list of
a given prototype may not coincide coincide with the label preliminarily
assigned to it (see figure 4.5(b)). Considering the example given in figure
4.5, if the dynamic labeling is used and the individual is evaluated according
to the fitness function described in the next section (without taking into
account the term that evaluate the length of an individual) then the value
0.9 is assigned to the individual as fitness value. While, if the prototypes of
the individual are a priori labeled, then the value 0.32 is assigned as fitness
value if the same fitness function is used.
This constraint become stronger as c increases. For example, in the case in

2An obvious way of a priori labeling the prototypes is that of label the first one with
the label of the first class, the second one with the label of the second class and so on.
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which 20 classes are defined in the data, given a good set of prototypes of
cardinality 20, just one solution containing this set has a good fitness, while
the other ≈ 2 · 1018 individuals that contain the same set of prototypes have
a fitness value significantly smaller.

4.2.3 Fitness Evaluation

Given a training set Dtr providing the information on the prototypes to
be generated, in the framework, the fitness of an individual is defined in
a straightforward manner. This straightforwardness is due to the fact that
a single individual contains all the prototypes needed to build a classifier for
the problem at hand. As a consequence of this fact it is obvious to evaluate
the performance of an individual as the recognition rate3 obtained on the
training set by the classifier built up using the prototypes of that individual.
Hence such rate is assigned as fitness value to the individual.

Although the defined fitness function allows one to well identify in a
straightforward manner those individuals which perform in an optimal way4

the required task , it does not take into account the number of prototypes
provided by the individual evaluated. In fact, such fitness function makes no
difference between two individuals that obtain the same recognition rate on
the training set but which use a unequal number of prototypes. This lack
of information about the number of prototypes in the fitness function may
causes the generation of too long individuals, i.e. consisting of too many
prototypes. Furthermore, the overestimation of the number of prototypes
reduces the effectiveness of the classifier and may also causes overfitting phe-
nomena 5[DHS01]. Thus, in order to build up a more effective classifier,
those individuals able to obtain good performances with a smaller number
of prototypes are favored increasing their fitness values by cp/Np, where Np

is the number of prototypes in an individual6.
Summarizing, given an individual I that is made up of Np prototypes and

that has obtained the value rtr as recognition rate on the training set Dtr, its
fitness fI is equal to:

fI = rtr +
cp

Np

3For an exact definition of recognition rate see the Appendix.
4Note that the fitness value of an optimal individual, namely one correctly classifying

all the training patterns, equals to 1.0 using the fitness function so far defined.
5In a learning process, overfitting phenomenas occur when the generalization power of

the system, i.e. its ability of obtaining good performances on unknown data decreases
significantly.

6Given a data set containing Np clusters, the addition of this term to the fitness function
implies that the fitness value of an optimal individual equals to 1.0 + cp/Np.
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P1 P2 P3 P4

c1 3 38 0 0

c2 0 6 0 35

c3 0 0 47 3

c4 60 0 0 8

(a)

P1 P2 P3 P4

c1 3 38 0 0

c2 0 6 0 35

c3 0 0 47 3

c4 60 0 0 8

(b)

Figure 4.5: A comparison between the dynamic labeling mechanism used
by the framework (a) and that a priori (b). In the example the number of
prototypes equals that of the classes defined, i.e. 4. In (b) the prototypes are
labeled according to their position within the list making up the individual.
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where cp is a constant and represents a parameter of the algortihm.

4.2.4 Operators

The recombination operator is applied to two individuals i1 and i2 and yields
two new individuals by swapping parts of the lists of i1 and i2. Assuming
that the length of i1 and i2 are respectively l1 and l2, the recombination is
applied in the following way: the first individual i1 is split in two parts by
randomly choosing, with an uniform probability distribution, an integer t1 in
the interval [1, l1]. The obtained lists of prototypes i

′
1 and i

′′
1 will have length

t1 and l1 − t1 respectively. Analogously, by randomly choosing an integer t2
in the interval [1, l2], two lists i

′
2 and i

′′
2 , respectively of length t2 and l2 − t2,

are obtained from i2. At this stage, in order to obtain a new individual, the
lists i

′
1 and i

′′
2 are merged. This operation yields a new individual of length

t1 + l2 − t2. The same operation is applied to the remaining lists i
′
2 and i

′′
1

and a new individual of length t2 + l1 − t1 is obtained. It is worth noting
that this recombination operator allows one to obtain individuals of variable
length. Hence, during the evolution process, individuals made of a variable
number of prototypes can be evolved.

As regards the mutation operator, it has not been defined within the
framework, but have to be provided together with the encoding for the pro-
totypes used by the classifier. This choice is a consequence of the fact that
in the framework no encoding for the prototypes has been defined.

4.3 A CFG-GP Version of the EC-framework

In this section the first of the applications of the framework described in the
previous section is presented. This application is based on the CFG-GP al-
gorithm described in section 3.5. In the developed application the prototypes
of the classifier used consist of a set of logical expressions, while the patterns
are represented as feature vector. A prototype, i.e. logical expression, may
contain a variable number of predicates holding for the patterns belonging to
one of the class defined in data analyzed. A predicate establishes a condition
on the value of a particular feature. If all the predicates of an expression are
satisfied by the values in the feature vector describing a pattern, it is said
that the prototypes matches the pattern (see figure 4.7). Given the training
set Dtr, the set of prototypes for this kind of classifier is generated by using
the algorithm shown in figure 4.3. In this case each prototype is encoded as
a derivation tree of the expression which it contains. Hence, an individual
is a list of derivation trees. The labeling of the prototypes in an individual
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(a) Parents

(b) Offspring

Figure 4.6: An example of application of the recombination operator. In (a)
the two parents, respectively of length 5 and 4 are shown. While the two
offspring obtained, of length 3 and 6, are shown in (b). As regards the cut
points t1 and t2 they have randomly been chosen respectively equal to 2 and
3.

is accomplished by using the dynamic labeling procedure described in the
previous section. As regards the operators, the recombination operator de-
fined in the framework is applied as crossover operator in order to modify the
length of the individuals. The mutation operator, instead, is independently
applied to each of the prototypes. This operator is that defined within the
CFG-GP approach (see section 3.5).

Given a pattern to be recognized and a set of labeled expressions, i.e.
prototypes, the classifier assigns it to one of the classes defined in the problem
in the following way: the pattern is matched against the set of expressions
that form its prototypes and is assigned to one of them or rejected (see figure
4.7). If assigned the pattern is recognized as belonging to the same class of
the prototype to which it has been assigned.
Different cases may occur:

1. The pattern is matched by just one expression: it is assigned to that
expression.

2. The pattern is matched by more than one expression with different
number of predicates: it is assigned to the expression with the smallest
number of predicates.

3. The pattern is matched by more than one expression with the same
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P1 = ((x1 < 0.4) ∧ (x4 > 0.8)) ∨ (x6 > 1.0)
P2 = (x3 > 0.1) ∨ (x2 < 0.0)
P3 = (x1 < 0.0)
P4 = ((x5 > 0.4) ∧ (x2 > 0.0)) ∨ ((x3 > 0.1) ∧ (x7 < 1.0))

Figure 4.7: An example of solution encoding that contains 4 prototypes
(above) and the prototypes encoded (middle) in the CFG-GP application of
the framework. On the bottom an example of feature vector representing a
pattern is given. This pattern is assigned to the 4–th prototype as it is the
only one that matches it.

number of predicates and different labels: the pattern is rejected.

4. The pattern is matched by no expression: the pattern is rejected.

5. The pattern is matched by more than one expression with equal label:
the pattern is assigned to the class the expressions belong to.

The matching between patterns and expressions is computed by means of an
automaton which computes Boolean functions. Such an automaton accepts
as input an expression and a pattern and returns as output the value true or
false depending on the fact that the expression matches or not the pattern.

In table 4.1 the grammar used to generate the expressions that form the
prototypes is reported. The root of every tree is the symbol S that, according
to the related production rule, can be replaced only by the symbol A. This
symbol can be replaced by any recursive combination of logical predicates
whose arguments are the occurrences of the elements in the feature vector.
Note that the 2–th production rule ensures that a prototype contains at
least two predicates. The logical expression encoded in a derivation tree is
obtained by visiting the tree in depth first order and copying into a string
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Number Rule Probability
1 S −→ A 1.0
2 A −→ ABA|D 0.2, 0.8
3 B −→ ∨|∧ equiprobable
4 D −→ (P > V )|(P < V ) equiprobable
5 P −→ x0|a1| . . . |xN equiprobable
6 V −→ +0.XX| − 0.XX equiprobable
7 X −→ 0|1|2|3|4|5|6|7|8|9 equiprobable

Table 4.1: The grammar for randomly generating logical expressions. N is
the dimension of the feature space. Nonterminal symbols are denoted by
capital letters. On the right the probability for each of the right clauses is
reported.

Figure 4.8: An example of individual containing 4 prototypes. Each proto-
type is real-valued vector of 8 elements.

the symbols contained in the leaves. Since the grammar is non-deterministic,
in order to reduce the probability of generating too long expressions (i.e. too
deep trees) the action carried out by a production rule is chosen on the basis
of fixed probability values (shown in the last column of Table 4.1)

4.4 The LVQ Version of the EC-framework

In this section the second of the applications of the EC-based framework
devised is presented. This application is based on a particular class of EC–
based algorithms, namely the Breeder Genetic Algorithms (BGA) [MSV93]
in which the individuals are encoded as real valued vectors. In our case a
single individual consists of variable–length list of real-valued vectors (see
figure 4.8).

In the classifier used here both patterns and prototypes are represented
by feature vectors. This classifier is based on the widely used approach of
Learning Vector Quantization (LVQ) proposed by Kohonen [Koh01]. LVQ
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classifiers have been applied in a variety of practical problems, including
medical image analysis, classification of satellite spectral data, fault detection
in technical processes, and language recognition, to name only a few. The
LVQ approach offers a method to form a quantized approximation of an input
data set D ⊂ Rp using a finite number k of reference vectors ωi ∈ R, i =
1, . . . , k. These vectors represent the prototypes to be used to represent the
patterns belonging to the classes present in the data. Given an incoming
pattern x to be recognized and a set of reference vectors {ω1, . . . , ωk}, the
classification is performed by calculating the Euclidean distance between x
and each of the reference vector ωi. Then the pattern is assigned to the
closest reference vector and it is recognized as belonging to the same class
of the reference to which it has been assigned. In the LVQ method the
reference vectors are algorithmically determined by using a training set of
labeled patterns. Note that usually the number of reference vectors for each
of the classes have to be provided by the user.

Given a training set Dtr, the set of prototypes for this kind of classifier,
i.e. reference vectors, is generated by using the algorithm shown in figure 4.3.
In this case each prototype is a real–valued vector which number of elements
equals the dimensionality of the data analyzed. As regards the individuals in
the initial population, each of the prototypes contained in these individuals
is initialized by randomly choosing a pattern from Dtr. The dynamic labeling
is used to label the prototypes, while the crossover operator defined in the
framework is applied in order to modify the length of the individuals. As
regards the mutation operator, it is independently applied to each of the
prototypes in the input individual and is used to modify the single prototypes
(see figure 4.9).
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begin
for j = 0 to NF do

range = rndreal(0.1 * δj)
if flip(pm) then

x[j] = x[j]± range (+ or - with equal probability);
end if

end for
end

Figure 4.9: The mutation operator applied to each of the prototypes, i.e.
reference vectors, in an individual. NF is the number of features of the
patterns in the data analyzed. δj is the range of the j-th feature computed
on the training set, while pm represents the probability of mutation of each
single feature value in the prototype.



Chapter 5

A New EC–based Method for
Evolving Graphs

In this chapter a new EC–based approach for generating variable size graphs
is presented. The method is based on a problem independent data structure,
called multilist, which encodes undirected attributed relational graphs. For
this data structure two operators have also been defined: a recombination
one, called crossover, that swaps subgraphs between two graphs. This op-
erator allows the devised approach to generate graphs of variable size. The
second operator, called mutation, changes the input graph into a new one by
modifying both node and link attributes.
In order to preliminarily ascertain the effectiveness of the devised approach
a hard non–linear optimization problem, regarding the planning of wireless
LANs, has been faced.

The rest of the chapter is organized as follows: Section 5.1 illustrates
previous and related work in the field of graph generation; in Section 5.2 a
first description of the defined data structure is given; Section 5.3 contains
a formal definition of this data structure; Section 5.4 contains descriptions
of various type of graphs encoded by multilists, while in Section 5.5 the
operators defined within the approach are detailed. Finally, Section 5.6 is
devoted to the description of the problem taken into account to test the
approach.

