

NatureinspiredOptimizationAlgorithmsfor

Classi�cationandRegressionTrees

Napoli. November 2005

II

Contents

List of Figures VII

List of tables IX

Introduction 1

1 Optimization and Nature Inspired Algorithms 3
1.1 Introduction to Optimization . 3

Contents

4.4.3 The Hyper-Cube Framework for ACO 80
4.5 Performance of ACO Algorithms 80

4.5.1 AS performance . 81
4.5.2 AS extension performance 82

4.6 ACO Algorithm for building explorative Trees 83
4.6.1 Introduction . 83
4.6.2 The proposed Algorithm 84
4.6.3 Application on real datasets 88

List of Figures

1.1 A simple search space . 5

List of Figures

4.1 Real ants finding the shortest path 64
4.2 An example of an Ant System . 65
4.3 An instance of the TSP problem 67
4.4 Ant-cycle behavior for different α and β combinations 73

List of Tables

Introduction

2

4 Optimization and Nature Inspired Algorithms

performance and is functionally related to parameters of the system. An im-
portant and often the most difficult step in an optimization process is to define
an appropriate objective function for the problem at hand. There may exist

1.2. Combinatorial optimization problems 5

6 Optimization and Nature Inspired Algorithms

Given a graph G, is there a path of length shorter than l that visits
each vertex of G exactly onc3(e)-?

1.3. Traditional Optimization Methods and Heuristics 7

is considered to be computationally intractable in the sense that an algorithm
able to solve them requires an exponential amount of time because, in the worst
case, such algorithm would need to enumerate all possible candidates from the
solutions space. This leads to the fact that only very small instances of such
problems can be solved within a reasonable amount of time and large ones are
computationally prohibitive.

8 Optimization and Nature Inspired Algorithms

characteristic of hill-climbing methods is that they begin with an initial solution
(usually determined randomly or deterministically by users) and a new solution
is calculated based on the current solution. The algorithms differ from each
other according to the update rules used to create a solution. In general, direct
optimization methods are computationally prohibitive, and they tend to work
for simple unimodal functions or specialized applications. On the other hand, in-
direct methods require the calculation of gradients of functions and constraints.
Most of the these methods do not guarantee to find the global optimal solutions,
because these algorithms usually terminate when the gradient of the objective
function is very close to zero, which may occur both in case of local and global
solutions. The other obvious drawback of indirect methods is the calculation
of gradient, which may be expensive or not well defined. In many real world
combinatorial optimization problems the gradient of the objective function and
constraints may not be calculated exactly because the objective function and/or

12 Optimization and Nature Inspired Algorithms

behind the method is to explore the search space of all feasible solutions by a

14 Optimization and Nature Inspired Algorithms

1.4.6 Evolutionary Programming

Evolutionary programming (EP) was developed by Lawrence Fogel in the late
1960s. Although EP techniques originally aimed at evolving artificial intelli-
gence in the sense of developing the ability to predict changes in the environ-
ment, it is often used as an optimizer. After initializing a population of N
individuals and generating N children by mutation, N survivors are selected
from the population of parent and children using a probabilistic function based
on fitness. As a consequence, individuals with a greater fitness have a higher
chance to survive to the next generation.

1.4.7 Evolution Strategies

Evolution strategies (ES) are algorithms that mimic the principles of natural
evolution as a method to solve parameter optimization problem. They were

1.5. Summary for Heuristics 15

16 Optimization and Nature Inspired Algorithms

1.5. Summary for Heuristics 17

Chapter 2

Classification and
Regression Trees

2.1 Introduction

Classification and Regression Trees (CART) is a relatively young technique de-
veloped by a group of American scientists [] during the last 25 years. As it
is for discriminant analysis, the aim of CART is to classify a group of obser-
vations or a single observation into a subset of known classes, on the basis of
a particular variable. Comparing to classical parametric discriminant analysis

20 Classification and Regression Trees

2.1. Introduction 21

22 Classification and Regression Trees

radical changes in decision tree: increase or decrease of tree complexity,

2.2. How CART builds Decision Trees 23

Figure 2.2: An example of maximum tree.

the learning sample with variable matrix X with M number of variables xj and
N observations. Let class vector Y consist of N observations with total amount
of K classes. The Classification tree is built in accordance with splitting rules
- the rule that performs the splitting of learning sample into smaller parts. In
each step of the algorithm data have to be divided into two parts with maximum
homogeneity, as shown in Figure 2.3: where tp, tl, tr are, respectively, parent,