5.1 Previous and Related Work

In the last decades, there has been an increasing interest in studying and
using graphs in various fields of science and engineering as they are a power-
ful and versatile data structure, well suited to represent in an effective way

85
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complex and structured information. In fact, they may effectively repre-
sent physical networks, such as transportation systems, power systems, and
mobile communication infrastructures [GY01, Cas01, Cro03], but have also
been used to model less tangible interactions, as might occur in ecosystems,
databases or in the control flow of computer programs [GY01].
In fields like pattern recognition and machine vision, the high representa-
tional power of graphs makes them very attractive and well-suited to model
complex patterns in terms of parts and their relations. Attributes of graph
nodes and arcs are often added to incorporate further information, leading
to a graph representation form generally denoted as Attributed Relational
Graph (ARG) [EF84]. Examples of successful applications include shape
analysis and 3-D object recognition [PSZ98, ACS01], character recognition
[FGK95], classification of ideograms and symbols in document analysis and
technical drawing interpretation [CV00].

In many cases, a prominent problem is that of generating graphs ex-
hibiting some particular properties. The generation of class prototypes in a
pattern recognition problem, so as the generation of the optimal set of con-
nections between a given set of nodes, with given constraints, are examples
of such problem. Thus, the use of graph representations often requires the
definition of effective techniques for generating the graphs representing the
desired solutions. To this purpose, two main different approaches can be
identified, depending on the nature of the problem: in case of applications
in which examples of the population to model are available, the graphs may
be generated by exploiting the information included in a training set of ex-
amples. In all the other cases the solution is found by defining a function
F able to measure the goodness of tentative solutions in a given space: the
graphs representing the solutions are generated by finding all the absolute
maxima of the function F . Combinatorial, heuristic and inductive learning
approaches have been used, among others, to generate graphs [CFSV02].
Several attempts to generate graphs using evolutionary approaches have also
been done. Methods have been proposed in the fields of molecular design
[GLW98] and electrical circuit design [CAH+02], using a direct encoding of
the evolving graph. It is worth noting that these methods define evolutionary
operators tailored for the considered problem. Indirect encoding of graphs in
terms of bit strings [LC98] or trees [HG04] has also been used. In the latter
approach, for instance, a tree encodes the operations to be applied to a very
simple starting graph, in order to transform it into another one arbitrarily
complex.

With evolutionary computation, methods for encoding graphs have also
been studied within the area of artificial neural networks (ANN) [Yao99]. In
fact, because of the difficulties of training an ANN when the error function
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employed is multimodal or nondifferentiable at all, an evolutionary approach
may be adopted so that near optimal solutions can be obtained. With this
kind of approach the first choice to made concerns the encoding scheme in
order to provide an initial population and variation operators for the evolu-
tionary algorithm. Most of the approaches adopted used a direct encoding
and one of the most successful examples of evolving ANN using direct encod-
ing scheme is presented in [CF01], in which an ANN is optimized and used to
play checkers. The success of this kind of encoding, although it could in some
cases result inefficient, is due, in large measure, to its simplicity and to its
convergence properties [Man94, YL97]. However, direct encoding allows one
to implement simpler operators, like, for example, the operators employed
for the bitstring representation used in GAs. Moreover, I think that this
simplicity is a key for the effectiveness of any EC–based algorithm.

5.2 A New Data Structure for Graph Encod-

ing

In this section a data structure specifically devised for graph encoding will
be illustrated. Let us consider a graph1 G of N nodes. Both nodes and arcs
in G may have attributes respectively belonging to the sets An and Aa. The
data structure we have adopted to represent attributed relational graphs has
been called multilist (ML in the following) since it is based on the list concept
and consists of two basic lists. The first one, called main list, contains the
information on graph node attributes, thus its number of elements is equal
to the number N of nodes in G. Each element of the second list is on its
turn a list, called sublist (see Figure 5.1). One sublist is associated to each
node and includes the attributes of the arcs connected to that node. In
order to preserve information about the nodes interconnected by each arc,
arc attributes are sorted in each sublist in a suitable order. Namely, the
i-th sublist contains information on the arcs connecting the i-th node of the
graph to the nodes following it in the main list, in the order they appear in
such list. If two nodes are not connected, this information is anyway suitably
stored in the proper place of a sublist. In practice, a ”null” relation has been
defined so that even the absent arcs are encoded in the ML representation
of a graph. It is worth noticing that here only simple (i.e., without loops)
undirected graphs are considered, so the relation linking the i-th node to the
j-th node coincides with the relation linking the j-th node to the i-th node.
For this reason, the length of the sublist associated to a node decreases as

1Graphs are formally defined in Appendix
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(a) (b)

(c) (d)

Figure 5.1: Two generic ML’s (top) and the graphs encoded (bottom). The
horizontal list is the main one and the vertical lists are the sublists. The
elements of the set An are denoted by capital letters, while those of Aa are
denoted by small letters. The null element is denoted by the letter ’o’.

the position of the node in the main list increases: the first sublist is made
of (N-1) elements, the second sublist has (N-2) elements and so on. In fact,
the information on the link between each node and the previous ones in the
main list is already expressed in the previous sublists. As a consequence, the
sublist of the last node of the graph is void. Thus a ML has a triangular
shape: the base of the triangle is the main list and is long N, while the
height is represented by the first sublist and is long (N-1). In the following,
the operations defined on the ML’s will be introduced.

In the defined encoding scheme, positional notation is used. Given an
element of a sublist, the other node linked by the encoded arc is determined
by the position of the element within the sublist. Moreover, the connected
node referred by that element depends on the position of sublist within the
main list. In practice, the i-th element of the j-th sublist contains the infor-
mation on the arc connecting the i-th node and the (j + i)-th node. In the
following will be seen that this encoding allows a sort of “invariance” prop-
erty for some subgraphs encoded within a ML. This property will be useful
in order to simplify operations as, for example, the merge of two graphs
by means of the multilists encoded. Within the devised encoding scheme, a
crossover operator that can be applied to two multilists of different length has
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also been defined. Moreover, this operator, differently from those defined in
other approaches [GLW98, CAH+02] is implemented in a quite simple way,
(in analogy with the operators used in classic GAs) without perform any
search on the multilists given in input.

5.3 A Formal Definition of Multilist

In this section a formal definition of multilist is given. Moreover, some oper-
ations to be applied to multilists are also formally defined. This formalism
has been conceived in order to characterize this data structure independently
from its capability in encode graph. The purpose of this section is that of
formally define the operations and the structures involved in the definition of
the operators employed within the proposed approach. Then the formalism
illustrated above allows one to formally characterize these operators.

Definition 1 A multilist L is defined as a couple of lists:

L = (lM = {n1, n2, . . . , nN}, lS = {l1, l2, . . . , lN})

The list lM is called main list and contains N elements, called nodes of the
multilist. The list lS is a list of lists, called list of sublists. The length of
a multilist is defined as the length of its main list. In a multilist of length
N the list of the sublists has the same length N . The couple of lists L is a
multilist if2

1. ∀li ∈ lS length(l(i+1)) = length(li)− 1;

2. It exists at most one lk ∈ lS such that:
length(l(k+1)) = length(lk) + J 1 ≤ k < N, J ∈ N − {−1};

3. length(li) > 0 1 ≤ i < N ;

4. if length(lN) > 0 then
does not exist any lk such that defined at point 2;

The value of J is called jump (point 2), while the value of k is called jump
point. Third condition states that only the N -th sublist may be void. Fourth
condition, instead, states that if there is a jump within the multilist, then the
N -th sublist must be void. The elements of the sublist li, called links of the
i-th node, are denoted by the set of symbols {eij|1 ≤ i, j ≤ N}. The symbol
eij denotes the j-th element of the i-th sublist. Moreover, the j-th element
of the i-th sublist (li) represent the link between the node i and node j. The
link between the node i and node j of the main list lM is in:

2The function length(l) compute the number of elements in the list l; see Appendix.
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– the (j − i)-th element of the sublist li if i < j.

– the (j − i)-th element of the sublist lj if i > j.

The set of links of the i-th element of the main list is called the connection
set of the i-th node of the main list lM . Hence, the connection set of the
node i of lM consists of the elements of the sublist li more the set 3 SC =
{e1(i−1), e2((i−2)), . . . , e(i−1)1}.

5.3.1 Some Definitions on the Multilists

In the following some definitions concerning sublists will be given. These
definitions characterize different types of MLs, which may be obtained from
the application of some operations described afterwards.

Definition 2 A multilist L of length N is called complete if does not contain
jump point and the sublist lN is the void list (length(lN) = 0).

Examples of complete MLs are given in Figure 5.1.

Definition 3 A multilist L of length N is called incomplete if contains a
jump J ≥ 0.

The jump point k is called incompleteness degree of the sublist, the value of
J is called incompleteness level. The sublists li such that 1 ≤ i ≤ k are called
incompletes (see Figure 5.2)).

Definition 4 A multilist L of length N is called redundant if one of the
following conditions hold:

1. It contains a jump4 J < −1.

2. Does not contain jumps and the length of the sublist LN is greater than
zero (length(lN) > 0).

In the case 1 the jump point k is called redundancy degree, while the value
of the jump is called redundancy level. The sublists preceding the jump
point are called redundants so as the elements eij : 1 ≤ i ≤ k, (N − i) <
j ≤ (N − i + J) (see Figure 5.2). In the case 2, the sublist L is totally
redundant: its redundancy degree equals the length of lM and the length of
the sublist lN (length(lN)) represents the redundancy level of the multilist;
in this case all the sublists are redundants so as the elements eij such that
(N − i) < i < (N − i + J) (see Figure 5.3).

3In the following will be seen that, sometimes, some of the elements of the list SC can
be absent.

4Notice that the value of J is, by definition, different from -1.
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Figure 5.2: An incomplete multilist of length 7. Its incompleteness degree is
3 just as its incompleteness level.

Figure 5.3: A redundant multilist of length 5. Its redundancy degree is 2,
just as its redundancy level. The redundant elements are those shaded.

Figure 5.4: A multilist of length 4 totally redundant. Its redundancy level is
3. The redundant elements are those shaded.
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(a) left multilist (b) right multilist

Figure 5.5: The two multilists generated by the 3-cut operation applied to
the multilist of Figure 5.1(a).

5.3.2 The Cut Operation

Given a complete multilist L = (lM = {n1, n2, . . . , nN}, lS = {l1, l2, . . . , lN})
of length N , the operation t-cut (1 ≤ t < N) applied to L consists of the
following operations:

1. t-cut5 of the main list lM .

2. t-cut of the list of the sublists lS.

The cut of lM (point 1) yields two new lists l
′
M and l

′′
M , the former consisting

of the first t nodes of lM , the latter of the remaining (N − t) nodes of lM .
The t-cut of lS (point 2), instead, produces two new lists of sublists. The
first one consists of the first t lists of L while the second one contains the
remaining (N − t) sublists of L. The value of t is called cut point.

In a more formal way, the cut operation split the multilist L in two
multilists (see Figure 5.5):

– L
′
= (l

′
M = {n1, n2, . . . , nt}, lS = {l1, l2, . . . , lt});

– L
′′

= (l
′′
M = {nt+1, nt+2, . . . , nN}, l

′′
S = {lt+1, lt+2, . . . , lN});

The first multilist, called left multilist contains the main list l
′
M , which con-

sists of the first t elements of the main list lM of L; this multilist is totally
redundant and its redundancy level equals the difference between the length
of L and the cut point t. The second multilist called right multilist, contains
the main list l

′′
M which consists of the remaining (N − t) nodes of the main

list lM and of the remaining (N − t) sublists of L. This multilist is complete.

5The t-cut operation for a list is defined in Appendix.
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(a) Right multilist (b) Left multilist

Figure 5.6: The multilist of Figure 5.1(b) may be obtained applying the
merge operation to these multilists. The left multilist has length 2 and is
completely redundant, the right one has length 3 and is complete.

5.3.3 The Merge Operation

The merge operation yields a new multilist by joining two given multilists.
This operation can be applied only if two requirements are satisfied. In fact,
given two multilists:

– L
′
= (l

′
M = {n′1, n

′
2, . . . , n

′

N ′}, l′S = {l′1, l
′
2, . . . , l

′

N ′})

– L
′′

= (l
′′
M = {n′′1 , n

′′
2 , . . . , n

′′

N ′′}, l′′S = {l′′1 , l
′′
2 , . . . , l

′′

N ′′})

of length respectively N
′
and N

′′
; the merge operation yields a multilist L if

the following conditions hold:

1. The multilist L
′
is totally redundant. It is called left multilist.

2. The multilist L
′′

is complete. It is called right multilist.

The merge of the multilist L
′
and L

′′
consists of the following operations:

1. The main list lM of the new multilist L is obtained concatenating the
main list l

′′
M to the main list l

′
M . The length of lM is the sum of

the length of the main lists l
′
M and l

′′
M (length(lM) = length(l

′
M) +

length(l
′′
M)). Hence, the length of the new multilist is N

′
+ N

′′
.

2. Concatenating the list of the sublists l
′′
S of L

′′
to the list l

′
S of L

′
, a

new list of sublists lS = {l1, l2, . . . , l(N ′
+N

′′
)} consisting of (N

′
+ N

′′
)

sublists is generated. In lS, the first N
′
sublists are those of L

′
while

the remaining ones (N
′′
) are those of L

′′
.

To summarize, the merge operation applied to the multilists L
′
and L

′′
yields

the multilist:

L = (lM = {n′1, n
′

2, . . . , n
′

N ′ , n
′′

1 , n
′′

2 , . . . nN ′′}, lS = {l′1, l
′

2, . . . , l
′

N
′ , l

′′

1 , l
′′

2 , . . . lN ′′})

This multilist will be:
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(a) (b)

Figure 5.7: Multilist obtained from the reduction operation applied to the
multilists of the Figure 5.3) and Figure 5.4 (figure b).

Complete if the redundancy level R of the left multilist equals the length
of the right one (R = length(L

′′
)) (see Figure 5.6).

Incomplete if the redundancy level R of the right multilist is less than the
length of the right multilist (R < length(L

′′
)).

Redundant if the redundancy level of R is greater than the length of the
right multilist (R > length(L

′′
)).

5.3.4 Further Operations on the Multilists

A redundant multilist L of length N , with redundancy degree dr and redun-
dancy level lr can be transformed in a complete multilist by a reduction oper-
ation. Such a operation is carried out applying the lr-shortening6 operation
to the first dr sublists of L. In the case of a multilist completely redundant
with a lr redundancy level, the reduction operation can be obtained applying
the lr-shortening operation to all the sublists of L (see Figure 5.7).

An incomplete multilist L of length N , with di incompleteness degree
and li incompleteness level can be transformed in a complete multilist by the
completion operation. Such a operation is carried out concatenating a list
of length li to the first di sublists of L (see Figure 5.8). Note that if NA is
the cardinality of the definition set of the sublists, then the number of the
completions available for L is N

(di·li)
A .

5.4 Graph Encoding by Multilists

As previously seen in Section 5.4, an undirected relational graph with at-
tributes of N nodes can be encoded by a complete multilist. The incidence
set of the node i is represented by the connection set of i-th element of the

6The lr-shortening operation for a list is defined in Appendix.
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main list. Thus, repeating the reasoning previously done to find the connec-
tion set of a node in a multilist, the relation associated to the arc lij can be
found in this way:

– in the element (j − i) of the sublist li if i < j.

– in the element (j − i) of the sublist lj if i > j.

Therefore, the incidence set of the node i is represented as the elements of
the sublist li plus the set SI = {e1(i−1), e2((i−2)), . . . , e(i−1)1}. If i = 1 then
the set SI is void and the incidence set of the node is represented by the
sublist l1. For i = N , instead, the set of the arcs of the node is represented
by SI = {e1(N−1), e2((N−2)), . . . , e(N−1)1}, whereas the list lN is void7.

In the following, the graphs related to the different types of multilist
(complete, redundant, etc.) previously described will be illustrated. The
simplest case is that of a complete multilist of length N because it encodes
a canonical graph8 of N nodes. Instead, a redundant multilist L of length
N and redundancy degree and redundancy level respectively equal to dr

and lr encodes a cut graph of N nodes if at least one of the redundant
elements of L contains a relation different from the null one (formally: G
is cut if ∃eij 6= ν : 1 ≤ i ≤ dr, (N − i) < j ≤ (N − i + lr)), otherwise
the graph encoded is canonical. The number of redundant elements not
null is called redundancy index 9 of L. Finally, an incomplete multilist Li of
length N and redundancy degree and level respectively equal to di and li
encodes a ”part“ of a graph G of N nodes, because it lacks the information
related to the incomplete sublists. The information that lacks corresponds
to the arcs which link the first di nodes to the last li nodes of the graph
(formally: lij : 1 ≤ i ≤ di (N − li) < j ≤ N). This multilist can
be made complete by an operation of completion; if the elements added to
the incomplete sublists are all null, then the number of arcs of the graph
stays unchanged, because added information does not encode any arc. This
particular type of completion is called null completion and, among all the
available ones10, is the least arbitrary; in fact, no information is added by
arbitrarily adding new arcs to the graph, as the null completion transform the
previously defined ”part of a graph“ in a canonical graph, without modifying
the initial graph.

7By definition, the N -th sublist of a complete multilist is always void.
8The canonical, and the other types of graphs mentioned in the following are defined

in Appendix.
9Practically it equals the number of suspended arcs in the graph encoded.

10if NI is the cardinality of the definition set of the sublists, the number of completions
for Li is N

(di·li)
I
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Figure 5.8: Multilist obtained from the completion operation applied to the
multilist of Figure 5.4.

5.4.1 The Cut Operation

See now the effect of t-cut operation applied to a graph G of N nodes encoded
by a multilist L = (lM , lS) of length N (see Figure 5.9). As previously seen,
this operation applied to L produces a left multilist Ll totally redundant
(its redundancy level is (N − t)) and a right multilist complete Lr. The left
multilist encodes a graph G

′
(see Figure 5.9(a)) consisting of t nodes, which

is cut11 if at least one of the first t nodes of G, corresponding to the first t
elements in lM , is connected to one of the remaining (N− t) nodes of G. The
right multilist, instead, (Figure 5.9(b)) encodes a graph G

′′
, which is always

canonical and consists of the remaining (N − t) nodes of lM . Therefore, the
number of suspended arcs in G

′
equals the number of arcs which connect the

first t nodes of G to the remaining (N − t) nodes.
Note that, thanks to the encoding scheme adopted, given the i-th node of

lM , the subgraphs in G represented by the last (N − i) nodes and the related
sublists are invariant to all the t-cut operation with t < i. The same happens
for the subgraphs encoded in the multilist represented by the first i nodes
and the related sublists, respect to all t-cut operation with (t > i). Thus the
subgraphs disrupted by a t-cut operation are those (and only those) encoded
in the multilists cut by the t-cut operation applied to L. Hence, the t-cut
operation disrupt a well determined set of the subgraphs of G, remaining
unchanged the other ones, and this set is determined by the value of t. This
fact offers the advantage that the subgraphs to be cut can be determined
without any search on the encoded graph.

11If the graph G encoded by L is connected, G
′
is always cut.
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(a) Left graph (b) Right graph

Figure 5.9: The two encoded graphs by the multilists produced by the ap-
plication 3-cut operation to the multilist of Figure 5.1(a) (see Figure 5.5).

5.4.2 The Merge Operation

See now what happens if, given two graphs G
′
and G

′′
consisting respectively

of N
′
and N

′′
nodes, merge operation is applied to the multilists L

′
and L

′′

encoding them. As already said, merge operation can be applied only if the
following conditions hold:

1. The multilist L
′
is totally redundant (the left one).

2. The multilist L
′′

is complete (the right one).

the graph G
′
can be either cut or canonical, while G

′′
must be a canonical

graph. Depending on circumstances, the merge operation yields different
types of graphs:

1. If G
′
is canonical (the redundant nodes in L

′
are null ones), then merge

generates an unconnected graph G, in which the subgraphs made by
G
′
and G

′′
are unconnected.

2. If G
′

is cut and N
′
< N

′′
, then L, the ML resulting from the merge

operation, is complete and the encoded graph G is canonical.

3. If G
′

is cut and N
′
> N

′′
, then L, the ML resulting from the merge

operation, is redundant. In this case, G is canonical if the sublists of L
do not contain redundant elements. On the contrary, if exist at least
one of these non null elements then G is cut, and the number of the
suspended arcs in G equals that of these non null elements.

Note that, thanks to the encoding scheme adopted, the graph G
′′

encoded
by the right multilist L

′′
stay unchanged, regardless of the left multilist to

which it is merged. The same happens for the uncut subgraphs contained in
left multilist. As regards the latter subgraphs, it may be observed that, if the
redundancy level of the left multilist is less than the length N

′′
of the right
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multilist then these subgraphs are joined with some subgraphs contained in
the right multilist. Instead, if this degree is greater than N

′′
, then G is a cut

graph, since the resulting multilist L is redundant. Notice that the choice
of the subgraph encoded in L

′
and L

′′
to be merged does not depend on

any parameters, but is determined by the multilists to be merged. This fact
allows to avoid any search of subgraphs within the graphs to be merged.

5.5 Operators

In this section the operators defined for multilists are illustrated. Two oper-
ators have been defined, the first one, called crossover belongs to the class
of recombination operators, while the second one, called mutation, is a mu-
tation operator. The defined operators are problem independent. Moreover,
crossover is able to swap subgraphs between two input graphs in a quite sim-
ple way, without performing any search on the input graphs. In the following
both operators will be illustrated.

5.5.1 Crossover

As mentioned in Section 3.2.2 the effects of the crossover operator on the
search process performed by any EC–based algorithm have been extensively
studied since the seminal work of John Holland. In fact, the ability to pro-
duce fitter and fitter partial solutions by combining building blocks provided
by recombination operators is believed to be a primary source of the search
power of any EC–based algorithm in which a recombination operator is de-
fined.

While the crossover is easy to implement for strings and trees because
these data structure can be divided into two pieces at any point, the same
does not occur for graphs, since they can be split only breaking a variable
number of arcs. The main difficulties of this operator in the graph domain
can be summarized as follows:

– A graph can’t be divided into two parts choosing a single point. This
operation implies the choice of a variable number of arcs to be broken12.

– Subgraphs produced by splitting may have more than one crossover
point (suspended arcs) requiring reattachment during the recombina-
tion of them.

12This arc will be referred in the following as “suspended arcs”, see Appendix.
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(a) Left graph (b) Right graph

Figure 5.10: The graphs corresponding to the multilists of Figure 5.6 (top).
The graph produced by the merge operation applied to the multilists of
Figure 5.6 (bottom).

– When two fragments are merged they may have different numbers of
suspended arcs to be merged.

– An effective crossover in the graph domain must be able to create and
destroy subgraphs within the graphs to be crossed.

See now how the crossover operator has been implemented. The crossover
is applied to two multilists L

′
and L

′′
called in the following parents and

generates two new multilists M
′
and M

′′
, called offspring. If the parents are

length respectively N1 and N2, the length of the offspring may vary in the
interval [2, (N1 + N2) − 2]. Crossover is based on two operations previously
defined, t-cut and merge and is applied by accomplishing the following steps:

1. Choose randomly, with a uniform distribution of probability, a number
t1 in the interval [1, N1 − 1]. Apply t1-cut operation to L

′
;

2. Choose randomly, with a uniform distribution of probability, a number
t2 in the interval [1, N2 − 1]. Apply t2-cut operation to L

′′
.

3. Merge operation is applied to: the left multilist produced by the t1-cut
operation applied to L

′
(point 1) and the right multilist produced by

the t2-cut operation applied to L
′′

(point 2);

4. Apply the merge operation to: the left multilist produced by the t2-cut
operation applied to L

′′
(point 2) and the right one obtained from the

application of the t1-cut operation to L
′
(point 1);
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(a) Offspring 1 (b) Offspring 2

(c) Offspring 1 (d) Offspring 2

Figure 5.11: The offspring obtained by the crossover operator, with t1 = 4
and t2 = 3, applied to the multilists of Figures 5.1(a) and 5.1(b) (top). The
encoded graph (bottom). The first ML obtained (left) is redundant and the
related graph is cut. The second one ML (right) is incomplete, while the
encoded graph is canonical.

Crossover can produce multilists which, depending on circumstances can be:
complete, redundant, or incomplete. The conditions which determine the
occurrence of the different cases are listed below (we assume N1 ≥ N2).

(N1 − t1) > (N2 − t2) (Figure 5.11)

– Multilist M
′
is redundant.

– Multilist M
′′

is incomplete.

(N1 − t1) = (N2 − t2) (Figure 5.12)

– Both multilists M
′
and M

′′
are complete.