Figure 2.3: Splitting from CART

2.2. How CART builds Decision Trees 25

will consider only the Gini splitting rule, that is based on the following impurity
function:

i(t) =
∑

26 Classification and Regression Trees

In order to get the best absolutely best Tree “it would be enough”, in theory, to
examine all possible generable trees from the learning sample in order to choose
the one that minimizes the overall misclassification rate R(T). The problem
is that this is computationally unfeasible because of the fact that the number
of generable trees grows exponentially with the complexity of the problem so,
even for very small learning samples with not too many variables, such operation
would take a huge amount of computation. This led to the choice to use a greedy
algorithm6 for selecting the maximum tree. Such algorithm, which starts by the
root node, is described as follows:

• function greedy(Node n) {

–

2.2. How CART builds Decision Trees 27

where V ar(Yl), V ar(Yr) are calculated on the response vectors for corresponding

2.3. The FAST algorithm 29

Figure 2.5: Removing the branch under the node 3

30 Classification and Regression Trees

for Classification Trees and the η2 index for Regression Trees, demonstrated
that it is possible, by making use of the forementioned indexes, to reduce the

2.4. The J-FAST project 31

6. If τ(Y |s∗k) < τ(Y |Xk+1) then compute k = k + 1 and go back to step 3.
Otherwise, stop the procedure, being s∗ = s∗k the best split.

2.4 The J-FAST project

A Java software has been developed (see[]) in order to get classification and
Regression Trees by making use of the FAST algorithm. Such software offers
interactive visualization and comparison interface in order to give a more trans-
parent view of the whole tree building process. The J-FAST project consists of
the Java program and of an HTML-based tutorial, which will be presented in
the following section.

2.4.1 The J-FAST program

The J-FAST program is a Java-based segmentation software which is particu-

2.4. The J-FAST project 33

34 Classification and Regression Trees

Figure 2.8: More than one tree on the screen for comparisons

• Split: binary split

• TreeGrower: class that builds trees

• Pruner: class that takes care of pruning

• TreeViewer: interactive interface class

• Utility: many useful function like reading data from plain text files, excel
sheets, etc.

J-FAST has also some main disadvantages, which are reported as follows:

• J-FAST is a very young project. It is still buggy and a good testing period
is necessary to find and fix all the bugs.

2.5. Forward Search to improve stability of Regression Trees

2.5. Forward Search to improve stability of Regression Trees 37

in order to split it and minimum terminal node size) on the robustness of the
procedure. It is assumed that the chosen robust subset contains the most ho-

Chapter 3

Genetic Algorithms

3.1. Genetic Algorithms in detail 43

Organisms whose chromosomes are arrayed in pairs are called diploid (see [])

44

3.1. Genetic Algorithms in detail 45

48 Genetic Algorithms

3.1. Genetic Algorithms in detail 49

50 Genetic AlgorithmsFigure 3.6: Diagonal Crossoverdiagonal crossover, Eiben studied a test suit containing eight numerical opti-mization problems and established that higher number of parents tented to leadto a better performance.Lis proposed Multi-Sexual Genetic Algorithm (MSGA) for multi-objective op-

3.1. Genetic Algorithms in detail

3.2. A Genetic Algorithm for Predictors that generate many splits 53

Elitist Scheme

The elitist selection scheme was proposed by De Jong. T 99.8is met8od copies a
certain number of the best individuals from the existing population to the next
population. This enforces preserving the best structures for the problem at
hand.

Rank Selection

A nonparametric procedure for selection (Rank Selection

3.2. A Genetic Algorithm for Predictors that generate many splits 55

Figure 3.9: Building splits for an ordinal predictor

by such predictors grows exponentially with the number of modalities m. The

number of possible splits is 2m−1 − 1 and table 3.1 gives an idea of how many

56 Genetic Algorithms

3.2. A Genetic Algorithm for Predictors that generate many splits 57

Figure 3.10: Encoding a split for a nominal predictor

58 Genetic Algorithms

3.2. A Genetic Algorithm for Predictors that generate many splits 59

• end while

• return best solution

3.2.6 Application on simulated and real datasets

4.1. Introduction to Ant based algorithms 65

solution of a problem by exchanging information via pheromone deposited on
graph edges. Ant System has been applied to many combinatorial optimization
problems such as the traveling salesman problem (TSP) [], and the quadratic
assignment problem [] by making use of the so-called Ant Algorithms. As the
attention is not on simulation of ant colonies, but in the use of artificial ant
colonies as an optimization tool, Ant system have some major differences with
a real (natural) one:

• artificial ants have some memory

• they are not completely blind

• they live in an environment where time is discrete

Figure 4.2 shows a possible Ant System interpretation of the situation in figure
4.1. In this case the distances between the points D and H, B and H, B and

66 Ant Colony Optimization

toward H and 15 toward C (Fig. 2b). At t=1 the 30 new ants that come to B

4.2. Ant System for the Traveling Salesman Problem 67

Figure 4.3: An instance of the TSP prtem

•

68 Ant Colony Optimization

between time t and (t+ n). Such quantity is given by

∆τkij =


Q

Lk

4.2. Ant System for the Traveling Salesman Problem 69

4.2.1 The algorithms

Given the definitions of the preceding section, the so-called ant-cycle algorithm
is simply stated as follows. At time zero an initialization phase takes place
during which ants are positioned on dfferent towns and initial values tij(0)
for trail intensity are set on edges. Dorigo[] suggests to use, as initial trail

70 Ant Colony Optimization

2. Set s= 1;

For k = 1 to m do

Place the starting town of the k-th ant in tabuk(s)

3. Repeat until tabu list is full

Set s=s+1;

For k = 1 to m

do

Ch 46-((os)-1(e)-370(the)-370(to)28(wn)]TJ/F11 9.963 Tf 77.529 0 Td[(j)]TJ/F8 9.963 Tf 8.359 0 Td[(to)-370(mo)28(v)28(e)-371(to)1(,)-379(w)-1(i)1(th)-370(p)1(rob)1(abil)1(it)28(y)]TJ/F11 9.963 Tf 128.413 0 Td[(p)]TJ/F10 6.974 Tf 5mo)f 3.615 Td[(k)]TJ 0 -6.209 Td[(ij)]TJ/F8 9.963 Tf 7mot) given by
equation 4.4

Move the k-th ant to the town j
Insert town

72 Ant Colony Optimization

not only interested to the minimum tour length, but was also worried about
the stagnation phenomenon that is a situation in which all the ants follow the
same path and construct the same tour at each iteration. This is not a good
feature for a random search algorithm because it means that no new solutions are
being explored. While the parameters tuning phase of the algorithm (which is
made empirically because a formal model able to describe the system’s behavior
for different parameters settings is not available) the stagnation phenomenon
indicates that the current parameter settin is not optimal. Dorigo ran different
simulations and came to following conclusions about Ant System algorithms:

•

78 Ant Colony Optimization

is no experimental evidence in favor of that about the quality of the solutions.
ACS is based on an earlier algorithm proposed by [] which was called Ant-Q. The
only difference between Ant-Q and ACS is the definition of the term τ0 which in
Ant-Q is set to τ0 = γmaxj∈N

4.4. Extensions of Ant System 79

by tentatively adding the arc to the current partial solution and by estimating
the cost of a complete tour containing this arc my means of a lower bound. Such
estimate is used to compute ηij : the lower the estimate the more attractive the
addition of a specific arc is. Such approach has an advantage and a disadvan-
tage: the former lies in the fact that otherwise feasible moves can be discarded if

80 Ant Colony Optimization

4.5. Performance of ACO Algorithms 81

82 Ant Colony Optimization

4.6. ACO Algorithm for building explorative Trees 83

Figure 4.7: Performance of AS and its extensions

λ

84 Ant Colony Optimization

having the lowest global impurity measurement among all possible generable
trees. It has been shown [] that constructing the optimal tree is a NP-Complete
problem. This means that it, in order to use a polynomial algorithm, it is only
possible to get suboptimal trees. In other words the well-knows segmentation
procedure make use of greedy heuristics in order to reach a compromise between
tree quality and computational effort. In particular, most existing methods to
build decision trees use the following heuristic, which is based on a top-down
approach:

• recursively do the following until no more nodes can be split

86 Ant Colony Optimization

4.6. ACO Algorithm for building explorative Trees 87

distance between two nodes. Once the construction graph has been built and

88 Ant Colony Optimization

Conclusions and

90 Conclusioni

interesting.
Chapter 4.1, finally, proposes an Ant Colony Optimization based algorithm for
improving the results obtained by the greedy search algorithm commonly used
by CART. It also give encouraging results.