(N1 − t1) < (N2 − t2) (Figure 5.13)

– Multilist M
′
is incomplete.

– Multilist M
′′

is redundant.

Depending on the circumstances, to the offspring generated by the applica-
tion of the crossover operator, the following operations are applied:
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(a) Offspring 1 (b) Offspring 2

(c) Offspring 1 (d) Offspring 2

Figure 5.12: The offspring produced by the crossover, with t1 = 3 and t2 = 1,
applied to the multilists of Figures 5.1(a) and 5.1(b) (top) and the encoded
graph (bottom). Both the multilists are complete, it follows that the encoded
graphs are canonical.

complete
The multilist stays unchanged.

incomplete
The multilist is made complete by the null completion operation.

redundant
The multilist is made complete by the reduction operation.

It is worth noting that the crossover operator just defined, thanks to the
t-cut operation, is such that the choice of the points (arcs) involved in the
split are uniquely determined by the choice of a unique point in the main list
(on its turn fixed by the value of t). Hence, by using this encoding scheme,
the split of a graph can be obtained at any point, thanks to the fact that
a ML can be split choosing just one point. Also the recombination of two
graphs, is obtained in a quite simple way. In fact, the choice of the nodes to
link to the suspended arcs is intrinsically determined by the MLs involved in
the merge operation. Moreover, this operator may either create or destroy
subgraphs.

Note that the defined operator is quite simple and, differently from other
approaches evolving graphs adopting crossover, does not perform any search
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(a) Offspring 1 (b) Offspring 2

(c) Offspring 1 (d) Offspring 2

Figure 5.13: Offspring produced by the crossover, with t1 = 5 and t2 = 2
applied to the multilists of Figures 5.1(a) and 5.1(b). First multilist (left) is
incomplete and the encoded graph is canonical. Second multilist (right) is
redundant and encodes a cut graph.

on the graphs to be crossed. In [CAH+02], for instance, the crossover is
implemented by randomly choosing a fixed number of subgraphs for each
individual to be crossed. Hence, this operator depends on this choice. More-
over, in growing graphs this number raise exponentially and this operator
becomes unfeasible. In [GLW98], instead, the splitting of the graphs to be
crossed is performed randomly choosing an initial arc of the graph and then
finding and breaking all the path (randomly choosing one of the arcs in the
path) between the nodes connected by the initial arc chosen. Then also this
operator needs some searching on the graphs to be crossed. In the defined
approach, instead, the split of a graph is obtained in a quite simple way
with the t-cut operation, in which the subgraph obtained from the split is
determined by the value of t. Hence, the randomness of the choice of the
subgraphs to be split is related to the random choice of the value of t.

5.5.2 Mutation operator

The mutation operator defined here, is such that it can be defined as ”micro“
mutation, because it does not modify the structure of the multilist to which
it is applied, but just the values contained in the elements, both of the main
list and of the sublists. Such operation is based on a real number in the
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Figure 5.14: The multilist (left) and the encoded graph (right) after the
application of the reduction operation to the multilist of Figure 5.11(a).

Figure 5.15: The multilist (left) and the encoded graph (right) obtained after
the application of the reduction operation to the multilist of Figure 5.13(b).

(a) (b)

Figure 5.16: (a) The multilists obtained after the application of the operation
of null completion to the multilists of Figure 5.11(b) (left) and figure 5.13(b)
(right). The elements added are those shaded. The encoded graphs stay
unchanged respect to that of Figures 5.11(d) and 5.13(c) respectively.
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Figure 5.17: The ML (left) and the graph encoded (right), derived from
the application of the mutation operator, with a probability equal to 0.1, to
the ML of Figure 5.1(b). The mutation modifies the attribute of node 3 and
that associated to the arc which links nodes 3 and 5. Moreover, the mutation
added a new arc, which links nodes 1 and 3, absent in the graph before of
the application of the mutation operator.

interval [0, 1], called mutation probability.
Let L a multilist

L = (lM = {n1, n2, . . . , nN}, lS = {l1, l2, . . . , lN})

of length N, the mutation operator with a probability pm is carried out by
accomplishing the following steps:

1. For each of the ni nodes of the main list:

(a) Randomly, with uniform distribution probability, a real number r
in the interval [0, 1] is generated.

(b) If (r ≤ pm) then

i. Choose randomly, with uniform distribution probability, an
element in the set I(lM).

ii. Substitute ni for the value found in the previous step.

2. For each of the elements eij of the N sublists in lS:

(a) Randomly, with uniform distribution probability, a real number r
in the interval [0, 1] is generated.

(b) If (r ≤ pm) then

i. Choose randomly, with uniform distribution probability, an
element in the set13 (I(lS)

⋃
{ν})} .

ii. Substitute eij for the value found in the previous step.

13The symbol ν denotes the null relation.
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If L is a generic multilist and L
′
is the one produced by the application of the

mutation operator to L, let’s see which can be the differences between the
graphs G and G

′
encoded respectively by L and L

′
. G and G

′
contain the

same number of nodes. (|G| =
∣∣G′∣∣). Only the attributes associated to the

nodes of the two graphs may vary. A quite different reasoning must be done
for the arcs, because the number of arcs in the two graphs can be different.
In fact, the substitute for a non null element eij of L can be either a different
element of the definition set of the sublist or the null element (point 2(b)i);
in this case, the graph G

′
does not contain the arc lij encoded by the element

eij, because after the mutation the latter has became null, thus it encodes
an absent arc. The opposite case may occurs as well: an absent arc in G can
be present in G

′
. It happens if a null element eij of L is substituted by a

not null element. If, finally, the not null element eij of L is substituted for a
different not null element, then both graphs G and G

′
contain the arc lij, but

the relation associated to the arc in G is different from that in G
′
. Notice

that diversity between the graphs G and G
′
is directly proportional to the

mutation probability pm.
It is worth noting that the encoding scheme employed allows to implement

the mutation in a quite simple way. Besides, with this unique operator it
is possible a lot of actions on the graph encoded with a unique operation.
Particularly, as concerns the arcs, they can be changed, added or deleted.
Nodes, instead, can only be changed by this operator. However, as previously
seen, the variation of the number of nodes in the graphs to be evolved is
provided by the crossover operator.

5.6 Testing the approach

The proposed approach has been tested on a planning and optimization prob-
lem. To cope with this kind of problems, several approaches have been
proposed in the literature, including genetic programming [HG04], simplex
method [Wri98], simulated annealing [Hur02], Tabu search [LK00] and ge-
netic algorithms [KLL98]. In [HG04], the wireless access point configuration
problem, a hard non-linear optimization problem, has been considered. The
same problem has been taken into account here in order to compare the
obtained results with those presented in [HG04].

The scenario of the problem is the following: a community is planning
to provide wireless Internet service to its citizens (clients) who are scattered
around a given area. A certain number of access points need to be placed to
cover all clients, because each access point has a limited service radius. All
access points are wired and one of them is connected to an Internet gateway.



CHAPTER 5. A NEW EC–BASED METHOD FOR EVOLVING GRAPHS106

Figure 5.18: An instance of the wireless access point configuration problem
(left) and the multilist encoding it (right). The citizens (clients) are labeled
as circled C, while the AP’s are reperesented by squares.

The design problem consists in determining the optimal configuration of the
AP’s in the area to cover. To reduce the cost, a configuration with minimal
number of AP’s and minimum length of the wires connecting them is consid-
ered optimal. According to the constraints imposed, the wireless access point
configuration problem can be formulated in different ways. E.g., [KY03] as-
sumes that the AP’s are located at a specified set of possible points. Here,
it is assumed that the AP’s can be located at any place. More precisely, the
problem to solve is defined as follows:
GIVEN a set of N clients located at (xc

i , y
c
i ) i = 1 . . . N in an area of size

W × H where xc
i ∈ [0, W ] and yc

i ∈ [0, H], and the gateway G located at
(xg, yg), let us assume that all AP’s are equal and that the service radius of
an AP is rs;
FIND a configuration of wired access points located at (xAP

i , yAP
i ) with

i = 1 . . . NAP , connected to the gateway port G in such a way that each
client is covered by at least one AP and the total cost of the AP’s and the
wires is minimal. Thus, let CAP be the cost of each AP and Cw the cost of
a unit length wire, the aim is:
minimize f = CAP ∗NAP + Cw ∗

∑
|Li|

where the Li are the lengths of the connections among AP’s.

The Fitness Function

In order to solve the problem taken into account, a configuration of AP’s is
represented with a graph whose nodes are the AP’s and whose arcs are the
wire segments connecting the AP’s. The set of node attributes is made up
of the AP coordinates in the area to cover (see Figure 5.18). In the problem
at hand, it is necessary to know only which nodes are linked to a given node.
Hence, in the ML representation encoding the graph, the value 1 is used to
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indicate the presence of an arc, while the 0 indicates the absence of an arc.
As mentioned in the previous section the fitness function has to consider

three aspects of the problem: the percentage of covered clients, the number
of AP’s employed and the total length of the wires connecting them. For
this reason, the fitness function is the weighted sum of three terms. The
first term Fcover measures how well clients are covered by the configuration of
AP’s: the more clients are covered, the better. The second term Fwires should
measure how good the connection topology is: the shorter the wires used, the
better. Finally, the term FAP should estimate the goodness of a configuration
as regards the number of wireless AP’s employed: now, the fewer AP’s are
used, the better. It may be convenient that the fitness terms are normalized
and suitably weighted, so as to reflect their different importance when the
goodness of a configuration is evaluated. Since the aim of the work presented
here is that of presenting a general purpose method for graph generation, for
the specific problem considered we have adopted the same fitness function as
proposed in [HG04], in order to ascribe any difference in the performance of
the methods to the way the solutions are generated, not to the way they are
evaluated. Namely, the fitness terms are:

Fcover =
4.0 ∗ Cc

Cc + CT

; Fwires =
10000

10000 + Lw

; FAP =
CT

CT + 1.5 ∗NAP

(5.1)

where Cc is the number of clients covered, CT the total number of clients, NAP

the number of AP’s and Lw is the total length of wire segments connecting
the AP’s. Then, the fitness function Ftot is the weighted sum of the above
three terms:

Ftot = 0.7 ∗ Fcover + 0.1 ∗ Fwires + 0.2 ∗ FAP (5.2)

Moreover, solutions (i.e., configurations) containing isolated AP’s are pe-
nalized by multiplying their fitness by 0.5.



Chapter 6

Experimental Results

In order to asses the effectiveness of the approaches proposed in the previ-
ous chapters, several experiments have been performed. In this chapter the
obtained results are illustrated. Experiments have been performed both on
the EC–based framework described in Chapter 4 and on the evolutionary
method for graph generation described in Chapter 5. The behavior of two
applications based on the framework has been investigated on several data
sets, including medical data, remote sensed images and synthetically gener-
ated data. Instead, the ability of the proposed approach for graph generation
has been investigated by considering an hard non–linear optimization prob-
lem concerning the layout of access points in the planning of a wireless LAN.
Moreover, results obtained by the implemented systems have been compared
with those obtained by previously proposed approaches. The comparisons
performed have confirmed the effectiveness of both approaches.

In Section 6.1 results obtained by the CFG-GP version of the frame-
work described in Chapter 4 are presented; Section 6.2 reports, the results
of the LVQ version of the framework are illustrated; finally, in Section 6.3
experiments performed to test the method devised for graph generation are
described.

6.1 The CFG-GP Version of the Framework

In this section, the experiments carried out on the system that implements
the CFG-GP application of the framework defined in Chapter 4 are described.
As already said in Section 4.3, this application generates prototypes consist-
ing of sets of logical expressions, which represent patterns described as feature
vectors. A Prototype is made of predicates describing feature values of the
patterns belonging to the class which it represents (see Figure 4.7). Given

108
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Name Classes Features Size
IRIS 3 4 150(50+50+50)

BUPA 2 6 345(145+200)
Vehicle 4 18 846(212+217+218+199)

Table 6.1: The data sets used in the experiments. The class distribution is
shown between brackets in the last column.

a set of prototypes, an unknown patterns is recognized as belonging to the
class represented by the prototype whose predicates satisfies the values in
the feature vector describing the pattern.

The effectiveness of the implemented system has been tested on three
publicly available data sets. These data sets have been chosen in order to
compare the performance of the developed system with those obtained by
the method described in [MPD04]. All the considered data sets refer to real
data, named IRIS [And35], BUPA [BM98] and Vehicle [BM98]. Last two sets
have been extensively studied in [LLS00].

6.1.1 Data sets

Considered data sets (see Table 6.1) have been divided in two parts, a training
set and a test set. These sets have been randomly extracted from the data
sets and are disjoint and statistically independent, in order to ensure that the
recognition rate obtained on the test set by the evaluated classifier represent
a reliable assessment of the performance on unknown patterns. The first
one has been used during the training phase to evaluate, at each generation,
the fitness of the individuals in the population. The second one has been
used at the end of the evolution process in order to evaluate the performance
obtained by the best set of prototypes evolved. In particular, the recognition
rate on the test set has been computed using a classifier implemented by
choosing the best individual generated during the training phase. In the
following the data sets analyzed will be detailed.

IRIS

This is the well known Anderson’s Iris data set [And35]. It consists of 150
patterns characterized by four features representing measures taken on iris
flowers of three different classes, equally distributed in the set. The four
features are sepal length, sepal width, petal length and petal width.
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BUPA

The BUPA liver disorders data set consists of 345 patterns distributed in two
classes of liver disorders. Six features characterize each pattern.

Vehicle

The patterns of this data set are images of 3D objects (vehicles). The data set
is made of 846 patterns distributed in four classes. Each pattern is described
by a vector of 18 features.

6.1.2 Data Normalization

In order to make the method independent from the ranges of values assumed
by the features of the patterns contained in the data sets considered, these
features have been normalized in the range [−1.0, 1.0]. The normalization
of pattern features makes the grammar employed to generate the derivation
trees independent from the range of values of the pattern feature, allowing to
strongly reduce the differences among grammars (see Table 4.1) to be used for
two different data sets. Actually, thanks to data normalization, it exists only
one difference between two grammars to be used for generating prototypes,
i.e. expressions, for different data sets: the number of features describing the
patterns. Then, only the fifth rule of Table 4.1 have to be modified in order
to generate the right number of variables needed to represent the patterns.

Given a not normalized pattern X = (x1, . . . , xN), every feature xi is
normalized using the formula:

xi =
xi − xi

2σi

where xi and σi, respectively represent the mean and the standard deviation
of the i-th feature computed over the whole data set.

6.1.3 Parameter Settings

The values of the evolutionary parameters, used in all the performed experi-
ments, are summarized in Table 6.2. As regards the maximum total number
of nodes (Nmax) and the maximum length (Lmax), i.e. maximum number of
prototypes, allowed for an individual, they have been a priori set1.

1Individuals that do not satisfy both requirements are killed, i.e. marked in such a way
that they are ignored in the selection phase.
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Parameter symbol value
Population size P 200
Tournament size T 6
Elitism size e 5
Crossover probability pc 0.4
Mutation probability pm 0.8
Number of Generations NG 300
Maximum number of nodes Nmax 1000
Maximum length of an individual Lmax 20

Table 6.2: Values of the evolutionary parameters used in the experiments on
the CFG-GP system implemented.

Each of the other parameters reported in Table 6.2 have been chosen
among a set of values and a set of experiments have been executed. The set
of values considered for each of the parameters tuned is listed below:

P = {50, 100, 150, 200, 250,300, 350, 400, 450, 500}
T = {4, 5,6, 7, 8, 9, 10}
E = {1, 2, 3,4, 5, 6, 7, 8, 9, 10}
pc = {0.1, 0.2, 0.3, 0.4,0.5, 0.6, 0.7, 0.8.0.9}
pm = {0.1, 0.2, 0.3, 0.4,0.5, 0.6, 0.7, 0.8, 0.9}
NG = {100, 300,500, 800, 1000}

These sets have been determined by performing a set of preliminary trials.
During the tuning of a specific parameter, the values of all the other ones
have been kept constant. These default values have been reported above in
bold type. For each of the values to be tested 10 runs have been executed.
For each run, the fitness of the best individual generated has been stored,
and then the mean and the corresponding standard deviation of these fitness
values have been computed. The value that has achieved the best mean have
been chosen. Moreover, parameters have been tuned in the order reported
in Table 6.2.

6.1.4 Results

In order to compare the obtained results with those reported in the literature,
the 10-fold cross validation procedure has been used. In this procedure,
the performances of a classifier on a data set D are evaluated by randomly
dividing D into 10 disjoint sets of equal size N/10, where N is the total
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Data sets R2 R1 σR1 NP1 σNP1

IRIS 98.67 99.4 0.5 3.03 0.2
BUPA 69.87 74.3 3.0 2.36 0.5
Vehicle 61.75 66.5 2.0 4.8 0.6

Table 6.3: The average recognition rates (%) R1 and R2 for the classifier C1

using the generated prototypes and the comparison classifier C2. The stan-
dard deviation in case of C1 is given. The average number NP of prototypes
found by C1 and the related standard deviation are also shown.

number of patterns in D. Then the classifier is trained 10 times, each time
with a different set held out as a test set. In order to evaluate the performance
of the classifier on unknown data, the performance is computed as the mean
of the results obtained on the ten different test sets [DHS01]. For each of
the 10 test sets, 10 runs have been executed, hence the total number of runs
executed equals to 100.

After the tuning of the parameters, the behavior of the system imple-
mented has been investigated. The main aspect of the analysis has regarded
the generalization power, i.e. the ability of obtaining a similar rate on a
different data set (the test set). In fact, in a learning process, in most cases,
when the maximum recognition rate is achieved, the generalization power
may not be the best [DHS01]. In order to investigate such ability for the
developed system, the recognition rates on training and test set have been
taken into account for the different considered data sets. In Figures 6.1 and
6.2 such recognition rates, evaluated every 50 generations, in a typical run
for the BUPA and Vehicle data sets, are displayed. It can be observed from
the figure that, in the experiments carried out, the recognition rate increases
with the number of generations both for the training set and for the test set.
The best recognition rates occur in both cases nearby generation 250. More-
over, the fact that the difference between the two recognition rates tends to
increase when that on the training set reaches its maximum, suggests that
the use of a validation set could further improve the classifier performances.
The recognition rate obtained on the validation set would be used to eval-
uate the fitness of the individuals instead of that obtained on the training
set. The latter set would be used only to accomplish the dynamic labeling
of prototypes.
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Figure 6.1: Recognition rate obtained on training and test sets during a
typical run for BUPA data.

Figure 6.2: Recognition rate obtained on training and test sets during a
typical run for Vehicle data.
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6.1.5 Comparison Findings

The proposed approach has been compared with another GP based approach
[MPD04] in which an individual consists of a set of expressions (i.e. proto-
types) involving simple arithmetic operators, constants and feature variables.
Each expression establishes conditions on the values of a variable number of
features characterizing the data to be analyzed. The patterns are matched
against the expressions and assigned to the one satisfying the constraints on
feature values.
Similarly to the devised approach, each individual is encoded as a multitree,
but the number of trees (i.e. expressions) for each individual is constant
and a priori fixed equal to the number of classes of the problem at hand.
Moreover, each tree is a priori labeled: the first tree with the label of the
first class, the second tree with that of the second class and so on. As a
consequence, a pattern belonging to the i–class is correctly classified only if
it is assigned to the i–tree of the individual.

In Table 6.3 the recognition rates obtained, by using the 10–fold valida-
tion method mentioned above, by the two methods are shown. Since the GP
approach is a stochastic algorithm, the standard deviations are also shown.
Moreover, the average number of prototypes found by the proposed method
(represented by valid expressions in the considered individual) and the re-
lated standard deviation are reported.
For the IRIS data set, 99.4% of the test set has been correctly recognized by
using the prototypes evolved by the developed system, against 98.67% ob-
tained by the method considered for comparison. Instead, for the BUPA data
set the generated prototypes has been able of correctly recognizing 74.3%
of the test set, a rate significantly better than that obtained in [MPD04]
(69.87%). Also for the Vehicle data set, the generated prototypes by the
system performs significantly better than the comparison method, achieving
on the test set the recognition rate of 66.5%, against 61.75% obtained by the
other method.

Summarizing, the comparison performed demonstrates that the proposed
method outperforms the other one compared on all the data sets taken into
account. Thus, the comparison carried out confirms the validity and the
effectiveness of the proposed approach. In my opinion, the outperforming
obtained by using the proposed approach, as already said in Section 4.2,
depends on two main features of the proposed approach: (i) the ability to
automatically find the needed number of prototypes; (ii) the relaxation of
the constraint caused by the a priori labeling of the prototypes.
For the IRIS data set, the average number of prototypes found equals to 3.03;
3 prototypes have been found in 97 runs of the 100 ones performed, while 4
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prototypes have been found in the remaining 3 runs. The results obtained
on this data set have demonstrated that the developed system is able to find
the minimum number of prototypes, even when this number coincide with
the number of classes defined in the problem.
For the BUPA and Vehicle data sets the number of prototypes found by the
implemented system has been respectively 2.36 and 4.8 For the former data
set the system have found 2 prototypes for most of the runs executed (65),
for the latter data set, instead, the system has been able to find 5 prototypes
in most of the runs performed (80). Better performances have been obtained
in the runs in which 5 prototypes have been found. In this case, the system
has been able to discover that, most likely 5 prototypes better characterize
the data.

6.2 The LVQ Version of the Framework

In this section, the experimental activities carried out on the implementation
of the LVQ version of the framework defined in Chapter 4 are illustrated. As
mentioned in Section 4.4 this application is able to generate set of real–valued
vectors to be used as prototypes of patterns represented as points in a feature
space. Given a set of generated prototypes, unknown patterns are classified
by first computing the Euclidean distance between the pattern and each of
the prototypes and then assigning the pattern to the closest prototype.

The effectiveness of this version of the framework has been tested on
several data sets. In the following subsections the experiments performed
for each of the different kind of data will be illustrated. For brevity sake,
parameter setting phases will not be detailed, although the parameters used
in each of the set of experiments will be shown.

6.2.1 Synthetically Generated Data

The first set of experiments for the LVQ version of the framework has been
performed on four data sets synthetically generated. Each data set contains
5000 patterns, equally distributed in five classes. Each pattern is a feature
vector consisting of 2 real elements.

For each data set 20 runs have been performed. The values of the evolu-
tionary parameters employed in the runs are shown in Table 6.4. As regards
the minimum number (Nmin) and the maximum number (Nmax) of prototypes
allowed in a individual, they have been set respectively to 5 (the number of
classes actually present or, in other words, of labels to be assigned) and 20.
In Figures 6.3–6.6, for each data set both patterns synthetically generated
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Parameter symbol value
Population size P 100
Tournament size T 7
elithism size E 5
Crossover probability pc 0.4
Mutation probability pm 0.08
Number of Generations Ng 1000

Table 6.4: Values of the basic evolutionary parameters used in the experi-
ments performed on the four synthetic data sets and on the NIST database.

and prototypes generated by the best run among the twenty performed are
displayed. The figures show how the devised approach is able to finding out
the minimum number of prototypes (five, as the actual number of classes)
able to cover all the present clusters. Only for the data set shown in Figure
6.5 seven prototypes have been found. But in this case, the crossing of two
clusters does not allow to further reducing the number of prototypes.

6.2.2 NIST Database

A second set of experiments has been performed on handwritten digits ex-
tracted from the National Institute of Standards and Technology (NIST)
database. Two statistically independent sets of data, a training set and a
test set, have been randomly extracted from this database. Each set is made
of 5000 patterns (500 per class). A total number of 20 runs have been per-
formed on this data sets.

Bitmaps provided by the NIST database describing handwritten digits
have been converted into real–valued vectors, in order make feasible the ap-
plication of the LVQ version of the framework described in Section 4.4. To
this purpose, a well known statistical description method, the geometrical
moments, directly computed from the character bit map has been adopted.

Table 6.5: Recognition rates obtained on the NIST data sets.

Data set Rec rate

Train set 95.0%
Test set 94.9%
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Figure 6.3: On this data set a recognition rate of 99.6% has been obtained
by using 5 prototypes.

Figure 6.4: On this data set a recognition rate of 97.14% has been obtained
by using 7 prototypes.



CHAPTER 6. EXPERIMENTAL RESULTS 118

Figure 6.5: On this data set a recognition rate of 98.6% has been obtained
by using 5 prototypes.

Figure 6.6: On this data set a recognition rate of 99.0% has been obtained
by using 5 prototypes.
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Table 6.6: Values of the basic evolutionary parameters used in the satellite
image experiments.

Parameter symbol value
Population size P 300
Tournament size T 6
elithism size E 5
Crossover probability pc 0.4
Mutation probability pm 0.05
Number of Generations Ng 500

The description of each input pattern is obtained by computing the central
geometric moments until the 5th order: this implies a total number of mo-
ments equal to 33. Under this assumption, the elements making up a single
prototype are real numbers belonging to the interval [−1.0, 1.0]. Therefore,
each pattern is represented by a feature vector of 33 real elements. In this
case, Nmin and Nmax have been set respectively to 10 (also in this case, the
number of classes actually present) and 60. In this set of experiments, the
best recognition rate obtained on the training set is 95%, whereas that ob-
tained on the test set is 94.9%. The negligible difference between the above
rates highlight the good generalization power of the system.

6.2.3 Satellite Images

A third set of experiments have been performed on data extracted from two
6 band multispectral images taken by the landsat satellite. The first one2 is
2030x1167 pixels large and has been taken in order to distinguish between
forest–non forest areas, while the second one3 is a 1000x1000 pixels large,
related to the land cover mapping for desertification studies. To this images
a segmentation method has been applied in order to obtain regions formed by
the same type of pixel [DPS03]. From each region provided by the segmen-
tation algorithm implemented, a set of features has been extracted, related
to its geometrical characteristics and to its spectral data. For each region
the extracted features have been used to build up a data record. Figures
6.7 and 6.8 show the classification maps obtained from the images after the
application of the segmentation process and the feature extraction.

2The image has been provided by courtesy from JRC.
3This image has been provided by courtesy from ACS spa as part of the Desert Watch

project.



CHAPTER 6. EXPERIMENTAL RESULTS 120

NN 9-NN LVQ EC-LVQ

Mean 72.69 83.05 72.05 82.50

Std 4.34 0.25 3.36 1.7

NP 2250 2250 80 10.6 (1.7)

Table 6.7: Means and standard deviations of recognition rate on the test set
for the forest cover dataset.

NN 6-NN LVQ (700) EC-LVQ

Best 69.2 74.08 76.47 75.6

NP 3800 3800 700 136

Table 6.8: The recognition rates on the test set obtained for the land cover
dataset.

From the first image a data set made up of 2500 items, i.e. regions, have
been derived; each item may belong to one of two classes, forest or non–
forest. From the second image 7600 items have been extracted. The items
may belong to 7 classes, representing various land cover types: various vege-
tation or water. Although the segmentation process used extracts more than
10 features for each of the regions identified, for both analyzed images only
six features, concerning both geometrical and spectral characteristics, have
been considered,.

The evolutionary parameters used in the experiments reported below are
shown in Table 6.6. For each of the two data sets taken into account 20
runs have been performed. The reported results are those obtained using
the individual having the highest fitness among those obtained during the 20
performed runs.

As already said in Section 6.1.4, in any learning process, when the max-
imum performance is achieved on the training set, generalization power, i.e.
the ability of correctly classify unknown data, may significantly decrease. In
order to investigate such aspect for the developed system, the recognition
rates on training and test set have been taken into account for the land cover
data set. In Figure 6.9 such recognition rates, evaluated every 50 generations,
in the best run for the land cover data set, are displayed. From the figures
can be observed that, in the experiments carried out, the recognition rate
increases with the number of generations both for the training set and for the
test set. The best recognition rates occur in both cases nearby generation
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Figure 6.7: Classification map of the forest cover image obtained after the
segmentation process. Black areas represent forest, whereas the white ones
represent non-forest areas.

Figure 6.8: Classification map of the land cover image obtained after the
segmentation process. Different colors represent represent different type of
cover.
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Figure 6.9: Recognition rate on training and test sets for the land cover data
set during the best run.

400. Moreover, the fact that the difference between the two recognition rates
does not tend to increase when that on the training set reaches its maximum,
demonstrates the good generalization power of the system.

Comparison Findings

The results obtained by the proposed method on the data described above
have been compared with those obtained by other three classification algo-
rithms: nearest neighbor (NN), k–nearest–neighbor (k–NN) and the LVQ.
First two algorithms have been described in Section 2.1 while the LVQ algo-
rithm has been briefly described in Section 4.4. Particularly, the LVQ version
used for comparing the obtained results is an improved one of that standard,
called Frequency Sensitive Competitive Learning (FSCL) [AKCM90] and is
often used to compare the performances of other classification algorithms.

In Table 6.7 the results obtained on the forest cover data set are shown.
In all the runs performed on this data set the minimum length Nmin allowed
for an individual has been set to 2, while the maximum one has been set to
20. In order to avoid any bias in the comparison, due to the low number
of patterns in the data set, the 10 fold cross validation procedure, already
described in Section 6.1.4, has been used. As a consequence of the choice of
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this procedure, 200 runs have been performed.
In Table 6.7, the mean and the standard deviation obtained on the 10 test
sets together with the number of prototypes employed are reported. As re-
gards the NN and the k–NN classifiers, the number of prototypes equals the
number of patterns in the training set, while for the LVQ this number has
been set to 80. For the EC–based LVQ method, this number is not provided
by the user, but it has been automatically found by the system. Particu-
larly, the average number of prototypes, found for the ten considered test
set, equals to 10.6, while the standard deviation is 1.7. These figures demon-
strate that the automatism devised allow the system to strongly reduce the
number of prototypes needed to perform the classification task demanded.
The outcome of this reduction is a strong enhancement of the classifier ef-
ficiency, as the number of Euclidean distances to be computed to recognize
unknown patterns equals the number of prototypes used. As regards the
recognition rate obtained on test set by the different algorithms, the perfor-
mance of the developed system is significantly better than that of the NN
and LVQ classifiers, although that of the k-NN (obtained setting k equal
to 9) are slightly better than that of the implemented system. However, in
my opinion, the huge difference in the number of necessary prototypes used
compensates this little difference in the recognition rate.

In Table 6.8 results obtained on the land cover data set are shown. In this
case the original data set has been randomly split in two sets, respectively
as training set and test set. For this data set the total number of executed
runs has been 20. In Table 6.8 the best results obtained and the number of
prototypes employed are reported. The results of the framework–based sys-
tem are significantly better than those obtained from the NN classifier and
slightly better than that obtained from the k–NN (in this case k has been set
equal to 6). Only the LVQ classifier has obtained a performance slightly bet-
ter than ours, but such performance has been obtained with a total number
of 700 prototypes, while the performance of the developed system has been
obtained using only 136 prototypes. Also in this case, the difference in the
number of prototypes compensates the little difference in the performance
achieved.

6.3 Evolutionary Graph Generation

In this section, the experiments carried out on the system, described in Chap-
ter 5, devised for evolving variable size graphs are illustrated. As already said
in Section 5.6, in order to ascertain the effectiveness of the proposed method,
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Parameter symbol value
Population size P 1000
Tournament size T 60
elitism size E 40
Crossover probability pc 0.3
Mutation probability pm 0.04
Number of Generations Ng 500
Maximum number of nodes Nmax 50

Table 6.9: Values of the basic evolutionary parameters used in the experi-
ments.

a hard non linear optimization problem has been chosen. The problem con-
cerns the design of a wireless LAN providing wireless Internet services to
users scattered in a given area. The wireless LAN is made of a set of access
points (APs). APs are wired and connected to an Internet gateway. The
optimization problem consists in determining the optimal layout of the AP’s
in the area to cover. Moreover, in order to reduce the total cost of the LAN,
a configuration with minimal number of AP’s and minimum length of the
wires connecting them is considered optimal. In order to assess the quality
of the solutions obtained by the proposed approach, another EC–based ap-
proach that generates graphs, called EvoGraph [HG04], has been taken into
account. The approach is based on the GP paradigm and generates graphs
by evolving individuals that encode a series of some predefined operations to
be applied to an initial graph, the embryo, consisting of a single node. The
results achieved by EvoGraph in solving the problem described in Section
5.6 have been illustrated in [HG04]. These results has been compared with
those obtained by the developed system in solving the same problem. In the
particular instance solved in [HG04] the area to covered equals to 1000x1000
in unit length, while both clients and APs are represented by points having
integer coordinates. Then in order to obtain a fair comparison the same
instance has been solved.

6.3.1 Parameter Settings

The values of the evolutionary parameters, used in all the performed experi-
ments, are summarized in Table 6.9. The maximum number of nodes (Nmax)
allowed for an individual, has been a priori set4.

4Also in this case individuals do not satisfying the constraint are ignored in the selection
phase, i.e. killed
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Other parameters reported in Table 6.2 have been set accomplishing the
steps described in Section 6.1.3. The sets of values considered for each of the
parameters tuned is listed below:

P = {400, 600, 800, 1000, 1200, 1400, 1600, 1800, 2000}
T = {4, 5,6, 7, 8, 9, 10}
E = {1, 2, 3,4, 5, 6, 7, 8, 9, 10}
pc = {0.1, 0.2, 0.3, 0.4,0.5, 0.6, 0.7, 0.8.0.9}
pm = {0.01, 0.02, 0.03, 0.04,0.05, 0.06, 0.07, 0.08, 0.09, 0.1}
NG = {100, 300,500, 800, 1000}

These sets have been determined by performing a set of preliminary trials.
Default values are reported in bold-type. Also in this case, for each of the
values to be tested 10 runs have been executed. Parameters have been tuned
in the order reported in Table 6.9.

6.3.2 Results

Once the parameters have been set, a set of experiments have been per-
formed in order to investigate the behavior of the implemented system when
the number of clients to be covered varies. To this aim, the number of clients
has been varied starting from 25 up to 50 with increments equal to 5. For
each considered value, a distribution of clients has been randomly generated,
and 50 runs have been performed with different initialization of the popula-
tion. At the end of each run, the best solution found by the algorithm has
been stored. The corresponding length of the wires connecting the AP’s has
been computed and stored as well. For each distribution of clients, we have
computed the mean NAP and the standard deviation σNAP

of the number of
AP’s found by the proposed method while performing 50 runs (see Figure
6.10(a)). The mean L and the standard deviation σL of the lengths of the
wires have been computed as well (see Figure 6.11(b)).

In order to investigate the ability of the system to find near- optimal con-
nection topologies, for each solution provided by the system, the Minimum
Spanning Tree5 (MST) [GY01], representing the connection topology with
minimal wire cost, of the corresponding graph have separately been com-
puted. Then the lengths of the wire topology evolved by the system have
been compared with the optimal ones represented by the MST lengths. This
comparison, performed for each of the distributions of clients considered, rep-
resents a good assessment of the quality of the connection topology found

5A formal definition of minimum spanning tree is given in Appendix.
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by the system. The comparison has been performed by computing the mean
L of the length of the connection topologies of the solutions found by the
system and the mean L′ , the length of the MST connection topologies sep-
arately computed for the same solutions. Both means have been computed
on the best solutions found by the 50 runs executed. The plot of L′ and L′

as a function of the number of clients, is shown in Figure 6.11.
The results achieved can be considered satisfactory as in every run a

complete coverage of the clients has been provided and the wire costs are very
close to those computed on the MST. Moreover, the number of AP’s needed
to solve the problem, as well as the lengths of their connections, slightly
increase with the number of clients. Finally, the standard deviations of both
the number of AP’s and the wire lengths assume small values, thus indicating
that the solutions are widely independent of the initial conditions. Note
that, for each distribution of clients, the evolutionary algorithm converges to
solutions having almost the same number of AP’s and the same wire cost.

Figures 6.12–6.15 illustrate some results of one of the experiments per-
formed by using a randomly generated distribution of 40 clients. In par-
ticular, the best solutions obtained at generation 10, 100, 300 and 500 are
shown. During the initial generations, the evolutionary process tends to im-
prove the client covering by adding more and more AP’s, without optimizing
the connection topology (Figure 6.12). Only after an almost complete cov-
erage has been obtained, the system tries to reduce the number of AP’s and
focuses the search on optimizing the connection topology. This behavior can
be explained considering that the term Fcover in the fitness function has the
highest weight, while the term Fwires the lowest. For instance, at generation
10 (Figure 6.12), all clients but one are covered using 23 AP’s, but the con-
nection topology is messy. At generation 100 (Figure 6.13), all the clients are
covered with 21 AP’s and the connection topology is significantly improved.
At generation 300 (Figure 6.14) the total coverage is obtained with 20 clients
and the connection topology is nearly optimal. At generation 500 (Figure
6.15), finally, 19 AP’s are used and the topology connection is optimal (i.e.,
it coincides with the MST of the related graph).

In comparing the obtained results with those reported in [HG04] can be
observed that the implemented system performs a global optimization in that
both the number of AP’s and their connections are simultaneously exploited
for computing the fitness function. On the contrary, the genetic programming
based method, is able to find a solution only when a sequential approach is
adopted: first, solving the coverage problem by GP and then using a MST
algorithm for determining the connection topology. Thus, it succeeds only
when problem specific knowledge can be exploited to reformulate the original
global optimization problem as a sequence of partial optimization problems.
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Figure 6.10: The mean number of access points and its standard deviation
as a function of the number of clients are respectively represented by bars
and segments on top of the bars.

Figure 6.11: The mean of the wire lengths and its standard deviation as a
function of the number of clients, found by the sytem and by using the MST
for finding the connection topology.
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Figure 6.12: The best solution obtained after 10 generations. All clients
but one (in red) are covered. This solution employs 23 Access points. The
connection topology is messy.

Figure 6.13: The best solution obtained after 100 generations. All clients are
covered. This solution employs 21 Access points. The connection topology
is suboptimal but no more messy.
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Figure 6.14: The best solution obtained after 500 generations. All clients
are covered. This solution employs only 20 Access points. The connection
topology is near to the optimal one.

Figure 6.15: The best solution obtained after 500 generations. All clients are
covered. This solution employs only 18 Access points while the connection
topology is the optimal one.



Chapter 7

Conclusions and Future Work

Evolutionary Computation (EC) has been inspired by the natural phenomena
of evolution. It provides a quite general heuristic, widely used in the last years
to effectively solve hard, non linear and very complex problems. In the EC
field four main branches can be distinguished: genetic algorithms, genetic
programming, evolutionary strategies and evolutionary programming; each
using a particular encoding for solutions. Nonetheless, many variants have
been proposed since the beginnings of the field and others, most likely, will
be proposed in the future. These variants, usually developed to solve specific
problems, use the basic concepts provided by EC: reproduction of individuals,
variation phenomena that affect the likelihood of survival of individuals and
inheritance of parents features by offspring.

EC–based algorithms have also been used to tackle classification prob-
lems. The main aspect of classification usually concerns the generation of
prototypes to be used to recognize unknown patterns. The role of proto-
types is that of representing patterns belonging to the different classes de-
fined within a given problem. For most of the problems of practical interest,
the generation of such prototypes is a very hard problem, since a prototype
must be able to represent patterns belonging to the same class, which may
be significantly dissimilar each other. On the other hand, they must be
able to discriminate between patterns belonging to classes different from the
one that they represent, namely they must not contain any information that
could lead to assign to them patterns belonging to other classes. Moreover,
a prototype should contain the minimum amount of information required to
satisfy the requirements mentioned above.

The research presented in this thesis, has been mainly devoted to the
definition of an EC–based framework, to be used for prototype generation.
The defined framework does not provide for the use of any particular kind of
prototypes. In fact, it can generate any kind of prototype once an encoding
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scheme for the used prototypes and the corresponding mutation operator
have been defined. The generality of the framework can be exploited to
develop many applications.
Moreover, in this thesis also a new method for graph generation has been
presented. The devised method is able to generate variable size graphs. The
purpose of the research leading to the definition of the method was that of
developing a system that generates graphs to be used as prototypes. But in
the thesis only preliminary tests on a hard non linear optimization problem
are reported.

In the following, the contributions of the research presented in the thesis
are reported in Section 7.1.2, while the conclusions are illustrated in Section
7.2. Finally, is Section 7.3.1 a number of ideas that could lead to future
researches in the field are discussed.

7.1 Contributions

The work presented in this thesis has made the following contributions.

7.1.1 A Framework for Prototype Generation

In Chapter 4 a new EC–based framework able to generate prototypes for
classification problems is illustrated. The proposed framework is quite gen-
eral and can be applied to any classifier once a way for encoding the used
prototypes is given. Moreover, any application based on the framework is
able to automatically find the minimum number of prototypes needed to rep-
resent patterns belonging to the different classes defined. This remarkable
ability does not require any specific knowledge of the classification problem
to be solved, but only a training set containing samples of the patterns to be
recognized. Such ability derives from two key choices made: (i) the encoding
of all the prototypes searched in a single individual; (ii) prototypes within
an individual are not a priori labeled.

Two specific applications based on the framework have been developed.
The first application generates prototypes made of logical expressions, which
represent patterns described as feature vectors. A prototype describes pat-
terns by means of predicates expressing properties of the feature values of the
patterns. Unknown patterns are recognized by assigning them to the proto-
type whose predicates satisfies the values in the feature vector describing the
pattern.
The second application, instead, generates set of real-valued vectors to be
used as prototypes of patterns represented as points in a feature space. In
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this case unknown patterns are classified by first computing the Euclidean
distance between the pattern and each of the prototypes and then assigning
the pattern to the closest prototype.

7.1.2 Evolving Graphs

Chapter 5 illustrates a new EC-based approach, devised in order to gen-
erate variable size graphs. The approach uses a new defined and problem
independent data structure, called multilist, employed to encode undirected
attributed relational graphs. The defined encoding scheme, uses a positional
notation that allows a sort of invariance property for some of the subgraphs
encoded within a multilist. This property has made easier the definition of
the recombination operator, allowing to overcome the main problems that
affect the definition of this operator in the graph domain.

For this data structure two operators have also been defined: a recombi-
nation one, called crossover, that swaps subgraphs between two graphs and
gives the approach the ability to evolve graphs of variable size. This operator
has been defined in a quite simple way and does not perform any search on
the input graphs, differently from several other approaches. In fact, thanks to
the data structure defined, the split of an encoded graph is simply obtained
by cutting a list, while the choice of how to divide the graph is made by
choosing how to cut the list. In the same way, multilists allows the merging
of two graphs by simply concatenating two lists.
The second operator, called mutation, changes the input graph into a new
one without changing the number of nodes. By performing the same kind of
operation, arcs can be easily added or deleted. In the same way both node
and link attributes can be modified.

7.2 Conclusions

The evolutionary computation paradigm was chosen as the base of the re-
search work presented in this thesis. This choice has been motivated by the
fact that many of the approaches based on this paradigm have provided sat-
isfactory solutions for hard, high dimensional and complex problems, often
hardly addressed by other approaches. The research presented here has ex-
ploited the main feature of the EC, namely its generality. In fact, EC does
not provide for a specific problem or application, but supplies a powerful
search tool that can be used to find solutions for problems in a wide range
of domains.
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EC generality has been exploited to solve two specific problems: proto-
type generation for classification problems and graph generation. For the
former problem a framework for evolving set of prototypes has been defined.
The framework, exploiting the generality provided by EC, can be used to
develop many applications, each using different kind of prototypes. The
problem of graph generation has faced by defining a new data structure. In
the following the conclusions related to the two approaches will be discussed.

7.2.1 Framework for Prototype Generation

Classification problems have been already faced in the past by using EC–
based algorithms (see Section 4.1). In the learning classifier systems (LCS),
for example, sets of rules are evolved. The rules distinguish patterns belong-
ing to different classes by specifying the values of the pattern features. LCSs
solve multi–class problem by evolving multiple populations, each searching
for the rules characterizing patterns of a specific class. This approach present
some difficulties, as it is possible that an instance is matched by several rules,
each predicting a different class, or it is also possible that an instance is
matched by none of any rule predicting any class.
Also GP–based methods have been devised to cope with classification prob-
lems. These methods, usually, evolve mathematical expressions, involving
arithmetic functions and simple operators, that discriminate patterns belong-
ing to different classes. In all the approaches just mentioned, the number c
of classes to be dealt with is used to divide the data set at hand in exactly
c parts. Thus, these approaches do not take into account the existence of
subclasses within one or more of the classes in the analyzed data sets.
In the EC field, classification problems have also been faced in the EC field
considering them as multimodal problems, in which prototypes are seen as
solutions to be searched by using a single population. Within the unique pop-
ulation used, these algorithms try to evolve different groups of individuals,
each searching for a different prototype. The effective use of the approach
is limited by the amount of knowledge required about the fitness landscape,
while for most of the real world problems such knowledge is hardly available.

The framework for prototype generation described in Chapter 4 offers
several advantages that allows it to overcome the drawbacks that affect most
of the EC–based approaches described above. These advantages are listed
below:

– The framework has been naturally defined to cope with multi–class
problems. Thus it is non necessary to separately evolve prototypes for
different classes, as they are evolved together within each single indi-
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vidual. I this way, any framework–based system can model the inter-
action that occurs among the prototypes belonging to different classes
when a pattern have to be classified. Modeling this interaction may,
in many cases, significantly improve the performance of the system, as
the behavior of a prototype, when a pattern has to be classified, may
be sensitive to the presence of the prototypes representing the other
classes.

– The framework does not need any a priori knowledge about the num-
ber of prototypes, but it is able to automatically find out the needed
number of prototypes. This feature is a remarkable one as for many
problems it is hard to expect this number.

– The only knowledge required by the framework is that represented
by a training set, providing samples of the patterns to be recognized.
Thus, the framework defined does not require any addition of knowl-
edge about the problem to discover the number of prototypes involved
in the classification task to be performed.

The effectiveness of the proposed framework to generate prototypes has
been tested by performing a set of experiments on the two applications based
on it. As mentioned above the first application generates prototypes consist-
ing of logical expressions. In this case prototypes are encoded as derivation
trees, as in the CFG-GP approach illustrated in Section 3.5. The second
application, instead, generates real–valued vectors, to be used as prototypes
in the feature space.
Both applications have been tested on several data sets, and the obtained
results have been compared with those of other methods previously proposed
in the literature. The experiments performed have demonstrated the abil-
ity of the applications developed to obtain good performances. Moreover,
some of these experiments have shown the ability of the applications to find
the minimum number of needed prototypes. Finally, for both applications,
the comparisons performed have confirmed the quality of the performances
achieved.

7.2.2 Evolving Graphs

Graphs are a data structure whose representative power have aroused an in-
creasing interest in various fields of science and engineering (see Section 5.1).
In fact, they may be used both to represent physical networks or to model the
interactions occurring in complex systems, e.g. computer programs. More-
over, graphs are also used in pattern recognition and machine vision fields to
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represent complex patterns in terms of parts and their relations.
The problem of generating graphs exhibiting the desired properties has also
been faced by using EC–based techniques. Most of the proposed approaches
use graph encoding methods specifically tailored for the faced problem. More-
over, the definition of a recombination operator in the graph domain present
several problems, among the others:

– The splitting of a graph into subgraphs usually requires the choice of
a variable number of crossover points, i.e. arcs to be broken;

– The merge of two subgraphs produced by the splitting of a graph usu-
ally require the reattachment of more than one arc;

The consequence of these problems is that in most of the approaches pre-
viously defined recombination operators are implemented by performing a
search of the arcs to be broken. The search may make the recombination
operator inefficient.

In Chapter 5 a new EC–based approach for graph generation is proposed.
The approach is based on a new data structure, called multilist, specifically
devised to encode graphs. Multilists have been defined without taking into
account any specific problem. Moreover, multilists have some properties
that solve most of the problem related to the definition of a recombination
operator in the graph domain. The properties are listed below:

– A single graph can be split into two ones by choosing a single point in
a list. Thus, no search has to be performed on the graph to be split;

– The reconnection of the suspended arcs in the subgraphs to be merged
is automatically defined by the merge operation. This automatism
exclude any search on the subgraphs to be merged;

These properties have allowed to easily define a recombination operator able
to generate variable size multilists. Consequently, given a suitable fitness
function, the devised approach can automatically determine the number of
nodes for the desired graph.

The purpose of the research leading to the definition of the method was
that of generating graphs to be used as prototypes. But, in order to ascertain
the effectiveness of the method in solving complex problems, like may be
that of generating graphs generating prototypes, it has been preliminarily
tested on a hard non linear problem concerning the design of a wireless LAN
providing wireless Internet services to users scattered in a given area. The
wireless LAN is made of a set of access points (APs) anf the optimization
problem consists in determining the optimal layout of the APs.
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The obtained results in the performed experiments (see Section 6.3) have
also been compared with those reported in the literature by another EC–
based method. The obtained results and the comparison performed have
demonstrated the effectiveness of the proposed approach.

7.3 Future Work

In this Section, a series of directions that should be investigated in order to
improve the proposed systems are illustrated.

7.3.1 Framework for Prototype Generation

The recombination operator defined within the framework for prototype gen-
eration acts in a completely stochastic way, without exploiting any informa-
tion about the behavior of the involved prototypes in the assignment of the
training patterns. Moreover, the probability of applying the mutation opera-
tor is a priori fixed. In the following, proposals for a heuristic recombination
operator and for a criterion to calculate the probability of applying the mu-
tation operator will be illustrated.

Recombination

A heuristic recombination operator that builds up new individuals by con-
sidering the similarities among the involved prototypes could be defined. To
this purpose, a similarity distance among prototypes that takes into account
the patterns assigned to each of the prototypes should be used. This distance
should be defined in such a way that, given two prototypes, the higher the
number of different patterns assigned to the prototypes, the higher the value
of the distance between the prototypes. The role of this distance measure
would be that of maximizing the diversity, meant as diversity among the
represented prototypes, among the prototypes used to build up the output
individuals. This operator, would build up new individuals in a more ef-
fective way, because the new individuals built up will better represent the
patterns contained in the training set.

Note that the heuristic operator employing the distance mentioned above
could be defined within the framework, without taking into account the kind
of prototypes used.
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Mutation

The performances of any framework–based system could be easily improved
by providing a way to calculate, for any single prototype, the probability
of applying mutation operator that takes into account the performances ob-
tained by the single prototype. In practice, this probability should be calcu-
lated as a function of the performance of the single prototype. Specifically,
the lower the recognition rate obtained by the prototype, the higher the prob-
ability of applying the mutation to it. In this way, the research of prototypes
becomes more effective, since the probability of modifying good prototypes
is much lower than that of modifying bad prototypes, i.e. those performing
worse in recognizing patterns belonging to the same class.

The calculation of the probability of applying the mutation operator can
be defined without considering the kind of prototype used. Thus, this im-
provement can be defined within the framework and applied to any framework–
based system developed.

7.3.2 Evolving Graphs

As mentioned in Chapter 5 the aim of the work leading to the definition of the
EC–based for graph generation illustrated there, was that of building up a
system able to generate graphs to be used as prototypes. In the experiments
reported in this thesis the proposed method have preliminarily tested on a
hard non linear optimization problem, implying the design of a wireless LAN.
In the near future, the approach will be employed to develop a system for
prototype generation, in which prototypes are represented as graphs. To this
purpose different options will be investigated:

– The framework for prototype generation could be used. In this case,
prototypes would be encoded by using multilists. Moreover, in order to
evolve variable size prototypes, i.e. prototypes consisting of a different
number of nodes, a macro–mutation operator that modifies multilists
should be defined. This operator should be able to modify the number
of nodes in the input graph.

– A multi population approach could be used, in which in each population
prototypes representing different classes are evolved. In this case, the
approach defined in Chapter 5 could be used, including the defined
operators.

A longer term research in this field will imply the study of graph gram-
mars. The purpose of this research will be that of employing these grammars
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to generate graphs. Using grammars will strongly reduce the search space
represented by the solutions graphs. This reduction should lead to a signifi-
cantly improvement of the performances.



Appendix A

Formal Definition of Data Classification

In the data classification context a set of objects to be analyzed is called data
set, and each object is called sample and represented by X = (x1, . . . , x`)
with X ∈ S, where S is the universe of all possible elements characterized
by ` features and xi denotes the i–th feature of the sample. A data set with
cardinality ND is denoted by D = {X1, . . . ,XND

} with D ⊆ S. The set D is
said labeled if it exists a set of integers:

Λ = {λ1, . . . , λND
} : λi ∈ [1, c]

The i–th element λi of Λ is said the label of the i–th sample Xi of D. We will
say that the samples of D can be grouped into c different classes. Moreover,
given the sample Xi and the label λi = j, we will say that Xi belongs to the
j–th class.

Given a data set D = {X1, . . . ,XND
} containing c classes, a classifier Γ

is defined as a function
Γ : D −→ [0, c]

In other words, a classifier assigns a label γi ∈ [0, c] to each input sample Xi.
If γi = 0, the corresponding sample Xi is said rejected. This fact means that
the classifier is unable to trace the sample back to any class.

The sample Xi is recognized by Γ if and only if:

γi = λi

otherwise the sample is said misclassified. If Ncorr is the number of samples
of D recognized by Γ the ratio Ncorr/ND is defined as the recognition rate of
the classifier Γ obtained on the data set D.
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In the following formal definitions of the main data structure used in this
thesis are given.

Graph

An undirected or simply graph G is defined as G = (An, E), where An =
{n1, n2, . . . , nN} is a set of nodes and E = {〈ni, nj〉 |ni, nj ∈ An} is a sym-
metric binary relation defined on the set An. The couples in E are said arcs
and denotated by symbols set {lij|1 ≤ i, j ≤ N}. A graph G is defined
with attributes if exists a set, finite or infinite, Sa = {a1, a2, . . . , aNa}, called
attributes set, and a function A:

A : {n1, n2, . . . , nN} → Sa

which binds to each node of the graph an attribute (an element of the set
Aa). Moreover, a graph with attributes is said relational if exists a set, finite
or infinite, Sr = {r1, r2, . . . , rNR

}, called relations set and a function R:

R : {lij|1 ≤ i, j ≤ N} → Sr

The function R binds to each arc of the graph a relation, that is an element
of the set Sr.

Definitions on Graphs

The number of nodes of G defines its order and is denotated by the symbol
|G|; the number of arcs, instead, by the symbol ‖G‖. Two nodes which belong
to the same couple in E are said adiacents and extremes of the related arc.
The arc 〈ni, nj〉 is said incident both to the node ni and nj. Yet, we will
say that the arc 〈ni, nj〉 links the node ni to the node nj. An arc which has
equal extremes is said loop.
The set of arcs incident to a node is said its incidence set and denotated by
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Figure 7.1: An example of cut graph.

the symbol E(n) (formally: E(ni) = {ljk | (j = i) ∨ (k = i)}). A subgraph
of G is a graph G′ = (I

′

N ′ , E ′) such that I
′

N ′ ⊆ IN ed E ′ ⊆ {〈ni, nj〉|ni, nj ∈
I
′

N ′ ∧ 〈ni, nj〉 ∈ E}. A path from n1 to nk is defined as a sequence P =
n1, n2, . . . , nk. The number of nodes in P is said length of the path. If
n1 = nk the path is said cycle.
A graph G is complete if for each couple of nodes exists an arc which links
them (formally: ∀ni, nj ∈ An, 〈ni, j〉 ∈ E). Moreover, a graph is connected
if, for each couple of nodes in G exists a path between them. A graph without
loops and arcs which connect the same couple of arcs is said simple. In the
following, a simple graph as that just described will be said canonical, so as
to distinguish it from the next defined graph.

Cut Graph

A cut graph G is defined as G = (An, E), where IN = {n1, n2, . . . , nN} is a
set of nodes and E is a simmetric binary relation defined on the set IN

⋃
{ν},

where ν is said null node. The couples in E are said arc and denotated by
the set of symbols {lij|0 ≤ i, j ≤ N}. The couples which belong to the set
IS = {〈ni, ν〉 |1 ≤ i ≤ N} ⊆ E are said suspended arcs and denotated by the
set of symbols {loi|1 ≤ i ≤ N}.
If we remember the subgraph definition previously done, we observe that a
subgraph G′ = (A

′

N ′ , E ′) of a graph G = (IN , E), whether canonical or cut,

is cut if (〈ni, ν〉 ∈ E ′) ∧ (ni ∈ I
′

N
′ ).

Minimum Spanning Tree

Given a connected, undirected graph G, a spanning tree of G is a subgraph
which is a tree and connects all the nodes together. Note that a single graph
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can have many different spanning trees. If G is a weighted graph, to each
spanning tree T can be assigned a weight WT , that equals the sum of the
weights of the arcs in T . The Minimum Spanning Tree (MST) T ′ of a wighted
graph G is defined as the spanning tree of G with weight less or equal to the
weight of every other spanning tree in G.

Lists

A list is defined as a set of objects placed in a predefined order:

e1, e2, e3, e4, e5, e6, e7, . . .

The object ei of the list is said element i-th of the list. The cardinality of
the list is said length of the list1 The list of length equal to 0, by definition,
is said void list.
Let I = {i1, i2, . . . , iNI

} a set of cardinality NI , the list l = e1, e2, e3, e4, . . . en

is said in I if ei ∈ I ∀i ∈ [1, n]. The set I is said definition set of the list
and denotated by the symbol I(l)2

Two lists l
′
= {e′1, e

′
2, . . . , e

′
N} and l

′′
= {e′′1 , e

′′
2 , . . . , e

′′
N} both of length N , are

equal (l
′
= l

′′
) if e

′
i = e

′′
i ∀i ∈ [1, n]. Given two lists l

′
= {e′1, e

′
2, . . . , e

′
N} and

l
′′

= {e′′1 , e
′′
2 , . . . , e

′′
N} of length equal respectively to N

′
and N

′′
(N

′
< N

′′
),

is said that the list l
′
is included in the list l

′′
(l
′ ⊂ l

′′
) if ∃ i : 1 ≤ i ≤

(N
′′ −N

′
) : e

′

k = e
′′

k ∀k ∈ [i, (i + N
′
)].

Some Operations on Lists

The operation n-shortening applied to the list l = {e1, e2, . . . , eN} of length
N , generates the list l

′
= {e1, e2, . . . , e(N−n)} of length 3(N − n).

The operation t-cut, applied to the list l = {e1, e2, . . . , eN} of length N
generates the two lists l

′
= {e1, e2, . . . , et} and l

′′
= {et+1, et+2, . . . , e(N)}, of

length respectively equal to t and (N − t).
The operation i − j-swap applied to the list l = {e1, e2, ei . . . , ej, . . . , eN}
generates the list 4l

′
= {e1, e2, ej . . . , ei, . . . , eN}.

Given two lists l
′

= {e′1, e
′
2, . . . , e

′

N
′} and l

′′
= {e′′1 , e

′′
2 , . . . , e

′′

N
′′} of length

1In the following we use the function length, which associate to the generic list l of n
element the natural number n, it follows that length(l) = n.

2This concept is useful because defines the set of values which the objects in a list can
take on.

3Such operation consists of the elimination of the last n elements from the list.
4Pratically, such operation swaps the places of the elements i and j of the list.



CHAPTER 7. CONCLUSIONS AND FUTURE WORK 143

respectively equal to N
′
and N

′′
, the concatenate operation of the list l

′′
to

the list l
′
generates the list

l = {e′1, e
′
2, . . . , e

′

N ′ , e
′′
1 , e

′′
2 , . . . , e

′′

N ′′}

of length (N
′
+ N

′′
).

Given two lists:

• l
′
= {e′1, e

′
2, . . . , e

′
i, . . . , e

′

N ′}

• l
′′

= {e′′1 , e
′′
2 , . . . , e

′′
j , . . . , e

′′

N ′′}

of length respectively equal to N
′
and N

′′
, the operation i-j-swap applied to

the two lists l
′
l
′′

generates the lists5:

• l∗ = {e′1, e
′
2, . . . , e

′′
j , . . . , e

′

N ′}

• l∗∗ = {e′′1 , e
′′
2 , . . . , e

′
i, . . . , e

′′

N ′′}

Given two lists:

• l
′
= {e′1, e

′
2, . . . , e

′
i, . . . , e

′

(i+n), . . . , e
′

N ′}

• l
′′

= {e′′1 , e
′′
2 , . . . , e

′′
j , . . . , e

′′

(j+n), . . . , e
′′

N ′′}

of length respectively equal to N
′
and N

′′
, the operation n-i-j-swaps applied

to the two lists l
′
and l

′′
generates the lists6:

• l∗ = {e′1, e
′
2, . . . , e

′′
j , . . . , e

′′

(j+n), . . . , e
′

N ′}

• l
′′

= {e′′1 , e
′′
2 , . . . , e

′
i, . . . , e

′

(i+n), . . . , e
′′

N ′′}

Given two lists l
′

= {e′1, e
′
2, . . . , e

′

N ′} and l
′′

= {e′′1 , e
′′
2 , . . . , e

′′

N ′′} of length

respectively equal to N
′

and N
′′
, the operation p-inserimento of l

′′
in l

′

generates the list

l = {e′1, e
′
2, . . . , e

′
p, e

′′
1 , e

′′
2 , . . . , e

′′

N
′′ , e

′

(p+1), e
′

(p+2), . . . , e
′

N
′}

of length (N
′
+ N

′′
). Th value of p is said inserting point of l

′′
in l

′
.

5Pratically, such operation swaps the element i of the list l
′

and the element j of the
lists l

′′
.

6Such operation is simply the application to the lists l
′

and l
′′

of the following n
operations: i-j-swap, (i + 1)-(j + 1)-swap, . . ., (i + n)-(j + n)-swap.
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